

Soft Computing for
Knowledge Discovery and

Data Mining

Soft Computing for
Knowledge Discovery and

Data Mining

edited by

Oded Maimon
Tel-Aviv University

Israel

and

Lior Rokach
Ben-Gurion University of the Negev

Israel

Library of Congress Control Number: 2007934794

Soft Computing for Knowledge Discovery and Data Mining
Edited by Oded Maimon and Lior Rokach

Printed on acid-free paper.

All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if the are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

Oded Maimon
Tel Aviv University
Dept.of Industrial Engineering
69978 TEL-AVIV
ISRAEL
maimon@eng.tau.ac.il

Lior Rokach
Ben-Gurion University
Dept. of Information System Engineering
84105 BEER-SHEVA
ISRAEL
liorrk@bgu.ac.il

© 2008 Springer Science+Business Media, LLC.

ISBN 978-0-387-69934-9 e-ISBN 978-0-387-69935-6

To my family
– O.M.

To my wife Ronit, and my two boys, Yarden and Roy
– L.R.

Preface

The information age has made it easy to store large amounts of data. Data
mining is a new and exciting field that tries to solve the crisis of information
overload by exploring large and complex bodies of data in order to discover
useful patterns. It is extreme importance because it enables modeling and
knowledge extraction from abundance data availability. Therefore theoreti-
cians and practitioners are continually seeking techniques to make the pro-
cess more efficient, cost-effective and accurate. Among the more promising
technique that have emerged in recent years are soft computing methods such
as fuzzy sets, artificial neural networks, genetic algorithms. These techniques
exploit a tolerance for imprecision, uncertainty and partial truth to achieve
tractability, robustness and low cost solutions. This book shows that the soft
computing methods extend the envelope of problems that data mining can
solve efficiently.

This book presents a comprehensive discussion of the state of the art in
data mining along with the main soft computing techniques behind it. In
addition to presenting a general theory of data mining, the book provides an
in-depth examination of core soft computing algorithms.

To help interested researchers and practitioners who are not familiar with
the field, the book starts with a gentle introduction to data mining and knowl-
edge discovery in databases (KDD) and prepares the reader for the next chap-
ters. The rest of the book is organized into four parts. The first three parts
devoted to the principal constituents of soft computing: neural networks, evo-
lutionary algorithms and fuzzy logic. The last part compiles the recent ad-
vances in soft computing and data mining.

This book was written to provide investigators in the fields of information
systems, engineering, computer science, statistics and management, with a
profound source for the role of soft computing in data mining. In addition,
social sciences, psychology, medicine, genetics, and other fields that are inter-
ested in solving complicated problems can much benefit from this book. The
book can also serve as a reference book for graduate / advanced undergrad-
uate level courses in data mining and machine learning. Practitioners among

VIII Preface

the readers may be particularly interested in the descriptions of real-world
data mining projects performed with soft-computing.

We would like to thank all authors for their valuable contributions. We
would like to express our special thanks to Susan Lagerstrom-Fife and Sharon
Palleschi of Springer for working closely with us during the production of this
book.

Tel-Aviv, Israel Oded Maimon
Beer-Sheva, Israel Lior Rokach

July 2007

Contents

Introduction to Soft Computing for Knowledge Discovery and
Data Mining
Oded Maimon, Lior Rokach . 1

Part I Neural Network Methods

Neural Networks For Data Mining
G. Peter Zhang . 17

Improved SOM Labeling Methodology for Data Mining
Applications
Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, Rudy Setiono 45

Part II Evolutionary Methods

A Review of Evolutionary Algorithms for Data Mining
Alex A. Freitas . 79

Genetic Clustering for Data Mining
Murilo Coelho Naldi André Carlos Ponce de Leon Ferreira de Carvalho
Ricardo José Gabrielli Barreto Campello Eduardo Raul Hruschka 113

Discovering New Rule Induction Algorithms with
Grammar-based Genetic Programming
Gisele L. Pappa, Alex A. Freitas . 133

Evolutionary Design of Code-matrices for Multiclass
Problems
Ana Carolina Lorena, André C. P. L. F. de Carvalho 153

X Contents

Part III Fuzzy Logic Methods

The Role of Fuzzy Sets in Data Mining
Lior Rokach . 187

Support Vector Machines and Fuzzy Systems
Yixin Chen . 205

KDD in Marketing with Genetic Fuzzy Systems
Jorge Casillas, Francisco J. Mart́ınez-López . 225

Knowledge Discovery in a Framework for Modelling with
Words
Zengchang Qin, Jonathan Lawry . 241

Part IV Advanced Soft Computing Methods and Areas

Swarm Intelligence Algorithms for Data Clustering
Ajith Abraham, Swagatam Das, Sandip Roy . 279

A Diffusion Framework for Dimensionality Reduction
Alon Schclar . 315

Data Mining and Agent Technology: a fruitful symbiosis
Christos Dimou, Andreas L. Symeonidis,, Pericles A. Mitkas 327

Approximate Frequent Itemset Mining In the Presence of
Random Noise
Hong Cheng, Philip S. Yu, Jiawei Han . 363

The Impact of Overfitting and Overgeneralization on the
Classification Accuracy in Data Mining
Huy Nguyen Anh Pham, Evangelos Triantaphyllou 391

Index . 433

List of Contributors

Ajith Abraham
Center of Excellence for Quantifiable
Quality of Service (Q2S),
Norwegian University of Science and
Technology,
Trondheim, Norway
ajith.abraham@ieee.org

Arnulfo Azcarraga
College of Computer Studies,
De La Salle University, Manila,
The Philippines
azcarragaa
@canlubang.dlsu.edu.ph

Ricardo José Gabrielli Barreto
Campello
Instituto de Ciências Matemáticas e
de Computação,
Universidade de São Paulo
campello@icmc.usp.br

André Carlos Ponce de Leon
Ferreira de Carvalho
Instituto de Ciê
ncias Matemá
ticas e de Computação
Universidade de São Paulo
andre@icmc.usp.br

Jorge Casillas
Dept. of Computer Science and
Artificial Intelligence,
University of Granada,
Spain
casillas@decsai.ugr.es

Yixin Chen
Dept. of Computer and Information
Science
The University of Mississippi
MS 38655
ychen@cs.olemiss.edu

Hong Cheng
University of Illinois at Urbana-
Champaign
hcheng3@cs.uiuc.edu

Swagatam Das
Dept. of Electronics and Telecommu-
nication Engineering,
Jadavpur University,
Kolkata 700032,
India.

XII List of Contributors

Christos Dimou
Electrical and Computer Engineering
Dept.
Aristotle University of Thessaloniki,
54 124, Thessaloniki,
Greece
cdimou@issel.ee.auth.gr

Alex A. Freitas
Computing Laboratory,
University of Kent,
Canterbury, Kent, CT2 7NF, UK
A.A.Freitas@kent.ac.uk

Jiawei Han
University of Illinois at Urbana-
Champaign
hanj@cs.uiuc.edu

Eduardo Raul Hruschka
eduardo.hruschka
@pesquisador.cnpq.br

Ming-Huei Hsieh
Dept. of International Business,
National Taiwan University,
Taiwan
mhhsieh@management.ntu.edu.tw

Jonathan Lawry
Artificial Intelligence Group,
Department of Engineering Mathe-
matics,
University of Bristol,
BS8 1TR, UK.
j.lawry@bris.ac.uk

Ana Carolina Lorena
Centro de Matemática,
Computação e Cognição
Universidade Federal do ABC
Rua Catequese, 242,
Santo André, SP, Brazil
ana.lorena@ufabc.edu.br

Oded Maimon
Dept. of Industrial Engineering
Tel-Aviv University
Israel
maimon@eng.tau.ac.il

Francisco J. Mart́ınez-López
Dept. of Marketing, University of
Granada, Spain
fjmlopez@ugr.es

Murilo Coelho Naldi
Instituto de Ciê
ncias Matemá
ticas e de Computação
Universidade de São Paulo
murilocn@icmc.usp.br

Shan-Ling Pan
School of Computing,
National University of Singapore,
Singapore
pansl@comp.nus.edu.sg

Gisele L. Pappa
Computing Laboratory
University of Kent
Canterbury, Kent, CT2 7NF, UK
glp6@kent.ac.uk

Huy Nguyen Anh Pham
Dept. of Computer Science,
298 Coates Hall,
Louisiana State University,
Baton Rouge, LA 70803
hpham15@lsu.edu

Zengchang Qin
Berkeley Initiative in Soft Comput-
ing (BISC),
Computer Science Division,
EECS Department,
University of California,
Berkeley, CA 94720, US.

List of Contributors XIII

zqin@eecs.berkeley.edu

Lior Rokach
Dept. of Information System Engi-
neering,
Ben-Gurion University,
Israel
liorrk@bgu.ac.il

Sandip Roy
Dept. of Computer Science and
Engineering,
Asansol Engineering College,
Asansol-713304, India.

Alon Schclar
School of Computer Science,
Tel Aviv University,
Tel Aviv 69978,
Israel
shekler@post.tau.ac.il

Rudy Setiono
School of Computing,
National University of Singapore,
Singapore
rudys@comp.nus.edu.sg

Andreas L. Symeonidis
Electrical and Computer Engineering

Dept.
Aristotle University of Thessaloniki,
54 124, Thessaloniki,
Greece
asymeon@iti.gr

Pericles A. Mitkas
Electrical and Computer Engineering
Dept.
Aristotle University of Thessaloniki,
54 124, Thessaloniki,
Greece
mitkas@eng.auth.gr

Evangelos Triantaphyllou
Dept. of Computer Science,
298 Coates Hall,
Louisiana State University,
Baton Rouge, LA 70803
trianta@lsu.edu

Philip S. Yu
IBM T. J. Watson Research Center
psyu@us.ibm.com

G. Peter Zhang
Georgia State University,
Dept. of Managerial Sciences
gpzhang@gsu.edu

Introduction to Soft Computing for Knowledge
Discovery and Data Mining

Oded Maimon1 and Lior Rokach2

1 Department of Industrial Engineering, Tel-Aviv University, Ramat-Aviv 69978,
Israel,
maimon@eng.tau.ac.il

2 Department of Information System Engineering, Ben-Gurion University,
Beer-Sheba, Israel,
liorrk@bgu.ac.il

Summary. In this chapter we introduce the Soft Computing areas for Data Mining
and the Knowledge Discovery Process, discuss the need for plurality of methods, and
present the book organization and abstracts.

1 Introduction

Data Mining is the science, art and technology of exploring data in order to
discover insightful unknown patterns. It is a part of the overall process of
Knowledge Discovery in Databases (KDD). The accessibility and abundance
of information today makes data mining a matter of considerable importance
and necessity.

Soft computing is a collection of new techniques in artificial intelligence,
which exploit the tolerance for imprecision, uncertainty and partial truth to
achieve tractability, robustness and low solution cost. Given the history and re-
cent growth of the field, it is not surprising that several mature soft computing
methods are now available to the practitioner, including: fuzzy logic, artificial
neural networks, genetic algorithms, and swarm intelligence. The aims of this
book are to present and explain the important role of soft computing methods
in data mining and knowledge discovery.

The unique contributions of this book is in the introduction of soft com-
puting as a viable approach for data mining theory and practice, the detailed
descriptions of novel soft-computing approaches in data mining, and the illus-
trations of various applications solved in soft computing techniques, including:
Manufacturing, Medical, Banking, Insurance, Business Intelligence and oth-
ers. The book does not include some of the most standard techniques in Data
Mining, such as Decision Trees (the reader is welcome to our new book, from
2007, dedicated entirely to Decision Trees). The book include the leading soft

2 Oded Maimon and Lior Rokach

computing methods, though for volume reasons it could not cover all methods,
and there are further emerging techniques, such as fractal based data mining
(a topic of our current research).

Since the information age, the accumulation of data has become easier
and storing it inexpensive. It has been estimated that the amount of stored
information doubles less than twenty months. Unfortunately, as the amount
of electronically stored information increases, the ability to understand and
make use of it does not keep pace with its growth. Data Mining is a term
coined to describe the process of sifting through large databases for interesting
patterns and relationships. The studies today aim at evidence-based modeling
and analysis, as is the leading practice in medicine, finance, intelligence and
many other fields. Evidently, in the presence of the vast techniques’ repertoire
and the complexity and diversity of the explored domains, one real challenge
today in the data mining field is to know how to utilize this repertoire in order
to achieve the best results. The book shows that the soft computing methods
extend the envelope of problems that data mining can solve efficiently. The
techniques of soft computing are important for researchers in the fields of data
mining, machine learning, databases and information systems, engineering,
computer science and statistics.

This book was written to provide investigators in the fields of informa-
tion systems, engineering, computer science, statistics and management, with
a profound source for the role of soft computing in data mining. In addi-
tion, social sciences, psychology, medicine, genetics, and other fields that are
interested in solving complicated problems can much benefit from this book.
Practitioners among the readers may be particularly interested in the descrip-
tions of real-world data mining projects performed with soft computing.

The material of this book has been taught by the authors in graduate
and undergraduate courses at Tel-Aviv University and Ben-Gurion Univer-
sity. The book can also serve as a reference book for graduate and advanced
undergraduate level courses in data mining and machine learning.

In this introductory chapter we briefly present the framework and overall
knowledge discovery process in the next two sections, and then the logic and
organization of this book, with brief description of each chapter.

2 The Knowledge Discovery process

This book is about methods, which are the core of the Knowledge Discovery
process. For completion we briefly present here the process steps. The knowl-
edge discovery process is iterative and interactive, consisting of nine steps.

Note that the process is iterative at each step, meaning that moving back
to previous steps may be required. The process has many “artistic” aspects in
the sense that one cannot present one formula or make a complete taxonomy
for the right choices for each step and application type. Thus it is required to
understand the process and the different needs and possibilities in each step.

Soft Computing for KDD 3

Fig. 1. The Process of Knowledge Discovery in Databases.

The process starts with determining the KDD goals, and “ends” with the
implementation of the discovered knowledge. Then the loop is closed - the
Active Data Mining part starts. As a result, changes can be made in the
application domain (such as offering different features to mobile phone users
in order to reduce churning). This closes the loop, and the effects are then
measured on the new data repositories, and the KDD process is launched
again.

Following is a brief description of the nine-step KDD process, starting with
a managerial step:

1. Developing an understanding of the application domain: This is the initial
preparatory step. It prepares the scene for understanding what should be
done with the many decisions (about transformations, algorithms, repre-
sentation, etc.). The people who are in charge of a KDD project need to
understand and define the goals of the end-user and the environment in
which the knowledge discovery process will take place (including relevant
prior knowledge). As the KDD process proceeds, there may be even a
revision of this step.
Having understood the KDD goals, the preprocessing of the data starts,
defined in the next three steps.

2. Selecting and creating a data set on which discovery will be performed:
Having defined the goals, the data that will be used for the knowledge
discovery should be determined. This includes finding out what data is
available, obtaining additional necessary data, and then integrating all the
data for the knowledge discovery into one data set, including the attributes

4 Oded Maimon and Lior Rokach

that will be considered for the process. This process is very important
because the Data Mining learns and discovers from the available data.
This is the evidence base for constructing the models.

3. Preprocessing and cleansing: In this stage, data reliability is enhanced.
It includes data clearing, such as handling missing values and removal of
noise or outliers. There are many methods explained in the handbook,
from doing almost nothing to becoming the major part (in terms of time
consumed) of a KDD project in certain projects. It may involve complex
statistical methods or using a Data Mining algorithm in this context.
For example, if one suspects that a certain attribute is of insufficient
reliability or has many missing data, then this attribute could become the
goal of a data mining supervised algorithm, or finding the centroids of
clustering. A prediction model for this attribute will be developed, and
then missing data can be predicted. The extension to which one pays
attention to this level depends on many factors. In any case, studying
the aspects is important and often revealing by itself, regarding complex
information systems.

4. Data transformation: In this stage, the generation of better data for the
data mining is prepared and developed. Methods here include dimension
reduction (such as feature selection and record sampling), and attribute
transformation (such as discretization of numerical attributes and func-
tional transformation). This step can be crucial for the success of the
entire KDD project, and it is usually very project-specific. For example,
in medical examinations, the quotient of attributes may often be the most
important factor, and not each one by itself. In marketing, we may need to
consider effects beyond our control as well as efforts and temporal issues
(such as studying the effect of advertising accumulation). However, even
if we do not use the right transformation at the beginning, we may obtain
a surprising effect that hints to us about the transformation needed (in
the next iteration). Thus the KDD process reflects upon itself and leads
to an understanding of the transformation needed.
Having completed the above four steps, the following four steps are related
to the Data Mining part, where the focus is on the algorithmic aspects
employed for each project:

5. Choosing the appropriate Data Mining task: We are now ready to decide
on which type and approach of Data Mining to use, for example, classifi-
cation, regression, or clustering. This mostly depends on the KDD goals,
and also on the previous steps. There are two major goals in Data Mining:
prediction and description. Prediction is often referred to as supervised
Data Mining, while descriptive Data Mining includes the unsupervised
and visualization aspects of Data Mining. Most Data Mining techniques
are based on inductive learning, where a model is constructed explicitly or
implicitly by generalizing from a sufficient number of training examples.
The underlying assumption of the inductive approach is that the trained

Soft Computing for KDD 5

model is applicable to future cases. The strategy also takes into account
the level of meta-learning for the particular set of available data.

6. Choosing the Data Mining algorithm: Having the strategy, we now decide
on the tactics. This stage includes selecting the specific method to be
used for searching patterns (including multiple inducers). For example, in
considering precision versus understandability, the former is better with
neural networks, while the latter is better with decision trees. For each
strategy of meta-learning there are several possibilities of how it can be
accomplished. Meta-learning focuses on explaining what causes a Data
Mining algorithm to be successful or not in a particular problem. Thus,
this approach attempts to understand the conditions under which a Data
Mining algorithm is most appropriate. Each algorithm has parameters and
tactics of learning (such as ten-fold cross-validation or another division for
training and testing).

7. Employing the Data Mining algorithm: Finally the implementation of the
Data Mining algorithm is reached. In this step we might need to employ
the algorithm several times until a satisfied result is obtained, for instance
by tuning the algorithm’s control parameters, such as the minimum num-
ber of instances in a single leaf of a decision tree.

8. Evaluation: In this stage we evaluate and interpret the mined patterns
(rules, reliability, etc.), with respect to the goals defined in the first step.
Here we consider the preprocessing steps with respect to their effect on
the Data Mining algorithm results (for example, adding features in Step 4
and repeating from there). This step focuses on the comprehensibility and
usefulness of the induced model. In this step the discovered knowledge is
also documented for further usage.
The last step is the usage and overall feedback on the patterns and dis-
covery results obtained by the Data Mining:

9. Using the discovered knowledge: We are now ready to incorporate the
knowledge into another system for further action. The knowledge becomes
active in the sense that we may make changes to the system and measure
the effects. Actually the success of this step determines the effectiveness
of the entire KDD process. There are many challenges in this step, such
as loosing the “laboratory conditions” under which we have operated. For
instance, the knowledge was discovered from a certain static snapshot
(usually sample) of the data, but now the data becomes dynamic. Data
structures may change (certain attributes become unavailable), and the
data domain may be modified (such as, an attribute may have a value
that was not assumed before).

3 The need for plurality of methods

Data Mining methods are becoming part of general purpose Integrated Infor-
mation Technology (IIT) software packages. Starting from the data sources

6 Oded Maimon and Lior Rokach

(such as operational databases, semi- and non-structured data and reports,
Internet sites etc.), then the tier of the data warehouse, followed by OLAP
(On Line Analytical Processing) servers and concluding with analysis tools,
where Data Mining tools are the most advanced.

We can naively distinguish among three levels of analysis. The simplest
one is achieved by report generators (for example, presenting all claims that
occurred because of a certain cause last year, such as car theft). We then
proceed to OLAP multi-level analysis (for example presenting the ten towns
where there was the highest increase of vehicle theft in the last month as
compared to with the month before). Finally a complex analysis is carried
out for discovering the patterns that predict car thefts in these cities, and
what might occur if anti theft devices were installed. The latter is based
on modeling of the phenomena, where the first two levels are ways of data
aggregation and fast manipulation.

Empirical comparison of the performance of different approaches and their
variants in a wide range of application domains has shown that each performs
best in some, but not all, domains. This phenomenon is known as the selective
superiority problem, which means, in our case, that no induction approach or
algorithm can be the best in all possible domains. The reason is that each
algorithm contains an explicit or implicit bias that leads it to prefer certain
generalizations over others, and it will be successful only as long as this bias
matches the characteristics of the application domain.

Results have demonstrated the existence and correctness of this “no free
lunch theorem”. If one inducer is better than another in some domains, then
there are necessarily other domains in which this relationship is reversed. This
implies in KDD that for a given problem a certain approach can yield more
knowledge from the same data than other approaches.

In many application domains, the generalization error (on the overall do-
main, not just the one spanned in the given data set) of even the best methods
is far above the training set, and the question of whether it can be improved,
and if so how, is an open and important one. Part of the answer to this ques-
tion is to determine the minimum error achievable by any classifier in the
application domain (known as the optimal Bayes error). If existing classifiers
do not reach this level, new approaches are needed. Although this problem has
received considerable attention, no generally reliable method has so far been
demonstrated. This is one of the challenges of the DM research – not only to
solve it, but even to quantify and understand it better. Heuristic methods can
then be compared absolutely and not just against each other.

A subset of this generalized study is the question of which approach and
inducer to use for a given problem. To be even more specific, the performance
measure need to be defined appropriately for each problem. Though there
are some commonly accepted measures it is not enough. For example, if the
analyst is looking for accuracy only, one solution is to try each one in turn,
and by estimating the generalization error, to choose the one that appears to

Soft Computing for KDD 7

perform best. Another approach, known as multi-strategy learning, attempts
to combine two or more different paradigms in a single algorithm.

The dilemma of what method to choose becomes even greater if other fac-
tors such as comprehensibility are taken into consideration. For instance, for
a specific domain, neural networks may outperform decision trees in accuracy.
However from the comprehensibility aspect, decision trees are considered su-
perior. In other words, in this case even if the researcher knows that neural
network is more accurate, the dilemma of what methods to use still exists (or
maybe to combine methods for their separate strength).

Induction is one of the central problems in many disciplines such as ma-
chine learning, pattern recognition, and statistics. However the feature that
distinguishes Data Mining from traditional methods is its scalability to very
large sets of varied types of input data. Scalability means working in an envi-
ronment of high number of records, high dimensionality, and a high number
of classes or heterogeneousness. Nevertheless, trying to discover knowledge in
real life and large databases introduces time and memory problems.

As large databases have become the norms in many fields (including as-
tronomy, molecular biology, finance, marketing, health care, and many others),
the use of Data Mining to discover patterns in them has become potentially
very beneficial for the enterprise. Many companies are staking a large part of
their future on these “Data Mining” applications, and turn to the research
community for solutions to the fundamental problems they encounter.

While a very large amount of available data used to be the dream of any
data analyst, nowadays the synonym for “very large” has become “terabyte”
or “pentabyte”, a barely imaginable volume of information. Information-
intensive organizations (like telecom companies and financial institutions) are
expected to accumulate pentabyte of raw data every one to two years.

High dimensionality of the input (that is, the number of attributes) in-
creases the size of the search space in an exponential manner (known as the
“Curse of Dimensionality”), and thus increases the chance that the inducer
will find spurious classifiers that in general are not valid. There are several ap-
proaches for dealing with a high number of records including: sampling meth-
ods, aggregation, massively parallel processing, and efficient storage methods.
This book presents some of the approaches in this direction.

4 The organization of the book

The book has sixteen chapters divided into four main parts, where the first
three address the methods and topics that are most identified with soft com-
puting, and then the last part adds advanced and promising methods and
areas:

I. Neural network methods: Chapters 2 to 3
II. Evolutionary methods: Chapters 4 to 7

8 Oded Maimon and Lior Rokach

III. Fuzzy logic methods: Chapters 8 to 11
IV. Advanced soft computing methods and areas: Chapters 12 to 16 Includ-

ing: Swarm intelligence (12), diffusion process (13), and agent technology
(14); and the areas of: approximate frequent item-set mining (15), and
finally the impact of over-fitting and over-generalization on the classifica-
tion accuracy in Data Mining (16).

In the following, edited abstracts of the chapters in the book are presented,
for the reader map and convenience:

4.1 Neural network methods

The first methodology addressed in the book is Neural Networks, which
have become elaborated important tools for data mining. Chapter 2 provides
an overview of neural network models and their applications to data mining
tasks. It also provides historical development of the field of neural networks
and present three important classes of neural models including feed forward
multilayer networks, Hopfield networks, and Kohonen’s self-organizing maps.
Modeling issues and applications of these models for data mining are discussed
as well.

Then Chapter 3 continues in this direction by specifically addressing Self-
Organizing Maps (SOMs). SOMs have been useful in gaining insights about
the information content of large volumes of data in various data mining ap-
plications. As a special form of neural networks, they have been attractive as
a data mining tool because they are able to extract information from data
even with very little user-intervention (though some is needed). This chap-
ter proposes a methodical and semi-automatic SOM labeling procedure that
does not require a set of labeled patterns, and shows an effective alternative.
The effectiveness of the method is demonstrated on a data mining application
involving customer-profiling based on an international market segmentation
study.

4.2 Evolutionary methods

A new family of methods starts in Chapter 4 with a review of Evolutionary
Algorithms (EAs) for Data Mining. Evolutionary Algorithms are stochastic
search algorithms inspired by the process of neo-Darwinian evolution. The
motivation for applying EAs to data mining is that they are robust, adaptive
search techniques that perform a global search in the solution space. This
chapter first presents a brief overview of EAs, focusing mainly on two kinds of
EAs, viz. Genetic Algorithms (GAs) and Genetic Programming (GP). Then
the chapter reviews the main concepts and principles used by EAs designed
for solving several data mining tasks, namely: discovery of classification rules,
clustering, attribute selection and attribute construction. Finally, it discusses

Soft Computing for KDD 9

Multi-Objective EAs, based on the concept of Pareto dominance, and their
use in several data mining tasks.

Then Chapter 5 continues this topic by specifically addressing Genetic
Clustering for Data Mining. Genetic Algorithms (GAs) have been success-
fully applied to several complex data analysis problems in a wide range of
domains, such as image processing, bioinformatics, and crude oil analysis. The
need for organizing data into categories of similar objects has made the task
of clustering increasingly important to those domains. This chapter presents
a survey of the use of GAs for clustering applications. A variety of encoding
(chromosome representation) approaches, fitness functions, and genetic op-
erators are described, all of them customized to solve problems in such an
application context.

Chapter 6 addresses the discovering of new rule by induction algorithms
with Grammar-Based Genetic Programming. Rule induction is a data
mining technique used to extract classification rules of the form IF (conditions)
THEN (predicted class) from data. The majority of the rule induction algo-
rithms found in the literature follow the sequential covering strategy, which
essentially induces one rule at a time until (almost) all the training data is
covered by the induced rule set. This strategy describes a basic algorithm
composed by several key elements, which can be modified to generate new
and better rule induction algorithms. With this in mind, this work proposes
the use of a Grammar-based Genetic Programming (GGP) algorithm
to automatically discover new sequential covering algorithms. The proposed
system is evaluated using 20 data sets, and the automatically-discovered rule
induction algorithms are compared with four well-known human-designed rule
induction algorithms. Results showed that the GGP system is a promising ap-
proach to effectively discover new sequential covering algorithms

Another general aspect of data mining issues is introduced in Chapter 7
with Evolutionary Design of code-matrices for multi-class problems. Given
a dataset containing data whose classes are known, Machine Learning algo-
rithms can be employed for the induction of a classifier able to predict the class
of new data from the same domain, performing the desired discrimination.
Several machine learning techniques are originally conceived for the solution
of problems with only two classes. In multi-class applications, an alternative
frequently employed is to divide the original problem into binary subtasks,
whose results are then combined. The decomposition can be generally repre-
sented by a code-matrix, where each row corresponds to a codeword assigned
for one class and the columns represent the binary classifiers employed. This
chapter presents a survey on techniques for multi-class problems code-matrix
design. It also shows how evolutionary techniques can be employed to solve
this problem.

10 Oded Maimon and Lior Rokach

4.3 Fuzzy logic methods

The role of Fuzzy Sets in Data Mining is introduced in Chapter 8. This
chapter discusses how fuzzy logic extends the envelop of the main data min-
ing tasks: clustering, classification, regression and association rules. The chap-
ter begins by presenting a formulation of the data mining using fuzzy logic
attributes. Then, for each task, the chapter provides a survey of the main
algorithms and a detailed description (i.e. pseudo-code) of the most popular
algorithms.

Continuing with the same area Chapter 9 addresses Support Vector
Machines and Fuzzy Systems. Fuzzy set theory and fuzzy logic provide
tools for handling uncertainties in data mining tasks. To design a fuzzy rule-
based classification system (fuzzy classifier) with good generalization ability
in a high dimensional feature space has been an active research topic for a long
time. As a powerful machine learning approach for data mining and pattern
recognition problems, support vector machine (SVM) is known to have good
generalization ability. More importantly, an SVM can work very well on a high
(or even infinite) dimensional feature space. This chapter presents a survey of
the connection between fuzzy classifiers and kernel machines.

KDD in Marketing with Genetic Fuzzy Systems is addressed in Chap-
ter 10. This chapter presents a new methodology to marketing (causal) mod-
eling. Specifically it is applied to a consumer behavior model used for the
experimentation. The characteristics of the problem (with uncertain data and
available knowledge from a marketing expert) and the multi objective opti-
mization make genetic fuzzy systems a good tool for this problem type. By
applying this methodology useful information patterns (fuzzy rules) are ob-
tained, which help to better understand the relations among the elements of
the marketing system being analyzed (consumer model in this case).

In Chapter 11 the fuzzy theme is continued with a Framework for Mod-
eling with Words. The learning of transparent models is an important and
neglected area of data mining. The data mining community has tended to
focus on algorithm accuracy with little emphasis on the knowledge represen-
tation framework. However, the transparency of a model will help practition-
ers greatly in understanding the trends and idea hidden behind the system.
In this chapter a random set based knowledge representation framework for
learning linguistic models is introduced. This framework is referred to as la-
bel semantics and a number of data mining algorithms are proposed. In this
framework, a vague concept is modeled by a probability distribution over a set
of appropriate fuzzy labels, which is called as mass assignment. The idea of
mass assignment provides a probabilistic approach for modeling uncertainty
based on pre-defined fuzzy labels.

4.4 Advanced soft computing methods and areas

A new soft computing methodology is introduced in Chapter 12, which ad-
dresses Swarm Intelligence algorithms for data clustering. Data mining

Soft Computing for KDD 11

tasks require fast and accurate partitioning of huge datasets, which may come
with a variety of attributes or features. This, in turn, imposes severe com-
putational requirements on the relevant clustering techniques. A family of
bio-inspired algorithms, well-known as Swarm Intelligence (SI) has recently
emerged that meets these requirements and has successfully been applied to a
number of real world clustering problems. This chapter explores the role of SI
in clustering different kinds of datasets. It finally describes a new SI technique
for partitioning any dataset into an optimal number of groups through one
run of optimization. Computer simulations undertaken in this research have
also been provided to demonstrate the effectiveness of the proposed algorithm.

In Chapter 13 another type of method for soft computing is revealed,
namely Diffusion method. This chapter describes a natural framework
based on diffusion processes for the multi-scale analysis of high-dimensional
data-sets. Many fields of research deal with high-dimensional data sets. Hyper
spectral images in remote sensing and in hyper-spectral microscopy, transac-
tions in banking monitoring systems are just a few examples for this type of
sets. Revealing the geometric structure of these data-sets is a preliminary step
to facilitate their efficient processing. Often, only a small number of parame-
ters govern the structure of the data-set. This number is the true dimension
of the data-set and is the motivation to reduce the dimensionality of the set.
Dimensionality reduction algorithms try to discover the true dimension of a
data set. The diffusion process scheme enables the description of the geometric
structures of such sets by utilizing the Newtonian paradigm according to which
a global description of a system can be derived by the aggregation of local
transitions. Specifically, a Markov process is used to describe a random walk
on the data set. The spectral properties of the Markov matrix that is asso-
ciated with this process are used to embed the data-set in a low-dimensional
space. This scheme also facilitates the parameterization of a data-set when
the high dimensional data-set is not accessible and only a pair-wise similarity
matrix is at hand.

Agent Technology as applied to Data Mining is introduced in Chapter
14. Today’s applications are required to extract knowledge from large, often
distributed, repositories of text, multimedia or hybrid content. The nature
of this quest makes it impossible to use traditional deterministic comput-
ing techniques. Instead, various soft computing techniques are employed to
meet the challenge for more sophisticated solutions in knowledge discovery.
Most notably, Data Mining (DM) is thought of as one of the state-of-the-
art paradigms. DM produces useful patterns and associations from large data
repositories that can later be used as knowledge nuggets, within the context of
any application. Individual facets of knowledge discovery, introduced by DM
techniques, often need to be orchestrated, integrated and presented to end
users in a unified way. Moreover, knowledge has to be exploited and embod-
ied in autonomous software for learning purposes and, hence, a more increased
performance. Agent Technology (AT) proves to be a promising paradigm that
is suitable for modeling and implementing the unification of DM tasks, as

12 Oded Maimon and Lior Rokach

well as for providing autonomous entity models that dynamically incorporate
and use existing knowledge. Indeed, a plethora of multi-agent systems (MAS)
and other agent-related solutions for knowledge-based systems can be found
in the literature, and more specifically in the area of agent-based DM, as it is
explained in detail in this chapter.

The issue of error-tolerant item-set is presented in Chapter 15, which ad-
dresses Approximate Frequent Item-set Mining in the presence of ran-
dom noise. Frequent item-set mining has been a focused theme in data mining
research and an important first step in the analysis of data arising in a broad
range of applications. The traditional exact model for frequent item-set re-
quires that every item occur in each supporting transaction. However, real
application data is usually subject to random noise or measurement error,
which poses new challenges for the efficient discovery of frequent item-set from
the noisy data. Mining approximate frequent item-set in the presence of noise
involves two key issues: the definition of a noise-tolerant mining model and
the design of an efficient mining algorithm. This chapter gives an overview of
the approximate item-set mining algorithms in the presence of random noise
and examines several noise-tolerant mining approaches.

The impact of over fitting and over generalization on the clas-
sification accuracy in Data Mining is addressed in, Chapter 16, the last
chapter of the book. Many classification studies often times conclude with a
summary table, which presents performance results of applying various data
mining approaches on different datasets. No single method outperforms all
methods all the time. Further-more, the performance of a classification method
in terms of its false-positive and false-negative rates may be totally unpre-
dictable. Attempts to minimize any of the previous two rates, may lead to an
increase on the other rate. If the model allows for new data to be deemed as
unclassifiable when there is not adequate information to classify them, then
it is possible for the previous two error rates to be very low. However, at the
same time, the rate of having unclassifiable new examples may be very high.
The root to the above critical problem is the over fitting and overgeneral-
ization behaviors of a given classification approach when it is processing a
particular dataset.

Although the above situation is of fundamental importance to data mining,
it has not been studied from a comprehensive point of view. Thus, this chapter
analyzes the above issues in depth. It also proposes a new approach called
the Homogeneity-Based Algorithm (or HBA) for optimally controlling the
previous three error rates. This is done by first formulating an optimization
problem. The key development in this chapter is based on a special way for
analyzing the space of the training data and then partitioning it according to
the data density of different regions of this space. Next, the classification task
is pursued based on the previous partitioning of the training space. In this way,
the previous three error rates can be controlled in a comprehensive manner.
Some preliminary computational results seem to indicate that the proposed

Soft Computing for KDD 13

approach has a significant potential to fill in a critical gap in current data
mining methodologies.

.

Part I

Neural Network Methods

Neural Networks For Data Mining

G. Peter Zhang

Georgia State University,
Department of Managerial Sciences,
gpzhang@gsu.edu

Summary. Neural networks have become standard and important tools for data
mining. This chapter provides an overview of neural network models and their appli-
cations to data mining tasks. We provide historical development of the field of neural
networks and present three important classes of neural models including feedforward
multilayer networks, Hopfield networks, and Kohonen’s self-organizing maps. Mod-
eling issues and applications of these models for data mining are discussed.

Key words: neural networks, regression, classification, prediction, clustering

1 Introduction

Neural networks or artificial neural networks are an important class of tools
for quantitative modeling. They have enjoyed considerable popularity among
researchers and practitioners over the last 20 years and have been successfully
applied to solve a variety of problems in almost all areas of business, indus-
try, and science (Widrow, Rumelhart & Lehr, 1994). Today, neural networks
are treated as a standard data mining tool and used for many data mining
tasks such as pattern classification, time series analysis, prediction, and clus-
tering. In fact, most commercial data mining software packages include neural
networks as a core module.

Neural networks are computing models for information processing and are
particularly useful for identifying the fundamental relationship among a set
of variables or patterns in the data. They grew out of research in artificial
intelligence; specifically, attempts to mimic the learning of the biological neu-
ral networks especially those in human brain which may contain more than
1011 highly interconnected neurons. Although the artificial neural networks
discussed in this chapter are extremely simple abstractions of biological sys-
tems and are very limited in size, ability, and power comparing biological
neural networks, they do share two very important characteristics: 1) parallel
processing of information and 2) learning and generalizing from experience.

18 G. Peter Zhang

The popularity of neural networks is due to their powerful modeling ca-
pability for pattern recognition. Several important characteristics of neural
networks make them suitable and valuable for data mining. First, as opposed
to the traditional model-based methods, neural networks do not require sev-
eral unrealistic a priori assumptions about the underlying data generating
process and specific model structures. Rather, the modeling process is highly
adaptive and the model is largely determined by the characteristics or pat-
terns the network learned from data in the learning process. This data-driven
approach is ideal for real world data mining problems where data are plen-
tiful but the meaningful patterns or underlying data structure are yet to be
discovered and impossible to be pre-specified.

Second, the mathematical property of the neural network in accurately
approximating or representing various complex relationships has been well es-
tablished and supported by theoretic work (Chen and Chen, 1995; Cybenko,
1989; Hornik, Stinchcombe, and White 1989). This universal approximation
capability is powerful because it suggests that neural networks are more gen-
eral and flexible in modeling the underlying data generating process than tra-
ditional fixed-form modeling approaches. As many data mining tasks such as
pattern recognition, classification, and forecasting can be treated as function
mapping or approximation problems, accurate identification of the underlying
function is undoubtedly critical for uncovering the hidden relationships in the
data.

Third, neural networks are nonlinear models. As real world data or re-
lationships are inherently nonlinear, traditional linear tools may suffer from
significant biases in data mining. Neural networks with their nonlinear and
nonparametric nature are more cable for modeling complex data mining prob-
lems.

Finally, neural networks are able to solve problems that have imprecise
patterns or data containing incomplete and noisy information with a large
number of variables. This fault tolerance feature is appealing to data mining
problems because real data are usually dirty and do not follow clear probability
structures that typically required by statistical models.

This chapter aims to provide readers an overview of neural networks used
for data mining tasks. First, we provide a short review of major historical de-
velopments in neural networks. Then several important neural network models
are introduced and their applications to data mining problems are discussed.

2 A Brief History

Historically, the field of neural networks is benefited by many researchers in di-
verse areas such as biology, cognitive science, computer science, mathematics,
neuroscience, physics, and psychology. The advancement of the filed, however,
is not evolved steadily, but rather through periods of dramatic progress and
enthusiasm and periods of skepticism and little progress.

Neural Networks For Data Mining 19

The work of McCulloch and Pitts (1943) is the basis of modern view of
neural networks and is often treated as the origin of neural network field.
Their research is the first attempt to use mathematical model to describe how
a neuron works. The main feature of their neuron model is that a weighted sum
of input signals is compared to a threshold to determine the neuron output.
They showed that simple neural networks can compute any arithmetic or
logical function.

In 1949, Hebb (1949) published his book “The Organization of Behavior.”
The main premise of this book is that behavior can be explained by the
action of neurons. He proposed one of the first learning laws that postulated
a mechanism for learning in biological neurons.

In the 1950s, Rosenblatt and other researchers developed a class of neural
networks called the perceptrons which are models of a biological neuron. The
perceptron and its associated learning rule (Rosenblatt, 1958) had generated
a great deal of interest in neural network research. At about the same time,
Widrow and Hoff (1960) developed a new learning algorithm and applied it to
their ADALINE (Adaptive Linear Neuron) networks which is very similar to
perceptrons but with linear transfer function, instead of hard-limiting func-
tion typically used in perceptrons. The Widrow-Hoff learning rule is the basis
of today’s popular neural network learning methods. Although both percep-
trons and ADALINE networks have achieved only limited success in pattern
classification because they can only solve linearly-separable problems, they
are still treated as important work in neural networks and an understanding
of them provides the basis for understanding more complex networks.

The neural network research was hit by the book “Perceptrons” by Min-
sky and Papert (1969) who pointed out the limitation of the perceptrons and
other related networks in solving a large class of nonlinearly separable prob-
lems. In addition, although Minsky and Papert proposed multilayer networks
with hidden units to overcome the limitation, they were not able to find a
way to train the network and stated that the problem of training may be
unsolvable. This work causes much pessimism in neural network research and
many researchers have left the filed. This is the reason that during the 1970s,
the filed has been essentially dormant with very little research activity.

The renewed interest in neural network started in the 1980s when Hopfield
(1982) used statistical mechanics to explain the operations of a certain class
of recurrent network and demonstrated that neural networks could be trained
as an associative memory. Hopfield networks have been used successfully in
solving the Traveling Salesman Problem which is a constrained optimization
problem (Hopfield and Tank, 1985). At about the same time, Kohonen (1982)
developed a neural network based on self-organization whose key idea is to
represent sensory signals as two-dimensional images or maps. Kohonen’s net-
works, often called Kohonen’s feature maps or self-organizing maps, organized
neighborhoods of neurons such that similar inputs into the model are topo-
logically close. Because of the usefulness of these two types of networks in
solving real problems, more research was devoted to neural networks.

20 G. Peter Zhang

The most important development in the field was doubtlessly the inven-
tion of efficient training algorithms—called backpropagation—for multilayer
perceptrons which have long been suspected to be capable of overcoming the
linear separability limitation of the simple perceptron but have not been used
due to lack of good training algorithms. The backpropagation algorithm, orig-
inated from Widrow and Hoff’s learning rule, formalized by Werbos (1974),
developed by Parker (1985), Rumelhart Hinton, and Williams (Rumelhart
Hinton & Williams, 1986) and others, and popularized by Rumelhart, et al.
(1986), is a systematic method for training multilayer neural networks. As a
result of this algorithm, multilayer perceptrons are able to solve many impor-
tant practical problems, which is the major reason that reinvigorated the filed
of neural networks. It is by far the most popular learning paradigm in neural
networks applications.

Since then and especially in the 1990s, there have been significant research
activities devoted to neural networks. In the last 15 years or so, tens of thou-
sands of papers have been published and numerous successful applications
have been reported. It will not be surprising to see even greater advancement
and success of neural networks in various data mining applications in the
future.

3 Neural Network Models

As can be seen from the short historical review of development of the neural
network field, many types of neural networks have been proposed. In fact,
several dozens of different neural network models are regularly used for a va-
riety of problems. In this section, we focus on three better known and most
commonly used neural network models for data mining purposes: the multi-
layer feedforward network, the Hopfield network, and the Kohonen’s map. It
is important to point out that there are numerous variants of each of these
networks and the discussions below are limited to the basic model formats.

3.1 Feedforward Neural Networks

The multilayer feedforward neural networks, also called multi-layer percep-
trons (MLP), are the most widely studied and used neural network model in
practice. According to Wong, Bodnovich, and Selvi (1997), about 95% of busi-
ness applications of neural networks reported in the literature use this type of
neural model. Feedforward neural networks are ideally suitable for modeling
relationships between a set of predictor or input variables and one or more
response or output variables. In other words, they are appropriate for any
functional mapping problem where we want to know how a number of input
variables affect the output variable(s). Since most prediction and classification
tasks can be treated as function mapping problems, the MLP networks are

Neural Networks For Data Mining 21

very appealing to data mining. For this reason, we will focus more on feed-
forward networks and many issues discussed here can be extended to other
types of neural networks.

Model Structure

An MLP is a network consisted of a number of highly interconnected simple
computing units called neurons, nodes, or cells, which are organized in layers.
Each neuron performs simple task of information processing by converting
received inputs into processed outputs. Through the linking arcs among these
neurons, knowledge can be generated and stored as arc weights regarding the
strength of the relationship between different nodes. Although each neuron
implements its function slowly and imperfectly, collectively a neural network
is able to perform a variety of tasks efficiently and achieve remarkable results.

Figure 1 shows the architecture of a three-layer feedforward neural network
that consists of neurons (circles) organized in three layers: input layer, hidden
layer, and output layer. The neurons in the input nodes correspond to the
independent or predictor variables that are believed to be useful for predicting
the dependent variables which correspond to the output neurons. Neurons in
the input layer are passive; they do not process information but are simply
used to receive the data patterns and then pass them into the neurons into
the next layer. Neurons in the hidden layer are connected to both input and
output neurons and are key to learning the pattern in the data and mapping
the relationship from input variables to the output variable. Although it is
possible to have more than one hidden layer in a multilayer networks, most
applications use only one layer. With nonlinear transfer functions, hidden
neurons can process complex information received from input neurons and
then send processed information to output layer for further processing to
generate outputs. In feedforward neural networks, the information flow is one
directional from the input to hidden then to output layer and there is no
feedback from the output.

Fig. 1. Multi-layer feedforward neural network

Input Layer

Hidden Layer

Output Layer

Weights (w1)

Weights (w2)

Outputs (y)

 Inputs (x)

22 G. Peter Zhang

Thus, a feedforward multilayer neural network is characterized by its ar-
chitecture determined by the number of layers, the number of nodes in each
layer, the transfer function used in each layer, as well as how the nodes in
each layer connected to nodes in adjacent layers. Although partial connection
between nodes in adjacent layers and direct connection from input layer to
output layer are possible, the most commonly used neural network is so called
fully connected one in that each node at one layer is fully connected only to
all nodes in the adjacent layers.

To understand how the network in Figure 1 works, we need first under-
stand the way neurons in the hidden and output layers process information.
Figure 2 provides the mechanism that shows how a neuron processes infor-
mation from several inputs and then converts it into an output. Each neuron
processes information in two steps. In the first step, the inputs (xi) are com-
bined together to form a weighted sum of inputs and the weights (wi) of
connecting links. The 2nd step then performs a transformation that converts
the sum to an output via a transfer function. In other words, the neuron in
Figure 2 performs the following operations:

Outn = f

(∑

i

wixi

)
, (1)

where Outn is the output from this particular neuron and f is the transfer
function. In general, the transfer function is a bounded nondecreasing func-
tion. Although there are many possible choices for transfer functions, only a
few of them are commonly used in practice. These include

1. the sigmoid (logistic) function, f(x) = (1 + exp(−x))−1,
2. the hyperbolic tangent function, f(x) = exp(x)−exp(−x)

exp(x)+exp(−x) ,
3. the sine and cosine function, f(x) = sin(x), f(x) = cos(x), and
4. the linear or identity function, f(x) = x.
Among them, the logistic function is the most popular choice especially

for the hidden layer nodes due to the fact that it is simple, has a number of
good characteristics (bounded, nonlinear, and monotonically increasing), and
bears a better resemblance to real neurons (Hinton, 1992).

In Figure 1, let x = (x1, x2, ..., xd) be a vector of d predictor or attribute
variables, y = (y1, y2, ..., yM)be the M -dimensional output vector from the
network, and w1 and w2 be the matrices of linking arc weights from input to
hidden layer and from hidden to output layer, respectively. Then a three-layer
neural network can be written as a nonlinear model of the form

y = f2(w2f1(w1x)), (2)

where f1 and f2 are the transfer functions for the hidden nodes and output
nodes respectively. Many networks also contain node biases which are con-
stants added to the hidden and/or output nodes to enhance the flexibility
of neural network modeling. Bias terms act like the intercept term in linear
regression.

Neural Networks For Data Mining 23

Fig. 2. Information processing in a single neuron

In classification problems where desired outputs are binary or categorical,
logistic function is often used in the output layer to limit the range of the
network outputs. On the other hand, for prediction or forecasting purposes,
since output variables are in general continuous, linear transfer function is a
better choice for output nodes. Equation (3) can have many different specifi-
cations depending on the problem type, the transfer function, and numbers of
input, hidden, and output nodes employed. For example, the neural network
structure for a general univariate forecasting problem with logistic function
for hidden nodes and identity function for the output node can be explicitly
expressed as

yt = w10 +
q∑

j=1

w1jf(
p∑

i=1

wijxit + w0j) (3)

where yt is the observation of forecast variable and {xit, i = 1, 2, . . . , p}
are p predictor variables at time t, p is also the number of input nodes, q is
the number of hidden nodes, {w1j , j = 0, 1, ..., n} are weights from the hidden
to output nodes and {wij , i = 0, 1, ..., p; j = 1, 2, ..., q} are weights from the
input to hidden nodes; α0 and β0j are bias terms, and f is the logistic function
defined above.

Network Training

The arc weights are the parameters in a neural network model. Like in a
statistical model, these parameters need to be estimated before the network
can be adopted for further use. Neural network training refers to the process in
which these weights are determined, and hence is the way the network learns.
Network training for classification and prediction problems is performed via
supervised learning in which known outputs and their associated inputs are
both presented to the network.

The basic process to train a neural network is as follows. First, the network
is fed with training examples, which consist of a set of input patterns and

Sum Trans-
form

w 1

x1

x2

x3

xd

w 2

w 3

w d

I
n
p
u
t

Output

24 G. Peter Zhang

their desired outputs. Second, for each training pattern, the input values are
weighted and summed at each hidden layer node and the weighted sum is then
transmitted by an appropriate transfer function into the hidden node’s output
value, which becomes the input to the output layer nodes. Then, the network
output values are calculated and compared to the desired or target values to
determine how closely the actual network outputs match the desired outputs.
Finally, the weights of the connection are changed so that the network can
produce a better approximation to the desired output. This process typically
repeats many times until differences between network output values and the
known target values for all training patterns are as small as possible.

To facilitate training, some overall error measure such as the mean squared
errors (MSE) or sum of squared errors (SSE) is often used to serve as an
objective function or performance metric. For example, MSE can be defined
as

MSE =
1
M

1
N

M∑
m=1

N∑

j=1

(dmj − ymj)2, (4)

where dmj and ymj represent the desired (target) value and network output
at the mth node for the jth training pattern respectively, M is the number
of output nodes, and N is the number of training patterns. The goal of train-
ing is to find the set of weights that minimize the objective function. Thus,
network training is actually an unconstrained nonlinear optimization prob-
lem. Numerical methods are usually needed to solve nonlinear optimization
problems.

The most important and popular training method is the backpropagation
algorithm which is essentially a gradient steepest descent method. The idea of
steepest descent method is to find the best direction in the multi-dimension
error space to move or change the weights so that the objective function
is reduced most. This requires partial derivative of the objective function
with respect to each weight to be calculated because the partial derivative
represents the rate of change of the objective function. The weight updating
therefore follows the following rule

wnew
ij

= wold
ij + ∆wij

∆wij = −η ∂E
∂wij

(5)

where ∆wij is the gradient of objective function E with respect to weight wij ,
and η is called the learning rate which controls the size of the gradient descent
step. The algorithm requires an iterative process and there are two versions of
weight updating schemes: batch mode and on-line mode. In the batch mode,
weights are updated after all training patterns are evaluated, while in the on-
line learning mode, the weights are updated after each pattern presentation.
The basic steps with the batch mode training can be summarized as
initialize the weights to small random values from, say, a uniform distribution

Neural Networks For Data Mining 25

choose a pattern and forward propagate it to obtain network outputs
calculate the pattern error and back-propagate it to obtain partial derivative
of this error with respect to all weights
add up all the single-pattern terms to get the total derivative
update the weights with equation (7)
repeat steps 2-5 for next pattern until all patterns are passed through.

Note that each one pass of all patterns is called an epoch. In general, each
weight update reduces the total error by only a small amount so many epochs
are often needed to minimize the error. For information on further detail of
the backpropagation algorithm, readers are referred to Rumelhart et al. (1986)
and Bishop (1995).

It is important to note that there is no algorithm currently available which
can guarantee global optimal solution for general nonlinear optimization prob-
lems such as those in neural network training. In fact, all algorithms in non-
linear optimization inevitably suffer from the local optima problems and the
most we can do is to use the available optimization method which can give
the ”best” local optima if the true global solution is not available. It is also
important to point out that the steepest descent method used in the basic
backpropagation suffers the problems of slow convergence, inefficiency, and
lack of robustness. Furthermore, it can be very sensitive to the choice of the
learning rate. Smaller learning rates tend to slow the learning process while
larger learning rates may cause network oscillation in the weight space. Com-
mon modifications to the basic backpropagation include adding in the weight
updating formula (2) an additional momentum parameter proportional to the
last weight change the to control the oscillation in weight changes and (3)
a weight decay term that penalizes the overly complex network with large
weights.

In light of the weakness of the standard backpropagation algorithm, the
existence of many different optimization methods (Fletcher, 1987) provides
various alternative choices for the neural network training. Among them, the
second-order methods such as BFGS and Levenberg-Marquardt methods are
more efficient nonlinear optimization methods and are used in most optimiza-
tion packages. Their faster convergence, robustness, and the ability to find
good local minima make them attractive in neural network training. For exam-
ple, De Groot and Wurtz (1991) have tested several well-known optimization
algorithms such as quasi-Newton, BFGS, Levenberg-Marquardt, and conju-
gate gradient methods and achieved significant improvements in training time
and accuracy.

Modeling Issues

Developing a neural network model for a data mining application is not a
trivial task. Although many good software packages exist to ease users’ ef-
fort in building a neural network model, it is still critical for data miners to
understand many important issues around the model building process. It is

26 G. Peter Zhang

important to point out that building a successful neural network is a com-
bination of art and science and software alone is not sufficient to solve all
problems in the process. It is a pitfall to blindly throw data into a software
package and then hope it will automatically identify the pattern or give a
satisfactory solution. Other pitfalls readers need to be cautious can be found
in Zhang (2007).

An important point in building an effective neural network model is the
understanding of the issue of learning and generalization inherent in all neural
network applications. This issue of learning and generalization can be under-
stood with the concepts of model bias and variance (Geman, Bienenstock &
Doursat, 1992). Bias and variance are important statistical properties associ-
ated with any empirical model. Model bias measures the systematic error of
a model in learning the underlying relations among variables or observations.
Model variance, on the other hand, relates to the stability of a model built
on different data samples and therefore offers insights on generalizability of
the model. A pre-specified or parametric model, which is less dependent on
the data, may misrepresent the true functional relationship and hence cause
a large bias. On the other hand, a flexible, data-driven model may be too
dependent on the specific data set and hence have a large variance. Bias and
variance are two important terms that impact a model’s usefulness. Although
it is desirable to have both low bias and low variance, we may not be able to
reduce both terms at the same time for a given data set because these goals
are conflicting. A model that is less dependent on the data tends to have low
variance but high bias if the pre-specified model is incorrect. On the other
hand, a model that fits the data well tends to have low bias but high variance
when applied to new data sets. Hence a good predictive model should have
an “appropriate” balance between model bias and model variance.

As a data-driven approach to data mining, neural networks often tend to
fit the training data well and thus have low bias. But the potential price to
pay is the overfitting effect that causes high variance. Therefore, attentions
should be paid to address issues of overfitting and the balance of bias and
variance in neural network model building.

The major decisions in building a neural network model include data
preparation, input variable selection, choice of network type and architec-
ture, transfer function, and training algorithm, as well as model validation,
evaluation, and selection procedures. Some of these can be solved during the
model building process while others must be considered before actual model-
ing starts.

Neural networks are data-driven techniques. Therefore, data preparation
is a critical step in building a successful neural network model. Without an
adequate and representative data set, it is impossible to develop a useful data
mining model.

There are several practical issues around the data requirement for a neural
network model. The first is the data quality. As data sets used for typical data
mining tasks are massive and may be collected from multiple sources, they

Neural Networks For Data Mining 27

may suffer many quality problems such as noises, errors, heterogeneity, and
missing observations. Results reported in Klein and Rossin (1999) suggest
that data error rate and its magnitude can have substantial impact on neural
network performance. Klein and Rossion believe that an understanding of
errors in a dataset should be an important consideration to neural network
users and efforts to lower error rates are well deserved. Appropriate treatment
of these problems to clean the data is critical for successful application of any
data mining technique including neural networks (Dasu and Johnson, 2003).

Another one is the size of the sample used to build a neural network. While
there is no specific rule that can be followed for all situations, the advantage
of having large samples should be clear because not only do neural networks
have typically a large number of parameters to estimate, but also it is often
necessary to split data into several portions for overfitting prevention, model
selection, evaluation, and comparison. A larger sample provides better chance
for neural networks to adequately approximate the underlying data structure.

The third issue is the data splitting. Typically for neural network applica-
tions, all available data are divided into an in-sample and an out-of-sample.
The in-sample data are used for model fitting and selection, while the out-of-
sample is used to evaluate the predictive ability of the model. The in-sample
data often are further split into a training sample and a validation sample.
The training sample is used for model parameter estimation while the valida-
tion sample is used to monitor the performance of neural networks and help
stop training and select the final model. For a neural network to be useful, it
is critical to test the model with an independent out-of-sample which is not
used in the network training and model selection phase. Although there is no
consensus on how to split the data, the general practice is to allocate more
data for model building and selection although it is possible to allocate 50%
vs. 50% for in-sample and out-of-sample if the data size is very large. Typical
split in data mining applications reported in the literature uses convenient
ratio varying from 70%:30% to 90%:10%.

Data preprocessing is another issue that is often recommended to highlight
important relationships or to create more uniform data to facilitate neural net-
work learning, meet algorithm requirements, and avoid computation problems.
For time series forecasting, Azoff (1994) summarizes four methods typically
used for input data normalization. They are along channel normalization,
across channel normalization, mixed channel normalization, and external nor-
malization. However, the necessity and effect of data normalization on network
learning and forecasting are still not universally agreed upon. For example, in
modeling and forecasting seasonal time series, some researchers (Gorr, 1994)
believe that data preprocessing is not necessary because the neural network is
a universal approximator and is able to capture all of the underlying patterns
well. Recent empirical studies (Nelson, Hill, Remus & O’Connor, 1999; Zhang
and Qi, 2002), however, find that pre-deseasonalization of the data is critical
in improving forecasting performance.

28 G. Peter Zhang

Neural network design and architecture selection are important yet difficult
tasks. Not only are there many ways to build a neural network model and a
large number of choices to be made during the model building and selection
process, but also numerous parameters and issues have to be estimated and
experimented before a satisfactory model may emerge. Adding to the difficulty
is the lack of standards in the process. Numerous rules of thumb are available
but not all of them can be applied blindly to a new situation. In building
an appropriate model, some experiments with different model structures are
usually necessary. Therefore, a good experiment design is needed. For further
discussions of many aspects of modeling issues for classification and forecasting
tasks, readers may consult Bishop (1995), Zhang, Patuwo, and Hu (1998), and
Remus and O’Connor (2001).

For network architecture selection, there are several decisions to be made.
First, the size of output layer is usually determined by the nature of the
problem. For example, in most time series forecasting problems, one output
node is naturally used for one-step-ahead forecasting, although one output
node can also be employed for multi-step-ahead forecasting in which case,
iterative forecasting mode must be used. That is, forecasts for more than
two-step ahead in the time horizon must be based on earlier forecasts. On
the other hand, for classification problems, the number of output nodes is
determined by the number of groups into which we classify objects. For a
two-group classification problem, only one output node is needed while for a
general M -group problem, M binary output nodes can be employed.

The number of input nodes is perhaps the most important parameter
in an effective neural network model. For classification or causal forecast-
ing problems, it corresponds to the number of feature (attribute) variables or
independent (predictor) variables that data miners believe important in pre-
dicting the output or dependent variable. These input variables are usually
pre-determined by the domain expert although variable selection procedures
can be used to help identify the most important variables. For univariate fore-
casting problems, it is the number of past lagged observations. Determining
an appropriate set of input variables is vital for neural networks to capture the
essential relationship that can be used for successful prediction. How many
and what variables to use in the input layer will directly affect the performance
of neural network in both in-sample fitting and out-of-sample prediction.

Neural network model selection is typically done with the basic cross-
validation process. That is the in-sample data is split into a training set and a
validation set. The neural network parameters are estimated with the training
sample, while the performance of the model is monitored and evaluated with
the validation sample. The best model selected is the one that has the best
performance on the validation sample. Of course, in choosing competing mod-
els, we must also apply the principle of parsimony. That is, a simpler model
that has about the same performance as a more complex model should be pre-
ferred. Model selection can also be done with all of the in-sample data. This
can be done with several in-sample selection criteria that modify the total

Neural Networks For Data Mining 29

error function to include a penalty term that penalizes for the complexity of
the model. Some in-sample model selection approaches are based on criteria
such as Akaike’s information criterion (AIC) or Schwarz information crite-
rion (SIC). However, it is important to note the limitation of these criteria as
empirically demonstrated by Swanson and White (1995) and Qi and Zhang
(2001). Other in-sample approaches are based on pruning methods such as
node and weight pruning (see a review by Reed, 1993) as well as constructive
methods such as the upstart and cascade correlation approaches (Fahlman
and Lebiere, 1990; Frean, 1990).

After the modeling process, the finally selected model must be evaluated
using data not used in the model building stage. In addition, as neural net-
works are often used as a nonlinear alternative to traditional statistical mod-
els, the performance of neural networks needs be compared to that of statisti-
cal methods. As Adya and Collopy (1998) point out, “if such a comparison is
not conducted it is difficult to argue that the study has taught us much about
the value of neural networks.” They further propose three evaluation criteria
to objectively evaluate the performance of a neural network: (2) comparing it
to well-accepted (traditional) models; (3) using true out-of-samples; and (4)
ensuring enough sample size in the out-of-sample (40 for classification prob-
lems and 75 for time series problems). It is important to note that the test
sample served as out-of-sample should not in any way be used in the model
building process. If the cross-validation is used for model selection and exper-
imentation, the performance on the validation sample should not be treated
as the true performance of the model.

Relationships with Statistical Methods

Neural networks especially the feedforward multilayer networks are closely re-
lated to statistical pattern recognition methods. Several articles that illustrate
their link include Ripley (1993, 1994), Cheng and Titterington (1994), Sarle
(1994), and Ciampi and Lechevallier (1997). This section provides a summary
of the literature that links neural networks, particularly MLP networks to
statistical data mining methods.

Bayesian decision theory is the basis for statistical classification methods.
It provides the fundamental probability model for well known classification
procedures. It has been shown by many researchers that for classification prob-
lems, neural networks provide the direct estimation of the posterior probabil-
ities under a variety of situations (Richard and Lippmann, 1991). Funahashi
(1998) shows that for the two-group d-dimensional Gaussian classification
problem, neural networks with at least 2d hidden nodes have the capability to
approximate the posterior probability with arbitrary accuracy when infinite
data is available and the training proceeds ideally. Miyake and Kanaya (1991)
shows that neural networks trained with a generalized mean-squared error
objective function can yield the optimal Bayes rule.

30 G. Peter Zhang

As the statistical counterpart of neural networks, discriminant analysis is
a well-known supervised classifier. Gallinari, Thiria, Badran, and Fogelman-
Soulie (1991) describe a general framework to establish the link between dis-
criminant analysis and neural network models. They find that in quite general
conditions the hidden layers of an MLP project the input data onto different
clusters in a way that these clusters can be further aggregated into different
classes. The discriminant feature extraction by the network with nonlinear
hidden nodes has also been demonstrated in Webb and Lowe (1990) and Lim,
Alder and Hadingham (1992).

Raudys (1998a, b) presents a detailed analysis of nonlinear single layer
perceptron (SLP). He shows that by purposefully controlling the SLP classi-
fier complexity during the adaptive training process, the decision boundaries
of SLP classifiers are equivalent or close to those of seven statistical classi-
fiers. These statistical classifiers include the Euclidean distance classifier, the
Fisher linear discriminant function, the Fisher linear discriminant function
with pseudo-inversion of the covariance matrix, the generalized Fisher linear
discriminant function, the regularized linear discriminant analysis, the mini-
mum empirical error classifier, and the maximum margin classifier.

Logistic regression is another important data mining tool. Schumacher,
Robner and Vach (1996) make a detailed comparison between neural net-
works and logistic regression. They find that the added modeling flexibility of
neural networks due to hidden layers does not automatically guarantee their
superiority over logistic regression because of the possible overfitting and other
inherent problems with neural networks (Vach Schumacher & Robner, 1996).

For time series forecasting problems, feedforward MLP are general nonlin-
ear autoregressive models. For a discussion of the relationship between neural
networks and general ARMA models, see Suykens, Vandewalle, and De Moor
(1996).

3.2 Hopfield Neural Networks

Hopfield neural networks are a special type of neural networks which are able
to store certain memories or patterns in a manner similar to the brain—
the full pattern can be recovered if the network is presented with only par-
tial or noisy information. This ability of brain is often called associative or
content-addressable memory. Hopfield networks are quite different from the
feedforward multilayer networks in several ways. From the model architecture
perspective, Hopfield networks do not have a layer structure. Rather, a Hop-
field network is a single layer of neurons with complete interconnectivity. That
is, Hopfield networks are autonomous systems with all neurons being both in-
puts and outputs and no hidden neurons. In addition, unlike in feedforward
networks where information is passed only in one direction, there are looping
feedbacks among neurons.

Figure 3 shows a simple Hopfield network with only three neurons. Each
neuron is connected to every other neuron and the connection strengths or

Neural Networks For Data Mining 31

weights are symmetric in that the weight from neuron i to neuron j (wij) is
the same as that from neuron j to neuron i(wji). The flow of the information
is not in a single direction as in the feedforward network. Rather it is possible
for signals to flow from a neuron back to itself via other neurons. This feature
is often called feedback or recurrent because neurons may be used repeatedly
to process information.

Fig. 3. A three-neuron Hopfield network

The network is completely described by a state vector which is a function
of time t. Each node in the network contributes one component to the state
vector and any or all of the node outputs can be treated as outputs of the
network. The dynamics of neurons can be described mathematically as the
following equations:

ui(t) =
n∑

j=1

wijxj(t) + vi (6)

where ui(t) is the internal state of the ith neuron, xi(t) is the output activation
or output state of the ith neuron, vi is the threshold to the ith neuron, n is
the number of neurons, and sign is the sign function defined as sign(x)=1, if
x >0 and -1 otherwise. Given a set of initial conditions x(0), and appropriate
restrictions on the weights (such as symmetry), this network will converge to
a fixed equilibrium point.

For each network state at any time, there is an energy associated with it.
A common energy function is defined as

E(t) = −1
2
x(t)T Wx(t)− x(t)T v (7)

where x(t) is the state vector, W is the weight matrix, v is the threshold
vector, and T denote transpose. The basic idea of the energy function is that
it always decreases or at least remains constant as the system evolves over
time according to its dynamic rule in equations 6 and 7. It can be shown that
the system will converge from an arbitrary initial energy to eventually a fixed

w 12

w 21

w 23

w 32

w 31

w 13

x 1

x 2 x 3

32 G. Peter Zhang

point (a local minimum) on the surface of the energy function. These fixed
points are stable states which correspond to the stored patterns or memories.

The main use of Hopfield’s network is as associative memory. An asso-
ciative memory is a device which accepts an input pattern and generates an
output as the stored pattern which is most closely associated with the input.
The function of the associate memory is to recall the corresponding stored pat-
tern, and then produce a clear version of the pattern at the output. Hopfield
networks are typically used for those problems with binary pattern vectors
and the input pattern may be a noisy version of one of the stored patterns. In
the Hopfield network, the stored patterns are encoded as the weights of the
network.

There are several ways to determine the weights from a training set which
is a set of known patterns. One way is to use a prescription approach given
by Hopfield (1982). With this approach, the weights are given by

w =
1
n

p∑

i=1

ziz
T
i (8)

where zi, i = 1, 2,, p are ppatterns that are to be stored in the network.
Another way is to use an incremental, iterative process called Hebbian learning
rule developed by Hebb (1949). It has the following learning process:
choose a pattern from the training set at random
present a pair of components of the pattern at the outputs of the corresponding
nodes of the network
if two nodes have the same value then make a small positive increment to
the interconnected weight. If they have opposite values then make a small
negative decrement to the weight. The incremental size can be expressed as
∆wij = αzp

i zp
j , where α is a constant rate in between 0 and 1 and zp

i is the
ith component of pattern p.

Hopfield networks have two major limitations when used as a content
addressable memory. First, the number of patterns that can be stored and ac-
curately recalled is fairly limited. If too many patterns are stored, the network
may converge to a spurious pattern different from all programmed patterns.
Or, it may not converge at all. The second limitation is that the network may
become unstable if the common patterns it shares are too similar. An example
pattern is considered unstable if it is applied at time zero and the network
converges to some other pattern from the training set.

3.3 Kohonen’s Self-organizing Maps

Kohonen’s self-organizing maps (SOM) are important neural network models
for dimension reduction and data clustering. SOM can learn from complex,
multidimensional data and transform them into a topological map of much
fewer dimensions typically one or two dimensions. These low dimension plots

Neural Networks For Data Mining 33

provide much improved visualization capabilities to help data miners visualize
the clusters or similarities between patterns.

SOM networks represent another neural network type that is markedly
different from the feedforward multilayer networks. Unlike training in the
feedforward MLP, the SOM training or learning is often called the unsuper-
vised because there are no known target outputs associated with each input
pattern in SOM and during the training process, the SOM processes the in-
put patterns and learns to cluster or segment the data through adjustment
of weights. A two-dimensional map is typically created in such a way that
the orders of the interrelationships among inputs are preserved. The number
and composition of clusters can be visually determined based on the output
distribution generated by the training process. With only input variables in
the training sample, SOM aims to learn or discover the underlying structure
of the data.

A typical SOM network has two layers of nodes, an input layer and output
layer (sometimes called the Kohonen layer). Each node in the input layer is
fully connected to nodes in the two-dimensional output layer. Figure 4 shows
an example of an SOM network with several input nodes in the input layer
and a two dimension output layer with a 4x4 rectangular array of 16 neurons.
It is also possible to use hexagonal array or higher dimensional grid in the
Kohonen layer. The number of nodes in the input layer is corresponding to
the number of input variables while the number of output nodes depends on
the specific problem and is determined by the user. Usually, this number of
neurons in the rectangular array should be large enough to allow a sufficient
number of clusters to form. It has been recommended that this number is ten
times the dimension of the input pattern (Deboeck and Kohonen, 1998)

Fig. 4. A 4x4 SOM network

During the training process, input patterns are presented to the network.
At each training step when an input pattern x randomly selected from the
training set is presented, each neuron i in the output layer calculates how
similar the input is to its weights wi. The similarity is often measured by some
distance between x and wi. As the training proceeds, the neurons adjust their

Output
layer

weights

• • • Input

34 G. Peter Zhang

weights according to the topological relations in the input data. The neuron
with the minimum distance is the winner and the weights of the winning node
as well as its neighboring nodes are strengthened or adjusted to be closer to
the value of input pattern. Therefore, the training with SOM is unsupervised
and competitive with winner-take-all strategy.

A key concept in training SOM is the neighborhood Nk around a winning
neuron, k, which is the collection of all nodes with the same radial distance.
Figure 5 gives an example of neighborhood nodes for a 5x5 Kohonen layer at
radius of 1 and 2.

Fig. 5. A 5x5 Kohonen Layer with two neighborhood sizes

The basic procedure in training an SOM is as follows:
initialize the weights to small random values and the neighborhood size large
enough to cover half the nodes
select an input pattern x randomly from the training set and present it to the
network
find the best matching or “winning” node k whose weight vector wk is closest
to the current input vector x using the vector distance. That is:

‖x− wk‖ = min
i
‖x− wi‖

where ‖.‖ represents the Euclidean distance
update the weights of nodes in the neighborhood of k using the Kohonen
learning rule:

wnew
i = wold

i + αhik(x− wi)if i is in Nk

wnew
i = wold

i if iis not in Nk(10)
where α is the learning rate between 0 and 1 and hik is a neighborhood kernel
centered on the winning node and can take Gaussian form as

hik = exp

[
−‖ri − rk‖2

2σ2

]
(9)

where ri and rk are positions of neurons i and k on the SOM grid and σ is
the neighborhood radius.

1

2

Neural Networks For Data Mining 35

decrease the learning rate slightly
repeat Steps 1—5 with a number of cycles and then decrease the size of the
neighborhood. Repeat until weights are stabilized.

As the number of cycles of training (epochs) increases, better formation
of the clusters can be found. Eventually, the topological map is fine-tuned
with finer distinctions of clusters within areas of the map. After the network
has been trained, it can be used as a visualization tool to examine the data
structure. Once clusters are identified, neurons in the map can be labeled to
indicate their meaning. Assignment of meaning usually requires knowledge on
the data and specific application area.

4 Data Mining Applications

Neural networks have been used extensively in data mining for a wide variety
of problems in business, engineering, industry, medicine, and science. In gen-
eral, neural networks are good at solving the following common data mining
problems such as classification, prediction, association, and clustering. This
section provides a short overview on the application areas.

Classification is one of the frequently encountered data mining tasks. A
classification problem occurs when an object needs to be assigned into a pre-
defined group or class based on a number of observed attributes related to that
object. Many problems in business, industry, and medicine can be treated as
classification problems. Examples include bankruptcy prediction, credit scor-
ing, medical diagnosis, quality control, handwritten character recognition, and
speech recognition. Feed-forward multilayer networks are most commonly used
for these classification tasks although other types of neural networks can also
be used.

Forecasting is central to effective planning and operations in all business
organizations as well as government agencies. The ability to accurately predict
the future is fundamental to many decision activities in finance, marketing,
production, personnel, and many other business functional areas. Increasing
forecasting accuracy could facilitate the saving of millions of dollars to a com-
pany. Prediction can be done with two approaches: causal and time series
analysis, both of which are suitable for feedforward networks. Successfully
applications include predictions of sales, passenger volume, market share, ex-
change rate, futures price, stock return, electricity demand, environmental
changes, and traffic volume.

Clustering involves categorizing or segmenting observations into groups or
clusters such that each cluster is as homogeneous as possible. Unlike clas-
sification problems, the groups or clusters are usually unknown to or not
predetermined by data miners. Clustering can simplify a complex large data
set into a small number of groups based on the natural structure of data. Im-
proved understanding of the data and subsequent decisions are major benefits
of clustering. Kohonen or SOM networks are particularly useful for clustering

36 G. Peter Zhang

Table 1. Data mining applications of neural networks

Data Mining Task Application Area

Classification bond rating (Dutta and shenkar, 1993)
corporation failure (Zhang et al., 1999; Mckee and Greenstein, 2000)
credit scoring (West, 2000)
customer retention (Mozer and Wolniewics, 2000; Smith et al., 2000)
customer satisfaction (Temponi et al., 1999)
fraud detection (He et al., 1997)
inventory (Partovi and Anandarajan, 2002)
project (Thieme et al., 2000; Zhang et al., 2003)
target marketing (Zahavi and Levin, 1997)

Prediction air quality (Kolehmainen et al., 2001)
business cycles and recessions (Qi, 2001)
consumer expenditures (Church and Curram, 1996)
consumer choice (West et al., 1997)
earnings surprises (Dhar and Chou, 2001)
economic crisis (Kim et al., 2004)
exchange rate (Nag and Mitra, 2002)
market share (Agrawal and Schorling, 1996)
ozone concentration level (Prybutok et al., 2000)
sales (Ansuj et al., 1996; Kuo, 2001; Zhang and Qi, 2002)
stock market (Qi, 1999; Chen et al., 2003; Leung et al., 2000; Chun

 and Kim, 2004)
tourist demand (Law, 2000)
traffic (Dia, 2001; Qiao et al., 2001)

Clustering bankruptcy prediction (Kiviluoto, 1998)
document classification (Dittenbach et al., 2002)
enterprise typology (Petersohn, 1998)
fraud uncovering (Brockett et al., 1998)
group technology (Kiang et al., 1995)
market segmentation (Ha and Park, 1998; Vellido et al., 1999;
xxxxxxxxxxxx Reutterer and Natter, 2000; Boone and Roehm, 2002)
process control (Hu and Rose, 1995)
property evaluation (Lewis et al., 1997)
quality control (Chen and Liu, 2000)
webpage usage (Smith and Ng, 2003)

Association/Pattern defect recognition (Kim and Kumara, 1997)
Recognition facial image recognition (Dai and Nakano, 1998)

frequency assignment (Salcedo-Sanz et al., 2004)
graph or image matching (Suganthan et al., 1995; Pajares et al., 1998)
image restoration (Paik and Katsaggelos, 1992; Sun and Yu, 1995)
imgage segmentation (Rout et al., 1998; Wang et al., 1992)
landscape pattern prediction (Tatem et al., 2002)
market basket analysis (Evans, 1997)
object recognition (Huang and Liu, 1997; Young et al., 1997; Li and
xxxxxxxxxxxxx Lee, 2002)
on-line marketing (Changchien and Lu, 2001)
pattern sequence recognition (Lee, 2002)
semantic indexing and searching (Chen et al., 1998)

Neural Networks For Data Mining 37

tasks. Applications have been reported in market segmentation, customer tar-
geting, business failure categorization, credit evaluation, document retrieval,
and group technology.

With association techniques, we are interested in the correlation or rela-
tionship among a number variables or objects. Association is used in several
ways. One use as in market basket analysis is to help identify the consequent
items given a set of antecedent items. An association rule in this way is an
implication of the form: IF x, THEN Y , where x is a set of antecedent items
and Y is the consequent items. This type of association rule has been used
in a variety of data mining tasks including credit card purchase analysis,
merchandise stocking, insurance fraud investigation, market basket analysis,
telephone calling pattern identification, and climate prediction. Another use
is in pattern recognition. Here we train a neural network first to remember a
number of patterns, so that when a distorted version of a stored pattern is
presented, the network associates it with the closest one in its memory and
returns the original version of the pattern. This is useful for restoring noisy
data. Speech, image, and character recognitions are typical application areas.
Hopfield networks are useful for this purpose.

Given an enormous amount of applications of neural networks in data
mining, it is difficult if not impossible to give a detailed list. Table 1 provides
a sample of several typical applications of neural networks for various data
mining problems. It is important to note that studies given in Table 1 represent
only a very small portion of all the applications reported in the literature,
but we should still get an appreciation of the capability of neural networks
in solving wide range of data mining problems. For real-world industrial or
commercial applications, readers are referred to Widrow et al. (1994), Soulie
and Gallinari (1998), Jain and Vemuri (1999), and Lisboa, Edisbury, and
Vellido (2000).

5 Conclusions

Neural networks are standard and important tools for data mining. Many
features of neural networks such as nonlinear, data-driven, universal func-
tion approximating, noise-tolerance, and parallel processing of large number
of variables are especially desirable for data mining applications. In addition,
many types of neural networks functionally are similar to traditional statisti-
cal pattern recognition methods in areas of cluster analysis, nonlinear regres-
sion, pattern classification, and time series forecasting. This chapter provides
an overview of neural networks and their applications to data mining tasks.
We present three important classes of neural network models: Feedforward
multilayer networks, Hopfield networks, and Kohonen’s self-organizing maps,
which are suitable for a variety of problems in pattern association, pattern
classification, prediction, and clustering.

38 G. Peter Zhang

Neural networks have already achieved significant progress and success
in data mining. It is, however, important to point out that they also have
limitations and may not be a panacea for every data mining problem in every
situation. Using neural networks require thorough understanding of the data,
prudent design of modeling strategy, and careful consideration of modeling
issues. Although many rules of thumb exist in model building, they are not
necessarily always useful for a new application. It is suggested that users
should not blindly rely on a neural network package to “automatically” mine
the data, but rather should study the problem and understand the network
models and the issues in various stages of model building, evaluation, and
interpretation.

References

Adya M., Collopy F. (1998), How effective are neural networks at forecasting and
prediction? a review and evaluation. Journal of forecasting ; 17:481-495.

Agrawal D., Schorling C. (1996), Market share forecasting: an empirical comparison
of artificial neural networks and multinomial logit model. Journal of Retailing
; 72:383-407.

Ahn H., Choi E., Han I. (2007), Extracting underlying meaningful features and can-
celing noise using independent component analysis for direct marketing Expert
Systems with Applications, ; 33: 181-191

Azoff E. M. (1994), Neural Network Time Series Forecasting of Financial Markets.
Chichester: John Wiley & Sons, .

Bishop M. (1995), Neural Networks for Pattern Recognition. Oxford: Oxford Uni-
versity Press, .

Boone D., Roehm M. (2002), Retail segmentation using artificial neural networks.
International Journal of Research in Marketing ; 19:287-301.

Brockett P.L., Xia X.H., Derrig R.A. (1998), Using Kohonen’s self-organizing fea-
ture map to uncover automobile bodily injury claims fraud. The Journal of
Risk and Insurance ; 65: 24

Changchien S.W., Lu T.C. (2001), Mining association rules procedure to support
on-line recommendation by customers and products fragmentation. Expert Sys-
tems with Applications ; 20:

Chen T., Chen H. (1995), Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical
systems, Neural Networks ; 6:911-917.

Chen F.L., Liu S.F. (2000), A neural-network approach to recognize defect spatial
pattern in semiconductor fabrication. IEEE Transactions on Semiconductor
Manufacturing ; 13:366-37

Chen S.K., Mangiameli P., West D. (1995), The comparative ability of self-
organizing neural networks to define cluster structure. Omega ; 23:271-279.

Chen H., Zhang Y., Houston A.L. (1998), Semantic indexing and searching using
a Hopfield net. Journal of Information Science ; 24:3-18.

Cheng B., Titterington D. (1994), Neural networks: a review from a statistical
perspective. Statistical Sciences ; 9:2-54.

Neural Networks For Data Mining 39

Chen K.Y., Wang, C.H. (2007), Support vector regression with genetic algorithms
in forecasting tourism demand. Tourism Management ; 28:215-226.

Chiang W.K., Zhang D., Zhou L. (2006), Predicting and explaining patronage be-
havior toward web and traditional stores using neural networks: a comparative
analysis with logistic regression. Decision Support Systems ; 41:514-531.

Church K. B., Curram S. P. (1996), Forecasting consumers’ expenditure: A com-
parison between econometric and neural network models. International Journal
of Forecasting ; 12:255-267

Ciampi A., Lechevallier Y. (1997), Statistical models as building blocks of neural
networks. Communications in Statistics: Theory and Methods ; 26:991-1009.

Crone S.F., Lessmann S., Stahlbock R. (2006), The impact of preprocessing on data
mining: An evaluation of classifier sensitivity in direct marketing. European
Journal of Operational Research ; 173:781-800

Cybenko G. (1989), Approximation by superpositions of a sigmoidal function.
Mathematical Control Signals Systems ; 2:303–314.

Dai Y., Nakano Y. (1998), Recognition of facial images with low resolution using
a Hopfield memory model. Pattern Recognition ; 31:159-167.

Dasu T., Johnson T. (2003), Exploratory Data Mining and Data Cleaning. New
Jersey: Wiley, .

De Groot D., Wurtz D. (1991), Analysis of univariate time series with connectionist
nets: A case study of two classical examples. Neurocomputing ;3:177-192.

Deboeck G., Kohonen T. (1998), Visual Explorations in Finance with Self-
organizing Maps. London: Springer-Verlag, .

Delen D., Sharda R., Bessonov M. (2006), Identifying significant predictors of injury
severity in traffic accidents using a series of artificial neural networks Accident
Analysis and Prevention ; 38:434-444.

Dhar V., Chou D. (2001), A comparison of nonlinear methods for predicting earn-
ings surprises and returns. IEEE Transactions on Neural Networks ; 12:907-921.

Dia H. (2001), An object-oriented neural network approach to short-term traffic
forecasting. European Journal of Operation Research ; 131:253-261.

Dittenbach M., Rauber A., Merkl, D. (2002), Uncovering hierarchical structure
in data using the growing hierarchical self-organizing map. Neurocompuing ;
48:199-216.

Doganis P., Alexandridis A., Patrinos P., Sarimveis H. (2006), Time series sales
forecasting for short shelf-life food products based on artificial neural networks
and evolutionary computing. Journal of Food Engineering ; 75:196-204.

Dutot A.L., Rynkiewicz J., Steiner F.E., Rude J. (2007), A 24-h forecast of ozone
peaks and exceedance levels using neural classifiers and weather predictions
Modelling and Software; 22:1261-1269.

Dutta S., Shenkar S. (1993), “Bond rating: a non-conservative application of neu-
ral networks.” In Neural Networks in Finance and Investing, Trippi, R., and
Turban, E., eds. Chicago: Probus Publishing Company.

Enke D., Thawornwong S. (2005), The use of data mining and neural networks for
forecasting stock market returns. Expert Systems with Applications ; 29:927-
940.

Evans O.V.D. (1997), Discovering associations in retail transactions using neural
networks. ICL Systems Journal ; 12:73-88.

Fahlman S., Lebiere C. (1990), “The cascade-correlation learning architecture.” In
Advances in Neural Information Processing Systems, Touretzky, D., ed. .

40 G. Peter Zhang

Fletcher R. (1987), Practical Methods of Optimization 2nd. Chichester: John Wiley
& Sons, .

Frean M. (1990), The Upstart algorithm: a method for constructing and training
feed-forward networks. Neural Computations ; 2:198-209.

Funahashi K. (1998), Multilayer neural networks and Bayes decision theory. Neural
Networks ; 11:209-213.

Gallinari P., Thiria S., Badran R., Fogelman-Soulie, F. (1991), On the relationships
between discriminant analysis and multilayer perceptrons. Neural Networks ;
4:349-360.

Geman S., Bienenstock E., Doursat T. (1992), Neural networks and the
bias/variance dilemma. Neural Computation ; 5:1-58.

Gorr L. (1994), Research prospective on neural network forecasting. International
Journal of Forecasting ; 10:1-4.

He H., Wang J., Graco W., Hawkins S. (1997), Application of neural networks to
detection of medical fraud. Expert Systems with Applications ; 13:329-336.

Hebb D.O. (1949), The Organization of Behavior. New York: Wiley.
Hinton G.E. (1992), How neural networks learn from experience. Scientific Ameri-

can ;9:145-151.
Hornik K., Stinchcombe M., White H. (1989), Multilayer feedforward networks are

universal approximators. Neural Networks ; 2:359–366.
Hopfield J.J. (2558), (1982), Neural networks and physical systems with emer-

gent collective computational abilities. Proceedings of National Academy of
Sciences; 79:2554-.

Hopfield J.J., Tank D.W. (1985), Neural computation of decisions in optimization
problems. Biological Cybernetics ; 52:141-152.

Hu J.Q., Rose, E. (1995), On-line fuzzy modeling by data clustering using a neural
network. Advances in Process Control. , 4, 187-194.

Huang J.S., Liu H.C. (2004), Object recognition using genetic algorithms with a
Huang Z. Chen, H., Hsu, C.J. Chen, W.H. and Wu, S., Credit rating analy-
sis with support vector machines and neural networks: a market comparative
study. Decision Support Systems ; 37:543-558

Hopfield’s neural model (1997). Expert Systems with Applications 1997; 13:191-
199.

Jain L.C., Vemuri V.R. (1999), Industrial Applications of Neural Networks. Boca
Raton: CRC Press, .

Kiang M.Y., Hu, M.Y., Fisher D.M. (2006), An extended self-organizing map net-
work for market segmentation—a telecommunication example Decision Support
Systems ; 42:36-47.

Kiang M.Y., Kulkarni U.R., Tam K.Y. (1995), Self-organizing map network as an
interactive clustering tool-An application to group technology. Decision Sup-
port Systems ; 15:351-374.

Kim T., Kumara S.R.T., (1997), Boundary defect recognition using neural net-
works. International Journal of Production Research; 35:2397-2412.

Kim T.Y., Oh K.J., Sohn K., Hwang C. (2004), Usefulness of artificial neural
networks for early warning system of economic crisis. Expert Systems with
Applications ; 26:583-590.

Kirkos E., Spathis C., Manolopoulos Y., (2007), Data Mining techniques for the de-
tection of fraudulent financial statements. Expert Systems with Applications ;
32: 995-1003.

Neural Networks For Data Mining 41

Kiviluoto K. (1998), Predicting bankruptcy with the self-organizing map. Neuro-
computing ; 21:203-224.

Klein B.D., Rossin D. F. (1999), Data quality in neural network models: effect of
error rate and magnitude of error on predictive accuracy. Omega ; 27:569-582.

Kohonen T. (1982), Self-organized formation of topologically correct feature maps.
Biological Cybernetics ; 43:59-69.

Kolehmainen M., Martikainen H., Ruuskanen J. (2001), Neural networks and pe-
riodic components used in air quality forecasting. Atmospheric Environment ;
35:815-825.

Law R. (2000), Back-propagation learning in improving the accuracy of neural
network-based tourism demand forecasting. Tourism Management ; 21:331-340.

Lee D.L. (2002), Pattern sequence recognition using a time-varying Hopfield net-
work. IEEE Transactions on Neural Networks ; 13:330-343.

Lewis O.M., Ware J.A., Jenkins D. (1997), A novel neural network technique for
the valuation of residential property. Neural Computing and Applications ;
5:224-229.

Li W.J., Lee T., (2002), Object recognition and articulated object learning by
accumulative Hopfield matching. Pattern Recognition; 35:1933-1948.

Lim G.S., Alder M., Hadingham P. (1992), Adaptive quadratic neural nets. Pattern
Recognition Letters ; 13: 325-329.

Lisboa P.J.G., Edisbury B., Vellido A. (2000), Business Applications of Neural
Networks : The State-of-the-art of Real-world Applications. River Edge: World
Scientific, .

McCulloch W., Pitts W. (1943), A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics ; 5:115-133.

Min S.H., Lee J., Han I. (2006), Hybrid genetic algorithms and support vector
machines for bankruptcy prediction. Expert Systems with Applications ; 31:
652-660.

Minsky M. L., Papert S. A. (1969), Perceptrons. MA: MIT press, .
Miyake S., Kanaya F. (1991), A neural network approach to a Bayesian statistical

decision problem. IEEE Transactions on Neural Networks ; 2:538-540.
Mozer M.C., Wolniewics R. (2000), Predicting subscriber dissatisfaction and im-

proving retention in the wireless telecommunication. IEEE Transactions on
Neural Networks ; 11:690-696

Nag A.K., Mitra A. (2002), Forecasting daily foreign exchange rates using geneti-
cally optimized neural networks. Journal of Forecasting ; 21:501-512.

Nelson M., Hill T., Remus T., O’Connor, M. (1999), Time series forecasting using
neural networks: Should the data be deseasonalized first? Journal of Forecasting
; 18:359-367.

O’Connor N., Madden M.G. (2006), A neural network approach to predicting
stock exchange movements using external factors. Knowledge-Based Systems ;
19:371-378.

Paik J.K., Katsaggelos, A.K. (1992), Image restoration using a modified Hopfield
neural network. IEEE Transactions on Image Processing ; 1:49-63.

Pajares G., Cruz J.M., Aranda, J. (1998), Relaxation by Hopfield network in stereo
image matching. Pattern Recognition ; 31:561-574.

Panda C., Narasimhan V. (2007), Forecasting exchange rate better with artificial
neural network. Journal of Policy Modeling ; 29:227-236.

42 G. Peter Zhang

Parker D.B. (1985), Learning-logic: Casting the cortex of the human brain in sili-
con, Technical Report TR-47, Center for Computational Research in Economics
and Management Science, MIT.

Palmer A., Montaño J.J., Sesé, A. (2006), Designing an artificial neural network
for forecasting tourism time series. Tourism Management ; 27: 781-790.

Partovi F.Y., Anandarajan M. (2002), Classifying inventory using an artificial neu-
ral network approach. Computers and Industrial Engineering ; 41:389-404.

Petersohn H. (1998), Assessment of cluster analysis and self-organizing maps. In-
ternational Journal of Uncertainty Fuzziness and Knowledge-Based Systems. ;
6:139-149.

Prybutok V.R., Yi J., Mitchell D. (2000), Comparison of neural network models
with ARIMA and regression models for prediction of Houston’s daily maximum
ozone concentrations. European Journal of Operational Research ; 122:31-40.

Qi M. (2001), Predicting US recessions with leading indicators via neural network
models. International Journal of Forecasting ; 17:383-401.

Qi M., Zhang G.P. (2001), An investigation of model selection criteria for neural
network time series forecasting. European Journal of Operational Research ;
132:666-680.

Qiao F., Yang H., Lam, W.H.K. (2001), Intelligent simulation and prediction of
traffic flow dispersion. Transportation Research, Part B ; 35:843-863.

Raudys S. (1998), Evolution and generalization of a single neuron: I., Single-layer
perceptron as seven statistical classifiers Neural Networks ; 11:283-296.

Raudys S. (1998), Evolution and generalization of a single neuron: II., Complex-
ity of statistical classifiers and sample size considerations. Neural Networks ;
11:297-313.

Raviwongse R. Allada V., Sandidge T. (2000), Plastic manufacturing process se-
lection methodology using self-organizing map (SOM)/fuzzy analysis. Interna-
tional Journal of Advanced Manufacturing Technology; 16:155-161.

Reed R. (1993), Pruning algorithms-a survey. IEEE Transactions on Neural Net-
works ; 4:740-747.

Remus W., O’Connor M. (2001), “Neural networks for time series forecasting.”
In Principles of Forecasting: A Handbook for Researchers and Practitioners,
Armstrong, J. S. ed. Norwell:Kluwer Academic Publishers, 245-256.

Reutterer T., Natter M. (2000), Segmentation based competitive analysis with
MULTICLUS and topology representing networks. Computers and Operations
Research; 27:1227-1247.

Richard, M. (1991), D., Lippmann, R., Neural network classifiers estimate Bayesian
aposteriori probabilities. Neural Computation ; 3:461-483.

Ripley A. (1993), “Statistical aspects of neural networks.” In Networks and Chaos
- Statistical and Probabilistic Aspects, Barndorff-Nielsen, O. E., Jensen J. L.
and Kendall, W. S. eds. London: Chapman and Hall, 40-123.

Ripley A. (1994), Neural networks and related methods for classification. Journal
of Royal Statistical Society, Series B ; 56:409-456.

Roh T. H. (2007), Forecasting the volatility of stock price index. Expert Systems
with Applications ; 33:916-922.

Rosenblatt F. (1958), The perceptron: A probabilistic model for information stor-
age and organization in the brain. Psychological Review ; 65:386-408.

Rout S., Srivastava, S.P., Majumdar, J. (1998), Multi-modal image segmentation
using a modified Hopfield neural network. Pattern Recognition ; 31:743-750.

Neural Networks For Data Mining 43

Rumelhart D.E., Hinton G.E., Williams R.J. (1986), “Learning internal represen-
tation by back-propagating errors.” In Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition Press, Rumelhart, D.E., McCleland,
J.L. and the PDP Research Group, eds. MA: MIT.

Saad E.W., Prokhorov D.V., Wunsch, D.C. II. (1998), Comparative study of stock
trend prediction using time delay, recurrent and probabilistic neural networks.
IEEE Transactions on Neural Networks; 9:456-1470.

Salcedo-Sanz S., Santiago-Mozos R.,Bousono-Calzon, C. (2004), A hybrid Hop-
field network-simulated annealing approach for frequency assignment in satel-
lite communications systems. IEEE Transactions on System, Man and Cyber-
netics, Part B:108-116.

Sarle W.S. (1994), Neural networks and statistical models. Poceedings of the Nine-
teenth Annual SAS Users Group International Conference, Cary, NC: SAS In-
stitute, .

Schumacher M., Robner R., Vach W. (1996), Neural networks and logistic regres-
sion: Part I., Computational Statistics and Data Analysis ; 21:661-682.

Smith K.A., Ng, A. (2003), Web page clustering using a self-organizing map of user
navigation patterns. Decision Support Systems ; 35:245-256.

Smith K.A., Willis R.J., Brooks M. (2000), An analysis of customer retention
and insurance claim patterns using data mining: a case study. Journal of the
Operational Research Society; 51:532-541.

Soulie F.F., Gallinari P. (1998), Industrial Applications of Neural Networks. River
Edge, NJ: World Scientific.

Suganthan P.N., Teoh E.K., Mital D.P. (1995), Self-organizing Hopfield network for
attributed relational graph matching. Image and Vision Computing; 13:61-71.

Sun Z.Z., Yu S. (1995), Improvement on performance of modified Hopfield neural
network for image restoration. IEEE Transactions on Image processing; 4:683-
692.

Suykens J.A.K., Vandewalle J.P.L., De Moor B.L.R. (1996), Artificial Neural Net-
works for Modeling and Control of Nonlinear Systems. Boston: Kluwer.

Swanson N.R., White H. (1995), A model-selection approach to assessing the infor-
mation in the term structure using linear models and artificial neural networks.
Journal of Business and Economic Statistics; 13;265-275.

Tatem A.J., Lewis H.G., Atkinson P.M., Nixon M.S. (2002), Supre-resolution land
cover pattern prediction using a Hopfield neural network. Remote Sensing of
Environment; 79:1-14.

Temponi C., Kuo Y.F., Corley H.W. (1999), A fuzzy neural architecture for cus-
tomer satisfaction assessment. Journal of Intelligent & Fuzzy Systems; 7:173-
183.

Thieme R.J., Song M., Calantone R.J. (2000), Artificial neural network decision
support systems for new product developement project selection. Journal of
Marketing Research ; 37:543-558.

Vach W., Robner R., Schumacher M. (1996), Neural networks and logistic regres-
sion: Part I. Computational Statistics and Data Analysis; 21:683-701.

Wang T., Zhuang X., Xing X. (1992), Robust segmentation of noisy images using
a neural network model. Image Vision Computing; 10:233-240.

Webb A.R., Lowe D., (1990), The optimized internal representation of multilayer
classifier networks performs nonlinear discriminant analysis. Neural Networks;
3:367-375.

44 G. Peter Zhang

Werbos P.J., (1974), Beyond regression: New tools for prediction and analysis in
the behavioral sciences. Ph.D. thesis, Harvard University, 1974.

West D., (2000), Neural network credit scoring models. Computers and Operations
Research; 27:1131-1152.

West P.M., Brockett P.L., Golden L.L., (1997), A comparative analysis of neural
networks and statistical methods for predicting consumer choice. Marketing
Science; 16:370-391.

Widrow B., Hoff M.E., (1960), Adaptive switching circuits, 1960 IRE WESCON
Convention Record, New York: IRE Part 4 1960:96-104.

Widrow B., Rumelhart D.E., Lehr M.A., (1994), Neural networks: applications in
industry, business and science, Communications of the ACM; 37:93-105.

Wong B.K., Bodnovich T.A., Selvi Y., (1997), Neural network applications in busi-
ness: A review and analysis of the literature (1988-1995). Decision Support
Systems; 19:301-320.

Young S.S., Scott P.D., Nasrabadi, N.M., (1997), Object recognition using multi-
layer Hopfield neural network. IEEE Transactions on Image Processing; 6:357-
372.

Zhang G.P., (2007), Avoiding Pitfalls in Neural Network Research. IEEE Transac-
tions on Systems, Man, and Cybernetics; 37:3-16.

Zhang G.P., Hu M.Y., Patuwo B.E., Indro D.C., (1999), Artificial neural networks
in bankruptcy prediction: general framework and cross-validation analysis. Eu-
ropean Journal of Operational Research; 116:16-32.

Zhang G.P., Keil M., Rai A., Mann J., (2003), Predicting information technology
project escalation: a neural network approach. European Journal of Operational
Research 2003; 146:115–129.

Zhang G.P., Qi M. (2002), “Predicting consumer retail sales using neural networks.”
In Neural Networks in Business: Techniques and Applications, Smith, K. and
Gupta, J.eds. Hershey: Idea Group Publishing, 26-40.

Zhang G.P., Patuwo E.P., Hu M.Y., (1998), Forecasting with artificial neural net-
works: the state of the art. International Journal of Forecasting; 14:35-62.

Zhang W., Cao Q., Schniederjans M.J., (2004), Neural Network Earnings per Share
Forecasting Models: A Comparative Analysis of Alternative Methods. Decision
Sciences; 35: 205–237.

Zhu Z., He H., Starzyk J.A., Tseng, C., (2007), Self-organizing learning ar-
ray and its application to economic and financial problems. Information Sci-
ences; 177:1180-1192.

Improved SOM Labeling Methodology for
Data Mining Applications

Arnulfo Azcarraga1, Ming-Huei Hsieh2, Shan-Ling Pan3, and Rudy Setiono4

1 College of Computer Studies, De La Salle University, Manila, the Philippines
azcarragaa@canlubang.dlsu.edu.ph

2 Department of International Business, National Taiwan University, Taiwan
mhhsieh@management.ntu.edu.tw

3 School of Computing, National University of Singapore, Singapore
pansl@comp.nus.edu.sg

4 School of Computing, National University of Singapore, Singapore
rudys@comp.nus.edu.sg

Summary. Self-Organizing Maps (SOMs) have been useful in gaining insights
about the information content of large volumes of data in various data mining ap-
plications. As a special form of neural networks, they have been attractive as a data
mining tool because they are able to extract information from data even with very
little user-intervention. However, although learning in self-organizing maps is consid-
ered unsupervised because training patterns do not need desired output information
to be supplied by the user, a trained SOM often has to be labeled prior to use in
many real-world applications. Unfortunately, this labeling phase is usually super-
vised as patterns need accompanying output information that have to be supplied
by the user. Because labeled patterns are not always available or may not even be
possible to construct, the supervised nature of the labeling phase restricts the de-
ployment of SOM to a wider range of potential data mining applications. This work
proposes a methodical and semi-automatic SOM labeling procedure that does not
require a set of labeled patterns. Instead, nodes in the trained map are clustered and
subsets of training patterns associated to each of the clustered nodes are identified.
Salient dimensions per node cluster, that constitute the basis for labeling each node
in the map, are then identified. The effectiveness of the method is demonstrated
on a data mining application involving customer-profiling based on an international
market segmentation study.

Key words: self-organizing maps,neural networks, classification, clustering

1 Introduction

In many data mining applications, there is limited knowledge about what
might be contained in the input data, and very often, the dataset has no

46 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

veritable structure that will allow for easy searching of information. As such,
neural networks are important tools for data mining applications because
they are able to learn just from being shown examples of the data, without
explicitly being told what to look for, or how the information is structured in
the input data.

Neural network models are often categorized as either “supervised” or
“unsupervised”, based on whether or not the learning method they employ
requires some supplementary “desired output” information to accompany each
of the training patterns. The most well-known supervised neural network
model is the multi-layered perceptron (MLP), with retro-propagation of error
as the underlying learning mechanism (Haykin, 1998,Rumelhart et al., 1986).
In such systems, network parameters are adjusted during training based on
the difference (i.e. error) between the system’s response for a given training
pattern and the desired output for this pattern.

Among the unsupervised neural network models, the most popular are
the Kohonen maps or Self-Organizing Maps (SOMs) (Kohonen, 1995,Koho-
nen, 1999). In the class of unsupervised neural network models, the underly-
ing learning mechanism is Competitive Learning, the general framework for
which is described in (Rumelhart and Zipser, 1986). Other models in this
class include the Adaptive Resonance Theory (ART) (Carpenter and Gross-
berg, 1991) and the Neocognitron (Fukushima, 1980). All these models do
not require any supplementary information other than the input data. The
input space is partitioned into non-overlapping regions which are delineated
based on a process of competition among the nodes in the neural network.
For every training pattern that is shown to the network, the single node that
is closest to the input pattern, based on some distance measure, earns the
right to assimilate the training pattern by adapting its weights as well as the
weights of those nodes in its neighborhood.

The SOM methodology dates back to the early 80’s (Kohonen, 1982)
and has been applied to a wide variety of applications (Kohonen, 1990),
which include data mining (Kiang and Kumar, 2001), marketing (Schmitt
and Deboeck, 1998, Kuo et al., 2002), investment banking (Kiviluto and
Bergius, 1998, Shumsky and Yarovoy, 1998); speech processing (Kohonen,
1990), robotics (Ritter et al., 1992), finance engineering (Serrano-Cinca,
1998,Deboeck, 1998a,Deboeck, 1998b,Resta, 1998), text organization and re-
trieval (Kohonen et al., 2000,Merkl, 1998), and real-estate applications (Carl-
son, 1998,Tulkki, 1998).

Prior to its use in some real-world application, a trained SOM has to be
labeled - typically using labeling patterns that have accompanying category
information. In a bankruptcy analysis application, for example, a set of known
cases is used to determine which nodes are sensitive to profiles of companies
that have financial difficulties and which nodes are sensitive to profiles of
companies that are solvent (Serrano-Cinca, 1998). On the basis of these node
labels, a new company is evaluated in terms of its chances of going bankrupt

SOM Labeling Methodology 47

based on its profile. In such a typical SOM application, even if training is
unsupervised, the labeling phase is supervised.

Because such labeled patterns are not always available or may not even
be possible to construct, this supervised labeling phase of the SOM method-
ology hinders the deployment of SOM to an even wider range of potential
domains of application. Take for example the case of a market survey of po-
tential consumers, with questions pertaining to what consumers look for from
a specific line of products. After the set of respondent records is fed to a SOM
for training, a separate set of labeled consumer records would be needed to
associate each node with some tangible purchasing pattern or behavior. For
example, if we want the SOM to assist in identifying which types of responses
correspond to what kinds of purchasing behavior, it would be convenient to
have access to a set of respondent records with an indication of the type of
product that they have actually purchased. With such “labeled” respondent
records, we can check each node in the map to see which kinds of respondent
records are associated with it, and to label them accordingly. This would then
allow the user to do various post-processing tasks, like analyzing the socio-
demographic profile of each cluster of nodes (i.e. each cluster of associated
respondent records). In turn, this makes for clusters that are identifiable and
actionable, with the presumption that clusters become meaningful only when
they can be identified and can be acted upon (Wedel and Kamakura, 1998).

Indeed, several special-cases of self-organizing maps that have been de-
ployed for very specific tasks are designed such that the labeling of the nodes
does not require a set of pre-labeled patterns. This is the case for SOMs used in
text-processing and classification (Merkl, 1998,Kohonen et al., 2000,Azcarraga
et al., 2002). In these systems, the words associated with certain dimensions
in the weight vectors of the trained SOM are used to label the nodes.

Building on the ideas underlying such systems, we improve on the SOM
methodology by proposing a methodical and automatic SOM labeling proce-
dure that does not require any set of labeled patterns. The proposed method is
quite general. It can be applied to numerous other areas where self-organizing
maps are being employed. For illustration purposes, however, we shall focus
the discussions on a SOM-based international market segmentation study.

The rest of the chapter is organized as follows. Section 2 describes in
greater detail the SOM methodology and includes some of the most frequently
used training and labeling methods. Section 3 describes the unsupervised SOM
labeling method that we propose. The application of this labeling method to
a SOM-based international market segmentation study is discussed in section
4. Section 5 introduces some non-SOM techniques to validate the results. This
is followed by the conclusions and recommendations for future work in section
6.

48 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

2 SOM methodology

The SOM methodology is depicted in Figure 1. Pre-processing would typi-
cally include dealing with missing data and normalizing input fields within a
consistent input range, e.g. 0 to 1. Various other pre-processing steps are done
depending on the specific domain of application. When preparing documents
as input patterns in text processing and classification, for example, common
words known as “stop words” are removed to reduce the dimensionality of
the input space. Furthermore, words are reduced to their root form, through
a process called “stemming”. In the digital archiving of music, where SOMs
may be used as an innovative interface for searching through and surfing over
a large archive of music files, music files are pre-processed to extract vari-
ous “features” that characterize the beat, rhythm, timbre, and higher level
characteristics such as music genre, vocal quality, types of instruments used,
etc. (Mayer et al., 2006).

Fig. 1. A general SOM methodology

Once the raw data have been adequately represented in the input space,
SOM training is performed. In a SOM system, a map is usually a rectangular
grid of nodes, although some SOMs use hexagonal grid structures (Kohonen,
1999,Kohonen, 1990). All input units are connected to each node in the map,
and the connection from each input unit i to a node j is represented by a
connection weight wij . Each input unit corresponds to one input field, and
typically, all input units draw their values from a binary set (0 or 1), bipolar
set (-1 or +1), or from a uniform range of real values (e.g. 0 to 1). The set
of values assumed by the individual input units at a certain training cycle

SOM Labeling Methodology 49

t is denoted by an input vector xt, with xt
i referring to the specific value of

input unit i at cycle t. Training of the map consists of successively presenting
input patterns through the input units and of adapting the various connection
weights of each node in the map. At each training cycle t, one training sample
xt is selected at random. Each node then computes its distance/similarity to
the current input, using some appropriate distance or similarity measure (e.g.
Euclidean distance or cosine of angle between input and node weight vector).
The weights wt

ij of all nodes ni in the neighborhood of the node with the
smallest distance (the winning node nc) are then updated using the following
learning rule (Clark and Ravishankar, 1990):

wt+1
ij = wt

ij + α(t)(xt
j − wt

ij) (1)

The gain parameter α(t) and the size of the neighborhood decrease with the
number of cycles, according to some parameter adjustment function (Ritter
et al., 1992).

The more recent version of the training algorithm does away with the
neighborhood region. In its place, a gaussian function G(c, i, t) is used so that
nodes near the winning node nc have larger weight changes than those further
away (Kohonen, 1999):

wt+1
ij = wt

ij + α(t)G(c, i, t)(xt
j − wt

ij) (2)

The function G(c, i, t) is defined by the formula below, where σ(t) is a
parameter to control the size of the neighborhood of nodes that would have
substantial weight changes, and D(c, i) is the grid distance between a given
node ni and the winning node:

G(c, i, t) = exp
(−D(c, i)2

σ(t)2

)
(3)

By the end of the training phase, a self-organized map would have emerged.
This map is often not useful until each node in the map is labeled. Some SOM
applications, however, make do with just visualizing the individual component
planes of the map. This is done by rendering the weight of each node’s refer-
ence vector in 2D as shown in Figure 2. In the figure, each plane corresponds
to a certain car feature. These car features are the following: fun to drive,
acceleration and speed, dealer service, fuel economy, styling, level of technol-
ogy, luxury features, made to last, prestige, reliability, safety in accidents,
sportiness, quality, passenger space, cargo/luggage space.

A total of 2,385 potential customers have been asked to select which three
of the 15 car features above are most important to them. Based on the survey
responses, a 16 × 16 SOM was trained and the weights on a per dimension
basis are shown. In the SOM literature, these are referred to as “component
planes”. Each plane has 16×16 smaller squares, with each square representing
a node in the 16× 16 map. The grey level of each square denotes the weight
value of the node for the given dimension. Black squares correspond to zero

50 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Fig. 2. Component planes for the trained 16× 16 SOM, with one component plane
for each dimension. Each dimension corresponds to a car feature that potential car
buyers look for when buying a car. Lighter shades of grey indicate higher weight
values for the given dimension.

SOM Labeling Methodology 51

or near zero weight values, while white squares denote higher weight values.
A high weight value of a node for a given dimension (i.e. car feature) indicates
that most of the respondents associated to the node have selected the given
car feature as one of three car features they value most.

Fig. 3. A hypothetical SOM with clusters of nodes that have been labeled according
to the age bracket to which most of its associated label patterns belong.

Deboeck and Kohonen (DeBoeck and Kohonen, 1998) present numerous
examples on how component planes are visualized. Basically, the user takes
note of the distribution patterns in the map of the weight values for every
dimension (or component) and interprets them based on their relation to the
clusters observed. To illustrate, suppose that the component planes of Figure 2
correspond to a trained SOM (refer to Figure 3) that has been labeled accord-
ing to the age brackets of the majority of the associated respondent records.
The nodes of the trained SOM have been labeled as: college student (age 18-
22), post-university (23-30), early-professional (31-40), mid-age (41-60), and
retiree (61-75). The aim of this labeling scheme would be to understand what
types of car features attract customers of certain age groups5.

5 The labeling scheme of Figure 3 is fictitious aimed only at illustrating the use of
component planes in relation to labeled maps. However, the component planes
of Figure 2 are actual component planes generated for the market segmentation
study discussed in section 4.

0

2

PROFESSIONAL
luxury

POST-UNIVERSITY
sensory

MIDDLE-AGE
space

MIDDLE-AGE
durability

RETIREE
safety

STUDENT
quality

52 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

In this example, the user visually inspects the component planes and notes,
for example, that component plane 11 reveals high preference for “safety in
accidents” as a car feature among the retiree age-group, as manifested by the
patch of white squares corresponding to those nodes associated with the re-
tiree group in the mid-section of the map. Likewise, the young out-of-college
age group (“post university” in Figure 3) is attracted to sensory car bene-
fits like “acceleration and speed” and “sportiness” whose component planes
show white patches at around the area of nodes that corresponds to the post-
university cluster in Figure 3. Respondents in the early-professional age group
are attracted to “luxury features”, while college students go for “quality” and
“dealer service”. As for the mid-age customers, some are attracted to dura-
bility features like “reliability” and “made to last”, while others go for space
features like “cargo/luggage space” and “passenger space”.

As we will see in the next section, the automatic labeling method proposed
in this paper is a methodical and statistics-based version of the way component
planes are studied and visualized. Before we present the unsupervised labeling
method, we first go through some of the existing ways by which trained maps
can be labeled.

The usual way is to employ a separate set of label patterns which have
been individually pre-classified into designated categories. To label a given
node in the map, its distance to each of the label patterns is computed. Based
on the categories of the label pattern(s) to which the node yields the smallest
distance(s), the given node is assigned a label. This labeling method is applied
to all the nodes in the map.

Several options are available for determining the final label(s) of a node,
given its distance di to each of the label patterns pi. If the labels are categorical
(e.g. “vowel a” for a phonetic map, “terrorism” for news classification), then
given the set β of k label patterns which yield the k smallest distances to node
j, some of the labeling methods for assigning a label c to the given node j are
as follows:

1. c is any label among patterns in β. If k = 1, then c is just the label of
pattern pm that yields the lowest distance dm;

2. c is the most common label among patterns in β;
3. c is any label appearing at least r times among patterns in β where r is a

pre-set percentage of k; and
4. c is a label determined as follows: rank the patterns in β from the nearest

to the farthest from node j, and assign them with weights (k − r + 1),
where r is their rank. The sum of weights for each label is tallied and the
label with the highest total weight is chosen.

There are many variants to these labeling methods. Note that methods 2
and 4 yield a single label for each node, while methods 1 and 3 can assign mul-
tiple labels. Furthermore, if labels are assigned continuous values (e.g. “age”:
22.3, ”grade point average”: 3.57), then method 2 is modified by computing

SOM Labeling Methodology 53

the average label instead of choosing the most common label, while method
4 is modified by taking the weighted average of the labels.

Once the map is fully labeled, it is ready for use. Although it varies de-
pending on the task a SOM is supposed to support, one frequent role of the
SOM is to assist in the classification of some unknown pattern which has the
same input fields as those of the training patterns. Classification is done by
computing the distances of the unknown pattern with respect to each of the
nodes in the map. The relative distances of the nodes plus their associated
categories (labels) would then serve as basis for classifying the unknown pat-
tern. The final classification of the unknown pattern can be as simple as just
assigning the category of the node that registers the smallest distance to the
unknown pattern.

Depending on the application, the process can be more complicated than
a simple classification of an unknown pattern. In some applications, the dis-
tances and categories of a whole region of nodes (sometimes the entire map)
that are nearest to the unknown pattern are fed to another classification sys-
tem, along with the associated distances of each node. Or, as in the case
of the phonetic map, for example, the trajectory of the nearest nodes while
phonemes are fed to the SOM one after another is the basis for segmenting
the speech data and for recognizing the spoken words (Kohonen, 1990). In
Serrano-Cinca’s work (Serrano-Cinca, 1998), this same type of trajectory of
nearest nodes is the basis for determining the general liquidity (solvency) and
financial health of banks.

3 Unsupervised SOM labeling

We propose a general method for labeling self-organizing maps that does away
with pre-labeled patterns. Indeed, in many applications, pre-labeled patterns
are not easy to obtain. In fact, if pre-labeled patterns are available, then the
supervised neural network models could have been used instead. Unsupervised
neural network models are attractive options because they do not require
training patterns to be accompanied with the desired classification outcome.
But if these unsupervised models would require labeled patterns for labeling
the resultant neural network, then the applicability of these models becomes
limited. Such is the drawback of self-organizing maps that we are able to fix
with a novel labeling method that does not require pre-labeled patterns - not
during training, and not even during labeling.

At the onset, we clarify that this unsupervised SOM labeling method is not
applicable to every conceivable SOM application. For example, this proposed
method may not be used in some applications in image processing, where
the input dimensions refer to identical input features (i.e. light intensity) for
pixels in different locations of the image. Nor would the method be applicable
to some applications in speech processing, where all dimensions might refer to
the amplitude at different frequencies of a set of voice signals. Since we use the

54 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

dimensions as basis for differentiating the clusters, the physical interpretation
of each individual dimension must then be distinguishable from each other.

The unsupervised labeling method we describe here would be useful in
most other types of applications where each input dimension corresponds to
a tangible feature that has some concrete meaning in the application domain.
In text processing for example, each input dimension may correspond to some
unique word or phrase (bi-grams or tri-grams). In various finance engineering
applications, each input dimension may refer to some country-specific macro-
economic variable like GNP or inflation rate. Or the input dimensions may
correspond to normalized values of company-specific factors such as price-
equity ratio, stock price, and market capitalization. In market segmentation
studies, input dimensions may correspond to scaled responses to market survey
questions such as whether a customer values prompt waiter service or whether
a consumer prefers cars that have large passenger space, for example.

The general idea of our proposed unsupervised SOM labeling method con-
sists of five main steps (refer to Figure 3), each of which would be elaborated
further below:

1. group all nodes that have similar reference weight vectors using some
clustering method;

2. for each cluster of nodes, prune out outlier nodes that are very different
from their cluster centroids;

3. for each cluster of nodes (minus the outliers), classify the set of (unla-
beled) training patterns as either in-patterns or out-patterns depending
on whether or not their nearest node in the map is in the cluster;

4. based on the set of in-patterns and out-patterns of a given cluster, identify
the salient dimensions; and

5. on the basis of the salient dimensions, assign a descriptive label to each
cluster of nodes that is meaningful in the context of the application do-
main.

3.1 Step 1: Clustering of node weight vectors

In grouping the nodes into clusters of similar reference weight vectors, one
major problem is determining the appropriate number of clusters. This can
be resolved by doing a hierarchical clustering of the weight vectors. Various
hierarchical methods can be used and these are discussed in standard clus-
tering textbooks (Everitt, 1974,Hartigan, 1975,Spath, 1980). A recent survey
was done by Xu and Wunsch (Xu and Wunsch, 2005).

There are basically two types of hierarchical methods: agglomerative and
divisive. In agglomerative methods, each node weight vector starts off as indi-
vidual clusters. At every step, the two most similar clusters are merged into a
single cluster and the new cluster center, or centroid, is computed. The merg-
ing of clusters continues until the quality of the clusters is satisfactory, that is,
no two distinct clusters may be merged and result in a significant increase in
the quality of the groupings, according to some measure of clustering quality.

SOM Labeling Methodology 55

Fig. 4. General unsupervised SOM labeling method.

In divisive methods, all the node weight vectors start off as a single clus-
ter. At each cycle, a partitioning system selects the cluster with the highest
variance and breaks it up into two. Weight vectors in the cluster that has just
been split are redistributed to the two new clusters. Again, the breaking up of
clusters continues until the quality of the groupings has become satisfactory,
according to some clustering quality measure.

The quality (usually based on the within-cluster variance) of the resultant
groupings is computed every time two clusters are merged in the case of
agglomerative methods, or whenever a cluster is split into two in the case
of divisive methods. For agglomerative methods, a relatively large increase in
the variance among the patterns within a cluster is a good indicator that the
two clusters are quite distinct and should not be merged. When this happens,
the hierarchical clustering may be stopped at this point, and the number of

training patterns

A D

B
C

trained SOM clustered nodes

 label
assignment

 cluster
assignment

cluster
pruning

difference
 analysis

in−patterns

out−patterns

salient dimensions

labeled SOM

 node
clustering

56 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

remaining clusters is a good estimate of the suitable number of clusters to be
specified for the k-means clustering to be done later. For divisive methods,
the splitting stops when none of the clusters can be split to gain a significant
decrease in variance among patterns in the clusters.

Once the suitable number of clusters is determined by either an agglomer-
ative or divisive method, we can proceed with k-means clustering of the SOM
node weight vectors. Many variants of k-means exist, and there is abundant
literature on the subject (Everitt, 1974, Hartigan, 1975, Spath, 1980). This
form of clustering frequently derives better quality clusters, since it is more
robust to poor quality data, and is less affected by outliers. Its main draw-
back is that the number of clusters k has to be known a priori, which is why
hierarchical clustering is performed first (Punj and Steward, 1983).

If there is a simpler way of determining a suitable value for k, then hier-
archical clustering may be omitted. In fact, in most SOM applications, the
number of clusters that can be visually inspected and analyzed has to be
small. In such cases, the user may just opt to perform k-means clustering us-
ing different values of k, say from 3 to 10, and select the k value that produces
the best clustering results. Since labeling is unsupervised and automatic, this
is feasible to do.

3.2 Step 2: Pruning of outlier nodes

We next try to remove some nodes from their clusters if they are too different
from the cluster centers. To do this, we compute the centroid χk of each node
cluster Γ k as follows :

χk
j =

∑

ni∈Γ k

wij

|Γ k| , j = 1, 2, . . . , D (4)

where D is the dimensionality of the data and wij is the jth component of
the reference weight vector of node ni, one of the nodes in Γ k. The function
|A| returns the cardinality of set A. We then compute the distance di from
each node ni in Γ k to its centroid χk as :

di =

√√√√
D∑

j=1

(
wij − χk

j

)2
(5)

With the individual node distances to their respective cluster centroids,
we are ready to compute the mean µk

d of these distances and the standard
deviation σk

d for each cluster of nodes. Using z = 1, we retain a node ni in its
original cluster if

µk
d − z × σk

d < di < µk
d + z × σk

d (6)

SOM Labeling Methodology 57

Those nodes with distance from the centroid that differ from the mean by
more than one standard deviation are considered outliers and are excluded
from the cluster. All these nodes that have been dropped from their original
clusters can be collectively referred to as “unlabeled nodes”. In some applica-
tions, this special set of nodes may have some concrete role to play.

3.3 Step 3: Separating in-patterns and out-patterns

Once each node in the map is assigned to a given cluster, the individual
training patterns are re-used. Each of these patterns is assigned to the cluster
of the node to which the distance is smallest. On the basis of these training
pattern assignments, we construct an in-patterns set and an out-patterns set
for each cluster. The in-patterns are those patterns belonging to the given
cluster, while the out-patterns are all the other patterns not belonging to the
cluster, including those patterns associated with “unlabeled nodes” if any.

3.4 Step 4: Identifying salient dimensions

The next step is to identify those dimensions in a given cluster, referred to as
salient dimensions, whose values are significantly different in a statistical sense
compared to those in the other clusters. For each cluster, we determine if the
mean input value among the in-patterns for a given dimension is significantly
higher or lower than the corresponding mean input value among the out-
patterns. To identify salient dimensions of each cluster Γ k, we do the following

1. for each dimension v, compute µin(k, v) and µout(k, v) as the mean input
value for the set of in-patterns Φin(k) and out-patterns Φout(k), respec-
tively, where pi is training pattern i and xiv is the v-th component of the
input vector of pi:

µin(k, v) =

∑

pi∈Φin(k)

xiv

|Φin(k)| (7)

µout(k, v) =

∑

pi∈Φout(k)

xiv

|Φout(k)| (8)

2. compute the difference factor df(k, v) of each dimension v as

df(k, v) =
µin(k, v)− µout(k, v)

µout(k, v)
(9)

3. compute the difference factors mean µdf (k) and standard deviation σdf (k)
over all dimensions v; to avoid possible mix-up in the indices, we give the
formula for the mean and standard deviation as follows:

58 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

µdf (k) =

D∑
v=1

df(k, v)

D
(10)

σdf (k) =

(
D∑

v=1

(df(k, v)− µdf (k, v))2 /D

) 1
2

(11)

Using Equations 12, 13 and 14, we are ready to precisely define a salient
dimension. A dimension v is a salient dimension for cluster Γ k if its corre-
sponding difference factor deviates from the mean by at least one standard
deviation; that is if

df(k, v) ≤ µdf (k)− z × σdf (k) (12)

or
df(k, v) ≥ µdf (k) + z × σdf (k) (13)

with z = 1.

3.5 Step 5: Assignment of descriptive labels

Once the salient dimensions are identified for each cluster of nodes, we manu-
ally interpret the label combinations and assign domain-specific descriptions
as final cluster labels. This step is inherently supervised in most domains of
applications. A user has to inspect the salient dimensions and must provide
the required descriptive labels. It is interesting to note that in text processing
applications, even this final step can be unsupervised, since the words that
correspond to the salient dimensions can in fact take the place of a “descrip-
tive label”. Note that the association between dimension and words is done
automatically during the pre-processing stage.

In cases where there is more than one significant dimension for a given
cluster, the absolute value of the difference factors is used to rank the salient
dimensions, which would then aid in deciding on an appropriate descriptive
label for the cluster. It should also be noted that in some applications, only
dimensions that have positive difference factors (i.e. µin(k, v) > µout(k, v))
are meaningful. In such cases, the user may just ignore the negative difference
factors when choosing appropriate labels for the cluster. Examples will be
given below to illustrate this.

On the issue of input representation, we explained at the onset, that we
are assuming dimensions are distinct and they individually represent some
tangible feature in the application domain. Note, however, that even if this
is not the case, our method would be able to detect the salient dimensions.
For some applications, this is all that is needed (i.e. descriptive labels are not
necessary).

SOM Labeling Methodology 59

Another point regarding input representation is that our method is sen-
sitive to “high values” and “low values” when evaluating each dimension for
purposes of spotting salient dimensions. Therefore, if the domain of applica-
tion is such that several ranges of values may have important connotations,
then assigning one dimension to each range of values is a better encoding
scheme. In the case of age or income brackets, for example, representing each
range of values as a separate dimension would allow for labels to be deduced
for the specific age or income bracket. Otherwise, if data are entered as nor-
malized values within a certain range (e.g. 0 to 1), then the label will only
be in terms of high and low age or income, and will not pertain to specific
income or age brackets.

4 Customer profiling: an illustration

Being visual renderings of the input set, self-organized maps open up oppor-
tunities for gaining insights and mining critical information from an otherwise
unstructured set of data. We illustrate here how a SOM is labeled with the
appropriate labels and, once labeled, is used to do an automatic profiling of
potential car buyers. The user of the SOM results could, for example, de-
sign detailed marketing strategies for very specific niche markets, given the
features and qualities that the specific market is attracted to.

We trained a SOM using data collected by MORPACE International in a
cross-national consumer survey. The data set covers the top twenty automobile
markets in the world consisting of 4,320 eligible new vehicle buyers who bought
a car within the past six months during the period September-October 1997.
Although the dataset consists of 4,332 samples, only respondents who had
purchased or intended to purchase a passenger car were selected for analysis.
Furthermore, Chinese-, Russian-, Turkish-, and Indian samples were removed
from the dataset for analysis due to the relatively modest qualified sample
sizes in those countries. Consequently, a total of 2,385 respondent records
from 16 countries were included in the study.

In the survey, automobile benefit-sought behavior was measured by asking
respondents to choose up to three benefits (out of 15) that they considered
as most important benefits when purchasing a new car. The list of benefits
includes “fun to drive”, “good acceleration and speed”, “good dealer service”,
“good fuel economy”, “good styling”, “level of technology”, “luxury features”,
“made to last”, “prestige”, “reliability”, “safety in accidents”, “sportiness”,
“high quality”, “passenger space”, and “cargo/luggage space”.

According to a study (Hsieh, 2002), the dimensionality of the benefits
listed above corresponds approximately to the brand concepts6 proposed by

6 Brand concepts are defined as brand-unique abstract meanings that typically
originate from a particular configuration of product features and a firm’s efforts
to create meaning from these arrangements (Park et al., 1991).

60 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Park, Jaworski and MacInnis (Park et al., 1986). The four dimensions ex-
tracted are: (1) the symbolic dimension including prestige, luxury features,
styling and quality, (2) the sensory dimension including good acceleration
and speed, fun to drive, and sportiness (3) the utilitarian dimension including
reliability, durability and safety in accidents, and (4) the economic dimension
consisting of fuel economy and dealer service. The relationship between func-
tional/utilitarian, social/symbolic and experiential/sensory needs and con-
sumption has been proven to be significant in various studies (Holbrook and
Schindler, 1994). The set of benefits covering the three universal needs along
with specific product benefits serve as a rather comprehensive set of benefits
that consumers are likely to be seeking.

A 16 × 16 SOM was trained using the converted binary data from the
global samples. By doing an agglomerative hierarchical clustering on the data,
we observed that when the number of clusters was fewer than six, relatively
distinct clusters were being merged (big increase in inter-cluster variance).
But there was really no specific number of clusters that was evidently ideal,
so we proceeded with doing k-means clustering using different values of k.
We did not probe more than eight clusters since, from a market segmentation
point of view, a large number of clusters would be counter-productive. Of
the clusters generated, we zeroed in on the initial 6-cluster solution shown in
Figure 5.

By virtue of SOM’s well-studied characteristics (Wu and Chow, 2005),
it can be surmised that clusters 4 and 5 are somewhat related because the
nodes that constitute these clusters are positioned spatially close together in
the map. On the other hand, clusters 0 and 3 are positioned at opposite ends
of the map, indicating that responses to the survey vary more significantly
between these two clusters than between other pairs of clusters in the map. It
is also worth noting that even if our clustering method does not force nodes
in the same cluster to be contiguous in the map, the clusters we derived are
patches of nodes that are mostly contiguous in the map, except for the lone
cluster 0 node somewhere above cluster 5. The fact that nodes in a cluster
tend to be contiguous in the trained map is a result of the weight update
procedure done on the nodes reference vectors during training.

Each respondent record in our dataset is matched to the node in the map
with a reference weight vector that has the smallest (Euclidean) distance
with respect to it. The cluster number of the nearest node is assigned to the
respondent record accordingly. Thus, the entire dataset is now subdivided
into subsets of respondent records for each cluster (i.e. the set of in-patterns
per cluster). The number of respondent records assigned to each cluster is
shown in Table 1. In this study, we skipped the pruning step and retained all
the nodes in the different clusters as part of the their respective clusters. As
will be discussed in the next section, we will be conducting a separate study
focused on the pruned off nodes.

Since cluster 2 is a significantly sized cluster, we probed it further by doing
a further k-means clustering on just the nodes in this cluster 2. At k = 3, we

SOM Labeling Methodology 61

0

0

0

000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

(5) UTILITY

safe/quality(0) SYMBOLIC

(1) UTILITY

dependability
(3) ECONOMIC

quality

(4) UTILITY

safe/economical

Fig. 5. The trained 16× 16 SOM with a clustering of nodes. Cluster 2 nodes have
subsequently been clustered into 3 smaller sub-clusters.

are able to break-up cluster 2 into meaningful sub-clusters. This portion of
our market segmentation study, which does a second k-means clustering on
the relatively very large cluster from the initial clustering, deviates somewhat
from the method outlined in the preceding section. However, the goal is to
reach a final clustering of the SOM nodes, and we are consistent as far as this
goal is concerned. Note that if we simply do a one-step k-means clustering
using k = 8, we would not be able to obtain the same quality of clusters that
we obtained here.

We then inspect the respondent records in each cluster to generate the
profile of benefits-sought in each of the clusters. The frequency distribution of
each selected benefit in the entire survey set is first computed. We then com-
pute the frequency distributions for just the individual clusters, after which
we compute the difference factors between in-patterns and out-patterns on
a per dimension basis. The difference factors between the set of in-patterns
and the set of out-patterns for each of the benefit dimensions are shown in
Table 2. For each cluster, we also compute the mean and the standard devi-
ation of these difference factors. These would be the basis for deciding which
dimensions are salient for each cluster.

62 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Table 1. Distribution of respondents to the different clusters based on six and eight
clusters. Because of its large size, the original cluster 2 was subdivided further into
3 sub-clusters.

6 clusters 8 clusters

Cluster # respondents (%) # respondents (%)

0 248 10.4% 248 10.4%
1 170 7.1% 170 7.1%
2 1334 55.9%

2-a 704 29.5%
2-b 139 5.8%
2-c 491 20.6%
3 201 8.4% 201 8.4%
4 152 6.4% 152 6.4%
5 280 11.7% 280 11.7%

Table 2. Difference factors of each dimension (benefit) for every cluster. Bold figures
denote difference factors that are more than one standard deviation from the mean.

Clusters

Dimension 0 1 2-a 2-b 2-c 3 4 5

fun to drive -0.11 -0.25 -0.49 -0.34 1.84 -0.20 -0.78 0.10
acceleration/speed 0.51 -0.87 0.43 -0.64 0.55 -0.75 -0.89 0.10

dealer service -0.76 -0.59 -0.09 -1.00 0.55 0.10 3.87 -0.71
fuel economy -0.39 -0.02 1.63 1.08 -0.99 0.59 0.56 -1.00

styling -0.52 -0.42 0.92 -0.51 0.46 -0.11 -0.85 -0.44
level of technology 0.18 -0.50 -0.36 0.12 1.47 -0.83 -0.95 0.41

luxury features 13.25 -0.90 -0.72 -1.00 -0.58 -0.72 -1.00 0.23
made to last -0.73 4.80 -0.54 -0.62 -0.51 0.02 2.34 -0.23

prestige 1.46 -0.56 -0.49 -0.68 0.87 -0.16 -0.71 0.13
reliability -0.77 5.18 0.01 -0.90 -0.09 0.04 -0.66 -0.63

safety in accident -0.97 -0.56 0.44 -0.68 -0.84 -0.55 2.05 2.49
sportiness 1.74 -0.40 -0.27 -0.67 0.96 -0.59 -0.45 -0.59
quality -0.79 -0.54 -0.96 -0.83 -0.09 11.00 -1.00 0.89

passenger space -0.24 -0.87 -0.18 3.98 0.06 -0.68 -0.66 0.34
cargo/luggage space -0.42 -0.85 0.12 8.56 -0.25 -0.79 -0.83 -0.68

µ 0.76 0.18 -0.04 0.39 0.23 0.42 0.00 0.03
σ 3.55 1.97 0.67 2.59 0.83 0.95 1.52 0.86

µ+σ 4.31 2.15 0.64 2.98 1.06 3.38 1.52 0.89

Since this is a market-segmentation study, we refer to the salient dimen-
sions as the “primary benefit(s)” sought by respondents in each cluster. We
only considered positive difference factors, because of the nature of the study.
We are mainly trying to establish what car features each cluster of consumers
is seeking when buying a car, and not so much what they are least interested
in. The distinctive meaning of each segment is then determined by assessing
the combination of benefits and the importance respondents attach to indi-
vidual benefits. Eight types of benefit segments were identified, as listed in

SOM Labeling Methodology 63

Table 3. In the table, we also present “secondary benefits” since they aid in
providing a better profile of the kind of benefits the customers are seeking for
each cluster. We consider all positive difference factors that are less than one
standard deviation from the mean as “secondary benefits”.

Table 3. Primary and secondary benefits sought for each cluster with corresponding
difference factors.

Cluster Label Primary benefits Secondary benefits

0 SYMBOLIC luxury features (13.25) sportiness (1.74)
prestige (1.46)

acceleration/speed (0.51)
level of technology (0.18)

1 UTILITARIAN reliability (5.18)
(dependability) made to last (4.80)

2-a ECONOMIC fuel economy (1.63) safety in accidents (0.44)
(fuel economy) styling (0.92) acceleration/speed (0.43)

cargo/luggage space (0.12)
reliability (0.01)

2-b UTILITARIAN cargo/luggage space (8.56) fuel economy (1.08)
(larger space) passenger space (3.98) level of technology (0.12)

2-c SENSORY fun to drive (1.84) sportiness (0.96)
level of technology (1.47) prestige (0.87)

acceleration/speed (0.55)
dealer service (0.55)

styling (0.46)
passenger space (0.06)

3 ECONOMIC high quality (11.00) fuel economy (0.59)
(quality) dealer service (0.10)

reliability (0.04)
made to last (0.02)

4 UTILITARIAN good dealer service (3.87) fuel economy (0.56)
(safe/economical) made to last (2.34)

safety in accidents (2.05)

5 UTILITARIAN safety in accidents (2.49) level of technology (0.41)
(safe/high quality) high quality (0.89) passenger space (0.34)

luxury features (0.23)
prestige (0.13)

acceleration/speed (0.10)
fun to drive (0.10)

Cluster 2-a, an economic-oriented segment, is dominated by “good fuel
economy” and supplemented by “good styling”, “safety in accidents”, “good
acceleration and speed”, “cargo/luggage space” and “reliability”. Cluster 2-c,
which is a “sensory” segment, values benefits such as “fun to drive”, “level
of technology”, “sportiness”, “prestige”, “good acceleration and speed” and
“styling”. Respondents who fall under the “symbolic” segment (cluster 0)

64 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

are those who value “luxury features” and appreciate other symbol-oriented
benefits such as “prestige”, “sportiness”, “good acceleration and speed” and
“level of technology”. Cluster 3 is the other economic-oriented segment with
benefits such as “high quality”, “fuel economy”, and “good dealer service”.

The remaining four segments differ from each other, but all reflect various
utilitarian needs. Cluster 1 represents utilitarian benefit seekers who are after
“reliability” and “made to last”. Clusters 4 and 5 are both concerned with
“safety in accidents”, except that their respective secondary benefits point to
two distinct types of needs. Whereas cluster 4 is a grouping of safety-conscious
consumers who value “good dealer service”, “made to last” and “good fuel
economy”, cluster 5 consumers are concerned with “high quality”, “level of
technology”, “passenger space”, “luxury features”, “prestige”, etc. Finally,
cluster 2-b is another utilitarian segment that is mainly focused on “space”
benefits, including both “passenger space“ and “cargo/luggage space“.

Note that the component planes shown earlier in Figure 2 are based on the
actual trained weights of the SOM we have generated for this study. Knowing
the primary and secondary benefits from Table 3, it is easy to work backwards
and verify our results. Indeed, when a dimension is a primary benefit for a
given cluster, the component plane corresponding to that dimension has a
white patch (high weight values) in the section of the map that corresponds
to the nodes that make up the given cluster. However, had we relied on just the
visual inspection of component planes the way it is usually done, we might be
able to manually deduce some of the primary benefits, but the level of detail
of Table 3 will be very difficult to match.

We are now ready to construct the demographic profile of each of the eight
clusters, including age, gender, marital status, and whether or not a respon-
dent has children under 18. We have done this at the global level as well as
at the level of groupings of countries (i.e. continental Europe, Latin America,
Anglo-America, East Asia). Interested readers are referred to (Azcarraga et
al., 2003) for the marketing context of the study.

Table 4 gives socio-demographic profile of each cluster of car features at
the global level in terms of the percent distribution of respondents in each
of the car-benefits clusters that were previously identified. From Table 5, we
observe that the symbolic segment has a significantly higher proportion of
younger consumers in the under-30 age bracket. We expected the sensory
segment to be dominated by the younger consumers as well, but this trend is
not significant at the global level.

A quite unexpected result is the significantly higher proportion of female
consumers who value passenger and cargo space. In the global sample, only
37% of the respondents are female. This proportion increased significantly
to 50% for cluster 2-b. Also, married consumers prefer low maintenance at-
tributes and good dealer service. Furthermore, the economic cluster 3 shows a
significantly dominant middle age consumer bracket from 30 to 40 years old,
and slightly older.

SOM Labeling Methodology 65

Table 4. Global socio-demographic profile of each benefits-sought cluster (figures
are in %).

Demographics
Clusters gender status age

female male single married < 30 30-39 40-49 50-59 ≥ 60
0 symbolic 35 65 47 53 33 30 23 12 8
1 utilitarian (dependability) 34 66 29 71 19 32 25 14 10

2-a utilitarian (fuel economy) 38 62 39 61 26 29 23 14 8
2-b utilitarian (space) 50 50 42 58 24 30 24 12 9
2-c sensory 33 67 39 61 31 29 20 11 9
3 economic (quality) 38 62 39 61 24 36 24 11 4
4 utilitarian (safe/economical) 41 59 25 75 15 34 24 17 11
5 utilitarian (safe/quality) 38 62 34 66 25 26 26 11 10

All 37 63 38 62 26 30 23 12 8

Table 5. Global socio-demographic profile of each benefits-sought cluster based
on net deviation of % proportion from mean. Items labeled as ++ and −− have
one standard deviation of positive or negative deviation from the mean. Others are
labeled as + or − when the net deviation is more than 5%.

Demographics
Clusters gender status age

female male single married < 30 30-39 40-49 50-59 ≥ 60
0 symbolic − + + − ++ − − −
1 utilitarian (dependability) − + − + −− + + + +

2-a utilitarian (fuel economy) − +
2-b utilitarian (space) ++ −− + − − + −
2-c sensory − + + − −
3 economic (quality) − ++ + − −
4 utilitarian (safe/economical) + − −− ++ −− + + +
5 utilitarian (safe/quality) − + − − + − +

The socio-demographic profiles of each cluster are more pronounced when
studied at a regional level than at the global level, as can be seen from Table
6. At the global level, the profiles of the various niche markets in the regional
levels tend to cancel each other.

For the purpose of illustrating how we are able to mine for insights that
may be very useful in marketing applications, for example, we will highlight
here a few of the marketing-related results for Continental Europe and Latin
America. In Continental Europe, gender does not matter much compared to
the other regional-cultural blocs. Whether a consumer is male or female mat-
ters only in cluster 2-b, associated with passenger and cargo space. Latin
America is where socio-demographics matter the most. For example, pro-
portionately more unmarried (single) consumers go for symbolic, utilitarian
(space), and economic benefits, while the married consumers go for depend-
ability and safe-and-economical. Gender matters in all clusters as well, even
significantly with dependability and sensory benefits for males, and safe-and-
economical and space benefits for females. Age is significantly pronounced in
seven of the eight Latin American clusters. It should be noted that like the
Anglo-American bloc, the proportion for the above-60 age bracket (retired
segment) is significantly higher for three benefits clusters. However, only one

66 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Table 6. Regional socio-demographic profile of each benefits-sought cluster.

Demographics (Anglo-America)
Clusters gender status age

female male single married < 30 30-39 40-49 50-59 ≥ 60
0 symbolic −− ++ + − + ++ − ++
1 utilitarian (dependability) − + − + −− + + + +

2-a utilitarian (fuel economy) − +
2-b utilitarian (space) ++ −− + − − + −
2-c sensory − + + − −
3 economic(quality) − ++ + − −
4 utilitarian (safe/economical) + − −− ++ −− + + +
5 utilitarian (safe/quality) − + − − + − +

Demographics (Continental Europe)
Clusters gender status age

female male single married < 30 30-39 40-49 50-59 ≥ 60
0 symbolic + − ++ − + − −
1 utilitarian (dependability) − + −− ++ −− + + +

2-a utilitarian (fuel economy) − +
2-b utilitarian (space) ++ −− − + − − +
2-c sensory − + + − ++ − −
3 economic (quality) − + + − − ++ − −
4 utilitarian (safe/economical) − + −− − + ++ −
5 utilitarian (safe/quality) + − + − + + −

Demographics (Latin America)
Clusters gender status age

female male single married < 30 30-39 40-49 50-59 ≥ 60
0 symbolic − + ++ −− ++ −− − −
1 utilitarian (dependability) −− ++ −− ++ −− − + ++

2-a utilitarian (fuel economy) ++ −− − + − − ++
2-b utilitarian (space) ++ −− ++ −− ++ −− − −− −−
2-c sensory −− ++ − + + + − −− −
3 economic (quality) + − ++ −− ++ − −
4 utilitarian (safe/economical) + − −− ++ −− ++ ++
5 utilitarian (safe/quality) − + − + −− − ++ − −

Demographics (East Asia)
Clusters gender status age

female male single married < 30 30-39 40-49 50-59 ≥ 60
0 symbolic ++ −− ++ −− −
1 utilitarian (dependability) − + − + −− ++ − −

2-a utilitarian (fuel economy) ++ − + − + − − +
2-b utilitarian (space) ++ −− + −− ++ − −
2-c sensory −− ++ − + + − − +
3 economic (quality) ++ −− + + −
4 utilitarian (safe/economical) + − −− ++ −− + + +
5 utilitarian (safe/quality) − + + −− + +

of the three clusters represents the same group of benefits sought, namely
“safe and economical” (cluster 4).

In a very succinct manner, a SOM rendering of the marketing information
contains a lot of relevant information that are more readily understood when
shown in a picture form (Figures 6 and 7) than in the form of a table, as in
Table 6. The SOM, once appropriately labeled, does provide various insights
depending on the use of the information revealed by the SOM. In Figure 6,
we note that luxury features and economic benefits are positioned at opposite
corners of the map, reflecting the distinct types of benefits they include. In
the middle portion are most of the utilitarian benefits, with the two safety-in-
accidents clusters positioned side-by-side each other in the center of the map.

SOM Labeling Methodology 67

For the Anglo-American bloc, the males are mainly attracted to the symbolic
benefit, while a significantly higher proportion of women are attracted to two
utilitarian clusters (clusters 2-b and 4) in the mid-section of the map. The
married consumers are likewise attracted to cluster 4 (i.e., safety and eco-
nomic related benefits). As for the age, the young consumers are attracted to
the symbolic and sensory clusters, as expected, while the middle-aged con-
sumers are attracted to utilitarian and economic clusters. There is a distinct
market among the 60-over consumers in the Anglo-American bloc (which is
not evident in Continental Europe and East Asia), in that they gravitate sig-
nificantly towards the symbolic benefit as well as the two safety-in-accidents
benefits (i.e., clusters 4 and 5).

In Figure 7 we use another visual SOM-rendering of the socio-demographic
segmentation of a group of countries (East Asia) to reinforce the claim that
such “pictures” can be more insightful than the usual tabular presentation
of Table 6. Notice how much easier it is to see the over-all picture when
the demographics are presented as shown in Figure 7. In addition, the socio-
demographic profiles of the Anglo-American and East Asian blocs can be
readily compared. In the East-Asian bloc, the males are mainly attracted
to the sensory benefits (“level of technology”, “fun to drive”, etc.), while a
significantly higher proportion of women is attracted cluster 2-b (space) and
cluster 3 “high quality”. The married consumers are attracted to cluster 4 (i.e.,
safety and economic related benefits). The young consumers under 30 years
old are attracted to the symbolic cluster (“luxury features”), while those in the
30-39 range go for “durability”, and those in the 40-59 range go for “space”.

5 Assessing the quality of the cluster labels

Although the method works well for the market segmentation study discussed
above, one may wonder whether other known methods might yield similar
results or might provide further evidence that the results are indeed satisfac-
tory. To address this question, we assessed the quality of the clusters and of
the identified salient dimensions using various statistical tests and machine
learning techniques.

First, we applied Wilks’ Lambda F test using MANOVA to test the effect
of each of the factors (i.e., eight clusters) on the dependent variables (i.e., 15
benefits) on a pair-wise basis. Wilks’ Lambda is a test statistic frequently used
in multivariate analysis for mean differences among more than two groups. In
our case, this test would establish whether in fact the eight clusters that we
have generated are distinct in terms of benefits desired by respondents in each
cluster. At significance level .01, the centroid vector representing each cluster
was found to be pair-wise different from each of the centroids vectors of all
the other clusters. As described earlier, we also saw that each cluster can be
associated with a unique set of benefits that would establish its distinctive

68 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Fig. 6. Labeled SOM with superimposed socio-demographics for the Anglo-
American bloc.

character. That we are able to do so further supports our claim that the eight
clusters are distinct.

To validate the assignment of primary and secondary benefits to each clus-
ter, we relied on the tests of between-subject effects generated from the same
MANOVA to check for significant effect of cluster on each benefit across differ-
ent clusters. We noted for each cluster all those benefits which are different at
significance level .05 from all the seven other clusters. From among these, we
further identify those benefits whose means are higher than the over-all mean
(all clusters included). Table 7 shows that the benefits identified as outlined
above are exactly those listed as either primary or secondary benefits in Table
3, which used difference factors as basis for identifying them. Furthermore,
almost all of the primary benefits for each cluster in Table 3 are significantly
different from all seven other clusters as shown in Table 7. The only excep-
tion is the “fuel economy” primary benefit of cluster 2-a. It has a mean value
that is not significantly different from that of cluster 2-b, which also has “fuel
economy” as a secondary benefit.

These tests for independence that help us determine which of the dimen-
sions are significantly different for a given cluster are only useful for validating
the selection of significant dimensions that we have previously done. If it were

60−over30−39

luxury features

male

40−49

high quality

reliability

made to last

female

married

safety in accident

under 30

level of technology

cargo/luggage

passanger space

40−49

made to last

safety in accidents

safety in accident

female

good dealer service

50−59married

fuel economy

SOM Labeling Methodology 69

Fig. 7. Labeled SOM with superimposed socio-demographics for the East-Asian
bloc.

used as the main technique for identifying the significant dimensions, it is
not clear what criteria (cut-off point) should be used to identify the salient
dimensions. For example, a given dimension that is extremely high for three
and very low for five out of eight clusters may in fact be a “salient dimension”
for labeling purposes. Yet, if the cut-off is set at six out of seven other clusters,
such a dimension may not be selected as a salient dimension. Also, secondary
benefits would have been difficult to identify.

A final validation technique involves the use of C4.5, a very well-established
decision tree classifier (Quinlan, 1993). We use C4.5 to automatically build a
decision tree that would classify respondent patterns as either belonging to
the in-patterns set or the out-patterns set. A very useful feature of C4.5 is
that aside from building a decision tree, it is able to extract a set of rules that
mimics the decision-making process of the tree. Figure 8 is an example of the
extracted rules for cluster 0, after C4.5 has built a decision tree based on the
sets of in-patterns and out-patterns for cluster 0. In the rules of Figure 8, class
0 refers to the out-patterns set while class 1 refers to the in-patterns set. Note
that C4.5 automatically drops certain rules, which explains why rules 3 to 6
are missing.

under 30

luxury features

single

female

high quality

reliability

made to last

female

married

safety in accident

male

level of technology

cargo/luggage

passanger space

40−49

made to last

safety in accidents

safety in accident

good dealer service

married

fuel economy

30−39

70 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Table 7. Salient dimensions, not marked by (*), are significantly different at α = .05
from all other seven clusters based on the F Lambda test. Those marked by (*) are
significantly different from only six out of the seven other clusters.

Cluster Label Salient Dimensions

0 SYMBOLIC luxury features
sportiness

prestige (*)

1 UTILITARIAN reliability
(dependability) made to last

2 ECONOMIC safety in accidents
(fuel economy) fuel economy (*)

cargo/luggage space (*)

2-a UTILITARIAN cargo/luggage space
(larger space) passenger space

fuel economy (*)

2-b SENSORY level of technology
fun to drive
sportiness

3 ECONOMIC high quality
(quality) fuel economy (*)

4 UTILITARIAN good dealer service
(safe and economical) safety in accidents

made to last
fuel economy (*)

5 UTILITARIAN safety in accidents
(safe and high quality) high quality

luxury features
passenger space (*)

We basically would want the extracted rules to confirm that cluster 0 is a
“symbolic” cluster, with “luxury features” as the primary benefit. Indeed, this
is what C4.5 is able to extract from the decision tree it has built for cluster
0. Clearly, the rules extracted by C4.5 are the kinds of information we need
when we want to assign descriptive labels to each cluster in the map. As a
validation technique, it does well in confirming that the significant dimensions
identified by the proposed methodology are in fact what the C4.5 rules are
using in deciding that a pattern belongs to the in-patterns set. In fact, all the
significant dimensions we have identified have also appeared prominently in
the respective rules extracted by C4.5 (in the interest of space, we are not
showing them all here).

Just like for the F tests for significance, it is tempting to conclude that
C4.5 can replace the dimension-selection technique based on difference fac-
tors. Just to illustrate how it can be quite complicated to do so, we refer to
Figure 9 containing the list of extracted C4.5 rules for cluster 2-b. The rules
set for cluster 2-b is already the next to the simplest, after that of cluster

SOM Labeling Methodology 71

Rule 1:

Q7-Luxury-Features = 0

-> class 0 [99.9%]

Rule 7:

Q11-Safety-in-Accidents = 1

-> class 0 [99.4%]

Rule 2:

Q3-Dealer-Service = 0

Q5-Styling = 0

Q7-Luxury-Features = 1

Q10-Reliability = 0

Q11-Safety-in-Accidents = 0

Q13-Quality = 0

-> class 1 [95.9%]

Fig. 8. Extracted rules using C4.5 given the sets of in-patterns (class 1) and out-
patterns (class 0) for cluster 0. Clearly, the dimension “luxury features” is the salient
dimension for this “symbolic” cluster, thus validating the salient dimension (primary
benefit) extracted by our method as shown in Table 3.

0. Those for the other clusters have many more rules with many more di-
mensions included in the rule conditions. Again, knowing that our method
has tagged “passenger space” and “luggage space” as the primary benefits for
this cluster, we can confirm the validity of our extracted primary labels. How-
ever, if C4.5 were directly used to isolate these two primary benefits, there
is no straightforward method for isolating these two dimensions from “fuel
economy” for example, which also appears prominently in the rules. Only by
assessing the rules together as a set, are we able to discern the truly important
variables. This obviously becomes extremely difficult when the set of rules is
complex. Furthermore, there is no clear way of ranking the dimensions from
the most significant to the least significant, the way it can be done in a very
neat manner using difference factors.

There remains one more important point. Although it is quite clear that
the two validation methods employed here - statistical and decision-tree -
cannot be used as alternatives to our method based on difference factors,
it remains a methodological issue whether one or both methods ought to
be included in the general unsupervised labeling methodology that we are
proposing.

We prefer to leave validation out as an optional phase and to use it only
when 1) the user has absolutely no idea as to what constitutes a “reasonable”
set of findings; and 2) the results appear counter-intuitive. Basically, the vali-
dation techniques, particularly the rule extraction method using C4.5, would
be useful to detect some procedural or computational mistakes related to the
computation of difference factors, means and standard deviations. However,

72 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Rule 5:

Q4-Fuel-Economy = 1

Q15-Cargo-Luggage-Space = 1

-> class 1 [82.9%]

Rule 3:

Q11-Safety-in-Accidents = 0

Q14-Passenger-Space = 1

Q15-Cargo-Luggage-Space = 1

-> class 1 [71.8%]

Rule 2:

Q4-Fuel-Economy = 0

Q14-Passenger-Space = 0

-> class 0 [99.9%]

Rule 4:

Q4-Fuel-Economy = 0

Q11-Safety-in-Accidents = 1

-> class 0 [99.7%]

Rule 1:

Q15-Cargo-Luggage-Space = 0

-> class 0 [97.9%]

Fig. 9. Extracted rules using C4.5 given the sets of in-patterns (class 1) and out-
patterns (class 0) for cluster 2-b. Although “passenger space” and “cargo/luggage
space” which are the cluster‘s primary benefits from Table 3, do appear prominently
in the rules, it is not clear how these two dimensions could have been isolated from
the other dimensions (e.g. “fuel economy”) just based on the rules extracted for
cluster 2-b.

it must be emphasized that since C4.5 comes into the picture after the sets of
in-patterns and out-patterns of each cluster have been determined, any error
prior to this step would remain undetected.

6 Conclusion

Neural networks are potent data mining models, as they are able to learn
just from being shown examples of the data, without explicitly being told
what to look for, or how the information is structured in the input heap.
Indeed, data mining tools become very useful precisely when there is little
knowledge about what might be contained in the input data, and often times,
the dataset has no veritable structure to speak of. Among the neural net-
work models, self-organizing maps, which belong to the class of unsupervised
neural network learning models, become doubly interesting for data mining

SOM Labeling Methodology 73

applications because this model does not require training data to have accom-
panying desired-output information that typically would need some tedious
user-intervention (which is the case for supervised neural network learning
models).

It must be emphasized that although training (learning) in self-organizing
maps (SOMs) is unsupervised, the labeling phase is very often a supervised
process. The labeling process is supervised in that we rely on labeled patterns
that have accompanying desired-output information. Since such labeled pat-
terns are not always available or may not even be possible to construct, the
supervised labeling phase of the SOM methodology hinders the deployment
of SOMs to a wider range of potential domains of application.

We improved on the SOM methodology by devising a methodical and
automatic SOM labeling procedure that does not require a set of labeled
patterns. Nodes of the trained map are clustered and the so-called salient
dimensions in each cluster are automatically identified. Out of these salient
dimensions, a “descriptive label” is assigned by the user. Assignment of a
descriptive label is still a form of user intervention, but this is no longer at
the level of individual labeled patterns.

We have illustrated the effectiveness of the method by applying the unsu-
pervised labeling method to a SOM-based customer-profiling study. The mar-
ket segmentation application illustrates the usefulness of SOM as a method-
ology for data mining, through clustering and visualization of unstructured
data.

In the market segmentation study, clustering of the benefits-sought data
could have been done by a multitude of clustering techniques, and a number
of these would probably generate a similar segmentation. However, SOM pro-
vides an additional feature: visualization of the clusters on a simple 2D grid
that would position the clusters in such a way that those that are near each
other, in a spatial sense, pertain to benefits groupings that are fairly similar
(i.e. the Euclidean distance of their associated input vectors is small). In ad-
dition, we are able to superimpose on this cluster distribution the primary
benefits for the different clusters, and the various socio-demographic patterns
for the different market niches represented by the clusters.

Acknowledgment

The authors acknowledge the contribution of MORPACE International Inc.
in providing the dataset for analysis.

References

Azcarraga AP, Hsieh M, Setiono R, (2003), Visualizing globalization: A SOM ap-
proach to customer profiling. In:Proceedings of 24th International Conference
on Information Systems (ICIS), Seattle, WA.

74 Arnulfo Azcarraga, Ming-Huei Hsieh, Shan-Ling Pan, and Rudy Setiono

Azcarraga A, Yap TN, Tan J, Chua TS, (2002), Evaluating keyword selection
methods for WEBSOM text archives, IEEE Transactions on Knowledge and
Data Engineering, 16(3): 380–383.

Carlson E, (1998), Real estate investment appraisal of land properties using SOM.
In: Deboeck G, Kohonen T (eds), Visual explorations infinance with self-
organizing maps, Springer-Verlag, London.

Carpenter GA, Grossberg S, (1991), Pattern-recognition by self-organizing neural
networks. MIT Press, Cambridge, MA.

Clark D, Ravishankar K, (1990), A convergence theorem for Grossberg learning,
Neural Networks 3(1): 87–92.

Deboeck G, Kohonen T, (1998), Visual explorations in finance with self-organizing
maps,Springer-Verlag, London.

Deboeck G, (1998), Picking mutual funds with self-organizing maps. In:Deboeck
G, Kohonen T (eds), Visual explorations in finance with self-organizing maps,
Springer-Verlag, London.

Deboeck G, (1998), Investment maps of emerging markets. In: Deboeck G, Kohonen
T (eds), Visual explorations in finance with self-organizing maps, Springer-
Verlag, London.

Everitt B, (1974), Cluster analysis, Heinemann Educational Books, London.
Fukushima K, (1980), Neocognitron: a self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift inposition, Biological
Cybernetics 36: 121–136.

Hartigan JA, (1975), Clustering algorithms, Wiley-Interscience, New York.
Haykin S, (1998), Neural networks: a comprehensive foundation. Prentice-Hall In-

ternational, 2nd Edition, Upper Saddle River, NewJersey.
Holbrook MB, Schindler RM, (1994), Age, sex, and attitude toward the pastas pre-

dictors of consumers’ aesthetic taste for cultural products. Journal of Consumer
Research 31: 412–22.

Hsieh MH, (2002), Identifying brand image dimensionality and measuring degree of
brand globalization: a cross-national study. Journal of International Marketing
10(2): 46–67.

Kiang MY, Kumar A, (2001), An evaluation of self-organizing map networks as a
robust alternative to factor analysis in data mining applications, Information
Systems Research 12: 177–194.

Kiviluto K, Bergius P, (1998), Maps for analyzing failures of small andmedium-
sized enterprises. In: Deboeck G, Kohonen T (eds), Visual explorations in fi-
nance with self-organizing maps,Springer-Verlag, London.

Kohonen T, (2000), Self-organization of a massive document collection, IEEE
Transactions on Neural Networks 11(3): 574–585.

Kohonen T, (1982), Self-organized formation of topologically-correct feature maps,
Biological Cybernetics 43: 59–69.

Kohonen T, (1990), The self-organizing map, Proceedings of the IEEE 78:1464–
1480.

Kohonen T, (1995), Self-organizing maps, Springer-Verlag, Berlin.
Kohonen T, (1999), Kohonen maps, Elsevier, New York.
Kuo RJ, Ho LM, Hu CM, (2002), Integration of self-organizing feature mapand k-

means algorithm for market segmentation, Computers and Operations Research
29:1475–1493.

SOM Labeling Methodology 75

Mayer R, Lidy T, Rauber A, (2006), The map of Mozart, Proc 7th International
Conference on Music Information Retrieval, Victoria,Canada, Oct 8-12.

Merkl D, (1998), Text classification with self-organizing maps: some lessons learned,
Neurocomputing 21: 61–77.

Park CW, Jaworski BJ, MacInnis DJ, (1986), Strategic brand concept-
imagemanagement. Journal of Marketing 50: 135–145.

Park CW, Milberg S, Lawson R, (1991), Evaluation of brand extension:the role of
product level similarity and brand concept consistency. Journal of Consumer
Research 18: 185–193.

Punj G, Steward DW, (1983), Cluster analysis in marketing research: review and
suggestions for applications. Journal of Marketing Research 20: 134–148.

Quinlan R, (1993), C4.5: Programs for machine learning, Morgan Kaufman,San
Mateo, CA.

Resta M, (1998), A hybrid neural network system for trading financial markets. In:
Deboeck G, Kohonen T (eds), Visual explorations infinance with self-organizing
maps, Springer-Verlag, London.

Ritter H, Martinetz T, Schulten K, (1992), Neural computation and self-organizing
maps (translated from German), Addison-Wesley, Reading MA.

Rumelhart DE, Zipser D, (1986), Feature discovery by competitive learning. In:
Rumelhart DE and McClelland JL (eds) Parallel and Distributed Processing,
Vol 1, 151-193. MIT Press, Cambridge, CA.

Rumelhart DE, Hinton GE, Williams RJ, (1986), Learning internal representations
by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel and
Distributed Processing, Vol 1. 318-362. MITPress, Cambridge, MA.

Schmitt B, Deboeck G, (1998), Differential patterns in consumer purchase prefer-
ences using self-organizing maps: a case study of China. In:Deboeck G, Koho-
nen T (eds), Visual explorations in finance withself-organizing maps, Springer-
Verlag, London.

Serrano-Cinca C, (1998), Let financial data speak for themselves. In:Deboeck G,
Kohonen T (eds), Visual explorations in finance with self-organizing maps,
Springer-Verlag, London.

Shumsky S, Yarovoy AV, (1998), Self-organizing atlas of Russian banks. In:Deboeck
G, Kohonen T (eds), Visual explorations in finance with self-organizing maps,
Springer-Verlag, London.

Spath H, (1980), Cluster analysis algorithms, Ellis Horwood, Chichester,England.
Tulkki A, (1998), Real estate investment appraisal of buildings using SOM. In:

Deboeck G, Kohonen T (eds), Visual explorations in financewith self-organizing
maps, Springer-Verlag, London.

Wedel M, Kamakura W, (1998), Market segmentation: conceptual and method-
ological foundations, Kluwer Academic Publishers, Boston,MA.

Wu S, Chow T, (2005), PRSOM: A new visualization method by hybridizing multi
dimensional scaling and self-organizing Map, IEEE Trans on Neural Networks
16(6): 1362–1380.

Xu R, Wunsch D, (2005), Survey of cluster algorithms, IEEE Trans on Neural
Networks, 16(3): 645–678.

Part II

Evolutionary Methods

A Review of Evolutionary Algorithms for Data
Mining

Alex A. Freitas

University of Kent, UK, Computing Laboratory, A.A.Freitas@kent.ac.uk

Summary. Evolutionary Algorithms (EAs) are stochastic search algorithms in-
spired by the process of neo-Darwinian evolution. The motivation for applying EAs
to data mining is that they are robust, adaptive search techniques that perform
a global search in the solution space. This chapter first presents a brief overview
of EAs, focusing mainly on two kinds of EAs, viz. Genetic Algorithms (GAs) and
Genetic Programming (GP). Then the chapter reviews the main concepts and prin-
ciples used by EAs designed for solving several data mining tasks, namely: discovery
of classification rules, clustering, attribute selection and attribute construction. Fi-
nally, it discusses Multi-Objective EAs, based on the concept of Pareto dominance,
and their use in several data mining tasks.

Key words: genetic algorithm, genetic programming, classification, cluster-
ing, attribute selection, attribute construction, multi-objective optimization

1 Introduction

The paradigm of Evolutionary Algorithms (EAs) consists of stochastic search
algorithms inspired by the process of neo-Darwinian evolution (Back et al.
2000; De Jong 2006; Eiben & Smith 2003). EAs work with a population of in-
dividuals, each of them a candidate solution to a given problem, that “evolve”
towards better and better solutions to that problem. It should be noted that
this is a very generic search paradigm. EAs can be used to solve many differ-
ent kinds of problems, by carefully specifying what kind of candidate solution
an individual represents and how the quality of that solution is evaluated (by
a “fitness” function).

In essence, the motivation for applying EAs to data mining is that EAs
are robust, adaptive search methods that perform a global search in the space
of candidate solutions. In contrast, several more conventional data mining
methods perform a local, greedy search in the space of candidate solutions.
As a result of their global search, EAs tend to cope better with attribute

80 Alex A. Freitas

interactions than greedy data mining methods (Freitas 2002a; Dhar et al.
2000; Papagelis & Kalles 2001; Freitas 2001, 2002c). Hence, intuitively EAs
can discover interesting knowledge that would be missed by a greedy method.

The remainder of this chapter is organized as follows. Section 2 presents
a brief overview of EAs. Section 3 discusses EAs for discovering classification
rules. Section 4 discusses EAs for clustering. Section 5 discusses EAs for two
data preprocessing tasks, namely attribute selection and attribute construc-
tion. Section 6 discusses multi-objective EAs. Finally, Section 7 concludes the
chapter. This chapter is an updated version of (Freitas 2005).

2 An Overview of Evolutionary Algorithms

An Evolutionary Algorithm (EA) is essentially an algorithm inspired by the
principle of natural selection and natural genetics. The basic idea is sim-
ple. In nature individuals are continuously evolving, getting more and more
adapted to the environment. In EAs each “individual” corresponds to a candi-
date solution to the target problem, which could be considered a very simple
“environment”. Each individual is evaluated by a fitness function, which mea-
sures the quality of the candidate solution represented by the individual. At
each generation (iteration), the best individuals (candidate solutions) have a
higher probability of being selected for reproduction. The selected individu-
als undergo operations inspired by natural genetics, such as crossover (where
part of the genetic material of two individuals are swapped) and mutation
(where part of the generic material of an individual is replaced by randomly-
generated genetic material), producing new offspring which will replace the
parents, creating a new generation of individuals. This process is iteratively
repeated until a stopping criterion is satisfied, such as until a fixed number
of generations has been performed or until a satisfactory solution has been
found.

There are several kinds of EAs, such as Genetic Algorithms, Genetic Pro-
gramming, Classifier Systems, Evolution Strategies, Evolutionary Program-
ming, Estimation of Distribution Algorithms, etc. (Back et al. 2000; De Jong
2006; Eiben & Smith 2003). This chapter will focus on Genetic Algorithms
(GAs) and Genetic Programming (GP), which are probably the two kinds of
EA that have been most used for data mining.

Both GA and GP can be described, at a high level of abstraction, by
the pseudocode of Algorithm 1. Although GA and GP share this basic pseu-
docode, there are several important differences between these two kinds of
algorithms. One of these differences involves the kind of solution represented
by each of these kinds of algorithms. In GAs, in general a candidate solution
consists mainly of values of variables – in essence, data. By contrast, in GP
the candidate solution usually consists of both data and functions. There-
fore, in GP one works with two sets of symbols that can be represented in an

A Review of Evolutionary Algorithms for Data Mining 81

individual, namely the terminal set and the function set. The terminal set typ-
ically contains variables (or attributes) and constants; whereas the function
set contains functions which are believed to be appropriate to represent good
solutions for the target problem. In the context of data mining, the explicit
use of a function set is interesting because it provides GP with potentially
powerful means of changing the original data representation into a represen-
tation that is more suitable for knowledge discovery purposes, which is not
so naturally done when using GAs or another EA where only attributes (but
not functions) are represented by an individual. This ability of changing the
data representation will be discussed particularly on the section about GP for
attribute construction.

Note that in general there is no distinction between terminal set and func-
tion set in the case of GAs, because GAs’ individuals usually consist only of
data, not functions. As a result, the representation of GA individuals tend to
be simpler than the representation of GP individuals. In particular, GA indi-
viduals are usually represented by a fixed-length linear genome, whereas the
genome of GP individuals is often represented by a variable-size tree genome
– where the internal nodes contain functions and the leaf nodes contain ter-
minals.

Algorithm 1: Generic Pseudocode for GA and GP
1: Create initial population of individuals
2: Compute the fitness of each individual
3: repeat
4: Select individuals based on fitness
5: Apply genetic operators to selected individuals, creating new individuals
6: Compute fitness of each of the new individuals
7: Update the current population (new individuals replace old individuals)
8: until (stopping criteria)

When designing a GP algorithm, one must bear in mind two important
properties that should be satisfied by the algorithm, namely closure and suf-
ficiency (Banzhaf et al. 1998; Koza 1992). Closure means that every function
in the function set must be able to accept, as input, the result of any other
function or any terminal in the terminal set. Some approaches to satisfy the
closure property in the context of attribute construction will be discussed in
Subsection 5.2. Sufficiency means that the function set should be expressive
enough to allow the representation of a good solution to the target problem.
In practice it is difficult to know a priori which functions should be used to
guarantee the sufficiency property, because in challenging real-world problems
one often does not know the shape of a good solution for the problem. As a
practical guideline, (Banzhaf et al. 1998) (p. 111) recommends:

82 Alex A. Freitas

“An approximate starting point for a function set might be the arithmetic
and logic operations: PLUS, MINUS, TIMES, DIVIDE, OR, AND, XOR.
. . . Good solutions using only this function set have been obtained on several
different classification problems,. . . ,and symbolic regression problems.”

We have previously mentioned some differences between GA and GP, in-
volving their individual representation. Arguably, however, the most impor-
tant difference between GAs and GP involves the fundamental nature of the
solution that they represent. More precisely, in GAs (like in most other kinds
of EA) each individual represents a solution to one particular instance of the
problem being solved. In contrast, in GP a candidate solution should repre-
sent a generic solution – a program or an algorithm – to the kind of problem
being solved; in the sense that the evolved program should be generic enough
to be applied to any instance of the target kind of problem.

To quote (Banzhaf et al. 1998), p. 6:

it is possible to define genetic programming as the direct evolution
of programs or algorithms [our italics] for the purpose of inductive
learning.

In practice, in the context of data mining, most GP algorithms evolve a
solution (say, a classification model) specific for a single data set, rather than
a generic program that can be applied to different data sets from different
application domains. An exception is the work of (Pappa & Freitas 2006),
proposing a grammar-based GP system that automatically evolves full rule
induction algorithms, with loop statements, generic procedures for building
and pruning classification rules, etc. Hence, in this system the output of a
GP run is a generic rule induction algorithm (implemented in Java), which
can be run on virtually any classification data set – in the same way that
a manually-designed rule induction algorithm can be run on virtually any
classification data set. An extended version of the work presented in (Pappa
& Freitas 2006) is discussed in detail in another chapter of this book (Pappa
& Freitas 2007).

3 Evolutionary Algorithms for Discovering Classification
Rules

Most of the EAs discussed in this section are Genetic Algorithms, but it should
be emphasized that classification rules can also be discovered by other kinds
of EAs. In particular, for a review of Genetic Programming algorithms for
classification-rule discovery, see (Freitas 2002a); and for a review of Learning
Classifier Systems (a type of algorithm based on a combination of EA and
reinforcement learning principles), see (Bull 2004; Bull & Kovacs 2005).

A Review of Evolutionary Algorithms for Data Mining 83

3.1 Individual Representation for Classification-Rule Discovery

This Subsection assumes that the EA discovers classification rules of the form
“IF (conditions) THEN (class)” (Witten & Frank 2005). This kind of knowl-
edge representation has the advantage of being intuitively comprehensible to
the user – an important point in data mining (Fayyad et al. 1996). A crucial
issue in the design of an individual representation is to decide whether the
candidate solution represented by an individual will be a rule set or just a
single classification rule (Freitas 2002a, 2002b).

The former approach is often called the “Pittsburgh approach”, whereas
the later approach is often called the “Michigan-style approach”. This latter
term is an extension of the term ”Michigan approach”, which was originally
used to refer to one particular kind of EA called Learning Classifier Sys-
tems (Smith 2000; Goldberg 1989). In this chapter we use the extended term
”Michigan-style approach” because, instead of discussing Learning Classifier
Systems, we discuss conceptually simpler EAs sharing the basic characteristic
that an individual represents a single classification rule, regardless of other
aspects of the EA.

The difference between the two approaches is illustrated in Figure 1. Fig-
ure 1(a) shows the Pittsburgh approach. The number of rules, m, can be either
variable, automatically evolved by the EA, or fixed by a user-specified param-
eter. Figure 1(b) shows the Michigan-style approach, with a single rule per
individual. In both Figure 1(a) and 1(b) the rule antecedent (the “IF part” of
the rule) consists of a conjunction of conditions. Each condition is typically
of the form <Attribute, Operator, Value>, also known as attribute-value (or
propositional logic) representation. Examples are the conditions: “Gender =
Female” and “Age < 25”. In the case of continuous attributes it is also com-
mon to have rule conditions of the form <LowerBound, Operator, Attribute,
Operator, UpperBound>, e.g.: “30K ≤ Salary ≤ 50K”.

In some EAs the individuals can only represent rule conditions with cate-
gorical (nominal) attributes such as Gender, whose values (male, female) have
no ordering – so that the only operator used in the rule conditions is “=”,
and sometimes “ 6=”. When using EAs with this limitation, if the data set con-
tains continuous attributes – with ordered numerical values – those attributes
have to be discretized in a preprocessing stage, before the EA is applied. In
practice it is desirable to use an EA where individuals can represent rule con-
ditions with both categorical and continuous attributes. In this case the EA
is effectively doing a discretization of continuous values “on-the-fly”, since by
creating rule conditions such as “30K ≤ Salary ≤ 50K” the EA is effectively
producing discrete intervals. The effectiveness of an EA that directly copes
with continuous attributes can be improved by using operators that enlarge
or shrink the intervals based on concepts and methods borrowed from the
research area of discretization in data mining (Divina & Marchiori 2005).

It is also possible to have conditions of the form <Attribute, Operator,
Attribute>, such as “Income > Expenditure”. Such conditions are associated

84 Alex A. Freitas

with relational (or first-order logic) representations. This kind of relational
representation has considerably more expressiveness power than the conven-
tional attribute-value representation, but the former is associated with a much
larger search space – which often requires a more complex EA and a longer
processing time. Hence, most EAs for rule discovery use the attribute-value,
propositional representation. EAs using the relational, first-order logic rep-
resentation are described, for instance, in (Neri & Giordana 1995; Hekanaho
1995; Woung & Leung 2000; Divina & Marchiori 2002).

 Rule 1 Rule m Rule

 IF cond …and…cond ... IF cond …and …cond IF cond …and …cond

 (a) Pittsburgh approach (b) Michigan-style approach

Fig. 1. Pittsburgh vs. Michigan-style approach for individual representation

Note that in Figure 1 the individuals are representing only the rule an-
tecedent, and not the rule consequent (predicted class). It would be possible
to include the predicted class in each individual’s genome and let that class be
evolved along with its corresponding rule antecedent. However, this approach
has one significant drawback, which can be illustrated with the following ex-
ample. Suppose an EA has just generated an individual whose rule antecedent
covers 100 examples, 97 of which have class c1. Due to the stochastic nature
of the evolutionary process and the ”blind-search” nature of the generic oper-
ators, the EA could associate that rule antecedent with class c2, which would
assign a very low fitness to that individual – a very undesirable result. This
kind of problem can be avoided if, instead of evolving the rule consequent, the
predicted class for each rule is determined by other (non-evolutionary) means.
In particular, two such means are as follows.

First, one can simply assign to the individual the class of the majority of
the examples covered by the rule antecedent (class c1 in the above example),
as a conventional, non-evolutionary rule induction algorithm would do. Sec-
ond, one could use the ”sequential covering” approach, which is often used
by conventional rule induction algorithms (Witten & Frank 2005). In this
approach, the EA discovers rules for one class at a time. For each class, the
EA is run for as long as necessary to discover rules covering all examples of
that class. During the evolutionary search for rules predicting that class, all
individuals of the population will be representing rules predicting the same
fixed class. Note that this avoids the problem of crossover mixing genetic
material of rules predicting different classes, which is a potential problem in
approaches where different individuals in the population represent rules pre-
dicting different classes. A more detailed discussion about how to represent
the rule consequent in an EA can be found in (Freitas 2002a).

A Review of Evolutionary Algorithms for Data Mining 85

The main advantage of the Pittsburgh approach is that an individual rep-
resents a complete solution to a classification problem, i.e., an entire set of
rules. Hence, the evaluation of an individual naturally takes into account rule
interactions, assessing the quality of the rule set. In addition, the more com-
plete information associated with each individual in the Pittsburgh approach
can be used to design “intelligent”, task-specific genetic operators. An ex-
ample is the ”smart” crossover operator proposed by (Bacardit & Krasnogor
2006), which heuristically selects, out of the N sets of rules in N parents (where
N ≥ 2), a good subset of rules to be included in a new child individual. The
main disadvantage of the Pittsburgh approach is that it leads to long indi-
viduals and renders the design of genetic operators (that will act on selected
individuals in order to produce new offspring) more difficult.

The main advantage of the Michigan-style approach is that the individual
representation is simple, without the need for encoding multiple rules in an
individual. This leads to relatively short individuals and simplifies the design
of genetic operators. The main disadvantage of the Michigan-style approach
is that, since each individual represents a single rule, a standard evaluation
of the fitness of an individual ignores the problem of rule interaction. In the
classification task, one usually wants to evolve a good set of rules, rather than
a set of good rules. In other words, it is important to discover a rule set where
the rules “cooperate” with each other. In particular, the rule set should cover
the entire data space, so that each data instance should be covered by at least
one rule. This requires a special mechanism to discover a diverse set of rules,
since a standard EA would typically converge to a population where almost all
the individuals would represent the same best rule found by the evolutionary
process.

In general the previously discussed approaches perform a ”direct” search
for rules, consisting of initializing a population with a set of rules and then
iteratively modifying those rules via the application of genetic operators. Due
to a certain degree of randomness typically present in both initialization and
genetic operations, some bad quality rules tend to be produced along the
evolutionary process. Of course such bad rules are likely to be eliminated
quickly by the selection process, but in any case an interesting alternative and
”indirect” way of searching for rules has been proposed, in order to minimize
the generation of bad rules. The basic idea of this new approach, proposed in
(Jiao et al. 2006), is that the EA searches for good groups (clusters) of data
instances, where each group consists of instances of the same class. A group
is good to the extent that its data instances have similar attribute values and
those attribute values are different from attribute values of the instances in
other groups. After the EA run is over and good groups of instances have
been discovered by the EA, the system extracts classification rules from the
groups. This seems a promising new approach, although it should be noted
that the version of the system described in (Jiao et al. 2006) has the limitation
of coping only with categorical (not continuous) attributes.

86 Alex A. Freitas

In passing, it is worth mentioning that the above discussion on rule repre-
sentation issues has focused on a generic classification problem. Specific kinds
of classification problems may well be more effectively solved by EAs using
rule representations “tailored” to the target kind of problem. For instance,
(Hirsch et al. 2005) propose a rule representation tailored to document classi-
fication (i.e., a text mining problem), where strings of characters – in general
fragments of words, rather than full words – are combined via Boolean oper-
ators to form classification rules.

3.2 Searching for a Diverse Set of Rules

This subsection discusses two mechanisms for discovering a diverse set of
rules. It is assumed that each individual represents a single classification rule
(Michigan-style approach). Note that the mechanisms for rule diversity dis-
cussed below are not normally used in the Pittsburgh approach, where an
individual already represents a set of rules whose fitness implicitly depends
on how well the rules in the set cooperate with each other.

First, one can use a niching method. The basic idea of niching is to avoid
that the population converges to a single high peak in the search space and to
foster the EA to create stable subpopulations of individuals clustered around
each of the high peaks. In general the goal is to obtain a kind of “fitness-
proportionate” convergence, where the size of the subpopulation around each
peak is proportional to the height of that peak (i.e., to the quality of the
corresponding candidate solution).

For instance, one of the most popular niching methods is fitness sharing
(Goldberg & Richardson 1987; Deb & Goldberg 1989). In this method, the
fitness of an individual is reduced in proportion to the number of similar
individuals (neighbors), as measured by a given distance metric. In the context
of rule discovery, this means that if there are many individuals in the current
population representing the same rule or similar rules, the fitness of those
individuals will be considerably reduced, and so they will have a considerably
lower probability of being selected to produce new offspring. This effectively
penalizes individuals which are in crowded regions of the search space, forcing
the EA to discover a diverse set of rules.

Note that fitness sharing was designed as a generic niching method. By
contrast, there are several niching methods designed specifically for the dis-
covery of classification rules. An example is the “universal suffrage” selection
method (Giordana et al. 1994; Divina 2005) where – using a political metaphor
– individuals to be selected for reproduction are “elected” by the training data
instances. The basic idea is that each data instance “votes” for a rule that
covers it in a probabilistic fitness-based fashion. More precisely, let R be the
set of rules (individuals) that cover a given data instance i, i.e., the set of
rules whose antecedent is satisfied by data instance i. The better the fitness
of a given rule r in the set R, the larger the probability that rule r will re-
ceive the vote of data instance i. Note that in general only rules covering the

A Review of Evolutionary Algorithms for Data Mining 87

same data instances are competing with each other. Therefore, this selection
method implements a form of niching, fostering the evolution of different rules
covering different parts of the data space. For more information about niching
methods in the context of discovering classification rules the reader is referred
to (Hekanaho 1996; Dhar et al. 2000).

Another kind of mechanism that can be used to discover a diverse set
of rules consists of using the previously-mentioned “sequential covering” ap-
proach – also known as “separate-and-conquer”. The basic idea is that the
EA discovers one rule at a time, so that in order to discover multiple rules
the EA has to be run multiple times. In the first run the EA is initialized
with the full training set and an empty set of rules. After each run of the EA,
the best rule evolved by the EA is added to the set of discovered rules and
the examples correctly covered by that rule are removed from the training
set, so that the next run of the EA will consider a smaller training set. The
process proceeds until all examples have been covered. Some examples of EAs
using the sequential covering approach can be found in (Liu & Kwok 2000;
Zhou et al. 2003; Carvalho & Freitas 2004). Note that the sequential covering
approach is not specific to EAs. It is used by several non-evolutionary rule
induction algorithms, and it is also discussed in data mining textbooks such
as (Witten & Frank 2005).

3.3 Fitness Evaluation

One interesting characteristic of EAs is that they naturally allow the evalua-
tion of a candidate solution, say a classification rule, as a whole, in a global
fashion. This is in contrast with some data mining paradigms, which evaluate
a partial solution. Consider, for instance, a conventional, greedy rule induc-
tion algorithm that incrementally builds a classification rule by adding one
condition at a time to the rule. When the algorithm is evaluating several can-
didate conditions, the rule is still incomplete, being just a partial solution,
so that the rule evaluation function is somewhat shortsighted (Freitas 2001,
2002a; Furnkranz & Flach 2003).

Another interesting characteristic of EAs is that they naturally allow the
evaluation of a candidate solution by simultaneously considering different
quality criteria. This is not so easily done in other data mining paradigms.
To see this, consider again a conventional, greedy rule induction algorithm
that adds one condition at a time to a candidate rule, and suppose one wants
to favor the discovery of rules which are both accurate and simple (short).
As mentioned earlier, when the algorithm is evaluating several candidate con-
ditions, the rule is still incomplete, and so its size is not known yet. Hence,
intuitively is better to choose the best candidate condition to be added to the
rule based on a measure of accuracy only. The simplicity (size) criterion is
better considered later, in a pruning procedure.

The fact that EAs evaluate a candidate solution as a whole and lend them-
selves naturally to simultaneously consider multiple criteria in the evaluation

88 Alex A. Freitas

of the fitness of an individual gives the data miner a great flexibility in the
design of the fitness function. Hence, not surprisingly, many different fitness
functions have been proposed to evaluate classification rules. Classification
accuracy is by far the criterion most used in fitness functions for evolving clas-
sification rules. This criterion is already extensively discussed in many good
books or articles about classification, e.g. (Hand 1997; Caruana & Niculescu-
Mizil 2004), and so it will not be discussed here – with the exception of a brief
mention of overfitting issues, as follows. EAs can discover rules that overfit
the training set – i.e. rules that represent very specific patterns in the training
set that do not generalize well to the test set (which contains data instances
unseen during training). One approach to try to mitigate the overfitting prob-
lem is to vary the training set at every generation, i.e., at each generation a
subset of training instances is randomly selected, from the entire set of train-
ing instances, to be used as the (sub-)training or validation set from which
the individuals’ fitness values are computed (Bacardit et al. 2004; Pappa &
Freitas 2006; Sharpe & Glover 1999; Bhattacharyya 1998). This approach in-
troduces a selective pressure for evolving rules with a greater generalization
power and tends to reduce the risk of overfitting, by comparison with the
conventional approach of evolving rules for a training set which remains fixed
throughout evolution. In passing, if the (sub)-training or validation set used
for fitness computation is significantly smaller than the original training set,
this approach also has the benefit of significantly reducing the processing time
of the EA.

Hereafter this section will focus on two other rule-quality criteria (not
based on accuracy) that represent different desirables properties of discovered
rules in the context of data mining, namely: comprehensibility (Fayyad et al.
1996), or simplicity; and surprisingness, or unexpectedness (Liu et al. 1997;
Romao et al. 2004; Freitas 2006).

The former means that ideally the discovered rule(s) should be compre-
hensible to the user. Intuitively, a measure of comprehensibility should have
a strongly subjective, user-dependent component. However, in the literature
this subjective component is typically ignored (Pazzani 2000; Freitas 2006),
and comprehensibility is usually evaluated by a measure of the syntactic sim-
plicity of the classifier, say the size of the rule set. The latter can be measured
in an objective manner, for instance, by simply counting the total number of
rule conditions in the rule set represented by an individual.

However, there is a natural way of incorporating a subjective measure of
comprehensibility into the fitness function of an EA, namely by using an in-
teractive fitness function. The basic idea of an interactive fitness function is
that the user directly evaluates the fitness of individuals during the execu-
tion of the EA (Banzhaf 2000). The evaluation of the user is then used as
the fitness measure for the purpose of selecting the best individuals of the
current population, so that the EA evolves solutions that tend to maximize
the subjective preference of the user.

A Review of Evolutionary Algorithms for Data Mining 89

An interactive EA for attribute selection is discussed e.g. in (Terano &
Ishino 1998, 2002). In that work an individual represents a selected subset
of attributes, which is then used by a classification algorithm to generate
a set of rules. Then the user is shown the rules and selects good rules and
rule sets according to her/his subjective preferences. Next the individuals
having attributes that occur in the selected rules or rule sets are selected as
parents to produce new offspring. The main advantage of interactive fitness
functions is that intuitively they tend to favor the discovery of rules that are
comprehensible and considered “good” by the user. The main disadvantage
of this approach is that it makes the system considerably slower. To mitigate
this problem one often has to use a small population size and a small number
of generations.

Another kind of criterion that has been used to evaluate the quality of
classification rules in the fitness function of EAs is the surprisingness of the
discovered rules. First of all, it should be noted that accuracy and compre-
hensibility do not imply surprisingness. To show this point, consider the fol-
lowing classical hypothetical rule, which could be discovered from a hospital’s
database: IF (patient is pregnant) THEN (gender is female). This rule is very
accurate and very comprehensible, but it is useless, because it represents an
obvious pattern.

One approach to discover surprising rules consists of asking the user to
specify a set of general impressions, specifying his/her previous knowledge
and/or believes about the application domain (Liu et al. 1997). Then the EA
can try to find rules that are surprising in the sense of contradicting some
general impression specified by the user. Note that a rule should be reported
to the user only if it is found to be both surprising and at least reasonably
accurate (consistent with the training data). After all, it would be relatively
easy to find rules which are surprising and inaccurate, but these rules would
not be very useful to the user.

An EA for rule discovery taking this into account is described in (Romao et
al. 2002, 2004). This EA uses a fitness function measuring both rule accuracy
and rule surprisingness (based on general impressions). The two measures are
multiplied to give the fitness value of an individual (a candidate prediction
rule).

4 Evolutionary Algorithms for Clustering

There are several kinds of clustering algorithm, and two of the most popular
kinds are iterative-partitioning and hierarchical clustering algorithms (Alden-
derfer & Blashfield 1984; Krzanowski & Marriot 1995). In this section we focus
mainly on EAs that can be categorized as iterative-partitioning algorithms,
since most EAs for clustering seem to belong to this category.

90 Alex A. Freitas

4.1 Individual Representation for Clustering

A crucial issue in the design of an EA for clustering is to decide what kind
of individual representation will be used to specify the clusters. There are
at least three major kinds of individual representation for clustering (Freitas
2002a), as follows.

Cluster description-based representation – In this case each indi-
vidual explicitly represents the parameters necessary to precisely specify each
cluster. The exact nature of these parameters depends on the shape of clus-
ters to be produced, which could be, e.g., boxes, spheres, ellipsoids, etc. In any
case, each individual contains K sets of parameters, where K is the number
of clusters, and each set of parameters determines the position, shape and
size of its corresponding cluster. This kind of representation is illustrated,
at a high level of abstraction, in Figure 2, for the case where an individual
represents clusters of spherical shape. In this case each cluster is specified by
its center coordinates and its radius. The cluster description-based represen-
tation is used, e.g., in (Srikanth et al. 1995), where an individual represents
ellipsoid-based cluster descriptions; and in (Ghozeil and Fogel 1996; Sarafis
2005), where an individual represents hyperbox-shaped cluster descriptions.
In (Sarafis 2005), for instance, the individuals represent rules containing con-
ditions based on discrete numerical intervals, each interval being associated
with a different attribute. Each clustering rule represents a region of the data
space with homogeneous data distribution, and the EA was designed to be
particularly effective when handling high-dimensional numerical datasets.

specification of cluster 1 specification of cluster K

 center 1 radius 1 center K radius K

 coordinates coordinates

Fig. 2. Structure of cluster description-based individual representation

Centroid/medoid-based representation – In this case each individ-
ual represents the coordinates of each cluster’s centroid or medoid. A centroid
is simply a point in the data space whose coordinates specify the centre of
the cluster. Note that there may not be any data instance with the same
coordinates as the centroid. By contrast, a medoid is the most “central” rep-
resentative of the cluster, i.e., it is the data instance which is nearest to the
cluster’s centroid. The use of medoids tends to be more robust against out-
liers than the use of centroids (Krzanowski & Marriot 1995) (p. 83). This
kind of representation is used, e.g., in (Hall et al. 1999; Estivill-Castro and
Murray 1997) and other EAs for clustering reviewed in (Sarafis 2005). This
representation is illustrated, at a high level of abstraction, in Figure 3. Each
data instance is assigned to the cluster represented by the centroid or medoid

A Review of Evolutionary Algorithms for Data Mining 91

that is nearest to that instance, according to a given distance measure. There-
fore, the position of the centroids/medoids and the procedure used to assign
instances to clusters implicitly determine the precise shape and size of the
clusters.

 cluster 1 cluster K

 center 1 coordinates center K coordinates

Fig. 3. Structure of centroid/medoid-based individual representation

Instance-based representation – In this case each individual consists
of a string of n elements (genes), where n is the number of data instances.
Each gene i, i=1,. . . ,n, represents the index (id) of the cluster to which the
i-th data instance is assigned. Hence, each gene i can take one out of Kvalues,
where K is the number of clusters. For instance, suppose that n = 10 and
K= 3. The individual <2 1 2 3 3 2 1 1 2 3> corresponds to a candidate
clustering where the second, seventh and eighth instances are assigned to
cluster 1, the first, third, sixth and ninth instances are assigned to cluster 2
and the other instances are assigned to cluster 3. This kind of representation
is used, for instance, in (Krishma and Murty 1999; Handl & Knowles 2004).
A variation of this representation is used in (Korkmaz et al. 2006), where
the value of a gene represents not the cluster id of a gene’s associated data
instance, but rather a link from the gene’s instance to another instance which
is considered to be in the same cluster. Hence, in this approach, two instances
belong to the same cluster if there is a sequence of links from one of them
to the other. This variation is more complex than the conventional instance-
based representation, and it has been proposed together with repair operators
that rectify the contents of an individual when it violates some pre-defined
constraints.

Comparing different individual representations for clustering –
In both the centroid/medoid-based representation and the instance-based rep-
resentation, each instance is assigned to exactly one cluster. Hence, the set of
clusters determine a partition of the data space into regions that are mutually
exclusive and exhaustive. This is not the case in the cluster description-based
representation. In the latter, the cluster descriptions may have some overlap-
ping – so that an instance may be located within two or more clusters – and
the cluster descriptions may not be exhaustive – so that some instance(s) may
not be within any cluster.

Unlike the other two representations, the instance-based representation
has the disadvantage that it does not scale very well for large data sets, since
each individual’s length is directly proportional to the number of instances
being clustered. This representation also involves a considerable degree of

92 Alex A. Freitas

redundancy, which may lead to problems in the application of conventional
genetic operators (Falkenauer 1998). For instance, let n = 4 and K = 2, and
consider the individuals <1 2 1 2> and <2 1 2 1>. These two individuals
have different gene values in all the four genes, but they represent the same
candidate clustering solution, i.e., assigning the first and third instances to
one cluster and assigning the second and fourth instances to another cluster.
As a result, a crossover between these two parent individuals can produce
two children individuals representing solutions that are very different from
the solutions represented by the parents, which is not normally the case in
conventional crossover operators used by genetic algorithms. Some methods
have been proposed to try to mitigate some redundancy-related problems as-
sociated with this kind of representation. For example, (Handl & Knowles
2004) proposed a mutation operator that is reported to work well with this
representation, based on the idea that, when a gene has its value mutated
– meaning that the gene’s corresponding data instance is moved to another
cluster – the system selects a number of “nearest neighbors” of that instance
and moves all those nearest neighbors to the same cluster to which the mu-
tated instance was moved. Hence, this approach effectively incorporates some
knowledge of the clustering task to be solved in the mutation operator.

4.2 Fitness Evaluation for Clustering

In an EA for clustering, the fitness of an individual is a measure of the quality
of the clustering represented by the individual. A large number of different
measures have been proposed in the literature, but the basic ideas usually
involve the following principles. First, the smaller the intra-cluster (within-
cluster) distance, the better the fitness. The intra-cluster distance can be
defined as the summation of the distance between each data instance and
the centroid of its corresponding cluster – a summation computed over all
instances of all the clusters. Second, the larger the inter-cluster (between-
cluster) distance, the better the fitness. Hence, an algorithm can try to find
optimal values for these two criteria, for a given fixed number of clusters.
These and other clustering-quality criteria are extensively discussed in the
clustering literature – see e.g. (Aldenderfer and Blashfield 1984; Backer 1995;
Tan et al. 2006). A discussion of this topic in the context of EAs can be found
in (Kim et al. 2000; Handl & Knowles 2004; Korkmaz et al. 2006; Krishma
and Murty 1999; Hall et al. 1999).

In any case, it is important to note that, if the algorithm is allowed to
vary the number of discovered clusters without any restriction, it would be
possible to minimize intra-cluster distance and maximize inter-cluster distance
in a trivial way, by assigning each example to its own singleton cluster. This
would be clearly undesirable. To avoid this while still allowing the algorithm
to vary the number of clusters, a common response is to incorporate in the
fitness function a preference for a smaller number of clusters. It might also
be desirable or necessary to incorporate in the fitness function a penalty term

A Review of Evolutionary Algorithms for Data Mining 93

whose value is proportional to the number of empty clusters (i.e. clusters to
which no data instance was assigned) (Hall et al. 1999).

5 Evolutionary Algorithms for Data Preprocessing

5.1 Genetic Algorithms for Attribute Selection

In the attribute selection task the goal is to select, out of the original set of
attributes, a subset of attributes that are relevant for the target data mining
task (Liu & Motoda 1998; Guyon and Elisseeff 2003). This Subsection assumes
the target data mining task is classification – which is the most investigated
task in the evolutionary attribute selection literature – unless mentioned oth-
erwise.

The standard individual representation for attribute selection consists sim-
ply of a string of N bits, where N is the number of original attributes and
the i-th bit, i=1,. . . ,N , can take the value 1 or 0, indicating whether or not,
respectively, the i-th attribute is selected. For instance, in a 10-attribute data
set, the individual “1 0 1 0 1 0 0 0 0 1” represents a candidate solution where
only the 1st, 3rd, 5th and 10th attributes are selected. This individual repre-
sentation is simple, and traditional crossover and mutation operators can be
easily applied. However, it has the disadvantage that it does not scale very
well with the number of attributes. In applications with many thousands of
attributes (such as text mining and some bioinformatics problems) an indi-
vidual would have many thousands of genes, which would tend to lead to a
slow execution of the GA.

An alternative individual representation, proposed by (Cherkauer & Shav-
lik 1996), consists of M genes (where M is a user-specified parameter), where
each gene can contain either the index (id) of an attribute or a flag – say
0 – denoting no attribute. An attribute is considered selected if and only if
it occurs in at least one of the M genes of the individual. For instance, the
individual “3 0 8 3 0”, where M = 5, represents a candidate solution where
only the 3rd and the 8th attributes are selected. The fact that the 3rd at-
tribute occurs twice in the previous individual is irrelevant for the purpose
of decoding the individual into a selected attribute subset. One advantage of
this representation is that it scales up better with respect to a large number
of original attributes, since the value of M can be much smaller than the
number of original attributes. One disadvantage is that it introduces a new
parameter, M , which was not necessary in the case of the standard individual
representation.

With respect to the fitness function, GAs for attribute selection can be
roughly divided into two approaches – just like other kinds of algorithms for
attribute selection – namely the wrapper approach and the filter approach. In
essence, in the wrapper approach the GA uses the classification algorithm to
compute the fitness of individuals, whereas in the filter approach the GA does

94 Alex A. Freitas

not use the classification algorithm. The vast majority of GAs for attribute
selection has followed the wrapper approach, and many of those GAs have used
a fitness function involving two or more criteria to evaluate the quality of the
classifier built from the selected attribute subset. This can be shown in Table
1, adapted from (Freitas 2002a), which lists the evaluation criteria used in
the fitness function of a number of GAs following the wrapper approach. The
columns of that table have the following meaning: Acc = accuracy; Sens, Spec
= sensitivity, specificity; |Sel Attr| = number of selected attributes; |rule set|
= number of discovered rules; Info. Cont. = information content of selected
attributes; Attr cost = attribute costs; Subj eval = subjective evaluation of
the user; |Sel ins| = number of selected instances.

Table 1. Diversity of criteria used in fitness function for attribute selection

Reference Acc Sens,
Spec

|Sel
Attr|

|rule
set|

Info
cont

Attr
cost

Subj
eval

|Sel
ins|

(Bala et al. 1995) yes yes

(Bala et al. 1996) yes yes yes

(Chen et al. 1999) yes yes

(Cherkauer &
Shavlik 1996)

yes yes yes

(Emmanouilidis et
al. 2000)

yes yes

(Emmanouilidis et
al. 2002)

yes yes

(Guerra-Salcedo, Whitley
1998, 1999)

yes

(Ishibuchi &
Nakashima 2000)

yes yes yes

(Llora & Garrell 2003) yes

(Miller et al. 2003) yes

(Moser & Murty
2000)

yes yes

(Ni & Liu 2004) yes

(Pappa et al. 2002) yes yes

(Rozsypal &
Kubat 2003)

yes yes yes

(Terano & Ishino
1998)

yes yes yes

(Vafaie & DeJong
1998)

yes

(Yang & Honavar
1997, 1998)

yes yes

(Zhang et al 2003) yes

A Review of Evolutionary Algorithms for Data Mining 95

A precise definition of the terms used in the titles of the columns of Table
1 can be found in the corresponding references quoted in that table. The table
refers to GAs that perform attribute selection for the classification task. GAs
that perform attribute selection for the clustering task can be found, e.g., in
(Kim et al. 2000; Jourdan 2003). In addition, in general Table 1 refers to GAs
whose individuals directly represent candidate attribute subsets, but GAs can
be used for attribute selection in other ways. For instance, in (Jong et al. 2004)
a GA is used for attribute ranking. Once the ranking has been done, one can
select a certain number of top-ranked attributes, where that number can be
specified by the user or computed in a more automated way.

Empirical comparisons between GAs and other kinds of attribute selec-
tion methods can be found, for instance, in (Sharpe and Glover 1999; Kudo
& Skalansky 2000). In general these empirical comparisons show that GAs,
with their associated global search in the solution space, usually (though not
always) obtain better results than local search-based attribute selection meth-
ods. In particular, (Kudo & Skalansky 2000) compared a GA with 14 non-
evolutionary attribute selection methods (some of them variants of each other)
across 8 different data sets. The authors concluded that the advantages of the
global search associated with GAs over the local search associated with other
algorithms is particularly important in data sets with a “large” number of
attributes, where “large” was considered over 50 attributes in the context of
their data sets.

5.2 Genetic Programming for Attribute Construction

In the attribute construction task the general goal is to construct new at-
tributes out of the original attributes, so that the target data mining task
becomes easier with the new attributes. This Subsection assumes the target
data mining task is classification – which is the most investigated task in the
evolutionary attribute construction literature.

Note that in general the problem of attribute construction is considerably
more difficult than the problem of attribute selection. In the latter the problem
consists just of deciding whether or not to select each attribute. By contrast,
in attribute construction there is a potentially much larger search space, since
there is a potentially large number of operations that can be applied to the
original attributes in order to construct new attributes. Intuitively, the kind
of EA that lends itself most naturally to attribute construction is GP. The
reason is that, as mentioned earlier, GP was specifically designed to solve
problems where candidate solutions are represented by both attributes and
functions (operations) applied to those attributes. In particular, the explicit
specification of both a terminal set and a function set is usually missing in
other kinds of EAs.

96 Alex A. Freitas

Data Preprocessing vs. Interleaving Approach

In the data preprocessing approach, the attribute construction algorithm eval-
uates a constructed attribute without using the classification algorithm to be
applied later. Examples of this approach are the GP algorithms for attribute
construction proposed by (Otero et al. 2003; Hu 1998), whose attribute eval-
uation function (the fitness function) is the information gain ratio – a mea-
sure discussed in detail in (Quinlan 1993). In addition, (Muharram & Smith
2004) did experiments comparing the effectiveness of two different attribute-
evaluation criteria in GP for attribute construction – viz. information gain
ratio and gini index – and obtained results indicating that, overall, there was
no significant difference in the results associated with those two criteria.

By contrast, in the interleaving approach the attribute construction al-
gorithm evaluates the constructed attributes based on the performance of
the classification algorithm with those attributes. Examples of this approach
are the GP algorithms for attribute construction proposed by (Krawiec 2002;
Smith and Bull 2003; Firpi et al. 2005), where the fitness functions are based
on the accuracy of the classifier built with the constructed attributes.

Single-Attribute-per-Individual vs.
Multiple-Attributes-per-Individual Representation

In several GPs for attribute construction, each individual represents a sin-
gle constructed attribute. This approach is used for instance by CPGI (Hu
1998) and the GP algorithm proposed by (Otero et al. 2003). By default
this approach returns to the user a single constructed attribute – the best
evolved individual. However it can be extended to return to the user a set
of constructed attributes, say returning a set of the best evolved individuals
of a GP run or by running the GP multiple times and returning only the
best evolved individual of each run. The main advantage of this approach is
simplicity, but it has the disadvantage of ignoring interactions between the
constructed attributes.

An alternative approach consists of associating with an individual a set of
constructed attributes. The main advantage of this approach is that it takes
into account interaction between the constructed attributes. In other words,
it tries to construct the best set of attributes, rather than the set of best at-
tributes. The main disadvantages are that the individuals’ genomes become
more complex and that it introduces the need for additional parameters such
as the number of constructed attributes that should be encoded in one in-
dividual (a parameter that is usually specified in an ad-hoc fashion). In any
case, the equivalent of this latter parameter would also have to be specified in
the above-mentioned “extended version” of the single-attribute-per-individual
approach when one wants the GP algorithm to return multiple constructed
attributes.

A Review of Evolutionary Algorithms for Data Mining 97

Examples of this multiple-attributes-per-individual approach are the GP
algorithms proposed by (Krawiec 2002; Smith & Bull 2003; Firpi et al. 2005).
Here we briefly discuss the former two, as examples of this approach. In (Kraw-
iec 2002) each individual encodes a fixed number K of constructed attributes,
each of them represented by a tree, so that an individual consists of K trees –
where K is a user-specified parameter. The algorithm also includes a method
to split the constructed attributes encoded in an individual into two sub-
sets, namely the subset of “evolving” attributes and the subset of “hidden”
attributes. The basic idea is that high-quality constructed attributes are con-
sidered hidden (or “protected”), so that they cannot be manipulated by the
genetic operators such as crossover and mutation. The choice of attributes to
be hidden is based on an attribute quality measure. This measure evaluates
the quality of each constructed attribute separately, and the best attributes
of the individual are considered hidden.

Another example of the multiple-attributes-per-individual approach is the
GAP (Genetic Algorithm and Programming) system proposed by (Smith &
Bull 2003, 2004). GAP performs both attribute construction and attribute
selection. The first stage consists of attribute construction, which is performed
by a GP algorithm. As a result of this first stage, the system constructs an
extended genotype containing both the constructed attributes represented in
the best evolved individual of the GP run and original attributes that have
not been used in those constructed attributes. This extended genotype is used
as the basic representation for a GA that performs attribute selection, so that
the GA searches for the best subset of attributes out of all (both constructed
and original) attributes.

Satisfying the Closure Property

GP algorithms for attribute construction have used several different ap-
proaches to satisfy the closure property (briefly mentioned in Section 2). This
is an important issue, because the chosen approach can have a significant im-
pact on the types (e.g., continuous or nominal) of original attributes processed
by the algorithm and on the types of attributes constructed by the algorithm.
Let us see some examples.

A simple solution for the closure problem is used in the GAP algorithm
(Smith and Bull 2003). Its terminal set contains only the continuous (real-
valued) attributes of the data being mined. In addition, its function set con-
sists only of arithmetic operators (+, –, *, %,) – where % denotes protected
division, i.e. a division operator that handles zero denominator inputs by re-
turning something different from an error (Banzhaf et al. 1998; Koza 1992) –
so that the closure property is immediately satisfied. (Firpi et al. 2005) also
uses the approach of having a function set consisting only of mathematical
operators, but it uses a considerably larger set of mathematical operators than
the set used by (Smith and Bull 2003).

98 Alex A. Freitas

The GP algorithm proposed by (Krawiec 2002) uses a terminal set in-
cluding all original attributes (both continuous and nominal ones), and a
function set consisting of arithmetical operators (+, –, *, %, log), comparison
operators (<, >, =), an “IF (conditional expression)”, and an “approximate
equality operator” which compares its two arguments with tolerance given
by the third argument. The algorithm did not enforce data type constraints,
which means that expressions encoding the constructed attributes make no
distinction between, for instance, continuous and nominal attributes. Values
of nominal attributes, such as male and female, are treated as numbers. This
helps to solve the closure problem, but at a high price: constructed attributes
can contain expressions that make no sense from a semantical point of view.
For instance, the algorithm could produce an expression such as “Gender +
Age”, because the value of the nominal attribute Gender would be interpreted
as a number.

The GP proposed by (Otero et al. 2003) uses a terminal set including only
the continuous attributes of the data being mined. Its function set consists of
arithmetic operators (+, –, *, %,) and comparison operators (≥, ≤). In order
to satisfy the closure property, the algorithm enforces the data type restriction
that the comparison operators can be used only at the root of the GP tree, i.e.,
they cannot be used as child nodes of other nodes in the tree. The reason is that
comparison operators return a Boolean value, which cannot be processed by
any operator in the function set (all operators accept only continuous values as
input). Note that, although the algorithm can construct attributes only out of
the continuous original attributes, the constructed attributes themselves can
be either Boolean or continuous. A constructed attribute will be Boolean if
its corresponding tree in the GP individual has a comparison operator at the
root node; it will be continuous otherwise.

In order to satisfy the closure property, GPCI (Hu 1998) simply trans-
forms all the original attributes into Boolean attributes and uses a function
set containing only Boolean functions. For instance, if an attribute A is con-
tinuous (real-valued), such as the attribute Salary, it is transformed into two
Boolean attributes, such as “Is Salary > t?” and “Is Salary ≤ t?”, where t is
a threshold automatically chosen by the algorithm in order to maximize the
ability of the two new attributes in discriminating between instances of dif-
ferent classes. The two new attributes are named “positive-A” and “negative-
A”, respectively. Once every original attribute has been transformed into two
Boolean attributes, a GP algorithm is applied to the Boolean attributes. In
this GP, the terminal set consists of all the pairs of attributes “positive-A” and
“negative-A” for each original attribute A, whereas the function set consists of
the Boolean operators {AND, OR}. Since all terminal symbols are Boolean,
and all operators accept Boolean values as input and produce Boolean value
as output, the closure property is satisfied.

Table 2 summarizes the main characteristics of the five GP algorithms for
attribute construction discussed in this Section.

A Review of Evolutionary Algorithms for Data Mining 99

Table 2. Summary of GP Algorithms for Attribute Construction

Reference Approach Individual rep-
resentation

Datatype of
input attrib

Datatype of
output attrib

(Hu 1998) Data prepro-
cessing

Single
attribute

Any (attributes
are
booleanised)

Boolean

(Krawiec 2002) Interleaving Multiple
attributes

Any (nominal
attrib. values
are interpreted
as numbers)

Continuous

(Otero et
al. 2003)

Data prepro-
cessing

Single
attribute

Continuous Continuous or
Boolean

(Smith &
Bull 2003,
2004)

Interleaving Multiple
attributes

Continuous Continuous

(Firpi et al.
2005)

Interleaving Multiple
attributes

Continuous Continuous

6 Multi-Objective Optimization with Evolutionary
Algorithms

There are many real-world optimization problems that are naturally expressed
as the simultaneous optimization of two or more conflicting objectives (Coello
Coello 2002; Deb 2001; Coello Coello & Lamont 2004). A generic example is
to maximize the quality of a product and minimize its manufacturing cost in
a factory. In the context of data mining, a typical example is, in the data pre-
processing task of attribute selection, to minimize the error rate of a classifier
trained with the selected attributes and to minimize the number of selected
attributes.

The conventional approach to cope with such multi-objective optimiza-
tion problems using evolutionary algorithms is to convert the problem into a
single-optimization problem. This is typically done by using a weighted for-
mula in the fitness function, where each objective has an associated weight
reflecting its relative importance. For instance, in the above example of two-
objective attribute selection, the fitness function could be defined as, say: “2/3
classification error + 1/3 Number of selected attributes”.

However, this conventional approach has several problems. First, it mixes
non-commensurable objectives (classification error and number of selected
attributes in the previous example) into the same formula. This has at least the
disadvantage that the value returned by the fitness function is not meaningful
to the user. Second, note that different weights will lead to different selected
attributes, since different weights represent different trade-offs between the
two conflicting objectives. Unfortunately, the weights are usually defined in
an ad-hoc fashion. Hence, when the EA returns the best attribute subset to
the user, the user is presented with a solution that represents just one possible

100 Alex A. Freitas

trade-off between the objectives. The user misses the opportunity to analyze
different trade-offs.

Of course we could address this problem by running the EA multiple times,
with different weights for the objectives in each run, and return the multiple
solutions to the user. However, this would be very inefficient, and we would
still have the problems of deciding which weights should be used in each run,
how many runs we should perform (and so how many solutions should be
returned to the user), etc.

A more principled approach consists of letting an EA answer these ques-
tions automatically, by performing a global search in the solution space and
discovering as many good solutions, with as much diversity among them, as
possible. This can be done by using a multi-objective EA, a kind of EA which
has become quite popular in the EA community in the last few years (Deb
2001; Coello Coello 2002; Coello Coello & Lamont 2004). The basic idea in-
volves the concept of Pareto dominance. A solution s1 is said to dominate, in
the Pareto sense, another solution s2 if and only if solution s1 is strictly better
than s2 in at least one of the objectives and solution s1 is not worse than s2
in any of the objectives. The concept of Pareto dominance is illustrated in
Figure 4. This figure involves two objectives to be minimized, namely clas-
sification error and number of selected attributes (No attrib). In that figure,
solution D is dominated by solution B (which has both a smaller error and a
smaller number of selected attributes than D), and solution E is dominated by
solution C. Hence, solutions A, B and C are non-dominated solutions. They
constitute the best “Pareto front” found by the algorithm. All these three
solutions would be returned to the user.

The goal of a multi-objective EA is to find a Pareto front which is as
close as possible to the true (unknown) Pareto front. This involves not only
the minimization of the two objectives, but also finding a diverse set of non-
dominated solutions, spread along the Pareto front. This allows the EA to
return to the user a diverse set of good trade-offs between the conflicting
objectives. With this rich information, the user can hopefully make a more
intelligent decision, choosing the best solution to be used in practice.

At this point the reader might argue that this approach has the disad-
vantage that the final choice of the solution to be used depends on the user,
characterizing a subjective approach. The response to this is that the knowl-
edge discovery process is interactive (Brachman & Anand 1996; Fayyad et al.
1996), and the participation of the user in this process is important to obtain
useful results. The questions are when and how the user should participate
(Deb 2001; Freitas 2004). In the above-described multi-objective approach,
based on Pareto dominance, the user participates by choosing the best solu-
tion out of all the non-dominated solutions. This choice is made a posteriori,
i.e., after the algorithm has run and has returned a rich source of informa-
tion about the solution space: the discovered Pareto front. In the conventional
approach – using an EA with a weighted formula and returning a single so-
lution to the user – the user has to define the weights a priori, i.e., before

A Review of Evolutionary Algorithms for Data Mining 101

No_attrib

A

 D

B

 E

 C

 error

Fig. 4. Example of Pareto dominance

running the algorithm, when the solution space was not explored yet. The
multi-objective approach seems to put the user in the loop in a better mo-
ment, when valuable information about the solution space is available. The
multi-objective approach also avoids the problems of ad-hoc choice of weights,
mixing non-commensurable objectives into the same formula, etc.

Table 3 lists the main characteristics of multi-objective EAs for data min-
ing. Most systems included in Table 3 consider only two objectives. The excep-
tions are the works of (Kim et al. 2000) and (Atkinson-Abutridy et al. 2003),
considering 4 and 8 objectives, respectively. Out of the EAs considering only
two objectives, the most popular choice of objectives – particularly for EAs
addressing the classification task – has been some measure of classification ac-
curacy (or its dual, error) and a measure of the size of the classification model
(number of leaf nodes in a decision tree or total number of rule conditions –
attribute-value pairs – in all rules). Note that the size of a model is typically
used as a proxy for the concept of “simplicity” of that model, even though
arguably this proxy leaves a lot to be desired as a measure of a model’s sim-
plicity (Pazzani 2000; Freitas 2006). (In practice, however, it seems no better
proxy for a model’s simplicity is known.) Note also that, when the task being
solved is attribute selection for classification, the objective related to size can
be the number of selected attributes, as in (Emmanouilidis et al. 2000), or the
size of the classification model built from the set of selected attributes, as in
(Pappa et al. 2002, 2004). Finally, when solving the clustering task a popular
choice of objective has been some measure of intra-cluster distance, related to
the total distance between each data instance and the centroid of its cluster,
computed for all data instances in all the clusters. The number of clusters is
also used as an objective in two out of the three EAs for clustering included
in Table 3. A further discussion of multi-objective optimization in the context
of data mining in general (not focusing on EAs) is presented in (Freitas 2004;
Jin 2006).

102 Alex A. Freitas

Table 3. Main characteristics of multi-objective EAs for data mining

Reference Data mining task Objectives being
Optimized

(Emmanouilidis et al.
2000)

attribute selection
for classification

accuracy, number of
selected attributes

(Pappa et al 2002, 2004) attribute selection
for classification

accuracy, number of
leafs in decision tree

(Ishibuchi & Namba
2004)

selection of
classification rules

error, number of rule
conditions (in all rules)

(de la Iglesia 2007) selection of
classification rules

confidence, coverage

(Kim et al. 2004) classification error, number of leafs in
decision tree

(Atkinson-Abutridy et
al. 2003)

text mining 8 criteria for evaluating ex-
planatory knowledge across
text documents

(Kim et al. 2000) attribute selection
for clustering

Cluster cohesiveness,
separation between
clusters, number of
clusters, number of
selected attributes

(Handl & Knowles
2004)

clustering Intra-cluster deviation
and connectivity

(Korkmaz et al. 2006) clustering Intra-cluster variance
and number of clusters

7 Conclusions

This chapter started with the remark that EAs are a very generic search
paradigm. Indeed, the chapter discussed how EAs can be used to solve several
different data mining tasks, namely the discovery of classification rules, clus-
tering, attribute selection and attribute construction. The discussion focused
mainly on the issues of individual representation and fitness function for each
of these tasks, since these are the two EA-design issues that are more depen-
dent of the task being solved. In any case, recall that the design of an EA
also involves the issue of genetic operators. Ideally these three components –
individual representation, fitness function and genetic operators – should be
designed in a synergistic fashion and tailored to the data mining task being
solved.

There are at least two motivations for using EAs in data mining, broadly
speaking. First, as mentioned earlier, EAs are robust, adaptive search methods
that perform a global search in the solution space. This is in contrast to other
data mining paradigms that typically perform a greedy search. In the context
of data mining, the global search of EAs is associated with a better ability
to cope with attribute interactions. For instance, most “conventional”, non-

A Review of Evolutionary Algorithms for Data Mining 103

evolutionary rule induction algorithms are greedy, and therefore quite sensitive
to the problem of attribute interaction. EAs can use the same knowledge
representation (IF-THEN rules) as conventional rule induction algorithms,
but their global search tends to cope better with attribute interaction and
to discover interesting relationships that would be missed by a greedy search
(Dhar et al. 2000; Papagelis & Kalles 2001; Freitas 2002a).

Second, EAs are a very flexible algorithmic paradigm. In particular, bor-
rowing some terminology from programming languages, EAs have a certain
“declarative” – rather than “procedural” – style. The quality of an individual
(candidate solution) is evaluated, by a fitness function, in a way independent
of how that solution was constructed. This gives the data miner a considerable
freedom in the design of the individual representation, the fitness function and
the genetic operators. This flexibility can be used to incorporate background
knowledge into the EA and/or to hybridize EAs with local search methods
that are specifically tailored to the data mining task being solved.

Note that declarativeness is a matter of degree, rather than a binary con-
cept. In practice EAs are not 100% declarative, because as one changes the
fitness function one might consider changing the individual representation and
the genetic operators accordingly, in order to achieve the above-mentioned
synergistic relationship between these three components of the EA. However,
EAs still have a degree of declarativeness considerably higher than other data
mining paradigms. For instance, as discussed in Subsection 3.3, the fact that
EAs evaluate a complete (rather than partial) rule allows the fitness function
to consider several different rule-quality criteria, such as comprehensibility,
surprisingness and subjective interestingness to the user. In EAs these quality
criteria can be directly considered during the search for rules. By contrast, in
conventional, greedy rule induction algorithms – where the evaluation func-
tion typically evaluates a partial rule – those quality criteria would typically
have to be considered in a post-processing phase of the knowledge discovery
process, when it might be too late. After all, many rule set post-processing
methods just try to select the most interesting rules out of all discovered rules,
so that interesting rules that were missed by the rule induction method will
remain missing after applying the post-processing method.

Like any other data mining paradigm, EAs also have some disadvantages.
One of them is that conventional genetic operators – such as conventional
crossover and mutation operators – are ”blind” search operators in the sense
that they modify individuals (candidate solutions) in a way independent from
the individual’s fitness (quality). This characteristic of conventional genetic
operators increases the generality of EAs, but intuitively tends to reduce their
effectiveness in solving a specific kind of problem. Hence, in general it is im-
portant to modify or extend EAs to use task specific-operators.

Another disadvantage of EAs is that they are computationally slow, by
comparison with greedy search methods. The importance of this drawback
depends on many factors, such as the kind of task being performed, the size
of the data being mined, the requirements of the user, etc. Note that in some

104 Alex A. Freitas

cases a relatively long processing time might be acceptable. In particular,
several data mining tasks, such as classification, are typically an off-line task,
and the time spent solving that task is usually less than 20% of the total time
of the knowledge discovery process. In scenarios like this, even a processing
time of hours or days might be acceptable to the user, at least in the sense
that it is not the bottleneck of the knowledge discovery process.

In any case, if necessary the processing time of an EA can be significantly
reduced by using special techniques. One possibility is to use parallel pro-
cessing techniques, since EAs can be easily parallelized in an effective way
(Cantu-Paz 2000; Freitas & Lavington 1998; Freitas 2002a). Another possibil-
ity is to compute the fitness of individuals by using only a subset of training
instances – where that subset can be chosen either at random or using adap-
tive instance-selection techniques (Bhattacharyya 1998; Gathercole & Ross
1997; Sharpe & Glover 1999; Freitas 2002a).

An important research direction is to better exploit the power of Genetic
Programming (GP) in data mining. Several GP algorithms for attribute con-
struction were discussed in Subsection 5.2, and there are also several GP
algorithms for discovering classification rules (Freitas 2002a; Wong & Leung
2000) or for classification in general (Muni et al. 2004; Song et al. 2005; Folino
et al. 2006). However, the power of GP is still underexplored. Recall that the
GP paradigm was designed to automatically discover computer programs, or
algorithms, which should be generic “recipes” for solving a given kind of prob-
lem, and not to find the solution to one particular instance of that problem
(like in most EAs). For instance, classification is a kind of problem, and most
classification-rule induction algorithms are generic enough to be applied to
different data sets (each data set can be considered just an instance of the
kind of problem defined by the classification task). However, these generic rule
induction algorithms have been manually designed by a human being. Almost
all current GP algorithms for classification-rule induction are competing with
conventional (greedy, non-evolutionary) rule induction algorithms, in the sense
that both GP and conventional rule induction algorithms are discovering clas-
sification rules for a single data set at a time. Hence, the output of a GP for
classification-rule induction is a set of rules for a given data set, which can be
called a “program” or “algorithm” only in a very loose sense of these words.

A much more ambitious goal, which is more compatible with the general
goal of GP, is to use GP to automatically discover a rule induction algorithm.
That is, to perform algorithm induction, rather than rule induction. The first
version of a GP algorithm addressing this ambitious task has been proposed
in (Pappa & Freitas 2006), and an extended version of that work is described
in detail in another chapter of this book (Pappa & Freitas 2007).

A Review of Evolutionary Algorithms for Data Mining 105

References

Aldenderfer MS & Blashfield RK (1984) Cluster Analysis (Sage University Pa-
per Series on Quantitative Applications in the Social Sciences, No. 44) Sage
Publications.

Atkinson-Abutridy J, Mellishm C, and Aitken S (2003) A semantically guided and
domain-independent evolutionary model for knowledge discovery from texts.
IEEE Trans. Evolutionary Computation 7(6), 546-560.

Bacardit J, Goldberg DE, Butz MV, Llora X, Garrell JM (2004). Speeding-up Pitts-
burgh learning classifier systems: modeling time and accuracy. Proc. Parallel
Problem Solving From Nature (PPSN-2004), LNCS 3242, 1021-1031, Springer.

Bacardit J and Krasnogor N (2006) Smart crossover operator with multiple par-
ents for a Pittsburgh learning classifier system. Proc. Genetic & Evolutionary
Computation Conf. (GECCO-2006), 1441-1448. Morgan Kaufmann.

Backer E (1995) Computer-Assisted Reasoning in Cluster Analysis. Prentice-Hall.
Back T, Fogel DB and Michalewicz (Eds.) (2000) Evolutionary Computation 1:

Basic Algorithms and Operators. Institute of Physics Publishing.
Bala J, De Jong K, Huang J, Vafaie H and Wechsler H (1995) Hybrid learning

using genetic algorithms and decision trees for pattern classification. Proc. Int.
Joint Conf. on Artificial Intelligence (IJCAI-95), 719-724.

Bala J, De Jong K, Huang J, Vafaie H and Wechsler H (1996) Using learning to
facilitate the evolution of features for recognizing visual concepts. Evolutionary
Computation 4(3): 297-312.

Banzhaf W (2000) Interactive evolution. In: T. Back, D.B. Fogel and T.
Michalewicz (Eds.) Evolutionary Computation 1, 228-236. Institute of Physics
Pub.

Banzhaf W, Nordin P, Keller RE, and Francone FD (1998) Genetic Programming
∼ an Introduction: On the Automatic Evolution of Computer Programs and Its
Applications. Morgan Kaufmann.

Bhattacharrya S (1998) Direct marketing response models using genetic algorithms.
Proceedings of the 4th Int. Conf. on Knowledge Discovery and Data Mining
(KDD-98), 144-148. AAAI Press.

Brachman RJ and Anand T. (1996) The process of knowledge discovery in
databases: a human-centered approach. In: U.M. Fayyad et al (Eds.) Advances.
in Knowledge Discovery and Data Mining, 37-58. AAAI/MIT.

Bull L (Ed.) (2004) Applications of Learning Classifier Systems. Springer.
Bull L and Kovacs T (Eds.) (2005) Foundations of Learning Classifier Systems.

Springer.
Cantu-Paz E (2000) Efficient and Accurate Parallel Genetic Algorithms. Kluwer.
Caruana R and Niculescu-Mizil A (2004) Data mining in metric space: an empirical

analysis of supervised learning performance criteria. Proc. 2004 ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining (KDD-04), ACM.

Carvalho DR and Freitas AA (2004). A hybrid decision tree/genetic algorithm
method for data mining. Special issue on Soft Computing Data Mining, Infor-
mation Sciences 163(1-3), pp. 13-35. 14 June 2004.

Chen S, Guerra-Salcedo C and Smith SF (1999) Non-standard crossover for a
standard representation - commonality-based feature subset selection. Proc.
Genetic and Evolutionary Computation Conf. (GECCO-99), 129-134. Morgan
Kaufmann.

106 Alex A. Freitas

Cherkauer KJ and Shavlik JW (1996). Growing simpler decision trees to facilitate
knowledge discovery. Proc. 2nd Int. Conf. on Knowledge Discovery and Data
Mining (KDD-96), 315-318. AAAI Press.

Coello Coello CA, Van Veldhuizen DA and Lamont GB (2002) Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Kluwer.

Coello Coello CA and Lamont GB (Ed.) (2004) Applications of Multi-objective
Evolutionary Algorithms. World Scientific.

Deb K (2001) Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.
Deb K and Goldberg DE (1989). An investigation of niche and species formation in

genetic function optimization. Proc. 2nd Int. Conf. Genetic Algorithms (ICGA-
89), 42-49.

De Jong K (2006) Evolutionary Computation: a unified approach. MIT.
De la Iglesia B (2007) Application of multi-objective metaheuristic algorithms in

data mining. Proc. 3rd UK Knowledge Discovery and Data Mining Symposium
(UKKDD-2007), 39-44, University of Kent, UK, April 2007.

Dhar V, Chou D and Provost F (2000). Discovering interesting patterns for invest-
ment decision making with GLOWER – a genetic learner overlaid with entropy
reduction. Data Mining and Knowledge Discovery 4(4), 251-280.

Divina F (2005) Assessing the effectiveness of incorporating knowledge in an evolu-
tionary concept learner. Proc. EuroGP-2005 (European Conf. on Genetic Pro-
gramming), LNCS 3447, 13-24, Springer.

Divina F & Marchiori E (2002) Evolutionary Concept Learning. Proc. Genetic &
Evolutionary Computation Conf. (GECCO-2002), 343-350. Morgan Kaufmann.

Divina F & Marchiori E (2005) Handling continuous attributes in an evolutionary
inductive learner. IEEE Trans. Evolutionary Computation, 9(1), 31-43, Feb.
2005.

Eiben AE and Smith JE (2003) Introduction to Evolutionary Computing. Springer.
Emmanouilidis C, Hunter A and J. MacIntyre J (2000) A multiobjective evolu-

tionary setting for feature selection and a commonality-based crossover opera-
tor. Proc. 2000 Congress on Evolutionary Computation (CEC-2000), 309-316.
IEEE.

Emmanouilidis C (2002) Evolutionary multi-objective feature selection and ROC
analysis with application to industrial machinery fault diagnosis. In: K. Gi-
annakoglou et al. (Eds.) Evolutionary Methods for Design, Optimisation and
Control. Barcelona: CIMNE.

Estivill-Castro V and Murray AT (1997) Spatial clustering for data mining with ge-
netic algorithms. Tech. Report FIT-TR-97-10. Queensland University of Tech-
nology. Australia.

Falkenauer E (1998) Genetic Algorithms and Grouping Problems. John-Wiley &
Sons.

Fayyad UM, Piatetsky-Shapiro G and Smyth P (1996) From data mining to knowl-
edge discovery: an overview. In: U.M. Fayyad et al (Eds.) Advances in Knowl-
edge Discovery and Data Mining, 1-34. AAAI/MIT.

Firpi H, Goodman E, Echauz J (2005) On prediction of epileptic seizures by
computing multiple genetic programming artificial features. Proc. 2005 Eu-
ropean Conf. on Genetic Programming (EuroGP-2005), LNCS 3447, 321-330.
Springer.

Folino G, Pizzuti C and Spezzano G (2006) GP ensembles for large-scale data clas-
sification. IEEE Trans. Evolutionary Computation 10(5), 604-616, Oct. 2006.

A Review of Evolutionary Algorithms for Data Mining 107

Freitas AA and. Lavington SH (1998) Mining Very Large Databases with Parallel
Processing. Kluwer.

Freitas AA (2001) Understanding the crucial role of attribute interaction in data
mining. Artificial Intelligence Review 16(3), 177-199.

Freitas AA (2002a) Data Mining and Knowledge Discovery with Evolutionary Al-
gorithms. Springer.

Freitas AA (2002b) A survey of evolutionary algorithms for data mining and knowl-
edge discovery. In: A. Ghosh and S. Tsutsui. (Eds.) Advances in Evolutionary
Computation, pp. 819-845. Springer-Verlag.

Freitas AA (2002c). Evolutionary Computation. In: W. Klosgen and J. Zytkow
(Eds.) Handbook of Data Mining and Knowledge Discovery, pp. 698-706.Oxford
Univ. Press.

Freitas AA (2004) A critical review of multi-objective optimization in data mining:
a position paper. ACM SIGKDD Explorations, 6(2), 77-86, Dec. 2004.

Freitas AA (2005) Evolutionary Algorithms for Data Mining. In: O. Maimon and
L. Rokach (Eds.) The Data Mining and Knowledge Discovery Handbook, pp.
435-467. Springer.

Freitas AA (2006) Are we really discovering ”interesting” knowledge from data?
Expert Update, Vol. 9, No. 1, 41-47, Autumn 2006.

Furnkranz J and Flach PA (2003). An analysis of rule evaluation metrics. Proc.20th
Int. Conf. Machine Learning (ICML-2003). Morgan Kaufmann.

Gathercole C and Ross P (1997) Tackling the Boolean even N parity problem with
genetic programming and limited-error fitness. Genetic Programming 1997:
Proc. 2nd Conf. (GP-97), 119-127. Morgan Kaufmann.

Ghozeil A and Fogel DB (1996) Discovering patterns in spatial data using evolu-
tionary programming. Genetic Programming 1996: Proceedings of the 1st An-
nual Conf., 521-527. MIT Press.

Giordana A, Saitta L, Zini F (2004) Learning disjunctive concepts by means of
genetic algorithms. Proc. 10th Int. Conf. Machine Learning (ML-94), 96-104.
Morgan Kaufmann.

Goldberg DE (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley.

Goldberg DE and Richardson J (1987) Genetic algorithms with sharing for multi-
modal function optimization. Proc. Int. Conf. Genetic Algorithms (ICGA-87),
41-49.

Guerra-Salcedo C and Whitley D (1998) Genetic search for feature subset selection:
a comparison between CHC and GENESIS. Genetic Programming 1998: Proc.
3rd Annual Conf., 504-509. Morgan Kaufmann.

Guerra-Salcedo C, Chen S, Whitley D, and Smith S (1999) Fast and accurate fea-
ture selection using hybrid genetic strategies. Proc. Congress on Evolutionary
Computation (CEC-99), 177-184. IEEE.

Guyon I and Elisseeff A (2003) An introduction to variable and feature selection.
Journal of Machine Learning Research 3, 1157-1182.

Hall LO, Ozyurt IB, Bezdek JC (1999) Clustering with a genetically optimized
approach. IEEE Trans. on Evolutionary Computation 3(2), 103-112.

Hand DJ (1997) Construction and Assessment of Classification Rules. Wiley.
Handl J and Knowles J (2004) Evolutionary multiobjective clustering. Proc. Par-

allel Problem Solving From Nature (PPSN-2004), LNCS 3242, 1081-1091,
Springer.

108 Alex A. Freitas

Hekanaho J (1995) Symbiosis in multimodal concept learning. Proc. 1995 Int. Conf.
on Machine Learning (ML-95), 278-285. Morgan Kaufmann.

Hekanaho J (1996) Testing different sharing methods in concept learning. TUCS
Technical Report No. 71. Turku Centre for Computer Science, Finland.

Hirsch L, Saeedi M and Hirsch R (2005) Evolving rules for document classification.
Proc. 2005 European Conf. on Genetic Programming (EuroGP-2005), LNCS
3447, 85-95, Springer.

Hu YJ (1998). A genetic programming approach to constructive induction. Genetic
Programming 1998: Proc. 3rd Annual Conf., 146-151. Morgan Kaufmann.

Ishibuchi H and Nakashima T (2000) Multi-objective pattern and feature selec-
tion by a genetic algorithm. Proc. 2000 Genetic and Evolutionary Computation
Conf. (GECCO-2000), 1069-1076. Morgan Kaufmann.

Ishibuchi H and Namba S (2004) Evolutionary multiobjective knowledge extraction
for high-dimensional pattern classification problems. Proc. Parallel Problem
Solving From Nature (PPSN-2004), LNCS 3242, 1123-1132, Springer.

Jiao L, Liu J and Zhong W (2006) An organizational coevolutionary algorithm for
classification. IEEE Trans. Evolutionary Computation, Vol. 10, No. 1, 67-80,
Feb. 2006.

Jin, Y (Ed.) (2006) Multi-Objective Machine Learning. Springer.
Jong K, Marchiori E and Sebag M (2004) Ensemble learning with evolutionary

computation: application to feature ranking. Proc. Parallel Problem Solving
from Nature VIII (PPSN-2004), LNCS 3242, 1133-1142. Springer, 2004.

Jourdan L, Dhaenens-Flipo C and Talbi EG (2003) Discovery of genetic and en-
vironmental interactions in disease data using evolutionary computation. In:
G.B. Fogel and D.W. Corne (Eds.) Evolutionary Computation in Bioinformat-
ics, 297-316. Morgan Kaufmann.

Kim Y, Street WN and Menczer F (2000) Feature selection in unsupervised learning
via evolutionary search. Proc. 6th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD-2000), 365-369. ACM.

Kim D (2004). Structural risk minimization on decision trees: using an evolution-
ary multiobjective algorithm. Proc. 2004 European Conference on Genetic Pro-
gramming (EuroGP-2004), LNCS 3003, 338-348, Springer.

Korkmaz EE, Du J, Alhajj R and Barker (2006) Combining advantages of new
chromosome representation scheme and multi-objective genetic algorithms for
better clustering. Intelligent Data Analysis 10 (2006),163-182.

Koza JR (1992) Genetic Programming: on the programming g of computers by
means of natural selection. MIT Press.

Krawiec K (2002) Genetic programming-based construction of features for machine
learning and knowledge discovery tasks. Genetic Programming and Evolvable
Machines 3(4), 329-344.

Krsihma K and Murty MN (1999) Genetic k-means algorithm. IEEE Transactions
on Systems, Man and Cyberneics - Part B: Cybernetics, 29(3), 433-439.

Krzanowski WJ and Marriot FHC (1995) Kendall’s Library of Statistics 2: Mul-
tivariate Analysis - Part 2. Chapter 10 - Cluster Analysis, pp. 61-94.London:
Arnold.

Kudo M and Sklansky J (2000) Comparison of algorithms that select features for
pattern classifiers. Pattern Recognition 33(2000), 25-41.

Liu JJ and Kwok JTY (2000) An extended genetic rule induction algorithm. Proc.
2000 Congress on Evolutionary Computation (CEC-2000). IEEE.

A Review of Evolutionary Algorithms for Data Mining 109

Liu H and Motoda H (1998) Feature Selection for Knowledge Discovery and Data
Mining. Kluwer.

Liu B, Hsu W and Chen S (1997) Using general impressions to analyze discovered
classification rules. Proc. 3rd Int. Conf. on Knowledge Discovery and Data
Mining (KDD-97), 31-36. AAAI Press.

Llora X and Garrell J (2003) Prototype induction and attribute selection via evo-
lutionary algorithms. Intelligent Data Analysis 7, 193-208.

Miller MT, Jerebko AK, Malley JD, Summers RM (2003) Feature selection for
computer-aided polyp detection using genetic algorithms. Medical Imaging
2003: Physiology and Function: methods, systems and applications. Proc. SPIE
Vol. 5031.

Moser A and Murty MN (2000) On the scalability of genetic algorithms to very
large-scale feature selection. Proc. Real-World Applications of Evolutionary
Computing (EvoWorkshops 2000). LNCS 1803, 77-86. Springer.

Muharram MA and Smith GD (2004) Evolutionary feature construction using
information gain and gene index. Genetic Programming: Proc. 7th European
Conf. (EuroGP-2003), LNCS 3003, 379-388. Springer.

Muni DP, Pal NR and Das J (2004) A novel approach to design classifiers using
genetic programming. IEEE Trans. Evolutionary Computation 8(2), 183-196,
April 2004.

Neri F and Giordana A (1995) Search-intensive concept induction. Evolutionary
Computation 3(4), 375-416.

Ni B and Liu J (2004) A novel method of searching the microarray data for the
best gene subsets by using a genetic algorithms. Proc. Parallel Problem Solving
From Nature (PPSN-2004), LNCS 3242, 1153-1162, Springer.

Otero FB, Silva MMS, Freitas AA and Nievola JC (2003) Genetic programming for
attribute construction in data mining. Genetic Programming: Proc. EuroGP-
2003, LNCS 2610, 384-393. Springer.

Papagelis A and Kalles D (2001) Breeding decision trees using evolutionary tech-
niques. Proc. 18th Int. Conf. Machine Learning (ICML-2001), 393-400. Morgan
Kaufmann.

Pappa GL and Freitas AA (2006) Automatically evolving rule induction algorithms.
Machine Learning: ECML 2006 – Proc. of the 17th European Conf. on Machine
Learning, LNAI 4212, 341-352. Springer.

Pappa GL and Freitas AA (2007) Discovering new rule induction algorithms with
grammar-based genetic programming. Maimon O and Rokach L (Eds.) Soft
Computing for Knowledge Discovery and Data Mining. Springer.

Pappa GL, Freitas AA and Kaestner CAA (2002) A multiobjective genetic algo-
rithm for attribute selection. Proc. 4th Int. Conf. On Recent Advances in Soft
Computing (RASC-2002), 116-121. Nottingham Trent University, UK.

Pappa GL, Freitas AA and Kaestner CAA (2004) Multi-Objective Algorithms for
Attribute Selection in Data Mining. In: Coello Coello CA and Lamont GB
(Ed.) Applications of Multi-objective Evolutionary Algorithms, 603-626. World
Scientific.

Pazzani MJ (2000) Knowledge discovery from data, IEEE Intelligent Systems, 10-
13, Mar./Apr. 2000.

Quinlan JR. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann.
Romao W, Freitas AA and Pacheco RCS (2002) A Genetic Algorithm for Discover-

ing Interesting Fuzzy Prediction Rules: applications to science and technology

110 Alex A. Freitas

data. Proc. Genetic and Evolutionary Computation Conf. (GECCO-2002), pp.
1188-1195. Morgan Kaufmann.

Romao W, Freitas AA, Gimenes IMS (2004) Discovering interesting knowledge
from a science and technology database with a genetic algorithm. Applied Soft
Computing 4(2), pp. 121-137.

Rozsypal A and Kubat M (2003) Selecting representative examples and attributes
by a genetic algorithm. Intelligent Data Analysis 7, 290-304.

Sarafis I (2005) Data mining clustering of high dimensional databases with evolu-
tionary algorithms. PhD Thesis, School of Mathematical and Computer Sci-
ences, Heriot-Watt University, Edinburgh, UK.

Sharpe PK and Glover RP (1999) Efficient GA based techniques for classification.
Applied Intelligence 11, 277-284.

Smith RE (2000) Learning classifier systems. In: T. Back, D.B. Fogel and T.
Michalewicz (Eds.) Evolutionary Computation 1: Basic Algorithms and Op-
erators, 114-123. Institute of Physics Publishing.

Smith MG and Bull L (2003) Feature construction and selection using genetic
programming and a genetic algorithm. Genetic Programming: Proc. EuroGP-
2003, LNCS 2610, 229-237. Springer.

Smith MG and Bull L (2004) Using genetic programming for feature creation with a
genetic algorithm feature selector. Proc. Parallel Problem Solving From Nature
(PPSN-2004), LNCS 3242, 1163-1171, Springer.

Song D, Heywood MI and Zincir-Heywood AN (2005) Training genetic program-
ming on half a million patterns: an example from anomaly detection. IEEE
Trans. Evolutionary Computation 9(3), 225-239, June 2005.

Srikanth R, George R, Warsi N, Prabhu D, Petry FE, Buckles B (1995) A variable-
length genetic algorithm for clustering and classification. Pattern Recognition
Letters 16(8), 789-800.

Tan PN, Steinbach M and Kumar V (2006) Introduction to Data Mining. Addison-
Wesley.

Terano T and Ishino Y (1998) Interactive genetic algorithm based feature selection
and its application to marketing data analysis. In: Liu H and Motoda H (Eds.)
Feature Extraction, Construction and Selection: a data mining perspective, 393-
406. Kluwer.

Terano T and Inada M (2002) Data mining from clinical data using interactive
evolutionary computation. In: A. Ghosh and S. Tsutsui (Eds.) Advances in
Evolutionary Computing: theory and applications, 847-861. Springer.

Vafaie H and De Jong K (1998) Evolutionary Feature Space Transformation. In:
H. Liu and H. Motoda (Eds.) Feature Extraction, Construction and Selection,
307-323. Kluwer.

Witten IH and Frank E (2005) Data Mining: practical machine learning tools and
techniques . 2nd Ed. Morgan Kaufmann.

Wong ML and Leung KS (2000) Data Mining Using Grammar Based Genetic
Programming and Applications. Kluwer.

Yang J and Honavar V (1997) Feature subset selection using a genetic algorithm.
Genetic Programming 1997: Proc. 2nd Annual Conf. (GP-97), 380-385. Morgan
Kaufmann.

Yang J and Honavar V (1998) Feature subset selection using a genetic algorithm. In:
Liu, H. and Motoda, H (Eds.) Feature Extraction, Construction and Selection,
117-136. Kluwer.

A Review of Evolutionary Algorithms for Data Mining 111

Zhang P, Verma B, Kumar K (2003) Neural vs. Statistical classifier in conjunc-
tion with genetic algorithm feature selection in digital mammography. Proc.
Congress on Evolutionary Computation (CEC-2003). IEEE Press.

Zhou C, Xiao W, Tirpak TM and Nelson PC (2003) Evolving accurate and com-
pact classification rules with gene expression programming. IEEE Trans. on
Evolutionary Computation 7(6), 519-531.

Genetic Clustering for Data Mining

Murilo Coelho Naldi1

André Carlos Ponce de Leon Ferreira de Carvalho1

Ricardo José Gabrielli Barreto Campello1

Eduardo Raul Hruschka2

Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo
murilocn@icmc.usp.br, andre@icmc.usp.br, campello@icmc.usp.br,
eduardo.hruschka@pesquisador.cnpq.br

Summary. Genetic Algorithms (GAs) have been successfully applied to several
complex data analysis problems in a wide range of domains, such as image pro-
cessing, bioinformatics, and crude oil analysis. The need for organizing data into
categories of similar objects has made the task of clustering increasingly impor-
tant to those domains. In this chapter, the authors present a survey of the use of
GAs for clustering applications. A variety of encoding (chromosome representation)
approaches, fitness functions, and genetic operators are described, all of them cus-
tomized to solve problems in such an application context.

1 Introduction

Clustering is one of the main tasks in Machine Learning, being usually employed
when none or little information on the dataset is available. Intuitively, clustering is
based on an inductive principle where objects within a cluster are more similar to
each other then objects belonging to different clusters. This inductive principle is
regarded as the objective function of clustering algorithms. The association of this
objective function with a dataset creates an optimization problem (Jain et al., 1999),
whose goal depends on the validation employed. The partitions obtained by a clus-
tering algorithm depend on the validation function adopted and the values assigned
to the algorithm free-parameters. For some algorithms, the order of presentation of
the examples can also affect the partitions produced.

The values for the free parameters are usually defined by trial and error, which
may be computationally prohibitive. Finding an optimal or near optimal solution
to the problem of partitioning n objects into k clusters has been shown to be NP-
complete (Kaufman and Rousseeuw, 1990). Therefore, more sophisticated search
techniques are necessary in order to be able to find a suitable set of values for the
free parameters in a reasonable processing time.

Genetic Algorithms (GAs) are population-based search techniques that combine
features of selected solutions in order to evolve them towards a global optimum.

114 Naldi et al.

GAs have been successfully used in many different tasks, including clustering. This
survey will be organized in a framework describing the alternatives followed by dif-
ferent authors for each aspect of this application. For the application of GAs to a
clustering problem, it is necessary to determine the representation of the possible
solutions, how these solutions will be evaluated (the fitness function), the genetic
operators employed to manipulate these solutions and the values of the free param-
eters (population size and application rate of the genetic operators). These subjects
will be discussed in sections 2, 4 and 5, respectively.

1.1 A Brief Look at Genetic Algorithms

GAs are search and optimization methods inspired by the process of evolution of
biological organisms. According to Charles Darwin in The Origin of Species (Darwin,
2006), organisms evolve by principles of natural selection and survival of the fittest
organisms. John Holland’s group from the University of Michigan introduced GAs
in the middle of 1976 (Holland, 1975). However, its full use only started almost ten
years later (Goldberg, 1989).

In a few words, a GA uses a population of individuals to solve a given problem.
Each individual of the population corresponds to a possible solution for the problem.
A reproduction based mechanism is applied to the current population, generating a
new population. The population usually evolves through several generations until a
suitable solution is reached.

According to (Goldberg, 1989), GAs differ from traditional methods of search
and optimization mainly in four aspects:

• they can work with a code of the set of parameters and not necessarily with the
own parameters;

• they work with several possible solutions and not with a single solution point;
• they use cost information or reward functions and not derivative or other auxil-

iary knowledge;
• they use probabilistic rules of transition instead of deterministic rules.

GAs start generating an initial population formed by a random group of indi-
viduals, which can be seen as first guesses to solve the problem. Supposing that a
solution of a problem can be represented by a set of parameters, such parameters are
coded into an individual by using a data structure called chromosome (in general
a vector or a bit string). The chromosome is composed by a string of genes, where
each gene is a coded parameter. The codification of parameters is defined by the
programmer.

The initial population is evaluated and, for each individual, a score (named
fitness) is given, reflecting the quality of the solution associated to it. In function
optimization problems, the fitness is usually equal to the (raw or scaled) value of
the objective function of the problem.

By mimicking the “natural selection”, a GA probabilistically selects the best
individuals whereas the worst are discarded. The selected individuals can be modified
by genetic operators such as crossover and mutation, generating descendants for the
next generation. This process is named reproduction. The evolutionary procedure is
repeated until the population converges to a unique solution that is likely to be an
optimal solution. Figure 1 presents a general diagram of a GA life cycle.

Genetic Clustering for Data Mining 115

Fig. 1. Genetic Algorithm cycle.

GAs operate on a population of candidates in parallel. Thus, they can simul-
taneously search different regions of the solutions space. While selection drives the
population into the direction of better solutions, crossover and mutation explore
new solutions (i.e. new areas of the search space).

Different methods have been proposed to select individuals from a population.
The most commonly used method is the roulette wheel sampling. In this method,
each individual from the population occupies an area of the roulette wheel propor-
tional to its fitness value. If P individuals are to be selected, the roulette wheel
randomly spins P times. For each run, the individual pointed by the roulette wheel
is selected. As a result, fitter individuals have higher chances of being selected.

Although largely used, the roulette wheel method does not work with nega-
tive fitness values and the expected number of children from a same parent suffers
high variance. This problem can be overcome by the Stochastic Universal Sampling
(SUS) (Baker, 1987), which ensures a selection of offspring which is closer to what
is deserved than roulette wheel selection. The individuals are mapped to contiguous
segments, such that each individual’s segment is equal in size to its fitness exactly as
in roulette-wheel selection. Equally spaced pointers are placed over the segments as
many as there are individuals to be selected. Consider P the number of individuals
to be selected, then the distance between the pointers are 1/P and the position of
the first pointer is given by a randomly generated number in the range [0, 1/P], the
position of the second pointer is given by a randomly generated number in the range
[1/P, 2/P] and so on. SUS samples individuals by spinning the roulette P times for
each equally-spaced pointers, instead of spinning randomly for all the segments as
occurs in the roulette wheel method.

Other alternative is tournament selection (Mitchell, 1999), in which T (usually,
T = 2) chromosomes are randomly selected from the population, with the same

116 Naldi et al.

probability. These chromosomes compete against each other and the chromosome
with the highest fitness value is selected.

The crossover operation exchanges parts of a pair of chromosomes, creating
new chromosomes called children or offspring (If crossover does not succeed in the
probability test, then the children will be identical copies of their parents). Figure
2 illustrates a crossover operation.

Fig. 2. Crossover operation.

In Figure 2, a cut point is randomly chosen and two chromosomes, A and B, con-
tribute with a subset of their genes for the creation of the offspring C and D. There
are several variations of crossover operators, such as the two cut point crossover and
the uniform crossover. When the two point crossover is used, the segments between
the two randomly chosen cut points are exchanged between the two parents (Gold-
berg, 1989,Mitchell, 1999), as can be seen in Figure 3.

Fig. 3. Two point crossover operation.

For the uniform crossover, a mask is used to define from which parent each
offspring inherits each of its genes (Goldberg, 1989,Mitchell, 1999).

The mutation operator aims to increase the variability of the population, al-
lowing the GA to simultaneously search different areas of the solution space. This
operator changes at random the value of a chromosome gene, also randomly cho-
sen with a given probability (named mutation rate). Figure 4 shows a mutation
operation that changes the value of the forth gene from 0 to 1.

After the creation of the children, the new population is obtained by replacing
the original parents by their children. The usual approach involves replacing all
parents. This approach is called generational replacement, which combined with
elitism gives better results (Goldberg, 1989). An elitist policy means never replacing

Genetic Clustering for Data Mining 117

Fig. 4. Mutation operation.

the best parent, or set of parents, by any children worse (e.g. with lower aptitude)
than them (Mitchell, 1999).

It’s worth noting that the raw fitness (i.e. the fitness obtained directly from the
objective function or cost function) may cause problems in most real world problems.
Such as, for instance, premature convergence and low resolution of selection in later
stages of evolution (when many individuals have high fitness values). Scaling and
ranking adjust raw fitness more gently. Scaling adjusts the raw fitness using a linear
function a + bḟraw, where a and b are constants. Ranking sorts chromosomes best-
to-worst fashion and assign fitness by interpolating the best (rank = 1) individual
to the worst (rank = P) according to some function, usually linear or exponential.
The ranked fitness of the ith individual using a linear function is given by:

min + (max−min)
P − rank(i)

P − 1
(1)

This ranking requires 1 ≤ max ≤ 2 and min + max = 2.

2 Representation

Clustering algorithms can be divided into two main categories: partitional and hi-
erarchical. Partitional clustering algorithms identify the partition that optimizes a
given clustering criterion (Jain et al., 1999). Hierarchical clustering algorithms pro-
duce a nested series of partitions based on a criterion for either merging (agglom-
erative algorithms) or splitting (divisive algorithms) clusters based on a similarity
measure. Hierarchical clusters may be represented by a dendrogram, showing the
nested grouping of objects and similarity levels at which groupings change (Jain
et al., 1999). An example of a partition (a) and a dendrogram (b) for the objects
A, B, C, D, E, F, G, is shown in Figure 5.

When applied to partitional clustering problems, some GAs can search for the
number of clusters that best fits the dataset structure. As described in Section
1.1, each possible solution is represented in a GA by a vector (chromosome) of
numeric values (genes). Different representations have been proposed for clustering
using GAs (Cole, 1998). The most frequently used representations for partitional
algorithms are:

• Group-Number: It is an encoding scheme in which a chromosome is an integer
vector of n positions, where n is the number of dataset objects or objects. Each
position corresponds to an object, i.e., the ith position (gene) represents the

118 Naldi et al.

Fig. 5. Main cluster types: (a) partitional and (b) hierarchical.

ith dataset object. Provided that a genotype represents a partition formed by
k clusters, each gene has a value from the alphabet 1,2,3,...,k. These values
define the cluster labels (Krovi, 1992, Murthy and Chowdhury, 1996, Cowgill
et al., 1998). The same encoding scheme is used in (Hruschka and Ebecken,
2003,Hruschka et al., 2004), but the authors additionally propose to store the
number of clusters k in the genotype.

• Binary Matrix: In this case, the chromosome is represented by a k×n matrix of
binary values, where k is the number of clusters and n is the number of objects in
the dataset. If the value of the matrix position P (C, x) is 1, the object x belongs
to cluster C. Otherwise, it does not belong to this cluster (Bezdek et al., 1994).

• Centroids and Medoids: The chromosomes are made up of real numbers that
represent the coordinates of the cluster centers (Scheunders, 1997,Fränti et al.,
1997, Maulik and Bandyopadhyay, 2000, Merz and Zell, 2002, Kivijärvi et al.,
2003). If a genotype i encodes k clusters in a d dimensional space, its length is
d × k. Lucasius et al. (Lucasius et al., 1993) proposed a related representation,
which is based on the position of k selected objects (named medoids) from the
dataset. Given the set of these medoids, k clusters are formed by assigning the
remaining (n−k) objects to the nearest medoid. Thus, each partition is encoded
with a string of k different integers from 1, ..., n. These integers correspond to
the objects according to the order they appear in the dataset. The same rep-
resentation scheme is adopted in (Estivill-Castro, 1997,Hall et al., 1999, Sheng
and Liu, 2004)

• Labels: Ma et al. (Ma et al., 2006) proposed an evolutionary algorithm for
clustering, named EvoCluster, which encodes a partition in such a way that each
gene represents one cluster and contains the labels of the objects grouped into it.
Thus, a genotype encoding k clusters (C1, C2, ..., Ck) of a dataset with n objects
is formed by k genes, each of which stores li labels (l1 + l2 + ... + lk = n). The
they claim that this encoding scheme is an advantageous alternative over other
different schemes. In particular, they argue that the group-number encoding,
where each object is encoded as a gene and given a label from 1 to k, is not very
scalable since the length of each genotype is exactly the number of objects of the
training set. Although this assertion is persuasive at a first glance, it is worth
noticing that the amount of information that must be stored (and handled)
in both encoding schemes previously described is essentially the same, that is,

Genetic Clustering for Data Mining 119

n object labels (EvoCluster’s encoding) or n cluster labels (Group-Number).
Therefore, the scalability of EvoCluster in terms of memory requirement does
not benefit from its encoding scheme. Actually, the encoding scheme does not
seem to be a crucial aspect regarding the practical usefulness of an algorithm
when handling large data sets. In the end, the data set itself must be handled
somehow (e.g. using efficient data structures for external memory management)
and its dimensionality is necessarily larger than that of any encoding scheme.

Figure 6 presents the chromosome for the clusters {{A, C, F}, {B, D, E}}, using
each of the representations described. The clusters are labeled 1 and 2 and the
instances are labeled in the range between A and E. In Figure 6, the chromosome
(c) represents two centroids, z1 and z2, and their respective hypothetical attribute
values from a1 to ad.

Fig. 6. Examples of (a)Group-Number, (b)Binary Matrix, (c)Centroids and (d)
using labels.

In hierarchical clustering, the hierarchy, represented by the dendrogram, can be
broken at different levels to yield different clustering partitions of the dataset. Thus,
a hierarchical cluster can be represented by a set of partitions with its respective
representation. Figure 7 shows two possible representations for the dendrogram in
Figure 5: a set of partitions, represented by Group-Number, and an object oriented
approach representation proposed by Greene (Greene, 2003). In the first representa-
tion (a), each line is associated with one possible level of partition and each column
with a object. The second representation (b) indicates the clusters of the dendrogram
as nodes in a graph. The cluster associated with each node contains the children
clusters and belongs to the cluster represented by its parent node. This relationship
is represented by the edges of the graph.

120 Naldi et al.

Fig. 7. Hierarchical representations using a set of partitions (a) and object orien-
tation (b).

Another representation, named Cluster Description-Based Representation, was
proposed by Freitas (Freitas, 2005). In this representation, each chromosome specifies
a set of parameters that precisely specify each cluster. These parameters are related
with the shape of the clusters produced.

Most representations show some form of redundancy, as different chromosomes
may represent the same partition. Unfeasible solutions can be eliminated or remu-
nerated by pos-processing (Belew and Booker, 1991). Korkmaz et al. (Korkmaz et
al., 2006) propose to avoid redundancy by using an encoding scheme in which each
gene is a link from an object to another object of the same cluster.

3 Initialization

Many authors build the initial population of the genetic algorithm from random as-
signments of objects to clusters (Krovi, 1992,Murthy and Chowdhury, 1996,Cowgill
et al., 1998,Hruschka and Ebecken, 2003,Hruschka et al., 2004,Ma et al., 2006). Lu-
casius et al. (Lucasius et al., 1993) suggest to randomly selecting a subset of objects
to be the medoids of the initial population when prior knowledge is not available.
Similarly, in (Kuncheva and Bezdek, 1997,Estivill-Castro, 1997,Maulik and Bandy-
opadhyay, 2000,Merz and Zell, 2002,Sheng and Liu, 2004) an initialization scheme is
adopted that randomly chooses dataset objects to be initial prototypes of the clus-
ters. The initial centers of the clusters can also be randomly generated (Scheunders,
1997,Fränti et al., 1997,Kivijärvi et al., 2003).

In Tseng and Yang (Tseng and Yang, 2001), the population of strings is ran-
domly generated. The number of 1′s in the binary strings is uniformly distributed
within [1, k], where k is the number of clusters initially generated. Some authors use
heuristics to find good initial partitions and avoid invalid clusters (Bezdek et al.,
1994).

4 Fitness Function

A fitness function must be defined for the evaluation of the chromosomes. This
function is based on the objective function used by traditional clustering algorithms.

Genetic Clustering for Data Mining 121

Since the objective function has to be rescaled, the fitness function is very often a
composition of the objective function and a scaling function (Grefenstette, 2000).

One of the most commonly used fitness function consists on minimizing the
sum of squared Euclidean distances of the objects to their respective cluster mean
(centroids) (Murthy and Chowdhury, 1996,Maulik and Bandyopadhyay, 2000,Merz
and Zell, 2002). This fitness function f(C1, C2, ..., Ck) can be formally described by:

f(C1, C2, ..., Ck) =

k∑
j=1

∑
x∈Cj

||x− zj ||2 (2)

where (C1, C2, ..., Ck) is the set of k clusters encoded by the genotype, x is a dataset
object, and zj is the mean vector (centroid) of cluster Cj . Similarly, the fitness
functions used in the genetic algorithms described in (Fränti et al., 1997,Kivijärvi et
al., 2003) aim to minimize the distortion in the clusters. The minimization of such
distortion is equivalent to minimize f(C1, C2, ..., Ck) defined in Equation (2). More
precisely, the distortion dst is a measure of the intra-cluster diversity, which can be
defined as:

dst =
f(C1, C2, ..., Ck)

n×m
(3)

where n and m are the numbers of objects and attributes, respectively. Adopting
f(C1, C2, ..., Ck) defined in Equation (2) and assuming a dataset formed by n objects,
the fitness function employed in (Scheunders, 1997) can be written as:

fm(C1, C2, ..., Ck) =
n

f(C1, C2, ..., Ck)
(4)

Similar to what is carried out with centroids, the minimization of the distances
of the k medoids to all the corresponding objects of the same cluster was proposed
also in (Lucasius et al., 1993). Functions presented above are monotonic with the
number of cluster and does not optimize it.

Alternative validation criteria have also been used as fitness functions. The val-
idation criteria are in general statistical indexes employed to evaluate the quality of
a given partition. Three different approaches can be followed internal, external and
relative:

• Internal criteria: measure the quality of a partition using only the original
dataset. They measure how well the clusters obtained represent the similari-
ties present in the dataset. A fitness function based on Euclidian distance is an
example of internal criterion.

• External criteria: these criteria evaluate the partitions according to a predefined
structure, based on what is known about the dataset. This predefined structure
can be either a known partition for the dataset or a partition defined a specialist
in the data domain.

• Relative criteria: They are employed to compare two or more clustering tech-
niques regarding a particular aspect. They can be used, for example, to compare
different clustering algorithms or runs of the same algorithm with different pa-
rameter values.

In principle, any relative clustering validity criterion (Jain and Dubes, 1988,Mil-
ligan and Cooper, 1985,Halkidi et al., 2001) that is not monotonic with the number

122 Naldi et al.

of clusters can be potentially used as a fitness function for a genetic algorithm
designed to optimize the number of clusters. These criteria have been extensively
studied, and some of them have shown good results for several applications. This
fact has motivated their use as fitness functions, as it will be seen in this survey.
However, it is worth mentioning that the particular features of a given relative valid-
ity criterion can make its performance problem dependent (Pal and Bezdek, 1995).
The following criteria can optimize the final partition’s cluster number.

Variation Ratio Criteria (VRC) (Calinski and Harabasz, 1974) and Silhou-
ette (Rousseeuw, 1987) are two popular relative criteria choices when clustering
is combined with GAs (Cowgill et al., 1998,Casillas et al., 2003,Pan et al., 2003,Hr-
uschka and Ebecken, 2003, Hruschka et al., 2004). The values produced by these
criteria are independent of the cluster algorithm used and can be employed to esti-
mate the natural number of clusters in a dataset (Milligan and Cooper, 1985).

VRC is based on internal cluster cohesion and external cluster isolation. The
internal cohesion is calculated by the within-group sum of square distances (WGSS)
and the external isolation by the between-groups sum of square distances (BGSS)
(Duda et al., 2001), given by:

WGSS =
n∑

i=1

n∑
j=i+1

Dij (5)

where n is the total number of objects and i and j are objects with i ∈ C and j ∈ C,
for all clusters C, Dij is the dissimilarity between objects i and j, and

BGSS =

n∑
i=1

n∑
j=i+1

Dij (6)

where i and j are objects with i ∈ C and j /∈ C, for all clusters C. The VRC criterion
is given by:

V RC =
BGSS

(k − 1)
/
WGSS

(n− k)
(7)

with k being the total number of clusters and n the total number of objects.
Silhouette is based on the distance between objects from the same cluster and

their distance to the closest cluster. Consider an object x belonging to a cluster Ca.
Let the average dissimilarity of x to all other objects of Ca be denoted by a(x).
Next, let the average dissimilarity of x to all objects of a cluster C be represented
by d(x, C). After computing d(x, C) for all clusters C 6= Ca, the smallest value, b(x),
is selected, where b(x) = min d(x, C)∀C 6= Ca. Thus, the silhouette for object x is
given by:

s(x) =

1− a(x)/b(x), a(x) < b(x)
0, a(x) = b(x)
b(x)/a(x)− 1, a(x) > b(x)

(8)

It is easy to verify that −1 ≤ s(x) ≤ 1. This measure is appropriate when the
values of the different attributes exhibit similar inferior and superior limits and the
true clusters are compact and disjoint (Rousseeuw, 1987). In addition, if s(x) is
equal to zero, then it is not clear whether the instance should have been assigned
to its current cluster or to a neighboring one (Everitt et al., 2001). Finally, if the
cluster is a singleton, then s(x) is not defined and the most neutral choice is to set

Genetic Clustering for Data Mining 123

s(x) = 0 (Kaufman and Rousseeuw, 1990). The silhouette criterion is given by the
average of s(i) over i = 1, 2, ..., n.

Two additional validity indexes to guide the genetic search were proposed by
Hruschka et al. (Hruschka et al., 2004), one of them is a simplified version of the
silhouette. This criterion is based on the computation of distances between objects
and cluster centroids, which are the mean vectors of the clusters. More specifically,
the term a(x) of Equation (8) becomes the dissimilarity of object x to the centroid
of its cluster Ca. Similarly, instead of computing d(x, C) as the average dissimilarity
of x to all objects of C, C 6= Ca, only the distance between x and the centroid
of C must be computed. Alternatively to the original and simplified versions of
the silhouette, Hruschka et al. (Hruschka et al., 2004) have shown that the fitness
function can be taken as the average of b(x)/(a(x) + ε) over i = 1, 2, ..., n, using
the centroid based terms a(x) and b(x) just described. The term ε is necessary to
compute s(x) when a(x) is zero, i.e., when all objects of cluster Ca are equal to
each other. This modified objective function seems to be more sensitive to slight
changes in a(x) and b(x), which in turn may correspond to significant changes in
the clustering solution.

S. Bandyopadhyay and U. Maulik (Bandyopadhyay et al., 2001) proposed a
validity index I(k) for computing the fitness of a genotype that represents k clusters,
that is defined as:

I(k) =

(
1

k
.
E1

Ek
.Dk

)p

(9)

where p is any real number larger than or equal to 1, Ej and Dj are given by the
following equations, respectively:

Ej =

k∑
j=1

n∑
i=1

µji||xi − zj || (10)

Dj =
k

max
l,w=1

||zl − zw|| (11)

where n is the total number of objects in the dataset, [µji]k×n is a partition matrix
for the dataset D = {x1, ..., xn}, and zw is the center of the wth cluster. They report
some experiments in which I(k) provides better results than the indexes proposed
in (Davies et al., 1979) and (Dunn et al., 1973), which are commonly used as relative
validity criteria for clustering. However, in a more recent work (Bandyopadhyay and
Maulik, 2002), they decided to use a fitness function based on the Davis-Bouldin
(DB) (Davies et al., 1979) index. The DB index for the partitioning of n objects
into k clusters is defined as:

DB =
1

k

k∑
i=1

RCi (12)

The index for the ith cluster, RCi , is given by:

RCi = max
j 6=i

{Rj,i} (13)

and Rj,i measure the within-to-between cluster spread for all pairs of clusters (j, i):

124 Naldi et al.

Rj,i =
ej + ei

vj,i
(14)

where ej is the within cluster variation for the j th cluster and vj,i is the distance
between the centers of the jth and the ith clusters.

The fitness function adopted in EvoCluster (Ma et al., 2006) has been conceived
to deal with noisy and missing data, as well as to recognize interesting feature values
for the clustering process. The fitness of each genotype is assessed by means of two
main steps. The first step is dedicated to the discovery of statistically significant
association of objects in the partition encoded in the genotype. To this end, some
objects from different clusters are randomly selected to form a training set for object
discovery. Let a be an attribute, aj the jth value this attribute takes in the dataset,
and obsij the total number of objects in the dataset that belong to cluster Ci and
are characterized by the same attribute value aj . According to Ma et al. (Ma et
al., 2006), expij = (obsi+) · (obs+j)/n′ is the expected number of objects under the
assumption that being a member of Ci is independent of whether a object has the
value aj , where obsi+, obs+j , and n′ are given by:

obsi+ =

g∑
j=1

obsij (15)

obs+j =

k∑
i=1

obsij (16)

n′ =
∑
i,j

obsij ≤ n (17)

where g is the total number of distinct values for a, k is the number of clusters
encoded by the genotype and n is the number of objects. The statistical significance
of the association can be evaluated by:

zij =
obsij − expij√

expij
(18)

where the maximum likelihood estimate of its asymptotic variance υij is defined by:

υij =

(
1− obsi+

n′

) (
1− obs+j

n′

)
(19)

Then sdij = zij/(υij)
1/2 has an approximately standard normal distribution

and the attribute value can be selected based on a statistically significant cluster
dependency. In step 2 of the fitness computation, an uncertainty measure, named
weight of evidence, W , is calculated for the values aj associated with the cluster
Ci at a given confidence level. The value of W for an object characterized by aj to
belong to Ci and not to other clusters is given by:

W (cluster = Ci/cluster 6= Ci|aj) = L (Ci : aj)− L (6= Ci : aj) (20)

where L(Ci : aj) is given by:

L(Ci : aj) = log
P (Ci|aj)

P (Ci)
(21)

For a collection of selected attribute values, the weight of evidence from all
observed values is defined as:

Genetic Clustering for Data Mining 125

W (cluster = Ci/cluster 6= Ci|a1...aj ...ag′) =

g′∑
j=1

W (cluster = Ci/cluster 6= Ci|aj)

(22)
where g′ is the number of selected attribute values. Cluster Ci is inferred if W is
maximized. Thus, the predicted value can be compared with the original label of
each object encoded in the genotype to determine the reclassification accuracy of
the objects not selected in step 1. Finally, the fitness value is calculated based on
this accuracy. The authors (Ma et al., 2006) claim that EvoCluster does not require
the number of clusters k to be defined in advance. However, this aspect was not fully
investigated in the reported experimental evaluation, in which a set of interesting
values for k was chosen a priori.

Validation criteria are independent of the representation and the cluster algo-
rithm used.

5 Genetic Operators

Genetic operators are responsible for the modification of the individuals from one
population to the next. Such operators may include, for instance, the exchange of
parts of the parents, thus allowing the production of new solutions sharing features
from both parents. By creating new solutions, genetic operators expand the explo-
ration of the search space, making it possible to reach any of its regions. The main
genetic operators are selection crossover and mutation. When GAs are used for clus-
tering, the traditional genetic operators may need to be adapted to fit the chosen
clustering representation.

5.1 Selection

As chromosomes are selected based on their relative fitness, the selection type is
independent of representation or clustering algorithm. Proportional selection has
been used by several authors (Krovi, 1992,Lucasius et al., 1993,Murthy and Chowd-
hury, 1996, Estivill-Castro, 1997, Cowgill et al., 1998, Maulik and Bandyopadhyay,
2000,Kivijärvi et al., 2003). The simplest approach for proportional selection is the
roulette wheel method, described in Section 1.1. Another popular choice is tourna-
ment selection, also described in Section 1.1.

Additionally to proportional selection, elitist variants for selecting genotypes are
also investigated in (Murthy and Chowdhury, 1996, Fränti et al., 1997,Kivijärvi et
al., 2003). A particular kind of elitist strategy is adopted in (Kuncheva and Bezdek,
1997), where the parents and the children are pooled and the best genotypes survive,
composing the new population. Similarly, Merz and Zell (Merz and Zell, 2002) derive
a new population by selecting the best genotypes out of the pool of parents and
children. These selection methods can be viewed as variants of the so-called (µ + λ)
selection procedure used in evolution strategies.

126 Naldi et al.

5.2 Crossover

Traditional crossover operators act at the chromosome level, ignoring the true shape
of the clusters. This may result, for instance, in offspring whose representation is
very similar to the parents, but whose corresponding clusters are very different.
Therefore, the incorporation of context sensitivity to the crossover operators applied
to clustering problems is commonly used, although it is not compulsory (Cowgill et
al., 1998,Bandyopadhyay and Maulik, 2002).

The main idea behind context sensitivity is to create crossover operators that
can transmit clusters (integrally or partially) from the parents to the offspring,
preserving their building blocks.

An example of this type of crossover is the edge-based crossover (Belew and
Booker, 1991). In this operator, after the selection of parent two chromosomes, their
objects are selected based on the edge of the clusters they belong to. Two objects
are connected by the same edge if they are present in the same cluster in both
chromosomes. The resulting children are composed of the non-empty intersections
of their parent clusters. An example of two parent chromosomes and a possible child
chromosome is showed on Figure 8, where cluster {C, D} is copied from PC1, {A, E}
from PC2 and {B, F} from both parents.

Fig. 8. Two partitions and their Group-Number representations.

Another context-sensitive crossover operator is proposed by Hruschka and
Ebecken (Hruschka and Ebecken, 2003) and combines clustering solutions coming
from different genotypes. After the selection of two chromosomes (PC1 and PC2),
e ∈ 1, 2, ..., k1 clusters are copied from PC1 to PC2, assuming that PC1 represents k1

clusters. The unchanged clusters of PC2 are maintained. The modified clusters have
their remaining instances allocated to the cluster with the nearest centroid, resulting
in the offspring CC1. The procedure is repeated to generate another offspring, CC2.
However, now, the modified clusters of PC2 are copied into PC1. Figure 3 illustrates
this crossover, where clusters 2 and 3 are copied from PC1 to PC2. The instances
of clusters indirectly affected have their value set to zero and are reallocated to the
cluster with the nearest centroid later.

The crossover operators used by the EvoCluster algorithm (Ma et al., 2006) can
be seen as modified versions of the context-sensitive evolutionary operators of the
clustering genetic algorithm (CGA) proposed by Hruschka and Ebecken (Hruschka
and Ebecken, 2003). Indeed, in both CGA and EvoCluster, the crossover operators

Genetic Clustering for Data Mining 127

Fig. 9. Example of crossover between the chromosomes PC1 and PC2.

were essentially designed to copy (exchange), split, merge, and eliminate groups.
Besides some minor details on how these basic operations are performed, there is an
important difference regarding the way the operators are applied in each algorithm:
the application of EvoCluster’s crossover operator can be probabilistically guided
by information concerning the quality of the individual clusters in a given partition.

Estivill-Castro et al. (Casillas et al., 2003) use a one-point crossover that is also
context sensitive. This operator manipulates the edges of a Minimum Spanning Tree
(MST) in which the nodes represent the dataset objects and the edges correspond
to proximity indexes between them.

An interesting work, Pasi Fränti et al. (Fränti et al., 1997) use five crossover oper-
ators that fundamentally select k centroids from two parents. The random crossover
operator randomly chooses k/2 centroids from each of the two parents. Duplicate
centroids are replaced by averages of repeated draws. In the operator named cen-
troid distance, the clusters are initially sorted according to their distances from the
grand mean of the dataset. Next, they are divided into two subsets, namely: central
clusters and remote clusters. The central clusters are those closer to the centroid
of the dataset, whereas the remote clusters are the remaining ones. An offspring
is created by taking the central clusters from parent PC1 and the remote clusters
from parent PC2. In pairwise crossover, clusters codified in different parents are
paired according to the similarities of their centroids. Offspring is then generated
by randomly taking one centroid from each pair of clusters. In the largest partition
operator, y centroids are selected by a greedy heuristic based on the assumption
that larger clusters are more important than smaller ones. Finally, they evaluate
the pairwise nearest neighbor crossover operator that considers that the 2k cen-
troids from parents PC1 and PC2 can be clustered into k clusters that will form
the offspring. All the crossover operators previously described by the authors are
context-sensitive, except for centroid distance, which can be viewed as a variant of
the single point crossover. They argue that the pairwise nearest neighbor operator
is the best choice. Another work (Kivijärvi et al., 2003) used the same crossover
operators above in addition to a single point crossover operator.

128 Naldi et al.

5.3 Mutation

The best known mechanism for producing new variations on the population is muta-
tion. This operator randomly selects genes and modifies their values. In clustering,
the mutation usually works by moving objects between clusters (Murthy and Chowd-
hury, 1996). In Tseng et al. (Tseng and Yang, 2001), bits of the strings representing
the individuals are selected according to a given probability, and then changed either
from 0 to 1 or from 1 to 0. Conceptually speaking, generated clusters can be either
inserted into a given chromosome or eliminated from it.

One of the most used mutation operators consists of randomly selecting a cen-
troid/medoid to be replaced by an object from the dataset - according to a pre-
determined probability (Lucasius et al., 1993,Estivill-Castro, 1997, Sheng and Liu,
2004,Fränti et al., 1997,Kivijärvi et al., 2003).

Some implementations alter the partition with the insertion/creation and re-
moval/agglomeration of clusters (Hall et al., 1999, Greene, 2003). An example are
the two mutation operators used in (Hruschka and Ebecken, 2003,Hruschka et al.,
2004). The first operator works only on genotypes that encode more than two clus-
ters. It eliminates a randomly chosen cluster, placing its objects into the nearest
remaining clusters (according to their centroids). The second mutation operator
splits a randomly selected cluster, which must be formed by at least two objects to
be eligible for this operator, into two new ones. The first cluster is formed by the
objects closer to the original centroid, whereas the other cluster is formed by those
objects closer to the farthest object from the centroid.

Another class of operators is based on the displacement of the clusters centroids
on the vectorial space. An operator of this class, proposed by Scheunders (Scheun-
ders, 1997), randomly adds either a negative or a positive constant (-1 or +1) to
a randomly chosen component of the centroid of a given cluster. The mutation of
clusters centers by the a similar procedure is investigated in (Maulik and Bandyopad-
hyay, 2000). A number δ in the range [0, 1] is generated with uniform distribution.
This number is then used to change the value v of a given gene to (1± 2δ)v, when
v 6= 0, or to ±2δ when v = 0. The signs “+” and “−” occur with equal probability.

A number of GAs combine two or more mutation operators to increase the
population diversity. An example is the GA described in (Merz and Zell, 2002),
which uses two distinct mutation operators. The first operator assigns a randomly
chosen dataset object to substitute a randomly chosen centroid. The second operator
randomly selects two clusters Ci and Cj . Then, the object belonging to Ci with the
maximum distance from its centroid is chosen to replace the centroid of Cj .

Another example is the algorithm EvoCluster (Ma et al., 2006) which has six mu-
tation operators. Similarly to the operators used in (Hruschka and Ebecken, 2003),
these operators essentially split, merge, and eliminate groups. However, differently
from the previous operators, EvoCluster’s mutation operators can be simultaneously
applied to multiple clusters of the same partition. Besides, they can be probabilis-
tically guided by information concerning the quality of the individual clusters in a
given partition.

Genetic Clustering for Data Mining 129

6 Some Related Works and Applications

GAs have been successfully used as clustering techniques in many applications, such
as image processing (Hall et al., 1999,Kivijärvi et al., 2003), classification of pixels
of satellite image (Bandyopadhyay and Maulik, 2002), gene expression analysis (Pan
et al., 2003), crude oil analysis (Murthy and Chowdhury, 1996,Maulik and Bandy-
opadhyay, 2000) and intrusion detection in computer networks (Liu et al., 2004),
just to mention a few.

Several works combine the use of GAs with other clustering techniques, e. g. by
employing a GA to select characteristics of the database to be clusted (Ohtsuka et
al., 2002) or initial clusters for these techniques (Maulik and Bandyopadhyay, 2000).
A method that combines a Bayesian feature selection approach with a clustering
genetic algorithm to get classification rules is described in (Hruschka and Ebecken,
2003). In (Hruschka and Ebecken, 2006), a clustering genetic algorithm is applied
to extract rules from multilayer perceptrons trained in classification problems.

7 Conclusion

This text presents a survey on the use of Genetic Algorithms for clustering. GAs
can represent different types of clustering partitions while being able to adopt a
wide variety of fitness functions as objective functions based on clustering validity
criteria. The combination of several desirable optimization skills makes GAs able to
be applied to many clustering problems from a large number of application areas.

Most of the objective functions involved in clustering and measures employed for
clustering validation are based on different inductive biases, which can favor datasets
with particular characteristics. Thus, it is worth stressing that the selection of a
proper fitness function to the problem in hand is important to obtain the desired
results.

Current research has focused on more efficient cluster representations and con-
text sensitive genetic operators. The study of fitness and objective functions is also
an important research area on GAs applied to clustering problems.

Acknowledgements

The authors would like to thank CNPq, FAPESP and FINEP for the support re-
ceived during this work.

References

Baker, J.E., (1987), Reducing bias and inefficiency in the selection algorithm. Pro-
ceedings of the Second International Conference on Genetic Algorithms and
their Application, pp. 14–21.

Bandyopadhyay, S., Maulik, U., (2001), Nonparametric genetic clustering: Compar-
ison of validity indices. Systems, Man and Cybernetics, Part C, IEEE Trans-
actions on : Applications and Reviews. 31(1): 120–125.

130 Naldi et al.

Bandyopadhyay, S., Maulik, U., (2002), An evolutionary technique based on k-
means algorithm for optimal clustering in rn. Inf. Sci. Appl. 146(1-4): 221–237.

Belew, R.K., Booker, L.B., (1991), eds., Solving Partitioning Problems with Ge-
netic Algorithms. In Belew, R.K., Booker, L.B., eds.: ICGA, Morgan Kauf-
mann.

Bezdek, J.C., Boggavaparu, S., Hall, L.O., (1994), Bensaid, A., Genetic algorithm
guided clustering. Procedings of the First IEEE Conference on Evolutionary
Computation: 34–40.

Calinski, T., Harabasz, J., (1974), A dendrite method for cluster analysis. Com-
munications in statistics 3(1): 1–27.

Casillas, A., de Lena, M.T.G., Martnez, R., (2003), Document clustering into an
unknown number of clusters using a genetic algorithm. Lecture Notes in Com-
puter Science 2807: 43–49.

Cole, R.M., (1998), Clustering with Genetic Algorithms. PhD thesis, Department
of Computer Science, University of Western Australia.

Cowgill, M.C., Harvey, R.J., Watson, L.T., (1998), A genetic algorithm approach
to cluster analysis. Technical report, Virginia Polytechnic Institute & State
University, Blacksburg, VA, USA.

Darwin, C., (2006), The Origin of Species: A Variorum Text. University of Penn-
sylvania Press.

Davies, D., Bouldin, D.W., (1979), A cluster separation measure. IEEE Transac-
tions of Pattern Analysis and Machine Intelligence 1: 224–227.

Duda, R., Hart, P., Stork, D., (2001), Pattern Classification. John Wiley & Sons.
Dunn, J., (1973), A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters. J. Cybern 3: 32–57.
Estivill-Castro, V., (1997), Spatial clustering for data mining with genetic algo-

rithms. Technical report, Australia.
Everitt, B., Landau, S., Leese, M., (2001), Cluster Analysis, Arnold Publishers.

Arnold Publishers.
Fränti, P., Kivijärvi, J., Kaukoranta, T., Nevalainen, O., (1997), Genetic algorithms

for large scale clustering problems. The Computer Journal 40: 547–554.
Freitas, A. (2005), Evolutionary Algorithms for Data Mining. in Oded Maimon,

Lior Rokach (Eds.), The Data Mining and Knowledge Discovery Handbook,
Springer, pp. 435–467.

Goldberg, D., (1989), Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley.

Greene, W.A., (2003), Unsupervised hierarchical clustering via a genetic algorithm.
In: Proceedings of the 2003 Congress on Evolutionary Computation, IEEE
Press, pp. 998–1005.

Grefenstette, J., (2000), Proportional selection and sampling algorithms. In: Evo-
lutionary Computation 1. Institute of physics publishing, pp. 172–180.

Halkidi, M., Batistakis, Y., Vazirgiannis, M., (2001), On clustering validation tech-
niques. Intelligent Information Systems Journal 17(2-3): 107–145.

Hall, L., Ozyurt, B., Bezdek, J., (1999), Clustering with a genetically optimized
approach. IEEE Transations on Evolutionary Computation. 3: 103–112.

Holland, J., (1975), Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor.

Hruschka, E.R., Campello, R.J.G.B., de Castro, L.N., (2004), Improving the effi-
ciency of a clustering genetic algorithm. In: Advances in Artificial Intelligence

Genetic Clustering for Data Mining 131

- IBERAMIA 2004: 9th Ibero-American Conference on AI, Puebla, Mexico,
November 22-25. Proceedings. Volume 3315., Springer-Verlag GmbH, Lecture
Notes in Computer Science, pp.861-868.

Hruschka, E.R., Ebecken, N.F.F., (2003), A genetic algorithm for cluster analysis.
Intelligent Data Analysis 7(1): 15–25.

Hruschka, E.R., Ebecken, N.F.F., (2003), A feature selection bayesian approach
for extracting classification rules with a clustering genetic algorithm. Applied
Artificial Intelligence 17(5-6): 489–506.

Hruschka, E.R., Ebecken, N.F.F., (2006), Extracting rules from multilayer percep-
trons in classification problems: A clustering-based approach. Neurocomputing
70: 384–397.

Jain, A.K., Murty, M.N., Flynn, P.J., (1999), Data clustering: a review. ACM
Computing Surveys 31(3): 264–323.

Jain, A., Dubes, R., (1988), Algorithms for Clustering Data. Prentice Hall.
Kaufman, L., Rousseeuw, P., (1990), Finding groups in data: An introduction to

cluster analysis. Wiley Series in Probability and Mathematical Statistics.
Kivijärvi, J., Fränti, P., Nevalainen, O., (2003), Self-adaptive genetic algorithm for

clustering. Journal of Heuristics 9(2): 113–129.
Korkmaz, E.E., Du, J., Alhajj, R., Barker, K., (2006), Combining advantages of

new chromosome representation scheme and multi-objective genetic algorithms
for better clustering. Intell. Data Anal. 10(2): 163–182.

Krovi, R., (1992), Genetic algorithms for clustering: a preliminary investigation.
System Sciences, 1992. Proceedings of the Twenty-Fifth Hawaii International
Conference on 4: 540–544.

Kuncheva, L., Bezdek, J.C., (1997), Selection of cluster prototypes from data by
a genetic algorithm. Procedings of the 5th European Congress on Intelligent
Techniques and Soft Computing, pp. 1683–1688.

Liu, Y., Chen, K., Liao, X., Zhang, W., (2004), A genetic clustering method for
intrusion detection. Pattern Recognition 37(5): 927–942.

Lucasius, C.B., Dane, A.D., Kateman, G., (1993), On k-medoid clustering of large
data sets with the aid of a genetic algorithm: background, feasibility and com-
parison. Analytica Chimica Acta, pp. 647–669.

Ma, P.C.H., Chan, K.C.C., Yao, X., Chiu, D.K.Y., (2006), An evolutionary clus-
tering algorithm for gene expression microarray data analysis. IEEE Trans.
Evolutionary Computations 10(3): 296–314.

Maulik, U., Bandyopadhyay, S., (2000), Genetic algorithm-based clustering tech-
nique. Pattern Recognition 33: 1455 – 1465.

Merz, P., Zell, A., (2002), Clustering gene expression profiles with memetic algo-
rithms. In: PPSN VII: Proceedings of the 7th International Conference on
Parallel Problem Solving from Nature, London, UK, Springer-Verlag, pp. 811–
820.

Milligan, G.W., Cooper, M.C., (1985), An examination of procedures for determin-
ing the number of clusters in a data set. Psychometrika 50: 159–179.

Mitchell, M., (1999), An introduction to Genetic Algorithms. MIT Press.
Murthy, C.A., Chowdhury, N., (1996), In search of optimal clusters using genetic

algorithms. Pattern Recogn. Lett. 17(8): 825 – 832.
Ohtsuka, A., Kamiura, N., Isokawa, T., Matsui, N., (2002), On detection of con-

fused blood samples using self organizing maps and genetic algorithm. In:
Neural Information Processing, 2002. ICONIP ’02. Proceedings of the 9th In-

132 Naldi et al.

ternational Conference on. Volume 5., Department of Computer Science and
Illinois Genetic Algorithms Laboratory, 2233 – 2238.

Pal, N., Bezdek, J., (1995), On cluster validity for the fuzzy c-means model. IEEE
Transactions of Fuzzy Systems 3(3):370–379.

Pan, H., Zhu, J., Han, D., (2003), Genetic algorithms applied to multi-class cluster-
ing for gene expression data. Genomics, Proteomics and Bioinformatics 1(4):
279–287.

Rousseeuw, P.J., (1987), Silhouettes: a graphical aid to the interpretation and vali-
dation of cluster analysis. Journal of Computational and Applied Mathematics
20:53–65.

Scheunders, P., (1997), A genetic c-means clustering algorithm applied to color
image quantization. Pattern Recognition 30(6): 859–866.

Sheng, W., Liu, X., (2004), A hybrid algorithm for k-medoid clustering of large data
sets. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation,
Portland, Oregon, IEEE Press, pp. 77–82.

Tseng, L., Yang, S.B., (2001), A genetic approach to the automatic clustering
problem. Pattern Recognition 34:415–424.

Discovering New Rule Induction Algorithms
with Grammar-based Genetic Programming

Gisele L. Pappa and Alex A. Freitas

Computing Laboratory
University of Kent
Canterbury, Kent, CT2 7NF, UK
glp6, A.A.Freitas@kent.ac.uk

http://www.cs.kent.ac.uk/∼aaf

Summary. Rule induction is a data mining technique used to extract classification
rules of the form IF (conditions) THEN (predicted class) from data. The majority of
the rule induction algorithms found in the literature follow the sequential covering
strategy, which essentially induces one rule at a time until (almost) all the training
data is covered by the induced rule set. This strategy describes a basic algorithm
composed by several key elements, which can be modified and/or extended to gener-
ate new and better rule induction algorithms. With this in mind, this work proposes
the use of a grammar-based genetic programming (GGP) algorithm to automati-
cally discover new sequential covering algorithms. The proposed system is evaluated
using 20 data sets, and the automatically-discovered rule induction algorithms are
compared with four well-known human-designed rule induction algorithms. Results
showed that the GGP system is a promising approach to effectively discover new
sequential covering algorithms.

1 Introduction

In the classification task of data mining, one way of representing the knowledge
discovered by the data mining algorithm consists of a set of classification rules, where
each rule has the form: IF (conditions) THEN (predicted class). This knowledge
representation has the advantage of being intuitively comprehensible to the user
(Iglesia et al., 1996).

There are a number of rule induction algorithms that have been proposed to
discover such classification rules (Fürnkranz, 1999, Mitchell, 1997). A particularly
popular strategy consists of the sequential covering approach, where in essence the
algorithm discovers one rule at a time until (almost) all examples are covered by the
discovered rules (i.e., match the conditions of at least one rule). Sequential covering
rule induction algorithms are typically greedy, performing a local search in the rule
space.

An alternative approach to discover classification rules consists of using an evo-
lutionary algorithm (EA), which performs a more global search in the rule space.

134 Gisele Pappa et al.

Indeed, there are also a number of EAs for discovering a set of classification rules
from a given data set (Freitas, 2002).

In this chapter, however, we propose a very different and pioneering way of using
an EA in the context of classification rule discovery. We propose a grammar-based
genetic programming (GGP) system that automatically discovers new sequential
covering rule induction algorithms (rather than rules). The discovered rule induc-
tion algorithms are generic and robust enough to be applicable to virtually any
classification data set in any application domain, in the same way that a manually-
designed rule induction algorithm is generic and robust enough to be applicable to
virtually any classification data set.

The proposed method allows the automatic discovery of new rule induction al-
gorithms potentially quite different from conventional, manually-designed rule in-
duction algorithms. Hence, the automatically-discovered rule induction algorithms
can avoid some of the human preconceptions and biases embedded in manually-
designed rule induction algorithms, possibly leading to more effective algorithms in
challenging application domains.

The first version of the proposed GGP system and its corresponding computa-
tional results have been previously published in (Pappa and Freitas, 2006). Nonethe-
less, one limitation of that version is that the evolved rule induction algorithms
could cope only with nominal (categorical) attributes, and not with continuous
(real-valued) attributes. In this chapter we describe a new, extended version of
the system, which can cope with both nominal and continuous attributes. This new
characteristic introduced into the system makes it now suitable for a larger variety
of classification data sets, and this fact is reflected in the greater number of data
sets used to evaluate the system, namely 20 data sets, whereas our first experiments
reported in (Pappa and Freitas, 2006) used only 11 data sets. In addition, this chap-
ter shows and discusses in detail one of the rule induction algorithms automatically
generated by the GGP system, a result that was not reported in (Pappa and Freitas,
2006).

The remainder of this chapter is organized as follows. Section 2 briefly discusses
rule induction algorithms. Section 3 gives a brief overview of GGP. Section 4 in-
troduces the proposed GGP. Section 5 reports the results of several computational
experiments. Finally, Section 6 presents the conclusions and describes future research
directions.

2 Sequential Covering Rule Induction Algorithms

The sequential covering strategy (also known as separate and conquer) is certainly
the most explored and most used strategy to induce rules from data. It was first
employed by the algorithms of the AQ family (Michalski, 1969) in the late sixties, and
over the years was applied again and again as the basic algorithm in rule induction
systems.

The separate and conquer strategy works as follows. It learns a rule from a
training set, removes from it the examples covered by the rule, and recursively learns
another rule which covers the remaining examples. A rule is said to cover an example
e when all the conditions in the antecedent of the rule are satisfied by the example e.
For instance, the rule “IF (salary > £ 100,000) THEN rich” covers all the examples

Discovering Rule Induction Algorithms with Genetic Programming 135

in the training set in which the value of salary is greater than £100,000, regardless
of the current value of the class attribute of an example. The learning process goes
on until a pre-defined criterion is satisfied. This criterion usually requires that all or
almost all examples in the training set are covered by a rule.

Algorithms following the sequential covering approach usually differ from each
other in four main elements: the representation of the candidate rules, the search
mechanisms used to explore the space of candidate rules, the way the candidate
rules are evaluated and the pruning method, although the last one can be absent
(Fürnkranz, 1999,Witten and Frank, 2005).

Considering the first of these four rule induction algorithms elements, the rule
representation has a significant influence in the learning process, since some concepts
can be easily expressed in one representation but hardly expressed in others. The
most common rule representations used by rule induction algorithms are proposi-
tional or first order logic.

The next two elements found in rule induction algorithms determine how the
algorithm will explore the space of candidate rules. The first of them, i.e., the
search mechanism, is composed by two components: a search strategy and a search
method. The search strategy determines the region of the search space where the
search starts and its direction, while the search method specifies which specializa-
tions/generalizations should be considered.

Broadly speaking, there are three kinds of search strategies: bottom-up, top-
down and bi-directional. A bottom-up strategy starts the search with a very specific
rule, and iteratively generalizes it. A top-down strategy, in contrast, starts the search
with the most general rule and iteratively specializes it. The most general rule is the
one that covers all examples in the training set (because it has an empty antecedent,
which is always satisfied for any example). At last, a bi-directional search is allowed
to generalize or specialize the candidate rules.

Any of these search strategies is complemented with a search method. The
search method is a very important part of a rule induction algorithm since it de-
termines which specializations/generalizations will be considered at each specializa-
tion/generalizations step. Too many specializations/generalizations are not allowed
due to computational time, but too few may disregard good conditions and reduce
the chances of finding a good rule. Among the available search methods are the
greedy search and the beam search.

The search method is guided by a rule evaluation heuristic, which is the second
component found in rule induction algorithms which has influence in the way the rule
space is explored. The regions of the search space being explored by a rule induction
algorithm can drastically change according to the heuristic chosen to assess a rule
while it is being built. Among the heuristics used to estimate the quality of a rule
are the information content, information gain, Laplace correction, m-estimate, ls-
content, among others (Fürnkranz, 1999).

The first algorithms developed using the sequential covering approach were com-
posed by the three components described so far: a rule representation, a search strat-
egy and a evaluation heuristic. However, these first algorithms searched the data for
complete and consistent rule sets. It means they were looking for rules that covered
all the examples in the training set (complete) and that covered no negative exam-
ples (consistent). These are not common characteristics of any real-world data sets.
Hence, pruning methods were introduced to sequential covering algorithms to avoid
over-fitting and to handle noisy data.

136 Gisele Pappa et al.

Pruning methods are divided in two categories: pre- and post-pruning. Pre-
pruning methods stop the refinement of the rules before they become too specific or
over-fit the data, while post-pruning methods first produce a complete and consistent
rule or rule set, and later try to simplify it. When comparing pre- and post-pruning
techniques, each of them has its advantages and pitfalls. Though pre-pruning tech-
niques are faster, post-pruning techniques usually produce simpler and more accu-
rate models (at the expense of inefficiency, since some rules are learned and then
simply discarded from the model).

In an attempt to solve the problems caused by pre- and post-pruning techniques,
some methods combine or integrate them to get the best of both worlds. Some of
these systems, for instance, prune each rule right after it is created, instead of waiting
for the complete model to be generated (Cohen, 1995).

This section briefly described the main elements which compose a sequential
covering rule induction algorithm. Knowledge about these elements and the variety
of ways they can be implemented was the base to build the grammar used by the
GGP system described in Section 4. For a more complete survey of sequential cover-
ing rule induction algorithms and its components the user is referred to (Fürnkranz,
1999,Mitchell, 1997,Witten and Frank, 2005).

3 Grammar-based Genetic Programming

Genetic Programming (GP) (Koza, 1992) is an area of evolutionary computation
which aims to automatically evolve computer programs. It works by following Dar-
win’s principle of selection and survival of the fittest, and can be easily adapted
to solve a variety of problems. GP’s success is backed up by a list of 36 human-
competitive solutions, where two created patentable new inventions (gp.org).

Grammar-based Genetic Programming (GGP) is a variation of the classical GP
method and, as its name indicates, the main difference among GGP and GP is that
the former uses a grammar to create the population of candidate solutions for the
targeted problem. The main advantage of using a grammar together with a GP
system is that it can include previous knowledge about how the target problem is
solved, and so be used to guide the GP search. Moreover, GGP solves a well-known
problem in the GP literature, called closure1.

Grammars (Aho et al., 1986) are simple mechanisms capable of representing
very complex structures. Their formal definition was first given by Chomsky in
1950. According to Chomsky, a grammar can be represented by a four-tuple {N,
T, P, S}, where N is a set of non-terminals, T is a set of terminals, P is a set
of production rules, and S (a member of N) is the start symbol. The production
rules define the language which the grammar represents by combining the grammar
symbols.

In this work we are specially interested in context-free grammars (CFG). CFGs
are the class of grammars most commonly used with genetic programming, and
they are usually described using the Backus Naur Form (BNF) (Naur, 1963).

1 A traditional GP system creates individuals by combining a set of functions and
terminals. The closure property states that every function in the GP function
set has to be able to process any value it receives as input. For further details
see (Banzhaf et al., 1998).

Discovering Rule Induction Algorithms with Genetic Programming 137

According to the BNF notation, production rules have the form <expr> ::=
<expr><op><expr>, and symbols wrapped in “<>” represent the non-terminals
of the grammar. Three special symbols might be used for writing the production
rules in BNF: “|”,“[]” and “()”. “|” represents a choice, like in <var> ::=x|y, where
<var> generates the symbol x or y. “[]” wraps an optional symbol which may or
may not be generated when applying the rule. “()”is used to group a set of choices
together, like in x ::= k(y|z), where x generates k followed by y or z. The application
of a production rule from p ∈ P to some non-terminal n ∈ N is called a derivation
step, and it is represented by the symbol ⇒.

Once a grammar that includes background knowledge about the target problem
has been defined by the user, a GGP system follows the pseudo-code defined in
Algorithm 1.

Algorithm 1: Basic pseudo-code for a GGP system
Define a representation for the individuals
Define parameters such as population size, number of generations, crossover,
mutation and reproduction rates
Generate the first GGP population based on the production rules of the
grammar
while maximum number of generations not reached do

Evaluate the individuals using a pre-defined fitness function
Select the best individuals, according to the fitness function, to breed
Perform crossover, mutation and reproduction operations with the
selected individuals, always producing offspring which are also valid
according to the defined grammar

Return individual with best fitness

Note that each individual represents a candidate solution to the target problem.
Hence, since we use a GGP to automatically evolve rule induction algorithms, each
individual is a rule induction algorithm, and the grammar gathers knowledge about
how rule induction algorithms were previously developed.

4 Discovering New Rule Induction Algorithms

This section describes an extended version of the GGP method proposed in (Pappa
and Freitas, 2006). As explained before, the main difference between the method
described here and the one described in (Pappa and Freitas, 2006) is that, while
the latter could only cope with nominal attributes, the former can cope with both
nominal and numerical attributes.

In summary, the proposed GGP works as follows. It creates the first population
of individuals based on the production rules of a grammar, which is used to guide the
search for new rule induction algorithms. In this population, each GGP individual
represents a complete sequential-covering rule induction algorithm, such as CN2
(Clark and Boswell, 1991). As the GGP system is based on the principle of survival
of the fittest, a fitness function is associated with each individual in the population,

138 Gisele Pappa et al.

and used to select a subset of them (through a tournament selection of size 2) to
breed and undergo crossover, mutation and reproduction operations. The individuals
generated by these operations (which also have to be valid according to the grammar
being used) are inserted into a new population, representing a new generation of
evolved individuals. The evolution process is carried out until a maximum number
of generations is reached.

Note that the main modifications introduced to the system in order to cope with
numerical attributes are related to the terminals of the grammar and the way they
are implemented. Hence, in this section, we first present the grammar introduced
in (Pappa and Freitas, 2006), emphasizing its components which cannot be found in
traditional rule induction algorithms, and then we present the modifications neces-
sary to make it cope with numerical attributes. Following the grammar description,
we show an example of an individual which can be evolved by the system, and then
describe the individuals’ evaluation process. Finally, we explain how the evolutionary
operators were implemented.

4.1 The grammar

In a GGP system, the grammar is the element which determines the search space
of the candidate solutions for a target problem. Hence, in the GGP system pro-
posed here, the grammar contains previous knowledge about how humans design
rule induction algorithms, plus some new concepts which were borrowed from other
data mining paradigms or created by the authors (and that to the best of the au-
thors’ knowledge were never used in the design of sequential-covering rule induction
algorithms).

The proposed grammar is presented in Table 1. It uses the BNF terminology
introduced earlier, and its Start symbol is represented by the non-terminal with the
same name. Recall that non-terminals are wrapped into <> symbols, and each of
them originates a production rule. Grammar symbols not presented between <>
are terminals. In the context of rule induction algorithms, the set of non-terminals
and terminals are divided into two subsets. The first subset includes general pro-
gramming elements, like if statements and for/while loops, while the second subset
includes components directly related to rule induction algorithms, such as RefineRule
or PruneRule.

The non-terminals in the grammar represent high-level operations, like a while
loop (whileLoop) or the procedure performed to refine a rule (RefineRule). The
terminals, in turn, represent a very specific operation, like Add1, which adds one
condition-at-a-time to a candidate rule during the rule refinement process (Re-
fineRule). Terminals are always associated with a building block. A building block
represents an “atomic operation” (from the grammar’s viewpoint) which does not
need any more refinements. Building blocks will be very useful during the phase of
rule induction code generation, as each of them is associated with a chunk of Java
code.

As observed in Table 1, the grammar contains 26 non-terminals (NT),
where each NT can generate one or more production rules. Recall that in
the BNF notation, used to describe the grammar in Table 1, the symbol “|”
separates different production rules, and the symbol “[]” wraps an optional
symbol (which may or may not be generated when applying the rule). For

Discovering Rule Induction Algorithms with Genetic Programming 139

Table 1. The grammar used by the GGP (adapted from (Pappa and Freitas, 2006))

1- <Start> ::= (<CreateRuleSet>|<CreateRuleList>) [<PostProcess>].

2- <CreateRuleSet> ::= forEachClass <whileLoop> endFor

<RuleSetTest>.

3- <CreateRuleList> ::= <whileLoop> <RuleListTest>.

4- <whileLoop>::= while <condWhile> <CreateOneRule> endWhile.

5- <condWhile>::= uncoveredNotEmpty |uncoveredGreater

(10| 20| 90%| 95%| 97%| 99%) trainEx.

6- <RuleSetTest> ::= lsContent |confidenceLaplace.

7- <RuleListTest>::= appendRule | prependRule.

8- <CreateOneRule>::= <InitializeRule>

[<RuleStoppingCriterion>].

9- <InitializeRule> ::= emptyRule| randomExample| typicalExample |

<MakeFirstRule>.

10- <MakeFirstRule> ::= NumCond1| NumCond2| NumCond3| NumCond4.

11- <innerWhile> ::= while (candNotEmpty| negNotCovered)

<FindRule> endWhile.

12- <FindRule> ::= (<RefineRule>|<innerIf>) <EvaluateRule>

[<StoppingCriterion>] <SelectCandidateRules>.

13- <innerIf> ::= if <condIf> then <RefineRule> else <RefineRule>.

14- <condIf> ::= <condIfExamples> | <condIfRule>.

15- <condIfRule> ::= ruleSizeSmaller (2| 3| 5| 7).

16- <condIfExamples> ::= numCovExp (>| <)(90%| 95%| 99%).

17- <RefineRule> ::= <AddCond>| <RemoveCond>.

18- <AddCond> ::= Add1| Add2.

19- <RemoveCond>::= Remove1| Remove2.

20- <EvaluateRule>::= confidence | Laplace| infoContent| infoGain.

21- <StoppingCriterion> ::= MinAccuracy (0.6| 0.7| 0.8)|

SignificanceTest (0.1| 0.05| 0.025| 0.01).

22- <SelectCandidateRules> ::= 1CR| 2CR| 3CR| 4CR| 5CR| 8CR| 10CR.

23- <PrePruneRule> ::= (1Cond| LastCond| FinalSeqCond) <EvaluateRule>.

24- <RuleStoppingCriterion> ::= accuracyStop (0.5| 0.6| 0.7).

25- <PostProcess> ::= RemoveRule EvaluateModel| <RemoveCondRule>.

26- <RemoveCondRule> ::= (1Cond| 2Cond| FinalSeq) <EvaluateRule>.

instance, the NT Start generates four production rules: CreateRuleList, Cre-
ateRuleSet, CreateRuleList PostProcess and CreateRuleSet PostProcess. In to-
tal, the grammar has 83 production rules, which were carefully generated after
a comprehensive study of the main elements of the pseudo-codes of basic rule
induction algorithms, which follow the basic process described in Section 2.

In this section, we focus on the new components of the grammar, which are
usually not found in traditional rule induction algorithms. The major “new”
components inserted to the grammar are:

<innerWhile> [<PrePruneRule>]

140 Gisele Pappa et al.

• The terminal typicalExample, which creates a new rule using the concept
of typicality, borrowed from the instance-based learning literature (Zhang,
1992). An example is said to be typical if it is very similar to the other
examples belonging to the same class it belongs to, and not similar to
the other examples belonging to other classes. In other words, a typical
example has high intra-class similarity and low inter-class similarity.

• The non-terminal MakeFirstRule, which allows the first rule to be initial-
ized with one, two, three or four attribute-value pairs, selected probabilis-
tically from the training data in proportion to their frequency. Attribute-
value pairs are selected subject to the restriction that they involve different
attributes (to prevent inconsistent rules such as “sex = male AND sex =
female”).

• The non-terminal innerIf, which allows rules to be refined in different
ways (e.g. adding or removing one or two conditions-at-a-time to/from
the rule) according to the number of conditions they have, or the number
of examples the rule list/set covers.

• Although some methods do use rule look-ahead, i.e., they do insert more
than one condition-at-a-time to a set of candidate rules, we did not find in
the literature any rule induction algorithm which removes two conditions-
at-a-time from a rule. This is implemented by the terminal Remove2.

Note that the list above shows a set of single components which are new
“building blocks” of rule induction algorithms. These components increase the
diversity of the candidate rule induction algorithms considerably, but it is the
combination of the “standard” and new components which will potentially
contribute to the creation of a new rule induction algorithm different from
conventional algorithms.

As it will be discussed in Section 4.3, the individuals generated by follow-
ing the production rules of the grammar are converted into executable rule
induction algorithms by using a GGP/Java interface, which reads out an in-
dividual and puts together chunks of code associated with the terminals and
non-terminals of the grammar contained in that individual.

Hence, in order to modify the grammar and make it cope with data sets
containing numerical attributes, the main modifications are introduced in
some chunks of Java code associated with the terminals of the grammar. The
terminals whose implementation went through major extensions were the ones
responsible for refining rules by adding/removing conditions to/from it. They
were extended in a way that they can produce algorithms that represent rule
conditions of the form “<attribute, operator, value>”, where operator is “=”
in the case of nominal attributes, and operator is “≥” or “≤” in the case of
numerical attributes.

The approach followed by these terminals to generate rule conditions with
numerical attributes is similar to the one implemented by the Ripper and
C4.5 algorithms, where the values of a numerical attribute are sorted, and all
threshold values considered. The best threshold value is chosen according to

Discovering Rule Induction Algorithms with Genetic Programming 141

Fig. 1. Example of a GGP Individual (a complete rule induction algorithm)

the information gain associated with that attribute-value pair - see (Witten
and Frank, 2005) or (Quinlan, 1993) for details.

By applying the production rules defined by the grammar, the GGP system
can generate up to approximately 5 billion different rule induction algorithms
(Pappa, 2007). Each of these rule induction algorithms can be represented
by an individual in the GGP population. The next section explains how the
individuals extracted from the grammar are represented in the proposed GGP
system.

4.2 Individual Representation

In a GGP system, each individual represents a candidate solution for the
problem being tackled. In this work, each individual represents a complete
rule induction algorithm following the sequential covering approach, which
can be applied to generate rules for any classification data set.

Figure 1 shows an example of an individual generated by the grammar
presented in the previous section. The root of the tree is the non-terminal
Start. The tree is then derived by the application of production rules for

CreateRule
List

whileLoop RuleList
Test

Start

while condWhile CreateOne
Rule

RuleStop
Criterion endWhile appendRule

uncovered
NotEmpty

Initialize
Rule innerWhile

emptyRule

accuracyStop 0.7

whileCand
NotEmpty FindRule endWhile

Add2

RefineRule Evaluate
Rule

SelectCandidate
Rule

AddCond Laplace 5CR

142 Gisele Pappa et al.

each non-terminal. For example, Start (NT 1) generates the non-terminal
CreateRuleList (NT 3), which in turn produces the non-terminals whileLoop
and RuleListTest. This process is repeated until all the leaf nodes of the tree
are terminals.

In order to extract from the tree the pseudo-code of the corresponding rule
induction algorithm, we read all the terminals (leaf-nodes) in the tree from
left to right. The tree in Figure 1, for example, represents the pseudo-code
described in Alg. 2 (shown at the end of Section 5), expressed at a high level
of abstraction.

4.3 Individual’s Evaluation

An evolutionary algorithm works by selecting the fittest individuals of a popu-
lation to reproduce and generate new offspring. Individuals are selected based
on how good their corresponding candidate solutions are to solve the target
problem. In our case, we need to evaluate how good a rule induction algorithm
is.

In the rule induction algorithm literature, comparing different classifica-
tion algorithms is not a straightforward process. There is a variety of metrics
which can be used to estimate how good a classifier is, including classification
accuracy, ROC analysis (Fawcett, 2003) and sensitivity/specificity. There are
studies comparing these different metrics, and showing advantages and dis-
advantages in using each of them (Flach, 2003,Caruana and Niculescu-Mizil,
2004). Nevertheless, as pointed out by Caruana and Niculescu-Mizil (Caruana
and Niculescu-Mizil, 2004), in supervised learning there is one ideal classifica-
tion model, and “we do not have performance metrics that will reliably assign
best performance to the probabilistic true model given finite validation data”.

Classification accuracy is still the most common metric used to compare
classifiers, although some authors tried to show the pitfalls of using classifi-
cation accuracy when evaluating induction algorithms (Provost et al., 1998)
– specially because it assumes equal misclassification costs and known class
distributions – and others tried to introduce ROC analysis as a more robust
standard measure. Based on these facts and on the idea of using a simpler
measure when first evaluating the individuals produced by the GGP, we chose
to use a measure based on accuracy to compose the fitness of the GGP system.

In this framework, a rule induction algorithm RIA is said to outperform
a rule induction algorithm RIB if RIA has better classification accuracy in
a set of classification problems. Thus, in order to evaluate the rule induction
algorithms being evolved, we selected a set of classification problems, and
created a meta-training set. The meta-training set consists of a set of data sets,
each of them divided as usual into (non-overlapping) training and validation
sets.

As illustrated in Figure 2, each individual in the GGP population is de-
coded into a rule induction algorithm using a GGP/Java interface. The Java
code is then compiled, and the resulting rule induction algorithm run in all the

Discovering Rule Induction Algorithms with Genetic Programming 143

GGP

Individual

Interface

GGP/Java

Rule

Induction

Algorithm

Rule

Model 1

Rule

Model 2

Rule

Model n

. . .

Fitness

Accn

Sizen

Size2

Acc2

Acc1

Size1

Meta Training Set

Validation 1

. . .

Training 1

Training 2

Training n

.

Validation 2

Validation n

Fig. 2. Fitness evaluation process of a GGP Individual

data sets belonging to the meta-training set. It is a conventional run where,
for each data set, a set or list of rules is built using the set of training examples
and evaluated using the set of validation examples. It is important to observe
that, during preliminary experiments with the GGP, we noticed that it was
suffering from a common problem found when solving predictive data min-
ing tasks: over-fitting. As the same training sets were being accessed by the
GGP over and over, the produced rule induction algorithms were over-fitting
these data sets. We solved this problem with a simple and effective solution
borrowed from the literature on GP for data mining (Bhattacharyya, 1998):
at each generation, the data used in the training and validation sets of the
data sets in the meta-training set are merged and randomly redistributed.
This means that, at each generation, the GGP individuals are evaluated in a
different set of validation data, helping to avoid over-fitting.

After the rule induction algorithm is run in all the data sets in the meta-
training set, the accuracy in the validation set and the rule lists/sets produced
for all data sets are returned. These two measures can be used to calculate a
fitness function. In this work, we used as the fitness function the average values
of the function described in Eq.(1) over all the data sets in the meta-training
set.

fiti =

{
Acci−DefAcci

1−DefAcci
, if Acci > DefAcci

Acci−DefAcci

DefAcci
, otherwise

(1)

According to the definition of fiti, where i denotes the id of a given data
set, if the accuracy obtained by the classifier is better than the default accu-
racy, the improvement over the default accuracy is normalized, by dividing the
absolute value of the improvement by the maximum possible improvement. In
the case of a drop in the accuracy with respect to the default accuracy, this
difference is normalized by dividing the negative value of the difference by the
maximum possible drop (the value of DefAcci). The default accuracy for a
given data set is simply the accuracy obtained when using the most frequent

144 Gisele Pappa et al.

class in the training set to classify new examples in the validation (or test)
set.

The fitness values obtained by the process just described are used for
selecting the best individuals in the population, and passing them onto the
new generations. At the end of the evolution process, the individual with the
best fitness value is returned as the GGP’s final solution.

However, in order to verify if the newly created rule induction algorithm is
really effective, we have to test it in a new set of data sets, which where unseen
during the GGP’s evolution. This new set of data sets was named meta-test
set, and it is the accuracy obtained by the discovered rule induction algorithms
in these data sets which has to be taken into account when evaluating the GGP
system.

4.4 Evolutionary Operators

After individuals are generated and evaluated, they are selected to undergo
reproduction, crossover and mutation operations, according to used defined
probabilities. The reproduction operator simply copies the selected individual
to the new population, without any modifications. The crossover operator,
in contrast, involves two selected individuals, and swaps a selected subtree
between them. The mutation operator also selects a subtree of one selected
individual, and replace it by a new, randomly generated tree.

However, in GGP systems, the new individuals produced by the crossover
and mutation operators have to be consistent with the grammar. For instance,
when performing crossover the system cannot select a subtree with root Eval-
uateRule to be exchanged with a subtree with root SelectCandidateRules,
because this would create an invalid individual according to the grammar.

Therefore, crossover operations have to exchange subtrees whose roots
contain the same non-terminal. Mutation can be applied to a subtree rooted
at a non-terminal or applied to a terminal. In the former case, the subtree
undergoing mutation is replaced by a new subtree, produced by keeping the
same label in the root of the subtree and then generating the rest of the
subtree by a new sequence of applications of production rules, so producing
a new derivation subtree. When mutating terminals, the terminal undergoing
mutation is replaced by another “compatible” symbol, i.e., a terminal or non-
terminal which represents a valid application of the production rule whose
antecedent is that terminal’s parent in the derivation tree. The probability of
mutating a non-terminal is 90%, while the probability of mutating a terminal
is 10%.

Figure 3 shows an example of a crossover operation. Note that just part
of the individuals are shown, for the sake of simplicity. The process works
as follows. Parent 1 has a node probabilistically selected for crossover. In
the example illustrated, the chosen node is RefineRule. The node RefineRule
is then searched in the derivation tree of parent 2. As parent 2 has a node
named RefineRule, their subtrees are swapped, generating child 1 and child

Discovering Rule Induction Algorithms with Genetic Programming 145

Fig. 3. Example of Crossover in the proposed GGP

2. If RefineRule is not present in the tree of parent 2, a new non-terminal is
selected from the tree of parent 1. The GGP performs at most 10 attempts
to select a node which can be found in both parents. If after 10 attempts it
does not happen, both individuals undergo mutation operations.

5 Computational Results and Discussion

In order to test the effectiveness of the proposed GGP system to discover new
rule induction algorithms, we have to define two different sets of parameters:
(1) the parameters for the GGP system and (2) the data sets used during the
training phase of the system.

Table 2 shows the 20 data sets used in the experiments. The figures in the
column Examples indicate the number of examples present in the training and
validation data sets – numbers before and after the “/”, respectively, followed
by the number of nominal attributes, numerical attributes and classes. The
last column shows the default accuracy. It is important to note that during the
evolution of the rule induction algorithm by the GGP, for each data set in the
meta-training set, each candidate rule induction algorithm (i.e., each GGP
individual) is trained with 70% of the examples, and then validated in the

Parent 1 ...

FindRule

Remove1

if

innerIf

condIf then RefineRule else RefineRule

Evaluate
Rule

Stopping
Criterion

SelectCandidate
Rule

ruleSizeSmaller 5 RemoveCond AddCond

Add1

Laplace MinAccury
70 10CR

Parent 2 ...

FindRule

AddCond

Add2

RefineRule Evaluate
Rule

Stopping
Criterion

SelectCandidate
Rule

InfoGain Significance
Test70 5CR

Child 1 ...

FindRule

Remove1

if

innerIf

condIf then RefineRule else RefineRule

Evaluate
Rule

Stopping
Criterion

SelectCandidate
Rule

ruleSizeSmaller 5 AddCond

Add2

AddCond

Add1

Laplace MinAccury
70 10CR

Child 2...

FindRule

RefineRule

RemoveCond

Evaluate
Rule

Stopping
Criterion

SelectCandidate
Rule

InfoGain Significance
Test70 5CR

146 Gisele Pappa et al.

Table 2. Data sets used by the GGP

Data set Examples
Attributes

Classes
Def. Acc.

Nomin. Numer. (%)

monks-2 169/432 6 - 2 67
monks-3 122/432 6 - 2 52
bal-scale-discr 416/209 4 - 3 46
lymph 98/50 18 - 4 54
zoo 71/28 16 - 7 43
glass 145/69 - 9 7 35.2
pima 513/255 - 8 2 65
hepatitis 104/51 14 6 2 78
vehicle 566/280 - 18 4 26
vowel 660/330 3 10 11 9
crx 461/229 9 6 2 67.7
segment 1540/770 - 19 7 14.3
sonar 139/69 - 60 2 53
heart-c 202/101 7 6 2 54.5
ionosphere 234/117 - 34 2 64
monks-1 124/432 6 - 2 50
mushroom 5416/2708 23 - 2 52
wisconsin 456/227 9 - 2 65
promoters 70/36 58 - 2 50
splice 2553/637 63 - 3 52

remaining 30%. In contrast, in the meta-test set, the evolved rule induction
algorithms are evaluated using a well-known 5-fold cross validation procedure
(Witten and Frank, 2005).

As our priority was to investigate the influence the GGP parameters have
in the quality of the rule induction algorithms produced, we first defined the
data sets which will be used in the GGP meta-training and meta-test sets.
However, it is not clear how many data sets should be used in each of these
meta-sets of data, or what would be the best criteria to distribute them into
these two meta-sets. Intuitively, the larger the number of data sets in the meta-
training set, the more robust the evolved rule induction algorithm should be.
On the other hand, the smaller the number of data sets in the meta-test set,
the less information we have about the ability of the evolved rule induction
algorithm to obtain a high predictive accuracy for data sets unseen during the
evolution of the algorithm.

As a reasonable compromise, the data sets in Table 2 were divided into 2
groups of 10 data sets each. The top 10 sets listed in Table 2 were inserted
into the meta-training set, while the bottom 10 data sets formed the meta-test
set. We selected the data sets which compose the meta-training set based on
the execution time of rule induction algorithms, so that we included in the
meta-training set the data sets leading to faster runs of the rule induction
algorithms.

Discovering Rule Induction Algorithms with Genetic Programming 147

After creating the meta-training and meta-test sets, we turned to the GGP
parameters: population size, number of generations and crossover, mutation
and reproduction rates. In all the experiments reported in this section the
population size is set to 100 and the number of generations to 30. These two
figures were chosen when evaluating the GGP evolution in preliminary experi-
ments, but are not optimized. Regarding crossover, mutation and reproduction
rates, GPs usually use a high rate of crossover and low rates of mutation and
reproduction. However, the balance between these three numbers is an open
question, and may be very problem dependent (Banzhaf et al., 1998).

In previous experiments, we set the value for the reproduction rate pa-
rameter to 0.05, and run the GGP with crossover/mutation rates of 0.5/0.45,
0.6/0.35, 0.7/0.25, 0.8/0.15 and 0.9/0.05, respectively. The results obtained
by the GGP when run with these different parameters configurations showed
that the system was robust to these variations, producing very similar results
with all the configurations. In the experiments reported in this section, the
crossover rate was set to 0.7 and the mutation rate to 0.25.

The results obtained by the GGP-derived rule induction algorithms (GGP-
RIs) were compared with four well-known rule induction algorithms: the or-
dered (Clark and Niblett, 1989) and unordered (Clark and Boswell, 1991)
versions of CN2, Ripper (Cohen, 1995) and C4.5Rules (Quinlan, 1993). Out
of these four algorithms, C4.5Rules is the only one which does not follow the
sequential covering approach, which is the approach followed by the GGP-RIs.
However, as C4.5Rules has been used as a benchmark algorithm for classifi-
cation problems for many years, we also included it in our set of baseline
comparison algorithms.

It is also important to observe that the current version of the grammar
does not include all the components present in Ripper, but does include all
the components present in both versions of CN2. In other words, the space of
candidate rule induction algorithms searched by the GGP includes CN2, but
it does not include C4.5Rules nor the complete version of Ripper.

Table 3 shows the average accuracy obtained by the rule induction algo-
rithms produced by the GGP in 5 different runs, followed by the results of
runs of Ordered-CN2, Unordered-CN2, Ripper and C4.5Rules (using default
parameter values in all these algorithms). Note that the results reported in
Table 3 are the ones obtained in the data sets belonging to the meta-test set
(containing data sets unseen during the GGP evolution), and were obtained
using a 5-fold cross-validation procedure for each data set. The results ob-
tained by the GGP in the data sets belonging to the meta-training set are not
reported here because, as these data sets were seen by the GGP many time
during evolution, it is not fair to compare them with any other algorithms.
The numbers after the symbol “±” are standard deviations. Results were com-
pared using a statistical t-test with significance level 0.01. Cells in dark gray
represent significant wins of the GGP-RIs against the corresponding baseline
algorithm, while light gray cells represent significant GGP-RIs’ losses.

148 Gisele Pappa et al.

Table 3. Comparing predictive accuracy rates (%) for the data sets in the meta-test
set

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Rules

crx 77.46±3.8 80.16 ± 1.27 80.6 ± 0.93 84.37 ± 1.21 84.82 ± 1.53
segment 95.06±0.26 95.38 ± 0.28 85.26 ± 0.87 95.44 ± 0.32 88.16 ± 7.72
sonar 72.34±1.91 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68
heart-c 76.72±1.5 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43
ionosphere 87.04±2.2 87.6 ± 2.76 90.52 ± 2.03 89.61 ± 1.75 89.06 ± 2.71
monks-1 99.93±0.07 100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0
mushroom 99.98±0.02 100 ± 0 100 ± 0 99.96 ± 0.04 98.8 ± 0.06
wisconsin 95.58±0.74 94.58 ± 0.68 94.16 ± 0.93 93.99 ± 0.63 95.9 ± 0.56
promoters 78.98±2.93 81.9 ± 4.65 74.72 ± 4.86 78.18 ± 3.62 83.74 ± 3.46
splice 88.68±0.31 90.32 ± 0.74 74.82 ± 2.94 93.88 ± 0.41 89.66 ± 0.78

In total, Table 3 contains 40 comparative results between GGP-RIs and
baseline algorithms – 10 data sets × 4 baseline classification algorithms. Out
of theses 40 cases, the accuracy of GGP-RIs was statistically better than the
accuracy of a baseline algorithm in three cases, whilst the opposite was true
in one case. In the other 36 cases there was no significant difference.

The GGP-RIs’ predictive accuracies are statistically better than the
C4.5Rules’ accuracy in mushroom and Unordered-CN2’s accuracy in segment
and splice. Naturally, these three cases involve algorithms with the worst ac-
curacy for the respective data set. It is also in a comparison among Ripper
and the GGP-RIs in splice where the GGP-RIs obtain a significantly worse
accuracy than Ripper.

Hence, these experiments lead us to conclude that the GGP-RIs can eas-
ily outperform classifiers which are not competitive with the other baseline
algorithms. For example, in splice the predictive accuracy of Unordered-CN2
is 74.82 ± 2.94, while the other algorithms obtain accuracies close to 90%. In
this case, the GGP-RIs can easily find a better accuracy than the one found
by Unordered-CN2.

On the other hand, we can say that the GGP was not able to find a rule
induction algorithm good enough to outperform the predictive accuracies of
Ripper in splice because it did not have all the components necessary to do
that in its grammar. However, note that the accuracy obtained by Ripper
in splice is also statistically better than the ones obtained by C4.5Rules and
Ordered-CN2 when applying a t-test with 0.01 significance level.

Finally, recall that the search space of the GGP includes both Unordered
and Ordered CN2. Hence, it seems fair to expect that the GGP-RIs would
never obtain a predictive accuracy significantly worse than either version of
CN2. Indeed, this was the case in the experiments reported in Table 3, where
the GGP-RIs significantly outperformed Unordered-CN2 in two cases (dark

Discovering Rule Induction Algorithms with Genetic Programming 149

Algorithm 2: Example of a Decision List Algorithm created by the
GGP

RuleList = ∅
repeat

bestRule = an empty rule
candidateRules = ∅
candidateRules = candidateRules ∪ bestRule
while candidateRules 6= ∅ do

newCandidateRules = ∅
for each candidateRule CR do

Add 2 conditions-at-a-time to CR
Evaluate CR using the Laplace estimation
newCandidateRules = newCandidateRules ∪ CR

candidateRules = 5 best rules selected from newCandidateRules
bestRule’ = best rule in candidateRules
if Laplace(bestRule’)> Laplace(bestRule) then bestRule = bestRule’

if accuracy(bestRule) < 0.7 then break
else RuleList = RuleList ∪ bestRule

until all examples in the training set are covered

gray cells in that table), and there was no case where either version of CN2
significantly outperformed the GGP-RIs.

So far we have shown that the evolved GGP-RIs are competitive to tradi-
tional human-designed rule induction algorithms. But how similar the former
are to the latter? Out of the 5 GGP-RIs produced by the experiments de-
scribed in this section (corresponding to 5 runs of the GGP with a different
random seed in each run), 3 shared one relatively uncommon characteristic:
they added two conditions instead of one condition at-a-time to an empty rule,
as shown in Alg. 2. Alg. 2 starts to produce rules with an empty condition,
adds two condition-at-a-time to it, evaluates the rule with the new conditions
using the Laplace estimation and selects the best 5 produced rules to go on
into the refinement process. The algorithm keeps inserting new conditions to
the best selected rules until all the examples in the training set are covered,
or while the rules found have accuracy superior to 70%.

In other words, Alg. 2 is a variation of CN2 where two conditions are
added to a rule at-a-time. The other difference with respect to CN2 lies on
the condition used to stop inserting rules to the model (predictive accuracy
superior to 70%). But why most of the algorithms produced by the GGP are
similar to CN2?

The UCI data sets (Newman et al., 1998) are very popular in the machine
learning community, and they have been used to benchmark classification al-
gorithms for a long time. To a certain extent, most of the manually-designed
rule induction algorithms were first designed or later modified targeting these
data sets. The fact that the evolved rule induction algorithms are similar to
CN2 is evidence that CN2 is actually one of the best algorithms in terms of

150 Gisele Pappa et al.

average predictive accuracy in a set of data sets available in the UCI repos-
itory. At the same time, as the rule induction algorithms produced by the
GGP showed, there are many other variations of the basic sequential cover-
ing pseudo-code which obtain accuracies competitive to the ones produced by
CN2, Ripper or C4.5Rules. In general, the evolved algorithms did not obtain
significantly better accuracies than the baseline classification algorithms, but
the former obtained slightly better results than the latter, overall. This can
be observed in Table 3, which contains three significant wins (dark gray cells)
and just one significant loss (light gray cell) for the evolved algorithms.

6 Conclusions and Future Directions

This work presented a grammar-based genetic programming system which au-
tomatically discovers new sequential covering rule induction algorithms. Com-
putational results showed that the system can effectively evolve rule induction
algorithms which are competitive in terms of accuracy with well-known human
designed rule induction algorithms.

This work opens a whole new area of research, and there are many other
directions which could be taken. Improvements to the current work include
changing the fitness of the system to use the ROC framework, and studying
the impacts this change would have in the created rule induction algorithms.

A more interesting direction, which at the moment is part of our ongoing
work, is to automatically create rule induction algorithms tailored to a spe-
cific application domain. In other words, we can replace the meta-training and
meta-test sets of the current GGP system by a single data set, correspond-
ing to a target application domain, and produce customized rule induction
algorithms. This would be a great contribution to the area of meta-learning,
in particular, which is putting many efforts into finding which algorithms are
the best to mine specific data sets.

Acknowledgments

The first author is financially supported by CAPES, the Brazilian Research
Council, process number 165002-5.

References

Aho, A.V., Sethi, R., Ullman, J.D, (1986), Compilers: Principles, Techniques and
Tools. 1st edn. Addison-Wesley.

Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D, (1998), Genetic Program-
ming – An Introduction; On the Automatic Evolution of Computer Programs
and its Applications. Morgan Kaufmann.

Discovering Rule Induction Algorithms with Genetic Programming 151

Bhattacharyya, S, (1998), Direct marketing response models using genetic algo-
rithms. In: Proc. of 4th Int. Conf. on Knowledge Discovery and Data Mining
(KDD-98). 144–148.

Caruana, R., Niculescu-Mizil, A, (2004), Data mining in metric space: an empirical
analysis of supervised learning performance criteria. In: Proc. of the 10th ACM
SIGKDD Int. Conf. on Knowledge discovery and data mining (KDD-04), ACM
Press 69–78.

Clark, P., Boswell, R., (1991), Rule induction with CN2: some recent improvements.
In Kodratoff, Y., ed, EWSL-91: Proc. of the European Working Session on
Learning on Machine Learning, New York, NY, USA, Springer-Verlag 151–163.

Clark, P., Niblett, T, (1989), The CN2 induction algorithm. Machine Learning 3
261–283.

Cohen, W.W., (1995), Fast effective rule induction. In Prieditis, A., Russell, S.,
eds, Proc. of the 12th Int. Conf. on Machine Learning (ICML-95), Tahoe City,
CA, Morgan Kaufmann 115–123.

Fawcett, T, (2003), Roc graphs: Notes and practical considerations for data mining
researchers. Technical Report HPL-2003-4, HP Labs.

Flach, P, (2003), The geometry of roc space: understanding machine learning
metrics through roc isometrics. In: Proc. 20th International Conference on
Machine Learning (ICML-03), AAAI Press 194–201.

Freitas, A.A, (2002), Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer-Verlag.

Fürnkranz, J, (1999), Separate-and-conquer rule learning. Artificial Intelligence
Review 13(1) 3–54.

de la Iglesia, B., Debuse, J.C.W., Rayward-Smith, V.J, (1996) Discovering knowl-
edge in commercial databases using modern heuristic techniques. In: Proc. of
the 2nd ACM SIGKDD Int. Conf. on Knowledge discovery and data mining
(KDD-96), 44–49.

Genetic Programming, http://www.genetic-programming.org/ (2006)
Koza, J.R, (1992), Genetic Programming: On the Programming of Computers by

the means of natural selection. The MIT Press, Massachusetts.
Michalski, R.S, (1969), On the quasi-minimal solution of the general covering

problem. In: Proc. of the 5th Int. Symposium on Information Processing, Bled,
Yugoslavia 125–128.

Mitchell, T, (1997), Machine Learning. Mc Graw Hill.
Naur, P, (1963), Revised report on the algorithmic language algol-60. Communi-

cations ACM 6(1) 1–17.
Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J., (1998), UCI Repos-

itory of machine learning databases. University of California, Irvine,
http://www.ics.uci.edu/∼mlearn/MLRepository.html

Pappa, G.L., Freitas, A.A. (2006), Automatically evolving rule induction algo-
rithms. In Fürnkranz, J., Scheffer, T., Spiliopoulou, M., eds, Proc. of the 17th

European Conf. on Machine Learning (ECML-06). Volume 4212 of Lecture
Notes in Computer Science., Springer Berlin/Heidelberg 341–352.

Pappa, G.L, (2007), Automatically Evolving Rule Induction Algorithms with
Grammar-based Genetic Programming. PhD thesis, Computing Laboratory,
University of Kent, Cannterbury, UK.

Provost, F., Fawcett, T., Kohavi, R, (1998), The case against accuracy estimation
for comparing induction algorithms. In: Proc. of the 15th Int. Conf. on Machine

152 Gisele Pappa et al.

Learning (ICML-98), San Francisco, CA, USA, Morgan Kaufmann Publishers
Inc. 445–453.

Quinlan, J.R, (1993), C4.5: programs for machine learning. Morgan Kaufmann.
Witten, I.H., Frank, E, (2005), Data Mining: Practical Machine Learning Tools

and Techniques with Java Implementations. 2nd edn. Morgan Kaufmann.
Zhang, J, (1992), Selecting typical instances in instance-based learning. In: Proc.

of the 9th Int. Workshop on Machine learning (ML-92), San Francisco, CA,
USA, Morgan Kaufmann 470–479.

Evolutionary Design of Code-matrices for
Multiclass Problems

Ana Carolina Lorena1 and André C. P. L. F. de Carvalho1

1 Centro de Matemática, Computação e Cognição
Universidade Federal do ABC
Rua Catequese, 242,09210-170,
Santo André, SP,
Brazil
ana.lorena@ufabc.edu.br

2 Ciências de Computação
Instituto de Ciências Matemática e de Computação
Universidade de São Paulo - Campus de São Carlos
Caixa Postal 668 13560-970 São Carlos, SP, Brazil
andre@icmc.usp.br

Summary. Several real problems involve the classification of data into categories or
classes. Given a dataset containing data whose classes are known, Machine Learning
algorithms can be employed for the induction of a classifier able to predict the class
of new data from the same domain, performing the desired discrimination. Several
machine learning techniques are originally conceived for the solution of problems
with only two classes. In multiclass applications, an alternative frequently employed
is to divide the original problem into binary subtasks, whose results are then com-
bined. The decomposition can be generally represented by a code-matrix, where each
row corresponds to a codeword assigned for one class and the columns represent the
binary classifiers employed. This chapter presents a survey on techniques for mul-
ticlass problems code-matrix design. It also shows how evolutionary techniques can
be employed to solve this problem.

1 Introduction

Many problems involve the classification of data into categories or classes.
Given a training dataset, Machine Learning (ML) (Mitchell, 1997) algorithms
can be employed for the induction of a classifier, which should be able to
predict the class of new data from the same domain.

A classification problem with only two classes is known as a binary classi-
fication problem. An example of a binary classification problem is the medical
diagnostic of a particular disease. In this example, the induced classifier uses
clinical information from a patient to determine if he/she has a particular dis-

154 Ana Carolina Lorena and André C. P. L. F. de Carvalho

ease. The classes represent the presence or absence of the disease. Many real
problems, however, involve the discrimination of more than two categories or
classes. Examples of such problems are the classification of handwritten dig-
its (Knerr et al., 1992), the distinction of multiple types of cancer (Statnikov
et al., 2005) and text categorization (Berger, 1999,Ghani, 2000).

A multiclass classification problem is intrinsically more complex than a
binary problem, since the generated classifier must be able to separate the
data into a larger number of categories, which also increases the chances of
committing classification errors. Let us consider, for example, a balanced clas-
sification problem, with similar number of data per class, with equiprobable
classes and a random classifier. If the problem is binary, the chance to obtain
a correct classification is of 50%. For four classes, this chance reduces to 25%.

Several popular ML techniques are originally designed for the solution of
binary classification problems. Among them, one can mention the Support
Vector Machines (SVMs) (Cristianini and Shawe-Taylor, 2000) and the Ad-
aboost algorithm (Freund and Schapire, 1997).

Two approaches have been adopted in the literature to deal with multi-
class problems using binary classification techniques: adaptation of the inter-
nal operations of the classifier training algorithm and decomposition of the
multiclass problem into a set of two-class classification problems.

The extension of a binary learning algorithm to a multiclass version may be
either impractical or, frequently, not easy to perform (Passerini et al., 2004).
For SVMs, in particular, Hsu and Lin (2002) observed that the reformulation
of this technique into multiclass versions leads to high cost training algorithms.
Therefore, it is common to use the alternative of decomposing the multiclass
problem into binary subproblems, a strategy named decomposition.

The decomposition performed can be generally represented by a code-
matrix M (Allwein et al., 2000). This matrix has k rows, representing code-
words assigned to each of the k classes in the multiclass problem and the
columns correspond to the desired outputs of the binary classifiers induced in
the decomposition.

There are several alternatives to decompose the multiclass problem into
binary subtasks (Allwein et al., 2000). This chapter surveys recent develop-
ments in how to decompose multiclass problems into binary subproblems.
This task can be formulated as the problem of designing code-matrices. This
chapter also shows how Genetic Algorithms (GAs) (Mitchell, 1999), a search
technique based on principles of genetics and natural evolution, can be used
to solve the code-matrix design problem.

Initially, Section 2 introduces the code-matrix framework to solve multi-
class problems. Section 3 discusses the code-matrix design problem. Section
4 describes how GAs can be used to solve the code-matrix design problem.
Section 5 presents a general discussion on experimental results achieved by
the described techniques and Section 6 concludes this chapter.

Evolutionary Design of Code-matrices for Multiclass Problems 155

2 Code-matrix Decomposition of Multiclass Problems

Classification using ML techniques consists of inducing a function f(x) from
a dataset composed of pairs (xi, yi), where yi ∈ {1, . . . , k}. Some learning
techniques, like the SVMs (Cristianini and Shawe-Taylor, 2000), are originally
restricted to classification problems where k = 2, i. e., to binary classification
problems.

The most common approach for the generalization of binary classification
techniques to solve multiclass problems is to decompose the original problem
into several binary subproblems. The learning algorithm induces a classifier
for each one of these subproblems. The outputs of these classifiers are then
combined to obtain the multiclass prediction.

There are several motivations for the use of decomposition strategies
in multiclass solutions. Mayoraz and Moreira (1996), Masulli and Valentini
(2000) and Frnkranz (2002) state that the use of a decomposition approach
may reduce the complexity involved in the classes separation. Herewith, it can
also benefit ML techniques whose algorithms are easily extensible to the so-
lution of multiclass problems. Knerr et al.. (1992), for example, observed that
the classes in a digit recognition problem could be linearly separated when
considered in pairs. Therefore, they opted to combine linear classifiers for all
pairs of classes, an alternative considered simpler than the use of an unique
classifier able to separate all classes simultaneously.

Pimenta (2005b) also points that the decomposition approach opens up
new possibilities for the use of parallel processing, since the binary subprob-
lems are independent and can be solved in different processors.

Section 2.1 reviews the main decomposition techniques from the litera-
ture. Next, Section 2.2 describes the code-matrix framework, generally used
to represent the decomposition strategies.

2.1 Common Decomposition Strategies

The most straightforward decomposition strategy is the one-against-all (1AA).
Given a problem with k classes, k binary classifiers are generated by using
this strategy. Each classifier is responsible to distinguish a class i from the
remaining classes. The final prediction is usually given by the classifier with
the highest output value.

Another standard methodology, named one-against-one (1A1), consists of
building k(k − 1)/2 predictors, each differentiating a pair of classes i and j,
where i 6= j (Knerr et al., 2000, Hastie and Tibshirani, 1998). To combine
the outputs produced by these classifiers, a majority voting scheme can be
applied (Kreβel, 1999). Each 1A1 classifier gives one vote to its preferred
class. The final result is the class with most of the votes.

Dietterich and Bariki (1995) suggested to see the ML solution of a mul-
ticlass problem as a communication task, where the correct class of a new
example must be transmitted by a channel. This channel is constituted by

156 Ana Carolina Lorena and André C. P. L. F. de Carvalho

the example attributes, the training data and the learning algorithm. Due to
errors that can be present in the attributes, in the training data and/or failures
in the classifier learning process, the class information can be disrupted. To
provide the system the ability to recover from these transmission errors, the
class is codified by an error correcting code and each of its bits is transmitted
separately, that is, through separate executions of the learning algorithm.

Herewith, a distributed output code is used to represent the k classes
associated to the multiclass problem. A codeword of length l is assigned to
each class. Commonly, the size of the codewords has more bits than needed
in order to represent each class uniquely. The additional bits can be used to
correct eventual classification errors. For this reason, this method is named
error-correcting output coding (ECOC).

The generated codes are stored on a matrix M ∈ {−1, +1}kxl. The rows of
this matrix represent the codewords of each class and the columns correspond
to the desired outputs of the l binary classifiers (f1(x), ..., fl(x)) induced.

A new pattern x can be classified by evaluating the predictions of the
l classifiers, which generate a vector f(x) of length l. This vector is then
compared to the rows of M. The example is assigned to the class with the
closest row according to the Hamming distance. This process is also named
decoding.

Dietterich and Bariki (1995) proposed codewords to be designed in order
to maximize their error correcting capability and presented four techniques for
the construction of good error correcting codes. The choice of each technique
is determined by the number of classes in the problem. These techniques are
briefly described in Section 3.

2.2 Code-Matrix Framework

Allwein et al.(2000) presented a framework that unified the previous strategies
and can be generally used to represent decomposition techniques. Throughout
this framework, the decomposition strategies are reduced to code-matrix based
methods. For such, a value from the set {−1, 0,+1} is assigned to each element
of the code-matrix M. Figure 1 presents an example of code-matrix for a
problem with four classes that uses four classifiers in the decomposition of the
multiclass problem. It also shows, bellow this matrix, the binary partitions of
classes imposed by each of the binary classifiers in the matrix columns.

Each element of the matrix assumes values in the set {−1, 0,+1}. An
element mij with +1 value indicates that the class correspondent to row i
assumes a positive label in classifier fj induction. The −1 value designates
a negative label and the 0 value indicates that the data from class i do not
participate on classifier fj induction. Binary classifiers are then trained to
learn the labels represented in the columns of M.

In the 1AA case, M has dimension kxk, with diagonal elements equal to
+1. The remaining elements are equal to −1. In the 1A1 decomposition, M
has dimension kxk(k−1)/2 and each column corresponds to a binary classifier

Evolutionary Design of Code-matrices for Multiclass Problems 157

Fig. 1. Example of code-matrix for a problem with four classes

for a pair of classes (i, j). In each column representing a pair (i, j), the value
of the elements corresponding to lines i and j are defined as +1 and −1,
respectively. All other elements receive the value 0, indicating that patterns
from the other classes do not participate on the induction of this particular
binary classifier.

The prediction of a new pattern’s class involves a decoding step, like in
the ECOC strategy. Several decoding strategies have been proposed in the
literature (Passerini et al., 2004,Allwein et al., 2000,Windeatt and Ghaderi,
2003,Escalera et al., 2006,Klautau et al., 2003). This chapter is concerned with
the problem of decomposing the multiclass problem. For this reason, readers
interested in the decoding step should look at (Passerini et al., 2004,Allwein
et al., 2000,Windeatt and Ghaderi, 2003,Escalera et al., 2006,Klautau et al.,
2003) and related publications.

In experimental studies, Allwein et al.(2000) have not verified any clear
winner among different coding strategies, including 1AA, 1A1, dense random
codes and sparse random codes. The authors pointed out the necessity of
formulating methods to design problem specific output codes.

Next section describes the code-matrix design problem and reviews some
of the main developments in this area.

3 Code-matrix Design Problem

Several alternatives can be employed in order to decompose a multiclass prob-
lem into multiple binary subproblems. The most compact decomposition of a

158 Ana Carolina Lorena and André C. P. L. F. de Carvalho

problem with k classes can be performed with the use of l = dlog2 (k)e binary
classifiers (Mayoraz and Moreira, 1996). One example of compact matrix for
a problem with four classes is presented in Figure 2a.

Fig. 2. Different code-matrices for a problem with four classes

The total number of different binary predictors for a problem with k classes
is 0.5

(
3k + 1

) − 2k, considering that f = −f , that is, that the inversion of
the positive and negative labels produces the same classifier (Mayoraz and
Moreira, 1996). Among those, 2k−1 − 1 include all classes simultaneously, i.
e., have only the labels +1 and −1, without the 0 element. One example of
code-matrix constituted of such classifiers for a problem with four classes is
illustrated in Figure 2b.

Among the main decomposition strategies reported in the literature one
can mention: 1AA, 1A1 (Knerr et al., 2000,Hastie and Tibshirani, 1998) and
ECOC (Dietterich and Bariki, 1995). The 1AA and 1A1 code-matrices were
already described on Section 2. Figures 2c and 2d represent the 1AA and 1A1
matrices, respectively, for a problem with four classes.

The 1AA decomposition has some disadvantages when the number of ex-
amples in one class is much smaller than number of data in other classes. This
unbalance may harm the induction of a classifier with good predictive perfor-
mance in the considered class. In the 1A1 case, the answer of a predictor for
a pair of classes (i, j) does not provide useful information when the example
does not belong to classes i or j (Alpaydin and Mayoraz, 1999).

Section 3.1 reviews some strategies used in order to obtain ECOC ma-
trices, i. e., code-matrices with error correcting ability. Section 3.2 describes

Evolutionary Design of Code-matrices for Multiclass Problems 159

techniques able to adapt code-matrices to each multiclass problem under con-
sideration. Section 3.3 presents other strategies employed in code-matrices
obtainment. Although several authors refer to all types of code-matrices for
multiclass problems as ECOCs, in this chapter, we will consider as ECOCs
only code-matrices developed to have an error correcting capability.

Unless it is explicitly stated, the described works use binary code-matrices,
that is, code-matrices with only +1 and −1 elements.

3.1 ECOC Design

Dietterich and Bariki (1995) enforce two characteristics necessary to ensure
error correcting capability when designing ECOC matrices:

• Row separation;
• Column separation.

Where the separation is measured through Hamming distance, which is
equal to the differences between different bit strings3. Constant columns (with
only positive or negative elements) should also be avoided, since they do not
represent a binary decision problem.

Let dm designate the minimum Hamming distance between any pair of
rows of M. The final ECOC multiclass classifier is able to correct at least⌊

dm−1
2

⌋
errors of the binary classifiers outputs. Since according to the Ham-

ming distance each incorrect prediction implies in deviating one unity from
the correct class codeword, committing

⌊
dm−1

2

⌋
errors, the closest codeword

will still be that of the correct class (Dietterich and Bariki, 1995). This is
the reason why a high row separation is demanded. According to this prin-
ciple, the 1AA coding is unable to recover from any error, since its dm is
equal to 2. The row separation requirement is also demanded in the design
of Error-Correcting Codes (ECC) in telecommunications (Alba and Chicano,
2004).

Besides, to obtain good error correcting codes for the multiclass problem
solution, the errors of the binary classifiers induced must be uncorrelated. For
such, a column separation is also demanded, that is, the Hamming distance
among each pair of columns of M must be high. If in the learning algorithm
the inversion of the positive and negative labels produces the same classifier
(f = −f), the Hamming distance between each column and the complement
of the others must also be maximized.

Based on these observations, Dietterich and Bariki (1995) proposed four
techniques to design code-matrices with good error-correcting capability. The
choice of each one of them is determined by the number of classes in the
multiclass problem. No justificative was given to how the numbers of classes
were stipulated for each method.

3 Recalling that in the ECOC framework, the code-matrix is constituted only of
the elements +1 and −1 and the Hamming distance is used in the decoding step.

160 Ana Carolina Lorena and André C. P. L. F. de Carvalho

• For k 6 7, they recommend the use of an exhaustive code, which consists
on the combination of the 2k−1−1 binary classifiers with labels +1 and −1,
as illustrated in Figure 1b for a problem with four classes. The codeword
of the first class is composed of only +1 values. For each other class i,
where i > 1, it is composed of alternate runs of 2k−i negative (−1) and
positive (+1) labels. The dm distance in the matrix obtained through the
exhaustive method is 2k−2.

• If 8 6 k 6 11, a method that selects columns from the exhaustive code is
applied.

• For k > 11, there are two options: a method based on the hill-climbing
algorithm and the generation of BCH codes (Boser and Ray-Chaudhuri,
1960), from the theory of designing good error correcting codes used in
communication coding. One problem with BCH codes is that they do not
ensure a good column separation.

In a recent work, Pimenta and Gama (2005) proposed an algorithm for the
design of ECOCs that presented competitive predictive performance against
traditional decompositions, using Decision Trees (DTs) (Quinlan, J.R., 1986)
and SVMs as base classifiers. They proposed a function for the evaluation of
the ECOCs quality according to their error-correcting properties. An iterative
persecution algorithm (PA) was then used to construct the ECOCs. This al-
gorithm adds or removes columns from an initial ECOC, in order to maximize
its quality.

In his Msc. Dissertation, Pimenta (2005b) also employed two algorithms
originally designed to obtain ECC in telecommunications in the obtainment of
ECOC matrices for multiclass problems. The first is the Repulsion Algorithm
(RA) (Alba and Chicano, 2004), based on the Physic behavior of equally
charged particles on a sphere. Under this situation, the particles will move
over the sphere until an equilibrium is reached. In the RA, each codeword is
considered a charged particle, positioned in one corner of a hypercube. The
movements allowed are to move from one corner to another, which corresponds
to invert one bit in the binary codeword. The RA tries to maximize an evalua-
tion function that gets higher as dm increases. Since the row separation is not
required in the design of an ECC, Pimenta adapted the evaluation function in
order to penalize matrices with identical or complementary columns. Pimenta
also tested an hybrid version of the RA. In this case, GAs are used to design
the code-matrices, aiming to maximize the evaluation function. The RA is
used in the mutation step of the GA. This hybrid algorithm is described in
Section 4.

Experimentally, PA performed better on finding valid ECOCs, where the
validity was measured by the criteria of avoiding equal, complementary and
constant columns, while RA was the worst method. Among the valid ECOCs
generated, in general PA still performed better, obtaining ECOCs with good
quality according to the evaluation function proposed by Pimenta and Gama

Evolutionary Design of Code-matrices for Multiclass Problems 161

(2005). Nevertheless, GARA (GA with RA) also designed ECOCs of good
quality.

Pimenta and Gama (2005) also suggested a method to determine the num-
ber of columns in the ECOC (i. e., the number of classifiers employed in the
decomposition), examining an evaluation function based on the number of
errors that can be corrected by ECOCs of different sizes.

Zhang et al.(2003) proposed the use of Hadamard matrices from the ECC
theory in the multiclass decomposition. They point out that these matrices can
be considered optimal ECOCs, within the pool of k class codes that combine
k − 1 base learners, where the optimality is measured according to the row
and column separations criteria. Nevertheless, the Hadamard matrices are
designed with numbers of rows of power two. For others numbers of classes,
some rows have to be deleted. Experimentally, these ECOCs performed better
than random and 1AA matrices, employing SVMs in the binary classifiers
induction.

There are some studies that claim that randomly designed ECOCs show
good multiclass predictive performance (Berger, 1999,Windeatt and Ghaderi,
2003,Tapia et al., 2003). Allwein et al.(2000), for example, evaluated the use
of two randomly designed matrices: dense and sparse. In the dense matrix
obtainment, 10,000 random matrices, with d10∗log2(k)e columns and elements
assuming −1 or +1 values with the same probability, are generated. The
matrix with higher dm and without identical or complementary columns is
chosen, following the directions of Dietterich and Bariki (1995) . In the sparse
matrix, which uses the ternary alphabet, the number of columns in the code-
matrix is d15 log2 ke, and the elements are chosen as 0 with 0.5 probability
and +1 or −1 with probability 0.25 each. Again, 10,000 random matrices are
generated and the one with higher dm is chosen.

Berger (1999) gives statistical and combinatorial arguments of why random
matrices can perform well. Among these arguments, are theorems that state
that random matrices are likely to show good row and column separations,
specially as their number of columns increases. Nevertheless, it is assumed
that the errors of the individual predictors are uncorrelated, which do not
hold for real applications.

Windeatt and Ghaderi (2002) also express the desirability of equidistant
codes. Equidistant codes are those for which the Hamming distance between
rows is approximately constant. It was shown that if M is an equidistant code-
matrix, the number of +1’s in different rows are the same and the number of
common +1’s between any pair of rows is equal. They used this heuristic to
select a subset of rows from BCH codes, producing equidistant code-matrices.
Experimentally, they verified that equidistant codes were superior to 1AA
and random codes for shorter codes (with less columns), using Multilayer
Perceptron (MLP) Neural Networks (NNs) (Haykin, 1999) as base classifiers.
As the length of the codes increases, the coding strategy seems to be less
significant, favoring a random design.

162 Ana Carolina Lorena and André C. P. L. F. de Carvalho

3.2 Adapting Code-matrices to the Multiclass Problems

A common criticism to the 1AA, 1A1 and ECOC strategies is that all of them
perform the multiclass problem decomposition a priori, without taking into
account the properties and characteristics of each application (Allwein et al.,
2000,Mayoraz and Moreira, 1996,Alpaydin and Mayoraz, 1999,Mayoraz and
Alpaydim, 1998,Dekel and Singer, 2003,Rätsch et al., 2003,Pujol et al., 2006).
Besides, Allwein et al.(2000) point out that, although the ECOC codes have
good error correcting property, several of the binary subproblems created may
be difficult to learn.

Crammer and Singer (2000) presented one of the most known attempts
to design code-matrices adapted to each multiclass problem considered. They
argued that finding a discrete code-matrix can be considered a NP-hard prob-
lem and relaxed it allowing that M had continuous elements. As a result of
their work, a version of SVMs for the direct solution of multiclass problems
was obtained. Although accuracy results of this technique are comparable to
those of the 1AA and 1A1 decomposition strategies used with SVMs (Hsu
and Lin, 2002), the complexity of the training algorithm is higher, implying
in a high computational cost.

Alpaydin and Mayoraz (1999) proposed to combine linear binary classifiers
in order to obtain a non-linear multiclass classifier. In this process, a MLP
NN is obtained, in which the first weight layer represents the parameters of
the linear classifiers, the internal nodes correspond to the linear classifiers
and the final weight layer is equivalent to the code-matrix. This NN has the
architecture and second layer weights initialized according to an usual code-
matrix. As a result, the code-matrix and classifiers parameters are optimized
jointly in the NN training. The proposed method showed higher accuracy
than those of 1AA, 1A1 and ECOC decompositions employing linear binary
classifiers.

In (Dekel and Singer, 2003), an algorithm named Bunching was introduced,
which, during the learning process, adapts code-matrices to the multiclass
problem. In this algorithm, the training data and their labels are mapped to
a common space. In this space, it is possible to define a function that measures
the divergence between the data and their labels. Two matrices are used in
the mapping process, one for the data and other for the labels, which is the
code-matrix. These two matrices are iteratively adapted by the algorithm in
order to obtain a minimum error for the training data. This error is measured
by the divergence between the training data and their labels in the common
space. The code-matrices are probabilistic. Given an initial code-matrix, the
Bunching algorithm modifies it according to the previous procedure. Given a
new example, it is mapped to the common space and the predicted class is
the one closer to the example in this space. Empirically, the authors verified
good results in the adaptation of code-matrices of the 1AA type and random
ones, using logistic regression classifiers (Collins et al., 2002).

Evolutionary Design of Code-matrices for Multiclass Problems 163

In (Rätsch et al., 2003), an optimization problem is formulated, in which
the codes and weights to the binary functions used in the decomposition are
determined jointly. A maximal margin approach is followed, in which the dif-
ference between the prediction vector f(x) to the code of the correct class and
the distance to the closer code from another class is maximized. Preliminary
experimental results indicated an advantage of this method in relation to the
direct use of DTs.

A heuristic method for designing ternary code-matrices based on a hier-
archical partition of the classes according to a discriminative criterion was
presented in (Pujol et al., 2006). The criterion used was the mutual informa-
tion between the feature data and its class label. Initiating with all classes,
they are recursively partitioned into two subsets in order to maximize the
mutual information measure, until each subset contains one class. These par-
titions define the binary predictors to be employed in the code-matrix. For a
problem with k classes, k − 1 binary classifiers are generated in this process.
Experimental results demonstrated the potential of the approach using DTs
and Boosted Decision Stumps (BDS) (Freund and Schapire, 1997) as base
classifiers. The algorithm showed competitive results against 1AA, 1A1 and
random code-matrices.

In (Lorena and Carvalho, 2006), GAs were used to determine ternary code-
matrices according to the performance obtained by them in the multiclass
problem solution. Another goal of the implemented GA was to minimize the
number of columns in the matrices, producing simpler decompositions. This
work will be better described in Section 4.

3.3 Other Strategies

This section presents code-matrix design works that could not be fully char-
acterized into one of the classes described in the previous sections, either
because they employ alternative criteria in the code-matrix design or because
a combination of the error-correcting and adaptiveness criteria is used.

In (Mayoraz and Moreira, 1996), an iterative algorithm to code-matrix
design was presented, which takes into account three criteria. The first two
are the same required by Dietterich and Bariki (1995) in the construction of
ECOCs. The third criterion is that each inserted column must be pertinent,
according to the positions of the classes in the input space. A binary partition
of classes is considered pertinent if it is easy to learn. The largest contribution
of this procedure was the use of classifiers simpler than those from ECOC.

Tapia et al.(2001) employed concepts from telecommunications coding the-
ory to propose a particular class of ECOCs named Recursive ECOCs (RE-
COC). The recursive codes are constructed from component subcodes of small
length, which may be weak when working on their own, but strong when work-
ing together. This results in an ensemble of ECOCs, where each component
subcode defines a local multiclass learner. Another interesting feature of RE-
COCs, pointed by the authors, is that they allow a regulated degree of ran-

164 Ana Carolina Lorena and André C. P. L. F. de Carvalho

domness in their design. Tapia et al.(2003) state that, according the telecom-
munications theory, a random code is the ideal way to protect information
against noise. The decoding of RECOC is adaptive and uses information from
the training error of the component subcodes in a belief propagation algo-
rithm, allowing some degree of adaptiveness. Experimentally, the RECOCs
achieved good results on a set of benchmark datasets using DTs and Boosted
decision stumps (BDS) (Freund and Schapire, 1997).

Following the channel coding theory, Prez-Cruz and Arts-Rodriguez (2002)
proposed to use a puncturing mechanism to prune the dependence among

that degrade the performance of a previously designed code-matrix, deleting

schemes. A ternary coding was employed, that is, the code-matrices could
have positive, negative and null elements. Experimentally, they achieved a
good performance when puncturing 1A1 and BCH ECOC codes.

The design of code-matrices to maximize diversity measures from the lit-
erature on classifier ensembles is proposed in (Kuncheva, 2005). The code-

1999), which evolves matrices based on their diversity measure performance.
However, the proposed framework was not evaluated experimentally on bench-
mark or real datasets.

In (Shen and Tan, 2005), GAs were employed to find ternary code-matrices
in order to optimize an evaluation function based on the margins of separation
among codes of different classes and the diversity among columns defined by
Kuncheva (2005). These works will be better described in Section 4. Exper-
imental results on multiclass classification of microarray cancer data showed
encouraging results compared to other multiclass decomposition strategies,
like 1AA and 1A1.

4 Evolutionary Design of Code-Matrices

The code-matrix design problem can be formulated as a search and optimiza-
tion problem. As stated in the previous section, there are 0.5

(
3k + 1

) − 2k

different binary predictors for a multiclass problem with k classes. A com-
binatorial number of associations of these classifiers is possible, determining
different decompositions of the multiclass problem. Based on this observation,
some works used Evolutionary Algorithms (EAs) (Eiben and Smith, 2003),
which are search techniques based on principles of evolution and genetics, to
solve the code-matrix design problem.

This section presents a review of these works. It starts with a brief intro-
duction to the main concepts of EAs (Section 4.1). After, as in the previous
section, the design of ECOCs is presented (Section 4.2), followed by a descrip-
tion of the design of code-matrices adapted to the solution of each multiclass

columns from it. As consequence, it permits to obtain less complex multiclass

matrices are constructed through the use of an evolutionary algorithm(Mitchell,

the binary classifiers in a code-matrix. This procedure eliminates classifiers

Evolutionary Design of Code-matrices for Multiclass Problems 165

problem (Section 4.3) and of other strategies employed in the matrices ob-
tainment (Section 4.4).

4.1 Evolutionary Algorithms

According to the natural evolution theory (Darwin, 1859), organisms better
adapted to their environment have higher chances to transmit their character-
istics to the next generation. Thus, the environment exerts a selection among
the individuals of a population, which privileges adapted individuals.

In 1900, the genetics theory was integrated to Darwin’s work, introducing
concepts that complemented it. One of the most important concepts is the
hereditability, which defines how characteristics of an individual are trans-
mitted to its descendants (Eiben and Smith, 2003). Two other aspects are
necessary for the occurrence of the natural selection: the reproduction and
the presence of variations among the characteristics of the individuals in a
population, that is, the presence of genetic variability. If the genetic vari-
ability is present in a population, the natural selection may act in order to
privilege individuals with characteristics that make then more adapted (or fit)
to the environment. Besides, new characteristics can be introduced.

EAs employ these concepts throughout the operation of a set of possi-
ble solutions to a problem. This set is named population. The population
is iteratively adapted through the application of genetic operators in order
to produce solutions each time more apt to solve the problem. Throughout
this process, a search procedure is performed, in which the optimal solution
with maximal fitness represents the objective to be found or approximated.
For this reason, EAs are regarded as search and optimization algorithms and
have been applied to several problems, including applications in the areas of
control, planning, combinatorial optimization and ML (Beasley, 2000).

The Genetic Algorithms (GAs) (Mitchell, 1999) can be considered one of
the main research areas of EAs. They were proposed by John Holland (1975),
with the initial aim of studying the adaptation mechanisms that occur in
nature and incorporating them into computational systems.

Given an initial population of possible solutions to a problem, referenced
as individuals, a GA seeks the global solution by an iterative process. At
each iteration, also named generation, a new population is produced, which
contains evolutions of individuals selected from the previous generation.

The individuals are encoded by a structure named chromosome. In the
basic GA, the chromosomes are represented as bit strings. Each bit, also ref-
erenced as a gene, represents the presence (value 1) or absence (value 0) of a
particular characteristic in the individual (Bäck, 2000). Nevertheless, there are
several other types of encoding and the representation is normally determined
according to the characteristics of the problem to be solved. The initial pop-
ulation is normally composed of either random solutions or solutions derived
from some heuristic related to the problem.

166 Ana Carolina Lorena and André C. P. L. F. de Carvalho

Next, it is necessary to define how to evaluate the individuals, quantify-
ing the fitness of each one of them to solve the problem. This evaluation is
performed by a fitness function, which decodes the information in the indi-
viduals’ chromosome and obtains a measure of its quality. As the encoding,
this function is problem dependent.

From the evaluated population, a selection mechanism will select individu-
als for the next generation, which will produce offspring to a new population.
The selection must privilege the fittest individuals, in accordance to the nat-
ural selection principles.

Following the concepts of hereditability, in the reproduction of the selected
individuals, their characteristics are combined in order to produce descen-
dants. This combination is performed by a genetic operator named cross-over.
The cross-over is a binary operator and is applied to two individuals. These
individuals, named parents, have their genes exchanged in order to produce
two new individuals, the offspring. Simulating the stochastic nature of evolu-
tion, the cross-over is usually applied according to a crossover rate pc, often in
the interval 0.6 ≤ pc ≤ 0.9 (Zitzler et al., 2004). For such, a random number is
generated. If it is lower than pc, the cross-over operator is applied. Otherwise,
the parents are directly passed to the next generation.

After the cross-over combination, a variability is introduced to the new
solutions by the application of an unary operator, named mutation. The mu-
tation operator alters values of genes of individuals. It is also applied accord-
ing to a rate pm, which is usually small, to prevent a high alteration of the
population, which would harm the GA convergence.

Other selection operator usually applied to a population is the elitism. In
the elitism, a proportion pe of the fittest individuals of the current population
are directly copied into the new population. This prevents the loss of good
solutions in the GA processing.

The procedures of generating a population, evaluating its individuals, se-
lection and application of the genetic operators are iterated, and form the
base of the GAs.

To stop the execution of a GA, different criteria can be used. The GA
may be stopped when a maximum number of generations is reached, when
the mean fitness of the population or the best individual does not change
for a given number of generations, when the fitness of the individuals in the
population become too alike or when a solution with the best known fitness
value is found.

The use of a population approach allied to the genetic operators enhance
the chance of finding the optimal solution in the search space when GAs
are compared to traditional search techniques, as the hill-climbing algorithm
(Michalewicz and Fogel, 2004). The GAs are also able to deal with solution
spaces composed of complex and different parts, in which the impact of each
part in the problem solution may be difficult to model by traditional search
techniques (Mitchell, 1997). They can also take advantage of the use of parallel
computation.

Evolutionary Design of Code-matrices for Multiclass Problems 167

Nevertheless, the exploration of populations of solutions also renders the
GAs a higher computational cost. GAs have also a set of parameters to be
set (pe, pc and pm, for example), whose definition affects their performance in
the problem solution.

4.2 Evolutionary ECOC Design

There are several works in communication theory employing GAs to obtain
Error Correcting Codes (for example, (Alba and Chicano, 2004, Alba et al.,
2002,Simn et al., 2006,Wallis and Houghten, 2002,Dontas and Jong, 1990)).
The ECC problem can be summarized as finding a code composed of k code-
words with l bits each that corrects a given maximum number of errors, which
is known to be a NP-hard optimization problem (Alba and Chicano, 2004).
There are conflicting objectives in the ECC design: finding minimum length
codewords (which imply in fast transmission) and maximize dm (for a higher
error-correcting capacity), which suggests to include more redundancy in the
codewords (more bits and, thus, the use of larger codewords). However, the
column separation and avoidance of constant columns are not required under
this theory, making difficult to use them directly to find ECOCs for multiclass
problems.

Pimenta (2005) adapted the GARA algorithm (Genetic Algorithm with
Repulsion Algorithm) (Alba and Chicano, 2004) from the telecommunications
theory to the generation of ECOC matrices. The chromosomes in this GA are
kxl binary strings, formed by the concatenation of the codewords in the code-
matrix M, as illustrated in Figure 3. A binary alphabet is used is this work.

Fig. 3. Example of chromosome in GARA (Alba and Chicano, 2004)

Defining dij as the Hamming distance between codewords i and j in the
code-matrix M and dm as in Section 3.1, the fitness function used that eval-
uates the individuals is presented in Equation 1.

fe (M) =
1

k∑
i=1

k∑
j=1

1
d2

ij

+
(

dm

12
+

d2
m

4
+

d3
m

6

)
(1)

168 Ana Carolina Lorena and André C. P. L. F. de Carvalho

The first part in the sum of Equation 1 measures how well the codewords
in M are separated in a space of l dimensions. Nevertheless, it may result
in a higher value for an ECOC with a lower dm than that of other ECOC,
which is against the desired. The second term is then added to the sum to
correct these cases. Overall, fe is higher for higher dm matrices and must be
maximized by the GA.

To take into account the column separation criterion, Pimenta (2005)
added a penalization term to the final fitness evaluation function, which is
illustrated by Equation 2.

pen (M) = 2 ∗ fe (M) ∗ p, where

p = 1 if M has equal columns
p = 1 if M has complementary columns
p = 0 otherwise

(2)
The final fitness function, which should be maximized by the GA, is then

given by Equation 3.

fit (M) = fe (M)− pen (M) (3)

The binary tournament selection chooses individuals for reproduction. The
cross-over operator used was the single-point cross-over. Details about these
operators may be found in (Mitchell, 1999). For mutation, an iteration of
the RA was employed, as a local-search procedure. The offspring produced
are inserted into a new population if they are better than its current worst
individuals. The GA stops when a maximum number of generations is reached
or an optimal matrix, according to the fitness function, is found.

As already reported in Section 3.1, the GARA algorithm was compared
to the RA and PA algorithms in the obtainment of ECOC code-matrices.
In general, PA was better in finding valid ECOCs of good quality, although
GARA also obtained good ECOCs.

4.3 Evolutionary Adaptation of Code-matrices to the Problems

As discussed in Section 3.2, many decomposition strategies design the code-
matrix a priori. Herewith, they do not take into account the properties and
characteristics of each multiclass application.

To overcome this deficiency, a proposal involving the use of GAs to design
code-matrices adapted to each multiclass problem was developed (Lorena and
Carvalho, 2006). In this proposal, the GA is responsible to determine the com-
bination of binary classifiers in a code-matrix M∗. Herewith, the rows of M∗,
which correspond to the codewords attributed to each class, are automatically
defined. The GA also determines the number of binary classifiers to be em-
ployed in the multiclass solution, that is, the number of columns contained in
M∗.

The evaluation of the matrices is based on their predictive performance in
the multiclass problem solution. The GA searches for matrices that minimize

Evolutionary Design of Code-matrices for Multiclass Problems 169

the error obtained in the multiclass solution. It also aims to minimize the
number of columns contained in the matrices, controlling the number of binary
classifiers. This criterion represents the search for simpler solutions, and is in
accordance to the Occam’s razor (Mitchell, 1997), which states that, among
several correct hypotheses, the simplest should be chosen. The presence of
identical and complementary columns in the matrices must also be avoided,
since they represent the use of identical binary classifiers in a decomposition.
Columns with equal or complementary elements are denoted as equivalent in
the posterior considerations.

The GA must then deal with three objectives: minimize the matrix error
and its number of columns and avoid the presence of equivalent columns in
the matrix. The aim is to search a code-matrix without equivalent columns
with a good performance in the multiclass task and a reduced number of
binary classifiers. Two variants of multi-objective GAs were employed by the
authors to solve the described problem: a lexicographic, also described in
(Lorena and Carvalho, 2006), and another based on the SPEA2 (Strength
Pareto Evolutionary Algorithm 2) algorithm (Zitzler et al., 2002).

The chromosomes were directly represented as code-matrices, with a
ternary encoding. Each individual corresponds to a possible code-matrix M
with size kxl and elements in the set {−1, 0, +1}, as described in Section
2.2. This matrix representation is more intuitive to represent solutions to a
multiclass problem. Wallet et al.(1996) argue that, if the problem has an in-
herent bidimensional structure, the GA may obtain better results with the
use of matrix-codified individuals. The authors also point out that the use of
this representation allows the definition of cross-over and mutation operators
adequate to this problem.

To determine the number of binary classifiers in the code-matrix, the indi-
viduals in a same population had varied numbers of columns l. Herewith, this
value is also determined by the GA. According to this strategy, two possible
individuals for a problem with four classes are illustrated in Figure 4.

In the codified algorithms, the user limits the maximum allowed number
of classifiers for the code-matrices. The generated matrices should also have at
least dlog2 ke binary classifiers, which corresponds to the minimum necessary
to divide k classes (Mayoraz and Moreira, 1996).

The initial population was implemented with the definition of random ma-
trices with varying sizes. A consistency test was applied to these individuals,
to ensure that each column of the matrices had positive and negative labels,
constituting a valid binary partition. The codes of the strategies 1AA, 1A1
and ECOC (exhaustive, dense or sparse random codes) can also be provided
to the initial population, adding to the search an additional information.

To evaluate each individual, the GA considers the predictive power of
the set of binary classifiers, represented in its code-matrix, for the multiclass
problem. For each individual, a validation error is calculated. Unknown classi-
fications, which occur if more than one row of the code-matrix have minimum

170 Ana Carolina Lorena and André C. P. L. F. de Carvalho

Fig. 4. Illustration of two possible individuals for a problem with four classes

distance to the prediction string, are also considered errors. This error measure
should be minimized by the GA.

In the GA operation, a code-matrix may show equivalent columns. To in-
hibit this occurrence, each multi-objective variant employs a distinct strategy.
While the lexicographic version penalizes this characteristic, the SPEA2 al-
gorithm considers the proportion of equivalent columns in the individuals as
a third objective to be minimized.

The avoiding of equivalent columns in the lexicographic version was consid-
ered a restriction of the problem. Solutions that do not violate this restriction
must then be privileged. For such, the fitness of an individual is now calculated
by Equation 4 (Deb, 2000). This function must be minimized, so individuals
with lower values for Equation 4 are considered to be better.

fit (i) =

{
e (i) , if i ∈ F
max
j∈F

(e (j)) + pec (i) , if i ∈ F̄ (4)

In this equation, F denotes the set of feasible solutions, that is, solutions
that do not violate the restriction and do not have equivalent columns. F̄ , on
the other hand, represents non-feasible solutions, pec(i) represents the pro-
portion of equivalent columns in individual i and e(i) is the validation error
rate. Thus, non-feasible solutions have fitness values worst (with higher value
of Equation 4) than those of the feasible ones and are compared only in terms
of the intensity that they violate the restriction.

As second objective in both GAs is the minimization of the number of
binary classifiers in the matrices. The lexicographic version favors the error
minimization, placing the reduction of the number of binary classifiers in a
second order of importance. In SPEA2, this value was considered as a second
objective to be minimized using the Pareto domination relations.

To accomplish the objective ordering in the lexicographic version, first the
individuals fitness are calculated using Equation 4. The traditional elitism

Evolutionary Design of Code-matrices for Multiclass Problems 171

Fig. 5. Cross-over operators for code-matrix design

and selection steps are them adapted. Each time a tie occurs in these steps,
the individual with the lowest number of classifiers is chosen.

The GAs stop when a maximum number of generations is reached. A bi-
nary tournament described in (Mitchell, 1999) is used in the selection step.
The cross-over and mutation genetic operators were designed considering the
individuals representation and the characteristics of the formulated code-
matrix search problem.

172 Ana Carolina Lorena and André C. P. L. F. de Carvalho

Fig. 6. Mutation operators to code-matrix design

For cross-over, two operators were defined:

• Exchange of columns between two individuals. This operation corresponds
to an exchange of binary classifiers, motivated by the fact that a binary
predictor can be more efficient in an alternative multiclass combination.
This operator is illustrated in Figure 5a.

• Exchange of groups of columns between individuals. In this case, given
two individuals, their descendants are produced by permuting all parents
columns from randomly chosen points. This operator is illustrated in Fig-

Evolutionary Design of Code-matrices for Multiclass Problems 173

ure 5b. The application of this operator allows the generation of individ-
uals of new sizes, permitting the exploration of code-matrices of varying
sizes. If one of the generated offspring has a number of columns outside
the minimum and maximum established limits, it is discarded and the
corresponding parent is copied into the new generation.

As mutation, four types of operators were defined:

• Change the value of a randomly chosen element of the matrix. This cor-
responds to the usual mutation operator and is illustrated in Figure 6a.

• New values can also be assigned to all elements in a column, as demon-
strated in Figure 6b.

• Given an individual, generate a new column (binary classifier) with ran-
dom elements. Figure 6c illustrates this modification. This operator can
be applied to an individual only if its number of columns is inferior to the
maximum value defined.

• Given an individual, remove one of its columns, as illustrated in Figure 6d.
This operator can be applied only to individuals whose number of columns
is higher than the minimum delimited.

The application of the first three mutation operators may generate columns
without negative or positive labels. A consistency check phase must correct
theses situations, defining new positive/negative labels.

As there is more than one type of cross-over and mutation operator, which
one of them must be applied at each cross-over or mutation step? To opt for
one of them, a criterion used in (Mart́ı et al., 2005) was employed. Each
possible operator is probabilistically selected according to its performance in
the design of good code-matrices in previous generations. Using this scheme,
operators that produce better solutions in previous generations have a higher
chance to be applied and their importance is adapted by the GA.

At each execution of SPEA2, a set of solutions is obtained. To choose
a particular solution, the distance to a reference point is considered. This
point presents a null error rate, the minimum number of binary classifiers
necessary to distinguish the classes and a null number of equivalent columns.
The solution whose evaluations are closer to this point is chosen.

Both GAs were evaluated on a set of benchmark datasets and real mul-
ticlass problems from the Bioinformatics domain. They were employed to
search for code-matrices with accuracy rates statistically similar or superior
to those obtained by the 1AA decomposition (most used in practice (Rifkin
and Klautau, 2004)) when using SVMs as base classifiers and with the use
of less binary classifiers. The lexicographic GA was able to solve this prob-
lem, obtaining code-matrices with good accuracy results and using less binary
classifiers. The SPEA2 GA was not successful in this problem. Although the
obtained matrices had a low number of binary classifiers, they were not able,
in general, to maintain accuracy rates comparable to those of 1AA and also
showed equivalent columns.

174 Ana Carolina Lorena and André C. P. L. F. de Carvalho

4.4 Other Evolutionary Strategies

The decomposition framework can be regarded as an ensemble of binary clas-
sifiers for the multiclass problem solution. Based on this, Kuncheva (2005)
proposed the use of diversity measures from the ensemble literature for gen-
erating code-matrices for the multiclass problems. The author argued that
measuring diversity through the Hamming distance among columns is insuf-
ficient to build accurate ensembles.

The diversity measure used compromises the error-correcting capability
in order to have a more diverse ensemble, which shows on average, a better
performance. The disagreement measure is used to quantify diversity. It is
given by Equation 5 for two codewords i and j, where Nmn represents the
number of bits for which the codeword i has value m and the codeword j has
value n (m,n ∈ {−1, +1} or ∈ {0, 1}) and l is the number of columns of M.

Rij =
N−1+1 + N+1−1

l
=

l∑
s=1

|M(i, s)−M(j, s)|
l

(5)

Rij assumes values between 0 and 1. Larger values are desirable, meaning
a larger diversity. The diversity between two rows is then measured by Rij .

For columns, the fact that complementary columns represent the same
binary subproblem must be taken into account. The diversity between columns
is then given by Equation 6.

Cij = min
{

N−1+1 + N+1−1

k
,
N−1−1 + N+1+1

k

}

= min

k∑
s=1

|M (s, i)−M (s, j)|
k

,

k∑
s=1

|M (s, i) + M (s, j)|
k

(6)

For all rows, the total diversity measure is given by the mean of the diver-
sities between all pairs of rows, represented in Equation 7.

Dr =
2

k (k − 1)

∑

i<j

Rij , i, j = 1, . . . , k (7)

For columns, the mean is given by Equation 8.

Dc =
2

l (l − 1)

∑

i<j

Cij , i, j = 1, . . . , l (8)

To obtain an unique function, Kuncheva (2005) used the average of Dr

and Dc, represented in Equation 9.

D =
1
2

(Dr + Dc) (9)

Evolutionary Design of Code-matrices for Multiclass Problems 175

It is also possible to obtain a function that measures the row and column
separations based on the Hamming distance, as presented in Equation 10,
where Hr and Hc are the minimum distances between rows and columns,
respectively, and are given by Equations 11 and 12.

H =
Hr + Hc

2
(10)

Hr = min
16i,j6k

{Rij} (11)

Hc = min
16i,j6l

{Cij} (12)

EAs were then used to design code-matrices in order to maximize the
diversity measure given by Equation 9. As in GARA, the chromosome is
represented by a string formed by the concatenation of the codewords in
the code-matrix (Figure 3). Only the mutation operator is employed, which
is implemented by a bit-flip procedure. To derive a new population, the best
ones are chosen from the set formed by the parents and offspring. The EA is
stopped after a maximum number of generations.

The evaluation of this EA consisted of verifying whether D or H would be
effectively optimized by the EA. No experiments were performed on bench-
mark or real multiclass datasets.

Using some ideas from the work of Kuncheva (2005), Shen and Tan (2005)
also used GAs to search for code-matrices. They adapted the H and D func-
tions to ternary code-matrices. For such, all summations in Rij and Cij were
divided by two. Throughout this process, whenever an element is null and
another is positive or negative, a value of 0.5 is summed to the computed
distance. The chromosomes are again code-matrices with rows concatenated
into a bit-string of length kxl.

They define the margin of separation of one class i in relation to the others
by Equation 13, where dij designates the Hamming distance, adapted to the
case where null elements are present in the code-matrix (when an element is
null and the other is +1 or −1, the 0.5 value is added to the distance).

ηi = min {dij , 1 6 j 6 k and j 6= i} (13)

This margin measure is based on the rows separation criterion. To max-
imize all margins simultaneously, the mean of all margins is maximized. To
ensure columns separation, Dc is also maximized. This is accomplished by
the fitness function presented in Equation 14, which is referred as a multiple
margins criterion.

mg =
1
2k

k∑

i=1

ηi

l
+

1
2
Dc (14)

The GA maximizes the mg value. When calculating an individual’s fitness,
Shen and Tan previously remove equivalent or constant columns. Nevertheless,

176 Ana Carolina Lorena and André C. P. L. F. de Carvalho

the original size l of the codewords is maintained in the fitness calculations.
Throughout this process, code-matrices with these types of columns are pe-
nalized.

The GA stops if it cannot improve the fitness values for a given period of
time or after a defined consecutive number of generations. The single-point
cross-over, uniform mutation and roulette selection were applied (descriptions
of these genetic operators may be found in (Mitchell, 1999)).

The proposed GA was evaluated experimentally on two multiclass cancer
diagnosis datasets. The GA code-matrices, using linear SVMs as base classi-
fiers, usually outperformed other code-matrices, as 1AA and 1A1, as well as
direct multiclass algorithms, like k-nearest neighbor (kNN) (Mitchell, 1997)
and DTs. A number of l = d10 ∗ log2(k)e classifiers were used in the matrices.
As fitness functions in the GA, they tested both H, D and mg. The best
results were verified using the mg measure.

5 Discussion of Experimental Results

When describing the code-matrix design approaches in the previous sections,
a brief discussion on experiments performed by the authors of each work was
presented. The main aspects of these experiments are summarized in Table
1. This table presents, for each of the cited papers, the type of code-matrix
design strategy (“CM” column), the number and types of datasets used in
their experimental evaluation (“Data” column), the number of classes in the
datasets investigated (“]Classes” column), the base classification techniques
used in the binary classifiers induction (“Base cl.” column) and the main con-
clusions obtained from the experimental results. Unless explicitly mentioned,
all results were compared based on accuracy or error performance.

The code-matrix design strategy can be of three types, according to the
structure adopted in the description of the code-matrix design problem. The
types are:

• EC: ECOC design (Sections 3.1 and 4.2);
• AD: adaptation of code-matrices for the multiclass problems (Sections 3.2

and 4.3);
• OS: other strategies (Sections 3.3 and 4.4);

The types of datasets used can also be three, according to their nature:

• A: artificially designed datasets;
• N: natural datasets, which come from benchmarks as the UCI repository

(Blake and Merz, 1998);
• R: real datasets, which come from real-world applications;

Regarding the base classifiers, there are works using:

• DT: Decision Trees (Quinlan, J.R., 1986);

Evolutionary Design of Code-matrices for Multiclass Problems 177

• MLP: Multilayer Perceptron Neural Network (Haykin, 1999);
• SVM: Support Vector Machines (Cristianini and Shawe-Taylor, 2000);
• AB: Adaboost (Freund and Schapire, 1997);
• NB: Nave-Bayes (Mitchell, 1997);
• Lin: linear;
• LR: Logistic Regression (Collins et al., 2002);
• BDS: Boosted Decision Stumps (Freund and Schapire, 1997);
• Ran: Random;

178 Ana Carolina Lorena and André C. P. L. F. de Carvalho

T
ab

le
1:

Su
m

m
ar

y
of

ex
pe

ri
m

en
ta

le
va

lu
at

io
n

of
co

de
-m

at
ri

x
de

si
gn

w
or

ks

P
ap

er
C

M
D

at
a

]C
la

ss
es

B
as

e
cl

.
M

ai
n

co
n
cl

u
si

on
s

ty
p
e

(D
ie

tt
er

ic
h

an
d

B
ar

ik
i,

19
95

)
E

C
7N

/1
R

6,
11

,
12

,
19

,
D

T
,
M

L
P

E
C

O
C

im
pr

ov
es

D
T

24
,
26

,
60

an
d

M
L
P

re
su

lt
s

(P
im

en
ta

an
d

G
am

a,
20

05
,P

im
en

ta
,
20

05
)

E
C

6N
4

to
6,

10
D

T
,
SV

M
C

om
pa

ra
bl

e
or

be
tt

er
th

an
1A

A
an

d
1A

1
(Z

ha
ng

et
al

.,
20

03
)

E
C

6N
6,

8,
10

,
SV

M
G

en
er

al
ly

be
tt

er
th

an
11

,
26

1A
A

an
d

ra
nd

om
co

di
ng

(A
llw

ei
n

et
al

.,
20

00
)

E
C

13
N

6
to

8,
10

,
11

,S
V

M
,
A

B
N

o
cl

ea
r

w
in

ne
r

am
on

g
1A

A
,

19
,
20

,
24

,
26

1A
1

an
d

ra
nd

om
co

di
ng

(B
er

ge
r,

19
99

)
E

C
4R

7,
20

,
36

,
N

B
R

an
do

m
co

de
s

w
er

e
eff

ec
ti

ve
41

on
te

xt
cl

as
si

fic
at

io
n

(W
in

de
at

t
an

d
G

ha
de

ri
,
20

03
)

E
C

1A
/5

N
4

to
7

M
L
P

E
qu

id
is

ta
nt

co
de

s
ar

e
su

pe
ri

or
fo

r
sh

or
te

r
co

de
s

(C
ra

m
m

er
an

d
Si

ng
er

,
20

02
,H

su
an

d
L
in

,
20

02
)

A
D

1A
/1

0N
3,

4,
6,

7,
SV

M
C

om
pa

ra
bl

e
ac

cu
ra

cy
to

1A
A

11
,
26

an
d

1A
1

at
hi

gh
er

co
st

(A
lp

ay
di

n
an

d
M

ay
or

az
,
19

99
)

A
D

8N
3,

7,
10

,
11

,
L
in

C
om

pa
ra

bl
e

or
be

tt
er

26
th

an
1A

A
an

d
1A

1
(D

ek
el

an
d

Si
ng

er
,
20

03
)

A
D

6N
/1

R
6,

7,
11

,
19

,
L
R

G
en

er
al

ly
ou

tp
er

fo
rm

s
1A

A
26

an
d

sp
ec

ia
lly

ra
nd

om
co

de
s

(R
ät

sc
h

et
al

.,
20

03
)

A
D

2N
3,

6
D

T
C

ou
ld

im
pr

ov
e

D
T

re
su

lt
s

(P
uj

ol
et

al
.,

20
06

)
A

D
9N

/1
R

3,
6,

8,
9,

D
T

,
B

D
S

C
om

pa
ra

bl
e

or
be

tt
er

th
an

10
,
28

1A
A

,
1A

1
an

d
ra

nd
om

co
de

s
C

on
ti

nu
ed

on
N

ex
t

P
ag

e.
..

Evolutionary Design of Code-matrices for Multiclass Problems 179

T
ab

le
1

–
C

on
ti

nu
ed

P
ap

er
C

M
D

at
a

]C
la

ss
es

B
as

e
cl

.
M

ai
n

co
n
cl

u
si

on
s

ty
p
e

(L
or

en
a

an
d

C
ar

va
lh

o,
20

06
,L

or
en

a,
20

06
)

A
D

8N
/4

R
3,

4
to

10
SV

M
C

om
pa

ra
bl

e
to

1A
A

,
1A

1
an

d
an

d
11

E
C

O
C

w
it

h
le

ss
cl

as
si

fie
rs

(M
ay

or
az

an
d

M
or

ei
ra

,
19

96
)

O
S

4N
6,

19
,
24

,
D

T
C

om
pa

ra
bl

e
to

E
C

O
C

26
w

it
h

le
ss

bi
na

ry
cl

as
si

fie
rs

(T
ap

ia
et

al
.,

20
03

,T
ap

ia
et

al
.,

20
01

)
O

S
6N

4,
6,

7,
22

,
D

T
,
B

D
S

R
E

C
O

C
s

ar
e

su
it

ab
le

to
24

m
ul

ti
cl

as
s

pr
ob

le
m

s
(P

ér
ez

-C
ru

z
an

d
A

rt
és

-R
od

ŕı
gu

ez
,
20

02
)

O
S

1N
11

SV
M

G
oo

d
pe

rf
or

m
an

ce
pu

nc
tu

ri
ng

1A
1

an
d

B
C

H
E

C
O

C
co

de
s

(K
un

ch
ev

a,
20

05
)

O
S

1A
50

R
an

d
E

va
lu

at
io

n
of

G
A

op
ti

m
iz

at
io

n
of

H
an

d
D

m
ea

su
re

s
(S

he
n

an
d

T
an

,
20

05
)

O
S

2R
9,

14
SV

M
C

om
pa

ra
bl

e
or

be
tt

er
th

an
1A

A
,
1A

1,
kN

N
an

d
D

T
s

180 Ana Carolina Lorena and André C. P. L. F. de Carvalho

A comparison of the experimental results regarding the different strategies
introduced in distinct works would bring valuable knowledge. However, it is
usually difficult to perform such analysis based on the results presented on
the papers. In general, different datasets are used by each author. Even when
the same datasets are used, different data partitions are employed to obtain
the mean accuracy/error rates reported or different learning techniques are
used in the base classifiers induction, making a significant direct comparison
impossible.

6 Conclusion

The solution of a multiclass classification problem can be performed through
its decomposition into binary subproblems, whose results are later combined.
The decomposition can be generally represented by a code-matrix M, whose
rows represent codewords assigned to each class and columns represent the
binary classifiers desired outputs. How to decompose the multiclass problem
can then be reduced to a code-matrix design problem. This chapter surveyed
some of the main developments in the design of code-matrices for multiclass
problems, with special attention to those using evolutionary computation.

Two general classes of strategies can be used to obtain the codes. The first
one considers the error-correcting capability of the codes. The second adapts
the codes to each multiclass application. There are, however, works that use a
combination of these two strategies or alternative criteria in generation of the
code-matrix. Among all reviewed works, some use an evolutionary approach
in order to evolve the code-matrices.

From the studies reported, it can be clearly verified that the decomposition
of multiclass problems into binary subproblems is an active research area. A
good deal of work can be still performed, like comparing different code-matrix
design strategies and adapting the GAs in order to use alternative fitness
functions.

Acknowledgements

The authors would like to thank the financial support from the Brazilian
research agencies CNPq and FAPESP.

References

Alba, E., Cotta, C., Chicano, F., Nebro, A.J., (2002), Parallel evolutionary algo-
rithms in telecommunications: two case studies. In: Proceedings of Congresso
Argentino de Ciências de la Computación.

Evolutionary Design of Code-matrices for Multiclass Problems 181

Alba, E., Chicano, J.F., (2004), Solving the error correcting code problem with
parallel hybrid heuristics. In: Proceedings of 2004 ACM Symposium on Applied
Computing. Volume 2. 985–989.

Allwein, E.L., Shapire, R.E., Singer, Y., (2000), Reducing multiclass to binary: a
unifying approach for magin classifiers. In: Proceedings of the 17th Interna-
tional Conference on Machine Learning, Morgan Kaufmann 9–16.

Alpaydin, E., Mayoraz, E., (1999), Learning error-correcting output codes from
data. In: Proceedings of the 9th International Conference on Neural Networks.
743–748.

Beasley, D. (2000), (Bäck et al., 2000) 4–18
Berger, A., (1999), Error-correcting output coding for text classification.
Blake, C.L., Merz, C.J., (1998), UCI repository of machine learning databases.

Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html.
Boser, R.C., Ray-Chaudhuri, D.K., (1960), On a class of error-correcting binary

group codes. Information and Control 3 68–79.
Bäck, T., Fogel, D.B., Michalewicz, T., (2000), Evolutionary Computation 1: Basic

Algorithms and Operators. Institute of Physics Publishing.
Bäck, T. (2000), (Bäck et al., 2000) 132–135
Collins, M., Shapire, R.E., Singer, Y., (2002), Logistic regression, adaboost and

bregman distances. Machine Learning 47(2/3) 253–285.
Crammer, K., Singer, Y., (2002), On the learnability and design of output codes

for multiclass problems. Machine Learning 47(2-3) 201–233.
Cristianini, N., Shawe-Taylor, J., (2000), An introduction to Support Vector Ma-

chines and other kernel-based learning methods. Cambridge University Press.
Darwin, C., (1859), On the origin of species by means of natural selection. John

Murray, London.
Deb, K., (2000), An efficient constraint handling method for genetic algorithms.

Computer Methods in Applied Mechanics and Engineering 186 311–338.
Dekel, O., Singer, Y., (2003), Multiclass learning by probabilistic embeddings. In:

Advances in Neural Information Processing Systems. Volume 15., MIT Press
945–952.

Dietterich, T.G., Bariki, G., (1995), Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 2 263–286.

Dontas, K., Jong, K.D., (1990), Discovery of maximal distance codes using genetic
algorithms. In: Proceedings of the 2nd International IEEE Conference on Tools
for Artificial Intelligence, IEEE Computer Society Press 905–811.

Eiben, A.E., Smith, J.E., (2003), Introduction to Evolutionary Computing.
Springer.

Escalera, S., Pujol, O., Radeva, R., (2006), Decoding of ternary error correcting
output codes. In: Proceedings of the 11th Iberoamerican Congress on Pattern
Recognition. Volume 4225 of Lecture Notes in Computer Science., Springer-
Verlag 753–763.

Freund, Y., Schapire, R.E., (1997), A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences 1(55) 119–139.

Fürnkranz, J., (2002), Round robin classification. Journal of Machine Learning
Research 2 721–747.

Ghani, R., (2000), Using error correcting output codes for text classification. In:
Proceedings of the 17th International Conference on Machine Learning, Morgan

182 Ana Carolina Lorena and André C. P. L. F. de Carvalho

Kaufmann 303–310.
Hastie, T., Tibshirani, R., (1998), Classification by pairwise coupling. The Annals

of Statistics 2 451–471.
Haykin, S., (1999), Neural Networks - A Compreensive Foundation. 2nd edn.

Prentice-Hall, New Jersey.
Holland, J.H., (1975), Adaptation in Natural and Artificial Systems. University of

Michigan Press.
Hsu, C.W., Lin, C.J., (2002), A comparison of methods for multi-class support

vector machines. IEEE Transactions on Neural Networks 13(2) 415–425.
Klautau, A., Jevtić, N., Orlistky, A., (2003), On nearest-neighbor error-correcting

output codes with application to all-pairs multiclass support vector machines.
Journal of Machine Learning Research 4 1–15.

Knerr, S., Personnaz, L., Dreyfus, G., (1992), Handwritten digit recognition by
neural networks with single-layer training. IEEE Transactions on Neural Net-
works 3(6) 962–968.

Knerr, S., Personnaz, L., Dreyfus, G., (1990), In: Single-layer learning revisited: a
stepwise procedure for building and training a neural network. Springer-Verlag,
pp. 41–50

Kreβel, U., (1999), Pairwise classification and support vector machines. In
Schölkopf, B., Burges, C.J.C., Smola, A.J., eds.: Advances in Kernel Methods
- Support Vector Learning, MIT Press 185–208.

Kuncheva, L.I., (2005), Using diversity measures for generating error-correcting
output codes in classifier ensembles. Pattern Recognition Letters 26 83–90.

Lorena, A.C., Carvalho, A.C.P.L.F., (2006), Evolutionary design of multiclass sup-
port vector machines. Journal of Intelligent and Fuzzy Systems . Accepted, to
be published..

Lorena, A.C., (2006), Investigação de estratégias para a geração de máquinas de
vetores de suporte multiclasses [in portuguese], Ph.D. thesis, Departamento de
Ciências de Computação, Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos, Brazil, http://www.teses.usp.br/

teses/disponiveis/55/55134/tde-26052006-111406.
Mart́ı, R., Laguna, M., Campos, V., (2005), Scatter search vs. genetic algorithms:

An experimental evaluation with permutation problems. In Rego, C., Alidaee,
B., eds.: Metaheuristic Optimization Via Adaptive Memory and Evolution:
Tabu Search and Scatter Search. Kluwer Academic Publishers 263–282.

Masulli, F., Valentini, G., (2000), Effectiveness of error correcting output codes in
multiclass learning problems. In: Proceedings of the 1st International Workshop
on Multiple Classifier Systems. Volume 1857 of Lecture Notes in Computer
Science., Springer-Verlag 107–116.

Mayoraz, E., Alpaydim, E., (1998), Support vector machines for multi-class classifi-
cation. Research Report IDIAP-RR-98-06, Dalle Molle Institute for Perceptual
Artificial Intelligence, Martigny, Switzerland.

Mayoraz, E., Moreira, M., (1996), On the decomposition of polychotomies into di-
chotomies. Research Report 96-08, IDIAP, Dalle Molle Institute for Perceptive
Artificial Intelligence, Martigny, Valais, Switzerland.

Michalewicz, Z., Fogel, D.B., (2004), How to solve it: modern heuristics. Springer.
Mitchell, T., (1997), Machine Learning. McGraw Hill.
Mitchell, M., (1999), An introduction to Genetic Algorithms. MIT Press.

Evolutionary Design of Code-matrices for Multiclass Problems 183

Passerini, A., Pontil, M., Frasconi, P., (2004), New results on error correcting out-
put codes of kernel machines. IEEE Transactions on Neural Networks 15 45–54.

Pimenta, E., Gama, J., (2005), A study on error correcting output codes. In:
Proceedings of the 2005 Portuguese Conference on Artificial Intelligence, IEEE
Computer Society Press 218–223.

Pimenta, E.M.C., (2005), Abordagens para decomposição de problemas multi-
classe: os códigos de correcção de erros de sáıda (in portuguese). Master’s thesis,
Departamento de Ciências de Computadores, Faculdade de Ciências da Uni-
versidade do Porto, Portugal.

Pujol, O., Tadeva, P., Vitrià, J., (2006), Discriminant ECOC: a heuristic method
for application dependetn design of error correcting output codes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 28(6) 1007–1012.

Pérez-Cruz, F., Artés-Rodŕıguez, A., (2002), Puncturing multi-class support vec-
tor machines. In: Proceedings of the 12th International Conference on Neu-
ral Networks (ICANN). Volume 2415 of Lecture Notes in Computer Science.,
Springer-Verlag 751–756.

Quinlan, J.R., (1986), Induction of decision trees. Machine Learning 1(1) 81–106.
Rifkin, R., Klautau, A., (2004), In defense of one-vs-all classification. Journal of

Machine Learning Research 5 1533–7928.
Rätsch, G., Smola, A.J., Mika, S., (2003), Adapting codes and embeddings for

polychotomies. In: Advances in Neural Information Processing Systems. Vol-
ume 15., MIT Press 513–520.

Shen, L., Tan, E.C., (2005), Seeking better output-codes with genetic algorithm
for multiclass cancer classification. Submitted to Bioinformatics.

Simn, M.D.J., Pulido, J.A.G., Rodrguez, M.A.V., (2006), Prez, J.M.S., Criado,
J.M.G., A genetic algorithm to design error correcting codes. In: Proceed-
ings of the 13th IEEE Mediterranean Eletrotechnical Conference 2006, IEEE
Computer Society Press 807–810.

Statnikov, A., Aliferis, C.F., Tsamardinos, I., (2005), Hardin, D., Levy, S., A com-
prehensive evaluation of multicategory methods for microarray gene expression
cancer diagnosis. Bioinformatics 21(5) 631–643.

Tapia, E., González, J.C., Garćıa-Villalba, J., Villena, J., (2001), Recursive adap-
tive ECOC models. In: Proceedings of the 10th Portuguese Conference on
Artificial Intelligence. Volume 2258 of Lecture Notes in Artificial Intelligence.,
Springer-Verlag 96–103.

Tapia, E., González, J.C., Garćıa-Villalba, J., (2003), Good error correcting output
codes for adaptive multiclass learning. In: Proceedings of the 4th International
Workshop on Multiple Classifier Systems 2003. Volume 2709 of Lecture Notes
in Computer Science., Springer-Verlag 156–165.

Wallet, B.C., Marchette, D.J., Solka, J.L., (1996), A matrix representation for
genetic algorithms. In: Automatic object recognition VI, Proceedings of the
International Society for Optical Engineering. 206–214.

Wallis, J.L., Houghten, S.K., (2002), A comparative study of search techniques
applied to the minimum distance problem of BCH codes. Technical Report
CS-02-08, Department of Computer Science, Brock University.

Windeatt, T., Ghaderi, R., (2003), Coding and decoding strategies for multi-class
learning problems. Information Fusion 4(1) 11–21.

Zhang, A., Wu, Z.L., Li, C.H., Fang, K.T., (2003), On hadamard-type output cod-
ing in multiclass learning. In: Proceedings of IDEAL. Volume 2690 of Lecture

184 Ana Carolina Lorena and André C. P. L. F. de Carvalho

Notes in Computer Science., Springer-Verlag 397–404.
Zitzler, E., Laumanns, M., Thiele, L., (2002), SPEA2: Improving the strength

pareto evolutionary algorithm. In: Evolutionary Methods for Design, Optimi-
sation, and Control, CIMNE, Barcelona, Spain. 95–100.

Zitzler, E., Laumanns, M., Bleuler, S., (2004), A tutorial on evolutionary multiob-
jective optimization. In Gandibleux, X., Sevaux, M., Srensen, K., T’kindt, V.,
eds.: Metaheuristics for Multiobjective Optimisation. Volume 535 of Lecture
Notes in Economics and Mathematical Systems., Springer-Verlag 3–37.

Part III

Fuzzy Logic Methods

The Role of Fuzzy Sets in Data Mining

Lior Rokach

Department of Information System Engineering, Ben-Gurion University, Israel
liorrk@bgu.ac.il

Summary. In this chapter we discuss how fuzzy logic extends the envelop of the
main data mining tasks: clustering, classification, regression and association rules.
We begin by presenting a formulation of the data mining using fuzzy logic attributes.
Then, for each task, we provide a survey of the main algorithms and a detailed
description (i.e. pseudo-code) of the most popular algorithms. However this chapter
will not profoundly discuss neuro-fuzzy techniques, assuming that there will be a
dedicated chapter for this issue.

1 Introduction

There are two main types of uncertainty in supervised learning: statistical
and cognitive. Statistical uncertainty deals with the random behavior of na-
ture and all existing data mining techniques can handle the uncertainty that
arises (or is assumed to arise) in the natural world from statistical variations
or randomness. While these techniques may be appropriate for measuring
the likelihood of a hypothesis, they says nothing about the meaning of the
hypothesis.

Cognitive uncertainty, on the other hand, deals with human cognition.
Cognitive uncertainty can be further divided into two sub-types: vagueness
and ambiguity.

Ambiguity arises in situations with two or more alternatives such that
the choice between them is left unspecified. Vagueness arises when there is a
difficulty in making a precise distinction in the world.

Fuzzy set theory, first introduced by Zadeh in 1965, deals with cognitive
uncertainty and seeks to overcome many of the problems found in classical
set theory.

For example, a major problem faced by researchers of control theory is
that a small change in input results in a major change in output. This throws
the whole control system into an unstable state. In addition there was also
the problem that the representation of subjective knowledge was artificial and

188 Lior Rokach

inaccurate. Fuzzy set theory is an attempt to confront these difficulties and
in this chapter we show how it can be used in data mining tasks.

2 Basic Concepts of Fuzzy Set Theory

In this section we present some of the basic concepts of fuzzy logic. The
main focus, however, is on those concepts used in the induction process when
dealing with data mining. Since fuzzy set theory and fuzzy logic are much
broader than the narrow perspective presented here, the interested reader is
encouraged to read (Zimmermann, 2005)).

2.1 Membership function

In classical set theory, a certain element either belongs or does not belong to
a set. Fuzzy set theory, on the other hand, permits the gradual assessment of
the membership of elements in relation to a set.

Definition 1. Let U be a universe of discourse, representing a collection of
objects denoted generically by u. A fuzzy set A in a universe of discourse U is
characterized by a membership function µA which takes values in the interval
[0, 1]. Where µA(u) = 0 means that u is definitely not a member of A and
µA(u) = 1 means that u is definitely a member of A.

The above definition can be illustrated on the vague set of Y oung. In this
case the set U is the set of people. To each person in U , we define the degree
of membership to the fuzzy set Y oung. The membership function answers the
question ”to what degree is person u young?”. The easiest way to do this is
with a membership function based on the person’s age. For example Figure 1
presents the following membership function:

µY oung(u) =

0
1
32−age(u)

16

age(u) > 32
age(u) < 16
otherwise

(1)

Given this definition, John, who is 18 years old, has degree of youth of
0.875. Philip, 20 years old, has degree of youth of 0.75. Unlike probability
theory, degrees of membership do not have to add up to 1 across all objects
and therefore either many or few objects in the set may have high membership.
However, an objects membership in a set (such as ”young”) and the sets
complement (”not young”) must still sum to 1.

The main difference between classical set theory and fuzzy set theory is
that the latter admits to partial set membership. A classical or crisp set, then,
is a fuzzy set that restricts its membership values to {0, 1}, the endpoints of
the unit interval. Membership functions can be used to represent a crisp set.
For example, Figure 2 presents a crisp membership function defined as:

The Role of Fuzzy Sets in Data Mining 189

Fig. 1. Membership function for the young set.

µCrispY oung(u) =
{

0 age(u) > 22
1 age(u) ≤ 22 (2)

Fig. 2. Membership function for the crisp young set.

In regular classification problems, we assume that each instance takes one
value for each attribute and that each instance is classified into only one of the
mutually exclusive classes. To illustrate how fuzzy logic can help data mining
tasks, we introduce the problem of modelling the preferences of TV viewers.
In this problem there are 3 input attributes:

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 15 20 25 30 35

Age

Y
o

u
n

g
 M

em
b

er
sh

ip

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 15 20 25 30 35

Age

C
ri

sp
 Y

o
u

n
g

 M
em

b
er

sh
ip

190 Lior Rokach

A = {Time of Day,Age Group,Mood}

and each attribute has the following values:

• dom(Time of Day) = {Morning,Noon,Evening,Night}
• dom(Age Group) = {Young,Adult}
• dom(Mood) = {Happy,Indifferent,Sad,Sour,Grumpy}

The classification can be the movie genre that the viewer would like to
watch, such as C = {Action,Comedy,Drama}.

All the attributes are vague by definition. For example, peoples feelings of
happiness, indifference, sadness, sourness and grumpiness are vague without
any crisp boundaries between them. Although the vagueness of ”Age Group”
or ”Time of Day” can be avoided by indicating the exact age or exact time,
a rule induced with a crisp decision tree may then have an artificial crisp
boundary, such as ”IF Age < 16 THEN action movie”. But how about some-
one who is 17 years of age? Should this viewer definitely not watch an action
movie? The viewer preferred genre may still be vague. For example, the viewer
may be in a mood for both comedy and drama movies. Moreover, the associa-
tion of movies into genres may also be vague. For instance the movie ”Lethal
Weapon” (starring Mel Gibson and Danny Glover) is considered to be both
comedy and action movie.

Fuzzy concept can be introduced into a classical problem if at least one of
the input attributes is fuzzy or if the target attribute is fuzzy. In the example
described above , both input and target attributes are fuzzy. Formally the
problem is defined as following (Yuan and Shaw, 1995):

Each class cj is defined as a fuzzy set on the universe of objects U . The
membership function µcj (u) indicates the degree to which object u belongs
to class cj . Each attribute ai is defined as a linguistic attribute which takes
linguistic values from dom(ai) = {vi,1, vi,2, . . . , vi,|dom(ai)|}. Each linguistic
value vi,k is also a fuzzy set defined on U . The membership µvi,k

(u) specifies
the degree to which object u’s attribute ai is vi,k. Recall that the membership
of a linguistic value can be subjectively assigned or transferred from numerical
values by a membership function defined on the range of the numerical value.

Typically, before one can incoporate fuzzy concepts into a data mining ap-
plication, an expert is required to provide the fuzzy sets for the quantitative
attributes, along with their corresponding membership functions. Alterna-
tively the appropriate fuzzy sets are determined using fuzzy clustering.

2.2 Fuzzy Set Operations

Like classical set theory, fuzzy set theory includes operations union, inter-
section, complement, and inclusion, but also includes operations that have no
classical counterpart, such as the modifiers concentration and dilation, and the
connective fuzzy aggregation. Definitions of fuzzy set operations are provided
in this section.

The Role of Fuzzy Sets in Data Mining 191

Definition 2. The membership function of the union of two fuzzy sets A and
B with membership functions µA and µB respectively is defined as the maxi-
mum of the two individual membership functions:

µA∪B(u) = max{µA(u), µB(u)} (3)

Definition 3. The membership function of the intersection of two fuzzy sets
A and B with membership functions µA and µB respectively is defined as the
minimum of the two individual membership functions:

µA∩B(u) = min{µA(u), µB(u)} (4)

Definition 4. The membership function of the complement of a fuzzy set A
with membership function µA is defined as the negation of the specified mem-
bership function:

µA(u) = 1− µA(u). (5)

To illustrate these fuzzy operations, we elaborate on the previous example.
Recall that John has a degree of youth of 0.875. Additionally John’s happiness
degree is 0.254. Thus, the membership of John in the set Young ∪ Happy would
be max(0.875, 0.254) = 0.875, and its membership in Young ∩ Happy would
be min(0.875, 0.254) = 0.254.

It is possible to chain operators together, thereby constructing quite com-
plicated sets. It is also possible to derive many interesting sets from chains of
rules built up from simple operators. For example John’s membership in the
set Y oung ∪ Happy would be max(1− 0.875, 0.254) = 0.254

The usage of the max and min operators for defining fuzzy union and
fuzzy intersection, respectively is very common. However, it is important to
note that these are not the only definitions of union and intersection suited
to fuzzy set theory.

Definition 5. The fuzzy subsethood S(A,B) measures the degree to which A
is a subset of B.

S(A,B) =
M(A ∩B)

M(A)
(6)

where M(A) is the cardinality measure of a fuzzy set A and is defined as

M(A) =
∑

u∈UµA(u) (7)

The subsethood can be used to measure the truth level of the rule of
classification rules. For example given a classification rule such as ”IF Age is
Young AND Mood is Happy THEN Comedy” we have to calculate S(Hot ∩
Sunny, Swimming) in order to measure the truth level of the classification
rule.

192 Lior Rokach

3 Fuzzy Supervised Learning

In this section we survey supervised methods that incoporate fuzzy sets. Su-
pervised methods are methods that attempt to discover the relationship be-
tween input attributes and a target attribute (sometimes referred to as a
dependent variable). The relationship discovered is represented in a structure
referred to as a model. Usually models describe and explain phenomena, which
are hidden in the dataset and can be used for predicting the value of the target
attribute knowing the values of the input attributes.

It is useful to distinguish between two main supervised models: classifica-
tion models (classifiers) and Regression Models. Regression models map the
input space into a real-value domain. For instance, a regressor can predict the
demand for a certain product given its characteristics. On the other hand,
classifiers map the input space into pre-defined classes. For instance, classi-
fiers can be used to classify mortgage consumers as good (fully payback the
mortgage on time) and bad (delayed payback).

Fuzzy set theoretic concepts can be incorporated at the input, output, or
into to backbone of the classifier. The data can be presented in fuzzy terms
and the output decision may be provided as fuzzy membership values. In this
chapter we will concentrate on fuzzy decision trees.

3.1 Growing Fuzzy Decision Tree

Decision tree is a predictive model which can be used to represent classifiers.
Decision trees are frequently used in applied fields such as finance, marketing,
engineering and medicine. In the opinion of many researchers decision trees
gained popularity mainly due to their simplicity and transparency. Decision
tree are self-explained. There is no need to be an expert in data mining in
order to follow a certain decision tree.

There are several algorithms for induction of fuzzy decision trees, most of
them extend existing decision trees methods. The UR-ID3 algorithm (Maher
and Clair, 1993)) starts by building a strict decision tree, and subsequently
fuzzifies the conditions of the tree. Tani and Sakoda (1992) use the ID3 algo-
rithm to select effective numerical attributes. The obtained splitting intervals
are used as fuzzy boundaries. Regression is then used in each subspace to
form fuzzy rules. Cios and Sztandera (1992) use the ID3 algorithm to convert
a decision tree into a layer of a feedforward neural network. Each neuron is
represented as a hyperplane with a fuzzy boundary. The nodes within the
hidden layer are generated until some fuzzy entropy is reduced to zero. New
hidden layers are generated until there is only one node at the output layer.

Fuzzy-CART (Jang (1994)) is a method which uses the CART algorithm to
build a tree. However, the tree, which is the first step, is only used to propose
fuzzy sets of the continuous domains (using the generated thresholds). Then,
a layered network algorithm is employed to learn fuzzy rules. This produces
more comprehensible fuzzy rules and improves the CART’s initial results.

The Role of Fuzzy Sets in Data Mining 193

Another complete framework for building a fuzzy tree including several
inference procedures based on conflict resolution in rule-based systems and
efficient approximate reasoning methods was presented in (Janikow, 1998).

Olaru and Wehenkel (2003) presented a new type of fuzzy decision trees
called soft decision trees (SDT). This approach combines tree-growing and
pruning, to determine the structure of the soft decision tree. Refitting and
backfitting are used to improve its generalization capabilities. The researchers
empirically showed that soft decision trees are significantly more accurate
than standard decision trees. Moreover, a global model variance study shows
a much lower variance for soft decision trees than for standard trees as a direct
cause of the improved accuracy.

Peng (2004) has used FDT to improve the performance of the classical
inductive learning approach in manufacturing processes. Peng proposed using
soft discretization of continuous-valued attributes. It has been shown that
FDT can deal with the noise or uncertainties existing in the data collected in
industrial systems.

In this chapter we will focus on the algorithm proposed in (Yuan and
Shaw, 1995). This algorithm can handle the classification problems with both
fuzzy attributes and fuzzy classes represented in linguistic fuzzy terms. It can
also handle other situations in a uniform way where numerical values can be
fuzzified to fuzzy terms and crisp categories can be treated as a special case of
fuzzy terms with zero fuzziness. The algorithm uses classification ambiguity
as fuzzy entropy. The classification ambiguity directly measures the quality
of classification rules at the decision node. It can be calculated under fuzzy
partitioning and multiple fuzzy classes.

The fuzzy decision tree induction consists of the following steps:

• Fuzzifying numeric attributes in the training set.
• Inducing a fuzzy decision tree.
• Simplifying the decision tree.
• Applying fuzzy rules for classification.

Fuzzifying numeric attributes

When a certain attribute is numerical, it needs to be fuzzified into linguistic
terms before it can be used in the algorithm. The fuzzification process can be
performed manually by experts or can be derived automatically using some
sort of clustering algorithm. Clustering groups the data instances into sub-
sets in such a manner that similar instances are grouped together; different
instances belong to different groups. The instances are thereby organized into
an efficient representation that characterizes the population being sampled.

Yuan and Shaw (1995) suggest a simple algorithm to generate a set of
membership functions on numerical data. Assume attribute ai has numerical
value x from the domain X. We can cluster X to k linguistic terms vi,j , j =
1, . . . , k. The size of k is manually predefined. For the first linguistic term vi,1,
the following membership function is used:

194 Lior Rokach

µvi,1(x) =

1 x ≤ m1
m2−x

m2−m1
m1 < x < m2

0 x ≥ m2

(8)

For each vi,j when j = 2, . . . , k − 1 has a triangular membership function
as follows:

µvi,j (x) =

0 x ≤ mj−1
x−mj−1

mj−mj−1
mj−1 < x ≤ mj

mj+1−x
mj+1−mj

mj < x < mj+1

0 x ≥ mj+1

(9)

Finally the membership function of the last linguistic term vi,k is:

µvi,k
(x) =

0 x ≤ mk−1
x−mk−1

mk−mk−1
mk−1 < x ≤ mk

1 x ≥ mk

(10)

Figure 3 illustrates the creation of four groups defined on the age attribute:
”young”, ”early adulthood”, ”middle-aged” and ”old age”. Note that the first
set (”young”) and the last set (”old age”) have a trapezoidal form which can
be uniquely described by the four corners. For example, the ”young” set could
be represented as (0, 0, 16, 32). In between, all other sets (”early adulthood”
and ”middle-aged”) have a triangular form which can be uniquely described
by the three corners. For example, the set ”early adulthood” is represented
as (16, 32, 48).

Fig. 3. Membership function for various groups in the age attribute.

The only parameters that need to be determined are the set of k centers
M = {m1, . . . , mk}. The centers can be found using the algorithm presented in

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 30 50 70
Age

M
em

be
rs

hi
p Young

Early adulthood
Middle-aged
Old Age

The Role of Fuzzy Sets in Data Mining 195

Algorithm 1. Note that in order to use the algorithm, a monotonic decreasing
learning rate function should be provided.

Algorithm 1: Algorithm for fuzzifying numeric attributes
Input: X - a set of values, η(t) - some monotonic decreasing scalar function

representing the learning rate.
Output: M = {m1, . . . , mk}
1: Initially set mi to be evenly distributed on the range of X.
2: t ← 1
3: repeat
4: Randomly draw one sample x from X
5: Find the closest center mc to x.
6: mc ← mc + η(t) · (x−mc)
7: t ← t + 1
8: D(X, M) ← ∑

x∈X

mini ‖x−mi‖
9: until D(X, M) converges

The Induction Phase

The induction algorithm of fuzzy decision tree is presented in Algorithm 2.
The algorithm measures the classification ambiguity associated with each at-
tribute and split the data using the attribute with the smallest classification
ambiguity. The classification ambiguity of attribute ai with linguistic terms
vi,j , j = 1, . . . , k on fuzzy evidence S, denoted as G(ai|S), is the weighted
average of classification ambiguity calculated as:

G(ai |S) =
k∑

j=‘1

w(vi,j |S) ·G(vi,j |S) (11)

where w(vi,j |S) is the weight which represents the relative size of vi,j and is
defined as:

w(vi,j |S) =
M(vi,j |S)∑

k

M(vi,k |S)
(12)

The classification ambiguity of vi,j is defined as G(vi,j |S) = g (p (C |vi,j)),
which is measured based on the possibility distribution vector p (C |vi,j) =(
p (c1 |vi,j) , ..., p

(
c|k| |vi,j

))
.

Given vi,j , the possibility of classifying an object to class cl can be defined
as:

196 Lior Rokach

p (cl |vi,j) =
S(vi,j , cl)

max
k

S(vi,j , ck)
(13)

where S(A,B) is the fuzzy subsethood that was defined in Definition 5. The
function g (p) is the possibilistic measure of ambiguity or nonspecificity and
is defined as:

g (p) =
|p|∑

i=1

(
p∗i − p∗i+1

) · ln(i) (14)

where p∗ =
(
p∗1, . . . , p

∗
|p|

)
is the permutation of the possibility distribution p

sorted such that p∗i ≥ p∗i+1.
All the above calculations are carried out at a predefined significant level

α. An instance will take into consideration of a certain branch vi,j only if its
corresponding membership is greater than α. This parameter is used to filter
out insignificant branches.

After partitioning the data using the attribute with the smallest clas-
sification ambiguity, the algorithm looks for nonempty branches. For each
nonempty branch, the algorithm calculates the truth level of classifying all in-
stances within the branch into each class. The truth level is caluclated using
the fuzzy subsethood measure S(A,B).

If the truth level of one of the classes is above a predefined threshold β
then no additional partitioning is needed and the node become a leaf in which
all instance will be labeled to the class with the highest truth level. Otherwise
the procedure continues in a recursive manner. Note that small values of β
will lead to smaller trees with the risk of underfitting. A higher β may lead to
a larger tree with higher classification accuracy. However, at a certain point,
higher values β may lead to overfitting.

Algorithm 2: Fuzzy decision tree induction
Input: S - Training Set A - Input Feature Set y - Target Feature
Output: Fuzzy Decision Tree
1: Create a new fuzzy tree FT with a single root node.
2: if S is empty OR Truth level of one of the classes ≥ β then
3: Mark FT as a leaf with the most common value of y in S as a label.
4: Return FT .
5: end if
6: ∀ai ∈ A find a with the smallest classification ambiguity.
7: for each outcome vi of a do
8: Recursively call procedure with corresponding partition vi.
9: Connect the root to the subtree with an edge that is labeled as vi.

10: end for
11: Return FT

The Role of Fuzzy Sets in Data Mining 197

Simplifying the decision tree

Each path of branches from root to leaf can be converted into a rule with the
condition part representing the attributes on the passing branches from the
root to the leaf and the conclusion part representing the class at the leaf with
the highest truth level classification. The corresponding classification rules
can be further simplified by removing one input attribute term at a time for
each rule we try to simplify . Select the term to remove with the highest truth
level of the simplified rule. If the truth level of this new rule is not lower than
the threshold β or the truth level of the original rule, the simplification is
successful. The process will continue until no further simplification is possible
for all the rules.

Using the Fuzzy Decision Tree

In a regular decision tree, only one path (rule) can be applied for every in-
stance. In a fuzzy decision tree, several paths (rules) can be applied for one
instance. In order to classify an unlabeled instance, the following steps should
be performed (Yuan and Shaw, 1995):

• Step 1: Calculate the membership of the instance for the condition part of
each path (rule). This membership will be associated with the label (class)
of the path.

• Step 2: For each class calculate the maximum membership obtained from
all applied rules.

• Step 3: An instance may be classified into several classes with different
degrees based on the membership calculated in Step 2.

3.2 Soft Regression

Regressions are used to compute correlations among data sets. The “classical”
approach uses statistical methods to find these correlations. Soft regression
is used when we want to compare data sets that are temporal and interde-
pendent. The use of fuzzy logic can overcome many of the difficulties asso-
ciated with the classical approach. The fuzzy techniques can achieve greater
flexibility, greater accuracy and generate more information in comparison to
econometric modeling based on (statistical) regression techniques. In partic-
ular, the fuzzy method can potentially be more successful than conventional
regression methods, especially under circumstances that severely violate the
fundamental conditions required for the reliable use of conventional methods.

Soft regression techniques have been proposed in (Shnaider et al., 1991,
Shnaider and Schneider, 1988).

198 Lior Rokach

3.3 Neuro-fuzzy

Neuro-fuzzy refers to hybrids of artificial neural networks and fuzzy logic.
Neuro-fuzzy is the most visible hybrid paradigm and has been adequately
investigated (Mitra and Pal, 2005)

Neuro-fuzzy hybridization can be done in two ways (Mitra, 2000): fuzzy-
neural network (FNN) which is a neural network equipped with the capability
of handling fuzzy information and a neural-fuzzy system (NFS) which is a
fuzzy system augmented by neural networks to enhance some of its charac-
teristics like flexibility, speed, and adaptability.

A neurofuzzy system can be viewed as a special 3layer neural network
(Nauck, 1997). The first layer represents input variables, the hidden layer
represents fuzzy rules and the third layer represents output variables. Fuzzy
sets are encoded as (fuzzy) connection weights. Usually after learning the
obtained model is interpreted as a system of fuzzy rules.

4 Fuzzy Clustering

The goal of clustering is descriptive, that of classification is predictive. Since
the goal of clustering is to discover a new set of categories, the new groups
are of interest in themselves, and their assessment is intrinsic. In classification
tasks, however, an important part of the assessment is extrinsic, since the
groups must reflect some reference set of classes.

Clustering of objects is as ancient as the human need for describing the
salient characteristics of men and objects and identifying them with a type.
Therefore, it embraces various scientific disciplines: from mathematics and
statistics to biology and genetics, each of which uses different terms to describe
the topologies formed using this analysis. From biological “taxonomies”, to
medical “syndromes” and genetic “genotypes” to manufacturing ”group tech-
nology” — the problem is identical: forming categories of entities and assigning
individuals to the proper groups within it.

Clustering groups data instances into subsets in such a manner that simi-
lar instances are grouped together, while different instances belong to differ-
ent groups. The instances are thereby organized into an efficient representa-
tion that characterizes the population being sampled. Formally, the clustering
structure is represented as a set of subsets C = C1, . . . , Ck of S, such that:
S =

⋃k
i=1 Ci and Ci ∩ Cj = ∅ for i 6= j. Consequently, any instance in S

belongs to exactly one and only one subset.
Traditional clustering approaches generate partitions; in a partition, each

instance belongs to one and only one cluster. Hence, the clusters in a hard
clustering are disjointed. Fuzzy clustering extends this notion and suggests
a soft clustering schema. In this case, each pattern is associated with every
cluster using some sort of membership function, namely, each cluster is a fuzzy
set of all the patterns. Larger membership values indicate higher confidence in

The Role of Fuzzy Sets in Data Mining 199

the assignment of the pattern to the cluster. A hard clustering can be obtained
from a fuzzy partition by using a threshold of the membership value.

The most popular fuzzy clustering algorithm is the fuzzy c-means (FCM)
algorithm. Even though it is better than the hard K-means algorithm at avoid-
ing local minima, FCM can still converge to local minima of the squared error
criterion. The design of membership functions is the most important problem
in fuzzy clustering; different choices include those based on similarity decom-
position and centroids of clusters. A generalization of the FCM algorithm has
been proposed through a family of objective functions. A fuzzy c-shell algo-
rithm and an adaptive variant for detecting circular and elliptical boundaries
have been presented.

FCM is an iterative algorithm. The aim of FCM is to find cluster cen-
ters (centroids) that minimize a dissimilarity function. To accommodate the
introduction of fuzzy partitioning, the membership matrix(U) is randomly
initialized according to Equation 15.

c∑

i=1

uij = 1, ∀j = 1, ..., n (15)

The algorithm minimizes a dissimilarity (or distance) function which is
given in Equation 16:

J(U, c1, c2, ..., cc) =
c∑

i=1

Ji =
c∑

i=1

n∑

j=1

um
ij d2

ij (16)

where, uij is between 0 and 1; ci is the centroid of cluster i; dij is the Euclidian
distance between i-th centroid and j-th data point; m is a weighting exponent.

To reach a minimum of dissimilarity function there are two conditions.
These are given in Equation 17 and Equation 18.

ci =

∑n
j=1 um

ij xj∑n
j=1 um

ij

(17)

uij =
1

∑c
k=1

(
dij

dkj

)2/(m−1)
(18)

Algorithm 3 presents the fuzzy c-means that was originally proposed in
(Bezdek, 1973).

By iteratively updating the cluster centers and the membership grades
for each data point, FCM iteratively moves the cluster centers to the ”right”
location within a data set. However, FCM does not ensure that it converges
to an optimal solution. The random initilization of U might have uncancelled
effect on the final performance.

There are several extensions to the basic FCM algorithm, The Fuzzy
Trimmed C Prototype (FTCP) algorithm (Kim et al., 1996) increases the

200 Lior Rokach

Algorithm 3: FCM Algorithm
Input: X - Data Set

c - number of clusters
t - convergence threshold (termination criterion)
m - exponential weight

Output: U - membership matrix
1: Randomly initialize matrix U with c clusters and fulfils Eq. 15
2: repeat
3: Calculate ci by using Equation 17.
4: Compute dissimilarity between centroids and data points using Eq. 16.
5: Compute a new U using Eq. 18
6: until The improvement over previous iteration is below t.

robustness of the clusters by trimming away observations with large residu-
als. The Fuzzy C Least Median of Squares (FCLMedS) algorithm (Nasraoui
and Krishnapuram, 1997) replaces the summation presented in Equation 16
with the median.

5 Fuzzy Association Rules

Association rules are rules of the kind “70% of the customers who buy
vine and cheese also buy grapes”. While the traditional field of application is
market basket analysis, association rule mining has been applied to various
fields since then, which has led to a number of important modifications and
extensions.

In this section, an algorithm based on the apriori data mining algorithm is
described to discover large itemsets. Fuzzy sets are used to handle quantitative
values, as described in (Hong et al., 1999). Our algorithm is applied with some
differences. We will use the following notation:

• n – number of transactions in the database.
• m – number of items (attributes) in the database.
• di – the i-th transaction.
• Ij – the j-th attribute.
• Iij – the value of Ijfordi.
• µijk – the membership grade of Iij in the region k.
• Rjk – the k-th fuzzy region of the attribute Ij .
• num(Rjk) – number of occurrences of the attribute region Rjk in the whole

database, where µijk > 0.
• Cr – the set of candidate itemsets with r attributes.
• cr – candidate itemset with r attributes.
• f i

j – the membership value of di in region sj .
• f i

cr – the fuzzy value of the itemset cr in the transaction di.

The Role of Fuzzy Sets in Data Mining 201

Algorithm 4: Fuzzy Association Rules Algorithm
1: for all transaction i do
2: for all attribute j do
3: If

ij=(µij1/Rj1 + µij2/Rj2+. . .+µijk/Rjk) {where the superscript
f denotes fuzzy set}

4: end for
5: end for
6: For each attribute region Rjk, count the number of occurrences, where

µijk > 0, in the whole database. The output is num(Rjk).

num(Rjk) =
n∑

i=1

1{µijk/Rjk 6= 0}
7: L1={Rjk|num(Rjk) ≥minnum, 1≤j≤m, 1≤k≤numR(Ij)}.
8: r=1 (r is the number of items that composed the large itemsets in the

current stage).
9: Generate the candidate set Cr+1 from Lr

10: r+1 in Cr+1

the items (s1, s2,. . . ,sr+1) do
11: For each transaction di calculate its intersection fuzzy value as:

f i
(cr+1) = f i

1∩fi2∩. . .∩fir+1.

12: Calculate the frequency of cr+1 on the transactions, where f i
(cr+1) > 0.

num(cr+1) is output.
13:

Lr+1.

14: end for
15: if Lr+1 is not empty then
16: r = r + 1
17: go to Step 9.
18: end if
19: for all large itemset lr, r≥ 2 do
20: Calculate its support as: sup(lr) = Σfi(lr).
21: Calculate its strength as: str(lr)= sup(lr)/num(lr).
22: end for
23: For each large itemset lr, r≥2, generate the possible association rules as

in (Agrawal et al., 1993).
24: For each association rule s1, s2, . . . , sn ≥ sn+1, . . . , sr, calculate its

confidence as: num(s1, s2. . . sn,sn+1. . . sr)/num(s1, s2. . . sn).
25: if the confidence is higher than the predefined threshold minconf then
26: output the rule as an association rule.
27: end if
28: For each association rule s1, s2, . . . , sn ≥ sn+1, . . . , sr, record its strength

as str(s1, s2. . . sn,sn+1. . . sr), and its support as sup(lr).

, that is composed of

number of occurrences minnum, put it in the set of large r+1-itemsets

for all newly formed candidate itemset c

If the frequency of the itemset is larger than or equal to the predefined

202 Lior Rokach

• Lr – the set of large itemsets with r items.
• lr – a large itemset with r items.
• num(I1, . . . , Is) – the occurrences number of the itemset (I1, . . . , Is).
• numR(Ij) – the number of the membership function regions for the at-

tribute Ij .

Algorithm 4 presents the fuzzy association algorithm proposed in (Komem
and Schneider, 2005). The quantitative values are first transformed into a
set of membership grades, by using predefined membership functions. Every
membership grade represents the agreement of a quantitative value with a
linguistic term. In order to avoid discriminating the importance level of data,
each point must have membership grade of 1 in one membership function;
Thus, the membership functions of each attribute produce a continuous line
of µ = 1. Additionally, in order to diagnose the bias direction of an item
from the center of a membership function region, almost each point get an-
other membership grade which is lower than 1 in other membership functions
region. Thus, each end of membership function region is touching, close to,
or slightly overlapping an end of another membership function (except the
outside regions, of course).

By this mechanism, as point “a” moves right, further from the center of the
region “middle”, it gets a higher value of the label “middle-high”, additionally
to the value 1 of the label “middle”.

6 Conclusion

This chapter discussed how fuzzy logic can be used to solve several different
data mining tasks, namely classification clustering, and discovery of associ-
ation rules. The discussion focused mainly one representative algorithm for
each of these tasks.

There are at least two motivations for using fuzzy logic in data mining,
broadly speaking. First, as mentioned earlier, fuzzy logic can produce more
abstract and flexible patterns, since many quantitative features are involved
in data mining tasks. Second, the crisp usage of metrics is better replaced by
fuzzy sets that can reflect, in a more natural manner, the degree of belong-
ingness/membership to a class or a cluster.

References

R. Agrawal, T. Imielinski and A. Swami: Mining Association Rules between Sets of
Items in Large Databases. Proceeding of ACM SIGMOD, 207-216. Washington,
D.C, 1993.

J. C. Bezdek. Fuzzy Mathematics in Pattern Classification. PhD Thesis, Applied
Math. Center, Cornell University, Ithaca, 1973.

The Role of Fuzzy Sets in Data Mining 203

Cios K. J. and Sztandera L. M., Continuous ID3 algorithm with fuzzy entropy
measures, Proc. IEEE lnternat. Con/i on Fuzz)’ Systems,1992, pp. 469-476.

T.P. Hong, C.S. Kuo and S.C. Chi: A Fuzzy Data Mining Algorithm for Quanti-
tative Values. 1999 Third International Conference on Knowledge-Based Intel-
ligent Information Engineering Systems. Proceedings. IEEE 1999, pp. 480-3.

T.P. Hong, C.S. Kuo and S.C. Chi: Mining Association Rules from Quantitative
Data. Intelligent Data Analysis, vol.3, no.5, nov. 1999, pp363-376.

Jang J., ”Structure determination in fuzzy modeling: A fuzzy CART approach,”
in Proc. IEEE Conf. Fuzzy Systems, 1994, pp. 480485.

Janikow, C.Z., Fuzzy Decision Trees: Issues and Methods, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 28, Issue 1, pp. 1-14. 1998.

Kim, J., Krishnapuram, R. and Dav, R. (1996). Application of the Least Trimmed
Squares Technique to Prototype-Based Clustering, Pattern Recognition Let-
ters, 17, 633-641.

Joseph Komem and Moti Schneider, On the Use of Fuzzy Logic in Data Mining, in
The Data Mining and Knowledge Discovery Handbook, O. Maimon, L. Rokach
(Eds.), pp. 517-533, Springer, 2005.

Maher P. E. and Clair D. C, Uncertain reasoning in an ID3 machine learning
framework, in Proc. 2nd IEEE Int. Conf. Fuzzy Systems, 1993, pp. 712.

S. Mitra, Y. Hayashi, ”Neuro-fuzzy Rule Generation: Survey in Soft Computing
Framework.” IEEE Trans. Neural Networks, Vol. 11, N. 3, pp. 748-768, 2000.

S. Mitra and S. K. Pal, Fuzzy sets in pattern recognition and machine intelligence,
Fuzzy Sets and Systems 156 (2005) 381386

Nasraoui, O. and Krishnapuram, R. (1997). A Genetic Algorithm for Robust Clus-
tering Based on a Fuzzy Least Median of Squares Criterion, Proceedings of
NAFIPS, Syracuse NY, 217-221.

Nauck D., Neuro-Fuzzy Systems: Review and Prospects Paper appears in Proc.
Fifth European Congress on Intelligent Techniques and Soft Computing (EU-
FIT’97), Aachen, Sep. 8-11, 1997, pp. 1044-1053

Olaru C., Wehenkel L., A complete fuzzy decision tree technique, Fuzzy Sets and
Systems, 138(2):221–254, 2003.

Peng Y., Intelligent condition monitoring using fuzzy inductive learning, Journal
of Intelligent Manufacturing, 15 (3): 373-380, June 2004.

E. Shnaider and M. Schneider, Fuzzy Tools for Economic Modeling. In: Uncertainty
Logics: Applications in Economics and Management. Proceedings of SIGEF’98
Congress, 1988.

Shnaider E., M. Schneider and A. Kandel, 1997, A Fuzzy Measure for Similarity
of Numerical Vectors, Fuzzy Economic Review, Vol. II, No. 1, 1997, pp. 17 -
38. -2Nkmg cnycau qfgf ockoqp fkf pqv tgcf gxgp qpg rcig qh vjku dqqm0 Jg
tghwugf vq jgnr dwv jcf pq rtqdngo vq ytkvg jku qyp pcog qp vjg dqqm cpf
vgnn gxgtaqpg jg ku yqtmkpi jctf0-2

Tani T. and Sakoda M., Fuzzy modeling by ID3 algorithm and its application to
prediction of heater outlet temperature, Proc. IEEE lnternat. Conf. on Fuzzy
Systems, March 1992, pp. 923-930.

Yuan Y., Shaw M., Induction of fuzzy decision trees, Fuzzy Sets and Systems
69(1995):125-139.

Zimmermann H. J., Fuzzy Set Theory and its Applications, Springer, 4th edition,
2005.

Support Vector Machines and Fuzzy Systems

Yixin Chen

Department of Computer and Information Science
The University of Mississippi
University, MS 38655
ychen@cs.olemiss.edu

Summary. Fuzzy set theory and fuzzy logic provide tools for handling uncertain-
ties in data mining tasks. To design a fuzzy rule-based classification system (fuzzy
classifier) with good generalization ability in a high dimensional feature space has
been an active research topic for a long time. As a powerful machine learning ap-
proach for data mining and pattern recognition problems, support vector machine
(SVM) is known to have good generalization ability. More importantly, an SVM can
work very well on a high (or even infinite) dimensional feature space. This chapter
presents a survey of the connection between fuzzy classifiers and kernel machines.
A significant portion of the chapter is built upon material from articles we have
written, in particular (Chen and Wang, 2003a,Chen and Wang, 2003b).

1 Introduction

As powerful tools for managing uncertainties inherent in complex systems,
fuzzy set theory and fuzzy logic have been successfully applied to a variety
of areas including data mining, system identification and control, signal and
image processing, pattern classification, and information retrieval (Klawon
and Klement, 1997,Klir and Yuan, 1995,Zimmermann, 1991). A fuzzy classifier
(FC) is a fuzzy rule-based classification system, which makes decisions based
on fuzzy inference–a fusion of natural languages and computation with fuzzy
variables. Although fuzzy rules may provide intuitive linguistic interpretations
of the concept underneath a classification problem (Zadeh, 1996), the FCs
were regarded as methods that “are cumbersome to use in high dimensions or
on complex problems or in problems with dozens or hundreds of features (pp.
194, (Duda et al., 2000))”.

Kernel machines and the associated learning methods, especially the sup-
port vector machine (SVM) approach (Vapnik, 1998), represent one of the
most important directions both in theory and application of machine learn-
ing. With proper learning methods, kernel machines are known to have good
generalization abilities and, more importantly, perform very well on high (or

206 Yixin Chen

even infinite) dimensional feature spaces. In recent years, efforts have been
made to analyze the relationship between fuzzy rule-based systems and ker-
nel machines (Lin and Wang, 2002,Chen and Wang, 2003a,Chen and Wang,
2003b,Leski, 2005,Moser, 2006). In this chapter, we demonstrate that, under
a general assumption on membership functions, an additive FC is equivalent
to a kernel machine in terms of decision boundaries. Consequently, various
learning algorithms for kernel machines are applicable to the class of FCs.
Moreover, techniques originated in the fuzzy systems literature may also en-
rich the toolbox of kernel machines.

1.1 Traditional Approaches to Building a Fuzzy System

In general, building a fuzzy system consists of three basic steps:

• Structure identification
It includes variable selection, partitioning input and output spaces, speci-
fying the number of fuzzy rules, and choosing a parametric/nonparametric
form of membership functions.

• Parameter estimation
It obtains unknown parameters in fuzzy rules via optimizing a given cri-
terion.

• Model validation
It involves performance evaluation and model simplification.

Deciding the number of input variables is referred to as the problem of
variable selection, i.e., selecting input variables that are most predictive of a
given outcome. It is related to the problems of input dimensionality reduc-
tion and parameter pruning. Emami et al. (Emami et al., 1998) presented a
simple method of identifying non-significant input variables in a fuzzy system
based on the distribution of degree of memberships over the domain. Silipo
et al. (Silipo and Berthold, 2000) proposed a method that quantifies the dis-
criminative power of the input features in a fuzzy model based on information
gain. Selecting input variables according to their information gains may im-
prove the prediction performance of the fuzzy system and provides a better
understanding of the underlying concept that generates the data.

Given a set of input and output variables, a fuzzy partition associates
fuzzy sets (or linguistic labels) with each variable. There are roughly two
ways of doing it: data independent partition and data dependent partition.
The former approach partitions the input space in a predetermined fashion.
The partition of the output space then follows from supervised learning. One
of the commonly used strategies is to assign a fixed number of linguistic labels
to each input variable (Wang and Mendel, 1992). Although this scheme is not
difficult to implement, it has two serious drawbacks:

• The information in the given data (patterns) is not fully exploited. The
performance of the resulting system may be poor if the input space parti-

Support Vector Machines and Fuzzy Systems 207

tion is quite distinct from the true distribution of data. Optimizing output
space partition alone is not sufficient.

• The scheme suffers from the curse of dimensionality. If each input variable
is allocated m fuzzy sets, a fuzzy system with n inputs and one output
needs on the order of mn rules.

Various data dependent partition methods have been proposed to allevi-
ate these drawbacks. Dickerson et al. (Dickerson and Kosko, 1996) used an
unsupervised competitive learning algorithm to find the mean and covariance
matrix of each data cluster in the input/output space. Each data cluster forms
an ellipsoidal fuzzy rule patch. Thawonmas et al. (Thawonmas and Abe, 1999)
described a simple heuristic for unsupervised iterative data partition. At each
iteration, an input dimension, which gives the maximum intra-class dierence
between the maximum and the minimum values of the data along that di-
mension, is selected. The partition is performed perpendicular to the selected
dimension. Two data group representations, hyper-box and ellipsoidal repre-
sentations, are compared. In (Setnes, 2000), a supervised clustering algorithm
is used to group input/output data pairs into a predetermined number of
fuzzy clusters. Each cluster corresponds to a fuzzy IF-THEN rule. Univariate
membership functions can then be obtained by projecting fuzzy clusters onto
corresponding coordinate axes.

Although a fuzzy partition can generate fuzzy rules, results are usually very
coarse with many parameters to be learned and tuned. Various optimization
techniques are proposed to solve this problem. Genetic algorithms (Chiang
et al., 1997, Tang et al., 1998, Wong and Chen, 2000) and artificial neural
networks (Jang and Sun, 1993,Kasabov, 1996,Wu et al., 2001) are two of the
most popular and effective approaches.

1.2 Generalization Performance

After going through the long journey of structure identification and parameter
estimation, can we infer that we get a good fuzzy model? In order to draw a
conclusion, the following two questions must be answered:

• How capable can a fuzzy model be?
• How well can the model, built on finite amount of data, capture the concept

underlying the data?

The first question could be answered from the perspective of function ap-
proximation. Several types of fuzzy models are proven to be “universal ap-
proximators” (Kosko, 1994, Rovatti, 1998, Wang , 1999, Ying, 1998), i.e., we
can always find a model from a given fuzzy model set so that the model
can uniformly approximate any continuous function on a compact domain
to any degree of accuracy. The second question is about the generalization
performance, which is closely related to several well-known problems in the
statistics and machine learning literature, such as the structural risk min-
imization (Vapnik, 1982), the bias variance dilemma (Geman et al., 1992),

208 Yixin Chen

and the overfitting phenomena (Bartlett, 1997). Loosely speaking, a model,
build on finite amount of given data (training patterns), generalizes the best
if the right tradeoff is found between the training (learning) accuracy and the
“capacity” of the model set from which the model is chosen. On one hand,
a low “capacity” model set may not contain any model that fits the training
data well. On the other hand, too much freedom may eventually generate a
model behaving like a refined look-up-table: perfect for the training data but
(maybe) poor on generalization.

Researchers in the fuzzy systems community attempt to tackle this prob-
lem with roughly two approaches:(1) use the idea of cross-validation to select
a model that has the best ability to generalize (Sugeno and Kang, 1998);
(2) focus on model reduction, which is usually achieved by rule base reduc-
tion (Setnes and Babus̃ka, 2001,Yen and Wang, 1998), to simplify the model.

1.3 A Kernel Method for Fuzzy Systems

In the statistical learning literature, the Vapnik-Chervonenkis (VC) the-
ory (Vapnik, 1995, Vapnik, 1998) provides a general measure of model set
complexity. Based on the VC theory, support vector machines (SVM) (Vapnik,
1995,Vapnik, 1998) can be designed for classification problems. In many real
applications, the SVMs give excellent performance (Cristianini and Shawe-
Taylor, 2000).

In this chapter, we relate additive fuzzy systems to kernel machines, and
demonstrate that, under a general assumption on membership functions, an
additive fuzzy rule-based classification system can be constructed directly
from the given training samples using the support vector learning approach.
Such additive fuzzy rule-based classification systems are named the positive
definite fuzzy classifiers (PDFC). Using the SVM approach to build PDFCs
has following advantages:

• Fuzzy rules are extracted directly from the given training data. The num-
ber of fuzzy rules is irrelevant to the dimension of the input space. It is no
greater (usually much less) than the number of training samples. In this
sense, we avoid the “curse of dimensionality.”

• The VC theory establishes the theoretical foundation for good generaliza-
tion of the resulting PDFC.

• The global solution of an SVM optimization problem can be found effi-
ciently using specifically designed quadratic programming algorithms.

1.4 An Outline of the Chapter

The remainder of the chapter is organized as follows. Section 2 describes the
class of FCs to be studied: additive FCs with positive definite reference func-
tions, product fuzzy conjunction operator, and center of area (COA) defuzzi-
fication with thresholding unit. These FCs are named positive definite FCs.

Support Vector Machines and Fuzzy Systems 209

The equivalence between a PDFC and a kernel machine is proven. Based on
a support vector learning method, Section 3 proposes a learning algorithm to
construct PDFCs from training samples. Experimental results are provided in
Section 4. And finally, we conclude in Section 5 together with a discussion of
relevant and future work.

2 Additive Fuzzy Classifiers and Positive Definite Fuzzy
Classifiers

This section starts with a short description of an additive fuzzy model, based
on which binary FCs and standard binary FCs are defined. We then intro-
duce the concept of positive definite functions, and define positive definite FC
(PDFC) accordingly. Finally, some nice properties of the PDFCs are discussed.

2.1 Additive Fuzzy Classifiers

Depending on the THEN-part of fuzzy rules and the way to combine fuzzy
rules, an FC can take many different forms (Kuncheva, 2000). In this chapter,
we consider the additive fuzzy model with constant THEN-parts. Given m
fuzzy rules of the form

Rule j : IF A1
j AND A2

j AND · · · AND An
j THEN bj (1)

where Ak
j is a fuzzy set with membership function ak

j : R → [0, 1], j =
1, · · · , m, k = 1, · · · , n, bj ∈ R, if we choose product as the fuzzy conjunction
operator, addition for fuzzy rule aggregation (that is what “additive” means),
and COA defuzzification, then the input output mapping, F : Rn → R, of the
model is defined as

F (x) =

∑m
j=1 bj

∏n
k=1 ak

j (xk)∑m
j=1

∏n
k=1 ak

j (xk)
(2)

where x = [x1, · · · , xn]T ∈ Rn is the input. Note that (2) is not well-defined
on Rn if

∑m
j=1

∏n
k=1 ak

j (xk) = 0 for some x ∈ Rn, which could happen if the
input space is not fully covered by fuzzy rule “patches”. However, there are
several easy fixes for this problem. For example, we can force the output to
some constant when

∑m
j=1

∏n
k=1 ak

j (xk) = 0, or add a fuzzy rule so that the
denominator

∑m
j=1

∏n
k=1 ak

j (xk) > 0 for all x ∈ Rn. Here we take the second
approach for analytical simplicity. The following rule is added:

Rule 0 : IF A1
0 AND A2

0 AND · · · AND An
0 THEN b0 (3)

where b0 ∈ R, the membership functions ak
0(xk) ≡ 1 for k = 1, · · · , n and any

xk ∈ R. Consequently, the input output mapping becomes

210 Yixin Chen

F (x) =
b0 +

∑m
j=1 bj

∏n
k=1 ak

j (xk)

1 +
∑m

j=1

∏n
k=1 ak

j (xk)
. (4)

A classifier associates class labels with input features, i.e., it is essentially
a mapping from the input space to the set of class labels. In binary case,
thresholding is one of the simplest ways to transform F (x) to class labels +1
or −1. In this article, we are interested in binary FCs defined as follows.

Definition 2.1 (Binary FC) Consider a fuzzy system with m + 1 fuzzy rules
where Rule 0 is given by (3), Rule j, j = 1, · · · ,m, has the form of (1). If the
system uses product for fuzzy conjunction, addition for rule aggregation, and
COA defuzzification, then the system induces a binary FC, f , with decision
rule,

f(x) = sign (F (x)) (5)

where F (x) is defined in (4).

The membership functions for a binary FC defined above could be any
function from R to [0, 1]. However, too much flexibility on the model could
make effective learning (or training) infeasible. So we narrow our interests
to the class of membership functions that are generated from location trans-
formation of reference functions (Dubois D and Prade H (1978)), and the
classifiers defined on them.

Definition 2.2 (Reference Function, (Dubois D and Prade H (1978))) A
function µ : R→ [0, 1] is a reference function if and only if: 1) µ(x) = µ(−x);
2) µ(0) = 1; and, 3) µ is non-increasing on [0,∞).

Definition 2.3 (Standard Binary FC) A binary FC given by Definition 2.1
is a standard binary FC if for the kth input, k ∈ {1, · · · , n}, the membership
functions, ak

j : R → [0, 1], j = 1, · · · ,m, are generated from a reference
function ak through location transformation, i.e., ak

j (xk) = ak(xk − zk
j) for

some location parameter zk
j ∈ R. (Note that different inputs can have different

reference functions.)

Corollary 2.4 The decision rule of a standard binary FC given by Defini-
tion 2.3 can be written as

f(x) = sign

m∑

j=1

bjK(x, zj) + b0

 (6)

where x = [x1, x2, · · · , xn]T ∈ Rn, zj = [z1
j , z2

j , · · · , zn
j]T ∈ Rn contains the

location parameters of ak
j , k = 1, · · · , n, K : Rn×Rn → [0, 1] is a translation

Support Vector Machines and Fuzzy Systems 211

invariant kernel1 defined as

K(x, zj) =
n∏

k=1

ak(xk − zk
j) . (7)

Proof: From (4), (5), and the fact that 1 +
∑m

j=1

∏n
k=1 ak

j (xk) > 0, we have

f(x) = sign

b0 +

m∑

j=1

bj

n∏

k=1

ak
j (xk)

 ,

which transforms to (6) using Definition 2.3. ¤

2.2 Positive Definite Fuzzy Classifiers

Corollary 2.4 presents a novel kernel perspective on standard binary FCs. One
particular kind of kernel, Mercer kernel, has received considerable attention in
the machine learning literature (Cristianini and Shawe-Taylor, 2000,Genton,
2001,Vapnik, 1998) because it is an efficient way of extending linear learning
machines to nonlinear ones. Is the kernel defined by (7) a Mercer kernel? A
kernel satisfying the Mercer conditions (Cristianini and Shawe-Taylor, 2000)
is named a Mercer kernel. An equivalent form of the Mercer condition, which
proves most useful in constructing Mercer kernels, is given by the following
lemma (Cristianini and Shawe-Taylor, 2000).

Lemma 2.5
Taylor, 2000)) A kernel K : Rn×Rn → R is a Mercer kernel if and only if the
matrix [K(xi,xj)] ∈ Rn×n is positive semi-definite for all choices of points
{x1, · · · ,xn} ⊂ X (X is a compact subset of Rn) and all n = 1, 2, · · · · · · .

For most nontrivial kernels, directly checking the positivity condition in
Lemma 2.5 is not an easy task. Nevertheless, for the class of translation invari-
ant kernels, to which the kernels defined by (7) belong, there is an equivalent
yet practically more powerful criterion based on the spectral property of the
kernel (Smola et al., 1998).

Lemma 2.6 (Positivity Condition for Translation Invariant Kernels (Smola
et al., 1998)) A translation invariant kernel K(x, z) = K(x− z) is a Mercer
kernel if and only if the Fourier transform

F [K](ω) =
1

(2π)
n
2

∫

Rn

K(x)e−i〈ω,x〉dx

is nonnegative.
1 A kernel K(x, z) is translation invariant if K(x, z) = K(x − z), i.e., it depends

only on x− z, but not on x and z themselves.

(Positivity Condition for Mercer Kernels (Cristianini and Shawe-

212 Yixin Chen

Kernels defined by (7) do not, in general, have nonnegative Fourier trans-
forms. However, if we assume that the reference functions are positive definite
functions, which are defined by the following definition, we do get a Mercer
kernel (given in Theorem 2.9).

Definition 2.7 (Positive Definite Function (Horn and Johnson, 1985)) A
function f : R → R is said to be a positive definite function if the ma-
trix [f(xi − xj)] ∈ Rn×n is positive semi-definite for all choices of points
{x1, · · · , xn} ⊂ R and all n = 1, 2, · · · · · · .

Corollary 2.8 A function f : R → R is positive definite if and only if the
Fourier transform

F [f](ω) =
1√
2π

∫ ∞

−∞
f(x)e−iωxdx

is nonnegative.

Proof: Given any function f : R → R, we can define a translation invariant
kernel K : R× R→ R as

K(x, z) = f(x− z) .

From Lemma 2.6, K is a Mercer kernel if and only if the Fourier transform
of f is nonnegative. Thus from Lemma 2.5 and Definition 2.7, we conclude
that f is a positive definite function if and only if its Fourier transform is
nonnegative. ¤

Theorem 2.9 (Positive Definite FC, PDFC) The translation invariant ker-
nel (7) is a Mercer kernel if the reference functions, ak : R → [0, 1], k =
1, · · · , n, are positive definite functions. The corresponding standard binary
FC is named a PDFC.

Proof: From Lemma 2.6, it suffices to show that the translation invariant
kernel defined by (7) has nonnegative Fourier transform. Rewrite (7) as

K(x, z) = K(u) =
n∏

k=1

ak(uk)

where x = [x1, · · · , xn]T , z = [z1, · · · , zn]T ∈ Rn, u = [u1, · · · , un]T = x − z.
Then

F [K](ω) =
1

(2π)
n
2

∫

Rn

e−i〈ω,u〉
n∏

k=1

ak(uk)du =
n∏

k=1

1√
2π

∫

R
ak(uk)e−iωkukduk ,

Support Vector Machines and Fuzzy Systems 213

which is nonnegative since ak, k = 1, · · · , n, are positive definite functions. ¤
It might seem that the positive definite assumption on reference functions

is quite restrictive. In fact, many commonly used reference functions are indeed
positive definite. An incomplete list includes

• Symmetric triangle
µ(x) = max(1− d |x| , 0)

• Gaussian
µ(x) = e−dx2

• Cauchy

µ(x) =
1

1 + dx2

• Laplace
µ(x) = e−d|x|

• Hyperbolic secant

µ(x) =
2

edx + e−dx

• Squared sinc

µ(x) =
sin2 (dx)

d2x2

where d > 0.

Note that the Gaussian reference function corresponds to the commonly
used Gaussian kernel. More generally, the weighted summation (with posi-
tive weights) and the product of positive definite functions are still positive
definite (a direct conclusion from the linearity and product/convolution prop-
erties of the Fourier transform). So we can get a class of positive definite
reference functions from those listed above. It is worthwhile noting that the
asymmetric triangle and the trapezoid reference functions are not positive
definite.

2.3 Some Remarks on PDFCs

A Mercer kernel implicitly defines a nonlinear mapping, Φ : X→ F, such that
the kernel computes the inner product in F, i.e., K(x, z) = 〈Φ(x), Φ(z)〉F where
X is the input space, 〈·, ·〉F is an inner product in the new feature space F (its
dimension can be infinite). Therefore, from Corollary 2.4 and Theorem 2.9
the decision rule of a PDFC can be equivalently written as

f(x) = sign

〈
m∑

j=1

bjΦ(zj), Φ(x)

〉

F

+ b0

 . (8)

214 Yixin Chen

Remark 2.10 Equation (8) relates the decision boundary of a PDFC in X to
a hyperplane in F (with normal direction w =

∑m
j=1 bjΦ(zj)). It implies that

for any hyperplane in F, if the normal direction is a linear combination of
vectors that have pre-images (under Φ) in X, then the hyperplane transforms
to a decision boundary of a PDFC. Conversely, given a PDFC, one can find a
hyperplane in F that transforms to the decision boundary of the given PDFC.
Therefore, we can alternatively think of the decision boundary of a PDFC
as a hyperplane in F. Constructing a PDFC is then converted to finding a
hyperplane in F.

Remark 2.11 A hyperplane in F is defined by its normal direction w and the
distance to the origin. According to (8) , the IF-part and THEN-part of fuzzy
rules play different roles in modeling the hyperplane. Once we have the IF-part
parameters, {z1, · · · , zm}, the set of feasible orientations of the hyperplanes is
given by W = Span{Φ(z1), · · · , Φ(zm)}. Finding the THEN-part parameters
{b1, · · · , bm} is essentially selecting an orientation from W as

∑m
j=1 bjΦ(zj).

The distance of the hyperplane to the origin is then decided by b0, which is
the THEN-part of Rule 0.

3 Support Vector Learning for Positive Definite Fuzzy
Classifiers

A PDFC with n inputs is parameterized by n, possibly different, positive
definite reference functions (ak : R → [0, 1], k = 1, ...n), a set of loca-
tion parameters ({z1, · · · , zm} ⊂ X) for the membership functions of the
IF-part fuzzy rules, and a set of real numbers ({b0, · · · , bm} ⊂ R) for the
constants in the THEN-part fuzzy rules where m is unknown. Which ref-
erence functions to choose is an interesting research topic by itself (Mi-
taim and Kosko, 2001). PDFCs with different reference functions are em-
pirically compared in Section 4. Here we assume that the reference functions
ai : R → [0, 1], i = 1, · · · , n are predetermined. Thus the problem is how
to extract a set of fuzzy rules ({z1, · · · , zm} and {b0, · · · , bm}) from training
samples so that the PDFC has good generalization ability.

In the previous section, we demonstrate the equivalence (in terms of de-
cision boundaries) between PDFCs and kernel machines. So any learning al-
gorithm for kernel machines can potentially be applied to construct PDFCs.
As a universal learning machine for pattern recognition problems, the SVM
is known to have good generalization ability because the SVM learning ap-
proach tries to decrease an upper bound on the expected risk by reducing
the empirical risk and, at the same time, controlling the VC dimension of the
model set (Cristianini and Shawe-Taylor, 2000, Vapnik, 1998). Here we pro-
pose a learning algorithm for PDFCs based on the SVM learning approach.
The learning algorithm first construct an SVM from training samples, then

Support Vector Machines and Fuzzy Systems 215

convert support vectors to fuzzy rules such that the PDFC and SVM have
identical decision rules. The whole procedure is described by the following
algorithm.

Algorithm 1: SVM Learning for PDFC
Inputs: Positive definite reference functions ak(xk), k = 1, · · · , n, associated
with n input variables, and a set of training samples
{(x1, y1), · · · , (xl, yl)} ⊂ X× {+1,−1} where yi is the class label associated
with feature vector xi.
Outputs: A set of fuzzy rules parameterized by zj , bj , and m. zj

(j = 1, · · · , m) contains the location parameters of the IF-part membership
functions of the jth fuzzy rule, bj (j = 0, · · · , m) is the THEN-part constant
of the jth fuzzy rule, and m + 1 is the number of fuzzy rules.
Steps:

1 Construct a Mercer kernel, K, from the given positive definite reference
functions according to (7).

2 Construct an SVM to get a decision rule of the form

y = sign
(∑l

i=1 yiαiK(xj ,xi) + b
)

where αi ≥ 0, i = 1, · · · , l, are the Lagrange multipliers obtained by
solving the SVM quadratic programming problem2.

3 Extract fuzzy rules from the above SVM decision rule:
b0 ← b
j ← 1
FOR i = 1 TO l

IF αi > 0
zj ← xi

bj ← yiαi

j ← j + 1
END IF

END FOR
m ← j − 1

Clearly the number of fuzzy rules equals the number of nonzero Lagrange
multipliers, and is irrelevant to the dimension of the input space. In this
sense, the “curse of dimensionality” (the number of fuzzy rules increases ex-
ponentially with the increasing of input dimension) is avoided. In addition,
due to the sparsity of the Lagrange multipliers, the number of fuzzy rules is
usually much less than the number of training samples. There is a one-to-
one correspondence between support vectors and fuzzy rules. Each fuzzy rule
is parameterized by a support vector xj , class label yj , and the associated
nonzero Lagrange multiplier αj where xj specifies the location of the IF-part
membership functions, yjαj gives the THEN-part constant. Therefore, we
can alternatively view a PDFC as an SVM with the kernel constructed from
positive definite reference functions.

216 Yixin Chen

Fig. 1. Checkerboard problem. The training samples are marked with ∗’s and ◦’s.
Each rule of PDFC is represented by a vertical line pointing from a sample to a ¦
where the sample corresponds to the location of the rule. The signed length of the
line segment is defined by sign(bj)log(|bj |) where bj is the THEN part of a rule.

Figure 1 shows a binary classification problem and the fuzzy rules ob-
tained from the above algorithm. The samples are generated from a checker-
board distribution with the positive and negative classes denoted by ∗ and
◦, respectively. The PDFC is constructed from 100 positive and 100 negative
training samples. The reference function is selected to be the Gaussian func-
tion with σ =

√
3

3 . Figure 1 shows the 10 rules learnt from the training data.
The location of each rule is indicated by the projection of the ¦ onto the x1-x2

plane. The THEN part of each rule, bj , is marked by a vertical line pointing
from a sample to a ¦. The vertical axis indicates sign(bj)log(|bj |). The PDFC
achieves 98.5% accuracy on an independent test set of 100 positive and 100
negative samples.

4 Experimental Results

In this section, PDFCs with different choices of reference functions are com-
pared on the USPS data set 3, which contains 9298 grayscale images of hand-
3 The USPS data set is available at http://www.kernel-machines.org/data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

−10

−8

−6

−4

−2

0

2

4

6

8

10

x
2

x
1

s
ig

n
(b

i)
*l

o
g
(|

b
i|)

Support Vector Machines and Fuzzy Systems 217

Table 1. The maximal classification rate and the number of fuzzy rules for different
reference functions using the USPS data set.

Reference Function Gaussian Cauchy Laplace S-Triangle H-Secant Sinc2

d 1
128

1
128

1
64

1
64

1
8

1
8

Classification Rate 99.55% 99.55% 99.40% 99.40% 99.55% 99.30%

Number of Fuzzy Rules 464 462 835 841 462 352

written digits. The images are size normalized to fit in a 16×16 pixel box while
preserving their aspect ratio. The data set is divided into a training set of 7291
samples and a testing set of 2007 samples. For each sample, the input feature
vector consists of 256 grayscale values. We test the performance of PDFCs
for six positive definite reference functions listed in Section 2.1, namely sym-
metric triangle, Gaussian, Cauchy, Laplace, hyperbolic secant, and squared
sinc. For different input variables, the reference functions are chosen to be
identical (otherwise, there will be too many cases to compare). Due to space
limitation, we only present the results of separating digit 0 from the rest 9
digits. Similar results have been observed for the other 9 cases. In the dual
formulation of the SVM optimization problem (the 1-norm soft margin prob-
lem is solved here 4), the upper bound of the Lagrange multipliers is sent
to be 1000. The d parameter for all reference functions takes discrete values
from { 1

2n : n = 3, · · · , 20}. We pick the maximal classification rates for all six
reference functions, and list them in Table 3 together with the corresponding
d values and the number of fuzzy rules.

It is interesting to see that the maximal classification rates, varying from
99.30% (14 misclassified validation samples out of 2007 validation samples)
to 99.55% (9 misclassified validation samples out of 2007 validation samples),
are very close. The Gaussian, Cauchy, and hyperbolic secant give the same
best classification rate of 99.55%, but the number of fuzzy rules need by the
Gaussian reference function, which is 464, is slightly greater than 462, the
number of fuzzy rules required by the latter two reference functions. The
computational cost for the Cauchy reference function is lower than that of
the hyperbolic secant reference function because there is no need to compute
an exponential term in evaluating the Cauchy reference function. Although
the squared sinc gives the worst (not significant though) classification rate
(99.30%), it requires significantly less number of fuzzy rules. Figure 2 shows
the misclassified validation samples for all reference functions with values of
d given by Table 3. Some of those samples are very ambiguous, but several
are identifiable by humans, although they are written in an under-represented
style.

4 The SVMLight (Joachims, 1999) is used to implement the SVMs.

218 Yixin Chen

(a) Gaussian, Cauchy, and hyperbolic secant reference functions.

(b) Laplace and symmetric triangle reference functions.

(c) Squared sinc reference function.

Fig. 2. The testing samples misclassified by PDFCs using different reference func-
tions. From left to right, the correct labels for the images are (a) 000500030, (b)
080000500000, and (c) 08820023500030.

5 Discussion and Future Work

In this chapter, we exhibit the connection between fuzzy classifiers and kernel
machines, and propose a support vector learning approach to construct fuzzy
classifiers so that a fuzzy classifier can have good generalization ability in a
high dimensional feature space.

5.1 The Relationship between PDFC kernels and RBF Kernels

In the literature, it is well-known that a Gaussian RBF network can be trained
via support vector learning using a Gaussian RBF kernel (Schölkopf et al.,
1997). While the functional equivalence between fuzzy inference systems and
Gaussian RBF networks is established in (Jang and Sun, 1993) where the
membership functions within each rule must be Gaussian functions with iden-
tical variance. So connection between such fuzzy systems and SVMs with
Gaussian RBF kernels can be established. The following discussion compares
the kernels defined by PDFCs and RBF kernels commonly used in SVMs.

The kernels of PDFCs are constructed from positive definite reference
functions. These kernels are translation invariant, symmetric with respect to
a set of orthogonal axes, and tailing off gradually. In this sense, they appear
to be very similar to the general RBF kernels (Genton, 2001). In fact, the
Gaussian reference function defines the Gaussian RBF kernel. However, in
general, the kernels of PDFCs are not RBF kernels. According to the def-
inition, an RBF kernel, K(x, z), depends only on the norm of x − z, i.e.,
K(x − z) = KRBF (‖x − z‖). It can be shown that for a kernel, K(x, z), de-
fined by (7) using symmetric triangle, Cauchy, Laplace, hyperbolic secant,
or squared sinc reference functions (even with identical d for all input vari-
ables), there exists x1, x2, z1, and z2 such that ‖x1 − z1‖ = ‖x2 − z2‖ and
K(x1, z1) 6= K(x2, z2). Moreover, a general RBF kernels (even if it is a Mercer
kernel) may not be a PDFC kernel, i.e., it can not be in general decomposed
as product of positive definite reference functions. It is worth noting that
the kernel defined by symmetric triangle reference functions is identical to

Support Vector Machines and Fuzzy Systems 219

the Bn-splines (or order 1) kernel that is commonly used in the SVM litera-
ture (Vapnik et al., 1997).

5.2 Advantages of Connecting Fuzzy Systems to Kernel Machines

Kernel methods represent one of the most important directions both in theory
and application of machine learning. While fuzzy classifier was regarded as
a method that “are cumbersome to use in high dimensions or on complex
problems or in problems with dozens or hundreds of features (pp. 194, (Duda
et al., 2000)).” Establishing the connection between fuzzy systems and kernel
machines has the following advantages:

• A novel kernel perspective of fuzzy classifiers is provided. Through ref-
erence functions, fuzzy rules are related to translation invariant kernels.
Fuzzy inference on the IF-part of a fuzzy rule is equivalent to evaluating
the kernel. If the reference functions are restricted to the class of positive
definite functions then the kernel turns out to be a Mercer kernel, and
the corresponding fuzzy classifier becomes a PDFC. Since Mercer kernel
induces a feature space, we can consider the decision boundary of a PDFC
as a hyperplane in that space. The design of a PDFC is then equivalent
to finding an “optimal” hyperplane.

• A new approach to build fuzzy classifiers is proposed. Based on the link
between fuzzy systems and kernel machines, a support vector learning
approach is proposed to construct PDFCs so that a fuzzy classifier can
have good generalization ability in a high dimensional feature space. The
resulting fuzzy rules are determined by support vectors, corresponding
Lagrange multipliers, and associated class labels.

• It points out a future direction of applying techniques in fuzzy systems
literature to improve the performance of kernel methods. The link between
fuzzy systems and kernel machines implies that a class of kernel machines,
such as those using Gaussian kernels, can be interpreted by a set of fuzzy
IF-THEN rules. This opens interesting connections between fuzzy rule
base reduction techniques (Setnes, 2000) and computational complexity
issues in SVMs (Burges and Schölkopf, 1997) and kernel PCA (principal
component analysis) (Schölkopf et al., 1998):
– The computational complexity of an SVM scales with the number of

support vectors. One way of decreasing the complexity is to reduce the
number of support-vector-like vectors in the decision rule (6). For the
class of kernels, which can be interpreted by a set of fuzzy IF-THEN
rules, this can be viewed as fuzzy rule base simplification.

– In kernel PCA (Schölkopf et al., 1998), given a test point x, the kth non-
linear principal component, βk, is computed by βk =

∑l
i=1 αk

i K(x,xi)
where l is the number of data points in a given data set (details of cal-
culating αk

i ∈ R can be found in (Schölkopf et al., 1998)). Therefore,
the computational complexity of computing βk scales with l. For the

220 Yixin Chen

class of kernels discussed in this chapter, it is not difficult to derive
that βk can be equivalently viewed as the output of an additive fuzzy
system using first order moment defuzzification without thresholding
unit. Here xi and αk

i parameterize the IF-part and THEN-part of the
ith fuzzy rule (i = 1, · · · , l), respectively. As a result, fuzzy rule base
reduction techniques may be applied to increase the speed of nonlinear
principal components calculation.

5.3 Future Directions

As future work, the following directions can be explored:

• The requirement that all membership functions associated with an input
variable are generated from the same reference function maybe somewhat
restrictive. However, it can be shown that this constraint can be relaxed;

• The positivity requirement on reference functions can also be relaxed.
In that case, the kernel in general will not be a Mercer kernel. But the
fuzzy classifiers can still be related to the generalized support vector ma-
chines (Mangasarian, 2000);

• Although our work focuses on the classification problem, it is not difficult
to extend the results to function approximations. Fuzzy function approxi-
mation (using positive definite reference functions) is equivalent to support
vector regression (Vapnik et al., 1997) using the kernel defined by reference
functions;

• Apply fuzzy rule base reduction techniques to reduce computational com-
plexities of the SVM and kernel PCA.

Acknowledgments

The work is supported by the University of Mississippi. The author would also
like to thank James Z. Wang and Yongyi Chen for discussions on the topic.

References

Bartlett PL (1997) For valid generalization, the size of the weights is more impor-
tant than the size of the network, Advances in Neural Information Processing
Systems 9, 134-140

Burges CJC, Schölkopf B (1997) Improving the accuracy and speed of support
vector machines, Advances in Neural Information Processing Systems 9, 375–
381

Chen Y, Wang JZ (2003a) Support vector learning for fuzzy rule-based classifica-
tion systems, IEEE Transactions on Fuzzy Systems, 11(6):716–728

Chen Y, Wang JZ (2003b) Kernel machines and additive fuzzy systems: classifi-
cation and function approximation, Proc. IEEE International Conference on
Fuzzy Systems, 789–795

Support Vector Machines and Fuzzy Systems 221

Chiang CK, Chung HY, Lin JJ (1997) A self-learning fuzzy logic controller using
genetic algorithms with reinforcements, IEEE Transactions on Fuzzy Systems,
5(3):460–467

Cristianini N., Shawe-Taylor J. (2000) An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press

Dickerson JA, Kosko B (1996) Fuzzy function approximation with ellipsoidal rules,
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
26(4):542–560

Dubois D and Prade H (1978) Operations on fuzzy numbers, International Journal
of Systems Science, 9(6):613–626

Duda RO, Hart PE, Stork DG (2000) Pattern classification, Second Edition. John
Wiley and Sons, Inc.

Emami MR, Türksen IB, Goldenberg AA (1998) Development of a systematic
methodology of fuzzy logic modeling, IEEE Transactions on Neural Networks,
6(3):346–361

Geman S, Bienenstock E, Doursat R (1992) Neural networks and the Bias/Variance
dilemma, Neural Computation, 4(1):1–58

Genton MG (2001) Classes of kernels for machine learning: a statistics perspective,
Journal of Machine Learning Research, 2:299–312

Horn RA, Johnson CR (1985) Matrix Analysis. Cambridge University Press
Jang JSR, Sun CT (1993) Functional equivalence between radial basis function

networks and fuzzy inference systems, IEEE Transactions on Neural Networks,
4(1):156–159

Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control, Proceedings of the
IEEE, 83(3):378–406

Joachims T (1999) Making large-scale SVM learning practical, Advances in Kernel
Methods - Support Vector Learning, Cambridge, MA: MIT Press, 169-184

Kasabov NK (1996) Learning fuzzy rules and approximate reasoning in fuzzy neural
networks and hybrid systems, Fuzzy Sets and Systems, 82(2):135–149

Klawon F, Klement PE (1997) Mathematical analysis of fuzzy classifiers, Lecture
Notes in Computer Science 1280:359–370

Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice
Hall

Kosko B (1994) Fuzzy systems as universal approximators, IEEE Transactions on
Computers, 43(11):1329–1333

Kuncheva LI (2000) How good are fuzzy if-then classifiers, IEEE Transactions on
Systems, Man, and Cybernetics-Part B: Cybernetics, 30(4):501–509

Leski JM (2005) TSK-Fuzzy modeling based on ε-insensitive learning, IEEE Trans-
actions on Fuzzy Systems, 13(2):181–193

Lin CF, Wang SD (2002) Fuzzy support vector machines, IEEE Transactions on
Neural Networks, 13(2):464–471

Mangasarian OL (2000) Generalized support vector machines, Advances in Large
Margin Classifiers, 135–146

Mitaim S, Kosko B (2001) The shape of fuzzy sets in adaptive function approxi-
mation, IEEE Transactions on Fuzzy Systems, 9(4):637–656

Moser B (2006) On representing and generating kernels by fuzzy equivalence rela-
tions, Journal of Machine Learning Research, 7:2603–2620

Rovatti R (1998) Fuzzy piecewise multilinear and piecewise linear systems as uni-
versal approximators in Sobolev norms, IEEE Transactions on Fuzzy Systems,

222 Yixin Chen

6(2):235–249
Schölkopf B, Smola AJ, Müller KR, Nonlinear component analysis as a kernel

eigenvalue problem, Neural Computation, 10:1299–1319
Schölkopf B, Sung KK, Burges C, Girosi F, Niyogi P., Poggio T., Vapnik V (1997)

Comparing support vector machines with Gaussian kernels to radial basis func-
tion classifiers, IEEE Transactions on Signal Processing, 45(11):2758–2765

Setnes M (2000) Supervised fuzzy clustering for rule extraction, IEEE Transactions
on Fuzzy Systems, 8(4):416–424

Setnes M, Babus̃ka R (2001) Rule base reduction: some comments on the use of
orthogonal transforms, IEEE Transactions on Systems, Man, and Cybernetics-
Part C: Applications and Reviews, 31(2):199–206

Silipo R, Berthold MR, (2000) Input features’ impact on fuzzy decision process,
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
30(6):821–834

Smola AJ, Schölkopf B, Müller KR (1998) The connection between regularization
operators and support vector kernels, Neural Networks, 11(4):637–649

Sugeno M, Kang GT (1998) Structure identification of fuzzy model, Fuzzy Sets
and Systems, 28:15–33

Tang K, Man K, Liu Z, Kwong S (1998) Minimal fuzzy memberships and rules using
hierarchical genetic algorithms, IEEE Transactions on Industrial Electronics,
45(1):162–169

Thawonmas R, Abe S (1999) Function approximation based on fuzzy rules ex-
tracted from partitioned numerical data, IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, 29(4):525–534

Vapnik V (1982) Estimation of dependences based on empirical data. Springer
Verlag, New York

Vapnik V (1995) The Nature of Statistical Learning Theory. Springer-Verlag, New
York

Vapnik V (1998) Statistical learning theory. John Wiley and Sons, Inc., New York
Vapnik V, Golowich SE, Smola A (1997) Support vector method for function ap-

proximation, regression estimation, and signal processing, Advances in Neural
Information Processing Systems 9, 281–287

Wang LX (1999) Analysis and design of hierarchical fuzzy systems, IEEE Trans-
actions on Fuzzy Systems, 7(5):617–624

Wang L, Mendel JM (1992) Fuzzy basis functions, universal approximation, and
orthogonal least-squares learning, IEEE Transactions on Neural Networks,
3(5):807–814

Wong CC, Chen CC (2000) A GA-based method for constructing fuzzy systems
directly from numerical data, IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B: Cybernetics, 30(6):904–911

Wu S, Er MJ, Gao Y (2001) A fast approach for automatic generation of fuzzy
rules by generalized dynamic fuzzy neural networks, IEEE Transactions on
Fuzzy Systems, 9(4):578–594

Yen J, Wang L (1998) Application of statistical information criteria for optimal
fuzzy model construction, IEEE Transactions on Fuzzy Systems, 6(3):362–372

Ying H (1998) General SISO Takagi-Sugeno fuzzy systems with linear rule con-
sequent are universal approximators, IEEE Transactions on Fuzzy Systems,
6(4):582–587

Support Vector Machines and Fuzzy Systems 223

Zadeh LA (1996) Fuzzy logic = computing with words, IEEE Transactions on
Fuzzy Systems, 4(2):103–111

Zimmermann HJ (1991) Fuzzy set theory and its applications. Kluwer Academic
Publishers

KDD in Marketing with Genetic Fuzzy
Systems

Jorge Casillas1 and Francisco J. Mart́ınez-López2

1 Department of Computer Science and Artificial Intelligence, University of
Granada, Spain casillas@decsai.ugr.es

2 Department of Marketing, University of Granada, Spain fjmlopez@ugr.es

Summary. This publication is the fruit of a collaborative research between aca-
demics from the marketing and the artificial intelligence fields. It presents a brand
new methodology to be applied in marketing (causal) modeling. Specifically, we
apply it to a consumer behavior model used for the experimentation. The character-
istics of the problem (with uncertain data and available knowledge from a marketing
expert) and the multiobjective optimization we propose make genetic fuzzy systems
a good tool for tackling it. In sum, by applying this methodology we obtain useful
information patterns (fuzzy rules) which help to better understand the relations
among the elements of the marketing system (causal model) being analyzed; in our
case, a consumer model.

1 Introduction

The field of Knowledge Discovery in Databases (KDD) has lots of potential to
support current marketing decision problems. Several academics have recently
noted this question, when emphasizing the logical evolution that marketing
modeling methods must describe towards systems based on Artificial Intel-
ligence and KDD methodologies (Shim et al. 2002; Wedel et al. 2000). Our
work in the last years has aimed to contribute to the rapprochement of these
fields. Specifically, this paper presents a KDD methodology developed ad hoc
to be applied in marketing (causal) modeling. A descriptive rule induction
method is posed to discover individual rules which show information pat-
terns of especial interest in the data. To do this, we consider fuzzy association
rules, but previously setting antecedents’ and consequents’ variables; i.e. we
use a theoretic (causal) model of reference, which is used to supervise the
machine learning process. Extraction is realized by genetic fuzzy systems. In
this respect, two questions may arise, whose answers are convenient at this
introductory section: why fuzzy rules? and, why genetic algorithms (GAs)?
In other words, why use these tools of representation and learning instead of
others widely used in KDD?

226 Jorge Casillas and Francisco J. Mart́ınez-López

The use of fuzzy rules (instead of interval rules, decision trees, etc.) is
mainly justified by the type of data we work with (see section 2.1). In our
case, each element/construct of the marketing model is determined by a set
of indicators (observed variables) which give partial information to describe
it. This adds uncertainty to the data that it can be easily treated with fuzzy
rules. Also, it is possible to express the available knowledge of a marketing
expert by means of linguistic semantics. Finally, fuzzy rules obtained present
high legibility, an important question in KDD.

With respect to the use of GAs to induce fuzzy rules instead of other ma-
chine learning techniques, it is due to the following aspects. On the one hand,
as the quality of the different fuzzy rules is valued by contradictory objectives
– such as support and confidence –, we opt for a multiobjective optimiza-
tion to treat them adequately. This is currently one of the alternatives with
more potential, as well as one of the signs of identity, in AGs, where it stands
out due to its superior performance when compared with other techniques.
Furthermore, to achieve higher compacity, thus interpretability, we consider
a flexible representation of the fuzzy rules which can be easily handled with
GAs.

The paper is structured as follows. Section 2 introduces our KDD method-
ology proposal (a brief extract). In Section 3 we empirically apply the method-
ology on a consumer model. Then, some rules are commented on to illustrate
the kind of results we can obtain by this methodology. Finally, we give some
concluding remarks.

2 Consumer Behavior Modeling with Fuzzy Rules: A
Knowledge Discovery Methodology

The proposed KDD methodology to estimate the consumer behavior con-
sists of three different parts: data gathering and preparation (pre-processing),
data mining, and knowledge interpretation (post-processsing). This section
introduces the two first stages, while the latter one is illustrated with an
experimental example in the next section.

2.1 Data Gathering

First step is to collect the data related to the variables defining the theoretic
consumer behavior model of reference. In this sense, as it has been tradition-
ally done in marketing, data are obtained by means of a questionnaire. Thus,
firstly, attention should be paid to how consumer behavior modelers face and
develop the measurement process of variables that complex behavioral models
contain; i.e. usually, latent/unobserved variables. Its understanding is neces-
sary in order to adequately approach the starting point of the KDD process, so
to give suitable and adapted solutions to the specific data we find in consumer
behavior modeling

KDD in Marketing with Genetic Fuzzy Systems 227

It can be said that measuring streams for these latent variables in market-
ing modeling can be classified into two groups depending on if they state that
these constructs can or cannot be perfectly measured by means of observed
variables (indicators); i.e., the existence or not of a one-to-one correspondence
between a construct and its measurement. Certainly, though consumer behav-
ior modelers tended to make use in the beginning of what was known as the
operational definition philosophy, a more convenient and reasonable position
is that ulteriorly based on the partial interpretation philosophy which distin-
guished between unobserved (constructs) and observed (indicators) variables.
This latter approach of measurement, being currently predominant in the
marketing modeling discipline, poses to jointly consider multiple indicators –
imperfect when considered individually, though reliable when considered al-
together – of the subjacent construct to obtain valid measures (Steenkamp
and Baumgartner 2000). Hence, we will take this measurement approach into
account when facing how to process the data.

To illustrate the data gathering process, we will consider a simple mea-
surement (causal) model depicted in Figure 1, compounded by three construct
or latent variables (depicted by circles), two exogenous and one endogenous:
(1) convenience orientation, (2) risk averseness, and (3) consumer attitude
toward virtual stores.

Consumer

Attitude

Risk

Averseness

Convenience

Orientation

C1

C2

C3

R1

R2

A1

A2

Fig. 1. Example of a simple measurement (causal) model – partial model extracted
from the full Lee’s (2007) conceptual model.

Likewise, with respect to the measurement scales, imagine that the three
constructs have been measured by means of several nine-points interval scales
(e.g. Likert type or semantic differential scales). Specifically, in Table 2.2 we
show an example of the set of items – i.e. observed variables – that could have

228 Jorge Casillas and Francisco J. Mart́ınez-López

been used for measuring each construct. The model for this illustration and
the respective items has been extracted from Lee (2007). Finally, Table 2.2
shows an example of data set available for this problem, which consists of three
variables, each of them composed by a set of values (items). There are just
four instances (i.e. four consumer’s responses), what it is not realistic at all –
i.e. think that a consumer database has usually hundreds or even thousands
of individuals’ responses gathered –, though it is useful for our illustrative
purpose.

2.2 Data Processing

Next, it is necessary to adapt the collected data to a scheme easily tractable by
fuzzy rule learning methods. Therefore, our methodological approach should
be aware of the special features of the available data (with several items or
indicators to describe a specific variable) when adapting the observed vari-
ables to a fuzzy rule learning method. An intuitive approach could directly
reduce the items of certain variables to a single value (e.g., by arithmetic
mean) (Casillas et al. 2004). Another possibility would be to expand any
multi-item example (the result of a questionnaire filled out by a consumer)
to several single-item examples and, subsequently, reduce the data size with
some instance selection process.

Table 1. Questionnaire associated to the observed variables (items) of the model
shown in Figure 1 (Lee, 2007)

Convenience Orientation

C1: I try to do most of my shopping in one store to save time

C2: I shop in many different ways to save time

C3: I do most of my shopping in conveniently located stores

Risk Averseness

R1: I don’t like to take risks

R2: I have no desire to take unnecessary chances on things

Consumer Attitude toward Virtual Stores

A1: Virtual stores make me feel good

A2: I enjoy buying things through virtual stores

The problem of these approaches is that the data must be transformed,
so relevant information may be lost. We propose a more sophisticated pro-
cess that allows working with the original format without any pre-processing
stage: the multi-item fuzzification. Thus, a T-conorm operator (e.g., maxi-
mum), traditionally used in fuzzy logic to develop the union of fuzzy sets, is
applied to aggregate the partial information given by each item during the
inference process. Since it is not pre-processing data but a component of the
machine learning design, the details of that treatment of the items is described
in Section 2.4.

KDD in Marketing with Genetic Fuzzy Systems 229

Table 2. Example of available data set from four responses about the items shown
in Table 2.2

Cases
Convenience
Orientation

Risk
Averseness

Consumer
Attitude

C1 C2 C3 R1 R2 A1 A2

Consumer 1 2 3 2 6 7 2 2

Consumer 2 6 6 7 3 2 8 7

Consumer 3 8 8 9 2 3 9 9

Consumer 4 5 5 5 3 3 4 4

2.3 Representation and Inclusion of Expert Knowledge

Several issues should be tackled at this step: the set of variables to be modeled,
the transformation of marketing scales used for measuring such variables into
fuzzy semantic and the fuzzy rule structure (relations among constructs).
We suggest some approaches to fix these components. All of them are based
on the marketing expert’s capability to express his knowledge in a humanly
understandable format by fuzzy logic.

Fuzzy Semantics from Expert Knowledge

Once the marketing modeler has finally determined both, the theoretical con-
structs and the observed variables associated with each one (i.e. the mea-
surement model), a transformation of the original marketing scales used for
measuring those observed variables into linguistic terms should be done. At
this point, several marketing scale types can be used for its measurement.
With the aim of simplifying the problem, in this paper we focus on Likert-
type3, differential semantic and rating scales, which are the most commonly
used in these models. The transformation should be practiced taking into
account three main questions:

The number of linguistic terms to be used for each variable must be de-
fined. An odd number seems to be a good approach since in our case it is useful
to linguistically express the “medium” or “unconcerned” concept. Since tradi-
tional interval scales used in marketing usually present between 5 to 9 different
degrees (i.e. points of the scale), the use of three or five linguistic terms (fuzzy
sets) is enough to map these values.

The membership function type defining the behavior of certain fuzzy vari-
ables should be also defined. In this sense, such behavior can be broadly

3 A Likert-type measurement scale is a scale usually used in marketing surveys,
and in Social Sciences’ surveys in general, which takes as a basis the philosophy
of the original Likert scale format of 5 points. Specifically, individuals are asked
to show their degree of agreement or disagreement on a symmetric agree-disagree
scale for certain item.

230 Jorge Casillas and Francisco J. Mart́ınez-López

treated considering the use of linear (trapezoidal or triangular) vs. non lin-
ear (Gaussian) membership functions to characterize the fuzzy sets. In this
respect, we pose that it is more appropriate to use linear functions, inasmuch
as it facilitates the latter interpretation of relations.

The membership function shapes should also be fixed. In this respect, we
propose to impose some properties in order to ensure good interpretability.
Extreme values of the interval should have a membership degree 1 to extreme
labels. Mean value of the interval should have membership 1 to medium la-
bel. Likewise, we consider strong Ruspini’s fuzzy partitions (Ruspini, 1969)
– where the sum of the membership degrees of every value to the set of lin-
guistic terms is 1 – in order to ensure good interpretability. Finally, in order
to statistically unbias the significance of every linguistic term, we impose the
same covering degree. Thus, we define the membership function shapes where,
given the set S = {min, . . . ,max} defining the interval, they hold the following
condition:

∑

k∈S

µAi
(k) =

max−min
l

, ∀Ai ∈ A, (1)

with l being the number of linguistic terms and A = {A1, . . . , Al} the set of
them.

To sum up, Figure 2 shows an example based on the transformation of a
nine-point rating scale (a typical marketing scale used to measure the observed
variables/indicators related to certain construct) into a fuzzy semantic with
the three linguistic terms Low, Medium, and High.

Low

1 2

1

3 4 5 6 7

Medium High

0

8 9

M
e

m
b
e

rs
h

ip
 d

e
g
re

e

Fig. 2. Fuzzy semantic from a transformation of a 9-point marketing
Fig. 2. Fuzzy semantic from a transformation of a 9-point marketing scale (rating
scale)

KDD in Marketing with Genetic Fuzzy Systems 231

Input/Output Linguistic Variables from Expert Knowledge

Furthermore, once the structure of the model has been fixed by the marketing
expert under the base of the theoretic model, fuzzy rules are used to relate
input (antecedents) with output (consequents) variables. Obviously, hypothe-
ses contained in the model can be directly used to define IF-THEN structures
by considering the dependencies shown among the variables. Thus, we obtain
a fuzzy rule base for each consequent (endogenous construct) considered and
its respective set of antecedents.

For example, if we take for illustrative purposes the model depicted in
Figure 1, the fuzzy rule structure that represents the relations between the
elements “Convenience Orientation” and “Risk Averseness” with the conse-
quent “Consumer Attitude” will have the following form:

IF Convenience Orientation is A1 and Risk Averseness is A2 THEN
Consumer Attitude is B

2.4 Data Mining Process

Once the linguistic variables that properly represent the tackled information
have been fixed, a machine learning process must be used to automatically
extract the knowledge existing in the database. This process is, without any
doubt, the most important issue from the KDD point of view.

As mentioned in Section 1, in this paper we are interested in descriptive in-
duction. Therefore, we will use GAs Michigan-style to obtain rules individually
relevant. We consider two quality criteria, support (degree of representativity
of the rule with respect to the set of data) and confidence (degree of accuracy
of the relation shown by the rule). It is intuitive to check that the higher the
support, the higher the difficulty to maintain high degrees of confidence. To
jointly consider both criteria, we propose the use of multiobjective GAs, as
they offer good results when working with multiple contradictory objectives.
The next section describes the main elements of this method we propose.

Fuzzy Rule Structure

In data mining it is crucial to use a learning process with a high degree of
interpretability. To do that, we opt for a compact description based on the
disjunctive normal form (DNF). This kind of fuzzy rule structure has the
following form:

IF X1 is Ã1 and . . . and Xn is Ãn THEN Y1 is B

where each input variable Xi, i ∈ {1, . . . , n} takes as a value a set of linguistic
terms Ãi = {Ai1 or . . . or Aini}, whose members are joined by a disjunctive

232 Jorge Casillas and Francisco J. Mart́ınez-López

operator. We use the bounded sum min {1, a + b} as T-conorm4. The structure
is a natural support to allow the absence of some input variables in each rule,
simply making Ãi to be the whole set of linguistic terms available.

Multi-item Fuzzification

In order to properly consider the set of indicators available for each in-
put/output variable (as discussed in Section 2.2), we propose an exten-
sion of the membership degree computation, the so-called multi-item fuzzi-
fication. The process is based on a union of the partial information pro-
vided by each item. Given Xi and Yj measured by the vectors of items
xi = (x(i)

1 , . . . , x
(i)
hi

, . . . , x
(i)
pi) and y = (y1, . . . , yt, . . . , yq), respectively, the

fuzzy propositions Xi is Ãi and Y is B are respectively interpreted as follows:

µÃi
(xi) = min

1,

pi⋃

hi=1

µA(x
(i)
hi

)∑

A∈Ãi

(2)

µB(y) =
q⋃

t=1

µB(yt), (3)

with ∪ being a T-conorm (the maximum in this paper).

Subgroup Discovery

To do the descriptive rules induction process, we have applied a method with
certain similarities to the subgroups discovery technique – widely used in
classification learning rules (Lavrac 2004) –, where the property of interest is
the class associated with the variables of the consequent. Therefore, we try to
group the set of data into differentiated subgroups, including in each of them
those examples represented by the consequent with the aim of discovering a
representative set of rules for each subgroup. In this regard, the most usual
approach is based on running the algorithm designed for each subgroup of
data which satisfies the property set for the consequent.

However, instead of this approach, we carry out a simultaneous subgroup
discovery in the algorithm we propose. This variant allows us to form niches of
fuzzy rules differentiated by the consequent which are optimized in parallel to
finally generate a set of suboptimal solutions for each class of the consequent.
With the aim of developing this simultaneous process, as it is shown in the
next sections, we vary the concept of multiobjective dominance by making
the genetic operators act only on the antecedents of the rules.

4 This family of binary operators is used in fuzzy logic to interpret the disjunction
‘or’

KDD in Marketing with Genetic Fuzzy Systems 233

Coding Scheme

Each individual of the population represents a fuzzy rule; i.e. a Michigan-
style genetic algorithm. The coding scheme will be binary to represent the
antecedent and whole for the consequent. Thus, the allele “1” in the an-
tecedent part means that the linguistic term related to the gene is used in
the corresponding variable. For the consequent, we will directly code the in-
dex of the linguistic term used. Hence, the size to code a DNF fuzzy rule is
equal to the sum of the number of linguistic terms employed in each input
variable (antecedent) plus the number of output variables. For instance, if we
had three linguistic terms for each variable, the rule [IF X1 is Small and X2
is {Medium or High} THEN Y is Medium], would be coded as [100 011|2].

Objective Functions

In this algorithm, we consider the two criteria most frequently used to value
the quality of the association rules (Dubois et al. 2005): support and confi-
dence. However, we adapt the calculus of these criteria to fuzzy association
rules, also considering the especial characteristics of the multi-item variables
(elements of the model) which we work with.

Support. This objective function values the degree of representation of
certain fuzzy rule on the set of data analyzed. It is calculated as the average
degree covered by the rule considering every one of these data (individuals’
responses). To obtain the degree of cover we conjointly consider the member-
ship degrees in relation to the diverse variables; i.e. the set of antecedents as
well as the consequent. The measure of support (for maximization) for a fuzzy
rule R comes defined as follows:

Support(R) =
1
N

N∑
e=1

T (µA(x(e)), µB(y(e))), (4)

where N is the size of the database (the sample size or number of respondents),
x(e) = (x(e)

1 , . . . ,x(e)
n) and y(e) is the eth instance multi-item of input and

output respectively, T the product T-norm, and

µA(x(e)) = min
i∈{1,...,n}

µÃi
(x(e)

i) (5)

the coverage degree of the antecedent of the rule R for this example (i.e. it is
considered the T-norm of the minimum to interpret the connector “and” of the
fuzzy rule). Also, it is convenient to point out that we employ the multi-item
fuzzification shown in section 2.4 to calculate µÃi

(x(e)
i) and µB(y(e)).

Confidence. This objective function measures the reliability of the rela-
tionship between antecedent and consequent described by the analyzed fuzzy
rule. We have used a confidence degree that avoids accumulation of low car-
dinalities (Dubois et al. 2005). It is computed (for maximizing) as follows:

234 Jorge Casillas and Francisco J. Mart́ınez-López

Confidence(R) =
∑N

e=1 T (µA(x(e)), I(µA(x(e)), µB(y(e))))
∑N

e=1 µA(x(e))
, (6)

The Dienes’ S-implication I(a, b) = max {1− a, b} is used. We consider
again T-norm of product and multi-fuzzification.

Evolutionary Scheme

A generational approach with the multi-objective NSGA-II replacement strat-
egy (Deb et al. 2002) is adopted. Crowding distance in the objective function
space is used. Binary tournament selection based on the nondomination rank
(or the crowding distance when both solutions belong to the same front) is
applied.

To correctly develop the simultaneous subgroup discovery we will need to
redefine the concept of dominance. In order to do this, one solution (rule) will
dominate another when, besides being better or equal in all the objectives
and better in at least one of them, it presents the same consequent as the
other rule. Hence, those rules with different consequents do not dominate
each other. Consequently, we force the algorithm to form so many niches of
search (Pareto sets) as diverse consequents (subgroups) are considered.

Genetic Operators

The initial population is built defining so many groups (equal in size) as there
are different consequents. In each of them, chromosomes are generated fixing
such consequents and randomly building a simple antecedent where each input
variable is related to a linguistic term. The two operators of reproduction only
act in the part of the antecedent of the rule. This fact ensures that the size
of every subgroup in the population is constant. In this way, we allow the
algorithm to independently explore, but simultaneously, each group.

We employ a multipoint crossover operator which selects two crossover
points (in the part of the antecedent) and interchanges the central sub-chain.
The operator of mutation randomly selects a variable of the antecedent of
the fuzzy rule coded in the chromosome and carries out some of the three
following operations: expansion, which flips to 1 a gene of the selected variable;
contraction, which flips to 0 a gene of the selected variable; or shift, which flips
to 0 a gene of the variable and flips to 1 the gene immediately before or after
it. The selection of one of these mechanisms is made randomly among the
available choices (e.g., contraction cannot be applied if only a gene of the
selected variable has the allele 1).

3 Experimental Results and Knowledge Interpretation

The experimentation of the descriptive rule induction method we present has
been made based on a causal model already proposed by Novak et al. (2000). It

KDD in Marketing with Genetic Fuzzy Systems 235

analyzes the consumer’s flow state in interactive computer-mediated environ-
ments. As the authors allow the use of their database for academic purposes,
we have opted for experimenting our methodology with a consumer model
already validated and widely known by the academics. This is a plausible and
orthodox alternative, as we can see by analyzing other research previously
developed (see, as e.g.: Beynon et al. 2001; Fish et al. 2004; Hurtley et al.
1995; Levy and Yoon 1995; Rhim and Cooper 2005).

3.1 Some Theoretical Notes about the Model Used for the
Experimentation

In order to briefly introduce this concept, so the reader better understands
the variable we want to explain in this empirical application of our methodol-
ogy, we now synthetically present some ideas about it. Flow has been recently
imported from motivational psychology and successfully adapted to explain
consumer behavior phenomena on the Web (Hoffman and Novak 1996; Ko-
rzan 2003; Luna et al. 2002; Novak et al. 2000; Novak et al. 2003). In general
terms, flow state is defined as “the process of optimal experience” or the
mental state that individuals sometimes experience when they are deeply im-
mersed in certain events, objects or activities (Csikszentmihalyi 1975, 1977).
This concept has been adapted to the Web environment. In this context, flow
state is achieved when the consumer is so deeply involved in the process of
navigation on the Web that “nothing else seems to matter” (Hoffman and
Novak 1996, p. 57).

Though the model we consider for the experimentation has 12 elements
(constructs) interconnected, with 6 fuzzy rule based systems, due to the space
constraints, in this paper we focus on that system which considers the four
primary antecedents of the consumer’s flow. Specifically, we consider the fol-
lowing four constructs, as antecedents of the consumer’s flow state (conse-
quent):

• speed of interaction refers to the user’s perception about how quick is the
process of interaction when using the Web

• skill/control gathers the consumer’s opinion regarding his own capacity to
develop successful navigating process on the Web

• challenge/arousal gathers how challenging and stimulating is surfing the
Web

• telepresence/time distortion is also a compound construct which refers to
the consumer’s perception about the predominance of the computer virtual
(Web) environment over the physical environment where the consumer is
placed when surfing the Web, as well as to the lost of the consumer’s
self consciousness on the notion of time when developing such process of
navigation.

Novak et al. (2000) hypothesized that these four elements are positively
related to this central construct of the model.

236 Jorge Casillas and Francisco J. Mart́ınez-López

All these constructs were gathered by multi-item Likert-type scales with
9 points; i.e. metric scales. The fuzzy semantic we have applied to all the
variables is shown in Figure 2.

Training data are composed of 1,154 examples (consumers’ responses).
We have run the algorithm 10 times, obtaining the following values for the
parameters: 300 generations, size of the population 100, crossover probability
0.7 and the probability of mutation per chromosome 0.1.

3.2 Analysis of the Pareto Front

The Pareto front we have obtained is shown in Figure 3. With respect to the
value taken by the consequent flow in the rules generated, it can be easily
observed that the most plausible output is “medium.” Indeed, there is a clear
supremacy of the rules with this label in the consequent over the two other
outputs in terms of support and confidence. This fact is intensified as the
support of the rules grows, without noticing a relevant loss of reliability in the
rules which represent medium flow states. Therefore, it can be inferred that
the most representative state of flow, for the whole consumers’ database, is
moderate.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
o
n
fi
d
e
n
c
e

Support

 Flow is Low
 Flow is Medium
 Flow is High

Fig. 3. Sub-Pareto fronts for every output of the consequent, as well as the absolute
Pareto front (the best rules from the whole set of rules) joined by a line.

KDD in Marketing with Genetic Fuzzy Systems 237

3.3 Illustrative Analysis of the Rules

An individual analysis of the rules generated by this descriptive method is very
useful to better understand the consumer behavior being analyzed. Specifi-
cally, it is recommendable to do a selection of rules from the whole set com-
pounding the absolute Pareto front, paying attention to its support (degree of
representativity of the consumers’ database) and, especially, to its confidence
(degree of reliability of the information pattern shown by the rule). In this
regard, we have done an illustrative selection shown in Table 3.3.

Table 3. Illustrative selection of rules from the absolute Pareto front. L stands for
Low, M stands for medium, H stands for high.

Speed of
Interac-
tion

Skill/
Control

Challenge/
Arousal

Telepresence/
Time
Distort.

Flow Sup Conf

R1 L H M L L 0.0104 0.7980

R2 M L H H M M 0.0102 0.7937

R3 M M H M 0.3947 0.7051

Considering the absolute Pareto front, R1 is the rule with highest confi-
dence, associated with low states of flow. Likewise, R2 represents the most
reliable rule from those with moderate flow states. Finally, we have also con-
sidered the rule R3, being the one with highest support among the whole set
of rules with confidence higher than 0.7; i.e. the confidence threshold value we
have set to give reliability to the information patterns shown by the rules.

Synthetically, from the four antecedents considered, it highlights the in-
fluence of the perception about telepresence/time distortion (TP/TD) in de-
termining consumers’ states of flow ; it can be observed how its value is de-
terminant in explaining low (R1) or moderate (R2 and R3) states of flow.
Likewise, the rest of the antecedents seem to exert a poor or null influence
on the consequent. This fact can also be due to the element TP/TD that
eclipses the influence of the rest. In any case, it conforms to the main idea we
extracted when the Pareto front was analyzed; i.e. a non existence of combi-
nations of antecedents (rules) producing high states of flow, with significant
levels of reliability and representativity. In this sense, it is quite illustrative to
see how even when the most influential antecedent – i.e. TP/TD – takes high
values, the consumer’s flow state in the process of navigation tends to remain
moderate.

4 Concluding Remarks

We have faced an interesting problem of KDD in relation to marketing causal
modeling and its resolution by genetic fuzzy systems. The problem presents

238 Jorge Casillas and Francisco J. Mart́ınez-López

a specific type of data with uncertainty which justifies the use of fuzzy rules.
Furthermore, we have practiced a multi-objective optimization in order to
obtain rules with high degrees of support and confidence. The KDD method-
ology proposed has been successfully applied to a real problem of consumer
behavior in online environments.

In our research agenda, we have the use of other metrics such as consistency
and interest of the rules. Also, the unsupervised learning of fuzzy association
rules, i.e. without using any antecedent or consequent previously fixed by the
marketing expert.

Acknowledgements

Research supported in part by the Spanish Ministry of Education and Science
under project no. TIN2005-08386-C05-01

References

Beynon M, Curry B, Morgan P. (2001) Knowledge discovery in marketing. An
approach through rough set theory. European Journal of Marketing 35(7/8):
915–935.

Casillas J, Mart́ınez-López FJ, Mart́ınez FJ (2004) Fuzzy association rules for
estimating consumer behaviour models and their application to explaining trust
in Internet shopping. Fuzzy Economic Review IX(2): 3–26.

Csikszentmihalyi M (1975) Play and intrinsic rewards. Journal of Humanistic Psy-
chology 15(3): 41–63.

Csikszentmihalyi M (1977) Beyond boredom and anxiety (Second edition). San
Francisco: Jossey-Bass.

Deb K, Pratap A, Agarwal S, Meyarevian T (2002) A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2): 182–197.

Dubois D, Prade H, Sudkamp T (2005) On the representation, measurement, and
discovery of fuzzy associations. IEEE Transactions on Fuzzy Systems 13(2):
250–262.

Fish KE, Johnson JD, Dorsey RE, Blodgett JG (2004) Using an artificial neural
network trained with a genetic algorithm to model brand share. Journal of
Business Research 57 (1): 79–85.

Gatignon H (2000) Commentary on Peter Leeflang and Dick Wittink’s “Build-
ing models form marketing decisions: past, present and future”. International
Journal of Research in Marketing 17: 209–214.

Hoffman D, Novak T (1996) Marketing in hypermedia computer-mediated envi-
ronments: conceptual foundations Journal of Marketing 60 (July): 50–68.

Hurley S, Moutinho L, Stephens NM (1995) Solving marketing optimization prob-
lems using genetic algorithms. European Journal of Marketing 29 (4): 39–56.

Korzaan ML (2003) Going with the flow: predicting online purchase intentions.
Journal of Computer Information Systems (Summer): 25–31.

KDD in Marketing with Genetic Fuzzy Systems 239

Lavrac N, Cestnik B, Gamberger D, Flach P (2004) Decision support through sub-
group discovery: three case studies and the lessons learned. Machine Learning
57 (1–2): 115–143.

Lee, B.C.Y. (2007) Consumer attitude toward virtual stores and its correlates:
Journal of Retailing and Consumer Services 14(3): 182-191.

Levy JB, Yoon E (1995) Modeling global market entry decision by fuzzy logic with
an application to country risk assessment. European Journal of Operational
Research 82: 53–78.

Luna D, Peracchio LA, De Juan MD (2002) Cross-cultural and cognitive aspects
of Web site navigation. Journal of the Academy of Marketing Science 30(4):
397–410.

Novak T, Hoffman D, Duhachek A (2003) The influence of goal-directed and expe-
riential activities on online flow experiences. Journal of Consumer Psychology
13 (1/2): 3–16.

Novak T, Hoffman D, Yung Y (2000) Measuring the customer experience in online
environments: A structural modeling approach. Marketing Science 19 (1): 22–
42.

Rhim H, Cooper LG (2005) Assessing potential threats to incumbent brands: New
product positioning under price competition in a multisegmented market. In-
ternational Journal of Research in Marketing 22: 159–182.

Ruspini E (1969) A new approach to clustering, Information and Control 15: 22-32.
Shim JP, Warkentin M, Courtney JF, Power, DJ, Sharda R, Carlsson C (2002) Past,

present and future of decision support technology. Decision Support Systems
33: 111–126.

Steenkamp J, Baumgartner H (2000) On the use of structural equation models
for marketing modeling. International Journal of Research in Marketing 17:
195–202.

Wedel M, Kamakura W. Böckenholt U (2000) Marketing data, models and deci-
sions. International Journal of Research in Marketing 17: 203–208.

Knowledge Discovery in a Framework for
Modelling with Words

Zengchang Qin1 and Jonathan Lawry2

1 Berkeley Initiative in Soft Computing (BISC), Computer Science Division,
EECS Department, University of California, Berkeley, CA 94720, US.
zqin@eecs.berkeley.edu

2 Artificial Intelligence Group, Department of Engineering Mathematics,
University of Bristol, BS8 1TR, UK.
j.lawry@bris.ac.uk

Summary. The learning of transparent models is an important and neglected area
of data mining. The data mining community has tended to focus on algorithm accu-
racy with little emphasis on the knowledge representation framework. However, the
transparency of a model will help practitioners greatly in understanding the trends
and idea hidden behind the system. In this chapter, a random set based knowledge
representation framework for learning linguistic models is introduced. This frame-
work is referred to as label semantics and a number of data mining algorithms are
proposed. In this framework, a vague concept is modelled by a probability distribu-
tion over a set of appropriate fuzzy labels which is called as mass assignment. The
idea of mass assignment provides a probabilistic approach for modelling uncertainty
based on pre-defined fuzzy labels.

1 Introduction

Fuzzy Logic was first proposed by Zadeh (Zadeh, 1965) as an extension of tra-
ditional binary logic. In contrast to a classical set, which has a crisp boundary,
the boundary of a fuzzy set is blurred and the transition is characterized by
membership functions. In early research fuzzy logic was successfully applied in
control systems and expert systems where the linguistic interpretation fuzzy
sets allowed for an interface between the human user and a computer sys-
tem. Because our language is fuzzy, the concepts represented by language is
full of uncertainty and impreciseness. Therefore, fuzzy sets can be used to
model language. This idea also motivates related research into Computing
with Words (Zadeh, 1996) and Perception-based Reasoning (Zadeh, 2002).

Almost all the labels we give to characterize a group of objects are fuzzy.
Given a fuzzy set, an object may belong to this set with a certain membership
value. In traditional set theory, this membership value only has two possible

242 Zengchang Qin and Jonathan Lawry

values, 1 and 0, representing the case where the object belongs to or does
not belong to the set, respectively. In a fuzzy set, the membership values are
continuous real values from 0 to 1. We use a fuzzy term such as ‘big’ to label
a particular group, because they share the property of objects within this
group (i.e., they are big). The objects within this group will have different
membership values varying from 0 to 1 qualifying the degree to which they
satisfy the concept ‘big’. An object with membership of 0.8 is more likely to be
described as ‘big’ than an object with membership of 0.4. If we consider this
problem in another way. Given an object, label ‘big’ can be used to describe
this object with some appropriateness degrees. Follow this idea, we discuss
a new approach based on random set theory to interpret imprecise concepts.
This framework, first proposed by Lawry (Lawry, 2001) and is referred to as
Label Semantics, can be regarded as an approach to Modelling with Words
(Lawry et al., 2003).

Modeling with Words is a new research area which emphasis “modelling”
rather than “computing”. For example, Zadeh’s theories on Perception-based
Computing (Zadeh, 2002) and Precisiated Natural Language (Zadeh, 2005)
are the approaches of “computing”. However, the relation between it and
Computing with Words (Zadeh, 1996) is close is likely to become even closer
(Zadeh, 2003). Both of the research areas are aimed at enlarging the role of
natural languages in scientific theories, especially, in knowledge management,
decision and control. In this chapter, the framework is mainly used for mod-
elling and building intelligent machine learning and data mining systems. In
such systems, we use words or fuzzy labels for modelling uncertainty. There-
fore, the research presented here is considered as a framework for modelling
with words.

This chapter is organized as follows: A systematic introduction on label
semantics is given in the first section. Based on the framework we introduced,
we will give the details of several data mining models based on label seman-
tics: Linguistic Decision Trees in section 3, Label semantics based Bayesian
estimation in section 4, and Linguistic Rule Induction in section 5. Finally,
we give the summary and discussions in the final section.

2 Label Semantics

Vague or imprecise concepts are fundamental to natural language. Human
beings are constantly using imprecise language to communicate each other.
We usually say ‘Peter is tall and strong’ but not ‘Peter is exactly 1.85 me-
ters in height and he can lift 100kg weights’. We will focus on developing an
understanding of how an intelligent agent can use vague concepts to convey
information and meaning as part of a general strategy for practical reason-
ing and decision making. Such an agent can could be an artificial intelligence
program or a human, but the implicit assumption is that their use of vague
concepts is governed by some underlying internally consistent strategy or al-

Knowledge Discovery in a Framework for Modelling with Words 243

gorithm. We may notice that labels are used in natural language to describe
what we see, hear and feel. Such labels may have different degrees of vagueness
(i.e., when we say Peter is young and he is male, the label young is more vague
than the label male because people may have more widely different opinions
on being young than being male. For a particular concept, there could be more
than one label that is appropriate for describing this concept, and some labels
could be more appropriate than others. Here, we will use a random set frame-
work to interpret these facts. Label Semantics, proposed by Lawry (Lawry,
2001), is a framework for modelling with linguistic expressions, or labels such
as small, medium and large. Such labels are defined by overlapping fuzzy sets
which are used to cover the universe of continuous variables.

2.1 Mass Assignment on Fuzzy Labels

For a variable x into a domain of discourse Ω we identify a finite set of
linguistic labels L = {L1, · · · , Ln} with which to label the values of x. Then
for a specific value x ∈ Ω an individual I identifies a subset of L, denoted DI

x

to stand for the description of x given by I, as the set of labels with which it
is appropriate to label x. The underlying question posed by label semantics
is how to use linguistic expressions to label numerical values. If we allow I to
vary across a population V with prior distribution PV , then DI

x will also vary
and generate a random set denoted Dx into the power set of L denoted by S.
We can view the random set Dx as a description of the variable x in terms
of the labels in L. The frequency of occurrence of a particular label, say S,
for Dx across the population then gives a distribution on Dx referred to as a
mass assignment on labels. More formally,

Definition 1 (Label Description) For x ∈ Ω the label description of x is
a random set from V into the power set of L, denoted Dx, with associated
distribution mx, which is referred to as mass assignment:

∀S ⊆ L, mx(S) = PV ({I ∈ V |DI
x = S}) (1)

where PV is the prior distribution of population V . mx(S) is called the mass
associated with a set of labels S and

∑

S⊆L
mx(S) = 1 (2)

Intuitively mass assignment is a distribution on appropriate label sets and
mx(S) quantifies the evidence that S is the set of appropriate labels for x.

For example, given a set of labels defined on the temperature outside:
LTemp = {low, medium, high}. Suppose 3 of 10 people agree that ‘medium

244 Zengchang Qin and Jonathan Lawry

is the only appropriate label for the temperature of 15◦ and 7 agree ‘both low
and medium are appropriate labels’. According to def. 1,

m15(medium) = 0.3 and m15(low, medium) = 0.7

so that the mass assignment for 15◦ is m15 = {medium} : 0.3, {low, medium}:
0.7. More details about the theory of mass assignment can be found in (Bald-
win et al., 1995).

2.2 Appropriateness Degrees

Consider the previous example, can we know how appropriate for a single la-
bel, say low, to describe 15◦? In this framework, appropriateness degrees are
used to evaluate how appropriate a label is for describing a particular value
of variable x. Simply, given a particular value α of variable x, the appropri-
ateness degree for labeling this value with the label L, which is defined by
fuzzy set F , is the membership value of α in F . The reason we use the new
term ‘appropriateness degrees’ is partly because it more accurately reflects
the underlying semantics and partly to highlight the quite distinct calculus
based on this framework (Lawry, 2001). This definition provides a relationship
between mass assignments and appropriateness degrees.

Definition 2 (Appropriateness Degrees)

∀x ∈ Ω, ∀L ∈ L µL(x) =
∑

S⊆L:L∈S

mx(S)

Consider the previous example, we then can obtain µmedium(15)= 0.7+0.3 =
1, µlow(15) = 0.7. It is also important to note that, given definitions for the
appropriateness degrees on labels, we can isolate a set of subsets of L with
non-zero masses. These are referred to as focal sets and the appropriate labels
with non-zero masses as focal elements, more formally,

Definition 3 (Focal Set) The focal set of L is a set of focal elements defined
as:

F = {S ⊆ L|∃x ∈ Ω, mx(S) > 0}

Given a particular universe, we can then always find the unique and con-
sistent translation from a given data element to a mass assignment on focal
elements, specified by the function µL : L ∈ L.

Knowledge Discovery in a Framework for Modelling with Words 245

2.3 Linguistic Translation

Based on the underlying semantics, we can translate a set of numerical data
into a set of mass assignments on appropriate labels based on the reverse of
definition 2 under the following assumptions: consonance mapping, full fuzzy
covering and 50% overlapping (Qin and Lawry, 2005b). Consonance assump-
tion implies that voters are agreed with the natural order of fuzzy labels.
A voter won’t set ‘small’ and ‘large’ as appropriate labels without ‘medium’.
These assumptions are fully described in (Qin and Lawry, 2005b) and justified
in (Lawry, 2004). These assumptions guarantee that there is unique mapping

1 shows the universes of two variables x1 and x2 which are fully covered by 3
fuzzy sets with 50% overlap, respectively. For x1, the following focal elements
occur:

F1 1 1 1 1 1 1 1

Since small1 and large1 do not overlap, the set {small1, large1} cannot
occur as a focal element according to def. 3. We can always find a unique
translation from a given data point to a mass assignment on focal elements,
as specified by the function µL. Given a particular data element, the sum
of associated mass is 1. This is referred to as linguistic translation. Suppose
we are given a numerical data set D = {〈x1(i), . . . , xn(i)〉|i = 1, . . . , N} and
focal set on attribute j: Fj = {F 1

j , . . . , F
hj

j |j = 1, . . . , n}, we can obtain
the following new data base by applying linguistic translation described in
Algorithm 1.

Algorithm 1: Linguistic translation
input : Given a database D = {〈x1(i), · · · , xn(i)〉|i = 1, · · · , |D|} with

associated classes C = {C1, · · · , C|C|}
output: Linguistic dataset LD
for j ← 1 to n do1

foreach xj do : Cover the universe of xj with NF trapezoidal fuzzy2

sets with 50% overlap.
for i ← 1 to |D| do3

foreach Data element xj(i) do4

Read appropriateness degrees for xj(i) from corresponding fuzzy5

set.
Calculating corresponding mass assignments:6

LDi,j = 〈mx(i)(F
1
j),· · · , mx(i)(F

hj

j)〉 on focal elements from
appropriateness degrees.

Save dataset LD where LD = {LDi,j |i = 1, · · · , |D|, j = 1, · · · , n}7

= {{small },{small ,medium },{medium },{medium ,large },{large }}

from appropriate degrees to mass assignments on labels. For example, Figure

246 Zengchang Qin and Jonathan Lawry

Fig. 1. A full fuzzy covering (discretization) using three fuzzy sets with 50% overlap
on two attributes x1 and x2, respectively.

For a particular attribute with an associated focal set, linguistic translation
is a process of replacing its data elements with the focal element masses of
these data elements. See figure 1. µsmall1(x1(1) = 0.27) = 1, µmedium1(0.27) =
0.6 and µlarge1(0.27) = 0. They are simply the memberships read from the
fuzzy sets. We then can obtain the mass assignment of this data element
according to def. 2 under the consonance assumption (Qin and Lawry, 2005b):
m0.27 (small1) = 0.4, m0.27(small1, medium1) = 0.6. Similarly, the linguistic
translations for two data:

x1 = 〈x1(1) = 0.27〉, 〈x2(1) = 158〉
x2 = 〈x1(2) = 0.7〉, 〈x2(2) = 80〉

are illustrated on each attribute independently as follows:

x1

x1(1) = 0.27
x1(2) = 0.7

 LT→

mx({s1}) mx({s1, m1}) mx({m1}) mx({m1, l1}) mx({l1})
0.4 0.6 0 0 0
0 0 0.2 0.8 0

x2

x2(1) = 158
x2(2) = 80

 LT→

mx({s2}) mx({s2, m2}) mx({m2}) mx({m2, l2}) mx({l2})
0 0 0 0.4 0.6

0.4 0.6 0 0 0

Therefore, we can obtain:

x1 → 〈{s1} : 0.4, {s1,m1} : 0.6〉, 〈{m2, l2} : 0.4, {l2} : 0.6〉

0 20 40 60 100 120 140 180 200
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.4 0.5 0.6 0.8 0.9
0

0.2

0.4

0.6

0.8

1

x
1

x
1
(1)=0.27

x
2
(1) =158

x
1
(2)=0.7

x
2
(2)=80

x
2

{small
1
} {medium

1
} {large

1
}

{small
2
} {medium

2
} {large

2
}

Knowledge Discovery in a Framework for Modelling with Words 247

x2 → 〈{m1} : 0.2, {m1, l1} : 0.8〉, 〈{s2} : 0.4, {s2,m2} : 0.6〉
We may notice that the new mass assignment based data generated by

linguistic translation is depending on the way of universe discretization. Dif-
ferent discretizations may result in different data. Since we will use the new
data for training data mining models in the following sections. We hope our
data could be as discriminate as possible. A few empirical experiments have
been done in (Qin and Lawry, 2005b) and the percentile-based (or equal point)
discretization is a fairly good method where each fuzzy label covers approx-
imately the same number of data points. In this chapter, unless otherwise
stated, we will use this method for discretizing the continuous universe.

2.4 Linguistic Reasoning

As a high-level knowledge representation language for modelling vague con-
cepts, label semantics allows linguistic reasoning. Given a universe of discourse
Ω containing a set of objects or instances to be described, it is assumed that
all relevant expressions can be generated recursively from a finite set of basic
labels L = {L1,. . ., Ln}. Operators for combining expressions are restricted to
the standard logical connectives of negation “¬”, conjunction “∧”, disjunction
“∨” and implication “→”. Hence, the set of logical expressions of labels can
be formally defined as follows:

Definition 4 (Logical Expressions of Labels) The set of logical expres-
sions, LE, is defined recursively as follows:

(i) Li ∈ LE for i = 1, . . . , n.
(ii) If θ, ϕ ∈ LE then ¬θ, θ ∧ ϕ, θ ∨ ϕ, θ → ϕ ∈ LE

Basically, we interpret the main logical connectives as follows: ¬L means that
L is not an appropriate label, L1 ∧L2 means that both L1 and L2 are appro-
priate labels, L1 ∨ L2 means that either L1 or L2 are appropriate labels, and
L1 → L2 means that L2 is an appropriate label whenever L1 is. As well as la-
bels for a single variable, we may want to evaluate the appropriateness degrees
of a complex logical expression θ ∈ LE. Consider the set of logical expressions
LE obtained by recursive application of the standard logical connectives in L.
In order to evaluate the appropriateness degrees of such expressions we must
identify what information they provide regarding the the appropriateness of
labels. In general, for any label expression θ we should be able to identify a
maximal set of label sets, λ(θ) that are consistent with θ so that the meaning
of θ can be interpreted as the constraint Dx ∈ λ(θ).

Definition 5 (λ-function) Let θ and ϕ be expressions generated by recur-
sive application of the connectives ¬,∨,∧ and → to the elements of L (i.e.

248 Zengchang Qin and Jonathan Lawry

θ, ϕ ∈ LE). Then the set of possible label sets defined by a linguistic expres-
sion can be determined recursively as follows:

(i) λ(Li) = {S ⊆ F|{Li} ⊆ S}
(ii) λ(¬θ) = λ(θ)
(iii) λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)
(iv) λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)
(v) λ(θ → ϕ) = λ(θ) ∪ λ(ϕ)

It should also be noted that the λ-function provides us with notion of logi-
cal equivalence ‘≡L’ for label expressions

θ ≡L ϕ ⇐⇒ λ(θ) = λ(ϕ)

Basically, the λ-function provides a way of transferring logical expressions
of labels (or linguistic rules) to random set descriptions of labels (i.e. focal
elements). λ(θ) corresponds to those subsets of F identified as being possible
values of Dx by expression θ. In this sense the imprecise linguistic restriction
‘x is θ’ on x corresponds to the strict constraint Dx ∈ λ(θ) on Dx. Hence, we
can view label descriptions as an alternative to linguistic variables as a means
of encoding linguistic constraints.

2.5 High Level Label Description

In this section, we will consider how to use a high level fuzzy label to describe
another fuzzy label. Here the term high level does not mean a hieracrhial
structure. We will actually consider two set of fuzzy labels which are inde-
pendently defined on the same universe. If the cardinality of a set of labels L
is denoted by |L|. We then can say L1 higher level labels of L2 if L1 < L2.
We will acutally consider the methodology of using one set of fuzzy labels to
represent the other set of fuzzy labels.

For example, a fuzzy concept about m is defined by an interval on [a, b]
(see the left-hand side figure of fig. 2), so that the appropriateness degree of
using fuzzy label small to label about m is:

µsmall(about m) =
1

b− a

∫ b

a

µsmall(u)du (3)

If the vagueness of the concept about m depends on the interval denoted by
δ where the length of the interval |δ| = b− a. We then can obtain:

µsmall(about m) =
1
|δ|

∫

u∈δ

µsmall(u)du (4)

If about m is defined by other fuzzy labels rather than an interval, for example,
a triangular fuzzy set (e.g., the right-hand side figure of fig. 2). How can we
define the appropriateness degrees?

Knowledge Discovery in a Framework for Modelling with Words 249

Fig. 2. The appropriateness degree of using small to label vague concept about m
is defined by the ratio of the area covered by both labels to the area covered by
about m only.

We begin by considering a data element x ∈ [a, b], the function µabout m(x)
represents the degree of x belonging to the fuzzy label F . Function µsmall(x)
defines the appropriateness degrees of using label small to describe x 3. We
essentially hope to obtain the appropriateness degrees of using small to la-
bel about m. We then consider the each elements belonging to about m. If
µabout m(x) = 1, which means x is absolutely belonging to about m, then the
appropriateness degree is just µsmall(x). However, if µabout m < µsmall(x), we
can only say it is belonging to about m in certain degrees. Logically, fuzzy
operation AND is used, and in practical calculation, the min(·) function is
employed. The appropriateness is then defined by:

µsmall(about m) =

∫
u∈δ

min(µsmall(u), µabout m(u))du∫
u′∈δ

µabout m(u′)du′
(5)

where function min(x, y) returns the minimum value between x and y. Equa-
tion 4 is a special case of equation 5 where the following equations always
hold:

µsmall(u) = min(µsmall(u), µabout m(u))

|δ| =
∫

u∈δ

µabout m(u)du

Definition 6 Given a vague concept (or a fuzzy label) F and a set of labels
L = {L1, . . . , Lm} defined on a continuous universe Ω. The appropriateness
degrees of using label L (L ∈ L) to describe F is:

3 Here we interpret µ(·) in different manners: membership function and appropri-
ateness degrees, though they are mathematically the same.

250 Zengchang Qin and Jonathan Lawry

µL(F) =

∫
u∈δ

min(µL(u), µF (u))du∫
u′∈δ

µF (u′)du′
(6)

where δ is the universe covered by fuzzy label F .

Given appropriateness degrees, the mass assignment can be obtained from
the appropriateness degrees by the consonance assumption. Equation 5 is a
general form for all kinds of fuzzy sets which are not limited to an interval or
a triangular fuzzy sets.

3 Linguistic Decision Tree

Tree induction learning models have received a great deal of attention over
recent years in the fields of machine learning and data mining because of their
simplicity and effectiveness. Among them, the ID3 (Quinlan, 1986) algorithm
for decision trees induction has proved to be an effective and popular algorithm
for building decision trees from discrete valued data sets. The C4.5 (Quinlan,
1990) algorithm was proposed as a successor to ID3 in which an entropy
based approach to crisp partitioning of continuous universes was adopted.
One inherent disadvantage of crisp partitioning is that it tends to make the
induced decision trees sensitive to noise. This noise is not only due to the lack
of precision or errors in measured features but is often present in the model
itself since the available features may not be sufficient to provide a complete
model of the system. For each attribute, disjoint classes are separated with
clearly defined boundaries. These boundaries are ‘critical’ since a small change
close to these points will probably cause a complete change in classification.
Due to the existence of uncertainty and imprecise information in real-world
problems, the class boundaries may not be defined clearly. In this case, decision
trees may produce high misclassification rates in testing even if they perform
well in training. To overcome this problems, many fuzzy decision tree models
have been proposed (Baldwin et al., 1997,Janikow, 1998,Olaru and Wehenkel,
2003,Peng and Flach, 2001).

Linguistic decision tree (LDT) (Qin and Lawry, 2005b) is a tree-structured
classification model based on label semantics. The information heuristics used
for building the tree are modified from Quinlan’s ID3 (Quinlan, 1986) in
accordance with label semantics. Given a database of which each instance is
labeled by one of the classes: {C1, · · · , CM}. A linguistic decision tree with S
consisting branches built from this database can be defined as follows:

T = {〈B1, P (C1|B1), · · · , P (CM |B1)〉, · · · 〈BS , P (C1|BS), · · · , P (CM |BS)〉}

where P (Ck|B) is the probability of class Ck given a branch B. A branch B
with d nodes (i.e., the length of B is d) is defined as: B = 〈F1, · · · , Fd〉, where

Knowledge Discovery in a Framework for Modelling with Words 251

d ≤ n and Fj ∈ Fj is one of the focal elements of attribute j. For example,
consider the branch: 〈〈{small1}, {medium2, large2}〉, 0.3, 0.7〉. This means
the probability of class C1 is 0.3 and C2 is 0.7 given attribute 1 can only
be described as small and attribute 2 can be described as both medium and
large.

These class probabilities are estimated from a training setD={x1, · · · ,xN}
where each instance x has n attributes: 〈x1, · · · , xn〉. We now describe how
the relevant branch probabilities for a LDT can be evaluated from a database.
The probability of class Ck (k = 1, · · · , M) given B can then be evaluated as
follows. First, we consider the probability of a branch B given x:

P (B|x) =
d∏

j=1

mxj
(Fj) (7)

where mxj
(Fj) for j = 1, · · · , d are mass assignments of single data element

xj . For example, suppose we are given a branch B = 〈{small1}, {medium2,
large2}〉 and data x = 〈0.27, 158〉 (the linguistic translation of x1 was given
in section 2.3). According to eq. 7:

P (B|x) = mx1({small1})×mx2({medium2, large2}) = 0.4× 0.4 = 0.16

The probability of class Ck given B can then be evaluated by:

P (Ck|B) =

∑
i∈Dk

P (B|xi)∑
i∈D P (B|xi)

(8)

where Dk is the subset consisting of instances which belong to class k. In
the case where the denominator is equals to 0, which may occur when the
training database for the LDT is small, then there is no non-zero linguistic
data covered by the branch. In this case, we obtain no information from the
database so that equal probabilities are assigned to each class. P (Ck|B) =
1
M for k = 1, · · · ,M . In the case that a data element appears beyond the
range of training data set, we then assign the appropriateness degrees of the
minimum or maximum values of the universe to the data element depending
on which side of the range it appears.

According to the Jeffrey’s rule (Jeffrey, 1965) the probabilities of class Ck

given a LDT with S branches are evaluated as follows:

P (Ck|x) =
S∑

s=1

P (Ck|Bs)P (Bs|x) (9)

where P (Ck|Bs) and P (Bs|x) are evaluated based on equations 7 and 8.

3.1 Linguistic ID3 Algorithm

Linguistic ID3 (LID3) is the learning algorithm we propose for building the
linguistic decision tree based on a given linguistic database. Similar to the ID3

252 Zengchang Qin and Jonathan Lawry

algorithm (Quinlan, 1986), search is guided by an information based heuristic,
but the information measurements of a LDT are modified in accordance with
label semantics. The measure of information defined for a branch B and can
be viewed as an extension of the entropy measure used in ID3.

Definition 7 (Branch Entropy) The entropy of branch B given a set of
classes C = {C1, . . . , C|C|} is

E(B) = −
|C|∑
t=1

P (Ct|B) log2 P (Ct|B) (10)

Now, given a particular branch B suppose we want to expand it with the at-
tribute xj . The evaluation of this attribute will be given based on the Expected
Entropy defined as follows:

EE(B, xj) =
∑

Fj∈Fj

E(B ∪ Fj) · P (Fj |B) (11)

where B ∪ Fj represents the new branch obtained by appending the focal
element Fj to the end of branch B. The probability of Fj given B can be
calculated as follows:

P (Fj |B) =
∑

i∈D P (B ∪ Fj |xi)∑
i∈D P (B|xi)

(12)

We can now define the Information Gain (IG) obtained by expanding branch
B with attribute xj as:

IG(B, xj) = E(B)− EE(B, xj) (13)

The pseudo-code is listed in Algorithm 2. The goal of tree-structured learn-
ing models is to make subregions partitioned by branches be less “impure”,
in terms of the mixture of class labels, than the unpartitioned dataset. For a
particular branch, the most suitable free attribute for further expanding (or
partitioning), is the one by which the “pureness” is maximally increased with
expanding. That corresponds to selecting the attribute with maximum infor-
mation gain. As with ID3 learning, the most informative attribute will form
the root of a linguistic decision tree, and the tree will expand into branches
associated with all possible focal elements of this attribute. For each branch,
the free attribute with maximum information gain will be the next node, from
level to level, until the tree reaches the maximum specified depth has been
reached.

3.2 Degrees of Fuzziness

Through linguistic translation, all numerical data can be represented as mass
assignments based on a predefined fuzzy discretization method. In this section,

Knowledge Discovery in a Framework for Modelling with Words 253

Algorithm 2: Decision Tree Learning
input : LD: Linguistic dataset obtained from Algorithm 1.
output: LDT : Linguistic Decision Tree

Set a maximum depth Mdep and a threshold probability T .1

for l ← 0 to Mdep do2

B ← ∅ when l = 03

The set of branches of LDT at depth l is Bl = {B1, · · · , B|Bl|}4

for v ← 1 to |B| do5

foreach Bv do :6

for t ← 1 to |C| do7

foreach t do Calculating conditional probabilities:8

P (Ct|Bv) =
∑

i∈Dt
P (Bv|xi)/

∑
i∈D P (Bv|xi)

if P (Ct|Bv) ≥ T then9

break (step out the loop)10

if ∃ xj: xj is free attribute then11

foreach xj do : Calculate: IG(Bv, xj) = E(Bv)−EE(Bv, xj)12

IGmax(Bv) = maxxj [IG(Bv, xj)]13

Expanding Bv with xmax where xmax is the free attribute we14

can obtain the maximum IG value IGmax.
B′v ←

⋃
Fj∈Fj

{Bv ∪ Fj}.15

else16

exit;17

Bl+1 ←
⋃s

r=1 B′r.18

LDT = B19

unless otherwise stated, we will use a percentile-based (or equal points) dis-
cretization. The idea is to cover approximately the same number of data points
for each fuzzy label. The justification for using this discretization method is
given in (Qin and Lawry, 2005b).

Basically, fuzzy discretization provides an interpretation between numeri-
cal data and their corresponding linguistic data based on label semantics. We
may notice that different fuzzy discretization may result in different linguistic
data. We introduce a new parameter PT by which to measure the degrees of
overlapping between fuzzy labels. As we can see from figure 3, given two fuzzy
labels F and G, m is the distance between the weighting centers of a fuzzy
labels to the meeting point of their membership functions. a is actually the
length of the overlapping area. PT is calculated as follows:

PT = a/2m (14)

PT = 0.5 represents 50% of overlapping between each two neighboring fuzzy
labels (e.g., figure 3-A). PT = 0 represents no overlapping at all (figure 3-C),
i.e., the labels are discrete but not fuzzy. Figure 3-B shows a situation that

254 Zengchang Qin and Jonathan Lawry

Fig. 3. A schematic illustration of calculating the overlap parameter PT given
different degrees of overlaps.

the degree of overlapping is between 0 and 0.5. Figure 3-D also shows the
linear relation of parameter a and PT .

Fig. 4. Monotonically increased performance for linguistic decision trees with in-
creasing degrees of fuzziness.

As we can see from these two figures, the performance these two datesets
are roughly monotonic increased with the increase of PT . It implies that
more fuzziness tends to increase the robustness of the LDT model and get
better performance. From all the results, we can see that LDTs with fuzzy

0 0.1 0.2 0.3 0.4 0.5
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Overlap

Ecoli

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Overlap

Pima

A
cc

ur
ac

y

F G

m

a

(A) when a = m, PT =0.5

F' G'

m

a

(B) PT = a/2m

F'' G''

m

a=0

(C) when a = 0, PT = 0

a

PT

0.5

0 m

(D) Relation between a and PT

Knowledge Discovery in a Framework for Modelling with Words 255

labels generally outperform the ones with discrete labels (where PT = 0).
Due to the page limit, we cannot put all the results but they are available
in (Qin and Lawry, 2007). Therefore, in summary, for the case of LDT model,
we can say that fuzziness will bring greater performance. The increase is
almost monotonically. But the optimal overlapping degrees are depends on
the dataset you tested.

3.3 Linguistic Constraints

Here we assume that the linguistic constraints take the form of θ = 〈x1 is
θ1, . . . , xn is θn〉, where θj represents a label expression based on Lj : j =
1, . . . , n. Consider the vector of linguistic constraint θ = 〈θ1, · · · , θn〉, where
θj is the linguistic constraints on attribute j. We can evaluate a probability
value for class Ct conditional on this information using a given linguistic
decision tree as follows. The mass assignment given a linguistic constraint θ
is evaluated by

∀Fj ∈ Fj mθj
(Fj) =

{
pm(Fj)∑

Fj∈λ(θj) pm(Fj)
if : Fj ∈ λ(θj)

0 otherwise
(15)

where pm(Fj) is the prior mass for focal elements Fj ∈ Fj derived from the
prior distribution p(xj) on Ωj as follows:

pm(Fj) =
∫

Ωj

mx(Fj)p(xj)dxj (16)

Usually, we assume that p(xj) is the uniform distribution over Ωj so that

pm(Fj) ∝
∫

Ωj

mx(Fj)dxj (17)

For branch B with s nodes, the probability of B given θ is evaluated by

P (B|θ) =
|B|∏
r=1

mθjr
(Fjr) (18)

and therefore, by Jeffrey’s rule (Jeffrey, 1965)

P (Ct|θ) =
|LDT |∑
v=1

P (Ct|Bv)P (Bv|θ) (19)

The methodology for classification under linguistic constraints allows us
to fuse the background knowledge in linguistic form into classification. This is
one of the advantages of using high-level knowledge representation language
models such as label semantics.

256 Zengchang Qin and Jonathan Lawry

3.4 Classification given fuzzy data

In previous sections LDTs have only been used to classify crisp data where
objects are described in terms of precise attribute values. However, in many
real-world applications limitations of measurement accuracy means that only
imprecise values can be realistically obtained. In this section we introduce
the idea of fuzzy data and show how LDTs can be used for classification in
this context. Formally, a fuzzy database is defined to be a set of elements or
objects each described by linguistic expressions rather than crisp values. In
other words

FD = {〈θ1(i), . . . , θn(i)〉 : i = 1, . . . , N}
Currently there are very few benchmark problems of this kind with fuzzy
attribute values. This is because, traditionally only crisp data values are
recorded even in cases where this is inappropriate. Hence, we have gen-
erated a fuzzy database from a toy problem where the aim is to identify
the interior of a figure of eight shape. Specifically, a figure of eight shape
was generated according to the equation x = 2(−0.5)(sin(2t) − sin(t)) and
y = 2(−0.5)(sin(2t) + sin(t)) where t ∈ [0, 2π]. (See figure 5). Points in
[−1.6, 1.6]2 are classified as legal if they lie within the ‘eight’ shape (marked
with ×) and illegal if they lie outside (marked with points).

To form the fuzzy database we first generated a crisp database by uni-
formly sampling 961 points across [−1.6, 1.6]2. Then each data vector 〈x1, x2〉
was converted to a vector of linguistic expressions 〈θ1, θ2〉 as follows: θj = θRj

where Rj = {F ∈ Fj : mxj
(F) > 0} A LDT was then learnt by applying the

LID3 algorithm to the crisp database. This tree was then used to classify both
the crisp and fuzzy data.

Suppose a LDT is trained on the ‘eight’ database where each attribute is
discretized by five fuzzy sets uniformly: verysmall (vs), small (s),medium
(m), large (l) and verylarge (vl). Further, suppose we are given the following
description of data points:

θ1 = 〈x is vs ∨ s ∧ ¬m, y is vs ∨ s ∧ ¬m〉
θ2 = 〈x is m ∧ l, y is s ∧m〉
θ3 = 〈x is s ∧m, y is l ∨ vl〉

Experimental results obtained based on the approach introduced in 3.3 are as
follows:

Pr(C1|θ1) = 1.000 Pr(C2|θ1) = 0.000
Pr(C1|θ2) = 0.000 Pr(C2|θ2) = 1.000
Pr(C1|θ3) = 0.428 Pr(C2|θ3) = 0.572

As we can see from figure 5, the above 3 linguistic constraints roughly
correspond to the area 1, 2 and 3, respectively. By considering the occurrence
of legal and illegal examples within these areas, we can verify the correctness
of our approach.

Knowledge Discovery in a Framework for Modelling with Words 257

Fig. 5. Testing on the ‘eight’ problem with linguistic constraints θ, where each
attribute is discretized by 5 trapezoidal fuzzy sets: very small, small, medium, large
and very large.

3.5 Linguistic Decision Trees for Predictions

Consider a database for prediction:
D = {〈x1(i), · · · , xn(i), xt(i)〉 |i = 1, · · · , |D|}

where x1, · · · , xn are potential explanatory attributes and xt is the continuous
target attribute. Unless otherwise stated, we use trapezoidal fuzzy sets with
50% overlap to discretized each continuous attribute individually (xt) universe
and assume the focal sets are F1, · · · , Fn and Ft. For the target attribute
xt: Ft = {F 1

t , · · · , F
|Ft|
t }. For other attributes: xj : Fj = {F 1

j , . . . , F
|Fj |
j }.

The inventive step is, to regard the focal elements for the target attribute as
class labels. Hence, the LDT4 model for prediction has the following form:
A linguistic decision tree for prediction is a set of branches with associated
probability distribution on the target focal elements of the following form:

LDT = {〈B1, P (F 1
t |B1), · · · , P (F |Ft|

t |B1)〉, · · · ,

〈B|LDT |, P (F 1
t |B|LDT |), · · · , P (F |Ft|

t)|B|LDT |)〉}

where F 1
t , · · · , F

|Ft|
t are the target focal elements (i.e. the focal elements for

the target attribute or the output attribute).

P (F j
t |x) =

|LDT |∑
v=1

P (F j
t |Bv)P (Bv|x) (20)

4 We will use the same name ‘LDT’ for representing both linguistic decision trees
(for classification) and linguistic prediction trees.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Area 1

Area 3

Area 2

Very Small Small Medium Large Very Large

V
ery L

arg
e L

arg
e M

ed
iu

m
 S

m
all V

ery S
m

all

258 Zengchang Qin and Jonathan Lawry

Given value x = 〈x1, · · · , xn〉 we need to estimate the target value x̂t (i.e.
xi → x̂t). This is achieved by initially evaluating the probabilities on target
focal elements: P (F 1

t |x), · · · , P (F |Ft|
t |x) as described above. We then take the

estimate of xt, denoted x̂t, to be the expected value:

x̂t =
∫

Ωt

xt p(xt|x) dxt (21)

where:

p(xt|x) =
|Ft|∑

j=1

p(xt|F j
t) P (F j

t |x) (22)

and

p(xt|F j
t) =

mxt(F
j
t)∫

Ωt
mxt(F

j
t) dxt

(23)

so that, we can obtain:

x̂t =
∑

j

P (F j
t |x) E(xt|F j

t) (24)

where:

E(xt|F j
t) =

∫

Ωt

xt p(xt|F j
t) dxt =

∫
Ωt

xt mxt(F
j
t) dxt∫

Ωt
mxt(F

j
t) dxt

(25)

We test our model on a toy problem of surface regression: 529 points were
uniformly generated describing a surface defined by equation z = sin(x× y)
where x, y ∈ [0, 3]. 2209 points are sampled uniformly as the test set. The
attributes are discretized uniformly by fuzzy labels, the detailed results with
different number of fuzzy labels are available in (Qin and Lawry, 2005c). We
compared the prediction surface by the LDT model and the original surface
in figure in 6. As we can see from the figures that these results are quite
comparable though LDT didn’t capture the small change at the tail. In this
experiment, we use 7 fuzzy labels for discretization. If we use more labels, we
can get the results as good as as we want, but it just needs more computational
time.

4 Bayesian Estimation Based on Label Semantics

Bayesian reasoning provides a probabilistic approach to inference based on the
Bayesian theorem. Given a test instance, the learner is asked to predict its class
according to the evidence provided by the training data. The classification of
unknown example x by Bayesian estimation is on the basis of the following
probability,

P (Ck|x) =
P (x|Ck)P (Ck)

P (x)
(26)

Knowledge Discovery in a Framework for Modelling with Words 259

Fig. 6. Left-hand: the surface of z = sin(x× y). Right-hand: the prediction surface
by linguistic decision trees.

Since the denominator in eq. 26 is invariant across classes, we can consider it
as a normalization parameter. So, we obtain:

P (Ck|x) ∝ P (x|Ck)P (Ck) (27)

Now suppose we assume for each variable xj that its outcome is independent
of the outcome of all other variables given class Ck. In this case we can obtain
the so-called naive Bayes classifier as follows:

P (Ck|x) ∝
n∏

j=1

P (xj |Ck)P (Ck) (28)

where P (xj |Ck) is often called the likelihood of the data xj given Ck. For a
qualitative attribute, it can be estimated from corresponding frequencies. For
a quantitative attribute, either probability density estimation or discretization
can be employed to estimate its probabilities.

4.1 Fuzzy Naive Bayes

In label semantics framework, suppose we are given focal set Fj for each
attribute j. Assuming that attribute xj is numeric with universe Ωj , then the
likelihood of xj given Ck can be represented by a density function p(xj |Ck)
determine from the database Dk and prior density according to Jeffrey’s rule
(Jeffrey, 1965).

p(xj |Ck) =
∑

F∈Fj

p(xj |F)P (F |Ck) (29)

From Bayes theorem, we can obtain:

p(xj |F) =
P (F |xj)p(xj)

P (F)
=

mxj (F)p(xj)
pm(F)

(30)

0

0.5

1

1.5

2

2.5

3

0
0.5

1
1.5

2
2.5

3

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2

2.5

3
0

0.5
1

1.5
2

2.5
3

−1

−0.5

0

0.5

1

260 Zengchang Qin and Jonathan Lawry

where,

pm(F) =
∫

Ωj

P (F |xj)p(xj)dxj =
∑

x∈D mxj (F)
|D| (31)

Substituting equation 30 in equation 29 and re-arranging gives

p(xj |Ck) = p(xj)
∑

F∈Fj

mxj (F)
P (F |Ck)
pm(F)

(32)

where P (F |Ck) can be derived from Dk according to

P (F |Ck) =

∑
x∈Dk

mxj
(F)

|Dk| (33)

This model is called fuzzy Naive Bayes (FNB). If we weaken the independence
assumption, we can obtain a fuzzy semi-Naive Bayes (FSNB). More details of
FNB and FSNB can be found in (Randon and Lawry, 2006).

4.2 Fuzzy Semi-Naive Bayes

The main advantage of using Semi-Naive Bayes over Naive Bayes is that it
allows us to solve non-decomposable problems such as XOR by weakening the
independence assumption of Naive Bayes. However, in order to utilize Semi-
Naive Bayes it is necessary to find effective groupings of attributes within
which dependencies must be taken into account. In this chapter, we present
and evaluate a number of heuristic search algorithms for finding such groups
of attributes.

Given a set of attributes: x1, x2, · · · , xn, they are partitioned into subsets
S1, · · · , Sw where w ≥ n and for each Si a joint mass assignment mi,j is
determined as follows: suppose, w.l.o.g Si = {x1, · · · , xv} then the join mass
assignment is

∀T1 × · · · × Tv ∈ 2LA1 × · · · × 2LAv (34)

mi,j(T1, · · · , Tv) =
1

|DBj |
∑

k∈D

w∏
r=1

mr,j(Ti : xi ∈ Sr) (35)

Hence the prototype describing Cj is defined as 〈mi,j , · · · ,mw,j〉. A pro-
totype of this form naturally defines a joint mass assignment mj on the whole
cross product space 2LA1 × · · · × 2LAn conditional on Cj as follows:

∀T1×· · ·×Tn ∈ 2LA1×· · ·×2LAnmj(T1, · · · , Tn) =
w∏

r=1

mr,j(Ti : xi ∈ Sr) (36)

Knowledge Discovery in a Framework for Modelling with Words 261

In this formulation we are encoding variable dependence within the variable
groupings Si : i = 1, · · ·w and assuming independence between the groups.

In order to estimate classification probabilities given input vectors of rea
attribute values we need a mechanism for mapping from mass assignments on
label space onto density functions on attribute space.

Definition 8 (Conditional Density Given a Mass Assignment) Let x
be a variable into Ω with prior distribution p(x), LA be a set of labels for x and
m be a posterior mass assignment for the set of appropriate labels of x inferred
from some database D. Then the posterior distribution of x conditional on m
is given by

∀x ∈ Ω, p(x|m) = p(x)
∑

S⊆LA

m(S)
pm(S)

mx(S) (37)

where pm(S) is the prior mass assignment generated by the prior distribution
p(x) according to

pm(S) =
∫

Ω

mx(S)p(x)dx (38)

This definition is motivated by the following argument based on the the-
orem of total probability which for a mass assignment, describing variables x
on Ω.

We now consider methods for finding attribute groupings that increase
discrimination in the model. Two measures has been proposed in (Randon
and Lawry, 2006):

Definition 9 (Importance Measure) Let the joint mass assignment for Si

given Cj be denoted mi,j. For any input vector Si the probability of cloass Cj

can be estimated using Bayes theorem where

P (Cj |Si) =
p(Si|mi,j)|Cj |

p(Si|mi,j)|Cj |+ p(Si|mi,¬j)|C¬j | (39)

where mi,¬j denotes the mass assignments for Sj given ¬Cj. The impor-
tance measured of group Si for class Cj is then defined by

IMj(Si) =

∑
k∈Dj

P (Cj |Si(k))∑
k∈D P (Cj |Si(k))

(40)

Effectively, IMj(Si) is a measure of the importance of the set of variables Si

as discriminators of Cj from the other classes.

262 Zengchang Qin and Jonathan Lawry

Fig. 7. Scatter plot showing original data verses prediction data on sunspot pre-
diction problems. Upper left: Fuzzy Naive Bayes; upper right: Support Vector Re-
gression; lower left: non-merged LDT with 5 fuzzy labels; lower right: Semi-naive
Bayes.

Definition 10 (Correlation Measure) Let F1 be the focal sets for S1 and
F2 the focal sets for S2. Now let m1,2,j be the joint mass of S1 ∪ S2 given Cj

C(S1, S2) =
√

1
|F1||F1|

∑

R⊆F1

∑

T⊆F2

(m1,2,j(R, T)−m1,j(R)m2,j(T))2 (41)

Here a threshold must be used to determine whether attributes should be
grouped. The nearer the correlation measure gets to 1 the higher the correla-
tion between attribute groups.

We tested our models with a real-world problem taken from the Time Se-
ries Data Library (Hyndman and Akram, 2007) and contains data of sunspot
numbers between the years 1700-1979. The input attributes are xT−12 to xT−1

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Knowledge Discovery in a Framework for Modelling with Words 263

(the data for previous 12 years) and the output (target) attribute is xT , i.e.
one-year-ahead. The experimental results for LID3, Fuzzy Naive Bayes, Semi-
Naive Bayes and ε-SVR (Gunn, 1998) are compared in figure 7. We can see
the results are quite comparable. In these graphs, for an error free prediction
all points will fall on the line defined by y = x. Roughly, from the illustration,
we can see that SVR and non-merged LDT have better performance, because
predicted values distributed closer to y = x than other two models.

4.3 Hybrid Bayesian Estimation Tree

Based on previous two linguistic models, a hybrid model was proposed in (Qin
and Lawry, 2005a). Given a decision tree T is learnt from a training database
D. According to the Bayesian theorem: A data element x = 〈x1, . . . , xn〉 can
be classified by:

P (Ck|x, T) ∝ P (x|Ck, T)P (Ck|T) (42)

We can then divide the attributes into 2 disjoint groups denoted by xT =
{x1, · · · , xm} and xB = {xm+1, · · · , xn}, respectively. xT is the vector of the
variables that are contained in the given tree T and the remaining variables
are contained in xB . Assuming conditional independence between xT and xB

we obtain:
P (x|Ck, T) = P (xT |Ck, T)P (xB |Ck, T) (43)

Because xB is independent of the given decision tree T and if we assume the
variables in xB are independent of each other given a particular class, we can
obtain:

P (xB |Ck, T) = P (xB |Ck) =
∏

j∈xB

P (xj |Ck) (44)

Now consider xT . According to Bayes theorem,

P (xT |Ck, T) =
P (Ck|xT , T)P (xT |T)

P (Ck|T)
(45)

Combining equation 43, 44 and 45:

P (x|Ck, T) =
P (Ck|xT , T)P (xT |T)

P (Ck|T)

∏

j∈xB

P (xl|Ck) (46)

Combining equation 42 and 46

P (Ck|x, T) ∝ P (Ck|xT , T)P (xT |T)
∏

j∈xB

P (xj |Ck) (47)

Further, since P (xT |T) is independent from Ck, we have that:

P (Ck|x, T) ∝ P (Ck|xT , T)
∏

j∈xB

P (xj |Ck) (48)

264 Zengchang Qin and Jonathan Lawry

Fig. 8. Results for single LDT with Bayesian estimation: average accuracy with
standard deviation on each dataset against the depth of the tree.

where P (xj |Ck) is evaluated according to eq. 32 and P (Ck|xT , T) is just the
class probabilities evaluated from the decision tree T according to equation 9.

We tested this new model with a set of UCI (UCI, 2007) data sets. Figure
8 is a simple result. More results are available in (Qin and Lawry, 2005a).
From figures 8, we can see that the BLDT model generally performs better
at shallow depths than LDT model. However, with the increasing of the tree
depth, the performance of the BLDT model remains constant or decreases,
while the accuracy curves for LDT increase. The basic idea of using Bayesian
estimation given a LDT is to use the LDT as one estimator and the rest of the
attributes as other independent estimators. Consider the two extreme cases
for eq. 48. If all the attributes are used in building the tree (i.e. xT = x), the
probability estimations are from the tree only, that is:

P (Ck|x, T) ∝ P (Ck|xT , T)

If none of the attributes are used in developing the tree (i.e. x = xB), the
probability estimation will become:

P (Ck|x, T) ∝
∏

j∈xB

P (xj |Ck)

which is simply a Naive Bayes classifier.

4.4 Bayesian Estimation From a Set of Trees

Given a training dataset, a small-sized tree (usually the depth is less than 3)
can be learnt based on the method we discussed in section 3. We then learn
another tree with the same size based on the remaining attributes, i.e., the
attributes which have not been used in previous trees. In this manner, a set
of trees can successively be built from training set. We denote this set of trees

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
70

75

80

85

90

95

100

Depth

A
cc

ur
ac

y

Wine

BLDT

LDT

0 1 2 3 4 5 6 7 8
40

45

50

55

60

65

70

75

80

85

90

Depth

A
cc

ur
ac

y

Ecoli

LDT

BLDT

Knowledge Discovery in a Framework for Modelling with Words 265

by T = 〈T1, . . . , TW 〉 and where the set of attributes xTw
for w = 1, . . . ,W for

a partition of {x1, . . . , xn} (see fig. 9 for a schematic illustration). For a given
unclassified data element x, we can partition it into W groups of disjoint set
of attributes 〈xT1 , . . . ,xTW 〉. If we assume:

Fig. 9. An schematic illustration of Bayesian estimation from a set of linguistic
decision trees.

P (Ct|x) = P (Ct|xT1 , . . . ,xTW
) ≈ P (Ct|T1, . . . , TW) (49)

Then, according to the Bayes theorem:

P (Ct|T) = P (Ct|T1, . . . , TW) =
P (T1, . . . , TW |Ct)P (Ct)

P (T1, . . . , TW)
(50)

Assuming that the trees are generated independently then it is reasonable to
assume that the groups of attributes are conditionally independent of each
other. Hence,

P (T1, . . . , TW |Ct) =
W∏

w=1

P (Tw|Ct) (51)

For a particular tree Tw for w = 1, . . . , W , we have

P (Tw|Ct) =
P (Ct|Tw)P (Tw)

P (Ct)
(52)

So that,
W∏

w=1

P (Tw|Ct) =
∏W

w=1 P (Ct|Tw)
∏W

i=1 P (Tw)
P (Ct)W

(53)

Combining eq. 50, 51 and 53, we obtain

P (Ct|T) ∝
∏W

w=1 P (Ct|Tw)
∏W

w=1 P (Tw)
P (Ct)W−1

(54)

x4 x2
x1

x3

x1 x2 x3 x4

266 Zengchang Qin and Jonathan Lawry

Since
∏W

w=1 P (Tw) is independent from Ct, we finally obtain:

P (Ct|T) ∝
∏W

w=1 P (Ct|Tw)
P (Ct)W−1

(55)

where P (Ct|Tw) is evaluated according to eq. 9.

5 Linguistic Rule Induction

The use of high-level knowledge representation in data modelling allows for en-
hanced transparency in the sense that the inferred models can be understood
by practioners who are not necessarily experts in the formal representation
framework employed. Rule based systems inherently tend to be more transpar-
ent than other models such as neural networks. A set of concise understandable
rules can provide a better understanding of how the classification or prediction
is made. Generally, there are two general types of algorithms for rule induc-
tion, top down and bottom up algorithms. Top-down approaches start from the
most general rule and specialize it gradually. Bottom-up methods star from a
basic fact given in training database and generalize it. In this paper we will
focus on a top-down model for generating linguistic rules based on Quinlan’s
First-Order Inductive Learning (FOIL) Algorithm (Quinlan, 1990).

The FOIL algorithm is based on classical binary logic where typically at-
tributes are assumed to be discrete. Numerical variables are usually discretized
by partitioning the numerical domain into a finite number of intervals. How-
ever, because of the uncertainty involved in most real-world problems, sharp
boundaries between intervals often lead to a loss of robustness and generality.
Fuzzy logic has been used to solve the problem of sharp transitions between
two intervals. Fuzzy rule induction research has been popular in both fuzzy
and machine learning communities as a means to learning robust transparent
models. Many algorithms have been proposed including simple fuzzy logic rule
induction (Baldwin and Xie, 2004), fuzzy association rule mining (Xie, 2005)
and first-order fuzzy rule induction based on FOIL (Drobics et al., 2003,Prade
et al., 2003). In this paper, we will focus on an extension to the FOIL algorithm
based on label semantics.

5.1 Generalized Appropriateness Measures

Based on definition 5, we can evaluate the appropriateness degree of θ ∈ LE
is to aggregate the values of mx across λ(θ). This motivates the following
general definition of appropriateness measures.

Definition 11 (Appropriateness Measures) ∀θ ∈ LE, ∀x ∈ Ω the mea-
sure of appropriateness degrees of θ as a description of x is given by:

Knowledge Discovery in a Framework for Modelling with Words 267

µθ(x) =
∑

S∈λ(θ)

mx(S)

Appropriateness degrees (def. 2) introduced at the beginning of this chapter
are only a special case of the appropriateness measures where θ = L for L ∈ L.

Given a continuous variable x: L = {small, medium, large}, F =
{{small}, {small, medium}, {medium}, {medium, large}, {large}}. Sup-
pose we are told that “x is not large but it is small or medium”. This
constraint can be interpreted as the logical expression

θ = ¬large ∧ (small ∨medium)

According to definition 5, the possible label sets of the given logical expression
θ are calculated as follows:

λ(¬large) = {{small}, {small,medium}, {medium}}
λ(small) = {{small}, {small, medium}}

λ(medium) = {{small, medium}, {medium}, {medium, large}}
So that we can obtain:

λ(θ) = λ(¬large ∧ (small ∨ medium)) = {{small}, {small, medium},
{medium}}∧ ({{small},{small,medium}}∨ {{small, medium}, {medium},
{medium, large}}) = {{small}, {small, medium}, {medium}}

If a prior distribution on focal elements of variable x are given as follows:

{small} : 0.1, {small, med.} : 0.3, {med.} : 0.1, {med., large} : 0.5, {large} : 0.0

The appropriateness measure for θ = ¬large ∧ (small ∨medium) is:

µθ(x) =
∑

S∈λ(θ)

mx(S)

= mx({small}) + mx({small,medium}) + mx({medium})
= 0.1 + 0.3 + 0.1 = 0.5

5.2 Linguistic Rules in Label Semantics

In sections 2 and 3, a basic introduction of label semantics is given and how
it can be used for data modelling is discussed. In this section, we will describe
a linguistic rule induction model based on label semantics. Now, we begin by
clarifying the definition of a linguistic rule. Based on def. 4, a linguistic rule
is a rule can be represented as a multi-dimensional logical expressions of fuzzy
labels.

268 Zengchang Qin and Jonathan Lawry

(n)

is the set of all multi-dimensional label expressions that can be generated from
the logical label expression LEj : j = 1, . . . , n and is defined recursively by:

(i) If θ ∈ LEj for j = 1, . . . , n then θ ∈ MLE(n)

(ii) If θ, ϕ ∈ MLE(n) then ¬θ, θ ∧ ϕ, θ ∨ ϕ, θ → ϕ ∈ MLE(n)

Any n-dimensional logical expression θ identifies a subset of 2L1 ×. . . × 2Ln ,
denoted λ(n)(θ), constraining the cross product of logical descriptions on each
variable: Dx1 × . . . × Dx1 . In such a way the imprecise constraint θ on n
variables can be interpret as the precise constraint Dx1 × . . . × Dx1 ∈ λ(n)(θ)

Given a particular data, how can we evaluated if a linguistic rule is appro-
priate for describing it? Based on the one-dimensional case, we now extend the
concepts of appropriateness degrees to the multi-dimensional case as follows:

Definition 13 (Multi-dimensional Appropriateness Degrees) Given a
set of n-dimensional label expressions MLE(n):

∀ θ ∈ MLE(n),∀xj ∈ Ωj : j = 1, · · · , n

µn
θ (x) = µn

θ (x1, · · · , xn) =
∑

〈F1,··· ,Fn〉∈λ(n)(θ)

(F1, · · · , Fn)

=
∑

〈F1,··· ,Fn〉∈λ(n)(θ)

n∏

j=1

mxj
(Fj)

The appropriateness degrees in one-dimension are for evaluating a single label
for describing a single data element, while in multi-dimensional cases they are
for evaluating a linguistic rule for describing a data vector.

Consider a modelling problem with two variables x1 and x2 for which L1 =
{small (s), medium (med), large(lg)} and L2 = {low(lo), moderate (mod),
high(h)}. Also suppose the focal elements for L1 and L2 are:

F1 = {{s}, {s,med}, {med}, {med, lg}, {lg}}

F2 = {{lo}, {lo, mod}, {mod}, {mod, h}, {h}}
According to the multi-dimensional generalization of definition 5 we have that

λ(2)((med ∧ ¬s) ∧ ¬lo) = λ(2)(med ∧ ¬s) ∩ λ(2)(¬lo)

= λ(med ∧ ¬s)× λ(¬lo)

Now, the set of possible label sets is obtained according to the λ-function:

λ(med ∧ ¬s) = {{med}, {med, lg}}

Definition12 (Multi-dimensional Logical Expressions of Labels)MLE

Knowledge Discovery in a Framework for Modelling with Words 269

λ(¬lo) = {{mod}, {mod, h}, {h}}
Hence, based on def. 5 we can obtain:

λ(2)((med ∧ ¬s) ∧ ¬lo) = {〈{med}, {mod}〉, 〈{med}, {mod, h}〉,

〈{med}, {h}〉, 〈{med, lg}, {mod}〉, 〈{med, lg}, {mod, h}〉, 〈{med, lg}, {h}〉}
The above calculation on random set interpretation of the given rule based

on λ-function is illustrated in fig. 10: given focal set F1 and F2, we can con-
struct a 2-dimensional space where the focal elements have corresponding
focal cells. Representation of the multi-dimensional λ-function of the logical
expression of the given rule are represented by grey cells.

Fig. 10. Representation of the multi-dimensional λ-function of the logical expression
θ = (med ∧ ¬ s) ∧ ¬lo showing the focal cells F1×F2.

Given x = 〈x1, x2〉 = 〈x1 = {med} : 0.6, {med, lg} : 0.4〉, 〈x2 = {lo, mod} :
0.8, {mod} : 0.2〉, we obtain:

µθ(x) = (m({med}) + m({med, lg}))× (m({mod}) + m({mod, h}) + m({h}))

= (0.6 + 0.4)× (0.2 + 0 + 0) = 0.2

And according to def. 5:

µn
¬θ(x) = 1− µθ(x) = 0.8

In another words, we can say that the linguistic expression θ covers the
data x to degree 0.2 and θ can be considered as a linguistic rule. This inter-
pretation of appropriateness is highlighted in next section on rule induction.

{s}

{s, med }

{ med }

{ med , lg }

{ lg }

{lo} {lo, mod} { mod} { mod, h} {h}

270 Zengchang Qin and Jonathan Lawry

5.3 Information Heuristics for LFOIL

In the last section, we have shown how to evaluate the appropriateness of using
a linguistic rule to describe a data vector. In this section, a new algorithm
for learning a set of linguistic rules is proposed based on the FOIL algorithm
(Quinlan, 1990), it is referred to as Linguistic FOIL (LFOIL). Generally, the
heuristics for a rule learning model are for assessing the usefulness of a literal
as the next component of the rule. The heuristics used for LFOIL are similar
but modified from the FOIL algorithm (Quinlan, 1990) so as to incorporate
linguistic expressions based on labels semantics. Consider a classification rule
of the form:

Ri = θ → Ck where θ ∈ MLE(n)

Given a data set D and a particular class Ck, the data belonging to class Ck

are referred to as positive examples and the rest of them are negative examples.
For the given rule Ri, the coverage of positive data is evaluated by

T+
i =

∑

l∈Dk

µθ(xl) (56)

and the coverage of negative examples is given by

T−i =
∑

l∈(D−Dk)

µθ(xl) (57)

whereDk is the subset of the database which is consisted by the data belonging
to class Ck. The information for the original rule Ri can by evaluated by

I(Ri) = − log2

(
T+

i

T+
i + T−i

)
(58)

Suppose we then propose to another label expression ϕ to the body of Ri

to generate a new rule
Ri+1 = ϕ ∧ θ → Ck

where ϕ, θ ∈ MLE(n). By adding the new literal ϕ, the positive and negative
coverage becomes:

T+
i+1 =

∑

l∈Dk

µθ∧ϕ(xl) (59)

T−i+1 =
∑

l∈(D−Dk)

µθ∧ϕ(xl) (60)

Therefore, the information becomes,

I(Ri+1) = − log2

(
T+

i+1

T+
i+1 + T−i+1

)
(61)

Then we can evaluate the information gain from adding expression ϕ by:

Knowledge Discovery in a Framework for Modelling with Words 271

G(ϕ) = T+
i+1(I(Ri)− I(Ri+1)) (62)

We can see that the measure of information gain consists of two components.
T+

i+1 is the coverage of positive data by the new rule Ri+1 and (I(Ri)−I(Ri+1))
is the increase of information. The probability of Ck given a linguistic rule Ri

is evaluated by:

P (Ck|Ri) =

∑
l∈Dk

µθ(xl)∑
l∈D µθ(xl)

=
T+

i

T+
i + T−i

(63)

when P (Ck|Ri+1) > P (Ck|Ri) (i.e., by appending a new literal, more positive
examples are covered), we can obtain that (I(Ri)−I(Ri+1)) > 0. By choosing
a literal ϕ with maximum G value, we can form the new rule which covers
more positive examples and thus increasing the accuracy of the rule.

5.4 Linguistic FOIL

We define a prior knowledge base KB ⊆ MLE(n) and a probability threshold
PT ∈ [0, 1]. KB consists of fuzzy label expressions based on labels defined on
each attribute. For example, given fuzzy labels {small1 large1} to describe
attribute 1 and {small2 large2} to describe attribute 2. A possible knowledge
base for the given two variables is: KB = {small1, ¬small1, large1, ¬large1,
small2, ¬small2, large2, ¬large2}.

The idea for FOIL is as follows: from a general rule, we specify it by adding
new literals in order to cover more positive and less negative examples accord-
ing to the heuristics introduced in last section. After developing one rule, the
positive examples covered by this rule are deleted from the original database.
We then need to find a new rule based on this reduced database until all posi-
tive examples are covered. In this paper, because of the fuzzy linguistic nature
of the expressions employed, typically data will be only partially covered by
a given rule. For this reason we need a probability threshold PT as part of
the decision process concerning rule coverage.

A pseudo-code of LFOIL are consists of two parts which are described
follows:

Generating a Rule

• Let rule Ri = θ1 ∧ · · · ∧ θd → Ck be the rule at step i, we then find the
next literal θd+1 ∈ KB − {θ1, · · · , θd} for which G(θd+1) is maximal.

• Replace rule Ri with Ri+1 = θ1 ∧ · · · ∧ θd ∧ θd+1 → Ck

• If P (Ck|θ1 ∧ · · · ∧ θi+1) ≥ PT then terminate else repeat.

Generating a Rule Base

272 Zengchang Qin and Jonathan Lawry

Let ∆i = {ϕ1 → Ck, · · · , ϕt → Ck} be the rule base at step i where ϕ ∈ MLE.
We evaluate the coverage of ∆i as follows:

CV (∆i) =

∑
l∈Dk

µϕ1∨···∨ϕt
(xl)

|Dk| (64)

We define a coverage function δ : Ω1 × · · · ×Ωn → [0, 1] according to:

δ(x|∆i) = µ¬∆i(x) = µ¬(ϕ1∨···∨ϕt)(x) (65)

= 1− µ(ϕ1∨···∨ϕt)(x) = 1−
t∑

w=1

µRw
(x)

where δ(x|∆i) represents the degree to which x is not covered by a given rule
base ∆i. If CV is less than a predefined coverage threshold CT ∈ [0, 1]:

CV (∆i) < CT

then we generate a new rule for class Ck according to the above rule generation
algorithm to form a new rule base ∆i+1 but where the entropy calculations
are amended such that for a rule R = θ → Ck,

T+ =
∑

l∈Dk

µθ(xl)× δ(xl|∆i) (66)

T− =
∑

l∈(D−Dk)

µθ(xl) (67)

The algorithm terminates when CV (RBi+1) ≥ CT or CV (RBi+1)−CV (RBi)
< ε where ε ∈ [0, 1] is a very small value, i.e., if there are no improvements in
covering positive examples, we will stop the algorithm to avoid an infinite-loop
calculation.

Given a rule base ∆i = {ϕ1 → Ck, · · · , ϕt → Ck} and an unclassified
data x, we can estimate the probability of Ck, P (Ck|x), as follows: Firstly,
we determine the rule Rmax = ϕj → Ck for which µϕj

(x) is maximal:

ϕj = arg max
k∈∆i

µϕk
(68)

Therefore, given the unclassified data x, rule Rmax is the most appropriate
rule from the rule base we learned. For the rule Rmax → Ck we evaluate two
probabilities pmax and qmax where:

pmax = P (Ck|ϕj) (69)

qmax = P (Ck|¬ϕj) (70)

We then use Jeffrey’s rule (Jeffrey, 1965) to evaluate the class probability by:

P (Ck|x) = pmax × µϕj (x) + qmax × (1− µϕj (x)) (71)

Knowledge Discovery in a Framework for Modelling with Words 273

We tested this rule learning algorithms with some toy problems and some
real-world problems. Although it does not give us very good accuracy but we
obtained some comparable performance to decision tree but with much better
transparency. More details are available in (Qin and Lawry, 2005d).

6 Conclusions and Discussions

In this chapter, label semantics, a higher level knowledge representation lan-
guage, was used for modeling imprecise concepts and building intelligent data
mining systems. In particular, a number of linguistic data mining models
have been proposed including: Linguistic Decision Trees (LDT) (for both clas-
sification and prediction), Bayesian estimation models (Fuzzy Naive Bayes,
Semi-Naive Bayes, Bayesian Estimation Trees) and Linguistic Rule Induction
(Linguistic FOIL).

Through previous empirical studies, we have shown that in terms of ac-
curacy the linguistic decision tree model tends to perform significantly better
than both C4.5 and Naive Bayes and has equivalent performance to that of
the Back-Propagation neural networks (Qin and Lawry, 2005b). However, it
is also the case that this model has much better transparency than other
algorithms. Linguistic decision trees are suitable for both classification and
prediction. Some benchmark prediction problems have been tested with the
LDT model and we found that it has comparable performance to a number of
state-of-art prediction algorithms such as support vector regression systems.
Furthermore, a methodology for classification with linguistic constraints has
been proposed within the label semantics framework.

In order to reduce complexity and enhance transparency, a forward merg-
ing algorithm has been proposed to merge the branches which give sufficiently
similar probability estimations. With merging, the partitioning of the data
space is re-constructed and more appropriate granules can be obtained. Exper-
imental studies show that merging reduces the tree size significantly without
a significant loss of accuracy. In order to obtain a better estimation, a new
hybrid model combining the LDT model and Fuzzy Naive Bayes has been
investigated. The experimental studies show that this hybrid model has com-
parable performance to LID3 but with much smaller trees. Finally, a FOIL
based rule learning system has been introduced within label semantics frame-
work. In this approach, the appropriateness of using a rule to describe a data
element is represented by multi-dimensional appropriateness measures. Based
on the FOIL algorithm, we proposed a new linguistic rule induction algo-
rithm according to which we can obtain concise linguistic rules reflecting the
underlying nature of the system.

It is widely recognized that most natural concepts have non-sharp bound-
aries. These concepts are vague or fuzzy, and one will usually only be willing
to agree to a certain degree that an object belongs to a concept. Likewise,
in machine learning and data mining, the patterns we are interested in are

274 Zengchang Qin and Jonathan Lawry

often vague and imprecise. To model this, in this chapter, we have discretized
numerical attributes with fuzzy labels by which we can describe real values.
Hence, we can use linguistic models to study the underlying relationships
hidden in the data.

One of the distinctive advantages of linguistic models is that they allow
for information fusion. In this chapter, we discussed methods for classification
with linguistic constraints and classification for fuzzy data. Other informa-
tion fusion methods are discussed in (Lawry, 2004). How to efficiently use
background knowledge is an important challenge in machine learning. For ex-
ample, Wang (Wang, 2004) argues that Bayesian learning has limitations in
combining the prior knowledge and new evidence. We also need to consider
the inconsistency between the background knowledge and new evidence. We
believe that it will become a popular research topic in approximate reasoning.

Acknowledgements

The authors thank Prof Lotfi Zadeh for some insightful comments on this
research. The first author also thanks Masoud Nikravesh, Marcus Thint, Ben
Azvine and Trevor Martin for their interests in this research and support. The
writing of this chapter is partly funded BT/BISC fellowship.

References

J.F. Baldwin, T.P. Martin and B.W. Pilsworth (1995), Fril-Fuzzy and Evidential
Reasoning in Artificial Intelligence. John Wiley & Sons Inc, 1995.

J. F. Baldwin, J. Lawry and T.P. Martin (1997), Mass assignment fuzzy ID3 with
applications. Proceedings of the Unicom Workshop on Fuzzy Logic: Applications
and Future Directions, London pp. 278-294, 1997.

J. F. Baldwin and D. Xie (2004), Simple fuzzy logic rules based on fuzzy decision
tree for classification and prediction problem, Intelligent Information Process-
ing II, Z. Shi and Q. He (Ed.), Springer, 2004.

C. Blake and C.J. Merz (2007). UCI machine learning repository. http://www.ics.
uci.edu/~mlearn/MLRepository.html, 2007.

M. Drobics, U. Bodenhofer and E. P. Klement (2003), FS-FOIL: an inductive learn-
ing method for extracting interpretable fuzzy descriptions, International Jour-
nal of Approximate Reasoning, 32: pp. 131-152, 2003.

S. R. Gunn (1998), Support vector machines for classification and regression.
Technical Report of Dept. of Electronics and Computer Science, University
of Southampton, 1998.

E. Hullermeier (2005), Fuzzy methods in machine learning and data mining: status
and prospects, to appear in Fuzzy Sets and Systems, 2005.

R. Hyndman and M Akram (2005), Time series Data Library. Monash University,
2007.

C. Z. Janikow (1998), Fuzzy decision trees: issues and methods. IEEE Trans. on
Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 28, No. 1, 1998.

Knowledge Discovery in a Framework for Modelling with Words 275

R. C. Jeffrey (1965), The Logic of Decision, Gordon & Breach Inc., New York,
1965.

J. Lawry, J. Shanahan, and A. Ralescu (2003), Modelling with Words: Learning, fu-
sion, and reasoning within a formal linguistic representation framework. LNAI
2873, Springer-Verlag, 2003.

J. Lawry (2001), Label semantics: A formal framework for modelling with words.
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, LNAI
2143: pp. 374-384, Springer-Verlag, 2001.

J. Lawry (2004), A framework for linguistic modelling, Artificial Intelligence, 155:
pp. 1-39, 2004.

J Lawry (2006), Modelling and Reasoning with Vague Concepts, Springer, 2006.
C. Olaru and L. Wehenkel (2003), A complete fuzzy decision tree technique. Fuzzy

Sets and Systems. 138: pp.221-254, 2003.
Y. Peng, P. A. Flach (2001), Soft discretization to enhance the continuous decision

trees. ECML/PKDD Workshop: IDDM.
H. Prade, G. Richard, and M. Serrurier (2003), Enriching relational learning with

fuzzy predicates, N. Lavrac, et. al (Eds.): Proceedings of PKDD, LNAI 2838,
pp. 399-410.

Z. Qin and J. Lawry (2004), A tree-structured model classification model based on
label semantics, Proceedings of the 10th International Conference on Informa-
tion Processing and Management of Uncertainty in Knowledge-based Systems
(IPMU-04), pp. 261-268, Perugia, Italy.

Z. Qin and J. Lawry (2005a), Hybrid Bayesian estimation trees based on la-
bel semantics, L. Godo (Ed.), Proceedings of Eighth European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture
Notes in Artificial Intelligence 3571, pp. 896-907, Springer.

Z. Qin and J. Lawry (2005b), Decision tree learning with fuzzy labels, Information
Sciences, Vol. 172/1-2: pp. 91-129.

Z. Qin and J. Lawry (2005c), Prediction trees using linguistic modelling, the Pro-
ceedings of International Fuzzy Association World Congress-05, Beijing, China,
September.

Z. Qin and J. Lawry (2005d), Linguistic rule induction based on a random set
semantics, the Proceedings of International Fuzzy Association World Congress-
05, Beijing, China.

Z. Qin and J. Lawry (2007), Fuzziness and performance: an empirical study with
linguistic decision trees. To appear in IFSA-2007, Cuncun, Mexico.

J. R. Quinlan (1986), Induction of decision trees, Machine Learning, Vol 1: pp.
81-106.

J. R. Quinlan (1993), C4.5: Programs for Machine Learning, San Mateo: Morgan
Kaufmann.

J. R. Quinlan (1990), Learning logical definitions from relations, Machine Learning,
5: 239-266.

N. J. Randon and J. Lawry (2006), Classification and query evaluation using mod-
elling with words, Information Sciences, Special Issue - Computing with Words:
Models and Applications, Vol. 176: pp 438-464.

Pei Wang (2004), The limitation of Bayesianism, Artificial Intelligence 158(1): pp.
97-106.

D. Xie (2005), Fuzzy associated rules discovered on effective reduced database
algorithm, Proceedings of IEEE-FUZZ, pp. 779-784, Reno, USA, 2005.

276 Zengchang Qin and Jonathan Lawry

L. A. Zadeh (1965), Fuzzy sets, Information and Control, Vol 8: pp. 338-353.
L. A. Zadeh (1996), Fuzzy logic = computing with words, IEEE Transaction on

Fuzzy Systems. Vol. 4, No. 2: pp. 103-111.
L. A. Zadeh, Toward a perception-based theory of probabilistic reasoning with

imprecise probabilities, Journal of Statistical Planning and Inference, Vol. 105:
pp. 233264.

L.A. Zadeh (2003), Foreword for modelling with words, Modelling with Words,
LNAI 2873, Ed., J. Lawry, J. Shanahan, and A.Ralescu, Springer.

L.A. Zadeh (2005), Toward a generalized theory of uncertainty (GTU) an outline,
Information Sciences, Vol. 172/1-2, pp. 1-40.

Part IV

Advanced Soft Computing Methods and Areas

Swarm Intelligence Algorithms for Data
Clustering

Ajith Abraham1, Swagatam Das2, and Sandip Roy3

1 Center of Excellence for Quantifiable Quality of Service (Q2S), Norwegian
University of Science and Technology, Trondheim, Norway
ajith.abraham@ieee.org

2 Department of Electronics and Telecommunication Engineering, Jadavpur
University, Kolkata 700032, India.

3 Department of Computer Science and Engineering, Asansol Engineering College,
Asansol-713304, India.

Summary. Clustering aims at representing large datasets by a fewer number of
prototypes or clusters. It brings simplicity in modeling data and thus plays a cen-
tral role in the process of knowledge discovery and data mining. Data mining tasks,
in these days, require fast and accurate partitioning of huge datasets, which may
come with a variety of attributes or features. This, in turn, imposes severe compu-
tational requirements on the relevant clustering techniques. A family of bio-inspired
algorithms, well-known as Swarm Intelligence (SI) has recently emerged that meets
these requirements and has successfully been applied to a number of real world clus-
tering problems. This chapter explores the role of SI in clustering different kinds of
datasets. It finally describes a new SI technique for partitioning any dataset into an
optimal number of groups through one run of optimization. Computer simulations
undertaken in this research have also been provided to demonstrate the effectiveness
of the proposed algorithm.

1 Introduction

Clustering means the act of partitioning an unlabeled dataset into groups
of similar objects. Each group, called a ‘cluster’, consists of objects that are
similar between themselves and dissimilar to objects of other groups. In the
past few decades, cluster analysis has played a central role in a variety of
fields ranging from engineering (machine learning, artificial intelligence, pat-
tern recognition, mechanical engineering, electrical engineering), computer sci-
ences (web mining, spatial database analysis, textual document collection, im-
age segmentation), life and medical sciences (genetics, biology, microbiology,
paleontology, psychiatry, pathology), to earth sciences (geography. geology, re-
mote sensing), social sciences (sociology, psychology, archeology, education),

280 Ajith Abraham, Swagatam Das, and Sandip Roy

and economics (marketing, business) (Evangelou et al., 2001, Lillesand and
Keifer, 1994,Rao, 1971,Duda and Hart, 1973,Fukunaga, 1990,Everitt, 1993).

From a machine learning perspective, clusters correspond to the hidden
patterns in data, the search for clusters is a kind of unsupervised learning,
and the resulting system represents a data concept. The problem of data clus-
tering has been approached from diverse fields of knowledge like statistics
(multivariate analysis) (Forgy, 1965), graph theory (Zahn, 1971), expectation
maximization algorithms (Mitchell, 1997), artificial neural networks (Mao and
Jain, 1995, Pal et al., 1993,Kohonen, 1995), evolutionary computing (Falke-
nauer, 1998,Paterlini and Minerva, 2003) and so on. Researchers all over the
globe are coming up with new algorithms, on a regular basis, to meet the in-
creasing complexity of vast real-world datasets. A comprehensive review of the
state-of-the-art clustering methods can be found in (Xu and Wunsch, 2005)
and (Rokach and Maimon, 2005).

Data mining is a powerful new technology, which aims at the extrac-
tion of hidden predictive information from large databases. Data mining
tools predict future trends and behaviors, allowing businesses to make proac-
tive, knowledge-driven decisions. The process of knowledge discovery from
databases necessitates fast and automatic clustering of very large datasets
with several attributes of different types (Mitra et al., 2002). This poses a se-
vere challenge before the classical clustering techniques. Recently a family of
nature inspired algorithms, known as Swarm Intelligence (SI), has attracted
several researchers from the field of pattern recognition and clustering. Clus-
tering techniques based on the SI tools have reportedly outperformed many
classical methods of partitioning a complex real world dataset.

Swarm Intelligence is a relatively new interdisciplinary field of research,
which has gained huge popularity in these days. Algorithms belonging to the
domain, draw inspiration from the collective intelligence emerging from the
behavior of a group of social insects (like bees, termites and wasps). When
acting as a community, these insects even with very limited individual capa-
bility can jointly (cooperatively) perform many complex tasks necessary for
their survival. Problems like finding and storing foods, selecting and pick-
ing up materials for future usage require a detailed planning, and are solved
by insect colonies without any kind of supervisor or controller. An exam-
ple of particularly successful research direction in swarm intelligence is Ant
Colony Optimization (ACO) (Dorigo et al., 1996, Dorigo and Gambardella,
1997), which focuses on discrete optimization problems, and has been applied
successfully to a large number of NP hard discrete optimization problems in-
cluding the traveling salesman, the quadratic assignment, scheduling, vehicle
routing, etc., as well as to routing in telecommunication networks. Particle
Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) is another very
popular SI algorithm for global optimization over continuous search spaces.
Since its advent in 1995, PSO has attracted the attention of several researchers
all over the world resulting into a huge number of variants of the basic algo-
rithm as well as many parameter automation strategies.

Swarm Intelligence Algorithms for Data Clustering 281

In this Chapter, we explore the applicability of these bio-inspired ap-
proaches to the development of self-organizing, evolving, adaptive and au-
tonomous clustering techniques, which will meet the requirements of next-
generation data mining systems, such as diversity, scalability, robustness, and
resilience. The next section of the chapter provides an overview of the SI
paradigm with a special emphasis on two SI algorithms well-known as Par-
ticle Swarm Optimization (PSO) and Ant Colony Systems (ACS). Section 3
outlines the data clustering problem and briefly reviews the present state of
the art in this field. Section 4 describes the use of the SI algorithms in both
crisp and fuzzy clustering of real world datasets. A new automatic clustering
algorithm, based on PSO, has been outlined in this Section. The algorithm
requires no previous knowledge of the dataset to be partitioned, and can
determine the optimal number of classes dynamically. The new method has
been compared with two well-known, classical fuzzy clustering algorithms. The
Chapter is concluded in Section 5 with possible directions for future research.

2 An Introduction to Swarm Intelligence

The behavior of a single ant, bee, termite and wasp often is too simple, but
their collective and social behavior is of paramount significance. A look at
National Geographic TV Channel reveals that advanced mammals including
lions also enjoy social lives, perhaps for their self-existence at old age and
in particular when they are wounded. The collective and social behavior of
living creatures motivated researchers to undertake the study of today what
is known as Swarm Intelligence. Historically, the phrase Swarm Intelligence
(SI) was coined by Beny and Wang in late 1980s (Beni and Wang, 1989) in
the context of cellular robotics. A group of researchers in different parts of the
world started working almost at the same time to study the versatile behav-
ior of different living creatures and especially the social insects. The efforts to
mimic such behaviors through computer simulation finally resulted into the
fascinating field of SI. SI systems are typically made up of a population of
simple agents (an entity capable of performing/executing certain operations)
interacting locally with one another and with their environment. Although
there is normally no centralized control structure dictating how individual
agents should behave, local interactions between such agents often lead to the
emergence of global behavior. Many biological creatures such as fish schools
and bird flocks clearly display structural order, with the behavior of the or-
ganisms so integrated that even though they may change shape and direction,
they appear to move as a single coherent entity (Couzin et al., 2002). The
main properties of the collective behavior can be pointed out as follows and
is summarized in Figure 1.

Homogeneity: every bird in flock has the same behavioral model. The flock
moves without a leader, even though temporary leaders seem to appear.

282 Ajith Abraham, Swagatam Das, and Sandip Roy

Locality: its nearest flock-mates only influence the motion of each bird. Vision
is considered to be the most important senses for flock organization.

Collision Avoidance: avoid colliding with nearby flock mates.
Velocity Matching: attempt to match velocity with nearby flock mates.
Flock Centering: attempt to stay close to nearby flock mates

Individuals attempt to maintain a minimum distance between themselves
and others at all times. This rule is given the highest priority and corresponds
to a frequently observed behavior of animals in nature (Krause and Ruxton,
2002). If individuals are not performing an avoidance maneuver they tend to
be attracted towards other individuals (to avoid being isolated) and to align
themselves with neighbors (Partridge and Pitcher, 1980,Partridge, 1982).

Collective

Global

Behavior

Homogeneity

Locality Flock

Centering

Velocity

Matching

Collision

Avoidance

Fig. 1. Main traits of collective behavior

Couzin et al. identified four collective dynamical behaviors (Couzin et al.,
2002) as illustrated in Figure 2:

Swarm: an aggregate with cohesion, but a low level of polarization (parallel
alignment) among members

Torus: individuals perpetually rotate around an empty core (milling). The
direction of rotation is random.

Dynamic parallel group: the individuals are polarized and move as a coherent
group, but individuals can move throughout the group and density and
group form can fluctuate (Partridge and Pitcher, 1980, Major and Dill,
1978).

Highly parallel group: much more static in terms of exchange of spatial posi-
tions within the group than the dynamic parallel group and the variation
in density and form is minimal.

Swarm Intelligence Algorithms for Data Clustering 283

As mentioned in (Grosan et al., 2006) at a high-level, a swarm can be
viewed as a group of agents cooperating to achieve some purposeful behavior
and achieve some goal (Abraham et al., 2006). This collective intelligence
seems to emerge from what are often large groups:

Fig. 2. Different models of collective behavior (Grosan et al., 2006)

According to Milonas, five basic principles define the SI paradigm (Milonas,
1994). First is the the proximity principle: the swarm should be able to carry
out simple space and time computations. Second is the quality principle: the
swarm should be able to respond to quality factors in the environment. Third
is the principle of diverse response: the swarm should not commit its activi-
ties along excessively narrow channels. Fourth is the principle of stability: the
swarm should not change its mode of behavior every time the environment
changes. Fifth is the principle of adaptability: the swarm must be able to
change behavior mote when it is worth the computational price. Note that
principles four and five are the opposite sides of the same coin. Below we
discuss in details two algorithms from SI domain, which have gained wide
popularity in a relatively short span of time.

284 Ajith Abraham, Swagatam Das, and Sandip Roy

2.1 The Ant Colony Systems

The basic idea of a real ant system is illustrated in Figure 4. In the left picture,
the ants move in a straight line to the food. The middle picture illustrates the
situation soon after an obstacle is inserted between the nest and the food. To
avoid the obstacle, initially each ant chooses to turn left or right at random.
Let us assume that ants move at the same speed depositing pheromone in
the trail uniformly. However, the ants that, by chance, choose to turn left will
reach the food sooner, whereas the ants that go around the obstacle turning
right will follow a longer path, and so will take longer time to circumvent
the obstacle. As a result, pheromone accumulates faster in the shorter path
around the obstacle. Since ants prefer to follow trails with larger amounts of
pheromone, eventually all the ants converge to the shorter path around the
obstacle, as shown in Figure 3.

Fig. 3. Illustrating the behavior of real ant movements.

An artificial Ant Colony System (ACS) is an agent-based system, which
simulates the natural behavior of ants and develops mechanisms of cooperation
and learning. ACS was proposed by Dorigo et al. (Dorigo and Gambardella,
1997) as a new heuristic to solve combinatorial optimization problems. This
new heuristic, called Ant Colony Optimization (ACO) has been found to be
both robust and versatile in handling a wide range of combinatorial optimiza-
tion problems.

The main idea of ACO is to model a problem as the search for a minimum
cost path in a graph. Artificial ants as if walk on this graph, looking for cheaper
paths. Each ant has a rather simple behavior capable of finding relatively
costlier paths. Cheaper paths are found as the emergent result of the global
cooperation among ants in the colony. The behavior of artificial ants is inspired
from real ants: they lay pheromone trails (obviously in a mathematical form)
on the graph edges and choose their path with respect to probabilities that
depend on pheromone trails. These pheromone trails progressively decrease
by evaporation. In addition, artificial ants have some extra features not seen
in their counterpart in real ants. In particular, they live in a discrete world (a
graph) and their moves consist of transitions from nodes to nodes.

Swarm Intelligence Algorithms for Data Clustering 285

Below we illustrate the use of ACO in finding the optimal tour in the
classical Traveling Salesman Problem (TSP). Given a set of n cities and a set
of distances between them, the problem is to determine a minimum traversal
of the cities and return to the home-station at the end. It is indeed important
to note that the traversal should in no way include a city more than once. Let
r (Cx, Cy)be a measure of cost for traversal from city Cx to Cy. Naturally,
the total cost of traversing n cities indexed by i1, i2, i3,. . . , in in order is given
by the following expression:

Cost(i1, i2,, in) =
n−1∑

j=1

r(Cij , Cij+1) + r(Cin, Ci1) (1)

The ACO algorithm is employed to find an optimal order of traversal of
the cities. Let τ be a mathematical entity modeling the pheromone and ηij =
1/r (i , j) is a local heuristic. Also let allowedk(t) be the set of cities that are
yet to be visited by ant k located in cityi. Then according to the classical ant
system (Everitt, 1993) the probability that ant k in city i visits city j is given
by:

pk
ij(t) =

[τij(t)]
α[ηij]

β

∑
h∈allowedk(t)

[τih(t)]α[ηih]β
if h ∈ allowedk(t)

0 otherwise
(2)

In Equation 2 shorter edges with greater amount of pheromone are favored
by multiplying the pheromone on edge (i, j) by the corresponding heuristic
value η(i, j). Parameters α (¿ 0) and β (¿ 0) determine the relative importance
of pheromone versus cost. Now in ant system, pheromone trails are updated
as follows. Let Dk be the length of the tour performed by ant k, ∆τk (i , j
)= 1/Dk if (i, j) ∈ tour done by ant kand = 0 otherwise and finally let ρ
∈ [0,1] be a pheromone decay parameter which takes care of the occasional
evaporation of the pheromone from the visited edges. Then once all ants have
built their tours, pheromone is updated on all the ages as,

τ(i, j) = (1− ρ).τ(i, j) +
m∑

k=1

∆τk(i, j) (3)

From Equation (3), we can guess that pheromone updating attempts
to accumulate greater amount of pheromone to shorter tours (which cor-
responds to high value of the second term in (3) so as to compensate for
any loss of pheromone due to the first term). This conceptually resembles a
reinforcement-learning scheme, where better solutions receive a higher rein-
forcement.

The ACO differs from the classical ant system in the sense that here the
pheromone trails are updated in two ways. Firstly, when ants construct a tour
they locally change the amount of pheromone on the visited edges by a local

286 Ajith Abraham, Swagatam Das, and Sandip Roy

updating rule. Now if we let γ to be a decay parameter and ∆τ(i, j) = τ0 such
that τ0 is the initial pheromone level, then the local rule may be stated as,

(4)

Secondly, after all the ants have built their individual tours, a global up-
dating rule is applied to modify the pheromone level on the edges that belong
to the best ant tour found so far. If κ be the usual pheromone evaporation
constant, Dgb be the length of the globally best tour from the beginning of
the trial and

∆τ/(i , j) = 1/ Dgb only when the edge (i, j) belongs to global-best-tour
and zero otherwise, then we may express the global rule as follows:

τ(i, j) = (1− κ).τ(i, j) + κ.∆τ/(i, j) (5)

The main steps of ACO algorithm are presented in Algorithm 1.

Algorithm 1: Procedure ACO
1: Initialize pheromone trails;
2: repeat {at this stage each loop is called an iteration}
3: Each ant is positioned on a starting node
4: repeat {at this level each loop is called a step}
5:

a solution and a local pheromone-updating rule like rule (4);
6: until all ants have built a complete solution
7: global pheromone-updating rule like rule (5) is applied.
8: until terminating condition is reached

2.2 The Particle Swarm Optimization (PSO)

The concept of Particle Swarms, although initially introduced for simulating
human social behaviors, has become very popular these days as an efficient
search and optimization technique. The Particle Swarm Optimization (PSO)
(Kennedy and Eberhart, 1995,Kennedy et al., 2001), as it is called now, does
not require any gradient information of the function to be optimized, uses
only primitive mathematical operators and is conceptually very simple.

In PSO, a population of conceptual ‘particles’ is initialized with random
positions Xi and velocities Vi, and a function, f , is evaluated, using the parti-
cle’s positional coordinates as input values. In an n-dimensional search space,
Xi = (xi1, xi2, xi3,...,xin) and Vi= (vi1, vi2, vi3,...,vin). Positions and ve-
locities are adjusted, and the function is evaluated with the new coordinates
at each time-step. The basic update equations for the d-th dimension of the
i-th particle in PSO may be given as

Each ant applies a state transition rule like rule (2) to incrementallybuild

τ(i, j) = (1− γ).τ(i, j) + γ.∆τ(i, j)

Swarm Intelligence Algorithms for Data Clustering 287

Vid(t + 1) = ω.Vid(t) + C1.ϕ1.(P lid −Xid(t)) + C2.ϕ2.(Pgd −Xid(t))
Xid(t + 1) = Xid(t) + Vid(t + 1) (6)

The variables φ1 and φ2 are random positive numbers, drawn from a uni-
form distribution and defined by an upper limit φmax,which is a parameter of
the system. C1 and C2 are called acceleration constants whereas ω is called
inertia weight. Pli is the local best solution found so far by the i-th particle,
while Pg represents the positional coordinates of the fittest particle found so
far in the entire community. Once the iterations are terminated, most of the
particles are expected to converge to a small radius surrounding the global
optima of the search space. The velocity updating scheme has been illustrated
in Figure 4 with a humanoid particle.

Fig. 4. Illustrating the velocity updating scheme of basic PSO

A pseudo code for the PSO algorithm is presented in Algorithm 2.

3 Data Clustering – An Overview

In this section, we first provide a brief and formal description of the clustering
problem. We then discuss a few major classical clustering techniques.

3.1 Problem Definition

A pattern is a physical or abstract structure of objects. It is distinguished from
others by a collective set of attributes called features, which together represent

288 Ajith Abraham, Swagatam Das, and Sandip Roy

Algorithm 2: The PSO Algorithm
Input: Randomly initialized position and velocity of the particles: Xi(0) and

Vi(0)
Output: Position of the approximate global optima X∗

1: while terminating condition is not reached do
2: for i = 1 to numberofparticles do
3: Evaluate the fitness: =f(Xi(t));
4: Update P(t)andg(t);
5: Adapt velocity of the particle using Equation 3;
6: Update the position of the particle;
7: end for
8: end while

a pattern (Konar, 2005). Let P = {P1, P2... Pn} be a set of n patterns or data
points, each having d features. These patterns can also be represented by a
profile data matrix Xn×d having n d-dimensional row vectors. The i-th row
vector Xi characterizes the i-th object from the set P and each element Xi,j

in Xi corresponds to the j-th real value feature (j = 1, 2,, d) of the i-th
pattern (i =1,2,...., n). Given such an Xn×d,a partitional clustering algorithm
tries to find a partition C = {C1, C2,......, CK} of K classes, such that the
similarity of the patterns in the same cluster is maximum and patterns from
different clusters differ as far as possible. The partitions should maintain the
following properties:

1. Each cluster should have at least one pattern assigned i.e. Ci 6= Φ∀i ∈
{1, 2, ...,K}.

2. Two different clusters should have no pattern in common. i.e. Ci ∩ Cj =
Φ,∀i 6= j and i, j ∈ {1, 2, ..., K}. This property is required for crisp (hard)
clustering. In Fuzzy clustering this property doesn’t exist.

3. Each pattern should definitely be attached to a cluster i.e.
K⋃

i=1

Ci = P .

Since the given dataset can be partitioned in a number of ways maintaining
all of the above properties, a fitness function (some measure of the adequacy
of the partitioning) must be defined. The problem then turns out to be one
of finding a partition C∗ of optimal or near-optimal adequacy as compared to
all other feasible solutions C = { C1, C2,........, CN(n,K)} where,

N(n,K) =
1

K!

K∑

i=1

(−1)i

(
K
i

)i

(K − i)i (7)

is the number of feasible partitions. This is same as,

Optimizef(Xn×d, C)
C

(8)

Swarm Intelligence Algorithms for Data Clustering 289

where C is a single partition from the set C and f is a statistical-mathematical
function that quantifies the goodness of a partition on the basis of the similar-
ity measure of the patterns. Defining an appropriate similarity measure plays
fundamental role in clustering (Jain et al., 1999). The most popular way to
evaluate similarity between two patterns amounts to the use of distance mea-
sure. The most widely used distance measure is the Euclidean distance, which
between any two d-dimensional patterns Xi and Xj is given by,

d(Xi,Xj) =

√√√√
d∑

p=1

(Xi,p −Xj,p)2 = ‖Xi −Xj‖ (9)

It has been shown in (Brucker, 1978) that the clustering problem is NP-
hard when the number of clusters exceeds 3.

3.2 The Classical Clustering Algorithms

Data clustering is broadly based on two approaches: hierarchical and parti-
tional (Frigui and Krishnapuram, 1999, Leung et al., 2000). Within each of
the types, there exists a wealth of subtypes and different algorithms for find-
ing the clusters. In hierarchical clustering, the output is a tree showing a
sequence of clustering with each cluster being a partition of the data set (Le-
ung et al., 2000). Hierarchical algorithms can be agglomerative (bottom-up)
or divisive (top-down). Agglomerative algorithms begin with each element as
a separate cluster and merge them in successively larger clusters. Divisive al-
gorithms begin with the whole set and proceed to divide it into successively
smaller clusters. Hierarchical algorithms have two basic advantages (Frigui
and Krishnapuram, 1999). Firstly, the number of classes need not be specified
a priori and secondly, they are independent of the initial conditions. However,
the main drawback of hierarchical clustering techniques is they are static, i.e.
data-points assigned to a cluster can not move to another cluster. In addi-
tion to that, they may fail to separate overlapping clusters due to lack of
information about the global shape or size of the clusters (Jain et al., 1999).

Partitional clustering algorithms, on the other hand, attempt to decom-
pose the data set directly into a set of disjoint clusters. They try to optimize
certain criteria. The criterion function may emphasize the local structure of
the data, as by assigning clusters to peaks in the probability density function,
or the global structure. Typically, the global criteria involve minimizing some
measure of dissimilarity in the samples within each cluster, while maximizing
the dissimilarity of different clusters. The advantages of the hierarchical algo-
rithms are the disadvantages of the partitional algorithms and vice versa. An
extensive survey of various clustering techniques can be found in (Jain et al.,
1999). The focus of this chapter is on the partitional clustering algorithms.

Clustering can also be performed in two different modes: crisp and fuzzy.
In crisp clustering, the clusters are disjoint and non-overlapping in nature.

290 Ajith Abraham, Swagatam Das, and Sandip Roy

Any pattern may belong to one and only one class in this case. In case of
fuzzy clustering, a pattern may belong to all the classes with a certain fuzzy
membership grade (Jain et al., 1999).

The most widely used iterative K-means algorithm (MacQueen, 1967) for
partitional clustering aims at minimizing the ICS (Intra-Cluster Spread) which
for K cluster centers can be defined as

ICS(C1, C2, ..., CK) =
K∑

i=1

∑

Xi∈Ci

‖Xi −mi‖2 (10)

The K-means (or hard c-means) algorithm starts with K cluster-centroids
(these centroids are initially selected randomly or derived from some a priori
information). Each pattern in the data set is then assigned to the closest
cluster-centre. Centroids are updated by using the mean of the associated
patterns. The process is repeated until some stopping criterion is met.

In the c-medoids algorithm (Kaufman and Rousseeuw, 1990), on the other
hand, each cluster is represented by one of the representative objects in the
cluster located near the center. Partitioning around medoids (PAM) (Kauf-
man and Rousseeuw, 1990) starts from an initial set of medoids, and iteratively
replaces one of the medoids by one of the non-medoids if it improves the total
distance of the resulting clustering. Although PAM works effectively for small
data, it does not scale well for large datasets. Clustering large applications
based on randomized search (CLARANS) (Ng and Han, 1994), using random-
ized sampling, is capable of dealing with the associated scalability issue.

The fuzzy c-means (FCM) (Bezdek, 1981) seems to be the most popular
algorithm in the field of fuzzy clustering. In the classical FCM algorithm,
a within cluster sum function Jm is minimized to evolve the proper cluster
centers:

Jm =
n∑

j=1

c∑

i=1

(uij)m ‖Xj −Vi‖2 (11)

where Vi is the i-th cluster center, Xj is the j-th d-dimensional data vector
and || . || is an inner product-induced norm in d dimensions. Given c classes, we
can determine their cluster centers Vi for i=1 to c by means of the following
expression:

Vi =

n∑
j=1

(uij)mXj

n∑
j=1

(uij)m

(12)

Here m (m¿1) is any real number that influences the membership grade.
Now differentiating the performance criterion with respect to Vi (treating uij

as constants) and with respect to uij (treating Vi as constants) and setting
them to zero the following relation can be obtained:

Swarm Intelligence Algorithms for Data Clustering 291

uij =

c∑

k=1

(
‖Xj −Vi‖2
‖X−Vi‖2

)1/(m− 1)

−1

(13)

Several modifications of the classical FCM algorithm can be found in (Hall
et al., 1999,Gath and Geva, 1989,Bensaid et al., 1996,Clark et al., 1994,Ahmed
et al., 2002,Wang et al., 2004).

3.3 Relevance of SI Algorithms in Clustering

From the discussion of the previous section, we see that the SI algorithms are
mainly stochastic search and optimization techniques, guided by the principles
of collective behaviour and self organization of insect swarms. They are effi-
cient, adaptive and robust search methods producing near optimal solutions
and have a large amount of implicit parallelism. On the other hand, data
clustering may be well formulated as a difficult global optimization problem;
thereby making the application of SI tools more obvious and appropriate.

4 Clustering with the SI Algorithms

In this section we first review the present state of the art clustering algorithms
based on SI tools, especially the ACO and PSO. We then outline a new algo-
rithm which employs the PSO model to automatically determine the number
of clusters in a previously unhandled dataset. Computer simulations under-
taken for this study have also been included to demonstrate the elegance of
the new dynamic clustering technique.

4.1 The Ant Colony Based Clustering Algorithms

Ant colonies provide a means to formulate some powerful nature-inspired
heuristics for solving the clustering problems. Among other social movements,
researchers have simulated the way, ants work collaboratively in the task of
grouping dead bodies so, as to keep the nest clean (Bonabeau et al., 1999). It
can be observed that, with time the ants tend to cluster all dead bodies in a
specific region of the environment, thus forming piles of corpses.

Larval sorting and corpse cleaning by ant was first modeled by Deneubourg
et al. for accomplishing certain tasks in robotics (Deneubourg et al., 1991).
This inspired the Ant-based clustering algorithm (Handl et al., 2003). Lumer
and Faieta modified the algorithm using a dissimilarity-based evaluation of
the local density, in order to make it suitable for data clustering (Lumer and
Faieta, 1994). This introduced standard Ant Clustering Algorithm (ACA). It
has subsequently been used for numerical data analysis (Lumer and Faieta,

292 Ajith Abraham, Swagatam Das, and Sandip Roy

1994), data-mining (Lumer and Faieta, 1995), graph-partitioning (Kuntz and
Snyers, 1994, Kuntz and Snyers, 1999, Kuntz et al., 1998) and text-mining
(Handl and Meyer, 2002, Hoe et al., 2002, Ramos and Merelo, 2002). Many
authors (Handl and Meyer, 2002,Ramos et al., 2002) proposed a number of
modifications to improve the convergence rate and to get optimal number of
clusters. Monmarche et al. hybridized the Ant-based clustering algorithm with
K-means algorithm (Monmarche et al., 1999) and compared it to traditional
K-means on various data sets, using the classification error for evaluation
purposes. However, the results obtained with this method are not applicable
to ordinary ant-based clustering since it differs significantly from the latter.

Like a standard ACO, ant-based clustering is a distributed process that
employs positive feedback. Ants are modeled by simple agents that randomly
move in their environment. The environment is considered to be a low di-
mensional space, more generally a two-dimensional plane with square grid.
Initially, each data object that represents a multi-dimensional pattern is ran-
domly distributed over the 2-D space. Data items that are scattered within
this environment can be picked up, transported and dropped by the agents in
a probabilistic way. The picking and dropping operation are influenced by the
similarity and density of the data items within the ant’s local neighborhood.
Generally, the size of the neighborhood is 3×3. Probability of picking up data
items is more when the object are either isolated or surrounded by dissimilar
items. They trend to drop them in the vicinity of similar ones. In this way, a
clustering of the elements on the grid is obtained.

The ants search for the feature space either through random walk or with
jumping using a short term memory. Each ant picks up or drops objects
according to the following local probability density measure:

f(Xi) = max{0,
1
s2

∑
Xj∈Ns×s(r)

[1− d(Xi,Xj)
α(1 + ν−1

νmax
)

(14)

In the above expression, Ns×s(r) denotes the local area of perception sur-
rounding the site of radius r, which the ant occupies in the two-dimensional
grid. The threshold αg cales the dissimilarity within each pair of objects, and
the moving speed v controls the step-size of the ant searching in the space
within one time unit. If an ant is not carrying an object and finds an object Xi

in its neighborhood, it picks up this object with a probability that is inversely
proportional to the number of similar objects in the neighborhood. It may be
expressed as:

Ppick−up(Xi) = [
kp

kp + f(Xi)
]2 (15)

If however, the ant is carrying an object x and perceives a neighbor’s cell in
which there are other objects, then the ant drops off the object it is carrying
with a probability that is directly proportional to the object’s similarity with
the perceived ones. This is given by:

Swarm Intelligence Algorithms for Data Clustering 293

Pdrop(Xi) = 2.f(Xi) iff(Xi) < kd

1 iff(Xi) ≥ kd

The parameters kp and kd are the picking and dropping constants (Gath
and Geva, 1989) respectively. Function f(Xi) provides an estimate of the
density and similarity of elements in the neighborhood of object Xi. The
standard ACA pseudo-code is summarized in Algorithm 3.

Algorithm 3: Procedure ACA
1: Place every item Xi on a random cell of the grid;
2: Place every ant k on a random cell of the grid unoccupied by ants;
3: iteration count ← 1;
4: while iteration count < maximum iteration do
5: for i = 1 to no of ants do
6: if unladen ant and cell occupied by item Xi then
7: compute f(Xi) and Ppick−up(Xi);
8: else
9: if ant carrying item xi and cell empty then

10: compute f(Xi) and Pdrop(Xi);
11: drop item Xi with probability Pdrop(Xi);
12: end if
13: end if
14: move to a randomly selected, neighboring and unoccupied cell ;
15: end for
16: t ← t + 1
17: end while
18: print location of items;

Kanade and Hall (Kanade and Hall, 2003) presented a hybridization of
the ant systems with the classical FCM algorithm to determine the number
of clusters in a given dataset automatically. In their fuzzy ant algorithm, at
first the ant based clustering is used to create raw clusters and then these
clusters are refined using the FCM algorithm. Initially the ants move the
individual data objects to form heaps. The centroids of these heaps are taken
as the initial cluster centers and the FCM algorithm is used to refine these
clusters. In the second stage the objects obtained from the FCM algorithm
are hardened according to the maximum membership criteria to form new
heaps. These new heaps are then sometimes moved and merged by the ants.
The final clusters formed are refined by using the FCM algorithm.

A number of modifications have been introduced to the basic ant based
clustering scheme that improve the quality of the clustering, the speed of
convergence and, in particular, the spatial separation between clusters on
the grid, which is essential for the scheme of cluster retrieval. A detailed

294 Ajith Abraham, Swagatam Das, and Sandip Roy

description of the variants and results on the qualitative performance gains
afforded by these extensions are provided in (Tsang and Kwong, 2006).

4.2 The PSO Based Clustering Algorithms

Research efforts have made it possible to view data clustering as an optimiza-
tion problem. This view offers us a chance to apply PSO algorithm for evolving
a set of candidate cluster centroids and thus determining a near optimal par-
titioning of the dataset at hand. An important advantage of the PSO is its
ability to cope with local optima by maintaining, recombining and comparing
several candidate solutions simultaneously. In contrast, local search heuris-
tics, such as the simulated annealing algorithm (Selim and Alsultan, 1991)
only refine a single candidate solution and are notoriously weak in coping
with local optima. Deterministic local search, which is used in algorithms like
the K-means, always converges to the nearest local optimum from the starting
position of the search.

PSO-based clustering algorithm was first introduced by Omran et al. in
(Omran et al., 2002). The results of Omran et al. (Omran et al., 2002,Omran et
al., 2005a) showed that PSO based method outperformed K-means, FCM and
a few other state-of-the-art clustering algorithms. In their method, Omran et
al. used a quantization error based fitness measure for judging the performance
of a clustering algorithm. The quantization error is defined as:

Je =

K∑
i=1

∑
∀Xj∈Ci

d(Xj ,Vi)/ni

K
(16)

where Ci is the i-th cluster center and ni is the number of data points be-
longing to the i-th cluster. Each particle in the PSO algorithm represents a
possible set of K cluster centroids as:

)(tZ
i

=
1,iV 2,iV Ki

V ,

where Vi,p refers to the p-th cluster centroid vector of the i-th particle. The
quality of each particle is measured by the following fitness function:

f(Zi,Mi) = w1d̄max(Mi,Xi) + w2(Rmax − dmin(Zi)) + w3Je (17)

In the above expression, Rmax is the maximum feature value in the dataset
and Mi is the matrix representing the assignment of the patterns to the
clusters of the i-th particle. Each element mi,k,pindicates whether the pattern
Xpbelongs to cluster Ck of i-th particle. The user-defined constants w1, w2,

Swarm Intelligence Algorithms for Data Clustering 295

and w3 are used to weigh the contributions from different sub-objectives. In
addition,

d̄max = max
k∈1,2,....,K

{
∑

∀Xp∈Ci,K

d(Xp,Vi,k)/ni,k} (18)

and,

dmin(Zi) = min
∀p,q,p 6=q

{d(Vi,p,Vi,q)} (19)

is the minimum Euclidean distance between any pair of clusters. In the above,
ni,kis the number of patterns that belong to cluster Ci,k of particle i. he
fitness function is a multi-objective optimization problem, which minimizes
the intra-cluster distance, maximizes inter-cluster separation, and reduces the
quantization error. The PSO clustering algorithm is summarized in Algorithm
4.

Algorithm 4: The PSO Clustering Algorithm
1: Initialize each particle with K random cluster centers.
2: for iteration count = 1 to maximum iterations do
3: for all particle i do
4: for all pattern Xp in the dataset do
5: calculate Euclidean distance of Xp with all cluster centroids
6: assign Xp to the cluster that have nearest centroid to Xp

7: end for
8: calculate the fitness function f(Zi, Mi)
9: end for

10: find the personal best and global best position of each particle.
11:

updating formula of PSO.
12: end for

Van der Merwe and Engelbrecht hybridized this approach with the k-
means algorithm for clustering general dataets (van der Merwe and Engel-
brecht, 2003). A single particle of the swarm is initialized with the result of
the k-means algorithm. The rest of the swarm is initialized randomly. In 2003,
Xiao et al used a new approach based on the synergism of the PSO and the
Self Organizing Maps (SOM) (Xiao et al., 2003) for clustering gene expres-
sion data. They got promising results by applying the hybrid SOM-PSO algo-
rithm over the gene expression data of Yeast and Rat Hepatocytes. Paterlini
and Krink (Paterlini and Krink, 2006) have compared the performance of K-
means, GA (Holland, 1975,Goldberg, 1975), PSO and Differential Evolution
(DE) (Storn and Price, 1997) for a representative point evaluation approach
to partitional clustering. The results show that PSO and DE outperformed
the K-means algorithm.

Update the cluster centroids according to velocity updating and coordinate

296 Ajith Abraham, Swagatam Das, and Sandip Roy

Cui et al. (Cui and Potok, 2005) proposed a PSO based hybrid algorithm
for classifying the text documents. They applied the PSO, K-means and a
hybrid PSO clustering algorithm on four different text document datasets. The
results illustrate that the hybrid PSO algorithm can generate more compact
clustering results over a short span of time than the K-means algorithm.

4.3 An Automatic Clustering Algorithm Based on PSO

Tremendous research effort has gone in the past few years to evolve the clusters
in complex datasets through evolutionary computing techniques. However, lit-
tle work has been taken up to determine the optimal number of clusters at
the same time. Most of the existing clustering techniques, based on evolu-
tionary algorithms, accept the number of classes K as an input instead of
determining the same on the run. Nevertheless, in many practical situations,
the appropriate number of groups in a new dataset may be unknown or im-
possible to determine even approximately. For example, while clustering a set
of documents arising from the query to a search engine, the number of classes
K changes for each set of documents that result from an interaction with the
search engine. Also if the dataset is described by high-dimensional feature
vectors (which is very often the case), it may be practically impossible to
visualize the data for tracking its number of clusters.

Finding an optimal number of clusters in a large dataset is usually a chal-
lenging task. The problem has been investigated by several researches (Halkidi
et al., 2001,Theodoridis and Koutroubas, 1999) but the outcome is still un-
satisfactory (Rosenberger and Chehdi, 2000). Lee and Antonsson (Lee and
Antonsson, 2000) used an Evolutionary Strategy (ES) (Schwefel, 1995) based
method to dynamically cluster a dataset. The proposed ES implemented
variable-length individuals to search for both centroids and optimal number
of clusters. An approach to classify a dataset dynamically using Evolutionary
Programming (EP) (Fogel et al., 1966) can be found in Sarkar (Sarkar et al.,
1997) where two fitness functions are optimized simultaneously: one gives the
optimal number of clusters, whereas the other leads to a proper identification
of each cluster’s centroid. Bandopadhyay et al. (Bandyopadhyay and Maulik,
2000) devised a variable string-length genetic algorithm (VGA) to tackle the
dynamic clustering problem using a single fitness function. Very recently, Om-
ran et al. came up with an automatic hard clustering scheme (Omran et
al., 2005c). The algorithm starts by partitioning the dataset into a relatively
large number of clusters to reduce the effect of the initialization. Using bi-
nary PSO (Kennedy and Eberhart, 1997), an optimal number of clusters is
selected. Finally, the centroids of the chosen clusters are refined through the
K-means algorithm. The authors applied the algorithm for segmentation of
natural, synthetic and multi-spectral images.

In this section we discuss a new fuzzy clustering algorithm (Das et al.,
2006), which can automatically determine the number of clusters in a given

Swarm Intelligence Algorithms for Data Clustering 297

dataset. The algorithm is based on a modified PSO algorithm with improved
convergence properties.

The Modification of the Classical PSO

The canonical PSO has been subjected to empirical and theoretical investi-
gations by several researchers (Eberhart and Shi, 2001, Clerc and Kennedy,
2002). In many occasions, the convergence is premature, especially if the
swarm uses a small inertia weight ω or constriction coefficient (Clerc and
Kennedy, 2002). As the global best found early in the searching process may
be a poor local minima, we propose a multi-elitist strategy for searching the
global best of the PSO. We call the new variant of PSO the MEPSO. The idea
draws inspiration from the works reported in (Deb et al., 2002). We define a
growth rate β for each particle. When the fitness value of a particle of t-th
iteration is higher than that of a particle of (t-1)-th iteration, the β will be
increased. After the local best of all particles are decided in each generation,
we move the local best, which has higher fitness value than the global best
into the candidate area. Then the global best will be replaced by the local
best with the highest growth rate β. Therefore, the fitness value of the new
global best is always higher than the old global best. The pseudo code about
MEPSO is described in Algorithm 5.

Algorithm 5: The MEPSO Algorithm
1: for t = 1 to tmax do
2: if t < tmax then
3: for j = 1 to N do {swarm size is N}
4: j j in

(t− 1)-th time-step then
5: βj = βj +1;
6: end if
7: Update Local bestj .
8: if the fitness of Local bestj > that of Global best now then
9: Choose Local bestj put into candidate area.

10: end if
11: end for
12: Calculate β of every candidate, and record the candidate of βmax .
13: Update the Global best to become the candidate of βmax.
14: else
15:
16: end if
17: end for

if the fitness value of particle in t-th time-step> that of particle

Update the Global best to become the particle of highest fitness value.

298 Ajith Abraham, Swagatam Das, and Sandip Roy

Particle Representation

In the proposed method, for n data points, each p-dimensional, and for a
user-specified maximum number of clusters cmax, a particle is a vector of real
numbers of dimension cmax + cmax × p. The first cmaxentries are positive
floating-point numbers in (0, 1), each of which controls whether the corre-
sponding cluster is to be activated (i.e. to be really used for classifying the
data) or not. The remaining entries are reserved for cmax cluster centers, each
p-dimensional. A single particle can be shown as:

)(tZ
i

 =

Activation Threshold Cluster Centroids

1,iV 2,iV max,ciVTi,1 Ti,2 Ti,cmax

flagi,1 flagi,2

.

flagi,kmax

Every probable cluster center mi,j has p features and a binary flagi,j

associated with it. The cluster center is active (i.e., selected for classification)
if flagi,j = 1 and inactive if flagi,j = 0. Each flag is set or reset according
to the value of the activation threshold Ti,j . Note that these flags are latent
information associated with the cluster centers and do not take part in the
PSO-type mutation of the particle. The rule for selecting the clusters specified
by one particle is:

IfTi,j > 0.5Thenflagi, j = 1Elseflagi,j = 0 (20)

Note that the flags in an offspring are to be changed only through the
Tij ’s (according to the above rule). When a particle jumps to a new position,
according to (8), the T values are first obtained which then are used to select
(via equation (6)) the m values. If due to mutation some threshold T in a
particle exceeds 1 or becomes negative, it is fixed to 1 or zero, respectively.
However, if it is found that no flag could be set to one in a particle (all acti-
vation thresholds are smaller than 0.5), we randomly select 2 thresholds and
re-initialize them to a random value between 0.5 and 1.0. Thus the minimum
number of possible clusters is 2.

Fitness Function

The quality of a partition can be judged by an appropriate cluster valid-
ity index. Cluster validity indices correspond to the statistical-mathematical
functions used to evaluate the results of a clustering algorithm on a quantita-
tive basis. Generally, a cluster validity index serves two purposes. First, it can

Swarm Intelligence Algorithms for Data Clustering 299

be used to determine the number of clusters, and secondly, it finds out the
corresponding best partition. One traditional approach for determining the
optimum number of classes is to run the algorithm repeatedly with different
number of classes as input and then to select the partitioning of the data re-
sulting in the best validity measure (Halkidi and Vazirgiannis, 2001). Ideally,
a validity index should take care of the following aspects of the partitioning:

1. Cohesion : Patterns in one cluster should be as similar to each other as
possible. The fitness variance of the patterns in a cluster is an indication
of the cluster’s cohesion or compactness.

2. Separation: Clusters should be well separated. The distance among the
cluster centers (may be their Euclidean distance) gives an indication of
cluster separation.

In the present work we have based our fitness function on the Xie-Benni
index. This index, due to (Xie and Beni, 1991), is given by:

XBm =

c∑
i=1

n∑
j=1

u2
ij ‖Xj −Vi‖2

n×mini6=j ‖Vi −Vj‖2
(21)

Using XBm the optimal number of clusters can be obtained by minimizing
the index value. The fitness function may thus be written as:

f =
1

XBi(c) + eps
(22)

where XBi is the Xie-Benni index of the i-th particle and eps is a very small
constant (we used 0.0002). So maximization of this function means minimiza-
tion of the XB index.

We have employed another famous validity index known as the partition
entropy in order to judge the accuracy of the final clustering results obtained
by MEPSO and its competitor algorithms in case of the image pixel classifi-
cation. The partition entropy (Bezdek, 1981) function is given by,

Vpe =
−

n∑
j=1

c∑
i=1

[uij log uij]

n
(23)

The idea of the validity function is that the partition with less fuzziness
means better performance. Consequently, the best clustering is achieved when
the value Vpe is minimal.

4.4 Avoiding Erroneous particles with Empty Clusters or
Unreasonable Fitness Evaluation

There is a possibility that in our scheme, during computation of the XB
index, a division by zero may be encountered. This may occur when one of

300 Ajith Abraham, Swagatam Das, and Sandip Roy

the selected cluster centers is outside the boundary of distributions of the
data set. To avoid this problem we first check to see if any cluster has fewer
than 2 data points in it. If so, the cluster center positions of this special
chromosome are re-initialized by an average computation. We put n/c data
points for every individual cluster center, such that a data point goes with a
center that is nearest to it.

4.5 Combining All Together

The clustering method described here, is a two-pass process at each iteration
or time step. The first pass amounts to calculating the active clusters as
well as the membership functions for each particle in the spectral domain. In
the second pass, the membership information of each pixel is mapped to the
spatial domain, and the spatial function is computed from that. The MEPSO
iteration proceeds with the new membership that is incorporated with the
spatial function. The algorithm is stopped when the maximum number of
time-steps tmax is exceeded. After the convergence, de-fuzzification is applied
to assign each data item to a specific cluster for which the membership is
maximal.

4.6 A Few Simulation Results

The MEPSO-clustering algorithm has been tested over a number of synthetic
and real world datasets as well as on some image pixel classification prob-
lems. The performance of the method has been compared with the classical
FCM algorithm and a recently developed fuzzy clustering algorithm based
on GA. The later algorithm is referred in literature as Fuzzy clustering with
Variable length Genetic Algorithm (FVGA) the details of which can be found
in (Pakhira et al., 2005). In the present chapter, we first provide the simulation
results obtained over four well-chosen synthetic datasets (Bandyopadhyay and
Maulik, 2000) and two real world datasets. The real world datasets used are
the glass and the Wisconsin breast cancer data set, both of which have been
taken from the UCI public data repository (Blake et al., 1998). The glass
data were sampled from six different type of glass: building windows float
processed (70 objects), building windows non float processed (76 objects), ve-
hicle windows float processed (17 objects), containers (13 objects), tableware
(9 objects), headlamps (29 objects) with nine features each. The Wisconsin
breast cancer database contains 9 relevant features: clump thickness, cell size
uniformity, cell shape uniformity, marginal adhesion, single epithelial cell size,
bare nuclei, bland chromatin, normal nucleoli and mitoses. The dataset has
two classes. The objective is to classify each data vector into benign (239
objects) or malignant tumors (444 objects).

Performance of the MEPSO based algorithm on four synthetic datasets
has been shown in Figures 5 through 8. In Table 1, we provide the mean value
and standard deviation of the Xie Beni index evaluated over final clustering

Swarm Intelligence Algorithms for Data Clustering 301

results, the number of classes evaluated and the number of misclassified items
with respect to the nominal partitions of the benchmark data, as known to
us. For each data set, each run continues until the number of function eval-
uations (FEs) reaches 50,000. Twenty independent runs (with different seeds
for the random number generator) have been taken for each algorithm. The
results have been stated in terms of the mean best-of-run values and standard
deviations over these 20 runs in each case. Only for the FCM, correct number
of classes has been provided as input. Both FVGA and MEPSO determine
the number of classes automatically on the run.

From Tables 1 and 2, one may see that our approach outperforms the
state-of-the-art FVGA and the classical FCM over a variety of datasets in a
statistically significant manner. Not only does the method find the optimal
number of clusters, it also manages to find better clustering of the data points
in terms of the two major cluster validity indices used in the literature.

(a) (b)

Fig. 5. (a) The unlabeled synthetic dataset 1 (b) Automatic Clustering with the
MEPSO

4.7 Image Segmentation through Clustering

Image segmentation may be defined as the process of dividing an image into
disjoint homogeneous regions. These homogeneous regions usually contain
similar objects of interest or part of them. The extent of homogeneity of
the segmented regions can be measured using some image property (e.g. pixel
intensity (Jain et al., 1999)). Segmentation forms a fundamental step towards
several complex computer-vision and image analysis applications including
digital mammography, remote sensing and land cover study. Image segmen-
tation can be treated as a clustering problem where the features describing
each pixel correspond to a pattern, and each image region (i.e., segment)

302 Ajith Abraham, Swagatam Das, and Sandip Roy

Fig. 6. (a) The unlabeled synthetic dataset 1 (b) Automatic Clustering with the
MEPSO

Fig. 7. (a) The unlabeled synthetic dataset 1 (b) Automatic Clustering with the
MEPSO

Fig. 8. (a) The unlabeled synthetic dataset 1 (b) Automatic Clustering with the
MEPSO

Swarm Intelligence Algorithms for Data Clustering 303

Table 1. Final solution (mean and standard deviation over 20 independent runs)
after each algorithm was terminated after running for 50,000 function evaluations
(FE) with DB Measure based fitness function.

Problem Algorithm Average no.
of clusters
found

Final DB
measure

Mean No. of
misclassified
Items

Synthetic Data 1

MEPSO 5.05±0.0931 3.0432±0.021 5.25±0.096
FVGA 8.15±0.0024 4.3432±0.232 15.75±0.154
FCM NA 5.3424±0.343 19.50±1.342

Synthetic Data 2

MEPSO 6.45±0.0563 1.4082±0.006 4.50±0.023
FVGA 6.95±0.021 1.5754±0.073 10.25±0.373
FCM NA 1.6328±0.002 26.50±0.433

Synthetic Data 3

MEPSO 5.25±0.0241 0.9224±0.334 9.15±0.034
FVGA 5.75±0.0562 1.2821±0.009 15.50±0.048
FCM NA 2.9482±0.028 17.25±0.275

Synthetic Data 4

MEPSO 4.00±0.00 1.0092±0.083 1.50±0.035
FVGA 4.75±0.0193 1.5152±0.073 4.55±0.05
FCM NA 1.8371±0.034 8.95±0.15

Glass

MEPSO 6.05±0.0248 1.0802±0.083 8.35±0.662
FVGA 5.95±0.0193 1.5152±0.073 14.35±0.26
FCM NA 1.8371±0.034 18.65±0.85

Breast Cancer

MEPSO 2.05±0.0563 0.5003±0.006 25.00±0.09
FVGA 2.50±0.0621 0.5754±0.073 26.50±0.80
FCM NA 0.6328±0.002 30.23±0.46

corresponds to a cluster (Jain et al., 1999). Therefore, many clustering al-
gorithms have widely been used to solve the segmentation problem (e.g.,
K-means (Tou and Gonzalez, 1974), Fuzzy C-means (Trivedi and Bezdek,
1986), ISODATA (Ball and Hall, 1967), Snob (Wallace and Boulton, 1968)
and recently the PSO and DE based clustering techniques (Omran et al.,
2005a,Omran et al., 2005b)).

Here we illustrate the automatic soft segmentation of a number of grey
scale images by using our MEPSO based clustering algorithm. An important
characteristic of an image is the high degree of correlation among the neigh-
boring pixels. In other words, these neighboring pixels possess similar feature
values, and the probability that they belong to the same cluster is great. This
spatial relationship (Ahmed et al., 2002) is important in clustering, but it is
not utilized in a standard FCM algorithm. To exploit the spatial information,
a spatial function is defined as:

hij =
∑

k∈δ(Xj)

uik (24)

where δ(Xj)represents a square window centered on pixel (i.e. data point) Xj

in the spatial domain. A 5×5 window was used throughout this work. Just like
the membership function, the spatial function hij represents the probability

304 Ajith Abraham, Swagatam Das, and Sandip Roy

that pixel Xjbelongs to i-th cluster. The spatial function of a pixel for a cluster
is large if the majority of its neighborhood belongs to the same clusters. We
incorporate the spatial function into membership function as follows:

u′ij =
ur

ijh
t
ij

c∑
k=1

ur
kjh

t
kj

(25)

Here in all the cases we have used r = 1, t = 1after considerable trial and
errors.

Although we tested our algorithm over a large number of images with
varying range of complexity, here we show the experimental results for three
images only, due to economy of space. Figures 4.7 to 4.7 show the three original
images and their segmented counterparts obtained using the FVGA algorithm
and the MEPSO based method. In these figures the segmented portions of an
image have been marked with the grey level intensity of the respective cluster
centers. In Table 2, we report the mean value the DB measure and partition
entropy calculated over the ‘best-of-run’ solutions in each case. One may note
that the MEPSO meets or beats the competitor algorithm in all the cases.
Table 3 reports the mean time taken by each algorithm to terminate on the
image data. Finally, Table 4 contains the mean and standard deviations of
the number of classes obtained by the two automatic clustering algorithms.

Fig. 9. (a) The original Texture image. (b) Segmentation by FVGA (c= 3) (c)
Segmentation by MEPSO based method (c = 3)

Swarm Intelligence Algorithms for Data Clustering 305

Fig. 10. (a) The original Pepper image. (b) Segmentation by FVGA (c= 7) (c)
Segmentation by MEPSO based method (c = 7)

Table 2. Automatic clustering result for three real life grayscale images (over 20
runs; each run continued up to 50,000 FE)

Image Validity Index
Mean and Std Dev of the validity indices
over the final clustering results of 20 in-
dependent runs
AFDE FVGA FCM

Texture
Xie-Beni 0.7283

(0.0001)
0.7902
(0.0948)

0.7937
(0.0013)

Partition En-
tropy

2.6631
(0.7018)

2.1193
(0.8826)

2.1085
(0.0043)

MRI Image of Brain
Xie-Beni 0.2261

(0.0017)
0.2919
(0.0583)

0.3002
(0.0452)

Partition En-
tropy

0.1837
(0.0017)

0.1922
(0.0096)

0.1939
(0.0921)

Pepper Image
Xie-Beni 0.05612

(0.0092)
0.09673
(0.0043)

0.09819
(0.0001)

Partition En-
tropy

0.8872
(0.0137)

1.1391
(0.0292)

1.1398
(0.0884)

306 Ajith Abraham, Swagatam Das, and Sandip Roy

Fig. 11. (a) The original MRI image. (b) Segmentation by FVGA (c= 5) (c) Seg-
mentation by MEPSO (c = 5)

Table 3. Comparison among the mean execution time taken by the different algo-
rithms

Image Optimal No. of Clusters
Mean and Std Dev of the num-
ber of classes estimated by the
competitor algorithms
FVGA MEPSO

Texture 3 3.75±0.211 3.05±0.132

MRI 5 5.05±0.428 5.25±0.212

Pepper 7 8.15±0.772 6.95±0.982

Table 4. Automatic clustering results for the three real-life grayscale images (over
20 runs; each runs continued for 50,000 FE)

Image
Mean and Std Dev of the execution time
(in seconds) taken by the competitor al-
gorithms
FVGA MEPSO

Texture 32.05±0.076 47.25±0.162

MRI 24.15±0.016 34.65±0.029

Pepper 49.20±0.201 67.85±0.817

Swarm Intelligence Algorithms for Data Clustering 307

5 Conclusion and Future Directions

In this Chapter, we introduced some of the preliminary concepts of Swarm
Intelligence (SI) with an emphasis on particle swarm optimization and ant
colony optimization algorithms. We then described the basic data clustering
terminologies and also illustrated some of the past and ongoing works, which
apply different SI tools to pattern clustering problems. We proposed a novel
fuzzy clustering algorithm, which is based on a deviant variety of the PSO. The
proposed algorithm can automatically compute the optimal number of clusters
in any dataset and thus requires minimal user intervention. Comparison with
a state of the art GA based clustering strategy, reveals the superiority of the
MEPSO-clustering algorithm both in terms of accuracy and speed.

Despite being an age old problem, clustering remains an active field of
interdisciplinary research till date. No single algorithm is known, which can
group all real world datasets efficiently and without error. To judge the qual-
ity of a clustering, we need some specially designed statistical-mathematical
function called the clustering validity index. But a literature survey reveals
that, most of these validity indices are designed empirically and there is no
universally good index that can work equally well over any dataset. Since, ma-
jority of the PSO or ACO based clustering schemes rely on a validity index
to judge the fitness of several possible partitioning of the data, research effort
should be spent for defining a reasonably good index function and validating
the same mathematically.

Feature extraction is an important preprocessing step for data clustering.
Often we have a great number of features (especially for a high dimensional
dataset like a collection of text documents) which are not all relevant for a
given operation. Hence, future research may focus on integrating the auto-
matic feature-subset selection scheme with the SI based clustering algorithm.
The two-step process is expected to automatically project the data to a low
dimensional feature subspace, determine the number of clusters and find out
the appropriate cluster centers with the most relevant features at a faster
pace.

Gene expression refers to a process through which the coded information
of a gene is converted into structures operating in the cell. It provides the
physical evidence that a gene has been ”turned on” or activated for protein
synthesis (Lewin, 1995). Proper selection, analysis and interpretation of the
gene expression data can lead us to the answers of many important problems
in experimental biology. Promising results have been reported in (Xiao et al.,
2003) regarding the application of PSO for clustering the expression levels of
gene subsets. The research effort to integrate SI tools in the mechanism of
gene expression clustering may in near future open up a new horizon in the
field of bioinformatic data mining.

Hierarchical clustering plays an important role in fields like information
retrieval and web mining. The self-assembly behavior of the real ants may
be exploited to build up new hierarchical tree-structured partitioning of a

308 Ajith Abraham, Swagatam Das, and Sandip Roy

data set according to the similarities between those data items. A description
of the little but promising work already been undertaken in this direction
can be found in (Azzag et al., 2006). But a more extensive and systematic
research effort is necessary to make the ant based hierarchical models superior
to existing algorithms like Birch (Zhang et al., 1997).

References

A. Abraham, C. Grosan and V. Ramos (2006) (Eds.), Swarm Intelligence and
Data Mining, Studies in Computational Intelligence, Springer Verlag, Germany,
pages 270, ISBN: 3-540-34955-3.

Ahmed MN, Yaman SM, Mohamed N, (2002), Farag AA and Moriarty TA, Modi-
fied fuzzy c-means algorithm for bias field estimation and segmentation of MRI
data. IEEE Trans Med Imaging, 21, pp. 193–199.

Azzag H, Guinot C and Venturini G, Data and text mining with hierarchical clus-
tering ants, in Swarm Intelligence in Data Mining, Abraham A, (2006), Grosan
C and Ramos V (Eds), Springer, pp. 153-186.

Ball G and Hall D, (1967), A Clustering Technique for Summarizing Multivariate
Data, Behavioral Science 12, pp. 153-155.

Bandyopadhyay S and Maulik U, (2000), Genetic clustering for automatic evolution
of clusters and application to image classification, Pattern Recognition, 35, pp.
1197-1208.

Beni G and Wang U, (1989), Swarm intelligence in cellular robotic systems. In
NATO Advanced Workshop on Robots and Biological Systems, Il Ciocco, Tus-
cany, Italy.

Bensaid AM, Hall LO, Bezdek JC.and Clarke LP, (1996), Partially supervised
clustering for image segmentation. Pattern Recognition, vol. 29, pp. 859-871.

Bezdek JC, (1981), Pattern recognition with fuzzy objective function algorithms.
New York: Plenum.

Blake C, Keough E and Merz CJ, (1998), UCI repository of machine learning
database http://www.ics.uci.edu/∼mlearn/MLrepository.html.

Bonabeau E, Dorigo M and Theraulaz G, (1999), Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, New York.

Brucker P, (1978), On the complexity of clustering problems. Beckmenn M and
Kunzi HP(Eds.), Optimization and Operations Research, Lecture Notes in Eco-
nomics and Mathematical Systems, Berlin, Springer, vol.157, pp. 45-54.

Clark MC, Hall LO, Goldgof DB, Clarke LP, (1994), Velthuizen RP and Silbiger
MS , MRI segmentation using fuzzy clustering techniques. IEEE Eng Med Biol,
13, pp.730–742.

Clerc M and Kennedy J. (2002), The particle swarm - explosion, stability, and
convergence in a multidimensional complex space, In IEEE Transactions on
Evolutionary Computation, 6(1):58-73.

Couzin ID, Krause J, James R, Ruxton GD, Franks NR, (2002), Collective Memory
and Spatial Sorting in Animal Groups, Journal of Theoretical Biology, 218, pp.
1-11.

Cui X and Potok TE, (2005), Document Clustering Analysis Based on Hybrid
PSO+Kmeans Algorithm, Journal of Computer Sciences (Special Issue), ISSN
1549-3636, pp. 27-33.

Swarm Intelligence Algorithms for Data Clustering 309

Das S, Konar A and Abraham A, (2006), Spatial Information based Image Segmen-
tation with a Modified Particle Swarm Optimization, in proceedings of Sixth
International Conference on Intelligent System Design and Applications (ISDA
06) Jinan, Shangdong, China, IEEE Computer Society Press.

Deb K, Pratap A, Agarwal S, and Meyarivan T (2002), A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II, IEEE Trans. on Evolutionary Computation,
Vol.6, No.2.

Deneubourg JL, Goss S, Franks N, Sendova-Franks A, (1991), Detrain C and
Chetien L , The dynamics of collective sorting: Robot-like ants and ant-like
robots. In Meyer JA and Wilson SW (Eds.) Proceedings of the First Inter-
national Conference on Simulation of Adaptive Behaviour: From Animals to
Animats 1, pp. 356–363. MIT Press, Cambridge, MA.

Dorigo M and Gambardella LM, (1997), Ant colony system: A cooperative learn-
ing approach to the traveling salesman problem, IEEE Trans. Evolutionary
Computing, vol. 1, pp. 53–66.

Dorigo M, Maniezzo V and Colorni A, (1996), The ant system: Optimization by
a colony of cooperating agents, IEEE Trans. Systems Man and Cybernetics –
Part B, vol. 26.

Duda RO and Hart PE, (1973), Pattern Classification and Scene Analysis. John
Wiley and Sons, USA.

Eberhart RC and Shi Y, (2001), Particle swarm optimization: Developments, ap-
plications and resources, In Proceedings of IEEE International Conference on
Evolutionary Computation, vol. 1, pp. 81-86.

Evangelou IE, Hadjimitsis DG, Lazakidou AA, (2001), Clayton C, Data Mining and
Knowledge Discovery in Complex Image Data using Artificial Neural Networks,
Workshop on Complex Reasoning an Geographical Data, Cyprus.

Everitt BS, (1993), Cluster Analysis. Halsted Press, Third Edition.
Falkenauer E, (1998), Genetic Algorithms and Grouping Problems, John Wiley and

Son, Chichester.
Fogel LJ, Owens AJ and Walsh MJ, (1966), Artificial Intelligence through Simu-

lated Evolution. New York: Wiley.
Forgy EW, (1965), Cluster Analysis of Multivariate Data: Efficiency versus Inter-

pretability of classification, Biometrics, 21.
Frigui H and Krishnapuram R, (1999), A Robust Competitive Clustering Algorithm

with Applications in Computer Vision, IEEE Transactions on Pattern Analysis
and Machine Intelligence 21 (5), pp. 450-465.

Fukunaga K, (1990), Introduction to Statistical Pattern Recognition. Academic
Press.

Gath I and Geva A, (1989), Unsupervised optimal fuzzy clustering. IEEE Trans-
actions on PAMI, 11, pp. 773-781.

Goldberg DE, (1975), Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA.

Grosan C, Abraham A and Monica C, Swarm Intelligence in Data Mining, in
Swarm Intelligence in Data Mining, Abraham A, (2006), Grosan C and Ramos
V (Eds), Springer, pp. 1-16.

Halkidi M and Vazirgiannis M, (2001), Clustering Validity Assessment: Finding the
Optimal Partitioning of a Data Set. Proceedings of the 2001 IEEE International
Conference on Data Mining (ICDM 01), San Jose, California, USA, pp. 187-194.

310 Ajith Abraham, Swagatam Das, and Sandip Roy

Halkidi M, Batistakis Y and Vazirgiannis M, (2001), On Clustering Validation
Techniques. Journal of Intelligent Information Systems (JIIS), 17(2-3), pp. 107-
145.

Handl J and Meyer B, (2002), Improved ant-based clustering and sorting in a docu-
ment retrieval interface. In Proceedings of the Seventh International Conference
on Parallel Problem Solving from Nature (PPSN VII), volume 2439 of LNCS,
pp. 913–923. Springer-Verlag, Berlin, Germany.

Handl J, Knowles J and Dorigo M, (2003), Ant-based clustering: a comparative
study of its relative performance with respect to k-means, average link and
1D-som. Technical Report TR/IRIDIA/2003-24. IRIDIA, Universite Libre de
Bruxelles, Belgium.

Hoe K, Lai W, and Tai T, (2002), Homogenous ants for web document similarity
modeling and categorization. In Proceedings of the Third International Work-
shop on Ant Algorithms (ANTS 2002), volume 2463 of LNCS, pp. 256–261.
Springer-Verlag, Berlin, Germany.

Holland JH, (1975), Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor.

Jain AK, Murty MN and Flynn PJ, (1999), Data clustering: a review, ACM Com-
puting Surveys, vol. 31, no.3, pp. 264—323.

Kanade PM and Hall LO, (2003), Fuzzy Ants as a Clustering Concept. In Pro-
ceedings of the 22nd International Conference of the North American Fuzzy
Information Processing Society (NAFIPS03), pp. 227-232.

Kaufman, L and Rousseeuw, PJ, (1990), Finding Groups in Data: An Introduction
to Cluster Analysis. John Wiley & Sons, New York.

Kennedy J and Eberhart R, (1995), Particle swarm optimization, In Proceedings
of IEEE International conference on Neural Networks, pp. 1942-1948.

Kennedy J and Eberhart RC, (1997), A discrete binary version of the particle
swarm algorithm, Proceedings of the 1997 Conf. on Systems, Man, and Cyber-
netics, IEEE Service Center, Piscataway, NJ, pp. 4104-4109.

Kennedy J, Eberhart R and Shi Y, (2001), Swarm Intelligence, Morgan Kaufmann
Academic Press.

Kohonen T, (1995), Self-Organizing Maps, Springer Series in Information Sciences,
Vol 30, Springer-Verlag.

Konar A, (2005), Computational Intelligence: Principles, Techniques and Applica-
tions, Springer.

Krause J and Ruxton GD, (2002), Living in Groups. Oxford: Oxford University
Press.

Kuntz P and Snyers D, (1994), Emergent colonization and graph partitioning. In
Proceedings of the Third International Conference on Simulation of Adaptive
Behaviour: From Animals to Animats 3, pp. 494– 500. MIT Press, Cambridge,
MA.

Kuntz P and Snyers D, (1999), New results on an ant-based heuristic for highlight-
ing the organization of large graphs. In Proceedings of the 1999 Congress on
Evolutionary Computation, pp. 1451–1458. IEEE Press, Piscataway, NJ.

Kuntz P, Snyers D and Layzell P, (1998), A stochastic heuristic for visualising graph
clusters in a bi-dimensional space prior to partitioning. Journal of Heuristics,
5(3), pp. 327–351.

Lee C-Y and Antonsson EK, (2000), Self-adapting vertices for mask layout synthe-
sis Modeling and Simulation of Microsystems Conference (San Diego, March

Swarm Intelligence Algorithms for Data Clustering 311

27–29) eds. M Laudon and B Romanowicz. pp. 83–86.
Leung Y, Zhang J and Xu Z, (2000), Clustering by Space-Space Filtering, IEEE

Transactions on Pattern Analysis and Machine Intelligence 22 (12), pp. 1396-
1410.

Lewin B, (1995), Genes VII. Oxford University Press, New York, NY.
Lillesand T and Keifer R, (1994), Remote Sensing and Image Interpretation, John

Wiley & Sons, USA.
Lumer E and Faieta B, (1994), Diversity and Adaptation in Populations of Clus-

tering Ants. In Proceedings Third International Conference on Simulation of
Adaptive Behavior: from animals to animates 3, Cambridge, Massachusetts
MIT press, pp. 499-508.

Lumer E and Faieta B, (1995), Exploratory database analysis via self-organization,
Unpublished manuscript.

MacQueen J, (1967), Some methods for classification and analysis of multivariate
observations, Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, pp. 281-297.

Major PF, Dill LM, (1978), The three-dimensional structure of airborne bird flocks.
Behavioral Ecology and Sociobiology, 4, pp. 111-122.

Mao J and Jain AK, (1995), Artificial neural networks for feature extraction and
multivariate data projection. IEEE Trans. Neural Networks.vol. 6, 296–317.

Milonas MM, (1994), Swarms, phase transitions, and collective intelligence, In
Langton CG Ed., Artificial Life III, Addison Wesley, Reading, MA.

Mitchell T, (1997), Machine Learning. McGraw-Hill, Inc., New York, NY.
Mitra S, Pal SK and Mitra P, (2002), Data mining in soft computing framework:

A survey, IEEE Transactions on Neural Networks, Vol. 13, pp. 3-14.
Monmarche N, Slimane M and Venturini G, (1999), Ant Class: discovery of clusters

in numeric data by a hybridization of an ant colony with the k means algorithm.
Internal Report No. 213, E3i, Laboratoire d’Informatique, Universite de Tours.

Ng R and Han J, (1994), Efficient and effective clustering method for spatial data
mining. In: Proc. 1994 International Conf. Very Large Data Bases (VLDB’94).
Santiago, Chile, September pp. 144–155.

Omran M, Engelbrecht AP and Salman A, (2005), Particle Swarm Optimization
Method for Image Clustering. International Journal of Pattern Recognition and
Artificial Intelligence, 19(3), pp. 297–322.

Omran M, Engelbrecht AP and Salman A, (2005), Differential Evolution Methods
for Unsupervised Image Classification, Proceedings of Seventh Congress on
Evolutionary Computation (CEC-2005). IEEE Press.

Omran M, Salman A and Engelbrecht AP, (2002), Image Classification using Parti-
cle Swarm Optimization. In Conference on Simulated Evolution and Learning,
volume 1, pp. 370–374.

Omran M, Salman A and Engelbrecht AP, (2005), Dynamic Clustering using Parti-
cle Swarm Optimization with Application in Unsupervised Image Classification.
Fifth World Enformatika Conference (ICCI 2005), Prague, Czech Republic.

Pakhira MK, Bandyopadhyay S and Maulik, U, (2005), A Study of Some Fuzzy
Cluster Validity Indices, Genetic clustering And Application to Pixel Classifi-
cation, Fuzzy Sets and Systems 155, pp. 191–214.

Pal NR, Bezdek JC and Tsao ECK, (1993), Generalized clustering networks and
Kohonen’s self-organizing scheme. IEEE Trans. Neural Networks, vol 4, 549–
557.

312 Ajith Abraham, Swagatam Das, and Sandip Roy

Partridge BL, (1982), The structure and function of fish schools. Science American,
245, pp. 90-99.

Partridge BL, Pitcher TJ, (1980), The sensory basis of fish schools: relative role of
lateral line and vision. Journal of Comparative Physiology, 135, pp. 315-325.

Paterlini S and Krink T, (2006), Differential Evolution and Particle Swarm Opti-
mization in Partitional Clustering. Computational Statistics and Data Analysis,
vol. 50, pp. 1220– 1247.

Paterlini S and Minerva T, (2003), Evolutionary Approaches for Cluster Analy-
sis. In Bonarini A, Masulli F and Pasi G (eds.) Soft Computing Applications.
Springer-Verlag, Berlin. 167-178.

Ramos V and Merelo JJ, (2002), Self-organized stigmergic document maps: En-
vironments as a mechanism for context learning. In Proceedings of the First
Spanish Conference on Evolutionary and Bio-Inspired Algorithms (AEB 2002),
pp. 284–293. Centro Univ. M’erida, M’erida, Spain.

Ramos V, Muge F and Pina P, (2002), Self-Organized Data and Image Retrieval
as a Consequence of Inter-Dynamic Synergistic Relationships in Artificial Ant
Colonies. Soft Computing Systems: Design, Management and Applications. 87,
pp. 500–509.

Rao MR, (1971), Cluster Analysis and Mathematical Programming,. Journal of
the American Statistical Association, Vol. 22, pp 622-626.

Rokach, L., Maimon, O. (2005), Clustering Methods, Data Mining and Knowledge
Discovery Handbook, Springer, pp. 321-352.

Rosenberger C and Chehdi K, (2000), Unsupervised clustering method with opti-
mal estimation of the number of clusters: Application to image segmentation,
in Proc. IEEE International Conference on Pattern Recognition (ICPR), vol.
1, Barcelona, pp. 1656-1659.

Sarkar M, Yegnanarayana B and Khemani D, (1997), A clustering algorithm using
an evolutionary programming-based approach, Pattern Recognition Letters, 18,
pp. 975–986.

Schwefel H-P, (1995), Evolution and Optimum Seeking. New York, NY: Wiley, 1st
edition.

Selim SZ and Alsultan K, (1991), A simulated annealing algorithm for the cluster-
ing problem. Pattern recognition, 24(7), pp. 1003-1008.

Storn R and Price K, (1997), Differential evolution – A Simple and Efficient Heuris-
tic for Global Optimization over Continuous Spaces, Journal of Global Opti-
mization, 11(4), pp. 341–359.

Theodoridis S and Koutroubas K, (1999), Pattern recognition, Academic Press.
Tou JT and Gonzalez RC, (1974), Pattern Recognition Principles. London,

Addison-Wesley.
Trivedi MM and Bezdek JC, (1986), Low-level segmentation of aerial images with

fuzzy clustering, IEEE Trans.on Systems, Man and Cybernetics, Volume 16.
Tsang W and Kwong S, Ant Colony Clustering and Feature Extraction for Anomaly

Intrusion Detection, in Swarm Intelligence in Data Mining, Abraham A, (2006),
Grosan C and Ramos V (Eds), Springer, pp. 101-121.

van der Merwe DW and Engelbrecht AP, (2003), Data clustering using particle
swarm optimization. In: Proceedings of the 2003 IEEE Congress on Evolution-
ary Computation, pp. 215-220, Piscataway, NJ: IEEE Service Center.

Wallace CS and Boulton DM, (1968), An Information Measure for Classification,
Computer Journal, Vol. 11, No. 2, 1968, pp. 185-194.

Swarm Intelligence Algorithms for Data Clustering 313

Wang X, Wang Y and Wang L, (2004), Improving fuzzy c-means clustering based
on feature-weight learning. Pattern Recognition Letters, vol. 25, pp. 1123–32.

Xiao X, Dow ER, Eberhart RC, Miled ZB and Oppelt RJ, (2003), Gene Clustering
Using Self-Organizing Maps and Particle Swarm Optimization, Proc of the 17th
International Symposium on Parallel and Distributed Processing (PDPS ’03),
IEEE Computer Society, Washington DC.

Xie, X and Beni G, (1991), Validity measure for fuzzy clustering. IEEE Trans.
Pattern Anal. Machine Learning, Vol. 3, pp. 841–846.

Xu, R., Wunsch, D. (2005), Survey of Clustering Algorithms, IEEE Transactions
on Neural Networks, Vol. 16(3): 645-678.

Zahn CT, (1971), Graph-theoretical methods for detecting and describing gestalt
clusters, IEEE Transactions on Computers C-20, 68–86.

Zhang T, Ramakrishnan R and Livny M, (1997), BIRCH: A New Data Clustering
Algorithm and Its Applications, Data Mining and Knowledge Discovery, vol.
1, no. 2, pp. 141-182.

Hall LO, Özyurt IB and Bezdek JC, (1999), Clustering with a genetically optimized
approach, IEEE Trans. Evolutionary Computing 3 (2) pp. 103–112.

A Diffusion Framework
for Dimensionality Reduction

Alon Schclar1

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
shekler@post.tau.ac.il

Summary. Many fields of research deal with high-dimensional data sets. Hyper-
spectral images in remote sensing and in hyper-spectral microscopy, transactions in
banking monitoring systems are just a few examples for this type of sets. Revealing
the geometric structure of these data-sets as a preliminary step facilitates their
efficient processing. Often, only a small number of parameters govern the structure of
the data-set. This number is the true dimension of the data-set and is the motivation
to reduce the dimensionality of the set. Dimensionality reduction algorithms try to
discover the true dimension of a data set.

In this chapter, we describe a natural framework based on diffusion processes for
the multi-scale analysis of high-dimensional data-sets (Coifman and Lafon, 2006).
This scheme enables us to describe the geometric structures of such sets by utilizing
the Newtonian paradigm according to which a global description of a system can
be derived by the aggregation of local transitions. Specifically, a Markov process
is used to describe a random walk on the data set. The spectral properties of the
Markov matrix that is associated with this process are used to embed the data-set
in a low-dimensional space. This scheme also facilitates the parametrization of a
data-set when the high dimensional data-set is not accessible and only a pair-wise
similarity matrix is at hand.

1 Introduction

In the following, we describe the reason why diffusion processes are suitable
for the analysis of data-sets. We also give a brief introduction to Markov
processes. A more comprehensive introductory to random processes can be
found in (Sheldon, 1983).

1.1 Why diffusion ?

Let {xk}m
k=1 be a data-set of points. Suppose we wish to randomly walk be-

tween these points starting arbitrarily from one of the points. At each time
t we choose our next point in the path according to a given probability. We

316 Alon Schclar

denote the probability to move from point xi to point xj by pij and refer to
a single move as a transition. We look into the the simple case where pij is
inversely proportional to the Euclidean distance between xi and xj and where
the data-set can be divided into two well separated clusters. This means that
the probability to travel within a cluster is much higher than that of traveling
between the clusters. Consequently, after a large number of steps we will most
probably end up in the cluster we began our walk.

Contrary to this example, in most cases the structure of the data-set is
unknown and we need to reveal it. This can be done by calculating for every
point xi the probability we will end up there after traveling between the points
for a long time. (formally, we look into the asymptotic behavior of the random
walk). Points that are clustered together will have similar probabilities.

1.2 Markov processes

The random walk we described above is a special case of a Markov process. The
general Markov framework describes a random walk between a set of states
{sk}m

k=1. The transition probabilities are given by a m×m matrix P = (pij)
where the i-th row contains the transition probabilities from state si to all
the other states. In our model we choose the sum of each row to be equal to
one. Furthermore, we use a memoryless process i.e. the probability to move
at time t+1 from the current state si to the next state sj depends only on si

and the transition probability pij . If we denote the probability to be in state
si at time t by pt (si), then the memoryless property can be described as:

pt+1 (sj |si) = pt (si) · pij

A Markov process can also be modeled by a weighted graph G = (V, E)
in which the nodes correspond to the states, the edges to transitions and the
edge weights to the transition probabilities. We will use this model to describe
the diffusion maps algorithm.

2 The diffusion maps algorithm

As mentioned above, the diffusion maps algorithm is used to analyze a given
a set of data points

Γ = {xi}m
i=1 , xi ∈ Rn (1)

It includes the following steps:

1. Construction of an undirected graph G on Γ with a weight function wε

that corresponds to the local point-wise similarity between the points in
Γ 1.

1 This step is skipped in case the set Γ is not accessible and we are only given wε.

A Diffusion Framework for Dimensionality Reduction 317

2. Construction of a random walk on the graph G via a Markov transition
matrix P that is derived from wε.

3. Eigen-decomposition of P .

The graph weights are chosen to be proportional to the similarity between
the points i.e. the similar a pair of points is, the higher is the edge weight
connecting the pair. This similarity depends on the application that requires
the analysis of Γ and on the nature of the data-set at hand. In many situations,
however, each data point is a collection of numerical measurements and thus
can be thought of as a point in an Euclidean space. In this case, similarity can
be measured in terms of closeness in this space and it is chosen to be inverse-
proportional to the Euclidian distance between xi and xj . This construction
captures the local geometry of the data-set and it reflects the quantities of
interest.

A diffusion process is used to propagate the local geometry in order to
discover the global geometry of the data-set. Specifically, we build a diffusion
operator whose eigen-decomposition enables the embedding of Γ into a space
S of substantially lower dimension. The Euclidean distance between a pair of
points in the dimension-reduced space defines a diffusion metric that measures
the proximity of points in terms of their connectivity in the original space.
Specifically, the Euclidean distance between a pair of points, in S, is equal
to the random walk distance between the corresponding pair of points in the
original space. The embedding of the data points into the low-dimension space
provides coordinates on the data set that reorganize the points according to
this metric.

The eigenvalues and eigenfunctions of P define a natural embedding of the
data through the diffusion map and the study of the eigenvalues allows us to
use the eigenfunctions for dimensionality reduction.

2.1 Building the graph G and the weight function wε

Let Γ be a set of points in Rn as defined in (1). We construct the graph
G(V, E), |V | = m, |E| ¿ m2, on Γ in order to study the intrinsic geometry of
this set. A weight function wε (xi, xj) which measures the pairwise similarity
between the points is introduced.

For all xi, xj ∈ Γ , the weight function is chosen to obey the following
properties:

• symmetry: wε (xi, xj) = wε (xj , xi)
• non-negativity: wε (xi, xj) ≥ 0
• fast decay: given a scale parameter ε > 0, wε (xi, xj) → 0 when ‖xi − xj‖À

ε and wε (xi, xj) → 1 when ‖xi − xj‖ ¿ ε. .

Note that the parameter ε defines a notion of neighborhood i.e. for every point
xi, the weights wε (xi, xj) are numerically significant only if xj is ε-close to

318 Alon Schclar

xi. In this sense, wε captures the local geometry of Γ by providing a first-
order pairwise similarity measure for ε-neighborhood of every point xi i.e it
defines the nearest neighbor structures in the graph. This corresponds to the
assumption that the only relevant information lies in local neighborhoods.
Consequently, the matrix that represents wε is sparse.

One of the common choices for wε is

wε (xi, xj) = exp

(
−‖xi − xj‖2

ε

)
. (2)

Indeed, xi and xj will be numerically significant if they are sufficiently close.
In the case of a data set approximately lying on a submanifold, this choice
corresponds to an approximation of the heat kernel on the submanifold (see
(Belkin and Niyogi, 2003)). Furthermore, this result was extended in (Coifman
and Lafon, 2006) where it was shown that any weight of the form f (‖xi − xj‖)
where f decays sufficiently fast at infinity allows to approximate the heat
kernel . Thus, other application dependant weight functions can be used.
Accordingly, this choice should take into account any prior knowledge on the
data. For example, if the the data points are binary, the Hamming distance
can be used instead of the Euclidean distance.

The choice of ε in (2) is extremely important since it defines the scale of
the neighborhood. General guidelines as well as some data-driven heuristics
for choosing ε are described later in this chapter.

2.2 Construction of the normalized graph Laplacian

The non-negativity property of wε allows us to normalize it into a Markov
transition matrix P where the states of the corresponding Markov process are
the data points. This enables to analyze Γ via a random walk. The construc-
tion of P is known as the normalized graph Laplacian (Chung, 1997).

Formally, P = {p (xi, xj)} i,j=1,...,m is constructed as follows:

p (xi, xj) =
wε (xi, xj)

d (xi)
(3)

where

d (xi) =
m∑

j=1

wε (xi, xj) (4)

is the degree of xi. P is a Markov matrix since the sum of each row in P is 1 and
p (xi, xj) ≥ 0. Thus, p (xi, xj) can be viewed as the probability to move from
xi to xj in a single time step. Raising this quantity to a power t advances the
walk in time i.e. this probability is propagated to nodes in the neighborhood
of xi and xj and the result is the probability to move from xi to xj in t time
steps. We denote this probability by pt (xi, xj). These probabilities measure
the connectivity of the points within the graph. The parameter t controls the
scale of the neighborhood in addition to the scale control provided by ε.

A Diffusion Framework for Dimensionality Reduction 319

2.3 Eigen-decomposition

As mentioned above the asymptotic behavior of the random walk entails the
geometrical structure of the data set Γ . The close relation between the asymp-
totic behavior of P , i.e. the properties of its eigen-decomposition and the clus-
ters that are inherent in the data, was explored in (Chung, 1997, Fowlkes et
al., 2004). As suggested in the example above, this behavior can be used to
find clusters in the data set (Weiss, 1999,Shi and Malik, 2000), by using the
first non-constant eigenvector to separate a data set into two clusters. One
can separate to more than two clusters by using additional eigenvectors (Lafon
and Lee, 2006,Meila and Shi, 2001,Yu and Shi, 2003).

Let {µk}m
k=1 and {νk}m

k=1 be the left and the right biorthogonal eigen-
vectors of P , respectively and let {λk}m

k=1 be their corresponding eigenvalues
where |λ1| ≥ |λ2| ≥ ... ≥ |λm|.

Proposition 1. If G is connected than the asymptotic behavior of the Markov
process is dominated by a stationary distribution which is given by

lim
t→∞

pt (xi, xj) = µ1 (xj)

where µ1 is the left eigenvector that corresponds to the highest eigenvalue.

Proof. Essentially, we need to prove that the stationary distribution exists and
is equal to µ1. First, it is easy to see that the state space of the Markov chain
at hand is finite. This is since our data set is finite. Second, according to the
Perron–Frobenius theorem, it is enough to show that the chain is irreducible
and aperiodic.

Irreducibility: Let xi and xj be two data points. We denote by l the
length of the path between them. The connectivity of the graph implies that
l is finite and thus pl (xi, xj) > 0. Thus, the chain is irreducible.

most weight functions are actually positive and thus we get wε (xi, xj) > 0
which implies aperiodicity since p (xi, xj) > 0 as well. ut

Proposition 2. I. The eigenvector µ1 can be derived from

µ1 (xi) =
d (xi)∑m

j=1 d (xj)
.

II. From a pre-asymptotic point of view, for a finite time t we have

pt (xi, xj) =
m∑

k=1

λt
kνk (xi)µk (xj) . (5)

Aperiodicity: Although we require the weight function to be non-negative,

320 Alon Schclar

Proof. In order to prove this proposition construct a symmetric matrix A that
is conjugate (see (Chung, 1997)) to P . The entries of A are obtained from the
entries of P by

a (xi, xj) =

√
d (xi)
d (xj)

p (xi, xj) =
wε (xi, xj)√
d (xi) d (xj)

.

We denote the eigenvectors of A by ξ1, . . . , ξm and have

a (xi, xj) =
m∑

k=1

λkξk (xi) ξk (xj) (6)

It can be verified that A and P share the same eigenvalues and that their
eigenvectors are connected by:

µk (xj) = ξk (xj) ξ1 (xj) (7)

νk (xi) = ξk (xj) /ξ1 (xj) (8)

for i, j = 1, . . .m.

Furthermore, it is easy to check that ξ1 (xi) =
√

d(xi)√∑m
j=1 d(xj)

which implies

that ν1 (xi) = 1 and proves I :

µ1 (xi) =
d (xi)∑m

j=1 d (xj)
.

Combining (6), (7), (8) with

µ1 (xi) νk (xi) = µk (xi) (9)

and raising A to the power t proves II

pt (xi, xj) =
m∑

k=1

λt
kνk (xi)µk (xj)

with the following biorthogonality relation

m∑

k=1

νi (xk) µj (xk) = δij (10)

for i, j = 1, . . .m, where δij is the Kronecker symbol (Stewart, 2002). ut
The matrix A plays an important role in the actual calculation of {µk}m

k=1,
{νk}m

k=1 and {λk}m
k=1. Algorithms for the eigen-decomposition of symmetric

matrices are more accurate than those for non-symmetric matrices. Using (7)
and (8) along with the fact that the eigenvalues of A and P are the same
enables to perform the eigen-decomposition on A instead of P .

A Diffusion Framework for Dimensionality Reduction 321

An appropriate choice of ε achieves a fast decay of {λk}. Thus, in order
to achieve a relative accuracy δ > 0, only a small number η (δ) of terms are
required in the sum in (5). This enables us to introduce a diffusion metric
based upon the following diffusion distance ((Coifman and Lafon, 2006))

D2
t (xi, xj) =

m∑

k=1

(pt (xi, xk)− pt (xj , xk))2

µ1 (xk)
. (11)

This formulation is derived from the known random walk distance in Potential
Theory:

D2
t (xi, xj) = pt (xi, xi) + pt (xj , xj)− 2pt (xi, xj)

where the factor 2 is due to the fact that G is undirected.
The diffusion distance averages all the paths from xi to xj . Doing so mea-

sures the interaction of xi and xj with the rest of the graph by taking into
account the connectivity of the points in the graph. This metric is more ro-
bust to noise and topological short-circuits than the geodesic distance or the
shortest-path distance since it involves an integration along all paths of length
t between xi and xj . Furthermore, classical graph theory notions such as mix-
ing time and clusterness (Diaconis and Stroock, 1991) are also incorporated
into this metric.

Finally, the low dimensional embedding is facilitated by the following
proposition:

Proposition 3. The diffusion distance can be expressed in terms of the right
eigenvectors of P :

D2
t (xi, xj) =

m∑

k=1

λ2t
k (νk (xi)− νk (xj))

2
.

Proof. Combining (9) with (10) we get

m∑

k=1

µi (xk)µj (xk)
µ1 (xk)

= δij . (12)

for i, j = 1, . . . m. This implies that {µi}m
i=1 is an orthonormal system in the

metric space L2 (Γ, 1 /µ1). By fixing xk, we can view (5) as the decomposition
of pt (xi, ·) in this system where the decomposition coefficients are given by
{λt

kνk (xi)}m

k=1. This allows to rewrite (11) as

D2
t (xi, xj) = ‖pt (xi, ·)− pt (xj , ·)‖L2(Γ,1/µ1)

which yields

D2
t (xi, xj) =

m∑

k=1

λ2t
k (νk (xi)− νk (xj))

2 ut (13)

322 Alon Schclar

Notice that the sum in (13) can start from 2 since ν1 (xi) = 1 as it was seen
in proposition 1, and therefore does not help to differentiate between two
distances. It follows that in order to compute the diffusion distance, one can
simply use the right eigenvectors of P . Moreover, this facilitates the embedding
of the original points in a Euclidean space Rη(δ)−1 by:

Ξt : xi →
(
λt

2ν2 (xi) , λt
3ν3 (xi) , . . . , λt

η(δ)νη(δ) (xi)
)

.

This also provides coordinates on the set Γ . Essentially, η (δ) ¿ n due to the
fast decay of the eigenvalues decay of P and it depends only on the primary
intrinsic variability of the data as captured by the random walk and not on
the original dimensionality of the data. Furthermore, this data-driven method
enables the parametrization of any set of points – abstract or not – provided
the similarity matrix of the points wε is available.

Figure 1 illustrates the results of the diffusion maps algorithm applied on
a data-set of digit images. The data-set consisted of five hundreds 30 × 20
binary images of the digit nine. Each vector in this data-set was in R600. The
data-set was embedded into R2 and recovered two governing features of the
digit: the rotation angle of the digit, which is given by the x -axis, and the
height of the digit, which is given by the y-axis.

An example of data clustering using diffusion maps is given in Fig. 2. The
diffusion maps algorithm was applied on a data set consisting of five hundreds
30×20 binary images of the digit nine and five hundreds 30×20 binary images
of the digit zero. The embeddings of the digit nine are illustrated by circles
while the embeddings of the digit zero are illustrated by plus signs.

3 Choosing ε

The size of the local neighborhood of each point is determined by ε. A large ε
defines a wide neighborhood and thus producing a coarse analysis of the data
since most neighborhoods will contain a large number of points. In contrast,
for a small ε many neighborhoods will contain a single point. Clearly, an ap-
propriate ε should be between these two cases and should stem from the data.
Let D = {dij}i,j=1,...,m be the pairwise Euclidean distance matrix between
the points in Γ . Two heuristics are proposed:

The median heuristic: ε = median {dij}i,j=1,...,m .

The median of D provides an estimate to the average pairwise distance that
is robust to outliers.

A Diffusion Framework for Dimensionality Reduction 323

Fig. 1. Embedding of five hundreds 30 × 20 binary images of the digit nine (each
is in R600) into R2. The rotation angle of the digit is given by the x -axis and the
height of the digit is given by the y-axis

Fig. 2. Embedding of five hundreds 30× 20 binary images of the digit nine and five
hundreds 30 × 20 binary images of the digit zero into R2. The embeddings of the
digit zero are illustrated by plus signs while the embeddings of the digit nine are
illustrated by circles

324 Alon Schclar

The max-min heuristic: ε = α ·maxi minj D

In this case, minj D denotes a column vector consisting of the distance of each
point to its closest neighbor. Taking α ≥ 1, verifies that each neighborhood
contains at least one neighbor.

4 Conclusion

In this chapter we saw that diffusion processes prove to be an effective tool
for data analysis. Given a data set, a Markov process is constructed where
the states are composed of the data points and the transition probabilities
are determined according to a pairwise similarity measure. The similarities
are only locally determined and they are propagated via the diffusion process.
Using the spectral properties of the Markov matrix that is associated with the
Markov process, we are able to reduce the dimensionality of the original data
set and embed it into a space of substantially lower dimension. The diffusion
distance that was introduced in this chapter measures the level of connectivity
between a pair of points in the original space. After the dimensionality reduc-
tion, the Euclidean distance between a pair of points in the lower dimensional
space approximates the diffusion distance between these points in the original
space.

5 Further reading

A more comprehensive description of the diffusion maps scheme can be found
in (Coifman and Lafon, 2006, Coifman et al., 2005). A few of the success-
ful application of the diffusion maps algorithm include lip reading (Lafon et
al., 2006), text classification (Lafon and Lee, 2006), segmentation of multi-
contrast MRI images (Shtainhart et al., 2007). The Diffusion bases algorithm
– a dual algorithm to the diffusion maps algorithm – was recently introduced
in (Schclar and Averbuch, 2007). Laplacian eigenmaps – a dimensionality re-
duction algorithm that is closely related to the diffusion maps – is described
in (Belkin and Niyogi, 2003). Several papers explored the connections and ap-
plications of the graph Laplacian to machine learning (for example, (Kondor
and Lafferty, 2002)). A generalization of classical wavelets which is based on
diffusion processes, allowing multiscale analysis of general structures, such as
manifolds, graphs and point clouds in Euclidean space, is introduced in (Coif-
man and Maggioni, 2006).

References

M. Belkin and P. Niyogi. (2003), Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computation, 15(6):1373–1396.

A Diffusion Framework for Dimensionality Reduction 325

F. R. K. Chung. (1997), Spectral Graph Theory. AMS Regional Conference Series
in Mathematics, 92.

R. R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker.
(2005), Geometric diffusions as a tool for harmonics analysis and structure
definition of data: Diffusion maps. In Proceedings of the National Academy of
Sciences, volume 102, pages 7432–7437.

R. R. Coifman and S. Lafon. (2006), Diffusion maps. Applied and Computational
Harmonic Analysis: special issue on Diffusion Maps and Wavelets, 21:5–30.

R. R. Coifman and M. Maggioni R. R. Coifman and M. Maggioni. (2006) Diffu-
sion wavelets. Applied and Computational Harmonic Analysis: special issue on
Diffusion Maps and Wavelets, 21(1):53–94.

P. Diaconis and D. Stroock. (1991), Geometric bounds for eigenvalues of markov
chains. The Annals of Applied Probability, 1(1):36–61.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik. (2004), Spectral grouping using
the nyström method. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(2):214–225.

R. I. Kondor and J. D. Lafferty. (2002), Diffusion kernels on graphs and other
discrete input spaces. In Proceedings of the 19th International Conference on
Machine Learning (ICML 02), pages 315–322.

S. Lafon Y. Keller and R. R. Coifman. (2006), Data fusion and multi-cue data
matching by diffusion maps. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 28(11):1784–1797.

S. Lafon and A. Lee. (2006), Diffusion maps and coarse-graining: A unified frame-
work for dimensionality reduction, graph partitioning, and data set parame-
terization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(9):1393–1403.

M. Meila and J. Shi. (2001), A random walk’s view of spectral segmentation. In
Proceedings of the International Workshop on Artifical Intelligence and Statis-
tics.

A. Schclar and A. Averbuch. (2007), Hyper-spectral segmentation via diffusion
bases. Technical report, Tel Aviv University.

S. M. Sheldon. (1983), Stochastic Processes. John Wiley & Sons.
J. Shi and J. Malik. (2000), Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905.
A. Shtainhart, A. Schclar, and A. Averbuch. (2006), Neuronal tissues sub-nuclei

segmentation using multi-contrast mri. Technical report, Tel Aviv University.
J. Stewart. (2002), Calculus. Brooks Cole, 5th edition.
Y. Weiss. (1999), Segmentation using eigenvectors: A unifying view. In ICCV (2),

pages 975–982.
S. X. Yu and J. Shi. (2003), Multiclass spectral clustering. In Proceedings of the

IEEE International Conference on Computer Vision, pages 313–319.

Data Mining and Agent Technology: a fruitful
symbiosis

Christos Dimou1, Andreas L. Symeonidis1,2, and Pericles A. Mitkas1,2

1 Electrical and Computer Engineering Dept.
Aristotle University of Thessaloniki, 54 124, Thessaloniki, Greece

2 Intelligent Systems and Software Engineering Laboratory,
Informatics and Telematics Institute/CERTH, 57 001, Thessaloniki, Greece
cdimou@issel.ee.auth.gr, asymeon@iti.gr, mitkas@eng.auth.gr

Summary. Multi-agent systems (MAS) have grown quite popular in a wide spec-
trum of applications where argumentation, communication, scaling and adaptability
are requested. And though the need for well-established engineering approaches for
building and evaluating such intelligent systems has emerged, currently no widely
accepted methodology exists, mainly due to lack of consensus on relevant defini-
tions and scope of applicability. Even existing well-tested evaluation methodologies
applied in traditional software engineering, prove inadequate to address the unpre-
dictable emerging factors of the behavior of intelligent components. The following
chapter aims to present such a unified and integrated methodology for a specific cat-
egory of MAS. It takes all constraints and issues into account and denotes the way
knowledge extracted with the use of Data mining (DM) techniques can be used for
the formulation initially, and the improvement, in the long run, of agent reasoning
and MAS performance. The coupling of DM and Agent Technology (AT) principles,
proposed within the context of this chapter is therefore expected to provide to the
reader an efficient gateway for developing and evaluating highly reconfigurable soft-
ware approaches that incorporate domain knowledge and provide sophisticated De-
cision Making capabilities. The main objectives of this chapter could be summarized
into the following: a) introduce Agent Technology (AT) as a successful paradigm for
building Data Mining (DM)-enriched applications, b) provide a methodology for
(re)evaluating the performance of such DM-enriched Multi-Agent Systems (MAS),
c) Introduce Agent Academy II, an Agent-Oriented Software Engineering framework
for building MAS that incorporate knowledge model extracted by the use of (classi-
cal and novel) DM techniques and d) denote the benefits of the proposed approach
through a real-world demonstrator. This chapter provides a link between DM and
AT and explains how these technologies can efficiently cooperate with each other.
The exploitation of useful knowledge extracted by the use of DM may consider-
ably improve agent infrastructures, while also increasing reusability and minimizing
customization costs. The synergy between DM and AT is ultimately expected to
provide MAS with higher levels of autonomy, adaptability and accuracy and, hence,
intelligence.

328 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

1 Introduction

Large amounts of data are being produced and made available online ev-
ery day, pushing user needs towards a more knowledge-demanding direction.
Today’s applications are therefore required to extract knowledge from large,
often distributed, repositories of text, multimedia or hybrid content. The na-
ture of this quest makes it impossible to use traditional deterministic com-
puting techniques. Instead, various soft computing techniques are employed
to meet the challenge for more sophisticated solutions in knowledge discovery.
Most notably, Data Mining (DM) is thought of as one of the state-of-the-
art paradigms. DM produces useful patterns and associations from large data
repositories that can later be used as knowledge nuggets, within the context
of any application.

Individual facets of knowledge discovery, introduced by DM techniques, of-
ten need to be orchestrated, integrated and presented to end users in a unified
way. Moreover, knowledge has to be exploited and embodied in autonomous
software for learning purposes and, hence, a more increased performance (Fig-
ure 1). Agent Technology (AT) proves to be a promising paradigm that is
suitable for modelling and implementing the unification of DM tasks, as well
as for providing autonomous entity models that dynamically incorporate and
use existing knowledge. Indeed, a plethora of multi-agent systems (MAS) and
other agent-related solutions for knowledge-based systems can be found in
the literature, and more specifically in the area of agent-based DM, as it is
explained in detail in Section 3 of this chapter.

Fig. 1. Mining for intelligence

A numerous related agent development methodologies deal with most of
the steps of the development lifecycle. However, there is a remarkable lack of

Data Mining and Agent Technology: a fruitful symbiosis 329

generalized evaluation methodologies for the systems in question. The evalu-
ation of performance is a fundamental step of any development methodology,
which provides developers with countable, qualitative and verifiable attributes
in an effort to better comprehend the nature of the system at hand. Addition-
ally, generalized and standardized evaluation procedures allow third parties to
safely verify the acclaimed properties of deployed systems or newly discovered
scientific results.

Existing evaluation approaches address either the DM algorithmic issues
or the overall system performance. Both approaches come short in the case of
AT and DM integration, due to the complex and dynamic nature of the pro-
duced systems. In the case of DM evaluation, focus is given on the statistical
performance of individual techniques, in terms of precision and recall, ignoring
the actual impact of the extracted knowledge to the application level. In the
case of overall system evaluation, existing methods fail to deal satisfactorily
with emergent agent behaviors that may not be known at design time.

In this chapter, we present an integrated software engineering approach
for developing DM-enriched MAS. Having Agent Academy II as the basic
designing, development and agent training framework for MAS that employ
DM, we provide a generalized methodology for evaluating the performance
of a developed system. A set of consice methodological steps is presented,
focusing on three fundamental evaluation aspects, namely the selection of a)
metrics, b) measurement method, and c) aggregation methods. The proposed
methodology is designed to assist developers as an off-the-shelf tool that can
be integrated in the overall system development methodology.

The remainder of this chapter is organized as follows: in Section 2 an
overview of the basic primitives of AT and DM is provided; Section 3 reviews
the related literature in DM and MAS integration and evaluation; Section 4
presents the core development and evaluation methodology, by outlining the
appropriate theoretical and software tools; in Section 5, Agent Academy II, a
development framework for DM-enriched MAS is presented; finally, Section 6
summarizes and discusses related concluding remarks.

2 Agent Technology and Data Mining

AT and DM have been incorporated and integrated in numerous research
efforts. However, the disparity of applications and the notable diversity of the
nature of these technologies motivate us to provide thorough definitions of
relevant terms and present our point of view over their symbiosis.

2.1 Agents

The term “software agent” has been coined since the early years of Artificial
Intelligence, in order to denote any software module that exhibits intelligent
behavior. This vague definition, in combination with the unfeasible visions

330 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

of early AI, has resulted into unsatisfactory applications and has decreased
agent computing popularity for many years. It is only until recently that
interest in software agents has revived within the context of complex systems’
engineering. Agents appear as a handy modelling concept for autonomous,
decentralized entities, cooperating towards a common goal or competing on
limited resources. Moreover, the advent of many popular, highly distributed
internet applications has reinforced agents’ position as a promising paradigm
for addressing the emerging engineering problems (Weiss (2001)) (Jennings
(2001)) (Foster et al.(2004)) (Greenwald and Stone (2001)).

In practice, however, no single universally agreed-upon definition of a soft-
ware agent exists. This problem occurs due to the horizontal nature of agents.
Agents can be either abstract tools for modelling complex systems or actual
implemented software modules that may perform any task. The vast dispar-
ity of application domains on which agents have been applied reinforces the
definition difficulties. In some sets of applications agents may need to exhibit
decision making behaviors, whereas in other cases agents may be assigned
routine, predefined tasks. Various abstract definitions for agents have been
proposed, focusing on one or more agent characteristics with respect to one
or more application domains. Woolridge and Jennings, for example, define a
software agent with respect to situatedness, autonomy and goal-orientation.

In general, an agent is a software entity that exhibits some or all of the
following characteristics:

1. Autonomy : Considered as one of the most fundamental features of agency,
autonomy implies the degree of control that an agents poses on its own
execution thread. Autonomy is usually a strong requirement in many ap-
plication domains and therefore agents often employ relevant techniques
for task-wise decision making in their effort to accomplish their goals.

2. Interactivity : Agents are seldom stand alone. They most often rely in in-
formation rich and eventful environments with other agents, services or
human users. It is therefore required for agents to possess corresponding
sensors for perceiving information and actuators for changing the environ-
ment. Moreover, interactivity emerges as a result of a more complex in-
trinsic behavioral processing of the environmental input. Therefore, agents
may either respond to occurring events (reactiveness) or take initiative
and act in order to accomplish predefined goals (proactiveness).

3. Adaptability : In dynamically changing environments, agents need to be
able to change their internal states and consequent actions, to better
match the ever-changing conditions.

4. Sociability : A product of interactivity, socialability is based on relative
human social skills, such as the ability to determine trusted parties or
form coalitions in unknown environments.

5. Cooperativity : In applications such as distributed problem solving, agents
are often required to collaborate with each other in order to reach a com-
mon goal that otherwise would be impossible or impractical to reach.

Data Mining and Agent Technology: a fruitful symbiosis 331

Cooperation may be coordinated by dedicated agents or, in more open
environments, emerge via agent communication.

6. Competitiveness: Agents are often programmed to allocate certain re-
sources in well-defined environments. Like in similar real-world scenaria,
the resources are limited and therefore agents need to compete against
each other in order to allocate such resources. Agents employ strategies
and action plans for prevailing in such competitive environments.

7. Mobility : Transition between different environments is a desired property
of agents in applications such as data gathering, web crawling etc.

8. Character : Human-centered characteristics can be summarized as a char-
acter that is embodied in agents, most often in interface, personal, or
assisting agents.

9. Learning : Learning is an all-encompassing term that utilizes some or all of
the above properties, so that agents observe the impact of theirs or other
agents’ actions on the environment and predict the optimal behavior, that
is activated in similar situations in the future.

Alternative definition approaches attempt to classify agents with respect to
their application domain. Such domains may include inter alia searching and
filtering of information, monitoring conditions, alerting, proxing, coordinating
network tasks and managing resources.

A robust classification of agents is provided by (Nwana (1996)). Accord-
ing to this approach, agents can be classified with respect to the following
dimensions:

1. Mobility, that differentiates agents into static and mobile
2. The logic paradigm they employ, which classifies them as either deliberative

or reactive
3. The fundamental characteristic that describe the agent (autonomy, co-

operativity, learning). Based on these axes, agents can be classified as
(Figure 2):
• collaborative agents
• collaborative learning agents
• interface agents
• smart agents

In this work, we have adopted Nwana’s classification scheme, since it covers
successfully a wide area of agent-related applications, as well as it proves to
be robust enough to meet the needs of a large number of researchers in the
AT field.

2.2 Multi-Agent Systems (MAS)

The promising properties of agents discussed above can only be fully exploited
in complex architectures that are deployed in a systematic way. Agent Oriented
Software Engineering (AOSE) (Jennings (1999)) (Perini et al. (2001)) tackles

332 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

Fig. 2. Nwana’s classification of agents

this challenge by providing high level abstraction, modelling and development
tools, grouped under the umbrella term of Multi-Agent Systems (MAS). A
MAS is as a systematic solution to inherently distributed problems by utiliz-
ing autonomous interacting agents and appropriate communication protocols.
MAS integrate the above mentioned agent properties and provide new sys-
tem features that would otherwise be impossible to achieve using monolithic
systems. Such characteristics include:

• Increased performance, reliability and maintenability.
• Modularity, flexibility and extensibility.
• Overcome of limited scope and capacity of single agents in terms of knowl-

edge and tasks.
• Better support for dynamic, unpredictable environments.
• Introduction of collective intelligence, that is the augmentation of intelli-

gence of many simple, not-so-smart interacting entities in contradiction to
single, centralized sophisticated modules.

Distributed systems, in the above sense, are modelled as a network of au-
tonomous entities that regulate, control and organize all activities within the
distributed environment. In the recent years, a plethora of such distributed
systems has emerged. Most notably, the Grid paradigm (Foster et al.(2001))
that envisions a transparent infrastructure of high performance computer re-
sources or knowledge resources that is scattered throughout the globe. Since
the conceptualization of the Grid, it has become apparent that MAS may play
a pivotal role in the modelling and implementation of such systems (Foster
et al.(2004)) (Tang and Zhang (2006)). Other agent-based popular applica-
tions include Web Services (Gibbins et al. (2003)) (Muller et al. (2006)) (Negri
et al. (2006)), Web Crawling (Jansen et al. (2006)) (Dimou et al.(2006)), envi-
ronmental monitoring (Athanasiadis and Mitkas (2005)) (Purvis et al. (2003))

Data Mining and Agent Technology: a fruitful symbiosis 333

and virtual market places (Wurman et al. (1998)) (Wellman and Wurman
(1998)).

MAS Characteristics

In general, MAS adhere to the following three primitives. First, MAS must
specify appropriate communication and interaction protocols. Despite agents
being the building blocks of a problem solving architecture, no individual
problem could be effectively solved if no common communication ground, and
no action protocol exists.

Secondly, MAS must be open and decentralized. No prior knowledge of,
for example, number of participants or static behaviors are always known to
the system developer. In a running MAS, new agents may join at any time
having only to comform to the communication protocol, being able to act on
the way they choose, often in unpredictable manner.

Finally, MAS must consist of possibly heterogeneous agents that are scat-
tered around the environment and act autonomously or in collaboration.

2.3 Data Mining

The need for methods for discovering useful information in large data volumes
has been a vivid research topic for many years. Especially nowdays, this need
is imperative due to the increasing rate of data production, intensified by the
ever-increasing demand for information. DM is a relatively new approach to
this problem, often denoted as Knowledge Discovery in Databases (KDD),
deals with this exact problem: “the extraction of interesting, non-trivial, im-
plicit, previously unknown and potentially useful information or patterns from
data in large databases” (Fayyad et al.(1996)). Though a large number of pat-
terns may arise from the application of DM on datasets, only interesting ones
are selected, that is patterns that can be easily understood by humans and
suitable for validating a user hypothesis.

Other researchers argue that DM is only “the most important step in the
KDD process and involves the application of data analysis and discovery al-
gorithms that, under acceptable computational efficiency limitations, produce
a particular enumeration of patterns of data” (Allard and Fraley (1997)). Ei-
ther approach adopted, in essence DM and KDD address the same problem of
extracting useful knowledge and, within the context of this chapter, integrate
this knowledge into MAS.

KDD process

KDD is the iterative traversal of the list of steps presented in Table 1
One or more steps of the KDD process may be repeated as many times

deemed necessary, in order to come up with desirable outcome.

334 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

Table 1. Steps of the KDD process

1. Identify the goal of the KDD process
2. Create a target dataset
3. Clean and preprocess data
4. Reduce and project data
5. Identify the appropriate DM method
6. Select a DM algorithm
7. Apply DM
8. Evaluate DM results
9. Consolidate discovered knowledge

Data Mining Techniques

DM techniques may be applied on large data sets either for validation of a
hypothesis or for discovering new patterns. The latter case is further divided
into prediction of future trends of the data fluctuation and to a more detailed
description and understanding of already extracted patterns. Within the scope
of this chapter, focus is given on discovering new patterns and the associated
DM techniques include (Fayyad et al.(1996)):

1. Classification: the discovery of knowledge model that classifies new data
into one of the existing pre-specified classes.

2. Characterization and Discrimination: the discovery of a valid description
for a part of the dataset.

3. Clustering : the identification of finite number of clusters that group data
based on their similarities and differences.

4. Association-Correlation: the extraction of association rules, which indi-
cate cause-effect relations between the attributes of a dataset.

5. Outlier analysis: the identification and exclusion of data that do not abide
by the behavior of the rest of the data records.

6. Trend and evolution analysis: the discovery of trends and diversions and
the study of the evolution of an initial state/hypothesis throughout the
course of time.

2.4 Integrating Agent Technology and Data Mining

AT and DM are two separate vessels that each, as derived from the above,
has its own scope and applicability. The idea of combining these diverse tech-
nologies is emerged by the need to either a) enrich autonomous agents by
employing knowledge derived from DM or b) utilize software agents to as-
sist the data extraction process. Both aspects are intriguing and challenging,
mainly because of the disparity of AT and DM, since:

1. Despite logic being their common denominator, AT and DM employ two
complementary logic paradigms. Agent reasoning is usually based on de-
ductive logic, whereas DM embraces inductive logic.

Data Mining and Agent Technology: a fruitful symbiosis 335

2. Categorization of MAS with respect to DM-extracted knowledge is com-
plicated due to the wide application range of both technologies.

Logic paradigms

In deductive inference, conclusions are drawn by the combination of a number
of premises. Thus, knowledge models are applied to data producing knowledge
information (Fernandes(2000)). Under the assumption that these premises are
true, deductive logic is truth preserving. In MAS applications, deduction is
used by agents in a form of predefined rules and procedures usually defined by
domain experts. These rules specify agent actions with respect to the input
sensed. Nevertheless, deduction proves inefficient in complex and versatile
environments (Arthur (1994)) (Wooldridge (1999)).

Inductive inference, on the other hand, attempts to transform specific data
and information into concrete, generalized knowledge models. During the in-
duction process, new rules and correlations are being produced aiming at
validating each hypotheses. In contradiction to deduction, induction may lead
to invalid conclusions, as it only uses progressive generalizations of specific
examples (Kodratoff (1988)).

It becomes evident that the coupling of the above two approaches under the
combination of the carrying technologies leads to enhanced and more efficient
reasoning systems as proved by (Symeonidis and Mitkas (2005)). Indeed, this
combination overcomes the limitations of both paradigms by using deduction
for well-known procedures and induction of discovering previously unknown
knowledge. The processes of agent training and knowledge diffusion are further
explained in the remainder of this section.

Agent modelling

Knowledge extraction capabilities must be present in agent design, as early as
in the agent modelling phase. During this process, the intended DM techniques
employed shape the nature of the reference engine and provide the knowledge
model of the agent with required useful patterns. Every agent exhibiting such
reasoning capabilities is required to have the internal structure outlined below.

• Application domain
• Domain ontology
• Agent shell
• Agent type
• Behavior type
• Knowledge Model
• Reasoning engine

When the DM-generated knowledge model is incorporated to the otherwise
dummy agent, the outer layers, namely domain ontology, agent shell, agent

336 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

type and behavior type consist the functional parts of the agent that are
influenced in corresponding manners.

The process of dynamically incorporating DM-extracted knowledge models
(KM) into agents and MAS is defined as “agent training” while the process of
revising in order to improve the knowledge model of agents by reapplying DM
techniques is defined as retraining. Finally, “knowledge diffusion” is defined
as the outcome of the incorporation of DM extracted knowledge to agents.

Three levels of diffusion

Knowledge diffusion is instantiated in three different ways, with respect to
the alternative targets of DM:

1. DM on the application level of MAS. DM is applied in order to find useful
rules and associations in application data, in order to provide knowledge
nuggets to the end user, independently of the internal architecture.

2. DM on the behavioral level of MAS. DM is applied on behavioral data,
usually log files with past agent actions, in order to predict future agent
behaviors.

3. DM on the evolutionary agent communities. Evolutionary DM is per-
formed on agent communities in order to study agent societal issues.
According to this societal point of view, the goals that need to be sat-
isfied are not atomic but collective and, therefore, knowledge is fused into
agents that share common goals.

3 Related work

3.1 MAS and DM

The integration of AT and DM is a subject of a number of research efforts that
can be found in the literature. In (Galitsky and Pampapathi(2003)), a com-
bination of inductive and deductive logic for reasoning purposes is proposed
for improved customer relationship management. In this work, deduction is
used when complete information is available, whereas induction is employed
to forecast behaviors of customers when the available information is incom-
plete. (Fernandes(2000)) provides an implementation of a single inference en-
gine for agents that uses both inductive and deductive reasoning. In this work,
logic terms of model data, information and knowledge are incorporated and
processed by deductive agents. Finally, an integration of deductive database
queries and inductive analysis on these queries and their produced knowledge
is presented in (Kero et al. (1995)).

It is a frequent observation in MAS applications that a tradeoff between
inference (either inductive or deductive), complexity and development cost
arises. However, in more dynamic environments, where both requirements

Data Mining and Agent Technology: a fruitful symbiosis 337

and agent behaviors need constant modification, a systematic approach is
compulsory. Symeonidis and Mitkas (Symeonidis and Mitkas (2005)) present
a unified methodology for transferring DM extracted knowledge into newly
created agents. Knowledge models are generated through DM on the various
levels of knowledge diffusion and are dynamically incorporated in agents. The
iterative process of retraining through DM on newly acquired data is em-
ployed, in order to enhance the efficiency of intelligent agent behavior. The
suggested methodology is thoroughly tested on three diverse case studies.

3.2 Evaluation

Although promising, the integration of DM results into MAS functionality
arises interesting and some times crucial issues, as far as safety and sound-
ness is concerned. Seeking to extend the work of (Symeonidis and Mitkas
(2005)) and provide an evaluation framework for agent efficiency, we present
a literature review on intelligent agent evaluation.

Evaluation is a vital step in any complete scientific and engineering
methodology. It is defined as “the process of examining a system or a sys-
tem component to determine the extend to which specified properties are
present”1. It is the most powerful and sound tool for researchers to assess
the quality and applicability of their findings, as well as to set the limits and
the optimal environmental or intrinsic system parameters for optimal perfor-
mance.

Within the Soft Computing paradigm, evaluation is an all encompassing
term that may address any component of the system at hand, heavily depend-
ing on the developer’s aims. It is therefore the researcher’s choice to focus on:
a) algorithmic issues, b) system performance evaluation, or c) observable in-
telligence of the implemented system. By addressing one or more of the above,
a researcher is able to isolate theoretical shortcoming or implementation mal-
practices, comprehend the intrinsic characteristics of the system and improve
it in the most beneficial manner.

Algorithmic performance and quality evaluation in the context of Soft
Computing has been an issue covered by a large corpus of work in the liter-
ature, that especially draws from the information retrieval theory primitives.
In such cases, the algorithm employed is assessed against its ability to ex-
tract the largest percent possible of useful information. Common metrics in
this direction include precision, recall, fallout, F-measure and mean average
precision. Other Soft Computing approaches use other appropriate metrics
or aggregation techniques, depending on the case, including ROC curves, fit-
ness functions and composite figure of merits. Algorithmic evaluation is an
important tool that gives a summary of the black box implementation of any
algorithm.

1 The Free Online Dictionary of Computing, September 2003
(http://www.foldoc.com)

338 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

In the case of intelligent systems, such as MAS, instead of evaluating indi-
vidual algorithms, we need to assess the actual impact of the employed tech-
niques with respect to other engineering aspects, such as integration issues,
performance issues and impact of the selected techniques to the overall quality
of the outcome. Moreover, emergent, unpredictable and intelligent behavior
that often is exhibited by such systems complicates the process of defining
and realizing evaluation procedures. For instance, a bidding agent may use a
DM knowledge extraction algorithm from historical data. Despite the satis-
faction of high algorithmic precision, the agent may end up losing all auctions
because of inefficiency in timing and/or overall strategy. We, therefore, need
to regard the system at hand as an integrated intelligent system that con-
sists of modules, exhibits certain behaviors and aims at the accomplishment
of specific goals.

In the literature, two general research approaches towards the direction
of engineering aspects evaluation exist: a) bottom-up and b) top-down. The
first approach represents the strong AI perspective on the problem, indicating
that intelligent systems may exhibit any level of intelligence comparable to
human abilities. Zadeh (Zadeh (2002)) argues that evaluating such systems is
infeasible today, due to the lack of powerful formal languages for defining in-
telligence and appropriate intelligent metrics. The second approach represents
the weak AI or engineering perspective, according to which intelligent systems
are systems of increased complexity that are nevertheless well-defined in spe-
cific application domains, designed for solving specific problems. Albus (Albus
et al. (2000)) suggests that intelligent performance can be effectively evaluated
after a concise decomposition of the problem scope and definitions of relative
metrics and measurement procedures. Driven by the urging need to evalu-
ate and compare existing or emergent applications, we adopt the top-down
approach.

It should be denoted at this point that no general, complete methodology
for evaluating engineering applications exists. Instead, researchers often have
to devise their own ad-hoc metrics and experimental procedures. In fact, in
some cases, the chosen parameters or input data are chosen so as to produce
the best results for the -each time presented- method. Moreover, the findings
are often supported by qualitatively arguments only, in favor of the proposed
system and no debate with respect to its drawbacks is provided. Consequently,
it is impossible for a third party to repeat the evaluation procedure and vali-
date the quality of the proposed solution by concluding to similar results. The
need for a generalized evaluation framework is, thus, evident.

The requirements of such a methodology is to address both system per-
formance issues as well as emergent, intelligent atomic and social behavior.
To answer this challenge, we must devise a methodology that focuses on the
following:

• Re-usability : The provided methodology must be domain independent and
must be available for reuse under different application scenaria, always

Data Mining and Agent Technology: a fruitful symbiosis 339

taking into account possible inherent or emergent heterogeneity in different
implementations.

• Qualitative comparability : Different implementations in a specific applica-
tion domain must be liable to comparison with respect to a set of selected
qualitative features.

• Quantitative assessment : Different implementations in a specific applica-
tion domain must also be liable to comparison with respect to a set of
selected quantitative criteria. Additionally, there must be the opportunity
of defining optimal or desired performance, against which one or more
implementations may be compared.

Software engineering evaluation, as a well established field, consists a ma-
jor source of background theory and tools towards this direction. Complete
methodologies with quantitative and qualitative metrics have been developed
and used in actual software projects. Although subsets of metrics and methods
may be adopted, these approaches do not suffice for evaluating intelligent sys-
tems, since standard software evaluation processes focus in product features
and do not always take into account emergent and unpredictable system be-
havior.

Ongoing efforts for generalized metrics and evaluation methodologies exist
in application fields, such as robotics and autonomic computing. In robotics,
evaluation efforts span from autonomous vehicle navigation (Nelson et al.
(2002)) (Hu and Zeigler (2002)) (Zimmerman et al. (2002)) to hybrid human-
robot control systems (Scholtz et al. (2002)) (Burke et al.(2002)) (Goodrich
et al. (2002)). In autonomic computing, emphasis is given to the quality as-
sessment of the selected self-managing techniques (Huebscher and McCann
(2004)). Both fields provide us with usefull metrics and thorough method-
ological steps. However, neither of the above approaches are complete and
mature nor do they provide us with relevant tools for the case of knowledge
infusion in autonomous entities.

4 A methodology for designing and evaluating
DM-enriched applications

In this section we present a generalized methodology for comprehensive de-
velopment of DM-enriched Multi-Agent Systems. While a typical designing
methodology comprises many parts, we focus mainly on the evaluation part
of our methodology, for two reasons. First, a multiplicity of designing method-
ologies exists in the area of MAS and any of them could be used and tailored
to model and implement DM enriched applications. Second, there is a re-
markable lack of evaluation methods and tools in the area of MAS. By first
outlining the evaluation requirements of our proposed approach, we imply the
designing requirements that can be met by some of the existing designing
methodologies.

340 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

The proposed evaluation methodology serves as an off-the-shelf tool for
researchers and developers in this field. Composed of both theoretical analy-
sis and software tools, it provides guidelines and techniques that can be used,
adopted or extended for the application domain at hand. We follow the top-
down engineering perspective, as proposed by Albus (Albus et al. (2000)) and
described in the previous section. The methodology is therefore applicable to
existing applications or applications that meet current agent oriented engi-
neering concepts and follow the definitions for agent systems and DM terms
provided in previous sections.

In our approach, evaluation derives from the observable behavior of agents
within MAS. We therefore consider agents to be black boxes at different levels
of granularity, depending on the application scope and the evaluation needs
of the designer. In a fine-grained level, it is desirable to isolate single agents
and observe their efficiency and impact of their actions on their environment.
In a coarse-grained level, we focus on the overall behavior of an agent society
and the outcome of transparent collaborative problem solving, competition
or negotiation. In the former case, we consider each participating agent as a
black box, whereas in the latter case we view the entire MAS as a black box.
In both cases, the methodology isolates and measures certain characteristics
of the observable behavior of each black box.

By this approach, we assess the impact of the actual performance of agents
and MAS, bypassing the methods of implementation, algorithms and other in-
trinsic characteristics. This implementation independence of our methodology,
makes it a powerful tool for measuring both directly the actual efficacy of a
system as a whole and indirectly the performance of the intrinsic methods
employed. In other words, the algorithmic decisions are indirectly handled
and revised in an iterative manner, if and only if the results of the observable
behavior evaluation are not within accepted limits. Moreover, two differently
implemented systems can be compared against each other, solely in terms of
efficiency, having the underlying mechanisms implicitly compared at the same
time.

For establishing an evaluation framework that meets the above character-
istics, we define:

• Horizontal aspects, the essential methodological steps, that if followed se-
quentially in an iterative manner, will comprise a complete evaluation
methodology. The horizontal aspects of our methodology are:
– Definitions and theoretical background on evaluation terms and relevant

techniques.
– Theoretical tools that can help designers chose what to measure, how

to measure and how to integrate specific findings.
– Software tools that assist designers in their experimental measure-

ments.

Data Mining and Agent Technology: a fruitful symbiosis 341

• Vertical aspects are specific techniques that may be part of any of the
above horizontal aspects and deal with the following three terms (Shih
(2000)):
– Metrics that correspond to system features to be measured.
– Measurement methods that define the actual experimental procedure

of assigning measurement values to the selected metrics.
– Aggregation of the metric-measurement pairs in single characterizations

for the system.

In the remainder of this section, we examine the above mentioned hori-
zontal aspects in turn, analyzing each of their vertical aspects accordingly.

4.1 Definitions and theoretical background

The definitions of relevant terms and the corresponding theoretical back-
ground is of vital importance, in order to determine the scope and goals
of evaluation. Any developer, before actually initiating his/her experiments,
must have full grasp of what can and what cannot be evaluated. We, here-
inafter, present relevant definitions and background theory with respect to:
a) metrics, b) measurement methods, and c) aggregation.

Metrics

Metrics are standards that define measurable attributes of entities, their units
and their scopes. Metrics are the essential building blocks of any evaluation
process, since they allow the establishment of specific goals for improvement.
A specific metric provides an indication of the degree to which a specific
system attribute has met its defined goal. Deviation from the desired range of
values indicates that improvement is needed in the related parts or modules
of the system. With respect to a complete evaluation methodology, a metric
is the answer to the question: “What should I evaluate?”.

It must be noted that in software engineering (SE) the term metric is often
used interchangeably with the term measurement to denote specific measured
values for an attribute. In this work, however, we distinguish the two terms, in
order to separate the metrics selection process from the actual measurement
data collection.

A metric is defined by: a) its relationship to the corresponding features of
the evaluated system, and b) the selected scale of measurement. The former
consists of actual parameters or attributes of the system. For example, in
auction environments, typical attributes would be the starting and ending
time of an auction, as well as the winning bid. The latter term refers to the
unit of measurement for this attribute. In the above example, a timestamp
in milliseconds or an amount in Euros would suffice to describe the scale of
the selected attributes. Typical types of scales include nominal and ordinal
values, intervals and ratio scales.

342 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

In SE more than 300 metrics have been defined and used in various eval-
uation methodologies. Metrics are organized in categories, including techni-
cal, performance, business, productivity and end-user metrics (Fenton(1991)).
However, in this work, we focus only on performance metrics, since DM for
MAS is a relatively new technology that has not yet reached the maturity
of software products. The proposed evaluation methodology, however, is ex-
pandable so that other aspects besides performance may be covered as well.

A requirement of our methodology with respect to metrics is to be able to
provide a set of appropriate metrics and a comprehensive organization of this
set in terms of similarity and cohesion. This taxonomy of metrics should also
be extensible so that it is applicable to any application. A user will ideally be
able to parse this taxonomy and select the metrics that are desirable for the
system at hand.

Measurement

Measurement is defined as “the process of ascertaining the attributes, di-
mensions, extend, quantity, degree of capacity of some object of observation
and representing these in the qualitative or quantitative terms of a data lan-
guage” (Krippendorff (1986)). Having selected the appropriate metrics, mea-
surement is the next fundamental methodological step that systematically
assigns specific values to these metrics. Typical measurement methods con-
sists of experimental design and data collection. A measurement method is the
answer to the question “How should I perform the experimental evaluation?”.

Among the three distinct steps of the proposed methodology, measure-
ment is the most dependent on the implementation details of the application.
Indeed, a generalized evaluation methodology cannot indicate precise steps
of carrying out a specific measurement procedure. From this point of view,
the key requirement of our methodology is to provide a set of measurement
methods, so that the user may choose from a variety of options the most
appropriate on to tackle the application domain at hand. Our methodology
also provides a guideline list for conducting experimental design and data
collection, as derived from traditional SE evaluation paradigms.

Aggregation

Aggregation, or composition, is the process of summarizing multiple measure-
ments into a single measurement is such a manner that the output measure-
ment will be characteristic of the system performance. Aggregation groups
and combines the collected measurements, possibly by the use of weights of
importance, in order to conclude to atomic characterization for the evaluated
system. For example, an evaluated system may perform exceptionally well
in terms of response time metrics (timeliness), but these responses may be
far from correct (accuracy). An aggregation process must weightedly balance
contradicting measures and provide an overall view of parts or the whole of

Data Mining and Agent Technology: a fruitful symbiosis 343

the system, within boundaries of acceptable performance. Aggregation is the
answer to the question: “What is the outcome of the evaluation procedure?”.

A plethora of diverse aggregation techniques exist. Most commonly, ag-
gregation is accomplished with the assistance of mathematical representation
of multi-dimensional vectors and methods of either comparing sets of such
vectors or comparing single vectors against predefined ideal vectors. The field
of multi-criteria decision making provides us with a rich literature on this
issue. Approaches in this field vary from simple sum, average, triangulation
or other weighted functions to multi-dimensional vector comparison and vec-
tor distance. Especially in the field of intelligent system evaluation, vectors
play a crucial role, in the form of Vector of Performance (VoP) or Vectors of
Intelligence (VoI) (Szuba (2002)).

A requirement of our methodology with respect to aggregation is to provide
with the user with appropriate aggregation theory and techniques in order to
combine any specific measurements into conclusive characterizations of the
evaluated system.

4.2 Theoretical Tools

We next present a set of theoretical tools that aim to assist users throughout
the designing of the evaluation procedure, by providing sets of options and
guidelines for intelligent performance assessment.

Metrics

Motivated by the requirements for metrics presented above, we introduce a
theoretical tool for metric categorization in the form of an acyclic directed
graph. The graph is organized in layers or views of granularity from general
to specific, as further explained below. A user may traverse the graph in a
top-down manner and, depending on the choices made, he/she shall conclude
to a set of suitable metrics. After finalizing the measurement and aggregation
methodology, as presented in the following sections, the developer will be able
to traverse the graph upwards in order to provide single characterization for
the system at each view. The graph is designed to be general, but also provides
the option of extensibility for necessary domain specific metrics.

This tool was inspired by numerous related efforts in the traditional SE
field, that provide comprehensive taxonomies of metrics (e.g. (de los Ange-
les Martin and Olsina (2003)). Besides dealing with predictable, deterministic,
closed and non-dynamic software, the above approaches also come short be-
cause of the flat categorization of metrics at a single level of granularity.

In the proposed approach, we organize a metrics graph into four views, as
depicted in Figure 3:

These views include:

344 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

Fig. 3. Metrics graph

1. System view : At the top-most level, the class of the application is selected.
A user may chose between single-agent, multi-agent society and multi-
agent competition, depending on the scope and focus of the evaluation
effort.

2. Linguistic evaluation view : At this level, a user chooses the appropriate
verbal characterizations of system aspects, such as accuracy, timeliness,
robustness and scalability. These abstract high level characterizations ex-
clude parts of the underlying metrics, while focusing on the aspects of
interest to the evaluator.

3. Generic metrics view : This level consists of metrics that are general and
independent of the application field, such as response time, number of
agents and message exchange frequency. The user may either use directly
these metrics or refine them by continuing to the next level.

4. Specific metrics view : The final level consists of metrics that are specific to
the application field. These metrics are only defined by the user, since they
are not known a priori to a generalized evaluation methodology. Newly
defined metrics must conform to the metric definition and parametrization
presented in the previous section. Finally, they must be appended to one
of the graph nodes of the above levels with directed arcs.

After selecting the metrics from this graph, the user is requested to define a
set of parameters for each metric, including the preferred scale of measurement
and other attributes, such as frequency of measurement, time intervals etc.

Measurement methods

Before implementing the actual measurement process, one must define the
measurement method. Kitchenham (Kitchenham (1996)) provides a catego-
rization of measurement techniques, with respect to the types of properties

Data Mining and Agent Technology: a fruitful symbiosis 345

employed and the nature of the experimental technique. Inspired by this work,
we provide the categorization displayed in the Table 2.

Table 2. Categorization of measurement methods

Experiment Type Description

Quantitative experiment An investigation of the quantitative impact of meth-
ods/tools organized as a formal experiment

Quantitative case study An investigation of the quantitative impact of meth-
ods/tools organized as a case study

Quantitative survey An investigation of the quantitative impact of meth-
ods/tools organized as a survey

Qualitative screening A feature-based evaluation done by a single individual
who not only determines the features to be assessed
and their rating scale but also does the assessment. For
initial screening, the evaluations are usually based on
literature describing the software method/tools rather
than actual use of the methods/tools

Qualitative experiment A feature-based evaluation done by a group of poten-
tial user who are expected to try out the methods/tools
on typical tasks before making their evaluations

Qualitative case study A feature-based evaluation performed by someone who
has used the method/tool on a real project

Qualitative survey A feature-based evaluation done by people who have
had experience of using the method/tool, or have stud-
ied the method/tool. The difference between a survey
and an experiment is that participation in a survey is
at the discretion of the subject

Qualitative effects analysis A subjective assessment of the quantitative effect of
methods and tools, based on expert opinion

Benchmarking A process of running a number of standard tests using
alternative tools/methods (usually tools) and assessing
the relative performance of the tools against those tests

Having selected the measurement method, one must thoroughly provide
an experimental design prototype and a data collection procedure. As stated
earlier, our methodology can only provide a set of guidelines that any designer
may adjust to their specific application. A typical experimental design proce-
dure must describe thoroughly the objectives of the experiments and ensure
that these objectives can be reached using the specified techniques.

346 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

The last step of the measurement methodology is to carry out the data
collection process. Here, the basic guidelines for the designer to follow are to
ensure that the data collection process is well defined and monitor the data
collection and watch for deviations from the experiment design.

Aggregation

Following the collection of measurement values and the construction of metric-
measurement pairs, the problem of aggregation arises. In the evaluation pro-
cess, aggregation occurs naturally in order to summarize the experimental
findings into a single characterization of the performance, either of single mod-
ules, or the system as a whole. In the case of the metrics graph of the proposed
methodology, after having the measurements collected, the user must traverse
the graph in a bottom-up manner. From the specific metrics view and the
general metrics view, he/she must proceed upwards and, at each view, apply
aggregation techniques to provide single characterizations for every parent
node.

For example, assume that the simplified subtree, depicted in Figure 4,
has been used for measuring the performance of a single agent. It must be
noted that in this example, no user specified metrics have been included and
therefore the Specific Metrics View layer is omitted.

Fig. 4. Example metrics graph for aggregation

We assume that we already have obtained measurement values for the
metrics at the general metrics view. In this example, the aggregation process
consists of two steps. The first step concludes to a single measurement or char-
acterization for each of the two selected linguistic terms, namely timeliness
and accuracy, by weightedly combining the available measurements. The sec-
ond step combines the linguistic characterization into a single characterization
for the single agent system.

It becomes apparent from the above example, that a natural method for
combining diverse and heterogeneous measurement information and linguis-
tic characterizations is needed. We argue that fuzzy aggregation provides us

Data Mining and Agent Technology: a fruitful symbiosis 347

with the appropriate natural functionality for this purpose. The term natural
refers to the ability of the evaluator to express the evaluation findings in a
manner that is coherent to their natural language. In other words, the fuzzy
aggregation process translates the problem of combining numerical, ordinal
or other measures into a collection of verbal characterizations for the system
performance.

The proposed fuzzy aggregation method consists of four steps:

1. Define weights in the metrics graph. This process determines the impor-
tance of each node in the metrics graph with respect to the overall system
performance. This decision relies heavily on the application domain as well
as the requirements of each application. Hence, the determination of the
weights may occur either a) semi-automatically, in case historical data on
the importance of each node are available, possibly by an expert system,
or b) directly by an expert user, the system designers in most cases.

2. Define corresponding fuzzy scales for each metric. The next step deals
with the definition of fuzzy scales for the selected metrics. Fuzzy scales
are defined by ordinal linguistic variables, such as low, moderate, high
and membership functions that map numerical values to the above vari-
ables. Having the scales defined, one may already have scales for natural
characterizations of performance, such as high response time or moderate
accuracy, with respect to desired values.

3. Convert actual measurements to fuzzy scales. The conversion is a simple
import of the selected measurements to the membership functions defined
in the previous step.

4. Apply a corresponding fuzzy aggregation operator at each view of the graph.
A wide variety of fuzzy aggregation operators exists (Grabisch et al.
(1998)), which can be categorized in:
• Conjunctive operators, that perform aggregation with the logical

“and” connection.
• Disjunctive operators, that perform aggregation with the logical “or”

connection.
• Compensative operators, which are comprised between minimum and

maximum, such as mean or median operators.
• Non-compensative operators, that do not belong to any of the above

categories, such as symmetric sums.

Theoretical tools: Summary

In Table 3, we summarize the required methodological steps with respect to
the theoretical tools, which take place at the evaluation process of a devel-
opment methodology. In section 5.2, we present a real world case study on
which the presented methodology is thoroughly applied.

348 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

Table 3. Summarization of methodological steps

1. Traverse metrics graph and select metrics
2. Provide domain specific metrics (optionally)
3. Determine metrics parameters
4. Specify measurement method and parameters
5. Execute experiments
6. Define weights in the graph
7. Define fuzzy scales and convert measurements accordingly
8. Select and apply aggregation operators on the collected measurements

4.3 Software Tools

In addition to the above presented theoretical tools, a complete off-the-shelf
evaluation methodology must contain specifically implemented software tools
that assist the evaluation procedure. In this section, we sketch the outline of
such a software evaluation tool and the corresponding design guidelines that
can be adopted by other similar tools.

The proposed evaluator tool is required to provide semi-automated assis-
tance to the user throughout the following phases of evaluation:

• design
• run-time experimental procedure
• evaluation data summarization
• presentation of the results

A key requirement for this tool is that there must be minimum intervention
to the code of an existing system and minimum prior knowledge of the system
developer with respect to evaluation aspects. This requirement allows such
software tools to apply to existing applications as an evaluation plug-in using
dynamic code generation. Figure 5 depicts the six stages of assistance to the
evaluation procedure.

1. Selection of Metrics: The first component of the proposed tool, is a Graph-
ical User Interface that presents a metrics graph to the user and provides
him/her with edit operations. According to the needs of the application,
the user selects paths that lead to useful metric nodes and deletes paths
and nodes that are unnecessary. As a result, the user determines a subset
of the initial graph that is specific to the initiated evaluation procedure.
Finally, the parameters of each selected metric as well as corresponding
aggregation weights are defined.

2. Dynamic Interface Generation: Having the metrics subtree that has been
produced in the previous stage, the tool dynamically generates a Java
programming interface that corresponds to this evaluation procedure. El-
ements of agent behavior, communication and interaction are incorporated
to implement essential abstract methods that are instantiated in the next
stage.

Data Mining and Agent Technology: a fruitful symbiosis 349

Fig. 5. Outline of the proposed Agent Evaluator Software Tool

3. Implementation of Evaluator Agent :Based on the produced programming
interface, the user of the tool provide the necessary code for an Eval-
uator Agent that implements this interface, taking into account all the
application-specific details.

4. Attachment of Evaluator Agent to a MAS at run-time: The Evaluator
Agent is imported to the running system at run-time, executing observa-
tion operations on actions, events and messages that relate to the selected
metrics.

5. Data Collection: The Evaluator Agent records all the observed actions
into a log file.

6. Presentation of Results: After completion of the system execution or the
ellapse of a predefined interval, the proposed tool presents the outcome
of the evaluation process to the user, by processing the log files, deriv-
ing appropriate measurements from recorded events and messages and
aggregates the results accordingly.

350 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

5 Agent Academy II: an Agent-Oriented Software
Engineering tool for building DM-enriched MAS

5.1 Agent Academy II

Agent Academy is an open-source project, currently in the second version1.
The design and implementation has changed radically since version 1.0. The
initial goals of the application have not changed though, focusing mainly in the
integration of agent developing and data mining technologies. We tried also
to make this integration as broad as possible. In this perspective, we added
features we find valuable to developers such as project management capabili-
ties or java editing tools. Agent Academy enables users to reuse existing code
by allowing a user to simply paste it into AA directories.

Agent Academy consists of three basic tools that form also an abstraction
of creating a Multi Agent System. These tools are:

• Behavior Design Tool, where the user can create JADE behaviors, compile
them and use a number of capabilities that this tool provides (for example
users can create java source code that sends/receives ACL messages using
a simple GUI etc) A central feature of the BDT is that it supplies to
the users an intuitive tool for keeping the source code structured. The
idea behind this feature is that users can create blocks of code of any size
(i.e. it can span in an entire method). These blocks have a description, a
body (the source code) and the method in which they belong. All these
attributes can change dynamically allowing the users to add the same
block of code in many methods or create a high-level description of the
source file by summing up all the blocks descriptions. Implementing these
blocks as static variables enables users to exchange blocks among multiple
source files.

• Agent Design Tool, with which the developers can create software agents
and add the designed behaviors as the agents execution tasks. We think
agent functionality should reside in the agents behaviors, so ADT has
not extended capabilities. ADT is equipped with a number of capabilities
that we think are really important to agent developers. We are going to
briefly mention them here and describe them in greater detail later. The
first among them is the debugging tool (aka Graphical Monitor Agent
Execution) that its use can save lot of debugging time. By means of this
monitor, users can watch the execution of agent behaviors. This process is
dynamic, meaning that behaviors that are added to the agent long after
agent initialization can also be monitored. A tool that is also available
from other Agent Academy modules is the Data Mining Module. Users
can launch this tool, create a data mining model in the fly and add it to
agent code just like any other JADE behavior.

1 Available at http://sourceforge.net/projects/agentacademy

Data Mining and Agent Technology: a fruitful symbiosis 351

• Multi-Agent System Design Tool, is the tool that developers can use to
create Multi-Agent Systems. The functionality of this tool is limited, con-
strained mainly in the easy, user-friendly definition of the participants in
the MAS being designed.

Agent Academy users are encouraged to implement the MAS creation pro-
cess following steps that correspond to the order the AA tools were presented,
although other approaches can also be effective. Beyond this agent-oriented
functionality, Agent Academy comes with a set of tools for a small/medium
scale Project Management. In more detail, users are given the possibility
to keep a small account of their projects components by using the Project
Notepad that is matrix in which they can store the agents and behaviors cre-
ated inside their project. Users can also use standard clean/build/run project
capabilities from the Agent Academy main window.

5.2 A real world demonstrator

For validating the proposed methodology, we have selected Supply Chain Man-
agement (SCM) as a representative domain for testing agents that utilize DM
techniques. We have implemented an SCM agent under the name Mertacor
that has successfully participated in past Trading Agent SCM Competitions.
Mertacor combines agent features with DM techniques. In the remainder of
this section, we provide an overview of the SCM domain, the competition
scenario and Mertacor’s architecture. We conclude by applying the proposed
evaluation methodology to different implementations of Mertacor.

Supply Chain Management

SCM tasks comprise the management of materials, information and finance in
a network consisting of suppliers, manufacturers, distributors and customers.
SCM strategies target at the efficient orchestration of the sequence of tasks,
from raw materials to end-user service. Traditional SCM relied heavily on
rigid and predefined contracts between participating parties. However, the
need for dynamic configuration of the supply chain, as indicated nowaydays
by global markets, became imperative. Modern SCM approaches focus on the
integration, optimization and management of the entire process of material
sourcing, production, inventory management and distribution to customers.

The core design primitives for coping with SCM are a) coordination of
distributed, heterogeneous information,b) efficient negotiation between par-
ticipating entities and c) functional resource allocation. MAS are an ideal
modelling and implementation solution to this inherently distributed prob-
lem (Ferber(1999)) (Wu et al. (2000)). Moreover, DM techniques have been
successfully applied for SCM purposes in the past. DM has efficiently ad-
dresses issues of customer and supplier profiling, inventory scheduling and
market based analysis.

352 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

SCM Trading Agent Competition Game

The Trading Agent Competition (TAC) is an annual, international competi-
tion that consists of two games: a) TAC Classic and b) TAC SCM. In the lat-
ter, the game scenario, as described in (Collins and Janson (2004)), consists of
groups of six competing agents, each of which represents a PC assembler with
limited production capacity an competes with other agents in selling PC units
to customers. The agents’ task is to efficiently manage a part of the supply
chain, namely to negotiate on supply contracts, bid for customer offers, man-
age daily assembly activities and ship completed offers to customers. Negoti-
ations with manufacturers and customers are performed through a Request-
For-Quote (RFQ) mechanism, which proceeds in three steps:

• Buyer issues RFQs to one or more sellers
• Sellers respond to RFQs with offers
• Buyers accept or reject offers. An accepted offer becomes an order.

In order to get paid, the agent must deliver on-time, otherwise it is charged
with a penalty. At the end of the game, the agent with the greatest revenue
is declared winner. For more information on the game, read the game specifi-
cation provided by (Collins and Janson (2004)).

Mertacor Architecture

Mertacor, as introduced in (Kontogounis et al. (2006)), consists of four coop-
erating modules (Figure 6):

1. the Inventory Module(IM). Mertacor introduces an assemble-to-order
(ATO) strategy, which is a combination of two popular inventory strate-
gies, namely make-to-order and make-to-stock.

2. the Procuring Module(PM). This module predicts future demand and or-
ders affordable components, balancing between cheap procurement and
running needs in the assembly line.

3. the Factory Module(FM). This module constructs assembly schedules and
provides the Bidding Module with information on the factory production
capacity, based on simulation of customer demand for the next 15 game
days.

4. the Bidding Module(BM). This module attempts to predict a winning
bid for each order, by performing DM on logs of past games, and makes
respective offers for incoming orders.

Mertacor’s core integrates these modules into a transparently robust unit
that handles negotiations with both customers and suppliers. This architec-
ture provides flexibility and extensibility, permitting the application of Mer-
tacor’s strategy to other real-life SCM environments.

Data Mining and Agent Technology: a fruitful symbiosis 353

Fig. 6. Overview of Mertacor’s architecture

Evaluating Mertacor’s performance

In the remainder of this section, we apply the proposed evaluation method-
ology to various implementations of Mertacor. In our effort to assess the im-
pact of DM in Mertacor’s performance, we require that the experiments are
planned is such way that deals with both DM algorithmic-specific efficacy
and their impact on overall agent performance. We follow the methodological
steps defined in Table 3.

Step 1: Traverse metrics graph and select metrics

Starting from the System view, we select the Single Agent node and its corre-
sponding path. This choice is attributed to the nature of auctioning environ-
ments; we, being the developers of Mertacor, have complete control only on
the agent’s executing thread and observe the auctioning world only through
Mertacor’s perspective. We, therefore, need to focus on performance aspects
that exclusively deal with this single agent.

At the Linguistic Evaluation View, we select the linguistic metrics of Ac-
curacy, Timeliness and Adaptability. Indeed, from our experience in SCM
auctions, these three characteristics are the most significant ones, since the
outcome of each auction is heavily dependent on the deviation of the fore-
casted bid, the on-time delivery of the bid and the ability of the agent to
adapt in dynamic environments, respectively.

At the Generic Metrics View we only select Time, as the standard metric
for Timeliness. The rest of the metrics are domain specific and are, therefore,
defined in the next methodological step.

354 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

Step 2: Provide domain specific metrics

Metrics for Accuracy should directly refer to DM related performance, since
the outcome of the application of DM is directly related to the selected bid. For
this purpose, we have selected the Correlation Coefficient (cc), the Relative
Absolute Error (RAE) and the Root Mean Square Error (RMSE) metrics.

Finally, for Adaptability, we have selected Competition Intensity that de-
fines the participation intensity in the auction environment. In highly compet-
itive environments, our agent is required to exhibit a larger degree of adapt-
ability.

An instance of the metrics graph for this evaluation effort is depicted in
Figure 7.

Fig. 7. Resulted metrics graph for Mertacor evaluation

Step 3: Determine metrics parameters

We now continue by defining the scale of each metric. For the three linguistic
metrics, Accuracy, Timeliness and Adaptability, we define the corresponding
fuzzy scales in Step 7 of the methodology. For the generic and specific metrics,
we provide the following scales:

1. CC : The correlation coefficient is the degree at which the forecasted bid
and the resulted price are correlated. The cc lies in the [-1,1] interval.

2. RAE : The Relative Absolute Error is a percentage indicator for the devi-
ation of the above mentioned variables.

3. RMSE : The Root Mean Square Error is another well-known DM metric
for the above mentioned variables.

4. Time: In TAC SCM auctions, bids are normally submitted just before the
end of each predefined auction interval. One could argue that, since this
time constraint exists, all agents have a time barrier to bid and therefore

Data Mining and Agent Technology: a fruitful symbiosis 355

all bidding calculation procedures should be characterized either as suc-
cessful or failed. In that context, timeliness is only a binary metric that
provides no further performance indication. However, due to the mod-
ular architecture of Mertacor, the earliest possible decision on the bid,
allows the agent to perform other game-related tasks in this interval. We
therefore define Time as the time interval between the first call of the
related bidding API function and the determination of the bidding value,
in milliseconds.

5. Competition Intensity : We have selected two different competing environ-
ments that affect Adaptability : a) Finals, where the competition intensity
is high, and b) Second finals, where the competition intensity is low.

Step 4: Specify measurement method and parameters

Estimation of the winning price of the bids can be modeled as a regression
problem, where the desired output is the agent’s bidding price for clients’
RFQs and the inputs are the parameters related to the bid that are known
to the agent. The initial set of attributes considered are the demand (Total
PCs requested each day), the demand in the product’s market range, the due
date of the order, the reserve price of components, and the maximum and
minimum prices of same type PCs sold in the last days (2 previous days for
maximum 4 for minimum), as shown in Table 4.

Table 4. Set of SCM auction attributes for DM

Attribute description Attribute name

Demand (Total PCs requested the day the RFQ was issued) demandAll
Demand in the product’s market range demandRange
Duedate dueDate
Reserve price reservePrice
Maximum price of PCs of same type sold in the last 1 day max1
Maximum price of PCs of same type sold in the last 2 days max2
Minimum price of PCs of same type sold in the last 1 day min1
Minimum price of PCs of same type sold in the last 2 days min2
Minimum price of PCs of same type sold in the last 3 days min3
Minimum price of PCs of same type sold in the last 4 days min4
Winning price of the bid price

Available data was split into three subsets, each one representing a dif-
ferent market range (LOW - MEDIUM - HIGH), both for the finals and sec-
ond finals of the game, resulting to six different datasets (finalsLOWMEDI-
UMHIGH and secondFinalsLOWMEDIUMHIGH).

The instances within the initial datasets ranged from 45000 to 230000 in-
stances. Analysis was performed on all datasets. Nevertheless, due to space
limitation we shall discuss only one case (finalsLOW dataset), while analysis

356 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

on the other cases was performed in an analogous manner. The initial dataset
contained 156228 records of bids. In order to remove redundant information
and enable quicker and more accurate training, a number of pre-processing
filters were tested against the dataset. In particular, we applied the CfsSub-
setEval1 (Hall (1998)) WrapperSubsetEval2 (Kohavi and John (1997)), and
ReliefFAttributeEva3l (Sikonja and Kononenko (1997)) filters for attribute
selection, using the GreedyStepwise and RandomSearch search methods. The
trimmed dataset contained the following attributes as input: the demand,
the reserve price for components, the maximum price of same type PCs for
the two previous days and the minimum price for the previous day, while
price was the output attribute. In order to reduce the number of instances for
training, and since the class attribute (price) is numeric, the StratifiedRemove-
Folds4 (Breiman and Stone (1984)) method was selected. Two datasets were
finally produced, containing the one third (1/3) and one eighth (1/8) of the
initial instances respectively.

Finally, for training purposes, four different classification (regression) and
two meta-classification schemes were applied, in order to decide on the one
that optimally meets the problem of predicting the winning bid of an order:

1. Linear Regression
2. Neural Networks
3. SMOreg (Support Vector Machines)
4. the M5’ algorithm
5. Additive Regression
6. Bagging

Step 5: Execute experiments

In order to experiment on the data with a variety of training techniques and
algorithms, the WEKA (Witten and Frank (2005)) was selected, providing
with a wide range of filters for pre-processing, model evaluation, visualization
and post-processing. The results of the experimental procedures are presented
in Table 5 and Table 6, for low and high Competition Intensity values, respec-
tively.

Step 6: Define weights in the graph

This step requires a subjective, expert-initiated attribution of weights to the
corresponding edges of the metrics graph. Driven by our experience in the
field, we assign a higher weight to Accuracy (0.6) and lesser weights to Time-
liness (0.3) and Adaptability (0.1). The corresponding weights are illustrated
in Figure 7.

Step 7: Define fuzzy scales and convert measurements accordingly

We provide the following fuzzy sets for the selected metrics:

Data Mining and Agent Technology: a fruitful symbiosis 357

Table 5. Results of experiments for low Competition Intensity

Algorithm CC RAE (%) RMSE Time Data Subset

Linear Regression 0.93 28.99 90.17 108 LOW
Neural Networks 0.93 32.91 94.69 111 LOW
Support Vector Machines 0.93 26.47 89.08 157 LOW
M5’ 0.95 22.77 61.09 140 LOW
Additive Regr. 1.00 3.21 22.12 192 LOW
Bagging 0.98 14.89 52.02 201 LOW

Linear Regression 0.94 26.50 112.71 129 MEDIUM
Neural Networks 0.95 24.85 105.69 133 MEDIUM
Support Vector Machines 0.93 28.66 109.61 182 MEDIUM
M5’ 0.97 19.30 86.90 168 MEDIUM
Additive Regr. 1.00 3.01 23.53 230 MEDIUM
Bagging 0.98 13.26 65.52 237 MEDIUM

Linear Regression 0.94 26.78 105.51 140 HIGH
Neural Networks 0.95 27.83 105.21 144 HIGH
Support Vector Machines 0.94 25.82 103.32 204 HIGH
M5’ 0.96 21.29 87.14 183 HIGH
Additive Regr 1.00 2.98 24.70 249 HIGH
Bagging 0.98 15.13 65.69 260 HIGH

Table 6. Results of experiments for high Competition Intensity

Algorithm CC RAE (%) RMSE Time Data Subset

Linear Regression 0.98 14.34 63.40 110 LOW
Neural Networks 0.97 21.26 64.82 112 LOW
Support Vector Machines 0.96 17.48 72.84 155 LOW
M5’ 0.98 13.49 56.79 145 LOW
Additive Regr. 0.97 19.24 67.51 189 LOW
Bagging 0.99 5.62 27.76 199 LOW
Linear Regression 0.97 16.95 74.33 133 MEDIUM
Neural Networks 0.97 20.21 75.20 132 MEDIUM
Support Vector Machines 0.97 17.54 73.81 193 MEDIUM
M5’ 0.99 9.91 46.93 172 MEDIUM
Additive Regr. 0.96 25.98 92.30 227 MEDIUM
Bagging 1.00 4.84 31.38 233 MEDIUM
Linear Regression 0.97 16.55 68.14 142 HIGH
Neural Networks 0.98 18.94 71.91 144 HIGH
Support Vector Machines 0.97 16.27 72.31 208 HIGH
M5’ 0.99 10.03 45.35 178 HIGH
Additive Regr. 0.95 28.26 94.68 242 HIGH
Bagging 0.99 5.70 34.90 263 HIGH

358 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

• Fuzzy variables very low,low,medium,high and very high for the RAE and
RMSE metrics

• Fuzzy variables low and high for the CC and Competition Intensity metrics
• Fuzzy variables low, medium and high for the Time metric

The corresponding fuzzy membership functions for CC, RAE, RMSE and
Time are depicted in Figure 8.

Fig. 8. Fuzzy membership functions for the selected metrics

Step 8: Select and apply aggregation operators on the collected measurements

The final step of the methodology consists of the application of the selected
aggregation method. As described in (Grabisch et al. (1998)), the application
of weighted operators result into a single characterization for every linguistic
metric. After summarizing the results it can be seen that Additive Regression
exhibit the best performance for all data subsets, as it balances between large
accuracy and adequate time responses, for both high and low Competition
Intensity.

Data Mining and Agent Technology: a fruitful symbiosis 359

6 Concluding remarks

As the number of application that integrate DM and AT increase, the need
for assessing the overall system performance is imperative. In this work, we
have presented a generalized methodology for evaluating agents and MAS
that employ DM techniques for knowledge extraction and knowledge model
generation. The proposed methodology comprises a set of concise steps that
guide an evaluator through the evaluation process. A novel theoretical repre-
sentation tool introduces a metrics graph and appropriate selection guidelines
for measurement and aggregation methods. A real world DM-enriched agent
in the field of Supply Chain Management has used to demonstrate the appli-
cability of the proposed methodology. Future work in this direction include
the specification of a unique metrics ontology for the proposed metrics rep-
resentation graph and the expansion of the graph with a complete set of real
world metrics, borrowed either from the software engineering discipline or ex-
isting, ad-hoc efforts in intelligent systems evaluation. Finally, the proposed
methodology must be thoroughly tested in a number of diverse and represen-
tative case studies.

References

James Albus, Elena R. Messina, and John M. Evans. (2000), Performance metrics
for intelliget systems (permis) white paper. In Proc. of the First International
Workshop on Performance Metrics for Intelligent Systems (PERMIS).

Dennis Allard and Chris Fraley. (1997), Non parametric maximum likelihood esti-
mation of features in saptial point process using voronoi tessellation. Journal
of the American Statistical Association.

Brian W. Arthur. (1994), Inductive reasoning and bounded rationality. American
Economic Review, 84:406–411.

Ioannis N. Athanasiadis and Pericles A. Mitkas. (2005),Social influence and water
conservation: An agent-based approach. Computing in Science and Engg., 7
(1):65–70, 2005. ISSN 1521-9615.

Friedman J.H. unsrt Olshen R.A. Breiman, L. and C.J. Stone. (1984), Classification
and Regression Trees. Chapman and Hall, New York.

J. L. Burke, R.R. Murphy, D. R. Riddle, and T. Fincannon. (2002), Task perfor-
mance metrics in human-robot interaction: Taking a systems approach. In Proc.
of the Fourth International Workshop on Performance Metrics for Intelligent
Systems (PERMIS).

Arunachalam R. Sadeh N. Ericsson J. Finne N. Collins, J. and S. Janson. (2004),
The supply chain management game for the 2005 trading agent competition.
Technical report, CMU.

M. de los Angeles Martin and Luis Olsina. (2003), Towards an ontology for soft-
ware metrics and indicators as the foundation for a cataloging web system.
In LA-WEB ’03: Proceedings of the First Conference on Latin American Web
Congress, page 103, Washington, DC, USA, 2003. IEEE Computer Society.
ISBN 0-7695-2058-8.

360 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

Christos Dimou, Alexandros Batzios, Andreas L. Symeonidis, and Pericles A.
Mitkas. (2006), A multi-agent simulation framework for spiders traversing the
semantic web. In Web Intelligence, pages 736–739. IEEE Computer Society,
2006. ISBN 0-7695-2747-7.

Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. (1996),
Knowledge discovery and data mining: Towards a unifying framework. In KDD,
pages 82–88.

Norman E. Fenton. (1991), Software Metrics: A Rigorous Approach. Chapman &
Hall, Ltd., London, UK, ISBN 0442313551.

Jacques Ferber. (1999), Multi-Agent Systems: An Introduction to Distributed Arti-
ficial Intelligence. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, ISBN 0201360489.

A. A. A. Fernandes. (2000), Combining inductive and deductive inference in knowl-
edge management tasks. In DEXA ’00: Proceedings of the 11th International
Workshop on Database and Expert Systems Applications, page 1109, Washing-
ton, DC, USA, IEEE Computer Society. ISBN 0-7695-0680-1.

Ian T. Foster, Carl Kesselman, and Steven Tuecke. (2001), The anatomy of the
grid - enabling scalable virtual organizations. CoRR, cs.AR/0103025.

Ian T. Foster, Nicholas R. Jennings, and Carl Kesselman. (2004), Brain meets
brawn: Why grid and agents need each other. In AAMAS, pages 8–15.

Boris Galitsky and Rajesh Pampapathi (2003), Deductive and inductive reasoning
for processing the claims of unsatisfied customers. In Paul W. H. Chung,
Chris J. Hinde, and Moonis Ali, editors, IEA/AIE, volume 2718 of Lecture
Notes in Computer Science, pages 21–30. Springer, ISBN 3-540-40455-4.

Nicholas Gibbins, Stephen Harris, and Nigel Shadbolt (2003), Agent-based seman-
tic web services. In WWW ’03: Proceedings of the 12th international conference
on World Wide Web, pages 710–717, New York, NY, USA, 2003. ACM Press.
ISBN 1-58113-680-3.

M.A. Goodrich, E.R. Boer, J. W. Crandall, R.W. Ricks, and M.L. Quigley (2002),
Behavioral entropy in human-robot interaction. In Proc. of the Fourth Interna-
tional Workshop on Performance Metrics for Intelligent Systems (PERMIS).

Michel Grabisch, Sergei A. Orlovski, and Ronald R. Yager (1998), Fuzzy aggrega-
tion of numerical preferences. pages 31–68.

Amy R. Greenwald and Peter Stone. (2001), Autonomous bidding agents in the
trading agent competition. IEEE Internet Computing, 5(2):.

M. A Hall. (1998), Correlation-based feature subset selection for machine learning.
Technical report, Thesis submitted in partial fulfilment of the requirements of
the degree of Doctor of Philosophy at the University of Waikato.

X. Hu and B. Zeigler. (2002), Measuring cooperative robotic systems using
simulation-based virtual environment. In Proc. of the Fourth International
Workshop on Performance Metrics for Intelligent Systems (PERMIS).

Markus C. Huebscher and Julie A. McCann. (2004), Evaluation issues in autonomic
computing. In Proceedings of Grid and Cooperative Computing Workshops
(GCC), pages 597–608.

Bernard J. Jansen, Tracy Mullen, Amanda Spink, and Jan Pedersen (2006), Au-
tomated gathering of web information: An in-depth examination of agents in-
teracting with search engines. ACM Trans. Inter. Tech., 6(4):442–464, 2006.
ISSN 1533-5399.

Data Mining and Agent Technology: a fruitful symbiosis 361

Nicholas R. Jennings. (2001), An agent-based approach for building complex soft-
ware systems. Commun. ACM, 44(4):35–41, 2001. ISSN 0001-0782.

Nicholas R. Jennings. (1999) Agent-oriented software engineering. In Ibrahim F.
Imam, Yves Kodratoff, Ayman El-Dessouki, and Moonis Ali, editors, IEA/AIE,
volume 1611 of Lecture Notes in Computer Science, pages 4–10, ISBN 3-540-
66076-3.

Bob Kero, Lucian Russell, Shalom Tsur, and Wei-Min Shen. (1995) An overview
of database mining techniques. In KDOOD/TDOOD, pages 1–8.

Barbara Ann Kitchenham. Evaluating software engineering methods and tool, part
2: selecting an appropriate evaluation method technical criteria. SIGSOFT
Softw. Eng. Notes, 21(2):11–15, 1996. ISSN 0163-5948.

Y. Kodratoff. (1988), Introduction to machine learning. Pitman Publishing.
R. Kohavi and G. John. (1997), Wrappers for feature subset selection. Artificial

Intelligence journal, special issue on relevance, 97(1-2):273–324.
I. Kontogounis, Chatzidimitriou, A. K., Symeonidis, and P.A. Mitkas. (2006), A

robust agent design for dynamic scm environments. In LNAI, Vol. 3955, pages
127–136. Springer-Verlag.

Klaus Krippendorff, (1986), A Dictionary of Cybernetics. The American Society
of Cybernetics, Norfolk, VA, USA.

Ingo Muller, Ryszard Kowalczyk, and Peter Braun (2006), Towards agent-based
coalition formation for service composition. In IAT ’06: Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT 2006 Main Conference Proceedings) (IAT’06), pages 73–80, Washington,
DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2748-5.

A. Negri, A. Poggi, M. Tomaiuolo, and P. Turci (2006), Agents for e-business appli-
cations. In AAMAS ’06: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, pages 907–914, New York, NY,
USA, 2006. ACM Press. ISBN 1-59593-303-4.

A. L. Nelson, E. Grant, and T. C. Henderson. (2002), Competitive relative per-
formance evaluation of neural controllers for competitive game playing with
teams of real mobile robots. In Proc. of the Third International Workshop on
Performance Metrics for Intelligent Systems (PERMIS).

Hyacinth S. Nwana. (1996), Software agents: An overview. Knowledge Engineering
Review, 11(3):1–40.

Anna Perini, Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. (2001), Towards an agent oriented approach to software engineering.
In Andrea Omicini and Mirko Viroli, editors, WOA, pages 74–79. Pitagora
Editrice Bologna, 2001. ISBN 88-371-1272-6.

Martin K. Purvis, Stephen Cranefield, Roy Ward, Mariusz Nowostawski, Daniel
Carter, and Geoff Bush. (2003), A multi-agent system for the integration of
distributed environmental information. Environmental Modelling and Software,
18(6):565–572.

J. Scholtz, B. Antonishek, and J. Young. (2002) Evaluation of human-robot in-
teraction in the nist reference search and rescue test arenas. In Proc. of the
Fourth International Workshop on Performance Metrics for Intelligent Systems
(PERMIS).

T. K. Shih. (2000) Evolution of mobile agents. In Proc. of the First International
Workshop on Performance Metrics for Intelligent Systems (PERMIS).

362 Christos Dimou, Andreas L. Symeonidis, and Pericles A. Mitkas

M.R. Sikonja and I. Kononenko. (1997) An adaptation of relief for attribute esti-
mation on regression. machine learning. In Proceedings of 14th International
Conference on Machine Learning D., Fished (ed.), Nashville, TN, USA.

Andreas L. Symeonidis and Pericles A. Mitkas. (2005), Agent Intelligence Through
Data Mining. Springer Science and Business Media.

Tadeusz Szuba. (2002), Universal formal model of collective intelligence and its
iq measure. In CEEMAS ’01: Revised Papers from the Second International
Workshop of Central and Eastern Europe on Multi-Agent Systems, pages 303–
312, London, UK, 2002. Springer-Verlag. ISBN 3-540-43370-8.

Jia Tang and Minjie Zhang. (2006), An agent-based peer-to-peer grid comput-
ing architecture: convergence of grid and peer-to-peer computing. In ACSW
Frontiers ’06: Proceedings of the 2006 Australasian workshops on Grid com-
puting and e-research, pages 33–39, Darlinghurst, Australia, Australia, 2006.
Australian Computer Society, Inc. ISBN 1-920-68236-8.

Gerhard Weiss. (2001) Agent orientation in software engineering. Knowl. Eng.
Rev., 16(4):349–373, 2001. ISSN 0269-8889.

Michael P. Wellman and Peter R. Wurman. (1998), Market-aware agents for a
multiagent world. Robotics and Autonomous Systems, 24(3-4):115–125.

Ian H. Witten and Eibe Frank. (2005), Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, San Francisco.

Michael Wooldridge. (1999), Intelligent agents. In G. Weiss, editor, Multiagent
Systems. The MIT Press.

J. Wu, M. Ulieru, M. Cobzaru, and D. Norrie. (2000), Supply chain management
systems: state of the art and vision. In 9th International Conference on Man-
agement of Innovation and Technology, pages 759–764. IEEE Press, 2000. ISBN
3-540-43370-8.

Peter R. Wurman, Michael P. Wellman, and William E. Walsh. (1998), The michi-
gan internet auctionbot: a configurable auction server for human and software
agents. In AGENTS ’98: Proceedings of the second international conference on
Autonomous agents, pages 301–308, New York, NY, USA, 1998. ACM Press.
ISBN 0-89791-983-1.

Lotfi A. Zadeh. (2002), In quest of performance metrics for intelligent systemsa
challenge that cannot be met with existing methods. In Proc. of the Third Inter-
national Workshop on Performance Metrics for Intelligent Systems (PERMIS).

N. Zimmerman, C. Schlenoff, S. Balakirsky, and R. Wray. (2002), Performance
evaluation of tools and techniques for representing cost-based decision crite-
ria for on-road autonomous navigation. In Proc. of the Third International
Workshop on Performance Metrics for Intelligent Systems (PERMIS).

Approximate Frequent Itemset Mining In the
Presence of Random Noise

Hong Cheng1, Philip S. Yu2 and Jiawei Han1

1 University of Illinois at Urbana-Champaign {hcheng3,hanj}@cs.uiuc.edu
2 IBM T. J. Watson Research Center psyu@us.ibm.com

Summary. Frequent itemset mining has been a focused theme in data mining re-
search and an important first step in the analysis of data arising in a broad range
of applications. The traditional exact model for frequent itemset requires that every
item occur in each supporting transaction. However, real application data is usually
subject to random noise or measurement error, which poses new challenges for the
efficient discovery of frequent itemset from the noisy data.

Mining approximate frequent itemset in the presence of noise involves two key
issues: the definition of a noise-tolerant mining model and the design of an efficient
mining algorithm. In this chapter, we will give an overview of the approximate
itemset mining algorithms in the presence of random noise and examine several
noise-tolerant mining approaches.

Key words: error-tolerant itemset, approximate frequent itemset, core pat-
tern recovery

1 Introduction

Frequent itemset mining has been a focused theme in data mining research
with a large number of scalable mining methods proposed (Agrawal et al.,
1993 ,Agrawal and Srikant, 1994,Han et al., 2000,Zaki et al., 2000) and var-
ious extensions including closed itemsets, maximal itemsets and so on (Pei
et al., 2000, Zaki and Hsiao, 2002, Bayardo, 1998, Burdick et al., 2001). Fre-
quent patterns have found broad applications in areas like association rule
mining (Agrawal et al., 1993), indexing (Yan et al., 2004), classification (Liu
et al., 1998,Li et al., 2001,Cong et al., 2005,Cheng et al., 2007) and cluster-
ing (Wang et al., 1999). In these applications, the ultimate goal is to discover
interesting associations between objects and attribute subsets, rather than as-
sociation among attributes alone. One important experimental application of
frequent itemset mining is the exploration of gene expression data, where the

364 Hong Cheng, Philip S. Yu and Jiawei Han

(a) Embedded True Patterns (b) Observed Distorted Patterns

Fig. 1. Patterns with and without Random Noise

joint discovery of both the set of conditions that significantly affect gene regu-
lation and the set of co-regulated genes is of great interest. Another important
application of frequent itemset mining is frequent pattern-based classification,
where the associations between attributes and their relation to the class labels
or functions are explored.

Despite the exciting progress in the field of frequent itemset mining and
its extensions, an intrinsic problem with the exact frequent itemset mining is
the rigid definition of support. An itemset x is supported by a transaction t,
if each item of x exactly appears in t. An itemset x is frequent if the number
of transactions supporting it is no less than a user-specified minimum support
threshold (denoted as min sup). However, in real applications, a database is
typically subject to random noise or measurement error, which poses new
challenges for the discovery of frequent itemsets. For example, in a customer
transaction database, random noise could be caused by an out-of-stock item,
promotions or some special event like the world cup, holidays, etc.. Measure-
ment error could be caused by noise from experiments, uncertainty involved
in discretizing continuous values, stochastic nature of the study field, etc..
In privacy-preserving data mining (Agrawal and Srikant, 2000, Verykios et
al., 2004), random noise is added to perturb the true values of the original
database. Such random noise can distort the true underlying patterns. The-
oretical analysis by (Liu et al., 2006) shows that in the presence of even low
levels of noise, large frequent itemsets are broken into fragments of logarith-
mic size, thus the itemsets cannot be recovered by the exact frequent itemset
mining algorithms. Figure 1 shows two transaction databases. The x-axis rep-
resents items and the y-axis represents the transactions. Figure 1 (a) shows
the embedded true patterns in the database without random noise while (b)
shows the observed distorted patterns in the presence of random noise (sev-
eral “holes” appear in the embedded patterns due to random noise). If the
exact frequent itemset mining algorithms are applied to a database subject to

10 20 30 40 50 60 70
10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70
10

20

30

40

50

60

70

80

90

Approximate Frequent Itemset Mining In the Presence of Random Noise 365

random noise, as in Figure 1 (b), the original embedded true patterns will be
fragmented into several smaller ones which are highlighted by the bounding
boxes.

In this chapter, we will give an overview of approximate itemset mining
algorithms in the presence of random noise and examine three different ap-
proaches: (1) a heuristic error-tolerant itemset (ETI) approach (Yang et al.,
2001), (2) an apriori-based approximate frequent itemset (AFI) approach (Liu
et al., 2006) and (3) a core pattern recovery (AC-Close) approach (Cheng et
al., 2006) to solve this problem.

2 Preliminary Concepts

Let a transaction database D take the form of an n ×m binary matrix. Let
I = {i1, i2, . . . , im} be the set of all items and T = {t1, t2, . . . , tn} be the set
of all transactions in D. A subset of I is called an itemset. Each row of D is a
transaction t ∈ T and each column is an item i ∈ I. A transaction t supports
an itemset x, if for each item i ∈ x, the corresponding entry D(t, i) = 1. An
itemset x is frequent if the fraction of transactions supporting it is no less
than a user-specified threshold min sup.

An intuitive approach for handling errors is to relax the requirement that a
sub-matrix determined by the frequent itemset consists entirely of 1s, and al-
low it instead to contain a large fraction of 1s and a small fraction of 0s. Based
on the same philosophy, different studies proposed different mining models and
constraints on top of which, efficient mining algorithms and search/pruning
strategies have been developed. Since each study has some variations of the
mining model, the specific definitions and concepts are introduced with each
approach in the following sections respectively.

Table 1 summarizes and compares the characteristics of the three differ-
ent mining approaches in four aspects. Although the model definition and
algorithmic properties will be provided in the following sections in detail, we
give a brief explanation for Table 1. The first criterion error control describes
how each noise-tolerant model defines the fraction of errors allowed. The ETI
model controls the fraction of errors in each row or in the sub-matrix formed
by the itemset; while the AFI model and the AC-Close model control the frac-
tion of errors in both rows and columns. In addition, AC-Close enforces a
core pattern constraint which will be explained later. For mining methodol-
ogy, both ETI and AFI work in a bottom-up way i.e., generating itemsets in
a size-increasing order; while AC-Close works in a top-down fashion, i.e., gen-
erating itemsets in a size-decreasing order. All three methods search for the
itemsets in a breadth-first manner. As for the result quality criterion, it is
assessed through simulation experiments: given a noise-free dataset Dt and
known embedded patterns Ftrue, random noise is added to Dt to derive a
noisy dataset D. Then noise-tolerant mining algorithms are applied on D to
recover the true patterns. By knowing the true patterns, the quality of mining

366 Hong Cheng, Philip S. Yu and Jiawei Han

results could be evaluated. Two criteria are used for the evaluation purpose:
recall (or recoverability) and precision (or spuriousness). According to the
performance study in (Liu et al., 2006,Cheng et al., 2006), AFI outperforms
ETI on both criteria of recall and precision. AC-Close achieves a similar or
slightly lower recall than AFI while having a much higher precision than AFI.
As for mining efficiency and scalability, AFI is shown to outperform ETI by
an order of magnitude; while AC-Close is shown to outperform AFI by at least
two orders of magnitude.

Table 1. Algorithm Characteristics Comparison

Criterion ETI AFI AC-Close

Error Control row or sub-matrix row and column row and column
core pattern constraint

Mining Methodology bottom-up bottom-up top-down
breadth-first breadth-first breadth-first

Result Quality low moderate high

Efficiency/Scalability low moderate high

3 A Heuristic Mining Approach

(Yang et al., 2001) was a pioneer study which generalizes the frequent item-
sets allowing for the notion of errors in the itemset definition. It proposed
an error-tolerant model (ETI) and developed a heuristic mining algorithm
that identifies the error-tolerant frequent clusters of items in transactional
databases. The proposed ETI algorithm was also applied to three application
scenarios: (1) clustering high dimensional data; (2) query selectivity estima-
tion; and (3) collaborative filtering.

3.1 An Error-Tolerant Itemset Model

In the binary matrix representation of the data, an error-tolerant frequent
itemset is represented as a set of dimensions (called defining dimensions or
DD in short) where 1 appears with high probability among a set of rows. Two
constraints are enforced: min sup and an error threshold ε. With different
degrees of relaxation, two slightly different error-tolerant itemset models are
proposed: strong ETI and weak ETI.

Definition 1. Given min sup = s and error threshold ε, a strong ETI con-
sists of a set of items, called defining dimensions DD ⊆ I, such that there
exists a subset of transactions R ⊆ T consisting of at least s|T | transactions

Approximate Frequent Itemset Mining In the Presence of Random Noise 367

and, for each t ∈ R, the fraction of items in DD which are present in t is at
least 1− ε.

Definition 2. Given min sup = s and error threshold ε, a weak ETI consists
of a set of items, called defining dimensions DD ⊆ I, such that there exists a
subset of transactions R ⊆ T , |R| ≥ s|T |, and

∑
t∈R

∑
d∈DD D(t, d)

|R| · |DD| ≥ (1− ε) (1)

The strong ETI controls the fraction of errors in each supporting transac-
tion to be no greater than ε; while the weak ETI only requires the sub-matrix
formed by R and DD contains a fraction of errors to be no greater than ε.
It is clear that anything that satisfies the strong definition also satisfies the
weak definition, but not vice versa.

3.2 ETI Mining Algorithm

Based on the ETI models and their properties, (Yang et al., 2001) first pro-
posed an exhaustive mining algorithm to discover the strong or weak ETIs, as
presented in Algorithm 1.

Algorithm 1: Exhaustive ETI Mining Algorithm
1: Find all dimensions di where the global count of 1s is at least s|T |(1− ε).

Each of these dimensions forms a singleton weak ETI. Each of these
singleton sets is called a “seed”. Set i = 1.

2: For every seed that contains i dimensions, grow it by adding a new
dimension so that the new seed still forms a weak ETI. If one or more
such dimensions can be found, keep all the new seeds.

3: Increment i and repeat step 2 until no more growing is possible.
4: Among all seeds, pick those satisfying the strong ETI definition.

The algorithm mines the complete set of weak or strong ETIs. Thus the
time complexity of this algorithm is exponential in the maximum number
of ETI defining dimensions. To reduce time complexity, a polynomial time
greedy algorithm was proposed that finds most of the ETIs by exploiting
several heuristics. These heuristics are applied to step 2 in Algorithm 1 and
summarized as follows.

Heuristics to Reduce Complexity

1. When looking for a dimension to grow a seed, consider only those dimen-
sions that have been picked in step 1.

368 Hong Cheng, Philip S. Yu and Jiawei Han

2. When testing whether a dimension can be added to a seed, the expanded
seed should still define a weak ETI, and that the new dimension have at
most a fraction of ε 0s within the weak ETI.

3. When two or more dimensions are candidates for seed growth, keep only
one. Throw away the old seed once it has been grown to a new seed.

These three heuristics can greatly reduce the mining time complexity by
growing greedily with the most “promising” dimensions. As a result, these
heuristics also cause some ETIs to be missed. To alleviate this problem, an
iterative scheme is used to heuristically search the missed ETIs.

4 An Apriori-based Approach

Recently, (Liu et al., 2006) proposed a different noise-tolerant itemset model:
approximate frequent itemset model. According to the model, an apriori-
based mining algorithm AFI was proposed. The algorithm takes a candi-
date generate-and-test approach, using the apriori property to prune the
search space and generating the approximate frequent itemsets in a level-wise
breadth-first manner.

4.1 An Approximate Frequent Itemset Model

In the approximate frequent itemset model, besides min sup constraint, two
additional constraints are proposed: row error threshold and column error
threshold, to control the fraction of noise in both dimensions of transactions
and items, respectively. The row error threshold indicates that, for a given
itemset, a supporting transaction should contain most of the items. Similarly,
the column error threshold guarantees that an associated item has to appear
in most of the supporting transactions in order to be included in an itemset.

The definition of approximate frequent itemset is given as follows.

Definition 3. Let min sup = s, εr, εc ∈ [0, 1] and the transaction database be
D. An itemset x ⊆ I is an approximate frequent itemset if there exists a set of
transactions Ta(x) ⊆ T with |Ta(x)| ≥ s|T |, and the following two conditions
hold:

1. ∀i ∈ Ta(x),
1
|x|

∑

j∈x

D(i, j) ≥ (1− εr)

2. ∀j ∈ x,
1

|Ta(x)|
∑

i∈Ta(x)

D(i, j) ≥ (1− εc)

εr and εc are referred to as row error threshold and column error threshold,
respectively. For the approximate itemset x, its supporting transaction set is
denoted as Ta(x) where each t ∈ Ta(x) approximately supports x. The sup-
port is denoted as supa(x) = |Ta(x)|

|T | and the absolute count is denoted as
sup cnta(x) = |Ta(x)|.

Approximate Frequent Itemset Mining In the Presence of Random Noise 369

4.2 AFI Mining Algorithm

Mining approximate frequent itemsets poses a number of algorithmic chal-
lenges beyond those faced when mining exact itemsets. The foremost diffi-
culty is that noise-tolerant itemset mining cannot employ the anti-monotone
property that has led to the success of frequent itemset mining. An impor-
tant contribution by (Liu et al., 2006) is the noise-tolerant Apriori property
derived, which effectively enforces the anti-monotone property in the approxi-
mate itemset mining and therefore limits the search space. Another challenge
is that the approximate frequent itemset criterion allows the number of errors
to increase with the size of the itemset. It is therefore critical to take account
of the additional errors in an itemset as its dimensionality increases while col-
lecting the supporting transactions. These two issues and proposed solutions
by (Liu et al., 2006) are presented as follows respectively.

Noise-Tolerant Support Pruning

The anti-monotone property of exact frequent itemsets is the key to min-
imizing exponential searches in frequent itemset mining. In particular, the
anti-monotone property ensures that a (k + 1) exact itemset can not be fre-
quent if any one of its k sub-itmesets is not frequent. However, this property
is no longer true for the approximate frequent itemsets.

(Liu et al., 2006) derived a noise-tolerant support to serve as the Apriori
pruning threshold, which prunes the search space effectively.

Definition 4. Given εr and εc and min sup, the noise-tolerant pruning sup-
port for a length-k itemset is

min supk = max{0,min sup · (1− kεc

bkεrc+ 1
)} (2)

The noise-tolerant support threshold is used as the basis of a pruning
strategy for the approximate itemset mining. It removes the supersets of a
size-k approximate itemset x from further consideration when the frequency
of x is less than min supk.

0/1 Extensions

Starting with single items, the AFI algorithm generates size-(k + 1) itemsets
from size-k itemsets in a level-wise way. The number of 0s allowed in an itemset
grows with the length of the itemset in a discrete manner. If b(k + 1)εrc >
bkεrc, then transactions supporting the (k+1)-itemset are permitted one more
zero than transactions supporting the k-itemset. If b(k + 1)εrc = bkεrc, no
additional zeros are allowed at level (k +1) compared with level k. In the first
case, if an additional zero is allowed at level (k+1), any transaction supporting
a k-itemset should also support its (k+1) superset. On the other hand, for the

370 Hong Cheng, Philip S. Yu and Jiawei Han

second case when no additional zeros are allowed at level (k+1), a transaction
that does not support k-itemset will not have enough 1s to support its (k +1)
superset. These two properties are formally addressed by (Liu et al., 2006) as
follows.

Lemma 1. (1-Extension) If b(k + 1)εrc = bkεrc, then any transaction that
does not support a k-itemset will not support its (k + 1) superset.

In the case of 1-extension, the transaction set of a (k + 1)-itemset is the
intersection of the transaction sets of its length k subsets.

Lemma 2. (0-Extension) If b(k+1)εrc = bkεrc+1, then any transaction that
supports a k-itemset also supports its (k + 1) superset.

In the case of 0-extension, the transaction set of a (k + 1)-itemset is the
union of the transaction sets of its length k subsets.

0-extension and 1-extension suggest two basic steps to be taken for efficient
computation and maintenance of the supporting transactions. They allow the
algorithm to obtain the supporting transactions of an itemset from its subsets
while avoiding the repeated scans of the original database.

AFI Mining Algorithm

The AFI algorithm uses the 0-extension and 1-extension techniques together
with the noise-tolerant support-based pruning strategy to perform the mining
of approximate frequent itemsets. The algorithm is presented as follows.

The level-wise mining process generates a superset of the approximate
frequent itemsets AFIp. Line 14 in Algorithm 2 further checks the generated
approximate frequent itemsets w.r.t. min sup and εc and filters those itemsets
which fail to satisfy min sup or εc. This post-processing can be done separately
from the level-wise generation since it will neither benefit nor prohibit the
traversing of the search space.

5 A Core Pattern Recovery Approach

5.1 Motivation

The approximate frequent itemset model proposed by (Liu et al., 2006) can
effectively control the percentage of noise in both dimensions of transactions
and items, and the proposed AFI algorithm can successfully discover some true
patterns which are distorted by the random noise. However, a large number of
“uninteresting” candidates are explored during the mining process. Such can-
didates are uninteresting in the sense that they are spurious: they correspond
to no true frequent patterns in the unobserved true transaction database.
They are generated as a result of indiscriminative combination of items and

Approximate Frequent Itemset Mining In the Presence of Random Noise 371

Algorithm 2: AFI Mining Algorithm
Input: D, εr, εc, min sup
Output: The set of approximate frequent itemsets

1: for i = 1 to m do
2: T (i)=genSupport(D,i);
3: k = 1;
4: L1 =

⋃m
i>0{i};

5: repeat
6: k := k + 1;

7: Lk :=GenCandidateItemset(Lk−1, min supk−1);
8: if (b(k + 1)εrc = bkεrc)
9: T (Lk) :=1-extension(I, Lk−1);
10: else
11: T (Lk) :=0-extension(I, Lk−1);
12: AFIp := AFIp ∪ Lk;
13: until Lk = φ
14: AFI :=filter(AFIp, min sup, εc);
15: return AFI;

relaxed mining methods. Although some of the candidates are filtered by the
error thresholds, others which pass the error check are output together with
the recovered true patterns. Let’s first examine Example 1.

Example 1. Table 2 shows a transaction database D. Let min sup = 3, εr =
1/3 and εc = 1/2.

Table 2. A Sample Purchase Database D

TID Burger Coke Diet Coke

0 1 1 0
1 1 1 0
2 1 0 1
3 1 0 1

According to the approximate frequent itemset model in (Liu et al., 2006),
{burger, coke, diet coke} is discovered as an approximate frequent itemset
with support 4. However, the exact support of {burger, coke, diet coke} in D
is 0. This pattern would be deemed uninteresting since coke and diet coke are
seldom purchased together in reality. Those 0s in D are not caused by random
noise, but reflect the real data distribution. However, with the user-specified

372 Hong Cheng, Philip S. Yu and Jiawei Han

parameters εr and εc, it is recovered as an approximate frequent itemset by
the AFI algorithm.

If the set of true frequent itemsets is treated as the ground truth, such
uninteresting patterns which are excluded from the true set, are deemed as
false positive. (Liu et al., 2006) discovers a complete set of approximate fre-
quent itemsets satisfying the error thresholds. A large number of false-positive
patterns can be generated due to the exponential combinations, which make
the problem computationally intractable. Even worse, if such false-positive
candidates pass the error threshold check and are output as the final result, it
is hard for an end user to distinguish the recovered true patterns from these
false positives.

To tackle such a problem, (Cheng et al., 2006) proposed a core pattern
model and recovered the approximate frequent itemsets from core patterns.
Intuitively, an itemset x is a core pattern if its exact support in the noisy
database D is no less than αs, where α ∈ [0, 1] is a core pattern factor, and
s is the min sup threshold. A probability model was derived to estimate the
probability of a true frequent pattern (in the noise-free database) remaining
as a core pattern in D in the presence of noise. With some realistic parameter
settings, it was shown that such true patterns remain as core patterns in the
noisy database with high probability.

With the core pattern constraint, the set of core patterns are used as
initial seeds for approximate itemset generation. To further reduce the output
size, the concept of approximate closed itemset was proposed. An efficient
algorithm AC-Close was developed to mine the approximate closed itemsets.
A top-down mining strategy is exploited where the large-size approximate
itemsets are discovered before the small-size ones, which makes full use of the
pruning power of min sup and closeness and thus, narrows down the search
space dramatically.

5.2 A Core Pattern Recovery Model

First, the core pattern is defined as follows.

Definition 5. An itemset x is a core pattern in the noisy database D if the
exact support of x, supe(x) ≥ αs, where α ∈ [0, 1] is the core pattern factor
and s is the min sup threshold.

Accordingly, the core pattern recovery model is proposed for mining the
approximate frequent itemsets.

Definition 6. Let min sup = s, εr, εc ∈ [0, 1] and the transaction database be
D. An approximate frequent itemset x is (1) a core pattern with supe(x) ≥ αs,
and (2) if there exists a set of transactions Ta(x) ⊆ T with |Ta(x)| ≥ s|T |,
and the following two conditions hold:

Approximate Frequent Itemset Mining In the Presence of Random Noise 373

1. ∀i ∈ Ta(x),
1
|x|

∑

j∈x

D(i, j) ≥ (1− εr)

2. ∀j ∈ x,
1

|Ta(x)|
∑

i∈Ta(x)

D(i, j) ≥ (1− εc)

εr and εc are referred to as row error threshold and column error threshold,
respectively.

To further reduce the number of approximate frequent itemsets discovered,
a new concept of approximate closed itemsets was proposed.

Definition 7. An approximate frequent itemset x is closed if there exists no
itemset y such that (1) y is a proper superset of x, and (2) supa(y) ≥ supa(x).

An important difference between the closeness definition for approximate
itemset and that for exact itemset (Pei et al., 2000,Zaki and Hsiao, 2002) is
the second condition in Definition 7. From the AFI algorithm, one should note
that, given two approximate frequent itemsets x and y where x ⊆ y, either of
the following two conditions holds: (1) supa(x) ≥ supa(y), and (2) supa(x) <
supa(y). The second condition holds because of the “0-extension” effect, i.e.,
compute a size-k itemset’s supporting transactions by taking the union of all
supporting transactions of its size-(k − 1) sub-itemsets. Considering such a
factor, an approximate frequent itemset x is non-closed if there is a superset
y such that supa(y) ≥ supa(x). The itemset x, to some extent, is deemed less
interesting, since there exists a super-pattern y which subsumes x in both
directions of items and transactions.

The problem of approximate closed itemset mining from core patterns is
the mining of all itemsets which are (1) core patterns w.r.t. α; (2) approximate
frequent itemsets w.r.t. εr, εc and min sup; and (3) closed.

5.3 Approximate Closed Itemsets Mining

First of all, some theoretical analysis of the core pattern recovery model is
provided, by modelling the probability of a true frequent pattern being recov-
ered as a core pattern in the database with random noise. This model shows
that, the core pattern recovery mechanism can effectively recover the true
patterns with high probability, at some realistic noise level. We will discuss
how to generate the candidate approximate itemsets from the core patterns
with εr, εc and min sup, and develop several pruning strategies as well.

A Probabilistic Model

With the core pattern constraint, a set of core patterns (denoted as C) can
be discovered as the initial seeds for approximate itemset generation. Each

374 Hong Cheng, Philip S. Yu and Jiawei Han

core pattern x ∈ C is extended into an approximate one by allowing some
noise. Before developing the techniques for generating approximate itemsets,
we address the question of whether it is reasonable to assume the core pattern
constraint. Since it is possible that a true frequent pattern x fails the core
pattern requirement (supe(x) ≥ αs), and thus is excluded from the final result
set, this approach could miss certain true frequent patterns. One may ask, how
likely is it to miss a true frequent pattern by focusing on the core pattern only?
The following lemma provides an answer to this question.

Lemma 3. Assume an unobserved true database Dt has N transactions and
min sup = s. A true frequent pattern x of size l, has exact support count
sup cnte(x,Dt) = n ≥ sN . Assume the core pattern factor is α. If, in the
presence of random noise, each entry in Dt is flipped independently from 1 to
0 with a probability p, resulting in the noisy database D. Then the probability
of x remaining in D with supe(x) ≥ αs is

P (supe(x) ≥ αs) = I(1−p)l(αsN, n− αsN + 1)

where I(1−p)l(αsN, n − αsN + 1) is the regularized incomplete beta function
(Abramowitz and Stegun, 1964,Press et al., 1992).

Proof. For each transaction t out of the n which supports x, the probability of
t still supporting x, in the presence of noise, is (1− p)l and the probability of
not supporting x is 1− (1− p)l. Each such transaction flipping is a Bernoulli
trial. Obtaining k supporting transactions out of n where αsN ≤ k ≤ n
corresponds to sup cnte(x,D) = k, k ∈ [αsN, n]. Then the probability of
sup cnte(x,D) = k is

P (sup cnte(x,D) = k) =
(

n

k

)
(1− p)kl(1− (1− p)l)(n−k) (3)

Eq. (3) follows a binomial distribution. Summing over all k ∈ [αsN, n] on
Eq. (3) derives the probability of supe(x) ≥ αs in D, as follows.

P (supe(x) ≥ αs) =
n∑

k=αsN

P (sup cnte(x,D) = k)

=
n∑

k=αsN

(
n

k

)
(1− p)kl(1− (1− p)l)(n−k)

= I(1−p)l(αsN, n− αsN + 1)

=
B((1− p)l; αsN, n− αsN + 1)

B(αsN, n− αsN + 1)

where B(αsN, n−αsN+1) is the beta function and B((1−p)l;αsN, n−αsN+
1) is the incomplete beta function (Abramowitz and Stegun, 1964,Press et al.,
1992).

Approximate Frequent Itemset Mining In the Presence of Random Noise 375

An application of Lemma 3 to some realistic assumption over some trans-
action database clearly shows, it is with high probability that a true fre-
quent pattern x still appears in D with supe(x) ≥ αs in the presence of
random noise. For example, for N = 1, 000, 000, s = 0.01, n = 12, 000, l = 5,
and p = 0.05. For α ≤ 0.9, P (supe(x) ≥ αs) = 99.99%; for α = 0.92,
P (supe(x) ≥ αs) = 96.92%. Therefore, with the random noise level of
p = 0.05, an itemset x has exact count no less than 9, 000 in D with probability
99.99%, and has exact count no less than 9,200 with probability 96.92%.

Candidate Approximate Itemset Generation

Based on Lemma 3, an efficient algorithm can be designed to discover the
approximate frequent itemsets from core patterns. It first mines the set of
core patterns from D with min sup = αs. These patterns are treated as the
initial seeds for possible further extension to approximate frequent itemsets.
In this section, we discuss how to generate the candidate approximate frequent
itemsets from the set of core patterns.

Assume we have discovered a set of core patterns with min sup = αs. Let
C be the set of core patterns. A lattice L is built over C. Example 2 is used to
illustrate the process.

Example 2. Table 3 shows a sample transaction database D with 7 transac-
tions and 4 items {a, b, c, d}. Let εr = 0.5, εc = 0.5, the absolute min sup = 3,
and α = 1/3.

Table 3. A Transaction Database D

TID a b c d

0 1 1 1 0
1 1 0 0 0
2 1 1 1 1
3 0 0 1 1
4 1 1 0 0
5 1 0 1 1
6 0 1 1 1

Mining the core patterns from D with the absolute support α∗min sup = 1
generates 15 core patterns. Figure 2 shows the lattice of core patterns, where
the closed core patterns are in bold.

First, for the size-4 core pattern {a, b, c, d}, the number of 0s allowed in a
supporting transaction is b4 ∗ 0.5c = 2 given εr = 0.5. Traverse upward in the
lattice for 2 levels (i.e., levels 2 and 3), which constitute the extension space
for {a, b, c, d}. The extension space for a core pattern is defined as follows.

376 Hong Cheng, Philip S. Yu and Jiawei Han

Fig. 2. The Lattice L of Core Patterns

Definition 8. For a core pattern y with size l, the extension space, denoted
as ES(y), is a set of sub-patterns of y from level (dl ∗ (1− εr)e) to level (l−1)
in the lattice, given εr ∈ [0, 1].

Because of the εr fraction of errors allowed in a transaction, for a core
itemset y and each sub-pattern x ∈ ES(y), any transaction supporting x also
approximately supports y. According to this property, the transaction set
Ta(y) of y is the union of the exact transaction set Te(x) of each sub-pattern
x ∈ ES(y). Thus, for {a, b, c, d}, its transaction set Ta({a, b, c, d}) is the union
of the exact transaction sets of all 10 itemsets at levels 2 and 3 of Figure 2.

To optimize the union operation, only the closed core patterns in the
extension space are included, while those non-closed ones are excluded for
union. This is because, the exact transaction sets of non-closed sub-patterns
will not contribute to the approximate transaction set of the core pattern. For
the non-closed itemset {a, b, d} at level 3, Te({a, b, d}) = Te({a, b, c, d}) = {2}.
So it will not contribute any additional transactions to Ta({a, b, c, d}) through
the union operation. It is the same for {a, d} and {b, d} at level 2, since they
are subsumed by {a, c, d} and {b, c, d}, respectively. This property is stated
formally in Lemma 4.

Lemma 4. For a candidate approximate itemset y and each closed core pat-
tern x ∈ ES(y), the approximate transaction set Ta(y) is computed by taking
the union of the exact transaction set Te(x) of x.

By taking the union of the exact transaction sets of the 7 closed pat-
terns at levels 2 and 3, the approximate transaction set Ta({a, b, c, d}) =
{0, 2, 3, 4, 5, 6}. Thus, {a, b, c, d} is a candidate approximate itemset since it
satisfies min sup and εr. It needs to be checked w.r.t. εc and closeness, which
will be discussed separately.

To summarize, the steps to identify candidate approximate itemsets in-
clude:

1. For each core pattern y in the lattice, identify its extension space ES(y)
according to εr;

Approximate Frequent Itemset Mining In the Presence of Random Noise 377

2. Pick the closed sub-patterns of y from ES(y), take the union of the exact
transaction sets of them;

3. Check against min sup. Keep those which satisfy min sup as candidate
approximate frequent itemsets.

Pruning by εc

After the candidate generation, all the candidate approximate itemsets are
identified which satisfy min sup and εr. The next step is to check a candidate
approximate itemset x w.r.t. the column error threshold εc. According to the
second condition in Definition 3, to check the εc constraint, it needs to scan
the approximate transaction set Ta(x) and accumulate the count of each item
in x. However, a pruning strategy, referred to as εc early pruning, allows us
to identify some candidates which violate the εc constraint without scanning
Ta(x). This pruning strategy is stated as follows.

Lemma 5. Let x = i1...in be an itemset and the exact support of a single item
ik ∈ x in D be supe(ik), k ∈ [1, n]. Let the support of the approximate pattern
x be supa(x). If

∃ik ∈ x,
supe(ik)
supa(x)

< (1− εc)

satisfies, then x cannot pass the εc check.

Proof. Let the exact support count of item ik in the transaction set Ta be
sup cnte(ik, Ta), then

sup cnte(ik, Ta)
|Ta| ≤ sup cnte(ik, D)

|Ta| =
supe(ik)
supa(x)

If supe(ik)
supa(x) < (1− εc), then sup cnte(ik,Ta)

|Ta| < (1− εc), which violates Defini-
tion 2. As a result, item ik cannot pass the εc check. The εc early pruning is
effective especially when εc is small, or there exists an item in x with very low
exact support in D. If the pruning condition is not satisfied, a scan on Ta(x)
is performed for the εc check.

For a candidate pattern x which violates the εc constraint, we can either
prune it or find a maximal subset of Ta(x) which satisfies εc. A heuristic
algorithm for finding a maximal AFI is introduced in (Liu et al., 2005).

Top-down Mining and Pruning by Closeness

The previous steps focus on how to generate the individual candidate approx-
imate itemset. In this part, an efficient top-down search strategy is designed
as the mining framework, which enables effective pruning by the closeness
definition and the min sup threshold.

378 Hong Cheng, Philip S. Yu and Jiawei Han

A top-down mining strategy is taken over the lattice L, such that the
mining starts with the largest pattern in L and proceeds level by level, in the
size decreasing order of core patterns. Let’s look at an example.

Example 3. Mining on the lattice L in Figure 2 starts with the size-4 pat-
tern {a, b, c, d}. Since the number of 0s allowed in a transaction is b4 ∗
0.5c = 2, its extension space includes closed patterns at levels 2 and 3,
i.e., ES({a, b, c, d}) = {abc : 2, acd : 2, bcd : 2, ab : 3, ac : 3, bc : 3, cd : 4}. The
transaction set Ta({a, b, c, d}) is computed by taking the union of the trans-
action sets of the above 7 patterns. Further checking shows that {a, b, c, d}
satisfies min sup and εc as well. Since {a, b, c, d} is the approximate itemset
of the largest size, it is an approximate closed itemset.

When the mining proceeds to level 3, for example, the size-3 pattern
{a, b, c}. The number of 0s allowed in a transaction is b3 ∗ 0.5c = 1, so its
extension space includes its closed sub-patterns at level 2, i.e., ES({a, b, c}) =
{ab : 3, ac : 3, bc : 3}. The transaction set Ta({a, b, c}) is computed by taking
the union of the transaction sets of the above 3 patterns.

Since ES({a, b, c}) ⊆ ES({a, b, c, d}) holds, Ta({a, b, c}) ⊆ Ta({a, b, c, d})
holds too. In this case, after the computation on {a, b, c, d}, we can prune
{a, b, c} without actual computation with either of the following two conclu-
sions: (1) if {a, b, c, d} satisfies the min sup threshold and the εc constraint,
then no matter whether it is closed or non-closed, {a, b, c} can be pruned be-
cause it will be a non-closed approximate itemset; or (2) if {a, b, c, d} does not
satisfy the min sup threshold, then {a, b, c} can be pruned because it will not
satisfy the min sup threshold either. In the first condition, we say no matter
whether {a, b, c, d} is closed or non-closed, {a, b, c} is non-closed. This is be-
cause, if {a, b, c, d} is closed, then {a, b, c} is subsumed by {a, b, c, d} and thus
is non-closed; if {a, b, c, d} is non-closed, then there must exist a closed approx-
imate super-pattern which subsumes {a, b, c, d}, and then subsumes {a, b, c}
as well. Thus {a, b, c} is non-closed.

Similarly, the other three core patterns at level 3, {abd : 1, acd : 2, bcd : 2}
can be pruned after the computation on {a, b, c, d}.

We refer to the pruning technique in Example 3 as forward pruning, which
is formally stated in Lemma 6.

Lemma 6. If b(k+1)·εrc = bk ·εrc+1, after the computation on a size-(k+1)
pattern is done, all its size-k sub-patterns in the lattice L can be pruned with
either of the following two conclusions: (1) if the size-(k + 1) pattern satisfies
min sup and εc, then the size-k patterns can be pruned because they are non-
closed; or (2) if the size-(k + 1) pattern does not satisfy min sup, then the
size-k patterns can be pruned because they do not satisfy min sup either.

Forward pruning, naturally integrated with the top-down mining, can re-
duce the search space dramatically due to the min sup threshold and the
closeness constraint.

Approximate Frequent Itemset Mining In the Presence of Random Noise 379

Another pruning strategy, called backward pruning, is proposed as well
to ensure the closeness constraint. Let’s look at an example before stating it
formally.

Example 4. When the mining proceeds to level 2, for example, the core pattern
{a, d} is extended to a candidate approximate pattern, with the transaction
set Ta({a, d}) = {0, 1, 2, 3, 4, 5, 6}. Since it satisfies min sup and εc, it has to
be checked against all its approximate closed super-patterns for its closeness.
In this case, the approximate closed super-pattern {a, b, c, d} is checked with
Ta({a, b, c, d}) = {0, 2, 3, 4, 5, 6}. Since |Ta({a, d})| > |Ta({a, b, c, d})|, {a, d}
is an approximate closed itemset.

Lemma 7 formally states the backward pruning technique.

Lemma 7. If a candidate approximate pattern x satisfies min sup, εr and εc,
it has to be checked against each approximate closed itemset y where x ⊆ y. If
there exists no approximate closed itemset y such that x ⊆ y and supa(x) ≤
supa(y), then x is an approximate closed itemset.

5.4 AC-Close Algorithm

Integrating the top-down mining and the various pruning strategies, an effi-
cient algorithm AC-Close was developed in (Cheng et al., 2006) to mine the
approximate closed itemsets from the core patterns, presented in Algorithm
3.

In Algorithm 3, ACI represents the final set of approximate closed item-
sets, Ta(x) is the approximate transaction set of an itemset x, Ck is the set of
size-k candidate approximate itemsets, and Lk is the set of size-k approximate
closed itemsets. forwardPrune(Ck−1, x) prunes the sub-patterns of x from
the size-(k−1) candidate set before computation proceeds to them, according
to Lemma 6. backwardPrune(Ck, ACI) prunes the non-closed approximate
itemsets from Ck, according to Lemma 7. “∗” at line 9 means the εc early
pruning is applied for checking the εc constraint. If it applies, there is no need
to scan the transaction set Ta(x) for the εc checking.

6 Experimental Study

In this section, experimental results reported by (Cheng et al., 2006) are pre-
sented to compare different mining algorithms. Since it is shown by (Liu et al.,
2006) that AFI systematically outperforms ETI in terms of both efficiency and
result quality, the comparison between AFI and ETI is omitted. The results
reported in this section focus on the comparison between AFI and AC-Close.
For a detailed experimental results between AFI and ETI please refer to (Liu
et al., 2006).

380 Hong Cheng, Philip S. Yu and Jiawei Han

Algorithm 3: The AC-Close Algorithm
Input: D, min sup = s, εr, εc, α
Output: ACI: approximate closed itemsets

1: C = genFreqItemset(D, αs);
2: L = buildLattice(C);
3: k = max level of L;
4: Ck = {x|x ∈ L and size(x) = k};
5: repeat
6: for x ∈ Ck

7: ES = genExtensionSpace(x, L);
8: Ta(x) = unionTransaction(ES);
9: if (x not satisfies s or εc)

∗

10: Ck = Ck − {x};
11: if(bk · εrc = b(k − 1) · εrc+ 1)
12: Ck−1 = forwardPrune(Ck−1, x);
13: end for
14: Lk = backwardPrune(Ck, ACI);
15: ACI = ACI ∪ Lk;
16: k = k − 1;
17: until k = 0
18: return ACI

Experiment is carried out both on synthetic datasets and the UCI datasets.
Efficiency and result quality of both algorithms are evaluated and reported.
Both algorithms are coded in Microsoft Visual C++ and experiments were
run on a 3GHz PC with 2GB memory.

Three groups of experiments were conducted for the performance com-
parisons. The first tested the efficiency and scalability of AFI and AC-Close
w.r.t. various parameters. The second group tested the result quality of AFI
and AC-Close on synthetic datasets with a controlled fraction of random noise
embedded and with known underlying patterns. Finally, both algorithms were
applied to a UCI dataset with known underlying patterns.

6.1 Scalability

The IBM synthetic data generator is used to generate synthetic datasets for
the scalability test. A dataset T10.I100.D20K (Agrawal and Srikant, 1994)
is generated with 20K transactions, 100 distinct items and an average of 10
items per transaction.

Figure 3 shows the running time of both algorithms by varying min sup.
The three figures show the performance with εr = εc = 0.15, 0.20, 0.25
respectively. α = 0.8 is used in AC-Close. In all three cases, AC-Close runs

Approximate Frequent Itemset Mining In the Presence of Random Noise 381

0 1 2 3 4
0

5

10

15

20

25

30

AFI
AC-Close

min_sup (%)

R
u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
)

(a) εr = εc = 0.15

0 1 2 3 4
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

AFI
AC-Close

min_sup (%)
R

u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
)

(b) εr = εc = 0.20

0 1 2 3 4
10

-2

10
-1

10
0

10
1

10
2

10
3

AFI
AC-Close

min_sup (%)

R
u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
)

(c) εr = εc = 0.25

Fig. 3. Running Time of AFI and AC-Close, varying min sup, on T10.I100.D20K

1 2 3 4
0

1

2

3

4
x 10

4

AFI
AC-Close

min_sup (%)

C
a
n
d
id

a
te

 N
u
m

b
e
r

(a) εr = εc = 0.15

0 1 2 3 4
0

1

2

3

4

5
x 10

5

AFI
AC-Close

min_sup (%)

C
a
n
d
id

a
te

 N
u
m

b
e
r

(b) εr = εc = 0.20

1 2 3 4
0

5

10

15

x 10
4

AFI
AC-Close

min_sup (%)

C
a
n
d
id

a
te

 N
u
m

b
e
r

(c) εr = εc = 0.25

Fig. 4. Number of Candidates Generated by AFI and AC-Close, varying min sup,
on T10.I100.D20K

much faster than AFI. In addition, the time difference increases as εr and εc

increase.
Figure 4 shows the number of candidate approximate frequent itemsets

generated by both algorithms during the same experiment in Figure 3. In AFI,
the candidates are the patterns generated during the mining process where
the size-k candidates satisfy the noise-tolerant pruning support min supk. In
AC-Close, the candidates are the core patterns. In all three cases, AFI consis-
tently generates far more candidates than AC-Close. This result shows that
AFI has a much larger search space than AC-Close.

Figure 5 shows the running time of both algorithms by varying εr, εc

and α respectively. To reduce the parameter space, in Figure 5 (a), we set
ε = εr = εc. min sup = 0.8% and α = 0.8 are used in this experiment. The

382 Hong Cheng, Philip S. Yu and Jiawei Han

0 0.1 0.2 0.3 0.4
10

-1

10
0

10
1

10
2

10
3

AFI
AC-Close

ε=ε
r
=ε

c

R
u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
)

(a) Varying εr, εc

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

4

8

12

16

min_sup=0.8%
min_sup=1.0%
min_sup=2.0%

α

R
u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
)

(b) Varying α

Fig. 5. Running Time of AFI and AC-Close, varying εr, εc and α, on T10.I100.D20K

0 20 40 60 80 100
10

-1

10
0

10
1

10
2

10
3

AFI
AC-Close

Number of Transactions (K)

R
u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
)

(a) Varying Number
of Transactions

50 100 150 200
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

AFI
AC-Close

Number of Items

R
u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
)

(b) Varying Number
of Items

5 6 7 8 9 10 11 12

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

AFI
AC-Close

Avg Items Per Transaction

R
u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
)

(c) Varying Avg
Number of Items
Per Transaction

Fig. 6. Other Scalability Tests

running time of AFI increases very quickly as ε increases while the efficiency
of AC-Close is not affected too much by ε. The size of approximate itemsets
increases by allowing more noise in an itemset. So more candidate itemsets
are generated by AFI and the computation time increases exponentially w.r.t.
the itemset size. Since AC-Close still focuses on mining the core pattern set as
ε increases, the candidate set remains the same.

Figure 5 (b) shows the running time of AC-Close by varying the core pat-
tern factor α. εr = εc = 0.20 is used. As α decreases, the core pattern set
becomes larger. Therefore, more candidates are generated for approximate
itemset mining and the computation time increases. Nevertheless, AC-Close is
shown to be very efficient even when α is set to as low as 0.3.

Approximate Frequent Itemset Mining In the Presence of Random Noise 383

Figure 6 shows the scalability tests by varying different statistics of the
transaction database. In all three experiments, min sup = 1%, εr = εc = 0.20
and α = 0.8 are used.

Figure 6 (a) shows the running time by varying the number of transactions.
The number of distinct items is 100 and the average items per transaction is
10. Since both algorithms only perform the union or intersection operations on
the transaction id lists without scanning the database repeatedly, increasing
the transaction number does not affect the performance much.

Figure 6 (b) shows the running time by varying the number of distinct
items in the database. The number of transactions is 10K and the average
transaction length is 10. When the number of items is large, the database
becomes sparse. So both algorithms run more efficiently. As the number of
items decreases, the database becomes dense and the number of qualified
approximate frequent itemsets increases. Figure 6 (b) shows that the running
time of AFI increases more rapidly than that of AC-Close.

Figure 6 (c) shows the running time by varying the average number of items
per transaction. The number of transactions is 10K and the number of distinct
items is 100. As the average transaction length increases, the combination
between items increases exponentially. The figure shows that the running time
of AFI increases much faster.

6.2 Quality

Besides the scalability tests, the quality of mining results are also compared
between AFI and AC-Close. A synthetic dataset Dt, T10.I100.D20K, is used
as the noise-free dataset. Noise is introduced to flip each entry of Dt with a
probability p. The noisy dataset is denoted as D. Exact frequent pattern min-
ing is applied to Dt and the exact frequent itemsets are treated as the ground
truth, denoted as Ftrue. In addition, AFI and AC-Close are applied to the noisy
dataset D and the approximate itemsets are treated as the recovered patterns,
denoted as Fapr. For comparison purpose, AC-Close outputs the approximate
frequent itemsets instead of the closed ones. Two evaluation metrics precision
and recall are used as the measure, as defined below.

precision =
|Ftrue ∩ Fapr|

|Fapr| , recall =
|Ftrue ∩ Fapr|

|Ftrue|
Tables 4 and 5 show the quality comparison between AFI and AC-Close,

with p = 0.05 and p = 0.20 respectively. εr = εc = 0.20 and εr = εc = 0.25
are set in the two cases respectively. In both cases, α = 0.8 is used.

In Table 4, AFI achieves the same recall values as AC-Close but AFI also
generates some false positive patterns which do not appear in the true pat-
tern set. In contrast, the precision of AC-Close is 100%. This shows that the
core pattern approach can effectively recover the true patterns from the noisy
dataset.

384 Hong Cheng, Philip S. Yu and Jiawei Han

Table 4. Precision and Recall of Mining Result by AFI and AC-Close, Noise Level
p = 0.05

min sup(%) Precision Recall

AFI AC-Close AFI AC-Close

0.6 90.04 100 76.70 76.70

0.8 90.46 100 78.61 78.61

1.0 91.69 100 78.30 78.30

2.0 97.52 100 81.71 81.71

3.0 99.40 100 81.61 81.61

4.0 100 100 81.27 81.27

Table 5. Precision and Recall of Mining Result by AFI and AC-Close, Noise Level
p = 0.20

min sup(%) Precision Recall

AFI AC-Close AFI AC-Close

0.6 60.51 100 33.64 33.13

0.8 63.22 100 34.68 34.35

1.0 62.84 100 35.56 35.52

2.0 80.87 100 40.18 40.18

3.0 87.37 100 40.89 40.89

4.0 89.66 100 44.96 44.96

In Table 5, the noise level p = 0.20 is higher. To recover the true patterns,
the error threshold εr = εc is set to 0.25. In all cases, the recall of AC-Close is
either the same or very close to that of AFI. However, with the error threshold
setting, AFI generates many more false positives, as indicated by the precision
measure.

Table 6. Precision and Recall of the Mining Result by AC-Close, varying α, p = 0.05

α min sup=0.8% min sup=1.0%

Precision Recall Precision Recall

0.9 100 78.61 100 78.30

0.8 100 78.61 100 78.30

0.7 100 78.61 100 78.30

0.6 100 78.61 100 78.30

0.5 100 78.61 100 78.30

0.4 99.96 78.61 100 78.30

0.3 99.81 78.61 99.94 78.30

AFI 90.46 78.61 91.69 78.30

Approximate Frequent Itemset Mining In the Presence of Random Noise 385

Table 7. Precision and Recall of the Mining Result by AC-Close, varying α, p = 0.20

α min sup=0.8% min sup=1.0%

Precision Recall Precision Recall

0.9 100 34.35 100 35.52

0.8 100 34.35 100 35.52

0.7 100 34.35 100 35.52

0.6 100 34.35 100 35.52

0.5 100 34.38 100 35.52

0.4 99.95 34.61 99.93 35.54

0.3 99.11 34.68 98.67 35.56

AFI 63.22 34.68 62.84 35.56

Tables 6 and 7 show the result quality of AC-Close at different α values, on
T10.I100.D20K, at a noise level p = 0.05 and p = 0.20 respectively. εr = εc =
0.20 and εr = εc = 0.25 are used in the two cases accordingly. At the bottom
row of each table, the precision and recall of AFI is shown as the comparison
baseline. In Table 6 when the noise level is low, a low α value does not increase
the recall (i.e., discover more true patterns), but generates some false positive.
This is because, the true patterns and their support are not affected much by
the noise. Therefore, with a low level of random noise, it is not necessary to
try a low α value. In Table 7 when the noise level is higher, a low α slightly
increases the recall, but also generates some false positives. In both cases, the
recall is either the same or very close to that of AFI but the precision is much
higher than that of AFI.

6.3 Zoo Dataset

In this experiment, AFI and AC-Close are applied to the Zoo dataset from
the UCI Machine Learning Repository (UCI, 2007). The Zoo dataset contains
101 instances and each instance has 15 boolean attributes and a class label
(mammal, bird, etc.). The 15 boolean attributes including hair, feathers and
eggs are used as items.

One mining task is to discover the common features of a set of animals in
the same class. For example, mammals produce milk, are covered in hair, are
toothed and grow tails. However, not every mammal exhibits these common
features: platypuses lack teeth and dolphins are hairless. If such exceptions are
not tolerated, it is hard to find the complete set of features that characterize
a class.

For testing purposes, we adopted the 7 classes into which the instances
were already categorized as the true underlying pattern. Then we examined
how well the competing mining methods recovered these classes. We focused
on the 4 classes with at least 5 instances.

386 Hong Cheng, Philip S. Yu and Jiawei Han

Both AFI and AC-Close are tested in terms of the running time and result
quality. εr = 0.25, εc = 0.30 and the absolute min sup = 12 are used. The
core pattern factor is set to α = 0.5. The running time of AFI is 1, 471.973
seconds and that of AC-Close is 1.594 seconds, almost 1000 times faster than
AFI.

To measure the result quality, for each approximate pattern x discovered,
we compare its supporting transaction set Ta(x) against the transactions of
the true class. The approximate pattern with the highest similarity to the
true class is presented. Table 8 shows the transaction size (denoted as |Tc|)
of each class and the transaction size (denoted as |Ta|) of the approximate
patterns. For example, in Table 8, the true class of mammal has 41 instances,
which correspond to the 41 transactions in the Zoo data belonging to the
mammal class. Both AFI and AC-Close can discover an approximate frequent
itemset which is approximately supported by the 41 transactions. As shown in
Table 8, both algorithms can discover three classes with 100% match. For the
fourth class, the approximate pattern of AFI has 12 transactions while that of
AC-Close has 13 transactions.

Table 8. True Pattern Recovery in Zoo Dataset

Class True Pat AFI AC-Close

mammal 41 41 41

bird 20 20 20

fish 13 13 13

sea creature 10 12 13

7 Related Work on Approximate Frequent Itemset

Other related studies on approximate frequent patterns include (Mannila and
Toivonen, 1996,Boulicaut et al., 2000,Pei et al., 2003,Seppänen and Mannila,
2004, Steinbach et al., 2004, Zhu et al., 2007,Yan et al., 2007). (Mannila and
Toivonen, 1996) showed that approximate association rules are interesting and
useful. (Boulicaut et al., 2000) proposed the concept of free-sets and led to an
error-bound approximation of frequencies.

The goal of (Pei et al., 2003) is to derive a condensed frequent pattern base,
a compact representation from which the support of all other frequent patterns
can be approximated within some fixed error bound. This work emphasizes
more on the compression issue of frequent patterns.

Seppänen and Mannila (Seppänen and Mannila, 2004) proposed to mine
the dense itemsts in the presence of noise. A dense itemset is an itemset

Approximate Frequent Itemset Mining In the Presence of Random Noise 387

with a sufficiently large sub-matrix that exceeds a given density threshold of
attributes present.

The support envelope technique proposed by Steinbach et al. (Steinbach et
al., 2004) identifies regions of the data matrix where each transaction contains
at least a given number of items and each item appears in at least a given
number of transactions. The support envelope is a tool for exploration and vi-
sualization of the high-level structures of association patterns in a transaction
database. A symmetric ETI model is proposed such that the same fraction of
errors are allowed in both rows and columns. However, no additional proper-
ties or algorithms are proposed to mine the symmetric ETIs.

A recent study by Zhu et al. (Zhu et al., 2007) aimed at mining the colossal
frequent patterns which are frequent itemsets of rather large size. The prob-
lem formulation in this study is not itemset recovery from noise, but efficient
discovery of colossal patterns. A novel mining approach called Pattern-Fusion
was proposed to efficiently find a good approximation to the colossal patterns.
With this approach, a colossal pattern is discovered by fusing its small core
patterns in one step, whereas the incremental pattern-growth mining strate-
gies, such as those adopted in Apriori or FP-growth, have to examine a large
number of mid-sized ones.

Yan et al. (Yan et al., 2007) proposed a noise-tolerant model for mining
frequent dense subgraphs across multiple graphs. This approach is applied for
efficiently and systematically identifying frequent coexpression clusters. Given
m microarray datasets, they model each microarray dataset as a coexpression
graph, and search for densely connected subgraphs. Due to the noise and out-
liers in data and the unavoidable cutoff selection for edge construction, the
exact match criterion is relaxed, otherwise pursuing exact match would over-
look some coexpressed clusters. Therefore, instead of requiring the recurrence
of the exact dense subgraph, it only requires the connectivity among the gene
set to be higher than a threshold.

8 Conclusions

Frequent itemset mining is one of the fundamental tasks in data mining.
In real applications where the data is typically subject to random noise or
measurement error, exact frequent itemset mining no longer meets the needs of
discovering the true patterns from the noisy dataset. A noise-tolerant mining
model is the key solution in this application scenario.

In this chapter, we overview several different noise-tolerant mining models
and the methodologies for efficient mining of approximate frequent itemsets.
Our experimental study compares the mining efficiency and result quality of
different mining approaches.

There are still many interesting issues to be further studied in the noise-
tolerant mining models and their applications, including depth-first mining
methods for approximate frequent itemsets; design of noise-tolerant models for

388 Hong Cheng, Philip S. Yu and Jiawei Han

more complicated patterns such as sequences or structures; subspace cluster-
ing in high-dimensional data and gene expression data as well as approximate
itemset-based classification models in the presence of noise.

References

M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. Dover, 1964.

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In Proc. SIGMOD’93, pages 207–216, May 1993.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
VLDB’94, pages 487–499, Sept. 1994.

R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of SIGMOD,
pages 439–450, 2000.

R. J. Bayardo. Efficiently mining long patterns from databases. In Proc. SIG-
MOD’98, pages 85–93, June 1998.

J.F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries
by means of free-sets. In Principles of Data Mining and Knowledge Discovery,
pages 75–85, 2000.

D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset
algorithm for transactional databases. In Proc. ICDE’01, pages 443–452, April
2001.

H. Cheng, X. Yan, J. Han, and C. Hsu. Discriminative frequent pattern analysis for
effective classification. In Proc. 2007 Int. Conf. Data Engineering (ICDE’07),
Istanbul, Turkey, April 2007.

H. Cheng, P. S. Yu, and J. Han AC-Close: Efficiently Mining Approximate Closed
Itemsets by Core Pattern Recovery. In Proc. of ICDM, pages 839–844, 2006.

G. Cong, K. Tan, A. Tung, and X. Xu. Mining top-k covering rule groups for gene
expression data. In Proc. of SIGMOD, pages 670–681, 2005.

FIMI: Frequent itemset mining implementations repository.
http://fimi.cs.helsinki.fi, 2003.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proc. SIGMOD’00, pages 1–12, May 2000.

W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on
multiple class-association rules. In Proc. of ICDM, pages 369–376, 2001.

B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
In Proc. of KDD, pages 80–86, 1998.

J. Liu, S. Paulsen, W. Wang, A. Nobel, and J. Prins. Mining approximate frequent
itemset from noisy data. In Technical report, Department of Computer Science,
TR05-015, 2005.

J. Liu, S. Paulsen, X. Sun, W. Wang, A. Nobel, and J. Prins. Mining approximate
frequent itemsets in the presence of noise: Algorithm and analysis. In Proc.
SDM’06, pages 405–416, April 2006.

H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed repre-
sentations. In Knowledge Discovery and Data Mining, pages 189–194, 1996.

J. Pei, G. Dong, W. Zou, and J. Han. Mining condensed frequent pattern bases.
In Knowledge and Information Systems, volume 6 of 5, pages 570–594, 2004.

Approximate Frequent Itemset Mining In the Presence of Random Noise 389

J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent
closed itemsets. In Proc. DMKD’00, pages 11–20, May 2000.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C. Cambridge, 2nd edition, 1992.

J. Seppänen and H. Mannila. Dense itemsets. In Proc. of KDD, pages 683–688,
2004.

M. Steinbach, P. Tan, and V. Kumar. Support envelopes: A technique for exploring
the structure of association patterns. In Proc. KDD’04, pages 296–305, Aug.
2004.

UCI: machine learning repository.
mlearn/MLSummary.html, 2007.

V. Verykios, E. Bertino, I. Fovino, L. Provenza, Y. Saygin, and Y. Theodoridis.
State-of-the-art in privacy preserving data mining. SIGMOD Record, 3:50–57,
2004.

K. Wang, C. Xu, and B. Liu. Clustering transactions using large items. In Proc.
of CIKM, pages 483–490, 1999.

X. Yan, M. R. Mehan, Y. Huang, M. S. Waterman, P. S. Yu, and X. J. Zhou.
A graph-based approach to systematically reconstruct human transcriptional
regulatory modules. In Proc. of ISMB, 2007.

X. Yan, P. S. Yu, and J. Han. Graph Indexing: A frequent structure-based ap-
proach. In Proc. of SIGMOD, pages 335–346, 2004.

C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent
itemsets in high dimensions. In Proc. KDD’01, pages 194–203, Aug. 2001.

M. J. Zaki. Scalable algorithms for association mining. IEEE Trans. Knowledge
and Data Engineering, 12:372–390, 2000.

M. J. Zaki and C. J. Hsiao. CHARM: An efficient algorithm for closed itemset
mining. In Proc. SDM’02, pages 457–473, April 2002.

F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng. Mining colossal frequent patterns
by core pattern fusion. In Proc. 2007 Int. Conf. Data Engineering (ICDE’07),
Istanbul, Turkey, April 2007.

http://www.ics.uci.edu/˜

The Impact of Overfitting and
Overgeneralization on the Classification
Accuracy in Data Mining

Huy Nguyen Anh Pham1 and Evangelos Triantaphyllou1

Department of Computer Science, 298 Coates Hall, Louisiana State University,
Baton Rouge, LA 70803 hpham15,trianta@lsu.edu

Summary. Many classification studies often times conclude with a summary table
which presents performance results of applying various data mining approaches on
different datasets. No single method outperforms all methods all the time. Further-
more, the performance of a classification method in terms of its false-positive and
false-negative rates may be totally unpredictable. Attempts to minimize any of the
previous two rates, may lead to an increase on the other rate. If the model allows for
new data to be deemed as unclassifiable when there is not adequate information to
classify them, then it is possible for the previous two error rates to be very low but,
at the same time, the rate of having unclassifiable new examples to be very high.
The root to the above critical problem is the overfitting and overgeneralization be-
haviors of a given classification approach when it is processing a particular dataset.
Although the above situation is of fundamental importance to data mining, it has
not been studied from a comprehensive point of view. Thus, this chapter analyzes
the above issues in depth. It also proposes a new approach called the Homogeneity-
Based Algorithm (or HBA) for optimally controlling the previous three error rates.
This is done by first formulating an optimization problem. The key development in
this chapter is based on a special way for analyzing the space of the training data
and then partitioning it according to the data density of different regions of this
space. Next, the classification task is pursued based on the previous partitioning of
the training space. In this way, the previous three error rates can be controlled in
a comprehensive manner. Some preliminary computational results seem to indicate
that the proposed approach has a significant potential to fill in a critical gap in
current data mining methodologies.

Key words: classification, prediction, overfitting, overgeneralization, false-
positive, false-negative, homogenous set, homogeneity degree, optimization

392 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

1 Introduction

The importance of collecting enormous amounts of data related to science,
engineering, business, governance, and almost any endeavor of human activ-
ity or the natural world is well recognized today. Powerful mechanisms for
collecting and storing data and managing them in large datasets are in place
in many large and mid-range companies, not to mention research labs and
various agencies. There is, however, a serious challenge in making good use
of such massive datasets and trying to learn new knowledge of the system
or phenomenon that created these data. Human analysts cannot process and
comprehend such datasets unless they have special computational tools at
their disposal.

The emerging field of data mining and knowledge discovery seeks to de-
velop reliable and effective computational tools for analyzing large datasets for
the purpose of extracting new knowledge from the data. Such new knowledge
can be derived in the form of patterns that are embedded in the data.

Many applications of data mining involve the analysis of data that describe
the state of nature of a hidden system of interest to the analyst. Such a system
could be a natural or artificial phenomenon (such as the state of the weather
or the result of a scientific experiment), a mechanical system (such as the
engine of a car), an electronic system (such as an electronic device), and
so on. Each data point describes the state of the phenomenon or system in
terms of a number of attributes and their values for a given realization of
the phenomenon or system. Furthermore, each data point is associated with
a class value which describes a particular state of nature of this phenomenon
or system.

For instance, a bank administrator could be interested in knowing whether
a loan application should be approved or not based on some characteristics of
applicants for credit. Here the two classes are: “approve” or “do not approve”.
Attributes in this hypothetical scenario could be the age of the applicant, the
income level of the applicant, the education level, whether he/she has a per-
manent job, etc. Then, the goal of the data mining process might be to extract
any patterns that might be present in the data of successful credit applicants
and also patterns that might be present in the data of non-successful appli-
cants. By “successful applicants” we mean here those who can repay their
loans without any negative complications, while with “non-successful appli-
cants” we mean those who default their loans.

There could be many questions to be asked, but only a few of them would
be important for the decision. With the abundance of the data available in
this area, a careful analysis could provide a pattern that exposes the main
characteristics of reliable loan applicants. Then, the data mining analyst would
like to identify such patterns from past data for which we know the final
outcome and use those patterns to decide whether a new application for credit
should be approved or not.

The Impact of Overfitting and Overgeneralization 393

In other words, many applications of data mining involve the analysis
of data for which we know the class value of each data point. We wish to
infer some patterns from these data which in turn could be used to infer the
class value of new points for which we do not know their class value. These
patterns may be defined on the attributes used to describe the available data
(also known as the training data). For instance, for the previous bank example
the patterns may be defined on the level of education, years on the same job,
level of income, of the applicants.

This kind of data mining analysis is called classification or class prediction
of new data points because it uses patterns inferred from training data to aid
in the correct classification/class prediction of new data points for which we do
not know their class value. We only know the values of the attributes (perhaps
not all of them) of the new data points. This description implies that this type
of data mining analysis, besides the typical data definition, data collection,
and data cleaning steps, involves the inference of a model of the phenomenon
or system of interest to the analyst. This model is the patterns mentioned
above. The data involved in deriving this model are the training data. Next,
this model is used to infer the class value of new points.

There have been many theoretical and practical developments in the last
two decades in this field. Most recent methods include the Statistical Learning
Theory (Vapnik, 1998), Artificial Neural Networks (ANNs) (Hecht-Nielsen,
1989) and (Abdi, 2003), Decision Trees (DTs) (Quinlan, 1993), logic-based
methods (Hammer and Boros, 1994), (Triantaphyllou, 1994; and 2007), and
Support Vector Machines (SVMs) (Vapnik, 1979; and 1998) and (Cristianini
and John, 2003).

In many real-life or experimental studies of data mining, some classifica-
tion approaches work better with some datasets, while they work poorly with
other datasets for no apparent reason. For instance, DTs had some success
in the medical domain (Zavrsnik et. al., 1995). However, they also have had
some certain limitations when they were used in this domain, as described
for instance in (Kokol et. al., 1998) and (Podgorelec, 2002). Furthermore, the
success of SVMs has been shown in bioinformatics, such as in (Byvatov, 2003)
and (Huzefa et. al., 2005). At the same time, SVMs also did poorly in this field
(Spizer et. al., 2006). If the data mining approach is accurate, then the people
praise the mathematical model and claim that it is a good model. However,
there is no good understanding of why such models are accurate or not. Their
performance is often times coincidental.

A growing belief is that overfitting and overgeneralization problems may
cause poor performance of the classification/class prediction model. Overfit-
ting means that the extracted model describes the behavior of known data
very well but does poorly on new data points. Overgeneralization occurs when
the system uses the available data and then attempts to analyze vast amounts
of data that has not seen yet.

Assume that there are two classes which, arbitrarily, we will call the posi-
tive and the negative class. Then, one may infer the following two classification

394 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

models. The first model (which we will call the “positive” model) describes
patterns embedded in the positive examples and which do not exist in the
negative examples. In a similar manner, we define the “negative” model. For
instance, when developing a diagnosis system for some types of cancer one
may want to derive two models that can classify a new patient to either, posi-
tive (which means has cancer) or negative (which means does not have cancer)
cases.

The analyst may want one of the previous two models to be more “conser-
vative” while the other model to be more “liberal”. If both models are ultra
“conservative” then the implication is that they would only classify new cases
that are very closely related to cases they already have seen in the training
data. In this situation, the net effect would be many cases to be left as unclas-
sifiable by both systems. Similarly, if both systems are classifying new data
in a “liberal” manner, then they may contradict each other too often when
they are presented with new cases. Again, this situation might be undesirable.
Thus, a “liberal” behavior by a classification model means that the model has
a tendency for overgeneralization. A similar relationship exists between the
concept of “conservative” and overfitting

This chapter aims at finding a way to balance both fitting and generaliza-
tion in order to minimize the total misclassification cost of the final system.
By doing so, it is hoped that the classification/prediction accuracy of the in-
ferred models will be very high or at least as high as it can be achieved with
the available training data. We plan to achieve this by balancing the previous
two conflicting behaviors of the extracted systems.

The next section provides a preliminary description of the main research
problem. The third section gives a summary of the main developments in
the related literature. The proposed methodology is highlighted in the fourth
section. That section shows how a balance between fitting and generalization
has the potential to improve many existing classification algorithms. The fifth
section discusses some promising preliminary results. These pilot results give
an early indication of how this methodology may improve the performance of
existing classification algorithms. Finally, this chapter ends with some conclu-
sions.

2 Formal Problem Description

2.1 Some Basic Definitions

In order to help fix ideas, we first consider the hypothetical sample data
depicted in Figure 1. Let us assume that the “circles” and “squares” in this
figure correspond to sampled observations from two classes defined in 2-D.

In general, a data point is a vector defined on n variables along with their
values. In the above figure, n is equal to 2 and the two variables are indicated
by the X and Y axis. Not all values may be known for a given data point.

The Impact of Overfitting and Overgeneralization 395

Data points describe the behavior of the system of interest to the analyst.
For instance, in the earlier bank application a given data point may describe
the level of education, years on the same job, level of income of a particular
applicant, etc. The variables may be continuous, binary, or categorical, etc.
All data are assumed to be deterministic and numeric at this point. The state
space is the universe of all possible data points. In terms of Figure 1, the state
space is any point in the X-Y plane.

We assume that there are only two classes. Arbitrarily, we will call one
of them the positive class while the other the negative class. Thus, a positive
data point, also known as a positive example, is a data point that has been
evaluated to belong to the positive class. A similar definition exists for negative
data points or negative examples.

Given a set of positive and negative examples, such as the ones depicted in
Figure 1, this set is called the training data (examples) or the classified exam-
ples. The remaining of the data from the state space is called the unclassified
data (examples).

2.2 Problem Description

We start the problem description with a simple analysis on the sample data
depicted in Figure 1. Suppose that a data mining approach (such as a DT,
ANN, or SVM) has been applied on these data. Next we assume that two
classification systems have been inferred from these data. Usually, such classi-
fication systems arrange the training data into groups described by the parts
of a decision tree or classification rules. In a way, these groups of training
data define the patterns inferred from the data after the application of a data
mining algorithm. For this hypothetical scenario, we assume that the data
mining algorithm has inferred the system patterns depicted in Figure 2.(a).

In general, one classification system describes the positive data (and thus
we will call it the positive system) while the other system describes the neg-
ative data (and thus we will call it the negative system). In Figure 2.(a) the
positive system corresponds to sets A and B (which define the positive pat-
tern) while sets C and D correspond to the negative system (and thus they
define the negative pattern).

In many real-life applications, there are two different penalty costs if one
erroneously classifies a true positive point as negative or if one classifies a true
negative point as positive. The first case is known as false-positive, while the
second case is known as false-negative. Furthermore, a closer examination of
Figure 2.(a) indicates that there are some unclassifiable points which either
are not covered by any of the patterns or are covered by patterns that belong
to both classes. For instance, point N (indicated as a triangle) is not covered
by any of the patterns, while point M (also a triangle) is covered by sets A
and C which belong to the positive and the negative patterns, respectively.

For the first case, as point N is not covered by any of the patterns, the
inferred system may declare it as an unclassifiable point. In the second case,

396 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

Fig. 1. Sample data from two classes in 2-D.

there is a direct disagreement by the inferred system as the new point (i.e.,
point M) is covered simultaneously by patterns of both classes. Again, such
a point may be also declared as unclassifiable. Thus, in many real-life appli-
cations of data mining one may have to consider three different penalty costs
as follows: one cost for the false-positive case, one cost for the false-negative
case, and one cost for the unclassifiable case.

Next consider Figure 2.(b). Suppose that all patterns A, B, C and D have
been reduced significantly but still cover the original training data. A closer
examination of this figure indicates that now both points M and N are not
covered by any of the inferred patterns. In other words, these points and
several additional points which were classified before by the inferred systems
now become unclassifiable.

Furthermore, the data points which before were simultaneously covered
by patterns from both classes, and thus were unclassifiable, are now covered
by only one type of pattern or none at all. Thus, it is very likely that the
situation depicted in Figure 2.(b) may have a higher total penalty cost than
the original situation depicted in Figure 2.(a). If one takes this idea of reducing
the covering sets as much as possible to the extreme, then there would be one
pattern (i.e., just a small circle) around each individual training data point. In
this extreme case, the total penalty cost due to unclassifiable points would be
maximum as the system would be able to classify the training data only and
nothing else. The previous scenarios are known as overfitting of the training
data.

On the other hand, suppose that the original patterns depicted as sets A,
B, C and D (as shown in Figure 2.(a)) are now expanded significantly as in
Figure 2.(c). A closer examination of this figure demonstrates that points M

X axis

Y axis

The Impact of Overfitting and Overgeneralization 397

and N are now covered simultaneously by patterns of both classes. Also, more
points are now covered simultaneously by patterns of both classes. Thus, under
this scenario we also have lots of unclassifiable points because this scenario
creates lots of cases of disagreement between the two classification systems
(i.e., the positive and the negative systems). This realization means that the
total penalty cost due to unclassifiable points will also be significantly higher
than under the scenario depicted in Figure 2.(a). This scenario is known as
overgeneralization of the training data.

Fig. 2. An illustrative example of overfitting and overgeneralization.

X axis

Y axis

A

B

C

D

(a) – Original classification

M
N

X axis

Y axis

A

B

C

D

(b) - Overfitting

M
N

X axis

Y axis

A

B

C

D

(c) – Overgeneralization

M
N

398 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

Thus, we cannot separate the control of fitting and generalization into two
independent studies. That is, we need to find a way to simultaneously balance
fitting and generalization by adjusting the inferred systems (i.e., the positive
and the negative systems) obtained from a classification algorithm. The bal-
ance of the two systems will target at minimizing the total misclassification
costs of the final system.

In particular, let us denote CFP , CFN , and CUC as the penalty costs for
the false-positive, the false-negative, and the unclassifiable cases, respectively.
Let RATE FP, RATE FN, and RATE UC be the false-positive, the false-
negative, and the unclassifiable rates, respectively. Then, the problem is to
achieve a balance between fitting and generalization that would minimize, or
at least significantly reduce, the total misclassification cost denoted as TC.
The problem is defined in the following expression:

TC = min (CFP ×RATE FP +CFN×RATE FN +CUC×RATE UC) (1)

This methodology may assist the data mining analyst to create classifica-
tion systems that would be optimal in the sense that their total misclassifica-
tion cost would be minimized.

In terms of Figures 2.(a), (b) and (c), let us now consider the situation
depicted in Figure 3. At this point assume that in reality point M is nega-
tive while point N is positive. Figure 3 shows different levels of fitting and
generalization for the two classification systems. For the sake of illustration,
sets C and D are kept the same as in the original situation (i.e., as depicted
in Figure 2.(a)) while set A has been reduced (i.e., it fits the training data
more closely) and now it does not cover point M. On the other hand, set B is
expanded (i.e., it generalizes the training data more) to cover point N. This
new situation may correspond to a total misclassification cost that is smaller
than those by any of the previous three scenarios. The following section will
give a summary of the main developments in the related literature.

3 Literature Review

Most of the classification algorithms have focused on the minimization of the
classification error of the training points. In this way, it is expected that new
points will be classified with higher prediction accuracy. This section is a
summary of the literature about ways that classification algorithms deal with
the overfitting and the overgeneralization problems.

3.1 Decision Trees (DTs)

There are two methods for controlling the overfitting problem in DTs: pre-
pruning methods in which the growing tree approach is halted by some early

The Impact of Overfitting and Overgeneralization 399

stopping rules before generating a fully grown tree, and post-pruning in which
the DT is first grown to its maximum size and then we trim some partitions
of the tree.

There was recently a lot of effort which has focused on improving the pre-
pruning methods. (Kohavi, 1996) proposed the NBTree (a hybrid of decision-
tree and naive- classifiers). The NBTree provides some early stopping rules by
comparing two alternatives: partitioning the instance-space further on (i.e.,
continue splitting the tree based on some gain ratio stopping criteria) versus
stopping the partition and producing a single Näıve Bayes classifier. (Zhou
and Chen, 2002) suggested the hybrid DT approach for growing a binary DT.
A feed-forward neural network is used to subsequently determine some early
stopping rules. (Rokach et. al., 2005) proposed the cluster-based concurrent
decomposition (CBCD) algorithm. That algorithm first decomposes the train-
ing set into mutually exclusive sub-samples and then uses a voting scheme to
combine these sub-samples for the classifier’s predictions. Similarly, (Cohen
et. al., 2007) proposed an approach for building a DT by using a homogeneity
criterion for splitting the space. However, the above approaches have a diffi-
culty in choosing the threshold value for early termination. A value which is
too high may result in underfitting models, while a too low threshold value
may not be sufficient to overcome overfitting models.

Under the post-pruning approaches described in (Breiman et. al., 1984)
and (Quinlan, 1987), the pruning process eliminates some partitions of the
tree. The reduction on the number of partitions makes the remaining tree more
general. In order to help fix the main idea, we consider the simple example
depicted in Figure 4. Suppose that Figure 4.(a) shows a DT inferred from
some training examples. The pruning process eliminates some of the DT’s
nodes as depicted in Figure 4.(b). The remaining part of the DT, as shown in
Figure 4.(c), implies some rules which are more general. For instance, the left
most branch of the DT in Figure 4.(a) implies the rule “if D∧A∧B∧ C, then
. . . ” On the order hand, Figure 4.(c) implies the more general rule “if D∧ A,
then . . . ”

However, more generalization is not always required nor is it always bene-
ficial. A more complex arrangement of partitions has been proved to increase
the complexity of DTs in some applications. Furthermore, the treatment of
generalization of a DT may lead to overgeneralization since pruning conditions
are based on localized information.

Instead of the pruning methods, there have been some other developments
to improve the accuracy of DTs. (Webb, 1996) attempted to graft additional
leaves to a DT after its induction. This method does not leave any area of the
instance space in conflict, because each data point belongs to only one class.
Obviously, the overfitting problem may arise from this approach. (Mansour et.
al., 2000) proposed another way to deal with the overfitting problem by using
the learning theoretical method. In that method, the bounds on the error rate
for DTs depend both on the structure of the tree and on the specific sample.
(Kwok and Carter, 1990), (Schapire, 1990), (Wolpert, 1992), (Dietterich and

400 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

Fig. 3. An illustrative example of a better classification.

Bakiri, 1994), (Ali et. al., 1994), (Oliver and Hand, 1995), (Nock and Gascuel,
1995) and (Breiman, 1996) allowed multiple classifiers used in a conjunction.
This method is similar to using a Disjunctive Normal Form (DNF) Boolean
function. Furthermore, (Breiman, 2001) also used the so-called random forest
approach for multiple classifiers. However, the above approaches might cre-
ate conflicts between the individual classifiers’ partitions, as in the situation
presented in C4.5 (Quinlan, 1993).

3.2 Rule-Based Classifiers

A rule-based classifier uses a collection of “if . . . then . . . ” rules that identify
key relationships between the attributes and the class values of a dataset.
There are two methods which infer classification rules: direct methods which
infer classification rules directly from the data, and indirect methods which
infer classification rules from other classification methods such as DTs, SVMs,
or ANNs and then they translate the final model into a set of classification
rules (Tan et. al., 2005). An extensive survey of rule-based methods can be
found in (Triantaphyllou and Felici, 2006). A new rule-based approach, which
is based on mathematical logic, is described in (Triantaphyllou, 2007).

A well-known algorithm of direct methods is the Sequence Covering al-
gorithm and its later enhancement, the CN2 algorithm (Clark and Niblett,
1989). To control the balance of fitting and generalization while generating
rules, these algorithms first use two strategies for growing the classification
rules: general-to-specific or specific-to-general. Then, the rules are refined by
using the pre and post-pruning methods mentioned in DTs.

Under the general-to-specific strategy, a rule is created by finding all pos-
sible candidates and use a greedy approach to choose the new conjuncts to
be added into the rule antecedent part in order to improve its quality. This
approach ends when some stopping criteria are met.

X axis

Y axis

A

B

C

D

M
N

The Impact of Overfitting and Overgeneralization 401

Under the specific-to-general strategy, a classification rule is initialized by
randomly choosing one of the positive points as the initial step. Then, the rule
is refined by removing one of its conjuncts so that this rule can cover more
positive points. This refining approach ends when certain stopping criteria are
met. A similar way exists for the negative points.

There are some related developments regarding these strategies. Such de-
velopments include a beam search approach (Clark and Boswell, 1991) which
avoids the overgrowing of rules as result of the greedy behavior, the RIPPER
algorithm (Cohen, 1995) which uses a rule induction algorithm. However, the
use of the two strategies for growing classification rules has their drawbacks.
The complexity for finding optimal rules is of exponential size of the search
space. Although some rule pruning methods are used to improve their gener-
alization error, they also leave drawbacks as mentioned in the case of DTs.

3.3 K-Nearest Neighbor Classifiers

While DTs and rule-based classifiers are examples of eager learners, K-Nearest
Neighbor Classifiers (Cover, Hart, 1967) and (Dasarathy, 1979) are known as
lazy learners. That is, this approach finds K training points that are relatively
similar to attributes of a testing point to determine its class value.

The importance of choosing the right value for K directly affects the ac-
curacy of this approach. A wrong value for K may lead to the overfitting or
the overgeneralization problems (Tan et. al., 2005). One way to reduce the
impact of K is to weight the influence of the nearest neighbors according to
their distance to the testing point. One of the most well-known schemes is
the distance-weighted voting scheme (Dudani, 1976) and (Keller, Gray and
Givens, 1985).

However, the use of K-nearest neighbor classifiers has their drawbacks.
Classifying a test example can be quite expensive since we need to compute a
similarity degree between the test point and each training point. They are un-
stable since they are based on localized information only. Finally, it is difficult
to find an appropriate value for K to avoid model overfitting or overgeneral-
ization.

3.4 Bayes Classifiers

This approach uses the modeling probabilistic relationships between the at-
tribute set and the class variable for solving classification problems. There are
two well known implementations of Bayesian classifiers: Näıve Bayes (NBs)
and Bayesian Belief Networks (BBNs).

NBs assume that all the attributes are independent of each other and then
they estimate by using the class conditional probability. This independence
assumption, however, is obviously problematic because often times in many

402 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

Fig. 4. An illustrative example of the DT pruning.

real applications there are strong conditional dependencies between the at-
tributes. Furthermore, when using the independence assumption, NBs may
suffer of overfitting since they are based on localized information.

Instead of requiring all attributes to be conditionally independent given
a class, a BBN (Duda and Hart, 1973) allows only for pairs of attributes
to be conditionally independent. We introduce this approach by discussing
an illustrative example. Suppose that we have a training dataset consisting
of the attributes: age, occupation, income, buy (i.e., buy some product X),
and interest (i.e., “interest in purchasing insurance for this product”). The
attributes age, occupation and income may determine if a customer will buy
some product X. Given is a customer who has bought product X. There
is an interest in buying insurance when we assume this is independent of
age, occupation, and income. These constraints are presented by the BBN
depicted in Figure 5. Thus, for a certain data point described by a 5-tuple
(age, occupation, income, buy, interest), its probability based on the BBN
should be:

P(age, occupation, income, buy, interest) =

P(age) × P(occupation) × P(income) × P(buy | age, occupation, income) ×
P(interest | buy).

There was a lot of effort which has focused on improving BBNs. This
effort follows two general approaches: selecting a feature subset (Langley and
Sage, 1994), (Pazzani, 1995), and (Kohavi and John, 1997) and relaxing the
independence assumptions (Kononenko, 1991) and (Friedman et. al., 1997).
However, these developments have the following drawbacks:

They require a large amount of effort when constructing the network.
They quietly degrade to overfitting because they combine probabilistically

the data with prior knowledge.

D

(a)
The original tree

(b)
The section of the tree to be pruned

(c)
The tree after pruning

D

A

B

C

D

A

B

C

A

The Impact of Overfitting and Overgeneralization 403

3.5 Artificial Neural Networks (ANNs)

Recall that an ANN is a model that is an assembly of inter-connected nodes
and weighted links. The output node sums up each of its input values ac-
cording to the weights of its links. The output node is compared against a
threshold value t. Such a model is illustrated in Figure 6. The ANN in this
figure consists of the three input nodes X1, X2, and X3 which correspond to
the weighted links w1, w2, and w3, respectively, and one output node Y . The
sum of the input nodes can be Y = sign

∑
i

(Xiwi − t), called the perceptron

model (Abdi, 2003).
In general, an ANN has a set of input nodes X1, X2, . . . , Xm and one out-

put node Y . Given are n values for the m-tuple (X1, X2, . . . , Xm). Let
∧
Y1,

∧
Y2,

. . . ,
∧
Yn be the predicted outputs and Y1, Y2, . . . , Yn be the expected outputs

from the n values, respectively. Let E =
n∑

i=1

[Yi −
∧
Yi]2denote the total sum of

the squared differences between the expected and the predicted outputs. The
goal of the ANN is to determine a set of the weights in order to minimize
the value of E. During the training phase of an ANN, the weight parameters
are adjusted until the outputs of the perceptron become consistent with the
true outputs of the training points. In the weight update process, the weights
should not be changed too drastically because E is computed only for the cur-
rent training point. Otherwise, the adjustments made during earlier iterations
may be undone.

In order to avoid overgeneralization or overfitting, the design for an ANN
must be considered. A network that is not sufficiently complex may fail to fully
detect the input in a complicated dataset, leading to overgeneralization. On
the other hand, a network that is too complex may not only fit the input but
also the noisy points, thus leading to overfitting. According to (Geman, Bi-
enenstock, and Doursat, 1992) and (Smith, 1996), the complexity of a network
is related both to the number of the weights and to the size of the weights.
Geman and Smith were directly or indirectly concerned with the number and
size of the weights. That is, the number of the weights relates to the number
of hidden units and layers. The more weights there are, relative to the number
of the training cases, the more overfitting amplifies noise in the classification
systems (Moody, 1992). Reducing the size of the weights may reduce the effec-
tive number of the weights leading to weight decay (Moody, 1992) and early
stopping (Weigend, 1994). In summary, ANNs have the following drawbacks:

It is difficult to find an appropriate network topology for a given problem
in order to avoid model overfitting and overgeneralization.

It takes lots of time to train an ANN when the number of hidden nodes is
large.

404 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

3.6 Support Vector Machines (SVMs)

Another classification technique that has received considerable attention is
known as SVMs (Vapnik, 1995). The basic idea behind SVMs is to find a
maximal margin hyperplane, θ, that will separate points considered as vec-
tors in an m-dimensional space. The maximum margin hyperplane can be
essentially represented as a linear combination of the training points. Con-
sequently, the decision function for classifying new data points with respect
to the hyperplane only involves dot products between data points and the
hyperplane.

Fig. 5. An illustrative example of a BBN (Rada, 2004).

In order to help fix ideas, we consider the simple illustrative example de-
picted in Figure 7. Suppose that we have a training dataset defined on two
given classes (represented by the squares and circles) in 2-D. In general, the
approach can find many hyperplanes, such as B1 or B2, separating the train-
ing dataset into the two classes. The SVM, however, chooses B1 to classify
this training dataset since B1 has the maximum margin. Roughly speaking it
is in the middle of the distance between the two groups of training examples.

Decision boundaries with maximal margins tend to lead to better gener-
alization. Furthermore, SVMs attempt to formulate the learning problem as
a convex optimization problem in which efficient algorithms are available to
find a global solution. For many datasets, however, an SVM may not be able
to formulate the learning problem as a convex optimization problem because

Interest

Buy

Age Occupation Income

The Impact of Overfitting and Overgeneralization 405

Fig. 6. An illustrative example of an ANN (Tan et. al., 2005).

it may be the cause of too many misclassifications. Thus, the attempts for
formulating the learning problem may lead to overgeneralization.

4 Proposed Methodology – The Homogeneity-Based
Algorithm (HBA)

4.1 Some Key Observations

In order to help motivate the proposed methodology, we first consider the
situation depicted in Figure 8.(a). This figure presents two inferred patterns.
These are the circular areas that surround groups of training data (shown as
small circles). Actually, these data are part of the training data shown earlier
in Figure 1 (please recall that the circles in Figure 1 represent positive points).
Moreover, in Figure 8.(a) there are two additional data points shown as small
triangles and are denoted as points P and Q. At this situation, it is assumed
that we do not know the actual class values of these two new points. We
would like to use the available training data and inferred patterns to classify
these two points. Because points P and Q are covered by patterns A and B,
respectively, both of these points may be assumed to be positive examples.

Let us look more closely at pattern A. This pattern covers regions of the
state space that are not adequately populated by positive training points.
Such regions, for instance, exist in the upper left corner and the lower part
of pattern A (see also Figure 8.(a)). It is possible that the unclassified points
which belong to such regions are erroneously assumed to be of the same class
as the positive training points covered by pattern A. Point P is in one of these
sparely covered regions under pattern A. Thus, the assumption that point P
is a positive point may not be very accurate.

ΣΣΣΣ

X1

X2

X3

Y

Black box

w1

t

Output
node

Input
nodes

w2

w3

406 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

On the other hand, pattern B does not have such sparely covered regions
(see also Figure 8.(a)). Thus, it may be more likely that the unclassified points
covered by pattern B are more accurately assumed to be of the same class
as the positive training points covered by the same pattern. For instance, the
assumption that point Q is a positive point may be more accurate.

The above simple observations lead one to surmise that the accuracy of
the inferred systems can be increased if the derived patterns are, somehow,
more compact and homogenous.

According to the Wikipedia Dictionary (2007), given a certain class (i.e.,
positive or negative), a homogenous set describes a steady or uniform distri-
bution of a set of distinct points. That is, within the pattern there are no
regions (also known as bins) with unequal concentrations of classifiable (i.e.,
either positive or negative) and unclassified points. In other words, if a pat-
tern is partitioned into smaller bins of the same unit size and the density of
these bins is almost equal to each other (or, equivalently, the standard devi-
ation is small enough), then this pattern is a homogenous set. An axiom and
a theorem are derived from the definition of a homogenous set as follows:

Axiom 1. Given is an inferred pattern C of size one. Then, C is a homogenous
set.

This axiom is used later in Section 4.4.

Theorem 1. Let us consider a homogenous set C. If C is divided into two
parts, C1 and C2, then the two parts are also homogenous sets.

Proof. We prove Theorem 1 by using contradiction. Since C is a homogenous
set, there is a uniform random variable Z that represents the distribution of
points in C. Similarly, Z1 and Z2 are the two random variables that represent
the distribution of points in C1 andC2, respectively. Obviously, Z is the sum
of Z1 and Z2. Assume that either Z1 or Z2 is a non homogenous set. Thus, Z1

+ Z2 is not a uniform random variable. This contradicts the fact that Z is a
uniform random variable.

The pattern which is represented by the non homogenous A can be replaced
by two more homogenous sets denoted as A1 and A2 as in Figure 8.(b). Now
the regions covered by the two new smaller patterns A1 and A2 are more
homogenous than the area covered by the original pattern A. Given these
considerations, point P may be assumed to be an unclassifiable point while
point Q is still a positive point.

As presented in the previous paragraphs, the homogenous property of pat-
terns may influence the number of misclassification cases of the inferred classi-
fication systems. Furthermore, if a pattern is a homogenous set, then the num-
ber of training points covered by this pattern may be another factor which
affects the accuracy of the overall inferred systems. For instance, Figure 9
shows the case discussed in Figure 8.(b) (i.e., pattern A has been replaced by

The Impact of Overfitting and Overgeneralization 407

Fig. 7. An illustrative example of an SVM (Tan et. al., 2005).

two more homogenous sets denoted as A1 and A2). Suppose that all patterns
A1, A2 and B are homogenous sets and a new point S (indicated as a triangle)
is covered by pattern A1.

A closer examination of this figure shows that the number of points in
B is higher than those in A1. Although both points Q and S are covered
by homogenous sets, the assumption that point Q is a positive point may
be more accurate than the assumption that point S is a positive point. The
above simple observation leads one to surmise that the accuracy of the inferred
systems may also be affected by a density measure. Such a density could be
defined as the number of points in each inferred pattern per unit of area or
volume. Therefore, this density will be called the homogeneity degree.

In summary, a fundamental assumption here is as follows: if an unclassified
point is covered by a pattern that is a homogenous set which also happens to
have a high homogeneity degree, then it may be more accurately assumed to
be of the same class as the points covered by that pattern. On the other hand,
the accuracy of the inferred systems may be increased when their patterns are
more homogenous and have high homogeneity degrees.

4.2 Non Parametric Density Estimation

Please recall that a pattern C of size n is a homogenous set if the pattern can
be partitioned into smaller bins of the same unit size h and the density of these
bins is almost equal to each other (or, equivalently, the standard deviation is
small enough). In other words, if C is superimposed by a hypergrid of unit

b11

b12

b21

b22

B1

B2

margin

θθθθ

408 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

size h and the density of the bins inside C is almost equal to each other, then
C is a homogenous set.

As seen in the above, the density estimation of a typical bin plays an
important role in determining whether a set is a homogenous set or not.
According to (Duda et. al., 2001), the density estimation is the construction
of an estimate, based on the observed data and on an unobservable underlying
probability density function. There are two basic approaches to the density
estimation:

Parametric in which we assume a given form of the density function (i.e.,
Gaussian, normal, and so on) and its parameters (i.e., its mean and variance)
such that this function may optimally fit the model to the dataset.

Non parametric where we cannot assume a functional form for the den-
sity function, and the density estimates are driven entirely by the available
training data.

The following sections will use the non parametric density estimation. That
is, the approach divides pattern C into a number of small bins of unit size h.
The density at the center xof each bin can be approximated by the fraction
of points in C that fall into the corresponding bin and the volume of the bin.
For instance, a bin in 3-D can be a cube of unit size h as depicted in Figure
10. Let n be the number of points in C and d(x) denote the x’s density, then:

d(x) =
1
n

[
the number of examples falling in the bin with center x

volume of the bin
]. (2)

The basic idea behind computing d(x) relies on the probability p that a
data point x, drawn from a distribution function, will fall in bin R.By using
this idea we arrive at the following obvious estimate for d(x):

d(x) ≈ k

n× V
, (3)

where x is a point within R; k is the number of points which fall in R; and V
is the volume enclosed by R.

The Parzen Windows approach (Duda and Hart, 1973) was introduced as
the most appropriate approach for the density estimation. That is, it tem-
porarily assumes that the region R is a D-dimensional hypercube of unit size
h. To find the number of points that fall within this region, the Parzen Win-
dows approach defines a kernel function ϕ(u) as follows:

ϕ(u) =
{

1, |u| ≤ 1/2.
0, otherwise.

(4)

It follows that the quantity ϕ(x−xi

h) is equal to unity if the point xi is
inside the hypercube of unit size h and centered at x, and zero otherwise.
Therefore, k, the number of points in the hypercube is given by:

The Impact of Overfitting and Overgeneralization 409

k =
n∑

i=1

ϕ(
x− xi

h
) (5)

In the D-dimensional space, the kernel function can be presented as fol-
lows:

ϕ(
x − xi

h
) =

D∏
m=1

ϕ(
xm − xm

i

h
). (6)

By using (6) in Equation (3), one gets:

d(x) ≈ 1
n× hD

n∑

i=1

D∏
m=1

ϕ(
xm − xm

i

h
). (7)

Usually, but not always, ϕ(u) will be radically symmetric. Thus, the uni-
modal probability density function, for instance the multivariate Gaussian
density function, may be used to compute ϕ(u):

ϕ(u) =
1

(2× π)
D
2

exp(−1
2
utu). (8)

Choosing a value for h plays the role of a smoothing parameter in the
density estimation. That is, if h →∞, then the density at point x in C, d(x),
approaches a false density. As h →0, then the kernel function approaches the
Dirac Delta Function and d(x) approaches to the true density (Bracewell,
1999).

Suppose that we determine all distances between all possible pairs formed
by taking any two points from pattern C. For easy illustration, assume that
for pattern C which contains 5 points these distances are as follows: 6, 1, 2,
2, 1, 5, 2, 3, 5, 5. Then, we define S as a set of the distances which have the
highest frequency. For the previous illustrative example, we have set S equal
to {2, 5} as both distances 2 and 5 occur with frequency equal to 3. By using
the concept of the previous set S, Heuristic Rule 1 proposes a way for finding
an appropriate value for h when we estimate the density d(x). In particular,
it uses the minimum value in S (which is equal to 2 in this illustration) as
follows:

Heuristic Rule 1: If h is set equal to the minimum value in set S and
this value is used to compute d(x) by using Equation (7), then d(x) approaches
to a true density.

This heuristic rule is reasonable for the following reason. In practice, since
pattern C has a finite number of points the value for h cannot be made arbi-
trarily small. Obviously, an appropriate value for h is between the maximum
and the minimum distances that are computed by all pairs of points in pattern
C.If the value for h is the maximum distance, then C would be inside a single
bin. Thus, d(x) approaches to a false density. In contrast, if the value for h is

410 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

the minimum distance, then the set of the bins would degenerate to the set
of the single points in C. This situation also leads to a false density.

According to (Bracewell, 1999), as h →0, then d(x) approaches to the true
density. Furthermore, a small value for h would be appropriate to approach
to the true density (Duda et. al., 2001). Thus, the value for h described in
Heuristic Rule 1 is a reasonable selection because it is close to the minimum
distance but simultaneously the bins would not degenerate to the single points
in C.

4.3 The Proposed Approach

Recall that in optimizing the total misclassification cost as defined in Equation
(1) for classification algorithms, one cannot separate the control of fitting
and generalization into two independent studies. Instead of this, the key idea
of the proposed methodology is to simultaneously balance both fitting and
generalization by adjusting the inferred systems through the use of the concept
of homogenous sets and the homogeneity degree. The proposed methodology
can be summarized in terms of the following three phases:

• Phase #1: Apply a classification approach (such as a DT, ANN, or SVM)
to infer the two classification systems (i.e., the positive and the negative
classification systems). Suppose that each classification system consists of
a set of patterns. Next, break the inferred patterns into hyperspheres.

• Phase #2: Determine whether the hyperspheres derived in Phase #1 are
homogenous sets or not. If so, then go to Phase #3. Otherwise, break a
non homogenous set into smaller hyperspheres. Repeat Phase #2 until all
of the hyperspheres are homogenous sets.

• Phase #3: For each homogenous set, if its homogeneity degree is greater
than a certain breaking threshold value, then expand it. Otherwise, break
it into smaller homogenous sets. The approach stops when all of the ho-
mogenous sets have been processed.

Suppose that given is a homogenous set C. Let HD(C) denote its homo-
geneity degree. There are five parameters which are used in the proposed
methodology:

• Two expansion threshold values α+ and α− to be used for expanding the
positive and the negative homogenous sets, respectively.

• Two breaking threshold values β+ and β− to be used for breaking the
positive and the negative patterns, respectively.

• A density threshold value γ to be used for determining whether either a
positive or a negative hypersphere is approximately a homogenous set or
not.

These three phases are also described in Algorithm 1 where they lead to
the formulation of six sub-problems as follows:

The Impact of Overfitting and Overgeneralization 411

Algorithm 1: The main algorithm.
Input: The training sets with the positive and the negative points.

A given classification algorithm.
Values of the control parameters α+, α−, β+, β−, and γ.

Output: New positive and negative classification systems.
1: Call Sub-Problem #1. {Phase #1}
2: Call Sub-Problem #2.
3: for all hypersphere C do {Phase #2}
4: Call Sub-Problem #3 with inputs C and γ.
5: if C is a non homogenous set then
6: Call Sub-Problem #4
7: Go To Step 3
8: end if
9: end for

10: Sort the homogeneity degrees in decreasing order.
11: for all homogenous set C do {Phase #3}
12: if HD(C) ≥ β+ (for positive sets) or HD(C) ≥ β− (for negative sets) then
13: Call Sub-Problem #5 with inputs HD(C) and α+ or α−.
14: else
15: Call Sub-Problem #6.
16: end if
17: end for

• Sub-Problem #1: Apply a data mining approach (such as a DT, ANN,
SVM) to infer the two classification systems.

• Sub-Problem #2: Break the inferred patterns into hyperspheres.
• Sub-Problem #3: Determine whether a hypersphere is a homogenous

set or not. If so, then its homogeneity degree is estimated.
• Sub-Problem #4: If a hypersphere is not a homogenous set, then break

it into smaller hyperspheres.
• Sub-Problem #5: Expand a homogenous set C by using the notion of

its homogeneity degree HD(C) and the corresponding expansion threshold
value plus some stopping conditions.

• Sub-Problem #6: Break a homogenous set C into smaller homogenous
sets.

To solve Sub-Problem #1, one simply applies a classification algorithm
and then derives the classification patterns. Furthermore, a solution to Sub-
Problem #2 is similar to solutions for Sub-Problem #4. Therefore, the follow-
ing sections present some procedures for solving Sub-Problems #2, #3, #5,
and #6.

4.4 Solving Sub-Problem # 2

In order to help motivate the solution to Sub-Problem #2, we first consider
the situation depicted in Figure 11.(a). This figure presents a set of positive

412 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

Fig. 8. Pattern B is a homogenous set while pattern A is a non homogenous set.
Pattern A can be replaced by the two homogenous sets A1 and A2 as shown in part
(b).

training points and a set of negative training points in 2-D. Suppose that
Sub-Problem #1 has applied a DT algorithm on these sample data to infer
a decision tree as depicted in Figure 11.(b). This decision tree separates the
training data into the four groups described by the two solid lines depicted in
Figure 11.(c).

Next for each pattern somehow Sub-Problem #2 finds the minimum num-
ber of hyperspheres which cover all the points in the original patterns. For
instance, the above situation is depicted in Figure 11.(d) in which the positive
patterns and the bottom negative pattern are covered by the circles (please
note that in 2-D hyperspheres are circles): B, D and C, respectively. The top
negative pattern is covered by the two circles A and E.

The problem of finding the minimum number of hyperspheres that can
cover a pattern C of size N is similar to a form of the set cover problem, an
NP-complete problem (Karp, 1972). In this research, a heuristic algorithm is
proposed as depicted in Algorithm 2.

The algorithm starts by first estimating the densities of the N points by
using Equation (7). Assume that the value for K is going from 1 to N . The
algorithm will pick K points in C with the highest densities. Next, it uses
these K points as centroids in the K-means clustering approach. If the K
hyperspheres which are obtained from the clustering approach cover C, then
the algorithm will stop. Otherwise, we repeat the algorithm with the value for
K increased by one. Obviously, the algorithm will stop after some iterations
because of Axiom 1. For instance, in Figure 11.(d) the algorithm determines
at least two circles which can cover the two positive patterns while it uses
three circles for the two negative patterns.

Recall that Sub-Problem #4 is to decompose a non homogenous set C into
smaller hyperspheres in order to minimize the number of the hyperspheres
which cover pattern C. We can use a similar algorithm as the one depicted in
Algorithm 2.

P

A
Q

B

x

y

(a) – The original patterns

P

A1

Q

B

x

y

(b) – The broken patterns

A2

The Impact of Overfitting and Overgeneralization 413

Fig. 9. An illustrative example of homogenous sets.

Algorithm 2: The algorithm for Sub-Problem 2
Input: Pattern C of size N .
Output: K hyperspheres.
1: Estimate the densities of the N points by using Equation (7).
2: for K=1 to N do
3: Pick Kpoints in C with the highest densities.
4: Use the K-means clustering approach to find K hyperspheres.
5: if the K hyperspheres cover C then
6: STOP
7: else
8: K = K + 1
9: end if

10: end for

4.5 Solving Sub-Problem #3

Let consider some hypersphere C. Sub-Problem #3 determines whether or not
hypersphere C is a homogenous set. By using the idea of the non parametric
density estimation described in Section 4.2, C is divided into a number of
small bins of unit size h and approximates the density at the center xof each
bin. If the densities at the centers are approximately equal to each other, then
C is a homogenous set.

In order to help motivate the algorithm for Sub-Problem #3, we first
consider the situation depicted in Figure 12. The left side of this figure presents
two positive circles, called A and B in 2-D.

P

A1

Q

B

x

y

A2

S

414 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

Fig. 10. A bin of unit size h and the center x in 3-D.

Algorithm 3: The algorithm for Sub-Problem 3
Input: Hypersphere C and density threshold value γ.
Output: Decide whether or not hypersphere C is a homogenous set.
1: Compute the distances between all pairs of points in C.
2: Let h be the distance mentioned in Heuristic Rule 1.
3: Superimpose C into hypergrid V of unit size h.
4: Approximate the density at the center xof each bin.
5: Compute the standard deviation of the densities at the centers of the bins.
6: if the standard deviation is ≤ess than or equal to γ, then
7:

using Equation (9).
8: else
9: C is not a homogenous set.

10: end if

h

h

h

x

C is a homogenous set and its homogeneity degree HD(C) is computed by

The Impact of Overfitting and Overgeneralization 415

Fig. 11. An Illustrative example of Phase 1

Suppose that both circles A and B are superimposed by the same hypergrid
V of unit size h equal to one. This situation is depicted in the right side of
Figure 12. By using Equation (7), the right figures show that all bins in circle
A are of the same density equal to 1

16×12 =0.0625. In contrast, the density
of some of the bins in circle B is equal to 0

16×12 =0. Thus, circle A is a
homogenous set while circle B is not.

Furthermore, instead of the strict condition which requires the same den-
sity at the centers of the bins, we may apply a softer condition. That is, if the
standard deviation of the densities at the centers of the bins is approximately
less or equal to γ, say for γ = 0.01, then hypersphere C may be considered to
be a homogenous set. The algorithm for Sub-Problem #3 is given in Algorithm
3.

As mentioned in Section 4.1, the homogeneity degree HD(C) is a factor
that may affect the total misclassification cost of the inferred classification
systems. If an unclassified point is covered by a homogenous set C which has
a higher homogeneity degree, then it may more accurately be assumed to be

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x

y

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x

y

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x

y

X < 5

Y < 5 Y < 5

+ - - +

(a) – The original training data. (a) – An inferred DT.

(c) – The inferred patterns from the DT. (d) – The hyperspheres (i.e., circles in 2-D) from the DT.

D

E

A

B C

416 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

Fig. 12. Illustrative examples of the homogenous set (at the top part) and the non
homogenous set (at the bottom part).

of the same class as the points covered by the homogenous set C. Thus, a
definition for HD(C) is an important step in improving the accuracy of the
classification systems.

As discussed in Section 4.1, the concept of the homogeneity degree HD(C)
is defined as the number of points inside the homogenous set C per unit of
C’s volume. This definition, however, has its drawbacks. For instance, let us
look at circles A and E as the one depicted in Figure 11. According to the
above definition, HD(A) is equal to 16

2×1.52×π ≈ 1.1318, while HD(E) is equal
to 4

2×0.52×π ≈ 2.5465. This means that pattern E is denser than pattern A.
This is an apparent contradiction since in reality pattern A has more points
and covers a wider region than pattern E. Thus, we need to find an appropriate
definition for the homogeneity degree.

Intuitively, HD(C) depends on the value h defined in Heuristic Rule 1
and the number of points in C, denoted by nC . If nC increases, then HD(C)
would slightly increase since the volume of C does not change and C has more
points. Furthermore, if h increases, then the average distance between pairs of
points in homogenous set C increases. Obviously, this leads to;D(C) decreases.
Hence, HD(C) is inversely proportional to h while is directly proportional to
nC . We use the function ln(nC) to show the slight effect of nC to HD(C).

HD(C) =
ln(nC)

h
. (9)

For instance, HD(A) as depicted in Figure 12 is equal to ln(16)
1 ≈ 2.77.

Let us consider the illustrative example depicted in Figure 11. Now we have

A is superimposed by
a hypergrid of unit size h = 1.00.

+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

+

+ +

+

+

+ +

+

+

+

+

+

+

+

+

+ +

+ +

+

+

+

+

+ ++

+

+

+ +

+

+

+

+

+ +

+

+

B is superimposed by
a hypergrid of unit size h = 1.00.

A

B

The Impact of Overfitting and Overgeneralization 417

Fig. 13. An illustrative example of Sub-Problem 5.

HD(A) equal to ln(16)
1 ≈ 2.77, HD(B) equal to ln(9)

1 ≈ 2.19, HD(C) = HD(E)
equal to ln(4)

1 ≈ 1.38, and HD(D) equal to ln(10)
2 ≈ 1.151.

4.6 Solving Sub-Problem #5

Recall that the control of fitting and generalization for classification systems
may be achieved by expanding or breaking the inferred homogenous sets by
using their homogeneity degrees. Suppose that we are given a positive ho-
mogenous set F with its homogeneity degree HD(F), the breaking threshold
value β+, and the expansion threshold value α+. A similar definition exists
for a negative homogenous set. According to the main algorithm depicted in
Algorithm 1, if HD(F) is greater than or equal to β+, then the homogenous
set F will be expanded by using the expansion threshold value α+. Otherwise,
we will break the homogenous set F into smaller hyperspheres.

In order to help motivate this stage, we consider the example depicted in
Figure 11. Please recall that the homogeneity degrees of circles A, B, C, D,

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x

y

HD(A)=2.77
HD(D)=1.151

HD(B)=2.19

HD(E)=1.38

HD(C)=1.38

418 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

Fig. 14. An illustrative example of the radial expansion.

and E are HD(A)=2.77, HD(B)=2.19, HD(C)=1.38, and HD(D)=1.15, and
HD(E)=1.38, respectively. Suppose that the two breaking threshold values
β+ and β− are equal to 1.00 and 1.50, respectively. Furthermore, let the two
expansion threshold values α+ and α− be equal to 2.00. As depicted in Figure
13, the homogenous sets A, B, and D are expanded (the expanded regions are
indicated by the solid line circles), while C and E are broken into four smaller
circles (the broken regions are indicated by the small solid line circles). Please
note that the breaking
approach, i.e., Sub-Problem #6, is described in Section 4.7.

There are two types of expansion: a radial expansion in which a homoge-
nous set F is expanded in all directions and a linear expansion in which a
homogenous set F is expanded in a certain direction. For instance, in Figure
13 the homogenous sets A, B, and D have used the radial expansion approach.
The following sections discuss in detail these two expansion types.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x

y

HD(D)=1.151

HD(C)=1.38

HD(E)=1.38

HD(A)=2.77

HD(B)=2.19

RM=2.5

R
C =

4.242

R
A
=

2.
12

1

The Impact of Overfitting and Overgeneralization 419

Fig. 15. An illustrative example of the linear expansion.

Radial Expansion

In the radial type, a homogenous setF is expanded in all directions. Let M
be a region expanded from F . Let RF and RM denote the radiuses of F and
M , respectively.In the radial expansion approach RF is increased by a certain
amount denoted as T , called a step-size increase. Thus, one gets:

RM = RF + T (10)

Following a dichotomous search methodology, we assume that there exists
a hypersphere G which covers the homogenous set F . Furthermore, without
loss of generality, let us assume that the radius RGmay be computed by:

RG = 2× RF (11)

+ +

+

+

+ +

+

+

+

+

+

+ +

++

A

U

(a)

+

+

+

+

+

+ +

+

+

+

+

+

+ +

++

A

U

(b)

X

+

+

+

+

+

+ +

+

+

+

+

+

+ +

++

A

U

(c)

X

+

+

+

+

+

+ +

+

+

+

+

+

+ +

++

A

U

(d)

X

Y Y

420 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

By using RG and RF , we can derive the step-size increaseT . That is, T
must depend on the difference between RG and RF . One of the ways that T
may be determined is as follows:

T =
RG −RF

2
. (12)

At the same time, T should depend on HD(F) because of the dichotomous
search methodology. That is, if HD(F) gets higher, then T should get smaller.
This means that HD(F) is inversely proportional to T . We may use a threshold
value L to ensure that HD(F) is always greater than one. Thus, the value for
Tmay be defined as follows:

T =
RG −RF

2
× 1

L×HD(F)
. (13)

If we substitute back into Equation (10), RM becomes:

RM = RF +
RG −RF

2
× 1

L×HD(F)
. (14)

In order to help motivate the radial expansion algorithm, we consider the
example indicated in Figure 14. This example uses the same hypothetical
data as the ones depicted in Figure 11.(d). Assume that L is equal to one.
A closer examination of Figure 14 indicates that the hypersphere A (i.e., the
one-line circle with RA=2.121) is covered by the three circles: a double-line
circle which depicts circle G with RG = 2.121 × 2 = 4.242, a solid line circle
which shows the final expanded region, and a dotted line circle which presents
the hypersphere M whose radius is computed as follows:

RM = RF + RG−RM

2 × 1

L×w(A)
= 2.121 + 4.242−2.121

2 × 1
1×2.77 ≈ 2.5.

Similarly, Equation (14) computes the following values for RM in four it-
erations: 2.8, 3.06, 3.23, and 3.25, respectively, until RM satisfies the stopping
conditions mentioned next in Section 4.6. The final expanded region is the
solid line circle depicted in Figure 14. Furthermore, this figure also shows
that a part of the state space which has been inferred as a positive region by
the DT algorithm. However, now it is derived as a negative region after using
the HBA. This illustration indicates that the HBA may derive better clas-
sification systems. The radial expansion algorithm is depicted in Algorithm
4.

Linear Expansion

The linear approach expands a homogenous set F in a certain direction. There
is a difference between the method presented in the previous section and
the one presented in this section (i.e., linear vs. radial). That is, now the
homogenous set F is first expanded to hypersphere M by using the radial
expansion. Then, hypersphere M is expanded in a given direction by using

The Impact of Overfitting and Overgeneralization 421

Algorithm 4: The algorithm for the radial expansion.
Input: Homogenous set F with HD(F), RF , and α+

Output: An expanded region E.
1: Set M = F (i.e., RF = RM).
2: Set hypersphere G covering M with radius RG = 2 × RM .
3: repeat
4: Set E = M (i.e., RE = RM).
5: Expand M by using Equation (14).
6: until RM M =RG.
7: if RM satisfies stopping conditions then
8: STOP.
9: else

10: go to Step 2.
11: end if

the radial approach until it satisfies the stopping conditions mentioned next
in Section 4.6. The final region is the union of all the expanded regions.

In order to help motivate the linear expansion approach, we consider the
homogenous set A depicted in Figure 15. Suppose that by using the radial
expansion for the homogenous set A with the expansion threshold value equal
to 2.00, we get the hypersphere U (i.e., the two-line circle depicted in Figure
15.(a)). Next, we divide the hypersphere U in the X axis into two parts. The
radial expansion approach would expand each one of the parts as the solid lines
depicted in Figure 15.(b). A similar approach exists for the Y axis depicted
in Figure 15.(c). The final expanded region is the region which is defined by
the union of the solid lines depicted in Figure 15.(d).

Description of the Stopping Conditions

This section presents the stopping conditions for the radial expansion ap-
proach for expanding a homogenous set F . That is, the stopping conditions
must satisfy the following requirements:

Depend on the homogeneity degree. This has been mentioned in the fun-
damental assumption of the proposed approach.

Stop when an expanded region reaches other patterns. We can use a softer
condition in which the expanded region can accept several noisy data points.
If the homogeneity degree is high, then the expanded region can accept more
noisy data.

To address the first stopping condition, an upper bound for RM should
be directly proportional to the homogeneity degree HD(F), the expansion
threshold value α+, and the original radius RF . The second stopping condition
can be determined while expanding. Furthermore, an upper bound on the
number of noisy points should be directly proportional to HD(F) and the size
of F , which is denoted as nF . The stopping conditions are summarized as
follows (a similar way exists for the expansion threshold value α−):

satisfies stopping conditions discussed in Section 4.6 or R

422 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

RM ≤ HD(F)×RF × α+ and the number of noisy points ≤ HD(F)× α+

nF
(15)

4.7 Solving Sub-Problem #6

Suppose that given is a positive homogenous set F . Recall that if its homo-
geneity degree HD(F) is less than β+, then the homogenous set F is broken
into sub-patterns. According to Theorem 1, the sub-patterns are also homoge-
nous sets. Thus, they can be expanded or broken down even more.

In order to help motivate this problem, we consider the example depicted
in Figure 13. In this figure the two threshold values β+ and β− are equal
to 1.00 and 1.50, respectively. Therefore, the homogenous sets C and E are
broken down into four smaller circles for each set. Then, these smaller circles
are considered to be homogenous sets with their homogeneity degrees equal
to zero. Thus, they should not be expanded.

5 Some Computational Results

5.1 Datasets and Parametric Analysis

Please recall that this chapter aims at better understanding the performance
of the HBA in balancing both fitting and generalization by adjusting the in-
ferred systems through the use of the concept of homogenous sets and the
homogeneity degree. The balance will target at minimizing the total misclas-
sification costs, TC, of the final system:

TC = min (CFP×RATE FP+CFN×RATE FN+CUC×RATE UC).

Please note that the penalty costs: CFP , CFN , and CUC depend on each
individual application. In the following experiments, we used some 2-D syn-
thetic datasets which were divided into a training set and a testing set as
described in Table 1.These data points were determined as follows. At first
the map of VietNam was considered. Next some data points were generated
randomly in 2-D. A data point would be a positive point, if it fell inside the
map of VietNam. Otherwise, that point was defined as a negative point. The
HBA attempted to use the training set to infer the map of VietNam (i.e., the
positive and the negative systems). Then, we used the inferred map to test
the testing set. The four parameters used in the HBA are as follows:

• Two expansion threshold values α+ and α− to be used for expanding the
positive and the negative homogenous sets, respectively.

The Impact of Overfitting and Overgeneralization 423

Table 1. Characteristics of the 2-D synthetic datasets

Name Number of training points Number of testing points

D1 63 16

D2 89 28

D3= D1∪D2 144 44

• Two breaking threshold values β+ and β− to be used for breaking the
positive and the negative patterns, respectively.

Furthermore, it was also assumed that β+ and β− were in [0, 2] while
α+ and α− were in [0, 10]. Given is a certain 3-tuple of the penalty costs
(CFP , CFN , CUC). By using exhaustive search in the above ranges the HBA
found the optimal combinations of α+, α−, β+,and β− in order to minimize
the TC value.On the other hand, given are different values for the 3-tuple
(CFP , CFN , CUC). We expect that the value for TC after controlling the
fitting and generalization problems would be less than or at most equal to
what was achieved by the original algorithms.

5.2 Experimental Results

The experiments were ran on a PC with 2.8GHZ speed and 1GB RAM un-
der the Windows XP operating system. The original classification algorithms
used in these experiments are based on SVMs, ANNs, and DTs. There were
thirteen experiments done on the three datasets D1, D2, and D3with different
values for the 3-tuple (CFP , CFN , CUC). Furthermore, we used the libraries
in Neural Network Toolbox 6.0 and Statistics Toolbox 6.0 (Matlab, 2004) for
implementing the classification algorithms, the K-means clustering algorithm,
and the density estimation approach. The experimental details are as follows:

Case 1: At first we studied the case of a 3-tuple (CFP , CFN , CUC) in which
the application would penalize much more for the false-positive cases than for
the other types of error. Thus, the objective function in this case was assumed
to be:

TC = 6×RATE FP + 3×RATE FN + RATE UC .

Next, we ran the HBA on D1 with β+ and β− divided into {0, 1, 2} and
α+ and α− divided into {0, 2, 4, 6, 8, 10}. Recall that RATE FP, RATE FN,
and RATE UC are the false-positive, the false-negative, and the unclassi-
fiable rates, respectively. Table 2 shows these three rates and the value of
TC obtained from the algorithms. The notation “SVM-HBA” means that the
HBA used the classification models first obtained by using the SVM algorithm
before controlling the fitting and generalization problems. The two similar no-
tations exist for DT-HBA (the Decision Tree algorithm and the HBA) and

424 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

Table 2. Results for minimizing TC = 6×RATE FP + 3×RATE FN + RATE UC
on D1.

Algorithm RATE FP RATE FN RATE UC TC

SVM 1 0 7 13

DT 3 0 5 23

ANN 1 0 7 13

SVM-HBA 0 1 5 8

DT-HBA 0 1 5 8

ANN-HBA 0 1 5 8

ANN-HBA (the Artificial Neural Network algorithm and the HBA). Table 2
presents that SVM-HBA, DT-HBA, and ANN-HBA found the optimal TC
to be equal to 8. This value was less than the value of TC achieved by the
original algorithms (i.e., the SVM, DT, and ANN) by about 39%.

Table 3 presents information for the four specific parameter values when
SVM-HBA found the optimal TC. The execution time in this case was ap-
proximately equal to 1 hour and 3 minutes.

Table 3. Values for the four parameters when the SVM-HBA ran on D1 and found
the optimal TC.

β+ α− β− α+

1 10 2 4

1 10 2 6

1 10 2 8

1 10 2 10

An even lower TC was found once we divided β+ and β− into {0, 1, 2}
and divided α+ and α− into {0 to10}. These results are presented in Table 4.

Table 4. Results for minimizing TC = 6×RATE FP + 3×RATE FN + RATE UC
on D1 with the smaller ranges.

Algorithm RATE FP RATE FN RATE UC TC

SVM 1 0 7 13

DT 3 0 5 23

ANN 1 0 7 13

SVM-HBA 0 0 7 7

DT-HBA 0 0 7 7

ANN-HBA 0 0 7 7

Table 4 shows that if we split the four parameters into smaller ranges,
then the HBA could find a lower TC. This may lead to a new strategy in

The Impact of Overfitting and Overgeneralization 425

which one can develop an approach for determining optimal combinations of
the four parameter values by successively considering higher resolution.

Case 2: Now we consider a case in which the application would penalize
much more for the unclassifiable cases than for the other types of error. Thus,
the objective function in this case was assumed to be:

TC = RATE FP + 3×RATE FN +6×RATE UC .

We ran the HBA on D1 with β+ and β− divided into {0, 1, 2} and α+

and α− divided into {0 to 10}. Table 5 shows that SVM-HBA, DT-HBA,
and ANN-HBA found an optimal TC which was less than the value of TC
achieved by the original algorithms by about 53%.

Table 5. Results for minimizing TC = RATE FP + 3×RATE FN +6×RATE UC
on D1.

Algorithm RATE FP RATE FN RATE UC TC

SVM 1 0 7 43

DT 3 0 5 33

ANN 1 0 7 43

SVM-HBA 1 1 4 28

DT-HBA 2 1 2 17

ANN-HBA 1 1 4 28

Case 3: Now we consider a case in which the application would penalize
the same way for the false-positive, the false-negative, and the unclassifiable
cases. Thus, the objective function in this case was assumed to be:

TC = 3.3×RATE FP + 3.3×RATE FN +3.3×RATE UC .

We ran the HBA on D1 with β+ and β− divided into {0, 1, 2} and α+

and α− divided into {0, 2, 4, 6, 8, 10}. Table 6 shows that SVM-HBA, DT-
HBA, and ANN-HBA found two possible cases for each algorithm where the
optimal value for TC was less than the value of TC achieved by the original
algorithms by about 33%.

A similar result for TC once we ran the HBA on D3, which had more
training points, also divided β+ and β− into {0, 1, 2}, and α+ and α− into
{0, 2, 4, 6, 8, 10}. These results are presented in Table 7.

Table 7 shows that SVM-HBA, DT-HBA, and ANN-HBA found the op-
timal TC which was less than the value of TC achieved by the original al-
gorithms by about 47%. The execution time in this case was approximately
equal to 12 hours and 50 minutes.

426 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

Table 6. Results for minimizing TC = 3.3×RATE FP + 3.3×RATE FN
+3.3×RATE UC on D1.

Algorithm RATE FP RATE FN RATE UC TC

SVM 1 0 7 26.4

DT 3 0 5 26.4

ANN 1 0 7 26.4

SVM-HBA
0 1 5 19.8
1 1 4 19.8

DT-HBA
1 1 3 16.5
2 1 2 16.5

ANN-HBA
0 1 5 19.8
1 1 4 19.8

Table 7. Results for minimizing TC = 3.3×RATE FP + 3.3×RATE FN +
3.3RATE UC on D3

Algorithm RATE FP RATE FN RATE UC TC

SVM 5 3 26 112.2

DT 8 3 24 115.5

ANN 5 2 27 112.2

SVM-HBA 4 7 7 59.40

DT-HBA 7 7 9 75.90

ANN-HBA 4 7 7 59.40

Case 4: Now we consider a case in which the application would penalize
much more for the false-negative cases than for the other types of error. Fur-
thermore, the penalty cost for unclassifiable cases was equal to zero Thus, the
objective function in this case was assumed to be:

TC = 2×RATE FP + 20×RATE FN +0×RATE UC .

We ran the HBA on D2 with β+ and β− divided into {0, 1, 2} and α+

and α− divided into {0, 2, 4, 6, 8, 10}. Table 8 shows that SVM-HBA, DT-
HBA, and ANN-HBA found an optimal TC equal to 0. This value was equal
to the value of TC achieved by the original algorithms. However, SVM-HBA
achieved an unclassifiable rate of 21 versus 28 for the original algorithms. A
similar result existed for DT-HBA and ANN-HBA. The execution time in this
case was approximately equal to 5 hours and 24 minutes.

We also experimented with the following different objective functions on
the dataset D1:

TC = 6×RATE FP + 2×RATE FN +2×RATE UC ,

TC = 4×RATE FP + 2×RATE FN +4×RATE UC , and

The Impact of Overfitting and Overgeneralization 427

Table 8. Results for minimizing TC = 2×RATE FP +20×RATE FN on D2.

Algorithm RATE FP RATE FN RATE UC TC

SVM 0 0 28 0

DT 0 0 28 0

ANN 0 0 28 0

SVM-HBA 0 0 21 0

DT-HBA 0 0 24 0

ANN-HBA 0 0 22 0

TC = 3×RATE FP + 6×RATE FN +1×RATE UC .

Similarly, we experimented with the following different objective functions
on the dataset D2:

TC = 2×RATE FP + 20×RATE FN +0×RATE UC,

TC = 6×RATE FP + 3×RATE FN +1×RATE UC, and

TC = 50×RATE FP + 60×RATE FN +1×RATE UC.

We also experimented with the following different objective functions on
the dataset D3:

TC =RATE FP + 3×RATE FN + 6×RATE UC, and

TC = 20×RATE FP + 2×RATE FN +0×RATE UC.

In all these tests we concluded that the HBA always found the optimal
combinations of α+, α−, β+,and β− in order to minimize the value of TC.
Furthermore, the value for TC in all these cases was significantly less than or
at most equal to what was achieved by the original algorithms.

6 Conclusions

The performance of a classification method in terms of the false-positive, the
false-negative, and the unclassifiable rates may be totally unpredictable and
depend on the application at hand. Attempts to minimize one of the previous
rates, lead to increases on the other two rates. The root to the above crit-
ical problems is the overfitting and overgeneralization behaviors of a given

428 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

classification approach when it is processing a particular dataset. This chap-
ter identified a gap between fitting and generalization with current algorithms
and also defined the desired goal as an optimization problem. Next, it provided
a new approach, called the Homogeneity-Based Algorithm (HBA), which ap-
pears to be very promising. There are some future research goals. For example,
the HBA needs to be tested with higher dimensions and more data. This is
ongoing research by our group. Currently we are implementing a GA (Genetic
Algorithm) for finding the optimal values of the controlling threshold values
α+, α−, β+,and β−. Some preliminary results seem to suggest that by using
the GA one can achieve even better values for the various objectives functions
at a fraction of the original CPU time (often times by spending between 50%
to 80%).;

References

Abdi, H., (2003), “A neural network primer,” Journal of Biological Systems, vol.
2, pp. 247-281.

Ali, K., C. Brunk, and M. Pazzani, (1994), “On learning multiple descriptions of
a concept,” Proceedings of Tools with Artificial Intelligence, New Orleans, LA,
USA, pp. 476-483.

Artificial Neural Network Toolbox 6.0 and Statistics Toolbox 6.0, Matlab Version
7.0, website: http://www.mathworks.com/products/

Boros, E., P. L. Hammer, and J. N. Hooker, (1994), “Predicting Cause-Effect Rela-
tionships from Incomplete Discrete Observations,” Journal on Discrete Mathe-
matics, vol. 7, no. 4, pp. 531-543.

Bracewell, R., (1999), “The Impulse Symbol,” Chapter 5 in The Fourier Transform
and Its Applications, 3rd ed. New York: McGraw-Hill, pp. 69-97.

Breiman, L., (1996), “Bagging predictors,” Journal of Machine Learning, vol. 24,
pp. 123-140.

Breiman, L., (2001), ”Random forests,” Journal of Machine Learning, vol. 45, no.
1, pp. 5–32.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone, (1984), “Classification
and Regression Trees,” Chapman Hall/CRC Publisher, pp. 279-293.

Byvatov, E., and G. Schneider, (2003), “Support vector machine applications in
bioinformatics,” Journal of Application Bioinformatics, vol. 2, no.2, pp. 67-77.

Clark, P., and R. Boswell, (1991), “Rule induction with CN2: Some recent improve-
ments,” Y. Kodratoff, editor, Machine Learning - EWSL-91, Berlin, Springer-
Verlag, pp. 151-163.

Clark, P., and T. Niblett, (1989), “The CN2 Algorithm,” Journal of Machine Learn-
ing, vol. 3, pp. 261-283.

Cohen S., L. Rokach, O. Maimon, (2007), “Decision-tree instance-space decomposi-
tion with grouped gain-ratio,”, Information Science, Volume 177, Issue 17, pp.
3592-3612.

Cohen, W. W., (1995), “Fast effective rule induction,” Machine Learning: Pro-
ceedings of the Twelfth International Conference, Tahoe City, CA., USA, pp.
115-123.

The Impact of Overfitting and Overgeneralization 429

Cortes, C., and V. Vapnik, (1995), “Support-vector networks,” Journal of Machine
Learning, vol. 20, no. 3, pp. 273-297.

Cover, T. M., and P. E. Hart, (1967), “Nearest Neighbor Pattern Classification,”
Institute of Electrical and Electronics Engineers Transactions on Information
Theory, vol. 13, no. 1, pp. 21-27.

Cristianini, N., and S. T. John, (2000), “An Introduction to Support Vector Ma-
chines and other kernel-based learning methods,” Cambridge University Press.

Dasarathy, B. V., and B. V. Sheela, (1979), “A Composite Classifier System Design:
Concepts and Methodology,” Proceedings of the IEEE, vol. 67, no. 5, pp. 708-
713.

Dietterich, T. G., and G. Bakiri, (1994), “Solving multiclass learning problems via
error-correcting output codes,” Journal of Artificial Intelligence Research, vol.
2, pp. 263-286.

Duda, R. O., and P. E. Hart, (1973), “Pattern Classification and Scene Analysis,”
Wiley Publisher, pp. 56-64.

Duda. O. R., E. H. Peter, G. S. David , (2001), “Pattern Classification,” Chapter
4: Nonparametric Techniques in Wiley Interscience Publisher, pp. 161-199.

Dudani, S., (1976), “The Distance-Weighted k-Nearest-Neighbor Rule,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 6, no. 4, pp. 325-327.

Friedman, N., D. Geiger, and M. Goldszmidt, (1997), “Bayesian Network Classi-
fiers,” Journal of Machine Learning, vol. 29, pp. 131-161.

Geman, S., E. Bienenstock, and R. Doursat, (1992), “Neural Networks and the
Bias/Variance Dilemma,” Journal of Neural Computation, vol. 4, pp. 1-58.

Hecht-Nielsen, R., (1989), “Theory of the Backpropagation neural Network,” In-
ternational Joint Conference on neural networks, Washington, DC, USA, pp.
593-605.

Huzefa, R., and G. Karypis, (2005), “Profile Based Direct Kernels for Remote
Homology Detection and Fold Recognition,” Journal of Bioinformatics, vol. 31,
no. 23, pp. 4239-4247.

Karp, R. M., (1972), “Reducibility Among Combinatorial Problems,” Proceedings
of Sympos. IBM Thomas J. Watson Res. Center, Yorktown Heights, New York:
Plenum, pp. 85-103.

Keller, J. M., M. R. Gray, and J. A. Givens, Jr, (1985), “A Fuzzy K-Nearest Neigh-
bor Algorithm,” Journal of IEEE Transactions on Systems, Man, and Cyber-
netics, vol. 15, no. 4, pp. 580-585.

Kohavi R., (1996), “Scaling up the accuracy of naive-Bayes classifiers: a decision-
tree hybrid,” Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, Portland, OR, USA, pp. 202-207.

Kohavi, R., and G. John, (1997), “Wrappers for Feature Subset Selection,” Journal
of Artificial Intelligence: special issue on relevance, vol. 97, no. 1-2, pp. 273-324.

Kokol, P., M. Zorman, M. M. Stiglic, and I. Malcic, (1998), “The limitations of
decision trees and automatic learning in real world medical decision making,”
Proceedings of the 9th World Congress on Medical Informatics MEDINFO’98,
vol. 52, pp. 529-533.

Kononenko, I., (1991), “Semi-näıve Bayesian classifier,” Y. Kodratoff Editor, Pro-
ceedings of sixth European working session on learning, Springer-Verlag, pp.
206-219.

Kwok, S., and C. Carter, (1990), “Multiple decision trees: uncertainty,” Journal of
Artificial Intelligence, vol.4, pp. 327-335.

430 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

Langley, P., and S. Sage, (1994), “Induction of Selective Bayesian Classifiers,”
Proceedings of UAI-94, Seattle, WA, USA, pp. 399-406.

Mansour, Y., D. McAllester, (2000), “Generalization Bounds for Decision Trees,”
Proceedings of the 13th Annual Conference on Computer Learning Theory, San
Francisco, Morgan Kaufmann, USA, pp. 69–80.

Moody, J. E., (1992), “The Effective Number of Parameters: An Analysis of Gen-
eralization and Regularization in Nonlinear Learning Systems,” Journal of Ad-
vances in Neural Information Processing Systems, vol. 4, pp. 847-854.

Nock, R., and O. Gascuel, (1995), “On learning decision committees,” Proceed-
ings of the Twelfth International Conference on Machine Learning, Morgan
Kaufmann, Taho City, CA., USA, pp. 413-420.

Oliver, J. J., and D. J.Hand, (1995), “On pruning and averaging decision trees,”
Proceedings of the Twelfth International Conference on Machine Learning,
Morgan Kaufmann, Taho City, CA., USA, pp. 430-437.

Pazzani, M.J., (1995), “Searching for dependencies in Bayesian classifiers,” Pro-
ceedings of AI STAT’95, pp. 239-248.

Podgorelec, V., P. Kokol, B. Stiglic, and I. Rozman, (2002), “Decision trees: an
overview and their use in medicine,” Journal of Medical Systems, Kluwer Aca-
demic/Plenum Press, vol. 26, no. 5, pp. 445-463

Quinlan, J. R., (1987), “Simplifying decision trees,” International Journal of Man-
Machine Studies, vol. 27, pp. 221-234.

Quinlan, J. R., (1993), “C4.5: Programs for Machine Learning,” Morgan Kaufmann
Publisher San Mateo, CA., USA, pp. 35-42.

Rada, M., (2004), “Seminar on Machine Learning,” a presentation of a course
taught at University of North Texas.

Rokach L., O. Maimon, O. Arad, (2005), “Improving Supervised Learning by Sample
Decomposition,” Journal of Computational Intelligence and Applications, vol.
5, no. 1, pp. 37-54.

Sands D., (1998), “Improvement theory and its applications,” Gordon A. D., and
A. M. Pitts Editors, Higher Order Operational Techniques in Semantics, Pub-
lications of the Newton Institute, Cambridge University Press, pp. 275-306.

Schapire, R. E, (1990), “The strength of weak learnability,” Journal of Machine
Learning, vol. 5, pp. 197-227.

Shawe-Taylor. J., and C. Nello, (1999), “Further results on the margin distribution,”
Proceedings of COLT99, Santa Cruz, CA., USA, pp. 278-285.

Smith, M., (1996), “Neural Networks for Statistical Modeling,” Itp New Media
Publisher, ISBN 1-850-32842-0, pp. 117–129.

Spizer, M., L. Stefan, C. Paul, S. Alexander, and F. George, (2006), “IsoSVM –
Distinguishing isoforms and paralogs on the protein level,” Journal of BMC
Bioinformatics, vol. 7:110,

website: http://www.biomedcentral.com/content/pdf/1471-2105-7-110.pdf.
Tan, P. N., S. Michael, and K. Vipin, (2005), “Introduction to Data Mining,” Chap-

ters 4 and 5, Addison-Wesley Publisher, pp. 145-315.
Triantaphyllou, E., (2007), “Data Mining and Knowledge Discovery Via a Novel

Logic-Based Approach,” A monograph, Springer, Massive Computing Series,
420 pages, (in print).

Triantaphyllou, E., and G. Felici, (Editors), (2006), “Data Mining and Knowledge
Discovery Approaches Based on Rule Induction Techniques,” Springer, Massive
Computing Series, 796 pages.

The Impact of Overfitting and Overgeneralization 431

Triantaphyllou, E., L. Allen, L. Soyster, and S. R. T. Kumara, (1994), “Generating
Logical Expressions From Positive and Negative Examples via a Branch-and-
Bound approach,” Journal of Computers and Operations Research, vol. 21, pp.
783-799.

Vapnik, V., (1998), “Statistical Learning Theory,” Wiley Publisher, pp. 375-567.
Webb, G. I., (1996), “Further experimental evidence against the utility of Occam’s

razor,” Journal of Artificial Intelligence Research, vol. 4, pp. 397-417.
Webb, G. I., (1997), “Decision Tree Grafting,” Proceedings of the 15th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI’97), vol. 2, pp. 23-29.
Weigend, A., (1994), “On overfitting and the effective number of hidden units,”

Proceedings of the 1993 Connectionist Models Summer School, pp. 335-342.
Wikipedia Dictionary, (2007), website: http://en.wikipedia.org/wiki/Homogenous.
Wolpert, D. H, (1992), “Stacked generalization,” Journal of Neural Networks, vol.

5, pp. 241-259.
Zavrsnik, J., P. Kokol, I. Maleiae, K. Kancler, M. Mernik, and M. Bigec, (1995),

“ROSE: decision trees, automatic learning and their applications in cardiac
medicine,” MEDINFO’95, Vancouver, Canada, pp. 201-206.

Zhou Z. and C. Chen, (2002), “Hybrid decision tree,” Journal of Knowledge-Based
Systems, vol. 15, pp. 515 - 528.

Index

Agent technology, 329
Ant colony optimization (ACO), 280
Association rules, 37, 233, 266, 334,

363, 386

C4.5, 69–71, 140, 147, 250, 400
CART, 192
Classification, 17, 28, 29, 47, 87, 94,

104, 133, 134, 153, 154, 169, 189,
198, 208, 217, 232, 250, 255, 292,
334, 393, 398

Clustering, 17, 32, 54, 56, 61, 89, 90,
113, 117, 129, 193, 198, 199, 279,
281, 287, 292, 295, 322, 334, 366

Crossover
commonality-based crossover, 106

Data Mining (DM), 2
Decision tree, 101, 160, 192, 395
Diffusion maps, 315, 316
Dimensionality reduction, 315

Evolutionary programming, 107

False-negative, 395
False-positive, 395
Feature selection, 93

Frequent itemset, 363
Fuzzy association rules, 200, 225
Fuzzy systems, 188, 198, 206, 214, 226,

241

Genetic algorithms (GAs), 79, 80, 114,
115, 129, 207, 300

Logistic regression, 30, 162

Neural networks, 17, 20, 46, 161, 192,
198, 280, 356, 403, 423

Neuro-fuzzy, 198

Overfitting, 391

Regression, 197, 356
Rule induction, 82, 84, 87, 104, 133,

137, 142, 149, 225, 266, 401

Self-organizing maps (SOM), 32, 48
Support vector machines, 214, 356, 404
Swarm intelligence, 281

Unsupervised learning, 33, 46, 47, 54,
238, 280

