
Chapter 14
Optical Frequency Oscillators: Lasers

14.1 Fundamentals

14.1.1 Introduction

The first international conference at which papers were presented on the subject
of “optical masers,” as they were then called, was at Ann Arbor, Michigan in
June 1959. The principal topic of the conference was not lasers, but the optical
pumping method of observing magnetic resonance in free atoms, a technique that
had recently been introduced by Kastler in Paris. The session devoted to lasers was
a “miscellaneous session” in which papers on theoretical aspects of laser oscillation
in gas discharges and ruby crystals were presented by Gould, Javan, and Schawlow,
among others.

The workings of a laser do not involve any physical theory or even practical
technique that was not already known for some time. The quantum theory of the
absorption and emission of light by atoms and molecules was well established,
there was abundant spectroscopic data such as wavelengths and line intensities,
and the theory of light wave optics and the techniques of optical interferometry
were well advanced. The study of electrical discharges through rarefied gases and
crystal optics had been pursued since the 19th century. This undoubtedly explains
the veritable explosion that occurred in the number of reports of laser action once
the first appeared.

The special properties of lasers as quantum oscillators in the infrared to
ultraviolet regions of the spectrum will now be treated in the broader context of
quantum oscillators in general. Their impact on the design and performance of the
microwave standards (except the H-maser), which has literally transformed these
standards, and their development as frequency standards in the infrared and optical
regions of the spectrum will be treated in succeeding chapters.
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14.1.2 The Resonance Frequency Width of Optical Cavities

We have seen in the case of atomic and molecular beam masers that the spectral
width of the resonant response of the atoms or molecules is far sharper than the
resonant modes of the cavity in which the particles interact with the radiation field.
Since these cavity modes are well separated, this means that oscillation occurs in
a unique mode of oscillation of the field in the cavity: the one tuned to resonance
with the particle frequency.

In contrast, at optical frequencies it is the “cavity”, which may in fact consist
of only two small parallel mirrors some distance apart, whose resonance modes
have narrow spectral widths compared to those of the “active” atoms or molecules.
The arrangement of two highly reflecting, precisely parallel surfaces to form an
optical resonator has as precursor a high-resolution spectroscopic device called
a Fabry–Pérot interferometer, whose introduction in 1899 far predates the era of
modern optics. Its capability as a high resolution spectroscopic device derives from
the sharp resonant peaks in the intensity of light transmitted through it. The degree
to which it is able to resolve close resonances due to neighboring wavelengths is
specified by a quantity called the finesse. A useful physical insight into the sig-
nificance of this quantity is obtained by the following approximate but instructive
argument: Suppose the light wave to be analyzed is reflected back and forth tra-
versing the distance between the mirrors an average of 2N times before decaying,
and that the distance between the mirrors is such that the light resonates in the nth

longitudinal mode, so that the length of the cavity is nλ/2. It would follow that the
light wave is coherent over a time of Nnλ/c, and therefore the relative width of the
Fourier spectrum �ν = ν/(nN ), hence the resolving power λ/�λ is given by:

λ

�λ
= nN 14.1

It is this quantity N that is a measure of the fineness of resolution, given the name
finesse (F), defined in terms of the (power) reflectivity R of the mirrors as follows:

F = π R1/2

(1 − R)
14.2

Currently extraordinary experimental values of R reaching up to an incredible
99.998% have been reported, corresponding to F = 157,000. Another quantity
important in the design of a Fabry-Pérot cavity is the free spectral range (FSR),
which specifies the range of values of resonant frequencies/wavelengths for which
there is no ambiguity in the assignment of the order n. In terms of frequencies it
is c/2nr L , where nr is here the refractive index. In what follows we shall assume
nr = 1 unless the dispersion of the medium is relevant. For a given cavity length,
the larger the order number n, the closer will be the wavelengths of the resonances.
In fact it is not difficult to show that:

λn − λn+1 = λnλn+1

2L
≈ λ2

2L
. 14.3
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Figure 14.1 Diffraction loss at the mirrors of an optical cavity

Since the Fabry–Pérot interferometer was originally applied to conventional light
sources with limited light wave coherence, the spacing of the mirrors was typi-
cally on the order of millimeters, rather than centimeters or tens of centimeters
as is typical of gas laser cavities. Strictly speaking, such an open arrangement of
mirrors does not have discrete resonance frequencies, unlike a completely closed
cavity with reflecting walls. However, detailed computations on such a cavity have
shown that there exist more or less discrete sets of modes with the optical field
localized along the axis between the two mirrors. For these modes the loss of opti-
cal energy from the cavity due to diffraction, the inevitable spreading out of a wave,
is small. We can readily show this is plausible if we accept the result from wave
theory that a plane wave reflected by a circular plane mirror of diameter D (large
compared to the wavelength) will be diffracted at an angle of about λ/D (radians),
as shown in Figure 14.1. Such a wave traveling to another similar mirror a dis-
tance L away will partly fall outside the rim of that mirror and suffer a fractional
loss of 4λL/D2, provided that we make the crude assumption that the energy of
the beam is spread uniformly over the expanded area. Clearly, even if the mirrors
were perfectly reflecting, the cavity field would still decay in energy due to diffrac-
tion, with a consequent broadening of the resonance spectrum. The fractional loss
of 4λL/D2 occurs at each mirror and repeats at intervals equal to the transit time
of the light wave between the two mirrors, namely L/c, where as usual, c is the
velocity of light. It follows that the average fractional loss of energy per unit time
is 4λc/D2. Now we can apply this result to the two counter-traveling waves of equal
amplitude whose sum is one of the stationary axial modes, belonging to the quasi-
discrete set supported by the cavity. These longitudinal modes are analogous to
vibrations on a string at frequencies such that the phase of the wave after traveling
2L is a whole number of cycles: Symbolically, this means that (2L/c)νn = n,
where n is a whole number, and νn is the frequency of oscillation of the optical
field in the nth mode. Then the diffraction limited Q-factor for that mode is as
follows:

Qn = 2πνn(
1
E

d E
dt

) = πD2

2λ2
n

, 14.4

where λn = c/νn is the wavelength of the nth mode. For example, if we take for
the mirror diameter D = 2.5 cm and λ = 632.8 nm (the common wavelength
of the He–Ne laser output), we find for that pure axial mode Q ≈ 1010. This is
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significantly larger than is typical of microwave cavities and is even higher than
most optical atomic transitions. Actually, the situation is far more complicated,
in that the intensity profile of the beam is far from uniform over the cross sec-
tion of the beam; rather, it has a radial distribution that can be analyzed in terms
of certain radial modes. These are designated as TEM modes (transverse electro-
magnetic) with indices specifying the order and hence the number of zeros in the
intensity distribution. For example, if we take the mirror axis as the z-axis of a coor-
dinate system, then in the TEM21 mode, the field intensity has two zeros along, say,
the x-direction and one zero along the y-direction. Beam profiles for some of the
lower-order radial modes are shown in Figure 14.2. The least complicated mode
(TEM00) has only one maximum, which occurs on the axis and is described by
the form exp(−r2/r0

2), called a Gaussian function. The output beam of a laser
oscillating in this mode is called a Gaussian beam, and the theory of the action
of optical elements such as lenses and mirrors on such beams is called Gaussian
optics. It differs from ordinary ray optics, which takes no account of the wave
nature of light; it is characterized by the absence of sharply defined focal points
and beam profiles. The usual lens and mirror formulae of ray optics are not valid.

Optical wave theory shows that the diffraction loss is radically smaller if instead
of plane mirrors, concave mirrors are used in a confocal arrangement, in which the
focal points of the two mirrors coincide at the midpoint between them, as shown in
Figure 14.3.
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Figure 14.2 The intensity distribution for some low order-radial modes in an optical cavity
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Figure 14.3 A confocal optical cavity
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Figure 14.4 A plot of the optical loss as a function of D2/4λL (Boyd, 1961)

The results of detailed computations on the diffraction loss for various
oscillation modes in an optical two-mirror cavity are reproduced in Figure 14.4, in
which the fractional loss is plotted against the parameter D2/4λL (Boyd, 1961).

Note that according to the approximate theory outlined above, the graph for
the plane mirrors should be linear with a slope of −1. We see from these results that
even for the unfavorable case of plane mirrors, fractional losses as low as 10−4 are
attainable (assuming the mirrors are perfectly aligned) for D2/4λL ≈ 100, a prac-
tical figure. This points to the limit on the Q of these cavity modes not really being
set by diffraction, but rather by the imperfect reflectance of the mirrors, which in
practice rarely exceeds 99.99%, corresponding to a fractional loss of 10−4. In any
event, to be useful, a laser oscillator must provide an output beam, and therefore at
least one of the mirrors must be partially transparent, with a consequent power loss
from the cavity.

Since an optical cavity commonly has dimensions very large compared to
the wavelength, the various resonance modes, with their characteristic stationary
field distributions, have frequencies that differ fractionally very little from each
other. The mode spacing, of course, need not be small for microwave cavities,
since in that case the cavity dimensions can be of the same order of magnitude
as the wavelength, and the lower mode frequencies are relatively far apart. If
the optical cavity consisted of a truly closed cavity with reflecting walls, analo-
gous to a microwave cavity, then if its dimensions were large compared to the
wavelength, there would be a very large number of modes lying within any given
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frequency band, all having an appreciable Q-value. In fact, that number in the gen-
eral 3-dimensional case appears in the theory of blackbody radiation and is given
by the following:

�N = 8πV

λ3
�ν
ν

, 14.5

where �N is the number of modes having a frequency in the interval �ν
centered on the frequency ν, and V is the volume of the cavity, which classical
theory has shown can have any shape, provided that its dimensions are very much
larger than the wavelength. To illustrate just how large �N can be, let us assume
λ = 500 nm, V = 100 cm3, and �ν/ν = 10−7; substituting into the formula yields
�N ≈ 2 × 109! It is indeed fortunate that quasi-discrete Gaussian modes do exist
in a wide-open Fabry–Pérot resonator, with only a few radial modes having a high
Q-value, to restrict the number of modes into which the stimulated emission from
the atoms occurs. Not only does sustained laser action in these modes become
possible, but it yields the extraordinary directionality of the laser output beam, and
with proper selection of axial modes, great spectral purity.

14.1.3 Conditions for Sustained Oscillation

As with beam masers, sustained optical frequency oscillation of the field in a
resonator is possible if atoms or molecules are present that through stimulated
emission yield a net gain in the field energy sufficient to make up for all losses,
including that represented by the output beam. However, while the general princi-
ples are identical for microwave and optical frequency oscillators, there are many
important practical differences that give them quite different physical aspects. In
addition to the obvious differences attendant upon the very different wavelengths,
the kind of coupling of the atoms or molecules with the optical field is also dif-
ferent: The atomic beam masers involve magnetic dipole transitions, while lasers
involve the much more strongly induced electric dipole transitions. Furthermore,
while in the magnetic dipole transitions the field acts on a permanent atomic mag-
netic moment, the existence of a permanent electric dipole moment is excluded
on the basis of a fundamental symmetry property of the internal forces holding
an atom together. The symmetry is broken when an external electric field is intro-
duced; in that case, oppositely directed forces are exerted on the positive nucleus
and negative electrons, resulting in a dipole moment. Transitions result from the
action of the electric component of the optical field, which induces an oscillating
electric dipole moment in the atom. The amplitude of that dipole moment depends
on the dynamical response of the particular atom; we recall the classical model of
an atom having elastically bound electrons used by Lorentz in his theory of optical
dispersion to predict that response.

To achieve a net gain of power from an atomic or molecular system, it must be
prepared with a preponderance of population in the upper of two quantum energy
levels, between which transitions are to be stimulated. This, it will be recalled, is
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simply because the probability per atom per unit time for stimulated emission is
exactly the same as for absorption. The achievement of this preferential population
of the upper energy state in the case of optical transitions is complicated by two cir-
cumstances: First, unlike the microwave case, an optical quantum (photon) has con-
siderably greater energy than the mean thermal energy of particles in equilibrium
at ordinary temperatures. This, it will be recalled from Boltzmann’s theory, implies
that in thermal equilibrium the number of atoms of a gas in the lower of the two
states will be far greater than the number in the upper state. Thus according to the
theory, if the number in the upper quantum state is N1 and the number in the lower
state N2, then we have in equilibrium at absolute temperature T ,

N1

N2
= e− hν

kT . 14.6

The temperature T is, of course, positive; hence in equilibrium we must always
have N1 < N2. For example, if T = 300◦K and ν = 6 × 1014 Hz, we find that,
on an average, only one atom in 1041 is in the upper state! Clearly, then, for laser
action we require very nonequilibrium conditions; in fact, we require what is called
population inversion, or a “negative (absolute) temperature.”

The second essential difference caused by the greater energy of the optical
photon is that the probability (per atom) per unit time for spontaneous emission is
far from being negligibly small, as it was in the microwave case. We can see this
from the Einstein expression for the ratio of his A- and B-coefficients

Anm

Bnm
= 8πhν3

c3 , 14.7

if we recall that the probability per unit time for stimulated emission is B12ρν,
where ρν is the spectral energy density of the optical field causing the transitions,
given by ρν = Iν/c, for a parallel light beam of spectral intensity Iν. At ordinary
light levels such as might exist in a conventional lamp, where Iν is perhaps on the
order of 10−8 watt/m2 · Hz, we find that the probability of spontaneous emission is
about 2000 times greater than that of stimulated emission. This shows why stimu-
lated emission plays an insignificant role in the operation of a conventional lamp;
in fact, all ordinary sources of light, from the common tungsten lamp to the sun,
are examples of spontaneous emission. However, in a lasing medium the energy
of the optical field is concentrated in a narrower spectral width, which means a
far larger spectral energy density and the emergence of stimulated emission as an
important process. It is important to recall that spontaneous emission, in contrast
with stimulated emission, is indifferent to whether an optical field is present and
is induced with random phase by “zero-point” quantum fluctuations in the optical
field. Stimulated emission/absorption, on the other hand, results from induced elec-
tric dipole oscillation in the individual atomic systems and is correlated in phase to
the common stimulating optical field. In quantum theory, stimulated emission and
absorption are different consequences of the same process; which one is manifested
is simply a matter of whether the initial state is the one with lower energy or higher
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energy. From what has been said about the Boltzmann distribution of populations
in a system in thermal equilibrium, it follows that a light beam passing through a
medium in thermal equilibrium will always suffer absorption at those frequencies
in its spectrum that are resonant with transitions in the system. In such a case, the
intensity of a monochromatic light beam becomes weaker as it passes through a
medium with a resonant transition. On the other hand, if by some means, such as
an electrical discharge or intense optical pumping, a population inversion is sus-
tained, then that monochromatic light beam increases in amplitude; it is amplified,
as shown schematically in Figure 14.5.

To express these notions more quantitatively, suppose a monochromatic
parallel beam of intensity Iν watts/m2 passes through an atomic/molecular medium
with n1 particles/m3 in the upper quantum state and n2 particles/m3 in the lower;
and let them have a frequency response (resonance line shape) g(ν), so that:
according to the definition of B12, the probability of the optical field stimulating
emission (in unit volume) at the frequency ν is n1 B12(Iν/c)g(ν) per unit time,
with an identical expression for absorption, except that n1 is replaced by n2.
In practice, because of the various spectral broadening mechanisms such as the
Doppler effect in gases, the function g(ν) will have a bell-shaped graph, gen-
erally broader than the spectral width of the light, so that the assumption of a
monochromatic beam having the single frequency ν is not an unrealistic one. It
follows that since each transition involves the exchange of one quantum of energy
hν, the net rate of energy exchanged coherently with the field (per unit volume) is
(n1 − n2)B12(Iν/c)hνg(ν). If we choose the direction of the beam to be the z-axis
of a coordinate system and balance the energy flow in the beam with the amount
emitted (or absorbed) by the atoms, we are led to the following:

absorbing medium

amplifying medium

Figure 14.5 A schematic illustration of a light wave passing through absorbing and ampli-
fying media
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d Iν

dz
= (n1 − n2)hνB12g(ν)

Iν

c
. 14.8

This has a solution of the form

Iν(z) = Iν(0)eγz, 14.9

where

γ = (n1 − n2)B12
hν
c

g(ν) 14.10

is the (exponential) gain constant. As expected, this shows that for the light beam
to be amplified, we must have (n1 − n2) > 0, that is, population inversion with
more atoms in the upper state than the lower. In a system in thermal equilibrium,
as already emphasized, we have necessarily (n1 − n2) < 0, and the intensity falls
exponentially, in agreement with the classical experimental law, sometimes called
Lambert’s law. The two cases are illustrated in Figure 14.5. We can usefully rewrite
the gain constant γ in terms of Einstein’s A-coefficient, since the latter is related to
the mean lifetime of the upper state against spontaneous emission, a lifetime that
can be deduced from the empirical “natural” width �νn of the emission line. The
result is as follows:

γ = 1
4
(n1 − n2)λ2�νng(ν). 14.11

The line shape factor g(ν), which gives the spectral response of the atoms to
the optical field, may result from a number of different processes. For some
applications it is important to draw a distinction between two different types
of broadening mechanisms: homogeneous and inhomogeneous. As we saw in
Chapter 7, the distinction applies to a group of atoms: If a broadening mech-
anism affects all atoms identically, such as the natural lifetime of the radiating
state or collisions with other particles that interrupt the radiation process, then it is
homogeneous. Lifetime broadening, for example, we know leads to a Lorentzian
line shape:

g(ν) = 1
π

�ν
2

(ν − ν0)2 + (
�ν
2

)2 , 14.12

where �ν is the width of the g(ν) versus ν curve at half its maximum, which occurs
at ν = ν0 and has a value there of 2/π�ν.

On the other hand, it can happen that each individual atom in the group has its
own slightly different frequency because, for example, the atoms have different
velocities, and therefore different Doppler shifts in their frequency, or perhaps
because each atom sees a slightly different environment; in this case we say the
broadening is inhomogeneous. For the case of Doppler broadening in a gas in
thermal equilibrium, we found

g(ν) ≈ exp
(

−4ln2
(ν − ν0)

2

�ν2

)
. 14.13
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In order to set up the conditions for sustained oscillation at optical frequency, we
combine the essential elements of a feedback oscillator by placing the amplifying
atomic medium inside an optical resonator. And as with any other feedback oscil-
lator, the threshold condition for oscillation to break out is that the feedback be
regenerative and the loop gain G = 1. To obtain an expression of these two con-
ditions explicitly in terms of a specific model, assume that we have a Fabry–Pérot
resonator filled with a population inverted gas acting as a distributed amplifier. Let
R1 and R2 represent the ratios of reflected to incident light intensity at the two
mirrors, and let α be an absorption constant to account for all distributed loss of
intensity due to interaction with the gas, so that we can write the condition on the
loop gain as follows:

R1 R2 exp
[
(γ − α) 2L

] = 1, 14.14

from which we deduce the threshold value of γ to be

γ = α + 1
2L

ln
(

1
R1 R2

)
. 14.15

The condition on the phase is a little more complicated, since the light travels
through an amplifying medium that is dispersive; that is, the velocity of a light
wave through it depends on the frequency of the wave. The interaction of the light
with an atomic medium near a resonance can strongly affect the velocity of the
light wave in a frequency-dependent way. If we define c/n(ν) as the velocity of
light in the medium, then for a light wave starting from any point in the cavity, to
have the same phase after making a complete round trip between the two mirrors
requires the following phase condition:

2L
c/n(ν)

ν = m, 14.16

where m is a whole number. In the absence of the atoms, n(ν) = 1 and ν = νm ,
the cavity resonant frequency in the mth order axial mode. We will not attempt to
derive the expression for n(ν) but merely state the important result that it involves
the frequency dependence of absorption (or in our case the stimulated emission),
and its substitution in the phase condition leads to the following approximate result
for the actual frequency of oscillation:

ν = νm

{
1 − (ν0 − νm)

�ν
γ
k

}
, 14.17

where k = 2π/λ is the magnitude of the wave vector. This shows that oscillation
does not take place exactly at the resonant mode frequency νm of the cavity: an
example of frequency pulling such as we already encountered in the hydrogen
maser. It can be shown that this result can be rewritten to show the same depen-
dence on the relative line widths of the atomic and cavity resonances; here,
however, it is the cavity that has the sharper resonance, rather than the atoms.
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14.1.4 The Sustained Output Power

The threshold conditions alone do not, of course, tell us anything about how and
to what level the optical power builds up in the laser cavity. As with all feedback
oscillators, once the threshold is passed, oscillations will start from ever-present
incoherent zero-point excitations of the field or, as in this case, the spontaneously
emitted light. To predict the further buildup of the optical field, we must take into
account the dependence of the population difference itself on the amplified field it
generates. This involves taking the theory of the interaction of the atoms with the
optical field to a higher order of approximation, beyond the approximation so far
implied. This was done by W.E. Lamb, who by developing the quantum theory of
interaction between atom and field to the third order in the field amplitude gave
explicit expressions for the coefficients αn and βn in the “equation of motion” for
the field amplitude En of the nth mode:

dEn

dt
= αn En − βn E3

n , 14.18

which applies to a loop gain G > 1 (Lamb, 1964). This leads to a steady state when
dEn/dt = 0, which occurs for E2

n = αn /βn . For the stationary field modes assumed
in the theory, Lamb found that the linear gain factor αn as a function of tuning has a
Gaussian shape arising from Doppler broadening, while the nonlinear “saturation”
factor βn is much less Doppler broadened, exhibiting mainly lifetime broadening.
This causes the overall frequency dependence of the laser output to exhibit what is
now called the Lamb dip, a local minimum at the peak of the Doppler line shape, as
shown in Figure 14.6. This sharp spectral feature, whose width reflects the homo-
geneous line width of the atoms, rather than the much broader Doppler width, has
proved very useful in stabilizing the frequency of oscillators in the infrared and
optical regions of the spectrum.

power
output

Dn

n

natural

Dn
doppler

Figure 14.6 The Lamb dip in the output of a gas laser
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14.1.5 Theoretical Limit to Spectral Purity of Lasers

From the point of view of an optical frequency standard, a laser oscillator serves
to provide a strong, spectrally pure source of radiation, much as a klystron might
do for a passive microwave Cs standard. Long-term stability and reproducibility
are achieved by locking the laser frequency on resonance with a suitable reference
atomic or molecular quantum transition, free of Doppler and other sources of spec-
tral line distortion. In this role the essential attribute of the laser is the spectral
purity of its output. In practice, this is broadened by the fluctuations in the optical
and mechanical properties of the cavity, particularly those due to environmental
conditions, such as temperature and mechanical vibrations. We must distinguish,
however, between these “technical” or “artificial” sources of phase/frequency fluc-
tuations and those that are fundamental, that is, those that arise from the quantum
properties of radiation and its interaction with atoms. These residual fluctuations
would remain even if we had an ideal, perfectly stable cavity.

To understand the origin of this inherent, fundamental limit on the spectral
purity of the laser output, and therefore the limit on the phase stability of the laser
as a frequency standard, we must go back to the fundamental processes involved
in its operation. There are two light-emission processes that atoms of the laser
medium undergo: spontaneous and stimulated emission. In spontaneous emission,
which occurs with a probability independent of the prior presence or absence of
photons, the photons emitted by different atoms bear no phase relationship to each
other, nor do photons emitted by the same atom at different times. In contrast, the
stimulated emission of photons occurs with a probability proportional to the num-
ber of interacting photons already present, and the phases of photons emitted by
different atoms, or by the same atom at different times, have a definite relationship;
that is, they are coherent. It is the inevitable presence of spontaneously emitted,
incoherent photons in the otherwise coherent stream of photons constituting the
laser output beam that sets the limit on spectral purity mentioned above. Quanti-
tatively, it can be shown that the mean square deviation in phase 〈�φ2〉 is given
by 〈

�φ2
〉
= Nspont

2Ntot
, 14.19

where the average 〈 〉 is taken over a time during which Nspont photons are spon-
taneously emitted, and Ntot is the total number of photons in the given field mode.
This result can be made plausible by noting that the ratio of photon numbers is pro-
portional to (Espont/Etot)

2, where Espont and Etot are the corresponding optical field
amplitudes. That is, in terms of a field picture we have an oscillating optical field
vector with its phase randomly fluctuating over a narrow range because of the addi-
tion of a (small) phase incoherent field component (the spontaneous photon). The
size of the phase shift we can deduce if we recall further that the phase of a harmon-
ically oscillating quantity Ecos(ωt + φ) can be represented as the angle of rotation
of a radius vector of length E turning with constant angular velocity ω, and that
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Figure 14.7 The phasor representation of the stimulated and spontaneous optical fields

therefore the phase of the resultant of two fields oscillating at the same frequency
can be obtained by vector addition of the two rotating vectors representing them,
as shown in Figure 14.7. Now, under steady oscillating conditions where the pop-
ulation inversion is sustained by pumping at a constant rate, the mean optical field
amplitude Etot remains constant, and in cases of practical interest Espont � Etot.
From the figure it is clear that the maximum change �φ in the phase of the opti-
cal field due to the addition of a small vector increment occurs when the phase
of the latter is at 90◦ to the main field vector. It follows that small fluctuations in
the amplitude Espont can produce a maximum phase change (in radians) given by
�φ = Espont/Etot. Of course, the effect of the spontaneous component varies ran-
domly, sometimes advancing the phase of the resultant, at other times retarding it.
The situation will be recognized as reminiscent of a random walk, of which we
have already given a simple model in an earlier chapter. As we saw there, while the
average of the fluctuations is zero, being equally likely to be positive as negative,
the average of the square of the fluctuations increases linearly with their number.
In this case each spontaneously emitted photon corresponds to a new fluctuation in
the phase, and since the emission occurs at a constant rate, we conclude that 〈�φ2〉
increases linearly with time. It can be shown that this leads to a laser output with a
Lorentzian spectral intensity distribution with a spectral line width �ν given by

�ν = πhν(�νc)
2

P
, 14.20

where �νc is the passive cavity resonance linewidth (in the absence of the lasing
medium) and P is the power in the cavity mode. It was on the basis of an expression
of this form, first derived in 1958 by Townes and Schawlow, prior to the realization
of a working laser, that the extraordinary potential spectral purity of lasers was
predicted. Assume, for example, that we have a laser operating at 633 nanometers
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with an ideal cavity of length L = 1 m and an output mirror with 1% transmission,
so that 1% of the cavity intensity emerges as the output beam. The cavity resonance
line width can be obtained from the average lifetime of a photon in the cavity. Thus
a given photon has a 1% chance of leaving the cavity in the time required to traverse
the cavity in both directions, and will therefore spend on the average 200 L/c before
leaving the cavity. The corresponding (full) spectral width of the cavity resonance
is then �νc = c/π200L; that is, in this case ≈0.5 MHz. For a laser output power of
1 mW we find on substituting into the expression for the laser spectral line width
�ν = 2.5×10−4 Hz! This quantum limit is so small that it was thought at the time
it was first calculated that it was of no practical consequence; however, as we shall
see, recent work on laser stabilization has led to claims of extraordinary spectral
purity, approaching the quantum limit.

14.1.6 Laser Stabilization: The Pound-Drever-Hall Method

An experimental technique that has played a major role in stabilizing lasers with
respect to ultrastable cavities, and thereby brought within reach the realization of
the quantum limit to spectral purity in a laser, is known as the Pound-Drever-Hall
method (Drever et al., 1983). It involves phase modulation and feed-back to lock
the frequency of a laser to a resonant frequency in an ultrastable external cavity of
extremely high finesse. We recall that lasers such as tunable dye lasers and solid
state lasers have a relatively broad spectral width and require frequency narrowing
and stabilization arrangements to achieve spectral purity. The Pound-Drever-Hall
method has been applied with great success in standards laboratories to lock lasers
to high finesse cavities, isolated with extraordinary care to ensure freedom from
vibration and temperature fluctuations. Such stabilized lasers, destined to be local
oscillators for optical standards, have been reported to reach spectral linewidths
in the sub-Hertz range, corresponding to fractional linewidths in the 10−16 range,
a truly astounding achievement.

The principle of the method dates back to 1946, a time when microwave tech-
nology was the hot field of the day. One of the most prominent experimentalists in
that field and in nuclear magnetic resonance was R.V. Pound.

The “Pound stabilizer” (Pound, 1946) was designed to stabilize the output fre-
quency of a microwave oscillator with reference to a high-Q microwave cavity. It
phase modulates the microwave output of the oscillator and couples it to a reso-
nant cavity in one arm of a “magic-T”. The error signal for the feed-back loop was
obtained by first detecting the sum of the two sidebands of the phase modulated
signal and a sample of the carrier signal from the source, and connecting this to
a phase sensitive detector having the (phase adjusted) modulating signal as refer-
ence. The output of the latter can be shown to give a linear measure of the detuning
error in the neighborhood of exact resonance of the cavity.
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14.1.7 Application to Stabilizing a Laser

It might be thought that one could stabilize the frequency of a laser simply by
locking the laser to one of the sharp transmission peaks of a stable, high finesse
Fabry-Pérot cavity, in a fashion analogous to locking a local oscillator to an atomic
resonance. This would certainly work; however, the modulation frequency and
therefore the bandwidth of the servo loop would be limited by the response time
of the cavity. This would limit the ability of the system to reduce higher frequency
fluctuations in the laser output.

The principles of operation of the Pound-Drever-Hall method can be
understood with reference to the simplified diagram shown in Figure 14.8. The
laser is first isolated with a Faraday isolator and then its beam is phase modulated
in a Pockels cell before going through an isolator/reflector into the optical cavity.
The Faraday isolator is essential to prevent any reflected wave from destabilizing
the laser. The intensity of the beam reflected from the optical isolator is measured
in a detector whose output is connected together with a signal from the modulating
oscillator, properly phase-adjusted, to a mixer, yielding a phase-sensitive output
that passes through a low pass filter to control the frequency of the laser. The
distinctive feature in this servo control system is clearly the way the error signal
is derived from the reflected beam. As already emphasized, what is particularly
notable is that the modulation frequency and therefore the bandwidth of the servo
control are not limited by the bandwidth of the cavity, that is, the speed with which
the optical field in the cavity can readjust.

We will not reproduce the general theory of the method, but will be content
with approximate results limited to conditions of practical importance, namely fast
modulation in the neighborhood of resonance with a cavity mode. To begin we need
an approximate expression for the reflection coefficient of a Fabry-Pérot cavity

Figure 14.8 Simplified layout of Pound-Drever Hall laser stabilization method
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near resonance. We give without proof the following expression for the reflection
coefficient R(ω) using complex vectors:

R(ω) = r [exp(iω/�ω) − 1]
1 − r2 exp(iω/�ω)

14.21

where �ω is the free spectral range c/2nr L and r is the amplitude reflection
coefficient of each mirror. In the neighborhood of the N th longitudinal mode we
can write

ω

�ω
= 2Nπ + δω

�ω
14.22

where δω/�ω � 1 is the fractional deviation in the frequency of the laser from the
exact cavity resonance. On substituting this form in (14.21) we obtain to first order
in (δω/�ω):

R(ω) ≈ ir
(

δω
�ω

)
1 − r2 . 14.23

Writing R(ω) in terms of the finesse F = πr/(1 − r2) and using the relationship
�ω1/2 = �ω/F , where �ω1/2 is the half width of the resonance, we find:

R(ω) = i
π

δω

�ω1/2
14.24

If we assume the modulation frequency to be so large that the sidebands are so far
from resonance that we may assume they are fully reflected, then it can be shown
that the reflected intensity Ir is given by:

Ir ≈ 2Is − 4
π

√
Ic Is

δω

�ω1/2
sin 
t + (2
terms) 14.25

where Is and Ic are the sideband and carrier intensities, respectively. On passing
through the phase sensitive detector with the reference frequency 
, the output
error signal applied to control the laser, ε, is given by:

ε ≈ 4
π

√
Ic Is

δω

�ω1/2
14.26

This then shows the linear dependence of the error signal on the frequency
deviation; as required, going through zero at exact resonance and changing sign
from negative to positive on either side of resonance.

14.2 Laser Beam Properties

14.2.1 Laser Beam Quality

The cross sectional intensity profile and spatial coherence of a laser beam are
essential properties which determine how it propagates through an optical sys-
tem. A standard measure of beam quality is clearly required in order to be able to
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compare the outputs of lasers of different designs and manufacture. The theoretical
definition of such a standard measure of beam quality is based on a comparison
between the given beam profile and the ideal lowest order Gaussian beam. The
specification of just how the comparison should be made comes under the purview
of the International Standards Organization (ISO) and the U.S National Institute
for Standards and Technology (NIST).

The beam quality, generally represented by M2, can be defined as the ratio
of the product of the beam’s multimode diameter times the divergence angle to
the same product for an ideal diffraction-limited TEM00 mode Gaussian beam.
Symbolically the definition can be written as follows:

M2 = dmθm

d0θ0
14.27

A theoretically ideal TEM00 beam has by definition the minimum value M2 = 1;
therefore the degree to which a given beam has a value approaching this value is a
measure of its high quality.

Another useful parameter is the Rayleigh range. This is the distance along a
beam from the point of minimum diameter, the waist, at which the diameter has
increased by a factor of

√
2.

14.2.2 Mode-Locked Lasers

While the construction of an optical frequency standard requires that a laser be
forced to oscillate in a single mode in order to attain the high spectral purity, we
shall see that the “clockwork” of an optical clock requires the opposite extreme of
a very wide frequency multi-mode laser, such as a dye laser or Ti:sapphire laser. In
general, a laser cavity will support longitudinal modes spanning a frequency band
as wide as the reflectivity of the mirrors will allow, separated by the frequency
interval �ν = c/2nr L . The laser may oscillate in those modes that fall within
the amplification frequency band of the laser medium, unless special optical ele-
ments are present to narrow that band in order to force single mode operation. If
the gain band-width reflects inhomogeneous broadening, in which the frequency
dependence of the gain is due to the distribution of frequencies among different
particles participating in the optical transitions, then clearly the laser can oscillate
simultaneously in as many longitudinal modes as have sufficient gain. In this case
the onset of oscillation at the frequency of maximum gain involves only a sub-
set of the particles, leaving others with lesser gain to sustain oscillation in other
longitudinal modes.

The spectrum of the output beam will therefore consist of an array of equally
spaced lines, which may or may not be resolved, depending on the optical Q-factor
of the cavity and the resolving power of the spectrum analyzer, among other things.
However, the time dependence of the output intensity would appear to fluctuate
randomly about a certain mean value because the longitudinal modes oscillate with
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uncorrelated phase relative to each other, leading to random interference between
them. On this account the coherence of the laser beam would be degraded, that
is, two such beams would have a very limited ability to produce an interference
pattern. To produce a coherent beam requires that the relative phases of the different
modes be made constant, a process called mode locking. There are many ways in
practice in which this may be achieved, and we will briefly touch on two of these
in what follows.

First let us consider the consequence of mode locking on the time dependence
of the output beam intensity. For simplicity assume that the optical field in the
cavity is a superposition of N longitudinal modes, all having a common phase ϕ,
then if we assume for simplicity that they all have equal amplitude, we have for the
resultant:

E(t) = eiϕ
(N−1)/2∑

−(N−1)/2

En exp[2π i(ν0 + n�ν)t] 14.28

The desired time dependence of the intensity is given by E0(t).E∗
0 (t) averaged over

a period long compared with 1/ν0 but short compared with 1/�ν, which yields the
following:

I (t) = I0

N
sin2(π N�νt)

sin2(π�νt)
14.29

It follows from this that I(t) is zero at constant intervals of T = 1/N�ν except for
those times, which occur at intervals of 1/�ν, when the denominator is also zero.
For large N the result is a train of equally spaced sharp pulses of intensity N I0 and
duration on the order of 1/N�ν recurring every 1/�ν = 2nr L/c seconds, that is
the time it takes a photon to travel back and forth the length of the cavity, as shown
in Figure 14.9. We note that N�ν cannot exceed the total gain band width, since
obviously a mode is sustained only if it falls within the gain bandwidth, but may
approach its limits in practice. The striking fact to be drawn from this is that the
duration of the pulses depends on the gain bandwidth of the active medium and
associated optics of the laser. This gain bandwidth is as much as 3 × 1012 Hz in
Nd3+:glass, corresponding to extremely short pulses lasting 3.3 × 10−13 sec each,
in the femtosecond (10−15 sec) range.

So far we have assumed that the active medium has an inhomogeneously
broadened spectrum, in which different particles may be assumed to sustain their
own modes. However in a homogeneously broadened medium, all particles are
assumed to participate in sustaining the same mode and would suppress the others
by reducing the population inversion for them. In fact multimode oscillation can
be generated by intracavity phase or absorption modulation techniques to give rise
to outputs similar to those from mode-locked lasers with inhomogeneous active
media.

There are several approaches to mode locking a laser: perhaps the most popular
are first by intracavity modulation of the optical gain or phase, and second, with
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Figure 14.9 The function sin2(Nπx)/sin2(πx) for N = 50 (solid line reduced by factor 50)
and N = 5 (dotted line)

a saturable absorber. In the first, the modulation frequency of an intracavity
absorber is set to equal the frequency interval between consecutive longitudinal
modes. The effect on each mode of oscillation is to generate side bands that coin-
cide with adjacent modes and are phase coherent with each other at the value set
by the modulator. If the modulation is sinusoidal only one side band is generated
on each side of the carrier, but these will in turn produce more side bands at twice
the modulation frequency, and so on, until all the modes within the gain bandwidth
oscillate locked in phase. A detailed theory is complicated, but it helps to visualize
the optical field inside the cavity in the mode-locked condition as consisting of a
narrow high amplitude pulse traveling back and forth the length of the cavity. If
the modulated absorber placed in the cavity is imagined to be in the shape of a thin
plate placed perpendicular to the axis, then it is clear that the field configuration
that is favored as having the least loss is a pulse that passes through the absorber
always when it has minimum absorption.

There is another so called passive method of mode-locking a laser: it is through
the use of an absorber that saturates, that is, becomes less absorbent as the inten-
sity of light passing through it is increased beyond a certain point. This tech-
nique applies mainly to high power lasers. A simplified explanation of the physical
process by which mode-locking occurs in this case begins with considering the
laser as it passes through the threshold of oscillation, when the optical field with
its natural random fluctuations is being established. Because of the saturation of
the absorber, any strong fluctuation will “bleach” the absorber and experience a
diminished absorption leading to stronger amplification than the average intensity.
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Again this enhanced pulse will travel back and forth resulting in high peak power
output pulses. It is assumed that the absorber has sufficient time to recover between
pulses.

14.3 Laser Optical Elements

14.3.1 Multilayer Dielectric Mirrors and Filters

The components of a laser optical system, such as mirrors, windows, lenses, etc.
are characterized by the smallness of their size compared with classical optics,
and the high precision of their construction to preserve and exploit the coherence
properties of the laser light. An “optically flat” surface will typically be specified as
λ/20, meaning that at all points on the surface the mean departure from a geometric
plane is less than one-twentieth of an optical wavelength. Furthermore, laser-grade
optical surfaces have a higher degree of polish as specified by the “scratch and
dig” figures, which indicate the “visibility” and number of scratches and pits in the
polished surface.

In classical optics, mirrors were almost universally made by depositing a film of
silver onto the desired surface either from a chemical solution (Rochelle process) or
more commonly now by deposition of silver vapor in vacuum. For laser light much
higher values of reflectance have been achieved using a radically different approach
made possible by the fact that laser light is nearly monochromatic, and therefore the
reflectance needs to be (and in some cases is preferred to be) high only for a very
narrow wavelength range. The new mirrors are called multilayer dielectric mirrors,
formed by vapor deposition onto an optically flat substrate (usually quartz or sap-
phire) of many thin layers of highly transparent dielectric materials, with values of
refractive index alternating between high and low values. The principle underlying
this type of mirror is that of superposition of light waves and the phenomenon of
interference. Suppose we have a set of plane parallel films of alternating refractive
indices n1 and n2, and let a monochromatic beam of light fall perpendicularly on
them. To find the reflectance of such an arrangement we recall Fresnel’s formulas
for the reflection and refraction of light waves at boundary surfaces between differ-
ent media. Originally derived on the basis of the “ether vibrations” theory of light,
which predates Maxwell’s electromagnetic theory, these formulas, with some rein-
terpretation, remain valid. For the particular case of a light wave in a medium with
refractive index n1 falling perpendicularly on the boundary surface with a medium
of refractive index n2, the (amplitude) reflectance for such a light wave is given by

r = n1 − n2

n1 + n2
. 14.30

We note that if n1 < n2, the wave suffers a change of phase of 180◦ (a change of
sign), whereas if n1 > n2, there is zero change in phase. In a multilayer dielectric
mirror, the thicknesses of the films are chosen such that it takes half a period of
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oscillation for the wave to traverse the thickness of any film in both directions.
That is, since the velocity of light is c/n1 and c/n2 in the two media, we require
the following:

2d1n1

c
= 2d2n2

c
= τ

2
, 14.31

where d1 and d2 are the layer thicknesses, and τ = 1/ν is the period of the light
wave.

Now, referring to Figure 14.10 we see that light waves reflected from any
boundary surface are in phase with those reflected from any other surface; that
is, there is constructive interference. To derive the reflectance of a large number of
dielectric layers one makes use of the boundary conditions that the total electric
and magnetic components of the light wave on either side of any boundary must
obey. By applying these conditions of continuity and allowing for the transit delays
between boundaries, it is possible to relate the field components at one boundary
to those at succeeding boundaries. The result of such an analysis we give without
proof; for ideal nonabsorbing dielectrics the reflectivity is as follows:

r =
(

n2
n1

)2N − 1(
n2
n1

)2N + 1
14.32

For example, if magnesium fluoride (n = 1.35) and zinc sulphide (n = 2.36) are
used in a 14-layer (N = 7) mirror, the intensity reflectance r2 = 99.8%. This high
value, it must be emphasized, obtains only for light of a single wavelength, one for
which the optical thickness of each layer is one-fourth the wavelength. Of course,
in reality, the achievable reflectance is ultimately limited not only by absorption in
the media, but also by scattering from irregularities in the boundary surfaces and
within the media. Currently, there are commercially available mirrors fabricated
using the most advanced polishing and coating technology that are claimed to have
a reflectance as high as 99.99%. Of course, a few particles of dust could easily put
that last decimal place in question!

f

(f+p)

(f+p)+n(2p)

substrate

high density

low density

d1 d2 d1 d2 d1 d2

Figure 14.10 A section of a multilayer dielectric high-reflectance mirror
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If a smaller number of layers is used, for example N = 5, we obtain r2 =
98.4%; hence, since the absorption and scattering are assumed negligible, we have
a partially transparent mirror with a transmittance of t2 = 1−r2; that is, t2 = 1.6%.
Such a mirror would be useful as the output mirror in an optical cavity.

Another type of multilayer mirror that has become an extremely important ele-
ment in the design of optics handling fast pulses is the chirped mirror. In this the
layers are not of equal thickness but rather vary uniformly so that a monochromatic
incident beam will penetrate to the layers where the phase condition (14.20) is sat-
isfied. This means that if two beams of slightly different wavelength are reflected
by this mirror there would be a slight difference in the distance traversed, and hence
in their relative phase. But a light pulse can be Fourier analyzed as a superposition
of continuous waves, and varying the relative phases of these waves amounts to
changing the shape of the pulse. With proper design the effect can be made one
of sharpening a light pulse in time. These chirped mirrors have become common
in systems designed to produce wide band frequency combs, as we shall see in
Chapter 16.

14.3.2 Polarizing Optics

Another optical element that is indispensable in manipulating the spectral
distribution of light is the interference filter. In contrast to the multilayer dielectric
mirror, it is high transmittance rather than reflectance that the filter is designed
to have, and this in a wavelength range as well defined as possible. The simplest
bandpass filter is really a Fabry–Pérot cavity with the space between the parallel
mirrors filled by a dielectric layer with an optical thickness nL equal to half the
wavelength at the center of the desired band. The two mirrors are commonly in the
form of the multilayer dielectric type described above, which, combined with the
half-wavelength layer between them, form one integral unit.

Another optical element that has become indispensable in laser optics is the
Brewster window, an optically flat transparent plate with parallel faces set at the
Brewster, or polarizing, angle to the direction of light falling on it. We recall that a
light wave, being transverse, can be polarized so that, for example, the electric field
oscillates in one plane all along the wave. While polarization effects are generally
associated with crystals such as calcite, it has been known since Malus that light
can be polarized simply by reflection, a fact easily confirmed now by looking at
sunlight reflected from water through polarizing sunglasses. In 1812 Brewster dis-
covered experimentally the law that bears his name, giving quantitatively the angle
at which light reflected from a dielectric is completely polarized. Brewster’s law
states that when a light wave is incident upon the surface of a dielectric medium,
the amplitude of the component in the reflected wave whose electric field is parallel
to the plane of incidence will be zero when the angle of incidence θB satisfies the
condition

tan θB = n2

n1
. 14.33



14. Optical Frequency Oscillators: Lasers 305

Brewster's
angle Bu

ru

u +  u  =  908

Bu

B r

Figure 14.11 The angle relationships at the Brewster polarizing angle

For an air–glass interface n2/n1 ≈ 1.5; thus θB ≈ 56.3◦. If we recall Snell’s law,
n1 sin θ1 = n2 sin θ2, we find that for an angle of incidence equal to the Brewster
angle, sin θ2 = cos θ1, and the refracted beam is at right angles to the reflected
one, as shown in Figure 14.11. It follows from Brewster’s law that if an incident
beam is polarized parallel to the plane of incidence and it falls on the boundary
surface at the Brewster angle, there will ideally be no reflected beam. The use of
Brewster windows to avoid reflection losses is particularly important in low gain
gas lasers such the helium–neon laser. In this case, if the plasma tube is to be
separate from the optical cavity, its ends would be sealed with precisely oriented
Brewster windows. When such a polarization-sensitive element is incorporated into
a laser cavity, the result is that oscillation will take place with the field polarized in
the direction having the least loss.

14.3.3 Nonlinear Crystals

The class of nonlinear devices useful beyond 30 THz (λ = 10 μm) includes cer-
tain optical crystals that lack a center of symmetry. In these crystals the electric
field component of the light wave induces an oscillating electric dipole moment
that has a small quadratic dependence on the field amplitude. Moreover, the dipole
moment in a given direction depends not only on the field component in that direc-
tion, but also on the components in other directions, reflecting the anisotropy of
a crystalline medium. The nonlinear behavior is expected to be weak in general,
since even in a 1 megawatt laser beam the electric field amplitude is on the order
of E ≈ 106 volts/m, whereas the interatomic fields in the crystal are on the order
of 10,000 times that. This means that in order to gain a large cumulative effect,
the light wave must interact with the crystal over large distances, containing many
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wavelengths, making the crystal fall in the class of distributed devices. This intro-
duces a requirement on the velocities of light waves of different frequencies in the
crystal medium, since any sum or difference frequency wave generated at points
along the path of the input waves must reinforce waves generated at subsequent
points, in order that there be overall buildup of the mixed frequencies. This means
ideally that all frequencies must travel at the same velocity. In practice, it is only
necessary that any phase difference that develops between waves generated at the
beginning and those at the end of the finite path in the crystal be less than π radi-
ans. For example, let us consider what this means in the case of second harmonic
generation: Let nν and n2ν be the refractive indices of the crystal for the fundamen-
tal and second harmonic frequencies. Now, the second harmonic component of the
electric polarization of the crystal, which acts as the source of the second harmonic
wave, travels at the velocity of the fundamental wave, and hence the condition on
the phase difference that can be allowed to develop over a distance L in the crystal,
�φ, is the following:

�φ = 2π(2ν)

[
nνL

c
− n2νL

c

]
≤ π. 14.34

This is called the phase matching condition. If it is violated, then the contributions
to the second harmonic wave originating from different points along the path of
the fundamental wave will combine in opposing phases, resulting in destructive
interference.

Regarded from the photon point of view, the process amounts to the conversion
of two photons at the fundamental frequency into a single photon of twice the
frequency. Looked at this way, the phase matching condition becomes a statement
of the conservation of photon linear momentum h/λ, which in quantum theory
allows some discrepancy, provided that it is within the Heisenberg uncertainty in
momentum. We recall that this uncertainty is related to the uncertainty in distance
in the same way that the uncertainty in frequency involves the time measurement.
If L is in effect the uncertainty in the positions of the photons, then the Heisenberg
uncertainty in momentum is on the order of h/2L; it follows that for momentum
conservation we require

2
hnνν

c
− hn2ν2ν

c
≤ h

2L
, 14.35

which is clearly the same as the phase matching condition.
Unfortunately, in practice, all transparent media are to some extent dispersive;

that is, the wave velocity, and therefore the refractive index, varies with the fre-
quency. It can happen that a specific material may be found whose refractive index
takes the same value at widely different frequencies, allowing phase matching at
those frequencies. But this is rarely the case. A far more practical approach is to
exploit the birefringence (double refraction) of certain crystals. Without getting
too deeply involved in crystal optics, we will assert that there are crystals of cer-
tain classes of symmetry whose optical properties have symmetry about a single
axis, the optic axis, and are called uniaxial. These crystals have a 3-fold, 4-fold,
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or 6-fold axis of symmetry, and their optical behavior is symmetric about these
axes. Other crystals of a lower degree of symmetry have two preferred axes and are
biaxial. In a uniaxial crystal, a light wave propagates along two wavefronts with
the velocity of one, the extraordinary wave, depending on the direction relative to
the optic axis. The other, the ordinary wavefront, advances with equal velocity in
all directions. Along the optic axis both wavefronts advance with the same veloc-
ity. The directions of the electric (and magnetic) components of the two types of
waves, that is, their polarization vectors, are always at right angles to each other.
The velocity of the extraordinary wavefront may increase or decrease as a function
of the angle with respect to the optic axis, depending on the specific material of the
crystal, as shown in Figure 14.12. In such a crystal, phase matching is achieved
when the phase velocity of the ordinary wavefront at one frequency matches
the phase velocity of the extraordinary wavefront at the other frequency. Since the
difference in phase velocity between the two varies continuously with the angle
the laser beam makes with the optic axis, it is possible in principle to match phases
with a suitable crystal. In practice, this requires a beam with extremely small diver-
gence, critically adjusted to the correct angle with respect to the crystal axes. An
approach less critically sensitive to beam adjustment is to find a suitable crystal
in which the wavefront velocities can be adjusted by varying the temperature,
while fixing the beam direction at right angles to the axis, where the velocity dif-
ference does not change (to first order) with angle Just how critical the matching of
phase velocities (or equivalently, refractive indices) is in practice can be estimated
from the phase matching equation (n2ν − nν) ≤ λ/4L , where λ is the wavelength
of the fundamental frequency wave. Since the degree of nonlinearity is relatively

ordinary
wave

extraordinary
wave

optic axis

Kz

KyKy

Figure 14.12 Ordinary and extraordinary wave vectors and polarizations in a uniaxial
crystal, such as quartz
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small, L is on the order of a centimeter; hence for a λ in the middle of the optical
range, the difference in refractive index must not exceed one part in 105.

Of the many birefringent crystals that show nonlinearity, those few that have
an adequate nonlinear coefficient, are transparent in the desired wavelength range,
and are resistant to surface damage are useful as frequency mixers. Quartz has
already been mentioned as the crystal in which the doubling of an optical fre-
quency was first observed. Other crystals with greater nonlinearity that have been
used include potassium dihydrogen phosphate (KDP) and ammonium dihydrogen
phosphate (ADP), which are adequate for harmonic generation of 1:m infrared
radiation. The widely used lithium niobate (LiNbO3) crystal has a nonlinearity ten
times that of KDP; potassium niobate (KNbO3) has an even larger nonlinearity,
providing phase matching into the blue part of the spectrum; and lithium iodate
(LiIO3) provides a further extension into the ultraviolet.

14.3.4 Diffraction Devices

Whenever a light wave propagates through media whose propagation charac-
teristics vary spatially at a rate comparable to its wavelength, we observe the
phenomenon of diffraction. The variation may take the form of high frequency
acoustic vibrations in a crystal producing alternately high and low refractive index,
or it may be ripples on the boundary surface between two media of differing refrac-
tive index, as in a diffraction grating. Diffraction is characterized by a redistribution
in space of the light energy as determined by interference between waves scattered
from different points in the source of the diffraction.

In classical optics the common wavelength-dispersive element in a mono-
chrometer is a diffraction grating, a plane or concave mirror ruled with fine, closely
spaced parallel grooves, thereby forming a periodically varying reflectivity. If the
spacing of the grooves is d on a plane reflection grating, and light falls on it along
the normal, then the grating equation relating the direction θn in which the spectral
component of the light having the wavelength λ has a maximum reflection is as
follows:

d sin θn = nλ 14.36

where n is an integer, the order of the diffraction. If the incident light is
monochromatic then we can show that the reflected intensity as a function of
θ is distributed over narrow ranges of θ centered on the values obeying the grating
equation. Thus, writing

δ = πd sin θ

λ
14.37

the sum of the partial waves reflected from the grating (applying Huygens
Principle) is given by:

E(t) = eiωt
n=N−1∑

n=0

Eneinδ 14.38
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which leads to:

I (θ) = I0

N
sin2(Nδ)

sin2 δ
14.39

where I0 is the incident intensity over the entire N grooves, in the absence of
interference. It follows that I (θ) reaches a large maximum N I0 whenever δ = nπ,
that is, when the grating equation is satisfied. Furthermore the larger N is, the
closer the zeros of I (θ) at δ = (n+1/N )π will be to the maximum at δ = nπ , that
is the sharper the spectral resolution of the grating.

Of particular importance in the context of laser applications are acousto-optic
deflectors and modulators. The diffraction of light by acoustic waves in certain
crystals was predicted by Brillouin in 1921. The basis of the acousto-optic interac-
tion is fundamentally through the change in electrical permittivity that results from
a mechanical strain or deformation in the crystal. In the case of the acousto-optic
effect of interest to us, the strain is a periodic function of space produced by an
acoustic wave in the medium. For a plane acoustic wave propagating in a direction
we will choose as the z-axis we have:

n(z, t) = n + �n cos[2πνat − kaz] 14.40

where νa , ka are the frequency and wave vector of the acoustic wave, and �n is
the amplitude of modulation of the refractive index due to the acoustic wave. For
an incident laser beam this represents a phase grating traveling with the velocity
of sound in the medium, producing a diffraction pattern in the far field.

In describing the diffractive behavior we must distinguish two limiting regimes:
the so-called Raman-Nath regime and the Bragg regime. The Raman-Nath regime
is observed at relatively low acoustic frequencies and short acousto-optic inter-
action lengths. It can be observed at arbitrary angles of light incidence, and the
diffracted beam contains many orders symmetrically distributed about the direc-
tion of incidence as illustrated in Figure 14.13. In contrast, the Bragg diffraction
regime is observed at high acoustic frequencies exceeding usually 100 MHz. The
observed diffraction pattern, even at high acoustic powers, consists usually of only
two diffraction maxima: the zeroth and first order. Moreover these occur only at
definite angles near the so-called Bragg angle, determined by the Bragg equation
familiar from X-ray diffraction theory, which for an isotropic medium is given by:

2
ka

2π
sin θB = λ

nr
14.41

where nr here is the refractive index of the medium.
If the medium is an anisotropic crystal, then we have to take into account

the birefringence of the medium: two types of diffraction are possible. An
acousto-optic interaction in which there is no change in the type of wave, whether
“ordinary” or “extraordinary”, will obey the Bragg condition given in eq. 14.41,
using the appropriate refractive index. On the other hand if the interaction leads
to a transition, so that the refractive index for the incident beam differs from that
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(a) (b)

θB

Figure 14.13 (a) Raman-Nath scattering (b) Bragg diffraction

for the diffracted beam, the theory is far more complicated; nevertheless it is of
great practical importance. We will only state qualitatively that for the special case
of the acousto-optic interaction plane being perpendicular to the optical axis of
a uniaxial crystal, the functional dependence of the Bragg angle on the acoustic
frequency differs according to the relative magnitudes of the refractive indices for
the incident and diffracted beams The optimum choice of acousto-optic crystal
type to perform given functions such as deflection, modulation and filtering, is
dictated by the relative magnitudes of the incident and diffracted beams.
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