~-~ 0Oded Maimon

& %<5 Lior Rokach
N Editors

for Knowledge
Discovery and
Data Mining

@ Springer

Soft Computing for
Knowledge Discovery and
Data Mining

Soft Computing for
Knowledge Discovery and
Data Mining

edited by

Oded Maimon

Tel-Aviv University
Israel

and

Lior Rokach

Ben-Gurion University of the Negev
Israel

@ Springer

Oded Maimon Lior Rokach

Tel Aviv University Ben-Gurion University

Dept.of Industrial Engineering Dept. of Information System Engineering
69978 TEL-AVIV 84105 BEER-SHEVA

ISRAEL ISRAEL

maimon@eng.tau.ac.il liorrk@bgu.ac.il

Library of Congress Control Number: 2007934794

Soft Computing for Knowledge Discovery and Data Mining
Edited by Oded Maimon and Lior Rokach

ISBN 978-0-387-69934-9 e-ISBN 978-0-387-69935-6
Printed on acid-free paper.

© 2008 Springer Science+Business Media, LLC.

All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar
terms, even if the are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

987654321

springer.com

To my famaly
O.M.

To my wife Ronit, and my two boys, Yarden and Roy
- L.R.

Preface

The information age has made it easy to store large amounts of data. Data
mining is a new and exciting field that tries to solve the crisis of information
overload by exploring large and complex bodies of data in order to discover
useful patterns. It is extreme importance because it enables modeling and
knowledge extraction from abundance data availability. Therefore theoreti-
cians and practitioners are continually seeking techniques to make the pro-
cess more efficient, cost-effective and accurate. Among the more promising
technique that have emerged in recent years are soft computing methods such
as fuzzy sets, artificial neural networks, genetic algorithms. These techniques
exploit a tolerance for imprecision, uncertainty and partial truth to achieve
tractability, robustness and low cost solutions. This book shows that the soft
computing methods extend the envelope of problems that data mining can
solve efficiently.

This book presents a comprehensive discussion of the state of the art in
data mining along with the main soft computing techniques behind it. In
addition to presenting a general theory of data mining, the book provides an
in-depth examination of core soft computing algorithms.

To help interested researchers and practitioners who are not familiar with
the field, the book starts with a gentle introduction to data mining and knowl-
edge discovery in databases (KDD) and prepares the reader for the next chap-
ters. The rest of the book is organized into four parts. The first three parts
devoted to the principal constituents of soft computing: neural networks, evo-
lutionary algorithms and fuzzy logic. The last part compiles the recent ad-
vances in soft computing and data mining.

This book was written to provide investigators in the fields of information
systems, engineering, computer science, statistics and management, with a
profound source for the role of soft computing in data mining. In addition,
social sciences, psychology, medicine, genetics, and other fields that are inter-
ested in solving complicated problems can much benefit from this book. The
book can also serve as a reference book for graduate / advanced undergrad-
uate level courses in data mining and machine learning. Practitioners among

VIII Preface

the readers may be particularly interested in the descriptions of real-world
data mining projects performed with soft-computing.

We would like to thank all authors for their valuable contributions. We
would like to express our special thanks to Susan Lagerstrom-Fife and Sharon
Palleschi of Springer for working closely with us during the production of this
book.

Tel-Aviv, Israel Oded Maimon
Beer-Sheva, Israel Lior Rokach

July 2007

Contents

Introduction to Soft Computing for Knowledge Discovery and
Data Mining
Oded Maimon, Lior Rokach

Part I Neural Network Methods

Neural Networks For Data Mining
G. Peter Zhang e

Improved SOM Labeling Methodology for Data Mining
Applications
Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, Rudy Setiono

45

Part II Evolutionary Methods

A Review of Evolutionary Algorithms for Data Mining
Alex A. Freitas

Genetic Clustering for Data Mining
Murilo Coelho Naldi André Carlos Ponce de Leon Ferreira de Carvalho
Ricardo José Gabrielli Barreto Campello Eduardo Raul Hruschka

Discovering New Rule Induction Algorithms with
Grammar-based Genetic Programming
Gisele L. Pappa, Alex A. Frettas

Evolutionary Design of Code-matrices for Multiclass
Problems
Ana Carolina Lorena, André C. P. L. F. de Carvalho.................

X Contents

Part III Fuzzy Logic Methods

The Role of Fuzzy Sets in Data Mining
Lior Rokach 187

Support Vector Machines and Fuzzy Systems
Yizin Chem. . ..o 205

KDD in Marketing with Genetic Fuzzy Systems
Jorge Casillas, Francisco J. Martinez-Lopez 225

Knowledge Discovery in a Framework for Modelling with
Words
Zengchang Qin, Jonathan Lawry i 241

Part IV Advanced Soft Computing Methods and Areas

Swarm Intelligence Algorithms for Data Clustering
Ajith Abraham, Swagatam Das, Sandip Roy 279

A Diffusion Framework for Dimensionality Reduction
Alon Schelar 315

Data Mining and Agent Technology: a fruitful symbiosis
Christos Dimou, Andreas L. Symeonidis,, Pericles A. Mitkas 327

Approximate Frequent Itemset Mining In the Presence of
Random Noise
Hong Cheng, Philip S. Yu, Jiawei Han.......... 363

The Impact of Overfitting and Overgeneralization on the
Classification Accuracy in Data Mining
Huy Nguyen Anh Pham, Evangelos Triantaphyllow 391

List of Contributors

Ajith Abraham

Center of Excellence for Quantifiable
Quality of Service (Q2S),

Norwegian University of Science and
Technology,

Trondheim, Norway
ajith.abraham@ieee.org

Arnulfo Azcarraga

College of Computer Studies,
De La Salle University, Manila,
The Philippines

azcarragaa
O@canlubang.dlsu.edu.ph

Ricardo José Gabrielli Barreto
Campello

Instituto de Ciéncias Matemaéticas e
de Computacao,

Universidade de Sao Paulo
campello@icmc.usp.br

André Carlos Ponce de Leon
Ferreira de Carvalho

Instituto de Cié

ncias Matemé&

ticas e de Computagao
Universidade de Sao Paulo
andre@icmc.usp.br

Jorge Casillas

Dept. of Computer Science and
Artificial Intelligence,
University of Granada,

Spain
casillas@decsai.ugr.es

Yixin Chen

Dept. of Computer and Information
Science

The University of Mississippi

MS 38655

ychen@cs.olemiss.edu

Hong Cheng

University of Illinois at Urbana-
Champaign
hcheng3@cs.uiuc.edu

Swagatam Das

Dept. of Electronics and Telecommu-
nication Engineering,

Jadavpur University,

Kolkata 700032,

India.

XII List of Contributors

Christos Dimou

Electrical and Computer Engineering
Dept.

Aristotle University of Thessaloniki,
54 124, Thessaloniki,

Greece

cdimou@issel.ee.auth.gr

Alex A. Freitas

Computing Laboratory,
University of Kent,

Canterbury, Kent, CT2 7NF, UK
A.A.Freitas@kent.ac.uk

Jiawei Han

University of Illinois at Urbana-
Champaign

hanj@cs.uiuc.edu

Eduardo Raul Hruschka
eduardo.hruschka
O@pesquisador.cnpq.br

Ming-Huei Hsieh

Dept. of International Business,
National Taiwan University,
Taiwan
mhhsieh@management.ntu.edu.tw

Jonathan Lawry

Artificial Intelligence Group,
Department of Engineering Mathe-
matics,

University of Bristol,

BS8 1TR, UK.

j.lawry@bris.ac.uk

Ana Carolina Lorena
Centro de Matematica,
Computagao e Cognigao
Universidade Federal do ABC
Rua Catequese, 242,

Santo André, SP, Brazil
ana.lorena@ufabc.edu.br

Oded Maimon

Dept. of Industrial Engineering
Tel-Aviv University

Israel

maimon@eng.tau.ac.il

Francisco J. Martinez-Loépez
Dept. of Marketing, University of
Granada, Spain
fjmlopezQ@ugr.es

Murilo Coelho Naldi
Instituto de Cie

ncias Matema

ticas e de Computacao
Universidade de Sao Paulo
murilocn@icmc.usp.br

Shan-Ling Pan

School of Computing,

National University of Singapore,
Singapore
pansl@comp.nus.edu.sg

Gisele L. Pappa

Computing Laboratory
University of Kent

Canterbury, Kent, CT2 7TNF, UK
glp6@kent.ac.uk

Huy Nguyen Anh Pham
Dept. of Computer Science,
298 Coates Hall,

Louisiana State University,
Baton Rouge, LA 70803
hpham15@1su.edu

Zengchang Qin

Berkeley Initiative in Soft Comput-
ing (BISC),

Computer Science Division,

EECS Department,

University of California,

Berkeley, CA 94720, US.

zgin@eecs.berkeley.edu

Lior Rokach

Dept. of Information System Engi-
neering,

Ben-Gurion University,

Israel

liorrk@bgu.ac.il

Sandip Roy

Dept. of Computer Science and
Engineering,

Asansol Engineering College,
Asansol-713304, India.

Alon Schclar

School of Computer Science,
Tel Aviv University,

Tel Aviv 69978,

Israel
shekler@post.tau.ac.il

Rudy Setiono

School of Computing,

National University of Singapore,
Singapore
rudys@comp.nus.edu.sg

Andreas L. Symeonidis

Electrical and Computer Engineering

List of Contributors XIII

Dept.

Aristotle University of Thessaloniki,
54 124, Thessaloniki,

Greece

asymeonQiti.gr

Pericles A. Mitkas

Electrical and Computer Engineering
Dept.

Aristotle University of Thessaloniki,
54 124, Thessaloniki,

Greece

mitkas@eng.auth.gr

Evangelos Triantaphyllou
Dept. of Computer Science,
298 Coates Hall,

Louisiana State University,
Baton Rouge, LA 70803
trianta@lsu.edu

Philip S. Yu
IBM T. J. Watson Research Center
psyu@us.ibm.com

G. Peter Zhang

Georgia State University,
Dept. of Managerial Sciences
gpzhangQgsu.edu

Introduction to Soft Computing for Knowledge
Discovery and Data Mining

Oded Maimon' and Lior Rokach?

! Department of Industrial Engineering, Tel-Aviv University, Ramat-Aviv 69978,

Israel,

maimon@eng.tau.ac.il

Department of Information System Engineering, Ben-Gurion University,
Beer-Sheba, Israel,

liorrk@bgu.ac.il

Summary. In this chapter we introduce the Soft Computing areas for Data Mining
and the Knowledge Discovery Process, discuss the need for plurality of methods, and
present the book organization and abstracts.

1 Introduction

Data Mining is the science, art and technology of exploring data in order to
discover insightful unknown patterns. It is a part of the overall process of
Knowledge Discovery in Databases (KDD). The accessibility and abundance
of information today makes data mining a matter of considerable importance
and necessity.

Soft computing is a collection of new techniques in artificial intelligence,
which exploit the tolerance for imprecision, uncertainty and partial truth to
achieve tractability, robustness and low solution cost. Given the history and re-
cent growth of the field, it is not surprising that several mature soft computing
methods are now available to the practitioner, including: fuzzy logic, artificial
neural networks, genetic algorithms, and swarm intelligence. The aims of this
book are to present and explain the important role of soft computing methods
in data mining and knowledge discovery.

The unique contributions of this book is in the introduction of soft com-
puting as a viable approach for data mining theory and practice, the detailed
descriptions of novel soft-computing approaches in data mining, and the illus-
trations of various applications solved in soft computing techniques, including;:
Manufacturing, Medical, Banking, Insurance, Business Intelligence and oth-
ers. The book does not include some of the most standard techniques in Data
Mining, such as Decision Trees (the reader is welcome to our new book, from
2007, dedicated entirely to Decision Trees). The book include the leading soft

2 Oded Maimon and Lior Rokach

computing methods, though for volume reasons it could not cover all methods,
and there are further emerging techniques, such as fractal based data mining
(a topic of our current research).

Since the information age, the accumulation of data has become easier
and storing it inexpensive. It has been estimated that the amount of stored
information doubles less than twenty months. Unfortunately, as the amount
of electronically stored information increases, the ability to understand and
make use of it does not keep pace with its growth. Data Mining is a term
coined to describe the process of sifting through large databases for interesting
patterns and relationships. The studies today aim at evidence-based modeling
and analysis, as is the leading practice in medicine, finance, intelligence and
many other fields. Evidently, in the presence of the vast techniques’ repertoire
and the complexity and diversity of the explored domains, one real challenge
today in the data mining field is to know how to utilize this repertoire in order
to achieve the best results. The book shows that the soft computing methods
extend the envelope of problems that data mining can solve efficiently. The
techniques of soft computing are important for researchers in the fields of data
mining, machine learning, databases and information systems, engineering,
computer science and statistics.

This book was written to provide investigators in the fields of informa-
tion systems, engineering, computer science, statistics and management, with
a profound source for the role of soft computing in data mining. In addi-
tion, social sciences, psychology, medicine, genetics, and other fields that are
interested in solving complicated problems can much benefit from this book.
Practitioners among the readers may be particularly interested in the descrip-
tions of real-world data mining projects performed with soft computing.

The material of this book has been taught by the authors in graduate
and undergraduate courses at Tel-Aviv University and Ben-Gurion Univer-
sity. The book can also serve as a reference book for graduate and advanced
undergraduate level courses in data mining and machine learning.

In this introductory chapter we briefly present the framework and overall
knowledge discovery process in the next two sections, and then the logic and
organization of this book, with brief description of each chapter.

2 The Knowledge Discovery process

This book is about methods, which are the core of the Knowledge Discovery
process. For completion we briefly present here the process steps. The knowl-
edge discovery process is iterative and interactive, consisting of nine steps.
Note that the process is iterative at each step, meaning that moving back
to previous steps may be required. The process has many “artistic” aspects in
the sense that one cannot present one formula or make a complete taxonomy
for the right choices for each step and application type. Thus it is required to
understand the process and the different needs and possibilities in each step.

Soft Computing for KDD 3

i 9. Discovered
Knowledge

8 ﬁ (Visualization
Evaluation and Integration)
5.8.7 Interpretation

T b

Data Mining T
~—eam. Y ——
4 P-\
Transformation
3 oo
Preprocessing:
Data cleaning etc.

Model &

1 Patterns

2
1

»
2
<
[
o
=

Selection &
Additiop~= 1 Transformedl
1 Data |
1
Prepracessed 1
1 t
1

g 1 Data
elected
N A A ———Y

1. Domain
Understanding

KDD Goals

Fig. 1. The Process of Knowledge Discovery in Databases.

The process starts with determining the KDD goals, and “ends” with the
implementation of the discovered knowledge. Then the loop is closed - the
Active Data Mining part starts. As a result, changes can be made in the
application domain (such as offering different features to mobile phone users
in order to reduce churning). This closes the loop, and the effects are then
measured on the new data repositories, and the KDD process is launched
again.

Following is a brief description of the nine-step KDD process, starting with
a managerial step:

1. Developing an understanding of the application domain: This is the initial
preparatory step. It prepares the scene for understanding what should be
done with the many decisions (about transformations, algorithms, repre-
sentation, etc.). The people who are in charge of a KDD project need to
understand and define the goals of the end-user and the environment in
which the knowledge discovery process will take place (including relevant
prior knowledge). As the KDD process proceeds, there may be even a
revision of this step.

Having understood the KDD goals, the preprocessing of the data starts,
defined in the next three steps.

2. Selecting and creating a data set on which discovery will be performed:
Having defined the goals, the data that will be used for the knowledge
discovery should be determined. This includes finding out what data is
available, obtaining additional necessary data, and then integrating all the
data for the knowledge discovery into one data set, including the attributes

Oded Maimon and Lior Rokach

that will be considered for the process. This process is very important
because the Data Mining learns and discovers from the available data.
This is the evidence base for constructing the models.

. Preprocessing and cleansing: In this stage, data reliability is enhanced.
It includes data clearing, such as handling missing values and removal of
noise or outliers. There are many methods explained in the handbook,
from doing almost nothing to becoming the major part (in terms of time
consumed) of a KDD project in certain projects. It may involve complex
statistical methods or using a Data Mining algorithm in this context.
For example, if one suspects that a certain attribute is of insufficient
reliability or has many missing data, then this attribute could become the
goal of a data mining supervised algorithm, or finding the centroids of
clustering. A prediction model for this attribute will be developed, and
then missing data can be predicted. The extension to which one pays
attention to this level depends on many factors. In any case, studying
the aspects is important and often revealing by itself, regarding complex
information systems.

. Data transformation: In this stage, the generation of better data for the
data mining is prepared and developed. Methods here include dimension
reduction (such as feature selection and record sampling), and attribute
transformation (such as discretization of numerical attributes and func-
tional transformation). This step can be crucial for the success of the
entire KDD project, and it is usually very project-specific. For example,
in medical examinations, the quotient of attributes may often be the most
important factor, and not each one by itself. In marketing, we may need to
consider effects beyond our control as well as efforts and temporal issues
(such as studying the effect of advertising accumulation). However, even
if we do not use the right transformation at the beginning, we may obtain
a surprising effect that hints to us about the transformation needed (in
the next iteration). Thus the KDD process reflects upon itself and leads
to an understanding of the transformation needed.

Having completed the above four steps, the following four steps are related
to the Data Mining part, where the focus is on the algorithmic aspects
employed for each project:

. Choosing the appropriate Data Mining task: We are now ready to decide
on which type and approach of Data Mining to use, for example, classifi-
cation, regression, or clustering. This mostly depends on the KDD goals,
and also on the previous steps. There are two major goals in Data Mining:
prediction and description. Prediction is often referred to as supervised
Data Mining, while descriptive Data Mining includes the unsupervised
and visualization aspects of Data Mining. Most Data Mining techniques
are based on inductive learning, where a model is constructed explicitly or
implicitly by generalizing from a sufficient number of training examples.
The underlying assumption of the inductive approach is that the trained

Soft Computing for KDD 5

model is applicable to future cases. The strategy also takes into account
the level of meta-learning for the particular set of available data.

6. Choosing the Data Mining algorithm: Having the strategy, we now decide
on the tactics. This stage includes selecting the specific method to be
used for searching patterns (including multiple inducers). For example, in
considering precision versus understandability, the former is better with
neural networks, while the latter is better with decision trees. For each
strategy of meta-learning there are several possibilities of how it can be
accomplished. Meta-learning focuses on explaining what causes a Data
Mining algorithm to be successful or not in a particular problem. Thus,
this approach attempts to understand the conditions under which a Data
Mining algorithm is most appropriate. Each algorithm has parameters and
tactics of learning (such as ten-fold cross-validation or another division for
training and testing).

7. Employing the Data Mining algorithm: Finally the implementation of the
Data Mining algorithm is reached. In this step we might need to employ
the algorithm several times until a satisfied result is obtained, for instance
by tuning the algorithm’s control parameters, such as the minimum num-
ber of instances in a single leaf of a decision tree.

8. Evaluation: In this stage we evaluate and interpret the mined patterns
(rules, reliability, etc.), with respect to the goals defined in the first step.
Here we consider the preprocessing steps with respect to their effect on
the Data Mining algorithm results (for example, adding features in Step 4
and repeating from there). This step focuses on the comprehensibility and
usefulness of the induced model. In this step the discovered knowledge is
also documented for further usage.

The last step is the usage and overall feedback on the patterns and dis-
covery results obtained by the Data Mining:

9. Using the discovered knowledge: We are now ready to incorporate the
knowledge into another system for further action. The knowledge becomes
active in the sense that we may make changes to the system and measure
the effects. Actually the success of this step determines the effectiveness
of the entire KDD process. There are many challenges in this step, such
as loosing the “laboratory conditions” under which we have operated. For
instance, the knowledge was discovered from a certain static snapshot
(usually sample) of the data, but now the data becomes dynamic. Data
structures may change (certain attributes become unavailable), and the
data domain may be modified (such as, an attribute may have a value
that was not assumed before).

3 The need for plurality of methods

Data Mining methods are becoming part of general purpose Integrated Infor-
mation Technology (IIT) software packages. Starting from the data sources

6 Oded Maimon and Lior Rokach

(such as operational databases, semi- and non-structured data and reports,
Internet sites etc.), then the tier of the data warehouse, followed by OLAP
(On Line Analytical Processing) servers and concluding with analysis tools,
where Data Mining tools are the most advanced.

We can naively distinguish among three levels of analysis. The simplest
one is achieved by report generators (for example, presenting all claims that
occurred because of a certain cause last year, such as car theft). We then
proceed to OLAP multi-level analysis (for example presenting the ten towns
where there was the highest increase of vehicle theft in the last month as
compared to with the month before). Finally a complex analysis is carried
out for discovering the patterns that predict car thefts in these cities, and
what might occur if anti theft devices were installed. The latter is based
on modeling of the phenomena, where the first two levels are ways of data
aggregation and fast manipulation.

Empirical comparison of the performance of different approaches and their
variants in a wide range of application domains has shown that each performs
best in some, but not all, domains. This phenomenon is known as the selective
superiority problem, which means, in our case, that no induction approach or
algorithm can be the best in all possible domains. The reason is that each
algorithm contains an explicit or implicit bias that leads it to prefer certain
generalizations over others, and it will be successful only as long as this bias
matches the characteristics of the application domain.

Results have demonstrated the existence and correctness of this “no free
lunch theorem”. If one inducer is better than another in some domains, then
there are necessarily other domains in which this relationship is reversed. This
implies in KDD that for a given problem a certain approach can yield more
knowledge from the same data than other approaches.

In many application domains, the generalization error (on the overall do-
main, not just the one spanned in the given data set) of even the best methods
is far above the training set, and the question of whether it can be improved,
and if so how, is an open and important one. Part of the answer to this ques-
tion is to determine the minimum error achievable by any classifier in the
application domain (known as the optimal Bayes error). If existing classifiers
do not reach this level, new approaches are needed. Although this problem has
received considerable attention, no generally reliable method has so far been
demonstrated. This is one of the challenges of the DM research — not only to
solve it, but even to quantify and understand it better. Heuristic methods can
then be compared absolutely and not just against each other.

A subset of this generalized study is the question of which approach and
inducer to use for a given problem. To be even more specific, the performance
measure need to be defined appropriately for each problem. Though there
are some commonly accepted measures it is not enough. For example, if the
analyst is looking for accuracy only, one solution is to try each one in turn,
and by estimating the generalization error, to choose the one that appears to

Soft Computing for KDD 7

perform best. Another approach, known as multi-strategy learning, attempts
to combine two or more different paradigms in a single algorithm.

The dilemma of what method to choose becomes even greater if other fac-
tors such as comprehensibility are taken into consideration. For instance, for
a specific domain, neural networks may outperform decision trees in accuracy.
However from the comprehensibility aspect, decision trees are considered su-
perior. In other words, in this case even if the researcher knows that neural
network is more accurate, the dilemma of what methods to use still exists (or
maybe to combine methods for their separate strength).

Induction is one of the central problems in many disciplines such as ma-
chine learning, pattern recognition, and statistics. However the feature that
distinguishes Data Mining from traditional methods is its scalability to very
large sets of varied types of input data. Scalability means working in an envi-
ronment of high number of records, high dimensionality, and a high number
of classes or heterogeneousness. Nevertheless, trying to discover knowledge in
real life and large databases introduces time and memory problems.

As large databases have become the norms in many fields (including as-
tronomy, molecular biology, finance, marketing, health care, and many others),
the use of Data Mining to discover patterns in them has become potentially
very beneficial for the enterprise. Many companies are staking a large part of
their future on these “Data Mining” applications, and turn to the research
community for solutions to the fundamental problems they encounter.

While a very large amount of available data used to be the dream of any
data analyst, nowadays the synonym for “very large” has become “terabyte”
or “pentabyte”, a barely imaginable volume of information. Information-
intensive organizations (like telecom companies and financial institutions) are
expected to accumulate pentabyte of raw data every one to two years.

High dimensionality of the input (that is, the number of attributes) in-
creases the size of the search space in an exponential manner (known as the
“Curse of Dimensionality”), and thus increases the chance that the inducer
will find spurious classifiers that in general are not valid. There are several ap-
proaches for dealing with a high number of records including: sampling meth-
ods, aggregation, massively parallel processing, and efficient storage methods.
This book presents some of the approaches in this direction.

4 The organization of the book

The book has sixteen chapters divided into four main parts, where the first
three address the methods and topics that are most identified with soft com-
puting, and then the last part adds advanced and promising methods and
areas:

I. Neural network methods: Chapters 2 to 3
II. Evolutionary methods: Chapters 4 to 7

8 Oded Maimon and Lior Rokach

III. Fuzzy logic methods: Chapters 8 to 11

IV. Advanced soft computing methods and areas: Chapters 12 to 16 Includ-
ing: Swarm intelligence (12), diffusion process (13), and agent technology
(14); and the areas of: approximate frequent item-set mining (15), and
finally the impact of over-fitting and over-generalization on the classifica-
tion accuracy in Data Mining (16).

In the following, edited abstracts of the chapters in the book are presented,
for the reader map and convenience:

4.1 Neural network methods

The first methodology addressed in the book is Neural Networks, which
have become elaborated important tools for data mining. Chapter 2 provides
an overview of neural network models and their applications to data mining
tasks. It also provides historical development of the field of neural networks
and present three important classes of neural models including feed forward
multilayer networks, Hopfield networks, and Kohonen’s self-organizing maps.
Modeling issues and applications of these models for data mining are discussed
as well.

Then Chapter 3 continues in this direction by specifically addressing Self-
Organizing Maps (SOMs). SOMs have been useful in gaining insights about
the information content of large volumes of data in various data mining ap-
plications. As a special form of neural networks, they have been attractive as
a data mining tool because they are able to extract information from data
even with very little user-intervention (though some is needed). This chap-
ter proposes a methodical and semi-automatic SOM labeling procedure that
does not require a set of labeled patterns, and shows an effective alternative.
The effectiveness of the method is demonstrated on a data mining application
involving customer-profiling based on an international market segmentation
study.

4.2 Evolutionary methods

A new family of methods starts in Chapter 4 with a review of Evolutionary
Algorithms (EAs) for Data Mining. Evolutionary Algorithms are stochastic
search algorithms inspired by the process of neo-Darwinian evolution. The
motivation for applying EAs to data mining is that they are robust, adaptive
search techniques that perform a global search in the solution space. This
chapter first presents a brief overview of EAs, focusing mainly on two kinds of
EAs, viz. Genetic Algorithms (GAs) and Genetic Programming (GP). Then
the chapter reviews the main concepts and principles used by EAs designed
for solving several data mining tasks, namely: discovery of classification rules,
clustering, attribute selection and attribute construction. Finally, it discusses

Soft Computing for KDD 9

Multi-Objective EAs, based on the concept of Pareto dominance, and their
use in several data mining tasks.

Then Chapter 5 continues this topic by specifically addressing Genetic
Clustering for Data Mining. Genetic Algorithms (GAs) have been success-
fully applied to several complex data analysis problems in a wide range of
domains, such as image processing, bioinformatics, and crude oil analysis. The
need for organizing data into categories of similar objects has made the task
of clustering increasingly important to those domains. This chapter presents
a survey of the use of GAs for clustering applications. A variety of encoding
(chromosome representation) approaches, fitness functions, and genetic op-
erators are described, all of them customized to solve problems in such an
application context.

Chapter 6 addresses the discovering of new rule by induction algorithms
with Grammar-Based Genetic Programming. Rule induction is a data
mining technique used to extract classification rules of the form IF (conditions)
THEN (predicted class) from data. The majority of the rule induction algo-
rithms found in the literature follow the sequential covering strategy, which
essentially induces one rule at a time until (almost) all the training data is
covered by the induced rule set. This strategy describes a basic algorithm
composed by several key elements, which can be modified to generate new
and better rule induction algorithms. With this in mind, this work proposes
the use of a Grammar-based Genetic Programming (GGP) algorithm
to automatically discover new sequential covering algorithms. The proposed
system is evaluated using 20 data sets, and the automatically-discovered rule
induction algorithms are compared with four well-known human-designed rule
induction algorithms. Results showed that the GGP system is a promising ap-
proach to effectively discover new sequential covering algorithms

Another general aspect of data mining issues is introduced in Chapter 7
with Evolutionary Design of code-matrices for multi-class problems. Given
a dataset containing data whose classes are known, Machine Learning algo-
rithms can be employed for the induction of a classifier able to predict the class
of new data from the same domain, performing the desired discrimination.
Several machine learning techniques are originally conceived for the solution
of problems with only two classes. In multi-class applications, an alternative
frequently employed is to divide the original problem into binary subtasks,
whose results are then combined. The decomposition can be generally repre-
sented by a code-matrix, where each row corresponds to a codeword assigned
for one class and the columns represent the binary classifiers employed. This
chapter presents a survey on techniques for multi-class problems code-matrix
design. It also shows how evolutionary techniques can be employed to solve
this problem.

10 Oded Maimon and Lior Rokach

4.3 Fuzzy logic methods

The role of Fuzzy Sets in Data Mining is introduced in Chapter 8. This
chapter discusses how fuzzy logic extends the envelop of the main data min-
ing tasks: clustering, classification, regression and association rules. The chap-
ter begins by presenting a formulation of the data mining using fuzzy logic
attributes. Then, for each task, the chapter provides a survey of the main
algorithms and a detailed description (i.e. pseudo-code) of the most popular
algorithms.

Continuing with the same area Chapter 9 addresses Support Vector
Machines and Fuzzy Systems. Fuzzy set theory and fuzzy logic provide
tools for handling uncertainties in data mining tasks. To design a fuzzy rule-
based classification system (fuzzy classifier) with good generalization ability
in a high dimensional feature space has been an active research topic for a long
time. As a powerful machine learning approach for data mining and pattern
recognition problems, support vector machine (SVM) is known to have good
generalization ability. More importantly, an SVM can work very well on a high
(or even infinite) dimensional feature space. This chapter presents a survey of
the connection between fuzzy classifiers and kernel machines.

KDD in Marketing with Genetic Fuzzy Systems is addressed in Chap-
ter 10. This chapter presents a new methodology to marketing (causal) mod-
eling. Specifically it is applied to a consumer behavior model used for the
experimentation. The characteristics of the problem (with uncertain data and
available knowledge from a marketing expert) and the multi objective opti-
mization make genetic fuzzy systems a good tool for this problem type. By
applying this methodology useful information patterns (fuzzy rules) are ob-
tained, which help to better understand the relations among the elements of
the marketing system being analyzed (consumer model in this case).

In Chapter 11 the fuzzy theme is continued with a Framework for Mod-
eling with Words. The learning of transparent models is an important and
neglected area of data mining. The data mining community has tended to
focus on algorithm accuracy with little emphasis on the knowledge represen-
tation framework. However, the transparency of a model will help practition-
ers greatly in understanding the trends and idea hidden behind the system.
In this chapter a random set based knowledge representation framework for
learning linguistic models is introduced. This framework is referred to as la-
bel semantics and a number of data mining algorithms are proposed. In this
framework, a vague concept is modeled by a probability distribution over a set
of appropriate fuzzy labels, which is called as mass assignment. The idea of
mass assignment provides a probabilistic approach for modeling uncertainty
based on pre-defined fuzzy labels.

4.4 Advanced soft computing methods and areas

A new soft computing methodology is introduced in Chapter 12, which ad-
dresses Swarm Intelligence algorithms for data clustering. Data mining

Soft Computing for KDD 11

tasks require fast and accurate partitioning of huge datasets, which may come
with a variety of attributes or features. This, in turn, imposes severe com-
putational requirements on the relevant clustering techniques. A family of
bio-inspired algorithms, well-known as Swarm Intelligence (SI) has recently
emerged that meets these requirements and has successfully been applied to a
number of real world clustering problems. This chapter explores the role of SI
in clustering different kinds of datasets. It finally describes a new SI technique
for partitioning any dataset into an optimal number of groups through one
run of optimization. Computer simulations undertaken in this research have
also been provided to demonstrate the effectiveness of the proposed algorithm.

In Chapter 13 another type of method for soft computing is revealed,
namely Diffusion method. This chapter describes a natural framework
based on diffusion processes for the multi-scale analysis of high-dimensional
data-sets. Many fields of research deal with high-dimensional data sets. Hyper
spectral images in remote sensing and in hyper-spectral microscopy, transac-
tions in banking monitoring systems are just a few examples for this type of
sets. Revealing the geometric structure of these data-sets is a preliminary step
to facilitate their efficient processing. Often, only a small number of parame-
ters govern the structure of the data-set. This number is the true dimension
of the data-set and is the motivation to reduce the dimensionality of the set.
Dimensionality reduction algorithms try to discover the true dimension of a
data set. The diffusion process scheme enables the description of the geometric
structures of such sets by utilizing the Newtonian paradigm according to which
a global description of a system can be derived by the aggregation of local
transitions. Specifically, a Markov process is used to describe a random walk
on the data set. The spectral properties of the Markov matrix that is asso-
ciated with this process are used to embed the data-set in a low-dimensional
space. This scheme also facilitates the parameterization of a data-set when
the high dimensional data-set is not accessible and only a pair-wise similarity
matrix is at hand.

Agent Technology as applied to Data Mining is introduced in Chapter
14. Today’s applications are required to extract knowledge from large, often
distributed, repositories of text, multimedia or hybrid content. The nature
of this quest makes it impossible to use traditional deterministic comput-
ing techniques. Instead, various soft computing techniques are employed to
meet the challenge for more sophisticated solutions in knowledge discovery.
Most notably, Data Mining (DM) is thought of as one of the state-of-the-
art paradigms. DM produces useful patterns and associations from large data
repositories that can later be used as knowledge nuggets, within the context of
any application. Individual facets of knowledge discovery, introduced by DM
techniques, often need to be orchestrated, integrated and presented to end
users in a unified way. Moreover, knowledge has to be exploited and embod-
ied in autonomous software for learning purposes and, hence, a more increased
performance. Agent Technology (AT) proves to be a promising paradigm that
is suitable for modeling and implementing the unification of DM tasks, as

12 Oded Maimon and Lior Rokach

well as for providing autonomous entity models that dynamically incorporate
and use existing knowledge. Indeed, a plethora of multi-agent systems (MAS)
and other agent-related solutions for knowledge-based systems can be found
in the literature, and more specifically in the area of agent-based DM, as it is
explained in detail in this chapter.

The issue of error-tolerant item-set is presented in Chapter 15, which ad-
dresses Approximate Frequent Item-set Mining in the presence of ran-
dom noise. Frequent item-set mining has been a focused theme in data mining
research and an important first step in the analysis of data arising in a broad
range of applications. The traditional exact model for frequent item-set re-
quires that every item occur in each supporting transaction. However, real
application data is usually subject to random noise or measurement error,
which poses new challenges for the efficient discovery of frequent item-set from
the noisy data. Mining approximate frequent item-set in the presence of noise
involves two key issues: the definition of a noise-tolerant mining model and
the design of an efficient mining algorithm. This chapter gives an overview of
the approximate item-set mining algorithms in the presence of random noise
and examines several noise-tolerant mining approaches.

The impact of over fitting and over generalization on the clas-
sification accuracy in Data Mining is addressed in, Chapter 16, the last
chapter of the book. Many classification studies often times conclude with a
summary table, which presents performance results of applying various data
mining approaches on different datasets. No single method outperforms all
methods all the time. Further-more, the performance of a classification method
in terms of its false-positive and false-negative rates may be totally unpre-
dictable. Attempts to minimize any of the previous two rates, may lead to an
increase on the other rate. If the model allows for new data to be deemed as
unclassifiable when there is not adequate information to classify them, then
it is possible for the previous two error rates to be very low. However, at the
same time, the rate of having unclassifiable new examples may be very high.
The root to the above critical problem is the over fitting and overgeneral-
ization behaviors of a given classification approach when it is processing a
particular dataset.

Although the above situation is of fundamental importance to data mining,
it has not been studied from a comprehensive point of view. Thus, this chapter
analyzes the above issues in depth. It also proposes a new approach called
the Homogeneity-Based Algorithm (or HBA) for optimally controlling the
previous three error rates. This is done by first formulating an optimization
problem. The key development in this chapter is based on a special way for
analyzing the space of the training data and then partitioning it according to
the data density of different regions of this space. Next, the classification task
is pursued based on the previous partitioning of the training space. In this way,
the previous three error rates can be controlled in a comprehensive manner.
Some preliminary computational results seem to indicate that the proposed

Soft Computing for KDD 13

approach has a significant potential to fill in a critical gap in current data
mining methodologies.

Part 1

Neural Network Methods

Neural Networks For Data Mining

G. Peter Zhang

Georgia State University,
Department of Managerial Sciences,
gpzhang@gsu.edu

Summary. Neural networks have become standard and important tools for data
mining. This chapter provides an overview of neural network models and their appli-
cations to data mining tasks. We provide historical development of the field of neural
networks and present three important classes of neural models including feedforward
multilayer networks, Hopfield networks, and Kohonen’s self-organizing maps. Mod-
eling issues and applications of these models for data mining are discussed.

Key words: neural networks, regression, classification, prediction, clustering

1 Introduction

Neural networks or artificial neural networks are an important class of tools
for quantitative modeling. They have enjoyed considerable popularity among
researchers and practitioners over the last 20 years and have been successfully
applied to solve a variety of problems in almost all areas of business, indus-
try, and science (Widrow, Rumelhart & Lehr, 1994). Today, neural networks
are treated as a standard data mining tool and used for many data mining
tasks such as pattern classification, time series analysis, prediction, and clus-
tering. In fact, most commercial data mining software packages include neural
networks as a core module.

Neural networks are computing models for information processing and are
particularly useful for identifying the fundamental relationship among a set
of variables or patterns in the data. They grew out of research in artificial
intelligence; specifically, attempts to mimic the learning of the biological neu-
ral networks especially those in human brain which may contain more than
10*! highly interconnected neurons. Although the artificial neural networks
discussed in this chapter are extremely simple abstractions of biological sys-
tems and are very limited in size, ability, and power comparing biological
neural networks, they do share two very important characteristics: 1) parallel
processing of information and 2) learning and generalizing from experience.

18 G. Peter Zhang

The popularity of neural networks is due to their powerful modeling ca-
pability for pattern recognition. Several important characteristics of neural
networks make them suitable and valuable for data mining. First, as opposed
to the traditional model-based methods, neural networks do not require sev-
eral unrealistic a priori assumptions about the underlying data generating
process and specific model structures. Rather, the modeling process is highly
adaptive and the model is largely determined by the characteristics or pat-
terns the network learned from data in the learning process. This data-driven
approach is ideal for real world data mining problems where data are plen-
tiful but the meaningful patterns or underlying data structure are yet to be
discovered and impossible to be pre-specified.

Second, the mathematical property of the neural network in accurately
approximating or representing various complex relationships has been well es-
tablished and supported by theoretic work (Chen and Chen, 1995; Cybenko,
1989; Hornik, Stinchcombe, and White 1989). This universal approximation
capability is powerful because it suggests that neural networks are more gen-
eral and flexible in modeling the underlying data generating process than tra-
ditional fixed-form modeling approaches. As many data mining tasks such as
pattern recognition, classification, and forecasting can be treated as function
mapping or approximation problems, accurate identification of the underlying
function is undoubtedly critical for uncovering the hidden relationships in the
data.

Third, neural networks are nonlinear models. As real world data or re-
lationships are inherently nonlinear, traditional linear tools may suffer from
significant biases in data mining. Neural networks with their nonlinear and
nonparametric nature are more cable for modeling complex data mining prob-
lems.

Finally, neural networks are able to solve problems that have imprecise
patterns or data containing incomplete and noisy information with a large
number of variables. This fault tolerance feature is appealing to data mining
problems because real data are usually dirty and do not follow clear probability
structures that typically required by statistical models.

This chapter aims to provide readers an overview of neural networks used
for data mining tasks. First, we provide a short review of major historical de-
velopments in neural networks. Then several important neural network models
are introduced and their applications to data mining problems are discussed.

2 A Brief History

Historically, the field of neural networks is benefited by many researchers in di-
verse areas such as biology, cognitive science, computer science, mathematics,
neuroscience, physics, and psychology. The advancement of the filed, however,
is not evolved steadily, but rather through periods of dramatic progress and
enthusiasm and periods of skepticism and little progress.

Neural Networks For Data Mining 19

The work of McCulloch and Pitts (1943) is the basis of modern view of
neural networks and is often treated as the origin of neural network field.
Their research is the first attempt to use mathematical model to describe how
a neuron works. The main feature of their neuron model is that a weighted sum
of input signals is compared to a threshold to determine the neuron output.
They showed that simple neural networks can compute any arithmetic or
logical function.

In 1949, Hebb (1949) published his book “The Organization of Behavior.”
The main premise of this book is that behavior can be explained by the
action of neurons. He proposed one of the first learning laws that postulated
a mechanism for learning in biological neurons.

In the 1950s, Rosenblatt and other researchers developed a class of neural
networks called the perceptrons which are models of a biological neuron. The
perceptron and its associated learning rule (Rosenblatt, 1958) had generated
a great deal of interest in neural network research. At about the same time,
Widrow and Hoff (1960) developed a new learning algorithm and applied it to
their ADALINE (Adaptive Linear Neuron) networks which is very similar to
perceptrons but with linear transfer function, instead of hard-limiting func-
tion typically used in perceptrons. The Widrow-Hoff learning rule is the basis
of today’s popular neural network learning methods. Although both percep-
trons and ADALINE networks have achieved only limited success in pattern
classification because they can only solve linearly-separable problems, they
are still treated as important work in neural networks and an understanding
of them provides the basis for understanding more complex networks.

The neural network research was hit by the book “Perceptrons” by Min-
sky and Papert (1969) who pointed out the limitation of the perceptrons and
other related networks in solving a large class of nonlinearly separable prob-
lems. In addition, although Minsky and Papert proposed multilayer networks
with hidden units to overcome the limitation, they were not able to find a
way to train the network and stated that the problem of training may be
unsolvable. This work causes much pessimism in neural network research and
many researchers have left the filed. This is the reason that during the 1970s,
the filed has been essentially dormant with very little research activity.

The renewed interest in neural network started in the 1980s when Hopfield
(1982) used statistical mechanics to explain the operations of a certain class
of recurrent network and demonstrated that neural networks could be trained
as an associative memory. Hopfield networks have been used successfully in
solving the Traveling Salesman Problem which is a constrained optimization
problem (Hopfield and Tank, 1985). At about the same time, Kohonen (1982)
developed a neural network based on self-organization whose key idea is to
represent sensory signals as two-dimensional images or maps. Kohonen’s net-
works, often called Kohonen’s feature maps or self-organizing maps, organized
neighborhoods of neurons such that similar inputs into the model are topo-
logically close. Because of the usefulness of these two types of networks in
solving real problems, more research was devoted to neural networks.

20 G. Peter Zhang

The most important development in the field was doubtlessly the inven-
tion of efficient training algorithms—called backpropagation—for multilayer
perceptrons which have long been suspected to be capable of overcoming the
linear separability limitation of the simple perceptron but have not been used
due to lack of good training algorithms. The backpropagation algorithm, orig-
inated from Widrow and Hoff’s learning rule, formalized by Werbos (1974),
developed by Parker (1985), Rumelhart Hinton, and Williams (Rumelhart
Hinton & Williams, 1986) and others, and popularized by Rumelhart, et al.
(1986), is a systematic method for training multilayer neural networks. As a
result of this algorithm, multilayer perceptrons are able to solve many impor-
tant practical problems, which is the major reason that reinvigorated the filed
of neural networks. It is by far the most popular learning paradigm in neural
networks applications.

Since then and especially in the 1990s, there have been significant research
activities devoted to neural networks. In the last 15 years or so, tens of thou-
sands of papers have been published and numerous successful applications
have been reported. It will not be surprising to see even greater advancement
and success of neural networks in various data mining applications in the
future.

3 Neural Network Models

As can be seen from the short historical review of development of the neural
network field, many types of neural networks have been proposed. In fact,
several dozens of different neural network models are regularly used for a va-
riety of problems. In this section, we focus on three better known and most
commonly used neural network models for data mining purposes: the multi-
layer feedforward network, the Hopfield network, and the Kohonen’s map. It
is important to point out that there are numerous variants of each of these
networks and the discussions below are limited to the basic model formats.

3.1 Feedforward Neural Networks

The multilayer feedforward neural networks, also called multi-layer percep-
trons (MLP), are the most widely studied and used neural network model in
practice. According to Wong, Bodnovich, and Selvi (1997), about 95% of busi-
ness applications of neural networks reported in the literature use this type of
neural model. Feedforward neural networks are ideally suitable for modeling
relationships between a set of predictor or input variables and one or more
response or output variables. In other words, they are appropriate for any
functional mapping problem where we want to know how a number of input
variables affect the output variable(s). Since most prediction and classification
tasks can be treated as function mapping problems, the MLP networks are

Neural Networks For Data Mining 21

very appealing to data mining. For this reason, we will focus more on feed-
forward networks and many issues discussed here can be extended to other
types of neural networks.

Model Structure

An MLP is a network consisted of a number of highly interconnected simple
computing units called neurons, nodes, or cells, which are organized in layers.
Each neuron performs simple task of information processing by converting
received inputs into processed outputs. Through the linking arcs among these
neurons, knowledge can be generated and stored as arc weights regarding the
strength of the relationship between different nodes. Although each neuron
implements its function slowly and imperfectly, collectively a neural network
is able to perform a variety of tasks efficiently and achieve remarkable results.

Figure 1 shows the architecture of a three-layer feedforward neural network
that consists of neurons (circles) organized in three layers: input layer, hidden
layer, and output layer. The neurons in the input nodes correspond to the
independent or predictor variables that are believed to be useful for predicting
the dependent variables which correspond to the output neurons. Neurons in
the input layer are passive; they do not process information but are simply
used to receive the data patterns and then pass them into the neurons into
the next layer. Neurons in the hidden layer are connected to both input and
output neurons and are key to learning the pattern in the data and mapping
the relationship from input variables to the output variable. Although it is
possible to have more than one hidden layer in a multilayer networks, most
applications use only one layer. With nonlinear transfer functions, hidden
neurons can process complex information received from input neurons and
then send processed information to output layer for further processing to
generate outputs. In feedforward neural networks, the information flow is one
directional from the input to hidden then to output layer and there is no
feedback from the output.

Outputs (y)

Output Layer

Weights (w2)
Hidden Layer
Weights (w1)

Input Layer
Inputs (x)

Fig. 1. Multi-layer feedforward neural network

22 G. Peter Zhang

Thus, a feedforward multilayer neural network is characterized by its ar-
chitecture determined by the number of layers, the number of nodes in each
layer, the transfer function used in each layer, as well as how the nodes in
each layer connected to nodes in adjacent layers. Although partial connection
between nodes in adjacent layers and direct connection from input layer to
output layer are possible, the most commonly used neural network is so called
fully connected one in that each node at one layer is fully connected only to
all nodes in the adjacent layers.

To understand how the network in Figure 1 works, we need first under-
stand the way neurons in the hidden and output layers process information.
Figure 2 provides the mechanism that shows how a neuron processes infor-
mation from several inputs and then converts it into an output. Each neuron
processes information in two steps. In the first step, the inputs (z;) are com-
bined together to form a weighted sum of inputs and the weights (w;) of
connecting links. The 2"? step then performs a transformation that converts
the sum to an output via a transfer function. In other words, the neuron in
Figure 2 performs the following operations:

Out, = f <Z wle> s (1)

where Out,, is the output from this particular neuron and fis the transfer
function. In general, the transfer function is a bounded nondecreasing func-
tion. Although there are many possible choices for transfer functions, only a
few of them are commonly used in practice. These include

1. the sigmoid (logistic) function, f(z) = (1 + exp(—x))~ !,
exp(z)—exp(—x)
exp(x)+exp(—z)’

3. the sine and cosine function, f(z) = sin(z), f(z) = cos(x), and

4. the linear or identity function, f(z) = «.

Among them, the logistic function is the most popular choice especially
for the hidden layer nodes due to the fact that it is simple, has a number of
good characteristics (bounded, nonlinear, and monotonically increasing), and
bears a better resemblance to real neurons (Hinton, 1992).

In Figure 1, let x = (21,2, ..., zq4) be a vector of d predictor or attribute
variables, y = (y1,¥2, .., yamr)be the M-dimensional output vector from the
network, and wy and wg be the matrices of linking arc weights from input to
hidden layer and from hidden to output layer, respectively. Then a three-layer
neural network can be written as a nonlinear model of the form

2. the hyperbolic tangent function, f(x) =

y = fa(wafi(wix)), (2)
where f; and fo are the transfer functions for the hidden nodes and output
nodes respectively. Many networks also contain node biases which are con-
stants added to the hidden and/or output nodes to enhance the flexibility
of neural network modeling. Bias terms act like the intercept term in linear
regression.

Neural Networks For Data Mining 23

X1
w1
I x w2
N \
p
u 3 *» —— Output
t L]
Wd
Xd

Fig. 2. Information processing in a single neuron

In classification problems where desired outputs are binary or categorical,
logistic function is often used in the output layer to limit the range of the
network outputs. On the other hand, for prediction or forecasting purposes,
since output variables are in general continuous, linear transfer function is a
better choice for output nodes. Equation (3) can have many different specifi-
cations depending on the problem type, the transfer function, and numbers of
input, hidden, and output nodes employed. For example, the neural network
structure for a general univariate forecasting problem with logistic function
for hidden nodes and identity function for the output node can be explicitly
expressed as

q p
ye =wio+ Y wi; f(O wijwis + wy) (3)

j=1 i=1
where y; is the observation of forecast variable and {z;, i = 1, 2, ..., p}

are p predictor variables at time t, p is also the number of input nodes, ¢ is
the number of hidden nodes, {wi;,j = 0,1, ...,n} are weights from the hidden
to output nodes and {w;;,i = 0,1,....,p; j = 1,2,...,¢q} are weights from the
input to hidden nodes; cg and B¢, are bias terms, and f is the logistic function
defined above.

Network Training

The arc weights are the parameters in a neural network model. Like in a
statistical model, these parameters need to be estimated before the network
can be adopted for further use. Neural network training refers to the process in
which these weights are determined, and hence is the way the network learns.
Network training for classification and prediction problems is performed via
supervised learning in which known outputs and their associated inputs are
both presented to the network.

The basic process to train a neural network is as follows. First, the network
is fed with training examples, which consist of a set of input patterns and

24 G. Peter Zhang

their desired outputs. Second, for each training pattern, the input values are
weighted and summed at each hidden layer node and the weighted sum is then
transmitted by an appropriate transfer function into the hidden node’s output
value, which becomes the input to the output layer nodes. Then, the network
output values are calculated and compared to the desired or target values to
determine how closely the actual network outputs match the desired outputs.
Finally, the weights of the connection are changed so that the network can
produce a better approximation to the desired output. This process typically
repeats many times until differences between network output values and the
known target values for all training patterns are as small as possible.

To facilitate training, some overall error measure such as the mean squared
errors (MSE) or sum of squared errors (SSE) is often used to serve as an
objective function or performance metric. For example, MSE can be defined
as

MSE = ——

M N
— Ymj)?, (4)

m=1j=1
where d,,; and y,; represent the desired (target) value and network output
at the mth node for the jth training pattern respectively, M is the number
of output nodes, and N is the number of training patterns. The goal of train-
ing is to find the set of weights that minimize the objective function. Thus,
network training is actually an unconstrained nonlinear optimization prob-
lem. Numerical methods are usually needed to solve nonlinear optimization
problems.

The most important and popular training method is the backpropagation
algorithm which is essentially a gradient steepest descent method. The idea of
steepest descent method is to find the best direction in the multi-dimension
error space to move or change the weights so that the objective function
is reduced most. This requires partial derivative of the objective function
with respect to each weight to be calculated because the partial derivative
represents the rate of change of the objective function. The weight updating
therefore follows the following rule

WY = old + Aw;
ij - j
_) OE (5)
Awij = —77 Bwu

where Aw;jis the gradient of objective function E with respect to weight w;;,
and 7 is called the learning rate which controls the size of the gradient descent
step. The algorithm requires an iterative process and there are two versions of
weight updating schemes: batch mode and on-line mode. In the batch mode,
weights are updated after all training patterns are evaluated, while in the on-
line learning mode, the weights are updated after each pattern presentation.
The basic steps with the batch mode training can be summarized as

initialize the weights to small random values from, say, a uniform distribution

Neural Networks For Data Mining 25

choose a pattern and forward propagate it to obtain network outputs
calculate the pattern error and back-propagate it to obtain partial derivative
of this error with respect to all weights

add up all the single-pattern terms to get the total derivative

update the weights with equation (7)

repeat steps 2-5 for next pattern until all patterns are passed through.

Note that each one pass of all patterns is called an epoch. In general, each
weight update reduces the total error by only a small amount so many epochs
are often needed to minimize the error. For information on further detail of
the backpropagation algorithm, readers are referred to Rumelhart et al. (1986)
and Bishop (1995).

It is important to note that there is no algorithm currently available which
can guarantee global optimal solution for general nonlinear optimization prob-
lems such as those in neural network training. In fact, all algorithms in non-
linear optimization inevitably suffer from the local optima problems and the
most we can do is to use the available optimization method which can give
the ”"best” local optima if the true global solution is not available. It is also
important to point out that the steepest descent method used in the basic
backpropagation suffers the problems of slow convergence, inefficiency, and
lack of robustness. Furthermore, it can be very sensitive to the choice of the
learning rate. Smaller learning rates tend to slow the learning process while
larger learning rates may cause network oscillation in the weight space. Com-
mon modifications to the basic backpropagation include adding in the weight
updating formula (2) an additional momentum parameter proportional to the
last weight change the to control the oscillation in weight changes and (3)
a weight decay term that penalizes the overly complex network with large
weights.

In light of the weakness of the standard backpropagation algorithm, the
existence of many different optimization methods (Fletcher, 1987) provides
various alternative choices for the neural network training. Among them, the
second-order methods such as BFGS and Levenberg-Marquardt methods are
more efficient nonlinear optimization methods and are used in most optimiza-
tion packages. Their faster convergence, robustness, and the ability to find
good local minima make them attractive in neural network training. For exam-
ple, De Groot and Wurtz (1991) have tested several well-known optimization
algorithms such as quasi-Newton, BFGS, Levenberg-Marquardt, and conju-
gate gradient methods and achieved significant improvements in training time
and accuracy.

Modeling Issues

Developing a neural network model for a data mining application is not a
trivial task. Although many good software packages exist to ease users’ ef-
fort in building a neural network model, it is still critical for data miners to
understand many important issues around the model building process. It is

26 G. Peter Zhang

important to point out that building a successful neural network is a com-
bination of art and science and software alone is not sufficient to solve all
problems in the process. It is a pitfall to blindly throw data into a software
package and then hope it will automatically identify the pattern or give a
satisfactory solution. Other pitfalls readers need to be cautious can be found
in Zhang (2007).

An important point in building an effective neural network model is the
understanding of the issue of learning and generalization inherent in all neural
network applications. This issue of learning and generalization can be under-
stood with the concepts of model bias and variance (Geman, Bienenstock &
Doursat, 1992). Bias and variance are important statistical properties associ-
ated with any empirical model. Model bias measures the systematic error of
a model in learning the underlying relations among variables or observations.
Model variance, on the other hand, relates to the stability of a model built
on different data samples and therefore offers insights on generalizability of
the model. A pre-specified or parametric model, which is less dependent on
the data, may misrepresent the true functional relationship and hence cause
a large bias. On the other hand, a flexible, data-driven model may be too
dependent on the specific data set and hence have a large variance. Bias and
variance are two important terms that impact a model’s usefulness. Although
it is desirable to have both low bias and low variance, we may not be able to
reduce both terms at the same time for a given data set because these goals
are conflicting. A model that is less dependent on the data tends to have low
variance but high bias if the pre-specified model is incorrect. On the other
hand, a model that fits the data well tends to have low bias but high variance
when applied to new data sets. Hence a good predictive model should have
an “appropriate” balance between model bias and model variance.

As a data-driven approach to data mining, neural networks often tend to
fit the training data well and thus have low bias. But the potential price to
pay is the overfitting effect that causes high variance. Therefore, attentions
should be paid to address issues of overfitting and the balance of bias and
variance in neural network model building.

The major decisions in building a neural network model include data
preparation, input variable selection, choice of network type and architec-
ture, transfer function, and training algorithm, as well as model validation,
evaluation, and selection procedures. Some of these can be solved during the
model building process while others must be considered before actual model-
ing starts.

Neural networks are data-driven techniques. Therefore, data preparation
is a critical step in building a successful neural network model. Without an
adequate and representative data set, it is impossible to develop a useful data
mining model.

There are several practical issues around the data requirement for a neural
network model. The first is the data quality. As data sets used for typical data
mining tasks are massive and may be collected from multiple sources, they

Neural Networks For Data Mining 27

may suffer many quality problems such as noises, errors, heterogeneity, and
missing observations. Results reported in Klein and Rossin (1999) suggest
that data error rate and its magnitude can have substantial impact on neural
network performance. Klein and Rossion believe that an understanding of
errors in a dataset should be an important consideration to neural network
users and efforts to lower error rates are well deserved. Appropriate treatment
of these problems to clean the data is critical for successful application of any
data mining technique including neural networks (Dasu and Johnson, 2003).

Another one is the size of the sample used to build a neural network. While
there is no specific rule that can be followed for all situations, the advantage
of having large samples should be clear because not only do neural networks
have typically a large number of parameters to estimate, but also it is often
necessary to split data into several portions for overfitting prevention, model
selection, evaluation, and comparison. A larger sample provides better chance
for neural networks to adequately approximate the underlying data structure.

The third issue is the data splitting. Typically for neural network applica-
tions, all available data are divided into an in-sample and an out-of-sample.
The in-sample data are used for model fitting and selection, while the out-of-
sample is used to evaluate the predictive ability of the model. The in-sample
data often are further split into a training sample and a validation sample.
The training sample is used for model parameter estimation while the valida-
tion sample is used to monitor the performance of neural networks and help
stop training and select the final model. For a neural network to be useful, it
is critical to test the model with an independent out-of-sample which is not
used in the network training and model selection phase. Although there is no
consensus on how to split the data, the general practice is to allocate more
data for model building and selection although it is possible to allocate 50%
vs. 50% for in-sample and out-of-sample if the data size is very large. Typical
split in data mining applications reported in the literature uses convenient
ratio varying from 70%:30% to 90%:10%.

Data preprocessing is another issue that is often recommended to highlight
important relationships or to create more uniform data to facilitate neural net-
work learning, meet algorithm requirements, and avoid computation problems.
For time series forecasting, Azoff (1994) summarizes four methods typically
used for input data normalization. They are along channel normalization,
across channel normalization, mixed channel normalization, and external nor-
malization. However, the necessity and effect of data normalization on network
learning and forecasting are still not universally agreed upon. For example, in
modeling and forecasting seasonal time series, some researchers (Gorr, 1994)
believe that data preprocessing is not necessary because the neural network is
a universal approximator and is able to capture all of the underlying patterns
well. Recent empirical studies (Nelson, Hill, Remus & O’Connor, 1999; Zhang
and Qi, 2002), however, find that pre-deseasonalization of the data is critical
in improving forecasting performance.

28 G. Peter Zhang

Neural network design and architecture selection are important yet difficult
tasks. Not only are there many ways to build a neural network model and a
large number of choices to be made during the model building and selection
process, but also numerous parameters and issues have to be estimated and
experimented before a satisfactory model may emerge. Adding to the difficulty
is the lack of standards in the process. Numerous rules of thumb are available
but not all of them can be applied blindly to a new situation. In building
an appropriate model, some experiments with different model structures are
usually necessary. Therefore, a good experiment design is needed. For further
discussions of many aspects of modeling issues for classification and forecasting
tasks, readers may consult Bishop (1995), Zhang, Patuwo, and Hu (1998), and
Remus and O’Connor (2001).

For network architecture selection, there are several decisions to be made.
First, the size of output layer is usually determined by the nature of the
problem. For example, in most time series forecasting problems, one output
node is naturally used for one-step-ahead forecasting, although one output
node can also be employed for multi-step-ahead forecasting in which case,
iterative forecasting mode must be used. That is, forecasts for more than
two-step ahead in the time horizon must be based on earlier forecasts. On
the other hand, for classification problems, the number of output nodes is
determined by the number of groups into which we classify objects. For a
two-group classification problem, only one output node is needed while for a
general M-group problem, M binary output nodes can be employed.

The number of input nodes is perhaps the most important parameter
in an effective neural network model. For classification or causal forecast-
ing problems, it corresponds to the number of feature (attribute) variables or
independent (predictor) variables that data miners believe important in pre-
dicting the output or dependent variable. These input variables are usually
pre-determined by the domain expert although variable selection procedures
can be used to help identify the most important variables. For univariate fore-
casting problems, it is the number of past lagged observations. Determining
an appropriate set of input variables is vital for neural networks to capture the
essential relationship that can be used for successful prediction. How many
and what variables to use in the input layer will directly affect the performance
of neural network in both in-sample fitting and out-of-sample prediction.

Neural network model selection is typically done with the basic cross-
validation process. That is the in-sample data is split into a training set and a
validation set. The neural network parameters are estimated with the training
sample, while the performance of the model is monitored and evaluated with
the validation sample. The best model selected is the one that has the best
performance on the validation sample. Of course, in choosing competing mod-
els, we must also apply the principle of parsimony. That is, a simpler model
that has about the same performance as a more complex model should be pre-
ferred. Model selection can also be done with all of the in-sample data. This
can be done with several in-sample selection criteria that modify the total

Neural Networks For Data Mining 29

error function to include a penalty term that penalizes for the complexity of
the model. Some in-sample model selection approaches are based on criteria
such as Akaike’s information criterion (AIC) or Schwarz information crite-
rion (SIC). However, it is important to note the limitation of these criteria as
empirically demonstrated by Swanson and White (1995) and Qi and Zhang
(2001). Other in-sample approaches are based on pruning methods such as
node and weight pruning (see a review by Reed, 1993) as well as constructive
methods such as the upstart and cascade correlation approaches (Fahlman
and Lebiere, 1990; Frean, 1990).

After the modeling process, the finally selected model must be evaluated
using data not used in the model building stage. In addition, as neural net-
works are often used as a nonlinear alternative to traditional statistical mod-
els, the performance of neural networks needs be compared to that of statisti-
cal methods. As Adya and Collopy (1998) point out, “if such a comparison is
not conducted it is difficult to argue that the study has taught us much about
the value of neural networks.” They further propose three evaluation criteria
to objectively evaluate the performance of a neural network: (2) comparing it
to well-accepted (traditional) models; (3) using true out-of-samples; and (4)
ensuring enough sample size in the out-of-sample (40 for classification prob-
lems and 75 for time series problems). It is important to note that the test
sample served as out-of-sample should not in any way be used in the model
building process. If the cross-validation is used for model selection and exper-
imentation, the performance on the validation sample should not be treated
as the true performance of the model.

Relationships with Statistical Methods

Neural networks especially the feedforward multilayer networks are closely re-
lated to statistical pattern recognition methods. Several articles that illustrate
their link include Ripley (1993, 1994), Cheng and Titterington (1994), Sarle
(1994), and Ciampi and Lechevallier (1997). This section provides a summary
of the literature that links neural networks, particularly MLP networks to
statistical data mining methods.

Bayesian decision theory is the basis for statistical classification methods.
It provides the fundamental probability model for well known classification
procedures. It has been shown by many researchers that for classification prob-
lems, neural networks provide the direct estimation of the posterior probabil-
ities under a variety of situations (Richard and Lippmann, 1991). Funahashi
(1998) shows that for the two-group d-dimensional Gaussian classification
problem, neural networks with at least 2d hidden nodes have the capability to
approximate the posterior probability with arbitrary accuracy when infinite
data is available and the training proceeds ideally. Miyake and Kanaya (1991)
shows that neural networks trained with a generalized mean-squared error
objective function can yield the optimal Bayes rule.

30 G. Peter Zhang

As the statistical counterpart of neural networks, discriminant analysis is
a well-known supervised classifier. Gallinari, Thiria, Badran, and Fogelman-
Soulie (1991) describe a general framework to establish the link between dis-
criminant analysis and neural network models. They find that in quite general
conditions the hidden layers of an MLP project the input data onto different
clusters in a way that these clusters can be further aggregated into different
classes. The discriminant feature extraction by the network with nonlinear
hidden nodes has also been demonstrated in Webb and Lowe (1990) and Lim,
Alder and Hadingham (1992).

Raudys (1998a, b) presents a detailed analysis of nonlinear single layer
perceptron (SLP). He shows that by purposefully controlling the SLP classi-
fier complexity during the adaptive training process, the decision boundaries
of SLP classifiers are equivalent or close to those of seven statistical classi-
fiers. These statistical classifiers include the Euclidean distance classifier, the
Fisher linear discriminant function, the Fisher linear discriminant function
with pseudo-inversion of the covariance matrix, the generalized Fisher linear
discriminant function, the regularized linear discriminant analysis, the mini-
mum empirical error classifier, and the maximum margin classifier.

Logistic regression is another important data mining tool. Schumacher,
Robner and Vach (1996) make a detailed comparison between neural net-
works and logistic regression. They find that the added modeling flexibility of
neural networks due to hidden layers does not automatically guarantee their
superiority over logistic regression because of the possible overfitting and other
inherent problems with neural networks (Vach Schumacher & Robner, 1996).

For time series forecasting problems, feedforward MLP are general nonlin-
ear autoregressive models. For a discussion of the relationship between neural
networks and general ARMA models, see Suykens, Vandewalle, and De Moor
(1996).

3.2 Hopfield Neural Networks

Hopfield neural networks are a special type of neural networks which are able
to store certain memories or patterns in a manner similar to the brain—
the full pattern can be recovered if the network is presented with only par-
tial or noisy information. This ability of brain is often called associative or
content-addressable memory. Hopfield networks are quite different from the
feedforward multilayer networks in several ways. From the model architecture
perspective, Hopfield networks do not have a layer structure. Rather, a Hop-
field network is a single layer of neurons with complete interconnectivity. That
is, Hopfield networks are autonomous systems with all neurons being both in-
puts and outputs and no hidden neurons. In addition, unlike in feedforward
networks where information is passed only in one direction, there are looping
feedbacks among neurons.

Figure 3 shows a simple Hopfield network with only three neurons. Each
neuron is connected to every other neuron and the connection strengths or

Neural Networks For Data Mining 31

weights are symmetric in that the weight from neuron 4 to neuron j (w;;) is
the same as that from neuron j to neuron i(wj;). The flow of the information
is not in a single direction as in the feedforward network. Rather it is possible
for signals to flow from a neuron back to itself via other neurons. This feature
is often called feedback or recurrent because neurons may be used repeatedly
to process information.

Fig. 3. A three-neuron Hopfield network

The network is completely described by a state vector which is a function
of time ¢. Each node in the network contributes one component to the state
vector and any or all of the node outputs can be treated as outputs of the
network. The dynamics of neurons can be described mathematically as the
following equations:

ui(t) = Z wijz;(t) + v; (6)

where u;(t) is the internal state of the ith neuron, z;(¢) is the output activation
or output state of the ith neuron, v; is the threshold to the ith neuron, n is
the number of neurons, and sign is the sign function defined as sign(x)=1, if
2 >0 and -1 otherwise. Given a set of initial conditions x(0), and appropriate
restrictions on the weights (such as symmetry), this network will converge to
a fixed equilibrium point.

For each network state at any time, there is an energy associated with it.
A common energy function is defined as

E(t) = —%x(t)TWx(t) —x(t)Tv (7)

where x(t) is the state vector, W is the weight matrix, v is the threshold
vector, and T" denote transpose. The basic idea of the energy function is that
it always decreases or at least remains constant as the system evolves over
time according to its dynamic rule in equations 6 and 7. It can be shown that
the system will converge from an arbitrary initial energy to eventually a fixed

32 G. Peter Zhang

point (a local minimum) on the surface of the energy function. These fixed
points are stable states which correspond to the stored patterns or memories.

The main use of Hopfield’s network is as associative memory. An asso-
ciative memory is a device which accepts an input pattern and generates an
output as the stored pattern which is most closely associated with the input.
The function of the associate memory is to recall the corresponding stored pat-
tern, and then produce a clear version of the pattern at the output. Hopfield
networks are typically used for those problems with binary pattern vectors
and the input pattern may be a noisy version of one of the stored patterns. In
the Hopfield network, the stored patterns are encoded as the weights of the
network.

There are several ways to determine the weights from a training set which
is a set of known patterns. One way is to use a prescription approach given
by Hopfield (1982). With this approach, the weights are given by

12
w=— E zizF (8)
n
i=1

where z;,7 =1, 2,...., p are ppatterns that are to be stored in the network.
Another way is to use an incremental, iterative process called Hebbian learning
rule developed by Hebb (1949). It has the following learning process:

choose a pattern from the training set at random

present a pair of components of the pattern at the outputs of the corresponding
nodes of the network

if two nodes have the same value then make a small positive increment to
the interconnected weight. If they have opposite values then make a small
negative decrement to the weight. The incremental size can be expressed as
Aw;j = az]z, where « is a constant rate in between 0 and 1 and 2} is the
ith component of pattern p.

Hopfield networks have two major limitations when used as a content
addressable memory. First, the number of patterns that can be stored and ac-
curately recalled is fairly limited. If too many patterns are stored, the network
may converge to a spurious pattern different from all programmed patterns.
Or, it may not converge at all. The second limitation is that the network may
become unstable if the common patterns it shares are too similar. An example
pattern is considered unstable if it is applied at time zero and the network
converges to some other pattern from the training set.

3.3 Kohonen’s Self-organizing Maps

Kohonen’s self-organizing maps (SOM) are important neural network models
for dimension reduction and data clustering. SOM can learn from complex,
multidimensional data and transform them into a topological map of much
fewer dimensions typically one or two dimensions. These low dimension plots

Neural Networks For Data Mining 33

provide much improved visualization capabilities to help data miners visualize
the clusters or similarities between patterns.

SOM networks represent another neural network type that is markedly
different from the feedforward multilayer networks. Unlike training in the
feedforward MLP, the SOM training or learning is often called the unsuper-
vised because there are no known target outputs associated with each input
pattern in SOM and during the training process, the SOM processes the in-
put patterns and learns to cluster or segment the data through adjustment
of weights. A two-dimensional map is typically created in such a way that
the orders of the interrelationships among inputs are preserved. The number
and composition of clusters can be visually determined based on the output
distribution generated by the training process. With only input variables in
the training sample, SOM aims to learn or discover the underlying structure
of the data.

A typical SOM network has two layers of nodes, an input layer and output
layer (sometimes called the Kohonen layer). Each node in the input layer is
fully connected to nodes in the two-dimensional output layer. Figure 4 shows
an example of an SOM network with several input nodes in the input layer
and a two dimension output layer with a 4x4 rectangular array of 16 neurons.
It is also possible to use hexagonal array or higher dimensional grid in the
Kohonen layer. The number of nodes in the input layer is corresponding to
the number of input variables while the number of output nodes depends on
the specific problem and is determined by the user. Usually, this number of
neurons in the rectangular array should be large enough to allow a sufficient
number of clusters to form. It has been recommended that this number is ten
times the dimension of the input pattern (Deboeck and Kohonen, 1998)

Output
layer

O O O O

weights
Input

Fig. 4. A 4x4 SOM network

During the training process, input patterns are presented to the network.
At each training step when an input pattern x randomly selected from the
training set is presented, each neuron ¢ in the output layer calculates how
similar the input is to its weights w;. The similarity is often measured by some
distance between x and w;. As the training proceeds, the neurons adjust their

34 G. Peter Zhang

weights according to the topological relations in the input data. The neuron
with the minimum distance is the winner and the weights of the winning node
as well as its neighboring nodes are strengthened or adjusted to be closer to
the value of input pattern. Therefore, the training with SOM is unsupervised
and competitive with winner-take-all strategy.

A key concept in training SOM is the neighborhood N}, around a winning
neuron, k, which is the collection of all nodes with the same radial distance.
Figure 5 gives an example of neighborhood nodes for a 5x5 Kohonen layer at
radius of 1 and 2.

Fig. 5. A 5x5 Kohonen Layer with two neighborhood sizes

The basic procedure in training an SOM is as follows:
initialize the weights to small random values and the neighborhood size large
enough to cover half the nodes
select an input pattern x randomly from the training set and present it to the
network
find the best matching or “winning” node k whose weight vector wy, is closest
to the current input vector x using the vector distance. That is:

[l = wi|| = min [J —wi

where ||.|| represents the Euclidean distance
update the weights of nodes in the neighborhood of k using the Kohonen
learning rule:

wie? = wd' + ahy,(z — w;)if i is in N},

whe? = w'dif 4is not in Ny (10)
where « is the learning rate between 0 and 1 and h;j, is a neighborhood kernel
centered on the winning node and can take Gaussian form as

2
Ty — Tk
hir = exp [—Mk”] (9)

where r; and 7 are positions of neurons i and k£ on the SOM grid and o is
the neighborhood radius.

Neural Networks For Data Mining 35

decrease the learning rate slightly
repeat Steps 1—>5 with a number of cycles and then decrease the size of the
neighborhood. Repeat until weights are stabilized.

As the number of cycles of training (epochs) increases, better formation
of the clusters can be found. Eventually, the topological map is fine-tuned
with finer distinctions of clusters within areas of the map. After the network
has been trained, it can be used as a visualization tool to examine the data
structure. Once clusters are identified, neurons in the map can be labeled to
indicate their meaning. Assignment of meaning usually requires knowledge on
the data and specific application area.

4 Data Mining Applications

Neural networks have been used extensively in data mining for a wide variety
of problems in business, engineering, industry, medicine, and science. In gen-
eral, neural networks are good at solving the following common data mining
problems such as classification, prediction, association, and clustering. This
section provides a short overview on the application areas.

Classification is one of the frequently encountered data mining tasks. A
classification problem occurs when an object needs to be assigned into a pre-
defined group or class based on a number of observed attributes related to that
object. Many problems in business, industry, and medicine can be treated as
classification problems. Examples include bankruptcy prediction, credit scor-
ing, medical diagnosis, quality control, handwritten character recognition, and
speech recognition. Feed-forward multilayer networks are most commonly used
for these classification tasks although other types of neural networks can also
be used.

Forecasting is central to effective planning and operations in all business
organizations as well as government agencies. The ability to accurately predict
the future is fundamental to many decision activities in finance, marketing,
production, personnel, and many other business functional areas. Increasing
forecasting accuracy could facilitate the saving of millions of dollars to a com-
pany. Prediction can be done with two approaches: causal and time series
analysis, both of which are suitable for feedforward networks. Successfully
applications include predictions of sales, passenger volume, market share, ex-
change rate, futures price, stock return, electricity demand, environmental
changes, and traffic volume.

Clustering involves categorizing or segmenting observations into groups or
clusters such that each cluster is as homogeneous as possible. Unlike clas-
sification problems, the groups or clusters are usually unknown to or not
predetermined by data miners. Clustering can simplify a complex large data
set into a small number of groups based on the natural structure of data. Im-
proved understanding of the data and subsequent decisions are major benefits
of clustering. Kohonen or SOM networks are particularly useful for clustering

36 G. Peter Zhang

Table 1. Data mining applications of neural networks

Data Mining Task Application Area
Classification bond rating (Dutta and shenkar, 1993)
corporation failure (Zhang et al., 1999; Mckee and Greenstein, 2000)
credit scoring (West, 2000)
customer retention (Mozer and Wolniewics, 2000; Smith et al., 2000)
customer satisfaction (Temponi et al., 1999)
fraud detection (He et al., 1997)
inventory (Partovi and Anandarajan, 2002)
project (Thieme et al., 2000; Zhang et al., 2003)
target marketing (Zahavi and Levin, 1997)

Prediction air quality (Kolehmainen et al., 2001)
business cycles and recessions (Qi, 2001)
consumer expenditures (Church and Curram, 1996)
consumer choice (West et al., 1997)
earnings surprises (Dhar and Chou, 2001)
economic crisis (Kim et al., 2004)
exchange rate (Nag and Mitra, 2002)
market share (Agrawal and Schorling, 1996)
ozone concentration level (Prybutok et al., 2000)
sales (Ansyj et al., 1996; Kuo, 2001; Zhang and Qi, 2002)
stock market (Qi, 1999; Chen et al., 2003; Leung et al., 2000; Chun
and Kim, 2004)
tourist demand (Law, 2000)
traffic (Dia, 2001; Qiao et al., 2001)

Clustering bankruptcy prediction (Kiviluoto, 1998)
document classification (Dittenbach et al., 2002)
enterprise typology (Petersohn, 1998)
fraud uncovering (Brockett et al., 1998)
group technology (Kiang et al., 1995)
market segmentation (Ha and Park, 1998; Vellido et al., 1999;
Reutterer and Natter, 2000; Boone and Roehm, 2002)
process control (Hu and Rose, 1995)
property evaluation (Lewis et al., 1997)
quality control (Chen and Liu, 2000)
webpage usage (Smith and Ng, 2003)

Association/Pattern defect recognition (Kim and Kumara, 1997)
Recognition facial image recognition (Dai and Nakano, 1998)
frequency assignment (Salcedo-Sanz et al., 2004)
graph or image matching (Suganthan et al., 1995; Pajares et al., 1998)
image restoration (Paik and Katsaggelos, 1992; Sun and Yu, 1995)
imgage segmentation (Rout et al., 1998; Wang et al., 1992)
landscape pattern prediction (Tatem et al., 2002)
market basket analysis (Evans, 1997)
object recognition (Huang and Liu, 1997; Young et al., 1997; Li and
Lee, 2002)
on-line marketing (Changchien and Lu, 2001)
pattern sequence recognition (Lee, 2002)
semantic indexing and searching (Chen et al., 1998)

Neural Networks For Data Mining 37

tasks. Applications have been reported in market segmentation, customer tar-
geting, business failure categorization, credit evaluation, document retrieval,
and group technology.

With association techniques, we are interested in the correlation or rela-
tionship among a number variables or objects. Association is used in several
ways. One use as in market basket analysis is to help identify the consequent
items given a set of antecedent items. An association rule in this way is an
implication of the form: IF x, THEN Y, where x is a set of antecedent items
and Y is the consequent items. This type of association rule has been used
in a variety of data mining tasks including credit card purchase analysis,
merchandise stocking, insurance fraud investigation, market basket analysis,
telephone calling pattern identification, and climate prediction. Another use
is in pattern recognition. Here we train a neural network first to remember a
number of patterns, so that when a distorted version of a stored pattern is
presented, the network associates it with the closest one in its memory and
returns the original version of the pattern. This is useful for restoring noisy
data. Speech, image, and character recognitions are typical application areas.
Hopfield networks are useful for this purpose.

Given an enormous amount of applications of neural networks in data
mining, it is difficult if not impossible to give a detailed list. Table 1 provides
a sample of several typical applications of neural networks for various data
mining problems. It is important to note that studies given in Table 1 represent
only a very small portion of all the applications reported in the literature,
but we should still get an appreciation of the capability of neural networks
in solving wide range of data mining problems. For real-world industrial or
commercial applications, readers are referred to Widrow et al. (1994), Soulie
and Gallinari (1998), Jain and Vemuri (1999), and Lisboa, Edisbury, and
Vellido (2000).

5 Conclusions

Neural networks are standard and important tools for data mining. Many
features of neural networks such as nonlinear, data-driven, universal func-
tion approximating, noise-tolerance, and parallel processing of large number
of variables are especially desirable for data mining applications. In addition,
many types of neural networks functionally are similar to traditional statisti-
cal pattern recognition methods in areas of cluster analysis, nonlinear regres-
sion, pattern classification, and time series forecasting. This chapter provides
an overview of neural networks and their applications to data mining tasks.
We present three important classes of neural network models: Feedforward
multilayer networks, Hopfield networks, and Kohonen’s self-organizing maps,
which are suitable for a variety of problems in pattern association, pattern
classification, prediction, and clustering.

38 G. Peter Zhang

Neural networks have already achieved significant progress and success
in data mining. It is, however, important to point out that they also have
limitations and may not be a panacea for every data mining problem in every
situation. Using neural networks require thorough understanding of the data,
prudent design of modeling strategy, and careful consideration of modeling
issues. Although many rules of thumb exist in model building, they are not
necessarily always useful for a new application. It is suggested that users
should not blindly rely on a neural network package to “automatically” mine
the data, but rather should study the problem and understand the network
models and the issues in various stages of model building, evaluation, and
interpretation.

References

Adya M., Collopy F. (1998), How effective are neural networks at forecasting and
prediction? a review and evaluation. Journal of forecasting ; 17:481-495.

Agrawal D., Schorling C. (1996), Market share forecasting: an empirical comparison
of artificial neural networks and multinomial logit model. Journal of Retailing
; 72:383-407.

Ahn H., Choi E., Han L. (2007), Extracting underlying meaningful features and can-
celing noise using independent component analysis for direct marketing Expert
Systems with Applications, ; 33: 181-191

Azoff E. M. (1994), Neural Network Time Series Forecasting of Financial Markets.
Chichester: John Wiley & Sons, .

Bishop M. (1995), Neural Networks for Pattern Recognition. Oxford: Oxford Uni-
versity Press, .

Boone D., Roehm M. (2002), Retail segmentation using artificial neural networks.
International Journal of Research in Marketing ; 19:287-301.

Brockett P.L., Xia X.H., Derrig R.A. (1998), Using Kohonen’s self-organizing fea-
ture map to uncover automobile bodily injury claims fraud. The Journal of
Risk and Insurance ; 65: 24

Changchien S.W., Lu T.C. (2001), Mining association rules procedure to support
on-line recommendation by customers and products fragmentation. Expert Sys-
tems with Applications ; 20:

Chen T., Chen H. (1995), Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical
systems, Neural Networks ; 6:911-917.

Chen F.L., Liu S.F. (2000), A neural-network approach to recognize defect spatial
pattern in semiconductor fabrication. IEEE Transactions on Semiconductor
Manufacturing ; 13:366-37

Chen S.K., Mangiameli P., West D. (1995), The comparative ability of self-
organizing neural networks to define cluster structure. Omega ; 23:271-279.

Chen H., Zhang Y., Houston A.L. (1998), Semantic indexing and searching using
a Hopfield net. Journal of Information Science ; 24:3-18.

Cheng B., Titterington D. (1994), Neural networks: a review from a statistical
perspective. Statistical Sciences ; 9:2-54.

Neural Networks For Data Mining 39

Chen K.Y., Wang, C.H. (2007), Support vector regression with genetic algorithms
in forecasting tourism demand. Tourism Management ; 28:215-226.

Chiang W.K., Zhang D., Zhou L. (2006), Predicting and explaining patronage be-
havior toward web and traditional stores using neural networks: a comparative
analysis with logistic regression. Decision Support Systems ; 41:514-531.

Church K. B., Curram S. P. (1996), Forecasting consumers’ expenditure: A com-
parison between econometric and neural network models. International Journal
of Forecasting ; 12:255-267

Ciampi A., Lechevallier Y. (1997), Statistical models as building blocks of neural
networks. Communications in Statistics: Theory and Methods ; 26:991-1009.

Crone S.F., Lessmann S., Stahlbock R. (2006), The impact of preprocessing on data
mining: An evaluation of classifier sensitivity in direct marketing. European
Journal of Operational Research ; 173:781-800

Cybenko G. (1989), Approximation by superpositions of a sigmoidal function.
Mathematical Control Signals Systems ; 2:303-314.

Dai Y., Nakano Y. (1998), Recognition of facial images with low resolution using
a Hopfield memory model. Pattern Recognition ; 31:159-167.

Dasu T., Johnson T. (2003), Exploratory Data Mining and Data Cleaning. New
Jersey: Wiley, .

De Groot D., Wurtz D. (1991), Analysis of univariate time series with connectionist
nets: A case study of two classical examples. Neurocomputing ;3:177-192.
Deboeck G., Kohonen T. (1998), Visual Explorations in Finance with Self-

organizing Maps. London: Springer-Verlag, .

Delen D., Sharda R., Bessonov M. (2006), Identifying significant predictors of injury
severity in traffic accidents using a series of artificial neural networks Accident
Analysis and Prevention ; 38:434-444.

Dhar V., Chou D. (2001), A comparison of nonlinear methods for predicting earn-
ings surprises and returns. IEEE Transactions on Neural Networks ; 12:907-921.

Dia H. (2001), An object-oriented neural network approach to short-term traffic
forecasting. European Journal of Operation Research ; 131:253-261.

Dittenbach M., Rauber A., Merkl, D. (2002), Uncovering hierarchical structure
in data using the growing hierarchical self-organizing map. Neurocompuing ;
48:199-216.

Doganis P., Alexandridis A., Patrinos P., Sarimveis H. (2006), Time series sales
forecasting for short shelf-life food products based on artificial neural networks
and evolutionary computing. Journal of Food Engineering ; 75:196-204.

Dutot A.L., Rynkiewicz J., Steiner F.E., Rude J. (2007), A 24-h forecast of ozone
peaks and exceedance levels using neural classifiers and weather predictions
Modelling and Software; 22:1261-1269.

Dutta S., Shenkar S. (1993), “Bond rating: a non-conservative application of neu-
ral networks.” In Neural Networks in Finance and Investing, Trippi, R., and
Turban, E., eds. Chicago: Probus Publishing Company.

Enke D., Thawornwong S. (2005), The use of data mining and neural networks for
forecasting stock market returns. Expert Systems with Applications ; 29:927-
940.

Evans O.V.D. (1997), Discovering associations in retail transactions using neural
networks. ICL Systems Journal ; 12:73-88.

Fahlman S., Lebiere C. (1990), “The cascade-correlation learning architecture.” In
Advances in Neural Information Processing Systems, Touretzky, D., ed. .

40 G. Peter Zhang

Fletcher R. (1987), Practical Methods of Optimization 2"?. Chichester: John Wiley
& Sons, .

Frean M. (1990), The Upstart algorithm: a method for constructing and training
feed-forward networks. Neural Computations ; 2:198-209.

Funahashi K. (1998), Multilayer neural networks and Bayes decision theory. Neural
Networks ; 11:209-213.

Gallinari P., Thiria S., Badran R., Fogelman-Soulie, F. (1991), On the relationships
between discriminant analysis and multilayer perceptrons. Neural Networks ;
4:349-360.

Geman S., Bienenstock E., Doursat T. (1992), Neural networks and the
bias/variance dilemma. Neural Computation ; 5:1-58.

Gorr L. (1994), Research prospective on neural network forecasting. International
Journal of Forecasting ; 10:1-4.

He H., Wang J., Graco W., Hawkins S. (1997), Application of neural networks to
detection of medical fraud. Expert Systems with Applications ; 13:329-336.

Hebb D.O. (1949), The Organization of Behavior. New York: Wiley.

Hinton G.E. (1992), How neural networks learn from experience. Scientific Ameri-
can ;9:145-151.

Hornik K., Stinchcombe M., White H. (1989), Multilayer feedforward networks are
universal approximators. Neural Networks ; 2:359-366.

Hopfield J.J. (2558), (1982), Neural networks and physical systems with emer-
gent collective computational abilities. Proceedings of National Academy of
Sciences; 79:2554-.

Hopfield J.J., Tank D.W. (1985), Neural computation of decisions in optimization
problems. Biological Cybernetics ; 52:141-152.

Hu J.Q., Rose, E. (1995), On-line fuzzy modeling by data clustering using a neural
network. Advances in Process Control. , 4, 187-194.

Huang J.S., Liu H.C. (2004), Object recognition using genetic algorithms with a
Huang Z. Chen, H., Hsu, C.J. Chen, W.H. and Wu, S., Credit rating analy-
sis with support vector machines and neural networks: a market comparative
study. Decision Support Systems ; 37:543-558

Hopfield’s neural model (1997). Expert Systems with Applications 1997; 13:191-
199.

Jain L.C., Vemuri V.R. (1999), Industrial Applications of Neural Networks. Boca
Raton: CRC Press, .

Kiang M.Y., Hu, M.Y., Fisher D.M. (2006), An extended self-organizing map net-
work for market segmentation—a telecommunication example Decision Support
Systems ; 42:36-47.

Kiang M.Y., Kulkarni U.R., Tam K.Y. (1995), Self-organizing map network as an
interactive clustering tool-An application to group technology. Decision Sup-
port Systems ; 15:351-374.

Kim T., Kumara S.R.T., (1997), Boundary defect recognition using neural net-
works. International Journal of Production Research; 35:2397-2412.

Kim T.Y., Oh K.J., Sohn K., Hwang C. (2004), Usefulness of artificial neural
networks for early warning system of economic crisis. Expert Systems with
Applications ; 26:583-590.

Kirkos E., Spathis C., Manolopoulos Y., (2007), Data Mining techniques for the de-
tection of fraudulent financial statements. Expert Systems with Applications ;
32: 995-1003.

Neural Networks For Data Mining 41

Kiviluoto K. (1998), Predicting bankruptcy with the self-organizing map. Neuro-
computing ; 21:203-224.

Klein B.D., Rossin D. F. (1999), Data quality in neural network models: effect of
error rate and magnitude of error on predictive accuracy. Omega ; 27:569-582.

Kohonen T. (1982), Self-organized formation of topologically correct feature maps.
Biological Cybernetics ; 43:59-69.

Kolehmainen M., Martikainen H., Ruuskanen J. (2001), Neural networks and pe-
riodic components used in air quality forecasting. Atmospheric Environment ;
35:815-825.

Law R. (2000), Back-propagation learning in improving the accuracy of neural
network-based tourism demand forecasting. Tourism Management ; 21:331-340.

Lee D.L. (2002), Pattern sequence recognition using a time-varying Hopfield net-
work. IEEE Transactions on Neural Networks ; 13:330-343.

Lewis O.M., Ware J.A., Jenkins D. (1997), A novel neural network technique for
the valuation of residential property. Neural Computing and Applications ;
5:224-229.

Li W.J., Lee T., (2002), Object recognition and articulated object learning by
accumulative Hopfield matching. Pattern Recognition; 35:1933-1948.

Lim G.S., Alder M., Hadingham P. (1992), Adaptive quadratic neural nets. Pattern
Recognition Letters ; 13: 325-329.

Lisboa P.J.G., Edisbury B., Vellido A. (2000), Business Applications of Neural
Networks : The State-of-the-art of Real-world Applications. River Edge: World
Scientific, .

McCulloch W., Pitts W. (1943), A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics ; 5:115-133.

Min S.H., Lee J., Han 1. (2006), Hybrid genetic algorithms and support vector
machines for bankruptcy prediction. Expert Systems with Applications ; 31:
652-660.

Minsky M. L., Papert S. A. (1969), Perceptrons. MA: MIT press, .

Miyake S., Kanaya F. (1991), A neural network approach to a Bayesian statistical
decision problem. IEEE Transactions on Neural Networks ; 2:538-540.

Mozer M.C., Wolniewics R. (2000), Predicting subscriber dissatisfaction and im-
proving retention in the wireless telecommunication. IEEE Transactions on
Neural Networks ; 11:690-696

Nag A.K., Mitra A. (2002), Forecasting daily foreign exchange rates using geneti-
cally optimized neural networks. Journal of Forecasting ; 21:501-512.

Nelson M., Hill T., Remus T., O’Connor, M. (1999), Time series forecasting using
neural networks: Should the data be deseasonalized first? Journal of Forecasting
; 18:359-367.

O’Connor N., Madden M.G. (2006), A neural network approach to predicting
stock exchange movements using external factors. Knowledge-Based Systems ;
19:371-378.

Paik J.K., Katsaggelos, A.K. (1992), Image restoration using a modified Hopfield
neural network. IEEE Transactions on Image Processing ; 1:49-63.

Pajares G., Cruz J.M., Aranda, J. (1998), Relaxation by Hopfield network in stereo
image matching. Pattern Recognition ; 31:561-574.

Panda C., Narasimhan V. (2007), Forecasting exchange rate better with artificial
neural network. Journal of Policy Modeling ; 29:227-236.

42 G. Peter Zhang

Parker D.B. (1985), Learning-logic: Casting the cortex of the human brain in sili-
con, Technical Report TR-47, Center for Computational Research in Economics
and Management Science, MIT.

Palmer A., Montano J.J., Sesé, A. (2006), Designing an artificial neural network
for forecasting tourism time series. Tourism Management ; 27: 781-790.

Partovi F.Y., Anandarajan M. (2002), Classifying inventory using an artificial neu-
ral network approach. Computers and Industrial Engineering ; 41:389-404.

Petersohn H. (1998), Assessment of cluster analysis and self-organizing maps. In-
ternational Journal of Uncertainty Fuzziness and Knowledge-Based Systems. ;
6:139-149.

Prybutok V.R., Yi J., Mitchell D. (2000), Comparison of neural network models
with ARIMA and regression models for prediction of Houston’s daily maximum
ozone concentrations. European Journal of Operational Research ; 122:31-40.

Qi M. (2001), Predicting US recessions with leading indicators via neural network
models. International Journal of Forecasting ; 17:383-401.

Qi M., Zhang G.P. (2001), An investigation of model selection criteria for neural
network time series forecasting. European Journal of Operational Research ;
132:666-680.

Qiao F., Yang H., Lam, W.H.K. (2001), Intelligent simulation and prediction of
traffic flow dispersion. Transportation Research, Part B ; 35:843-863.

Raudys S. (1998), Evolution and generalization of a single neuron: I., Single-layer
perceptron as seven statistical classifiers Neural Networks ; 11:283-296.

Raudys S. (1998), Evolution and generalization of a single neuron: II., Complex-
ity of statistical classifiers and sample size considerations. Neural Networks ;
11:297-313.

Raviwongse R. Allada V., Sandidge T. (2000), Plastic manufacturing process se-
lection methodology using self-organizing map (SOM)/fuzzy analysis. Interna-
tional Journal of Advanced Manufacturing Technology; 16:155-161.

Reed R. (1993), Pruning algorithms-a survey. IEEE Transactions on Neural Net-
works ; 4:740-747.

Remus W., O’Connor M. (2001), “Neural networks for time series forecasting.”
In Principles of Forecasting: A Handbook for Researchers and Practitioners,
Armstrong, J. S. ed. Norwell:Kluwer Academic Publishers, 245-256.

Reutterer T., Natter M. (2000), Segmentation based competitive analysis with
MULTICLUS and topology representing networks. Computers and Operations
Research; 27:1227-1247.

Richard, M. (1991), D., Lippmann, R., Neural network classifiers estimate Bayesian
aposteriori probabilities. Neural Computation ; 3:461-483.

Ripley A. (1993), “Statistical aspects of neural networks.” In Networks and Chaos
- Statistical and Probabilistic Aspects, Barndorff-Nielsen, O. E.; Jensen J. L.
and Kendall, W. S. eds. London: Chapman and Hall, 40-123.

Ripley A. (1994), Neural networks and related methods for classification. Journal
of Royal Statistical Society, Series B ; 56:409-456.

Roh T. H. (2007), Forecasting the volatility of stock price index. Expert Systems
with Applications ; 33:916-922.

Rosenblatt F. (1958), The perceptron: A probabilistic model for information stor-
age and organization in the brain. Psychological Review ; 65:386-408.

Rout S., Srivastava, S.P., Majumdar, J. (1998), Multi-modal image segmentation
using a modified Hopfield neural network. Pattern Recognition ; 31:743-750.

Neural Networks For Data Mining 43

Rumelhart D.E., Hinton G.E., Williams R.J. (1986), “Learning internal represen-
tation by back-propagating errors.” In Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition Press, Rumelhart, D.E., McCleland,
J.L. and the PDP Research Group, eds. MA: MIT.

Saad E.W., Prokhorov D.V., Wunsch, D.C. II. (1998), Comparative study of stock
trend prediction using time delay, recurrent and probabilistic neural networks.
IEEE Transactions on Neural Networks; 9:456-1470.

Salcedo-Sanz S., Santiago-Mozos R.,Bousono-Calzon, C. (2004), A hybrid Hop-
field network-simulated annealing approach for frequency assignment in satel-
lite communications systems. IEEE Transactions on System, Man and Cyber-
netics, Part B:108-116.

Sarle W.S. (1994), Neural networks and statistical models. Poceedings of the Nine-
teenth Annual SAS Users Group International Conference, Cary, NC: SAS In-
stitute, .

Schumacher M., Robner R., Vach W. (1996), Neural networks and logistic regres-
sion: Part 1., Computational Statistics and Data Analysis ; 21:661-682.

Smith K.A., Ng, A. (2003), Web page clustering using a self-organizing map of user
navigation patterns. Decision Support Systems ; 35:245-256.

Smith K.A., Willis R.J., Brooks M. (2000), An analysis of customer retention
and insurance claim patterns using data mining: a case study. Journal of the
Operational Research Society; 51:532-541.

Soulie F.F., Gallinari P. (1998), Industrial Applications of Neural Networks. River
Edge, NJ: World Scientific.

Suganthan P.N., Teoh E.K., Mital D.P. (1995), Self-organizing Hopfield network for
attributed relational graph matching. Image and Vision Computing; 13:61-71.

Sun Z.Z., Yu S. (1995), Improvement on performance of modified Hopfield neural
network for image restoration. IEEE Transactions on Image processing; 4:683-
692.

Suykens J.A.K., Vandewalle J.P.L., De Moor B.L.R. (1996), Artificial Neural Net-
works for Modeling and Control of Nonlinear Systems. Boston: Kluwer.

Swanson N.R., White H. (1995), A model-selection approach to assessing the infor-
mation in the term structure using linear models and artificial neural networks.
Journal of Business and Economic Statistics; 13;265-275.

Tatem A.J., Lewis H.G., Atkinson P.M., Nixon M.S. (2002), Supre-resolution land
cover pattern prediction using a Hopfield neural network. Remote Sensing of
Environment; 79:1-14.

Temponi C., Kuo Y.F., Corley HW. (1999), A fuzzy neural architecture for cus-
tomer satisfaction assessment. Journal of Intelligent & Fuzzy Systems; 7:173-
183.

Thieme R.J., Song M., Calantone R.J. (2000), Artificial neural network decision
support systems for new product developement project selection. Journal of
Marketing Research ; 37:543-558.

Vach W., Robner R., Schumacher M. (1996), Neural networks and logistic regres-
sion: Part I. Computational Statistics and Data Analysis; 21:683-701.

Wang T., Zhuang X., Xing X. (1992), Robust segmentation of noisy images using
a neural network model. Image Vision Computing; 10:233-240.

Webb A.R., Lowe D., (1990), The optimized internal representation of multilayer
classifier networks performs nonlinear discriminant analysis. Neural Networks;
3:367-375.

44 G. Peter Zhang

Werbos P.J., (1974), Beyond regression: New tools for prediction and analysis in
the behavioral sciences. Ph.D. thesis, Harvard University, 1974.

West D., (2000), Neural network credit scoring models. Computers and Operations
Research; 27:1131-1152.

West P.M., Brockett P.L., Golden L.L., (1997), A comparative analysis of neural
networks and statistical methods for predicting consumer choice. Marketing
Science; 16:370-391.

Widrow B., Hoff M.E., (1960), Adaptive switching circuits, 1960 IRE WESCON
Convention Record, New York: IRE Part 4 1960:96-104.

Widrow B., Rumelhart D.E., Lehr M.A., (1994), Neural networks: applications in
industry, business and science, Communications of the ACM; 37:93-105.

Wong B.K., Bodnovich T.A., Selvi Y., (1997), Neural network applications in busi-
ness: A review and analysis of the literature (1988-1995). Decision Support
Systems; 19:301-320.

Young S.S., Scott P.D., Nasrabadi, N.M., (1997), Object recognition using multi-
layer Hopfield neural network. IEEE Transactions on Image Processing; 6:357-
372.

Zhang G.P., (2007), Avoiding Pitfalls in Neural Network Research. IEEE Transac-
tions on Systems, Man, and Cybernetics; 37:3-16.

Zhang G.P., Hu M.Y., Patuwo B.E., Indro D.C., (1999), Artificial neural networks
in bankruptcy prediction: general framework and cross-validation analysis. Eu-
ropean Journal of Operational Research; 116:16-32.

Zhang G.P., Keil M., Rai A., Mann J., (2003), Predicting information technology
project escalation: a neural network approach. European Journal of Operational
Research 2003; 146:115-129.

Zhang G.P., Qi M. (2002), “Predicting consumer retail sales using neural networks.”
In Neural Networks in Business: Techniques and Applications, Smith, K. and
Gupta, J.eds. Hershey: Idea Group Publishing, 26-40.

Zhang G.P., Patuwo E.P., Hu M.Y., (1998), Forecasting with artificial neural net-
works: the state of the art. International Journal of Forecasting; 14:35-62.
Zhang W., Cao Q., Schniederjans M.J., (2004), Neural Network Earnings per Share
Forecasting Models: A Comparative Analysis of Alternative Methods. Decision

Sciences; 35: 205-237.

Zhu Z., He H., Starzyk J.A., Tseng, C., (2007), Self-organizing learning ar-
ray and its application to economic and financial problems. Information Sci-
ences; 177:1180-1192.

Improved SOM Labeling Methodology for
Data Mining Applications

Arnulfo Azcarraga!, Ming-Huei Hsieh?, Shan-Ling Pan®, and Rudy Setiono*
L College of Computer Studies, De La Salle University, Manila, the Philippines
azcarragaa@canlubang.dlsu.edu.ph

Department of International Business, National Taiwan University, Taiwan
mhhsieh@management.ntu.edu.tw

School of Computing, National University of Singapore, Singapore
pansl@comp.nus.edu.sg

School of Computing, National University of Singapore, Singapore
rudys@comp.nus.edu.sg

Summary. Self-Organizing Maps (SOMs) have been useful in gaining insights
about the information content of large volumes of data in various data mining ap-
plications. As a special form of neural networks, they have been attractive as a data
mining tool because they are able to extract information from data even with very
little user-intervention. However, although learning in self-organizing maps is consid-
ered unsupervised because training patterns do not need desired output information
to be supplied by the user, a trained SOM often has to be labeled prior to use in
many real-world applications. Unfortunately, this labeling phase is usually super-
vised as patterns need accompanying output information that have to be supplied
by the user. Because labeled patterns are not always available or may not even be
possible to construct, the supervised nature of the labeling phase restricts the de-
ployment of SOM to a wider range of potential data mining applications. This work
proposes a methodical and semi-automatic SOM labeling procedure that does not
require a set of labeled patterns. Instead, nodes in the trained map are clustered and
subsets of training patterns associated to each of the clustered nodes are identified.
Salient dimensions per node cluster, that constitute the basis for labeling each node
in the map, are then identified. The effectiveness of the method is demonstrated
on a data mining application involving customer-profiling based on an international
market segmentation study.

Key words: self-organizing maps,neural networks, classification, clustering

1 Introduction

In many data mining applications, there is limited knowledge about what
might be contained in the input data, and very often, the dataset has no

46 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

veritable structure that will allow for easy searching of information. As such,
neural networks are important tools for data mining applications because
they are able to learn just from being shown examples of the data, without
explicitly being told what to look for, or how the information is structured in
the input data.

Neural network models are often categorized as either “supervised” or
“unsupervised”, based on whether or not the learning method they employ
requires some supplementary “desired output” information to accompany each
of the training patterns. The most well-known supervised neural network
model is the multi-layered perceptron (MLP), with retro-propagation of error
as the underlying learning mechanism (Haykin, 1998, Rumelhart et al., 1986).
In such systems, network parameters are adjusted during training based on
the difference (i.e. error) between the system’s response for a given training
pattern and the desired output for this pattern.

Among the unsupervised neural network models, the most popular are
the Kohonen maps or Self-Organizing Maps (SOMs) (Kohonen, 1995, Koho-
nen, 1999). In the class of unsupervised neural network models, the underly-
ing learning mechanism is Competitive Learning, the general framework for
which is described in (Rumelhart and Zipser, 1986). Other models in this
class include the Adaptive Resonance Theory (ART) (Carpenter and Gross-
berg, 1991) and the Neocognitron (Fukushima, 1980). All these models do
not require any supplementary information other than the input data. The
input space is partitioned into non-overlapping regions which are delineated
based on a process of competition among the nodes in the neural network.
For every training pattern that is shown to the network, the single node that
is closest to the input pattern, based on some distance measure, earns the
right to assimilate the training pattern by adapting its weights as well as the
weights of those nodes in its neighborhood.

The SOM methodology dates back to the early 80’s (Kohonen, 1982)
and has been applied to a wide variety of applications (Kohonen, 1990),
which include data mining (Kiang and Kumar, 2001), marketing (Schmitt
and Deboeck, 1998, Kuo et al, 2002), investment banking (Kiviluto and
Bergius, 1998, Shumsky and Yarovoy, 1998); speech processing (Kohonen,
1990), robotics (Ritter et al., 1992), finance engineering (Serrano-Cinca,
1998, Deboeck, 1998a, Deboeck, 1998b, Resta, 1998), text organization and re-
trieval (Kohonen et al., 2000, Merkl, 1998), and real-estate applications (Carl-
son, 1998, Tulkki, 1998).

Prior to its use in some real-world application, a trained SOM has to be
labeled - typically using labeling patterns that have accompanying category
information. In a bankruptcy analysis application, for example, a set of known
cases is used to determine which nodes are sensitive to profiles of companies
that have financial difficulties and which nodes are sensitive to profiles of
companies that are solvent (Serrano-Cinca, 1998). On the basis of these node
labels, a new company is evaluated in terms of its chances of going bankrupt

SOM Labeling Methodology 47

based on its profile. In such a typical SOM application, even if training is
unsupervised, the labeling phase is supervised.

Because such labeled patterns are not always available or may not even
be possible to construct, this supervised labeling phase of the SOM method-
ology hinders the deployment of SOM to an even wider range of potential
domains of application. Take for example the case of a market survey of po-
tential consumers, with questions pertaining to what consumers look for from
a specific line of products. After the set of respondent records is fed to a SOM
for training, a separate set of labeled consumer records would be needed to
associate each node with some tangible purchasing pattern or behavior. For
example, if we want the SOM to assist in identifying which types of responses
correspond to what kinds of purchasing behavior, it would be convenient to
have access to a set of respondent records with an indication of the type of
product that they have actually purchased. With such “labeled” respondent
records, we can check each node in the map to see which kinds of respondent
records are associated with it, and to label them accordingly. This would then
allow the user to do various post-processing tasks, like analyzing the socio-
demographic profile of each cluster of nodes (i.e. each cluster of associated
respondent records). In turn, this makes for clusters that are identifiable and
actionable, with the presumption that clusters become meaningful only when
they can be identified and can be acted upon (Wedel and Kamakura, 1998).

Indeed, several special-cases of self-organizing maps that have been de-
ployed for very specific tasks are designed such that the labeling of the nodes
does not require a set of pre-labeled patterns. This is the case for SOMs used in
text-processing and classification (Merkl, 1998, Kohonen et al., 2000, Azcarraga
et al., 2002). In these systems, the words associated with certain dimensions
in the weight vectors of the trained SOM are used to label the nodes.

Building on the ideas underlying such systems, we improve on the SOM
methodology by proposing a methodical and automatic SOM labeling proce-
dure that does not require any set of labeled patterns. The proposed method is
quite general. It can be applied to numerous other areas where self-organizing
maps are being employed. For illustration purposes, however, we shall focus
the discussions on a SOM-based international market segmentation study.

The rest of the chapter is organized as follows. Section 2 describes in
greater detail the SOM methodology and includes some of the most frequently
used training and labeling methods. Section 3 describes the unsupervised SOM
labeling method that we propose. The application of this labeling method to
a SOM-based international market segmentation study is discussed in section
4. Section 5 introduces some non-SOM techniques to validate the results. This
is followed by the conclusions and recommendations for future work in section
6.

48 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono
2 SOM methodology

The SOM methodology is depicted in Figure 1. Pre-processing would typi-
cally include dealing with missing data and normalizing input fields within a
consistent input range, e.g. 0 to 1. Various other pre-processing steps are done
depending on the specific domain of application. When preparing documents
as input patterns in text processing and classification, for example, common
words known as “stop words” are removed to reduce the dimensionality of
the input space. Furthermore, words are reduced to their root form, through
a process called “stemming”. In the digital archiving of music, where SOMs
may be used as an innovative interface for searching through and surfing over
a large archive of music files, music files are pre-processed to extract vari-
ous “features” that characterize the beat, rhythm, timbre, and higher level
characteristics such as music genre, vocal quality, types of instruments used,
etc. (Mayer et al., 2006).

raw data initial SOM

trained SON

training patteIns g

TRA]SL\'G/
label patterns g [[\ pE[NG | ——a
new patterns ——p | EXECUTION

l

category of k nearest nodes

Fig. 1. A general SOM methodology

Once the raw data have been adequately represented in the input space,
SOM training is performed. In a SOM system, a map is usually a rectangular
grid of nodes, although some SOMs use hexagonal grid structures (Kohonen,
1999, Kohonen, 1990). All input units are connected to each node in the map,
and the connection from each input unit ¢ to a node j is represented by a
connection weight w;;. Each input unit corresponds to one input field, and
typically, all input units draw their values from a binary set (0 or 1), bipolar
set (-1 or +1), or from a uniform range of real values (e.g. 0 to 1). The set
of values assumed by the individual input units at a certain training cycle

SOM Labeling Methodology 49

t is denoted by an input vector x!, with z! referring to the specific value of
input unit ¢ at cycle ¢. Training of the map consists of successively presenting
input patterns through the input units and of adapting the various connection
weights of each node in the map. At each training cycle ¢, one training sample
x4 is selected at random. Each node then computes its distance/similarity to
the current input, using some appropriate distance or similarity measure (e.g.
Euclidean distance or cosine of angle between input and node weight vector).
The weights wfj of all nodes n; in the neighborhood of the node with the
smallest distance (the winning node n.) are then updated using the following
learning rule (Clark and Ravishankar, 1990):

wlft =l + alt) (@} — wl)) M)
The gain parameter a(t) and the size of the neighborhood decrease with the
number of cycles, according to some parameter adjustment function (Ritter
et al., 1992).

The more recent version of the training algorithm does away with the
neighborhood region. In its place, a gaussian function G(c,,t) is used so that
nodes near the winning node n. have larger weight changes than those further
away (Kohonen, 1999):

wf;rl = wﬁj + a(t)G(cJ,t)(x;- — u)fj) (2)

The function G(c,i,t) is defined by the formula below, where o(t) is a
parameter to control the size of the neighborhood of nodes that would have
substantial weight changes, and D(c,) is the grid distance between a given
node n; and the winning node:

G(c,i,t) = exp <_f((;;)2) (3)

By the end of the training phase, a self-organized map would have emerged.
This map is often not useful until each node in the map is labeled. Some SOM
applications, however, make do with just visualizing the individual component
planes of the map. This is done by rendering the weight of each node’s refer-
ence vector in 2D as shown in Figure 2. In the figure, each plane corresponds
to a certain car feature. These car features are the following: fun to drive,
acceleration and speed, dealer service, fuel economy, styling, level of technol-
ogy, luxury features, made to last, prestige, reliability, safety in accidents,
sportiness, quality, passenger space, cargo/luggage space.

A total of 2,385 potential customers have been asked to select which three
of the 15 car features above are most important to them. Based on the survey
responses, a 16 x 16 SOM was trained and the weights on a per dimension
basis are shown. In the SOM literature, these are referred to as “component
planes”. Each plane has 16 x 16 smaller squares, with each square representing
a node in the 16 x 16 map. The grey level of each square denotes the weight
value of the node for the given dimension. Black squares correspond to zero

50 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

1 : fun to drive 2 : acceleration/speed 3 : dealer service
4 : fuel economy 5t styling 6 : level of technology

9 : prestige

10 : reliability 11 : safety in accidents 12 : sportiness
13 : quality 14 : passenger space 15 : cargo/luggage space

Fig. 2. Component planes for the trained 16 x 16 SOM, with one component plane
for each dimension. Each dimension corresponds to a car feature that potential car
buyers look for when buying a car. Lighter shades of grey indicate higher weight
values for the given dimension.

SOM Labeling Methodology 51

or near zero weight values, while white squares denote higher weight values.
A high weight value of a node for a given dimension (i.e. car feature) indicates
that most of the respondents associated to the node have selected the given
car feature as one of three car features they value most.

PROFESSIONAL POST-UNIVERSITY MIDDLE-AGE

luxury sensory space

MIDDLE-AGE RETIREE STUDENT
durability safety quality

Fig. 3. A hypothetical SOM with clusters of nodes that have been labeled according
to the age bracket to which most of its associated label patterns belong.

Deboeck and Kohonen (DeBoeck and Kohonen, 1998) present numerous
examples on how component planes are visualized. Basically, the user takes
note of the distribution patterns in the map of the weight values for every
dimension (or component) and interprets them based on their relation to the
clusters observed. To illustrate, suppose that the component planes of Figure 2
correspond to a trained SOM (refer to Figure 3) that has been labeled accord-
ing to the age brackets of the majority of the associated respondent records.
The nodes of the trained SOM have been labeled as: college student (age 18-
22), post-university (23-30), early-professional (31-40), mid-age (41-60), and
retiree (61-75). The aim of this labeling scheme would be to understand what
types of car features attract customers of certain age groups®.

5 The labeling scheme of Figure 3 is fictitious aimed only at illustrating the use of
component planes in relation to labeled maps. However, the component planes
of Figure 2 are actual component planes generated for the market segmentation
study discussed in section 4.

52 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

In this example, the user visually inspects the component planes and notes,
for example, that component plane 11 reveals high preference for “safety in
accidents” as a car feature among the retiree age-group, as manifested by the
patch of white squares corresponding to those nodes associated with the re-
tiree group in the mid-section of the map. Likewise, the young out-of-college
age group (“post university” in Figure 3) is attracted to sensory car bene-
fits like “acceleration and speed” and “sportiness” whose component planes
show white patches at around the area of nodes that corresponds to the post-
university cluster in Figure 3. Respondents in the early-professional age group
are attracted to “luxury features”, while college students go for “quality” and
“dealer service”. As for the mid-age customers, some are attracted to dura-
bility features like “reliability” and “made to last”, while others go for space
features like “cargo/luggage space” and “passenger space”.

As we will see in the next section, the automatic labeling method proposed
in this paper is a methodical and statistics-based version of the way component
planes are studied and visualized. Before we present the unsupervised labeling
method, we first go through some of the existing ways by which trained maps
can be labeled.

The usual way is to employ a separate set of label patterns which have
been individually pre-classified into designated categories. To label a given
node in the map, its distance to each of the label patterns is computed. Based
on the categories of the label pattern(s) to which the node yields the smallest
distance(s), the given node is assigned a label. This labeling method is applied
to all the nodes in the map.

Several options are available for determining the final label(s) of a node,
given its distance d; to each of the label patterns p;. If the labels are categorical
(e.g. “vowel a” for a phonetic map, “terrorism” for news classification), then
given the set § of k label patterns which yield the k£ smallest distances to node
j, some of the labeling methods for assigning a label ¢ to the given node j are
as follows:

1. ¢ is any label among patterns in 3. If & = 1, then c is just the label of
pattern p,, that yields the lowest distance d,,;

2. ¢ is the most common label among patterns in J;

3. cis any label appearing at least r times among patterns in 3 where 7 is a
pre-set percentage of k; and

4. cis a label determined as follows: rank the patterns in § from the nearest
to the farthest from node j, and assign them with weights (k — r + 1),
where r is their rank. The sum of weights for each label is tallied and the
label with the highest total weight is chosen.

There are many variants to these labeling methods. Note that methods 2
and 4 yield a single label for each node, while methods 1 and 3 can assign mul-
tiple labels. Furthermore, if labels are assigned continuous values (e.g. “age”:
22.3, "grade point average”: 3.57), then method 2 is modified by computing

SOM Labeling Methodology 53

the average label instead of choosing the most common label, while method
4 is modified by taking the weighted average of the labels.

Once the map is fully labeled, it is ready for use. Although it varies de-
pending on the task a SOM is supposed to support, one frequent role of the
SOM is to assist in the classification of some unknown pattern which has the
same input fields as those of the training patterns. Classification is done by
computing the distances of the unknown pattern with respect to each of the
nodes in the map. The relative distances of the nodes plus their associated
categories (labels) would then serve as basis for classifying the unknown pat-
tern. The final classification of the unknown pattern can be as simple as just
assigning the category of the node that registers the smallest distance to the
unknown pattern.

Depending on the application, the process can be more complicated than
a simple classification of an unknown pattern. In some applications, the dis-
tances and categories of a whole region of nodes (sometimes the entire map)
that are nearest to the unknown pattern are fed to another classification sys-
tem, along with the associated distances of each node. Or, as in the case
of the phonetic map, for example, the trajectory of the nearest nodes while
phonemes are fed to the SOM one after another is the basis for segmenting
the speech data and for recognizing the spoken words (Kohonen, 1990). In
Serrano-Cinca’s work (Serrano-Cinca, 1998), this same type of trajectory of
nearest nodes is the basis for determining the general liquidity (solvency) and
financial health of banks.

3 Unsupervised SOM labeling

We propose a general method for labeling self-organizing maps that does away
with pre-labeled patterns. Indeed, in many applications, pre-labeled patterns
are not easy to obtain. In fact, if pre-labeled patterns are available, then the
supervised neural network models could have been used instead. Unsupervised
neural network models are attractive options because they do not require
training patterns to be accompanied with the desired classification outcome.
But if these unsupervised models would require labeled patterns for labeling
the resultant neural network, then the applicability of these models becomes
limited. Such is the drawback of self-organizing maps that we are able to fix
with a novel labeling method that does not require pre-labeled patterns - not
during training, and not even during labeling.

At the onset, we clarify that this unsupervised SOM labeling method is not
applicable to every conceivable SOM application. For example, this proposed
method may not be used in some applications in image processing, where
the input dimensions refer to identical input features (i.e. light intensity) for
pixels in different locations of the image. Nor would the method be applicable
to some applications in speech processing, where all dimensions might refer to
the amplitude at different frequencies of a set of voice signals. Since we use the

54 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

dimensions as basis for differentiating the clusters, the physical interpretation
of each individual dimension must then be distinguishable from each other.

The unsupervised labeling method we describe here would be useful in
most other types of applications where each input dimension corresponds to
a tangible feature that has some concrete meaning in the application domain.
In text processing for example, each input dimension may correspond to some
unique word or phrase (bi-grams or tri-grams). In various finance engineering
applications, each input dimension may refer to some country-specific macro-
economic variable like GNP or inflation rate. Or the input dimensions may
correspond to normalized values of company-specific factors such as price-
equity ratio, stock price, and market capitalization. In market segmentation
studies, input dimensions may correspond to scaled responses to market survey
questions such as whether a customer values prompt waiter service or whether
a consumer prefers cars that have large passenger space, for example.

The general idea of our proposed unsupervised SOM labeling method con-
sists of five main steps (refer to Figure 3), each of which would be elaborated
further below:

1. group all nodes that have similar reference weight vectors using some
clustering method;

2. for each cluster of nodes, prune out outlier nodes that are very different
from their cluster centroids;

3. for each cluster of nodes (minus the outliers), classify the set of (unla-
beled) training patterns as either in-patterns or out-patterns depending
on whether or not their nearest node in the map is in the cluster;

4. based on the set of in-patterns and out-patterns of a given cluster, identify
the salient dimensions; and

5. on the basis of the salient dimensions, assign a descriptive label to each
cluster of nodes that is meaningful in the context of the application do-
main.

3.1 Step 1: Clustering of node weight vectors

In grouping the nodes into clusters of similar reference weight vectors, one
major problem is determining the appropriate number of clusters. This can
be resolved by doing a hierarchical clustering of the weight vectors. Various
hierarchical methods can be used and these are discussed in standard clus-
tering textbooks (Everitt, 1974, Hartigan, 1975, Spath, 1980). A recent survey
was done by Xu and Wunsch (Xu and Wunsch, 2005).

There are basically two types of hierarchical methods: agglomerative and
divisive. In agglomerative methods, each node weight vector starts off as indi-
vidual clusters. At every step, the two most similar clusters are merged into a
single cluster and the new cluster center, or centroid, is computed. The merg-
ing of clusters continues until the quality of the clusters is satisfactory, that is,
no two distinct clusters may be merged and result in a significant increase in
the quality of the groupings, according to some measure of clustering quality.

SOM Labeling Methodology 55

trained SOM clustered nodes

cluster
pruning

in—patterns
training patterns ——> cilu::::rnt <
assignme out—patterns

) 4

difference >
analysis

salient dimensions

Y labeled SOM
label
assignment

Fig. 4. General unsupervised SOM labeling method.

In divisive methods, all the node weight vectors start off as a single clus-
ter. At each cycle, a partitioning system selects the cluster with the highest
variance and breaks it up into two. Weight vectors in the cluster that has just
been split are redistributed to the two new clusters. Again, the breaking up of
clusters continues until the quality of the groupings has become satisfactory,
according to some clustering quality measure.

The quality (usually based on the within-cluster variance) of the resultant
groupings is computed every time two clusters are merged in the case of
agglomerative methods, or whenever a cluster is split into two in the case
of divisive methods. For agglomerative methods, a relatively large increase in
the variance among the patterns within a cluster is a good indicator that the
two clusters are quite distinct and should not be merged. When this happens,
the hierarchical clustering may be stopped at this point, and the number of

56 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

remaining clusters is a good estimate of the suitable number of clusters to be
specified for the k-means clustering to be done later. For divisive methods,
the splitting stops when none of the clusters can be split to gain a significant
decrease in variance among patterns in the clusters.

Once the suitable number of clusters is determined by either an agglomer-
ative or divisive method, we can proceed with k-means clustering of the SOM
node weight vectors. Many variants of k-means exist, and there is abundant
literature on the subject (Everitt, 1974, Hartigan, 1975, Spath, 1980). This
form of clustering frequently derives better quality clusters, since it is more
robust to poor quality data, and is less affected by outliers. Its main draw-
back is that the number of clusters k has to be known a priori, which is why
hierarchical clustering is performed first (Punj and Steward, 1983).

If there is a simpler way of determining a suitable value for k, then hier-
archical clustering may be omitted. In fact, in most SOM applications, the
number of clusters that can be visually inspected and analyzed has to be
small. In such cases, the user may just opt to perform k-means clustering us-
ing different values of k, say from 3 to 10, and select the k value that produces
the best clustering results. Since labeling is unsupervised and automatic, this
is feasible to do.

3.2 Step 2: Pruning of outlier nodes

We next try to remove some nodes from their clusters if they are too different
from the cluster centers. To do this, we compute the centroid x* of each node
cluster I'* as follows :

>
k__ ni€lF
X5 = 1|F7k|v

where D is the dimensionality of the data and w;; is the jth component of
the reference weight vector of node n;, one of the nodes in I'*. The function
|A| returns the cardinality of set A. We then compute the distance d; from
each node n; in I'* to its centroid x* as :

j=1,2,....D (4)

With the individual node distances to their respective cluster centroids,
we are ready to compute the mean /L’; of these distances and the standard
deviation O'g for each cluster of nodes. Using z = 1, we retain a node n; in its
original cluster if

ph— 2 x ok < d; < pk+ 2 xoh (6)

SOM Labeling Methodology 57

Those nodes with distance from the centroid that differ from the mean by
more than one standard deviation are considered outliers and are excluded
from the cluster. All these nodes that have been dropped from their original
clusters can be collectively referred to as “unlabeled nodes”. In some applica-
tions, this special set of nodes may have some concrete role to play.

3.3 Step 3: Separating in-patterns and out-patterns

Once each node in the map is assigned to a given cluster, the individual
training patterns are re-used. Each of these patterns is assigned to the cluster
of the node to which the distance is smallest. On the basis of these training
pattern assignments, we construct an in-patterns set and an out-patterns set
for each cluster. The in-patterns are those patterns belonging to the given
cluster, while the out-patterns are all the other patterns not belonging to the
cluster, including those patterns associated with “unlabeled nodes” if any.

3.4 Step 4: Identifying salient dimensions

The next step is to identify those dimensions in a given cluster, referred to as
salient dimensions, whose values are significantly different in a statistical sense
compared to those in the other clusters. For each cluster, we determine if the
mean input value among the in-patterns for a given dimension is significantly
higher or lower than the corresponding mean input value among the out-
patterns. To identify salient dimensions of each cluster I'*, we do the following

1. for each dimension v, compute p, (k,v) and pio:(k, v) as the mean input
value for the set of in-patterns ®;, (k) and out-patterns @, (k), respec-
tively, where p; is training pattern ¢ and x;, is the v-th component of the
input vector of p;:

E Ly

in k _ piedsin(k) 7
pinlbs V) = g) "
Z Ly
o _ Pi€Pout (k)
1% t(7’0) |Qsout(k)| (8)

2. compute the difference factor df (k,v) of each dimension v as

Hin (k; ’U) B Nout(ka ’U)
df (k,v) = 9
lf (k,) T (o) (9)
3. compute the difference factors mean p4 (k) and standard deviation oqy (k)

over all dimensions v; to avoid possible mix-up in the indices, we give the
formula for the mean and standard deviation as follows:

58 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

D
> df(k,v)
v=1

pap (k) = ——p5—— (10)

[N

D
aar(k) = (Z (df (k, v) — udf(k‘,v))z/D> (11)

v=1

Using Equations 12, 13 and 14, we are ready to precisely define a salient
dimension. A dimension v is a salient dimension for cluster I'* if its corre-
sponding difference factor deviates from the mean by at least one standard
deviation; that is if

df (k) < pgy (K) = 2 x o5 (k) (12)
df (k,v) = pap (k) + z X oqr (k) (13)
with z = 1.

3.5 Step 5: Assignment of descriptive labels

Once the salient dimensions are identified for each cluster of nodes, we manu-
ally interpret the label combinations and assign domain-specific descriptions
as final cluster labels. This step is inherently supervised in most domains of
applications. A user has to inspect the salient dimensions and must provide
the required descriptive labels. It is interesting to note that in text processing
applications, even this final step can be unsupervised, since the words that
correspond to the salient dimensions can in fact take the place of a “descrip-
tive label”. Note that the association between dimension and words is done
automatically during the pre-processing stage.

In cases where there is more than one significant dimension for a given
cluster, the absolute value of the difference factors is used to rank the salient
dimensions, which would then aid in deciding on an appropriate descriptive
label for the cluster. It should also be noted that in some applications, only
dimensions that have positive difference factors (i.e. pin(k,v) > pout(k,v))
are meaningful. In such cases, the user may just ignore the negative difference
factors when choosing appropriate labels for the cluster. Examples will be
given below to illustrate this.

On the issue of input representation, we explained at the onset, that we
are assuming dimensions are distinct and they individually represent some
tangible feature in the application domain. Note, however, that even if this
is not the case, our method would be able to detect the salient dimensions.
For some applications, this is all that is needed (i.e. descriptive labels are not
necessary).

SOM Labeling Methodology 59

Another point regarding input representation is that our method is sen-
sitive to “high values” and “low values” when evaluating each dimension for
purposes of spotting salient dimensions. Therefore, if the domain of applica-
tion is such that several ranges of values may have important connotations,
then assigning one dimension to each range of values is a better encoding
scheme. In the case of age or income brackets, for example, representing each
range of values as a separate dimension would allow for labels to be deduced
for the specific age or income bracket. Otherwise, if data are entered as nor-
malized values within a certain range (e.g. 0 to 1), then the label will only
be in terms of high and low age or income, and will not pertain to specific
income or age brackets.

4 Customer profiling: an illustration

Being visual renderings of the input set, self-organized maps open up oppor-
tunities for gaining insights and mining critical information from an otherwise
unstructured set of data. We illustrate here how a SOM is labeled with the
appropriate labels and, once labeled, is used to do an automatic profiling of
potential car buyers. The user of the SOM results could, for example, de-
sign detailed marketing strategies for very specific niche markets, given the
features and qualities that the specific market is attracted to.

We trained a SOM using data collected by MORPACE International in a
cross-national consumer survey. The data set covers the top twenty automobile
markets in the world consisting of 4,320 eligible new vehicle buyers who bought
a car within the past six months during the period September-October 1997.
Although the dataset consists of 4,332 samples, only respondents who had
purchased or intended to purchase a passenger car were selected for analysis.
Furthermore, Chinese-, Russian-, Turkish-, and Indian samples were removed
from the dataset for analysis due to the relatively modest qualified sample
sizes in those countries. Consequently, a total of 2,385 respondent records
from 16 countries were included in the study.

In the survey, automobile benefit-sought behavior was measured by asking
respondents to choose up to three benefits (out of 15) that they considered
as most important benefits when purchasing a new car. The list of benefits
includes “fun to drive”, “good acceleration and speed”, “good dealer service”,
“good fuel economy”, “good styling”, “level of technology”, “luxury features”,
“made to last”, “prestige”, “reliability”, “safety in accidents”, “sportiness”,
“high quality”, “passenger space”, and “cargo/luggage space”.

According to a study (Hsieh, 2002), the dimensionality of the benefits
listed above corresponds approximately to the brand concepts® proposed by

5 Brand concepts are defined as brand-unique abstract meanings that typically
originate from a particular configuration of product features and a firm’s efforts
to create meaning from these arrangements (Park et al., 1991).

60 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Park, Jaworski and MacInnis (Park et al., 1986). The four dimensions ex-
tracted are: (1) the symbolic dimension including prestige, luxury features,
styling and quality, (2) the sensory dimension including good acceleration
and speed, fun to drive, and sportiness (3) the utilitarian dimension including
reliability, durability and safety in accidents, and (4) the economic dimension
consisting of fuel economy and dealer service. The relationship between func-
tional/utilitarian, social/symbolic and experiential/sensory needs and con-
sumption has been proven to be significant in various studies (Holbrook and
Schindler, 1994). The set of benefits covering the three universal needs along
with specific product benefits serve as a rather comprehensive set of benefits
that consumers are likely to be seeking.

A 16 x 16 SOM was trained using the converted binary data from the
global samples. By doing an agglomerative hierarchical clustering on the data,
we observed that when the number of clusters was fewer than six, relatively
distinct clusters were being merged (big increase in inter-cluster variance).
But there was really no specific number of clusters that was evidently ideal,
so we proceeded with doing k-means clustering using different values of k.
We did not probe more than eight clusters since, from a market segmentation
point of view, a large number of clusters would be counter-productive. Of
the clusters generated, we zeroed in on the initial 6-cluster solution shown in
Figure 5.

By virtue of SOM’s well-studied characteristics (Wu and Chow, 2005),
it can be surmised that clusters 4 and 5 are somewhat related because the
nodes that constitute these clusters are positioned spatially close together in
the map. On the other hand, clusters 0 and 3 are positioned at opposite ends
of the map, indicating that responses to the survey vary more significantly
between these two clusters than between other pairs of clusters in the map. It
is also worth noting that even if our clustering method does not force nodes
in the same cluster to be contiguous in the map, the clusters we derived are
patches of nodes that are mostly contiguous in the map, except for the lone
cluster 0 node somewhere above cluster 5. The fact that nodes in a cluster
tend to be contiguous in the trained map is a result of the weight update
procedure done on the nodes reference vectors during training.

Each respondent record in our dataset is matched to the node in the map
with a reference weight vector that has the smallest (Euclidean) distance
with respect to it. The cluster number of the nearest node is assigned to the
respondent record accordingly. Thus, the entire dataset is now subdivided
into subsets of respondent records for each cluster (i.e. the set of in-patterns
per cluster). The number of respondent records assigned to each cluster is
shown in Table 1. In this study, we skipped the pruning step and retained all
the nodes in the different clusters as part of the their respective clusters. As
will be discussed in the next section, we will be conducting a separate study
focused on the pruned off nodes.

Since cluster 2 is a significantly sized cluster, we probed it further by doing
a further k-means clustering on just the nodes in this cluster 2. At k = 3, we

SOM Labeling Methodology 61

(5) UTILITY
safe/quality

2 12

(0) SYMBOLIC

o

NININ]N
(M RN RN Y
NN

1M =10 ¥ B M

NNl NN

M EM RN RS

[V V2) VSN

NN O
NN N
NN N
NN N

NiNviNvININNIN] ol o]l O] ©

NIN|ININ|F| R RNV o O] O] ©] ©

V|| = R =] =] =] v] o] o o oo
[\ (NS sy [y iy (g jey ey XY XD =Y =1 =1 =)

2

M EM M M AN Y EY Y AV EM BV A EY B R Y

NNl N
i) o

2 2 2 2 2 2 2
(1) UTILITY (4) UTILITY (3) ECONOMIC
dependability safe/economical quality

Fig. 5. The trained 16 x 16 SOM with a clustering of nodes. Cluster 2 nodes have
subsequently been clustered into 3 smaller sub-clusters.

are able to break-up cluster 2 into meaningful sub-clusters. This portion of
our market segmentation study, which does a second k-means clustering on
the relatively very large cluster from the initial clustering, deviates somewhat
from the method outlined in the preceding section. However, the goal is to
reach a final clustering of the SOM nodes, and we are consistent as far as this
goal is concerned. Note that if we simply do a one-step k-means clustering
using k£ = 8, we would not be able to obtain the same quality of clusters that
we obtained here.

We then inspect the respondent records in each cluster to generate the
profile of benefits-sought in each of the clusters. The frequency distribution of
each selected benefit in the entire survey set is first computed. We then com-
pute the frequency distributions for just the individual clusters, after which
we compute the difference factors between in-patterns and out-patterns on
a per dimension basis. The difference factors between the set of in-patterns
and the set of out-patterns for each of the benefit dimensions are shown in
Table 2. For each cluster, we also compute the mean and the standard devi-
ation of these difference factors. These would be the basis for deciding which
dimensions are salient for each cluster.

62 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Table 1. Distribution of respondents to the different clusters based on six and eight
clusters. Because of its large size, the original cluster 2 was subdivided further into
3 sub-clusters.

6 clusters 8 clusters
Cluster|# respondents (%) |# respondents (%)
0 248 10.4% 248 10.4%
1 170 7.1% 170 7.1%
2 1334 55.9%
2-a 704 29.5%
2-b 139 5.8%
2-c 491 20.6%
3 201 8.4% 201 8.4%
4 152 6.4% 152 6.4%
5 280 11.7% 280 11.7%

Table 2. Difference factors of each dimension (benefit) for every cluster. Bold figures
denote difference factors that are more than one standard deviation from the mean.

Clusters
Dimension 0 1 2-a 2-b 2-c 3 4 5
fun to drive -0.11 -0.25 -0.49 -0.34 1.84 -0.20 -0.78 0.10

acceleration/speed | 0.51 -0.87 0.43 -0.64 0.55 -0.75 -0.89 0.10
dealer service -0.76 -0.59 -0.09 -1.00 0.55 0.10 3.87 -0.71
fuel economy -0.39 -0.02 1.63 1.08 -0.99 0.59 0.56 -1.00

styling -0.52 -0.42 0.92 -0.51 0.46 -0.11 -0.85 -0.44

level of technology | 0.18 -0.50 -0.36 0.12 1.47 -0.83 -0.95 0.41

luxury features |13.25 -0.90 -0.72 -1.00 -0.58 -0.72 -1.00 0.23

made to last -0.73 4.80 -0.54 -0.62 -0.51 0.02 2.34 -0.23
prestige 1.46 -0.56 -0.49 -0.68 0.87 -0.16 -0.71 0.13
reliability -0.77 5.18 0.01 -0.90 -0.09 0.04 -0.66 -0.63

safety in accident | -0.97 -0.56 0.44 -0.68 -0.84 -0.55 2.05 2.49
sportiness 1.74 -0.40 -0.27 -0.67 0.96 -0.59 -0.45 -0.59
quality -0.79 -0.54 -0.96 -0.83 -0.09 11.00 -1.00 0.89

passenger space -0.24 -0.87 -0.18 3.98 0.06 -0.68 -0.66 0.34
cargo/luggage space| -0.42 -0.85 0.12 8.56 -0.25 -0.79 -0.83 -0.68

iz 0.76 0.18 -0.04 0.39 0.23 042 0.00 0.03
o 3,55 1.97 067 259 083 095 152 0.86
pto 431 215 0.64 298 1.06 3.38 1.52 0.89

Since this is a market-segmentation study, we refer to the salient dimen-
sions as the “primary benefit(s)” sought by respondents in each cluster. We
only considered positive difference factors, because of the nature of the study.
We are mainly trying to establish what car features each cluster of consumers
is seeking when buying a car, and not so much what they are least interested
in. The distinctive meaning of each segment is then determined by assessing
the combination of benefits and the importance respondents attach to indi-
vidual benefits. Eight types of benefit segments were identified, as listed in

SOM Labeling Methodology 63

Table 3. In the table, we also present “secondary benefits” since they aid in
providing a better profile of the kind of benefits the customers are seeking for
each cluster. We consider all positive difference factors that are less than one
standard deviation from the mean as “secondary benefits”.

Table 3. Primary and secondary benefits sought for each cluster with corresponding
difference factors.

Cluster Label Primary benefits Secondary benefits
0 SYMBOLIC luxury features (13.25) sportiness (1.74)
prestige (1.46)
acceleration/speed (0.51)
level of technology (0.18)

1 | UTILITARIAN reliability (5.18)
(dependability) made to last (4.80)
2-a ECONOMIC fuel economy (1.63) safety in accidents (0.44)
(fuel economy) styling (0.92) acceleration/speed (0.43)

cargo/luggage space (0.12)
reliability (0.01)
2-b UTILITARIAN |cargo/luggage space (8.56) fuel economy (1.08)
(larger space) passenger space (3.98) | level of technology (0.12)
2-c SENSORY fun to drive (1.84) sportiness (0.96)
level of technology (1.47) prestige (0.87)
acceleration/speed (0.55)
dealer service (0.55)
styling (0.46)
passenger space (0.06)
3 ECONOMIC high quality (11.00) fuel economy (0.59)
(quality) dealer service (0.10)
reliability (0.04)
made to last (0.02)
4 UTILITARIAN | good dealer service (3.87) fuel economy (0.56)
(safe/economical) made to last (2.34)
safety in accidents (2.05)
5 UTILITARIAN | safety in accidents (2.49) | level of technology (0.41)
(safe/high quality) high quality (0.89) passenger space (0.34)
luxury features (0.23)
prestige (0.13)
acceleration/speed (0.10)
fun to drive (0.10)

Cluster 2-a, an economic-oriented segment, is dominated by “good fuel
economy” and supplemented by “good styling”, “safety in accidents”, “good
acceleration and speed”, “cargo/luggage space” and “reliability”. Cluster 2-c,
which is a “sensory” segment, values benefits such as “fun to drive”, “level
of technology”, “sportiness”, “prestige”, “good acceleration and speed” and
“styling”. Respondents who fall under the “symbolic” segment (cluster 0)

64 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

are those who value “luxury features” and appreciate other symbol-oriented
benefits such as “prestige”, “sportiness”, “good acceleration and speed” and
“level of technology”. Cluster 3 is the other economic-oriented segment with
benefits such as “high quality”, “fuel economy”, and “good dealer service”.

The remaining four segments differ from each other, but all reflect various
utilitarian needs. Cluster 1 represents utilitarian benefit seekers who are after
“reliability” and “made to last”. Clusters 4 and 5 are both concerned with
“safety in accidents”, except that their respective secondary benefits point to
two distinct types of needs. Whereas cluster 4 is a grouping of safety-conscious
consumers who value “good dealer service”, “made to last” and “good fuel
economy”, cluster 5 consumers are concerned with “high quality”, “level of
technology”, “passenger space”, “luxury features”, “prestige”, etc. Finally,
cluster 2-b is another utilitarian segment that is mainly focused on “space”
benefits, including both “passenger space® and “cargo/luggage space*.

Note that the component planes shown earlier in Figure 2 are based on the
actual trained weights of the SOM we have generated for this study. Knowing
the primary and secondary benefits from Table 3, it is easy to work backwards
and verify our results. Indeed, when a dimension is a primary benefit for a
given cluster, the component plane corresponding to that dimension has a
white patch (high weight values) in the section of the map that corresponds
to the nodes that make up the given cluster. However, had we relied on just the
visual inspection of component planes the way it is usually done, we might be
able to manually deduce some of the primary benefits, but the level of detail
of Table 3 will be very difficult to match.

We are now ready to construct the demographic profile of each of the eight
clusters, including age, gender, marital status, and whether or not a respon-
dent has children under 18. We have done this at the global level as well as
at the level of groupings of countries (i.e. continental Europe, Latin America,
Anglo-America, East Asia). Interested readers are referred to (Azcarraga et
al., 2003) for the marketing context of the study.

Table 4 gives socio-demographic profile of each cluster of car features at
the global level in terms of the percent distribution of respondents in each
of the car-benefits clusters that were previously identified. From Table 5, we
observe that the symbolic segment has a significantly higher proportion of
younger consumers in the under-30 age bracket. We expected the sensory
segment to be dominated by the younger consumers as well, but this trend is
not significant at the global level.

A quite unexpected result is the significantly higher proportion of female
consumers who value passenger and cargo space. In the global sample, only
37% of the respondents are female. This proportion increased significantly
to 50% for cluster 2-b. Also, married consumers prefer low maintenance at-
tributes and good dealer service. Furthermore, the economic cluster 3 shows a
significantly dominant middle age consumer bracket from 30 to 40 years old,
and slightly older.

SOM Labeling Methodology 65

Table 4. Global socio-demographic profile of each benefits-sought cluster (figures
are in %).

Demographics
Clusters gender status age
female male|single married|< 30 30-39 40-49 50-59 > 60
0 symbolic 35 65 47 53 33 30 23 12 8
1 | utilitarian (dependability) 34 66 | 29 71 19 32 25 14 10
2-a| utilitarian (fuel economy) 38 62 | 39 61 26 29 23 14 8
2-b utilitarian (space) 50 50 42 58 24 30 24 12 9
2-c sensory 33 67 39 61 31 29 20 11 9
3 economic (quality) 38 62 39 61 24 36 24 11 4
4 |utilitarian (safe/economical)| 41 59 | 25 75 15 34 24 17 11
5 utilitarian (safe/quality) 38 62 | 34 66 25 26 26 11 10
All 37 63 38 62 26 30 23 12 8

Table 5. Global socio-demographic profile of each benefits-sought cluster based
on net deviation of % proportion from mean. Items labeled as ++ and —— have
one standard deviation of positive or negative deviation from the mean. Others are
labeled as + or — when the net deviation is more than 5%.

Demographics
Clusters gender status age
female male|single married|< 30 30-39 40-49 50-59 > 60

0 symbolic — T F — . — — —
1 | utilitarian (dependability) - —+ - + —-— 4+ + + +
2-a| utilitarian (fuel economy) — +
2-b utilitarian (space) ++ —— | + — — + —

2-c sensory — + + — _

3 economic (quality) - 4+ o+ _ _
4 |utilitarian (safe/economical)| + - | —= ++ |- + + +
5 utilitarian (safe/quality) — + — — + — +

The socio-demographic profiles of each cluster are more pronounced when
studied at a regional level than at the global level, as can be seen from Table
6. At the global level, the profiles of the various niche markets in the regional
levels tend to cancel each other.

For the purpose of illustrating how we are able to mine for insights that
may be very useful in marketing applications, for example, we will highlight
here a few of the marketing-related results for Continental Europe and Latin
America. In Continental Europe, gender does not matter much compared to
the other regional-cultural blocs. Whether a consumer is male or female mat-
ters only in cluster 2-b, associated with passenger and cargo space. Latin
America is where socio-demographics matter the most. For example, pro-
portionately more unmarried (single) consumers go for symbolic, utilitarian
(space), and economic benefits, while the married consumers go for depend-
ability and safe-and-economical. Gender matters in all clusters as well, even
significantly with dependability and sensory benefits for males, and safe-and-
economical and space benefits for females. Age is significantly pronounced in
seven of the eight Latin American clusters. It should be noted that like the
Anglo-American bloc, the proportion for the above-60 age bracket (retired
segment) is significantly higher for three benefits clusters. However, only one

66 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Table 6. Regional socio-demographic profile of each benefits-sought cluster.

Demographics (Anglo-America)
Clusters gender status age
female male|single married|< 30 30-39 40-49 50-59 > 60
0 symbolic -—— ++| + - + ++ - ++
1 | utilitarian (dependability) — + — + —— + + + +
2-a| utilitarian (fuel economy) - +
2-b utilitarian (space) ++ —— | + - - + -
2-c sensory — —+ + — —
3 economic(quality) - +4 + - -
4 |utilitarian (safe/economical) + — —— ++ —— + + +
5 utilitarian (safe/quality) — + — — + — —+
Demographics (Continental Europe)
Clusters gender status age
female male|single married|< 30 30-39 40-49 50-59 > 60
0 symbolic + — ++ — + — —
1 | utilitarian (dependability) - + —— ++ —— + + +
2-a| utilitarian (fuel economy) — +
2-b utilitarian (space) ++ —— - + - - +
2-c sensory — + + — ++ — —
3 economic (quality) - + + — - 4+ — -
4 |utilitarian (safe/economical) — + -— - + ++ -
5 utilitarian (safe/quality) + — + — + + —
Demographics (Latin America)
Clusters gender status age
female male|single married|< 30 30-39 40-49 50-59 > 60
0 symbolic — -+ ++ —_— ++ —_— — —
1 | utilitarian (dependability) —_ | —-= +4 _ - + +4
2-a| utilitarian (fuel economy) ++ - — + — — ++
2-b utilitarian (space) +4+ - | ++ —_ +4+ —— — —_ ——
2-c sensory —_— 4+ — + + + — —_— —
3 economic (quality) + — ++ —_ ++ - —
4 |utilitarian (safe/economical) + - —— ++ — 4+ ++
5 utilitarian (safe/quality) — + — + —— — +4+ — —
Demographics (East Asia)
Clusters gender status age
female male|single married|< 30 30-39 40-49 50-59 > 60
0 symbolic ++ —— ++ —— —
1 | utilitarian (dependability) - + - + e o - -
2-a| utilitarian (fuel economy) ++ — + — + - — +
2-b utilitarian (space) +4+ —— + - 4+ — —
2-c sensory —_— 4+ — + — — +
3 economic (quality) ++ —— + + —
4 |utilitarian (safe/economical) + - _ ++ _ + +
5 utilitarian (safe/quality) — + + —— + +

of the three clusters represents the same group of benefits sought, namely
“safe and economical” (cluster 4).

In a very succinct manner, a SOM rendering of the marketing information
contains a lot of relevant information that are more readily understood when
shown in a picture form (Figures 6 and 7) than in the form of a table, as in
Table 6. The SOM, once appropriately labeled, does provide various insights
depending on the use of the information revealed by the SOM. In Figure 6,
we note that luxury features and economic benefits are positioned at opposite
corners of the map, reflecting the distinct types of benefits they include. In
the middle portion are most of the utilitarian benefits, with the two safety-in-
accidents clusters positioned side-by-side each other in the center of the map.

SOM Labeling Methodology 67

For the Anglo-American bloc, the males are mainly attracted to the symbolic
benefit, while a significantly higher proportion of women are attracted to two
utilitarian clusters (clusters 2-b and 4) in the mid-section of the map. The
married consumers are likewise attracted to cluster 4 (i.e., safety and eco-
nomic related benefits). As for the age, the young consumers are attracted to
the symbolic and sensory clusters, as expected, while the middle-aged con-
sumers are attracted to utilitarian and economic clusters. There is a distinct
market among the 60-over consumers in the Anglo-American bloc (which is
not evident in Continental Europe and East Asia), in that they gravitate sig-
nificantly towards the symbolic benefit as well as the two safety-in-accidents
benefits (i.e., clusters 4 and 5).

In Figure 7 we use another visual SOM-rendering of the socio-demographic
segmentation of a group of countries (East Asia) to reinforce the claim that
such “pictures” can be more insightful than the usual tabular presentation
of Table 6. Notice how much easier it is to see the over-all picture when
the demographics are presented as shown in Figure 7. In addition, the socio-
demographic profiles of the Anglo-American and East Asian blocs can be
readily compared. In the East-Asian bloc, the males are mainly attracted
to the sensory benefits (“level of technology”, “fun to drive”, etc.), while a
significantly higher proportion of women is attracted cluster 2-b (space) and
cluster 3 “high quality”. The married consumers are attracted to cluster 4 (i.e.,
safety and economic related benefits). The young consumers under 30 years
old are attracted to the symbolic cluster (“luxury features”), while those in the
30-39 range go for “durability”, and those in the 40-59 range go for “space”.

5 Assessing the quality of the cluster labels

Although the method works well for the market segmentation study discussed
above, one may wonder whether other known methods might yield similar
results or might provide further evidence that the results are indeed satisfac-
tory. To address this question, we assessed the quality of the clusters and of
the identified salient dimensions using various statistical tests and machine
learning techniques.

First, we applied Wilks’ Lambda F test using MANOVA to test the effect
of each of the factors (i.e., eight clusters) on the dependent variables (i.e., 15
benefits) on a pair-wise basis. Wilks’ Lambda is a test statistic frequently used
in multivariate analysis for mean differences among more than two groups. In
our case, this test would establish whether in fact the eight clusters that we
have generated are distinct in terms of benefits desired by respondents in each
cluster. At significance level .01, the centroid vector representing each cluster
was found to be pair-wise different from each of the centroids vectors of all
the other clusters. As described earlier, we also saw that each cluster can be
associated with a unique set of benefits that would establish its distinctive

68 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

30-39 60-over cargo/luggage
under 30

passanger space

luxury features

level of technology female
male L_________J
40-49

reliability

made to last

safety in accidents

good dealer service
made to last 40-49
fuel economy

female married 50-59

Fig. 6. Labeled SOM with superimposed socio-demographics for the Anglo-
American bloc.

character. That we are able to do so further supports our claim that the eight
clusters are distinct.

To validate the assignment of primary and secondary benefits to each clus-
ter, we relied on the tests of between-subject effects generated from the same
MANOVA to check for significant effect of cluster on each benefit across differ-
ent clusters. We noted for each cluster all those benefits which are different at
significance level .05 from all the seven other clusters. From among these, we
further identify those benefits whose means are higher than the over-all mean
(all clusters included). Table 7 shows that the benefits identified as outlined
above are exactly those listed as either primary or secondary benefits in Table
3, which used difference factors as basis for identifying them. Furthermore,
almost all of the primary benefits for each cluster in Table 3 are significantly
different from all seven other clusters as shown in Table 7. The only excep-
tion is the “fuel economy” primary benefit of cluster 2-a. It has a mean value
that is not significantly different from that of cluster 2-b, which also has “fuel
economy” as a secondary benefit.

These tests for independence that help us determine which of the dimen-
sions are significantly different for a given cluster are only useful for validating
the selection of significant dimensions that we have previously done. If it were

SOM Labeling Methodology 69

under 30 cargo/luggage
male

passanger space

luxury features

level of technology

female

single

4[__ 40-49

safety in accident

reliability
made to last ‘—I_I—
high qualit
30-39 safety in accidents gn @ o
good dealer service

made to last female
fuel economy

married _I—

|

Fig. 7. Labeled SOM with superimposed socio-demographics for the East-Asian
bloc.

used as the main technique for identifying the significant dimensions, it is
not clear what criteria (cut-off point) should be used to identify the salient
dimensions. For example, a given dimension that is extremely high for three
and very low for five out of eight clusters may in fact be a “salient dimension”
for labeling purposes. Yet, if the cut-off is set at six out of seven other clusters,
such a dimension may not be selected as a salient dimension. Also, secondary
benefits would have been difficult to identify.

A final validation technique involves the use of C4.5, a very well-established
decision tree classifier (Quinlan, 1993). We use C4.5 to automatically build a
decision tree that would classify respondent patterns as either belonging to
the in-patterns set or the out-patterns set. A very useful feature of C4.5 is
that aside from building a decision tree, it is able to extract a set of rules that
mimics the decision-making process of the tree. Figure 8 is an example of the
extracted rules for cluster 0, after C4.5 has built a decision tree based on the
sets of in-patterns and out-patterns for cluster 0. In the rules of Figure 8, class
0 refers to the out-patterns set while class 1 refers to the in-patterns set. Note
that C4.5 automatically drops certain rules, which explains why rules 3 to 6
are missing.

70 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Table 7. Salient dimensions, not marked by (*), are significantly different at o = .05
from all other seven clusters based on the F Lambda test. Those marked by (*) are
significantly different from only six out of the seven other clusters.

Cluster Label Salient Dimensions
0 SYMBOLIC luxury features
sportiness
prestige (*)
1 UTILITARIAN reliability
(dependability) made to last
2 ECONOMIC safety in accidents
(fuel economy) fuel economy (*)
cargo/luggage space (*)
2-a UTILITARIAN cargo/luggage space
(larger space) passenger space
fuel economy (*)
2-b SENSORY level of technology
fun to drive
sportiness
3 ECONOMIC high quality
(quality) fuel economy (*)
4 UTILITARIAN good dealer service
(safe and economical) | safety in accidents
made to last
fuel economy (*)
5 UTILITARIAN safety in accidents
(safe and high quality) high quality
luxury features
passenger space (*)

We basically would want the extracted rules to confirm that cluster 0 is a
“symbolic” cluster, with “luxury features” as the primary benefit. Indeed, this
is what C4.5 is able to extract from the decision tree it has built for cluster
0. Clearly, the rules extracted by C4.5 are the kinds of information we need
when we want to assign descriptive labels to each cluster in the map. As a
validation technique, it does well in confirming that the significant dimensions
identified by the proposed methodology are in fact what the C4.5 rules are
using in deciding that a pattern belongs to the in-patterns set. In fact, all the
significant dimensions we have identified have also appeared prominently in
the respective rules extracted by C4.5 (in the interest of space, we are not
showing them all here).

Just like for the F tests for significance, it is tempting to conclude that
C4.5 can replace the dimension-selection technique based on difference fac-
tors. Just to illustrate how it can be quite complicated to do so, we refer to
Figure 9 containing the list of extracted C4.5 rules for cluster 2-b. The rules
set for cluster 2-b is already the next to the simplest, after that of cluster

SOM Labeling Methodology 71

Rule 1:
Q7-Luxury-Features = 0
-> class 0 [99.9%]

Rule 7:
Q11-Safety-in-Accidents = 1
-> class 0 [99.4%]

Rule 2:
Q3-Dealer-Service = 0
Q5-Styling = O
Q7-Luxury-Features = 1
Q10-Reliability = 0O
Q11-Safety-in-Accidents = 0

Q13-Quality = 0
-> class 1 [95.9%]

Fig. 8. Extracted rules using C4.5 given the sets of in-patterns (class 1) and out-
patterns (class 0) for cluster 0. Clearly, the dimension “luxury features” is the salient
dimension for this “symbolic” cluster, thus validating the salient dimension (primary
benefit) extracted by our method as shown in Table 3.

0. Those for the other clusters have many more rules with many more di-
mensions included in the rule conditions. Again, knowing that our method
has tagged “passenger space” and “luggage space” as the primary benefits for
this cluster, we can confirm the validity of our extracted primary labels. How-
ever, if C4.5 were directly used to isolate these two primary benefits, there
is no straightforward method for isolating these two dimensions from “fuel
economy” for example, which also appears prominently in the rules. Only by
assessing the rules together as a set, are we able to discern the truly important
variables. This obviously becomes extremely difficult when the set of rules is
complex. Furthermore, there is no clear way of ranking the dimensions from
the most significant to the least significant, the way it can be done in a very
neat manner using difference factors.

There remains one more important point. Although it is quite clear that
the two validation methods employed here - statistical and decision-tree -
cannot be used as alternatives to our method based on difference factors,
it remains a methodological issue whether one or both methods ought to
be included in the general unsupervised labeling methodology that we are
proposing.

We prefer to leave validation out as an optional phase and to use it only
when 1) the user has absolutely no idea as to what constitutes a “reasonable”
set of findings; and 2) the results appear counter-intuitive. Basically, the vali-
dation techniques, particularly the rule extraction method using C4.5, would
be useful to detect some procedural or computational mistakes related to the
computation of difference factors, means and standard deviations. However,

72 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Rule 5:
Q4-Fuel-Economy = 1
Q15-Cargo-Luggage-Space = 1
-> class 1 [82.9%]

Rule 3:
Q11-Safety-in-Accidents = 0
Q14-Passenger-Space = 1
Q15-Cargo-Luggage-Space = 1
-> class 1 [71.8%]

Rule 2:
Q4-Fuel-Economy = 0
Q14-Passenger-Space = 0
-> class 0 [99.9%]

Rule 4:
Q4-Fuel-Economy = 0
Q11-Safety-in-Accidents = 1
-> class 0 [99.7%]

Rule 1:

Q15-Cargo-Luggage-Space = 0
-> class 0 [97.9%]

Fig. 9. Extracted rules using C4.5 given the sets of in-patterns (class 1) and out-
patterns (class 0) for cluster 2-b. Although “passenger space” and “cargo/luggage
space” which are the cluster‘s primary benefits from Table 3, do appear prominently
in the rules, it is not clear how these two dimensions could have been isolated from
the other dimensions (e.g. “fuel economy”) just based on the rules extracted for
cluster 2-b.

it must be emphasized that since C4.5 comes into the picture after the sets of
in-patterns and out-patterns of each cluster have been determined, any error
prior to this step would remain undetected.

6 Conclusion

Neural networks are potent data mining models, as they are able to learn
just from being shown examples of the data, without explicitly being told
what to look for, or how the information is structured in the input heap.
Indeed, data mining tools become very useful precisely when there is little
knowledge about what might be contained in the input data, and often times,
the dataset has no veritable structure to speak of. Among the neural net-
work models, self-organizing maps, which belong to the class of unsupervised
neural network learning models, become doubly interesting for data mining

SOM Labeling Methodology 73

applications because this model does not require training data to have accom-
panying desired-output information that typically would need some tedious
user-intervention (which is the case for supervised neural network learning
models).

It must be emphasized that although training (learning) in self-organizing
maps (SOMs) is unsupervised, the labeling phase is very often a supervised
process. The labeling process is supervised in that we rely on labeled patterns
that have accompanying desired-output information. Since such labeled pat-
terns are not always available or may not even be possible to construct, the
supervised labeling phase of the SOM methodology hinders the deployment
of SOMs to a wider range of potential domains of application.

We improved on the SOM methodology by devising a methodical and
automatic SOM labeling procedure that does not require a set of labeled
patterns. Nodes of the trained map are clustered and the so-called salient
dimensions in each cluster are automatically identified. Out of these salient
dimensions, a “descriptive label” is assigned by the user. Assignment of a
descriptive label is still a form of user intervention, but this is no longer at
the level of individual labeled patterns.

We have illustrated the effectiveness of the method by applying the unsu-
pervised labeling method to a SOM-based customer-profiling study. The mar-
ket segmentation application illustrates the usefulness of SOM as a method-
ology for data mining, through clustering and visualization of unstructured
data.

In the market segmentation study, clustering of the benefits-sought data
could have been done by a multitude of clustering techniques, and a number
of these would probably generate a similar segmentation. However, SOM pro-
vides an additional feature: visualization of the clusters on a simple 2D grid
that would position the clusters in such a way that those that are near each
other, in a spatial sense, pertain to benefits groupings that are fairly similar
(i.e. the Euclidean distance of their associated input vectors is small). In ad-
dition, we are able to superimpose on this cluster distribution the primary
benefits for the different clusters, and the various socio-demographic patterns
for the different market niches represented by the clusters.

Acknowledgment

The authors acknowledge the contribution of MORPACE International Inc.
in providing the dataset for analysis.

References

Azcarraga AP, Hsieh M, Setiono R, (2003), Visualizing globalization: A SOM ap-
proach to customer profiling. In:Proceedings of 24th International Conference
on Information Systems (ICIS), Seattle, WA.

74 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Azcarraga A, Yap TN, Tan J, Chua TS, (2002), Evaluating keyword selection
methods for WEBSOM text archives, IEEE Transactions on Knowledge and
Data Engineering, 16(3): 380-383.

Carlson E, (1998), Real estate investment appraisal of land properties using SOM.
In: Deboeck G, Kohonen T (eds), Visual explorations infinance with self-
organizing maps, Springer-Verlag, London.

Carpenter GA, Grossberg S, (1991), Pattern-recognition by self-organizing neural
networks. MIT Press, Cambridge, MA.

Clark D, Ravishankar K, (1990), A convergence theorem for Grossberg learning,
Neural Networks 3(1): 87-92.

Deboeck G, Kohonen T, (1998), Visual explorations in finance with self-organizing
maps,Springer-Verlag, London.

Deboeck G, (1998), Picking mutual funds with self-organizing maps. In:Deboeck
G, Kohonen T (eds), Visual explorations in finance with self-organizing maps,
Springer-Verlag, London.

Deboeck G, (1998), Investment maps of emerging markets. In: Deboeck G, Kohonen
T (eds), Visual explorations in finance with self-organizing maps, Springer-
Verlag, London.

Everitt B, (1974), Cluster analysis, Heinemann Educational Books, London.

Fukushima K, (1980), Neocognitron: a self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift inposition, Biological
Cybernetics 36: 121-136.

Hartigan JA, (1975), Clustering algorithms, Wiley-Interscience, New York.

Haykin S, (1998), Neural networks: a comprehensive foundation. Prentice-Hall In-
ternational, 2nd Edition, Upper Saddle River, NewJersey.

Holbrook MB, Schindler RM, (1994), Age, sex, and attitude toward the pastas pre-
dictors of consumers’ aesthetic taste for cultural products. Journal of Consumer
Research 31: 412-22.

Hsieh MH, (2002), Identifying brand image dimensionality and measuring degree of
brand globalization: a cross-national study. Journal of International Marketing
10(2): 46-67.

Kiang MY, Kumar A, (2001), An evaluation of self-organizing map networks as a
robust alternative to factor analysis in data mining applications, Information
Systems Research 12: 177-194.

Kiviluto K, Bergius P, (1998), Maps for analyzing failures of small andmedium-
sized enterprises. In: Deboeck G, Kohonen T (eds), Visual explorations in fi-
nance with self-organizing maps,Springer-Verlag, London.

Kohonen T, (2000), Self-organization of a massive document collection, IEEE
Transactions on Neural Networks 11(3): 574-585.

Kohonen T, (1982), Self-organized formation of topologically-correct feature maps,
Biological Cybernetics 43: 59-69.

Kohonen T, (1990), The self-organizing map, Proceedings of the IEEE 78:1464—
1480.

Kohonen T, (1995), Self-organizing maps, Springer-Verlag, Berlin.

Kohonen T, (1999), Kohonen maps, Elsevier, New York.

Kuo RJ, Ho LM, Hu CM, (2002), Integration of self-organizing feature mapand k-
means algorithm for market segmentation, Computers and Operations Research
29:1475-1493.

SOM Labeling Methodology 75

Mayer R, Lidy T, Rauber A, (2006), The map of Mozart, Proc 7th International
Conference on Music Information Retrieval, Victoria,Canada, Oct 8-12.

Merkl D, (1998), Text classification with self-organizing maps: some lessons learned,
Neurocomputing 21: 61-77.

Park CW, Jaworski BJ, Maclnnis DJ, (1986), Strategic brand concept-
imagemanagement. Journal of Marketing 50: 135-145.

Park CW, Milberg S, Lawson R, (1991), Evaluation of brand extension:the role of
product level similarity and brand concept consistency. Journal of Consumer
Research 18: 185-193.

Punj G, Steward DW, (1983), Cluster analysis in marketing research: review and
suggestions for applications. Journal of Marketing Research 20: 134-148.

Quinlan R, (1993), C4.5: Programs for machine learning, Morgan Kaufman,San
Mateo, CA.

Resta M, (1998), A hybrid neural network system for trading financial markets. In:
Deboeck G, Kohonen T (eds), Visual explorations infinance with self-organizing
maps, Springer-Verlag, London.

Ritter H, Martinetz T, Schulten K, (1992), Neural computation and self-organizing
maps (translated from German), Addison-Wesley, Reading MA.

Rumelhart DE, Zipser D, (1986), Feature discovery by competitive learning. In:
Rumelhart DE and McClelland JL (eds) Parallel and Distributed Processing,
Vol 1, 151-193. MIT Press, Cambridge, CA.

Rumelhart DE, Hinton GE, Williams RJ, (1986), Learning internal representations
by error propagation. In: Rumelhart DE;, McClelland JL (eds) Parallel and
Distributed Processing, Vol 1. 318-362. MITPress, Cambridge, MA.

Schmitt B, Deboeck G, (1998), Differential patterns in consumer purchase prefer-
ences using self-organizing maps: a case study of China. In:Deboeck G, Koho-
nen T (eds), Visual explorations in finance withself-organizing maps, Springer-
Verlag, London.

Serrano-Cinca C, (1998), Let financial data speak for themselves. In:Deboeck G,
Kohonen T (eds), Visual explorations in finance with self-organizing maps,
Springer-Verlag, London.

Shumsky S, Yarovoy AV, (1998), Self-organizing atlas of Russian banks. In:Deboeck
G, Kohonen T (eds), Visual explorations in finance with self-organizing maps,
Springer-Verlag, London.

Spath H, (1980), Cluster analysis algorithms, Ellis Horwood, Chichester,England.

Tulkki A, (1998), Real estate investment appraisal of buildings using SOM. In:
Deboeck G, Kohonen T (eds), Visual explorations in financewith self-organizing
maps, Springer-Verlag, London.

Wedel M, Kamakura W, (1998), Market segmentation: conceptual and method-
ological foundations, Kluwer Academic Publishers, Boston,MA.

Wu S, Chow T, (2005), PRSOM: A new visualization method by hybridizing multi
dimensional scaling and self-organizing Map, IEEE Trans on Neural Networks
16(6): 1362—-1380.

Xu R, Wunsch D, (2005), Survey of cluster algorithms, IEEE Trans on Neural
Networks, 16(3): 645-678.

Part 11

Evolutionary Methods

A Review of Evolutionary Algorithms for Data
Mining

Alex A. Freitas

University of Kent, UK, Computing Laboratory, A.A.Freitas@kent.ac.uk

Summary. Evolutionary Algorithms (EAs) are stochastic search algorithms in-
spired by the process of neo-Darwinian evolution. The motivation for applying EAs
to data mining is that they are robust, adaptive search techniques that perform
a global search in the solution space. This chapter first presents a brief overview
of EAs, focusing mainly on two kinds of EAs, viz. Genetic Algorithms (GAs) and
Genetic Programming (GP). Then the chapter reviews the main concepts and prin-
ciples used by EAs designed for solving several data mining tasks, namely: discovery
of classification rules, clustering, attribute selection and attribute construction. Fi-
nally, it discusses Multi-Objective EAs, based on the concept of Pareto dominance,
and their use in several data mining tasks.

Key words: genetic algorithm, genetic programming, classification, cluster-
ing, attribute selection, attribute construction, multi-objective optimization

1 Introduction

The paradigm of Evolutionary Algorithms (EAs) consists of stochastic search
algorithms inspired by the process of neo-Darwinian evolution (Back et al.
2000; De Jong 2006; Eiben & Smith 2003). EAs work with a population of in-
dividuals, each of them a candidate solution to a given problem, that “evolve”
towards better and better solutions to that problem. It should be noted that
this is a very generic search paradigm. EAs can be used to solve many differ-
ent kinds of problems, by carefully specifying what kind of candidate solution
an individual represents and how the quality of that solution is evaluated (by
a “fitness” function).

In essence, the motivation for applying EAs to data mining is that EAs
are robust, adaptive search methods that perform a global search in the space
of candidate solutions. In contrast, several more conventional data mining
methods perform a local, greedy search in the space of candidate solutions.
As a result of their global search, EAs tend to cope better with attribute

80 Alex A. Freitas

interactions than greedy data mining methods (Freitas 2002a; Dhar et al.
2000; Papagelis & Kalles 2001; Freitas 2001, 2002c). Hence, intuitively EAs
can discover interesting knowledge that would be missed by a greedy method.

The remainder of this chapter is organized as follows. Section 2 presents
a brief overview of EAs. Section 3 discusses EAs for discovering classification
rules. Section 4 discusses EAs for clustering. Section 5 discusses EAs for two
data preprocessing tasks, namely attribute selection and attribute construc-
tion. Section 6 discusses multi-objective EAs. Finally, Section 7 concludes the
chapter. This chapter is an updated version of (Freitas 2005).

2 An Overview of Evolutionary Algorithms

An Evolutionary Algorithm (EA) is essentially an algorithm inspired by the
principle of natural selection and natural genetics. The basic idea is sim-
ple. In nature individuals are continuously evolving, getting more and more
adapted to the environment. In EAs each “individual” corresponds to a candi-
date solution to the target problem, which could be considered a very simple
“environment”. Each individual is evaluated by a fitness function, which mea-
sures the quality of the candidate solution represented by the individual. At
each generation (iteration), the best individuals (candidate solutions) have a
higher probability of being selected for reproduction. The selected individu-
als undergo operations inspired by natural genetics, such as crossover (where
part of the genetic material of two individuals are swapped) and mutation
(where part of the generic material of an individual is replaced by randomly-
generated genetic material), producing new offspring which will replace the
parents, creating a new generation of individuals. This process is iteratively
repeated until a stopping criterion is satisfied, such as until a fixed number
of generations has been performed or until a satisfactory solution has been
found.

There are several kinds of EAs, such as Genetic Algorithms, Genetic Pro-
gramming, Classifier Systems, Evolution Strategies, Evolutionary Program-
ming, Estimation of Distribution Algorithms, etc. (Back et al. 2000; De Jong
2006; Eiben & Smith 2003). This chapter will focus on Genetic Algorithms
(GAs) and Genetic Programming (GP), which are probably the two kinds of
EA that have been most used for data mining.

Both GA and GP can be described, at a high level of abstraction, by
the pseudocode of Algorithm 1. Although GA and GP share this basic pseu-
docode, there are several important differences between these two kinds of
algorithms. One of these differences involves the kind of solution represented
by each of these kinds of algorithms. In GAs, in general a candidate solution
consists mainly of values of variables — in essence, data. By contrast, in GP
the candidate solution usually consists of both data and functions. There-
fore, in GP one works with two sets of symbols that can be represented in an

A Review of Evolutionary Algorithms for Data Mining 81

individual, namely the terminal set and the function set. The terminal set typ-
ically contains variables (or attributes) and constants; whereas the function
set contains functions which are believed to be appropriate to represent good
solutions for the target problem. In the context of data mining, the explicit
use of a function set is interesting because it provides GP with potentially
powerful means of changing the original data representation into a represen-
tation that is more suitable for knowledge discovery purposes, which is not
so naturally done when using GAs or another EA where only attributes (but
not functions) are represented by an individual. This ability of changing the
data representation will be discussed particularly on the section about GP for
attribute construction.

Note that in general there is no distinction between terminal set and func-
tion set in the case of GAs, because GAs’ individuals usually consist only of
data, not functions. As a result, the representation of GA individuals tend to
be simpler than the representation of GP individuals. In particular, GA indi-
viduals are usually represented by a fixed-length linear genome, whereas the
genome of GP individuals is often represented by a variable-size tree genome
— where the internal nodes contain functions and the leaf nodes contain ter-
minals.

Algorithm 1: Generic Pseudocode for GA and GP

1: Create initial population of individuals

2: Compute the fitness of each individual

3: repeat

4 Select individuals based on fitness

5: Apply genetic operators to selected individuals, creating new individuals
6

7

8

Compute fitness of each of the new individuals
Update the current population (new individuals replace old individuals)
: until (stopping criteria)

When designing a GP algorithm, one must bear in mind two important
properties that should be satisfied by the algorithm, namely closure and suf-
ficiency (Banzhaf et al. 1998; Koza 1992). Closure means that every function
in the function set must be able to accept, as input, the result of any other
function or any terminal in the terminal set. Some approaches to satisfy the
closure property in the context of attribute construction will be discussed in
Subsection 5.2. Sufficiency means that the function set should be expressive
enough to allow the representation of a good solution to the target problem.
In practice it is difficult to know a priori which functions should be used to
guarantee the sufficiency property, because in challenging real-world problems
one often does not know the shape of a good solution for the problem. As a
practical guideline, (Banzhaf et al. 1998) (p. 111) recommends:

82 Alex A. Freitas

“An approximate starting point for a function set might be the arithmetic
and logic operations: PLUS, MINUS, TIMES, DIVIDE, OR, AND, XOR.
... Good solutions using only this function set have been obtained on several
different classification problems,. .. ,and symbolic regression problems.”

We have previously mentioned some differences between GA and GP, in-
volving their individual representation. Arguably, however, the most impor-
tant difference between GAs and GP involves the fundamental nature of the
solution that they represent. More precisely, in GAs (like in most other kinds
of EA) each individual represents a solution to one particular instance of the
problem being solved. In contrast, in GP a candidate solution should repre-
sent a generic solution — a program or an algorithm — to the kind of problem
being solved; in the sense that the evolved program should be generic enough
to be applied to any instance of the target kind of problem.

To quote (Banzhaf et al. 1998), p. 6:

it is possible to define genetic programming as the direct evolution
of programs or algorithms [our italics| for the purpose of inductive
learning.

In practice, in the context of data mining, most GP algorithms evolve a
solution (say, a classification model) specific for a single data set, rather than
a generic program that can be applied to different data sets from different
application domains. An exception is the work of (Pappa & Freitas 2006),
proposing a grammar-based GP system that automatically evolves full rule
induction algorithms, with loop statements, generic procedures for building
and pruning classification rules, etc. Hence, in this system the output of a
GP run is a generic rule induction algorithm (implemented in Java), which
can be run on virtually any classification data set — in the same way that
a manually-designed rule induction algorithm can be run on virtually any
classification data set. An extended version of the work presented in (Pappa
& Freitas 2006) is discussed in detail in another chapter of this book (Pappa
& Freitas 2007).

3 Evolutionary Algorithms for Discovering Classification
Rules

Most of the EAs discussed in this section are Genetic Algorithms, but it should
be emphasized that classification rules can also be discovered by other kinds
of EAs. In particular, for a review of Genetic Programming algorithms for
classification-rule discovery, see (Freitas 2002a); and for a review of Learning
Classifier Systems (a type of algorithm based on a combination of EA and
reinforcement learning principles), see (Bull 2004; Bull & Kovacs 2005).

A Review of Evolutionary Algorithms for Data Mining 83
3.1 Individual Representation for Classification-Rule Discovery

This Subsection assumes that the EA discovers classification rules of the form
“IF' (conditions) THEN (class)” (Witten & Frank 2005). This kind of knowl-
edge representation has the advantage of being intuitively comprehensible to
the user — an important point in data mining (Fayyad et al. 1996). A crucial
issue in the design of an individual representation is to decide whether the
candidate solution represented by an individual will be a rule set or just a
single classification rule (Freitas 2002a, 2002b).

The former approach is often called the “Pittsburgh approach”, whereas
the later approach is often called the “Michigan-style approach”. This latter
term is an extension of the term ”Michigan approach”, which was originally
used to refer to one particular kind of EA called Learning Classifier Sys-
tems (Smith 2000; Goldberg 1989). In this chapter we use the extended term
”Michigan-style approach” because, instead of discussing Learning Classifier
Systems, we discuss conceptually simpler EAs sharing the basic characteristic
that an individual represents a single classification rule, regardless of other
aspects of the EA.

The difference between the two approaches is illustrated in Figure 1. Fig-
ure 1(a) shows the Pittsburgh approach. The number of rules, m, can be either
variable, automatically evolved by the EA, or fixed by a user-specified param-
eter. Figure 1(b) shows the Michigan-style approach, with a single rule per
individual. In both Figure 1(a) and 1(b) the rule antecedent (the “IF part” of
the rule) consists of a conjunction of conditions. Each condition is typically
of the form <Attribute, Operator, Value>, also known as attribute-value (or
propositional logic) representation. Examples are the conditions: “Gender =
Female” and “Age < 25”. In the case of continuous attributes it is also com-
mon to have rule conditions of the form <LowerBound, Operator, Attribute,
Operator, UpperBound>, e.g.: “30K < Salary < 50K”.

In some EAs the individuals can only represent rule conditions with cate-
gorical (nominal) attributes such as Gender, whose values (male, female) have
no ordering — so that the only operator used in the rule conditions is “=",
and sometimes “#”. When using EAs with this limitation, if the data set con-
tains continuous attributes — with ordered numerical values — those attributes
have to be discretized in a preprocessing stage, before the EA is applied. In
practice it is desirable to use an EA where individuals can represent rule con-
ditions with both categorical and continuous attributes. In this case the EA
is effectively doing a discretization of continuous values “on-the-fly”, since by
creating rule conditions such as “30K < Salary < 50K” the EA is effectively
producing discrete intervals. The effectiveness of an EA that directly copes
with continuous attributes can be improved by using operators that enlarge
or shrink the intervals based on concepts and methods borrowed from the
research area of discretization in data mining (Divina & Marchiori 2005).

It is also possible to have conditions of the form <Attribute, Operator,
Attribute>, such as “Income > Expenditure”. Such conditions are associated

84 Alex A. Freitas

with relational (or first-order logic) representations. This kind of relational
representation has considerably more expressiveness power than the conven-
tional attribute-value representation, but the former is associated with a much
larger search space — which often requires a more complex EA and a longer
processing time. Hence, most EAs for rule discovery use the attribute-value,
propositional representation. EAs using the relational, first-order logic rep-
resentation are described, for instance, in (Neri & Giordana 1995; Hekanaho
1995; Woung & Leung 2000; Divina & Marchiori 2002).

Rule 1 Rule m Rule
IF cond...and...cond|...| IF cond ...and...cond IF cond...and...cond
(a) Pittsburgh approach (b) Michigan-style approach

Fig. 1. Pittsburgh vs. Michigan-style approach for individual representation

Note that in Figure 1 the individuals are representing only the rule an-
tecedent, and not the rule consequent (predicted class). It would be possible
to include the predicted class in each individual’s genome and let that class be
evolved along with its corresponding rule antecedent. However, this approach
has one significant drawback, which can be illustrated with the following ex-
ample. Suppose an EA has just generated an individual whose rule antecedent
covers 100 examples, 97 of which have class c¢;. Due to the stochastic nature
of the evolutionary process and the ”blind-search” nature of the generic oper-
ators, the EA could associate that rule antecedent with class co, which would
assign a very low fitness to that individual — a very undesirable result. This
kind of problem can be avoided if, instead of evolving the rule consequent, the
predicted class for each rule is determined by other (non-evolutionary) means.
In particular, two such means are as follows.

First, one can simply assign to the individual the class of the majority of
the examples covered by the rule antecedent (class ¢; in the above example),
as a conventional, non-evolutionary rule induction algorithm would do. Sec-
ond, one could use the ”sequential covering” approach, which is often used
by conventional rule induction algorithms (Witten & Frank 2005). In this
approach, the EA discovers rules for one class at a time. For each class, the
EA is run for as long as necessary to discover rules covering all examples of
that class. During the evolutionary search for rules predicting that class, all
individuals of the population will be representing rules predicting the same
fixed class. Note that this avoids the problem of crossover mixing genetic
material of rules predicting different classes, which is a potential problem in
approaches where different individuals in the population represent rules pre-
dicting different classes. A more detailed discussion about how to represent
the rule consequent in an EA can be found in (Freitas 2002a).

A Review of Evolutionary Algorithms for Data Mining 85

The main advantage of the Pittsburgh approach is that an individual rep-
resents a complete solution to a classification problem, i.e., an entire set of
rules. Hence, the evaluation of an individual naturally takes into account rule
interactions, assessing the quality of the rule set. In addition, the more com-
plete information associated with each individual in the Pittsburgh approach
can be used to design “intelligent”, task-specific genetic operators. An ex-
ample is the "smart” crossover operator proposed by (Bacardit & Krasnogor
2006), which heuristically selects, out of the N sets of rules in N parents (where
N > 2), a good subset of rules to be included in a new child individual. The
main disadvantage of the Pittsburgh approach is that it leads to long indi-
viduals and renders the design of genetic operators (that will act on selected
individuals in order to produce new offspring) more difficult.

The main advantage of the Michigan-style approach is that the individual
representation is simple, without the need for encoding multiple rules in an
individual. This leads to relatively short individuals and simplifies the design
of genetic operators. The main disadvantage of the Michigan-style approach
is that, since each individual represents a single rule, a standard evaluation
of the fitness of an individual ignores the problem of rule interaction. In the
classification task, one usually wants to evolve a good set of rules, rather than
a set of good rules. In other words, it is important to discover a rule set where
the rules “cooperate” with each other. In particular, the rule set should cover
the entire data space, so that each data instance should be covered by at least
one rule. This requires a special mechanism to discover a diverse set of rules,
since a standard EA would typically converge to a population where almost all
the individuals would represent the same best rule found by the evolutionary
process.

In general the previously discussed approaches perform a ”direct” search
for rules, consisting of initializing a population with a set of rules and then
iteratively modifying those rules via the application of genetic operators. Due
to a certain degree of randomness typically present in both initialization and
genetic operations, some bad quality rules tend to be produced along the
evolutionary process. Of course such bad rules are likely to be eliminated
quickly by the selection process, but in any case an interesting alternative and
”indirect” way of searching for rules has been proposed, in order to minimize
the generation of bad rules. The basic idea of this new approach, proposed in
(Jiao et al. 2006), is that the EA searches for good groups (clusters) of data
instances, where each group consists of instances of the same class. A group
is good to the extent that its data instances have similar attribute values and
those attribute values are different from attribute values of the instances in
other groups. After the EA run is over and good groups of instances have
been discovered by the EA, the system extracts classification rules from the
groups. This seems a promising new approach, although it should be noted
that the version of the system described in (Jiao et al. 2006) has the limitation
of coping only with categorical (not continuous) attributes.

86 Alex A. Freitas

In passing, it is worth mentioning that the above discussion on rule repre-
sentation issues has focused on a generic classification problem. Specific kinds
of classification problems may well be more effectively solved by EAs using
rule representations “tailored” to the target kind of problem. For instance,
(Hirsch et al. 2005) propose a rule representation tailored to document classi-
fication (i.e., a text mining problem), where strings of characters — in general
fragments of words, rather than full words — are combined via Boolean oper-
ators to form classification rules.

3.2 Searching for a Diverse Set of Rules

This subsection discusses two mechanisms for discovering a diverse set of
rules. It is assumed that each individual represents a single classification rule
(Michigan-style approach). Note that the mechanisms for rule diversity dis-
cussed below are not normally used in the Pittsburgh approach, where an
individual already represents a set of rules whose fitness implicitly depends
on how well the rules in the set cooperate with each other.

First, one can use a niching method. The basic idea of niching is to avoid
that the population converges to a single high peak in the search space and to
foster the EA to create stable subpopulations of individuals clustered around
each of the high peaks. In general the goal is to obtain a kind of “fitness-
proportionate” convergence, where the size of the subpopulation around each
peak is proportional to the height of that peak (i.e., to the quality of the
corresponding candidate solution).

For instance, one of the most popular niching methods is fitness sharing
(Goldberg & Richardson 1987; Deb & Goldberg 1989). In this method, the
fitness of an individual is reduced in proportion to the number of similar
individuals (neighbors), as measured by a given distance metric. In the context
of rule discovery, this means that if there are many individuals in the current
population representing the same rule or similar rules, the fitness of those
individuals will be considerably reduced, and so they will have a considerably
lower probability of being selected to produce new offspring. This effectively
penalizes individuals which are in crowded regions of the search space, forcing
the EA to discover a diverse set of rules.

Note that fitness sharing was designed as a generic niching method. By
contrast, there are several niching methods designed specifically for the dis-
covery of classification rules. An example is the “universal suffrage” selection
method (Giordana et al. 1994; Divina 2005) where — using a political metaphor
— individuals to be selected for reproduction are “elected” by the training data
instances. The basic idea is that each data instance “votes” for a rule that
covers it in a probabilistic fitness-based fashion. More precisely, let R be the
set of rules (individuals) that cover a given data instance i, i.e., the set of
rules whose antecedent is satisfied by data instance i. The better the fitness
of a given rule r in the set R, the larger the probability that rule r will re-
ceive the vote of data instance i. Note that in general only rules covering the

A Review of Evolutionary Algorithms for Data Mining 87

same data instances are competing with each other. Therefore, this selection
method implements a form of niching, fostering the evolution of different rules
covering different parts of the data space. For more information about niching
methods in the context of discovering classification rules the reader is referred
to (Hekanaho 1996; Dhar et al. 2000).

Another kind of mechanism that can be used to discover a diverse set
of rules consists of using the previously-mentioned “sequential covering” ap-
proach — also known as “separate-and-conquer”. The basic idea is that the
EA discovers one rule at a time, so that in order to discover multiple rules
the EA has to be run multiple times. In the first run the EA is initialized
with the full training set and an empty set of rules. After each run of the EA,
the best rule evolved by the EA is added to the set of discovered rules and
the examples correctly covered by that rule are removed from the training
set, so that the next run of the EA will consider a smaller training set. The
process proceeds until all examples have been covered. Some examples of EAs
using the sequential covering approach can be found in (Liu & Kwok 2000;
Zhou et al. 2003; Carvalho & Freitas 2004). Note that the sequential covering
approach is not specific to EAs. It is used by several non-evolutionary rule
induction algorithms, and it is also discussed in data mining textbooks such
as (Witten & Frank 2005).

3.3 Fitness Evaluation

One interesting characteristic of EAs is that they naturally allow the evalua-
tion of a candidate solution, say a classification rule, as a whole, in a global
fashion. This is in contrast with some data mining paradigms, which evaluate
a partial solution. Consider, for instance, a conventional, greedy rule induc-
tion algorithm that incrementally builds a classification rule by adding one
condition at a time to the rule. When the algorithm is evaluating several can-
didate conditions, the rule is still incomplete, being just a partial solution,
so that the rule evaluation function is somewhat shortsighted (Freitas 2001,
2002a; Furnkranz & Flach 2003).

Another interesting characteristic of EAs is that they naturally allow the
evaluation of a candidate solution by simultaneously considering different
quality criteria. This is not so easily done in other data mining paradigms.
To see this, consider again a conventional, greedy rule induction algorithm
that adds one condition at a time to a candidate rule, and suppose one wants
to favor the discovery of rules which are both accurate and simple (short).
As mentioned earlier, when the algorithm is evaluating several candidate con-
ditions, the rule is still incomplete, and so its size is not known yet. Hence,
intuitively is better to choose the best candidate condition to be added to the
rule based on a measure of accuracy only. The simplicity (size) criterion is
better considered later, in a pruning procedure.

The fact that EAs evaluate a candidate solution as a whole and lend them-
selves naturally to simultaneously consider multiple criteria in the evaluation

88 Alex A. Freitas

of the fitness of an individual gives the data miner a great flexibility in the
design of the fitness function. Hence, not surprisingly, many different fitness
functions have been proposed to evaluate classification rules. Classification
accuracy is by far the criterion most used in fitness functions for evolving clas-
sification rules. This criterion is already extensively discussed in many good
books or articles about classification, e.g. (Hand 1997; Caruana & Niculescu-
Mizil 2004), and so it will not be discussed here — with the exception of a brief
mention of overfitting issues, as follows. EAs can discover rules that overfit
the training set — i.e. rules that represent very specific patterns in the training
set that do not generalize well to the test set (which contains data instances
unseen during training). One approach to try to mitigate the overfitting prob-
lem is to vary the training set at every generation, i.e., at each generation a
subset of training instances is randomly selected, from the entire set of train-
ing instances, to be used as the (sub-)training or validation set from which
the individuals’ fitness values are computed (Bacardit et al. 2004; Pappa &
Freitas 2006; Sharpe & Glover 1999; Bhattacharyya 1998). This approach in-
troduces a selective pressure for evolving rules with a greater generalization
power and tends to reduce the risk of overfitting, by comparison with the
conventional approach of evolving rules for a training set which remains fixed
throughout evolution. In passing, if the (sub)-training or validation set used
for fitness computation is significantly smaller than the original training set,
this approach also has the benefit of significantly reducing the processing time
of the EA.

Hereafter this section will focus on two other rule-quality criteria (not
based on accuracy) that represent different desirables properties of discovered
rules in the context of data mining, namely: comprehensibility (Fayyad et al.
1996), or simplicity; and surprisingness, or unexpectedness (Liu et al. 1997;
Romao et al. 2004; Freitas 2006).

The former means that ideally the discovered rule(s) should be compre-
hensible to the user. Intuitively, a measure of comprehensibility should have
a strongly subjective, user-dependent component. However, in the literature
this subjective component is typically ignored (Pazzani 2000; Freitas 2006),
and comprehensibility is usually evaluated by a measure of the syntactic sim-
plicity of the classifier, say the size of the rule set. The latter can be measured
in an objective manner, for instance, by simply counting the total number of
rule conditions in the rule set represented by an individual.

However, there is a natural way of incorporating a subjective measure of
comprehensibility into the fitness function of an EA, namely by using an in-
teractive fitness function. The basic idea of an interactive fitness function is
that the user directly evaluates the fitness of individuals during the execu-
tion of the EA (Banzhaf 2000). The evaluation of the user is then used as
the fitness measure for the purpose of selecting the best individuals of the
current population, so that the EA evolves solutions that tend to maximize
the subjective preference of the user.

A Review of Evolutionary Algorithms for Data Mining 89

An interactive EA for attribute selection is discussed e.g. in (Terano &
Ishino 1998, 2002). In that work an individual represents a selected subset
of attributes, which is then used by a classification algorithm to generate
a set of rules. Then the user is shown the rules and selects good rules and
rule sets according to her/his subjective preferences. Next the individuals
having attributes that occur in the selected rules or rule sets are selected as
parents to produce new offspring. The main advantage of interactive fitness
functions is that intuitively they tend to favor the discovery of rules that are
comprehensible and considered “good” by the user. The main disadvantage
of this approach is that it makes the system considerably slower. To mitigate
this problem one often has to use a small population size and a small number
of generations.

Another kind of criterion that has been used to evaluate the quality of
classification rules in the fitness function of EAs is the surprisingness of the
discovered rules. First of all, it should be noted that accuracy and compre-
hensibility do not imply surprisingness. To show this point, consider the fol-
lowing classical hypothetical rule, which could be discovered from a hospital’s
database: IF (patient is pregnant) THEN (gender is female). This rule is very
accurate and very comprehensible, but it is useless, because it represents an
obvious pattern.

One approach to discover surprising rules consists of asking the user to
specify a set of general impressions, specifying his/her previous knowledge
and/or believes about the application domain (Liu et al. 1997). Then the EA
can try to find rules that are surprising in the sense of contradicting some
general impression specified by the user. Note that a rule should be reported
to the user only if it is found to be both surprising and at least reasonably
accurate (consistent with the training data). After all, it would be relatively
easy to find rules which are surprising and inaccurate, but these rules would
not be very useful to the user.

An EA for rule discovery taking this into account is described in (Romao et
al. 2002, 2004). This EA uses a fitness function measuring both rule accuracy
and rule surprisingness (based on general impressions). The two measures are
multiplied to give the fitness value of an individual (a candidate prediction
rule).

4 Evolutionary Algorithms for Clustering

There are several kinds of clustering algorithm, and two of the most popular
kinds are iterative-partitioning and hierarchical clustering algorithms (Alden-
derfer & Blashfield 1984; Krzanowski & Marriot 1995). In this section we focus
mainly on EAs that can be categorized as iterative-partitioning algorithms,
since most EAs for clustering seem to belong to this category.

90 Alex A. Freitas
4.1 Individual Representation for Clustering

A crucial issue in the design of an EA for clustering is to decide what kind
of individual representation will be used to specify the clusters. There are
at least three major kinds of individual representation for clustering (Freitas
2002a), as follows.

Cluster description-based representation — In this case each indi-
vidual explicitly represents the parameters necessary to precisely specify each
cluster. The exact nature of these parameters depends on the shape of clus-
ters to be produced, which could be, e.g., boxes, spheres, ellipsoids, etc. In any
case, each individual contains K sets of parameters, where K is the number
of clusters, and each set of parameters determines the position, shape and
size of its corresponding cluster. This kind of representation is illustrated,
at a high level of abstraction, in Figure 2, for the case where an individual
represents clusters of spherical shape. In this case each cluster is specified by
its center coordinates and its radius. The cluster description-based represen-
tation is used, e.g., in (Srikanth et al. 1995), where an individual represents
ellipsoid-based cluster descriptions; and in (Ghozeil and Fogel 1996; Sarafis
2005), where an individual represents hyperbox-shaped cluster descriptions.
In (Sarafis 2005), for instance, the individuals represent rules containing con-
ditions based on discrete numerical intervals, each interval being associated
with a different attribute. Each clustering rule represents a region of the data
space with homogeneous data distribution, and the EA was designed to be
particularly effective when handling high-dimensional numerical datasets.

specification of cluster 1 specification of cluster K
center 1 radius 1 center K radius K
coordinates e e e coordinates

Fig. 2. Structure of cluster description-based individual representation

Centroid/medoid-based representation — In this case each individ-
ual represents the coordinates of each cluster’s centroid or medoid. A centroid
is simply a point in the data space whose coordinates specify the centre of
the cluster. Note that there may not be any data instance with the same
coordinates as the centroid. By contrast, a medoid is the most “central” rep-
resentative of the cluster, i.e., it is the data instance which is nearest to the
cluster’s centroid. The use of medoids tends to be more robust against out-
liers than the use of centroids (Krzanowski & Marriot 1995) (p. 83). This
kind of representation is used, e.g., in (Hall et al. 1999; Estivill-Castro and
Murray 1997) and other EAs for clustering reviewed in (Sarafis 2005). This
representation is illustrated, at a high level of abstraction, in Figure 3. Each
data instance is assigned to the cluster represented by the centroid or medoid

A Review of Evolutionary Algorithms for Data Mining 91

that is nearest to that instance, according to a given distance measure. There-
fore, the position of the centroids/medoids and the procedure used to assign
instances to clusters implicitly determine the precise shape and size of the
clusters.

cluster 1 cluster K

center 1 coordinates e e e center K coordinates

Fig. 3. Structure of centroid/medoid-based individual representation

Instance-based representation — In this case each individual consists
of a string of n elements (genes), where n is the number of data instances.
Each gene i, i=1,...,n, represents the index (id) of the cluster to which the
i-th data instance is assigned. Hence, each gene ¢ can take one out of Kvalues,
where K is the number of clusters. For instance, suppose that n = 10 and
K= 3. The individual <2 123 3211 2 3> corresponds to a candidate
clustering where the second, seventh and eighth instances are assigned to
cluster 1, the first, third, sixth and ninth instances are assigned to cluster 2
and the other instances are assigned to cluster 3. This kind of representation
is used, for instance, in (Krishma and Murty 1999; Handl & Knowles 2004).
A variation of this representation is used in (Korkmaz et al. 2006), where
the value of a gene represents not the cluster id of a gene’s associated data
instance, but rather a link from the gene’s instance to another instance which
is considered to be in the same cluster. Hence, in this approach, two instances
belong to the same cluster if there is a sequence of links from one of them
to the other. This variation is more complex than the conventional instance-
based representation, and it has been proposed together with repair operators
that rectify the contents of an individual when it violates some pre-defined
constraints.

Comparing different individual representations for clustering —
In both the centroid/medoid-based representation and the instance-based rep-
resentation, each instance is assigned to exactly one cluster. Hence, the set of
clusters determine a partition of the data space into regions that are mutually
exclusive and exhaustive. This is not the case in the cluster description-based
representation. In the latter, the cluster descriptions may have some overlap-
ping — so that an instance may be located within two or more clusters — and
the cluster descriptions may not be exhaustive — so that some instance(s) may
not be within any cluster.

Unlike the other two representations, the instance-based representation
has the disadvantage that it does not scale very well for large data sets, since
each individual’s length is directly proportional to the number of instances
being clustered. This representation also involves a considerable degree of

92 Alex A. Freitas

redundancy, which may lead to problems in the application of conventional
genetic operators (Falkenauer 1998). For instance, let n = 4 and K = 2, and
consider the individuals <1 2 1 2> and <2 1 2 1>. These two individuals
have different gene values in all the four genes, but they represent the same
candidate clustering solution, i.e., assigning the first and third instances to
one cluster and assigning the second and fourth instances to another cluster.
As a result, a crossover between these two parent individuals can produce
two children individuals representing solutions that are very different from
the solutions represented by the parents, which is not normally the case in
conventional crossover operators used by genetic algorithms. Some methods
have been proposed to try to mitigate some redundancy-related problems as-
sociated with this kind of representation. For example, (Handl & Knowles
2004) proposed a mutation operator that is reported to work well with this
representation, based on the idea that, when a gene has its value mutated
— meaning that the gene’s corresponding data instance is moved to another
cluster — the system selects a number of “nearest neighbors” of that instance
and moves all those nearest neighbors to the same cluster to which the mu-
tated instance was moved. Hence, this approach effectively incorporates some
knowledge of the clustering task to be solved in the mutation operator.

4.2 Fitness Evaluation for Clustering

In an EA for clustering, the fitness of an individual is a measure of the quality
of the clustering represented by the individual. A large number of different
measures have been proposed in the literature, but the basic ideas usually
involve the following principles. First, the smaller the intra-cluster (within-
cluster) distance, the better the fitness. The intra-cluster distance can be
defined as the summation of the distance between each data instance and
the centroid of its corresponding cluster — a summation computed over all
instances of all the clusters. Second, the larger the inter-cluster (between-
cluster) distance, the better the fitness. Hence, an algorithm can try to find
optimal values for these two criteria, for a given fixed number of clusters.
These and other clustering-quality criteria are extensively discussed in the
clustering literature — see e.g. (Aldenderfer and Blashfield 1984; Backer 1995;
Tan et al. 2006). A discussion of this topic in the context of EAs can be found
in (Kim et al. 2000; Handl & Knowles 2004; Korkmaz et al. 2006; Krishma
and Murty 1999; Hall et al. 1999).

In any case, it is important to note that, if the algorithm is allowed to
vary the number of discovered clusters without any restriction, it would be
possible to minimize intra-cluster distance and maximize inter-cluster distance
in a trivial way, by assigning each example to its own singleton cluster. This
would be clearly undesirable. To avoid this while still allowing the algorithm
to vary the number of clusters, a common response is to incorporate in the
fitness function a preference for a smaller number of clusters. It might also
be desirable or necessary to incorporate in the fitness function a penalty term

A Review of Evolutionary Algorithms for Data Mining 93

whose value is proportional to the number of empty clusters (i.e. clusters to
which no data instance was assigned) (Hall et al. 1999).

5 Evolutionary Algorithms for Data Preprocessing

5.1 Genetic Algorithms for Attribute Selection

In the attribute selection task the goal is to select, out of the original set of
attributes, a subset of attributes that are relevant for the target data mining
task (Liu & Motoda 1998; Guyon and Elisseeff 2003). This Subsection assumes
the target data mining task is classification — which is the most investigated
task in the evolutionary attribute selection literature — unless mentioned oth-
erwise.

The standard individual representation for attribute selection consists sim-
ply of a string of N bits, where N is the number of original attributes and
the i-th bit, i=1,...,N, can take the value 1 or 0, indicating whether or not,
respectively, the i-th attribute is selected. For instance, in a 10-attribute data
set, the individual “1 01010000 1” represents a candidate solution where
only the 1st, 3rd, 5th and 10th attributes are selected. This individual repre-
sentation is simple, and traditional crossover and mutation operators can be
easily applied. However, it has the disadvantage that it does not scale very
well with the number of attributes. In applications with many thousands of
attributes (such as text mining and some bioinformatics problems) an indi-
vidual would have many thousands of genes, which would tend to lead to a
slow execution of the GA.

An alternative individual representation, proposed by (Cherkauer & Shav-
lik 1996), consists of M genes (where M is a user-specified parameter), where
each gene can contain either the index (id) of an attribute or a flag — say
0 — denoting no attribute. An attribute is considered selected if and only if
it occurs in at least one of the M genes of the individual. For instance, the
individual “3 0 8 3 0”, where M = 5, represents a candidate solution where
only the 3rd and the 8th attributes are selected. The fact that the 3rd at-
tribute occurs twice in the previous individual is irrelevant for the purpose
of decoding the individual into a selected attribute subset. One advantage of
this representation is that it scales up better with respect to a large number
of original attributes, since the value of M can be much smaller than the
number of original attributes. One disadvantage is that it introduces a new
parameter, M, which was not necessary in the case of the standard individual
representation.

With respect to the fitness function, GAs for attribute selection can be
roughly divided into two approaches — just like other kinds of algorithms for
attribute selection — namely the wrapper approach and the filter approach. In
essence, in the wrapper approach the GA uses the classification algorithm to
compute the fitness of individuals, whereas in the filter approach the GA does

94 Alex A. Freitas

not use the classification algorithm. The vast majority of GAs for attribute
selection has followed the wrapper approach, and many of those GAs have used
a fitness function involving two or more criteria to evaluate the quality of the
classifier built from the selected attribute subset. This can be shown in Table
1, adapted from (Freitas 2002a), which lists the evaluation criteria used in
the fitness function of a number of GAs following the wrapper approach. The
columns of that table have the following meaning: Acc = accuracy; Sens, Spec
= sensitivity, specificity; |Sel Attr| = number of selected attributes; |rule set|
= number of discovered rules; Info. Cont. = information content of selected
attributes; Attr cost = attribute costs; Subj eval = subjective evaluation of
the user; |Sel ins| = number of selected instances.

Table 1. Diversity of criteria used in fitness function for attribute selection

Reference Acc |Sens, [[Sel |[[rule |Info [Attr |[Subj |[Sel
Spec |Attr| |set| |cont |cost |eval |ins|

(Bala et al. 1995) yes yes

(Bala et al. 1996) yes yes yes

(Chen et al. 1999) yes yes

(Cherkauer & yes yes |yes

Shavlik 1996)

(Emmanouilidis et yes yes

al. 2000)

(Emmanouilidis et yes |yes

al. 2002)

(Guerra-Salcedo, Whitley|yes

1998, 1999)

(Ishibuchi & yes yes yes

Nakashima 2000)
(Llora & Garrell 2003) |yes

(Miller et al. 2003) yes

(Moser & Murty yes yes

2000)

(Ni & Liu 2004) yes

(Pappa et al. 2002) yes yes

(Rozsypal & yes yes yes
Kubat 2003)

(Terano & Ishino yes yes yes
1998)

(Vafaie & DeJong yes

1998)

(Yang & Honavar yes yes

1997, 1998)

(Zhang et al 2003) yes

A Review of Evolutionary Algorithms for Data Mining 95

A precise definition of the terms used in the titles of the columns of Table
1 can be found in the corresponding references quoted in that table. The table
refers to GAs that perform attribute selection for the classification task. GAs
that perform attribute selection for the clustering task can be found, e.g., in
(Kim et al. 2000; Jourdan 2003). In addition, in general Table 1 refers to GAs
whose individuals directly represent candidate attribute subsets, but GAs can
be used for attribute selection in other ways. For instance, in (Jong et al. 2004)
a GA is used for attribute ranking. Once the ranking has been done, one can
select a certain number of top-ranked attributes, where that number can be
specified by the user or computed in a more automated way.

Empirical comparisons between GAs and other kinds of attribute selec-
tion methods can be found, for instance, in (Sharpe and Glover 1999; Kudo
& Skalansky 2000). In general these empirical comparisons show that GAs,
with their associated global search in the solution space, usually (though not
always) obtain better results than local search-based attribute selection meth-
ods. In particular, (Kudo & Skalansky 2000) compared a GA with 14 non-
evolutionary attribute selection methods (some of them variants of each other)
across 8 different data sets. The authors concluded that the advantages of the
global search associated with GAs over the local search associated with other
algorithms is particularly important in data sets with a “large” number of
attributes, where “large” was considered over 50 attributes in the context of
their data sets.

5.2 Genetic Programming for Attribute Construction

In the attribute construction task the general goal is to construct new at-
tributes out of the original attributes, so that the target data mining task
becomes easier with the new attributes. This Subsection assumes the target
data mining task is classification — which is the most investigated task in the
evolutionary attribute construction literature.

Note that in general the problem of attribute construction is considerably
more difficult than the problem of attribute selection. In the latter the problem
consists just of deciding whether or not to select each attribute. By contrast,
in attribute construction there is a potentially much larger search space, since
there is a potentially large number of operations that can be applied to the
original attributes in order to construct new attributes. Intuitively, the kind
of EA that lends itself most naturally to attribute construction is GP. The
reason is that, as mentioned earlier, GP was specifically designed to solve
problems where candidate solutions are represented by both attributes and
functions (operations) applied to those attributes. In particular, the explicit
specification of both a terminal set and a function set is usually missing in
other kinds of EAs.

96 Alex A. Freitas
Data Preprocessing vs. Interleaving Approach

In the data preprocessing approach, the attribute construction algorithm eval-
uates a constructed attribute without using the classification algorithm to be
applied later. Examples of this approach are the GP algorithms for attribute
construction proposed by (Otero et al. 2003; Hu 1998), whose attribute eval-
uation function (the fitness function) is the information gain ratio — a mea-
sure discussed in detail in (Quinlan 1993). In addition, (Muharram & Smith
2004) did experiments comparing the effectiveness of two different attribute-
evaluation criteria in GP for attribute construction — viz. information gain
ratio and gini index — and obtained results indicating that, overall, there was
no significant difference in the results associated with those two criteria.

By contrast, in the interleaving approach the attribute construction al-
gorithm evaluates the constructed attributes based on the performance of
the classification algorithm with those attributes. Examples of this approach
are the GP algorithms for attribute construction proposed by (Krawiec 2002;
Smith and Bull 2003; Firpi et al. 2005), where the fitness functions are based
on the accuracy of the classifier built with the constructed attributes.

Single-Attribute-per-Individual vs.
Multiple-Attributes-per-Individual Representation

In several GPs for attribute construction, each individual represents a sin-
gle constructed attribute. This approach is used for instance by CPGI (Hu
1998) and the GP algorithm proposed by (Otero et al. 2003). By default
this approach returns to the user a single constructed attribute — the best
evolved individual. However it can be extended to return to the user a set
of constructed attributes, say returning a set of the best evolved individuals
of a GP run or by running the GP multiple times and returning only the
best evolved individual of each run. The main advantage of this approach is
simplicity, but it has the disadvantage of ignoring interactions between the
constructed attributes.

An alternative approach consists of associating with an individual a set of
constructed attributes. The main advantage of this approach is that it takes
into account interaction between the constructed attributes. In other words,
it tries to construct the best set of attributes, rather than the set of best at-
tributes. The main disadvantages are that the individuals’ genomes become
more complex and that it introduces the need for additional parameters such
as the number of constructed attributes that should be encoded in one in-
dividual (a parameter that is usually specified in an ad-hoc fashion). In any
case, the equivalent of this latter parameter would also have to be specified in
the above-mentioned “extended version” of the single-attribute-per-individual
approach when one wants the GP algorithm to return multiple constructed
attributes.

A Review of Evolutionary Algorithms for Data Mining 97

Examples of this multiple-attributes-per-individual approach are the GP
algorithms proposed by (Krawiec 2002; Smith & Bull 2003; Firpi et al. 2005).
Here we briefly discuss the former two, as examples of this approach. In (Kraw-
iec 2002) each individual encodes a fixed number K of constructed attributes,
each of them represented by a tree, so that an individual consists of K trees —
where K is a user-specified parameter. The algorithm also includes a method
to split the constructed attributes encoded in an individual into two sub-
sets, namely the subset of “evolving” attributes and the subset of “hidden”
attributes. The basic idea is that high-quality constructed attributes are con-
sidered hidden (or “protected”), so that they cannot be manipulated by the
genetic operators such as crossover and mutation. The choice of attributes to
be hidden is based on an attribute quality measure. This measure evaluates
the quality of each constructed attribute separately, and the best attributes
of the individual are considered hidden.

Another example of the multiple-attributes-per-individual approach is the
GAP (Genetic Algorithm and Programming) system proposed by (Smith &
Bull 2003, 2004). GAP performs both attribute construction and attribute
selection. The first stage consists of attribute construction, which is performed
by a GP algorithm. As a result of this first stage, the system constructs an
extended genotype containing both the constructed attributes represented in
the best evolved individual of the GP run and original attributes that have
not been used in those constructed attributes. This extended genotype is used
as the basic representation for a GA that performs attribute selection, so that
the GA searches for the best subset of attributes out of all (both constructed
and original) attributes.

Satisfying the Closure Property

GP algorithms for attribute construction have used several different ap-
proaches to satisfy the closure property (briefly mentioned in Section 2). This
is an important issue, because the chosen approach can have a significant im-
pact on the types (e.g., continuous or nominal) of original attributes processed
by the algorithm and on the types of attributes constructed by the algorithm.
Let us see some examples.

A simple solution for the closure problem is used in the GAP algorithm
(Smith and Bull 2003). Its terminal set contains only the continuous (real-
valued) attributes of the data being mined. In addition, its function set con-
sists only of arithmetic operators (+, —, *, %,) — where % denotes protected
division, i.e. a division operator that handles zero denominator inputs by re-
turning something different from an error (Banzhaf et al. 1998; Koza 1992) —
so that the closure property is immediately satisfied. (Firpi et al. 2005) also
uses the approach of having a function set consisting only of mathematical
operators, but it uses a considerably larger set of mathematical operators than
the set used by (Smith and Bull 2003).

98 Alex A. Freitas

The GP algorithm proposed by (Krawiec 2002) uses a terminal set in-
cluding all original attributes (both continuous and nominal ones), and a
function set consisting of arithmetical operators (4, —, *, %, log), comparison
operators (<, >, =), an “IF (conditional expression)”, and an “approximate
equality operator” which compares its two arguments with tolerance given
by the third argument. The algorithm did not enforce data type constraints,
which means that expressions encoding the constructed attributes make no
distinction between, for instance, continuous and nominal attributes. Values
of nominal attributes, such as male and female, are treated as numbers. This
helps to solve the closure problem, but at a high price: constructed attributes
can contain expressions that make no sense from a semantical point of view.
For instance, the algorithm could produce an expression such as “Gender +
Age” , because the value of the nominal attribute Gender would be interpreted
as a number.

The GP proposed by (Otero et al. 2003) uses a terminal set including only
the continuous attributes of the data being mined. Its function set consists of
arithmetic operators (+, —, *, %,) and comparison operators (>, <). In order
to satisfy the closure property, the algorithm enforces the data type restriction
that the comparison operators can be used only at the root of the GP tree, i.e.,
they cannot be used as child nodes of other nodes in the tree. The reason is that
comparison operators return a Boolean value, which cannot be processed by
any operator in the function set (all operators accept only continuous values as
input). Note that, although the algorithm can construct attributes only out of
the continuous original attributes, the constructed attributes themselves can
be either Boolean or continuous. A constructed attribute will be Boolean if
its corresponding tree in the GP individual has a comparison operator at the
root node; it will be continuous otherwise.

In order to satisfy the closure property, GPCI (Hu 1998) simply trans-
forms all the original attributes into Boolean attributes and uses a function
set containing only Boolean functions. For instance, if an attribute A is con-
tinuous (real-valued), such as the attribute Salary, it is transformed into two
Boolean attributes, such as “Is Salary > t?” and “Is Salary < t7”, where t is
a threshold automatically chosen by the algorithm in order to maximize the
ability of the two new attributes in discriminating between instances of dif-
ferent classes. The two new attributes are named “positive-A” and “negative-
A” | respectively. Once every original attribute has been transformed into two
Boolean attributes, a GP algorithm is applied to the Boolean attributes. In
this GP, the terminal set consists of all the pairs of attributes “positive-A” and
“negative-A” for each original attribute A, whereas the function set consists of
the Boolean operators {AND, OR}. Since all terminal symbols are Boolean,
and all operators accept Boolean values as input and produce Boolean value
as output, the closure property is satisfied.

Table 2 summarizes the main characteristics of the five GP algorithms for
attribute construction discussed in this Section.

A Review of Evolutionary Algorithms for Data Mining 99

Table 2. Summary of GP Algorithms for Attribute Construction

Reference Approach Individual rep-|Datatype of Datatype of
resentation input attrib output attrib
(Hu 1998) Data prepro-|Single Any (attributes|Boolean
cessing attribute are
booleanised)
(Krawiec 2002) |Interleaving ~ |Multiple Any (nominal|Continuous
attributes attrib. values

are interpreted
as numbers)

(Otero et Data prepro-|Single Continuous Continuous or
al. 2003) cessing attribute Boolean
(Smith & Interleaving Multiple Continuous Continuous
Bull 2003, attributes

2004)

(Firpi et al. Interleaving Multiple Continuous Continuous
2005) attributes

6 Multi-Objective Optimization with Evolutionary
Algorithms

There are many real-world optimization problems that are naturally expressed
as the simultaneous optimization of two or more conflicting objectives (Coello
Coello 2002; Deb 2001; Coello Coello & Lamont 2004). A generic example is
to maximize the quality of a product and minimize its manufacturing cost in
a factory. In the context of data mining, a typical example is, in the data pre-
processing task of attribute selection, to minimize the error rate of a classifier
trained with the selected attributes and to minimize the number of selected
attributes.

The conventional approach to cope with such multi-objective optimiza-
tion problems using evolutionary algorithms is to convert the problem into a
single-optimization problem. This is typically done by using a weighted for-
mula in the fitness function, where each objective has an associated weight
reflecting its relative importance. For instance, in the above example of two-
objective attribute selection, the fitness function could be defined as, say: “2/3
classification_error + 1/3 Number_of_selected _attributes”.

However, this conventional approach has several problems. First, it mixes
non-commensurable objectives (classification error and number of selected
attributes in the previous example) into the same formula. This has at least the
disadvantage that the value returned by the fitness function is not meaningful
to the user. Second, note that different weights will lead to different selected
attributes, since different weights represent different trade-offs between the
two conflicting objectives. Unfortunately, the weights are usually defined in
an ad-hoc fashion. Hence, when the EA returns the best attribute subset to
the user, the user is presented with a solution that represents just one possible

100 Alex A. Freitas

trade-off between the objectives. The user misses the opportunity to analyze
different trade-offs.

Of course we could address this problem by running the EA multiple times,
with different weights for the objectives in each run, and return the multiple
solutions to the user. However, this would be very inefficient, and we would
still have the problems of deciding which weights should be used in each run,
how many runs we should perform (and so how many solutions should be
returned to the user), etc.

A more principled approach consists of letting an EA answer these ques-
tions automatically, by performing a global search in the solution space and
discovering as many good solutions, with as much diversity among them, as
possible. This can be done by using a multi-objective EA, a kind of EA which
has become quite popular in the EA community in the last few years (Deb
2001; Coello Coello 2002; Coello Coello & Lamont 2004). The basic idea in-
volves the concept of Pareto dominance. A solution s; is said to dominate, in
the Pareto sense, another solution s, if and only if solution s; is strictly better
than s, in at least one of the objectives and solution s; is not worse than s,
in any of the objectives. The concept of Pareto dominance is illustrated in
Figure 4. This figure involves two objectives to be minimized, namely clas-
sification error and number of selected attributes (No_attrib). In that figure,
solution D is dominated by solution B (which has both a smaller error and a
smaller number of selected attributes than D), and solution E is dominated by
solution C. Hence, solutions A, B and C are non-dominated solutions. They
constitute the best “Pareto front” found by the algorithm. All these three
solutions would be returned to the user.

The goal of a multi-objective EA is to find a Pareto front which is as
close as possible to the true (unknown) Pareto front. This involves not only
the minimization of the two objectives, but also finding a diverse set of non-
dominated solutions, spread along the Pareto front. This allows the EA to
return to the user a diverse set of good trade-offs between the conflicting
objectives. With this rich information, the user can hopefully make a more
intelligent decision, choosing the best solution to be used in practice.

At this point the reader might argue that this approach has the disad-
vantage that the final choice of the solution to be used depends on the user,
characterizing a subjective approach. The response to this is that the knowl-
edge discovery process is interactive (Brachman & Anand 1996; Fayyad et al.
1996), and the participation of the user in this process is important to obtain
useful results. The questions are when and how the user should participate
(Deb 2001; Freitas 2004). In the above-described multi-objective approach,
based on Pareto dominance, the user participates by choosing the best solu-
tion out of all the non-dominated solutions. This choice is made a posteriori,
i.e., after the algorithm has run and has returned a rich source of informa-
tion about the solution space: the discovered Pareto front. In the conventional
approach — using an EA with a weighted formula and returning a single so-
lution to the user — the user has to define the weights a priori, i.e., before

A Review of Evolutionary Algorithms for Data Mining 101

No_ﬁttrib
A

_error
L

Fig. 4. Example of Pareto dominance

running the algorithm, when the solution space was not explored yet. The
multi-objective approach seems to put the user in the loop in a better mo-
ment, when valuable information about the solution space is available. The
multi-objective approach also avoids the problems of ad-hoc choice of weights,
mixing non-commensurable objectives into the same formula, etc.

Table 3 lists the main characteristics of multi-objective EAs for data min-
ing. Most systems included in Table 3 consider only two objectives. The excep-
tions are the works of (Kim et al. 2000) and (Atkinson-Abutridy et al. 2003),
considering 4 and 8 objectives, respectively. Out of the EAs considering only
two objectives, the most popular choice of objectives — particularly for EAs
addressing the classification task — has been some measure of classification ac-
curacy (or its dual, error) and a measure of the size of the classification model
(number of leaf nodes in a decision tree or total number of rule conditions —
attribute-value pairs — in all rules). Note that the size of a model is typically
used as a proxy for the concept of “simplicity” of that model, even though
arguably this proxy leaves a lot to be desired as a measure of a model’s sim-
plicity (Pazzani 2000; Freitas 2006). (In practice, however, it seems no better
proxy for a model’s simplicity is known.) Note also that, when the task being
solved is attribute selection for classification, the objective related to size can
be the number of selected attributes, as in (Emmanouilidis et al. 2000), or the
size of the classification model built from the set of selected attributes, as in
(Pappa et al. 2002, 2004). Finally, when solving the clustering task a popular
choice of objective has been some measure of intra-cluster distance, related to
the total distance between each data instance and the centroid of its cluster,
computed for all data instances in all the clusters. The number of clusters is
also used as an objective in two out of the three EAs for clustering included
in Table 3. A further discussion of multi-objective optimization in the context
of data mining in general (not focusing on EAs) is presented in (Freitas 2004;
Jin 2006).

102 Alex A. Freitas

Table 3. Main characteristics of multi-objective EAs for data mining

Reference

Data mining task

Objectives being
Optimized

(Emmanouilidis et al.
2000)

attribute selection
for classification

accuracy, number of
selected attributes

(Pappa et al 2002, 2004)

attribute selection
for classification

accuracy, number of
leafs in decision tree

(Ishibuchi & Namba selection of

2004) classification rules
(de la Iglesia 2007) selection of
classification rules
classification

error, number of rule
conditions (in all rules)
confidence, coverage

(Kim et al. 2004) error, number of leafs in

decision tree

(Atkinson-Abutridy et
al. 2003)

8 criteria for evaluating ex-
planatory knowledge across
text documents

Cluster cohesiveness,
separation between
clusters, number of
clusters, number of
selected attributes

(Handl & Knowles clustering Intra-cluster deviation
2004) and connectivity
(Korkmaz et al. 2006) clustering

text mining

attribute selection
for clustering

(Kim et al. 2000)

Intra-cluster variance
and number of clusters

7 Conclusions

This chapter started with the remark that EAs are a very generic search
paradigm. Indeed, the chapter discussed how EAs can be used to solve several
different data mining tasks, namely the discovery of classification rules, clus-
tering, attribute selection and attribute construction. The discussion focused
mainly on the issues of individual representation and fitness function for each
of these tasks, since these are the two EA-design issues that are more depen-
dent of the task being solved. In any case, recall that the design of an EA
also involves the issue of genetic operators. Ideally these three components —
individual representation, fitness function and genetic operators — should be
designed in a synergistic fashion and tailored to the data mining task being
solved.

There are at least two motivations for using EAs in data mining, broadly
speaking. First, as mentioned earlier, EAs are robust, adaptive search methods
that perform a global search in the solution space. This is in contrast to other
data mining paradigms that typically perform a greedy search. In the context
of data mining, the global search of EAs is associated with a better ability
to cope with attribute interactions. For instance, most “conventional”, non-

A Review of Evolutionary Algorithms for Data Mining 103

evolutionary rule induction algorithms are greedy, and therefore quite sensitive
to the problem of attribute interaction. EAs can use the same knowledge
representation (IF-THEN rules) as conventional rule induction algorithms,
but their global search tends to cope better with attribute interaction and
to discover interesting relationships that would be missed by a greedy search
(Dhar et al. 2000; Papagelis & Kalles 2001; Freitas 2002a).

Second, EAs are a very flexible algorithmic paradigm. In particular, bor-
rowing some terminology from programming languages, EAs have a certain
“declarative” — rather than “procedural” — style. The quality of an individual
(candidate solution) is evaluated, by a fitness function, in a way independent
of how that solution was constructed. This gives the data miner a considerable
freedom in the design of the individual representation, the fitness function and
the genetic operators. This flexibility can be used to incorporate background
knowledge into the EA and/or to hybridize EAs with local search methods
that are specifically tailored to the data mining task being solved.

Note that declarativeness is a matter of degree, rather than a binary con-
cept. In practice EAs are not 100% declarative, because as one changes the
fitness function one might consider changing the individual representation and
the genetic operators accordingly, in order to achieve the above-mentioned
synergistic relationship between these three components of the EA. However,
EAs still have a degree of declarativeness considerably higher than other data
mining paradigms. For instance, as discussed in Subsection 3.3, the fact that
EAs evaluate a complete (rather than partial) rule allows the fitness function
to consider several different rule-quality criteria, such as comprehensibility,
surprisingness and subjective interestingness to the user. In EAs these quality
criteria can be directly considered during the search for rules. By contrast, in
conventional, greedy rule induction algorithms — where the evaluation func-
tion typically evaluates a partial rule — those quality criteria would typically
have to be considered in a post-processing phase of the knowledge discovery
process, when it might be too late. After all, many rule set post-processing
methods just try to select the most interesting rules out of all discovered rules,
so that interesting rules that were missed by the rule induction method will
remain missing after applying the post-processing method.

Like any other data mining paradigm, EAs also have some disadvantages.
One of them is that conventional genetic operators — such as conventional
crossover and mutation operators — are ”blind” search operators in the sense
that they modify individuals (candidate solutions) in a way independent from
the individual’s fitness (quality). This characteristic of conventional genetic
operators increases the generality of EAs, but intuitively tends to reduce their
effectiveness in solving a specific kind of problem. Hence, in general it is im-
portant to modify or extend EAs to use task specific-operators.

Another disadvantage of EAs is that they are computationally slow, by
comparison with greedy search methods. The importance of this drawback
depends on many factors, such as the kind of task being performed, the size
of the data being mined, the requirements of the user, etc. Note that in some

104 Alex A. Freitas

cases a relatively long processing time might be acceptable. In particular,
several data mining tasks, such as classification, are typically an off-line task,
and the time spent solving that task is usually less than 20% of the total time
of the knowledge discovery process. In scenarios like this, even a processing
time of hours or days might be acceptable to the user, at least in the sense
that it is not the bottleneck of the knowledge discovery process.

In any case, if necessary the processing time of an EA can be significantly
reduced by using special techniques. One possibility is to use parallel pro-
cessing techniques, since EAs can be easily parallelized in an effective way
(Cantu-Paz 2000; Freitas & Lavington 1998; Freitas 2002a). Another possibil-
ity is to compute the fitness of individuals by using only a subset of training
instances — where that subset can be chosen either at random or using adap-
tive instance-selection techniques (Bhattacharyya 1998; Gathercole & Ross
1997; Sharpe & Glover 1999; Freitas 2002a).

An important research direction is to better exploit the power of Genetic
Programming (GP) in data mining. Several GP algorithms for attribute con-
struction were discussed in Subsection 5.2, and there are also several GP
algorithms for discovering classification rules (Freitas 2002a; Wong & Leung
2000) or for classification in general (Muni et al. 2004; Song et al. 2005; Folino
et al. 2006). However, the power of GP is still underexplored. Recall that the
GP paradigm was designed to automatically discover computer programs, or
algorithms, which should be generic “recipes” for solving a given kind of prob-
lem, and not to find the solution to one particular instance of that problem
(like in most EAs). For instance, classification is a kind of problem, and most
classification-rule induction algorithms are generic enough to be applied to
different data sets (each data set can be considered just an instance of the
kind of problem defined by the classification task). However, these generic rule
induction algorithms have been manually designed by a human being. Almost
all current GP algorithms for classification-rule induction are competing with
conventional (greedy, non-evolutionary) rule induction algorithms, in the sense
that both GP and conventional rule induction algorithms are discovering clas-
sification rules for a single data set at a time. Hence, the output of a GP for
classification-rule induction is a set of rules for a given data set, which can be
called a “program” or “algorithm” only in a very loose sense of these words.

A much more ambitious goal, which is more compatible with the general
goal of GP, is to use GP to automatically discover a rule induction algorithm.
That is, to perform algorithm induction, rather than rule induction. The first
version of a GP algorithm addressing this ambitious task has been proposed
in (Pappa & Freitas 2006), and an extended version of that work is described
in detail in another chapter of this book (Pappa & Freitas 2007).

A Review of Evolutionary Algorithms for Data Mining 105

References

Aldenderfer MS & Blashfield RK (1984) Cluster Analysis (Sage University Pa-
per Series on Quantitative Applications in the Social Sciences, No. 44) Sage
Publications.

Atkinson-Abutridy J, Mellishm C, and Aitken S (2003) A semantically guided and
domain-independent evolutionary model for knowledge discovery from texts.
IEEE Trans. Evolutionary Computation 7(6), 546-560.

Bacardit J, Goldberg DE, Butz MV, Llora X, Garrell JM (2004). Speeding-up Pitts-
burgh learning classifier systems: modeling time and accuracy. Proc. Parallel
Problem Solving From Nature (PPSN-2004), LNCS 3242, 1021-1031, Springer.

Bacardit J and Krasnogor N (2006) Smart crossover operator with multiple par-
ents for a Pittsburgh learning classifier system. Proc. Genetic & Evolutionary
Computation Conf. (GECCO-2006), 1441-1448. Morgan Kaufmann.

Backer E (1995) Computer-Assisted Reasoning in Cluster Analysis. Prentice-Hall.

Back T, Fogel DB and Michalewicz (Eds.) (2000) Ewvolutionary Computation 1:
Basic Algorithms and Operators. Institute of Physics Publishing.

Bala J, De Jong K, Huang J, Vafaie H and Wechsler H (1995) Hybrid learning
using genetic algorithms and decision trees for pattern classification. Proc. Int.
Joint Conf. on Artificial Intelligence (IJCAI-95), 719-724.

Bala J, De Jong K, Huang J, Vafaie H and Wechsler H (1996) Using learning to
facilitate the evolution of features for recognizing visual concepts. Evolutionary
Computation 4(8): 297-312.

Banzhaf W (2000) Interactive evolution. In: T. Back, D.B. Fogel and T.
Michalewicz (Eds.) Evolutionary Computation 1, 228-236. Institute of Physics
Pub.

Banzhaf W, Nordin P, Keller RE, and Francone FD (1998) Genetic Programming
~ an Introduction: On the Automatic Evolution of Computer Programs and Its
Applications. Morgan Kaufmann.

Bhattacharrya S (1998) Direct marketing response models using genetic algorithms.
Proceedings of the 4th Int. Conf. on Knowledge Discovery and Data Mining
(KDD-98), 144-148. AAAI Press.

Brachman RJ and Anand T. (1996) The process of knowledge discovery in
databases: a human-centered approach. In: U.M. Fayyad et al (Eds.) Advances.
in Knowledge Discovery and Data Mining, 37-58. AAAI/MIT.

Bull L (Ed.) (2004) Applications of Learning Classifier Systems. Springer.

Bull L and Kovacs T (Eds.) (2005) Foundations of Learning Classifier Systems.
Springer.

Cantu-Paz E (2000) Efficient and Accurate Parallel Genetic Algorithms. Kluwer.

Caruana R and Niculescu-Mizil A (2004) Data mining in metric space: an empirical
analysis of supervised learning performance criteria. Proc. 2004 ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining (KDD-04), ACM.

Carvalho DR and Freitas AA (2004). A hybrid decision tree/genetic algorithm
method for data mining. Special issue on Soft Computing Data Mining, Infor-
mation Sciences 163(1-3), pp. 13-35. 14 June 2004.

Chen S, Guerra-Salcedo C and Smith SF (1999) Non-standard crossover for a
standard representation - commonality-based feature subset selection. Proc.
Genetic and Fvolutionary Computation Conf. (GECCO0-99), 129-134. Morgan
Kaufmann.

106 Alex A. Freitas

Cherkauer KJ and Shavlik JW (1996). Growing simpler decision trees to facilitate
knowledge discovery. Proc. 2nd Int. Conf. on Knowledge Discovery and Data
Mining (KDD-96), 315-318. AAAI Press.

Coello Coello CA, Van Veldhuizen DA and Lamont GB (2002) Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Kluwer.

Coello Coello CA and Lamont GB (Ed.) (2004) Applications of Multi-objective
Evolutionary Algorithms. World Scientific.

Deb K (2001) Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.

Deb K and Goldberg DE (1989). An investigation of niche and species formation in
genetic function optimization. Proc. 2nd Int. Conf. Genetic Algorithms (ICGA-
89), 42-49.

De Jong K (2006) Evolutionary Computation: a unified approach. MIT.

De la Iglesia B (2007) Application of multi-objective metaheuristic algorithms in
data mining. Proc. 3rd UK Knowledge Discovery and Data Mining Symposium
(UKKDD-2007), 39-44, University of Kent, UK, April 2007.

Dhar V, Chou D and Provost F (2000). Discovering interesting patterns for invest-
ment decision making with GLOWER — a genetic learner overlaid with entropy
reduction. Data Mining and Knowledge Discovery 4(4), 251-280.

Divina F (2005) Assessing the effectiveness of incorporating knowledge in an evolu-
tionary concept learner. Proc. EuroGP-2005 (European Conf. on Genetic Pro-
gramming), LNCS 3447, 13-24, Springer.

Divina F & Marchiori E (2002) Evolutionary Concept Learning. Proc. Genetic &
Evolutionary Computation Conf. (GECCO0-2002), 343-350. Morgan Kaufmann.

Divina F & Marchiori E (2005) Handling continuous attributes in an evolutionary
inductive learner. IEEE Trans. Evolutionary Computation, 9(1), 31-43, Feb.
2005.

Eiben AE and Smith JE (2003) Introduction to Evolutionary Computing. Springer.

Emmanouilidis C, Hunter A and J. Maclntyre J (2000) A multiobjective evolu-
tionary setting for feature selection and a commonality-based crossover opera-
tor. Proc. 2000 Congress on Evolutionary Computation (CEC-2000), 309-316.
IEEE.

Emmanouilidis C (2002) Evolutionary multi-objective feature selection and ROC
analysis with application to industrial machinery fault diagnosis. In: K. Gi-
annakoglou et al. (Eds.) Ewvolutionary Methods for Design, Optimisation and
Control. Barcelona: CIMNE.

Estivill-Castro V and Murray AT (1997) Spatial clustering for data mining with ge-
netic algorithms. Tech. Report FIT-TR-97-10. Queensland University of Tech-
nology. Australia.

Falkenauer E (1998) Genetic Algorithms and Grouping Problems. John-Wiley &
Sons.

Fayyad UM, Piatetsky-Shapiro G and Smyth P (1996) From data mining to knowl-
edge discovery: an overview. In: U.M. Fayyad et al (Eds.) Advances in Knowl-
edge Discovery and Data Mining, 1-34. AAAT/MIT.

Firpi H, Goodman E, Echauz J (2005) On prediction of epileptic seizures by
computing multiple genetic programming artificial features. Proc. 2005 Eu-
ropean Conf. on Genetic Programming (EuroGP-2005), LNCS 3447, 321-330.
Springer.

Folino G, Pizzuti C and Spezzano G (2006) GP ensembles for large-scale data clas-
sification. IEEE Trans. Evolutionary Computation 10(5), 604-616, Oct. 2006.

A Review of Evolutionary Algorithms for Data Mining 107

Freitas AA and. Lavington SH (1998) Mining Very Large Databases with Parallel
Processing. Kluwer.

Freitas AA (2001) Understanding the crucial role of attribute interaction in data
mining. Artificial Intelligence Review 16(3), 177-199.

Freitas AA (2002a) Data Mining and Knowledge Discovery with Evolutionary Al-
gorithms. Springer.

Freitas AA (2002b) A survey of evolutionary algorithms for data mining and knowl-
edge discovery. In: A. Ghosh and S. Tsutsui. (Eds.) Advances in Evolutionary
Computation, pp. 819-845. Springer-Verlag.

Freitas AA (2002c). Evolutionary Computation. In: W. Klosgen and J. Zytkow
(Eds.) Handbook of Data Mining and Knowledge Discovery, pp. 698-706.0xford
Univ. Press.

Freitas AA (2004) A critical review of multi-objective optimization in data mining;:
a position paper. ACM SIGKDD Explorations, 6(2), 77-86, Dec. 2004.

Freitas AA (2005) Evolutionary Algorithms for Data Mining. In: O. Maimon and
L. Rokach (Eds.) The Data Mining and Knowledge Discovery Handbook, pp.
435-467. Springer.

Freitas AA (2006) Are we really discovering ”interesting” knowledge from data?
Ezpert Update, Vol. 9, No. 1, 41-47, Autumn 2006.

Furnkranz J and Flach PA (2003). An analysis of rule evaluation metrics. Proc.20th
Int. Conf. Machine Learning (ICML-2003). Morgan Kaufmann.

Gathercole C and Ross P (1997) Tackling the Boolean even N parity problem with
genetic programming and limited-error fitness. Genetic Programming 1997:
Proc. 2nd Conf. (GP-97), 119-127. Morgan Kaufmann.

Ghozeil A and Fogel DB (1996) Discovering patterns in spatial data using evolu-
tionary programming. Genetic Programming 1996: Proceedings of the 1st An-
nual Conf., 521-527. MIT Press.

Giordana A, Saitta L, Zini F (2004) Learning disjunctive concepts by means of
genetic algorithms. Proc. 10th Int. Conf. Machine Learning (ML-94), 96-104.
Morgan Kaufmann.

Goldberg DE (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley.

Goldberg DE and Richardson J (1987) Genetic algorithms with sharing for multi-
modal function optimization. Proc. Int. Conf. Genetic Algorithms (ICGA-87),
41-49.

Guerra-Salcedo C and Whitley D (1998) Genetic search for feature subset selection:
a comparison between CHC and GENESIS. Genetic Programming 1998: Proc.
8rd Annual Conf., 504-509. Morgan Kaufmann.

Guerra-Salcedo C, Chen S, Whitley D, and Smith S (1999) Fast and accurate fea-
ture selection using hybrid genetic strategies. Proc. Congress on Evolutionary
Computation (CEC-99), 177-184. IEEE.

Guyon I and Elisseeff A (2003) An introduction to variable and feature selection.
Journal of Machine Learning Research 3, 1157-1182.

Hall LO, Ozyurt IB, Bezdek JC (1999) Clustering with a genetically optimized
approach. IEEE Trans. on Evolutionary Computation 3(2), 103-112.

Hand DJ (1997) Construction and Assessment of Classification Rules. Wiley.

Handl J and Knowles J (2004) Evolutionary multiobjective clustering. Proc. Par-
allel Problem Solving From Nature (PPSN-2004), LNCS 3242, 1081-1091,
Springer.

108 Alex A. Freitas

Hekanaho J (1995) Symbiosis in multimodal concept learning. Proc. 1995 Int. Conf.
on Machine Learning (ML-95), 278-285. Morgan Kaufmann.

Hekanaho J (1996) Testing different sharing methods in concept learning. TUCS
Technical Report No. 71. Turku Centre for Computer Science, Finland.

Hirsch L, Saeedi M and Hirsch R (2005) Evolving rules for document classification.
Proc. 2005 European Conf. on Genetic Programming (EuroGP-2005), LNCS
3447, 85-95, Springer.

Hu YJ (1998). A genetic programming approach to constructive induction. Genetic
Programming 1998: Proc. 8rd Annual Conf., 146-151. Morgan Kaufmann.
Ishibuchi H and Nakashima T (2000) Multi-objective pattern and feature selec-
tion by a genetic algorithm. Proc. 2000 Genetic and Evolutionary Computation

Conf. (GECCO-2000), 1069-1076. Morgan Kaufmann.

Ishibuchi H and Namba S (2004) Evolutionary multiobjective knowledge extraction
for high-dimensional pattern classification problems. Proc. Parallel Problem
Solving From Nature (PPSN-2004), LNCS 3242, 1123-1132, Springer.

Jiao L, Liu J and Zhong W (2006) An organizational coevolutionary algorithm for
classification. IEEE Trans. Evolutionary Computation, Vol. 10, No. 1, 67-80,
Feb. 2006.

Jin, Y (Ed.) (2006) Multi-Objective Machine Learning. Springer.

Jong K, Marchiori E and Sebag M (2004) Ensemble learning with evolutionary
computation: application to feature ranking. Proc. Parallel Problem Solving
from Nature VIII (PPSN-2004), LNCS 3242, 1133-1142. Springer, 2004.

Jourdan L, Dhaenens-Flipo C and Talbi EG (2003) Discovery of genetic and en-
vironmental interactions in disease data using evolutionary computation. In:
G.B. Fogel and D.W. Corne (Eds.) Evolutionary Computation in Bioinformat-
ics, 297-316. Morgan Kaufmann.

Kim Y, Street WN and Menczer F (2000) Feature selection in unsupervised learning
via evolutionary search. Proc. 6th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD-2000), 365-369. ACM.

Kim D (2004). Structural risk minimization on decision trees: using an evolution-
ary multiobjective algorithm. Proc. 2004 European Conference on Genetic Pro-
gramming (EuroGP-2004), LNCS 30083, 338-348, Springer.

Korkmaz EE, Du J, Alhajj R and Barker (2006) Combining advantages of new
chromosome representation scheme and multi-objective genetic algorithms for
better clustering. Intelligent Data Analysis 10 (2006),163-182.

Koza JR (1992) Genetic Programming: on the programming g of computers by
means of natural selection. MIT Press.

Krawiec K (2002) Genetic programming-based construction of features for machine
learning and knowledge discovery tasks. Genetic Programming and Evolvable
Machines 3(4), 329-344.

Krsihma K and Murty MN (1999) Genetic k-means algorithm. IEEE Transactions
on Systems, Man and Cyberneics - Part B: Cybernetics, 29(3), 433-439.

Krzanowski WJ and Marriot FHC (1995) Kendall’s Library of Statistics 2: Mul-
tivariate Analysis - Part 2. Chapter 10 - Cluster Analysis, pp. 61-94.London:
Arnold.

Kudo M and Sklansky J (2000) Comparison of algorithms that select features for
pattern classifiers. Pattern Recognition 33(2000), 25-41.

Liu JJ and Kwok JTY (2000) An extended genetic rule induction algorithm. Proc.
2000 Congress on Evolutionary Computation (CEC-2000). IEEE.

A Review of Evolutionary Algorithms for Data Mining 109

Liu H and Motoda H (1998) Feature Selection for Knowledge Discovery and Data
Mining. Kluwer.

Liu B, Hsu W and Chen S (1997) Using general impressions to analyze discovered
classification rules. Proc. 3rd Int. Conf. on Knowledge Discovery and Data
Mining (KDD-97), 31-36. AAAI Press.

Llora X and Garrell J (2003) Prototype induction and attribute selection via evo-
lutionary algorithms. Intelligent Data Analysis 7, 193-208.

Miller MT, Jerebko AK, Malley JD, Summers RM (2003) Feature selection for
computer-aided polyp detection using genetic algorithms. Medical Imaging
2003: Physiology and Function: methods, systems and applications. Proc. SPIE
Vol. 5031.

Moser A and Murty MN (2000) On the scalability of genetic algorithms to very
large-scale feature selection. Proc. Real-World Applications of FEvolutionary
Computing (EvoWorkshops 2000). LNCS 1803, 77-86. Springer.

Muharram MA and Smith GD (2004) Evolutionary feature construction using
information gain and gene index. Genetic Programming: Proc. 7th European
Conf. (EuroGP-2008), LNCS 8003, 379-388. Springer.

Muni DP, Pal NR and Das J (2004) A novel approach to design classifiers using
genetic programming. IEEE Trans. Evolutionary Computation 8(2), 183-196,
April 2004.

Neri F and Giordana A (1995) Search-intensive concept induction. Evolutionary
Computation 3(4), 375-416.

Ni B and Liu J (2004) A novel method of searching the microarray data for the
best gene subsets by using a genetic algorithms. Proc. Parallel Problem Solving
From Nature (PPSN-2004), LNCS 3242, 1153-1162, Springer.

Otero FB, Silva MMS, Freitas AA and Nievola JC (2003) Genetic programming for
attribute construction in data mining. Genetic Programming: Proc. EuroGP-
2003, LNCS 2610, 384-393. Springer.

Papagelis A and Kalles D (2001) Breeding decision trees using evolutionary tech-
niques. Proc. 18th Int. Conf. Machine Learning (ICML-2001), 393-400. Morgan
Kaufmann.

Pappa GL and Freitas AA (2006) Automatically evolving rule induction algorithms.
Machine Learning: ECML 2006 — Proc. of the 17th European Conf. on Machine
Learning, LNAI 4212, 341-352. Springer.

Pappa GL and Freitas AA (2007) Discovering new rule induction algorithms with
grammar-based genetic programming. Maimon O and Rokach L (Eds.) Soft
Computing for Knowledge Discovery and Data Mining. Springer.

Pappa GL, Freitas AA and Kaestner CAA (2002) A multiobjective genetic algo-
rithm for attribute selection. Proc. 4th Int. Conf. On Recent Advances in Soft
Computing (RASC-2002), 116-121. Nottingham Trent University, UK.

Pappa GL, Freitas AA and Kaestner CAA (2004) Multi-Objective Algorithms for
Attribute Selection in Data Mining. In: Coello Coello CA and Lamont GB
(Ed.) Applications of Multi-objective Evolutionary Algorithms, 603-626. World
Scientific.

Pazzani MJ (2000) Knowledge discovery from data, IEEFE Intelligent Systems, 10-
13, Mar./Apr. 2000.

Quinlan JR. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann.

Romao W, Freitas AA and Pacheco RCS (2002) A Genetic Algorithm for Discover-
ing Interesting Fuzzy Prediction Rules: applications to science and technology

110 Alex A. Freitas

data. Proc. Genetic and Evolutionary Computation Conf. (GECCO-2002), pp.
1188-1195. Morgan Kaufmann.

Romao W, Freitas AA, Gimenes IMS (2004) Discovering interesting knowledge
from a science and technology database with a genetic algorithm. Applied Soft
Computing 4(2), pp. 121-137.

Rozsypal A and Kubat M (2003) Selecting representative examples and attributes
by a genetic algorithm. Intelligent Data Analysis 7, 290-304.

Sarafis I (2005) Data mining clustering of high dimensional databases with evolu-
tionary algorithms. PhD Thesis, School of Mathematical and Computer Sci-
ences, Heriot-Watt University, Edinburgh, UK.

Sharpe PK and Glover RP (1999) Efficient GA based techniques for classification.
Applied Intelligence 11, 277-284.

Smith RE (2000) Learning classifier systems. In: T. Back, D.B. Fogel and T.
Michalewicz (Eds.) Ewvolutionary Computation 1: Basic Algorithms and Op-
erators, 114-123. Institute of Physics Publishing.

Smith MG and Bull L (2003) Feature construction and selection using genetic
programming and a genetic algorithm. Genetic Programming: Proc. EuroGP-
2003, LNCS 2610, 229-237. Springer.

Smith MG and Bull L (2004) Using genetic programming for feature creation with a
genetic algorithm feature selector. Proc. Parallel Problem Solving From Nature
(PPSN-2004), LNCS 3242, 1163-1171, Springer.

Song D, Heywood MI and Zincir-Heywood AN (2005) Training genetic program-
ming on half a million patterns: an example from anomaly detection. IEEE
Trans. Evolutionary Computation 9(3), 225-239, June 2005.

Srikanth R, George R, Warsi N, Prabhu D, Petry FE, Buckles B (1995) A variable-
length genetic algorithm for clustering and classification. Pattern Recognition
Letters 16(8), 789-800.

Tan PN, Steinbach M and Kumar V (2006) Introduction to Data Mining. Addison-
Wesley.

Terano T and Ishino Y (1998) Interactive genetic algorithm based feature selection
and its application to marketing data analysis. In: Liu H and Motoda H (Eds.)
Feature Eztraction, Construction and Selection: a data mining perspective, 393-
406. Kluwer.

Terano T and Inada M (2002) Data mining from clinical data using interactive
evolutionary computation. In: A. Ghosh and S. Tsutsui (Eds.) Advances in
FEvolutionary Computing: theory and applications, 847-861. Springer.

Vafaie H and De Jong K (1998) Evolutionary Feature Space Transformation. In:
H. Liu and H. Motoda (Eds.) Feature Extraction, Construction and Selection,
307-323. Kluwer.

Witten IH and Frank E (2005) Data Mining: practical machine learning tools and
techniques . 2nd Ed. Morgan Kaufmann.

Wong ML and Leung KS (2000) Data Mining Using Grammar Based Genetic
Programming and Applications. Kluwer.

Yang J and Honavar V (1997) Feature subset selection using a genetic algorithm.
Genetic Programming 1997: Proc. 2nd Annual Conf. (GP-97), 380-385. Morgan
Kaufmann.

Yang J and Honavar V (1998) Feature subset selection using a genetic algorithm. In:
Liu, H. and Motoda, H (Eds.) Feature Eztraction, Construction and Selection,
117-136. Kluwer.

A Review of Evolutionary Algorithms for Data Mining 111

Zhang P, Verma B, Kumar K (2003) Neural vs. Statistical classifier in conjunc-
tion with genetic algorithm feature selection in digital mammography. Proc.
Congress on Evolutionary Computation (CEC-2003). IEEE Press.

Zhou C, Xiao W, Tirpak TM and Nelson PC (2003) Evolving accurate and com-

pact classification rules with gene expression programming. IEEE Trans. on
Evolutionary Computation 7(6), 519-531.

Genetic Clustering for Data Mining

Murilo Coelho Naldi!

André Carlos Ponce de Leon Ferreira de Carvalho!
Ricardo José Gabrielli Barreto Campello!
Eduardo Raul Hruschka?

Instituto de Ciéncias Mateméaticas e de Computagao

Universidade de Sao Paulo

murilocn@icmc.usp.br, andre@icmc.usp.br, campello@icmc.usp.br,
eduardo.hruschka@pesquisador.cnpq.br

Summary. Genetic Algorithms (GAs) have been successfully applied to several
complex data analysis problems in a wide range of domains, such as image pro-
cessing, bioinformatics, and crude oil analysis. The need for organizing data into
categories of similar objects has made the task of clustering increasingly impor-
tant to those domains. In this chapter, the authors present a survey of the use of
GAs for clustering applications. A variety of encoding (chromosome representation)
approaches, fitness functions, and genetic operators are described, all of them cus-
tomized to solve problems in such an application context.

1 Introduction

Clustering is one of the main tasks in Machine Learning, being usually employed
when none or little information on the dataset is available. Intuitively, clustering is
based on an inductive principle where objects within a cluster are more similar to
each other then objects belonging to different clusters. This inductive principle is
regarded as the objective function of clustering algorithms. The association of this
objective function with a dataset creates an optimization problem (Jain et al., 1999),
whose goal depends on the validation employed. The partitions obtained by a clus-
tering algorithm depend on the validation function adopted and the values assigned
to the algorithm free-parameters. For some algorithms, the order of presentation of
the examples can also affect the partitions produced.

The values for the free parameters are usually defined by trial and error, which
may be computationally prohibitive. Finding an optimal or near optimal solution
to the problem of partitioning n objects into k clusters has been shown to be NP-
complete (Kaufman and Rousseeuw, 1990). Therefore, more sophisticated search
techniques are necessary in order to be able to find a suitable set of values for the
free parameters in a reasonable processing time.

Genetic Algorithms (GAs) are population-based search techniques that combine
features of selected solutions in order to evolve them towards a global optimum.

114 Naldi et al.

GAs have been successfully used in many different tasks, including clustering. This
survey will be organized in a framework describing the alternatives followed by dif-
ferent authors for each aspect of this application. For the application of GAs to a
clustering problem, it is necessary to determine the representation of the possible
solutions, how these solutions will be evaluated (the fitness function), the genetic
operators employed to manipulate these solutions and the values of the free param-
eters (population size and application rate of the genetic operators). These subjects
will be discussed in sections 2, 4 and 5, respectively.

1.1 A Brief Look at Genetic Algorithms

GAs are search and optimization methods inspired by the process of evolution of
biological organisms. According to Charles Darwin in The Origin of Species (Darwin,
2006), organisms evolve by principles of natural selection and survival of the fittest
organisms. John Holland’s group from the University of Michigan introduced GAs
in the middle of 1976 (Holland, 1975). However, its full use only started almost ten
years later (Goldberg, 1989).

In a few words, a GA uses a population of individuals to solve a given problem.
Each individual of the population corresponds to a possible solution for the problem.
A reproduction based mechanism is applied to the current population, generating a
new population. The population usually evolves through several generations until a
suitable solution is reached.

According to (Goldberg, 1989), GAs differ from traditional methods of search
and optimization mainly in four aspects:

e they can work with a code of the set of parameters and not necessarily with the
own parameters;
they work with several possible solutions and not with a single solution point;
they use cost information or reward functions and not derivative or other auxil-
iary knowledge;

e they use probabilistic rules of transition instead of deterministic rules.

GAs start generating an initial population formed by a random group of indi-
viduals, which can be seen as first guesses to solve the problem. Supposing that a
solution of a problem can be represented by a set of parameters, such parameters are
coded into an individual by using a data structure called chromosome (in general
a vector or a bit string). The chromosome is composed by a string of genes, where
each gene is a coded parameter. The codification of parameters is defined by the
programmer.

The initial population is evaluated and, for each individual, a score (named
fitness) is given, reflecting the quality of the solution associated to it. In function
optimization problems, the fitness is usually equal to the (raw or scaled) value of
the objective function of the problem.

By mimicking the “natural selection”, a GA probabilistically selects the best
individuals whereas the worst are discarded. The selected individuals can be modified
by genetic operators such as crossover and mutation, generating descendants for the
next generation. This process is named reproduction. The evolutionary procedure is
repeated until the population converges to a unique solution that is likely to be an
optimal solution. Figure 1 presents a general diagram of a GA life cycle.

Genetic Clustering for Data Mining 115
Initial Population Final Population
New Population

L Reproduction kJ

Fig. 1. Genetic Algorithm cycle.

GAs operate on a population of candidates in parallel. Thus, they can simul-
taneously search different regions of the solutions space. While selection drives the
population into the direction of better solutions, crossover and mutation explore
new solutions (i.e. new areas of the search space).

Different methods have been proposed to select individuals from a population.
The most commonly used method is the roulette wheel sampling. In this method,
each individual from the population occupies an area of the roulette wheel propor-
tional to its fitness value. If P individuals are to be selected, the roulette wheel
randomly spins P times. For each run, the individual pointed by the roulette wheel
is selected. As a result, fitter individuals have higher chances of being selected.

Although largely used, the roulette wheel method does not work with nega-
tive fitness values and the expected number of children from a same parent suffers
high variance. This problem can be overcome by the Stochastic Universal Sampling
(SUS) (Baker, 1987), which ensures a selection of offspring which is closer to what
is deserved than roulette wheel selection. The individuals are mapped to contiguous
segments, such that each individual’s segment is equal in size to its fitness exactly as
in roulette-wheel selection. Equally spaced pointers are placed over the segments as
many as there are individuals to be selected. Consider P the number of individuals
to be selected, then the distance between the pointers are 1/P and the position of
the first pointer is given by a randomly generated number in the range [0,1/P], the
position of the second pointer is given by a randomly generated number in the range
[1/P,2/P] and so on. SUS samples individuals by spinning the roulette P times for
each equally-spaced pointers, instead of spinning randomly for all the segments as
occurs in the roulette wheel method.

Other alternative is tournament selection (Mitchell, 1999), in which 7" (usually,
T = 2) chromosomes are randomly selected from the population, with the same

116 Naldi et al.

probability. These chromosomes compete against each other and the chromosome
with the highest fitness value is selected.

The crossover operation exchanges parts of a pair of chromosomes, creating
new chromosomes called children or offspring (If crossover does not succeed in the
probability test, then the children will be identical copies of their parents). Figure
2 illustrates a crossover operation.

A . B .
(0[2T0f 0 0]1]1) Parents (EIE|THOIEIOIE)
c [I

offspring (0 0] 2] 0 [0]1]1]

Fig. 2. Crossover operation.

In Figure 2, a cut point is randomly chosen and two chromosomes, A and B, con-
tribute with a subset of their genes for the creation of the offspring C and D. There
are several variations of crossover operators, such as the two cut point crossover and
the uniform crossover. When the two point crossover is used, the segments between
the two randomly chosen cut points are exchanged between the two parents (Gold-
berg, 1989, Mitchell, 1999), as can be seen in Figure 3.

[o]1[oio[o§1@ parents (00 2]0]2i0]1]

c D
(0] 2 [0 [0)(a] 2] 2) orrspring

Fig. 3. Two point crossover operation.

For the uniform crossover, a mask is used to define from which parent each
offspring inherits each of its genes (Goldberg, 1989, Mitchell, 1999).

The mutation operator aims to increase the variability of the population, al-
lowing the GA to simultaneously search different areas of the solution space. This
operator changes at random the value of a chromosome gene, also randomly cho-
sen with a given probability (named mutation rate). Figure 4 shows a mutation
operation that changes the value of the forth gene from 0 to 1.

After the creation of the children, the new population is obtained by replacing
the original parents by their children. The usual approach involves replacing all
parents. This approach is called generational replacement, which combined with
elitism gives better results (Goldberg, 1989). An elitist policy means never replacing

Genetic Clustering for Data Mining 117

n 1 nnnun Before Mutation
0|1 | 0 | 1 - 1 . After Mutation

Fig. 4. Mutation operation.

the best parent, or set of parents, by any children worse (e.g. with lower aptitude)
than them (Mitchell, 1999).

It’s worth noting that the raw fitness (i.e. the fitness obtained directly from the
objective function or cost function) may cause problems in most real world problems.
Such as, for instance, premature convergence and low resolution of selection in later
stages of evolution (when many individuals have high fitness values). Scaling and
ranking adjust raw fitness more gently. Scaling adjusts the raw fitness using a linear
function a + b f,-uw, where a and b are constants. Ranking sorts chromosomes best-
to-worst fashion and assign fitness by interpolating the best (rank = 1) individual
to the worst (rank = P) according to some function, usually linear or exponential.
The ranked fitness of the ith individual using a linear function is given by:

min + (max — min)P_PT%inlk(Z) (1)

This ranking requires 1 < max < 2 and min + mazx = 2.

2 Representation

Clustering algorithms can be divided into two main categories: partitional and hi-
erarchical. Partitional clustering algorithms identify the partition that optimizes a
given clustering criterion (Jain et al., 1999). Hierarchical clustering algorithms pro-
duce a nested series of partitions based on a criterion for either merging (agglom-
erative algorithms) or splitting (divisive algorithms) clusters based on a similarity
measure. Hierarchical clusters may be represented by a dendrogram, showing the
nested grouping of objects and similarity levels at which groupings change (Jain
et al., 1999). An example of a partition (a) and a dendrogram (b) for the objects
A, B,C,D,E,F,G, is shown in Figure 5.

When applied to partitional clustering problems, some GAs can search for the
number of clusters that best fits the dataset structure. As described in Section
1.1, each possible solution is represented in a GA by a vector (chromosome) of
numeric values (genes). Different representations have been proposed for clustering
using GAs (Cole, 1998). The most frequently used representations for partitional
algorithms are:

e Group-Number: It is an encoding scheme in which a chromosome is an integer
vector of n positions, where n is the number of dataset objects or objects. Each
position corresponds to an object, i.e., the ith position (gene) represents the

118

Naldi et al.

(a) 3 cluster partition (b) dendrogram

u

+

+—+

t

<——-—aTJPpr-r=—= -0

+

+ ABCDEFG

Fig. 5. Main cluster types: (a) partitional and (b) hierarchical.

ith dataset object. Provided that a genotype represents a partition formed by
k clusters, each gene has a value from the alphabet 1,2,3,....k. These values
define the cluster labels (Krovi, 1992, Murthy and Chowdhury, 1996, Cowgill
et al., 1998). The same encoding scheme is used in (Hruschka and Ebecken,
2003, Hruschka et al., 2004), but the authors additionally propose to store the
number of clusters k in the genotype.

Binary Matrix: In this case, the chromosome is represented by a k xn matrix of
binary values, where k is the number of clusters and n is the number of objects in
the dataset. If the value of the matrix position P(C,) is 1, the object = belongs
to cluster C. Otherwise, it does not belong to this cluster (Bezdek et al., 1994).
Centroids and Medoids: The chromosomes are made up of real numbers that
represent the coordinates of the cluster centers (Scheunders, 1997, Franti et al.,
1997, Maulik and Bandyopadhyay, 2000, Merz and Zell, 2002, Kivijarvi et al.,
2003). If a genotype 4 encodes k clusters in a d dimensional space, its length is
d x k. Lucasius et al. (Lucasius et al., 1993) proposed a related representation,
which is based on the position of k selected objects (named medoids) from the
dataset. Given the set of these medoids, k clusters are formed by assigning the
remaining (n — k) objects to the nearest medoid. Thus, each partition is encoded
with a string of k different integers from 1,...,n. These integers correspond to
the objects according to the order they appear in the dataset. The same rep-
resentation scheme is adopted in (Estivill-Castro, 1997, Hall et al., 1999, Sheng
and Liu, 2004)

Labels: Ma et al. (Ma et al., 2006) proposed an evolutionary algorithm for
clustering, named EvoCluster, which encodes a partition in such a way that each
gene represents one cluster and contains the labels of the objects grouped into it.
Thus, a genotype encoding k clusters (C1, Ca, ..., Ci) of a dataset with n objects
is formed by k genes, each of which stores I; labels (I1 +l2 + ... + Iy = n). The
they claim that this encoding scheme is an advantageous alternative over other
different schemes. In particular, they argue that the group-number encoding,
where each object is encoded as a gene and given a label from 1 to k, is not very
scalable since the length of each genotype is exactly the number of objects of the
training set. Although this assertion is persuasive at a first glance, it is worth
noticing that the amount of information that must be stored (and handled)
in both encoding schemes previously described is essentially the same, that is,

Genetic Clustering for Data Mining 119

n object labels (EvoCluster’s encoding) or n cluster labels (Group-Number).
Therefore, the scalability of EvoCluster in terms of memory requirement does
not benefit from its encoding scheme. Actually, the encoding scheme does not
seem to be a crucial aspect regarding the practical usefulness of an algorithm
when handling large data sets. In the end, the data set itself must be handled
somehow (e.g. using efficient data structures for external memory management)
and its dimensionality is necessarily larger than that of any encoding scheme.

Figure 6 presents the chromosome for the clusters {{A,C, F'}, {B, D, E}}, using
each of the representations described. The clusters are labeled 1 and 2 and the
instances are labeled in the range between A and E. In Figure 6, the chromosome
(c) represents two centroids, z1 and z2, and their respective hypothetical attribute
values from a1 to aq4.

a T
(a) [1
1l2f1|2]2]1

(A, B,C, D, E,F)

o]1]o]of1]
lo]1]o[1]1]0]
(A,B,C,D,EF)
(c) (d)

49487 - |5.03 C, C,

[(1-3-6]2-4-5]
. (A,C,F) (B,D,E)

N
[
L
n
=]

Z [8.43 2.85) 7.4 19.23] --- 16.72

a, A, ds gy e Ay

Fig. 6. Examples of (a)Group-Number, (b)Binary Matrix, (c)Centroids and (d)
using labels.

In hierarchical clustering, the hierarchy, represented by the dendrogram, can be
broken at different levels to yield different clustering partitions of the dataset. Thus,
a hierarchical cluster can be represented by a set of partitions with its respective
representation. Figure 7 shows two possible representations for the dendrogram in
Figure 5: a set of partitions, represented by Group-Number, and an object oriented
approach representation proposed by Greene (Greene, 2003). In the first representa-
tion (a), each line is associated with one possible level of partition and each column
with a object. The second representation (b) indicates the clusters of the dendrogram
as nodes in a graph. The cluster associated with each node contains the children
clusters and belongs to the cluster represented by its parent node. This relationship
is represented by the edges of the graph.

120 Naldi et al.

(a)

il]iaf] ® ©
2[212]3]3]3]3

2[2[2]4]4]5]5 @/ \@
6[7(7]4]4]5]5 /N /

N
6[7]7]4]4]8]0] ® @\ @ /@\
67701189
APENDEOERN ? Q(_—? %D ((9})
ABCDEFG

Fig. 7. Hierarchical representations using a set of partitions (a) and object orien-
tation (b).

Another representation, named Cluster Description-Based Representation, was
proposed by Freitas (Freitas, 2005). In this representation, each chromosome specifies
a set of parameters that precisely specify each cluster. These parameters are related
with the shape of the clusters produced.

Most representations show some form of redundancy, as different chromosomes
may represent the same partition. Unfeasible solutions can be eliminated or remu-
nerated by pos-processing (Belew and Booker, 1991). Korkmaz et al. (Korkmaz et
al., 2006) propose to avoid redundancy by using an encoding scheme in which each
gene is a link from an object to another object of the same cluster.

3 Initialization

Many authors build the initial population of the genetic algorithm from random as-
signments of objects to clusters (Krovi, 1992, Murthy and Chowdhury, 1996, Cowgill
et al., 1998, Hruschka and Ebecken, 2003, Hruschka et al., 2004, Ma et al., 2006). Lu-
casius et al. (Lucasius et al., 1993) suggest to randomly selecting a subset of objects
to be the medoids of the initial population when prior knowledge is not available.
Similarly, in (Kuncheva and Bezdek, 1997, Estivill-Castro, 1997, Maulik and Bandy-
opadhyay, 2000, Merz and Zell, 2002,Sheng and Liu, 2004) an initialization scheme is
adopted that randomly chooses dataset objects to be initial prototypes of the clus-
ters. The initial centers of the clusters can also be randomly generated (Scheunders,
1997, Franti et al., 1997, Kivijarvi et al., 2003).

In Tseng and Yang (Tseng and Yang, 2001), the population of strings is ran-
domly generated. The number of 1’s in the binary strings is uniformly distributed
within [1, k], where k is the number of clusters initially generated. Some authors use
heuristics to find good initial partitions and avoid invalid clusters (Bezdek et al.,
1994).

4 Fitness Function

A fitness function must be defined for the evaluation of the chromosomes. This
function is based on the objective function used by traditional clustering algorithms.

Genetic Clustering for Data Mining 121

Since the objective function has to be rescaled, the fitness function is very often a
composition of the objective function and a scaling function (Grefenstette, 2000).
One of the most commonly used fitness function consists on minimizing the
sum of squared Euclidean distances of the objects to their respective cluster mean
(centroids) (Murthy and Chowdhury, 1996, Maulik and Bandyopadhyay, 2000, Merz
and Zell, 2002). This fitness function f(C1,Cy, ...,Ck) can be formally described by:

k
F(CCoy o Cr) =D > |z — 2 (2)
j=1xzeC;
where (C1, C2, ..., Cy) is the set of k clusters encoded by the genotype, x is a dataset
object, and z; is the mean vector (centroid) of cluster C;. Similarly, the fitness
functions used in the genetic algorithms described in (Fréanti et al., 1997, Kivijarvi et
al., 2003) aim to minimize the distortion in the clusters. The minimization of such
distortion is equivalent to minimize f(C1,Cs,...,C)) defined in Equation (2). More
precisely, the distortion dst is a measure of the intra-cluster diversity, which can be
defined as:

_ (C1,Cs,..,Ch)

n XxXm

dst (3)

where n and m are the numbers of objects and attributes, respectively. Adopting
f(C1,Cy, ..., C) defined in Equation (2) and assuming a dataset formed by n objects,
the fitness function employed in (Scheunders, 1997) can be written as:

n
f(C1,Co,...,Ck) @)

Similar to what is carried out with centroids, the minimization of the distances
of the k£ medoids to all the corresponding objects of the same cluster was proposed
also in (Lucasius et al.,, 1993). Functions presented above are monotonic with the
number of cluster and does not optimize it.

Alternative validation criteria have also been used as fitness functions. The val-
idation criteria are in general statistical indexes employed to evaluate the quality of
a given partition. Three different approaches can be followed internal, external and
relative:

fm(C1,Cs, ..., Cy) =

e Internal criteria: measure the quality of a partition using only the original
dataset. They measure how well the clusters obtained represent the similari-
ties present in the dataset. A fitness function based on Euclidian distance is an
example of internal criterion.

e [External criteria: these criteria evaluate the partitions according to a predefined
structure, based on what is known about the dataset. This predefined structure
can be either a known partition for the dataset or a partition defined a specialist
in the data domain.

e Relative criteria: They are employed to compare two or more clustering tech-
niques regarding a particular aspect. They can be used, for example, to compare
different clustering algorithms or runs of the same algorithm with different pa-
rameter values.

In principle, any relative clustering validity criterion (Jain and Dubes, 1988, Mil-
ligan and Cooper, 1985, Halkidi et al., 2001) that is not monotonic with the number

122 Naldi et al.

of clusters can be potentially used as a fitness function for a genetic algorithm
designed to optimize the number of clusters. These criteria have been extensively
studied, and some of them have shown good results for several applications. This
fact has motivated their use as fitness functions, as it will be seen in this survey.
However, it is worth mentioning that the particular features of a given relative valid-
ity criterion can make its performance problem dependent (Pal and Bezdek, 1995).
The following criteria can optimize the final partition’s cluster number.

Variation Ratio Criteria (VRC) (Calinski and Harabasz, 1974) and Silhou-
ette (Rousseeuw, 1987) are two popular relative criteria choices when clustering
is combined with GAs (Cowgill et al., 1998, Casillas et al., 2003, Pan et al., 2003, Hr-
uschka and Ebecken, 2003, Hruschka et al., 2004). The values produced by these
criteria are independent of the cluster algorithm used and can be employed to esti-
mate the natural number of clusters in a dataset (Milligan and Cooper, 1985).

VRC is based on internal cluster cohesion and external cluster isolation. The
internal cohesion is calculated by the within-group sum of square distances (WGSS)
and the external isolation by the between-groups sum of square distances (BGSS)
(Duda et al., 2001), given by:

WGSS =YY" D (5)
i=1 j=i+1
where n is the total number of objects and ¢ and j are objects with ¢ € C'and j € C,
for all clusters C, D;; is the dissimilarity between objects ¢ and j, and

BGSS =YY" Dy (6)
i=1 j=i+1
where i and j are objects with ¢ € C' and j ¢ C, for all clusters C'. The VRC criterion
is given by:

BGSS WGSS
-1 w5 ™
with k being the total number of clusters and n the total number of objects.
Silhouette is based on the distance between objects from the same cluster and
their distance to the closest cluster. Consider an object = belonging to a cluster C,.
Let the average dissimilarity of x to all other objects of C, be denoted by a(z).
Next, let the average dissimilarity of = to all objects of a cluster C' be represented
by d(z, C). After computing d(z, C) for all clusters C' # C,, the smallest value, b(z),
is selected, where b(z) = mind(z, C)VC # C,. Thus, the silhouette for object x is
given by:

VRC =

1—a(z)/b(x), a(z) < b(x)
s(z) =1 0, a(r) = b(x) (8)
b(z)/a(x) — 1, a(x) > b(x)

It is easy to verify that —1 < s(x) < 1. This measure is appropriate when the
values of the different attributes exhibit similar inferior and superior limits and the
true clusters are compact and disjoint (Rousseeuw, 1987). In addition, if s(z) is
equal to zero, then it is not clear whether the instance should have been assigned
to its current cluster or to a neighboring one (Everitt et al., 2001). Finally, if the
cluster is a singleton, then s(z) is not defined and the most neutral choice is to set

Genetic Clustering for Data Mining 123

s(z) = 0 (Kaufman and Rousseeuw, 1990). The silhouette criterion is given by the
average of s(i) over i = 1,2,...,n.

Two additional validity indexes to guide the genetic search were proposed by
Hruschka et al. (Hruschka et al., 2004), one of them is a simplified version of the
silhouette. This criterion is based on the computation of distances between objects
and cluster centroids, which are the mean vectors of the clusters. More specifically,
the term a(z) of Equation (8) becomes the dissimilarity of object x to the centroid
of its cluster Cy. Similarly, instead of computing d(z, C') as the average dissimilarity
of z to all objects of C, C # C,, only the distance between x and the centroid
of C must be computed. Alternatively to the original and simplified versions of
the silhouette, Hruschka et al. (Hruschka et al., 2004) have shown that the fitness
function can be taken as the average of b(z)/(a(z) + €) over ¢ = 1,2,...,n, using
the centroid based terms a(x) and b(x) just described. The term ¢ is necessary to
compute s(z) when a(z) is zero, i.e., when all objects of cluster C, are equal to
each other. This modified objective function seems to be more sensitive to slight
changes in a(z) and b(z), which in turn may correspond to significant changes in
the clustering solution.

S. Bandyopadhyay and U. Maulik (Bandyopadhyay et al., 2001) proposed a
validity index I (k) for computing the fitness of a genotype that represents k clusters,
that is defined as:

1 E4 P
I(k)=|+-.—.D 9
)= (50) ©
where p is any real number larger than or equal to 1, E; and D; are given by the
following equations, respectively:

Ey=>) pyllws — 2| (10)

j=1

.
—-

D; = max ||z — zul| (11)
Liw=1

where n is the total number of objects in the dataset, [pji]kxn is a partition matrix
for the dataset D = {z1,...,zn}, and z,, is the center of the w'™ cluster. They report
some experiments in which I(k) provides better results than the indexes proposed
in (Davies et al., 1979) and (Dunn et al., 1973), which are commonly used as relative
validity criteria for clustering. However, in a more recent work (Bandyopadhyay and
Maulik, 2002), they decided to use a fitness function based on the Davis-Bouldin
(DB) (Davies et al., 1979) index. The DB index for the partitioning of n objects
into k clusters is defined as:

DB =

|~

k
> Re, (12)
i=1
The index for the ith cluster, R¢;, is given by:
Rec, = max{R;,} (13)
J#i

and Rj;; measure the within-to-between cluster spread for all pairs of clusters (j,1):

124 Naldi et al.

Ry = Gt (14)

Vji

where e; is the within cluster variation for the jth cluster and v;; is the distance
between the centers of the j** and the i*" clusters.

The fitness function adopted in EvoCluster (Ma et al., 2006) has been conceived
to deal with noisy and missing data, as well as to recognize interesting feature values
for the clustering process. The fitness of each genotype is assessed by means of two
main steps. The first step is dedicated to the discovery of statistically significant
association of objects in the partition encoded in the genotype. To this end, some
objects from different clusters are randomly selected to form a training set for object
discovery. Let a be an attribute, a; the 4" value this attribute takes in the dataset,
and obs;; the total number of objects in the dataset that belong to cluster C; and
are characterized by the same attribute value a;. According to Ma et al. (Ma et
al., 2006), exp;; = (obsit+) - (obst+;)/n’ is the expected number of objects under the
assumption that being a member of C} is independent of whether a object has the
value a;j, where obs; 4, obsyj, and n’ are given by:

g

obsi+ = Z obsi; (15)

j=1
k
obsy; = Z obs;; (16)
i=1
n = Z obs;; <n (7)

0,3
where g is the total number of distinct values for a, k is the number of clusters
encoded by the genotype and n is the number of objects. The statistical significance
of the association can be evaluated by:

obs;; — expi;
\/ ETPij

where the maximum likelihood estimate of its asymptotic variance v;; is defined by:

Then sdi; = zi;/(vi;)/? has an approximately standard normal distribution
and the attribute value can be selected based on a statistically significant cluster
dependency. In step 2 of the fitness computation, an uncertainty measure, named
weight of evidence, W, is calculated for the values a; associated with the cluster
C; at a given confidence level. The value of W for an object characterized by a; to
belong to C; and not to other clusters is given by:

(18)

Zij =

W (cluster = C;/cluster # Cila;) = L(C; : aj) — L (# C; : aj) (20)
where L(C; : a;) is given by:
s a) = logPGa)
L(C; : aj) = log PCy) (21)

For a collection of selected attribute values, the weight of evidence from all
observed values is defined as:

Genetic Clustering for Data Mining 125

’

g
W (cluster = Cj/cluster # Cilay...a;...aq91) = Z W (cluster = C;/cluster # Cj|a;)
j=1
(22)
where ¢’ is the number of selected attribute values. Cluster C; is inferred if W is
maximized. Thus, the predicted value can be compared with the original label of
each object encoded in the genotype to determine the reclassification accuracy of
the objects not selected in step 1. Finally, the fitness value is calculated based on
this accuracy. The authors (Ma et al., 2006) claim that EvoCluster does not require
the number of clusters k to be defined in advance. However, this aspect was not fully
investigated in the reported experimental evaluation, in which a set of interesting
values for k was chosen a priori.
Validation criteria are independent of the representation and the cluster algo-
rithm used.

5 Genetic Operators

Genetic operators are responsible for the modification of the individuals from one
population to the next. Such operators may include, for instance, the exchange of
parts of the parents, thus allowing the production of new solutions sharing features
from both parents. By creating new solutions, genetic operators expand the explo-
ration of the search space, making it possible to reach any of its regions. The main
genetic operators are selection crossover and mutation. When GAs are used for clus-
tering, the traditional genetic operators may need to be adapted to fit the chosen
clustering representation.

5.1 Selection

As chromosomes are selected based on their relative fitness, the selection type is
independent of representation or clustering algorithm. Proportional selection has
been used by several authors (Krovi, 1992, Lucasius et al., 1993, Murthy and Chowd-
hury, 1996, Estivill-Castro, 1997, Cowgill et al., 1998, Maulik and Bandyopadhyay,
2000, Kivijarvi et al., 2003). The simplest approach for proportional selection is the
roulette wheel method, described in Section 1.1. Another popular choice is tourna-
ment selection, also described in Section 1.1.

Additionally to proportional selection, elitist variants for selecting genotypes are
also investigated in (Murthy and Chowdhury, 1996, Franti et al., 1997, Kivijarvi et
al., 2003). A particular kind of elitist strategy is adopted in (Kuncheva and Bezdek,
1997), where the parents and the children are pooled and the best genotypes survive,
composing the new population. Similarly, Merz and Zell (Merz and Zell, 2002) derive
a new population by selecting the best genotypes out of the pool of parents and
children. These selection methods can be viewed as variants of the so-called (u+)
selection procedure used in evolution strategies.

126 Naldi et al.

5.2 Crossover

Traditional crossover operators act at the chromosome level, ignoring the true shape
of the clusters. This may result, for instance, in offspring whose representation is
very similar to the parents, but whose corresponding clusters are very different.
Therefore, the incorporation of context sensitivity to the crossover operators applied
to clustering problems is commonly used, although it is not compulsory (Cowgill et
al., 1998, Bandyopadhyay and Maulik, 2002).

The main idea behind context sensitivity is to create crossover operators that
can transmit clusters (integrally or partially) from the parents to the offspring,
preserving their building blocks.

An example of this type of crossover is the edge-based crossover (Belew and
Booker, 1991). In this operator, after the selection of parent two chromosomes, their
objects are selected based on the edge of the clusters they belong to. Two objects
are connected by the same edge if they are present in the same cluster in both
chromosomes. The resulting children are composed of the non-empty intersections
of their parent clusters. An example of two parent chromosomes and a possible child
chromosome is showed on Figure 8, where cluster {C, D} is copied from PC1, {A, E}
from PC5 and {B, F'} from both parents.

Clusters Parent Chromosomes
({ALICDEL B R —— PC [1] 3] 2] 2] 2] 3]
A BCDETF

{{C},{B,D,F},IA,E}}—)PCJ 3 | 2 | 1 | 2 | 3 | 2 |

A BCDEF
Intersections Example of Child Chromosome

({ALICLIDLIEL (B F)—cC|1 [3] 2] 2] 1]3]

A BCDEF

Fig. 8. Two partitions and their Group-Number representations.

Another context-sensitive crossover operator is proposed by Hruschka and
Ebecken (Hruschka and Ebecken, 2003) and combines clustering solutions coming
from different genotypes. After the selection of two chromosomes (PC: and PC%),
e € 1,2, ..., k1 clusters are copied from PC4 to PCs2, assuming that PC; represents ki
clusters. The unchanged clusters of PC5 are maintained. The modified clusters have
their remaining instances allocated to the cluster with the nearest centroid, resulting
in the offspring C'C'y. The procedure is repeated to generate another offspring, C'C5.
However, now, the modified clusters of PC5 are copied into PC1. Figure 3 illustrates
this crossover, where clusters 2 and 3 are copied from PC7 to PC2. The instances
of clusters indirectly affected have their value set to zero and are reallocated to the
cluster with the nearest centroid later.

The crossover operators used by the EvoCluster algorithm (Ma et al., 2006) can
be seen as modified versions of the context-sensitive evolutionary operators of the
clustering genetic algorithm (CGA) proposed by Hruschka and Ebecken (Hruschka
and Ebecken, 2003). Indeed, in both CGA and EvoCluster, the crossover operators

Genetic Clustering for Data Mining 127

Parents
re-(1]1]2]3]2]4]5] 1] 2]5]4]3]2]5]3]3]4]2]4]
[sla]aa]e e 23] 2 2] 1]3] 2] 1]

ee-[1 [2]]2« [s [[2] 54 3] 2] 5 [3] 3] 2 [2] «]
re-(1 223 a2 [l e [« [a]2) 2[5] 3 [2] 1)

Child
-0 2Lz (oo 2+ [B e 2]

Fig. 9. Example of crossover between the chromosomes PC; and PC5.

were essentially designed to copy (exchange), split, merge, and eliminate groups.
Besides some minor details on how these basic operations are performed, there is an
important difference regarding the way the operators are applied in each algorithm:
the application of EvoCluster’s crossover operator can be probabilistically guided
by information concerning the quality of the individual clusters in a given partition.

Estivill-Castro et al. (Casillas et al., 2003) use a one-point crossover that is also
context sensitive. This operator manipulates the edges of a Minimum Spanning Tree
(MST) in which the nodes represent the dataset objects and the edges correspond
to proximity indexes between them.

An interesting work, Pasi Franti et al. (Franti et al., 1997) use five crossover oper-
ators that fundamentally select k£ centroids from two parents. The random crossover
operator randomly chooses k/2 centroids from each of the two parents. Duplicate
centroids are replaced by averages of repeated draws. In the operator named cen-
troid distance, the clusters are initially sorted according to their distances from the
grand mean of the dataset. Next, they are divided into two subsets, namely: central
clusters and remote clusters. The central clusters are those closer to the centroid
of the dataset, whereas the remote clusters are the remaining ones. An offspring
is created by taking the central clusters from parent PC; and the remote clusters
from parent PC3. In pairwise crossover, clusters codified in different parents are
paired according to the similarities of their centroids. Offspring is then generated
by randomly taking one centroid from each pair of clusters. In the largest partition
operator, y centroids are selected by a greedy heuristic based on the assumption
that larger clusters are more important than smaller ones. Finally, they evaluate
the pairwise nearest neighbor crossover operator that considers that the 2k cen-
troids from parents PC7 and PC5 can be clustered into k clusters that will form
the offspring. All the crossover operators previously described by the authors are
context-sensitive, except for centroid distance, which can be viewed as a variant of
the single point crossover. They argue that the pairwise nearest neighbor operator
is the best choice. Another work (Kivijarvi et al., 2003) used the same crossover
operators above in addition to a single point crossover operator.

128 Naldi et al.
5.3 Mutation

The best known mechanism for producing new variations on the population is muta-
tion. This operator randomly selects genes and modifies their values. In clustering,
the mutation usually works by moving objects between clusters (Murthy and Chowd-
hury, 1996). In Tseng et al. (Tseng and Yang, 2001), bits of the strings representing
the individuals are selected according to a given probability, and then changed either
from 0 to 1 or from 1 to 0. Conceptually speaking, generated clusters can be either
inserted into a given chromosome or eliminated from it.

One of the most used mutation operators consists of randomly selecting a cen-
troid/medoid to be replaced by an object from the dataset - according to a pre-
determined probability (Lucasius et al., 1993, Estivill-Castro, 1997, Sheng and Liu,
2004, Franti et al., 1997, Kivijarvi et al., 2003).

Some implementations alter the partition with the insertion/creation and re-
moval/agglomeration of clusters (Hall et al., 1999, Greene, 2003). An example are
the two mutation operators used in (Hruschka and Ebecken, 2003, Hruschka et al.,
2004). The first operator works only on genotypes that encode more than two clus-
ters. It eliminates a randomly chosen cluster, placing its objects into the nearest
remaining clusters (according to their centroids). The second mutation operator
splits a randomly selected cluster, which must be formed by at least two objects to
be eligible for this operator, into two new ones. The first cluster is formed by the
objects closer to the original centroid, whereas the other cluster is formed by those
objects closer to the farthest object from the centroid.

Another class of operators is based on the displacement of the clusters centroids
on the vectorial space. An operator of this class, proposed by Scheunders (Scheun-
ders, 1997), randomly adds either a negative or a positive constant (-1 or +1) to
a randomly chosen component of the centroid of a given cluster. The mutation of
clusters centers by the a similar procedure is investigated in (Maulik and Bandyopad-
hyay, 2000). A number ¢ in the range [0, 1] is generated with uniform distribution.
This number is then used to change the value v of a given gene to (1 £ 26)v, when
v # 0, or to +25 when v = 0. The signs “4” and “—” occur with equal probability.

A number of GAs combine two or more mutation operators to increase the
population diversity. An example is the GA described in (Merz and Zell, 2002),
which uses two distinct mutation operators. The first operator assigns a randomly
chosen dataset object to substitute a randomly chosen centroid. The second operator
randomly selects two clusters C; and Cj. Then, the object belonging to C; with the
maximum distance from its centroid is chosen to replace the centroid of Cj.

Another example is the algorithm EvoCluster (Ma et al., 2006) which has six mu-
tation operators. Similarly to the operators used in (Hruschka and Ebecken, 2003),
these operators essentially split, merge, and eliminate groups. However, differently
from the previous operators, EvoCluster’s mutation operators can be simultaneously
applied to multiple clusters of the same partition. Besides, they can be probabilis-
tically guided by information concerning the quality of the individual clusters in a
given partition.

Genetic Clustering for Data Mining 129
6 Some Related Works and Applications

GAs have been successfully used as clustering techniques in many applications, such
as image processing (Hall et al., 1999, Kivijarvi et al., 2003), classification of pixels
of satellite image (Bandyopadhyay and Maulik, 2002), gene expression analysis (Pan
et al., 2003), crude oil analysis (Murthy and Chowdhury, 1996, Maulik and Bandy-
opadhyay, 2000) and intrusion detection in computer networks (Liu et al., 2004),
just to mention a few.

Several works combine the use of GAs with other clustering techniques, e. g. by
employing a GA to select characteristics of the database to be clusted (Ohtsuka et
al., 2002) or initial clusters for these techniques (Maulik and Bandyopadhyay, 2000).
A method that combines a Bayesian feature selection approach with a clustering
genetic algorithm to get classification rules is described in (Hruschka and Ebecken,
2003). In (Hruschka and Ebecken, 2006), a clustering genetic algorithm is applied
to extract rules from multilayer perceptrons trained in classification problems.

7 Conclusion

This text presents a survey on the use of Genetic Algorithms for clustering. GAs
can represent different types of clustering partitions while being able to adopt a
wide variety of fitness functions as objective functions based on clustering validity
criteria. The combination of several desirable optimization skills makes GAs able to
be applied to many clustering problems from a large number of application areas.

Most of the objective functions involved in clustering and measures employed for
clustering validation are based on different inductive biases, which can favor datasets
with particular characteristics. Thus, it is worth stressing that the selection of a
proper fitness function to the problem in hand is important to obtain the desired
results.

Current research has focused on more efficient cluster representations and con-
text sensitive genetic operators. The study of fitness and objective functions is also
an important research area on GAs applied to clustering problems.

Acknowledgements

The authors would like to thank CNPq, FAPESP and FINEP for the support re-
ceived during this work.

References

Baker, J.E., (1987), Reducing bias and inefficiency in the selection algorithm. Pro-
ceedings of the Second International Conference on Genetic Algorithms and
their Application, pp. 14-21.

Bandyopadhyay, S., Maulik, U., (2001), Nonparametric genetic clustering: Compar-
ison of validity indices. Systems, Man and Cybernetics, Part C, IEEE Trans-
actions on : Applications and Reviews. 31(1): 120-125.

130 Naldi et al.

Bandyopadhyay, S., Maulik, U., (2002), An evolutionary technique based on k-
means algorithm for optimal clustering in rn. Inf. Sci. Appl. 146(1-4): 221-237.

Belew, R.K., Booker, L.B., (1991), eds., Solving Partitioning Problems with Ge-
netic Algorithms. In Belew, R.K., Booker, L.B., eds.: ICGA, Morgan Kauf-
mann.

Bezdek, J.C., Boggavaparu, S., Hall, L.O., (1994), Bensaid, A., Genetic algorithm
guided clustering. Procedings of the First IEEE Conference on Evolutionary
Computation: 34-40.

Calinski, T., Harabasz, J., (1974), A dendrite method for cluster analysis. Com-
munications in statistics 3(1): 1-27.

Casillas, A., de Lena, M.T.G., Martnez, R., (2003), Document clustering into an
unknown number of clusters using a genetic algorithm. Lecture Notes in Com-
puter Science 2807: 43-49.

Cole, R.M., (1998), Clustering with Genetic Algorithms. PhD thesis, Department
of Computer Science, University of Western Australia.

Cowgill, M.C., Harvey, R.J., Watson, L.T., (1998), A genetic algorithm approach
to cluster analysis. Technical report, Virginia Polytechnic Institute & State
University, Blacksburg, VA, USA.

Darwin, C., (2006), The Origin of Species: A Variorum Text. University of Penn-
sylvania Press.

Davies, D., Bouldin, D.W., (1979), A cluster separation measure. IEEE Transac-
tions of Pattern Analysis and Machine Intelligence 1: 224-227.

Duda, R., Hart, P., Stork, D., (2001), Pattern Classification. John Wiley & Sons.

Dunn, J., (1973), A fuzzy relative of the isodata process and its use in detecting
compact well-separated clusters. J. Cybern 3: 32-57.

Estivill-Castro, V., (1997), Spatial clustering for data mining with genetic algo-
rithms. Technical report, Australia.

Everitt, B., Landau, S., Leese, M., (2001), Cluster Analysis, Arnold Publishers.
Arnold Publishers.

Franti, P., Kivijarvi, J., Kaukoranta, T., Nevalainen, O., (1997), Genetic algorithms
for large scale clustering problems. The Computer Journal 40: 547-554.

Freitas, A. (2005), Evolutionary Algorithms for Data Mining. in Oded Maimon,
Lior Rokach (Eds.), The Data Mining and Knowledge Discovery Handbook,
Springer, pp. 435-467.

Goldberg, D., (1989), Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley.

Greene, W.A., (2003), Unsupervised hierarchical clustering via a genetic algorithm.
In: Proceedings of the 2003 Congress on Evolutionary Computation, IEEE
Press, pp. 998-1005.

Grefenstette, J., (2000), Proportional selection and sampling algorithms. In: Evo-
lutionary Computation 1. Institute of physics publishing, pp. 172-180.

Halkidi, M., Batistakis, Y., Vazirgiannis, M., (2001), On clustering validation tech-
niques. Intelligent Information Systems Journal 17(2-3): 107-145.

Hall, L., Ozyurt, B., Bezdek, J., (1999), Clustering with a genetically optimized
approach. IEEE Transations on Evolutionary Computation. 3: 103-112.

Holland, J., (1975), Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor.

Hruschka, E.R., Campello, R.J.G.B., de Castro, L.N., (2004), Improving the effi-
ciency of a clustering genetic algorithm. In: Advances in Artificial Intelligence

Genetic Clustering for Data Mining 131

- IBERAMIA 2004: 9th Ibero-American Conference on AI, Puebla, Mexico,
November 22-25. Proceedings. Volume 3315., Springer-Verlag GmbH, Lecture
Notes in Computer Science, pp.861-868.

Hruschka, E.R., Ebecken, N.F.F.; (2003), A genetic algorithm for cluster analysis.
Intelligent Data Analysis 7(1): 15-25.

Hruschka, E.R., Ebecken, N.F.F., (2003), A feature selection bayesian approach
for extracting classification rules with a clustering genetic algorithm. Applied
Artificial Intelligence 17(5-6): 489-506.

Hruschka, E.R., Ebecken, N.F.F., (2006), Extracting rules from multilayer percep-
trons in classification problems: A clustering-based approach. Neurocomputing
70: 384-397.

Jain, A.K., Murty, M.N., Flynn, P.J., (1999), Data clustering: a review. ACM
Computing Surveys 31(3): 264-323.

Jain, A., Dubes, R., (1988), Algorithms for Clustering Data. Prentice Hall.
Kaufman, L., Rousseeuw, P., (1990), Finding groups in data: An introduction to
cluster analysis. Wiley Series in Probability and Mathematical Statistics.
Kivijarvi, J., Franti, P., Nevalainen, O., (2003), Self-adaptive genetic algorithm for

clustering. Journal of Heuristics 9(2): 113-129.

Korkmaz, E.E., Du, J., Alhajj, R., Barker, K., (2006), Combining advantages of
new chromosome representation scheme and multi-objective genetic algorithms
for better clustering. Intell. Data Anal. 10(2): 163-182.

Krovi, R., (1992), Genetic algorithms for clustering: a preliminary investigation.
System Sciences, 1992. Proceedings of the Twenty-Fifth Hawaii International
Conference on 4: 540-544.

Kuncheva, L., Bezdek, J.C., (1997), Selection of cluster prototypes from data by
a genetic algorithm. Procedings of the 5th European Congress on Intelligent
Techniques and Soft Computing, pp. 1683—-1688.

Liu, Y., Chen, K., Liao, X., Zhang, W., (2004), A genetic clustering method for
intrusion detection. Pattern Recognition 37(5): 927-942.

Lucasius, C.B., Dane, A.D., Kateman, G., (1993), On k-medoid clustering of large
data sets with the aid of a genetic algorithm: background, feasibility and com-
parison. Analytica Chimica Acta, pp. 647-669.

Ma, P.C.H., Chan, K.C.C., Yao, X., Chiu, D.K.Y., (2006), An evolutionary clus-
tering algorithm for gene expression microarray data analysis. IEEE Trans.
Evolutionary Computations 10(3): 296-314.

Maulik, U., Bandyopadhyay, S., (2000), Genetic algorithm-based clustering tech-
nique. Pattern Recognition 33: 1455 — 1465.

Merz, P., Zell, A.; (2002), Clustering gene expression profiles with memetic algo-
rithms. In: PPSN VII: Proceedings of the 7th International Conference on
Parallel Problem Solving from Nature, London, UK, Springer-Verlag, pp. 811—
820.

Milligan, G.W., Cooper, M.C., (1985), An examination of procedures for determin-
ing the number of clusters in a data set. Psychometrika 50: 159-179.

Mitchell, M., (1999), An introduction to Genetic Algorithms. MIT Press.

Murthy, C.A., Chowdhury, N., (1996), In search of optimal clusters using genetic
algorithms. Pattern Recogn. Lett. 17(8): 825 — 832.

Ohtsuka, A., Kamiura, N., Isokawa, T., Matsui, N., (2002), On detection of con-
fused blood samples using self organizing maps and genetic algorithm. In:
Neural Information Processing, 2002. ICONIP ’02. Proceedings of the 9th In-

132 Naldi et al.

ternational Conference on. Volume 5., Department of Computer Science and
Tllinois Genetic Algorithms Laboratory, 2233 — 2238.

Pal, N., Bezdek, J., (1995), On cluster validity for the fuzzy c-means model. IEEE
Transactions of Fuzzy Systems 3(3):370-379.

Pan, H., Zhu, J., Han, D., (2003), Genetic algorithms applied to multi-class cluster-
ing for gene expression data. Genomics, Proteomics and Bioinformatics 1(4):
279-287.

Rousseeuw, P.J., (1987), Silhouettes: a graphical aid to the interpretation and vali-
dation of cluster analysis. Journal of Computational and Applied Mathematics
20:53-65.

Scheunders, P., (1997), A genetic c-means clustering algorithm applied to color
image quantization. Pattern Recognition 30(6): 859-866.

Sheng, W., Liu, X., (2004), A hybrid algorithm for k-medoid clustering of large data
sets. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation,
Portland, Oregon, IEEE Press, pp. 77-82.

Tseng, L., Yang, S.B., (2001), A genetic approach to the automatic clustering
problem. Pattern Recognition 34:415-424.

Discovering New Rule Induction Algorithms
with Grammar-based Genetic Programming

Gisele L. Pappa and Alex A. Freitas

Computing Laboratory

University of Kent

Canterbury, Kent, CT2 7TNF, UK
glp6, A.A.Freitas@kent.ac.uk
http://www.cs.kent.ac.uk/~aaf

Summary. Rule induction is a data mining technique used to extract classification
rules of the form IF (conditions) THEN (predicted class) from data. The majority of
the rule induction algorithms found in the literature follow the sequential covering
strategy, which essentially induces one rule at a time until (almost) all the training
data is covered by the induced rule set. This strategy describes a basic algorithm
composed by several key elements, which can be modified and/or extended to gener-
ate new and better rule induction algorithms. With this in mind, this work proposes
the use of a grammar-based genetic programming (GGP) algorithm to automati-
cally discover new sequential covering algorithms. The proposed system is evaluated
using 20 data sets, and the automatically-discovered rule induction algorithms are
compared with four well-known human-designed rule induction algorithms. Results
showed that the GGP system is a promising approach to effectively discover new
sequential covering algorithms.

1 Introduction

In the classification task of data mining, one way of representing the knowledge
discovered by the data mining algorithm consists of a set of classification rules, where
each rule has the form: IF (conditions) THEN (predicted class). This knowledge
representation has the advantage of being intuitively comprehensible to the user
(Iglesia et al., 1996).

There are a number of rule induction algorithms that have been proposed to
discover such classification rules (Firnkranz, 1999, Mitchell, 1997). A particularly
popular strategy consists of the sequential covering approach, where in essence the
algorithm discovers one rule at a time until (almost) all examples are covered by the
discovered rules (i.e., match the conditions of at least one rule). Sequential covering
rule induction algorithms are typically greedy, performing a local search in the rule
space.

An alternative approach to discover classification rules consists of using an evo-
lutionary algorithm (EA), which performs a more global search in the rule space.

134 Gisele Pappa et al.

Indeed, there are also a number of EAs for discovering a set of classification rules
from a given data set (Freitas, 2002).

In this chapter, however, we propose a very different and pioneering way of using
an EA in the context of classification rule discovery. We propose a grammar-based
genetic programming (GGP) system that automatically discovers new sequential
covering rule induction algorithms (rather than rules). The discovered rule induc-
tion algorithms are generic and robust enough to be applicable to virtually any
classification data set in any application domain, in the same way that a manually-
designed rule induction algorithm is generic and robust enough to be applicable to
virtually any classification data set.

The proposed method allows the automatic discovery of new rule induction al-
gorithms potentially quite different from conventional, manually-designed rule in-
duction algorithms. Hence, the automatically-discovered rule induction algorithms
can avoid some of the human preconceptions and biases embedded in manually-
designed rule induction algorithms, possibly leading to more effective algorithms in
challenging application domains.

The first version of the proposed GGP system and its corresponding computa-
tional results have been previously published in (Pappa and Freitas, 2006). Nonethe-
less, one limitation of that version is that the evolved rule induction algorithms
could cope only with nominal (categorical) attributes, and not with continuous
(real-valued) attributes. In this chapter we describe a new, extended version of
the system, which can cope with both nominal and continuous attributes. This new
characteristic introduced into the system makes it now suitable for a larger variety
of classification data sets, and this fact is reflected in the greater number of data
sets used to evaluate the system, namely 20 data sets, whereas our first experiments
reported in (Pappa and Freitas, 2006) used only 11 data sets. In addition, this chap-
ter shows and discusses in detail one of the rule induction algorithms automatically
generated by the GGP system, a result that was not reported in (Pappa and Freitas,
2006).

The remainder of this chapter is organized as follows. Section 2 briefly discusses
rule induction algorithms. Section 3 gives a brief overview of GGP. Section 4 in-
troduces the proposed GGP. Section 5 reports the results of several computational
experiments. Finally, Section 6 presents the conclusions and describes future research
directions.

2 Sequential Covering Rule Induction Algorithms

The sequential covering strategy (also known as separate and conquer) is certainly
the most explored and most used strategy to induce rules from data. It was first
employed by the algorithms of the AQ family (Michalski, 1969) in the late sixties, and
over the years was applied again and again as the basic algorithm in rule induction
systems.

The separate and conquer strategy works as follows. It learns a rule from a
training set, removes from it the examples covered by the rule, and recursively learns
another rule which covers the remaining examples. A rule is said to cover an example
e when all the conditions in the antecedent of the rule are satisfied by the example e.
For instance, the rule “IF (salary > £ 100,000) THEN rich” covers all the examples

Discovering Rule Induction Algorithms with Genetic Programming 135

in the training set in which the value of salary is greater than £100,000, regardless
of the current value of the class attribute of an example. The learning process goes
on until a pre-defined criterion is satisfied. This criterion usually requires that all or
almost all examples in the training set are covered by a rule.

Algorithms following the sequential covering approach usually differ from each
other in four main elements: the representation of the candidate rules, the search
mechanisms used to explore the space of candidate rules, the way the candidate
rules are evaluated and the pruning method, although the last one can be absent
(Firnkranz, 1999, Witten and Frank, 2005).

Considering the first of these four rule induction algorithms elements, the rule
representation has a significant influence in the learning process, since some concepts
can be easily expressed in one representation but hardly expressed in others. The
most common rule representations used by rule induction algorithms are proposi-
tional or first order logic.

The next two elements found in rule induction algorithms determine how the
algorithm will explore the space of candidate rules. The first of them, i.e., the
search mechanism, is composed by two components: a search strategy and a search
method. The search strategy determines the region of the search space where the
search starts and its direction, while the search method specifies which specializa-
tions/generalizations should be considered.

Broadly speaking, there are three kinds of search strategies: bottom-up, top-
down and bi-directional. A bottom-up strategy starts the search with a very specific
rule, and iteratively generalizes it. A top-down strategy, in contrast, starts the search
with the most general rule and iteratively specializes it. The most general rule is the
one that covers all examples in the training set (because it has an empty antecedent,
which is always satisfied for any example). At last, a bi-directional search is allowed
to generalize or specialize the candidate rules.

Any of these search strategies is complemented with a search method. The
search method is a very important part of a rule induction algorithm since it de-
termines which specializations/generalizations will be considered at each specializa-
tion/generalizations step. Too many specializations/generalizations are not allowed
due to computational time, but too few may disregard good conditions and reduce
the chances of finding a good rule. Among the available search methods are the
greedy search and the beam search.

The search method is guided by a rule evaluation heuristic, which is the second
component found in rule induction algorithms which has influence in the way the rule
space is explored. The regions of the search space being explored by a rule induction
algorithm can drastically change according to the heuristic chosen to assess a rule
while it is being built. Among the heuristics used to estimate the quality of a rule
are the information content, information gain, Laplace correction, m-estimate, ls-
content, among others (Firnkranz, 1999).

The first algorithms developed using the sequential covering approach were com-
posed by the three components described so far: a rule representation, a search strat-
egy and a evaluation heuristic. However, these first algorithms searched the data for
complete and consistent rule sets. It means they were looking for rules that covered
all the examples in the training set (complete) and that covered no negative exam-
ples (consistent). These are not common characteristics of any real-world data sets.
Hence, pruning methods were introduced to sequential covering algorithms to avoid
over-fitting and to handle noisy data.

136 Gisele Pappa et al.

Pruning methods are divided in two categories: pre- and post-pruning. Pre-
pruning methods stop the refinement of the rules before they become too specific or
over-fit the data, while post-pruning methods first produce a complete and consistent
rule or rule set, and later try to simplify it. When comparing pre- and post-pruning
techniques, each of them has its advantages and pitfalls. Though pre-pruning tech-
niques are faster, post-pruning techniques usually produce simpler and more accu-
rate models (at the expense of inefficiency, since some rules are learned and then
simply discarded from the model).

In an attempt to solve the problems caused by pre- and post-pruning techniques,
some methods combine or integrate them to get the best of both worlds. Some of
these systems, for instance, prune each rule right after it is created, instead of waiting
for the complete model to be generated (Cohen, 1995).

This section briefly described the main elements which compose a sequential
covering rule induction algorithm. Knowledge about these elements and the variety
of ways they can be implemented was the base to build the grammar used by the
GGP system described in Section 4. For a more complete survey of sequential cover-
ing rule induction algorithms and its components the user is referred to (Fiirnkranz,
1999, Mitchell, 1997, Witten and Frank, 2005).

3 Grammar-based Genetic Programming

Genetic Programming (GP) (Koza, 1992) is an area of evolutionary computation
which aims to automatically evolve computer programs. It works by following Dar-
win’s principle of selection and survival of the fittest, and can be easily adapted
to solve a variety of problems. GP’s success is backed up by a list of 36 human-
competitive solutions, where two created patentable new inventions (gp.org).

Grammar-based Genetic Programming (GGP) is a variation of the classical GP
method and, as its name indicates, the main difference among GGP and GP is that
the former uses a grammar to create the population of candidate solutions for the
targeted problem. The main advantage of using a grammar together with a GP
system is that it can include previous knowledge about how the target problem is
solved, and so be used to guide the GP search. Moreover, GGP solves a well-known
problem in the GP literature, called closure®.

Grammars (Aho et al, 1986) are simple mechanisms capable of representing
very complex structures. Their formal definition was first given by Chomsky in
1950. According to Chomsky, a grammar can be represented by a four-tuple {N,
T, P, S}, where N is a set of non-terminals, T is a set of terminals, P is a set
of production rules, and S (a member of N) is the start symbol. The production
rules define the language which the grammar represents by combining the grammar
symbols.

In this work we are specially interested in context-free grammars (CFG). CFGs
are the class of grammars most commonly used with genetic programming, and
they are usually described using the Backus Naur Form (BNF) (Naur, 1963).

L A traditional GP system creates individuals by combining a set of functions and
terminals. The closure property states that every function in the GP function
set has to be able to process any value it receives as input. For further details
see (Banzhaf et al., 1998).

Discovering Rule Induction Algorithms with Genetic Programming 137

According to the BNF notation, production rules have the form <expr> ::=
<expr><op><expr>, and symbols wrapped in “<>" represent the non-terminals
of the grammar. Three special symbols might be used for writing the production
rules in BNF: “” “[]” and “()”. “|” represents a choice, like in <var> ::=x|y, where
<war> generates the symbol z or y. “[|” wraps an optional symbol which may or
may not be generated when applying the rule. “()”is used to group a set of choices
together, like in x ::= k(y|z), where = generates k followed by y or z. The application
of a production rule from p € P to some non-terminal n € N is called a derivation
step, and it is represented by the symbol =.

Once a grammar that includes background knowledge about the target problem
has been defined by the user, a GGP system follows the pseudo-code defined in
Algorithm 1.

Algorithm 1: Basic pseudo-code for a GGP system

Define a representation for the individuals

Define parameters such as population size, number of generations, crossover,

mutation and reproduction rates

Generate the first GGP population based on the production rules of the

grammar

while maximum number of generations not reached do
Evaluate the individuals using a pre-defined fitness function
Select the best individuals, according to the fitness function, to breed
Perform crossover, mutation and reproduction operations with the
selected individuals, always producing offspring which are also valid
according to the defined grammar

Return individual with best fitness

Note that each individual represents a candidate solution to the target problem.
Hence, since we use a GGP to automatically evolve rule induction algorithms, each
individual is a rule induction algorithm, and the grammar gathers knowledge about
how rule induction algorithms were previously developed.

4 Discovering New Rule Induction Algorithms

This section describes an extended version of the GGP method proposed in (Pappa
and Freitas, 2006). As explained before, the main difference between the method
described here and the one described in (Pappa and Freitas, 2006) is that, while
the latter could only cope with nominal attributes, the former can cope with both
nominal and numerical attributes.

In summary, the proposed GGP works as follows. It creates the first population
of individuals based on the production rules of a grammar, which is used to guide the
search for new rule induction algorithms. In this population, each GGP individual
represents a complete sequential-covering rule induction algorithm, such as CN2
(Clark and Boswell, 1991). As the GGP system is based on the principle of survival
of the fittest, a fitness function is associated with each individual in the population,

138 Gisele Pappa et al.

and used to select a subset of them (through a tournament selection of size 2) to
breed and undergo crossover, mutation and reproduction operations. The individuals
generated by these operations (which also have to be valid according to the grammar
being used) are inserted into a new population, representing a new generation of
evolved individuals. The evolution process is carried out until a maximum number
of generations is reached.

Note that the main modifications introduced to the system in order to cope with
numerical attributes are related to the terminals of the grammar and the way they
are implemented. Hence, in this section, we first present the grammar introduced
in (Pappa and Freitas, 2006), emphasizing its components which cannot be found in
traditional rule induction algorithms, and then we present the modifications neces-
sary to make it cope with numerical attributes. Following the grammar description,
we show an example of an individual which can be evolved by the system, and then
describe the individuals’ evaluation process. Finally, we explain how the evolutionary
operators were implemented.

4.1 The grammar

In a GGP system, the grammar is the element which determines the search space
of the candidate solutions for a target problem. Hence, in the GGP system pro-
posed here, the grammar contains previous knowledge about how humans design
rule induction algorithms, plus some new concepts which were borrowed from other
data mining paradigms or created by the authors (and that to the best of the au-
thors’ knowledge were never used in the design of sequential-covering rule induction
algorithms).

The proposed grammar is presented in Table 1. It uses the BNF terminology
introduced earlier, and its Start symbol is represented by the non-terminal with the
same name. Recall that non-terminals are wrapped into <> symbols, and each of
them originates a production rule. Grammar symbols not presented between <>
are terminals. In the context of rule induction algorithms, the set of non-terminals
and terminals are divided into two subsets. The first subset includes general pro-
gramming elements, like if statements and for/while loops, while the second subset
includes components directly related to rule induction algorithms, such as Refine Rule
or PruneRule.

The non-terminals in the grammar represent high-level operations, like a while
loop (whileLoop) or the procedure performed to refine a rule (RefineRule). The
terminals, in turn, represent a very specific operation, like Add1, which adds one
condition-at-a~time to a candidate rule during the rule refinement process (Re-
fineRule). Terminals are always associated with a building block. A building block
represents an “atomic operation” (from the grammar’s viewpoint) which does not
need any more refinements. Building blocks will be very useful during the phase of
rule induction code generation, as each of them is associated with a chunk of Java
code.

As observed in Table 1, the grammar contains 26 non-terminals (NT),
where each NT can generate one or more production rules. Recall that in
the BNF notation, used to describe the grammar in Table 1, the symbol “|”
separates different production rules, and the symbol “[]” wraps an optional
symbol (which may or may not be generated when applying the rule). For

Discovering Rule Induction Algorithms with Genetic Programming 139

Table 1. The grammar used by the GGP (adapted from (Pappa and Freitas, 2006))

10-
11-

12-

13-
14-
15-
16-
17-
18-
19-
20-
21-

22-
23-
24-
25-
26-

<Start> ::= (<CreateRuleSet>|<CreateRuleList>) [<PostProcess>].
<CreateRuleSet> ::= forEachClass <whileLoop> endFor
<RuleSetTest>.
<CreateRulelList> ::= <whileLoop> <RuleListTest>.
<whileLoop>::= while <condWhile> <CreateOneRule> endWhile.
<condWhile>: := uncoveredNotEmpty |uncoveredGreater
(101 201 90%| 95%| 97%| 99%) trainEx.
<RuleSetTest> ::= lsContent |confidencelLaplace.
<RuleListTest>::= appendRule | prependRule.
<CreateOneRule>::= <InitializeRule> <innerWhile> [<PrePruneRule>]
[<RuleStoppingCriterion>].
<InitializeRule> ::= emptyRule| randomExample| typicalExample |
<MakeFirstRule>.
<MakeFirstRule> ::= NumCondl| NumCond2| NumCond3| NumCond4.
<innerWhile> ::= while (candNotEmpty| negNotCovered)
<FindRule> endWhile.
<FindRule> ::= (<RefineRule>|<innerIf>) <EvaluateRule>
[<StoppingCriterion>] <SelectCandidateRules>.
<innerIf> ::= if <condIf> then <RefineRule> else <RefineRule>.
<condIf> ::= <condIfExamples> | <condIfRule>.
<condIfRule> ::= ruleSizeSmaller (2| 3| 5| 7).
<condIfExamples> ::= numCovExp (>| <) (90%| 95%| 99%).
<RefineRule> ::= <AddCond>| <RemoveCond>.
<AddCond> ::= Add1| Add2.
<RemoveCond>: := Removel| Remove2.
<EvaluateRule>::= confidence | Laplace| infoContent| infoGain.
<StoppingCriterion> ::= MinAccuracy (0.6| 0.7| 0.8)]
SignificanceTest (0.1] 0.05| 0.025] 0.01)
<SelectCandidateRules> ::= 1CR| 2CR| 3CR| 4CR| 5CR| 8CR| 10CR.
<PrePruneRule> ::= (1Cond| LastCond| FinalSeqCond) <EvaluateRule>.
<RuleStoppingCriterion> ::= accuracyStop (0.5| 0.6] 0.7).
<PostProcess> ::= RemoveRule EvaluateModel| <RemoveCondRule>.
<RemoveCondRule> ::= (1Cond| 2Cond| FinalSeq) <EvaluateRule>.

instance, the NT Start generates four production rules: CreateRuleList, Cre-
ateRuleSet, CreateRuleList PostProcess and CreateRuleSet PostProcess. In to-
tal, the grammar has 83 production rules, which were carefully generated after
a comprehensive study of the main elements of the pseudo-codes of basic rule
induction algorithms, which follow the basic process described in Section 2.

In this section, we focus on the new components of the grammar, which are
usually not found in traditional rule induction algorithms. The major “new”
components inserted to the grammar are:

140 Gisele Pappa et al.

e The terminal typicalExample, which creates a new rule using the concept
of typicality, borrowed from the instance-based learning literature (Zhang,
1992). An example is said to be typical if it is very similar to the other
examples belonging to the same class it belongs to, and not similar to
the other examples belonging to other classes. In other words, a typical
example has high intra-class similarity and low inter-class similarity.

e The non-terminal MakeFirstRule, which allows the first rule to be initial-
ized with one, two, three or four attribute-value pairs, selected probabilis-
tically from the training data in proportion to their frequency. Attribute-
value pairs are selected subject to the restriction that they involve different
attributes (to prevent inconsistent rules such as “sex = male AND sex =
female”).

e The non-terminal innerlf, which allows rules to be refined in different
ways (e.g. adding or removing one or two conditions-at-a-time to/from
the rule) according to the number of conditions they have, or the number
of examples the rule list/set covers.

e Although some methods do use rule look-ahead, i.e., they do insert more
than one condition-at-a-time to a set of candidate rules, we did not find in
the literature any rule induction algorithm which removes two conditions-
at-a-time from a rule. This is implemented by the terminal Remove2.

Note that the list above shows a set of single components which are new
“building blocks” of rule induction algorithms. These components increase the
diversity of the candidate rule induction algorithms considerably, but it is the
combination of the “standard” and new components which will potentially
contribute to the creation of a new rule induction algorithm different from
conventional algorithms.

As it will be discussed in Section 4.3, the individuals generated by follow-
ing the production rules of the grammar are converted into executable rule
induction algorithms by using a GGP/Java interface, which reads out an in-
dividual and puts together chunks of code associated with the terminals and
non-terminals of the grammar contained in that individual.

Hence, in order to modify the grammar and make it cope with data sets
containing numerical attributes, the main modifications are introduced in
some chunks of Java code associated with the terminals of the grammar. The
terminals whose implementation went through major extensions were the ones
responsible for refining rules by adding/removing conditions to/from it. They
were extended in a way that they can produce algorithms that represent rule
conditions of the form “<attribute, operator, value>", where operator is “="
in the case of nominal attributes, and operator is “>" or “<” in the case of
numerical attributes.

The approach followed by these terminals to generate rule conditions with
numerical attributes is similar to the one implemented by the Ripper and
(C4.5 algorithms, where the values of a numerical attribute are sorted, and all
threshold values considered. The best threshold value is chosen according to

Discovering Rule Induction Algorithms with Genetic Programming 141

CreateRule
List

whileLoop

RuleList
Test

endWhile

appendRule

uncovered

NotEmpty accuracyStop 0.7

whileCand
NotEmpty

RefineRule

endWhile

Evaluate SelectCandidate
Rule Rule

Laplace SCR

emptyRule

AddCond

Add2

Fig. 1. Example of a GGP Individual (a complete rule induction algorithm)

the information gain associated with that attribute-value pair - see (Witten
and Frank, 2005) or (Quinlan, 1993) for details.

By applying the production rules defined by the grammar, the GGP system
can generate up to approximately 5 billion different rule induction algorithms
(Pappa, 2007). Each of these rule induction algorithms can be represented
by an individual in the GGP population. The next section explains how the
individuals extracted from the grammar are represented in the proposed GGP
system.

4.2 Individual Representation

In a GGP system, each individual represents a candidate solution for the
problem being tackled. In this work, each individual represents a complete
rule induction algorithm following the sequential covering approach, which
can be applied to generate rules for any classification data set.

Figure 1 shows an example of an individual generated by the grammar
presented in the previous section. The root of the tree is the non-terminal
Start. The tree is then derived by the application of production rules for

142 Gisele Pappa et al.

each non-terminal. For example, Start (NT 1) generates the non-terminal
CreateRuleList (NT 3), which in turn produces the non-terminals while Loop
and RuleListTest. This process is repeated until all the leaf nodes of the tree
are terminals.

In order to extract from the tree the pseudo-code of the corresponding rule
induction algorithm, we read all the terminals (leaf-nodes) in the tree from
left to right. The tree in Figure 1, for example, represents the pseudo-code
described in Alg. 2 (shown at the end of Section 5), expressed at a high level
of abstraction.

4.3 Individual’s Evaluation

An evolutionary algorithm works by selecting the fittest individuals of a popu-
lation to reproduce and generate new offspring. Individuals are selected based
on how good their corresponding candidate solutions are to solve the target
problem. In our case, we need to evaluate how good a rule induction algorithm
is.

In the rule induction algorithm literature, comparing different classifica-
tion algorithms is not a straightforward process. There is a variety of metrics
which can be used to estimate how good a classifier is, including classification
accuracy, ROC analysis (Fawcett, 2003) and sensitivity /specificity. There are
studies comparing these different metrics, and showing advantages and dis-
advantages in using each of them (Flach, 2003, Caruana and Niculescu-Mizil,
2004). Nevertheless, as pointed out by Caruana and Niculescu-Mizil (Caruana
and Niculescu-Mizil, 2004), in supervised learning there is one ideal classifica-
tion model, and “we do not have performance metrics that will reliably assign
best performance to the probabilistic true model given finite validation data”.

Classification accuracy is still the most common metric used to compare
classifiers, although some authors tried to show the pitfalls of using classifi-
cation accuracy when evaluating induction algorithms (Provost et al., 1998)
— specially because it assumes equal misclassification costs and known class
distributions — and others tried to introduce ROC analysis as a more robust
standard measure. Based on these facts and on the idea of using a simpler
measure when first evaluating the individuals produced by the GGP, we chose
to use a measure based on accuracy to compose the fitness of the GGP system.

In this framework, a rule induction algorithm RI4 is said to outperform
a rule induction algorithm RIp if RI4 has better classification accuracy in
a set of classification problems. Thus, in order to evaluate the rule induction
algorithms being evolved, we selected a set of classification problems, and
created a meta-training set. The meta-training set consists of a set of data sets,
each of them divided as usual into (non-overlapping) training and validation
sets.

As illustrated in Figure 2, each individual in the GGP population is de-
coded into a rule induction algorithm using a GGP/Java interface. The Java
code is then compiled, and the resulting rule induction algorithm run in all the

Discovering Rule Induction Algorithms with Genetic Programming 143

GGP
Individual ini Rule idati
Training 1 Model 1 —® | Validation 1
Fitness * +
e Rule I
Rule Training 2 Validation 2
Interface Induction Model 2
GGP/Java !
Algorithm -
A
Training n M';g:ael n Validation n

Meta Training Set

Fig. 2. Fitness evaluation process of a GGP Individual

data sets belonging to the meta-training set. It is a conventional run where,
for each data set, a set or list of rules is built using the set of training examples
and evaluated using the set of validation examples. It is important to observe
that, during preliminary experiments with the GGP, we noticed that it was
suffering from a common problem found when solving predictive data min-
ing tasks: over-fitting. As the same training sets were being accessed by the
GGP over and over, the produced rule induction algorithms were over-fitting
these data sets. We solved this problem with a simple and effective solution
borrowed from the literature on GP for data mining (Bhattacharyya, 1998):
at each generation, the data used in the training and validation sets of the
data sets in the meta-training set are merged and randomly redistributed.
This means that, at each generation, the GGP individuals are evaluated in a
different set of validation data, helping to avoid over-fitting.

After the rule induction algorithm is run in all the data sets in the meta-
training set, the accuracy in the validation set and the rule lists/sets produced
for all data sets are returned. These two measures can be used to calculate a
fitness function. In this work, we used as the fitness function the average values
of the function described in Eq.(1) over all the data sets in the meta-training
set.

1—DefAcc;
Acc;—DefAcc;
DefAcc;

(1)

_ Acei—DefAce; i Ace. > DefAce;
fit; = i
, otherwise

According to the definition of fit;, where i denotes the id of a given data
set, if the accuracy obtained by the classifier is better than the default accu-
racy, the improvement over the default accuracy is normalized, by dividing the
absolute value of the improvement by the maximum possible improvement. In
the case of a drop in the accuracy with respect to the default accuracy, this
difference is normalized by dividing the negative value of the difference by the
maximum possible drop (the value of DefAcc;). The default accuracy for a
given data set is simply the accuracy obtained when using the most frequent

144 Gisele Pappa et al.

class in the training set to classify new examples in the validation (or test)
set.

The fitness values obtained by the process just described are used for
selecting the best individuals in the population, and passing them onto the
new generations. At the end of the evolution process, the individual with the
best fitness value is returned as the GGP’s final solution.

However, in order to verify if the newly created rule induction algorithm is
really effective, we have to test it in a new set of data sets, which where unseen
during the GGP’s evolution. This new set of data sets was named meta-test
set, and it is the accuracy obtained by the discovered rule induction algorithms
in these data sets which has to be taken into account when evaluating the GGP
system.

4.4 Evolutionary Operators

After individuals are generated and evaluated, they are selected to undergo
reproduction, crossover and mutation operations, according to used defined
probabilities. The reproduction operator simply copies the selected individual
to the new population, without any modifications. The crossover operator,
in contrast, involves two selected individuals, and swaps a selected subtree
between them. The mutation operator also selects a subtree of one selected
individual, and replace it by a new, randomly generated tree.

However, in GGP systems, the new individuals produced by the crossover
and mutation operators have to be consistent with the grammar. For instance,
when performing crossover the system cannot select a subtree with root Fval-
uateRule to be exchanged with a subtree with root SelectCandidateRules,
because this would create an invalid individual according to the grammar.

Therefore, crossover operations have to exchange subtrees whose roots
contain the same non-terminal. Mutation can be applied to a subtree rooted
at a non-terminal or applied to a terminal. In the former case, the subtree
undergoing mutation is replaced by a new subtree, produced by keeping the
same label in the root of the subtree and then generating the rest of the
subtree by a new sequence of applications of production rules, so producing
a new derivation subtree. When mutating terminals, the terminal undergoing
mutation is replaced by another “compatible” symbol, i.e., a terminal or non-
terminal which represents a valid application of the production rule whose
antecedent is that terminal’s parent in the derivation tree. The probability of
mutating a non-terminal is 90%, while the probability of mutating a terminal
is 10%.

Figure 3 shows an example of a crossover operation. Note that just part
of the individuals are shown, for the sake of simplicity. The process works
as follows. Parent 1 has a node probabilistically selected for crossover. In
the example illustrated, the chosen node is RefineRule. The node RefineRule
is then searched in the derivation tree of parent 2. As parent 2 has a node
named RefineRule, their subtrees are swapped, generating child 1 and child

Discovering Rule Induction Algorithms with Genetic Programming 145

Parent | Parent 2

Child | Child 2

Fig. 3. Example of Crossover in the proposed GGP

2. If RefineRule is not present in the tree of parent 2, a new non-terminal is
selected from the tree of parent 1. The GGP performs at most 10 attempts
to select a node which can be found in both parents. If after 10 attempts it
does not happen, both individuals undergo mutation operations.

5 Computational Results and Discussion

In order to test the effectiveness of the proposed GGP system to discover new
rule induction algorithms, we have to define two different sets of parameters:
(1) the parameters for the GGP system and (2) the data sets used during the
training phase of the system.

Table 2 shows the 20 data sets used in the experiments. The figures in the
column Fzamples indicate the number of examples present in the training and
validation data sets — numbers before and after the “/”, respectively, followed
by the number of nominal attributes, numerical attributes and classes. The
last column shows the default accuracy. It is important to note that during the
evolution of the rule induction algorithm by the GGP, for each data set in the
meta-training set, each candidate rule induction algorithm (i.e., each GGP
individual) is trained with 70% of the examples, and then validated in the

146 Gisele Pappa et al.

Table 2. Data sets used by the GGP

Data set Examples Noﬁciz.ltl)\lfléfrsler. Classes Def(’%gcc.
monks-2 169/432 6 - 2 67
monks-3 122/432 6 - 2 52
bal-scale-discr ~ 416,/209 4 - 3 46
lymph 98/50 18 - 4 54
Z00 71/28 16 - 7 43
glass 145/69 - 9 7 35.2
pima 513/255 - 8 2 65
hepatitis 104/51 14 6 2 78
vehicle 566/280 - 18 4 26
vowel 660/330 3 10 11 9
crx 461/229 9 6 2 67.7
segment 1540/770 - 19 7 14.3
sonar 139/69 - 60 2 53
heart-c 202/101 7 6 2 54.5
ionosphere 234/117 - 34 2 64
monks-1 124/432 6 - 2 50
mushroom 5416/2708 23 - 2 52
wisconsin 456/227 9 - 2 65
promoters 70/36 58 - 2 50
splice 2553/637 63 - 3 52

remaining 30%. In contrast, in the meta-test set, the evolved rule induction
algorithms are evaluated using a well-known 5-fold cross validation procedure
(Witten and Frank, 2005).

As our priority was to investigate the influence the GGP parameters have
in the quality of the rule induction algorithms produced, we first defined the
data sets which will be used in the GGP meta-training and meta-test sets.
However, it is not clear how many data sets should be used in each of these
meta-sets of data, or what would be the best criteria to distribute them into
these two meta-sets. Intuitively, the larger the number of data sets in the meta-
training set, the more robust the evolved rule induction algorithm should be.
On the other hand, the smaller the number of data sets in the meta-test set,
the less information we have about the ability of the evolved rule induction
algorithm to obtain a high predictive accuracy for data sets unseen during the
evolution of the algorithm.

As a reasonable compromise, the data sets in Table 2 were divided into 2
groups of 10 data sets each. The top 10 sets listed in Table 2 were inserted
into the meta-training set, while the bottom 10 data sets formed the meta-test
set. We selected the data sets which compose the meta-training set based on
the execution time of rule induction algorithms, so that we included in the
meta-training set the data sets leading to faster runs of the rule induction
algorithms.

Discovering Rule Induction Algorithms with Genetic Programming 147

After creating the meta-training and meta-test sets, we turned to the GGP
parameters: population size, number of generations and crossover, mutation
and reproduction rates. In all the experiments reported in this section the
population size is set to 100 and the number of generations to 30. These two
figures were chosen when evaluating the GGP evolution in preliminary experi-
ments, but are not optimized. Regarding crossover, mutation and reproduction
rates, GPs usually use a high rate of crossover and low rates of mutation and
reproduction. However, the balance between these three numbers is an open
question, and may be very problem dependent (Banzhaf et al., 1998).

In previous experiments, we set the value for the reproduction rate pa-
rameter to 0.05, and run the GGP with crossover /mutation rates of 0.5/0.45,
0.6/0.35, 0.7/0.25, 0.8/0.15 and 0.9/0.05, respectively. The results obtained
by the GGP when run with these different parameters configurations showed
that the system was robust to these variations, producing very similar results
with all the configurations. In the experiments reported in this section, the
crossover rate was set to 0.7 and the mutation rate to 0.25.

The results obtained by the GGP-derived rule induction algorithms (GGP-
RIs) were compared with four well-known rule induction algorithms: the or-
dered (Clark and Niblett, 1989) and unordered (Clark and Boswell, 1991)
versions of CN2, Ripper (Cohen, 1995) and C4.5Rules (Quinlan, 1993). Out
of these four algorithms, C4.5Rules is the only one which does not follow the
sequential covering approach, which is the approach followed by the GGP-RIs.
However, as C4.5Rules has been used as a benchmark algorithm for classifi-
cation problems for many years, we also included it in our set of baseline
comparison algorithms.

It is also important to observe that the current version of the grammar
does not include all the components present in Ripper, but does include all
the components present in both versions of CN2. In other words, the space of
candidate rule induction algorithms searched by the GGP includes CN2, but
it does not include C4.5Rules nor the complete version of Ripper.

Table 3 shows the average accuracy obtained by the rule induction algo-
rithms produced by the GGP in 5 different runs, followed by the results of
runs of Ordered-CN2, Unordered-CN2, Ripper and C4.5Rules (using default
parameter values in all these algorithms). Note that the results reported in
Table 3 are the ones obtained in the data sets belonging to the meta-test set
(containing data sets unseen during the GGP evolution), and were obtained
using a 5-fold cross-validation procedure for each data set. The results ob-
tained by the GGP in the data sets belonging to the meta-training set are not
reported here because, as these data sets were seen by the GGP many time
during evolution, it is not fair to compare them with any other algorithms.
The numbers after the symbol “+” are standard deviations. Results were com-
pared using a statistical t-test with significance level 0.01. Cells in dark gray
represent significant wins of the GGP-RIs against the corresponding baseline
algorithm, while light gray cells represent significant GGP-RIs’ losses.

148 Gisele Pappa et al.

Table 3. Comparing predictive accuracy rates (%) for the data sets in the meta-test
set

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Rules
crx 77.46+3.8 80.16 + 1.27 80.6 £ 0.93 84.37 £ 1.21 84.82 £+ 1.53
segment 95.06£0.26 95.38 + 0.28 BEIZEIEEN0RT 95.44 + 0.32 88.16 + 7.72
sonar 72.34£1.91 70.42 + 2.66 72.42 + 1.4 72.88 £ 4.83 72.4 £+ 2.68
heart-c 76.72+1.5 779 £1.96 77.54 £2.85 7753 £ 1.1 742+ 5.43
ionosphere 87.044+2.2 87.6 £ 2.76 90.52 + 2.03 89.61 £ 1.75 89.06 £ 2.71
monks-1 99.93£0.07 100 £ 0 1000 93.84 £293 100+0
mushroom 99.98+0.02 100 £ 0 100 £ 0 99.96 £+ 0.04

wisconsin 95.58+0.74 94.58 £+ 0.68 94.16 + 0.93 93.99 £ 0.63 95.9 £ 0.56
promoters 78.98+2.93 81.9 £ 4.65 74.72 4+ 4.86 78.18 £ 3.62 83.74 £ 3.46
splice 88.68+0.31 90.32 + 0.74 [FNS2EEI2I0A 93.88 + 0.41 89.66 + 0.78

In total, Table 3 contains 40 comparative results between GGP-RIs and
baseline algorithms — 10 data sets x 4 baseline classification algorithms. Out
of theses 40 cases, the accuracy of GGP-RIs was statistically better than the
accuracy of a baseline algorithm in three cases, whilst the opposite was true
in one case. In the other 36 cases there was no significant difference.

The GGP-RIs’ predictive accuracies are statistically better than the
C4.5Rules’ accuracy in mushroom and Unordered-CN2’s accuracy in segment
and splice. Naturally, these three cases involve algorithms with the worst ac-
curacy for the respective data set. It is also in a comparison among Ripper
and the GGP-RIs in splice where the GGP-RIs obtain a significantly worse
accuracy than Ripper.

Hence, these experiments lead us to conclude that the GGP-RIs can eas-
ily outperform classifiers which are not competitive with the other baseline
algorithms. For example, in splice the predictive accuracy of Unordered-CN2
is 74.82 + 2.94, while the other algorithms obtain accuracies close to 90%. In
this case, the GGP-RIs can easily find a better accuracy than the one found
by Unordered-CN2.

On the other hand, we can say that the GGP was not able to find a rule
induction algorithm good enough to outperform the predictive accuracies of
Ripper in splice because it did not have all the components necessary to do
that in its grammar. However, note that the accuracy obtained by Ripper
in splice is also statistically better than the ones obtained by C4.5Rules and
Ordered-CN2 when applying a t-test with 0.01 significance level.

Finally, recall that the search space of the GGP includes both Unordered
and Ordered CN2. Hence, it seems fair to expect that the GGP-RIs would
never obtain a predictive accuracy significantly worse than either version of
CN2. Indeed, this was the case in the experiments reported in Table 3, where
the GGP-RIs significantly outperformed Unordered-CN2 in two cases (dark

Discovering Rule Induction Algorithms with Genetic Programming 149

Algorithm 2: Example of a Decision List Algorithm created by the
GGP
RuleList = 0
repeat
bestRule = an empty rule
candidateRules = ()
candidateRules = candidateRules U bestRule
while candidateRules # () do
newCandidateRules = ()

for each candidateRule CR do
L Add 2 conditions-at-a-time to CR

Evaluate CR using the Laplace estimation
newCandidateRules = newCandidateRules U CR
candidateRules = 5 best rules selected from newCandidateRules
bestRule’ = best rule in candidateRules
| if Laplace(bestRule’)> Laplace(bestRule) then bestRule = bestRule’
if accuracy(bestRule) < 0.7 then break

else RuleList = RuleList U bestRule
until all examples in the training set are covered

gray cells in that table), and there was no case where either version of CN2
significantly outperformed the GGP-RIs.

So far we have shown that the evolved GGP-RIs are competitive to tradi-
tional human-designed rule induction algorithms. But how similar the former
are to the latter? Out of the 5 GGP-RIs produced by the experiments de-
scribed in this section (corresponding to 5 runs of the GGP with a different
random seed in each run), 3 shared one relatively uncommon characteristic:
they added two conditions instead of one condition at-a-time to an empty rule,
as shown in Alg. 2. Alg. 2 starts to produce rules with an empty condition,
adds two condition-at-a-time to it, evaluates the rule with the new conditions
using the Laplace estimation and selects the best 5 produced rules to go on
into the refinement process. The algorithm keeps inserting new conditions to
the best selected rules until all the examples in the training set are covered,
or while the rules found have accuracy superior to 70%.

In other words, Alg. 2 is a variation of CN2 where two conditions are
added to a rule at-a-time. The other difference with respect to CN2 lies on
the condition used to stop inserting rules to the model (predictive accuracy
superior to 70%). But why most of the algorithms produced by the GGP are
similar to CN2?

The UCI data sets (Newman et al., 1998) are very popular in the machine
learning community, and they have been used to benchmark classification al-
gorithms for a long time. To a certain extent, most of the manually-designed
rule induction algorithms were first designed or later modified targeting these
data sets. The fact that the evolved rule induction algorithms are similar to
CN2 is evidence that CN2 is actually one of the best algorithms in terms of

150 Gisele Pappa et al.

average predictive accuracy in a set of data sets available in the UCI repos-
itory. At the same time, as the rule induction algorithms produced by the
GGP showed, there are many other variations of the basic sequential cover-
ing pseudo-code which obtain accuracies competitive to the ones produced by
CN2, Ripper or C4.5Rules. In general, the evolved algorithms did not obtain
significantly better accuracies than the baseline classification algorithms, but
the former obtained slightly better results than the latter, overall. This can
be observed in Table 3, which contains three significant wins (dark gray cells)
and just one significant loss (light gray cell) for the evolved algorithms.

6 Conclusions and Future Directions

This work presented a grammar-based genetic programming system which au-
tomatically discovers new sequential covering rule induction algorithms. Com-
putational results showed that the system can effectively evolve rule induction
algorithms which are competitive in terms of accuracy with well-known human
designed rule induction algorithms.

This work opens a whole new area of research, and there are many other
directions which could be taken. Improvements to the current work include
changing the fitness of the system to use the ROC framework, and studying
the impacts this change would have in the created rule induction algorithms.

A more interesting direction, which at the moment is part of our ongoing
work, is to automatically create rule induction algorithms tailored to a spe-
cific application domain. In other words, we can replace the meta-training and
meta-test sets of the current GGP system by a single data set, correspond-
ing to a target application domain, and produce customized rule induction
algorithms. This would be a great contribution to the area of meta-learning,
in particular, which is putting many efforts into finding which algorithms are
the best to mine specific data sets.

Acknowledgments

The first author is financially supported by CAPES, the Brazilian Research
Council, process number 165002-5.

References

Aho, A.V., Sethi, R., Ullman, J.D, (1986), Compilers: Principles, Techniques and
Tools. 1°* edn. Addison-Wesley.

Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D, (1998), Genetic Program-
ming — An Introduction; On the Automatic Evolution of Computer Programs
and its Applications. Morgan Kaufmann.

Discovering Rule Induction Algorithms with Genetic Programming 151

Bhattacharyya, S, (1998), Direct marketing response models using genetic algo-
rithms. In: Proc. of 4'" Int. Conf. on Knowledge Discovery and Data Mining
(KDD-98). 144-148.

Caruana, R., Niculescu-Mizil, A, (2004), Data mining in metric space: an empirical
analysis of supervised learning performance criteria. In: Proc. of the 10" ACM
SIGKDD Int. Conf. on Knowledge discovery and data mining (KDD-04), ACM
Press 69-78.

Clark, P., Boswell, R., (1991), Rule induction with CN2: some recent improvements.
In Kodratoff, Y., ed, EWSL-91: Proc. of the European Working Session on
Learning on Machine Learning, New York, NY, USA, Springer-Verlag 151-163.

Clark, P., Niblett, T, (1989), The CN2 induction algorithm. Machine Learning 3
261-283.

Cohen, W.W., (1995), Fast effective rule induction. In Prieditis, A., Russell, S.,
eds, Proc. of the 12" Int. Conf. on Machine Learning (ICML-95), Tahoe City,
CA, Morgan Kaufmann 115-123.

Fawcett, T, (2003), Roc graphs: Notes and practical considerations for data mining
researchers. Technical Report HPL-2003-4, HP Labs.

Flach, P, (2003), The geometry of roc space: understanding machine learning
metrics through roc isometrics. In: Proc. 20*" International Conference on
Machine Learning (ICML-03), AAAT Press 194-201.

Freitas, A.A, (2002), Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer-Verlag.

Fiirnkranz, J, (1999), Separate-and-conquer rule learning. Artificial Intelligence
Review 13(1) 3-54.

de la Iglesia, B., Debuse, J.C.W., Rayward-Smith, V.J, (1996) Discovering knowl-
edge in commercial databases using modern heuristic techniques. In: Proc. of
the 2"¢ ACM SIGKDD Int. Conf. on Knowledge discovery and data mining
(KDD-96), 44-49.

Genetic Programming, http://www.genetic-programming.org/ (2006)

Koza, J.R, (1992), Genetic Programming: On the Programming of Computers by
the means of natural selection. The MIT Press, Massachusetts.

Michalski, R.S, (1969), On the quasi-minimal solution of the general covering
problem. In: Proc. of the 5** Int. Symposium on Information Processing, Bled,
Yugoslavia 125-128.

Mitchell, T, (1997), Machine Learning. Mc Graw Hill.

Naur, P, (1963), Revised report on the algorithmic language algol-60. Communi-
cations ACM 6(1) 1-17.

Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J., (1998), UCI Repos-
itory of machine learning databases. University of California, Irvine,
http://www.ics.uci.edu/~mlearn/MLRepository.html

Pappa, G.L., Freitas, A.A. (2006), Automatically evolving rule induction algo-
rithms. In Fiirnkranz, J., Scheffer, T., Spiliopoulou, M., eds, Proc. of the 17"
European Conf. on Machine Learning (ECML-06). Volume 4212 of Lecture
Notes in Computer Science., Springer Berlin/Heidelberg 341-352.

Pappa, G.L, (2007), Automatically Evolving Rule Induction Algorithms with
Grammar-based Genetic Programming. PhD thesis, Computing Laboratory,
University of Kent, Cannterbury, UK.

Provost, F., Fawcett, T., Kohavi, R, (1998), The case against accuracy estimation
for comparing induction algorithms. In: Proc. of the 15" Int. Conf. on Machine

152 Gisele Pappa et al.

Learning (ICML-98), San Francisco, CA, USA, Morgan Kaufmann Publishers
Inc. 445-453.

Quinlan, J.R, (1993), C4.5: programs for machine learning. Morgan Kaufmann.
Witten, I.H., Frank, E, (2005), Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. 2"% edn. Morgan Kaufmann.
Zhang, J, (1992), Selecting typical instances in instance-based learning. In: Proc.
of the 9" Int. Workshop on Machine learning (ML-92), San Francisco, CA,

USA, Morgan Kaufmann 470-479.

Evolutionary Design of Code-matrices for
Multiclass Problems

Ana Carolina Lorena! and André C. P. L. F. de Carvalho!

! Centro de Matemética, Computacio e Cognicio

Universidade Federal do ABC

Rua Catequese, 242,09210-170,

Santo André, SP,

Brazil

ana.lorenaQufabc.edu.br

Ciéncias de Computagao

Instituto de Ciéncias Matemética e de Computacao
Universidade de Sdo Paulo - Campus de Sao Carlos
Caixa Postal 668 13560-970 Sao Carlos, SP, Brazil
andre@icmc.usp.br

Summary. Several real problems involve the classification of data into categories or
classes. Given a dataset containing data whose classes are known, Machine Learning
algorithms can be employed for the induction of a classifier able to predict the class
of new data from the same domain, performing the desired discrimination. Several
machine learning techniques are originally conceived for the solution of problems
with only two classes. In multiclass applications, an alternative frequently employed
is to divide the original problem into binary subtasks, whose results are then com-
bined. The decomposition can be generally represented by a code-matrix, where each
row corresponds to a codeword assigned for one class and the columns represent the
binary classifiers employed. This chapter presents a survey on techniques for mul-
ticlass problems code-matrix design. It also shows how evolutionary techniques can
be employed to solve this problem.

1 Introduction

Many problems involve the classification of data into categories or classes.
Given a training dataset, Machine Learning (ML) (Mitchell, 1997) algorithms
can be employed for the induction of a classifier, which should be able to
predict the class of new data from the same domain.

A classification problem with only two classes is known as a binary classi-
fication problem. An example of a binary classification problem is the medical
diagnostic of a particular disease. In this example, the induced classifier uses
clinical information from a patient to determine if he/she has a particular dis-

154 Ana Carolina Lorena and André C. P. L. F. de Carvalho

ease. The classes represent the presence or absence of the disease. Many real
problems, however, involve the discrimination of more than two categories or
classes. Examples of such problems are the classification of handwritten dig-
its (Knerr et al., 1992), the distinction of multiple types of cancer (Statnikov
et al., 2005) and text categorization (Berger, 1999, Ghani, 2000).

A multiclass classification problem is intrinsically more complex than a
binary problem, since the generated classifier must be able to separate the
data into a larger number of categories, which also increases the chances of
committing classification errors. Let us consider, for example, a balanced clas-
sification problem, with similar number of data per class, with equiprobable
classes and a random classifier. If the problem is binary, the chance to obtain
a correct classification is of 50%. For four classes, this chance reduces to 25%.

Several popular ML techniques are originally designed for the solution of
binary classification problems. Among them, one can mention the Support
Vector Machines (SVMs) (Cristianini and Shawe-Taylor, 2000) and the Ad-
aboost algorithm (Freund and Schapire, 1997).

Two approaches have been adopted in the literature to deal with multi-
class problems using binary classification techniques: adaptation of the inter-
nal operations of the classifier training algorithm and decomposition of the
multiclass problem into a set of two-class classification problems.

The extension of a binary learning algorithm to a multiclass version may be
either impractical or, frequently, not easy to perform (Passerini et al., 2004).
For SVMs, in particular, Hsu and Lin (2002) observed that the reformulation
of this technique into multiclass versions leads to high cost training algorithms.
Therefore, it is common to use the alternative of decomposing the multiclass
problem into binary subproblems, a strategy named decomposition.

The decomposition performed can be generally represented by a code-
matrix M (Allwein et al.,, 2000). This matrix has k rows, representing code-
words assigned to each of the k classes in the multiclass problem and the
columns correspond to the desired outputs of the binary classifiers induced in
the decomposition.

There are several alternatives to decompose the multiclass problem into
binary subtasks (Allwein et al., 2000). This chapter surveys recent develop-
ments in how to decompose multiclass problems into binary subproblems.
This task can be formulated as the problem of designing code-matrices. This
chapter also shows how Genetic Algorithms (GAs) (Mitchell, 1999), a search
technique based on principles of genetics and natural evolution, can be used
to solve the code-matrix design problem.

Initially, Section 2 introduces the code-matrix framework to solve multi-
class problems. Section 3 discusses the code-matrix design problem. Section
4 describes how GAs can be used to solve the code-matrix design problem.
Section 5 presents a general discussion on experimental results achieved by
the described techniques and Section 6 concludes this chapter.

Evolutionary Design of Code-matrices for Multiclass Problems 155

2 Code-matrix Decomposition of Multiclass Problems

Classification using ML techniques consists of inducing a function f(x) from
a dataset composed of pairs (x;,y;), where y; € {1,...,k}. Some learning
techniques, like the SVMs (Cristianini and Shawe-Taylor, 2000), are originally
restricted to classification problems where k = 2, i. e., to binary classification
problems.

The most common approach for the generalization of binary classification
techniques to solve multiclass problems is to decompose the original problem
into several binary subproblems. The learning algorithm induces a classifier
for each one of these subproblems. The outputs of these classifiers are then
combined to obtain the multiclass prediction.

There are several motivations for the use of decomposition strategies
in multiclass solutions. Mayoraz and Moreira (1996), Masulli and Valentini
(2000) and Frnkranz (2002) state that the use of a decomposition approach
may reduce the complexity involved in the classes separation. Herewith, it can
also benefit ML techniques whose algorithms are easily extensible to the so-
lution of multiclass problems. Knerr et al.. (1992), for example, observed that
the classes in a digit recognition problem could be linearly separated when
considered in pairs. Therefore, they opted to combine linear classifiers for all
pairs of classes, an alternative considered simpler than the use of an unique
classifier able to separate all classes simultaneously.

Pimenta (2005b) also points that the decomposition approach opens up
new possibilities for the use of parallel processing, since the binary subprob-
lems are independent and can be solved in different processors.

Section 2.1 reviews the main decomposition techniques from the litera-
ture. Next, Section 2.2 describes the code-matrix framework, generally used
to represent the decomposition strategies.

2.1 Common Decomposition Strategies

The most straightforward decomposition strategy is the one-against-all (1AA).
Given a problem with k classes, k binary classifiers are generated by using
this strategy. Each classifier is responsible to distinguish a class ¢ from the
remaining classes. The final prediction is usually given by the classifier with
the highest output value.

Another standard methodology, named one-against-one (1A1), consists of
building k(k — 1)/2 predictors, each differentiating a pair of classes i and j,
where i # j (Knerr et al., 2000, Hastie and Tibshirani, 1998). To combine
the outputs produced by these classifiers, a majority voting scheme can be
applied (Krefel, 1999). Each 1Al classifier gives one vote to its preferred
class. The final result is the class with most of the votes.

Dietterich and Bariki (1995) suggested to see the ML solution of a mul-
ticlass problem as a communication task, where the correct class of a new
example must be transmitted by a channel. This channel is constituted by

156 Ana Carolina Lorena and André C. P. L. F. de Carvalho

the example attributes, the training data and the learning algorithm. Due to
errors that can be present in the attributes, in the training data and/or failures
in the classifier learning process, the class information can be disrupted. To
provide the system the ability to recover from these transmission errors, the
class is codified by an error correcting code and each of its bits is transmitted
separately, that is, through separate executions of the learning algorithm.

Herewith, a distributed output code is used to represent the k classes
associated to the multiclass problem. A codeword of length [is assigned to
each class. Commonly, the size of the codewords has more bits than needed
in order to represent each class uniquely. The additional bits can be used to
correct eventual classification errors. For this reason, this method is named
error-correcting output coding (ECOC).

The generated codes are stored on a matrix M € {—1, +1}**. The rows of
this matrix represent the codewords of each class and the columns correspond
to the desired outputs of the [binary classifiers (f1(x), ..., fi(x)) induced.

A new pattern x can be classified by evaluating the predictions of the
I classifiers, which generate a vector f(x) of length [. This vector is then
compared to the rows of M. The example is assigned to the class with the
closest row according to the Hamming distance. This process is also named
decoding.

Dietterich and Bariki (1995) proposed codewords to be designed in order
to maximize their error correcting capability and presented four techniques for
the construction of good error correcting codes. The choice of each technique
is determined by the number of classes in the problem. These techniques are
briefly described in Section 3.

2.2 Code-Matrix Framework

Allwein et al.(2000) presented a framework that unified the previous strategies
and can be generally used to represent decomposition techniques. Throughout
this framework, the decomposition strategies are reduced to code-matrix based
methods. For such, a value from the set {—1, 0, +1} is assigned to each element
of the code-matrix M. Figure 1 presents an example of code-matrix for a
problem with four classes that uses four classifiers in the decomposition of the
multiclass problem. It also shows, bellow this matrix, the binary partitions of
classes imposed by each of the binary classifiers in the matrix columns.

Each element of the matrix assumes values in the set {—1,0,4+1}. An
element m;; with +1 value indicates that the class correspondent to row i
assumes a positive label in classifier f; induction. The —1 value designates
a negative label and the 0 value indicates that the data from class ¢ do not
participate on classifier f; induction. Binary classifiers are then trained to
learn the labels represented in the columns of M.

In the 1AA case, M has dimension kxk, with diagonal elements equal to
+1. The remaining elements are equal to —1. In the 1A1 decomposition, M
has dimension kxk(k—1)/2 and each column corresponds to a binary classifier

Evolutionary Design of Code-matrices for Multiclass Problems 157

classifiers

h b h

1/ +1 -1 -1 +1
classes 2 -1 Al 0 -l
3 0 -1 +1 -1
4{ -1 0 -1 +1

\’
l (1,4)x(2.,3)
(3)x(1,4)
(2)x(1,3)
(Dx(2.4)

Fig. 1. Example of code-matrix for a problem with four classes

for a pair of classes (¢, 7). In each column representing a pair (7, j), the value
of the elements corresponding to lines i and j are defined as +1 and —1,
respectively. All other elements receive the value 0, indicating that patterns
from the other classes do not participate on the induction of this particular
binary classifier.

The prediction of a new pattern’s class involves a decoding step, like in
the ECOC strategy. Several decoding strategies have been proposed in the
literature (Passerini et al., 2004, Allwein et al., 2000, Windeatt and Ghaderi,
2003,Escalera et al., 2006,Klautau et al., 2003). This chapter is concerned with
the problem of decomposing the multiclass problem. For this reason, readers
interested in the decoding step should look at (Passerini et al., 2004, Allwein
et al., 2000, Windeatt and Ghaderi, 2003, Escalera et al., 2006, Klautau et al.,
2003) and related publications.

In experimental studies, Allwein et al.(2000) have not verified any clear
winner among different coding strategies, including 1AA, 1A1, dense random
codes and sparse random codes. The authors pointed out the necessity of
formulating methods to design problem specific output codes.

Next section describes the code-matrix design problem and reviews some
of the main developments in this area.

3 Code-matrix Design Problem

Several alternatives can be employed in order to decompose a multiclass prob-
lem into multiple binary subproblems. The most compact decomposition of a

158 Ana Carolina Lorena and André C. P. L. F. de Carvalho

problem with k classes can be performed with the use of I = [log, (k)] binary
classifiers (Mayoraz and Moreira, 1996). One example of compact matrix for
a problem with four classes is presented in Figure 2a.

41 +1 41 +1 41 41+l
+1 -1 1 =1 =1 =1 +1 +I
- BT s L T
14 -1 +1 -1 +1 -1 +l
(a) (b)

1 -1 -1 +1 41 +1 0 0 0
+1 -1 -1 -1 0O 0 +1 +1 0
1+ 4 0 -1 0 -1 0+I
-1 =1 +1 0O 0 -1 0 -1 -1
(c) (d)

Fig. 2. Different code-matrices for a problem with four classes

The total number of different binary predictors for a problem with & classes
is 0.5 (3’“ + 1) — 2% considering that f = —f, that is, that the inversion of
the positive and negative labels produces the same classifier (Mayoraz and
Moreira, 1996). Among those, 2k=1 _ 1 include all classes simultaneously, i.
e., have only the labels +1 and —1, without the 0 element. One example of
code-matrix constituted of such classifiers for a problem with four classes is
illustrated in Figure 2b.

Among the main decomposition strategies reported in the literature one
can mention: 1AA, 1A1 (Knerr et al., 2000, Hastie and Tibshirani, 1998) and
ECOC (Dietterich and Bariki, 1995). The 1AA and 1A1 code-matrices were
already described on Section 2. Figures 2¢ and 2d represent the 1AA and 1A1
matrices, respectively, for a problem with four classes.

The 1AA decomposition has some disadvantages when the number of ex-
amples in one class is much smaller than number of data in other classes. This
unbalance may harm the induction of a classifier with good predictive perfor-
mance in the considered class. In the 1A1 case, the answer of a predictor for
a pair of classes (i,7) does not provide useful information when the example
does not belong to classes i or j (Alpaydin and Mayoraz, 1999).

Section 3.1 reviews some strategies used in order to obtain ECOC ma-
trices, i. e., code-matrices with error correcting ability. Section 3.2 describes

Evolutionary Design of Code-matrices for Multiclass Problems 159

techniques able to adapt code-matrices to each multiclass problem under con-
sideration. Section 3.3 presents other strategies employed in code-matrices
obtainment. Although several authors refer to all types of code-matrices for
multiclass problems as ECOCs, in this chapter, we will consider as ECOCs
only code-matrices developed to have an error correcting capability.

Unless it is explicitly stated, the described works use binary code-matrices,
that is, code-matrices with only +1 and —1 elements.

3.1 ECOC Design

Dietterich and Bariki (1995) enforce two characteristics necessary to ensure
error correcting capability when designing ECOC matrices:

e Row separation;
e Column separation.

Where the separation is measured through Hamming distance, which is
equal to the differences between different bit strings®. Constant columns (with
only positive or negative elements) should also be avoided, since they do not
represent a binary decision problem.

Let d,, designate the minimum Hamming distance between any pair of
rows of M. The final ECOC multiclass classifier is able to correct at least
LdMQ_lJ errors of the binary classifiers outputs. Since according to the Ham-
ming distance each incorrect prediction implies in deviating one unity from
the correct class codeword, committing [%J errors, the closest codeword
will still be that of the correct class (Dietterich and Bariki, 1995). This is
the reason why a high row separation is demanded. According to this prin-
ciple, the 1AA coding is unable to recover from any error, since its d,, is
equal to 2. The row separation requirement is also demanded in the design
of Error-Correcting Codes (ECC) in telecommunications (Alba and Chicano,
2004).

Besides, to obtain good error correcting codes for the multiclass problem
solution, the errors of the binary classifiers induced must be uncorrelated. For
such, a column separation is also demanded, that is, the Hamming distance
among each pair of columns of M must be high. If in the learning algorithm
the inversion of the positive and negative labels produces the same classifier
(f = —f), the Hamming distance between each column and the complement
of the others must also be maximized.

Based on these observations, Dietterich and Bariki (1995) proposed four
techniques to design code-matrices with good error-correcting capability. The
choice of each one of them is determined by the number of classes in the
multiclass problem. No justificative was given to how the numbers of classes
were stipulated for each method.

3 Recalling that in the ECOC framework, the code-matrix is constituted only of
the elements +1 and —1 and the Hamming distance is used in the decoding step.

160 Ana Carolina Lorena and André C. P. L. F. de Carvalho

e For k < 7, they recommend the use of an exhaustive code, which consists
on the combination of the 2*~! —1 binary classifiers with labels +1 and —1,
as illustrated in Figure 1b for a problem with four classes. The codeword
of the first class is composed of only +1 values. For each other class 7,
where i > 1, it is composed of alternate runs of 2~¢ negative (—1) and
positive (+1) labels. The d,, distance in the matrix obtained through the
exhaustive method is 2¥~2.

e If 8 <k <11, a method that selects columns from the exhaustive code is
applied.

e For k > 11, there are two options: a method based on the hill-climbing
algorithm and the generation of BCH codes (Boser and Ray-Chaudhuri,
1960), from the theory of designing good error correcting codes used in
communication coding. One problem with BCH codes is that they do not
ensure a good column separation.

In a recent work, Pimenta and Gama (2005) proposed an algorithm for the
design of ECOCs that presented competitive predictive performance against
traditional decompositions, using Decision Trees (DTs) (Quinlan, J.R., 1986)
and SVMs as base classifiers. They proposed a function for the evaluation of
the ECOCs quality according to their error-correcting properties. An iterative
persecution algorithm (PA) was then used to construct the ECOCs. This al-
gorithm adds or removes columns from an initial ECOC, in order to maximize
its quality.

In his Msc. Dissertation, Pimenta (2005b) also employed two algorithms
originally designed to obtain ECC in telecommunications in the obtainment of
ECOC matrices for multiclass problems. The first is the Repulsion Algorithm
(RA) (Alba and Chicano, 2004), based on the Physic behavior of equally
charged particles on a sphere. Under this situation, the particles will move
over the sphere until an equilibrium is reached. In the RA, each codeword is
considered a charged particle, positioned in one corner of a hypercube. The
movements allowed are to move from one corner to another, which corresponds
to invert one bit in the binary codeword. The RA tries to maximize an evalua-
tion function that gets higher as d,, increases. Since the row separation is not
required in the design of an ECC, Pimenta adapted the evaluation function in
order to penalize matrices with identical or complementary columns. Pimenta
also tested an hybrid version of the RA. In this case, GAs are used to design
the code-matrices, aiming to maximize the evaluation function. The RA is
used in the mutation step of the GA. This hybrid algorithm is described in
Section 4.

Experimentally, PA performed better on finding valid ECOCs, where the
validity was measured by the criteria of avoiding equal, complementary and
constant columns, while RA was the worst method. Among the valid ECOCs
generated, in general PA still performed better, obtaining ECOCs with good
quality according to the evaluation function proposed by Pimenta and Gama

Evolutionary Design of Code-matrices for Multiclass Problems 161

(2005). Nevertheless, GARA (GA with RA) also designed ECOCs of good
quality.

Pimenta and Gama (2005) also suggested a method to determine the num-
ber of columns in the ECOC (i. e., the number of classifiers employed in the
decomposition), examining an evaluation function based on the number of
errors that can be corrected by ECOCs of different sizes.

Zhang et al.(2003) proposed the use of Hadamard matrices from the ECC
theory in the multiclass decomposition. They point out that these matrices can
be considered optimal ECOCs, within the pool of k class codes that combine
k — 1 base learners, where the optimality is measured according to the row
and column separations criteria. Nevertheless, the Hadamard matrices are
designed with numbers of rows of power two. For others numbers of classes,
some rows have to be deleted. Experimentally, these ECOCs performed better
than random and 1AA matrices, employing SVMs in the binary classifiers
induction.

There are some studies that claim that randomly designed ECOCs show
good multiclass predictive performance (Berger, 1999, Windeatt and Ghaderi,
2003, Tapia et al., 2003). Allwein et al.(2000), for example, evaluated the use
of two randomly designed matrices: dense and sparse. In the dense matrix
obtainment, 10,000 random matrices, with [10xlog, (k)] columns and elements
assuming —1 or +1 values with the same probability, are generated. The
matrix with higher d,, and without identical or complementary columns is
chosen, following the directions of Dietterich and Bariki (1995) . In the sparse
matrix, which uses the ternary alphabet, the number of columns in the code-
matrix is [15log, k], and the elements are chosen as 0 with 0.5 probability
and +1 or —1 with probability 0.25 each. Again, 10,000 random matrices are
generated and the one with higher d,, is chosen.

Berger (1999) gives statistical and combinatorial arguments of why random
matrices can perform well. Among these arguments, are theorems that state
that random matrices are likely to show good row and column separations,
specially as their number of columns increases. Nevertheless, it is assumed
that the errors of the individual predictors are uncorrelated, which do not
hold for real applications.

Windeatt and Ghaderi (2002) also express the desirability of equidistant
codes. Equidistant codes are those for which the Hamming distance between
rows is approximately constant. It was shown that if M is an equidistant code-
matrix, the number of +1’s in different rows are the same and the number of
common +1’s between any pair of rows is equal. They used this heuristic to
select a subset of rows from BCH codes, producing equidistant code-matrices.
Experimentally, they verified that equidistant codes were superior to 1AA
and random codes for shorter codes (with less columns), using Multilayer
Perceptron (MLP) Neural Networks (NNs) (Haykin, 1999) as base classifiers.
As the length of the codes increases, the coding strategy seems to be less
significant, favoring a random design.

162 Ana Carolina Lorena and André C. P. L. F. de Carvalho
3.2 Adapting Code-matrices to the Multiclass Problems

A common criticism to the 1AA; 1A1 and ECOC strategies is that all of them
perform the multiclass problem decomposition a priori, without taking into
account the properties and characteristics of each application (Allwein et al.,
2000, Mayoraz and Moreira, 1996, Alpaydin and Mayoraz, 1999, Mayoraz and
Alpaydim, 1998, Dekel and Singer, 2003, Rétsch et al., 2003,Pujol et al., 2006).
Besides, Allwein et al.(2000) point out that, although the ECOC codes have
good error correcting property, several of the binary subproblems created may
be difficult to learn.

Crammer and Singer (2000) presented one of the most known attempts
to design code-matrices adapted to each multiclass problem considered. They
argued that finding a discrete code-matrix can be considered a NP-hard prob-
lem and relaxed it allowing that M had continuous elements. As a result of
their work, a version of SVMs for the direct solution of multiclass problems
was obtained. Although accuracy results of this technique are comparable to
those of the 1AA and 1A1 decomposition strategies used with SVMs (Hsu
and Lin, 2002), the complexity of the training algorithm is higher, implying
in a high computational cost.

Alpaydin and Mayoraz (1999) proposed to combine linear binary classifiers
in order to obtain a non-linear multiclass classifier. In this process, a MLP
NN is obtained, in which the first weight layer represents the parameters of
the linear classifiers, the internal nodes correspond to the linear classifiers
and the final weight layer is equivalent to the code-matrix. This NN has the
architecture and second layer weights initialized according to an usual code-
matrix. As a result, the code-matrix and classifiers parameters are optimized
jointly in the NN training. The proposed method showed higher accuracy
than those of 1AA, 1A1 and ECOC decompositions employing linear binary
classifiers.

In (Dekel and Singer, 2003), an algorithm named Bunching was introduced,
which, during the learning process, adapts code-matrices to the multiclass
problem. In this algorithm, the training data and their labels are mapped to
a common space. In this space, it is possible to define a function that measures
the divergence between the data and their labels. Two matrices are used in
the mapping process, one for the data and other for the labels, which is the
code-matrix. These two matrices are iteratively adapted by the algorithm in
order to obtain a minimum error for the training data. This error is measured
by the divergence between the training data and their labels in the common
space. The code-matrices are probabilistic. Given an initial code-matrix, the
Bunching algorithm modifies it according to the previous procedure. Given a
new example, it is mapped to the common space and the predicted class is
the one closer to the example in this space. Empirically, the authors verified
good results in the adaptation of code-matrices of the 1AA type and random
ones, using logistic regression classifiers (Collins et al., 2002).

Evolutionary Design of Code-matrices for Multiclass Problems 163

In (Rétsch et al., 2003), an optimization problem is formulated, in which
the codes and weights to the binary functions used in the decomposition are
determined jointly. A maximal margin approach is followed, in which the dif-
ference between the prediction vector f(x) to the code of the correct class and
the distance to the closer code from another class is maximized. Preliminary
experimental results indicated an advantage of this method in relation to the
direct use of DTs.

A heuristic method for designing ternary code-matrices based on a hier-
archical partition of the classes according to a discriminative criterion was
presented in (Pujol et al., 2006). The criterion used was the mutual informa-
tion between the feature data and its class label. Initiating with all classes,
they are recursively partitioned into two subsets in order to maximize the
mutual information measure, until each subset contains one class. These par-
titions define the binary predictors to be employed in the code-matrix. For a
problem with % classes, k — 1 binary classifiers are generated in this process.
Experimental results demonstrated the potential of the approach using DTs
and Boosted Decision Stumps (BDS) (Freund and Schapire, 1997) as base
classifiers. The algorithm showed competitive results against 1AA, 1Al and
random code-matrices.

In (Lorena and Carvalho, 2006), GAs were used to determine ternary code-
matrices according to the performance obtained by them in the multiclass
problem solution. Another goal of the implemented GA was to minimize the
number of columns in the matrices, producing simpler decompositions. This
work will be better described in Section 4.

3.3 Other Strategies

This section presents code-matrix design works that could not be fully char-
acterized into one of the classes described in the previous sections, either
because they employ alternative criteria in the code-matrix design or because
a combination of the error-correcting and adaptiveness criteria is used.

In (Mayoraz and Moreira, 1996), an iterative algorithm to code-matrix
design was presented, which takes into account three criteria. The first two
are the same required by Dietterich and Bariki (1995) in the construction of
ECOCs. The third criterion is that each inserted column must be pertinent,
according to the positions of the classes in the input space. A binary partition
of classes is considered pertinent if it is easy to learn. The largest contribution
of this procedure was the use of classifiers simpler than those from ECOC.

Tapia et al.(2001) employed concepts from telecommunications coding the-
ory to propose a particular class of ECOCs named Recursive ECOCs (RE-
COC). The recursive codes are constructed from component subcodes of small
length, which may be weak when working on their own, but strong when work-
ing together. This results in an ensemble of ECOCs, where each component
subcode defines a local multiclass learner. Another interesting feature of RE-
COCs, pointed by the authors, is that they allow a regulated degree of ran-

164 Ana Carolina Lorena and André C. P. L. F. de Carvalho

domness in their design. Tapia et al.(2003) state that, according the telecom-
munications theory, a random code is the ideal way to protect information
against noise. The decoding of RECOC is adaptive and uses information from
the training error of the component subcodes in a belief propagation algo-
rithm, allowing some degree of adaptiveness. Experimentally, the RECOCs
achieved good results on a set of benchmark datasets using DTs and Boosted
decision stumps (BDS) (Freund and Schapire, 1997).

Following the channel coding theory, Prez-Cruz and Arts-Rodriguez (2002)
proposed to use a puncturing mechanism to prune the dependence among
the binary classifiers in a code-matrix. This procedure eliminates classifiers
that degrade the performance of a previously designed code-matrix, deleting
columns from it. As consequence, it permits to obtain less complex multiclass
schemes. A ternary coding was employed, that is, the code-matrices could
have positive, negative and null elements. Experimentally, they achieved a
good performance when puncturing 1A1 and BCH ECOC codes.

The design of code-matrices to maximize diversity measures from the lit-
erature on classifier ensembles is proposed in (Kuncheva, 2005). The code-
matrices are constructed through the use of an evolutionary algorithm (Mitchell,
1999), which evolves matrices based on their diversity measure performance.
However, the proposed framework was not evaluated experimentally on bench-
mark or real datasets.

In (Shen and Tan, 2005), GAs were employed to find ternary code-matrices
in order to optimize an evaluation function based on the margins of separation
among codes of different classes and the diversity among columns defined by
Kuncheva (2005). These works will be better described in Section 4. Exper-
imental results on multiclass classification of microarray cancer data showed
encouraging results compared to other multiclass decomposition strategies,
like 1AA and 1A1.

4 Evolutionary Design of Code-Matrices

The code-matrix design problem can be formulated as a search and optimiza-
tion problem. As stated in the previous section, there are 0.5 (3’c + 1) — 2k
different binary predictors for a multiclass problem with £ classes. A com-
binatorial number of associations of these classifiers is possible, determining
different decompositions of the multiclass problem. Based on this observation,
some works used Evolutionary Algorithms (EAs) (Eiben and Smith, 2003),
which are search techniques based on principles of evolution and genetics, to
solve the code-matrix design problem.

This section presents a review of these works. It starts with a brief intro-
duction to the main concepts of EAs (Section 4.1). After, as in the previous
section, the design of ECOCs is presented (Section 4.2), followed by a descrip-
tion of the design of code-matrices adapted to the solution of each multiclass

Evolutionary Design of Code-matrices for Multiclass Problems 165

problem (Section 4.3) and of other strategies employed in the matrices ob-
tainment (Section 4.4).

4.1 Evolutionary Algorithms

According to the natural evolution theory (Darwin, 1859), organisms better
adapted to their environment have higher chances to transmit their character-
istics to the next generation. Thus, the environment exerts a selection among
the individuals of a population, which privileges adapted individuals.

In 1900, the genetics theory was integrated to Darwin’s work, introducing
concepts that complemented it. One of the most important concepts is the
hereditability, which defines how characteristics of an individual are trans-
mitted to its descendants (Eiben and Smith, 2003). Two other aspects are
necessary for the occurrence of the natural selection: the reproduction and
the presence of variations among the characteristics of the individuals in a
population, that is, the presence of genetic variability. If the genetic vari-
ability is present in a population, the natural selection may act in order to
privilege individuals with characteristics that make then more adapted (or fit)
to the environment. Besides, new characteristics can be introduced.

EAs employ these concepts throughout the operation of a set of possi-
ble solutions to a problem. This set is named population. The population
is iteratively adapted through the application of genetic operators in order
to produce solutions each time more apt to solve the problem. Throughout
this process, a search procedure is performed, in which the optimal solution
with maximal fitness represents the objective to be found or approximated.
For this reason, EAs are regarded as search and optimization algorithms and
have been applied to several problems, including applications in the areas of
control, planning, combinatorial optimization and ML (Beasley, 2000).

The Genetic Algorithms (GAs) (Mitchell, 1999) can be considered one of
the main research areas of EAs. They were proposed by John Holland (1975),
with the initial aim of studying the adaptation mechanisms that occur in
nature and incorporating them into computational systems.

Given an initial population of possible solutions to a problem, referenced
as individuals, a GA seeks the global solution by an iterative process. At
each iteration, also named generation, a new population is produced, which
contains evolutions of individuals selected from the previous generation.

The individuals are encoded by a structure named chromosome. In the
basic GA, the chromosomes are represented as bit strings. Each bit, also ref-
erenced as a gene, represents the presence (value 1) or absence (value 0) of a
particular characteristic in the individual (Béck, 2000). Nevertheless, there are
several other types of encoding and the representation is normally determined
according to the characteristics of the problem to be solved. The initial pop-
ulation is normally composed of either random solutions or solutions derived
from some heuristic related to the problem.

166 Ana Carolina Lorena and André C. P. L. F. de Carvalho

Next, it is necessary to define how to evaluate the individuals, quantify-
ing the fitness of each one of them to solve the problem. This evaluation is
performed by a fitness function, which decodes the information in the indi-
viduals’ chromosome and obtains a measure of its quality. As the encoding,
this function is problem dependent.

From the evaluated population, a selection mechanism will select individu-
als for the next generation, which will produce offspring to a new population.
The selection must privilege the fittest individuals, in accordance to the nat-
ural selection principles.

Following the concepts of hereditability, in the reproduction of the selected
individuals, their characteristics are combined in order to produce descen-
dants. This combination is performed by a genetic operator named cross-over.
The cross-over is a binary operator and is applied to two individuals. These
individuals, named parents, have their genes exchanged in order to produce
two new individuals, the offspring. Simulating the stochastic nature of evolu-
tion, the cross-over is usually applied according to a crossover rate p., often in
the interval 0.6 < p. < 0.9 (Zitzler et al., 2004). For such, a random number is
generated. If it is lower than p., the cross-over operator is applied. Otherwise,
the parents are directly passed to the next generation.

After the cross-over combination, a variability is introduced to the new
solutions by the application of an unary operator, named mutation. The mu-
tation operator alters values of genes of individuals. It is also applied accord-
ing to a rate p,,, which is usually small, to prevent a high alteration of the
population, which would harm the GA convergence.

Other selection operator usually applied to a population is the elitism. In
the elitism, a proportion p. of the fittest individuals of the current population
are directly copied into the new population. This prevents the loss of good
solutions in the GA processing.

The procedures of generating a population, evaluating its individuals, se-
lection and application of the genetic operators are iterated, and form the
base of the GAs.

To stop the execution of a GA, different criteria can be used. The GA
may be stopped when a maximum number of generations is reached, when
the mean fitness of the population or the best individual does not change
for a given number of generations, when the fitness of the individuals in the
population become too alike or when a solution with the best known fitness
value is found.

The use of a population approach allied to the genetic operators enhance
the chance of finding the optimal solution in the search space when GAs
are compared to traditional search techniques, as the hill-climbing algorithm
(Michalewicz and Fogel, 2004). The GAs are also able to deal with solution
spaces composed of complex and different parts, in which the impact of each
part in the problem solution may be difficult to model by traditional search
techniques (Mitchell, 1997). They can also take advantage of the use of parallel
computation.

Evolutionary Design of Code-matrices for Multiclass Problems 167

Nevertheless, the exploration of populations of solutions also renders the
GAs a higher computational cost. GAs have also a set of parameters to be
set (pe, pe and p,y,, for example), whose definition affects their performance in
the problem solution.

4.2 Evolutionary ECOC Design

There are several works in communication theory employing GAs to obtain
Error Correcting Codes (for example, (Alba and Chicano, 2004, Alba et al.,
2002, Simn et al., 2006, Wallis and Houghten, 2002, Dontas and Jong, 1990)).
The ECC problem can be summarized as finding a code composed of k code-
words with [bits each that corrects a given maximum number of errors, which
is known to be a NP-hard optimization problem (Alba and Chicano, 2004).
There are conflicting objectives in the ECC design: finding minimum length
codewords (which imply in fast transmission) and maximize d,, (for a higher
error-correcting capacity), which suggests to include more redundancy in the
codewords (more bits and, thus, the use of larger codewords). However, the
column separation and avoidance of constant columns are not required under
this theory, making difficult to use them directly to find ECOCs for multiclass
problems.

Pimenta (2005) adapted the GARA algorithm (Genetic Algorithm with
Repulsion Algorithm) (Alba and Chicano, 2004) from the telecommunications
theory to the generation of ECOC matrices. The chromosomes in this GA are
kxI binary strings, formed by the concatenation of the codewords in the code-
matrix M, as illustrated in Figure 3. A binary alphabet is used is this work.

+1 -1 -1 =1

-1 +1 -1 -1
T w o | & (TolololeliTelolo)eliToTo ofo]D)

-1 -1 -1 +1

Code-matrix Chromosome

Fig. 3. Example of chromosome in GARA (Alba and Chicano, 2004)

Defining d;; as the Hamming distance between codewords ¢ and j in the
code-matrix M and d,, as in Section 3.1, the fitness function used that eval-
uates the individuals is presented in Equation 1.

dy &2
+<+’"+m) (1)
1

168 Ana Carolina Lorena and André C. P. L. F. de Carvalho

The first part in the sum of Equation 1 measures how well the codewords
in M are separated in a space of [dimensions. Nevertheless, it may result
in a higher value for an ECOC with a lower d,, than that of other ECOC,
which is against the desired. The second term is then added to the sum to
correct these cases. Overall, f. is higher for higher d,, matrices and must be
maximized by the GA.

To take into account the column separation criterion, Pimenta (2005)
added a penalization term to the final fitness evaluation function, which is
illustrated by Equation 2.

p = 1 if M has equal columns
pen (M) =2 x f. (M) % p, where ¢ p=1if M has complementary columns
p = 0 otherwise
(2)
The final fitness function, which should be maximized by the GA, is then
given by Equation 3.

fit (M) = fe (M) — pen (M) (3)

The binary tournament selection chooses individuals for reproduction. The
cross-over operator used was the single-point cross-over. Details about these
operators may be found in (Mitchell, 1999). For mutation, an iteration of
the RA was employed, as a local-search procedure. The offspring produced
are inserted into a new population if they are better than its current worst
individuals. The GA stops when a maximum number of generations is reached
or an optimal matrix, according to the fitness function, is found.

As already reported in Section 3.1, the GARA algorithm was compared
to the RA and PA algorithms in the obtainment of ECOC code-matrices.
In general, PA was better in finding valid ECOCs of good quality, although
GARA also obtained good ECOCs.

4.3 Evolutionary Adaptation of Code-matrices to the Problems

As discussed in Section 3.2, many decomposition strategies design the code-
matrix a priori. Herewith, they do not take into account the properties and
characteristics of each multiclass application.

To overcome this deficiency, a proposal involving the use of GAs to design
code-matrices adapted to each multiclass problem was developed (Lorena and
Carvalho, 2006). In this proposal, the GA is responsible to determine the com-
bination of binary classifiers in a code-matrix M*. Herewith, the rows of IM*,
which correspond to the codewords attributed to each class, are automatically
defined. The GA also determines the number of binary classifiers to be em-
ployed in the multiclass solution, that is, the number of columns contained in
M*.

The evaluation of the matrices is based on their predictive performance in
the multiclass problem solution. The GA searches for matrices that minimize

Evolutionary Design of Code-matrices for Multiclass Problems 169

the error obtained in the multiclass solution. It also aims to minimize the
number of columns contained in the matrices, controlling the number of binary
classifiers. This criterion represents the search for simpler solutions, and is in
accordance to the Occam’s razor (Mitchell, 1997), which states that, among
several correct hypotheses, the simplest should be chosen. The presence of
identical and complementary columns in the matrices must also be avoided,
since they represent the use of identical binary classifiers in a decomposition.
Columns with equal or complementary elements are denoted as equivalent in
the posterior considerations.

The GA must then deal with three objectives: minimize the matrix error
and its number of columns and avoid the presence of equivalent columns in
the matrix. The aim is to search a code-matrix without equivalent columns
with a good performance in the multiclass task and a reduced number of
binary classifiers. Two variants of multi-objective GAs were employed by the
authors to solve the described problem: a lexicographic, also described in
(Lorena and Carvalho, 2006), and another based on the SPEA2 (Strength
Pareto Evolutionary Algorithm 2) algorithm (Zitzler et al., 2002).

The chromosomes were directly represented as code-matrices, with a
ternary encoding. Each individual corresponds to a possible code-matrix M
with size kxl and elements in the set {—1,0,41}, as described in Section
2.2. This matrix representation is more intuitive to represent solutions to a
multiclass problem. Wallet et al.(1996) argue that, if the problem has an in-
herent bidimensional structure, the GA may obtain better results with the
use of matrix-codified individuals. The authors also point out that the use of
this representation allows the definition of cross-over and mutation operators
adequate to this problem.

To determine the number of binary classifiers in the code-matrix, the indi-
viduals in a same population had varied numbers of columns /. Herewith, this
value is also determined by the GA. According to this strategy, two possible
individuals for a problem with four classes are illustrated in Figure 4.

In the codified algorithms, the user limits the maximum allowed number
of classifiers for the code-matrices. The generated matrices should also have at
least [log, k] binary classifiers, which corresponds to the minimum necessary
to divide k classes (Mayoraz and Moreira, 1996).

The initial population was implemented with the definition of random ma-
trices with varying sizes. A consistency test was applied to these individuals,
to ensure that each column of the matrices had positive and negative labels,
constituting a valid binary partition. The codes of the strategies 1AA, 1A1
and ECOC (exhaustive, dense or sparse random codes) can also be provided
to the initial population, adding to the search an additional information.

To evaluate each individual, the GA considers the predictive power of
the set of binary classifiers, represented in its code-matrix, for the multiclass
problem. For each individual, a validation error is calculated. Unknown classi-
fications, which occur if more than one row of the code-matrix have minimum

170 Ana Carolina Lorena and André C. P. L. F. de Carvalho

binary classifiers binary ‘Ll»il ssifiers
h o fihs KA LA S K
clags 1 —»
clasg2 —»
clagg3d —»
cdass4 —»
Individual 1 Indrvidual 2

Fig. 4. Illustration of two possible individuals for a problem with four classes

distance to the prediction string, are also considered errors. This error measure
should be minimized by the GA.

In the GA operation, a code-matrix may show equivalent columns. To in-
hibit this occurrence, each multi-objective variant employs a distinct strategy.
While the lexicographic version penalizes this characteristic, the SPEA2 al-
gorithm considers the proportion of equivalent columns in the individuals as
a third objective to be minimized.

The avoiding of equivalent columns in the lexicographic version was consid-
ered a restriction of the problem. Solutions that do not violate this restriction
must then be privileged. For such, the fitness of an individual is now calculated
by Equation 4 (Deb, 2000). This function must be minimized, so individuals
with lower values for Equation 4 are considered to be better.

. e(), ifieF
fie (1) = { 1;116211;((6 () + pec (i), if i€ F (4)

In this equation, F' denotes the set of feasible solutions, that is, solutions
that do not violate the restriction and do not have equivalent columns. F, on
the other hand, represents non-feasible solutions, p..(#) represents the pro-
portion of equivalent columns in individual ¢ and e(4) is the validation error
rate. Thus, non-feasible solutions have fitness values worst (with higher value
of Equation 4) than those of the feasible ones and are compared only in terms
of the intensity that they violate the restriction.

As second objective in both GAs is the minimization of the number of
binary classifiers in the matrices. The lexicographic version favors the error
minimization, placing the reduction of the number of binary classifiers in a
second order of importance. In SPEA2, this value was considered as a second
objective to be minimized using the Pareto domination relations.

To accomplish the objective ordering in the lexicographic version, first the
individuals fitness are calculated using Equation 4. The traditional elitism

Evolutionary Design of Code-matrices for Multiclass Problems 171

Cross-over poiuts
Parent 1‘(d Parent 2

(r1[-1]-1]1) mmESnnn
-1[+1-1]1] 1[0 [0 [+1+1]0

-1[-1+1[-1] 0f-1]0]-1]o[+1

(lafaf) (ofefafofala]

i1

Offspring 1 Offspring 2
+1]-1]0]-1 [Fi]+1[+1]-1]0] 0]
-1[+1[+1]-1] [-1]o o [-1]+1] 0
-1]-1]-1]-1] [o]-1]0 [+1]0 [+1
(ltfof) [ofefaf-1faf]

(a)

Cross-over points

Parent Lf j Parent 2

(r1]-1]-1]-1] +1[+1f+1[o]o o
-1[+]-1]-1 -1]0 o [+1[+1]0
-1]-1]+1[-1 0]-1]o]-1]0 41
Cifafaf) [efefafofaf
Offspring 1 Offspring 2

1o ToTo] [Ffafra]-]-1]
-tl+fal+af o] [-1]o]o]-1]-1]
-1]-1]-1]0 [+1] [(o]-1]o0 [+1]-1]

L[of-af-1] (efo]a]-1/+]

(b)

Fig. 5. Cross-over operators for code-matrix design

and selection steps are them adapted. Each time a tie occurs in these steps,
the individual with the lowest number of classifiers is chosen.

The GAs stop when a maximum number of generations is reached. A bi-
nary tournament described in (Mitchell, 1999) is used in the selection step.
The cross-over and mutation genetic operators were designed considering the
individuals representation and the characteristics of the formulated code-
matrix search problem.

172

Ana Carolina Lorena and André C. P. L. F. de Carvalho

Individual 1 Individual 1

a1+ o o o] +1[+1f+1 [0 To o]
100 f+1]+1]0] -1] 0o +1]+1]0]
0 [-1[0 [-1]0[+1 Lo [-1]0 [-1]0 [+1
0o -1]0[-1]-1] [0]o]-1]0]-1]-1

1 1

Individual 2 Individual 2

1[0 o 0] 1] o o]
[-1]-1]0 [+1]+1] 0| -1]-1]0 o [+1]0]
lo]-1]0[-1]0[+1] lo]-1]0[-1]0 [+1]
Lofol-1]o]-1]-1] Lo [0 [-a]2]-1]-1]

(a) (b)
Individual 1 Individual 1
S0 [o]0) DOHO00
-1]0 [0 [+1[+1] 0 l-1]0 o [+1]+1] 0
o]-1]0]-1]0[+1 l0]-1]0 -1]0]+1
Lo fo]-1]o]-1]-1] Lo]o]-1]0]-1]-1

L1 1L

Individual 2 Individual 2

[Ff+1f+1[0] o] 0] 1]+ [+1]o 0]

[-1]-1] 0 [+1[-1[+1] 0| -1]-1]0[+1]0]

lo[-1]0[-1]+1]0[+1] [o]-1]0][-1]+1]

LoJoJ-1[ofo]-1]-1] LoJo]-1o]-1]
(c) (d)

Fig. 6. Mutation operators to code-matrix design

For cross-over, two operators were defined:

Exchange of columns between two individuals. This operation corresponds
to an exchange of binary classifiers, motivated by the fact that a binary
predictor can be more efficient in an alternative multiclass combination.
This operator is illustrated in Figure 5a.

Exchange of groups of columns between individuals. In this case, given
two individuals, their descendants are produced by permuting all parents
columns from randomly chosen points. This operator is illustrated in Fig-

Evolutionary Design of Code-matrices for Multiclass Problems 173

ure 5b. The application of this operator allows the generation of individ-
uals of new sizes, permitting the exploration of code-matrices of varying
sizes. If one of the generated offspring has a number of columns outside
the minimum and maximum established limits, it is discarded and the
corresponding parent is copied into the new generation.

As mutation, four types of operators were defined:

e Change the value of a randomly chosen element of the matrix. This cor-
responds to the usual mutation operator and is illustrated in Figure 6a.

e New values can also be assigned to all elements in a column, as demon-
strated in Figure 6b.

e Given an individual, generate a new column (binary classifier) with ran-
dom elements. Figure 6¢ illustrates this modification. This operator can
be applied to an individual only if its number of columns is inferior to the
maximum value defined.

e Given an individual, remove one of its columns, as illustrated in Figure 6d.
This operator can be applied only to individuals whose number of columns
is higher than the minimum delimited.

The application of the first three mutation operators may generate columns
without negative or positive labels. A consistency check phase must correct
theses situations, defining new positive/negative labels.

As there is more than one type of cross-over and mutation operator, which
one of them must be applied at each cross-over or mutation step? To opt for
one of them, a criterion used in (Marti et al., 2005) was employed. Each
possible operator is probabilistically selected according to its performance in
the design of good code-matrices in previous generations. Using this scheme,
operators that produce better solutions in previous generations have a higher
chance to be applied and their importance is adapted by the GA.

At each execution of SPEA2, a set of solutions is obtained. To choose
a particular solution, the distance to a reference point is considered. This
point presents a null error rate, the minimum number of binary classifiers
necessary to distinguish the classes and a null number of equivalent columns.
The solution whose evaluations are closer to this point is chosen.

Both GAs were evaluated on a set of benchmark datasets and real mul-
ticlass problems from the Bioinformatics domain. They were employed to
search for code-matrices with accuracy rates statistically similar or superior
to those obtained by the 1AA decomposition (most used in practice (Rifkin
and Klautau, 2004)) when using SVMs as base classifiers and with the use
of less binary classifiers. The lexicographic GA was able to solve this prob-
lem, obtaining code-matrices with good accuracy results and using less binary
classifiers. The SPEA2 GA was not successful in this problem. Although the
obtained matrices had a low number of binary classifiers, they were not able,
in general, to maintain accuracy rates comparable to those of 1AA and also
showed equivalent columns.

174 Ana Carolina Lorena and André C. P. L. F. de Carvalho
4.4 Other Evolutionary Strategies

The decomposition framework can be regarded as an ensemble of binary clas-
sifiers for the multiclass problem solution. Based on this, Kuncheva (2005)
proposed the use of diversity measures from the ensemble literature for gen-
erating code-matrices for the multiclass problems. The author argued that
measuring diversity through the Hamming distance among columns is insuf-
ficient to build accurate ensembles.

The diversity measure used compromises the error-correcting capability
in order to have a more diverse ensemble, which shows on average, a better
performance. The disagreement measure is used to quantify diversity. It is
given by Equation 5 for two codewords 7 and j, where N™" represents the
number of bits for which the codeword ¢ has value m and the codeword j has
value n (m,n € {—1,41} or € {0,1}) and [is the number of columns of M.

1
N-1+H 4 N1 z_:l ‘M(% s) — M(j,)|
Rij = 7 == 7 (5)

R;; assumes values between 0 and 1. Larger values are desirable, meaning
a larger diversity. The diversity between two rows is then measured by R;;.

For columns, the fact that complementary columns represent the same
binary subproblem must be taken into account. The diversity between columns
is then given by Equation 6.

N—1+1 +N+1_1 N—l—l +N+1+1
C;; = min ,
k k
k . - k . .
2 |M (s,i) = M (s,4)| 32 |M (s,i) + M (s,)] (6)
— min s=1 - 7 s=1 -

For all rows, the total diversity measure is given by the mean of the diver-
sities between all pairs of rows, represented in Equation 7.

2
D,=—>» Ry, i,j=1,...,k 7
Kk—1) 2 Ry ird (@)
1<J
For columns, the mean is given by Equation 8.
2

D=7 O’i'y 27]2177l (8)
l(l—l); /

To obtain an unique function, Kuncheva (2005) used the average of D,
and D., represented in Equation 9.

D= (D, +Dy) ©)

Evolutionary Design of Code-matrices for Multiclass Problems 175

It is also possible to obtain a function that measures the row and column
separations based on the Hamming distance, as presented in Equation 10,
where H, and H. are the minimum distances between rows and columns,
respectively, and are given by Equations 11 and 12.

H,.+ H,

H= 1
5 (10)

H, = 15}1],11@{1%} (11)

He = min {Ci} (12)

EAs were then used to design code-matrices in order to maximize the
diversity measure given by Equation 9. As in GARA, the chromosome is
represented by a string formed by the concatenation of the codewords in
the code-matrix (Figure 3). Only the mutation operator is employed, which
is implemented by a bit-flip procedure. To derive a new population, the best
ones are chosen from the set formed by the parents and offspring. The EA is
stopped after a maximum number of generations.

The evaluation of this EA consisted of verifying whether D or H would be
effectively optimized by the EA. No experiments were performed on bench-
mark or real multiclass datasets.

Using some ideas from the work of Kuncheva (2005), Shen and Tan (2005)
also used GAs to search for code-matrices. They adapted the H and D func-
tions to ternary code-matrices. For such, all summations in R;; and C;; were
divided by two. Throughout this process, whenever an element is null and
another is positive or negative, a value of 0.5 is summed to the computed
distance. The chromosomes are again code-matrices with rows concatenated
into a bit-string of length kxI.

They define the margin of separation of one class 7 in relation to the others
by Equation 13, where d;; designates the Hamming distance, adapted to the
case where null elements are present in the code-matrix (when an element is
null and the other is +1 or —1, the 0.5 value is added to the distance).

n; =min{d,;;,1 < j < kand j # i} (13)

This margin measure is based on the rows separation criterion. To max-
imize all margins simultaneously, the mean of all margins is maximized. To
ensure columns separation, D. is also maximized. This is accomplished by
the fitness function presented in Equation 14, which is referred as a multiple
margins criterion.

k
mg = %iil 7+§DC (14)

The GA maximizes the m, value. When calculating an individual’s fitness,
Shen and Tan previously remove equivalent or constant columns. Nevertheless,

176 Ana Carolina Lorena and André C. P. L. F. de Carvalho

the original size [of the codewords is maintained in the fitness calculations.
Throughout this process, code-matrices with these types of columns are pe-
nalized.

The GA stops if it cannot improve the fitness values for a given period of
time or after a defined consecutive number of generations. The single-point
cross-over, uniform mutation and roulette selection were applied (descriptions
of these genetic operators may be found in (Mitchell, 1999)).

The proposed GA was evaluated experimentally on two multiclass cancer
diagnosis datasets. The GA code-matrices, using linear SVMs as base classi-
fiers, usually outperformed other code-matrices, as 1AA and 1A1, as well as
direct multiclass algorithms, like k-nearest neighbor (kNN) (Mitchell, 1997)
and DTs. A number of [= [10xlog, (k)] classifiers were used in the matrices.
As fitness functions in the GA, they tested both H, D and mg4. The best
results were verified using the m, measure.

5 Discussion of Experimental Results

When describing the code-matrix design approaches in the previous sections,
a brief discussion on experiments performed by the authors of each work was
presented. The main aspects of these experiments are summarized in Table
1. This table presents, for each of the cited papers, the type of code-matrix
design strategy (“CM” column), the number and types of datasets used in
their experimental evaluation (“Data” column), the number of classes in the
datasets investigated (“gClasses” column), the base classification techniques
used in the binary classifiers induction (“Base cl.” column) and the main con-
clusions obtained from the experimental results. Unless explicitly mentioned,
all results were compared based on accuracy or error performance.

The code-matrix design strategy can be of three types, according to the
structure adopted in the description of the code-matrix design problem. The
types are:

EC: ECOC design (Sections 3.1 and 4.2);
AD: adaptation of code-matrices for the multiclass problems (Sections 3.2
and 4.3);

e OS: other strategies (Sections 3.3 and 4.4);

The types of datasets used can also be three, according to their nature:

A: artificially designed datasets;
N: natural datasets, which come from benchmarks as the UCI repository
(Blake and Merz, 1998);

e R: real datasets, which come from real-world applications;

Regarding the base classifiers, there are works using:

e DT: Decision Trees (Quinlan, J.R., 1986);

Evolutionary Design of Code-matrices for Multiclass Problems 177

MLP: Multilayer Perceptron Neural Network (Haykin, 1999);

SVM: Support Vector Machines (Cristianini and Shawe-Taylor, 2000);
AB: Adaboost (Freund and Schapire, 1997);

NB: Nave-Bayes (Mitchell, 1997);

Lin: linear;

LR: Logistic Regression (Collins et al., 2002);

BDS: Boosted Decision Stumps (Freund and Schapire, 1997);

Ran: Random;

Ana Carolina Lorena and André C. P. L. F. de Carvalho

178

'98RJ IXON UO PonuIjuo))

$9p0d wopueI pue TV ‘YVI 8% ‘0T
uer) 13394 10 o[qeredwon sad ‘1A ‘6 ‘8 ‘0 ‘e| UI/N6| AV (900g v 32 1olnyg)
symsal I, eaordwr pmop Ld 9°¢ Ne¢| av (€002 "1V 72 sYEY)
Sop0od wopuel Afrereds pue 9g
VYV swiopadino Afesouar) M) 6T ‘TT 'L ‘9| UI/N9| AV (£00g ‘1o8uIg pue [3a(T)
IV pue Yy ueqy 9%
191994 10 d[qeredwon uryl CTT 0T ‘L€ N8| dv (6661 ‘zetofely pue urpAedly)
1500 19YSIY Y TV pue 9% ‘T1
VVI 0} £oemooe a[qereduron INAS ‘L9 ‘7 ‘€|NOT/VTI| aV|(g00g ‘ury pue nsy ‘go0g ‘108ulg pue Iouwurer))
SOpPOd I91I0Y7S I0J
Toradns are s9pod yuespmbyy dTIN LoV NG/VI| Dd (£00g ‘TopeYD) pue j1espuIp)
UOT)BOYISSE[D }X3) UO 1874
OAIJOO]JD SI9M SOPOD WOPURY aN ‘9¢ ‘08 ‘L gp| D4 (6661 ‘1o810¢])
Surpoo wopuelr pue Ty 9% ‘7% ‘0G ‘61
‘YY1 Suoure souuim 1ed[d oN|qV ‘INAS|‘TT ‘0T ‘8031 9| NE€I| DA (000g ‘v 72 UOM[Y)
Surpod wopuel pue yyi 9z ‘T1
uel) 19109 A[[e1ousn) INAS ‘0189 N9| Dd (€00g “Iv 2 Sueyy)
IVI pu® VV[ueys
191994 10 o[qeredwo)|INAS ‘Td| 0T ‘901 ¥ N9| Dd (S00g ‘eyuRwIL ‘GOOE “BUIRY) PUR BJUIUIL])
symsar JTIN pue 09 ‘9¢ ‘7T
LA seaoxdwt DOOH|dTIN ‘LA| ‘61 ‘TT ‘I1 ‘9| UI/NL| OH (G661 ‘T{ITeE] pue YoLL}OL(])
adAy
SUOISN[OUO0d UIRTA[| ‘[0 9seq sesse[Df| ere | IND Jadeq

SyI0M

u31Sep X1IJRUI-0POD JO UOIJRN[RAS [RIUSWILIOdXS JO ATRTIUING :T 9[qR],

179

Evolutionary Design of Code-matrices for Multiclass Problems

SLA Pue NNY ‘TVI ‘VVI

uey) 10319 10 djqereduior) INAS V1 ‘6 ¥z SO (500g ‘uey, pue uag)
seanseow (] pue Jo
uoryeziurydo y) Jo uorjen[eAr pury 0¢ VIl SO (900g ‘“easrpunyy)
SOp0d DODH HOd PU® TVI
surmjound soururiojrod poox) INAS 1T NI| SO (2007 ‘ZonS1Ipoy-s911y Pue zZNnI)-7ZoIoJ)
swojqoad sse[orjnu Ve
01 d[qems are sHOPNAY| SAd ‘Ld| ‘2 L9 T N9| SO (1005 _“7v 32 ®eidey, ‘ep0g v 72 eidey)
SIOYISSR[D ATRUIq SSO[IIM 97,
DODH 01 dqereduoy 1d Ve ‘61 ‘9 N¥#| SO (9661 “ero10]y pue zeloAepy)
SIOGISSe[o SSOf YHM (HODH 1T pue
pue V1 ‘VVI 03 dqeredwon INAS 0T 0V ¥ ‘¢| g¥/N8| AV (900 “eud10T '900F ‘OU[EATE) PUE RUDIOT)
adX)y
SUOISN[OU0D UIRIA]| ‘[0 @segq sosse[Df| ered| IND Jodeq

ponunuop) — T o[q¥L

180 Ana Carolina Lorena and André C. P. L. F. de Carvalho

A comparison of the experimental results regarding the different strategies
introduced in distinct works would bring valuable knowledge. However, it is
usually difficult to perform such analysis based on the results presented on
the papers. In general, different datasets are used by each author. Even when
the same datasets are used, different data partitions are employed to obtain
the mean accuracy/error rates reported or different learning techniques are
used in the base classifiers induction, making a significant direct comparison
impossible.

6 Conclusion

The solution of a multiclass classification problem can be performed through
its decomposition into binary subproblems, whose results are later combined.
The decomposition can be generally represented by a code-matrix M, whose
rows represent codewords assigned to each class and columns represent the
binary classifiers desired outputs. How to decompose the multiclass problem
can then be reduced to a code-matrix design problem. This chapter surveyed
some of the main developments in the design of code-matrices for multiclass
problems, with special attention to those using evolutionary computation.

Two general classes of strategies can be used to obtain the codes. The first
one considers the error-correcting capability of the codes. The second adapts
the codes to each multiclass application. There are, however, works that use a
combination of these two strategies or alternative criteria in generation of the
code-matrix. Among all reviewed works, some use an evolutionary approach
in order to evolve the code-matrices.

From the studies reported, it can be clearly verified that the decomposition
of multiclass problems into binary subproblems is an active research area. A
good deal of work can be still performed, like comparing different code-matrix
design strategies and adapting the GAs in order to use alternative fitness
functions.

Acknowledgements

The authors would like to thank the financial support from the Brazilian
research agencies CNPq and FAPESP.

References

Alba, E., Cotta, C., Chicano, F., Nebro, A.J., (2002), Parallel evolutionary algo-
rithms in telecommunications: two case studies. In: Proceedings of Congresso
Argentino de Ciéncias de la Computacién.

Evolutionary Design of Code-matrices for Multiclass Problems 181

Alba, E., Chicano, J.F., (2004), Solving the error correcting code problem with
parallel hybrid heuristics. In: Proceedings of 2004 ACM Symposium on Applied
Computing. Volume 2. 985-989.

Allwein, E.L., Shapire, R.E., Singer, Y., (2000), Reducing multiclass to binary: a
unifying approach for magin classifiers. In: Proceedings of the 17th Interna-
tional Conference on Machine Learning, Morgan Kaufmann 9-16.

Alpaydin, E., Mayoraz, E., (1999), Learning error-correcting output codes from
data. In: Proceedings of the 9th International Conference on Neural Networks.
743-748.

Beasley, D. (2000), (Béck et al., 2000) 4-18

Berger, A., (1999), Error-correcting output coding for text classification.

Blake, C.L., Merz, C.J., (1998), UCI repository of machine learning databases.
Available at: http://www.ics.uci.edu/ "mlearn/MLRepository.html.

Boser, R.C., Ray-Chaudhuri, D.K., (1960), On a class of error-correcting binary
group codes. Information and Control 3 68-79.

Béck, T., Fogel, D.B., Michalewicz, T., (2000), Evolutionary Computation 1: Basic
Algorithms and Operators. Institute of Physics Publishing.

Bick, T. (2000), (Back et al., 2000) 132-135

Collins, M., Shapire, R.E., Singer, Y., (2002), Logistic regression, adaboost and
bregman distances. Machine Learning 47(2/3) 253-285.

Crammer, K., Singer, Y., (2002), On the learnability and design of output codes
for multiclass problems. Machine Learning 47(2-3) 201-233.

Cristianini, N., Shawe-Taylor, J., (2000), An introduction to Support Vector Ma-
chines and other kernel-based learning methods. Cambridge University Press.

Darwin, C., (1859), On the origin of species by means of natural selection. John
Murray, London.

Deb, K., (2000), An efficient constraint handling method for genetic algorithms.
Computer Methods in Applied Mechanics and Engineering 186 311-338.

Dekel, O., Singer, Y., (2003), Multiclass learning by probabilistic embeddings. In:
Advances in Neural Information Processing Systems. Volume 15., MIT Press
945-952.

Dietterich, T.G., Bariki, G., (1995), Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 2 263-286.

Dontas, K., Jong, K.D., (1990), Discovery of maximal distance codes using genetic
algorithms. In: Proceedings of the 2nd International IEEE Conference on Tools
for Artificial Intelligence, IEEE Computer Society Press 905-811.

Eiben, A.E., Smith, J.E., (2003), Introduction to Evolutionary Computing.
Springer.

Escalera, S., Pujol, O., Radeva, R., (2006), Decoding of ternary error correcting
output codes. In: Proceedings of the 11th Iberoamerican Congress on Pattern
Recognition. Volume 4225 of Lecture Notes in Computer Science., Springer-
Verlag 753-763.

Freund, Y., Schapire, R.E., (1997), A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences 1(55) 119-139.

Fiirnkranz, J., (2002), Round robin classification. Journal of Machine Learning
Research 2 721-747.

Ghani, R., (2000), Using error correcting output codes for text classification. In:
Proceedings of the 17th International Conference on Machine Learning, Morgan

182 Ana Carolina Lorena and André C. P. L. F. de Carvalho

Kaufmann 303-310.

Hastie, T., Tibshirani, R., (1998), Classification by pairwise coupling. The Annals
of Statistics 2 451-471.

Haykin, S., (1999), Neural Networks - A Compreensive Foundation. 2nd edn.
Prentice-Hall, New Jersey.

Holland, J.H., (1975), Adaptation in Natural and Artificial Systems. University of
Michigan Press.

Hsu, C.W., Lin, C.J., (2002), A comparison of methods for multi-class support
vector machines. IEEE Transactions on Neural Networks 13(2) 415-425.

Klautau, A., Jevtié, N., Orlistky, A., (2003), On nearest-neighbor error-correcting
output codes with application to all-pairs multiclass support vector machines.
Journal of Machine Learning Research 4 1-15.

Knerr, S., Personnaz, L., Dreyfus, G., (1992), Handwritten digit recognition by
neural networks with single-layer training. IEEE Transactions on Neural Net-
works 3(6) 962-968.

Knerr, S., Personnaz, L., Dreyfus, G., (1990), In: Single-layer learning revisited: a
stepwise procedure for building and training a neural network. Springer-Verlag,
pp. 41-50

Kregel, U., (1999), Pairwise classification and support vector machines. In
Scholkopf, B., Burges, C.J.C., Smola, A.J., eds.: Advances in Kernel Methods
- Support Vector Learning, MIT Press 185—208.

Kuncheva, L.I., (2005), Using diversity measures for generating error-correcting
output codes in classifier ensembles. Pattern Recognition Letters 26 83-90.
Lorena, A.C., Carvalho, A.C.P.L.F., (2006), Evolutionary design of multiclass sup-
port vector machines. Journal of Intelligent and Fuzzy Systems . Accepted, to

be published..

Lorena, A.C., (2006), Investigacdo de estratégias para a gera¢do de méquinas de
vetores de suporte multiclasses [in portuguese], Ph.D. thesis, Departamento de
Ciéncias de Computagao, Instituto de Ciéncias Matematicas e de Computacao,
Universidade de S&o Paulo, Sdo Carlos, Brazil, http://www.teses.usp.br/
teses/disponiveis/55/55134/tde-26052006-111406.

Marti, R., Laguna, M., Campos, V., (2005), Scatter search vs. genetic algorithms:
An experimental evaluation with permutation problems. In Rego, C., Alidaee,
B., eds.: Metaheuristic Optimization Via Adaptive Memory and Evolution:
Tabu Search and Scatter Search. Kluwer Academic Publishers 263-282.

Masulli, F., Valentini, G., (2000), Effectiveness of error correcting output codes in
multiclass learning problems. In: Proceedings of the 1st International Workshop
on Multiple Classifier Systems. Volume 1857 of Lecture Notes in Computer
Science., Springer-Verlag 107-116.

Mayoraz, E., Alpaydim, E., (1998), Support vector machines for multi-class classifi-
cation. Research Report IDIAP-RR-98-06, Dalle Molle Institute for Perceptual
Artificial Intelligence, Martigny, Switzerland.

Mayoraz, E., Moreira, M., (1996), On the decomposition of polychotomies into di-
chotomies. Research Report 96-08, IDIAP, Dalle Molle Institute for Perceptive
Artificial Intelligence, Martigny, Valais, Switzerland.

Michalewicz, Z., Fogel, D.B., (2004), How to solve it: modern heuristics. Springer.

Mitchell, T., (1997), Machine Learning. McGraw Hill.

Mitchell, M., (1999), An introduction to Genetic Algorithms. MIT Press.

Evolutionary Design of Code-matrices for Multiclass Problems 183

Passerini, A., Pontil, M., Frasconi, P., (2004), New results on error correcting out-
put codes of kernel machines. IEEE Transactions on Neural Networks 15 45-54.

Pimenta, E., Gama, J., (2005), A study on error correcting output codes. In:
Proceedings of the 2005 Portuguese Conference on Artificial Intelligence, IEEE
Computer Society Press 218-223.

Pimenta, E.M.C., (2005), Abordagens para decomposicdo de problemas multi-
classe: os cédigos de correcgao de erros de saida (in portuguese). Master’s thesis,
Departamento de Ciéncias de Computadores, Faculdade de Ciéncias da Uni-
versidade do Porto, Portugal.

Pujol, O., Tadeva, P., Vitria, J., (2006), Discriminant ECOC: a heuristic method
for application dependetn design of error correcting output codes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 28(6) 1007-1012.

Pérez-Cruz, F., Artés-Rodriguez, A., (2002), Puncturing multi-class support vec-
tor machines. In: Proceedings of the 12th International Conference on Neu-
ral Networks (ICANN). Volume 2415 of Lecture Notes in Computer Science.,
Springer-Verlag 751-756.

Quinlan, J.R., (1986), Induction of decision trees. Machine Learning 1(1) 81-106.

Rifkin, R., Klautau, A., (2004), In defense of one-vs-all classification. Journal of
Machine Learning Research 5 1533-7928.

Rétsch, G., Smola, A.J., Mika, S., (2003), Adapting codes and embeddings for
polychotomies. In: Advances in Neural Information Processing Systems. Vol-
ume 15., MIT Press 513-520.

Shen, L., Tan, E.C., (2005), Seeking better output-codes with genetic algorithm
for multiclass cancer classification. Submitted to Bioinformatics.

Simn, M.D.J., Pulido, J.A.G., Rodrguez, M.A.V., (2006), Prez, J.M.S., Criado,
J.M.G., A genetic algorithm to design error correcting codes. In: Proceed-
ings of the 13th IEEE Mediterranean Eletrotechnical Conference 2006, IEEE
Computer Society Press 807-810.

Statnikov, A., Aliferis, C.F., Tsamardinos, 1., (2005), Hardin, D., Levy, S., A com-
prehensive evaluation of multicategory methods for microarray gene expression
cancer diagnosis. Bioinformatics 21(5) 631-643.

Tapia, E., Gonzélez, J.C., Garcia-Villalba, J., Villena, J., (2001), Recursive adap-
tive ECOC models. In: Proceedings of the 10th Portuguese Conference on
Artificial Intelligence. Volume 2258 of Lecture Notes in Artificial Intelligence.,
Springer-Verlag 96-103.

Tapia, E., Gonzilez, J.C., Garcia-Villalba, J., (2003), Good error correcting output
codes for adaptive multiclass learning. In: Proceedings of the 4th International
Workshop on Multiple Classifier Systems 2003. Volume 2709 of Lecture Notes
in Computer Science., Springer-Verlag 156—165.

Wallet, B.C., Marchette, D.J., Solka, J.L., (1996), A matrix representation for
genetic algorithms. In: Automatic object recognition VI, Proceedings of the
International Society for Optical Engineering. 206-214.

Wallis, J.L., Houghten, S.K., (2002), A comparative study of search techniques
applied to the minimum distance problem of BCH codes. Technical Report
CS-02-08, Department of Computer Science, Brock University.

Windeatt, T., Ghaderi, R., (2003), Coding and decoding strategies for multi-class
learning problems. Information Fusion 4(1) 11-21.

Zhang, A., Wu, Z.L., Li, C.H., Fang, K.T., (2003), On hadamard-type output cod-
ing in multiclass learning. In: Proceedings of IDEAL. Volume 2690 of Lecture

184 Ana Carolina Lorena and André C. P. L. F. de Carvalho

Notes in Computer Science., Springer-Verlag 397-404.

Zitzler, E., Laumanns, M., Thiele, L., (2002), SPEA2: Improving the strength
pareto evolutionary algorithm. In: Evolutionary Methods for Design, Optimi-
sation, and Control, CIMNE, Barcelona, Spain. 95-100.

Zitzler, E., Laumanns, M., Bleuler, S., (2004), A tutorial on evolutionary multiob-
jective optimization. In Gandibleux, X., Sevaux, M., Srensen, K., T’kindt, V.,
eds.: Metaheuristics for Multiobjective Optimisation. Volume 535 of Lecture
Notes in Economics and Mathematical Systems., Springer-Verlag 3-37.

Part 111

Fuzzy Logic Methods

The Role of Fuzzy Sets in Data Mining

Lior Rokach

Department of Information System Engineering, Ben-Gurion University, Israel
liorrk@bgu.ac.il

Summary. In this chapter we discuss how fuzzy logic extends the envelop of the
main data mining tasks: clustering, classification, regression and association rules.
We begin by presenting a formulation of the data mining using fuzzy logic attributes.
Then, for each task, we provide a survey of the main algorithms and a detailed
description (i.e. pseudo-code) of the most popular algorithms. However this chapter
will not profoundly discuss neuro-fuzzy techniques, assuming that there will be a
dedicated chapter for this issue.

1 Introduction

There are two main types of uncertainty in supervised learning: statistical
and cognitive. Statistical uncertainty deals with the random behavior of na-
ture and all existing data mining techniques can handle the uncertainty that
arises (or is assumed to arise) in the natural world from statistical variations
or randomness. While these techniques may be appropriate for measuring
the likelihood of a hypothesis, they says nothing about the meaning of the
hypothesis.

Cognitive uncertainty, on the other hand, deals with human cognition.
Cognitive uncertainty can be further divided into two sub-types: vagueness
and ambiguity.

Ambiguity arises in situations with two or more alternatives such that
the choice between them is left unspecified. Vagueness arises when there is a
difficulty in making a precise distinction in the world.

Fuzzy set theory, first introduced by Zadeh in 1965, deals with cognitive
uncertainty and seeks to overcome many of the problems found in classical
set theory.

For example, a major problem faced by researchers of control theory is
that a small change in input results in a major change in output. This throws
the whole control system into an unstable state. In addition there was also
the problem that the representation of subjective knowledge was artificial and

188 Lior Rokach

inaccurate. Fuzzy set theory is an attempt to confront these difficulties and
in this chapter we show how it can be used in data mining tasks.

2 Basic Concepts of Fuzzy Set Theory

In this section we present some of the basic concepts of fuzzy logic. The
main focus, however, is on those concepts used in the induction process when
dealing with data mining. Since fuzzy set theory and fuzzy logic are much
broader than the narrow perspective presented here, the interested reader is
encouraged to read (Zimmermann, 2005)).

2.1 Membership function

In classical set theory, a certain element either belongs or does not belong to
a set. Fuzzy set theory, on the other hand, permits the gradual assessment of
the membership of elements in relation to a set.

Definition 1. Let U be a universe of discourse, representing a collection of
objects denoted generically by u. A fuzzy set A in a universe of discourse U is
characterized by a membership function pa which takes values in the interval
[0, 1]. Where ppa(u) = 0 means that u is definitely not a member of A and
wa(u) =1 means that u is definitely a member of A.

The above definition can be illustrated on the vague set of Young. In this
case the set U is the set of people. To each person in U, we define the degree
of membership to the fuzzy set Y oung. The membership function answers the
question "to what degree is person w young?”. The easiest way to do this is
with a membership function based on the person’s age. For example Figure 1
presents the following membership function:

0 age(u) > 32
1y oung(u) = § 1 age(u) < 16 (1)
32%%"’%“) otherwise

Given this definition, John, who is 18 years old, has degree of youth of
0.875. Philip, 20 years old, has degree of youth of 0.75. Unlike probability
theory, degrees of membership do not have to add up to 1 across all objects
and therefore either many or few objects in the set may have high membership.
However, an objects membership in a set (such as ”young”) and the sets
complement ("not young”) must still sum to 1.

The main difference between classical set theory and fuzzy set theory is
that the latter admits to partial set membership. A classical or crisp set, then,
is a fuzzy set that restricts its membership values to {0, 1}, the endpoints of
the unit interval. Membership functions can be used to represent a crisp set.
For example, Figure 2 presents a crisp membership function defined as:

The Role of Fuzzy Sets in Data Mining 189

o
© =
Ly

0.8 -

o o
o N
1 1

Young Membership
©oooo
- N W s~ O
1 1 1 1 1

o

15 20 25 30 35
Age

-
o

Fig. 1. Membership function for the young set.

0 age(u) > 22
MCrispYoung(u) = { 1 age(u) <22 (2)

0.9 -

© o o
o N
L

Crisp Young Membership
oo oo
MW s o

o
Y
1

o

15 20 25 30 35
Age

—_
o

Fig. 2. Membership function for the crisp young set.

In regular classification problems, we assume that each instance takes one
value for each attribute and that each instance is classified into only one of the
mutually exclusive classes. To illustrate how fuzzy logic can help data mining
tasks, we introduce the problem of modelling the preferences of TV viewers.
In this problem there are 3 input attributes:

190 Lior Rokach

A = {Time of Day,Age Group,Mood}

and each attribute has the following values:

e dom(Time of Day) = {Morning,Noon,Evening,Night}
e dom(Age Group) = {Young,Adult}
e dom(Mood) = {Happy,Indifferent,Sad,Sour,Grumpy }

The classification can be the movie genre that the viewer would like to
watch, such as C = {Action,Comedy,Drama}.

All the attributes are vague by definition. For example, peoples feelings of
happiness, indifference, sadness, sourness and grumpiness are vague without
any crisp boundaries between them. Although the vagueness of ” Age Group”
or "Time of Day” can be avoided by indicating the exact age or exact time,
a rule induced with a crisp decision tree may then have an artificial crisp
boundary, such as "IF Age < 16 THEN action movie”. But how about some-
one who is 17 years of age? Should this viewer definitely not watch an action
movie? The viewer preferred genre may still be vague. For example, the viewer
may be in a mood for both comedy and drama movies. Moreover, the associa-
tion of movies into genres may also be vague. For instance the movie ” Lethal
Weapon” (starring Mel Gibson and Danny Glover) is considered to be both
comedy and action movie.

Fuzzy concept can be introduced into a classical problem if at least one of
the input attributes is fuzzy or if the target attribute is fuzzy. In the example
described above , both input and target attributes are fuzzy. Formally the
problem is defined as following (Yuan and Shaw, 1995):

Each class c; is defined as a fuzzy set on the universe of objects U. The
membership function g, (u) indicates the degree to which object u belongs
to class c;. Each attribute a; is defined as a linguistic attribute which takes
linguistic values from dom(a;) = {vi,1,vi 2, -, Vi |dom(a;)|}- Each linguistic
value v; is also a fuzzy set defined on U. The membership ., , (u) specifies
the degree to which object u’s attribute a; is v; 5. Recall that the membership
of a linguistic value can be subjectively assigned or transferred from numerical
values by a membership function defined on the range of the numerical value.

Typically, before one can incoporate fuzzy concepts into a data mining ap-
plication, an expert is required to provide the fuzzy sets for the quantitative
attributes, along with their corresponding membership functions. Alterna-
tively the appropriate fuzzy sets are determined using fuzzy clustering.

2.2 Fuzzy Set Operations

Like classical set theory, fuzzy set theory includes operations union, inter-
section, complement, and inclusion, but also includes operations that have no
classical counterpart, such as the modifiers concentration and dilation, and the
connective fuzzy aggregation. Definitions of fuzzy set operations are provided
in this section.

The Role of Fuzzy Sets in Data Mining 191

Definition 2. The membership function of the union of two fuzzy sets A and
B with membership functions ua and pp respectively is defined as the maxi-
mum of the two individual membership functions:

paup(u) = maz{pa(u), pp(u)} (3)

Definition 3. The membership function of the intersection of two fuzzy sets
A and B with membership functions pa and pp respectively is defined as the
minimum of the two individual membership functions:

panp(u) =minfpa(u), pp(u)} (4)

Definition 4. The membership function of the complement of a fuzzy set A
with membership function ua is defined as the negation of the specified mem-
bership function:

() = 1~ pa(u). (5)

To illustrate these fuzzy operations, we elaborate on the previous example.
Recall that John has a degree of youth of 0.875. Additionally John’s happiness
degree is 0.254. Thus, the membership of John in the set Young U Happy would
be maxz(0.875,0.254) = 0.875, and its membership in Young N Happy would
be min(0.875,0.254) = 0.254.

It is possible to chain operators together, thereby constructing quite com-
plicated sets. It is also possible to derive many interesting sets from chains of
rules built up from simple operators. For example John’s membership in the
set Young U Happy would be max(1 — 0.875,0.254) = 0.254

The usage of the max and min operators for defining fuzzy union and
fuzzy intersection, respectively is very common. However, it is important to
note that these are not the only definitions of union and intersection suited
to fuzzy set theory.

Definition 5. The fuzzy subsethood S(A, B) measures the degree to which A
is a subset of B.

M(AN B)
M) (6)

where M (A) is the cardinality measure of a fuzzy set A and is defined as

M(A) = wevpalu) (7)

The subsethood can be used to measure the truth level of the rule of
classification rules. For example given a classification rule such as "IF Age is
Young AND Mood is Happy THEN Comedy” we have to calculate S(Hot N
Sunny, Swimming) in order to measure the truth level of the classification
rule.

S(A, B) =

192 Lior Rokach

3 Fuzzy Supervised Learning

In this section we survey supervised methods that incoporate fuzzy sets. Su-
pervised methods are methods that attempt to discover the relationship be-
tween input attributes and a target attribute (sometimes referred to as a
dependent variable). The relationship discovered is represented in a structure
referred to as a model. Usually models describe and explain phenomena, which
are hidden in the dataset and can be used for predicting the value of the target
attribute knowing the values of the input attributes.

It is useful to distinguish between two main supervised models: classifica-
tion models (classifiers) and Regression Models. Regression models map the
input space into a real-value domain. For instance, a regressor can predict the
demand for a certain product given its characteristics. On the other hand,
classifiers map the input space into pre-defined classes. For instance, classi-
fiers can be used to classify mortgage consumers as good (fully payback the
mortgage on time) and bad (delayed payback).

Fuzzy set theoretic concepts can be incorporated at the input, output, or
into to backbone of the classifier. The data can be presented in fuzzy terms
and the output decision may be provided as fuzzy membership values. In this
chapter we will concentrate on fuzzy decision trees.

3.1 Growing Fuzzy Decision Tree

Decision tree is a predictive model which can be used to represent classifiers.
Decision trees are frequently used in applied fields such as finance, marketing,
engineering and medicine. In the opinion of many researchers decision trees
gained popularity mainly due to their simplicity and transparency. Decision
tree are self-explained. There is no need to be an expert in data mining in
order to follow a certain decision tree.

There are several algorithms for induction of fuzzy decision trees, most of
them extend existing decision trees methods. The UR-ID3 algorithm (Maher
and Clair, 1993)) starts by building a strict decision tree, and subsequently
fuzzifies the conditions of the tree. Tani and Sakoda (1992) use the ID3 algo-
rithm to select effective numerical attributes. The obtained splitting intervals
are used as fuzzy boundaries. Regression is then used in each subspace to
form fuzzy rules. Cios and Sztandera (1992) use the ID3 algorithm to convert
a decision tree into a layer of a feedforward neural network. Each neuron is
represented as a hyperplane with a fuzzy boundary. The nodes within the
hidden layer are generated until some fuzzy entropy is reduced to zero. New
hidden layers are generated until there is only one node at the output layer.

Fuzzy-CART (Jang (1994)) is a method which uses the CART algorithm to
build a tree. However, the tree, which is the first step, is only used to propose
fuzzy sets of the continuous domains (using the generated thresholds). Then,
a layered network algorithm is employed to learn fuzzy rules. This produces
more comprehensible fuzzy rules and improves the CART’s initial results.

The Role of Fuzzy Sets in Data Mining 193

Another complete framework for building a fuzzy tree including several
inference procedures based on conflict resolution in rule-based systems and
efficient approximate reasoning methods was presented in (Janikow, 1998).

Olaru and Wehenkel (2003) presented a new type of fuzzy decision trees
called soft decision trees (SDT). This approach combines tree-growing and
pruning, to determine the structure of the soft decision tree. Refitting and
backfitting are used to improve its generalization capabilities. The researchers
empirically showed that soft decision trees are significantly more accurate
than standard decision trees. Moreover, a global model variance study shows
a much lower variance for soft decision trees than for standard trees as a direct
cause of the improved accuracy.

Peng (2004) has used FDT to improve the performance of the classical
inductive learning approach in manufacturing processes. Peng proposed using
soft discretization of continuous-valued attributes. It has been shown that
FDT can deal with the noise or uncertainties existing in the data collected in
industrial systems.

In this chapter we will focus on the algorithm proposed in (Yuan and
Shaw, 1995). This algorithm can handle the classification problems with both
fuzzy attributes and fuzzy classes represented in linguistic fuzzy terms. It can
also handle other situations in a uniform way where numerical values can be
fuzzified to fuzzy terms and crisp categories can be treated as a special case of
fuzzy terms with zero fuzziness. The algorithm uses classification ambiguity
as fuzzy entropy. The classification ambiguity directly measures the quality
of classification rules at the decision node. It can be calculated under fuzzy
partitioning and multiple fuzzy classes.

The fuzzy decision tree induction consists of the following steps:

Fuzzifying numeric attributes in the training set.
Inducing a fuzzy decision tree.

Simplifying the decision tree.

Applying fuzzy rules for classification.

Fuzzifying numeric attributes

When a certain attribute is numerical, it needs to be fuzzified into linguistic
terms before it can be used in the algorithm. The fuzzification process can be
performed manually by experts or can be derived automatically using some
sort of clustering algorithm. Clustering groups the data instances into sub-
sets in such a manner that similar instances are grouped together; different
instances belong to different groups. The instances are thereby organized into
an efficient representation that characterizes the population being sampled.

Yuan and Shaw (1995) suggest a simple algorithm to generate a set of
membership functions on numerical data. Assume attribute a; has numerical
value z from the domain X. We can cluster X to k linguistic terms v; j,j =
1,..., k. The size of k is manually predefined. For the first linguistic term v; 1,
the following membership function is used:

194 Lior Rokach

1 T < my
o, (2) = { 255 my <z < my (8)
0 T > mo
For each v; ; when j = 2,...,k — 1 has a triangular membership function
as follows:
0 X S mj;—1
af—m]'71

foy, (@) = Tt Mmj—1 < TS M
Vi,j - m;41—T i .
P — m; <& < Mjy1

0 x Z miy1

Finally the membership function of the last linguistic term v; j, is:

0 < mg_q
fo 1 (2) = § gt M1 < @ <y, (10)
1 T > my

Figure 3 illustrates the creation of four groups defined on the age attribute:
7young”, ”early adulthood”, "middle-aged” and ”old age”. Note that the first
set ("young”) and the last set ("old age”) have a trapezoidal form which can
be uniquely described by the four corners. For example, the ”young” set could
be represented as (0,0, 16,32). In between, all other sets (”early adulthood”
and ”"middle-aged”) have a triangular form which can be uniquely described
by the three corners. For example, the set ”early adulthood” is represented

as (16,32, 48).

'_% 07 —Young

g --- Early adulthood
=20 | N S Middle-aged

S --- Old Age

Fig. 3. Membership function for various groups in the age attribute.

The only parameters that need to be determined are the set of k centers
M = {my,...,mg}. The centers can be found using the algorithm presented in

The Role of Fuzzy Sets in Data Mining 195

Algorithm 1. Note that in order to use the algorithm, a monotonic decreasing
learning rate function should be provided.

Algorithm 1: Algorithm for fuzzifying numeric attributes

Input: X - a set of values, n(t) - some monotonic decreasing scalar function
representing the learning rate.
Output: M = {m,...,mx}
1: Initially set m; to be evenly distributed on the range of X.
2:t—1
3: repeat
4: Randomly draw one sample x from X
5 Find the closest center m. to x.
6: me—me+n(t) (x—me)
7 t—t+1
8 D(X,M)«— > min;|z—m
zeX
9: until D(X, M) converges

The Induction Phase

The induction algorithm of fuzzy decision tree is presented in Algorithm 2.
The algorithm measures the classification ambiguity associated with each at-
tribute and split the data using the attribute with the smallest classification
ambiguity. The classification ambiguity of attribute a; with linguistic terms
vi,J = 1,...,k on fuzzy evidence S, denoted as G(a;|S), is the weighted
average of classification ambiguity calculated as:

k
G(ai[8) =D w(vi;|S) - Glvi;|9) (11)

¢

j=1
where w(v; ; |S) is the weight which represents the relative size of v; ; and is
defined as:

M{(vi; |S)

w(v;;|S) = W (12)

The classification ambiguity of v; ; is defined as G(v; ; [S) = g (p (C'|vi;)),
which is measured based on the possibility distribution vector p (C'|v; ;) =
(perlvis) s omp (epq 06)) -

Given v; 5, the possibility of classifying an object to class ¢; can be defined
as:

196 Lior Rokach

S(’U@j,cl)

—_— 1
max S(vij,cr) (13)

plelvig) =
where S(A, B) is the fuzzy subsethood that was defined in Definition 5. The
function g (p) is the possibilistic measure of ambiguity or nonspecificity and
is defined as:

Ip|

g9(P)=>_ (; —pj1) - (i) (14)

i=1

where p* = (pf, e J’Tm) is the permutation of the possibility distribution p

sorted such that p} > p;, ;.

All the above calculations are carried out at a predefined significant level
a. An instance will take into consideration of a certain branch v; ; only if its
corresponding membership is greater than a. This parameter is used to filter
out insignificant branches.

After partitioning the data using the attribute with the smallest clas-
sification ambiguity, the algorithm looks for nonempty branches. For each
nonempty branch, the algorithm calculates the truth level of classifying all in-
stances within the branch into each class. The truth level is caluclated using
the fuzzy subsethood measure S(A, B).

If the truth level of one of the classes is above a predefined threshold
then no additional partitioning is needed and the node become a leaf in which
all instance will be labeled to the class with the highest truth level. Otherwise
the procedure continues in a recursive manner. Note that small values of §
will lead to smaller trees with the risk of underfitting. A higher 8 may lead to
a larger tree with higher classification accuracy. However, at a certain point,
higher values 8 may lead to overfitting.

Algorithm 2: Fuzzy decision tree induction

Input: S - Training Set A - Input Feature Set y - Target Feature
Output: Fuzzy Decision Tree
1: Create a new fuzzy tree F'T" with a single root node.
2: if S is empty OR Truth level of one of the classes > (then
3 Mark F'T as a leaf with the most common value of y in S as a label.
4 Return F'T.
5: end if
6: Va; € A find a with the smallest classification ambiguity.
7: for each outcome v; of a do
8 Recursively call procedure with corresponding partition v;.
9 Connect the root to the subtree with an edge that is labeled as v;.
0: end for
1: Return FT

The Role of Fuzzy Sets in Data Mining 197
Simplifying the decision tree

Each path of branches from root to leaf can be converted into a rule with the
condition part representing the attributes on the passing branches from the
root to the leaf and the conclusion part representing the class at the leaf with
the highest truth level classification. The corresponding classification rules
can be further simplified by removing one input attribute term at a time for
each rule we try to simplify . Select the term to remove with the highest truth
level of the simplified rule. If the truth level of this new rule is not lower than
the threshold S8 or the truth level of the original rule, the simplification is
successful. The process will continue until no further simplification is possible
for all the rules.

Using the Fuzzy Decision Tree

In a regular decision tree, only one path (rule) can be applied for every in-
stance. In a fuzzy decision tree, several paths (rules) can be applied for one
instance. In order to classify an unlabeled instance, the following steps should
be performed (Yuan and Shaw, 1995):

e Step 1: Calculate the membership of the instance for the condition part of
each path (rule). This membership will be associated with the label (class)
of the path.

e Step 2: For each class calculate the maximum membership obtained from
all applied rules.

e Step 3: An instance may be classified into several classes with different
degrees based on the membership calculated in Step 2.

3.2 Soft Regression

Regressions are used to compute correlations among data sets. The “classical”
approach uses statistical methods to find these correlations. Soft regression
is used when we want to compare data sets that are temporal and interde-
pendent. The use of fuzzy logic can overcome many of the difficulties asso-
ciated with the classical approach. The fuzzy techniques can achieve greater
flexibility, greater accuracy and generate more information in comparison to
econometric modeling based on (statistical) regression techniques. In partic-
ular, the fuzzy method can potentially be more successful than conventional
regression methods, especially under circumstances that severely violate the
fundamental conditions required for the reliable use of conventional methods.

Soft regression techniques have been proposed in (Shnaider et al., 1991,
Shnaider and Schneider, 1988).

198 Lior Rokach
3.3 Neuro-fuzzy

Neuro-fuzzy refers to hybrids of artificial neural networks and fuzzy logic.
Neuro-fuzzy is the most visible hybrid paradigm and has been adequately
investigated (Mitra and Pal, 2005)

Neuro-fuzzy hybridization can be done in two ways (Mitra, 2000): fuzzy-
neural network (FNN) which is a neural network equipped with the capability
of handling fuzzy information and a neural-fuzzy system (NFS) which is a
fuzzy system augmented by neural networks to enhance some of its charac-
teristics like flexibility, speed, and adaptability.

A neurofuzzy system can be viewed as a special 3layer