
Chapter 5
The Language of Electrons, Atoms,
and Quanta

5.1 Classical Lorentz Theory

When we speak of oscillations at optical frequencies and their amplification, we
are indeed a long way from the world of swinging pendulums and oscillating bal-
ance wheels. It is true that classical theory based on Newton’s laws of motion and
Maxwell’s theory of electromagnetic radiation are inappropriate to deal with the
interaction of radiation with atoms and molecules; for this we need the quantum
theory. However, from a background of classical theory, certain aspects can be
sketched in a semiclassical way, in which quantum ideas are superimposed on a
classical base. Historically, this characterized the early development of the theory
of radiation and the general features of the theory of optical dispersion. In this con-
text “dispersion” refers to the dependence of the refractivity of a medium on the
wavelength, which leads to the dispersion of, for example, white light by a glass
prism into the colors of the rainbow.

Prior to the advent of quantum theory early in the last century, the interaction
of radiation with matter was explained on the basis of the electron theory of H.A.
Lorentz, in which the response of matter to an electromagnetic wave was expressed
in terms of “atomic oscillators” pictured as electrons elastically bound to the atomic
centers. The interaction of atoms with an electromagnetic wave was imagined as
consisting in these electrons being driven into forced oscillation by the oscillat-
ing electric field component of the wave. It can be shown, however, that in order
to have continuous absorption of energy from the wave (as opposed to a fleeting
absorption when the wave first interacts with an electron, setting it in motion), it
is necessary to assume that during the interaction with the wave, the driven elec-
tron oscillation must in effect experience a resistive force. This clearly cannot be a
frictional force in the usual sense; and the radiation reaction force, which accounts
for the energy radiated by the vibrating electron, proves to be too small to account
for the degree of light absorption that can occur. Lorentz attributed the net absorp-
tion to the repeated interruption of the electron oscillation by collisions with other
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atoms, resulting in the randomization of the oscillation phase. In the absence of
this, the phase of the periodic electron velocity remains in quadrature with the
driving force, and the average work done on the electron averages to zero over
a period of oscillation of the field. The result would be that no net absorption of
energy takes place. Through those phase-randomizing collisions, there is a contin-
uous transfer of energy to the electrons that appears, through the same collisions,
as random kinetic energy of the colliding atoms, that is, heat.

The same model was also used to describe the process of emission of radia-
tion by atomic oscillators, when set into vibration by collisions with other atoms
in an electrical discharge, or in a state of thermal agitation, as in a flame. It is
well established classically, on the basis of Maxwell’s theory, that an oscillating
electric charge will radiate electromagnetic waves. In this case, since we have a
negative charge (the electron) oscillating with respect to an equal positive charge,
the wave that is generated is that of an oscillating electric dipole. This has a char-
acteristic radiation pattern, that is, distribution of intensity in different directions,
similar to that from a simple radio transmitter antenna. The frequency of the radi-
ated electromagnetic wave is classically the same as the frequency of oscillation
of the supposed atomic oscillator. If through some nonlinearity the atomic oscil-
lator excitation results in some second or higher harmonics, at twice or a higher
multiple of the fundamental frequency, the radiation will also contain those har-
monic frequencies. It was one of the fatal flaws of classical theory in explaining
atomic spectra that the observed frequencies emitted by atoms do not bear a simple
harmonic relationship to each other.

5.2 Spectrum of Blackbody Radiation

But the breakdown in the classical theory of radiation, which finally led Planck to
postulate the quantum of energy, first came in the explanation of the spectrum of
the radiation in thermal equilibrium with matter, the so-called blackbody radiation.

This is radiation whose spectrum is characteristic of the equilibrium tempera-
ture, and it is independent of the nature of the matter interacting with it. It can be
observed only under conditions where the interacting matter can thoroughly absorb
and re-emit radiation at all frequencies. In practice this is achieved by studying the
radiation inside an enclosure, which is provided with a small hole to allow a sample
of the radiation to be analyzed outside the cavity. The observed continuous spec-
trum, showing the radiated intensity in a small fixed frequency band as a function
of the center frequency of that band, is shown in Figure 5.1. Contrary to classical
predictions, the graph tends to zero at the upper and lower ends of the frequency
scale, with a maximum intensity at some intermediate frequency, which, in accor-
dance with common experience, depends on the temperature: the color varies from
red toward the blue as the temperature is raised. This is given precise expression in
Wien’s displacement law: the frequency at which the intensity is maximum shifts to
higher values, in direct proportion to an increase in the temperature. Wien derived
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Figure 5.1 The spectrum of blackbody radiation showing the shift in the maximum with
temperature

his law on the basis of classical arguments, prior to Planck’s work, and it is borne
out by experiment. The spectrum of sunlight is approximately that of a “black
body” at a temperature of about 6000◦K, with the maximum intensity occurring at
around a wavelength of 0.5 μm, in the middle of the visible region of the electro-
magnetic spectrum.

5.3 The Quantum of Radiation: The Photon

After all attempts based on the classical theory of thermal equilibrium and the
exchange of energy between radiation and matter failed to explain the observed
spectrum, Max Planck in 1901 published a radically new theory, which was able to
predict a spectrum in close agreement with experiment. It was based on the postu-
late that matter contained an immense number of electromagnetic “resonators” that
could exchange energy with the radiation field not continuously in arbitrarily small
amounts, but only in discrete units he called quanta, whose energy is proportional
to the frequency: E = hν, where h is a universal constant of nature, now called
Planck’s constant, with a numerical value in our system of units of 6.6 × 10−34

joule · second.
A greater understanding of the physical processes that result in the emission

of blackbody radiation came with the reinterpretation of the process by Einstein,
who introduced the concept of a quantum of electromagnetic radiation, called a
photon, which in some circumstances manifests a discrete particle nature. On this
basis, blackbody radiation results when equilibrium has been reached between the
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photon gas and the atoms of matter through continual absorption and re-emission
of photons by the atoms. When this model was applied to derive Planck’s formula,
it was found that the well-known spontaneous emission process, in which an atom
gives up its energy of excitation spontaneously by emitting a photon, alone would
not lead to an equilibrium consistent with Planck’s formula. Einstein found it nec-
essary to postulate that an atom that has absorbed a photon may not only re-emit
it spontaneously, but may also be stimulated to re-emit it, with a probability that
depends on the number of photons already present. When a group of such atoms or
molecules undergo spontaneous emission, they do so independently of each other;
there is, therefore, no correlation between the phases of their several contributions
to the radiation emitted. In contrast, emission induced by existing photons, that is,
stimulated emission, has a phase dictated by the phase of the existing radiation
field, and hence all atoms subjected to this field will have more or less a common
phase. This results in the radiation field remaining coherent in phase and increasing
or decreasing in amplitude depending on whether the rate of emission is greater or
less than the rate of absorption.

5.4 Bohr’s Theory of the Hydrogen Atom

The success of the radically new quantum postulate of Planck soon saw the spread
of quantum ideas to the hitherto intractable problem of explaining optical emission
spectra of atoms. A wealth of accurate experimental data had been accumulated on
the wavelengths of the many series of lines that form atomic spectra. Each chemical
element emits its own characteristic, and for all but the simplest atoms, complex
line spectrum. Intensive efforts had been devoted to finding regularities in these
spectra, and a number of empirical rules were enunciated, all of which brought
some order to their practical analysis.

The theoretical breakthrough came after the success of the nuclear model of
the atom, which was postulated by Ernest Rutherford around 1911 to explain unex-
pectedly large angles of scattering of high-speed α-particles (a product of natural
radioactivity of certain elements) by atoms in a gold foil target. The model was
strikingly confirmed in subsequent years in his laboratory, a feat he announced as
possibly more important than the outcome of what was then called the Great War.
For this he received the Nobel Prize and given the title Lord Rutherford of Nelson
(his birthplace in New Zealand). Prior to that, there was intense speculation as to
just how electrons and protons, the elementary particles known at the time, were
arranged in atoms. As is now familiar to everyone, the basic arrangement is that
almost the entire mass of an atom resides in a small, positively charged nucleus,
which is surrounded by a cloud of negatively charged electrons.

Around 1913, the Danish physicist Niels Bohr, by a set of ad hoc quantum
notions superimposed onto a classical planetary model of the hydrogen atom, was
able to obtain with remarkable accuracy the wavelengths of a series of lines in
the spectrum of that atom. The most radical of Bohr’s postulates was that there
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exist certain orbits in which electrons could circulate indefinitely without radiat-
ing energy, contrary to the classical prediction that an orbiting charge should lose
energy by radiation and eventually spiral into the nucleus. These he called sta-
tionary orbits, and he postulated that of all the possible orbits that classical theory
allows, only those are stationary that satisfy the following condition on their angu-
lar momentum L:

L = nh
2π

, 5.1

where n is an integer and h is the same constant Planck had used to define the
quantum of energy. For a circular orbit of radius r , L = mV r , where m is the
mass of the electron and V its velocity. He further postulated that the frequency of
radiation emitted by the atoms is not the vibration or rotational frequency of the
electron in the classical sense, but is derived from Planck’s formula. Thus, when
an atom makes a quantum transition from a stationary state of energy E2 to one
having energy E1, the frequency of the radiation is that of the radiated quantum,
that is,

ν = (E2 − E1)

h
. 5.2

Of course, these radical postulates were not made lightly. The line spectra of atoms
show remarkable regularities, with series of lines forming striking patterns, plau-
sibly reminiscent of the classical vibration spectra of complex structures. It would
be natural to assume that these vibration spectra should form the basis of an expla-
nation of the spectrum. Unfortunately, of all of the precise experimental data that
was available and some empirical formulas that were discovered relating the wave-
lengths in the spectra, none was consistent with the harmonic relationships charac-
teristic of classical vibration frequencies.

Bohr’s ad hoc postulate identifying stationary orbits became a little less so
through the work of de Broglie, published in 1924. In this de Broglie argued on
the basis of the dual particle–wave nature of light, which was then the subject
of much speculation and debate, that material particles have the same duality. The
success of Bohr’s theory seemed to hint at a wave property of electrons, since at the
time the only context in which equations contained integers was in normal modes
of vibration, and the interference of waves. On the basis of the special theory of
relativity de Broglie was able to find the connection between the particle and wave
nature of all matter and radiation, in a theory called wave mechanics, the precursor
of quantum mechanics. According to de Broglie, a particle of mass m moving with
a velocity V has a wave associated with it “guiding” its motion, whose wavelength,
now called the de Broglie wavelength, is given by λ = h/mV , where h is, as usual,
Planck’s constant. If we use this result in Bohr’s equation for the stationary orbits,
we find (h/λ)r = nh/2π; that is, 2πr = nλ. But this is precisely the condition
for a resonant mode of vibration of a circular string supporting oscillations with
a wavelength λ; any other radius would not have the wave reinforcing itself as it
traveled around the circle.
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The theory of Bohr, elaborated by Sommerfeld, and now referred to as the
“old quantum theory,” dealt only with “stationary” quantum states and quantum
numbers; it had little to say about nonstationary phenomena such as transitions
between states and collisions between particles. This situation changed with the
coming of quantum mechanics.

5.5 The Schrödinger Wave Equation

The spirit of de Broglie’s description remains in the subsequent quantum theory of
Schrödinger. The concept of a wave determining the motion of a particle implies
the radical notion that the amplitude of a wave, given as a function of the coordi-
nates and called a wave function, is to be used to describe the motion of a particle,
rather than regarding a particle as a point mass occupying a certain position in space
specified by its coordinates. The physical interpretation of the wave function, con-
ventionally represented by the Greek letter ψ, lends itself to some speculation in
the minds of some, hinting at a mysterious wave that guides the motion of matter.
However, a probabilistic view prevails in which |ψ(x, y, z)|2 is taken as the space
density of the probability that the particle is at the coordinates x, y, z, in the sense
that |ψ(x, y, z)|2dx dy dz is the probability of the particle being found in a cell
of sides dx, dy, and dz centered at the point (x, y, z). Since the particle must be
somewhere with a 100% certainty, it follows that the wave function must satisfy
the following normalization condition:

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

|ψ|2dxdydz = 1. 5.3

This, of course, imposes a mathematical restriction on the wave function: Its inte-
gral must be finite.

In Schrödinger’s wave mechanics, which is one mathematical representation of
quantum mechanics, the equations of motion of classical mechanics are replaced
by a differential equation, called the Schrödinger equation, to determine the wave
function. Thus, for example, the equation for a free electron having energy E in a
one-dimensional world would be as follows:

d2ψ
dx2 + 8π2m E

h2 ψ = 0. 5.4

Of all the mathematical solutions of the Schrödinger equation, those that may
be accepted as representing the stationary states of a physical system are defined
as those particular solutions, called eigenfunctions (German for proper functions),
that are finite and satisfy certain conditions at the boundaries of the system. For
example, if an electron obeying the above equation is confined between two plane,
parallel, “impenetrable walls” forming the boundaries at x = 0 and x = L , the
stationary solution of the Schrödinger equation describing that electron would be
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equal to zero at those points and beyond. One can readily verify that the following
are solutions:

ψn = N sin (kn x), 5.5

where

Kn = n
π
L

, En = n2 h2

8L2m
, 5.6

and n = 1, 2, 3, . . . . We note that were it not for the boundary conditions ψ(0) = 0
and ψ(L) = 0, the equation would have been satisfied by sin (kx), where k, and
therefore E , are continuous variables, and not “quantized” to have the discrete val-
ues labeled with the index n: kn and En . The functions N sin (kn x) are the station-
ary wave functions, the eigenfunctions of Schrödinger’s equation for the particular
system we have assumed. They are analogous to the classical normal modes of
vibration of a system.

For the 3-dimensional case of a particle confined in a rectangular box with sides
L1, L2, L3, the eigenfunctions have the form

ψl,m,n =
√

8
L1L2L3

sin (kl x) sin (km y) sin (knz), 5.7

where

kl = lπ
L1

, km = mπ
L2

, kn = nπ
L3

, 5.8

and the quantum energy levels are given by

El,m,n = h2

8π2m

[
k2

l + k2
m + k2

n+
]
. 5.9

We note that we now have three quantum numbers l, m, and n to distinguish
the various possible stationary states, and that these appear in the quantization of
the components of the wave vector k along the three coordinate axes. If we recall
the formula for the de Broglie wavelength, we find that k = (2π/h)mV ; that is,
it is the linear momentum that is quantized. The constant factor

√
8(L1L2L3) is

introduced to meet the normalization condition.
We note that the stationary states we found for an electron in a box are far

from the classical picture of a point mass bouncing back and forth between the
boundaries. A particle moving back and forth would be represented as a time-
dependent wave function that, at any moment is small everywhere except in the
neighborhood of the particle position. Such a wave function, called a wave packet,
can be synthesized as a sum over the harmonic eigenfunctions, following the spirit
of the Fourier expansion theorem. Each eigenfunction corresponds to a different
energy, and therefore a different frequency (since Planck’s formula E = hν still
holds), with the result that the wave packet will have a time dependence reflecting
the motion of the particle.
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5.6 Quantum Numbers of Atomic States

If a particle is subjected to a central force, that is, one directed toward a fixed
point, such as the electrostatic Coulomb force that a nucleus exerts on the elec-
trons surrounding it in an atom, three quantum numbers will again be required to
specify a stationary state. In this case the spherical symmetry of the equation sug-
gests that the solution is most naturally expressed using the spherical polar coor-
dinates r , θ, φ. The quantum numbers conventionally designated as n, l, m play
a role in close analogy to the indices used to label the various normal modes of
vibrations of a sphere. The values of the quantum numbers are restricted as fol-
lows: n = 1, 2, 3, . . . , while l ≤ (n − 1) and m = l, (l − 1), (l − 2) . . . −(l − 2),
−(l − 1),−l. The part of the wave function that is a function of the r -coordinate
has a number of nodes (zeros) given by (n − l − 1), and the part that is a function
of the co-latitude θ has (l − m) nodes off-axis. Following spectroscopic conven-
tion, electrons in an atom having l = 0, 1, 2, 3, . . . are called s-, p-, d-, f-electrons,
etc., respectively. The quantum numbers l and m, which are associated with the
angular part of the wave function, in fact reflect the quantization of the angular
momentum and its component along the polar axis, respectively. In Figure 5.2 is
shown the probability distribution for a particle in a central field in the n = 3,
l = 2, m = 0 quantum state. According to the theory, a system having nominally an
orbital momentum quantum number l actually will have orbital angular momentum
of

√
l(l + 1) in units of h/2π, whereas the maximum component along the polar

axis is only l. (We will usually omit the unit h/2π unless we are doing a numerical
calculation.) Thus the theory predicts that the maximum component the angular
momentum can have along any given axis is somewhat less than the magnitude

n = 3

l = 2

m = 0

Figure 5.2 Example of the probability distribution for a particle in a central field
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of the angular momentum itself. This is a strictly quantum effect, since classically
the angular momentum is a vector that can assume any direction, and in particular
can point exactly in the direction of any given axis. The effect can be interpreted
in terms of vectors by saying it arises from a quantum uncertainty in the angle the
angular momentum vector makes with the axis. The quantization of the compo-
nent of angular momentum along an axis arises mathematically from the condition
that the solution to the Schrödinger equation must be a simple periodic function of
the angle φ around the axis; that is, it must repeat itself every 360◦. This physical
requirement imposed on the mathematical solution bears some resemblance to the
implied condition for normal modes in the Bohr circular orbits. In any event, it
constitutes one of the most radical breaks with classical mechanics: It implies that
the angular momentum of a system can only assume certain discrete orientations
with respect to a given axis; this is sometimes called space quantization, and it is
of profound importance in the quantum theory of atoms subjected to an external
magnetic field, and the attendant shifts in energy levels: the Zeeman effect.

Since an atomic angular momentum will have associated with it a magnetic
moment (both due to the orbital motion of the charged electron and its intrinsic
spin), the energy shift produced by a magnetic field is expected to depend on the
component of the angular momentum along the field and therefore, with the axis
chosen along the field direction, on the quantum number m. For this reason m
is called the magnetic quantum number, and to reiterate, for a state with a total
angular momentum (including spin) quantum number J (which, as we shall see,
may be integral or half-integral) the magnetic quantum number m J , can have one
of the following (2J + 1) discrete values: J , (J − 1), (J − 2), . . . ,−(J − 2),
−(J − 1),−J . For example, a particle in an angular momentum state described
nominally as a J = 5/2 state may have as its component along a given axis one of
the following values: +5/2,+3/2,+1/2,−1/2,−3/2,−5/2.

5.7 The Vector Model

It should be emphasized that the quantum numbers, while they represent in quan-
tum mechanics the results of measurement of a particular dynamical quantity, such
as angular momentum, it is only in systems involving very large quantum num-
bers that they approximate classical behavior. It happens that we can, according
to what is called the vector model, retain the concept of angular momentum as a
classical vector, provided that we give these vectors properties that are peculiar to
quantum mechanics. The uncertainty in pointing the angular momentum exactly
along a given direction is one of them. The other concerns combining different
angular momenta to obtain a resultant: the result of adding two angular momenta
whose quantum numbers are, for example J1 and J2, where J2 < J1, would clas-
sically be any value between (J1 − J2) and (J1 + J2), depending on the angle
between the two angular momentum vectors, whereas in quantum theory the resul-
tant is one of a discrete set that starts with (J1 − J2) and by increments of one
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Figure 5.3 Vector diagram for the addition of angular momenta

unit reaches (J1 + J2). For example, suppose a system in an angular momentum
state with quantum number J1 = 3 and another with J2 = 1 interact in such a
way that results in stationary states of the combined angular momenta. The quan-
tum numbers belonging to this combined representation would be 2, 3, 4, implying
according to the vector model that the angular momentum vectors can make only
certain discrete angles with respect to each other, as illustrated in Figure 5.3.

If the particle is an electron, a complete specification of its quantum state
requires not only the dependence of its wave function on the space coordinates,
but also the state of another attribute of the electron called the spin. This is an
intrinsic angular momentum of 1/2(h/2π), part of what it is to be an electron. It was
first introduced to explain atomic spectra and later brilliantly shown by Dirac to be
a logical necessity, forming an integral part of a relativistic quantum theory. For a
free electron, the spin component along any given axis can only be +1/2 or −1/2,
corresponding to only two possible directions of spin.

For electrons in an atom, a total angular momentum larger than 1/2 can result
from the spin combining with the orbital angular momentum of its motion around
the nucleus, which is conventionally represented by l and is always integral. It can
be shown that the magnetic field produced by the orbital motion of the electron can
exert a torque on its own spin, a coupling called the spin–orbit interaction, which
is extremely important in understanding atoms. In the absence of other torques act-
ing separately on the two types of angular momentum, such as a strong external
magnetic field, the two will give a resultant angular momentum represented con-
ventionally by j, which is conserved, and quantized both in magnitude and spatial
orientation. For example, an electron in an orbit with orbital angular momentum
l = 2 will have a resultant, when combined with its spin of 1/2, equal to either
2+1/2 or 2−1/2, that is, 5/2 or 3/2. Recall that these numbers give the maximum
component observable along any given axis in units of h/2π.

5.8 The Shell Structure of Electron States

When there is a large number of electrons in different orbits, the prediction of the
possible combined angular momentum states quickly becomes very complicated;
not only is there spin–orbit coupling, but also interactions between the spin and



5. The Language of Electrons, Atoms, and Quanta 97

orbital magnetic moments of different electrons. Fortunately, it happens that elec-
trons in an atom can be grouped into shells, which, as we shall see, can contain
only a certain maximum number of electrons. When completely filled, a shell has
zero resultant angular momentum; so that only electrons in any incomplete shells
need be considered in arriving at the overall atomic angular momentum state.

The reason for venturing a little into the abstruse realm of quantum theory is
that it is essential for any basic understanding of atomic and molecular structure
and dynamics. We recall that the atoms of the chemical elements have small pos-
itive nuclei, where most of the mass resides, surrounded by a cloud of negative
electrons that occupy available quantum states, each state labeled by a set of three
quantum numbers, plus a fourth specifying the spin state. We have already seen that
for a given value of the quantum number l there are (2l +1) states with different m;
if we include the two possible directions of the spin, this number is doubled. (The
presence of spin–orbit coupling requiring a description in terms of the total (spin
plus orbital) quantum numbers does not affect the number 2(2l + 1).) These states
correspond to different orientations of the orbital and spin angular momenta with
respect to a fixed axis. In the absence of an external field, such as a magnetic field,
all directions in space are identical, and the energy of electrons in these states is the
same; they are all at one energy level. They are called degenerate states. Further-
more, it is found that for a pure Coulomb (inverse square law) electrostatic field,
such as we have in the hydrogen atom, the solution to the Schrödinger equation
yields possible values of energy that depend only on the quantum number n, and
so there is degeneracy with respect to the l quantum number as well. Now, for each
value of n, the quantum number l can assume any of (n − 1) values, and as we
have seen, to each l value there are 2(2l + 1) degenerate states. The total number
of degenerate states having the same n is therefore

n−1∑
0

2(2l + 1) = 4
n(n − 1)

2
+ 2n = 2n2. 5.10

The common energy of these states can be shown to be

En = −
(

2π2m Z2e4

h2

)(
1
n2

)
, 5.11

in agreement with the old quantum theory of Bohr, which was already known to be
in remarkable agreement with experiment. There is an infinite number of energy
levels corresponding to n ranging from 1 to ∞; Figure 5.4a shows some of the
lower states. Unlike the Bohr theory, the electrons are not localized along particular
orbits but must be regarded as spread out with a radial density given by 4πr2|ψ|2,
which is illustrated for several states in Figure 5.4b. We note that the average radius
increases with n, the outermost electrons having the highest n and the smallest
binding energy.

For atoms having a large nuclear charge, and therefore many electrons, the
exact solution of the Schrödinger equation becomes impossible, and approximate
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Figure 5.4 (a) The energy levels of the H-atom, and (b) the radial dependence of some of
the lower energy wave functions

numerical methods have been developed. An approximation that has proved very
useful is to assume that each individual electron moves in an electrostatic field pro-
duced by the nuclear charge and an average spherically symmetric distribution of
charge due to the other electrons. Of course, after solving the Schrödinger equation
using this approximate field and obtaining the charge distribution of each electron
from its calculated wave function, the combined charge distribution so derived must
agree with the one assumed in the first place. The important point for us is that if the
field acting on the electrons can indeed be taken to be spherically symmetric, then
the same quantum numbers n, l, m can still be used with the same significance,
except that the radial distribution of electrons is no longer purely hydrogen-like,
and the energy is no longer a function of the principal quantum number n alone,
but depends on l as well. That is, the l-degeneracy is removed. However, the depen-
dence of the energy on l is still generally weaker than that on n, aside from some
important exceptions for larger l-values. The m-degeneracy remains, and levels are
grouped around the different l-values; these groupings are the shells mentioned
earlier. It is one of the early triumphs of quantum theory that it was able to predict
the number of quantum states in each shell. Thus, for example, states having n = 4
and l = 2 would be said to belong to the 4d shell, and those having n = 5, l = 0
are in the 5s shell; the former would number 2(2 × 2 + 1) = 10 states, and the
latter just 2(2 × 0 + 1) = 2 states.
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5.9 The Pauli Exclusion Principle

Starting with a nucleus having a given number of protons, in order to construct a
neutral atom in its ground state we must take the same number of electrons and allo-
cate them one by one to progressively higher-energy quantum states beginning with
the lowest-energy state first. This atomic building principle is based on the condi-
tion that no two electrons can occupy the same quantum state, that is, have the same
set of quantum numbers. This is a statement of the Pauli exclusion principle, which
is at the heart of the quantum explanation of atomic structure and spectra. It can
be deduced from a symmetry property of wave functions representing a system of
electrons and some other elementary particles. Since individual electrons are indis-
tinguishable, in the sense that we cannot know which electron occupies a particular
position and spin state, an exchange of the assignment of these between any two
electrons in the wave function ψ cannot change the observable |ψ|2. Therefore, an
electron exchange must either leave ψ unchanged (symmetric wave function) or at
most change its sign (antisymmetric wave function). It happens that photons have
the former symmetry, while electrons the latter. For electrons this means that the
probability of finding two electrons in identical states is zero, since in that event
an exchange of the two electrons must on the one hand leave the wave function
unchanged, but on the other its sign must change; this can happen only if it is zero.
Once an electron occupies a certain state, that state is said to be filled. This means
that in constructing the ground state of an atom, each state must be filled before
the next higher energy state is filled. The assignment of electrons to the different
possible quantum states is analogous to the assignment of passengers to single-
occupancy berths on a cruise ship; each berth has a number, and the fare schedule
is based mainly on which deck the berth is located, with some differences within
a given deck depending on its location. For the electrons in an atom, the “decks”
are the shells, and the “fare” is the energy. Unlike a cruise ship, however, the elec-
trons of an atom are in the stable ground state when their total energy (“fare”) is a
minimum.

Since we shall be concerned with crystalline quartz (SiO2) in the next chapter,
let us consider the elements oxygen and silicon as examples. They have (positive)
nuclear charges of 8 and 14 respectively, in units of electronic charge. Therefore,
oxygen will have the shells 1s, 2s filled and be two short of filling 2p, while silicon
will have the 1s, 2s, 2p filled and have two electrons in each of the 3s and 3p outer
shells.

It is the outermost electrons in an atom that determine its chemical proper-
ties and its interaction with radiation in the optical region of the spectrum. The
inner electrons are unable to take part in any small exchange of energy, since all
neighboring energy states are filled. Of course, if sufficient energy is involved,
as in electron bombardment in an X-ray tube, inner electrons do play a part; but
ordinary chemical reactions and optical transitions involve relatively little energy.
The Mendeleev periodic system of the chemical elements finds a ready explana-
tion in terms of the filling of shells as the nuclear charge (atomic number, Z) is
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incremented. Thus the property of having a completely filled outer p-shell cor-
responds to the noble gases and will recur at Z = 2 (He), Z = 2 + 8 (Ne),
Z = 2 + 8 + 8 (Ar), etc. Next would be the alkali elements with a single elec-
tron outside a closed shell; they are at Z = 1 (H), Z = 2 + 1 (Li), Z = 2 + 8 + 1
(Na), Z = 2+8+8+1 (K), etc. Then the alkaline earths, Be, Mg, Ca, Sr, . . . , with
two electrons outside closed shells, and so on. This simple progression is inter-
rupted when we reach a point where it becomes “cheaper” in energy to go to a
higher n-value than to add to a shell with a high l-value. This leads to the so-called
transition elements, for example, those involved in filling the 3d shell (after the 4s
shell has been filled), Mn, Fe, Co, Ni.

In all the elements, the inner closed shells and the nucleus form a tightly held
inner core, with an unbalanced positive charge equal to the charge of the outer
electrons. In the context of chemical bonding, the outer electrons are referred to as
the valence electrons, of which silicon has four and is therefore tetravalent, and of
which oxygen lacks two to complete a shell and is thus divalent. Without going into
the subject any more deeply than we absolutely have to, we will simply state that
the bonding between atoms to form compounds can be characterized according
to the extent that the valence electrons (a) overlap between the atoms (covalent
character) or (b) are transposed from one atom to the other, forming positive and
negative ions that attract each other (ionic character). Whether the bond between a
particular pair of atoms is predominantly covalent or predominantly ionic depends
on the relative energy “cost” of the electrons arranging themselves according to
the one or the other; recall that stability belongs to the lowest energy. The covalent
bond may involve one valence electron, as in the bond between Si and O in quartz,
or more than one electron, as typified by the bond between C and O in carbon
dioxide (CO2), in which the carbon atom has a double bond with each oxygen
atom.

Now, in a covalent bond, where the dominant feature is the overlap of valence
electrons belonging to the two atoms (recall that the electrons are to be viewed as
smeared over all space according to the magnitude of their wave function), it is
reasonable to expect that the possible distribution of the valence electrons around
the inner core will determine the directions along which the bonds occur.

5.10 Spectroscopic Notation

A central problem in the quantum mechanical treatment of atomic observables is to
find how the angular momenta of the constituent particles must be coupled in order
that the energy and angular momentum are simultaneously in stationary quantum
states. Because of the magnetic interactions between the particles, the individual
particles will not maintain a constant direction with respect to some fixed axis
and cannot define a “stationary” quantum state. In a system comprised of many
interacting particles, the total angular momentum of the system will always be
conserved, remaining constant in magnitude and direction, like an ideal gyroscope.
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It may also happen that the angular momenta of particles within subsets of the
total may be coupled to form conserved parts of the total angular momentum. The
magnitude of such conserved angular momenta and their components along an
arbitrary axis can serve to describe a stationary quantum state. Thus in one scheme
of coupling angular momenta of electrons in a complex atom, called the Russell–
Saunders coupling, the orbital angular momenta of the electrons are combined,
then separately all the spin angular momenta are combined, and finally a resultant
of the total orbital and spin angular momenta is obtained.

We recall that in combining angular momentum in quantum theory, we may
use the vector model representation, provided that we remember that we are deal-
ing with quantum numbers and that special quantization rules must be observed.
Let us consider two examples that will be of considerable interest to us later: the
alkali atoms rubidium and cesium. In their ground state, they have only one elec-
tron outside closed shells. In the ground state we are considering, this electron has
no orbital angular momentum and therefore only the spin angular momentum of
1/2, with two possible components along a given axis, +1/2 or −1/2, and g = 2.
If this single outer electron occupies the next higher energy state, it would have
an orbital angular momentum of one unit, that is, l = 1, in addition to its spin.
These angular momenta are not individually constant in direction, but the total
angular momentum is conserved; according to quantum rules, the total can be only
J = 1/2 or J = 3/2. Because of the relative weakness of the magnetic interac-
tions compared to electrostatic pull of the nucleus, there is a difference in energy
between these two states much smaller than would accompany a change in orbit,
and this difference is therefore called the fine-structure splitting. It is due in this
case to the spin–orbit interaction we mentioned earlier in this chapter.

The notation used by spectroscopists to designate these two states in the alkali
atoms is 2P1/2 and 2P3/2. The letter indicates that the orbital angular momentum
L = 1, the superscript 2 is the value of (2S + 1), where S is the spin angular
momentum (in this case S = 1/2), and finally, the subscripts 1/2 and 3/2 are the two
values of total angular momentum J . In this notation the ground state is designated
as 2S1/2.

5.11 The Hyperfine Interaction

The electron is by no means the only fundamental particle with intrinsic spin
and magnetic moment; both the proton and neutron, which are the constituents
of atomic nuclei, also have these attributes. These particles have the same mag-
nitude of spin as the electron, but since their charge-to-mass ratio is 2000 times
smaller, we would expect, at least classically, that their magnetic moment is also
smaller in approximately the same ratio. In fact, as with the magnetic moment of
the electron, classical theory is inapplicable, but the classical moments are used as
units; for the electron it is the Bohr magneton; here it is the nuclear magneton. As
with the electron, the magnetic moments of the proton and neutron are expressed
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in terms of g-factors defined as follows: μ = gn I μn , where μn is the classical value
of the magnetic moment of a particle with the charge and mass of a proton and an
angular momentum of one unit, h/2π. The measured value for the proton is about
gp = 5.586 and for a free neutron gn = −3.82. Again we see that classical theory
is invalid, particularly for the neutron, which, being neutral, should have no mag-
netic moment at all. The question of what spin and magnetic moment a particular
nucleus as a whole exhibits is a complicated one of nuclear structure, involving
in general a large number of interacting protons and neutrons. The existence of
a nonzero nuclear spin, which like total electronic angular momentum is limited
to integral or half-integral values, further complicates the question of the angu-
lar momentum states of an atom, since the nuclear magnetic moment associated
with it can interact with that of the outer electrons. Since the magnetic moment of
the nucleus is so much weaker than the electron moment, it is expected that the
different possible orientations of the nucleus will lead only to narrow splitting of
the energy states. In recognition of that fact, the interaction between the electron
and nucleus is referred to as the hyperfine interaction. It is precisely transitions
between states separated by this hyperfine interaction that give rise to the sharp
resonances used in the atomic standards in the microwave region of the spectrum.
The assignment of angular momentum quantum numbers to the quantum states of
an atom is very much affected by the addition of the nuclear spin, with impor-
tant consequences, as we shall see, for any process involving exchange of angular
momentum between an atom and radiation, for example.

It is a remarkable fact that in the 2S1/2 ground state of the alkali atoms, the elec-
tron has zero orbital angular momentum, which classically would be interpreted as
a collapsed electron orbit passing right through the nucleus; even the quantum pic-
ture is one of an electron spread out in a spherically symmetric way around the
nucleus, with a finite probability of being found in the nucleus itself. A thought-
ful reaction to this revelation might be, Why is there no nuclear reaction between
the electron and the particles that make up the nucleus. The answer is that elec-
tron capture by the nucleus can occur in some species of nuclei; but where it is
allowed, it is far more likely to involve the innermost electrons in the atom, in
a process called K-capture because the innermost shell of an atom is called the
K shell. Unlike s-electrons, all others in l = 1, 2, 3 . . . orbital angular momentum
states have a vanishingly small probability of being in the nucleus. The spherical
symmetry of the electron distribution in the 2S1/2 state and its finite value in the
nucleus have an important bearing on the computation of the interaction energy
between the magnetic moment of the nucleus and that of the electron. They mean
that we are not dealing with two separated magnetic dipoles, like two little magnets
interacting with each other; rather it is a magnetic dipole embedded in a magne-
tized, spherically symmetric medium, as shown in Figure 5.5.

The problem is to compute the amount of energy that would be required to
remove the embedded magnet from the center of that magnetized medium. Clas-
sically, reversing the relative directions of the magnetization of the magnet and
medium merely changes the sign of the energy, the interaction changing from one
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Figure 5.5 The magnetic moment of the nucleus interacts with that of the electron cloud
surrounding it

S = 1/2

I = 5/2

F = 5/2 + 1/2

F = 5/2 - 1/2

Figure 5.6 The quantum addition of angular momenta 5/2 and 1/2 according to the vector
model

of attraction to one of repulsion; however, as we have become accustomed by now,
this contradicts quantum mechanics. Simply put, the two possible angular momenta
given nominally as I + 1/2 and I − 1/2 cannot be regarded as having the relative
directions of the nuclear and electron spins reversed. Figure 5.6 illustrates the addi-
tion of an angular momentum of 5/2 with one of 1/2 according to the vector model.
We see that since the magnitudes of the vectors have the form

√
5/2(5/2 + 1)

and
√

1/2(1/2 + 1) , the vectors for the angular momenta, which are nominally
(5/2 + 1/2) and (5/2 − 1/2), do not have the 1/2 angular momentum in opposite
directions relative to the 5/2.

The quantum-mechanical solution to the problem of the magnetic interaction
between a nuclear moment and an overlapping electron distribution is associated
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with the name of Fermi, who obtained it as an early application of what was then
the new quantum mechanics. The expression he obtained for the energy, in terms
of the probability density of the electron at the nucleus and the magnetic moments
of the nucleus and electron, is as follows:

E =
(

8π
3I

)
μeμn

∣∣ψ(0)
∣∣2[F(F + 1) − I (I + 1) − J (J + 1)

]
, 5.12

where |ψ(0)|2 represents the electron density at the nucleus. For zero orbital angu-
lar momentum states having the same total electron angular momentum J , we can
write for the energy separation between adjacent F values the following:

E(F) − E(F − 1) = 16π
3

μeμn
∣∣ψ(0)2∣∣ ( F

I

)
. 5.13

The application of these formulas to such complex atoms as rubidium and
cesium is not expected to yield very accurate results, since many simplifying
assumptions have been made; among the more serious are these: A point magnetic
dipole was assumed for the nucleus, as was a single electron in an unperturbed
state. Even for the hydrogen atom, where these assumptions should be far more
tolerable, the drive for accuracy in the theoretical ground state hyperfine separation
has led to ever more sophisticated higher-order corrections being computed. As
we shall see, thanks to the hydrogen maser this hyperfine separation in hydrogen
is undoubtedly the most accurately measured quantity in physics: to better than
twelve significant figures! One of the early triumphs in this field was the evidence
that there was an “anomaly” in the magnetic moment of the electron; the value
deduced experimentally did not agree with the then most advanced relativistic the-
ory of the electron, the Dirac theory, which predicted that the electron g-factor
should be exactly 2. In fact, it was found that g = 2(1.00114 . . .), a number that
has been the subject of precise studies by Dehmelt et al. (Dehmelt, 1981).

In the case of the rubidium atom, there are two naturally occurring isotopes, that
is, atoms having the same electronic structure (which identifies them as rubidium)
and therefore the same nuclear charge, but with a different nuclear mass because of
a difference in the number of neutrons (see Figure 5.7). Natural rubidium is about
72% mass 85 with nuclear spin I = 5/2 and 28% mass 87, which has an extremely
weak radioactivity and nuclear spin I = 3/2. If we follow the quantum rules for
combining angular momentum, we will find that the ground state of Rb85 splits into
energy levels with angular momenta equal to (5/2 − 1/2) and (5/2 + 1/2); that is,
F = 2 and F = 3. Note that we can write symbolically J = L+S and F = J+I to
represent the (vector) addition of orbital and spin angular momentum to obtain the
total electronic angular momentum, and then the addition of the nuclear moment I

to get the total conserved angular momentum F.
The assignment of angular momentum quantum numbers to the first energy

level above the ground state in Rb85 is somewhat more complicated, since we have
to combine J = 3/2 with I = 5/2 in addition to the combination of I = 5/2 with
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Figure 5.7 Hyperfine structure of low lying states in Rb85 and Rb87
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Figure 5.8 Hyperfine structure of low-lying states in Cs133

J = 1/2, which leads to the values we have already found for the ground state. In
general, we simply write all values between I + J and I − J , that is, F = 4, 3, 2, 1.

Similar arguments may be used to find the angular momenta for the ground
state and first excited states of the cesium atom (see Figure 5.8). There is only
one stable isotope of cesium, mass 133, with a nuclear spin I = 7/2. Hence in the
electronic ground state, which has J = 1/2, the possible total angular momenta are
F = 4 and F = 3. For the first excited electronic state, which has two electronic
angular momentum states, J = 1/2 and J = 3/2, the coupling with the nuclear spin
leads to F = 4, 3 for the first J value and F = 5, 4, 3, 2 for the other J value.
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As already indicated, the magnetic interaction of the nuclear moments with
the electrons is expected to be very small compared to the other interactions that
determine the quantum energy levels of an atom. Nevertheless, it is precisely the
magnetic hyperfine separations in the ground states of rubidium and cesium that
have come to be distinguished as fiducial quantities, the latter defining the unit
of time.

5.12 Electrons in Solids: The Band Theory

5.12.1 Origin of Energy Bands

In order to understand the principles on which the operation of semiconductor
lasers is based, we must review briefly the concepts underlying the theory of elec-
trical conduction in crystalline solids. Apart from some special cases such as the
interior of a battery, electrical conduction is a manifestation of the flow of elec-
trons. The conditions, therefore, that determine to what extent a given substance
can conduct electricity have to do with the extent to which electrons are able to
move freely under the action of an applied electric field.

A crystalline solid is composed of atoms (or ions) arranged in a 3-dimensional
array that repeats in a regular pattern. The motion of the electrons and their quan-
tum states are no longer determined just by the electrostatic forces within each atom
individually, but rather, particularly the outer valence electrons, by the interaction
with all the atoms or ions in the crystal. Instead of the atomic structure problem,
where electrons are more or less attracted to a central nucleus, we now have a regu-
lar 3-dimensional array of attracting centers. To see what the quantum states of the
electrons should be for such an array, let us start with just two centers initially far
apart being brought together to their actual separation in the crystal. Since the two-
center system is symmetric with respect to an interchange of the positions of the
centers, in quantum theory it follows that the wave function representing the two-
atom system must be either symmetric (unchanged) or antisymmetric (only change
sign) when the electron coordinates with respect to the two centers are exchanged.
Initially, when the atoms are very far apart, the energy levels computed on the basis
of the two symmetries are equal, and therefore the levels are the same as in the iso-
lated atom, except that to each energy level belong two possible quantum states.
However, when the atoms approach each other, the energies are no longer the same
for the two symmetries, and the levels are split into two close levels. If now a
third atom is brought into position from a large distance, it would lead to a 3-fold
exchange symmetry and a consequent splitting into three levels. By extension, if N
atoms are brought into position to form a crystal, the levels are split into N levels,
the widest splitting coming from nearest neighbors. Since the atomic separation
determines the maximum splitting, and N for even the smallest visible piece of the
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crystal is extremely large, on the order of 1019 atoms, the result is effectively a con-
tinuous band rather than a discrete multiplet. On the basis of this band structure we
can now broadly draw the essential distinctions between a conductor, an insulator,
and a semiconductor.

5.12.2 Conductors and Insulators

In the lowest-energy state of the system, the electrons fill all the available states,
from the lowest up to the energy band that arises from electron states in the out-
ermost shell of the isolated atom. If the last band containing electrons is only par-
tially filled, then there will be within that band a continuum of higher-energy states
available to the electrons to go into as a result of gaining kinetic energy from an
external electric field, and the crystal is a conductor. For that reason the partially
filled band is called the conduction band. For example, an isolated sodium atom has
one electron in its outermost 3s shell, which can accommodate, according to the
Pauli principle, two electrons. The band that results from this state can therefore
accommodate 2N electrons, whereas N sodium atoms have only half this number.
Therefore, sodium is a good electrical conductor; in fact, the crystal is metallic
and like all metals is a good conductor. On the other hand, a crystal is an insulator
if all the bands up to a certain uppermost one, called the valence band, are com-
pletely filled in the sense of the Pauli principle, and the next higher empty band is
so high in energy that no electrons can reach it by thermal agitation. In this case
there are no electrons in a position to go into contiguous vacant states in response
to an applied electric field, and no change in electron velocity can occur. Hence no
current is produced, and the crystal is an insulator.

Finally, we have what are called semiconductors, such as pure silicon, germa-
nium, and gallium arsenide. In these the valence band is filled like an insulator,
and the band above it would be empty were it not for the circumstance that it is so
close in energy to the top of the valence band that at ordinary temperatures there
are appreciable numbers of electrons in it due to thermal agitation. Thus because
of the thermal distribution of energy among the electrons, a semiconductor has
electrons in a band that would otherwise be empty at absolute zero temperature.
The vacancies left behind in the valence band by the electrons that are thermally
raised to the conduction band are called holes and act like positive electrons. This
can be made plausible by thinking of the analogy of a row of seats in a theater all
occupied except one; if the person next to the vacant seat gets up and sits in it, the
effect is the movement of the vacancy one seat in the opposite direction to that of
the person. Clearly, the number of holes left in the valence band must equal the
number of electrons in the conduction band. This number depends on the temper-
ature according to the quantum analogue to the Maxwell–Boltzmann distribution,
the Fermi distribution, which applies to thermal equilibrium of electrons in any
system. If the probability of an electron occupying a state of energy in the interval
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dE centered on the value E is defined as F(E)dE, then the distribution function
F(E) is a function of temperature of the form

F(E) = 1

exp
(

E−EF
kT

)
+ 1

, 5.14

where EF is a parameter called the Fermi energy. Noting that at absolute zero EF
marks the energy at which F(E) abruptly changes from one to zero, we see that the
Fermi energy can be described as the highest level reached if all the electrons are
distributed one to each of the lowest available states. From Figure 5.9 we see that
in order that the number of electrons raised to the conduction band be equal to the
number of holes left behind in the valence band, the Fermi energy must be assumed
to be midway in the gap between the two bands. The importance of the Fermi level
for us is that when a junction is formed between two types of semiconductor, the
energy levels on the two sides of the junction must adjust themselves in such a way
that the Fermi levels are brought into coincidence.

5.12.3 p-Type and n-Type Semiconductors

So far we have been considering ideally pure semiconductor crystals, the so-called
intrinsic semiconductors, with impurities well below a few parts in a million. In
fact, what made transistors possible and the solid-state revolution in electronics that
they brought with them, are the technological advances in purifying and controlling
the purity of these materials. By adding minute controlled amounts of “impurities”
to the melt during the growth of the semiconductor crystals, a process called dop-
ing, the electrical conductivity of these semiconductors can be radically altered in
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electron density

temp. = 08K temp. >08K

0

Figure 5.9 The Fermi distribution of electrons in a semiconductor



5. The Language of Electrons, Atoms, and Quanta 109

useful ways. The result of doping is what is called an extrinsic semiconductor, with
the number of electrons exceeding that of holes (n-type), or with a preponderance
of holes over electrons (p-type).

To understand better the effects of doping, we note first that elements such as
silicon and germanium have a valence of four, and they crystallize in the diamond
structure in which each valence electron is shared in a covalent bond with one
electron from each of four nearest neighbor atoms. These covalent bonds account
for all the valence electrons, and therefore at T→0 the valence band is completely
filled, while the band above it, the conduction band, is empty. Suppose now that
as a result of doping, some of the lattice sites in the crystal are occupied not by
an atom of the host element, but by an impurity atom with a valence of five, such
as arsenic. Four of these five valence electrons will be taken up in forming the
four covalent bonds, leaving the fifth electron moving in the field of the remaining
ion. This electron and the other such electrons belonging to impurity atoms are
more weakly bound to the ions in the crystal environment than they would be in
free space and therefore are in discrete states very close to the continuum of free
electron states, that is, the conduction band. These discrete states are called donor
states, because at temperatures above zero they give up electrons to the conduction
band, making the crystal n-type with a high conductivity due predominantly to
electron flow. The presence of the additional donor electrons puts the Fermi level
closer to the conduction band.

Suppose now that the silicon or germanium crystal is doped with an impurity
having a valence of three, such as aluminum or gallium. Then where an impurity
atom occupies a lattice site there will be one too few electrons to satisfy the four
covalent bonds. In this case, an electron from the top of the valence band supplies
the missing electron to form a negative ion and leave a hole in the valence band,
which, acting like a positive electron, will have weakly bound discrete states, like
the mirror image of an electron in the field of a positive ion. These states will
be for negative electrons slightly above the top of the valence band, and they are
called acceptor levels, because they receive electrons from the valence band, leav-
ing holes there to act like positive charge carriers. The resulting semiconductor
is called p-type, since the predominant charge carriers responsible for conduction
are positive. With fewer electrons in the valence band, the Fermi distribution must
be moved lower, with EF closer to the top of the valence band, in order again to
conform with the requirement on the electron number. Figure 5.10 shows schemat-
ically the relative positions of the boundaries of the two energy bands, the impurity
levels, and the Fermi levels.

5.12.4 Energy-Momentum Relationship

So far we have dealt only with the possible energy states of electrons in the crystal;
but a complete dynamical description must include their momentum. This is nec-
essary if we are to deal with the electron transitions accompanying the absorption
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Figure 5.10 Energy bands and impurity levels in a doped semiconductor

or emission of radiation. In the case of radiative processes in atoms, conservation
laws lead to certain selection rules determining which transitions are allowed and
which are forbidden. Here the conservation of linear momentum between the elec-
tron making a transition and the photon absorbed or emitted will impose conditions
on the crystalline properties that we must now address.

The problem of the motion of electrons acted on by a spatially periodic force
such as they experience on an atomic scale from the atoms or ions in the crystal
lattice is a quantum-theoretical problem. Their behavior is dominated by their wave
nature, and rather than speak of the momentum of an electron, it is more useful to
use the de Broglie wave vector k = mV/(h/2π), whose magnitude is defined
as k = 2π/λ. The classical (nonrelativistic) relationship between kinetic energy
E = 1/2mV 2 and the wave vector for a free particle is as follows:

E = 1
2m

(
kh
2π

)2

. 5.15

However, motion in a periodic crystalline field is totally different; in fact, even
the most essential attribute of a material particle, namely its mass, is no longer
a constant. The change in kinetic energy that a force imparts to an electron, that
is, its “inertia,” depends on its quantum state, and the concept of an “effective
mass” is introduced to frame the problem where possible in Newtonian terms. The
way in which the E–k relationship for a free particle is modified in an ideal crystal
with a lattice spacing of a between atoms is shown schematically in Figure 5.11.
We notice the band structure and the appearance of “forbidden” gaps around the
points k = nπ/a, where n is a whole number. These can be given an electron
wave interpretation as the inability of the electron wave to propagate through the
crystal with these wave numbers because of coherent reflections from the lattice
sites causing destructive interference.
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Figure 5.11 The E–k graph for an electron in a one-dimensional periodic field: a simple
model of a crystal
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Figure 5.12 The energy–momentum graphs for silicon and gallium arsenide crystals. The
indices (100) and (111) specify directions with respect to the crystal axes

In a real crystal the detailed E–k relationship is in general much more compli-
cated. Figure 5.12 compares graphically the features of that relationship that are
of particular relevance to us for two semiconductors: silicon and gallium arsenide.
Note that the curves are for specified directions of the electron wave vector with
respect to the crystal axes, since most physical properties, including electronic
properties, are different in different directions in a crystal. Of particular importance
is the fact that the upper boundary of the valence band for GaAs has a maximum
at the same value of k as a minimum in the lower boundary of the conduction
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band, whereas for Si this is not the case. Semiconductors that are like GaAs in this
respect are said to have a direct band-gap, while the others have an indirect one.
We shall see later that in order that electrons may undergo radiative transitions
between bands, involving the emission or absorption of photons, and do it with
high probability, it is crucial that the semiconductor be a direct one.
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