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Preface

Since the publication of the first edition of this book in 1998, the realm of optical
frequency measurement has opened up with the development of extremely broad
band frequency combs extending over a full octave on the frequency scale. This
has enabled the direct coherent calibration of the frequency of an optical clock
with respect to the microwave Cs standard. This continues at an accelerating pace
the revolutionary changes that the field of frequency and time measurement has
undergone in recent years, with regard both to its precision and particularly to its
extension to include optical frequencies.

What began as the introduction of techniques to cool atoms and ions through
interaction with suitable laser beams, coupled with methods of particle suspension
in ultra-high vacuum, has been carried forward to an astonishing degree with ultra-
sharp resonances being observed at optical frequencies on individual ions stored in
ultrahigh vacuum for extended periods of time. This brings us to the point of the
ideal first expressed by Dehmelt of making observations on isolated atomic parti-
cles at rest in space. This was the author’s own motivating principle in the initial
experiments on a field-confined mercury ion standard for space applications. The
rapid progress in the stabilization and synthesis of optical frequency signals using
solid-state sources has brought about unprecedented degrees of long and short term
stability, with the prospect of developing a new generation of space-hardened opti-
cal clocks. The implementation of a satellite global navigation system, the Global
Positioning System (GPS), is the most visible example of the enormous impact
that atomic frequency standards have had on the civilian and the military sectors
of society. The crucial elements in this system are the spacecraft atomic clocks,
without which it could not exist. It has become very much part of our culture per-
meating many aspects of our life and technology. The cesium and rubidium clocks
aboard the satellites maintain submicrosecond synchronization, putting the accu-
racy of position determination globally in the submeter range!

As with the first edition, the object is to convey a broad understanding of the
physical principles underlying the workings of these quantum-based atomic clocks,
with introductory chapters placing them in context with the early development of
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mechanical clocks and the introduction of electronic time-keeping as embodied in
the quartz-controlled clocks. While the book makes no pretense at being a history
of atomic clocks, it nevertheless takes a historical perspective in its treatment of
the subject.

Intended for non-specialists with some knowledge of physics or engineering,
The Quantum Beat covers a wide range of salient topics relevant to atomic clocks,
treated in a broad intuitive manner with a minimum of mathematical formalism.
Detailed descriptions are given of the design principles of the rubidium, cesium,
hydrogen maser, and mercury ion standards; the revolutionary changes that the
advent of the laser has made possible, such as laser cooling, optical pumping, the
formation of “optical molasses,” the cesium “fountain” standard, as well as topics
that bear on the precision and absolute accuracy of standards, such as noise, res-
onance line shape, and the relativistic Doppler effect. Also included are the time-
based global navigation systems: Loran-C and the Global Positioning System, as
well as tests of invariance principles and symmetry in fundamental unified theory,
such as the constancy of physical “constants” such as the fine structure constant in
atomic physics, and tests of Einstein’s Equivalence Principle.

I am greatly indebted to the following for the encouragement I derived from
their willingness to read and provide valuable suggestions on parts of the manu-
script: Professors Norman Ramsey, Claude Cohen-Tannoudji, Gisbert zu Putlitz,
Charles Drake, Hugh Robinson, and especially my friends and former colleagues
Professor Herbert Ueberall, and Claude Audoin of BNM/LPTF Observatoire de
Paris.

Severna Park, Maryland, USA F.G. Major
September 4, 2006
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Chapter 1
Celestial and Mechanical Clocks

1.1 Cyclic Events in Nature

From the earliest times in the course of human development, a recurring theme
has been the inexorable passage of time, bringing with it ever-changing aspects of
Nature and the cycle of life and death. Only in the realm of mythology do immortal
gods live outside of time in their eternal incorruptible abodes.

The discernment of an underlying order in the evolution of natural phenomena,
and the cyclic repetition of the motions of the sun, moon, and stars, may be taken as
a measure of man’s intellectual development. The ease with which early man was
able to recognize that certain changes in nature were cyclic depended on the length
of the cycle. That of the daily rising and setting of the sun is so short that it must
have soon been accepted with confidence as being in the natural order of things,
that if the sun disappeared below the horizon, there was little doubt that it would
reappear to begin another day. It is otherwise with the much longer period of the
seasons; there is evidence to suggest that for some primitive peoples, a year was so
long and the means of recording the passage of time so imperfect that they were
unable to perceive a cyclic pattern at all in the changing seasons. They must have
watched the changing elements with perpetual wonder. To them the onset of winter
must have been filled with dire foreboding, giving rise, according to Frazer (1922)
in his classic The Golden Bough, to magical, and later religious rites to ensure the
return of spring.

This introduces a connection between the timing of important cultural
events in the life of early man and that of the cyclic events in nature. This
overlays an inherent connection on a biological level: The workings of the
human body and indeed of all living creatures follow rhythmic patterns that shadow
those in nature. The most obvious are the so-called circadian rhythm (from the
Latin circa (about), and dies (day)) with an approximate 24-hour repetitive cycle.
Much research has been conducted in recent years on the human asleep–awake
cycle, with particular interest in the extent to which the cycle is governed by
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some internal timing mechanism, as opposed to the external environment. The
need to adapt one’s schedule of activities to be in harmony with nature, a task
compounded by the differing cycles of natural events, is evident in the early
development of calendars. Of course, the beginnings of agriculture gave a great
impetus to this development in order to keep track of the seasons and accurately
plan the cultivation of the soil, the planting of seeds, and the eventual harvest. The
cyclic succession of the seasons—from the shedding of leaves in the fall to the
cold dormancy of winter, the return to life in the spring, and the warm summer
that followed—bore witness to some order underlying the vagaries of daily life.
For those early societies whose life and livelihood were closely tied to the sea,
the periodic rise and fall of the tide reinforced the same perception of unalterable
periodic changes underlying unpredictable short-term changes.

A cyclic phenomenon clearly allows time to be quantified; the period of time
to complete a cycle, called briefly the period, provides a unit in terms of which any
given length of time can be expressed as so many of those units. An obvious exam-
ple is the use of the (solar) day as a unit, defined as the time between the sun passing
overhead one day until it comes to the same point the next day. Another common
example is the lunar month, which is the time it takes the moon to go from (say) a
new moon to the next new moon. As units of time, it is relevant to ask just how con-
stant these units are, and how accurately they can be measured. Such questions are,
of course, at the heart of our subject and are taken up in the chapters that follow.

1.2 The Calendar

It is unfortunate for those whose primary interest is in keeping track of the sea-
sons that they do not recur after a whole number of days. As we all know, the
year is about one-fourth of a day in excess of 365 days. In terms of the planetary
motions of the earth, this is the same as saying that the period of the earth in its
orbit around the sun does not contain a whole number of rotations of the earth about
its axis. It is this simple fact that throughout history has complicated the lives of
those charged with keeping the calendar. Another such astronomical fact that has
challenged the keepers of the calendar is that the orbital period of the moon does
not contain a whole number of days, nor are there a whole number of periods of the
moon in one year. However, it happens that after a period of 8 years the moon does
return to approximately the same position relative to the earth and sun, that is, to
the same lunar phase. This, according to Frazer, accounts for the period of 8 years
figuring in certain traditions among some ancient peoples. It is not surprising that
the degree to which primitive societies have succeeded in developing a calendar
has become a measure of the state of advancement of these societies.

Perhaps the most celebrated of these is the ancient Mayan calendar, a remark-
able achievement, often described with such lavish admiration as to convey a sense
that this New World culture has surpassed some unspoken expectations. The Maya
had in fact two calendars (Morley, 1946): a sacred calendar and a civil calendar



1. Celestial and Mechanical Clocks 3

with a complicated way of enumerating the days. The sacred year was not divided
into groups of days, such as months, but consisted of 260 days enumerated by
a number from 1 to 13 followed by one of twenty names. However, curiously, the
sequence did not simply run through the numbers from 1 to 13 for each name before
running through the numbers again with the next name, which would be tantamount
to using 20 “months” of 13 days each. Instead, the name was incremented along
with the number in going from one day to the next. After the number 13 was
reached, the number sequence was repeated again, incrementing the name at the
same time. It would be as if we wrote for a sequence of days 1 Feb., 2 Mar.,
3 Apr., etc. It is almost as if the Maya were generating a cryptic code! The Mayan
civil calendar was based on groupings of 20 days each, so that there were 18 such
“months” and a closing month of 5 days to yield 365 days in a year. If a particular
day was specified simultaneously using designations according to both calendars,
that specification was repeated every 52 years; that is, within a 52-year span the
designation would be unambiguous. For longer periods the Maya developed an
enumeration system with base 20, a vigesimal system, which is distinguished in
having introduced the zero independently of the Old World discovery of that con-
cept. It will be recalled that the place-value system of representing numbers, and
therefore arithmetic as we know it, would be impossible without the zero. It is curi-
ous that the characters we use to represent the digits, namely what we call Arabic
numerals, are not used in the Arabic language; instead, Indian characters are used,
in which zero is simply a dot.

The Maya also kept detailed watch on the phases of the moon, and the enu-
meration of the lunar months played an important part in their elaborate religious
calendar. In common with other societies of antiquity, the Maya were in awe of
celestial events, which they saw as ominous manifestations in which the mysteries
of the universe and the future of human destiny were to be read.

1.3 Solar Eclipses as Time Markers

The occurrence of astronomical phenomena such as solar and lunar eclipses,
meteors, and comets were recorded with awe from the earliest times and became
associated with religious observances or superstitious omens. The seemingly
eternal constancy of the motions of the heavenly bodies came to define time and
regulate the affairs of many societies, not only in a chronological sense, but also in
a mystical astrological sense.

Because of the superstitions that attached to these observations, evidence has
been found that records of eclipses reach as far back as 2000 B.C. The sifting
of ancient records to discriminate between objectively reported events and those
reported spuriously either by accident or by design is a task that has occupied spe-
cialists for some time. By now, a large body of data has been compiled from which
a chronology of sightings has been constructed, scattered throughout history and
over the entire globe.
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Figure 1.1 The formation of a solar eclipse

If we recall how eclipses are produced, we will be better able to appreci-
ate that recordings of the time and place of their occurrences give sensitive time
markers in establishing a long-term chronology. Figure 1.1 depicts the positions of
the sun, moon, and earth (not to scale) momentarily along a straight line when a
solar eclipse occurs. The three bodies will pass through the aligned condition only
when the moon and earth are simultaneously at particular points in their respec-
tive orbits. These orbits lie in fixed planes: the plane of the moon’s orbit passes
through the earth’s center, while that of the earth (called the ecliptic) passes through
the sun’s center. These orbital planes are inclined at a constant angle of about
5 degrees; hence there will not be a solar eclipse observed on the earth every lunar
month, as would be the case if the orbital planes coincided. However, it can hap-
pen that as the earth travels along its orbit around the sun, it will reach a point
where the sun and earth are in line with where the moon is just crossing the earth’s
orbital plane.

As will be recalled from optics, the shadow produced by the moon on the earth
consists of regions called the umbra and penumbra, corresponding respectively
to total eclipse, in which the complete disc of the sun is obstructed, and partial
eclipse, where the moon obstructs only part of the sun’s disc. Although the sun is
immensely larger in diameter than the moon, it is so much farther away from the
earth that to an observer on the earth, the moon’s disc can cover the sun’s disk that
is, both bodies subtend about equal angles at the earth (about 0.5◦). Actually, a
partial eclipse of the sun will not cause “darkness to fall upon the land” unless it is
very nearly total, that is, with over ninety-five percent of the sun’s disc obstructed
The reason that reliable records of total solar eclipses are such useful time-markers
is that they occur only when a very special set of astronomical variables such as the
diameters and distances of the three bodies and the positions of the earth and moon
in their respective orbits fall within very narrow limits. Moreover, these events,
particularly total solar eclipses, are so awe-inspiring and so imprinted themselves
on the minds of the ancients that it is not to be expected that many went unnoticed.
In fact, the problem is to sift out those sightings spuriously injected into records
to lend a supernatural weight to some historical event, such as the death of a king!
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It has been argued that when Joshua refers to the sun as having “stopped in the
middle of the sky” he may have witnessed a solar eclipse.

A detailed analysis (Schove and Fletcher, 1984) of the chronology of eclipses
reported in the historical records, in which times and places of observation are com-
pared to computed predictions, has revealed the remarkable result that the earth’s
rotation about its axis has been slowing down over the centuries, as has the moon in
its orbit around the earth. It has been estimated on the basis of fossil evidence that
over geologic time the length of the day has increased from 390 days per year to
the present 365.25. If, following Stephenson (Stephenson and Morrison, 1982), we
plot the track of totality for a solar eclipse observed at Athens in A.D. 484 and com-
pute a similar plot based on current astronomical data and a constant rotation of the
earth, we would find the path 15◦ west of where it was recorded, corresponding to
a difference in time of one hour. Based on more recent precision measurements,
about which more will be said in a later chapter, the slowing of the earth’s rotation
about its axis amounts to about one part in 43,000,000 per century, or about 4.5◦
of rotation in 1,500 years.

1.4 The Tides

If the earth were a uniform hard sphere spinning about its axis in the vacuum
of space, it would continue spinning at a constant rate indefinitely. In reality, the
earth has topographically complicated bodies of water on its surface, and a molten
interior; even the “solid” regions are to a degree plastic. Furthermore, it is not per-
fectly spherical, having an equatorial bulge with a slight north–south asymmetry.
The tidal action in the world’s oceans—involving as it does the movement of water,
which like most liquids has some viscosity (internal resistance to flow)—can create
a drag on the earth’s rotation, causing it to slow down. In this process the kinetic
energy of the rotational motion of the earth is slowly (and irreversibly) converted
to random motion on the molecular scale, that is, heat, in the waters of the oceans.

The predominant cause of the tidal action referred to above is the gravitational
pull of the moon, with a smaller contribution from the sun. It arises not so much
from the moon drawing towards itself the waters of the earth’s oceans by its gravi-
tational pull as from the variation in the gravitational field across the earth that the
moon superimposes on top of the smaller variation of the sun’s pull. The effect of
such a variation can be illustrated by considering what has now become familiar:
Astronauts aboard a spacecraft orbiting the earth in a circular orbit. Suppose the
spacecraft is equipped with “stabilizing booms,” that is, two long straight poles
fixed to the spacecraft, one pointing toward the earth and the other in the opposite
direction, as shown in Figure 1.2.

As the spacecraft swings quietly along its orbit with all its propulsion systems
shut down, the astronauts in the main cabin may float around in a more or less
“weightless” state. However, if an astronaut is required to go out to attend to some
problem at the ends of the stabilizing booms, then he will notice there that he is
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Figure 1.2 Forces acting on an orbiting spacecraft due to variation in the gravitational field
across it

no longer weightless. At the end nearest the earth he will have a small but posi-
tive weight tending to pull him toward the earth; at the farthest end he will have a
small but negative weight, that is, he will have a tendency to be lifted farther out.
This means also that the booms themselves experience a stretching force tending
to separate the ends. The basic explanation is that for objects in the main cabin
there is a balance between the gravitational force of the earth and the dynamical
centrifugal force due to the curving trajectory of the spacecraft; a balance that tips
in favor of the gravitational force at the end of one boom and the dynamical force at
the end of the other. A similar basic argument can be made to explain the fact that
tidal motion results in two diametrically opposite bulges in the equilibrium water
surface on the earth: one towards the moon and the other away from the moon, as
if the system were being stretched along the line joining the centers of the earth
and moon. Of course, the actual rise and fall of the tide at any given geographi-
cal point is the result of many contributing factors, particularly the topography of
the ocean beds, the coast lines, and the resonant response of the tidal motion to
the twelve-hour periodic lunar force as the oceans are swept around in the earth’s
daily rotation.

1.5 The Sidereal Day

In specifying the period of rotation of the earth and its variability, a certain frame
of reference is of course implied. In our case, the frame of reference is that defined
by “the fixed stars.” The period of rotation so defined is called the “sidereal day,”
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as contrasted with the “solar day,” which is the period between successive transits
of the sun across any given meridian (a great circle with a specified longitude).
Since the earth sweeps around the sun in a nearly circular orbit while it is spin-
ning around its axis, the time between successive passes of a given meridian under
the sun will differ from what the rotation period would be in the absence of the
orbital motion. This is made clear by noting that if the earth had zero spin, the
sun would still cross a given meridian every time the earth completed a revolution
around the sun. The difference in the values of the solar and sidereal days may be
easily approximated if we assume a circular orbit. Referring to Figure 1.3, we note
that the sense of rotation (whether clockwise or counterclockwise) is the same for
the rotation and revolution of the earth. It follows that as the diagram shows, the
sidereal day is shorter than the solar day by the time it takes the earth to turn the
angle that the sun’s direction has turned in one day by virtue of the orbital motion
of the earth. This latter angle is (360◦/365.25), and the earth rotates at the rate of
360◦/(24 × 60) degrees per minute; hence the difference in the length of the two
days is (360/365.25) × (24 × 60/360) = 3.95 min (sidereal).

In making the simplifying assumption that the orbit is circular, we have ignored
the fact that the orbit in reality is elliptical. According to one of Kepler’s laws of
planetary motion, the empirical pillars on which Newton’s theory stands, the earth
moves with a speed such that the area swept out by a radius drawn from the sun to
the earth increases at a constant rate. Since in an elliptical orbit the length of this
radial arm varies, going from a minimum at the perihelion to a maximum at the
aphelion (a relatively small change for the earth’s orbit), this means that the angle
swept out by the radial arm in a given time varies from point to point along the orbit.
It follows that the length of the solar day varies throughout the year but is always in
the neighborhood of four minutes longer than the sidereal day. This variation of the
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Figure 1.3 The motions of the earth and the difference between the lengths of the sidereal
and solar days
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solar day must not, of course, be confused with the seasonal variation of daylight
hours, which has to do with the inclination of the earth’s axis to the ecliptic plane.

1.6 The Precession of the Equinoxes

To complicate matters further, the nonspherical shape of the earth (which would
be symmetric about its axis of rotation if we ignored tidal action) brings into play
a torque, originating from the gravitational pull of the moon, tending to turn the
axis of the earth towards a direction perpendicular to the plane of the moon’s orbit.
To those unfamiliar with gyroscopic motion, the effect of this torque is rather
remarkable: instead of simply turning the axis directly from the old direction
towards the new, it causes the axis to swing around, tracing out the surface of a
geometric cone around the new direction as axis. This motion is familiar to anyone
who has watched a spinning top; as a result of the torque tending to make it fall,
its axis instead swings around in a vertical cone. This motion is called precession
of the axis of spin. In the context of planetary motion, and in particular the earth’s
motion, this motion causes the points along the orbit of the earth where the seasons
of the year occur to shift from year to year along the orbit. The reason for this
is that the direction of the earth’s axis determines the line of intersection of the
earth’s equatorial plane with the plane of its orbit. The two points around the orbit
where this intersection occurs mark the vernal and autumnal equinoxes, which
are conventionally taken to be the beginning of spring and autumn. Thus as the
axis precesses, the equinoxes will also, and for this reason astronomers call this
motion the precession of the equinoxes. Although the rate of precession is small,
amounting to about one cycle in 26,000 years, nevertheless it says something about
the constancy of the solar day, which you will remember varied from point to point
along the earth’s orbit.

The precession was first detected by one who is arguably one of the greatest
astronomers of antiquity, Hipparchus, in the second century B.C. He made careful
measurements of star positions, assigning to each star coordinates analogous to
longitude and latitude. By comparing his observations with astronomical records
dating back over 150 years before his time, he made the incredible discovery that
the point in the night sky about which stars appear to rotate (because of the earth’s
rotation), that is, what is called the celestial pole, had definitely shifted. In view of
how small the rate of precession is, amounting to no more than one minute of arc
per year, this was no mean accomplishment.

1.7 The Sundial

The earliest devices for measuring the elapse of time within the span of a day were
a natural derivative of the notion of time as being defined by the motions of celes-
tial objects. In order to keep track of the sun’s journey across the sky, the shadow
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clock was devised, which later developed into the sundial. In its most primitive
form, it was simply a vertical straight pole, called a gnomon, whose shadow is cast
upon a horizontal plate marked with lines corresponding to different subdivisions
of the day. The principle was applied in many different forms: One of the earli-
est ancient Egyptian shadow clocks used the shadow of a horizontal bar placed in
a north–south direction above a horizontal scale running east–west. These early
shadow clocks did not indicate the time in hours, but rather in much larger subdivi-
sions of the day. Through the centuries these clocks evolved into very sophisticated
sundials, some of which even were designed to be portable.

The division of the day into 24 hours is traceable back to the ancient Sume-
rians, who inhabited the land that was known in classical times as Babylonia
(Kramer, 1963). Their number system was sexagesimal in character, that is, based
on 60, although the separate factors 6 and 10 do occur in combinations such as
6, 10, 60, 600, 3600. They actually had two distinct systems: an everyday mixed
system and a pure sexagesimal system used exclusively in mathematical texts. The
latter had the elements of a place-value system like our decimal system; however,
the Sumerians lacked the concept and notation for zero; furthermore, their way of
writing numbers did not indicate the absolute scale; that is, their representation of
numbers was unique only to within multiplication by any power of 60. Neverthe-
less, the impact of the ancient Sumerian culture is evident in the way we subdivide
the day into hours, minutes, and seconds; and the circle into degrees, minutes, and
seconds of arc.

The Sumerian version of the shadow clock, like those of other ancient cultures,
suffered from the same critical flaw: The shadow of a vertical shaft moves at a vari-
able rate over the span of a day, and what is worse, the variability itself changes
with the seasons and the latitude where the device is used. It would require a sophis-
ticated knowledge of celestial mechanics to derive corrections to the observed
readings for each day of the year and for different latitudes.

A radical improvement in the design of what came to be called sundials was
made by Arab astronomers in the Middle Ages. This consisted in mounting the
gnomon (which you will recall is the name given to the object producing the
shadow) as nearly parallel as possible to the axis of rotation of the earth, that is,
pointing toward the celestial pole, which is currently within 1◦ of the North Star
(Polaris). This revolutionary change in design transformed the sundial into a seri-
ous instrument for the measurement of time. In order to appreciate the significance
of this innovation, let us recall that the apparent daily motion of the sun, and indeed
all celestial objects, is due simply to the earth’s rotation about its axis; and there-
fore, to the extent that the earth’s rotational motion is uniform, the sun’s apparent
angular position around that axis will also progress uniformly. It follows that the
shadow cast by a shaft parallel to the axis onto a plane perpendicular to it will have
an angular position that follows the sun, and it will therefore reproduce the rotation
of the earth. Of course, it is only during about half of every rotation that the sun’s
rays will reach a given point on the earth’s surface; however, unlike the shadow
clock, the seasonal variation in the relative lengths of daytime and nighttime will
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in this case have no effect. Since the earth’s rotation is very nearly constant, a circle
drawn on the plane with the gnomon as center can be divided into 24 equal parts
corresponding to the 24 hours of the day. In practical portable sundials, such as
might have been used aboard ship at the time of Sir Francis Drake, provision must
be made for setting the direction of the gnomon. This they could achieve by find-
ing north with a magnetic compass and the latitude by means of a forerunner of
the sextant.

The accuracy one can achieve with this type of sundial, while incomparably
greater than the earlier primitive versions, nevertheless is limited by the extreme
accuracy with which angular displacements of the shadow would have to be
measured. Thus the shadow moves only 0.25◦ per minute; this implies that an error
of 0.1◦ in angle measurement translates into an error of 24 seconds. This level
of accuracy, though unimpressive by more recent standards, coupled with the fact
that it provided an absolute reference with which to compare mechanical clocks,
ensured the continued use of the sundial, in one form or another, from antiquity
until the Enlightenment.

1.8 The Astrolabe

In this context we should include another astronomical instrument of ancient ori-
gin, also perfected by medieval Arab astronomers and instrument makers, called
the astrolabe shown in Figure 1.4 (Priestley, 1964). It is a combination of an obser-
vational instrument and a computational aid enabling the determination of not only
latitude, but also the time of day. It ultimately spread to Western Europe and was
there in common use by navigators until the advent of the sextant in the eighteenth
century.

The astrolabe consisted of a disk on whose rim was engraved a uniform scale
with 24 divisions, surmounted by a plate engraved with a projection of the celestial
sphere over which arcs of circles were inscribed. Pivoted concentrically were also
a metal cutout star pattern called a rete and a metal pointer called the rule. On
the back were concentric scales graduated in degrees, the signs of the zodiac, and
the calendar months; another pointer was pivoted at the center. It would be out of
place, and probably well beyond the interest of the reader, to devote much space to
describing the intricacies of this instrument and how to get the most information
out of it. Briefly, it may be said that it is assumed that the calendar month and day
are known for the time it is to be used. The altitude of the sun is first observed
using the degree scale on the back of the instrument while sighting the sun. From
that side also one reads, for that date, the position of the sun along the zodiac. Using
this information on the front side of the instrument, the star pattern is turned with
respect to the projection of the celestial sphere until the sun’s position in the zodiac
agrees with its observed altitude. The time is read by appropriately setting one end
of the rule and reading the other end on the 24 division scale. It is interesting that
Geoffrey Chaucer, of Canterbury Tales fame, also wrote a Treatise on the Astrolabe
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Figure 1.4 The astrolabe as depicted in Chaucer’s Treatise on the Astrolabe (a) front side
(b) back side

in 1391. Since it gave both latitude and time of day, the astrolabe was used by
navigators well into the eighteenth century.

1.9 Water Clocks

Among the earliest non-astronomical devices for measuring time was the water
clock, of which rudimentary examples have been found among ancient Egyptian
artifacts dating back to 2000 B.C. It was essentially a conical stone vessel filled
with water that escaped slowly through a small hole at the bottom provided for
that purpose. A uniform scale was marked along the side of the vessel to enable
the elapsed time to be gauged by how far the water level had fallen. The ancients
were led through experience to the need for a conical shape in order to achieve
an approximately uniform scale. It would have been fairly obvious that the level
in a straight cylinder falls faster when nearly full than when nearly empty. How-
ever, that the shape should be conical, rather than spherical or some other shape,
is less obvious and must have been arrived at rather through convention than care-
ful observation. The hydrodynamic problem that the design presents is actually a
fairly complicated one; a lot depends on whether or not the water passes through a
channel-like opening, in which case the viscosity of the water plays an important
role, making the rate of flow of water more or less proportional to the pressure,
and therefore to the height of the surface above the opening. On the other hand,
if the opening is such that the effect of viscosity is negligible, then we have ideal
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conditions where Bernoulli’s principle should apply and the kinetic energy (that
is, the square of the velocity) of the escaping water should be determined by the
pressure, or depth below the surface.

Since the pressure in the water at the depth of the opening is proportional to the
depth, irrespective of the shape of the container, it follows that if the flow rate is
proportional to pressure, a constant rate of fall of the water level will be achieved
if the area of the surface of the water is proportional to the depth of the opening.
This is ideally satisfied by a cylinder whose axial cross section is approximately
parabolic.

Rather than attempt to perfect the shape of the container, which we now
appreciate is a good deal more complicated than would at first appear, the actual
development of water clocks took a much more promising tack in achieving a con-
stant rate of flow by providing, in the words of the plumbing profession, a “constant
head,” that is, a fixed water level above the hole. This advance is attributed to an
Alexandrian by the name of Ktesibios (also given the Latinized spelling Ctesibius),
a celebrated inventor of Ptolemaic Alexandria around 250 B.C. (de Camp, 1960).
His accomplishments included other mechanical and hydraulic devices, such as a
water pump and pipe organ. From his work evolved the Hellenistic type of water
clock, called clepsydra, that was in common use throughout classical times. Such
clocks were commonly used then to allot time to speakers in a debate: When the
water ran out, it was time to stop. Successive speakers were assigned the first water,
second water, and so on. This may have something to do with the expression “of
the first water” as something of the finest quality. The essential design is illustrated
schematically in Figure 1.5.

The constant pressure head is achieved simply by allowing an adequate
continuous flow from some source into the vessel and preventing the level from
rising above a fixed point by having an overflow outlet. The constant flow was
collected in a graduated straight cylinder. The design often incorporated various
time-display mechanisms that were actuated by the constant rise in the water level.
In one instance a float supported a straight ratchet engaging a toothed wheel; to
this was attached a pointer to indicate the time on a circular dial. In other designs
a pointer was joined to the float by a vertical shaft, enabling the rise in the float to
be read on a vertical scale drawn on the surface of a rotatable drum. By varying
the scale at different points around the periphery of the drum, it was possible to
accommodate the seasonal variations in the length of the hour, which was then
defined as a certain fraction of the period from sunrise to sunset.

In China, water clocks are known to have existed at least from the sixth century
of the Christian era; but their development took a more elaborate mechanical turn.
In place of the time being measured by the continuous motion of a simple float
rising in a linear fashion, the Chinese took things to a higher level of sophistication
by introducing the idea of using the flow of water to control the rate of turning of
a water wheel; not continuously, but in discrete steps, much like the crown wheel
in the tower clock escapement mechanism, to be discussed in the next section. The
water flowed at a constant rate into successive buckets mounted on short swivel
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Figure 1.5 Schematic drawing of an ancient Greek water clock

arms between numerous equally spaced spokes of a wheel, free to turn in a verti-
cal plane about a fixed axle. By a clever arrangement of balanced beams, levers,
and connecting rods, the rotation of the water wheel was automatically stopped
by blocking one of the spokes while a predetermined amount of water flowed into
each bucket in succession. When the critical amount of water had been reached,
the bucket arm was able to tilt against an accurate counterweight at the other end
of a balance beam, in effect “weighing the contents of the bucket” before allowing
the wheel to turn until the next spoke was engaged and the wheel stopped again for
the next bucket to fill.

The accuracy achieved in a well-constructed clepsydra was comparable to the
sundial, but of course their time scale was not absolute, in the sense that they had
to be calibrated against a scale based on astronomical observations. A serious limi-
tation of the water clock is its obvious nonportability; it is difficult to imagine how
it could be made suitable for use aboard a ship on the high seas.

Another device that we should mention based on the flow of material through a
small hole is, of course, the hourglass, the universal symbol of the fleeting nature
of time. Sand was not the only substance used; the choice was directed towards
greater reproducibility. Many granular solids are efficient absorbers of moisture,
a property that clearly disqualifies them, since they would have a greater tendency
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to form clusters. The rate of flow through a constriction clearly depends on the
grain or cluster size as well as friction between grains. Hourglasses provided a
convenient way of determining a fixed interval of time, and sets of hourglasses
were used aboard ships to mark the watch, the 4-hour spell of duty.

1.10 Tower Clocks

A great deal has been written about mechanical clocks and clockmaking, a test-
ament to the enduring fascination with which the subject has been regarded through
the ages. We will limit our discussion of this subject to a review of their design and
performance from the vantage point of present-day horology.

In the analysis of the operation of mechanical clocks it is useful to separate the
mechanism into three essential functional parts: first, the energy source, which has
usually taken the form of a falling weight or a coiled spring; second, a mechanical
system capable of inherently stable periodic motion to serve as regulator; third,
a mechanism to derive and display the time in the desired units. The third part
consists of gear trains and a dial. Of these the most critical and challenging is the
regulating system, and the history of the advancement in mechanical clockmaking
is the history of the development of this part of clock design.

The fundamental problems in regulator design reduce to two in number: first,
an oscillatory system must be found whose period of oscillation is constant and
insensitive to changes in the physical environment and operating conditions;
second, a method must be found for the regulator to control the transmission of
power from the energy source to the rest of the clockwork with the least possible
reaction on the regulator. Some interaction is essential to sustain the oscillation of
the regulator. However, this must be small compared to the oscillation energy of
the reference system of the regulator. As with any mechanical system, there will
always be frictional forces present, which in the absence of an adequate source
of excitation energy will cause the oscillator to come to rest. Therefore, a small
driving force must act on it in step with the motion to maintain a nearly constant
level of excitation. But this requirement runs counter to the function of the reg-
ulator as a controller: Rather than controlling, it is being controlled. The ideal
situation would be one in which the reference oscillator was free to execute its
natural oscillations without any external perturbations acting on it.

To reconcile these opposing requirements and achieve the best possible
outcome requires the following: First, the oscillator must have very low inherent
friction, enabling it to continue to execute its motion with only a very weak driving
force; and second, it must exert its control in a “trigger” fashion. This means that
a small force exerted by the controlling element, acting for only a small fraction
of the period of oscillation, must control a much larger force transmitted from the
energy source to the gear train driving the clockwork. The mechanical means of
achieving this is called the escapement.
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Figure 1.6 The foliot and verge escapement for tower clocks

An early version extant in the fourteenth century was widely used in tower
clocks for cathedrals, public squares, etc. for almost three centuries. It is called the
verge and foliot escapement and is shown in its basic form in Figure 1.6. A straight
horizontal beam, the foliot, with equal weights balanced at its ends, is suspended
at its middle. Rigidly attached to the foliot at its point of suspension is a vertical
spindle, called the verge, to which are rigidly attached two small flat projections,
called pallets; these engage at diametrically opposite points a vertical wheel (the
scape or crown wheel) with cogs perpendicular to its face. The planes of the pallets
are parallel to the axis of the verge, but are typically ninety degrees apart. This
balanced foliot–verge system is capable of simple periodic angular motion about
the verge as axis. The torsion in the suspension of the foliot provides the necessary
restoring torque when the foliot is turned away from its equilibrium position. The
action of the pallets as the foliot rotates back and forth is to momentarily block the
cogwheel alternately by one pallet, then the other. The rotation of the cogwheel,
which derives its torque from the energy source, is thereby regulated. The reaction
back on the oscillating foliot occurs at the contact between the pallets and the cogs.
As earlier pointed out, this reaction tends to sustain the oscillation of the foliot. If
the suspension material is chosen to have good elastic properties with a particul-
arly low internal friction and if the foliot is massive to increase the energy and
the period of oscillation, this regulator can be expected to be relatively stable and
insensitive to small perturbations, such as air drafts, noise, and vibration. In judging
these mechanical clocks we should separate the principles upon which the design
is based from the implementation of those principles, that is, the choice of mate-
rials and the level of precision in the manufacture of the clocks. If we consider
the operating principles of the clocks we have been describing, we note that the
foliot–verge system is really a type of torsion pendulum, and as such is capable of
as great a constancy of oscillation period as are later developments, for example the
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pendulum. Its limitations arise principally from the design of its escapement; the
force of reaction is too large and acts for too large a fraction of the period. The
choice of material for the suspension is also critical; a fused quartz fiber suspen-
sion would have excellent elastic properties. Such quartz suspensions have been
widely used in torsion balances since the seventeenth century, because of both
their strength and elastic properties; the restoring torque they provide is linearly
dependent on the rotation angle.

1.11 The Pendulum Clock

Two important advances were made in the seventeenth century: First came the
pendulum as the regulator, and then, of equal importance, came the “deadbeat”
anchor escapement. Let us consider these in turn.

The story of Galileo’s timing the swings of a chandelier at the cathedral in Pisa
using his pulse is well known. The discovery of the “isochronism” of the pendu-
lum, that is, taking an equal time to complete a swing no matter how widely it
swings, dates from 1583 when Galileo was a medical student. The story is usually
repeated as an example of extraordinary resourcefulness in his desire to study the
pendulum. This may be so, but it should be noted that he was at the time also inter-
ested in medicine and in particular the pulse rate as an indicator of fever (Drake,
1967). In fact, there is no published account by him at this time suggesting the use
of the pendulum as a regulator for mechanical clocks. He did, however, use it to
construct an instrument to conveniently measure the pulse rate in patients. It con-
sisted essentially of a pendulum with variable length, which was adjusted to match
the pulse rate of the patient. It was calibrated to read directly conditions such as
“slow” or “feverish.” It was not until a few months before his death, in 1642, that
Galileo suggested the application of the pendulum to clocks. He had become blind
in 1638 and was no longer able to put his idea into practice. He dictated a design
to his son Vincenzo, who made drawings but did not actually complete a working
model. The credit for actually incorporating a pendulum into the design of a clock
around 1656 goes to Huygens, a name associated in the mind of every physics
student with the wave theory of light.

The pendulum is essentially an object pivoted or suspended so that it swings
freely. For purposes of analysis, we distinguish between a simple pendulum, which
consists of a small object suspended by a thin string of negligible mass, and a
compound pendulum, in which the mass distribution along the pendulum is not
negligible. The essential characteristic of the pendulum, as Galileo noted, is that for
small swings the period of oscillation, that is, the time to complete a swing in one
direction and back to the starting point, is the same no matter how wide the swing,
provided that it remains small. This property caught Galileo’s attention because
it appears to run counter to what might superficially be expected: After all, with a
large swing, the pendulum bob has farther to travel, and it is indeed remarkable that
its speed varies in just such a way that the oscillation period is always the same.
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Actually, the same could be said of a beam suspended by a material with suitable
elastic properties, such as fused quartz. They both display simple harmonic motion.
But while the latter depends on the property of the suspension material, the pendu-
lum has no such dependence on materials, which are generally subject to variation.
However, the period of the pendulum does depend on its radius of gyration, which
depends on the distribution of mass along the length of the pendulum. Since all
materials expand and contract with the rise and fall of temperature, the constancy
of the period is limited by any fluctuations in the temperature. We may attempt
to overcome this limitation by taking one or all of the following steps: Choose a
material that has extraordinarily low thermal expansion, such as the alloy invar;
regulate the temperature to reduce its fluctuations; and use a composite pendulum
incorporating two materials of differing expansion coefficients, such as brass and
steel, in such a way that the expansion of one is compensated by the other.

Another important limitation of the pendulum as a reference oscillator is that
its period depends on the strength of gravity, which varies from point to point on
the earth’s surface. This is because the earth is neither spherical nor homogeneous.
As far back as 1672, it was established through pendulum measurements that the
acceleration due to gravity is different for different geographical locations. This
was explained by Newton by assuming a model of the earth as a uniform gravitating
plastic body, which, by virtue of its spin, would bulge around the equator into an
oblate spheroid. The value of the fractional difference between the earth’s radii
at the equator and poles was later computed in 1737 by the Frenchman Clairaut
to be 1 in 299. The acceleration due to gravity is also dependent on altitude in a
way that may be affected by local topography and geology. The differences in the
times indicated by a pendulum clock at different geographical locations could be
on the order of one minute per day. Another source of fluctuation in the period of a
pendulum is air resistance, whose drag on the swinging pendulum depends on the
density of the air and thus the atmospheric pressure.

The other major development, which came around 1670, was a much improved
escapement: the anchor escapement, and later the deadbeat anchor introduced by
Graham in 1715. Figure 1.7 shows the essential design.

Unlike the verge–foliot escapement, where the pallets engage diametrically
opposite points on the scape wheel, the anchor escapement acts on a sector of a
rachet wheel having radial teeth. This geometric difference allows the pallets to be
separated by some distance along the rim of the scape wheel, and in consequence
a smaller angular movement of the anchor about its axis is needed to engage and
disengage the pallets and the wheel. This is advantageous to the performance of
any regulator based on a mechanical oscillator, since its oscillation is simple har-
monic only in the limit of small oscillations. But an even more important differ-
ence to note is that the pallets move at right angles to the direction of motion of
the scape wheel teeth. This means that the force of interaction between the pallets
and the teeth has little torque around the axis of the pallet mount and is therefore
ineffective in disturbing the oscillation of the pendulum. Moreover, the pendulum
is entirely free of the scape wheel for part of its oscillation, a first step toward
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Figure 1.7 The anchor escapement

the ideal condition. The deadbeat design is so called because unlike the anchor
escapement just described, there is no recoil of the scape wheel and the gear train
behind it during a swing, or beat, of the pendulum. This was achieved by a careful
contouring of the faces of the pallets and the teeth of the scape wheel. This refine-
ment further improved the isolation of the pendulum and enhanced its performance
as a regulator.

1.12 The Spring–Balance-Wheel Clock

For fixed installations, such as in observatories or clock towers, the pendulum-
controlled clock became the most widely used, and by the end of the eighteenth
century it had reached an accuracy sufficient to the demands of the day. However,
there remained one area of need that the pendulum clock could not satisfy: ship-
board and, in today’s jargon, other mobile environments, where the clock may be
subjected to erratic inertial forces. Moreover, any attempt to scale down the size
of the clock to make it more portable would aggravate the problems of air resis-
tance, friction, and curvature in the knife edge on which the pendulum is pivoted.
A further disqualification for shipboard use is the variability of the period with
geographical location, as previously described.
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Although brave attempts were made to develop a pendulum clock that would be
reliable in the field, it finally became clear that a new approach was required. This
came in the form of the balance wheel and the spiral hairspring, which ultimately
became universally used in all mechanical watches. The hairspring, or balance
spring, was a spiral of fine resilient metal fixed at the outer end to the body of
the watch and at the center of the spiral to the arbor of the balance wheel, which is
delicately pivoted on jeweled bearings to reduce the rate of wear. The basic advan-
tage of the spiral spring is that it provides a restoring torque on the balance wheel
independent of gravity and permits a reduction in the strain (degree of internal
deformation) in the material of the spring for a given rotation of the balance wheel.
This is important if the restoring torque is to remain proportional to the angle of
rotation of the balance wheel and lead to simple harmonic motion.

With almost every important advance in the world of ideas or in the practical
world of devices one name has, through common usage, become associated as the
one to whom all credit is due. However, we all know that almost always there were
other thinkers and inventors who had made critical contributions to those advances.
When the contest for recognition is between two equally prominent personalities,
the controversy is resolved, if at all, along national lines. In the present instance
there is no doubt that the Englishman Robert Hooke, of Hooke’s law fame, had
indeed proposed a spring–balance mechanism sufficiently accurate to determine
longitude at sea. It seems that Hooke had ambitions of exploiting his ideas in an
entrepreneurial spirit, not commonly avowed by physicists of his day. In any event,
Hooke failed to form a syndicate, and he never actually “reduced his ideas to prac-
tice,” as patent lawyers would say. On the other hand, Huygens, already credited
with implementing the use of the pendulum as a regulator, did in fact have a clock
constructed that was regulated by a balance wheel.

Much has been written about the British Admiralty’s quest in the early
eighteenth century to simplify the solution of an age-old problem in navigation:
the determination of longitude at sea (Sobel, 1995). Unlike latitude, which can be
deduced from straightforward observations, such as the altitude of the sun on the
meridian (at noon) or the altitude of the star Polaris, longitude was computed by
a rather complicated procedure devised by the astronomer Edmund Halley, better
known for his comet. It had been recognized for some time that if a mariner at sea
had a precise clock indicating Greenwich Mean Time (GMT), he could determine
longitude by using it to find the time of local noon, for example. To spur interest
in the development of such a shipboard clock, the British Admiralty established
a Board of Longitude in 1714 that offered a reward of £20,000 to anyone who
could determine longitude at sea with an error less than thirty miles. At the equator
this corresponds to an error of about 1.7 minutes in time. For a voyage lasting
one month this implies an error less than about 4 parts in 105, beyond the cap-
ability of the existing clocks under shipboard conditions. A Yorkshireman named
John Harrison, a far more gifted instrument maker than politician, perfected his
first chronometer by 1735, an intricate piece of ingenious mechanical design to
minimize friction, etc. Sadly, because of the novelty of his ideas and a prejudice
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in favor of the astronomical technique called lunars, the Board of Longitude
was not much impressed and denied Harrison the award. Not until 1761, after his
chronometers had been generally admitted to have merit, was the Admiralty willing
to try one out on a voyage to Jamaica, during which it lost less than 2 minutes at a
fairly constant rate. It was Captain Cook, another Yorkshireman, who by carrying
Harrison’s timepieces on his long voyages demonstrated finally that old Harrison’s
chronometers had indeed met the Admiralty requirements and had fully deserved
the award.

The principal problem with the balance wheel is its susceptibility to thermal
changes in dimensions and consequent changes in the period of oscillation. As with
the pendulum there are three remedies; of these the most universal is compensation
of expansions and contractions due to temperature fluctuations through the use of
two metals in the form of a bimetallic strip.

The ultimate success of the balance wheel as a regulator in precision mechani-
cal clocks was made possible by further progress in the design of the escapement,
culminating in the détente, or chronometer spring, escapement. This brought the
performance level to a height unmatched until the arrival of electronic timekeeping.
This escapement approximates more closely than any other the ideal of allowing
the regulator to oscillate freely except for a very short period of interaction with
the scape wheel.

Figure 1.8 A typical escapement design in a high quality mechanical wristwatch
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Over the succeeding centuries timepieces were progressively refined and
made smaller; from the pocket watch to the dainty ladies’ wristwatch. Figure 1.8
illustrates schematically the essential features of the escapement commonly used in
high-quality wrist watches. Where it took Harrison literally years to painstakingly
construct by hand a single clock, it ultimately became possible to mass produce
them, thus making them universally affordable. But it is remarkable that from
the point of view of accuracy, no purely mechanical clock has surpassed some of
Harrison’s later chronometers.



Chapter 2
Oscillations and Fourier Analysis

2.1 Oscillatory Motion in Matter

A universal property of material objects is their ability to vibrate, whether the
vibration results in an audible sound, as in the ringing of a bell, or is subtle and
inaudible, as the motion in a quartz crystal. It can be a microscopic oscillation on
an atomic scale, or as large as an earthquake. Oscillations in any part of an extended
object or medium with undefined boundaries almost always propagate as waves.

If any solid object is struck with a sharp blow at some point, vibrations spread
throughout the body, and waves are set up in the surrounding medium. If the
medium is air, and we are within hearing range, the waves fall on our eardrums and
are perceived as a loud sound, whose quality experience teaches us to differentiate
according to the kind of object and the way it was struck. Unless the shape of the
body and the way it was struck satisfy very particular conditions, the sound pro-
duced will be far from a pure tone. The sounds produced by different objects are
recognizably different; even if we play the same note on different musical instru-
ments, the quality of the sound, or timbre, as musicians call it, is different. It is a
remarkable fact, first fully appreciated by Alexander Graham Bell, that just from
the rapidly fluctuating air pressure of a sound wave falling on our eardrums we
are able to construct what we should call an “acoustic image.” That is, we are
able to sort out and recognize the various sources of sound whose pressure waves
have combined to produce a net complex wave pattern falling on the eardrum.
To really appreciate how remarkable this facility is, imagine that a microphone is
used to convert the complex fluctuations of pressure into an electrical signal that is
connected through appropriate circuits to an oscilloscope, and you watched these
fluctuations on the screen. Now, without being allowed to hear the sounds, imagine
trying to recognize, just from the complex pattern, a friend’s voice, or even that it
is a human voice at all.

The reason that oscillatory motion is so universally present stems from two
fundamental properties of matter. First, objects as we normally find them are in
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stable equilibrium; that is, any change in their shape brings into play a force to
restore the undisturbed shape. Second, all objects have inertia; that is, once a body
or part of a body has been set in motion, it will tend to continue in that state, unless
forces are impressed upon it to change its state; this is the well-known first law
of motion of Newton. It follows that when, for example, an external force causes
a momentary displacement from equilibrium, the restoring force arising from the
body’s inherent equilibrium will cause the affected part of the body not only to
return to the undisturbed state, but, because of inertia, to overshoot in the other
direction. This in turn evokes again a restoring force and an overshoot, and so on.

2.2 Simple Harmonic Motion

The simplest form of oscillatory motion is simple harmonic motion, as exemplified
by the swinging of a pendulum. This will ensue whenever a physical system is
displaced from stable equilibrium by a sufficiently small amount that the restoring
force varies nearly linearly with the displacement. Thus a Taylor expansion of the
energy U in terms of a small displacement ξ about the point of stable equilibrium
yields the following:

U = U0 + a2ξ
2 + a3ξ

3 + . . . (a2 > 0), 2.1

and for sufficiently small ξ the restoring force F = −dU/dξ may be taken as linear
in the displacement. It follows that the equation of motion is given by

d2ξ

dt2 + 2a2

m
ξ = 0 (a2 > 0), 2.2

which has the well-known periodic solution

ξ = ξ0 cos
[
ωt + φ0

]
2.3

characterized by a unique (angular) frequency ω, amplitude ξ0 and initial phase φ0.
In a useful graphical representation, the displacement ξ is the projection onto a
fixed straight line of a radius vector ξ0 rotating with constant angular velocity ω;
the quantity (ωt + φ0) is then the angular position of the radius vector, giving
the phase of the motion. Such a representation is a phasor diagram, illustrated in
Figure 2.1.

As a corollary, or simply by rewriting the solution in exponential form, it
follows that the motion is the sum of two phasors of equal length rotating in oppo-
site directions, thus

ξ = ξ0

2
e+i(ωt + ϕ0) + ξ0

2
e−i(ωt + ϕ0). 2.4

In the assumed linear approximation of the equation of motion, if ξ1 and ξ2 are two
solutions of the equation, then any linear combination (aξ1 + bξ2), where a and b
are constants, is also a solution.
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Figure 2.1 Simple harmonic motion as a projection of uniform circular motion: phasor
diagram

If the next higher term in the expansion of U is retained, we are led to a non-
linear (or anharmonic) oscillator. The prototypical example is the pendulum when
the finite amplitude of oscillation is treated to a higher order of approximation than
the simple linear one. Thus the exact equation of motion, expressed in terms of the
angular deflection of the pendulum θ, is nonlinear, as follows:

l
d2θ
dt2 + g sin θ = 0. 2.5

If θ � 1, we may expand sin θ in powers of θ to obtain a higher-order approxima-
tion to the equation of motion than the linear one. Thus

l
d2θ
dt2 + g

(
θ − 1

6
θ3
)

= 0. 2.6

Assume now that the amplitude of the motion is θ0, so that in the linear approx-
imation the solution would be θ0 cos (ω0t + φ0), where ω0 = √

(g/ l). We can
obtain an approximate correction to the frequency by using the method of succes-
sive approximation; this we do by assuming the following approximate form for
the solution:

θ = θ0 cos ωt + ε cos 3ωt, 2.7

On substituting this into the equation of motion and setting the coefficients of cos ωt
and cos 3ωt equal to zero, we find the following:

ω = ω0

(
1 − θ2

0
16

)
; ε = 1

3

(
θ0

4

)3

(θ0 � 1), 2.8

which shows that the pendulum has a longer period at finite amplitudes than the
limit as the amplitude approaches zero.

In the simple pendulum the suspended mass is constrained to move along the
arc of a circle. It was this motion that Galileo thought to have the property of
isochronism (or tautochronism), that is, requiring equal time to complete a cycle
starting from any point on the arc. In fact, the mass must be constrained along a
cycloid, the figure traced out by a point on a circle rolling on a straight line, rather
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than a circle, in order to have this property. A more famous, related problem, one
first suggested and solved by Bernoulli and independently by Newton and Leibnitz,
has to do with the curve joining two fixed points along which the time to complete
the motion is a minimum with respect to a variation in the curve; again the solution
is a cycloid.

Attempts in the early development of pendulum clocks to realize in practice the
isosynchronism of cycloidal motion were soon abandoned when it became apparent
that other sources of error were more significant. In any event, in order to maintain
a constant clock rate it is necessary only to regulate the amplitude of oscillation.

We should note that the presence of the nonlinear term in the equation of
motion puts it in a whole different class of problems: those dealing with non-
linear phenomena. One far-reaching consequence of the nonlinearity is that the
solution will now contain, in addition to the oscillatory term at the fundamen-
tal frequency ω, higher harmonics starting with 3ω. We will encounter in later
chapters electronic devices of great practical importance whose characteristic
response to applied electric fields is nonlinear.

2.3 Forced Oscillations: Resonance

Although our main concern will be the resonant response of atomic systems, requir-
ing a quantum description, some of the basic classical concepts provide at least a
background of ideas in which some of the terminology has its origins.

Imagine an oscillatory system, such as we have been discussing, having the fur-
ther complication that its energy is slowly dissipated through some force resisting
its motion. This is most simply introduced phenomenologically into the equation
of motion as a term proportional to the time derivative of the displacement. The
response of such a system to a periodic disturbance is governed by the following
equation:

d2ξ

dt2 + γ
dξ

dt
+ ω2

0ξ = α0eipt , 2.9

which has the well-known solution

ξ = α0√(
ω2

0 − p2
)2 + γ2 p2

ei(pt−φ) + ξ0e− γ
2 l e+i(ωt+�), 2.10

where φ = arctan [γp/(ω0
2 − p2)] and ω =

√
ω2

0 − γ2/4. The important feature of
this solution is, of course, the resonantly large amplitude of the first term, the par-
ticular integral, at ω0 = p; but an equally significant point is that its phase, unlike
that of the second natural oscillation term, bears a fixed relationship to that of the
driving force. This means that if we have a large number of identical oscillators
initially oscillating with random phases, and they are then subjected to the same
driving force, the net global disturbance will simply be the sum of the resonant
terms, since the other terms will tend to average out.
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2.3.1 Response near Resonance: the Q-Factor

In order to analyze the behavior near resonance of a lightly damped oscillator for
which γ � ω0, let us assume that p = ω0 +�, where � � ω0. Then we can write
the following for the amplitude and phase of the impressed oscillation:

A = α0

2ω0

1√
�2 + ( γ

2

)2
; φ = arctan

(
− γ

2�

)
, � � ω0, 2.11

which, when plotted as functions of �, show for the amplitude the sharply peaked
curve characteristic of resonance, falling to 1/

√
2 of the maximum at � = −γ/2

and � = +γ/2, and for the phase, the sharp variation over that tuning range from
π/4 to 3π/4, passing through the value φ = π/2 at exact resonance when � = 0.
A measure of the sharpness of the resonance, a figure of merit called the Q-factor,
is defined as the ratio between the frequency and the resonance frequency width γ.
Thus

Q = ω0

γ
. 2.12

An equally useful result is obtained by relating Q to the rate of energy dissipation
by the oscillating system. Thus from the equation of motion of the free oscillator
we find after multiplying throughout by dξ/dt the following:

d
dt

[
1
2

(
dξ

dt

)2

+ 1
2
ω2ξ2

]
= −γ

(
dξ

dt

)2

, 2.13

from which we obtain by averaging over many cycles (still assuming a weakly
damped oscillator) the important result

d〈Utot 〉
dt

= −2γ〈Uk〉; 〈Uk〉 = 1
2
〈Utot 〉, 2.14

From this follows the important result that we shall have many occasions to quote
in the future:

Q = ω0
〈U 〉
d〈U 〉

dt

. 2.15

Associated with the rapid change in amplitude is, as we have already indicated,
a rapid change in the relative phase between the driving force and the response it
causes. This interdependence between the amplitude and phase happens to be of
particular importance in the classical model of optical dispersion in a medium as
a manifestation of the resonant behavior of its constituent atoms to the oscillating
electric field in the light wave.

As we shall see in the next chapter, the sharp change in the phase φ as a func-
tion of frequency near resonance is of critical importance to the frequency stability
of an oscillator, wherever the resonance is used as the primary frequency-selective
element in the system. An important quantity from that point of view is the change
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Figure 2.2 Amplitude and phase response curves versus frequency for a damped oscillator

in the phase angle produced by a given small detuning of the frequency from exact
resonance. Figure 2.2 shows the approximate shapes of typical frequency-response
curves. If we make the crude approximation that the phase varies linearly in the
immediate vicinity of resonance, then since φ varies by π radians as the frequency
is tuned from −γ/2 to γ/2, it follows that the change in phase �φ is given approxi-
mately by the following:

�φ = (ω0 − ω)

γ
π. 2.16

We note that having a very small γ, or equivalently, a very small fractional line
width, favors a small change in frequency accompanying any given deviation in
phase; and it is the phase that is susceptible to fluctuation in a real system.

2.4 Waves in Extended Media

In a region of space where a momentary disturbance takes place, whether among
interacting material particles, as in an acoustic field, or charged particles in an
electromagnetic field, such a disturbance generally propagates out as a wave. A
historic example is the first successful effort to produce and detect electromagnetic
waves as predicted by Maxwell’s theory. Heinrich Hertz, at the University of Bonn,
detected electromagnetic waves radiating from a “disturbance” in the form of a
high-voltage spark. One of the physical conditions found in the propagation of a
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disturbance as a wave is a delay in phase between the oscillation at a given point
and that at an adjacent point along the direction of propagation; this is inevitably
associated with a finite wave velocity.

The simplest case to analyze is that of transverse waves on a stretched string. It
is evident in this case that the net force on a small element of the string depends on
the difference between the directions of the string at the two ends of the given
small segment and therefore depends on the curvature of the string. It follows
by Newton’s second law that the acceleration of this segment is proportional to
the curvature; or stated symbolically, we have the well-known form of the (one-
dimensional) wave equation:

T
∂2 y
∂x2 − ρ

∂2 y
∂t2 = 0, 2.17

where T and ρ are constants, the tension and linear density of the string. If we
rewrite the equation as

∂2 y
∂x2 − 1

V 2
∂2 y
∂t2 = 0, 2.18

we can verify that a general solution, called D’Alembert’s solution, can be written
as follows:

y = f1(x − V t) + f2(x + V t), 2.19

where f1 and f2 are any (differentiable) functions, the first of which represents a
disturbance traveling with a velocity V in the positive x direction, while the other is
one traveling in the opposite direction, without change of shape: This is ultimately
because V was assumed to be a constant.

In the case of the electromagnetic field, Maxwell’s theory, the triumph of
nineteenth-century physics, predicts that the electric and magnetic field vectors
E and B propagate in a medium characterized by the electric permittivity ε and
magnetic permeability μ according to the following wave equation expressed with
reference to a Cartesian system of coordinates x , y, z:

∂2 Ex

∂x2 + ∂2 Ex

∂y2 + ∂2 Ex

∂z2 − εμ
∂2 Ex

∂t2 = 0, 2.20

with similar equations for the other components. It follows that for an unbounded
uniform medium, the velocity of propagation V = 1/

√με is a constant, which in a
vacuum has a numerical value in the MKS system of units of 2.9979 . . . ×108 m/s.

The simplest solutions to the wave equation in an unbounded medium have a
simple harmonic dependence on the coordinates and time, which in one dimension
may be written in the form

Ey = E0 sin(kz − ωt + φ). 2.21

where k is the magnitude of the wave vector, ω is the (angular) frequency, and φ is
an arbitrary phase.
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The surfaces of constant phase, defined by (kz − ωt) = constant, travel with
the velocity V given by V = ω/k. If we write, as is conventionally done, V = c/n
where c is the velocity of light in vacuo, then the quantity n, originally defined for
frequencies in the optical range, is the refractive index that appears in Snell’s law.
This is the velocity of propagation only of the phase of a simple harmonic wave
having a single frequency; for any more complicated wave, it becomes necessary to
stipulate exactly what it is that the velocity refers to. Clearly, the concept of a wave
velocity has meaning only if some identifiable attribute of the wave is indeed trav-
eling with a well-defined velocity. If, for example, the wave has only one large crest
like the bow wave of a ship traveling with sufficient speed, then the velocity with
which that crest travels can differ from the phase velocity if the particular medium
is dispersive, that is, if the phase velocity is a function of the frequency. This is
readily seen if we recall that such a waveform can be thought of as a Fourier sum
of simple harmonic waves, which now are assumed to travel at different velocities.
In fact, there is no a priori reason for the wave to preserve its shape as it pro-
gresses; if it does not, the whole notion of wave velocity loses meaning. However,
under some conditions a group velocity given by V = dω/dk can be defined for a
wave packet. More will be said about dispersive media in the next section.

It will be useful to review some of the fundamental properties of waves. With-
out going into great detail in the matter, we will simply state that at a boundary
surface, where there is an abrupt change in the nature of the medium, waves will
be partially reflected, and partially transmitted with generally a change in direc-
tion, that is, refraction, governed by Snell’s law. The geometric surface joining all
points that have the same phase is the wavefront, and in an unbounded medium the
wavefront will advance at each point along the perpendicular to the surface, called
a ray at that point.

If there is an obstruction in the medium, that is, a region where, for example,
the energy of the wave is strongly absorbed, the waves will “bend around corners”:
the phenomenon of diffraction. This, it may be recalled, was the initial objection
to the wave theory of light, an objection soon removed by the argument that the
wavelength of light is extremely small compared with the dimensions of ordinary
objects, and that diffraction is small under these conditions. The analysis of dif-
fraction problems is based on Huygens’s principle, as given exact mathematical
expression by Kirchhoff, who showed that the solution to the wave equation at a
given field point can be expressed as a surface integral of the field and its derivatives
on a geometrical surface surrounding the field point. The evaluation of that sur-
face integral is made tractable in the case of optical diffraction around large-scale
objects by the smallness of the wavelength, which justifies a number of approxi-
mations. If an incident wave is delimited, for example by the aperture of an optical
instrument or the antenna of a radio telescope, the field, of course, is nonzero only
over the surface of the aperture, and the integral is simply over that surface. Appli-
cation of the theory to the important case of a circular aperture under conditions
referred to as Frauenhoffer diffraction, where the diffracted wave is brought to a
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focus onto a plane, yields the following result for the intensity distribution in the
focal plane:

I = 4I0
J 2

1 (ka sin θ)

k2a2 sin2 θ
, 2.22

where a is the radius of the aperture and θ is the inclination of the direction of
the field point with respect to the system axis. The Bessel function J1 (ka sin θ)
oscillates as the argument increases, implying an intensity pattern that consists of
a central disk, called the Airy disk, surrounded by concentric bands that quickly
fade as we go out from the center. Since the first zero of the Bessel function occurs
when its argument is about 3.8, the radius of the Airy disk is therefore given by

sin θ ≈ θ ≈ 3.8
ka

= 1.2
λ
D

. 2.23

In the approximation where ray optics are used, the image in the focal plane would
of course have been a geometrical point.

2.5 Wave Dispersion

Another fundamental wave phenomenon is dispersion, the same phenomenon that
was made manifest by Isaac Newton in his classic experiment on the dispersion of
sunlight into its colored constituents using a glass prism. It occurs when the refrac-
tive index varies from one frequency to another; this can occur only in a material
medium, never in vacuum, at least according to Maxwell’s classical theory. The
dispersive action of nonmagnetic dielectric materials is wholly due to the frequency
dependence of the electric permittivity ε; this ultimately derives from the frequency
dependence of the dynamical response of the molecular charges in the medium to
the electric field component in the wave. This is a problem in quantum mechanics.
However, H.A. Lorentz was able on the basis of his electron theory to account,
at least qualitatively, for the gross features of the phenomenon. He assumed that
the atomic particles exhibited resonant behavior at certain natural frequencies of
oscillation and that the damping arises from interparticle collisions interrupting the
phase of the particle oscillation.

According to this model, the oscillating electric field in the wave induces
an oscillating polarization in each of the atomic particles with a definite phase
relationship to the field, leading to a total global polarization, which for field vec-
tors with the time dependence exp(−iωt) adds a resonant term to the permittivity,
as follows:

ε =
[

1 + σ2

ω2
0 − ω2 − iγω

]
ε0. 2.24
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where σ is a measure of the atomic oscillator strength. It follows that the (complex)
refractive index n is given by

n = c
V

= c

√√√√ε0μ0

[
1 + σ2

ω2
0 − ω2

0 − iγω

]
, 2.25

from which we finally obtain, assuming that σ is small,

n = 1 + σ2

2
(ω2

0 − ω2)

(ω2
0 − ω2)2 + γ2ω2

+ i
σ2

2
γω

(ω2
0 − ω2)2 + γ2ω2

· 2.26

Finally, substituting this result in the assumed (complex) form for the plane
wave solution,

Ex = E0ei(nkz−ωt), 2.27

we see that the real part of n determines the phase velocity and hence the dis-
persion, while the imaginary part yields an exponential attenuation of the wave
amplitude, corresponding to absorption in the medium, provided that γ is a posi-
tive number. This shows explicitly how the real and imaginary parts of the atomic
response determine the frequency dependence of the real and imaginary parts of
the complex propagation constant through the medium, that is, of the refractive
index and absorption of the wave. The complex propagation constant, as a function
of frequency, exhibits a relationship between the real and imaginary parts that is
an example of a far more general result that finds expression in what are called the
Kramers–Kronig dispersion relations. It is far beyond the scope of this book to do
more than mention that in a relativistic theory these relations are involved with the
question of causality and the impossibility of a signal propagating faster than light.

2.6 Linear and Nonlinear Media

So far we have considered media that are linear, which means in the case of
acoustic waves that a stress applied at some point produces a proportional strain;
and conversely, a displacement from equilibrium brings about a proportional restor-
ing force, resulting in simple harmonic motion. In the case of electromagnetic
waves the classical theory leads to strictly linear equations in vacuo. A linear
medium has an extremely important property: It obeys the principle of super-
position. This states roughly that if more than one wave acts at a certain point, the
resultant wave is simply the (vector) sum of these. At first, this may sound like pure
tautology. The real meaning of the statement is that it is valid to talk about several
waves being present simultaneously at a certain point as if they were individual
entities that preserve their identity at the point where they overlap. A corollary
is that in a linear medium, a wave is unchanged after it passes a region of over-
lap with another wave. According to classical theory, two light beams, no matter
how powerful, intersecting in a vacuum will not interact with each other: each
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emerges from the point of intersection as if the other beam were not there. In the
realm of quantum field theory, however, it is another story: The vacuum state is far
from “empty”!

However, it is possible to increase the strength of a disturbance in a mater-
ial medium to such a point that the medium is no longer linear, and the principle
of superposition no longer valid. Waves would then interact through the medium
with each other, generating other waves at higher harmonic frequencies. We have
already seen this in the case of the pendulum, where the presence of a nonlin-
ear (third-degree) term in the equation of motion led to the presence of a third
harmonic frequency.

In the more important circumstance where the field equations describing
propagation through a given medium have a significant quadratic term, as in the
frequency mixing devices we shall encounter later, two overlapping waves of
frequencies ω1 and ω2 would interact, and the total solution would include the
following:

α
[
E1(t) + E2(t)

]2 = αE2
1 cos2(ω1t

)+ αE2
2 cos2(ω2t

)
+ 2αE1 E2 cos

(
ω1t

)
cos

(
ω1t

)+ . . . 2.28

Using the trigonometric identities:

cos2(ωt
) = 1

2

[
cos (2ωt) + 1

]
,

cos
(
ω1t

)
cos

(
ω2t

) = 1
2

[
cos

(
ω1 + ω2

)
t + cos

(
ω1 − ω2

)
t
]
, 2.29

we see that with the assumed degree of nonlinearity, the second harmonic as well
as the sum and difference frequencies appear in the output. By suitable filtering,
any one of these frequency components can be isolated. We will have occasion to
discuss in a later chapter the use of nonlinear crystal devices to produce intercom-
bination and harmonic frequencies in the radio frequency and optical regions of the
spectrum.

2.7 Normal Modes of Vibration

When waves are set up in a medium with a closed boundary surface, there will be
reflections at different parts of the boundary, with the possibility of multiple reflec-
tions in which reflected waves are themselves reflected from opposing surfaces, all
combining to produce a resultant wave pattern. If the medium is linear, the problem
of finding the resultant is simply a matter of summing over the individual waves. It
is one of the fundamental characteristics of waves that the resultant amplitude at a
given point can be large or small depending on the relative phase of the combining
waves at that point, producing an interference pattern.

Let us consider a homogeneous medium with a pair of parallel planes forming
part of its boundary surfaces; the remainder of the boundary is immaterial. Let us
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assume that a disturbance has been created at some point in this medium, giving
rise to a wave that will travel out and be reflected by each of the plane boundary
surfaces, return to the opposite surfaces, and be reflected again to pass through the
initial point. The total distance traversed in making this round trip will be the same
for all initial points and equal to twice the distance between the plane boundary
surfaces. If this distance happens to be equal to a whole number of wavelengths of
the wave, the waves arriving back at any initial point will, after an even number
of reflections, be in phase with the initial disturbance, and the wave amplitude will
build up at all points, as long as the external excitation continues. By contrast, if the
round trip distance is not a whole number of wavelengths, the reflected waves will
not be in phase with the exciting source, nor with waves from prior reflections, and
the resultant of many even slightly out of phase waves will be weak and evanes-
cent. Note that it is not necessary that the phase difference be near 180◦ to lead to
cancellation and a weak resultant wave; even a small difference in phase produced
in each round trip will accumulate after many successive reflections to result in the
presence of waves having a phase ranging from 0◦ to 360◦. In that event, for every
wave of a given phase, there will be another wave 180◦ out of phase with it, leading
to cancellation.

The condition for a buildup of the wave can be simply stated as follows:

2L = nλn, 2.30

where n is any positive integer. This allows us to calculate the corresponding fre-
quencies νn = V/λn = nV/2L . Thus if we know the wave velocity V in the
given medium and the distance between the reflecting surfaces, we can predict
that certain frequencies of excitation will find a strong response, while any other,
even neighboring, frequencies will not do so. Since n can be any whole number,
there is an infinite number of frequencies forming a discrete spectrum, in which
the frequencies have separate, isolated values, as opposed to a continuous spec-
trum in which frequency values can fall arbitrarily close to each other and merge
into a continuum. The simplicity of the result, that the frequencies in the spec-
trum are whole multiples of the fundamental frequency V/2L , is due to the simple
geometry of two plane reflecting surfaces in a homogeneous medium. However,
even for more complicated geometries, part of the spectrum may still be discrete;
but the frequencies will not necessarily be at equal increments.

To further elaborate on these basic concepts, let us consider another system, one
that better lends itself to graphical illustration: a vibrating string stretched between
two fixed points. Note that we can think of the fixed points merely as points where
the string joins another string of infinite mass, and therefore we can regard the
fixed points as the “boundaries” between two media. It has a discrete spectrum
consisting of a fundamental frequency ν = V/2L and integral multiples of it called
harmonics. In a musical context the harmonics above the first are called overtones,
whose excitation determines the quality of the sound. These are the frequencies of
the so-called normal modes of vibration of the string, shown in Figure 2.3.
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Figure 2.3 The natural modes of vibration of a stretched string

Each can be excited by applying an external periodic force, and the ampli-
tude resulting from such excitation is qualitatively easy to predict: it is essentially
zero unless the frequency is in the immediate neighborhood of one of the nat-
ural frequencies. At that point, the amplitude would grow indefinitely if it were
not for frictional forces, or the onset of some amplitude-dependent mechanism
to limit its growth. This phenomenon is of course resonance, which provides a
method of determining the normal mode frequencies of oscillation of the system.
At other frequencies the buildup of excitation is weak because of the mismatch in
phase, as already described. Just how complete the cancellation will be depends
on the highest number of reflections represented among the waves contributing
to the resultant. It may be said approximately that for complete cancellation, the
number of waves must be large enough that phase shifts spanning the entire 360◦
will be present. Now, the increment in phase per round trip is 360 (�ν · 2L/V )
degrees, where �ν is a small offset in frequency from one of the discrete frequen-
cies in the spectrum. Thus for cancellation, we require a number N of traversals
such that N · 360 (�ν · 2L/V ) = 360; that is, �ν · 2NL / V = 1. But 2NL / V is
simply the total time the wave has traveled back and forth, which in reality will be
limited by internal frictional loss of energy in the string and imperfect reflections at
the end points. Thus if we write �τ for the mean time it takes the wave to become
insignificant, then the smallest �ν for cancellation is given by �ν · �τ ≈ 1; a
smaller frequency offset gives only partial cancellation. This implies that in deter-
mining the frequency of resonance there is effectively a spread, or uncertainty, in
the result if the measurement occupies a finite interval of time. This result, arrived
at in a simple-minded way, hints at a much more general and fundamental result
concerning uncertainties in the simultaneous observation of physical quantities: the
now famous Heisenberg Uncertainty Principle. This principle applies to the simul-
taneous measurement of such quantities as frequency and time, which are said to
be complementary, for which a determination of the frequency implies a finite time
to accomplish it. Therefore, by its very nature, we cannot specify the frequency of
an oscillation at a precise instant in time. To quantify this idea requires a precise
definition of “uncertainty” in a physical measurement, which Heisenberg did in the
context of quantum theory.
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2.8 Parametric Excitations

The most often cited and certainly most dramatic example of the effects of
resonance is the collapse of the suspension bridge across the Tacoma Narrows
in Washington State, USA. Although its failure was due to violent oscillations,
there was no external periodic force acting on it, but rather a buildup of what are
called parametric oscillations, much like the fluttering of (venetian) window blinds
in a steady wind. Such oscillations are characterized by a buildup resulting from
some dynamic parameter varying in a particular way within each cycle.

There is another interesting phenomenon, in which a steady stream of air
excites sound vibrations in a stretched string: the aeolian (from the Greek aiolios,
wind) harp or lyre. This is a stringed instrument consisting of a set of strings of
equal length stretched in a frame. When a steady air current passes over the strings,
it emits a musical tone. The mechanism by which this occurs is rather subtle, as
shown by the observed fact that the pitch of the tone does not seem to depend on
the length or tension in the string, which would certainly be the case if it were
simply a matter of the resonant frequencies being excited. It is observed, however,
that if the resonant frequencies of the strings are made to equal the tone produced
by the wind, the sound is greatly reinforced. The pitch of the sound depends on
the velocity of the wind and the diameter of the string. According to Rayleigh, the
great nineteenth-century physicist, noted for his theory of sound, the sound arises
from vortices (eddies) in the air produced by the motion of air across the strings.

The simplest example of parametrically driven oscillations is the “pumping” of
a child’s swing, in which the child extends and retracts its legs, thereby varying the
effective length of the suspension, during each swing. If we assume that a para-
meter that determines the frequency ω0, in this case the length of the pendulum, is
modulated harmonically at double the oscillation frequency, then the equation of
motion will have the following form:

d2θ
dt2 + ω2

0
[
1 + ε cos

(
2ω0t

)]
θ = 0. 2.31

If we assume ε�1, then we can look for an approximate solution of the following
form:

θ = a(t) cos ω0t + b(t) sin ω0t. 2.32

where a(t) and b(t) vary negligibly during an oscillation. By substituting this
form into the equation of motion, we find by setting the coefficients of cos ω0t
and sin ω0t equal to zero, and neglecting higher harmonic frequencies, that the
amplitudes a(t) and b(t) must satisfy the following equations:

da
dt

+ εω0

4
b = 0,

db
dt

+ εω0

4
a = 0,

2.33
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from which we obtain finally the possible solution

a(t) = a1e+ εω0
4 t + a2e− εω0

4 t , 2.34

with a similar result for b(t). The presence of the first term, with the positive expo-
nent, shows that the amplitude will grow exponentially. It is important to note
(although our simple discussion does not deal with it) that the excitation of a para-
metric resonance will occur over a precise range of frequencies of modulation of
the parameter; and further, that if the system is initially undisturbed, so that both θ
and dθ/dt are initially zero, the system will not be excited into oscillation.

2.9 Fourier Analysis

When a system is subjected to a simple periodic disturbance, its response, in
general, will be an oscillation at the frequency of that disturbance, superimposed
on whatever free, natural oscillations were already present. As we have seen in
the case of a simple physical system consisting of a vibrating string, a large res-
onant response is induced by a simple periodic force only at one of its natural
frequencies. In general, however, when a violin string is excited into vibration, for
example by plucking it, the shape of the string is a complicated function of time.
We might imagine a high-speed movie camera recording this complex wave motion
frame by frame. Predicting the motion of a system produced by an arbitrary initial
displacement from its quiescent state is a fundamental problem of physics. The
term “motion” used here is not restricted to movement in space; it could be, for
example, the variation of temperature throughout a body as determined by the laws
that govern the flow of heat.

Since any given natural frequency can effectively be excited only by an oscill-
atory force at that frequency, it is reasonable to assume that if the excitation is
a complicated function of time, the response at the different natural frequencies
somehow is representative of the “amount” of those frequencies in the excitation
function. From this it seems plausible that to every given excitation function of
time there corresponds a unique set of amplitudes (and phases) of the natural-
mode responses. This would imply that any given excitation function of time can be
regarded as a sum over a unique set of harmonic oscillations at the natural frequen-
cies. In fact, this is given precise mathematical expression in the Fourier expansion
theorem, one of the most useful theorems in physics, named for Joseph Fourier, a
French mathematician who made a systematic study of what is now called Fourier
analysis. It applies equally to the representation of an arbitrary initial shape of the
string as a sum over a unique set of simple harmonic functions of position, making
up the natural modes of vibration. This is of such importance to the understanding
of what we shall encounter in succeeding chapters on atomic resonance that we
must devote some effort to understanding it. The theorem proves that almost any
periodic waveform, of whatever shape, can be expressed as the sum over a series of
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harmonic functions having amplitudes unique to the waveform, and it gives formu-
las for computing those amplitudes. In the context of high-fidelity audio systems
the term “harmonic distortion” is familiar: It refers to the power in the second and
higher harmonics of the given frequency being reproduced. This assumes that a
distorted waveform can be unambiguously specified as consisting of a fundamen-
tal and harmonic components. The theorem is based on a special property called
orthogonality of the functions describing the normal modes of vibration. The term
means the property of being “perpendicular,” as might be applied to two vectors;
for functions, the test for this property is that the average of the product of the
functions be zero, when taken over the appropriate interval. In that sense they are
“uncorrelated.” In the case of the normal mode functions of the vibrating string,
sin (nπx / L) and sin (mπx / L), where n and m are integers, their product averaged
over the interval 0 < x < L is zero. Thus

L∫
0

sin
(

nπ
x
L

)
sin

(
mπ

x
L

)
dx = 0, n 	= m. 2.35

In general, for any given periodic function, that is, one satisfying f (x) = f (x+2π),
orthogonality allows the amplitudes of the harmonics in the following Fourier
series expansion of the function to be determined:

f (x)= a0 + a1 sin (x) + a2 sin (2x) + a3 sin (3x) + · · ·
+ b1 cos (x) + b2 cos (2x) + b3 cos (3x) + · · · . 2.36

Thus by multiplying both sides of equation 2.36 by sin (nx) and integrating over
the fundamental interval we immediately obtain the amplitude an . Thus

2π∫
0

sin (nx) f (x)dx = πan, 2.37

with a similar result for the amplitudes bn by replacing sin (nx) with cos (nx). We
note that the amplitude is in a sense a measure of the extent to which the given
function correlates with the harmonic mode function.

The theorem proves that by including higher and higher harmonics, the exact
function can be represented as closely as we please. It follows that the amplitudes
must decrease as we go to higher-order harmonics, so that a fair representation
may be achieved with a finite number of harmonics. As an example, in Figure 2.4a
is shown a periodic sawtooth waveform and beside it, in Figure 2.4b, are shown
the amplitudes of the first few harmonics plotted against frequency to display the
spectrum of the wave. The effect of a filter that removes all but the first three
harmonics is shown in Figure 2.4c. We should note that to represent sharp changes
in the waveform requires the inclusion of the higher harmonics in the sum.

It is clear from what has been said that for a plucked string, the extent to which
each of the natural frequencies will be excited will depend first on the amplitude
of each Fourier component in the initial displacement and second on the degree
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Figure 2.4 (a) A sawtooth waveform (b) its Fourier spectrum (c) the sum of the first three
harmonics

to which each component is able to build up its amplitude in the presence of
losses at the boundaries, etc. Since the initial amplitude of a given Fourier com-
ponent according to the theorem is computed as an overlap integral between the
given harmonic function and the function representing the initial displacement, the
excitation of that particular harmonic is favored by having the initial displacement
large where the harmonic displacement is large.

For non-periodic functions, there is a corresponding Fourier integral theorem,
according to which, as a particular example, an even function f (t) of time (that is,
one satisfying f (t) = f (−t)) can be represented by the following integral:

f (t) =
∞∫

0

F(ω) cos (ωt)dω, 2.38

where F(ω), now a function of a continuous variable, rather than the discrete mode
index number n, gives the amplitude distribution over frequency, that is, the Fourier
spectrum of the function f (t). F(ω) has a unique, one-to-one relationship with
f (t), which the Fourier theorem proves is a reciprocal one, in the sense that F(ω)
is obtained from f (t) simply by interchanging their roles. The one function is
called the Fourier transform of the other.

It frequently happens that where we have a complex signal consisting of what
may appear as an unintelligible fluctuation in voltage, we are able to present the
information in a far more useful way by applying the Fourier integral theorem.
To show in a concrete way how this may be accomplished, consider the following
hypothetical experiment. An input signal, which could, for example, be a sound
wave or a microwave of complex waveform, is connected to an infinite number
of ideal resonators tuned to progressively higher frequencies, with only a small
increment in frequency between each resonator and its successor. This, it may be
recalled, is the way it is thought that the human ear processes incoming sounds and
is thereby able to separate the various types of sources that make up the complex
waveform it receives. Let it be assumed that the input signal is switched on for a
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predetermined period, after which it is switched off, and the amplitudes and phases
of the oscillations in all the resonators are measured and then plotted against their
resonant frequencies. Such a plot is the frequency spectrum of the incoming com-
plex waveform, a waveform that begins as zero, jumps to the signal value when
the switch is turned on, and goes back to zero when the switch is turned off. It
is assumed that the frequency difference between consecutive resonators is small,
so that there will be a very large number of them. The two principles that are the
essence of this method of analysis are these: First, the phases and amplitudes of the
resonators are unique to the incoming signal, and second, if we simply add simple
harmonic oscillations at the frequencies of the resonators with those amplitudes
and phases, the sum will reproduce the original signal waveform.

In later chapters we will have frequent occasion to refer to the Fourier spectra
of signals. Two examples of Fourier transforms are shown in Figure 2.5. The first
is a signal in which a simple oscillation is switched on at some point and there-
after slowly decays. The second represents a signal that really contains just one
frequency, but the phase changes at irregular intervals of time.

In some important cases the phases are either indeterminate or inaccessible; in
such cases the power spectrum, showing only the square of the amplitude at each
frequency, is nevertheless very useful. The most obvious example is in the analysis
of optical radiation, where of necessity we are limited to studying the power spec-
trum, since no common detector exists that can follow the extremely rapid oscilla-
tions in a light wave. Thus when sunlight, for example, is passed through a glass
prism to separate the colors of the rainbow, as Newton did in his classic researches
on the composition of white light, we are in a sense transforming the fluctuating
field components in the incoming electromagnetic wave (the optical signal) into
a continuous distribution of intensity over frequency, its Fourier spectrum. In this
particular case, as blackbody radiation, the light from the sun will have phases that
are random, which makes the availability of a representation in the form of a power
spectrum, free of the phases, particularly crucial.

frequency

frequency

time

time

Figure 2.5 Examples of Fourier spectra



2. Oscillations and Fourier Analysis 41

2.10 Coupled Oscillations

An important situation often arises in which one oscillatory system interacts with
another. This often occurs where the oscillations of the one are to be synchronized
with the other, a process familiar in television receivers. There the local sweep cir-
cuits that scan the picture have to be synchronized with the received horizontal and
vertical synchronization pulses to obtain a stable picture. This, however, is syn-
chronization under conditions in which the aspect we wish to consider is clearly
absent: The oscillating systems do not interact directly. Let us consider, instead,
two oscillating systems in which a resonant frequency in one nearly coincides with
one in the other system, and assume that there is a weak coupling between them.
A somewhat contrived example is shown in Figure 2.6, which depicts two pendu-
lums (or is it pendula) of nearly equal natural oscillation period whose suspension
is from a massive body that can slide horizontally without friction. If the coupling
body were so massive that it may be regarded as immovable, then the pendulums
would be independent of each other. However, for a large but finite mass, any oscil-
lation in one pendulum affects the other. Perhaps the most striking phenomenon is
seen in this system if we set one pendulum in motion while the other is left ini-
tially undisturbed. If we watch the subsequent motion of the two pendulums, a
curious thing happens: The pendulum initially at rest will begin oscillating with
increasing amplitude while the amplitude of the other simultaneously decreases.
This will continue until the pendulum that was originally set in motion comes to
rest, and the two have exchanged the initial state. Then the process reverses, and
the two return to the original state. The energy of oscillation would continue to
be exchanged back and forth indefinitely if it were not for the inevitable pres-
ence of frictional forces at the points of suspension and air resistance, which will
cause the energy to be dissipated as heat and the system to come to rest. It is as if
the system cannot “make up its mind” which state to be in; its oscillatory state is
continually changing.

Figure 2.6 Two identical coupled pendula
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An interesting question to ask about the coupled system is whether it can be
set oscillating in some mode in which all parts of the system execute oscillation
at the same frequency, with a stable amplitude. The attempt to answer this type of
question, particularly to more complex systems involving several coupled systems,
has led to a sophisticated theory and the concept of normal vibrations. To illustrate
what is meant by the term, let us go back to the two coupled pendulums. We will
state without proof that if this system is initially set in motion, either with the two
pendulums in phase or the two exactly 180◦ out of phase, they will continue to
oscillate in those modes with a constant amplitude. These two modes, illustrated
in Figure 2.7, are called the normal modes of vibration for this particular system. It
is important to note that for these modes to be preserved, the two pendulums must
oscillate with a common frequency. This is, in fact, the defining characteristic of
the normal modes: In a given mode, all parts of the coupled system must oscillate
at one frequency belonging to that mode. The common frequency will, in general,
vary from one mode to another. In the case of the two coupled pendulums, the fre-
quencies of the two modes differ to an extent determined by the degree of coupling
between them; this can be shown to be m/M , where m is the mass of the pendulum
bob and M is the coupling mass. In terms of this coupling parameter m/M , the
frequencies of the modes are approximately νa = νo(1 + m/M) and νb = νo,
where νo is the frequency of free oscillation in the absence of coupling.

It is interesting to view the original bizarre behavior, in which the oscillation
went back and forth between the pendulums, in terms of the normal modes. We see
that when only one pendulum is set in motion, the system is not in a normal mode
but could be looked on as a “mixture” (or more precisely, a linear superposition)
of the two normal modes; that is, the motion of each pendulum in our particu-
lar example is the sum of equal amplitudes of the two normal modes. But these
modes do not have exactly the same frequency, and their relative phase will contin-
uously increase, passing periodically through times when their phases differ by a
whole number of cycles and are in step, and times when they get 180◦ out of step.
When they are in step, they reinforce each other and produce a large amplitude,
while the opposite is true when they get out of step and cancel each other. Thus
the amplitude of each pendulum alternately rises and falls periodically, a phenom-
enon called “beats,” from the way it is manifested when two musical notes having

Figure 2.7 The normal modes of oscillation of two identical pendula
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nearly the same pitch are sounded together. The number of beats per second can
be shown to equal the difference between the frequencies of the two normal modes
and therefore proportional to the strength of coupling, between the two pendulums;
the tighter the coupling the higher the frequency at which the energy is exchanged
back and forth between the two pendulums.



Chapter 3
Oscillators

3.1 Feedback in Amplifiers

As already noted, an oscillatory system will, in the absence of a driving force to
maintain the oscillation, eventually come to rest. In order to keep a constant level
of oscillation, it is necessary to inject energy into the system, an action most effi-
ciently performed by a periodic force at a resonant frequency. It is not necessary
that the external source of energy itself be periodic, since the oscillating system
can be made to draw energy automatically at its own frequency; it is then called a
self-sustained oscillator. In essence, this is accomplished by driving the oscillator
from a power source from which the transfer of energy to the oscillator is regu-
lated by the oscillator itself. This amounts to using a power amplifier to drive the
oscillator with an amplified version of its own oscillation. To sustain the oscilla-
tion, the amplified power must be fed back to the oscillating system in the proper
phase to reinforce the oscillation already present. This is called positive feedback
and is generally associated with a rapid buildup of energy, which in every practical
situation, however, is always limited by the onset of some degradation of the con-
ditions that led to the buildup, or some imposed limit. Self-sustaining motion (not
perpetual motion) occurs in many kinds of systems. For example, in a very broad
sense a steam engine is a self-sustaining rotator, in the sense that valves controlling
the flow of steam into the cylinders to drive the pistons are in fact acting like power
amplifiers, whose output, the force on the pistons, in addition to driving the train,
also actuates the valves, providing positive feedback.

Positive feedback is familiar to most people as the cause of loud whistling
in a public address system when the amplification is set beyond a certain point
for a given disposition of microphone and loudspeakers. To understand the condi-
tions necessary to produce a self-sustaining oscillation, we must recognize that it
is not sufficient that there be feedback, it must be sufficient and in the right phase.
In a sound system the microphone converts any sound waves impinging on it into
a weak fluctuating electric current, or voltage, which we will simply call a signal.
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This is amplified to a much larger signal, more or less faithfully reproducing the
same fluctuations, and applied to the loudspeakers, which convert the current fluc-
tuations back into sound pressure waves in the surrounding air. At some distance
this sound wave will reach the microphone, completing a feedback loop. Depend-
ing on the directionalities of the microphone and the loudspeakers, and the distance
between them, the feedback signal may be stronger or weaker than the original
signal at the beginning of the loop. To stipulate the conditions for self-sustaining
oscillation, imagine the following experiment: Imagine that a magical shield could
be placed between the microphone and the speakers without in any way affecting
the acoustics, so that the loop is broken by the shield. Now imagine a frequency
synthesizer placed next to the shield, and let a succession of pure tones be sounded
at a known, constant intensity. For each of these tones suppose the level of inten-
sity arriving just on the other side of the shield is measured. Then the ratio of the
two intensities is called the loop (power) gain. Further assume that we could see
and analyze the waveforms of the sound waves on the two sides of the shield and
thereby determine their relative phase. We are now ready to state the conditions
for self oscillation: The loop gain must reach unity, and the loop phase difference
must be zero or a whole number of cycles. The question remains as to why the
oscillation takes place at nearly a single frequency.

To see why the oscillation condition is usually limited to a single frequency
requires a somewhat more detailed study of feedback amplifiers, a subject of great
practical interest and sophistication, not only for oscillators, but especially for the
converse problem of maintaining “stability,” that is, avoiding a system’s break-
ing into oscillation. Systems involving the feed-back of signals for the purposes
of automatic control of devices constitute the whole important subject of servo
mechanisms, a field central to the control of the frequency of free-running oscilla-
tors by atomic resonances, an essential feature of all atomic clocks.

The fundamental question we can ask about an amplifier is the following: If we
apply a time-varying signal at its input terminals, what signal will appear at the out-
put terminals? A perfect amplifier would be by definition one in which the output
signal is just a scale factor times the input signal, so that if the input and output sig-
nals were plotted as functions of time, they would be indistinguishable, apart from
a change of scale. In reality, we can only hope to approach this ideal by careful
design. An actual amplifier can fall short of the ideal with respect to two inde-
pendent requirements: speed and linearity. We have already mentioned linearity
in connection with waves in a medium; a similar definition applies to amplifiers.
It implies that the gain (or scale factor) should be constant, independent of the
amplitude of the signal, and if the input signal is the sum of two signals, the output
will be the sum of the same two signals magnified by a certain factor. In a prac-
tical device this cannot be realized over an indefinitely large input signal; when
driven beyond a certain signal level, the gain starts to decrease, and the output
will become distorted. A single frequency input signal will then yield a distorted
output with higher harmonic frequencies in its Fourier spectrum. We will there-
fore assume that the signal amplitude is in the range where the amplifier is linear.
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There remains the speed; that is, how rapidly the input may fluctuate and yet be
faithfully amplified. On the assumption that the amplifier is linear, we may apply
Fourier analysis, based on the Fourier expansion theorem, which we have already
encountered. Using it we can express any periodic signal having an arbitrary wave-
form as the sum of a series of simple harmonic oscillations having frequencies that
are whole multiples of a fundamental frequency corresponding to the period of the
signal. Since the amplifier is linear, we may treat each simple harmonic frequency
separately, find its output amplitude and phase, and then sum the outputs for all the
harmonics in the Fourier series to get the actual output waveform. In order to be
able to carry out this procedure, we need the gain and phase shift for each harmonic
frequency in the input. For this reason it is customary to specify the performance
of an amplifier by giving its frequency response curves, that is, a plot of its gain
and phase shift as a function of input frequency over the range for which the gain is
significant. Armed with these plots, we can compute the output waveform for any
input, no matter how complex.

An ideal amplifier would have a constant gain and phase shift for all input
frequencies. In reality, amplifiers will have a maximum frequency beyond which
the gain falls gradually to zero, accompanied by a variable phase shift. The aim in
amplifier design is, of course, first to have a stable amplifier, one that will not break
into oscillation; and second, to have the desired frequency response curves.

For example, a high-fidelity audio-frequency amplifier would be designed to
have a constant gain, that is, a flat curve, for frequencies lying in the audible range,
typically around 15 Hz to 15 kHz, and falling to zero outside these limits, as shown
in Figure 3.1. A radio-frequency receiver, on the other hand, may have a tuned
“front-end amplifier” that for station selectivity purposely has a response curve
that rises steeply at the tuned-in frequency to a narrow plateau, perhaps 30 kHz
wide, and falls as steeply on the other side. The 30 kHz band is to permit the

gain

50

40

30

20

10

frequency
(Hz)

phase
+p/2

−p/2

0

A f

20 50 100 200 500 1k 2k 3k 10k 20k 50k 100k

Figure 3.1 The frequency response curves for a typical high-fidelity audio amplifier
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audio-modulated radio signal to be amplified without distortion. Engineers speak
of “wide-band” and “narrow-band” amplifiers in referring to the gain and phase
plots versus frequency.

3.2 Conditions for Oscillation

If there is positive, or regenerative, feedback present, and the fraction of the signal
fed back is increased from zero, the system at first will not oscillate, but will remain
an amplifier with an enhanced gain and narrower bandwidth. However, as the feed-
back is increased, a point may be reached when the system will break into oscil-
lation, or in the context of servo systems, will become unstable. If the system is
linear, a powerful way to analyze the conditions under which the system becomes
unstable, a way that deals simply with amplitude and phase at the same time, is
to describe the system in terms of its response to the (complex) exponential form
exp(iωt) so that the amplifier gain A0(ω) in the absence of feedback, and β(ω), the
fraction of the output fed back to the input of the amplifier, are complex functions
of the frequency. The product A0(ω)β(ω) is then called the (open) loop gain, or
better, loop transfer function. The closed transfer function of the system can be
shown to be given by the following:

A(ω) = A0(ω)

1 + A0(ω)β(ω)
· 3.1

If we plot the locus of the loop transfer function for different values of the fre-
quency, ranging from ω = −∞ to ω = +∞, we obtain what is called then Nyquist
diagram, as illustrated in Figure 3.2. The condition for stability can now be stated
under some very broad restrictions: A system is stable if the locus of A0(ω)β(ω)
does not encircle the point (−1, i0) as ω varies over its entire range.

This criterion predicts that as the loop gain approaches the point (−1, i0), the
gain increases without limit—there would then be an output without an input. What
happens at that point, in fact, is that the circuit breaks into oscillation. This will
first happen at that frequency ν where the phase change around the feedback loop
is zero or a multiple of 360◦ and the loop gain first reaches one. However, once a
buildup of oscillation begins, the amplifier will be driven to voltage levels where
it becomes quite nonlinear, and the gain will begin to fall drastically. This leads to
distortion in the output waveform from the ideal pure sine wave and sets a limit
to the amplitude of oscillation.

We are now in a little better position to understand how positive feedback in a
public address system can cause a whistle, rather than a roar. The loop comprising
the microphone amplifier, loudspeaker, and the air medium has a loop gain and
phase shift that is a function of frequency; there will generally be one frequency
at which the phase shift is zero (or a whole number of cycles), and if the gain at
that frequency is unity or larger, oscillation will take place at that frequency. If this
frequency is in the audible range, a whistle will be heard. So far, we have made
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Figure 3.2 The Nyquist stability diagram

it plausible that if the loop gain is at least unity and the phase shift effectively
zero at a certain frequency, then if a signal is present in the system at that fre-
quency, that signal will build up rapidly and be sustained. But the question remains,
where did this signal come from in the first place? The answer is that it is in the
nature of electrical circuits that there will always be low-level random fluctua-
tions in the current and voltage forming a base on which applied currents and volt-
ages are superimposed. This random fluctuation is electrical noise. Even when all
extraneous sources of noise, whether “brush noise” from electric motors or noise
produced by the mechanical vibration of the circuit itself, called “microphonics,”
or atmospheric “static,” there will always remain two fundamental types of noise:
thermal (or Johnson) noise and shot noise, about which more will be said later in
this chapter.

3.3 Resonators

The fundamental questions in the design of self-sustained oscillating systems,
oscillators for short, that are destined to be used as a reference in the regula-
tion of a clock, are: Precisely what are the factors that determine the frequency,
and how can we minimize any instability in that frequency? From what has been
said, it is clear that the phase shift and gain around the loop should satisfy the
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condition for oscillation only at the desired frequency, even in the presence of
inevitable fluctuations in the operating conditions. This can be achieved if the con-
ditions for oscillation hold only at precisely the desired frequency, where the gain
curve has a very sharp peak rising above unity and the total phase shift at that point
passing through zero. The way this can be accomplished is to incorporate into
the feedback loop a highly frequency-selective element: a resonator. The figure of
merit of a resonator is what was defined in the last chapter as the quality factor, Q.
The higher the Q-value, the sharper the variation with respect to frequency it pro-
duces in amplitude and phase in the feedback, at its resonant value. In fact the
amplitude falls by one half and the phase shift changes by 180◦ in a fraction of
about 1/Q of the resonant frequency. That is, the resonance width is about ν0/Q.
It follows that the higher the value of Q is, the smaller will the frequency of the
oscillator be affected by any fluctuations in the system.

The practical form the resonator takes will, of course depend on the desired
stability and frequency range. One extremely important example in the radio fre-
quency range is the quartz crystal resonator, the subject of the next chapter. A less
stable choice in the radio-frequency range would be a simple combination of an
inductor and capacitor, which would take the form of a copper coil between the
ends of which is connected a parallel plate capacitor, as shown schematically in
Figure 3.3a. The analogous mechanical system is a mass connected to a spring,
shown in Figure 3.3b, in which the energy oscillates between the kinetic energy
of the mass and the elastic energy of the spring. In the case of the inductor and
capacitor, the electrical energy oscillates between that of a current in an induc-
tor (with its associated magnetic field) and that of a charge on a capacitor (with
its associated electric field). If the inductance of the coil is represented by L and
the capacitance by C , then the resonant L–C circuit has a resonance frequency
ν = 1/(2π

√
LC). Thus for a radio-frequency resonance, a small coil may have typ-

ically an inductance of 10 μH and the capacitor a capacitance of 10 pF. Substitution

C k

m

L

(a) (b)

Figure 3.3 (a) Resonant L–C circuit (b) analogous mechanical spring–mass system
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Figure 3.4 An L–C tuned transistor oscillator

into the formula yields for the resonant frequency about 500 kHz. Figure 3.4 shows
an L–C tuned oscillator in which by proper design, there is a net 360◦ phase shift
in the feedback loop starting (say) at the input to the amplifier, going through the
amplifier, and returning a fraction of its amplified output by way of the feedback
coupling provided by a resistor and capacitor. For suitable quiescent voltages sup-
plied to the amplifier, it will be, for small signals, quite linear, and the condition
for the onset of oscillation can be computed on that basis.

If we wish to construct a resonator with a very much higher resonant frequency
by reducing L and C , a point will be reached when it becomes impossible to use
“lumped” components, that is, objects that are constructed to have predominantly
only inductance or capacitance. A coil designed to have extremely low inductance
takes on the aspect of a U-shaped strip of copper, with not only inductance but
also a significant capacitance between its ends. Such might be the resonant element
in a UHF oscillator operating in the 100 MHz range.

If we consider even higher frequencies, reaching to the microwave region
around 1 gigahertz, that is, 1000 MHz, we note that at that frequency an elec-
tromagnetic wave, which has a velocity of 3×108 meters per second, has a wave-
length of 30 cm, which is on the order of the dimensions of ordinary objects. This
means that the microwave current in a wire of that length would not be the same
at all points, as is taken for granted at lower frequencies. In treating phenomena at
microwave frequencies and above, the focus is on the electromagnetic field in the
space around the conductor, which assumes the role of a boundary surface at which
the electromagnetic wave is reflected or absorbed. Resonators in the microwave
region are generally closed, hollow conductors called cavities, which are usually
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Figure 3.5 The field distribution of the TE011 mode in a cylindrical microwave cavity

cylindrical, with either a rectangular or circular cross section and provided with
a plunger for tuning the resonant frequency. Like the natural modes of vibration
of a violin string or the acoustic resonant modes in an organ pipe, these resonators
have a series of characteristic field patterns, called modes of vibration, each with a
discrete frequency. Surface electric currents do flow on the surface of the cylinder,
but the description in terms of the electric and magnetic field patterns is generally
more useful.

The different modes of vibration are classified and labeled with three numerical
indices to indicate the manner in which the field varies with respect to the three spa-
tial coordinates. In the case of the cylindrical resonator, the three mode indices
are related to the number of nodes various components of the field have in
the azimuthal direction (around the axis) and in the radial and axial directions.
A node in the field is simply where the field passes through a zero value. Since
there are two types of fields present, the electric and magnetic fields, a distinction
is made between those modes in which the electric field is perpendicular to the
cylinder axis (called TE modes) and those in which the magnetic field is perpen-
dicular to the axis (called TM modes). Thus a typical mode designation would
be, say, TE011 for the mode having no variation around the axis (zero nodes) and
going to zero once in the radial direction (at the cylindrical surface) and zero at the
plane end caps. Figure 3.5 shows the field pattern in a cylindrical microwave cavity
oscillating in one of its modes.

3.4 The Klystron Microwave Tube

A common oscillator in the microwave region of the spectrum is the reflex klystron,
a microwave vacuum tube that was developed during the Second World War and
was as critical to the development of radar as the triode vacuum tube had been to
radio.

Like all electron vacuum tubes it has a heated cathode as a source of electrons,
which are formed into a beam drawn towards a positive anode through which it
passes to enter the space between two grids that are part of one end of a reentrant
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Figure 3.6 The reflex klystron microwave oscillator

microwave cavity, as shown in Figure 3.6. At the opposite end, outside of the cavity,
is a negative electrode called the repeller. To show that it is capable of self-sustained
oscillation, we have to show that any oscillation that may be present from whatever
source will be amplified and fed back with the proper phase to reinforce the oscil-
lation, and make up for any energy losses that may otherwise cause the oscillation
to die away. In the case of the klystron, the amplification comes about through the
interaction of the electron beam with the electric field between the two grids. If a
small oscillation exists in the cavity, the electrons entering the space between the
grids in a constant stream will emerge with different velocities at different times.
During that part of the cycle when later electrons are given a greater velocity than
earlier ones, they will catch up and cause bunching to occur as they travel through
the “drift space” to the repeller electrode. As the name suggests, the electron beam
is repelled by the negative potential on that electrode, and the beam is folded back
on itself, returning in a bunched up form through the space between the two grids.
This will cause an increase in the oscillation if the timing of the bunches is such
as to reinforce the oscillation originally producing it. Since the cavity is in effect
being excited in a pulsed fashion, much like periodically striking a bell, the output
may not be spectrally pure unless a very high Q cavity is used as a filter. The tim-
ing of the electron bunches is sensitive to the repeller voltage, and therefore it is
easy to control the frequency of oscillation; unfortunately, by the same token, any
instability in the repeller voltage will translate into frequency instability.

3.5 Oscillators at Optical Frequency

If we continue our progression to still higher frequencies, we will reach the infrared
region of the electromagnetic spectrum around 1013 Hz, or a wavelength in free
space of about 30 microns. Beyond that we have the remarkably narrow optical
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region in the approximate wavelength range of 0.7 microns to 0.3 microns, which
perhaps not surprisingly is about where the spectrum of sunlight peaks.

Resonators used in oscillators in this spectral range are still called “cavities,”
although they are far from complete enclosures. As resonant structures, cavities
have to meet standards of precision in their dimensions that are dictated by
the wavelength for which they are designed. It follows that resonant cavities for
the infrared and optical frequency ranges must be fabricated with the precision one
associates with high-quality optical instruments. Cavities in this region usually take
the form of the open structure illustrated in Figure 3.7. M and M ′ are two precisely
parallel mirrors, constructed to have extremely high reflectivity at the wavelength
for which the cavity is designed. The distance between the mirrors usually con-
tains a very large number of wavelengths of the resonant radiation, that is, it is a
very high order axial mode. Unlike the microwave cylindrical cavity, these cavi-
ties, because of their open structure, strictly speaking do not “support” an infinite
discrete set of normal modes; nevertheless, as was theoretically shown prior to any
laboratory demonstration, they do support quasi-axial modes, but only the lowest-
order azimuthal and radial ones. The lowest radial mode has the field concentrated
along the center line of the mirrors and is therefore efficiently reflected, whereas in
the higher radial modes, the field is more spread out radially beyond the edges of
the mirrors, and therefore sharply attenuated. The order of the resonant axial mode
depends on the precise distance between the mirrors and for plane mirrors is given
by n = 2L/λ. If one of the mirrors is moved parallel to itself towards the other
mirror, the cavity will pass through an axial mode resonance every half wavelength
displacement of the mirror. An oscillator operating at an optical frequency using
such a cavity would most commonly have the amplification take place in the inte-
rior of the cavity itself. Since the amplification is obtained using a process known
as stimulated emission from suitably prepared atoms or molecules, such an oscilla-
tor is called by the acronym LASER (Light Amplification by Stimulated Emission
Radiation), now accepted as a common noun, laser. This designation was a natural
derivative of the original term maser, a low-noise microwave amplifier also based
on stimulated emission of radiation in certain materials. We shall have a great deal
more to say about lasers in succeeding chapters.

The most common process of light emission in everyday experience is through
spontaneous emission; it is the process in all common light sources such as an
incandescent solid or gas flame. Whenever the internal motions of constituents
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of matter are agitated or raised to some excitation level above their ground state,
the excitation energy is eventually given up either through random collisions with
other particles, ultimately being degraded into heat, or in the form of radiation.
Unlike the radiation resulting from stimulated emission, whose phase is linked to
the radiation stimulating it, in spontaneous emission there is no such phase corre-
lation, the result is incoherent light. Unless very special conditions obtain to allow
certain specific modes of the radiation field to build up, spontaneous emission will
dominate; on the other hand, if the excited molecules are placed in a suitable opti-
cal cavity, the optical field strength can build up efficiently in certain few normal
modes of the cavity, and the relative probability of stimulated emission can be
greatly enhanced.

In incoherent light the radiation field is the result of combining a large number
of waves with random phases, so that there is no well-defined orderly variation in
phase as we go from point to point in the field, or from time to time at any fixed
point. A test for coherence is whether it is possible to observe spatial or tempo-
ral interference as manifested in beats. Spatial beats, called interference fringes,
are analogous to moiré patterns, while temporal beats are a periodic rise and fall
in the amplitude. Such interference patterns are not observable between different
incoherent sources and only under very restricted conditions even from the same
source. It is possible to derive a partially coherent wave from an ordinary source,
as Young did in his classic two-slit interference experiment to demonstrate the
wave nature of light, by using light originating from an extremely small area of a
source.

Under conditions obtaining in an optical cavity with carefully aligned highly
reflecting mirrors, where longitudinal modes have a high Q, the radiation field emit-
ted by suitably prepared atoms can build up in just those modes to the point where
stimulated emission is dominant. Although spontaneous emission is always present
to some extent, the stimulated radiation not only has remarkable coherence extend-
ing over large distances, but it is also directed in a characteristically sharp beam
with a strikingly small divergence angle. We are accustomed to seeing light from
ordinary sources spread out in a somewhat diffuse cone even when some provision
is made to concentrate the beam; but the sharpness of a laser beam is extraordi-
nary. One of the few examples of a conventional light source producing a remark-
ably intense beam of relatively small divergence is the searchlight used in World
War II to scan the skies for bombers at night, which used an extremely bright arc
source and collimating optics, which directed the light into a well-defined beam in
order to increase its range. The explanation of the high directionality of the output
light beam of a laser is to be found in the design of the resonant cavity. As already
stated, only the lowest radial modes have a sufficient Q to permit oscillation; all
others would have a radial distribution of intensity that extends beyond the edges
of the mirrors. Nevertheless, even for the lowest radial mode there will be an angu-
lar spread of the optical wave through the phenomenon of diffraction by a mirror of
finite radius. For a mirror of radius R the divergence is, however, only on the order
λ/πR radians. For example, if λ = 0.5 μm and the mirror radius is 1 cm, we would
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find for the divergence angle only 9×10−4 degrees. In practice, this theoretical
limit is rarely achieved; more typically the divergence angle is closer to 0.1 degree,
still an extraordinary degree of directionality.

It must not be assumed that an oscillator based on a resonant structure with
many modes can oscillate in only one mode at a time. It is indeed possible that
the gain is sufficiently high that in addition to the mode with the highest Q, others
may meet the oscillation criterion, and oscillate at the same time. In fact, it often
happens that the total power rather than spectral purity is more important, in which
case the oscillator is allowed to oscillate simultaneously in many modes. On the
other hand, if spectral purity is the primary objective then steps must be taken to
suppress all but the desired mode, by in effect degrading their Q.

3.6 Stability of Oscillators

3.6.1 Definition of Frequency Stability

The frequency of any standard is subject in varying degrees to random variation,
and the indicated time derived from it will ultimately drift. It is of great importance
both to manufacturers and users of standard oscillators to have an agreed-upon fun-
damental way of specifying the frequency stability, or more accurately, instability
of these instruments. In the statistical analysis of their instabilities, it is generally
assumed that the fluctuations obey what is called the condition of stationarity. This
means roughly that the frequency (or phase) as a function of time does not change
if the instant from which we start measuring time is displaced. This complicates
matters, since as we shall see, inherent sources of long-term drift exist in the fre-
quency of, for example, a quartz oscillator; in addition, there are a host of vari-
able environmental and electronic factors that add unpredictably to the instability
of an oscillator, again with the possibility of a steady drift. Such “deterministic”
long-term drift would obviously manifest itself, for example, by the given standard
appearing to continue to gain or lose time with respect to a primary standard over a
protracted length of time. Of course, if we wait long enough, the trend may reverse,
so it may be arbitrary to stipulate a span of time beyond which an instability must
be separated out in order that the residual obey stationarity. Nevertheless, as a prac-
tical matter this must be done, since the duration of a measurement is constrained if
nothing else by the lifetime of the person doing the measuring!. Thus the statistical
development of the theory requires that the time data be numerically fitted by the
sum of a random part and a slowly varying deterministic part.

There are two complementary ways of characterizing the random fluctuations
in the frequency or phase of an oscillator: the frequency domain description in
terms of the Fourier power spectrum of the fluctuations in the measured quantity,
which is obtained using a spectrum analyzer, and the time domain description,
in which errors in the phase or frequency over different sampling intervals of time
are statistically analyzed.
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The common approach to specifying a random fluctuation in any physical
quantity is to repeat its measurement many times under presumed identical con-
ditions, and then to take as a measure of the fluctuation the standard deviation, in
the sense of ordinary statistical analysis. The case of instabilities in a time stan-
dard is unique in that the physical quantity under study is a time interval and the
measurements are repeated sequentially in time, that is, at different values of the
quantity being measured. Furthermore, the instability arises from different types of
sources, each of which may have a different dependence on time.

To get a complete description of the instabilities in the time domain, therefore,
a large number of sets of repeated measurements must be made, one set for each
selected time interval in a range of time intervals extending perhaps from 1 second
to 10,000 seconds. In the most direct (but not necessarily the most accurate) method
of obtaining these data, the time signals from the reference standard are used to
gate a frequency counter set to count the output frequency at, say, 5 MHz from
the standard under test. The readings of the counter, which can be automatically
recorded, give the number of oscillations of the standard contained in each fixed
interval. If the frequency counter is zeroed after each interval, and its readings
are n1, n2, n3, . . ., then an accepted measure of the instability, called the Allan
variance, is defined as follows:

σ2 =
〈
(ni+1 − ni )

2

2

〉
ave

, 3.2

where the brackets 〈 〉 symbolize the average over many equal intervals and i = 1,
2, 3, . . . , N−1, where N is the total number of times the counts are taken for the
same time interval. We note that the set of numbers (n2 − n1), (n3 − n2), . . . ,
(nN − nN−1) is known in the theory of numerical analysis as the first difference
of the set n1, n2, n3, . . . nN , and that the variance σ can be zero only if all the n’s
are equal, that is, if the system under test tracks precisely the standard being used.
Without attempting to go any deeper into the matter, we will accept the fact that
in defining instability this way, we have a practicable measure that avoids certain
difficulties in the statistical analysis of the long-term behavior of time standards.

This definition, however, cannot be implemented with accuracy for very short
time intervals; it is supplemented by the frequency domain Fourier spectrum of the
fluctuations in frequency (or phase) looked on as functions of time. This presumes
that an electronic circuit is used to convert such fluctuations into a proportional,
time-varying voltage whose square is a positive definite quantity proportional to the
electrical power developed in the circuit. This power is analyzed by an instrument,
called for obvious reasons a spectrum analyzer, to give the power per unit fre-
quency interval (hertz) in its Fourier spectrum. This should not be confused with
the Fourier spectrum of the oscillatory signal of the oscillator itself; rather, it is the
spectrum of frequencies with which the phase of the oscillatory signal varies in
time. Had we been dealing with fluctuations of amplitude rather than phase or fre-
quency, it turns out that we would have had a simple relationship between the spec-
trum of the signal itself and the spectrum of the amplitude looked on as a function
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of time; in fact, the former is simply the latter displaced along the frequency scale
an amount equal to the frequency of the oscillatory signal.

This description of the phase instability in the frequency domain based on
Fourier analysis provides a useful way of distinguishing the different types of noise
that underlie this instability. This is done by specifying the power distribution in
the spectrum of the noise; it turns out that the more common types of noise exhibit
a simple power-law dependence on frequency. Thus if the spectral power distribu-
tion varies as 1/ν2, it is a random walk in frequency; if the dependence is as 1/ν,
it is flicker frequency noise; finally, if the distribution is independent of frequency,
that is, the graph is flat, it is called white frequency noise. Of course, these distri-
butions are determined not only by the fundamental sources producing them, but
also by any frequency dependence in the circuitry. These power laws translate into
equally simple dependence of the variance σ on the constant time interval used in
its measurement. Thus for the important flicker noise it can be shown that σ is inde-
pendent of the length of the interval, whereas for white frequency noise σ falls as
1/τ1/2. Now, for circuits at ordinary temperatures operating in the radio-frequency
range, thermal (Johnson) noise is very nearly “white” (the same power density at
all frequencies), so that since this is a universal source of noise, we frequently see
a plot of σ versus τ exhibit the 1/τ1/2 characteristic of this type of noise, at least
up to a certain point, after which flicker noise becomes dominant, and the graph
flattens out.

We will now attempt to develop the concept of stability in the frequency of
oscillators on a more quantitative footing and discuss the factors that may limit it.
An ideal oscillator generates a signal that is a pure sinusoidal oscillation with a
Fourier spectrum consisting of an infinitely narrow line. We use this ideal as the
point of departure and treat any fluctuations in the output of the oscillator as devi-
ations from that ideal. The presumption is that the fluctuations are small, that we
are dealing with an approximately harmonic oscillation on which are superposed
possibly random fluctuations in amplitude and phase. Of course, that leaves the
question open as to what value of frequency the fluctuations should be referred.
This can be answered, at least conceptually, by assuming that we have a very large
number of identically constructed oscillators, all of which are set oscillating at the
same instant t = 0. Suppose that after some arbitrary interval of time t we record
simultaneously the number of oscillations and phase angles for all the oscillators
in the group (or ensemble). We can define a reference frequency as the average
frequency taken over the ensemble; it would follow that the deviations from that
frequency have a zero average.

This assumption deserves examination, since it is clearly possible that there
could be sources of instability that tended to produce fluctuations more in one
direction than another. On this account we draw a distinction between fluctuations
that are reasonably believed to be random and those that are secular, a drift in one
direction. In practice, it is simpler, and a good deal cheaper, to use one oscillator,
rather than a large ensemble, and simply repeat the phase measurement over equal
intervals of time as often as desired. Of course, it is assumed in this case first that
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an acceptable time standard is available, and second, that the fluctuations present
are of a nature that it is irrelevant at what point in time a measurement interval
begins. Random fluctuations for which that is a valid assumption are said to be
stationary; it is generally assumed to be the case for all the sources of fluctuation
that concern us.

3.6.2 Fundamental Noise

In addition to common man-made, or “artificial,” sources of random fluctuation,
or noise, oscillators are subject to two fundamental types that can be traced to
the atomic nature of matter and electrical charge. In a simplified model we may
picture a metal conductor as consisting of positive ions arranged in a rigid lattice,
embedded in a sea of electrons. At all temperatures above absolute zero (−273◦C)
the ion lattice and the electrons are in a state of thermal agitation. Imagine a closed
geometric surface enclosing a part of the metal; the number of electrons inside
that surface will fluctuate as electrons cross the surface in their random motion.
This means that part of the metal will have a net electrical charge that fluctuates
between positive and negative but, of course, on the average remains neutral. This
fluctuation in charge with its concomitant fluctuations in voltage and current is
called Johnson noise.

Again because of the fact that the charge carriers are individual particles, they
do not advance like a continuous band of charge, but rather like a disordered mob,
and the number crossing a given surface in unit time, which after all is the electric
current, will fluctuate. The precise degree of fluctuation depends on the extent to
which there is correlation between the positions of individual electrons, due, for
example, to long-range forces of interaction between them. We note that correlation
is in principle never totally absent, ultimately because of the quantum effects of
an overlap of electron wave functions. Since there is a huge number of electrons
in even a moderate current, the current will not, relatively speaking, fluctuate very
much. This fluctuation is distinct from thermal noise, and it was called by Schottky,
who identified it, shot noise. A less sporting metaphor would be raindrops falling
on a roof.

As deviations randomly fluctuating in time, noise current has random phase,
and what information can be gleaned about the type of noise that might be present
can come only from studying the Fourier power spectrum. Thus, for example, shot
noise has a power spectrum that is flat, that is, the amount of power in a fixed
frequency interval is independent of where that interval lies on the frequency scale.
On the other hand, the power spectrum of Johnson noise is flat for all frequencies
until the size of the quantum hν reaches the order of the energy of thermal agitation;
except at extremely low temperatures, this means frequencies in the infrared region
of the spectrum.

Like many other electronic devices, oscillators exhibit another type of noise:
flicker noise. The term originated in the age of vacuum electron tubes in reference
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to the flicker effect, which is the fluctuation in the tube current on account of
variations in the electron emission from the hot cathode. The term is also applied
to noise observed in solid-state devices such as Schottky barrier diodes, where it is
attributed to multistep tunneling by charge carriers. As a random time process, it
is best characterized by its Fourier spectrum (or to be more precise, the frequency
spectrum of the square of the fluctuation); it varies inversely as the frequency and
is therefore often referred to as 1/ f noise ( f for frequency), since its power spec-
trum has a 1/ν dependence. In the case of oscillators, this type of fluctuation in the
frequency is particularly unwelcome, since it increases without limit as the noise
frequency approaches zero. This means that slow fluctuations, which correspond to
low ν in the Fourier spectrum, are large, and they continue getting larger for longer
and longer times of observation. This implies that we will see the frequency wan-
der off without limit if we wait long enough! This incidentally also invalidates the
assumption that the noise processes are stationary. It would seem to be a discour-
aging prospect; it seems to say we can never build a clock that will not eventually
drift without limit. But let us not overstate the case; it is probably not a funda-
mental type of noise in the sense that thermal and shot noise are fundamental. It
is possible, as was done in the case of vacuum tubes, to reduce the 1/ f noise by a
proper choice of operating and manufacturing processes. In Figure 3.8 are shown
the power spectra for the three types of noise.

In practice, the noise present in oscillators may be classified as follows:
(a) Those due to the fundamental shot noise and system parameter fluctuations, for
example, which modulate the signal itself; and (b) so-called additive noise which,
as the name suggests, is noise added to the signal and is therefore independent
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Figure 3.8 The power spectrum of (a) Johnson noise at low temperature, (b) shot noise, and
(c) flicker (1/ f ) noise
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of the size of the signal. The latter can arise from Johnson noise in the circuits
associated with the resonator, or amplifiers, etc.

In precision oscillators the amplitude of oscillation of the resonator is stabilized
at low levels; it is expected therefore that additive amplifier noise will be significant
for short sampling times but will tend to average out over longer times. In contrast,
parameter fluctuations and shot noise lead to a random walk in phase.

The random walk problem in statistics is a special case of a classical problem
whose solution and its ramifications are associated with such illustrious names as
Newton, Poisson, and Gauss. It is simply stated: What is the probability of having
a number m of successes in n tries, if the probability of success in one try is given
as (say) one in N? Intuitively, we would not be surprised to find that the average
number of successes is simply n/N . Of course, we should not expect that every time
we make a set of n tries we will have the same number of successes; if we repeat
the process over many sets of tries and record each time the number of successes,
we should find that number fluctuating equally above and below the average value.
A measure of this dispersion in the value of the number of successes is obtained
by averaging the square of the deviation of this number from the average value.
The result is always a positive number, whose square root gives what is called the
standard deviation. We state without proof that this quantity, usually denoted by σ,
has a value for our problem given by σ2 = np(1− p) where p = 1/N . Now we are
ready to pursue the random walk problem, which can arise in various guises, but
is usually stated in colorful terms such as: A drunk takes equal steps L feet long,
as likely in one direction as in the opposite direction; how far does he get after n
steps? Here we can assume that a forward step is counted a success and occurs
with a probability of 1/2. Now, if m of the total n steps are forward, then he has
advanced mL feet and gone back (n − m)L feet, for a net gain �L as follows:

�L = mL − (n − m)L = 2
(

m − n
2

)
L . 3.3

Now, the average value of m is simply n/2, and if we substitute for m this average
value in the expression for the net distance, we find that the result is zero, which is
not unexpected. Of course, as stated earlier, the actual distance after a particular set
of n steps can be anything from zero to nL, with a probability distribution charac-
terized by the standard deviation in �L , which we will represent by σL . Using the
expression we have assumed for the standard deviation in the number of steps for-
ward, in this case σ2 = n · 1

2

(
1 − 1

2

)
, we find a formula for the standard deviation

in a random walk that will be cited in many contexts in the future:

σ2
L = 4

〈(
m − n

2

)2
〉

L2 = 4σ2L2 = nL2. 3.4

where 〈 〉 denotes average value.
This indicates that whereas the average of the distance traveled is zero, being

equally positive as negative, the more steps that are taken the farther he may be
found from his starting point. If these arguments are applied to a process in which
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each step is repeated at constant intervals of time, then n is simply proportional to
the total time, τ, and therefore σ is proportional to τ1/2. It may be hard to draw a
comparison between the effect of random noise on the phase of an oscillator and
the random walk of a drunkard, but it can be shown that such is the case, and the
standard deviation in the phase of an oscillator is proportional to τ1/2, where τ is
the length of time the oscillator is free to oscillate before its phase is measured. The
corresponding fractional standard deviation in frequency is inversely proportional
to τ1/2.

Now, for circuits at ordinary temperatures operating in the radio-frequency
range, thermal (Johnson) noise is very nearly “white” (the same power density
at all frequencies), so that since this is a universal source of noise, we frequently
see a plot of σ versus τ exhibit the 1/τ1/2 characteristic of this type of noise, at least
up to a certain point, after which flicker noise becomes dominant, and the graph
flattens out.



Chapter 4
Quartz Clocks

The use of the stable vibrations of a quartz crystal to control clocks and watches
has become so common in recent years that in this age of digital sophistication,
we tend to take for granted the revolutionary advance these quartz-controlled time
pieces represent. It is true that through the incomparable skill and ingenuity of
Swiss watchmakers, the precision achieved in the fabrication and hence perfor-
mance of mechanical watches has reached truly admirable heights; however, the
microelectronic revolution of the 1960s has made it possible to miniaturize the
far superior crystal-controlled clock into a wrist watch of greater constancy at a
fraction of the cost.

4.1 Historical Antecedents

4.1.1 Frequency Control of Radio Transmissions

The application of high-frequency quartz resonators to regulate electrical oscilla-
tors was originally made to provide a sufficiently stable frequency reference
for radio transmitters. Their need for high stability arises principally from two
considerations: First, any instability in the frequency of the radio wave, whose
frequency or amplitude is modulated to convey the audio signal, would make it dif-
ficult, if not impossible, to recover the signal (that is demodulate) at the receiver.
To understand this, we need to recall the basic design of radio receivers at the
time. When radio waves fall on an antenna, they induce a weak high frequency
current signal, which must be amplified prior to recovering the audio signal super-
imposed on it in the detector stage. To circumvent the difficulties of designing a
stable multistage radio-frequency amplifier, whose stages would have to be retuned
to receive different stations, E.H. Armstrong is given credit for having proposed
around 1918 what came to be called the superheterodyne design. This is based
on generating from the incoming radio-frequency signal a fixed intermediate fre-
quency (IF) signal, impressed with the same audio signal, by a heterodyne method,
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that is, by generating a “beat” frequency in close analogy with the beats heard when
two close notes are sounded together. This down-conversion to a lower fixed fre-
quency is accomplished using a nonlinear circuit element called a mixer. This has
two inputs: the incoming radio signal and a pure single frequency signal, generated
by a tunable local oscillator. The output of the mixer will contain Fourier compo-
nents not only at the input frequencies, but also at intercombination frequencies,
among which is one at the difference, or heterodyne, frequency. This signal, whose
frequency is intermediate between the incoming radio signal and the ultimate audio
output, is filtered and amplified by a multistage amplifier, the IF amplifier, which
is narrowly tuned to a fixed frequency. As the local oscillator is tuned to differ-
ent frequencies, different incoming radio frequencies will produce a heterodyne
signal within the pass-band of the IF amplifier and ultimately produce an audio
output. The audio signal is recovered by passing it through a circuit, the detector
stage, which converts the modulations in frequency or amplitude of the IF signal
(depending on whether it is an AM or FM signal) into simple modulations of a
voltage or current at audio frequencies. Any instability in the radio frequency at
the transmitter end, or in the local oscillator at the receiver, will cause a fluctuation
in the IF frequency signal and a consequent increase in noise and loss of signal.
More recent developments in radio communications techniques may have altered
the place where in the system frequency stability is required, but not the fact of
its need.

The second reason for the need to closely control the frequencies of radio
transmitters is that there are so many users of radio communication, especially
through long-range broadcasts, that it becomes necessary to allocate frequency
bands and require broadcasters to adhere to their assigned frequency within very
narrow limits. The allocation of broadcast frequencies and the specification of fre-
quency tolerance of transmitters form part of the work of the Comité Consultatif
International Radioéléctrique (CCIR). The military services often have even more
stringent requirements on stability.

4.1.2 Discovery of the Piezoelectric Effect

The growing demands for improving the stability of oscillators spurred the search
for a resonator having an isolated mode of vibration of the highest possible Q and
frequency stability. Quartz, among a select class of crystals, was long known to
have excellent elastic properties with very low internal friction. Of equal impor-
tance, crystalline quartz also exhibits a phenomenon called piezoelectricity, an
effect found in some crystals satisfying certain symmetry restrictions in which
the application of pressure along particular directions produces electrical polar-
ization; that is, surface charges develop, which are proportional to the pressure.
This permits any mechanical vibrations in the crystal to produce an oscillating
electric current in an associated electronic circuit. Conversely, if a quartz crystal is
placed between a pair of metal plates carrying opposite electric charge, the crystal
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is stressed as if under pressure. This converse effect provides a way of excit-
ing vibrations in the crystal simply by using an alternating voltage on the metal
plates.

These effects are among a number involving solids that were discovered in the
19th century, including magnetostriction, in which a dimension of certain mate-
rials is increased by magnetization along that dimension; and pyroelectricity, in
which a crystal develops electrical charges through temperature gradients. In 1880
Jacques and Pierre Curie (the latter was to become celebrated as the husband of
Marie Sklodowska, the discoverer of radium) first published their studies on piezo-
electricity, in which they analyzed the conditions under which the effect can be
observed and the restriction on the symmetry of the crystals exhibiting this effect.
It was recognized even then that piezoelectric crystals were potential acoustic
sources and detectors; however, it was not until the means of producing continuous
electric oscillations became available at the beginning of the 20th century through
the invention of the vacuum-tube triode amplifier that the use of these crystals as
acoustic transducers became a reality. It should be noted that it was only four years
prior to the Curies’ published studies that Bell invented the telephone, a develop-
ment that stimulated renewed interest in the science of acoustics, and ultimately
the birth of a new science: ultrasonics.

4.1.3 Ultrasonic Transducers for Sonar

Ultrasonic vibrations and waves are those of sound whose frequency is beyond the
audible range, which for most people extends to around 15 kHz. The immediate
impetus to generate ultrasonic waves came from submarine warfare in World
War I, which led both Britain and France to embark on intense research programs
to develop underwater acoustic receivers for submarine detection, and ultimately
to the idea of sonar. We note that since the velocity of longitudinal sound waves in
quartz is around 6000 meters per second, a quartz resonator say 3 cm long would
have its lowest resonance frequency V/2L at 100 kHz, well beyond the audible
range, and hence ultrasonic. It is interesting to note in passing that this ultrasonic
wave has a wavelength in sea water of λ = V/ν = 6 cm, the same order of magni-
tude as the microwaves initially used in radar, and therefore would have the same
limits on its ability to “see” detail as those of radar. Of course, radar is impossible
underwater because the electrical conductivity of sea water allows only very low
frequency radio waves to penetrate it. The successful development of sonar is asso-
ciated with the names of the Russian Constantin Chilowsky and Paul Langevin, the
noted French physicist who is best known for his work in magnetism. The use of
piezoelectric sources was considered and rejected a number of times, until finally,
in 1917, pure quartz crystals were successfully used both in the source and receiver
in a demonstration of sonar over a range reaching 6 km.

It was out of that wartime stimulus that came the application of quartz res-
onators to the control of frequency in electrical oscillators. The credit for this
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development belongs to Cady, who as early as 1917 noted that specimens cut
from crystals of quartz and rochelle salt had an unusual effect on an electri-
cal circuit when “driven” by electrical oscillations near their natural modes of
vibration. He further found in researches after the war, published in 1921, that
when placed in the circuit of a vacuum-tube oscillator, these crystals exerted a
remarkable stabilizing effect on the frequency of oscillation. As almost always
happens, when the course of development of a field has reached a certain point, the
stage seems to be set for certain discoveries to be made, and many actors are drawn
into the act. Cady’s patents on the piezoelectric resonator did not go unchallenged:
Nicholson, of Western Electric Company, had been actively exploiting applications
of piezoelectric crystals, for example in microphones, loudspeakers, and phono-
graph pickups, and he applied for patents in 1918 that challenged Cady’s patents.
It was about this time that G.W. Pierce invented an improved crystal-controlled cir-
cuit, also unsuccessfully challenged by Nicholson, which found universal adoption
for the frequency control of radio transmitters and receivers.

4.2 Properties and Structure of Crystalline Quartz

It has long been known that crystals such as quartz have excellent elastic proper-
ties with extremely low internal friction when deformed, as well as exceptionally
high strength and low thermal expansion. In fact, fused quartz fibers have long
been used for suspension in torsion balances, by which small torques acting on
large suspended masses are measured. A fused quartz fiber has the same breaking
strength as a steel wire of the same diameter, but it has a smaller modulus of rigidity
under torsional stress, that is, it twists more easily. But the most important prop-
erty it has, from the point of view of constructing a high-Q resonator, is its nearly
perfect elasticity, in the sense that when a stress is removed it returns to its orig-
inal unstressed form. This implies that whatever work is done in deforming it, is
stored, without loss, as elastic energy, which will very nearly be totally regained
when the stress is relieved. High Q means a low intrinsic rate of loss of vibra-
tional energy, and as we have seen, it is associated with a very sharp resonance
spectrum. This quality confers two important advantages on the resonator: First,
its relatively undamped oscillation requires a minimal amount of coupling to the
amplifier to sustain the oscillations; and second, the sharpness of the resonance is
important to minimize the effects of noise and fluctuations in the gain of the ampli-
fier on the oscillation frequency. However, even with these advantages, the stability
in frequency will be ultimately limited by noise, both short-term noise, which may
be thought of as introducing an uncertainty into the frequency, and long-term drift
in the resonance due to structural “aging” in the resonator. Finally, we should recall
that provision must be made to limit and stabilize the level of oscillation; this also
affects the frequency, since any fluctuation in amplitude shows up as a broadening
of the spectrum and uncertainty in the frequency.
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Other advantages of quartz are first, that its elastic properties are far less sen-
sitive to environmental conditions, such as temperature and humidity, than they
would be for most other solids, and second, the extremely small degree to which
its dimensions change with temperature. It is this fact that explains its extraordi-
nary resilience under extreme thermal stress; for example, a quartz rod heated to
red heat and plunged into cold water will not crack. Of course, the merits of quartz,
or of any material, must ultimately be judged relative to the demands of the appli-
cation to which it is to be put. We will, in fact, see that in order to realize the best
performance in a quartz resonator, the two properties in which it excels over other
candidates are the ones that leave room for further improvement: thermal expan-
sion and long-term constancy in elastic properties.

Crystalline quartz, whose chemical composition is silicon dioxide (SiO2),
otherwise known as silica, is a three-dimensional lattice, held together by what
chemists call covalent bonds, with each Si atom surrounded by four O atoms at
the vertices of a regular tetrahedron, and each O atom joined to two Si atoms. The
term bond refers to an interatomic force that pulls the atoms together up to a cer-
tain equilibrium separation and that requires a certain energy to dissolve. Having an
electrostatic origin, these equilibrium bonds exist only according to quantum the-
ory, as first comprehensively explained by Linus Pauling. In the case of crystalline
quartz, we are dealing not with the stability of three particles, as the chemical for-
mula SiO2 might suggest, but with an entire crystal. That is, the problem does not
separate into small aggregates of atoms we call molecules; the crystal is one big
molecule. Of course, the regular, ordered arrangement of the atoms in the crystal,
and the symmetry it exhibits, will help make the theoretical analysis of its struc-
ture more tractable. It is not our intention to pursue the theory here however, but a
brief sketch of the structure of quartz may help us see the origins of its remarkable
properties.

The valence electrons in Si form four covalent bonds, like outstretched arms
at the mutually maximum but equal angles in three dimensions, which leads to
tetrahedral symmetry, as shown in Figure 4.1. The O atom, on the other hand, has
two unoccupied valence states (orbitals, as the chemists call them), only one of
which lines up with a Si atom, to form a single bond. This leaves the O atom with
its second vacant orbital, which forms a single bond with another Si atom. This
continues indefinitely throughout the solid in one interconnected 3-dimensional
lattice, as shown in perspective in Figure 4.2.

Thus unlike CO2, in which the four covalent bonds of C are satisfied by a pair of
double bonds with two O atoms, thus producing a complete molecule, SiO2 forms
a continuously extended 3-dimensional network. The atoms are strongly bonded,
with the crystal having a high melting point at 1710◦C.

Like all crystals, that of quartz has its characteristic symmetry properties.
From the tetrahedral arrangement of the Si–O bonds, we can see (especially with
the aid of a 3-dimensional model) that the crystal has a 3-fold axis of symme-
try. What is a little more difficult to see is that there are three 2-fold axes of
symmetry perpendicular to the 3-fold axis. Quartz belongs to a crystal symmetry
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Figure 4.1 The tetrahedral symmetry of the bonds holding the Si atom to the O atoms in
crystalline quartz

Si

O

Figure 4.2 The quartz crystal lattice

group designated by crystallographers as 32, because of the 3-fold symmetry axis
usually designated as the z-axis and the three 2-fold axes, one of which is taken as
the x-axis. An axis perpendicular to both the z-axis and the x-axis is defined as the
y-axis, as shown in Figure 4.3. However, the important symmetry property quartz
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Figure 4.3 The x-, y-, and z-axes in a quartz crystal
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Figure 4.4 The symmetry operation of inversion through a center

has, or we should say does not have, is a center of symmetry. This means that
if we imagine each atom of Si and O moved to a diametrically opposite position
with respect to any fixed point as center, the result would be distinguishable from
the initial configuration. Mathematically, it is lack of symmetry under the oper-
ation of reversing the signs of all the coordinates of all the atoms in the crystal.
The operation of reversing all the signs of the coordinates is equivalent to a rota-
tion through 180 degrees about an axis, followed by taking the mirror image in a
plane perpendicular to that axis, as illustrated in Figure 4.4. Almost all common
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objects have low symmetry and lack a center of symmetry, for example a table or
keyboard, although some do, such as a brick or an American football; however,
among crystalline substances, a center of symmetry is common.

Our venture into the crystallographic symmetry of quartz is intended to pro-
vide some basic understanding of the electromechanical property that makes it so
useful for our purposes: the piezoelectric effect. It is the lack of a center of sym-
metry that makes it possible for crystalline quartz to display this effect. To jus-
tify this statement we can argue that the piezoelectric effect connects a pressure
applied to the crystal with an electrical separation of charge, or electrical polar-
ization as it is called. The crystal as a whole is, of course, electrically neutral and
remains so. However, the balance of charge in the constituent atoms is distorted by
the electrons being displaced in a particular direction relative to the positive inner
cores of the atoms in the crystal lattice. At least this is an adequate model of what
occurs. The result is that unbalanced electrical charges of opposite sign appear on
opposite sides of the crystal. Now imagine the same pressure applied to the crys-
tal along the same line after it has undergone the symmetry operation we have
just described; the electrons should be displaced in the opposite direction, since
pressure is the result of compression and acts symmetrically in both directions.
If, in fact, the crystal had a center of symmetry and the crystal were therefore the
same after the symmetry operation as before, then unless the electron displacement
is zero, we would have a crystal in which the electrons were displaced in opposite
directions under the same conditions, which is impossible. It follows that a prereq-
uisite for a crystal to display piezoelectricity is that it should not have a center of
symmetry.

Actually, we can impose the same restriction on crystals that can display a
dependence of their polarization on a quadratic function of an applied electric field,
E , since like pressure, E2 is not changed under a reversal of the coordinates. This
is extremely important in selecting crystals suitable for nonlinear optical studies,
such as for example producing second-harmonic light waves from intense (laser)
light passing through such a crystal. If the optical frequency polarization induced
in a crystal by an optical wave of frequency ν has some dependence on E2 of the
incoming wave, so that the time dependence is say sin2(ωt), then a wave at the
second harmonic is generated, since sin2(ωt)= 1/2[1 − cos (2ωt)]. The first of such
work was published in 1961 and consisted in generating a second-harmonic violet
beam at λ = 0.35 μm, using a red beam from a ruby laser at λ = 0.69 μm focused
on a quartz crystal.

4.3 Modes of Vibration of a Quartz Plate

Because of the crystalline structure, the piezoelectric effect and its converse relate
mechanical stress to electrical polarization in ways that depend very much on the
direction these quantities have in relation to the crystal axes. Thus an electric field
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Figure 4.5 The various modes of strain in a quartz crystal plate

along an x-axis is coupled to a longitudinal strain in the same direction, together
with a strain of equal magnitude but opposite in sign along the y-axis. A change in
the sign of a strain is simply to replace, for example a compression with a tension
and vice versa. Furthermore, an electric field applied along the y-axis causes a
shear strain in the x−y plane.

Figure 4.5 illustrates various types of strain, including torsional (twist) and flex-
ural (bending), in addition to the longitudinal (or extensional) and shear we have
already mentioned.

To cover a wide frequency range, from say 1 kHz to 100 MHz, quartz bars
or plates are used in extensional, shear, or flexural modes of vibration. For the
lower end of the frequency spectrum, the flexural mode in a bar can be used up to
around 100 kHz, whereas operating in the extension mode extends the range up
to 300 kHz. A face shear mode allows the range 300 kHz to 1 MHz to be covered,
while a thickness shear mode can extend the range to 30 MHz and beyond. For the
higher frequencies, higher odd-harmonic (overtone) resonances, such as the third
or fifth overtone, are often used to obviate the need to use fragile crystal plates
of extremely small thickness. The best available precision crystals vibrate in the
fifth-overtone thickness shear mode at frequencies of 5 MHz or 2.5 MHz.

In order to efficiently and selectively excite these various modes of vibration,
the electric field must be applied in the proper direction with respect to the crys-
tal lattice. The choice of field direction bears not only on the efficiency of excit-
ing the desired mode, but also on the dependence of the resonance frequency on
the temperature, through the dependence of the elastic properties and dimensions
on the temperature. These properties in a crystalline substance, unlike those that
lack an ordered structure, are different for different directions relative to the crystal
axes. Since the electric field is applied through a pair of parallel plates, the quartz
plate or bar must be cut out of the body of the crystal with the desired orientation.
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Figure 4.6 The various cuts used in the fabrication of quartz plates

Figure 4.6 illustrates three commonly used cuts: the x-cut and two rotated y-cuts.
The x-cut has faces cut perpendicular to the x-axis, along which the oscillating
electric field is applied. A longitudinal strain is produced in the same direction
as the field, resulting in only a longitudinal (extensional) wave propagating in
this direction. The x-axis is called a pure mode axis for this type of wave. The
two rotated y-cuts are such that the electric field can be applied along directions
inclined at the angles of −59◦ and +31◦ to the z-axis in the y − z plane. These are
pure mode directions for shear waves; that is, a field along these directions excites
only shear waves and no other.

4.4 X-Ray Crystallography

To find the orientation of the crystal axes in a piece of crystalline material relative
to some external reference, such as its surface geometry, is a problem for which
crystallographers have developed methods involving the angles between the natural
facets, which generally characterize crystals, and their optical properties. The most
powerful technique, however, involves the use of X-rays: not to produce shadow
pictures, of course, but to produce X-ray diffraction patterns.

It would take us too far afield to attempt more than a cursory description of
this technique, which can be used not only to determine crystal orientation, but
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more importantly, to analyze the crystal structure. In 1912, Max von Laue engaged
his two young assistants, Friedrich and Knipping, in an experiment suggested by
analogy with a technique well known at the time: the use of a fine grating to analyze
an optical spectrum. In this context a grating consists of a mirror (or transpar-
ent plate) on whose surface a large number of closely spaced parallel grooves
are ruled with great precision. Because of its wave nature, light is preferentially
reflected from the grating surface along those directions in which the light waves
diffracted by the narrow reflecting (or transmitting) stripes reinforce each other.
Realizing that the spacing of the fine grooves would have to be scaled in the ratio of
the wavelengths, typically 1/2000, and that therefore it was impossible in practice
to simply repeat the optical experiment with X-rays, von Laue suggested that per-
haps the regularly spaced atoms in a crystal may act as a 3-dimensional “grating.”
This indeed proved to be the case, and the classic “von Laue” X-ray patterns were
soon photographed. After this initial success, W.H. Bragg and W.L. Bragg, father
and son, established X-ray diffraction as a powerful method of analyzing crystal
structure. It was W.H. Bragg who gave a simple way of analyzing the way in which
the X-rays are scattered by a crystal along many discrete directions. The analysis
proceeds by imagining that all the atoms of the crystal are assigned to a set of par-
allel geometrical planes, called atomic planes. The regular ordering of the atoms
in the crystal ensures that this can always be done. By applying the Huygens con-
struction to the secondary X-ray waves scattered from atoms in successive parallel
planes that the X-rays penetrate, one finds that in order that their phases will rein-
force, producing a maximum reflection, the distance between the planes d must
satisfy the following condition:

2d sin θ = nλ, 4.1

where θ is the angle between the incoming X-ray and the atomic plane, and n is any
whole number. To determine the crystal orientation requires an instrument called a
goniometer, which consists essentially of a rotatable crystal mount and a radiation
detector on a rotatable arm designed for precise angle measurements. By applying
the above formula to the possible sets of reflecting atomic planes, based on the
known structure and symmetry, it is possible after a good deal of data analysis to
arrive finally at a precise determination of the crystal orientation.

The application of X-rays to the study of crystals in the context of quartz res-
onators has also proved extremely useful in another direction: that of making it
possible to actually see the distribution of the amplitude of vibration in a crystal
plate or bar under actual conditions of excitation. That this is plausible we can see
from the formula for an X-ray “reflection” from a set of atomic planes: Even a
small relative displacement between the atoms contributing to the reflected beam
would change its intensity. This is an invaluable tool in the development of high-Q
resonators, because it allows the presence of undesirable lossy modes coexisting
with the desired one to be suppressed by various techniques, such as contouring
the shape of the crystal.



74 The Quantum Beat

4.5 Fabrication of Quartz Resonators

The actual performance characteristics of a quartz resonator are determined
ultimately by such technical matters as the way the quartz plate is fabricated,
how it is mounted, and how its environment is controlled. To prepare the resonator
plates, the mother crystal is rough cut into wafers with the desired orientation with
respect to the crystal axes. The wafers are then cut into smaller blanks, a little
larger than the desired dimensions, and then reduced by several stages of lapping,
until the final dimensions are nearly reached. They are then cleaned and etched, the
metallic-film electrodes baked on or vacuum deposited, and the plate mounted in a
hermetically sealed holder. The blanks are sometimes subjected to heating cycles
to accelerate the long-term approach to greater stability, which might appropriately
be called aging, although the term usually also includes any long-term drift.

Synthetic quartz has been available for many years on the market; unlike
diamond, which can be produced only as tiny grains, quartz and sapphire (crys-
talline aluminum oxide) can be grown to sizable crystals from the melt in special
high-temperature furnaces. By a proper choice of seeds and control of the crystal
growth, manufacturers are even able to cut the desired plates with little waste.

A good deal of effort has been devoted in the past to improve the Q-value of
resonators made of synthetic quartz. A study of the temperature variation of Q,
under conditions where Q is known to be limited by the vibrational energy losses
in the quartz rather than some extraneous factors, shows a strong peak in those
losses at −223◦C. This has been attributed to the presence of sodium impurity,
whose amount varies from one sample to another. It has been found that the inter-
nal energy loss it causes can be reduced significantly by electrolytically remov-
ing this impurity ion. This can be accomplished by applying a voltage between
electrodes in the molten silica, or more slowly by applying a voltage between the
electrodes on the finished plate at an elevated temperature. The realization that the
presence of this impurity ion is responsible for some of the internal energy loss
has led to ways of improving the purity of synthetic quartz and hence of the Q
of quartz resonators. The control of quality in the manufacturing process has been
greatly aided by the use of the infrared absorption spectrum as an indicator of
acoustic energy loss in the crystal.

4.6 Stability of Resonance Frequency

4.6.1 Aging

The resonance frequency of a quartz resonator typically exhibits a long-term
drift extending over perhaps years, a phenomenon called aging. The aging rates
of high-frequency thickness-shear mode resonators designed for precision clocks
have reached impressively low values. Typical aging rates for solder-sealed metal
holders range from as high as a few parts per million per month to as low as one
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or two parts per million per year for the first two years. The lowest aging rates
have been achieved in units in metal holders that allow high-temperature bake-out
to drive out contaminant gases prior to being sealed from the vacuum system by
a cold-weld. The actual aging of a particular resonator is determined by several
factors, such as: the process control used in its manufacture, the degree of strain in
the mount, thermal stress relaxation resulting from prior temperature gradients, the
adsorption and desorption of gas on the surface of the crystal affecting its mass,
and slow structural changes involving imperfections in the crystal.

4.6.2 Surrounding Atmosphere

It is a remarkable fact that the adsorption of what presumably is just a monolayer of
gas one molecule thick on the surface of the crystal can produce a very significant
change in the natural resonance frequency of the resonator. Here is the basis for a
sensitive gas pressure gauge! Of course, it is not that the adsorbed layers of gas are
so heavy, but that the precision in frequency measurement has reached such a high
level. As is well known from the experience of a half-century when electronics was
dependent on vacuum tube technology, the surfaces of all materials, particularly
metals, continue to evolve gases into a vacuum and must be “out-gassed” at as high
a temperature as possible. The out-gassing is never really complete; gas diffuses out
from deeper and deeper layers within the material. The method used in the vacuum
tube industry to control the loss of vacuum due to out-gassing, particularly from
the incandescent cathode, was to use a “getter,” which was typically pure metallic
barium evaporated from a small nickel source by an induction heater. This formed a
silvery layer onto the inner surface of the glass envelope of the vacuum tube. Most
gases, except the inert gases like helium, react chemically with barium, producing
nonvolatile compounds that remain on the surface.

4.6.3 Temperature

The most important physical parameter affecting the frequency of a quartz res-
onator is the temperature of the crystal. By a proper choice of the orientation of the
cut with respect to the crystal axes, the dependence of the frequency of resonance
on the temperature can be made minimal at the normal operating temperature of
the resonator. The general dependence of frequency on temperature is shown as
a set of graphs for various cuts in Figure 4.7. Naturally, the plate orientations in
common use have been chosen to have the minimum change in frequency occur
around 25◦C, as seen in the figure. We also note that the curves marked AT and
GT have an inflection point rather than a maximum with respect to �ν/ν, the frac-
tional change in frequency per degree centigrade; for these the possibility exists of
having nearly zero frequency change over a range of temperatures. However, even
when the change in frequency is near the minimum, a great deal can be gained
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Figure 4.7 The temperature dependence of the frequency of various cuts of quartz (Gerber,
1966)

by temperature compensation techniques, as well as tight control of the tempera-
ture of the crystal unit, by placing it in a constant-temperature oven. In the case
of precision quartz-controlled oscillators, the emphasis is usually on controlling
the temperature, rather than compensating for it. Not only must the temperature be
held constant in time, but also it must be spatially constant across the crystal holder.
This usually requires a double oven. The use of the word “oven” suggests operat-
ing at high temperature; in fact; the oven is stabilized at a temperature above room
temperature, but only moderately so, in order to obviate the need for refrigeration,
and make it possible to use natural cooling when the temperature deviates above
the set value. Furthermore, precision proportional control is used rather than the
familiar on–off control used in home thermostats. Proportional control means that
the rate of increase of the amount of power delivered to the oven is proportional
to how far the temperature is below the set temperature. To implement this type
of control requires some electronics that go well beyond the mercury switch and
bimetallic strip used in some on–off controls.

4.6.4 Excitation Level

Another source of frequency instability, related to the amplifier and the coupling
circuits to the crystal, is the power level driving the crystal, which of course deter-
mines the level of mechanical vibration of the crystal. While this naturally affects
the rate of heat dissipation in the crystal, which could cause some shift in the fre-
quency, there are indications that other possible mechanisms such as changes in
the effective elastic properties may play a role. Based on experience, high preci-
sion crystal units should be driven at the lowest possible power levels. In order
to ensure that the oscillation level is maintained at a constant low level, a special
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feedback circuit, of a type known from the early days of radio as automatic gain
control (AGC), is used. Essentially, this is a feedback control loop that samples
the oscillation level, derives a voltage proportional to its amplitude, compares this
voltage to some constant reference voltage to produce an error signal, and applies
this at some point in the oscillator circuit that can affect the oscillation level and
bring the error to zero.

4.6.5 Actual performance

Figure 4.8 shows a plot of the fractional Allan variance of frequency for a space-
craft quartz oscillator, showing a minimum at around 10 seconds of 10−13.

From the somewhat lengthy discussion we have given of the sources of
instability in a quartz-controlled oscillator, it might seem that such oscillators
are plagued with errant behavior; that is far from the truth. To help regain our
sense of proportion in the matter, let us recall that a precision quartz oscillator, for
example a fifth-overtone 5 MHz crystal with Q as high as 1,000,000, may well be
stable over a period of an hour to better than one part in 1011. Or to put it another
way, while oscillating at the rate of 5,000,000 oscillations per second, it may gain
or lose only one oscillation in 5.5 hours! In fact, the quartz oscillator has no equal
with respect to short-term frequency stability and spectral purity, which is really a
statement about the extremely low noise that accompanies its undistorted output.
This unique property makes it invaluable in a number of applications in addition
to time measurement. One such application is Doppler radar, in which the shift
in the frequency of the echo from a moving target due to the Doppler effect is
exploited to discriminate against “ground clutter,” since the frequency of the latter
is unchanged. The ability to detect small changes in echo frequency and hence
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Figure 4.8 Allan variance of frequency versus sampling time for an ultrastable spacecraft
quartz oscillator (Norton, 1994)
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in target velocity, as well as the range, depends on the frequency stability of the
transmitted microwaves. A viable approach is to start with a precision 100 MHz
quartz oscillator and generate the desired microwave frequency as a harmonic,
using established frequency-multiplying techniques. Since the line width and other
frequencies present in the spectrum are spread out by the same multiplying fac-
tor, it places such stringent requirements on the short-term frequency stability
and spectral purity that quartz controlled oscillators are looked to as superior
candidates for such an application.

4.7 The Quartz Resonator as a Circuit Element

4.7.1 Equivalent Circuit

To design the electronic circuits required to operate a quartz crystal oscillator we
need the equivalent circuit of the crystal in its holder, that is, a circuit made up of
the basic elements of inductance, capacitance, and resistance that simulates exactly
the voltage–current relationship in the vibrating crystal at all frequencies. It can-
not be presumed a priori that such an equivalent circuit exists; but recalling that
mechanical vibrations universally involve the oscillation of energy from an elastic
(potential) form to a kinetic form, obeying a second order differential equation,
it is reasonable to draw a parallel with an electric circuit having inductance and
capacitance. We will accept that an analysis of the mechanical vibration of a quartz
resonator, taking into account the piezoelectric effect, leads to the equivalent circuit
shown in Figure 4.9.

The capacitance C1 represents that of the crystal between its metal electrodes.
The resistance R accounts for the energy losses in the crystal itself as well as its
mount. The inductance L and capacitance C2 represent the inertia and elastic terms
that determine the resonance frequency. In general, R is very small, C1 � C2, and
L is very large, being comparable to the inductance of a coil one meter in diameter

L  R

C1

C2

Figure 4.9 The equivalent circuit of a quartz plate
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and a winding of several thousand turns! The high ratio C1/C2 implies very loose
coupling between the crystal and the circuit driving it.

4.7.2 Frequency Response

As with any other type of feedback oscillator whose frequency is controlled by a
high-Q circuit, the quartz crystal is part of a feedback loop of an amplifier with
sufficient gain for oscillation. As we emphasized in a previous chapter, the ideal
would be to have the frequency-determining high-Q resonator execute its natural
oscillation with minimum coupling to the amplifier, whose operating conditions
may fluctuate over time. The higher the Q-value, and values reaching 106 are not
uncommon in precision quartz crystals, the greater the variations in the amplifier
phase shift that can be tolerated. The reason is that such phase shifts can be com-
pensated in a high-Q circuit by a very small shift in frequency.

We note parenthetically that although a quartz crystal has only two elec-
trodes, we can think of it as having an input between one electrode and a com-
mon ground conductor, and an output between the other electrode and ground, as
shown schematically in Figure 4.9. If we imagine an oscillating voltage whose
frequency we could vary being applied between one electrode of the crystal and
ground, and we measure the relative phase of the voltage appearing on the other
electrode, we would find that the phase changed very abruptly as we pass through
the resonance frequency, going from −90◦ through zero at resonance to +90◦
on the other side of resonance, as shown in Figure 4.10. Almost the entire change
in the phase shift occurs within the width of the resonance, which for Q = 106

means a frequency width of 1 Hz in a 1 MHz oscillation frequency.
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Figure 4.10 The change in impedance and phase as a function of tuning of a quartz crystal
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4.8 Frequency/Time Measurement

4.8.1 Measurement of Time Intervals

We will now take up briefly the electronics essential to the normal function of a
clock, namely the “gear train”, or what functions electronically as a gear train. But
before we do, let us first consider the use of our stable quartz oscillator simply to
measure the time interval between two events. We may assume the frequency of the
oscillator has been calibrated against an acceptable commercial reference, whose
frequency is presumably traceable back to a national standard. We’ll leave open for
the time being the question of how the frequency of the national standard is estab-
lished; we shall have a great deal more to say on this subject in succeeding chapters.
Unlike a common stopwatch, which is started at the first event and stopped at the
second, an oscillator requires time to stabilize; and therefore it must be allowed
to continue uninterrupted while its connection to an oscillation counter is made
through a gate circuit, which is opened and closed by the two events. To keep
matters simple we will assume that it is sufficient for the accuracy to be limited
to within a whole number of oscillations; to interpolate fractions of an oscillation
would require additional techniques.

4.8.2 Digital Circuits

In this age of digital electronics, the required gates and counters are common as the
basic building blocks of more complex digital circuits. These circuits process all
signals in binary form; that is, there are only two discrete voltage levels, represent-
ing 0 and 1 in the binary system used to represent the numerical magnitudes of sig-
nals. In order to use binary circuits to count harmonic oscillations, we must reshape
the waveform so that it conforms to the two-level binary format. There are several
ways in which this can be done; one possibility is to use a circuit called a Schmidt
trigger, whose output is a sudden step in voltage when the input passes smoothly
a certain preset trigger level, and will step back to its former level if the input
returns to pass through the preset value in the other direction. We could, for exam-
ple, set the trigger level at the zero crossing of the oscillator waveform, thereby
generating a square wave alternating between the “low” level and the “high” level
of the binary circuits. We can now use standard binary gates and counters to mea-
sure a time interval. It is not our intention to venture far into what has come to be
extremely sophisticated digital electronics, but merely to give a hint of what might
be involved.

A counter is formally referred to as a sequential logic machine; it is based
on a bistable circuit whose history precedes digital computers, integrated circuits,
and even solid-state electronics itself. This bistable circuit, once called an Eccles–
Jordan pair, is now generally referred to as a flip-flop, which probably first came
into wide use with the invention of nuclear radiation counters, such as the Geiger
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counter, in 1913. It belongs to a distinct class, quite unlike the usual linear ampli-
fiers, in which the voltages and currents at different points in the circuit may assume
any of a continuous range of stable values controlled by a continuous input signal.
The flip-flop has two discrete stable states and no others, a fairly uncommon prop-
erty for a physical system. It can pass through intermediate states only in a sudden
transit from one state to the other when triggered by a change in voltage appro-
priately applied to it. It can serve as one bit of memory. The obvious mechanical
analogue is a common electrical switch, which has only two stable states: on or off.

A bistable circuit can be constructed from two (inverting) single-stage ampli-
fiers with overall regenerative, or positive, feedback; the output of each amplifier
is connected to the input of the other in such a way that a downward fall in the
current of either amplifier goes precipitously all the way to zero because of the
feedback. It is instructive to consider what distinguishes this circuit from the kind
of feedback amplifiers we have described in a previous chapter as oscillators. The
difference lies essentially in the frequency dependence of the amount of feedback;
for a harmonic oscillator the feedback must reach a maximum at only one nonzero
frequency, whereas if we are to speak in such terms, we would say that the flip-flop
has feedback extending from zero frequency (DC) up to frequencies that determine
the speed of switching. A “zero frequency” signal is simply a constant, or DC,
voltage, and the feedback in a flip-flop affects constant DC levels on the amplifiers,
causing one to shut off while the other draws the maximum current the circuit
will allow. Furthermore, we must remember that a feedback amplifier designed to
serve as a pure single-frequency oscillator must be provided with a means of lim-
iting the amplitude of oscillation. Otherwise, it would swing between two extreme
states, producing a square wave output. In that case it would be called a free running
multivibrator.

In this “information age” of integrated microelectronics and computers, logic
circuits come in the form of encapsulated semiconductor devices with an array of
external pin connections. Whole families of devices based on different technologies
using semiconductors in different ways have multiplied into a bewildering array
filling entire catalogs. The functions of any given device are specified in terms of
the binary level outputs on specified pins as functions of the levels on different
inputs pins.

Figure 4.11 shows an example of what is called an RS latch using two cross-
coupled NOR gates. A NOR gate is a “black box” with two input terminals and
one output, typical of logic gates, in which the logic values true and false are
represented by two voltage levels: high and low, typically separated by 5 volts.
In the NOR gate the output is high only when neither of the two inputs is high.
Like all other embodiments of latches, this has two stable states; one in which the
output at Q is high and at Q* low, and the other in which the outputs are reversed.
A momentary high applied to the S input will put the circuit in the former state,
independent of what state it was in; and similarly, a momentary high at the R input
results in the reverse output state, again, we should emphasize, independent of its
former state. Such a latch can be made into a “scale-of-two,” that is, one stage of
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Figure 4.11 An RS Flip-Flop circuit

a binary counter, by providing an input gating circuit that in effect alternates the
input trigger between the two terminals, R and S, so that on each input trigger the
latch changes state. This may be accomplished by using two input NOR latches,
creating what is called a D-type flip-flop. With a square wave input, the trigger is a
negative edge, where the binary level goes from high to low. The resulting output
at Q*, for example, is then a square wave with the transition from (say) low to high
occurring every second input transition. The output result is a square wave of half
the frequency of the input. If the input were in the form of a pulse train, then the
output would consist of pulses similar to the original train, except that for every
output pulse, two of the original pulses are required.

If we connect, for example, 24 such binary units in tandem, to form what is
called a binary ripple counter, then since we are dividing by 2 in each stage, it
requires 223 incoming pulses to result in a pulse reaching the last stage, and 224

pulses before all stages return to their original state.
If the input is a square wave of fewer than 223 oscillations, then connecting to

each binary unit a light emitting diode (LED) to indicate its binary state, we could
read the number of oscillations as a binary number.

To measure the time between two events, a similar flip-flop may be used to
provide a gate signal, that is, a constant logic high level starting at the first event
and ending at the second event, but otherwise at the low level. This gate can then
be applied to one input of an AND logic gate, while the other is connected to
the pulse-shaped output of the oscillator. The output of the AND gate will be a
finite square wave starting at the first event and ending at the second. By reading
the binary number indicated by the counter, we obtain the interval of time between
the events.

We should note at this point that the same procedure we have just been describ-
ing could obviously be turned around to measure the frequency of the oscillator if
the time interval between the two events is independently known with the desired
accuracy. In fact, this is the basis of most frequency counters commonly available
on the market. In these the time intervals, which can be selected according to the
frequency to be measured, are derived from an internal reference.
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4.8.3 Frequency Synthesizers

From what has been said we may have created the impression that we are limited to
the division of the oscillator frequency by powers of 2, which of course would not
give us output displays in seconds, minutes, and hours. This is far from the present
reality; we can in fact synthesize almost any required frequency while maintaining
coherence with the oscillator.

There are two common approaches to synthesizing a sinusoidal signal of arbi-
trary frequency that is coherent with a given reference source. The first is referred
to as the phase locked loop (PLL) method, and the second is the direct digital syn-
thesis (DDS) method. Again we will attempt no more than enough to suggest the
complexity of the subject.

In addition to the given reference oscillator the phase locked loop method
is based on three types of circuits: a voltage controlled oscillator (VCO), a
phase/frequency detector (PFD) or more precisely, comparator, and frequency
dividers.

The VCO is an oscillator characterized by having in the frequency-determining
circuit a varactor, a voltage sensitive capacitor by which the frequency of the oscil-
lator can be controlled with a voltage signal. The phase/frequency detector in a dig-
ital PLL system may be constructed from two (D-type) flip-flops, whose function
is to measure the difference in the phase/frequency between two input signals and
produce an output whose average magnitude and sign serve as a corrective error
signal to control the frequency of the VCO. In one basic PLL circuit design the
frequency of the reference oscillator is divided by an integer N and the frequency
of the VCO is digitally divided by a variable integer M (which may include a
fixed prescaler) prior to the feed-back connection to the phase/frequency detector
whose output error signal is connected to the control input of the VCO. Closing
the loop should lead to a phase lock between the two inputs to the PFD. In the
locked condition the output frequency will be given by fout/M = fre f /N . It fol-
lows that this simple PLL circuit allows the output frequency to be varied in steps
of (1/N ) fre f .

This simple design suffers from the important drawback that in order to achieve
good resolution (small step size in the output frequency) it is necessary to make the
integer N very large, which incurs increased phase noise. This limitation could
be avoided if division by a non-integer could be realized in the feedback; this
would allow a higher fre f to be used while still maintaining a small step size in
the output. Fractional N frequency synthesizers do in fact exist, but it would take
us too far into the realm of specialized communications electronics to pursue that
subject.

The other approach to frequency synthesis we will consider is direct digital
synthesis, which has become a more widespread choice in recent years through
advances in the speed of integrated circuits. It synthesizes the desired waveform
simply by storing its values as (for example) a sine function in digital form, and
sequentially recalling the values of that function to generate the waveform.
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The phase variable is held in digital form in the phase accumulator and is incre-
mented at regular intervals, corresponding to the uniform advance of the phase in
time. The phase accumulator is essentially a counter which adds a preset count
every time it is clocked until it is full, corresponding to a complete oscillation.
Corresponding to the phase values, there are stored in a digital memory (ROM)
of large capacity the values of the sine function in fine increments; these are read
out and passed through a digital-to-analog (D/A) converter to a low pass filter to
smooth the sine waveform. The frequency is tunable by varying the size of the
phase increments addressed to the waveform “map” (ROM) from the accumula-
tor. Since there are a finite number of phase increments possible in a given binary
counter, for example about 16 million for a 24 bit counter, there is a finite resolution
in the output frequency. If a 10 MHz reference frequency is used, the smallest fre-
quency increment would be about 0.7 Hz. The construction of a sine function from
discrete points is not unique; the reason is a phenomenon called aliasing, a com-
mon problem in digital-to-analog conversion. A set of discrete points following the
outline of a sine wave can be fitted not only by a curve joining consecutive points,
but also a high frequency sine wave having crests between the points. This wave
is at the clock (reference) frequency and is amplitude modulated at the synthesizer
output frequency, giving rise to two spurious frequencies in the output spectrum.

4.8.4 Quartz Watch

We conclude this chapter with a brief description of what has become common-
place since the early 1970s: the quartz watch. Thanks to the revolutionary develop-
ment of microelectronics, a quartz-controlled clock of miniature dimensions is not
only possible, it is commercially available at a cost for the quartz movement of less
than 10% of the price of a good mechanical watch! Its time-keeping accuracy is
typically a few parts in 106, which translates into a few seconds per month!

frequency divider
quartz crystal
(32.768 kHz)

stepper-motor

Figure 4.12 Schematic circuit diagram of a typical quartz movement
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The immediate predecessor of the quartz watch was an expensive, high-
quality electronic model based on an acoustic resonator: the tuning fork. It had an
accuracy that surpassed the best mechanical spring–balance movement; however;
the improvement was not commensurate with its high cost, and it was soon
superseded by the quartz movement. Figure 4.12 shows schematically the basic
elements of a quartz watch. The quartz crystal generally vibrates at a relatively
low frequency, and it is incorporated into a miniaturized circuit board on which
is mounted an integrated circuit frequency divider and driver for a stepper motor,
that is, one that turns a fixed angle (in this case 6◦) each time it receives an
electrical pulse.



Chapter 5
The Language of Electrons, Atoms,
and Quanta

5.1 Classical Lorentz Theory

When we speak of oscillations at optical frequencies and their amplification, we
are indeed a long way from the world of swinging pendulums and oscillating bal-
ance wheels. It is true that classical theory based on Newton’s laws of motion and
Maxwell’s theory of electromagnetic radiation are inappropriate to deal with the
interaction of radiation with atoms and molecules; for this we need the quantum
theory. However, from a background of classical theory, certain aspects can be
sketched in a semiclassical way, in which quantum ideas are superimposed on a
classical base. Historically, this characterized the early development of the theory
of radiation and the general features of the theory of optical dispersion. In this con-
text “dispersion” refers to the dependence of the refractivity of a medium on the
wavelength, which leads to the dispersion of, for example, white light by a glass
prism into the colors of the rainbow.

Prior to the advent of quantum theory early in the last century, the interaction
of radiation with matter was explained on the basis of the electron theory of H.A.
Lorentz, in which the response of matter to an electromagnetic wave was expressed
in terms of “atomic oscillators” pictured as electrons elastically bound to the atomic
centers. The interaction of atoms with an electromagnetic wave was imagined as
consisting in these electrons being driven into forced oscillation by the oscillat-
ing electric field component of the wave. It can be shown, however, that in order
to have continuous absorption of energy from the wave (as opposed to a fleeting
absorption when the wave first interacts with an electron, setting it in motion), it
is necessary to assume that during the interaction with the wave, the driven elec-
tron oscillation must in effect experience a resistive force. This clearly cannot be a
frictional force in the usual sense; and the radiation reaction force, which accounts
for the energy radiated by the vibrating electron, proves to be too small to account
for the degree of light absorption that can occur. Lorentz attributed the net absorp-
tion to the repeated interruption of the electron oscillation by collisions with other
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atoms, resulting in the randomization of the oscillation phase. In the absence of
this, the phase of the periodic electron velocity remains in quadrature with the
driving force, and the average work done on the electron averages to zero over
a period of oscillation of the field. The result would be that no net absorption of
energy takes place. Through those phase-randomizing collisions, there is a contin-
uous transfer of energy to the electrons that appears, through the same collisions,
as random kinetic energy of the colliding atoms, that is, heat.

The same model was also used to describe the process of emission of radia-
tion by atomic oscillators, when set into vibration by collisions with other atoms
in an electrical discharge, or in a state of thermal agitation, as in a flame. It is
well established classically, on the basis of Maxwell’s theory, that an oscillating
electric charge will radiate electromagnetic waves. In this case, since we have a
negative charge (the electron) oscillating with respect to an equal positive charge,
the wave that is generated is that of an oscillating electric dipole. This has a char-
acteristic radiation pattern, that is, distribution of intensity in different directions,
similar to that from a simple radio transmitter antenna. The frequency of the radi-
ated electromagnetic wave is classically the same as the frequency of oscillation
of the supposed atomic oscillator. If through some nonlinearity the atomic oscil-
lator excitation results in some second or higher harmonics, at twice or a higher
multiple of the fundamental frequency, the radiation will also contain those har-
monic frequencies. It was one of the fatal flaws of classical theory in explaining
atomic spectra that the observed frequencies emitted by atoms do not bear a simple
harmonic relationship to each other.

5.2 Spectrum of Blackbody Radiation

But the breakdown in the classical theory of radiation, which finally led Planck to
postulate the quantum of energy, first came in the explanation of the spectrum of
the radiation in thermal equilibrium with matter, the so-called blackbody radiation.

This is radiation whose spectrum is characteristic of the equilibrium tempera-
ture, and it is independent of the nature of the matter interacting with it. It can be
observed only under conditions where the interacting matter can thoroughly absorb
and re-emit radiation at all frequencies. In practice this is achieved by studying the
radiation inside an enclosure, which is provided with a small hole to allow a sample
of the radiation to be analyzed outside the cavity. The observed continuous spec-
trum, showing the radiated intensity in a small fixed frequency band as a function
of the center frequency of that band, is shown in Figure 5.1. Contrary to classical
predictions, the graph tends to zero at the upper and lower ends of the frequency
scale, with a maximum intensity at some intermediate frequency, which, in accor-
dance with common experience, depends on the temperature: the color varies from
red toward the blue as the temperature is raised. This is given precise expression in
Wien’s displacement law: the frequency at which the intensity is maximum shifts to
higher values, in direct proportion to an increase in the temperature. Wien derived
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Figure 5.1 The spectrum of blackbody radiation showing the shift in the maximum with
temperature

his law on the basis of classical arguments, prior to Planck’s work, and it is borne
out by experiment. The spectrum of sunlight is approximately that of a “black
body” at a temperature of about 6000◦K, with the maximum intensity occurring at
around a wavelength of 0.5 μm, in the middle of the visible region of the electro-
magnetic spectrum.

5.3 The Quantum of Radiation: The Photon

After all attempts based on the classical theory of thermal equilibrium and the
exchange of energy between radiation and matter failed to explain the observed
spectrum, Max Planck in 1901 published a radically new theory, which was able to
predict a spectrum in close agreement with experiment. It was based on the postu-
late that matter contained an immense number of electromagnetic “resonators” that
could exchange energy with the radiation field not continuously in arbitrarily small
amounts, but only in discrete units he called quanta, whose energy is proportional
to the frequency: E = hν, where h is a universal constant of nature, now called
Planck’s constant, with a numerical value in our system of units of 6.6 × 10−34

joule · second.
A greater understanding of the physical processes that result in the emission

of blackbody radiation came with the reinterpretation of the process by Einstein,
who introduced the concept of a quantum of electromagnetic radiation, called a
photon, which in some circumstances manifests a discrete particle nature. On this
basis, blackbody radiation results when equilibrium has been reached between the
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photon gas and the atoms of matter through continual absorption and re-emission
of photons by the atoms. When this model was applied to derive Planck’s formula,
it was found that the well-known spontaneous emission process, in which an atom
gives up its energy of excitation spontaneously by emitting a photon, alone would
not lead to an equilibrium consistent with Planck’s formula. Einstein found it nec-
essary to postulate that an atom that has absorbed a photon may not only re-emit
it spontaneously, but may also be stimulated to re-emit it, with a probability that
depends on the number of photons already present. When a group of such atoms or
molecules undergo spontaneous emission, they do so independently of each other;
there is, therefore, no correlation between the phases of their several contributions
to the radiation emitted. In contrast, emission induced by existing photons, that is,
stimulated emission, has a phase dictated by the phase of the existing radiation
field, and hence all atoms subjected to this field will have more or less a common
phase. This results in the radiation field remaining coherent in phase and increasing
or decreasing in amplitude depending on whether the rate of emission is greater or
less than the rate of absorption.

5.4 Bohr’s Theory of the Hydrogen Atom

The success of the radically new quantum postulate of Planck soon saw the spread
of quantum ideas to the hitherto intractable problem of explaining optical emission
spectra of atoms. A wealth of accurate experimental data had been accumulated on
the wavelengths of the many series of lines that form atomic spectra. Each chemical
element emits its own characteristic, and for all but the simplest atoms, complex
line spectrum. Intensive efforts had been devoted to finding regularities in these
spectra, and a number of empirical rules were enunciated, all of which brought
some order to their practical analysis.

The theoretical breakthrough came after the success of the nuclear model of
the atom, which was postulated by Ernest Rutherford around 1911 to explain unex-
pectedly large angles of scattering of high-speed α-particles (a product of natural
radioactivity of certain elements) by atoms in a gold foil target. The model was
strikingly confirmed in subsequent years in his laboratory, a feat he announced as
possibly more important than the outcome of what was then called the Great War.
For this he received the Nobel Prize and given the title Lord Rutherford of Nelson
(his birthplace in New Zealand). Prior to that, there was intense speculation as to
just how electrons and protons, the elementary particles known at the time, were
arranged in atoms. As is now familiar to everyone, the basic arrangement is that
almost the entire mass of an atom resides in a small, positively charged nucleus,
which is surrounded by a cloud of negatively charged electrons.

Around 1913, the Danish physicist Niels Bohr, by a set of ad hoc quantum
notions superimposed onto a classical planetary model of the hydrogen atom, was
able to obtain with remarkable accuracy the wavelengths of a series of lines in
the spectrum of that atom. The most radical of Bohr’s postulates was that there
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exist certain orbits in which electrons could circulate indefinitely without radiat-
ing energy, contrary to the classical prediction that an orbiting charge should lose
energy by radiation and eventually spiral into the nucleus. These he called sta-
tionary orbits, and he postulated that of all the possible orbits that classical theory
allows, only those are stationary that satisfy the following condition on their angu-
lar momentum L:

L = nh
2π

, 5.1

where n is an integer and h is the same constant Planck had used to define the
quantum of energy. For a circular orbit of radius r , L = mV r , where m is the
mass of the electron and V its velocity. He further postulated that the frequency of
radiation emitted by the atoms is not the vibration or rotational frequency of the
electron in the classical sense, but is derived from Planck’s formula. Thus, when
an atom makes a quantum transition from a stationary state of energy E2 to one
having energy E1, the frequency of the radiation is that of the radiated quantum,
that is,

ν = (E2 − E1)

h
. 5.2

Of course, these radical postulates were not made lightly. The line spectra of atoms
show remarkable regularities, with series of lines forming striking patterns, plau-
sibly reminiscent of the classical vibration spectra of complex structures. It would
be natural to assume that these vibration spectra should form the basis of an expla-
nation of the spectrum. Unfortunately, of all of the precise experimental data that
was available and some empirical formulas that were discovered relating the wave-
lengths in the spectra, none was consistent with the harmonic relationships charac-
teristic of classical vibration frequencies.

Bohr’s ad hoc postulate identifying stationary orbits became a little less so
through the work of de Broglie, published in 1924. In this de Broglie argued on
the basis of the dual particle–wave nature of light, which was then the subject
of much speculation and debate, that material particles have the same duality. The
success of Bohr’s theory seemed to hint at a wave property of electrons, since at the
time the only context in which equations contained integers was in normal modes
of vibration, and the interference of waves. On the basis of the special theory of
relativity de Broglie was able to find the connection between the particle and wave
nature of all matter and radiation, in a theory called wave mechanics, the precursor
of quantum mechanics. According to de Broglie, a particle of mass m moving with
a velocity V has a wave associated with it “guiding” its motion, whose wavelength,
now called the de Broglie wavelength, is given by λ = h/mV , where h is, as usual,
Planck’s constant. If we use this result in Bohr’s equation for the stationary orbits,
we find (h/λ)r = nh/2π; that is, 2πr = nλ. But this is precisely the condition
for a resonant mode of vibration of a circular string supporting oscillations with
a wavelength λ; any other radius would not have the wave reinforcing itself as it
traveled around the circle.
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The theory of Bohr, elaborated by Sommerfeld, and now referred to as the
“old quantum theory,” dealt only with “stationary” quantum states and quantum
numbers; it had little to say about nonstationary phenomena such as transitions
between states and collisions between particles. This situation changed with the
coming of quantum mechanics.

5.5 The Schrödinger Wave Equation

The spirit of de Broglie’s description remains in the subsequent quantum theory of
Schrödinger. The concept of a wave determining the motion of a particle implies
the radical notion that the amplitude of a wave, given as a function of the coordi-
nates and called a wave function, is to be used to describe the motion of a particle,
rather than regarding a particle as a point mass occupying a certain position in space
specified by its coordinates. The physical interpretation of the wave function, con-
ventionally represented by the Greek letter ψ, lends itself to some speculation in
the minds of some, hinting at a mysterious wave that guides the motion of matter.
However, a probabilistic view prevails in which |ψ(x, y, z)|2 is taken as the space
density of the probability that the particle is at the coordinates x, y, z, in the sense
that |ψ(x, y, z)|2dx dy dz is the probability of the particle being found in a cell
of sides dx, dy, and dz centered at the point (x, y, z). Since the particle must be
somewhere with a 100% certainty, it follows that the wave function must satisfy
the following normalization condition:

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

|ψ|2dxdydz = 1. 5.3

This, of course, imposes a mathematical restriction on the wave function: Its inte-
gral must be finite.

In Schrödinger’s wave mechanics, which is one mathematical representation of
quantum mechanics, the equations of motion of classical mechanics are replaced
by a differential equation, called the Schrödinger equation, to determine the wave
function. Thus, for example, the equation for a free electron having energy E in a
one-dimensional world would be as follows:

d2ψ
dx2 + 8π2m E

h2 ψ = 0. 5.4

Of all the mathematical solutions of the Schrödinger equation, those that may
be accepted as representing the stationary states of a physical system are defined
as those particular solutions, called eigenfunctions (German for proper functions),
that are finite and satisfy certain conditions at the boundaries of the system. For
example, if an electron obeying the above equation is confined between two plane,
parallel, “impenetrable walls” forming the boundaries at x = 0 and x = L , the
stationary solution of the Schrödinger equation describing that electron would be
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equal to zero at those points and beyond. One can readily verify that the following
are solutions:

ψn = N sin (kn x), 5.5

where

Kn = n
π
L

, En = n2 h2

8L2m
, 5.6

and n = 1, 2, 3, . . . . We note that were it not for the boundary conditions ψ(0) = 0
and ψ(L) = 0, the equation would have been satisfied by sin (kx), where k, and
therefore E , are continuous variables, and not “quantized” to have the discrete val-
ues labeled with the index n: kn and En . The functions N sin (kn x) are the station-
ary wave functions, the eigenfunctions of Schrödinger’s equation for the particular
system we have assumed. They are analogous to the classical normal modes of
vibration of a system.

For the 3-dimensional case of a particle confined in a rectangular box with sides
L1, L2, L3, the eigenfunctions have the form

ψl,m,n =
√

8
L1L2L3

sin (kl x) sin (km y) sin (knz), 5.7

where

kl = lπ
L1

, km = mπ
L2

, kn = nπ
L3

, 5.8

and the quantum energy levels are given by

El,m,n = h2

8π2m

[
k2

l + k2
m + k2

n+
]
. 5.9

We note that we now have three quantum numbers l, m, and n to distinguish
the various possible stationary states, and that these appear in the quantization of
the components of the wave vector k along the three coordinate axes. If we recall
the formula for the de Broglie wavelength, we find that k = (2π/h)mV ; that is,
it is the linear momentum that is quantized. The constant factor

√
8(L1L2L3) is

introduced to meet the normalization condition.
We note that the stationary states we found for an electron in a box are far

from the classical picture of a point mass bouncing back and forth between the
boundaries. A particle moving back and forth would be represented as a time-
dependent wave function that, at any moment is small everywhere except in the
neighborhood of the particle position. Such a wave function, called a wave packet,
can be synthesized as a sum over the harmonic eigenfunctions, following the spirit
of the Fourier expansion theorem. Each eigenfunction corresponds to a different
energy, and therefore a different frequency (since Planck’s formula E = hν still
holds), with the result that the wave packet will have a time dependence reflecting
the motion of the particle.
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5.6 Quantum Numbers of Atomic States

If a particle is subjected to a central force, that is, one directed toward a fixed
point, such as the electrostatic Coulomb force that a nucleus exerts on the elec-
trons surrounding it in an atom, three quantum numbers will again be required to
specify a stationary state. In this case the spherical symmetry of the equation sug-
gests that the solution is most naturally expressed using the spherical polar coor-
dinates r , θ, φ. The quantum numbers conventionally designated as n, l, m play
a role in close analogy to the indices used to label the various normal modes of
vibrations of a sphere. The values of the quantum numbers are restricted as fol-
lows: n = 1, 2, 3, . . . , while l ≤ (n − 1) and m = l, (l − 1), (l − 2) . . . −(l − 2),
−(l − 1),−l. The part of the wave function that is a function of the r -coordinate
has a number of nodes (zeros) given by (n − l − 1), and the part that is a function
of the co-latitude θ has (l − m) nodes off-axis. Following spectroscopic conven-
tion, electrons in an atom having l = 0, 1, 2, 3, . . . are called s-, p-, d-, f-electrons,
etc., respectively. The quantum numbers l and m, which are associated with the
angular part of the wave function, in fact reflect the quantization of the angular
momentum and its component along the polar axis, respectively. In Figure 5.2 is
shown the probability distribution for a particle in a central field in the n = 3,
l = 2, m = 0 quantum state. According to the theory, a system having nominally an
orbital momentum quantum number l actually will have orbital angular momentum
of

√
l(l + 1) in units of h/2π, whereas the maximum component along the polar

axis is only l. (We will usually omit the unit h/2π unless we are doing a numerical
calculation.) Thus the theory predicts that the maximum component the angular
momentum can have along any given axis is somewhat less than the magnitude

n = 3

l = 2

m = 0

Figure 5.2 Example of the probability distribution for a particle in a central field
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of the angular momentum itself. This is a strictly quantum effect, since classically
the angular momentum is a vector that can assume any direction, and in particular
can point exactly in the direction of any given axis. The effect can be interpreted
in terms of vectors by saying it arises from a quantum uncertainty in the angle the
angular momentum vector makes with the axis. The quantization of the compo-
nent of angular momentum along an axis arises mathematically from the condition
that the solution to the Schrödinger equation must be a simple periodic function of
the angle φ around the axis; that is, it must repeat itself every 360◦. This physical
requirement imposed on the mathematical solution bears some resemblance to the
implied condition for normal modes in the Bohr circular orbits. In any event, it
constitutes one of the most radical breaks with classical mechanics: It implies that
the angular momentum of a system can only assume certain discrete orientations
with respect to a given axis; this is sometimes called space quantization, and it is
of profound importance in the quantum theory of atoms subjected to an external
magnetic field, and the attendant shifts in energy levels: the Zeeman effect.

Since an atomic angular momentum will have associated with it a magnetic
moment (both due to the orbital motion of the charged electron and its intrinsic
spin), the energy shift produced by a magnetic field is expected to depend on the
component of the angular momentum along the field and therefore, with the axis
chosen along the field direction, on the quantum number m. For this reason m
is called the magnetic quantum number, and to reiterate, for a state with a total
angular momentum (including spin) quantum number J (which, as we shall see,
may be integral or half-integral) the magnetic quantum number m J , can have one
of the following (2J + 1) discrete values: J , (J − 1), (J − 2), . . . ,−(J − 2),
−(J − 1),−J . For example, a particle in an angular momentum state described
nominally as a J = 5/2 state may have as its component along a given axis one of
the following values: +5/2,+3/2,+1/2,−1/2,−3/2,−5/2.

5.7 The Vector Model

It should be emphasized that the quantum numbers, while they represent in quan-
tum mechanics the results of measurement of a particular dynamical quantity, such
as angular momentum, it is only in systems involving very large quantum num-
bers that they approximate classical behavior. It happens that we can, according
to what is called the vector model, retain the concept of angular momentum as a
classical vector, provided that we give these vectors properties that are peculiar to
quantum mechanics. The uncertainty in pointing the angular momentum exactly
along a given direction is one of them. The other concerns combining different
angular momenta to obtain a resultant: the result of adding two angular momenta
whose quantum numbers are, for example J1 and J2, where J2 < J1, would clas-
sically be any value between (J1 − J2) and (J1 + J2), depending on the angle
between the two angular momentum vectors, whereas in quantum theory the resul-
tant is one of a discrete set that starts with (J1 − J2) and by increments of one
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Figure 5.3 Vector diagram for the addition of angular momenta

unit reaches (J1 + J2). For example, suppose a system in an angular momentum
state with quantum number J1 = 3 and another with J2 = 1 interact in such a
way that results in stationary states of the combined angular momenta. The quan-
tum numbers belonging to this combined representation would be 2, 3, 4, implying
according to the vector model that the angular momentum vectors can make only
certain discrete angles with respect to each other, as illustrated in Figure 5.3.

If the particle is an electron, a complete specification of its quantum state
requires not only the dependence of its wave function on the space coordinates,
but also the state of another attribute of the electron called the spin. This is an
intrinsic angular momentum of 1/2(h/2π), part of what it is to be an electron. It was
first introduced to explain atomic spectra and later brilliantly shown by Dirac to be
a logical necessity, forming an integral part of a relativistic quantum theory. For a
free electron, the spin component along any given axis can only be +1/2 or −1/2,
corresponding to only two possible directions of spin.

For electrons in an atom, a total angular momentum larger than 1/2 can result
from the spin combining with the orbital angular momentum of its motion around
the nucleus, which is conventionally represented by l and is always integral. It can
be shown that the magnetic field produced by the orbital motion of the electron can
exert a torque on its own spin, a coupling called the spin–orbit interaction, which
is extremely important in understanding atoms. In the absence of other torques act-
ing separately on the two types of angular momentum, such as a strong external
magnetic field, the two will give a resultant angular momentum represented con-
ventionally by j, which is conserved, and quantized both in magnitude and spatial
orientation. For example, an electron in an orbit with orbital angular momentum
l = 2 will have a resultant, when combined with its spin of 1/2, equal to either
2+1/2 or 2−1/2, that is, 5/2 or 3/2. Recall that these numbers give the maximum
component observable along any given axis in units of h/2π.

5.8 The Shell Structure of Electron States

When there is a large number of electrons in different orbits, the prediction of the
possible combined angular momentum states quickly becomes very complicated;
not only is there spin–orbit coupling, but also interactions between the spin and
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orbital magnetic moments of different electrons. Fortunately, it happens that elec-
trons in an atom can be grouped into shells, which, as we shall see, can contain
only a certain maximum number of electrons. When completely filled, a shell has
zero resultant angular momentum; so that only electrons in any incomplete shells
need be considered in arriving at the overall atomic angular momentum state.

The reason for venturing a little into the abstruse realm of quantum theory is
that it is essential for any basic understanding of atomic and molecular structure
and dynamics. We recall that the atoms of the chemical elements have small pos-
itive nuclei, where most of the mass resides, surrounded by a cloud of negative
electrons that occupy available quantum states, each state labeled by a set of three
quantum numbers, plus a fourth specifying the spin state. We have already seen that
for a given value of the quantum number l there are (2l +1) states with different m;
if we include the two possible directions of the spin, this number is doubled. (The
presence of spin–orbit coupling requiring a description in terms of the total (spin
plus orbital) quantum numbers does not affect the number 2(2l + 1).) These states
correspond to different orientations of the orbital and spin angular momenta with
respect to a fixed axis. In the absence of an external field, such as a magnetic field,
all directions in space are identical, and the energy of electrons in these states is the
same; they are all at one energy level. They are called degenerate states. Further-
more, it is found that for a pure Coulomb (inverse square law) electrostatic field,
such as we have in the hydrogen atom, the solution to the Schrödinger equation
yields possible values of energy that depend only on the quantum number n, and
so there is degeneracy with respect to the l quantum number as well. Now, for each
value of n, the quantum number l can assume any of (n − 1) values, and as we
have seen, to each l value there are 2(2l + 1) degenerate states. The total number
of degenerate states having the same n is therefore

n−1∑
0

2(2l + 1) = 4
n(n − 1)

2
+ 2n = 2n2. 5.10

The common energy of these states can be shown to be

En = −
(

2π2m Z2e4

h2

)(
1
n2

)
, 5.11

in agreement with the old quantum theory of Bohr, which was already known to be
in remarkable agreement with experiment. There is an infinite number of energy
levels corresponding to n ranging from 1 to ∞; Figure 5.4a shows some of the
lower states. Unlike the Bohr theory, the electrons are not localized along particular
orbits but must be regarded as spread out with a radial density given by 4πr2|ψ|2,
which is illustrated for several states in Figure 5.4b. We note that the average radius
increases with n, the outermost electrons having the highest n and the smallest
binding energy.

For atoms having a large nuclear charge, and therefore many electrons, the
exact solution of the Schrödinger equation becomes impossible, and approximate
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Figure 5.4 (a) The energy levels of the H-atom, and (b) the radial dependence of some of
the lower energy wave functions

numerical methods have been developed. An approximation that has proved very
useful is to assume that each individual electron moves in an electrostatic field pro-
duced by the nuclear charge and an average spherically symmetric distribution of
charge due to the other electrons. Of course, after solving the Schrödinger equation
using this approximate field and obtaining the charge distribution of each electron
from its calculated wave function, the combined charge distribution so derived must
agree with the one assumed in the first place. The important point for us is that if the
field acting on the electrons can indeed be taken to be spherically symmetric, then
the same quantum numbers n, l, m can still be used with the same significance,
except that the radial distribution of electrons is no longer purely hydrogen-like,
and the energy is no longer a function of the principal quantum number n alone,
but depends on l as well. That is, the l-degeneracy is removed. However, the depen-
dence of the energy on l is still generally weaker than that on n, aside from some
important exceptions for larger l-values. The m-degeneracy remains, and levels are
grouped around the different l-values; these groupings are the shells mentioned
earlier. It is one of the early triumphs of quantum theory that it was able to predict
the number of quantum states in each shell. Thus, for example, states having n = 4
and l = 2 would be said to belong to the 4d shell, and those having n = 5, l = 0
are in the 5s shell; the former would number 2(2 × 2 + 1) = 10 states, and the
latter just 2(2 × 0 + 1) = 2 states.
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5.9 The Pauli Exclusion Principle

Starting with a nucleus having a given number of protons, in order to construct a
neutral atom in its ground state we must take the same number of electrons and allo-
cate them one by one to progressively higher-energy quantum states beginning with
the lowest-energy state first. This atomic building principle is based on the condi-
tion that no two electrons can occupy the same quantum state, that is, have the same
set of quantum numbers. This is a statement of the Pauli exclusion principle, which
is at the heart of the quantum explanation of atomic structure and spectra. It can
be deduced from a symmetry property of wave functions representing a system of
electrons and some other elementary particles. Since individual electrons are indis-
tinguishable, in the sense that we cannot know which electron occupies a particular
position and spin state, an exchange of the assignment of these between any two
electrons in the wave function ψ cannot change the observable |ψ|2. Therefore, an
electron exchange must either leave ψ unchanged (symmetric wave function) or at
most change its sign (antisymmetric wave function). It happens that photons have
the former symmetry, while electrons the latter. For electrons this means that the
probability of finding two electrons in identical states is zero, since in that event
an exchange of the two electrons must on the one hand leave the wave function
unchanged, but on the other its sign must change; this can happen only if it is zero.
Once an electron occupies a certain state, that state is said to be filled. This means
that in constructing the ground state of an atom, each state must be filled before
the next higher energy state is filled. The assignment of electrons to the different
possible quantum states is analogous to the assignment of passengers to single-
occupancy berths on a cruise ship; each berth has a number, and the fare schedule
is based mainly on which deck the berth is located, with some differences within
a given deck depending on its location. For the electrons in an atom, the “decks”
are the shells, and the “fare” is the energy. Unlike a cruise ship, however, the elec-
trons of an atom are in the stable ground state when their total energy (“fare”) is a
minimum.

Since we shall be concerned with crystalline quartz (SiO2) in the next chapter,
let us consider the elements oxygen and silicon as examples. They have (positive)
nuclear charges of 8 and 14 respectively, in units of electronic charge. Therefore,
oxygen will have the shells 1s, 2s filled and be two short of filling 2p, while silicon
will have the 1s, 2s, 2p filled and have two electrons in each of the 3s and 3p outer
shells.

It is the outermost electrons in an atom that determine its chemical proper-
ties and its interaction with radiation in the optical region of the spectrum. The
inner electrons are unable to take part in any small exchange of energy, since all
neighboring energy states are filled. Of course, if sufficient energy is involved,
as in electron bombardment in an X-ray tube, inner electrons do play a part; but
ordinary chemical reactions and optical transitions involve relatively little energy.
The Mendeleev periodic system of the chemical elements finds a ready explana-
tion in terms of the filling of shells as the nuclear charge (atomic number, Z) is
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incremented. Thus the property of having a completely filled outer p-shell cor-
responds to the noble gases and will recur at Z = 2 (He), Z = 2 + 8 (Ne),
Z = 2 + 8 + 8 (Ar), etc. Next would be the alkali elements with a single elec-
tron outside a closed shell; they are at Z = 1 (H), Z = 2 + 1 (Li), Z = 2 + 8 + 1
(Na), Z = 2+8+8+1 (K), etc. Then the alkaline earths, Be, Mg, Ca, Sr, . . . , with
two electrons outside closed shells, and so on. This simple progression is inter-
rupted when we reach a point where it becomes “cheaper” in energy to go to a
higher n-value than to add to a shell with a high l-value. This leads to the so-called
transition elements, for example, those involved in filling the 3d shell (after the 4s
shell has been filled), Mn, Fe, Co, Ni.

In all the elements, the inner closed shells and the nucleus form a tightly held
inner core, with an unbalanced positive charge equal to the charge of the outer
electrons. In the context of chemical bonding, the outer electrons are referred to as
the valence electrons, of which silicon has four and is therefore tetravalent, and of
which oxygen lacks two to complete a shell and is thus divalent. Without going into
the subject any more deeply than we absolutely have to, we will simply state that
the bonding between atoms to form compounds can be characterized according
to the extent that the valence electrons (a) overlap between the atoms (covalent
character) or (b) are transposed from one atom to the other, forming positive and
negative ions that attract each other (ionic character). Whether the bond between a
particular pair of atoms is predominantly covalent or predominantly ionic depends
on the relative energy “cost” of the electrons arranging themselves according to
the one or the other; recall that stability belongs to the lowest energy. The covalent
bond may involve one valence electron, as in the bond between Si and O in quartz,
or more than one electron, as typified by the bond between C and O in carbon
dioxide (CO2), in which the carbon atom has a double bond with each oxygen
atom.

Now, in a covalent bond, where the dominant feature is the overlap of valence
electrons belonging to the two atoms (recall that the electrons are to be viewed as
smeared over all space according to the magnitude of their wave function), it is
reasonable to expect that the possible distribution of the valence electrons around
the inner core will determine the directions along which the bonds occur.

5.10 Spectroscopic Notation

A central problem in the quantum mechanical treatment of atomic observables is to
find how the angular momenta of the constituent particles must be coupled in order
that the energy and angular momentum are simultaneously in stationary quantum
states. Because of the magnetic interactions between the particles, the individual
particles will not maintain a constant direction with respect to some fixed axis
and cannot define a “stationary” quantum state. In a system comprised of many
interacting particles, the total angular momentum of the system will always be
conserved, remaining constant in magnitude and direction, like an ideal gyroscope.
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It may also happen that the angular momenta of particles within subsets of the
total may be coupled to form conserved parts of the total angular momentum. The
magnitude of such conserved angular momenta and their components along an
arbitrary axis can serve to describe a stationary quantum state. Thus in one scheme
of coupling angular momenta of electrons in a complex atom, called the Russell–
Saunders coupling, the orbital angular momenta of the electrons are combined,
then separately all the spin angular momenta are combined, and finally a resultant
of the total orbital and spin angular momenta is obtained.

We recall that in combining angular momentum in quantum theory, we may
use the vector model representation, provided that we remember that we are deal-
ing with quantum numbers and that special quantization rules must be observed.
Let us consider two examples that will be of considerable interest to us later: the
alkali atoms rubidium and cesium. In their ground state, they have only one elec-
tron outside closed shells. In the ground state we are considering, this electron has
no orbital angular momentum and therefore only the spin angular momentum of
1/2, with two possible components along a given axis, +1/2 or −1/2, and g = 2.
If this single outer electron occupies the next higher energy state, it would have
an orbital angular momentum of one unit, that is, l = 1, in addition to its spin.
These angular momenta are not individually constant in direction, but the total
angular momentum is conserved; according to quantum rules, the total can be only
J = 1/2 or J = 3/2. Because of the relative weakness of the magnetic interac-
tions compared to electrostatic pull of the nucleus, there is a difference in energy
between these two states much smaller than would accompany a change in orbit,
and this difference is therefore called the fine-structure splitting. It is due in this
case to the spin–orbit interaction we mentioned earlier in this chapter.

The notation used by spectroscopists to designate these two states in the alkali
atoms is 2P1/2 and 2P3/2. The letter indicates that the orbital angular momentum
L = 1, the superscript 2 is the value of (2S + 1), where S is the spin angular
momentum (in this case S = 1/2), and finally, the subscripts 1/2 and 3/2 are the two
values of total angular momentum J . In this notation the ground state is designated
as 2S1/2.

5.11 The Hyperfine Interaction

The electron is by no means the only fundamental particle with intrinsic spin
and magnetic moment; both the proton and neutron, which are the constituents
of atomic nuclei, also have these attributes. These particles have the same mag-
nitude of spin as the electron, but since their charge-to-mass ratio is 2000 times
smaller, we would expect, at least classically, that their magnetic moment is also
smaller in approximately the same ratio. In fact, as with the magnetic moment of
the electron, classical theory is inapplicable, but the classical moments are used as
units; for the electron it is the Bohr magneton; here it is the nuclear magneton. As
with the electron, the magnetic moments of the proton and neutron are expressed
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in terms of g-factors defined as follows: μ = gn I μn , where μn is the classical value
of the magnetic moment of a particle with the charge and mass of a proton and an
angular momentum of one unit, h/2π. The measured value for the proton is about
gp = 5.586 and for a free neutron gn = −3.82. Again we see that classical theory
is invalid, particularly for the neutron, which, being neutral, should have no mag-
netic moment at all. The question of what spin and magnetic moment a particular
nucleus as a whole exhibits is a complicated one of nuclear structure, involving
in general a large number of interacting protons and neutrons. The existence of
a nonzero nuclear spin, which like total electronic angular momentum is limited
to integral or half-integral values, further complicates the question of the angu-
lar momentum states of an atom, since the nuclear magnetic moment associated
with it can interact with that of the outer electrons. Since the magnetic moment of
the nucleus is so much weaker than the electron moment, it is expected that the
different possible orientations of the nucleus will lead only to narrow splitting of
the energy states. In recognition of that fact, the interaction between the electron
and nucleus is referred to as the hyperfine interaction. It is precisely transitions
between states separated by this hyperfine interaction that give rise to the sharp
resonances used in the atomic standards in the microwave region of the spectrum.
The assignment of angular momentum quantum numbers to the quantum states of
an atom is very much affected by the addition of the nuclear spin, with impor-
tant consequences, as we shall see, for any process involving exchange of angular
momentum between an atom and radiation, for example.

It is a remarkable fact that in the 2S1/2 ground state of the alkali atoms, the elec-
tron has zero orbital angular momentum, which classically would be interpreted as
a collapsed electron orbit passing right through the nucleus; even the quantum pic-
ture is one of an electron spread out in a spherically symmetric way around the
nucleus, with a finite probability of being found in the nucleus itself. A thought-
ful reaction to this revelation might be, Why is there no nuclear reaction between
the electron and the particles that make up the nucleus. The answer is that elec-
tron capture by the nucleus can occur in some species of nuclei; but where it is
allowed, it is far more likely to involve the innermost electrons in the atom, in
a process called K-capture because the innermost shell of an atom is called the
K shell. Unlike s-electrons, all others in l = 1, 2, 3 . . . orbital angular momentum
states have a vanishingly small probability of being in the nucleus. The spherical
symmetry of the electron distribution in the 2S1/2 state and its finite value in the
nucleus have an important bearing on the computation of the interaction energy
between the magnetic moment of the nucleus and that of the electron. They mean
that we are not dealing with two separated magnetic dipoles, like two little magnets
interacting with each other; rather it is a magnetic dipole embedded in a magne-
tized, spherically symmetric medium, as shown in Figure 5.5.

The problem is to compute the amount of energy that would be required to
remove the embedded magnet from the center of that magnetized medium. Clas-
sically, reversing the relative directions of the magnetization of the magnet and
medium merely changes the sign of the energy, the interaction changing from one
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Figure 5.5 The magnetic moment of the nucleus interacts with that of the electron cloud
surrounding it

S = 1/2

I = 5/2

F = 5/2 + 1/2

F = 5/2 - 1/2

Figure 5.6 The quantum addition of angular momenta 5/2 and 1/2 according to the vector
model

of attraction to one of repulsion; however, as we have become accustomed by now,
this contradicts quantum mechanics. Simply put, the two possible angular momenta
given nominally as I + 1/2 and I − 1/2 cannot be regarded as having the relative
directions of the nuclear and electron spins reversed. Figure 5.6 illustrates the addi-
tion of an angular momentum of 5/2 with one of 1/2 according to the vector model.
We see that since the magnitudes of the vectors have the form

√
5/2(5/2 + 1)

and
√

1/2(1/2 + 1) , the vectors for the angular momenta, which are nominally
(5/2 + 1/2) and (5/2 − 1/2), do not have the 1/2 angular momentum in opposite
directions relative to the 5/2.

The quantum-mechanical solution to the problem of the magnetic interaction
between a nuclear moment and an overlapping electron distribution is associated
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with the name of Fermi, who obtained it as an early application of what was then
the new quantum mechanics. The expression he obtained for the energy, in terms
of the probability density of the electron at the nucleus and the magnetic moments
of the nucleus and electron, is as follows:

E =
(

8π
3I

)
μeμn

∣∣ψ(0)
∣∣2[F(F + 1) − I (I + 1) − J (J + 1)

]
, 5.12

where |ψ(0)|2 represents the electron density at the nucleus. For zero orbital angu-
lar momentum states having the same total electron angular momentum J , we can
write for the energy separation between adjacent F values the following:

E(F) − E(F − 1) = 16π
3

μeμn
∣∣ψ(0)2∣∣ ( F

I

)
. 5.13

The application of these formulas to such complex atoms as rubidium and
cesium is not expected to yield very accurate results, since many simplifying
assumptions have been made; among the more serious are these: A point magnetic
dipole was assumed for the nucleus, as was a single electron in an unperturbed
state. Even for the hydrogen atom, where these assumptions should be far more
tolerable, the drive for accuracy in the theoretical ground state hyperfine separation
has led to ever more sophisticated higher-order corrections being computed. As
we shall see, thanks to the hydrogen maser this hyperfine separation in hydrogen
is undoubtedly the most accurately measured quantity in physics: to better than
twelve significant figures! One of the early triumphs in this field was the evidence
that there was an “anomaly” in the magnetic moment of the electron; the value
deduced experimentally did not agree with the then most advanced relativistic the-
ory of the electron, the Dirac theory, which predicted that the electron g-factor
should be exactly 2. In fact, it was found that g = 2(1.00114 . . .), a number that
has been the subject of precise studies by Dehmelt et al. (Dehmelt, 1981).

In the case of the rubidium atom, there are two naturally occurring isotopes, that
is, atoms having the same electronic structure (which identifies them as rubidium)
and therefore the same nuclear charge, but with a different nuclear mass because of
a difference in the number of neutrons (see Figure 5.7). Natural rubidium is about
72% mass 85 with nuclear spin I = 5/2 and 28% mass 87, which has an extremely
weak radioactivity and nuclear spin I = 3/2. If we follow the quantum rules for
combining angular momentum, we will find that the ground state of Rb85 splits into
energy levels with angular momenta equal to (5/2 − 1/2) and (5/2 + 1/2); that is,
F = 2 and F = 3. Note that we can write symbolically J = L+S and F = J+I to
represent the (vector) addition of orbital and spin angular momentum to obtain the
total electronic angular momentum, and then the addition of the nuclear moment I

to get the total conserved angular momentum F.
The assignment of angular momentum quantum numbers to the first energy

level above the ground state in Rb85 is somewhat more complicated, since we have
to combine J = 3/2 with I = 5/2 in addition to the combination of I = 5/2 with
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Figure 5.7 Hyperfine structure of low lying states in Rb85 and Rb87
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Figure 5.8 Hyperfine structure of low-lying states in Cs133

J = 1/2, which leads to the values we have already found for the ground state. In
general, we simply write all values between I + J and I − J , that is, F = 4, 3, 2, 1.

Similar arguments may be used to find the angular momenta for the ground
state and first excited states of the cesium atom (see Figure 5.8). There is only
one stable isotope of cesium, mass 133, with a nuclear spin I = 7/2. Hence in the
electronic ground state, which has J = 1/2, the possible total angular momenta are
F = 4 and F = 3. For the first excited electronic state, which has two electronic
angular momentum states, J = 1/2 and J = 3/2, the coupling with the nuclear spin
leads to F = 4, 3 for the first J value and F = 5, 4, 3, 2 for the other J value.
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As already indicated, the magnetic interaction of the nuclear moments with
the electrons is expected to be very small compared to the other interactions that
determine the quantum energy levels of an atom. Nevertheless, it is precisely the
magnetic hyperfine separations in the ground states of rubidium and cesium that
have come to be distinguished as fiducial quantities, the latter defining the unit
of time.

5.12 Electrons in Solids: The Band Theory

5.12.1 Origin of Energy Bands

In order to understand the principles on which the operation of semiconductor
lasers is based, we must review briefly the concepts underlying the theory of elec-
trical conduction in crystalline solids. Apart from some special cases such as the
interior of a battery, electrical conduction is a manifestation of the flow of elec-
trons. The conditions, therefore, that determine to what extent a given substance
can conduct electricity have to do with the extent to which electrons are able to
move freely under the action of an applied electric field.

A crystalline solid is composed of atoms (or ions) arranged in a 3-dimensional
array that repeats in a regular pattern. The motion of the electrons and their quan-
tum states are no longer determined just by the electrostatic forces within each atom
individually, but rather, particularly the outer valence electrons, by the interaction
with all the atoms or ions in the crystal. Instead of the atomic structure problem,
where electrons are more or less attracted to a central nucleus, we now have a regu-
lar 3-dimensional array of attracting centers. To see what the quantum states of the
electrons should be for such an array, let us start with just two centers initially far
apart being brought together to their actual separation in the crystal. Since the two-
center system is symmetric with respect to an interchange of the positions of the
centers, in quantum theory it follows that the wave function representing the two-
atom system must be either symmetric (unchanged) or antisymmetric (only change
sign) when the electron coordinates with respect to the two centers are exchanged.
Initially, when the atoms are very far apart, the energy levels computed on the basis
of the two symmetries are equal, and therefore the levels are the same as in the iso-
lated atom, except that to each energy level belong two possible quantum states.
However, when the atoms approach each other, the energies are no longer the same
for the two symmetries, and the levels are split into two close levels. If now a
third atom is brought into position from a large distance, it would lead to a 3-fold
exchange symmetry and a consequent splitting into three levels. By extension, if N
atoms are brought into position to form a crystal, the levels are split into N levels,
the widest splitting coming from nearest neighbors. Since the atomic separation
determines the maximum splitting, and N for even the smallest visible piece of the
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crystal is extremely large, on the order of 1019 atoms, the result is effectively a con-
tinuous band rather than a discrete multiplet. On the basis of this band structure we
can now broadly draw the essential distinctions between a conductor, an insulator,
and a semiconductor.

5.12.2 Conductors and Insulators

In the lowest-energy state of the system, the electrons fill all the available states,
from the lowest up to the energy band that arises from electron states in the out-
ermost shell of the isolated atom. If the last band containing electrons is only par-
tially filled, then there will be within that band a continuum of higher-energy states
available to the electrons to go into as a result of gaining kinetic energy from an
external electric field, and the crystal is a conductor. For that reason the partially
filled band is called the conduction band. For example, an isolated sodium atom has
one electron in its outermost 3s shell, which can accommodate, according to the
Pauli principle, two electrons. The band that results from this state can therefore
accommodate 2N electrons, whereas N sodium atoms have only half this number.
Therefore, sodium is a good electrical conductor; in fact, the crystal is metallic
and like all metals is a good conductor. On the other hand, a crystal is an insulator
if all the bands up to a certain uppermost one, called the valence band, are com-
pletely filled in the sense of the Pauli principle, and the next higher empty band is
so high in energy that no electrons can reach it by thermal agitation. In this case
there are no electrons in a position to go into contiguous vacant states in response
to an applied electric field, and no change in electron velocity can occur. Hence no
current is produced, and the crystal is an insulator.

Finally, we have what are called semiconductors, such as pure silicon, germa-
nium, and gallium arsenide. In these the valence band is filled like an insulator,
and the band above it would be empty were it not for the circumstance that it is so
close in energy to the top of the valence band that at ordinary temperatures there
are appreciable numbers of electrons in it due to thermal agitation. Thus because
of the thermal distribution of energy among the electrons, a semiconductor has
electrons in a band that would otherwise be empty at absolute zero temperature.
The vacancies left behind in the valence band by the electrons that are thermally
raised to the conduction band are called holes and act like positive electrons. This
can be made plausible by thinking of the analogy of a row of seats in a theater all
occupied except one; if the person next to the vacant seat gets up and sits in it, the
effect is the movement of the vacancy one seat in the opposite direction to that of
the person. Clearly, the number of holes left in the valence band must equal the
number of electrons in the conduction band. This number depends on the temper-
ature according to the quantum analogue to the Maxwell–Boltzmann distribution,
the Fermi distribution, which applies to thermal equilibrium of electrons in any
system. If the probability of an electron occupying a state of energy in the interval
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dE centered on the value E is defined as F(E)dE, then the distribution function
F(E) is a function of temperature of the form

F(E) = 1

exp
(

E−EF
kT

)
+ 1

, 5.14

where EF is a parameter called the Fermi energy. Noting that at absolute zero EF
marks the energy at which F(E) abruptly changes from one to zero, we see that the
Fermi energy can be described as the highest level reached if all the electrons are
distributed one to each of the lowest available states. From Figure 5.9 we see that
in order that the number of electrons raised to the conduction band be equal to the
number of holes left behind in the valence band, the Fermi energy must be assumed
to be midway in the gap between the two bands. The importance of the Fermi level
for us is that when a junction is formed between two types of semiconductor, the
energy levels on the two sides of the junction must adjust themselves in such a way
that the Fermi levels are brought into coincidence.

5.12.3 p-Type and n-Type Semiconductors

So far we have been considering ideally pure semiconductor crystals, the so-called
intrinsic semiconductors, with impurities well below a few parts in a million. In
fact, what made transistors possible and the solid-state revolution in electronics that
they brought with them, are the technological advances in purifying and controlling
the purity of these materials. By adding minute controlled amounts of “impurities”
to the melt during the growth of the semiconductor crystals, a process called dop-
ing, the electrical conductivity of these semiconductors can be radically altered in

E

EF

conduction band

electron density

temp. = 08K temp. >08K

0

Figure 5.9 The Fermi distribution of electrons in a semiconductor
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useful ways. The result of doping is what is called an extrinsic semiconductor, with
the number of electrons exceeding that of holes (n-type), or with a preponderance
of holes over electrons (p-type).

To understand better the effects of doping, we note first that elements such as
silicon and germanium have a valence of four, and they crystallize in the diamond
structure in which each valence electron is shared in a covalent bond with one
electron from each of four nearest neighbor atoms. These covalent bonds account
for all the valence electrons, and therefore at T→0 the valence band is completely
filled, while the band above it, the conduction band, is empty. Suppose now that
as a result of doping, some of the lattice sites in the crystal are occupied not by
an atom of the host element, but by an impurity atom with a valence of five, such
as arsenic. Four of these five valence electrons will be taken up in forming the
four covalent bonds, leaving the fifth electron moving in the field of the remaining
ion. This electron and the other such electrons belonging to impurity atoms are
more weakly bound to the ions in the crystal environment than they would be in
free space and therefore are in discrete states very close to the continuum of free
electron states, that is, the conduction band. These discrete states are called donor
states, because at temperatures above zero they give up electrons to the conduction
band, making the crystal n-type with a high conductivity due predominantly to
electron flow. The presence of the additional donor electrons puts the Fermi level
closer to the conduction band.

Suppose now that the silicon or germanium crystal is doped with an impurity
having a valence of three, such as aluminum or gallium. Then where an impurity
atom occupies a lattice site there will be one too few electrons to satisfy the four
covalent bonds. In this case, an electron from the top of the valence band supplies
the missing electron to form a negative ion and leave a hole in the valence band,
which, acting like a positive electron, will have weakly bound discrete states, like
the mirror image of an electron in the field of a positive ion. These states will
be for negative electrons slightly above the top of the valence band, and they are
called acceptor levels, because they receive electrons from the valence band, leav-
ing holes there to act like positive charge carriers. The resulting semiconductor
is called p-type, since the predominant charge carriers responsible for conduction
are positive. With fewer electrons in the valence band, the Fermi distribution must
be moved lower, with EF closer to the top of the valence band, in order again to
conform with the requirement on the electron number. Figure 5.10 shows schemat-
ically the relative positions of the boundaries of the two energy bands, the impurity
levels, and the Fermi levels.

5.12.4 Energy-Momentum Relationship

So far we have dealt only with the possible energy states of electrons in the crystal;
but a complete dynamical description must include their momentum. This is nec-
essary if we are to deal with the electron transitions accompanying the absorption
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Figure 5.10 Energy bands and impurity levels in a doped semiconductor

or emission of radiation. In the case of radiative processes in atoms, conservation
laws lead to certain selection rules determining which transitions are allowed and
which are forbidden. Here the conservation of linear momentum between the elec-
tron making a transition and the photon absorbed or emitted will impose conditions
on the crystalline properties that we must now address.

The problem of the motion of electrons acted on by a spatially periodic force
such as they experience on an atomic scale from the atoms or ions in the crystal
lattice is a quantum-theoretical problem. Their behavior is dominated by their wave
nature, and rather than speak of the momentum of an electron, it is more useful to
use the de Broglie wave vector k = mV/(h/2π), whose magnitude is defined
as k = 2π/λ. The classical (nonrelativistic) relationship between kinetic energy
E = 1/2mV 2 and the wave vector for a free particle is as follows:

E = 1
2m

(
kh
2π

)2

. 5.15

However, motion in a periodic crystalline field is totally different; in fact, even
the most essential attribute of a material particle, namely its mass, is no longer
a constant. The change in kinetic energy that a force imparts to an electron, that
is, its “inertia,” depends on its quantum state, and the concept of an “effective
mass” is introduced to frame the problem where possible in Newtonian terms. The
way in which the E–k relationship for a free particle is modified in an ideal crystal
with a lattice spacing of a between atoms is shown schematically in Figure 5.11.
We notice the band structure and the appearance of “forbidden” gaps around the
points k = nπ/a, where n is a whole number. These can be given an electron
wave interpretation as the inability of the electron wave to propagate through the
crystal with these wave numbers because of coherent reflections from the lattice
sites causing destructive interference.
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Figure 5.11 The E–k graph for an electron in a one-dimensional periodic field: a simple
model of a crystal
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Figure 5.12 The energy–momentum graphs for silicon and gallium arsenide crystals. The
indices (100) and (111) specify directions with respect to the crystal axes

In a real crystal the detailed E–k relationship is in general much more compli-
cated. Figure 5.12 compares graphically the features of that relationship that are
of particular relevance to us for two semiconductors: silicon and gallium arsenide.
Note that the curves are for specified directions of the electron wave vector with
respect to the crystal axes, since most physical properties, including electronic
properties, are different in different directions in a crystal. Of particular importance
is the fact that the upper boundary of the valence band for GaAs has a maximum
at the same value of k as a minimum in the lower boundary of the conduction
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band, whereas for Si this is not the case. Semiconductors that are like GaAs in this
respect are said to have a direct band-gap, while the others have an indirect one.
We shall see later that in order that electrons may undergo radiative transitions
between bands, involving the emission or absorption of photons, and do it with
high probability, it is crucial that the semiconductor be a direct one.



Chapter 6
Magnetic Resonance

6.1 Introduction

In the evolution of clocks through the ages, there has been a progression from
the use of periodic systems on a large scale with relatively slow movement to
increasingly smaller, delicately operated devices running at very much higher
frequencies. The large, elaborately built water clocks of China and the pendulum
clocks of a later age were by the very nature of their mechanical design vastly
more susceptible to environmental sources of error than the balance wheel and
ultimately the quartz-controlled clock. The next step in this progression is no less
revolutionary than the one from a pendulum to the quartz oscillator; it is clocks
based on atomic resonators.

While the quartz resonator involves the vibrations of a single crystal, which
is a kind of macromolecule, an atomic or molecular resonator involves the reso-
nant interaction of individual atoms or molecules with electromagnetic oscillations
in a microwave or light field. When the resonance occurs in the particle motion
in a magnetic field, we have magnetic resonance, a technique that was originally
applied to the measurement of the magnetic properties of atoms and their nuclei.
However, as a laboratory tool, it has found important analytical applications in
chemistry, and more recently in the form of (nuclear) magnetic resonance imaging
as a powerful, non-intrusive diagnostic tool in medicine.

Although pure magnetic resonance in an external field is not used per se as a
reference in clocks, nevertheless, as we shall see, the magnetic interactions within
atoms, as well as their interaction with an external magnetic field, are very much
involved in atomic resonators. It is for that reason that we will devote this chapter
to magnetic resonance and the techniques used to observe it.

6.2 Atomic Magnetism

The outward magnetic properties of matter are the average manifestations of the
magnetism of the constituent fundamental particles that make up the atoms of
matter. As mentioned in a previous chapter, one of these fundamental particles, the



114 The Quantum Beat

electron, must be attributed with a certain intrinsic angular momentum, namely a
spin of 1/2(h/2π). Although the inescapable image of a tiny electrically charged
sphere spinning like a top is not in keeping with the quantum picture, nevertheless,
the classical prediction that a rotating charge should produce a magnetic field is
qualitatively correct; an electron does act like a small magnet, or more formally,
it has a magnetic dipole moment. However, the strength of that little magnet is not
what a classical (nonquantum) calculation would predict for a spinning particle
having the charge and mass of the electron; in fact, it has almost exactly twice
that strength. If we represent the classical magnetic moment of a body having the
mass and charge of an electron and revolving with angular momentum h/2π by
μB, called the Bohr magneton, then we can write for the magnetic moment of the
electron μ = gμB/2, where g is a numerical constant yet to be determined. We
note that a classical particle with spin 1/2h/2π would have, by the definition of μB,
a magnetic moment of μB/2, and therefore g = 1. In the case of the electron, how-
ever, with the same spin 1/2h/2π the magnetic moment is μB rather than 1/2 μB, that
is, for the electron g ≈ 2, showing just how far classical predictions are invalid in
this connection. On the other hand, an electron moving in a closed orbit produces
a magnetic field like that of a classical particle executing that motion, for which
g = 1.

In all but the simplest atoms, we have generally a large number of electrons
in the outer structure as well as many nucleons (protons and neutrons) in the
nucleus, all interacting—the electrons with other electrons predominantly through
their electrical repulsion, the electrons and the nucleus through their electrical
attraction, and the nucleons with other nucleons through nuclear forces. While the
nuclear electrostatic attraction is responsible for the gross energy-level structure,
it is the electrical electron–electron interaction and the spin–orbit interaction that
can involve the orbital and spin motions of the same electron, which is responsible
for the detailed energy structure and the stationary angular momentum states of the
atom. The magnetic dipole–dipole interactions between particles are much weaker;
however, because of their involvement in the hyperfine structure, they play a major
role in the present context of atomic clocks.

As we saw in the last chapter, it is in the outermost incomplete electron shell in
an atom that we find the electrons whose angular momenta may combine to yield
a finite overall resultant; and it is this that can endow an atom with a permanent
magnetic moment, making it a so-called paramagnetic atom.

6.3 The Zeeman Effect

We must now inquire into the stationary energy states of an atom having a
permanent magnetic moment by virtue of its being placed in a static uniform
magnetic field. Classically, there is no doubt that its interaction with the field gives
it potential energy, since the torque that acts on it can clearly be made to do work in
turning towards the direction of the field. By computing the work done in rotating
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through an arbitrary angle θ, we can show that the potential energy can be written
as follows:

Em = −μB0 cos θ, 6.1

where μ is the magnetic moment; that is, the energy is proportional to the compo-
nent of the dipole moment vector in the direction of the field. If that direction is
taken to be the axis of quantization, then we see that the energy depends on the
component of the magnetic moment, and therefore angular momentum, along that
axis.

It happens that as long as the applied magnetic field is a weak perturbation com-
pared with the electron interactions within the atom, (in the case of the spin–orbit
interaction this will remain true even for relatively intense fields), the stationary
quantum states are still correctly described with the same set of quantum num-
bers we have previously introduced; the only change is that states with different
components of angular momentum along the field axis will have different ener-
gies. That is, the (2J + 1) substates with mJ = −J,−(J − 1),−(J − 2). . .
+(J − 2),+(J − 1),+J that overlap in energy (and are called degenerate) in
the absence of a magnetic field will now be separated in energy by an amount
that varies with the intensity of the magnetic field. The extent of this splitting also
depends on the ratio between the magnetic moment and angular momentum, called
the gyromagnetic ratio γ, for the particular quantum state. This ratio can be writ-
ten in terms of an effective g-factor, which for an atomic state is referred to as
the Landé factor. Since in general, for an atom, the total angular momentum may
be the resultant of both spin and orbital types, for which, as we saw, the g-factors
are different, the Landé factor will depend on the angular momentum quantum
numbers of the given state. In terms of the Landé factor g(L , S, J ), the energies
of the substates having different components m J of the total electronic angular
momentum J are as follows:

Em = −mJ g(L , S, J )μB B0, 6.2

justifying the designation magnetic quantum number for mJ . We note that since the
energy is proportional to mJ , which is incremented in equal unit steps, the effect
of the magnetic field on the energy levels of an atom is to split them into 2J + 1
equally spaced magnetic sublevels.

It follows that in the presence of a magnetic field, what was one energy level
becomes a complex of several levels, from which the atom may make optical transi-
tions to other similar complexes at lower levels, as shown in Figure 6.1 for an alkali
atom such as rubidium. Under high spectral resolution, the lines in the spectrum of
the emitted light will for most atomic species be seen to be split into several closely
spaced lines, a phenomenon first noticed by Zeeman around 1896 as a broadening
of the lines in the spectrum of light from a sodium flame when placed between the
poles of a magnet. The effect was ultimately resolved as a splitting of spectral lines,
now called the Zeeman effect. Lorentz applied his now classical theory of the elec-
tron to explain the effect, with only partial success; the use of the unique classical
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Figure 6.1 The Zeeman effect in the rubidium atom

value of g = 1 for all electron states will always lead to a splitting into just three
lines, corresponding to a change in m J = +1, −1, or 0. In reality, the effect in the
spectra of many atoms exhibits a far more complex pattern, inexplicable according
to classical theory; hence such cases were dubbed anomalous. Attempts to explain
this “anomalous” behavior ultimately led to the discovery of electron spin and the
assignment of the nonclassical value of 2 for its g-factor.

Of all the initial and final magnetic substates between which we might con-
sider possible transitions to occur, involving the emission or absorption of light,
only those will occur with any significant probability that satisfy certain conditions
on their quantum numbers, called selection rules. The selection rules depend on
the mode of vibration within the atom or molecule giving rise to the emission of
radiation. We shall limit ourselves to what is called electric dipole radiation, which
may be pictured as being produced by a linear oscillation of the negative electronic
charge in the atom relative to the positive nucleus. An atom can make a transition
from a state with energy E1 and angular momentum quantum numbers (L1, S1, J1,
m1) to another energy state E2 with quantum numbers (L2, S2, J2, m2) by radi-
ating one quantum of radiation of frequency ν = (E1 − E2)/h, provided that the
following selection rules are obeyed:

L1 −L2 = ±1; S1 −S2 = 0; J1 − J2 = 0, ±1; m1 −m2 = 0, ±1. 6.3

In complex atoms it often happens that transitions occur between states that do
not conform to these selection rules; this arises because in such complex structures
the assignment of quantum numbers may be an approximation. These selection
rules are arrived at from a computation of the transition rate, or more precisely, the
probability that a given atom will undergo an electric dipole transition in unit time,
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Figure 6.2 Radiation patterns of σ- and π-radiation

which is a function of the quantum numbers of the initial and final states. It is found
that the probability of such a transition taking place is zero unless these selection
rules are obeyed. The physical basis for the condition on the orbital quantum num-
ber L is rather subtle; it has to do with a symmetry property of the initial and final
atomic states of the atom. The condition on the spin angular momentum S states
that the process giving rise to this type of radiation cannot affect the total spin. The
conditions on J and m have to do with the conservation of angular momentum in
the atom–photon system; the radiated photon carries away one unit (h/2π) of angu-
lar momentum, and this combined (vectorially) with the final J value must give a
resultant equal to the initial J value. Similarly, the component of angular momen-
tum along any given axis must be conserved, and again the final combined value
must equal the initial value. It is this last selection rule that is of special interest
for the Zeeman effect: m1 − m2 = 0, ±1; it severely limits the number of possible
transitions between the two states.

Transitions in which m1 − m2 = 0 produce radiation in a pattern similar to that
emitted by a simple radio broadcasting antenna, consisting of a straight vertical
rod carrying a high-frequency current. On the other hand, the radiation pattern of
transitions in which m1 − m2 = ±1 resembles that emitted by a circular loop
antenna, in which a high-frequency current is induced. Figure 6.2 illustrates these
radiation patterns using the common practice of representing intensity versus angle
in a polar diagram.

6.4 Gyroscopic Motion in a Magnetic Field

We shall now take up the subject of magnetic resonance on systems of free
paramagnetic atoms. Some of the fundamental ideas are also applicable to nuclear
magnetic resonance in condensed forms of matter. Let us assume that we have
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paramagnetic atoms placed in a uniform static magnetic field, such as might be
produced between the poles of a suitable magnet. We will assume at first that the
atoms are free to move without colliding with each other or other particles.

It is fortunate that we can obtain a sufficiently valid description of the motion
of such free atoms in a magnetic field using the vector model, and are able later
to draw a correct correspondence with the proper quantum treatment. After the
magnetic field has been established, we can picture the atomic dipole moments,
like little compass needles, experiencing a torque tending to turn them towards the
direction of the field.

If it were not for the angular momentum associated with the magnetic moments
of the atoms, they would simply swing back and forth, again like the needle of a
magnetic compass. However, such a torque acting on a spinning body will produce
a gyroscopic motion; thus the atoms will precess around the magnetic field direc-
tion in such a manner that their angular momentum will sweep out a cone with the
field as axis, as shown in Figure 6.3. In this case the torque is proportional to the
field strength and the magnetic moment, and hence the angular momentum; but by
Newton’s laws of motion, the amount of torque needed to produce a certain rate of
precession is also proportional to the angular momentum. It follows that the rate
of precession depends only on the field strength, and not the amount of angular
momentum. This argument is rendered considerably more lucid stated mathemati-
cally; thus using the conventional symbols, let B0 represent the static uniform mag-
netic field, μ the magnetic dipole moment, and J the associated angular momentum.
Now the torque, which we will represent by �, acting on the magnetic dipole in our

J

B

Figure 6.3 A precessing atomic moment according to the vector model
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magnetic field is given in vector notation by � = μ × B0, and by Newton’s laws
dJ/dt = �; hence we can write the following:

dJ

dt
= μ × B0. 6.4

But μ is proportional to J; hence we can write μ = −γJ, where we have introduced
a minus sign because the electron is negatively charged and μ and J are therefore
in opposite directions. The quantity γ is called the gyromagnetic ratio. Recalling
that the vector product obeys −γJ × B0 = γB0 × J, we can rewrite the equation as
follows:

dJ

dt
= γB0 × J. 6.5

Now, dJ/dt for an angular momentum precessing uniformly around a fixed axis at
a constant angular velocity ω can be shown to be simply ω×J, and hence we see
that such a constant precession satisfies Newton’s equation of motion, provided that
we put ω = γB0. Thus we are led to the conclusion that the effect of a magnetic
field is simply to cause all systems with the same γ value to precess with the same
angular velocity about the field axis, independent of their detailed structure or their
initial orientation relative to the field direction. Hence for a system of identical
particles, the motion in the magnetic field is indistinguishable from what it would
be in the absence of the field, but referred to a set of coordinate axes rotating
uniformly with an angular velocity of −γB0. This result is contained in Larmor’s
theorem of classical theory.

6.5 Inducing Transitions

Let us now take up the phenomenon of magnetic resonance in the simple case of a
free paramagnetic atom in a uniform magnetic field. We will assume that J = 1/2
so that there are two possible directions for the angular momentum with compo-
nents along the field direction given by mJ = +1/2 and mJ = −1/2. Let us
assume that initially the atom was somehow put into the state with mJ = +1/2;
this would require a deliberate physical selection of that state, since in a “natural
state” there would be no more reason for an isolated atom to be in one state or the
other. We would like to show that if a weak oscillating magnetic field is suitably
applied to our atom, we could cause the spin to flip to the opposite direction, that
is, into the mJ = −1/2 state. To do this we shall use classical theory, confident that
results based on the precession of the atom and Larmor’s theorem, are also valid in
quantum theory.

We must digress a little, however, to think about ways in which an oscillating
field might be applied to the atom to induce the supposed transition. This devolves
around the question of the polarization of the oscillating field. If the field vector
oscillates along a fixed direction, it has linear polarization; if on the other hand,
the magnetic field keeps a constant magnitude but its direction rotates at a constant
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angular velocity, we say it is circularly polarized. Clearly, there are two possible
senses (clockwise or counterclockwise) for the rotation, which can be unambigu-
ously stated only with reference to a specified direction along the axis of rota-
tion. According to convention, for an electromagnetic wave, circular polarization
is called right-handed or left-handed according as the field vector rotates clock-
wise or counterclockwise as seen by someone looking in the direction opposed to
the direction in which the wave is traveling, as shown in Figure 6.4a. It is interest-
ing to note that an electromagnetic wave carries not only linear momentum, about
which we shall have a great deal more to say in a later chapter, but, when circularly
polarized, angular momentum as well. In terms of the quantum of radiation, the
photon, this angular momentum is an intrinsic property of each photon amounting
to h/2π. A material particle having this spin would, according to quantum theory,
have three possible components along any given axis; the photon is unique in that
it has only two, corresponding to the types of circular polarization, right-handed
(−h/2π) and left-handed (+h/2π).

Now we recall a useful relationship between these three types of polarization:
If we add two equal but oppositely rotating circularly polarized fields of the same
frequency and coherent in phase, the result is a linearly polarized field, as shown
in Figure 6.4b. Conversely, a linearly polarized oscillation can always be resolved
into two equal counter-rotating circularly polarized components.

We are now ready to consider the possibility of inducing a transition from
m J = +1/2 to m J = −1/2. Since the two spin states correspond to more or less
opposite directions with respect to the field, to bring about such a transition clearly
needs a torque to act on the spin; a weak magnetic field at right angles to the main
uniform field would create such a torque. Obviously, a static perpendicular field
would merely combine with the main field to give a slightly tilted resultant about
which the spin would precess, without causing any spin flip. To be precise, the stip-
ulation that the perpendicular field be “static” not to cause transitions means that

right-handed

left-handed

(a) (b)

Figure 6.4 (a) Circular polarizations (b) the sum of counter-rotating circular polarizations
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it must be established slowly compared with the rate of precession; otherwise, a
sudden change in the field could cause a transition from one spin state to the other,
although obviously not in a resonant manner.

What is needed is a small field whose direction precesses in the same direction
and at the same frequency as the spin, since then the field and spin would keep their
relative directions constant as they both precessed around the main field. But from
our digression above this is simply a circularly polarized field rotating in the same
sense as the precession, and it can be generated as one of the two counter-rotating
components of a field having linear polarization. The other component rotating in
the opposite sense would have only a secondary effect on the spin, which we will
ignore. Let us assume then that an oscillating magnetic field is applied perpendic-
ular to the main field, resulting in a component of magnitude B1 rotating in the
same sense as our spin with a frequency ω. It simplifies the analysis considerably
to imagine turning with the rotating field vector around the axis; that is, refer the
motion to a rotating coordinate system, with respect to which the B1 field is sta-
tionary. According to Larmor’s theorem, the motions with respect to such a system
are indistinguishable from one subject to a magnetic field Br given by Br = −ω/γ,
so that the total axial field in the rotating coordinate system is B0 −ω/γ. On adding
this vectorially to the transverse field B1 we get the result,

Beff =
√[

B0 − ω

γ

]2

+ B2
1 , 6.6

as illustrated in Figure 6.5. The spin will precess about this resultant as axis with an
angular velocity ωeff = γBeff. If the frequency ω is chosen to equal γB0; then the
spin will precess around the direction of B1, continuously going from m J = +1/2

2v/gB0

B1

B0 2 v/gBef f

Figure 6.5 The resultant magnetic field in the rotating frame
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to m J = −1/2 and back. In the laboratory frame of reference the spin vector
sweeps out a cone whose apex angle increases until the cone becomes the median
plane at 90◦, then continues as a cone in the opposite direction.

In a quantum sense the transverse field rotating at the frequency γB0 causes the
initial wave function representing the state with m J = +1/2 to evolve into one
consisting of a linear superposition of the two spin states with m J = +1/2 and
m J = −1/2. This is a characteristically quantum feature in which, in a sense, the
description of a system can include simultaneously more than one possible state. It
is analogous to the coupled pendulums going back and forth between two modes of
oscillation: During the transition it is in neither one nor the other. It is not expected
that the motion would stop after the first transition from +1/2 to −1/2 had been
completed. However, if a mechanism is present, such as randomizing collisions
with other particles, that enables the system to “relax” into thermal equilibrium,
then a stationary state is possible. The frequency given by ω = γB0 is called the
magnetic resonance frequency; an offset from this frequency would cause the spin
direction to sweep out a cone (in the rotating frame) whose axis is tilted from
the perpendicular direction, and the spin does not quite reach the negative field
direction.

It remains to make the correspondence between the classical and quantum
descriptions correctly. To find the quantum theory probabilities of the spin being
observed in one or the other of the two states, we can require that the average com-
ponent of spin along the direction of the main field be the same as the classically
computed component. If we call the angle between the spin direction and the main
field at a given time θ, then its component along the field is (1/2) cos θ; on the other
hand, if P(1/2) and P(−1/2) are the probabilities that the spin is in the +1/2 and
−1/2 states, respectively, then we must have

(+1/2)P(+1/2) + (−1/2)P(−1/2) = (1/2) cos θ. 6.7

Since the spin is certain to be in one state or the other, we must also have

P(+1/2) + P(−1/2) = 1. 6.8

Hence finally we have for the probability of finding the spin in the −1/2 state the
following:

P(−1/2) = (1/2)(1 − cos θ). 6.9

At resonance, θ oscillates between 0 and 180 degrees, so that the probability of
finding the spin in the −1/2 state oscillates between 0 and 1. Off resonance θ does
not reach 180 degrees, so that P(−1/2) never reaches the value 1.

6.6 Motion of Global Moment: The Bloch Theory

We should notice a fundamentally important feature of the argument we have just
developed for the probability of inducing transitions, a feature inherent in all quan-
tum transition probability calculations. There is a symmetry between the initial
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and final states, in that it is immaterial which state we assume as the initial state; in
either case the probability of a transition to the other state is the same. Stated more
broadly, if a process has a high probability of proceeding one way, it will have an
equally high probability of proceeding the opposite way. This imposes an impor-
tant condition on our ability to observe any large-scale manifestation of transitions
occurring in atoms in a large group, as in a volume of gas. Thus if the atoms in a
group are assumed to be equally likely to be in one magnetic state as the other, then
transitions induced in the manner we have described will not alter the number in
each state but merely exchange states of particular atoms, to which we are insensi-
ble. It follows that in order to detect the transitions on a group of atoms, they must
initially be prepared with a preponderance of atoms in one state or the other. Such
a group of atoms is said to be “polarized,” with a net global magnetic moment that
can easily be calculated if we know the probabilities P(1/2) and P(−1/2); it is
given by

M = Nμ [P(+1/2) − P(−1/2)] , 6.10

where N is the number of atoms in the group. This is reasonable, since NP(1/2)
and NP(−1/2) are respectively the average numbers of atoms with their magnetic
moments pointing with and against a fixed direction, such as defined by a magnetic
field.

In the presence of a resonant oscillating magnetic field, because of the coherent
response of the individual atoms, the global polarization vector for a large group
of atoms will execute a motion not unlike a single atom. A theory due to F. Bloch,
originally developed to explain the dynamic behavior of magnetic moments under-
going magnetic resonance in solids, can, by drawing the correct correspondence
with quantum theory, adequately describe our system. In it an equation of motion
is set down for the mean global magnetic moment, which is basically similar to
the one given earlier for a free atom whose solution yields gyroscopic motion. The
theory is described as phenomenological in that it is formulated in terms of global
average parameters that are directly observable; it is characterized by the inclusion
of relaxation terms that account for the time decay of components of the global
vector due to random perturbations. Two characteristic relaxation times, denoted
by T1 and T2, are necessary. The term “relaxation” derives from the original appli-
cation of the theory to nuclear magnetic resonance, in which nuclear magnetic
polarization is achieved by the system reaching (or “relaxing” to) thermal equi-
librium in a strong external magnetic field. The theory defines the first, T1, called
the longitudinal relaxation time, as the mean decay time of the global polarization
vector, without regard to any particular mechanism, such as collisions, causing the
decay. The other time, T2, called the transverse relaxation time, is the mean decay
time of any precessing global polarization of the atoms, such as may be induced
by an oscillatory field resonant with the precession frequency. Under the action of
such a field, the magnetic moments of individual atoms tend to move in concert,
driven by the common magnetic field, producing a net global precessing moment.
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Any mechanism that causes random fluctuations in the phase of the response of the
atoms or depletes the number of atoms contributing to that response will reduce T2.

It can be shown that Bloch’s theory, introduced in the context of a vector model
description of precessing magnetic moments, can be equally useful in a quantum
description, in which the reorientation of a magnetic moment really amounts to
transitions between (the magnetic) quantum states. In fact, if the system has only
two states between which transitions may be induced, its behavior corresponds to
a spin 1/2 particle with its two possible orientations with respect to a given axis.

6.7 Production of Global Polarization

The various techniques for observing magnetic resonance in gases or condensed
forms of matter are distinguished essentially by the means used to achieve a
polarization in order to render the resonance transitions observable. Other factors
such as the frequency range and sample density further differentiate the various
techniques.

6.7.1 Thermal Relaxation in Strong Magnetic Fields

The method of producing a polarization common to all magnetic-resonance studies
on condensed matter, that is, solids or liquids, whether nuclear or electron reso-
nance, is through the use of very intense magnetic fields. As already pointed out,
the different magnetic substates, having different orientations with respect to the
external magnetic field, will have different energies. For atoms in a state of ther-
mal agitation and exchanging energy through their mutual interaction, according
to a fundamental result in statistical mechanics due to Boltzmann, an equilibrium
state is reached (irrespective of the initial conditions) that is characterized by the
(absolute) temperature T , in which the ratio of the number of atoms having energy
E1 to that having energy E2 is given by

N (E1)

N (E2)
= exp

[
− (E1 − E2)

kT

]
, 6.11

where k is Boltzmann’s constant, which has the value 1.38 × 10−23 in the SI
system of units. If we substitute the numerical values for the magnetic energies
typical for the field produced by a large laboratory electromagnet, we find that
(E1 − E2)/kT � 1 at ordinary temperatures. This shows that the populations of
the magnetic states are very nearly equal; that is, the polarization is exceedingly
small. The use of high fields to attain polarization of a sample is therefore useful
only for condensed forms of matter, in which a sample of reasonable size can con-
tain a sufficient number of atoms to detect the resonance; even then, the highest
possible fields, and therefore resonant frequencies, are used to improve the sen-
sitivity. The strength of the field produced by a conventional electromagnet using
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copper windings is ultimately limited by the amount of electrical power required
to maintain the current against the electrical resistance of the windings. The use
of superconducting magnets solves the power problem but requires extremely low
temperatures to be maintained, incurring a different kind of problem and expense.

There are essentially two approaches to detecting magnetic resonance signals
in condensed matter::resonance absorption and free induction. In the former the
resonant absorption of energy is detected by the damping of the level of oscillation
on a sharply tuned circuit, such as the Pound marginal oscillator.

In the latter a pulsed transverse rf magnetic field is applied to the sample, induc-
ing a transverse precessing magnetic moment, that is then detected by a suitable rf
pick-up coil, set orthogonal to the former induction coil. The signal-to-noise ratio
is small even in a solid sample, and many specialized techniques have been devel-
oped to enhance it, typically involving lock-in amplifiers.

The inevitable magnetic dipole interaction between neighboring spins in the
sample will limit the phase coherence time T2 of the precessing moment, random-
izing its phase, or even cause spin flips, at randomly distributed intervals, thereby
broadening the resonant frequency response. Also, in practice the magnetic field
may differ slightly from point to point, and therefore the oscillating transverse field,
applied to induce transitions, cannot be on exact resonance with all the spins. The
effect of this last circumstance is easy to predict; it simply means that in a solid
sample in which the particle positions are fixed, different atoms are brought into
resonance as the applied magnetic field is swept across the resonance, giving what
is called an inhomogeneously broadened spectral line. One effect of real transitions
caused by the spin interaction is only slightly more difficult to predict; it tends to
counter the action of the oscillating detection field by redistributing the populations
of the states in the direction of restoring thermal equilibrium, and a smaller polari-
zation. Clearly, if the oscillating field is to induce a strong polarization, which
constitutes our “signal,” it must favorably compete with this thermalizing effect.
Again a broadening of the resonance frequency occurs; this time because the oscil-
lating field is only allowed a finite time to act coherently on the precessing spin.
As we saw in a previous chapter, this means that the frequency of the oscillating
field can differ slightly from the precession frequency and still cause transitions;
the longer the coherent interaction, the closer the frequencies must be to avoid their
getting out of phase during that time.

6.7.2 Deflection of Atomic Beams

The second important technique for achieving a polarization of atomic moments
applies to materials in a gaseous form or that can be suitably vaporized. Such
materials can, by a suitable nozzle and series of apertures, be formed into a fine jet,
called an atomic or molecular beam, which in passing between the pole pieces of a
special magnet will fan out into a number of separate components each according
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Figure 6.6 Apparatus used by Dunoyer to study the formation of atomic beams

to its magnetic state. A particular component in the chosen magnetic state can then
be isolated using beam stops.

It is interesting that the origins of atomic beams go back to around 1911, early
in the history of vacuum technology, when an account was published by Dunoyer
of an experiment using the apparatus shown schematically in Figure 6.6, in which
sodium vapor issued from a small opening in a heated reservoir of sodium metal
at one end of a glass vacuum system equipped with apertures and a cooled surface
at the opposite end. From the distribution of the sodium deposited on the cold
surface, it was clear that under sufficiently high vacuum conditions the sodium
atoms traveled in straight lines like rays of light, in the form of a beam. An early
exploitation of atomic beams was by optical spectroscopists to reduce Doppler
broadening of spectral lines. Since the atoms in a beam have been selected to have
velocity directions only in a narrow cone, the absorption or emission of a light
wave perpendicular to the beam axis will not, to a first approximation, have any
Doppler shift in frequency.

However, a more significant application of atomic beams was the classic Stern–
Gerlach experiment. In this the particles in the beam are made to pass at right
angles to the field of a special magnet, whose pole shapes are designed to pro-
duce a steep gradient in the field strength, as shown in Figure 6.7. This gradient
in the field strength translates into a gradient in the magnetic potential energy of
the different magnetic substates; this is analogous to rocks placed on the sides of
hills of different slopes. The result is that particles in different magnetic substates
are deflected by different angles from the initial direction of the beam. Obviously,
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Figure 6.7 The Stern–Gerlach apparatus to show space quantization in a beam of silver
atoms

in order to achieve good separation, the beam must have a very narrow divergence.
This method of state separation was first demonstrated by Stern and Gerlach around
1923 in an experiment that ranks as a milestone in the history of physics. As a result
of passing through their magnet, the silver beam was split into two distinct beams
as quantum theory predicted. The ground state of a silver atom is designated as
2S1/2, with J = 1/2, and only two possible orientations with respect to the field
axis, corresponding to m J = +1/2 and m J = −1/2. Classically, of course, the
atomic magnetic moment could assume any orientation with respect to the field,
and the beam would simply have been smeared out; the fact that it was split into
just two components showed for the first time the quantum phenomenon of space
quantization: that an angular momentum can be observed only with discrete direc-
tions relative to a given axis.

This was followed by the introduction of magnetic resonance on atomic beams
in Rabi’s laboratory just prior to the Second World War. However, it was shortly
after the war that Ramsey introduced the technique of applying the resonant field at
two separated points along the beam, a development that made possible the ultimate
adoption of the Cs clock as the primary standard.

In a Rabi-type magnetic resonance beam apparatus, the beam that emerges
from the high-gradient magnet will have the atoms in the various Zeeman substates
fanning out in slightly different directions; and by suitable apertures, particles pre-
dominantly in certain substates are selected, in effect producing a polarized beam.
The beam then enters the resonance transition region, comprising an extended
uniform magnetic field and high-frequency current loops, to produce the oscillating
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magnetic field. Finally, in order to detect whether transitions have occurred in the
transition region, the beam is made to pass through another high-gradient magnet,
acting this time as an “analyzer.” There are two possible ways in which to analyze
the beam: The analyzer magnet and the detector that follows it may be disposed
either such that (1) particles that do make a transition are detected (flop-in type),
or (2) particles that do not make a transition are detected (flop-out type).

6.7.3 Optical Pumping

The last type of magnetic resonance technique we shall treat is one based on the
transfer of polarization from an optical beam to atoms in a process called reso-
nance fluorescence. It is a technique that originated in the laboratory of the French
spectroscopist Kastler, a technique that has proved extremely fruitful in its appli-
cations, not only to atomic timekeeping, but also to magnetometry. To understand
the principles underlying this technique, we must digress briefly to consider the
interaction of polarized light with atoms.

If an atom experiences a collision with a high-speed electron, as in a neon
tube, or with another atom, as in a flame, it may be excited to one of the quantum
states above its ground state. However, only if it happens to find itself in a special
metastable state will it remain excited for long; within possibly less than a frac-
tion of a microsecond it will spontaneously radiate as it makes transitions towards
lower-energy states in a cascade fashion. The radiative process is described as spon-
taneous, since it occurs even in an isolated atom, although according to quantum
theory, even in “vacuum” the electromagnetic field is not absolutely zero but has
zero point oscillations that induce an atom to make a transition to a lower energy
state. In doing so, of course, it emits a photon, and the resulting cascade produces
an emission spectrum consisting of discrete lines characteristic of the particular
atom; hence the use of spectrum analysis as an analytical tool in chemistry. As we
learned earlier, if the environment of the atoms is such that there is a strong buildup
of only a few modes of vibration of the light waves as in a laser, then stimulated
emission, which is negligible under “normal” conditions, can become significant;
but as we have seen, that requires very special conditions to obtain.

Of particular interest to us in laying the background for an understanding of
the optical method of observing magnetic resonance is the polarization of the light
emitted in different directions. We have already encountered the term polarization;
it is one that is used in several contexts in physics: We have already used it once
to mean an unequal population of spin directions relative to a magnetic field. The
term also applies to the displacement of the positive charge relative to the negative
in individual atoms, as when an electric field is applied to a dielectric material,
such as glass. The term is most familiar in the optical context through the com-
mon use of polarization filters as sunglasses. It refers to the degree to which the
electric (and associated magnetic) field components in a light beam are coherent
in direction. The question of polarization arises only because in free space, the
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fields in a light beam lie in a plane perpendicular to the direction of the beam,
and may have any angle around the beam as axis; that is, the waves associated
with photons are transverse waves. An unpolarized beam, such as one from an
ordinary light bulb, has the electric (and magnetic) fields oscillating in random
directions in any transverse plane, so that if the fields are resolved into any pair
of perpendicular components, the intensities of these components would be equal.
There are only two pure polarization states a photon can have: right-handed and
left-handed circular polarizations. The other common polarization is called linear
or plane polarization, in which the field oscillates along a unique direction, which
lies in a plane drawn through the beam axis. It may be regarded as a (linear) super-
position of equal and coherent right- and left-handed circular polarizations. It does
not mean that we can take any two oppositely polarized light beams and produce a
linearly polarized beam by combining them; it will work only if the two waves are
coherent, that is, have a well-defined phase relationship.

The two circular polarizations correspond to the photon intrinsic angular
momentum of h/2π pointing with and against its direction of travel, respectively.
The experimental confirmation of this was established early in the history of quan-
tum theory by observing the mechanical torque produced on a delicately suspended
quartz plate when circularly polarized light is allowed to fall on it. It should be
apparent now why a transition in which m1 − m2 = ±1 involves the emission
of circularly polarized photons: the law of conservation of angular momentum
requires it.

So far, we have dealt only with the two types of atom–photon interactions:
spontaneous and stimulated emission of photons with the simultaneous transition
of the atom from a higher-energy state to a lower one. There remains the reverse
process to stimulated emission, namely absorption, in which a photon disappears
and the atom makes a transition from a lower state to a higher one. Since energy
must be conserved in these processes, an atom will make a “real” transition to an
upper state only if the photon energy hν satisfies hν = E1 − E2, which is a kind of
resonance condition on the frequency of the light. The resonant nature of this con-
dition is amply demonstrated by the fact that the probability of such a transition is
the same sharp function of frequency as in the reverse emission process. This sharp
function, the spectral line shape, is, as we have already pointed out, fundamentally
broadened by the finite radiative lifetimes of the quantum states between which the
transition occurs. This inherent spectral line width is, as previously noted, called
the natural line width.

We have on a number of occasions used the phrase “probability of a transition”;
this requires closer examination, since as we saw in the case of a precessing mag-
netic moment subjected to a resonant magnetic field, the response of the magnetic
moment was not simply a one-time transition from one state to the other. The mag-
netic moment alternated between the two states at a rate dependent on the strength
of the resonant transition-inducing field. In spite of the fact that in that case we were
dealing with what is called magnetic rather than electric dipole transitions, as we
have here, nevertheless the same behavior would result under similar conditions.
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These are that the atom be subjected to a single-frequency coherent light beam of
such intensity that the atom can alternate between the two states in a time short
compared to the radiative lifetimes of those states. This would never have been
contemplated as a practical possibility in the optical range until lasers became
available; and now the manipulation of optical transitions has become as common
as those performed by Ramsey and others in magnetic resonance, where strong
coherent resonant rf fields were readily available decades before lasers. The ques-
tion remains: how does an atom respond when excited by a relatively weak field
that is not of a single frequency but has a relatively broad spectrum? In this limit,
it can be shown that the atom has a finite probability, less than 1, of making a tran-
sition from its initial state, which increases in proportion to the length of time the
atom is subjected to the exciting field. Of course, in quantum theory, if a measure-
ment is made to determine which state it is in, it will be found to be in one or the
other; it cannot be found somewhere in between! If the measurement is repeated
on a large number of atoms under identical conditions, then the fraction that are
observed to have made the transition will increase in proportion to the time they
had been subjected to the resonance field.

The constant probability per unit time for absorption of a photon, which applies
under “broad excitation,” is fundamentally the same as that for stimulated emis-
sion, a reflection of a more profound principle called detailed balancing on a
microscopic scale. Even the probability of spontaneous emission bears a close
relationship to stimulated emission, their ratio being independent of the particu-
lar properties of any atom. However, their ratio does have a strong dependence on
the frequency of the photon involved, according to the following formula attributed
to Einstein:

Anm/Bnm = 8πhν3/c3, 6.12

where Anm and Bnm are respectively the so-called Einstein A- and B-coefficients
for spontaneous and stimulated emission, defined such that (Anm + ρν Bnm) is the
total rate of downward transitions, where ρν is the number of photons of frequency
ν already present, per unit volume, stimulating transitions. The strong ν3 depen-
dence of the ratio of spontaneous to stimulated emission explains why spontaneous
emission is negligibly weak at or below the microwave region of the spectrum,
becoming dominant at optical frequencies, unless special conditions are created
to enhance the density of radiation, as in a laser. A consequence of equation 6.12
is that the selection rules governing the quantum numbers of the initial and final
states for electric dipole transitions apply equally to absorption. This means, for
example, that if an atom is subjected to a light beam with the resonant frequency
and pure circular polarization, then transitions occur only if the magnetic quantum
number m obeys the selection rule m1 − m2 = ±1. If the light has a pure linear
polarization, then m1 − m2 = 0 must be obeyed.

In the technique developed by Kastler for magnetic resonance by optical means,
these selection rules are exploited to produce a magnetic polarization in certain
species of atoms, particularly the alkalis: sodium, rubidium, cesium. This is done
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by a process that is called optical pumping of the populations of magnetic sub-
states. It works as follows: Suppose a group of free sodium atoms are somehow
confined in such a way that they remain unperturbed in their magnetic substates
and are illuminated by a resonant parallel light beam after it has been circularly
polarized. Prior to the laser age, such a resonant beam would have been obtained
from a sodium vapor lamp, designed to provide the highest possible spectral inten-
sity at the resonance fluorescence wavelength. The selection rules will now apply
to the magnetic quantum numbers referred to the light beam as axis for space quan-
tization: Absorption is allowed only if m1 − m2 = +1, but not m1 − m2 = −1
or 0. Then we see from Figure 6.8 that atoms in the m = +1/2 state have nowhere
to go and will remain in that state unless perturbed by collisions. However, atoms
in the m = −1/2 state can make a transition to the m = +1/2 substate in the
electronic excited state, from which it can return to either substate in the ground
state by spontaneous emission. The net effect of this “pumping cycle” is that atoms
in the ground state are transferred from the m = −1/2 to the m2 = +1/2 state,
eventually all ending up ideally in that state. But in this state the outer electron
has its spin pointing in the direction of the light beam; thus a spin polarization has
been achieved by purely optical means, without the need for strong magnetic fields.
Furthermore, the same process can be used to monitor the degree of polarization
in the group of atoms, since the rate at which photons are absorbed and re-emitted
depends on the number of atoms in the m2 = −1/2 absorbing substate. Ideally,
if 100% polarization is achieved, none of the atoms in the group are in an absorb-
ing substate; interaction with the beam effectively ceases, and the sample becomes
quite transparent. If now a resonant high-frequency magnetic field induces transi-
tions between the two magnetic substates, resulting in an increase in the number of
atoms in the absorbing m2 = −1/2 substate, the transmitted intensity of the pump-
ing light will decrease, providing a way to monitor the occurrence of transitions
and the frequency of the inducing field at which magnetic resonance occurs.

+1/2

−1/2

+1/2

−1/2

m1

mz

Figure 6.8 Kastler optical pumping of magnetic state populations
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The beauty of this technique is that no large electromagnets are involved;
indeed, the spins can in principle be polarized along the light beam axis, in zero
magnetic field. More than any other technique it is capable of very large degrees of
polarization; not only electron spin polarization, but also nuclear polarization. This
has been demonstrated, for example, in those isotopes of noble gas atoms such as
He3 and Xe129, which have a nuclear moment, in electronic states with zero angu-
lar momentum. This has made possible the application of NMRI to the diagnosis
of the lung using inhaled optically pumped He3 gas!

The successful implementation of the optical pumping technique critically
depends on the ability first, to have a group of atoms whose spins are more or
less free of disorienting collisions, and second, to realize a light source with the
desired polarization and spectral properties. The first requirement is far more dif-
ficult than might at first appear; collisions with surfaces of containers are found to
disorient electron spin directions, and the thermal velocities of atoms are gener-
ally so high that the orientation of an atomic spin would be randomized in a very
short time. The development of special surface coatings to reduce the randomiz-
ing effect has met with enormous success in the case of atomic hydrogen and to a
lesser extent with the heavy alkali atoms, which will be discussed at greater length
in later chapters.

The first experiments on magnetic resonance using optical pumping were done
in Kastler’s laboratory on atoms in an atomic beam, in which, as we have already
mentioned, the number density of particles is small, and consequently, consider-
able time elapses between disorienting collisions, thus fulfilling one of the essen-
tial requirements of particle containment. However, this is achieved at the cost of
having a severely limited number of atoms contributing to the resonance detection
signal and aggravated problems in the optics arising from the fact that the atoms are
spread over some distance. It is, of course, to the credit of the early experimenters
that in spite of these difficulties, they were able to successfully demonstrate a new
technique; but in that form it was of limited value for practical applications. It was
the introduction of the alkali vapor diffusion cell by Dehmelt that gave the tech-
nique its practical importance. This is based on the known inertness of the noble
gases—helium, neon, argon, krypton, xenon—due to their closed electron shell
structure in the ground state. In that state they are spherical and “rigid” like bil-
liard balls, since it takes a considerable amount of energy to raise an electron to the
next available state; moreover, they have no resultant spin or magnetic moment.
Therefore, it was reasoned, in a collision with an alkali atom (in the ground spher-
ical state) there should be no magnetic interaction to cause the spin to flip, and
yet the colliding atoms could undergo strong momentum-deflecting collisions. To
exploit this fact, the atoms under study are contained in a glass cell with a suffi-
cient amount of an inert gas, acting as a buffer, to lengthen their diffusion time to
the walls, thereby enabling the optical pumping process to develop a significant
degree of polarization of the spins.



Chapter 7
Corrections to Observed Atomic
Resonance

All the atomic standards we shall be dealing with are based, in one form or another,
on the resonant excitation of atoms or ions, by which they make transitions from
one quantum state to another. From the observed resonance spectrum we must
arrive at the intrinsic, or proper, frequency of the atoms’ response, as it would be
observed if they were at rest and free from any outside perturbation. Such pertur-
bations will alter and broaden the resonance spectrum and put a limit on the degree
of precision with which the intrinsic atomic frequency can be deduced.

It might be thought that a detailed knowledge of the frequency response curve,
no matter how broad, should be sufficient for a theoretical analysis to obtain the true
resonant frequency. In fact, this is not so; there will inevitably be sources of noise,
some fundamental, some instrumental, present in any system, and the observed
response curve will always suffer from a degree of uncertainty. The sharper the
response curve, the less important becomes the noise in finding the resonance fre-
quency. A quantitative expression of this fact obviously depends on the detailed
shape of the resonance curve; for a Lorentzian line profile we find the following:

ε

�ν
≈ 0.77

An

A0
7.1

where ε is the error in finding the line center, �ν is the line width, and A0, An
are the mean amplitudes of the signal at resonance and the noise, respectively.
The linear dependence on the ratio of amplitudes comes from the usual practice of
defining, in effect, the position of the resonance line center in terms of the mid-
point between the nearly linear portions on the two sides of the resonance curve at
the inflection points. As a general rule, the 0.77 is ignored.

An understanding of the effects of the physical environment on the resonance
line shape and position is crucial in finding ways to minimize these effects in
practice, and in correcting for any displacement in frequency they may cause. Ulti-
mately, the stability and reproducibility of the standards depend on how success-
fully this is accomplished. Such theories have also been developed from the inverse
point of view: namely, for what they can reveal about the mechanisms that broaden
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and/or shift the resonance frequency. The incredibly high degree of spectral res-
olution that has been reached has raised the level of significance of a number of
subtle effects, some involving quantum theory, others Einstein’s Theory of Relativ-
ity, about which more will be said later in this chapter.

7.1 Resonance Frequency Broadening

For resonances observed on a large group of atoms, it is useful to distinguish
between line-broadening mechanisms according to whether all atoms have the
same broadened spectrum, or the spectrum of the whole group is broadened
because each atom has a slightly different frequency and the global spectrum
merely reflects the distribution of frequencies among the particles. The former
is called homogeneous broadening, as exemplified by broadening, common to all
atoms, due to a finite radiative lifetime, while the latter is inhomogeneous broaden-
ing, as exemplified by a group in which each atom has a slightly different frequency
because of its differing environment.

7.1.1 Homogeneous Broadening

The most common source of homogeneous broadening is the finite time of coherent
interaction of the atom with the exciting field. This can be due to the finite radia-
tive lifetime of a quantum state involved in the transition or to phase-randomizing
collisions, as was postulated by Lorentz to explain optical dispersion in his elec-
tron theory. Unfortunately, as Lorentz realized, collisions could not solely explain
the width of optical resonance lines; we now know that the radiative lifetimes in
optical transitions are usually so short compared to average times between col-
lisions, except at extreme pressures, that the observed broadening is evidence of
the “natural” radiative lifetime, and not collisions. The situation is quite different,
however, in the radio-frequency and microwave regions of the spectrum, where
radiative lifetimes are extremely long. In this case collisions play a dominant role,
and by making collisions rare, as in the ion standards, extremely narrow resonances
are possible.

The spectral line shape that results from a finite radiative lifetime or collisions
that only interrupt the phase is the same Lorentzian function L(ν), illustrated in
Figure 7.1, that we introduced in connection with the response of a damped simple
harmonic oscillator, namely

L(ν) = 1
2π

γ

(ν0 − ν)2 + ( γ
2

)2 , 7.2

where the factor 1/(2π) is included so that
∫

L(ν) dν = 1. In terms of the mean
time between phase-randomizing collisions �τ, the expression for γ agrees with
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Figure 7.1 The Lorentzian resonance line shape

the approximate result we previously derived for the coherent buildup of oscilla-
tion in a resonant structure, namely � τ γ ≈ 1, which, as already indicated, has a far
more general application to the simultaneous measurement of frequency and time.
As already mentioned, in the optical part of the spectrum, it is the radiative lifetime
of quantum states that usually sets the line width, the so-called natural line width,
typically in the megahertz range. For a driven oscillator the connection between
phase-randomizing collisions and damping can be shown to arise from the energy
dissipation that the continual interruption of phase produces even when each colli-
sion is perfectly elastic. The net effect is as though a resistive force were present;
in fact, it was shown by Lorentz that γ = 2/�τ. In the absence of collisions, an
undamped oscillator does not, on the average, continuously absorb energy from a
driving field, nor does it dissipate energy if left alone.

7.1.2 Inhomogeneous Broadening

The inhomogeneous class of broadening applies to a large number of atoms or
ions that have slightly varied resonance frequencies by virtue of, for example, non-
uniformities in the distribution of some field that acts on them and displaces the
energies of their quantum states. This is of particular concern in nuclear mag-
netic resonance on solid substances, where an important source of spectral line
broadening is the inhomogeneity in the applied magnetic field intensity; in fact, in
the original use of the term it was understood to refer to this particular case. The
circumstance that makes spatial variations in the applied magnetic field particu-
larly objectionable in solids is that each nucleus is constrained to vibrate with a
small amplitude about a fixed lattice site, where the magnetic field may differ from
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other lattice sites. However, our concern will be with quasi-free individual parti-
cles, which far from being constrained, are more or less free to move with their
thermal velocity and only rarely collide with other objects. Under these conditions,
the most important source of inhomogeneous broadening is the Doppler shift in the
frequency of a moving source, a subject that requires us to think about the descrip-
tion of physical phenomena in terms of coordinate frames of reference in relative
motion.

7.2 Thermal Doppler Broadening

7.2.1 Short Wavelength Limit

The term Doppler is of course familiar to everyone in the context of checking the
speed of vehicles on our highways. It is, in general, the variation in the observed
frequency of any wave whenever the observer and source of the wave are in relative
motion. According to a principle enunciated by Christian Doppler in 1842, which
applies equally to sound waves and light waves, frequencies observed with respect
to reference frames in relative motion are shifted by what is now called the Doppler
effect. It is a particularly important universal effect in the context of high-resolution
spectroscopy because of the ever-present thermal agitation of atoms and molecules.

The frequency shift predicted classically is easily derived: Assume first that
we use a frame of reference in which the source of the wave is stationary and
the observer is moving relative to this frame in the direction of the source with
a velocity V . We find ν = (1 + V/c)ν0, showing that the frequency is increased
fractionally by V/c. If the observer had been assumed to be moving away from the
source, we would obviously have found ν = (1−V/c)ν0. In general, if the relative
velocity vector makes an angle θ with the direction of propagation of the wave, we
can write the following for the classical change in the observed frequency:

ν − ν0 = V k cos θ
2π

, 7.3

where k = 2π/λ is the wave number. If we use a frame of reference in which the
observer is stationary but the source of the waves has a velocity V in the direction
of the observer, then we would find ν = ν0/(1 − V/c).

The Doppler effect is manifested in any type of wave motion. However, in
anticipation of the fact that we are concerned here only with light waves, we have
used the conventional symbol for the velocity of light, c. We notice that we have
obtained different results depending only on whether we chose a frame of reference
in which the source is at rest or the observer is at rest. If we had been considering
only waves on the surface of water, the difference in the two results would not
have been unexpected, since the water itself uniquely defines a frame of reference,
and having the observer move in the water is not necessarily the same as having
the source move. However in the case of light, the principle of relativity, one of the
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pillars of Einstein’s theory, denies the existence of any “absolute” frame of refer-
ence, and the two cases dealt with above must yield the exact same result. This is
true in our classical derivation only if we neglect terms of order (V/c)2 and higher.

The Doppler broadening of spectral lines is familiar to spectroscopists working
in the optical region of the spectrum because it is generally the limiting factor in
the attempt to achieve high spectral resolution, and it is universally present. Under
conditions where the wavelength of the wave is very much smaller than the average
distance a particle travels between collisions, the Doppler shift in the resonance
frequency of each atom will result in a spectral profile for the whole ensemble that
simply reflects the distribution among the atoms of the frequency shifts associated
with their individual thermal velocities. Such conditions commonly exist for light
waves, since their wavelength is only on the order of 0.5 μm, compared to mean
free paths 100 times longer, at pressures below say 100 Pa. The exact line profile
when collisions are not negligible is far more complicated; we will not concern
ourselves with that, but in the next section we will consider the opposite extreme,
where the wavelength is large compared with the average distance an atom is free
to travel.

For atoms in thermal equilibrium at absolute temperature T , the components of
the velocity of atoms along a given direction, taken to be the z-axis, are distributed
among the atoms in accordance with the Maxwell–Boltzmann distribution, in which
the number of atoms having a z-component of velocity in an infinitesimal range
between Vz and (Vz + dVz) is given by f (Vz)dVz , where f (Vz) is the following
function:

f (Vz) = N

√
M

2πkT
exp

(
− MV 2

z

2kT

)
, 7.4

where M is the atomic mass and k is the Boltzmann constant. Now suppose a
monochromatic light beam of frequency ν is directed along the z-axis through an
ensemble of atoms whose resonance frequency would be ν0, measured in their rest
frame of reference. We recall that an atom having a velocity component Vz will see
(to first-order of approximation in Vz/c) a Doppler shifted frequency ν(1 − Vz/c).
Therefore, the light will be in resonance with such an atom not when ν = ν0, but
rather when ν = ν0/(1 − Vz/c), or to the same first-order approximation we have
been assuming: ν0 ≈ ν(1 + Vz/c). Therefore, the atoms, regarded as a whole, will
behave as one entity with a broadened resonance line shape, obtained by rewriting
the velocity distribution function as a frequency distribution function by using the
fact that the number of atoms having a z-component of velocity in the range dVz
will equal those having a displaced frequency in the interval dν = (ν0/c)dVz . Now,
if we let g(ν) represent the frequency distribution function, then

g(ν)dν =
√

α
π

exp

[
−α

(
ν − ν0

ν0

)2
]

dν
ν0

; α = Mc2

2kT
. 7.5
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Figure 7.2 The Gaussian line shape for atoms in thermal equilibrium

Because this function has the form exp(−x2) it is called a Gaussian line shape,
and plotted as a function of frequency, it has the well-known bell shape, shown in
Figure 7.2 for Rb vapor at a temperature of 300◦K.

7.2.2 Long Wavelength Limit: the Dicke Effect

Extremely narrow resonances, far below the Doppler width derived above, are actu-
ally observed at microwave frequencies on atoms diffusing in a buffer gas, in spite
of their thermal agitation. This is due to what has been called the Dicke effect
(Dicke, 1953). If we substitute in the formula for the first-order Doppler shift,
namely ν−ν0 = (V/c)ν0, the numerical values for a Rb atom diffusing through an
inert buffer gas with an average thermal velocity of about 104 meters per second,
we find a Doppler frequency shift in its microwave resonance at 6.8 GHz of about
200 kHz, or 10,000 times the frequency width of the resonance actually observed.
Clearly, the conditions for “normal” Doppler broadening are not met.

The first theoretical analysis of the narrowing of Doppler widths through colli-
sions in an inert gas was published by Dicke in 1953. To understand the conditions
under which the Dicke effect is expected to be important, let us reexamine our
assumptions in arriving at the formulas for the Doppler shifts in frequency. It was
assumed that the observer and source continue indefinitely in their state of relative
motion, with the observer crossing many undulations of the wave, that is, many
wavelengths. To bring out the effects of not fulfilling this condition, consider the
contrived example of an observer who is constrained to oscillate back and forth in
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simple harmonic motion with finite amplitude. The question we have to address is:
How does the magnetic field component, for example of the microwave, vary with
time as seen by our peripatetic observer; from this we can arrive at the spectrum
seen by him using Fourier analysis. Since the relative velocity of the observer is
assumed to oscillate with a simple frequency, it follows that the Doppler effect will
cause the observer to see a wave whose frequency oscillates about a fixed value.
But this is nothing more than a frequency modulated (FM) wave, whose theory is
familiar from its common use in radio broadcasting to provide static-free recep-
tion of high quality sound. There are three quantities aside from its amplitude that
characterize a frequency modulated wave: first, its mean frequency; second, the
frequency of modulation; and third, the maximum deviation of the frequency from
its unmodulated value, that is, the depth of modulation. We will not reproduce here
a derivation of the Fourier spectrum of such a wave, but merely state some of the
salient results, some of which may not be altogether intuitive. The most striking
is that the spectrum is discrete; it consists of a central line at the unmodulated
frequency and sidebands consisting of equally spaced lines extending with dimin-
ished amplitude to infinity on both sides of the central undisplaced line, as shown
in Figure 7.3.

The constant spacing of the lines is just the modulation frequency, so that each
line is simply a multiple (harmonic) of the modulation frequency away from the
central line. It might be thought that since the frequency “passes” through all val-
ues between the limits of modulation, that therefore the spectrum ought to contain
all these frequencies; in fact, it does not. Curiously, the sideband amplitudes are
not zero even for frequencies that extend beyond the “instantaneous” values the
frequency passes through as it swings between its limits. However, if the modula-
tion is infinitely slow, then the sidebands approach each other and will finally merge
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Figure 7.3 The Fourier spectrum of a frequency modulated wave
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into a continuum. The amplitude distribution of this continuous spectrum reflects
the relative amount of time the frequency spends at different values between the
modulation limits.

The way that the amplitudes of the sidebands fall away as we go away from
the central line depends on what is called the modulation index, which is defined
as the ratio of the maximum frequency deviation to the modulation frequency.
If the deviation is small in relation to the modulation frequency, that is, if the
modulation index is small, then the sidebands will be weak and the central line
will predominate.

Let us then compute the modulation index for our oscillating observer. From
the Doppler formula, the maximum deviation is the following:

�ν = Vmax

c
ν0 = 2πνma

c
ν0, 7.6

where νm is the frequency of the observer’s to-and-fro motion, and a is his maxi-
mum distance traveled. It follows that the modulation index, which by definition is
�ν/νm, is given by the following:

�ν
νm

= 2πa
c

ν0 = 2π
a
λ0

, 7.7

where λ0 is the wavelength of the unmodulated wave. This last result contains the
essential key to understanding the narrowing of the Doppler effect through colli-
sions, because it tells us that as long as the observer, that is, the atom under study,
moves only distances that are small compared to the wavelength, the modulation
index will be small, and it will see mainly the undisplaced central frequency, with
weak sidebands having an amplitude distribution and spacing determined by the
parameters of its particular motion.

Quantitatively, the amplitude of the sideband at the frequency (ν±nνm) is pro-
portional to Jn(2πa/λ0), where as usual, Jn represents a Bessel function of order n.
If the particle is constrained to oscillate with an amplitude below one wavelength,
that is, if a/λ0 < 1, then all the amplitudes rapidly approach zero for increasing
n above zero, as can be seen from Figure 7.4. In this case the power resides prin-
cipally in the undisplaced center frequency, which is itself free of the (first-order)
Doppler effect. Although following Dicke, we chose a very special kind of confine-
ment for our observer in the cause of mathematical lucidity, he went on to show that
under broad conditions, a rigorous quantum treatment leads to essentially the same
qualitative result; namely, whatever the detailed motion of the observer, as long
as the motion does not continue uninterrupted for distances much greater than the
wavelength, the Doppler spectrum has a sharp central line superimposed on a base
that reflects the detailed motion of the observer. In the case of a Rb atom diffusing
through a noble gas buffer, a given atom makes frequent random collisions with the
gas atoms, collisions that are far more effective in deflecting a Rb atom in its path
than in disturbing its internal quantum states. As a consequence, the atom executes
a 3-dimensional “random walk” with a net average progress in any direction a slow
function of time, a form of statistical confinement, we might say.
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Figure 7.5 The Dicke effect; resonance line shape of an atom diffusing in a buffer gas

Figure 7.5 shows the average spectrum seen by particles of a gas in thermal
equilibrium irradiated by a wave of a single frequency, whose spectrum seen by a
stationary particle would be just the single central line. The base of the line has the
shape expected of particles freely crossing many wavelengths of the wave, that is,
the “normal” Doppler line shape. This Doppler base broadens out with increase in
temperature, since the thermal velocities of the particles increase, but the central
line remains unchanged.
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7.3 Relativistic Effects

7.3.1 Einstein’s Special Theory

A fundamental source of frequency broadening and shift in the observed reso-
nance of an atomic system arises from the state of relative motion of the atoms and
observer, a subject that underwent a revolution at the beginning of the 20th century.
The origins of the radical theory published by A. Einstein in 1905 are found in the
attempt to reconcile the way the laws of classical mechanics and electromagnetism
are “seen” by observers in different states of motion. The equations of the classical
theory of electromagnetism, the beautiful theory of Maxwell, are spectacularly suc-
cessful in unifying the fields of optics, electricity, and magnetism and are one of
the great triumphs of the 19th century. Unfortunately, under the classical coordinate
transformation (x → x+νx t , etc.) corresponding to going from the coordinate axes
of one observer to another in relative motion, they do not retain the same form. This
would imply that the state of motion of different observers can be inferred by them
by the way they see the fundamental laws of nature operate. This would in turn
imply, for example, that a particular observer could be singled out as being “at
absolute rest,” a possibility whose denial defines the principle of relativity. Now,
the equations of classical mechanics (Newton’s laws of motion), on the other hand
can easily be shown to preserve their form under such a transformation of coordi-
nates. Faith in Newtonian mechanics ran so deep that at first it was assumed that
either Maxwell’s theory was at fault or that for electromagnetic phenomena perhaps
not all observers are equal; perhaps there is a special frame of reference. In fact,
it had long been thought that light consists of waves in an all-pervading medium
called the ether. If so, then for example, since the earth is in constant motion, pre-
sumably there should be experienced on the earth’s surface an ether drift. Such a
drift would cause light waves to appear to travel at different speeds depending the
direction of propagation, just as the velocity of waves on a river relative to the shore
would depend on their direction with respect to the flow. It was to test whether there
was any detectable ether drift that the famous Michelson–Morley experiment was
designed to do; none was found. Efforts to modify Maxwell’s theory to explain this
result were overtaken by a radical approach sought by Einstein to modify the coor-
dinate transformations themselves. This was prompted by the work of Minkowski
and Lorentz, who found and interpreted transformation equations (now known as
the Lorentz transformation) under which Maxwell’s equations do keep their math-
ematical form. We owe it to Minkowski for the interpretation of this transformation
as an angular shift in the orientation of coordinate axes in four-dimensional space.
Einstein’s contribution was to take the Lorentz transformation as the correct one,
and to modify Newton’s equations of motion to preserve their form under this trans-
formation. The ramifications of this theory go to all our fundamental concepts of
space, time, energy, mass, etc. For us the most relevant result is the transformation
of the time variable t . If one coordinate system has a constant velocity V along the
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x-axis of another system, the space and time coordinates in the two systems are
related through the Lorentz transformation as follows:

x ′ = x − V t√
1 − V 2/c2

, y′ = y, z′ = z, t ′ = t − V x/c2√
1 − V 2/c2

. 7.8

This shows explicitly through the presence of
√

1 − V 2/c2 in the denominators
the physically radical departure from classical physics (and common experience)
that the time scale itself varies according to the state of motion of the observer:
Clocks will literally run at different rates! The clock reading t ′ will be ahead of
the clock reading t in the system in which the spatial coordinate x is fixed. The
latter clock therefore runs slower; hence the effect is called time dilation. It would
not be in keeping with the spirit of the theory of relativity to say that the observed
resonance frequency of a moving atom “only appears” to be lower; we must accept
the fact that the time scale itself is not absolute, and a clock or atomic oscillation
that defines time in a coordinate frame moving with respect to the observer simply
runs slower. This radical break with the classical concept of time was not accepted
lightly; it naturally stimulated strenuous efforts in the early establishment of the
theory to find direct experimental evidence in the laboratory to support it.

Since the velocity of light is so large (2.99797 × 108 meters/sec) compared to
velocities ordinarily encountered in the laboratory, the detection, let alone the mea-
surement, of the dilation of the time scale is very difficult. For all ordinary veloci-
ties, V/c � 1, and the departure from the classical t ′ = t is extremely small; it is
crucial that this be so, of course, since we know that Newtonian mechanics cannot
be far from the truth. Nevertheless, the Lorentz transformation does represent a rad-
ical break from the classical concepts of space and time, but by now it has become
such an integral part of modern physical theory, which has been validated exper-
imentally at so many points, that the invariance of the velocity of light has been
taken as a matter of definition: The standard meter is now defined as the distance
traveled by light in vacuo in a certain (very small) fraction of a standard second.
It is no longer in principle meaningful to measure the velocity of light, except as a
determination of the meter. In spite of the fact that relativistic effects are extremely
small, except for extreme velocities, in the case of atomic clocks, the precision has
reached such a level that corrections for such effects are not negligible.

In the early years of the theory when the ramifications of it were being thought
through, considerable debate centered on what became a famous “paradox”: the
so-called Twin Paradox (See Figure 7.6). This “paradox,” which has long since
been resolved, is the following: Imagine that identical twins decide that one of them
will “slip the surly bonds of Earth” and journey at high speed in a spacecraft to a
distant point in space and then return to rejoin his twin brother, who has remained
on Earth, many years later. If, as relativity theory predicts, the returning twin finds
that his Earthbound brother has noticeably aged more than he has, we are led to
what appears to be a paradox; that is, it appears we can be led to contradictory con-
clusions even starting from equivalent premises. (If this were actually the case, then
of course it would be a fatal flaw in the theory.) Thus it might be argued that from
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Figure 7.6 The “Clock Paradox”: the views of twins A and B

the point of view of the astronaut-twin, the Earthbound twin recedes at high speed
and then returns along a trajectory that is the astronaut’s trajectory inverted with
respect to their common starting point. The apparent symmetry between the trajec-
tories as seen by the two twins would seem to predict that the astronaut would find
that his Earthbound twin had aged less than he! This contradicts the earlier con-
clusion. If the symmetry assumed between the experiences of the two twins really
exists, then there is only one logical conclusion: The twins must have aged pre-
cisely the same amount when they are reunited. This conclusion would, however,
contradict a fundamental logical consequence of the underlying postulates of the
theory of relativity. The argument has been made successfully, however, that the
circumstances of the two twins are not symmetrical: One twin actually has to fire
up his rocket engines, while the other does not, and this, after protracted analysis
and debate, finally was accepted as providing the basis for resolving the “paradox.”

7.3.2 The Relativistic Doppler Effect

In the context of atomic resonance standards, even at relatively low atomic veloc-
ities an important correction to the resonance frequency is the relativistic Doppler
effect, by which is meant the second-order term in an expansion of the following
relativistically correct Doppler formula in powers of V/c.

ω′ = 1 − V
c cos θ√

1 − V 2

c2

ω. 7.9

Since we are concerned only with cases in which V/c � 1, we can expand in
powers of V/c retaining only the second-order term, the so-called “relativistic
Doppler effect”:

ω′ = ω

(
1 − V

c
cos θ + 1

2
V 2

c2 + . . .

)
. 7.10

There was intense interest during the early establishment of the theory in putting
this result to the test in the laboratory. The most convincing early experiments were
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those of Ives, published in 1938. The success of these experiments was largely due
to the method developed of bringing out any second-order departure from the ever-
present (even classically) linear Doppler effect. This he did by observing a partic-
ular line in the spectrum of light emitted by high-speed hydrogen atoms in such
a way that he could simultaneously register on a photographic plate the spectrum
as seen directly from the atoms and as reflected by a plane mirror to effectively
reverse the observed velocity of the atoms. On the same photographic plate the
spectrum of slow hydrogen atoms was also registered, providing a fiducial wave-
length to compare with the two Doppler-shifted spectral lines on either side of it.
Contrary to classical expectations, which are that the Doppler shift simply reverses
sign with the velocity and that the two lines from the fast atoms must therefore
be symmetrically situated about the center line, he found that the Doppler-shifted
lines are both displaced slightly towards the red (lower frequencies) relative to the
unshifted line.

7.3.3 Gravitational Red Shift: The Pound–Rebka Experiment

Einstein’s General Theory of Relativity predicts that in a static gravitational field
such as that of the earth (if we neglect its relatively slow rotation) the specific
proper time scale that attaches to a particular point in the field differs from the
coordinate time scale, which belongs to a general frame of reference defined far
from the field region. This means that two identical oscillators placed at points
in a gravitational field that differ in the value of the gravitational potential 	 will
oscillate at different frequencies. To a first approximation, the theory predicts a
difference in frequency given as follows:

ν1 − ν2 = (	1 − 	2)

c2 ν2. 7.11

Thus if one oscillator is placed at height L above another oscillator at the surface
of the earth, we should expect a difference in frequency between them amounting
approximately to

ν1 − ν2 = gL
c2 ν2; (L � RE ). 7.12

where g is the acceleration of gravity at the surface of the earth, and RE its radius.
The gravitational potential is negative in the neighborhood of a gravitational mass;
the proper frequency of an oscillator near such a mass is lower than at a point infi-
nitely far from it, hence the name gravitational red shift. The effect is small: even
for the gravitational field of the sun, the fractional shift is only about 2 × 10−6.
To observe shifts in the lines of the solar spectrum is unfortunately less than con-
vincing as a test of the theory, since there are known to exist severe differences of
environment between the sun and earth, in addition to the gravitational field.

In the earth’s gravitational field the effect is far from insignificant when com-
paring clock rates aboard high-orbit satellites with ground-based stations. For
example, a clock aboard a satellite in a circular orbit of radius (say) 26,000 km,
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typical of the GPS satellites, would run faster than a ground-based clock by the
fractional amount given by the following:

ν − ν0

ν0
= G ME

c2 R
, 7.13

where G is the gravitational constant, ME is the mass of the earth, and R is the
radius of the satellite orbit. If we substitute numerical values, we find a fractional
difference of 1.7 × 10−10, a large number in the context of atomic time keeping!

For a terrestrial experiment the effect is, of course, very much smaller; for
L = 30 m we get a fractional difference of only 3 × 10−15.! Fortunately, an experi-
mental breakthrough in γ-ray spectroscopy in 1958 by Mössbauer made it possible
to reach the incredibly high level of spectral resolution that a terrestrial red shift
experiment requires. It is only in recent years that atomic clocks have reached com-
parable resolution. In the γ-ray region of the spectrum there are nuclear transitions
with long radiative lifetimes and narrow natural line widths. However, the photon
momentum is sufficiently high that when it is emitted by a nucleus, part of the
transition energy is taken up by the recoil of the nucleus. In fact, the consequent
displacement in the photon energy makes it no longer able to be absorbed effi-
ciently by another identical nucleus at rest. What Mössbauer discovered was that if
the nuclei are constrained within a suitable crystal lattice in the right temperature
range, the recoil is effectively taken up by the entire mass of the crystal, leading
to essentially recoilless emission and absorption, and hence a degree of spectral
resolution unheard of at the time. The γ-ray spectral resolution is so high that even
the Doppler effect caused by a slow linear movement is sufficient to provide a
sufficient sweep of its energy.

Pound and Rebka, in a classic experiment, exploited this new development in
a terrestrial experiment to measure any frequency shift that might be exhibited
by photons emitted at one point in a gravitational field and absorbed at another
by identical nuclei. Initially, it proved difficult to reach conclusive results; little
progress was possible until it was realized that temperature differences between the
emitter and absorber can lead to significant second-order Doppler shifts, and that
the temperatures must be stabilized and taken into account. Fluctuations as small as
±1◦C were computed to cause frequency shifts nearly as large as the gravitational
shift. They used the Mössbauer effect in the resonance absorption of 14.4 keV
γ-rays of Fe57; the sensitivity of their apparatus allowed them to observe the effect
by placing the Fe57 source in the tower of the physics laboratory at Harvard Uni-
versity at a height of only about 20 m above the resonant absorber.

As with any other experiment designed to test a theory, the salient questions are:
first, just how crucial is a positive result to the theory, and second, to what extent
does a positive result preclude other theories? It is the uncertainty in answering
the latter question that dictates a certain restraint in stating what the experiment
actually proves. This is far from a simple matter: A careful analysis is required
to strip away all the assumptions that are not in fact proved by the test. Of the
elegant mathematical structure that is Einstein’s theory of general relativity, this
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particular test probably only proves that the equivalence principle, which states,
in effect, that a gravitational field is indistinguishable from an appropriate coordi-
nate transformation, is valid for photons. Falling under gravity is indistinguishable
from motion with respect to a frame of reference accelerating upwards. Hence the
photons develop a Doppler shift with respect to the accelerating frame of reference
given by (V/c)ν, where V = gL/c, and we have the same formula as before.

7.3.4 The Sagnac Effect

We should mention at this point an interesting relativistic effect on time measure-
ment associated with the rotation of the earth. Since the coordinate system fixed in
the earth is noninertial because its rotation with respect to “the fixed stars” consti-
tutes an accelerated motion (not of speed, but direction), again the theory of general
relativity is involved. According to the theory, if we imagine we have two identical,
precise clocks at some point on the earth’s equator, and one remains fixed while the
other is taken even slowly (with respect to the earth) along the equator all the way
around until it reaches its starting point, then the times indicated on the two clocks
will not agree. The difference �τ can be shown to be given by the following:

�τ = ±2


c2 S, 7.14

where 
 is the angular velocity of the earth (7.3 × 10−5 rad/sec) and S is the area
(πRE

2 = 1.3 × 1014m2) enclosed by the path of the moving clock. The formula
yields a significant time difference of about ±1/5 microsecond, depending on the
direction the moving clock takes around the equator. This effect is often referred
to as the Sagnac effect, after the Frenchman G. Sagnac, who in 1911 detected by
optical interference a difference in the time taken by a light wave to complete a
round trip in the two possible directions around the mirror arrangement shown in
Figure 7.7, when the latter is made to rotate.

M1

M3

M2

light source
half-silvered

mirror

Figure 7.7 The mirror arrangement used by Sagnac to study the propagation of light in a
rotating system
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Since the velocity of light in free space is constant, this is usually interpreted
as a difference in the effective optical path length due to the finite movement of the
mirrors in the time it takes the light wave to go from one mirror to the next. In the
reference frame of the mirrors themselves, however, it must be interpreted as time
itself advancing at a changing rate as we go around from one mirror to the next.

7.4 Conclusion

There are a number of other mechanisms that can affect the spectral profile of
an atomic resonance in the microwave and optical regions of the spectrum, but
none as universal as the relativistic Doppler and gravitation red shifts. The atomic
resonance used as standard in each of the different types of atomic clocks will
have its own hierarchy of important factors affecting its width and position on
the frequency scale. Thus we shall see in a later chapter that for the rubidium
standard it is collisions with the buffer gas atoms and light shifts produced by the
light used to observe the resonance that are dominant; for the hydrogen maser it
is the wall shift, and so on. We will discuss these and other cases at greater length
in the chapters dealing with specific standards. There is one subtle effect deserves
mentioning here, though extremely small it may nevertheless become significant in
the future in ultrahigh resolution optical clocks. It is the frequency shift due to the
recoil of an atom or ion as it absorbs or emits a resonant photon. As we have already
mentioned in connection with the Mössbauer effect and will again encounter when
we come to discuss the laser cooling of atoms, photons carry momentum, and
to conserve linear momentum the atom must recoil. Since the momentum of a
single optical photon is exceedingly small, the kinetic energy an atom gains through
the recoil is also minuscule and is expected to be near the outer limits of what is
observable.



Chapter 8
The Rubidium Clock

8.1 The Reference Hyperfine Transition

Of the atomic clocks, or more appropriately, frequency/time standards, since their
accuracy and sophistication, not to mention their cost, places them far above any
ordinary keepers of time, the rubidium clock has the distinction of being the most
compact, and therefore the most portable. Rugged versions of the rubidium stan-
dard have long been developed for shipboard use as well as for tactical military and
missile-borne applications.

The rubidium standard is based on the resonance at microwave frequency of
the free rubidium atom between a pair of its quantum states whose separation
in energy is due to the electron–nuclear hyperfine interaction. Its compactness is
a result of confining the rubidium vapor in a small absorption cell filled with a
noble gas to act as a buffer, as mentioned in the last chapter. While this method
of confining the atoms of rubidium in order to lengthen their free interaction time
with the applied resonant field has been very successful, there are unfortunately
residual effects on the frequency of resonance due to the collisions with the buffer
gas and to the pumping light itself that disqualify it as an absolute standard. Never-
theless, its general adoption for a variety of applications attests to its usefulness as
a secondary standard.

In order to appreciate how the reference transition was chosen from among
the many possible resonances observable in the ground state of Rb, we must
examine the way in which the energies of the various magnetic substates may
depend on the environment, since the resonance frequencies are directly deter-
mined by the difference in energy between quantum states. The most important
environmental factor is the magnetic field; as earthbound beings immersed in the
earth’s magnetic field and surrounded by man-made magnetic fields from machin-
ery, etc., it would require elaborate special shielding or active field-cancellation to
reduce all static and time-varying magnetic fields. Fortunately, a particular choice
of a resonant transition exists, whose frequency is very much less sensitive to the
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magnetic field than all the others. To see this we must consider how the energy
of the atom in the various hyperfine states varies with magnetic field intensity. We
recall that Rb87 has a nuclear spin I = 3/2 and electron angular momentum in
the ground state J = 1/2, leading to total angular momentum (hyperfine) states
with F = 2 and F = 1. Each of these states comprises a set of substates labeled
by their magnetic quantum number m F = 2, 1, 0,−1,−2, and m F = 1, 0,−1,
which give the projections (or components) of the angular momentum, and hence
magnetic moment, along an assumed magnetic field direction. In the presence of
a magnetic field, this can be only an approximate way to describe the states, since
the angular momentum F obtained by adding (vectorially) the nuclear and elec-
tron spins will no longer be strictly constant in magnitude and direction, due to
the torques exerted on the particles by the magnetic field. In trying to compare the
relative strength of the “coupling” between the spins with their tendency to precess
independently around the magnetic field direction, the appropriate measure is the
amount of energy that would be required on the one hand to turn one spin relative
to the other as compared with turning it with respect to the field.

The coupling energy of the spins is the difference in energy between the F = 2
and F = 1 hyperfine states in zero magnetic field, and it is precisely the transition
between these states that gives rise to the sharp microwave resonance used as the
frequency reference. Now, the energy of coupling of the spins to the magnetic field
is simply the Zeeman energy, which we have already encountered; it is given by
Em = −μ||B, where μ|| is the component of the magnetic moment of the electron
along the magnetic field direction. We are now ready to express the condition on
the strength of the magnetic field for the representation in terms of F and m F to be
a good approximation; we must have EF=2 − EF=1 � μ|| B.

For magnetic fields weak enough to satisfy this condition, the combination of
two spins acts as one, with a single angular momentum F precessing around the
magnetic field; however, the magnetic moment associated with this differs from the
electron moment by only the small contribution from the nucleus. Thus it is approx-
imately as if we had a single particle with the ratio of magnetic to angular momen-
tum smaller than a free electron in the ratio (1/2):F , and a correspondingly slower
precession around the magnetic field. Thus in the limit of a vanishingly small mag-
netic field, the energy of the magnetic substates is simply Em = (m/F)μB; that
is, the plots of Em versus B start from B = 0 with a different slope for each m, as
shown in Figure 8.1.

8.2 The Breit–Rabi Formula

The behavior of Em as the magnetic field intensity is increased from zero requires
an exact quantum treatment; the result is referred to as the Breit–Rabi formula,
which can be written as follows:

E(m F ) = − Eh f s

2(2I + 1)
− μI B0

I
m F ± Eh f s

2

√
1 + 4m F

2I + 1
x + x2, 8.1
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Figure 8.1 The energies of the magnetic hyperfine substates of the ground state in Rb87 as
a function of applied magnetic field intensity

where the plus and minus signs refer to the upper and lower hyperfine state respec-
tively, and x ≈ gJ μB B0/Eh f s is the ratio of the Zeeman to the hyperfine energy
splitting, and B0 is the strength of the magnetic field.

There are two features of this solution of great importance to the operation of
the rubidium standard: First, the plots of the energies of atoms in levels (F = 2,
m F = 0) and (F = 1, m F = 0) versus the magnetic field start in a horizontal
direction before they start curving gently, which means that to a first approxima-
tion in x the energy does not change if the magnetic field departs slightly from
zero; second, the difference in energy between consecutive Zeeman sublevels near
B = 0 is proportional to the magnetic field.

Since, as we have already stated, it is difficult in practice to totally shield out
the perturbations of a magnetic field or even variations in its intensity over all
points in the rubidium absorption cell, the field-insensitive transition between the
two m F = 0 levels belonging to F = 1 and F = 2 is used as the standard. Even
the presence of a small inhomogeneity in the magnetic field, which would result in
a given rubidium atom in motion “seeing” a variable magnetic field, would cause
little spectral broadening of the resonance between these states. The same cannot be
said obviously of the “field-dependent” transitions between other substates. Thus
the resonance between the m F = 0 states is much sharper than the other Zeeman
transitions, a fact of obvious importance for a frequency standard.

The field independence of the energy of the m F = 0 states is true only to a
first-order approximation in the immediate vicinity of zero field; beyond that we
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must use the exact Breit–Rabi formula to calculate the frequency of the transition
between these states. A second order approximation in x for that frequency derived
from that formula yields

ν = ν0 + (gJ μB − gI μn)
2

2h2ν0
B2, 8.2

where gJ and gI are respectively the g-factors of the atomic electron and nucleus,
numbers that are measures of the strengths of their magnetic moments in the given
states. They specify the moments in terms of the fundamental units, the Bohr
magneton μB and the analogous nuclear magneton μn , defined as the classical
magnetic moment of a particle having the charge and mass of a proton. This pro-
vides a convenient way to make a fine adjustment to the frequency of the standard:
simply vary the current in a magnetic field-producing coil provided for the pur-
pose. As a secondary standard, it is necessary to set the field at such a value that
the time scale generated agrees with the atomic time scale, defined in terms of the
primary standard. Even after the initial calibration against the primary standard,
a readjustment may be necessary after some length of time because of possible
long-term drift in the resonance frequency. Furthermore, to estimate the size of
the field correction, which is proportional to B2, we have ready at hand the “field-
dependent” Zeeman transitions m2 −m1 = ±1, whose frequency gives directly the
magnitude of the magnetic field.

8.3 Optical Pumping of Hyperfine Populations

Recall that in our discussion of magnetic resonance in Chapter 6 we argued that in
order to be able to observe a magnetic transition between two states, there must be a
difference in the populations in those states. This is ultimately because the inherent
probabilities (per atom) per unit time for absorption and stimulated emission of a
quantum of radiation are identical, and unlike transitions in the optical region of the
spectrum, the probability for spontaneous transitions is extremely small; the result
is that no net global exchange of energy is observed unless the number of atoms in
the lower state differs from the number in the upper state. Here we wish to observe
the transition between the (F = 1, m F = 0) and (F = 2, m F = 0) states near
zero magnetic field intensity. There are a number of possible ways of achieving
this using optical resonance; the choice generally adopted reflects the inevitable
concern for commercial viability, which is ultimately a question of performance
versus cost. Before describing in detail the method that has been widely exploited
commercially, we can get a broader perspective by first considering alternative, but
more complex, approaches.

The first among them is simply to carry out the usual Kastler optical pump-
ing with circularly polarized light directed along the magnetic field axis, thereby
ideally putting all the atoms in one of the extreme m F -states, that is, m F = +2
or −2, depending on the sense of the circular polarization. We are assuming here,
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as we did in the last chapter, that the spectrum of the pumping light is limited to
resonance with the transition to the upper P1/2 electronic state but otherwise is
broad enough in frequency to satisfy energy conservation for all hyperfine tran-
sitions that satisfy the angular momentum selection rules. Once we have a large
proportion of the atoms in, say, the m F = +2 state, we can apply a high-frequency
magnetic field resonant with transitions among the magnetic substates in the F = 2
hyperfine state, in the manner described in the last chapter. The desired population
difference between the m F = 0 substates can be achieved under suitable condi-
tions, the most important of which are first, that the atoms be sufficiently free of
perturbations; second, that the high-frequency field be strong and uniform; and last,
that the static magnetic field be sufficiently uniform. The global effect on the atoms
can be pictured classically as a magnetized gyroscope whose axis precesses around
the static magnetic field, sweeping out ever wider cones. If the high-frequency
magnetic field is on for exactly the short interval it takes the angle of the cone to
reach 90◦, a so-called 90◦ pulse, then the axis of the gyroscope precesses in the
plane perpendicular to the static field, and the projection of its angular momentum
along the field is zero. In quantum terms this is described as having put the atoms in
a (linear) superposition of substates with different m F in which the desired m F = 0
substate has the largest amplitude. Having a significant fraction of the atoms in the
(F = 2, m F = 0) substate, a fraction far greater than would ideally be present in
the (F = 1, m F = 0) substate, meets the first requirement for observing transitions
between them.

A second and equally critical requirement is the ability to detect the occurrence
of transitions; this can be met in principle by the inverse process of applying a
90◦ pulse of the opposite phase, or a 270◦ pulse of the same phase, to complete
a full circle, bringing the global moment back into alignment with the static mag-
netic field. If nothing perturbs the atoms in the interval between the two pulses,
the atoms would ideally return to their original state, namely, the nonabsorbing
m F = 2 into which they were pumped, and the amount of pumping light scattered
or absorbed would be the same as it was. However, if in the interval between pulses
a resonant microwave field causes transitions to the (F = 1, m F = 0) hyperfine
state, then they do not all return to their nonabsorbing state, and the amount of
pumping light absorbed/scattered will be increased. This change in the interaction
between the atoms and the pumping light can be used to monitor the transitions
and their resonant dependence on the frequency of the microwave field.

Another technique, which avoids the practical complexity of pulsed opera-
tion, is a variant of Kastler optical pumping, in which the circularly polarized
beam is directed not along the magnetic field direction, but perpendicular to it,
and is therefore called transverse pumping. In order to simplify the explanation
of this technique, let us assume that the transverse light beam consists of a regu-
lar succession of powerful flashes and that the magnetic field is extremely weak.
Under these conditions each flash produces a global magnetic polarization in the
direction of the beam, that is, perpendicular to the field, which then causes it to
precess continuously around the field axis passing periodically through its original
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direction. Now, if the interval between flashes is adjusted so that each flash coin-
cides in time with the passing of the polarization vector through its original
direction, then the polarization is reinforced and will build up to a significant
degree. Again, having the polarized atoms precessing predominantly perpendicular
to the field implies a preponderance of population in the m F = 0 state, essentially
the same state as was produced by a 90◦ pulse. In the actual implementation of the
transverse pumping technique it is not necessary to pulse the light source. Instead,
a high-speed electro-optic modulator can be used to impose a harmonic oscillation
in the transmitted intensity at the frequency of precession of the atoms in the given
magnetic field. If during the pumping process the desired microwave transition is
resonantly induced between the hyperfine states having m F = 0, then the distribu-
tion of populations of atoms in the different m F states changes in the direction of
increasing those in the absorbing F = 1 substates. It will be recalled that the opti-
cal pumping process leads to a preponderance of atoms in substates that by reason
of the selection rules are unable to absorb light from the pumping beam. Hence
by imposing a different distribution with the resonant microwave transitions, the
amount of pumping light scattered by the atoms will increase, providing a way of
monitoring the resonance. As with the previous technique then, the desired reso-
nance is observed by monitoring the transmitted light intensity as the microwave
frequency is swept through resonance; a dip in the intensity of the pumping light
transmitted through the absorption cell signals a resonance. It is interesting to note
in passing that the original use of a circularly polarized light beam perpendicu-
lar to the magnetic field was first introduced by Hans Dehmelt (Dehmelt,1957)
as the inverse process to the foregoing: It was to modulate the intensity of the
beam by interaction with a precessing global polarization induced by a resonant
high-frequency magnetic field, such as would be used in the 90◦ pulse, acting on
polarization produced by an axial beam. This modulation occurs at the precession
frequency and is a direct measure of the (static) magnetic field. Since frequency is
measurable with high precision, this has been exploited commercially as an atomic
magnetometer of great sensitivity and precision.

8.4 Optical Hyperfine Pumping: Use of an Isotopic Filter

We will now direct our attention to the principle of operation actually implemented
in commercial Rb standards; it is called hyperfine pumping. Instead of relying on
quantum selection rules governing transitions between states of different angular
momentum, it is really based on selection of transitions according to the conser-
vation of energy. We focus on the spectrum of the pumping light rather than its
polarization; transitions will occur only if the energy and therefore wavelength
of the photons in the beam equals the energy difference between the initial and
final states. The method therefore relies on having a pumping light source whose
spectrum overlaps only one of the two hyperfine components in the resonance
optical spectrum of Rb, components that arise from transitions whose initial states
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are either the F = 1 or F = 2 hyperfine state. Having a spectrum overlapping only
one component, the light from the source can be absorbed by atoms in only one
of these states. However, once in the optically excited state, the atoms will spon-
taneously re-emit photons to both hyperfine states of the electronic ground state,
independently of how they came to be in the excited state, and therefore ideally
they would all be pumped into the nonabsorbing hyperfine state.

As mentioned in connection with light sources for Kastler pumping, laser
sources properly stabilized would be ideal were it not for the added complexity that
that would entail. It might be thought that we should be able simply to filter out one
of the hyperfine components of the optical resonance line in the spectrum of a Rb
vapor lamp; unfortunately, the difference in wavelength between the two compo-
nents is so small that it would be difficult, if not impossible, using the sharpest type
of optical filter available, the interference filter, to separate them without a great
loss of intensity.

The original experiments on hyperfine pumping predate lasers, and a suitable
light source was achieved through a fortuitous coincidence in the hyperfine struc-
ture of the optical resonance spectra of the two isotopes of rubidium, Rb85 and
Rb87. The difference in nuclear structure and mass of the two isotopes leads to
a slight relative shift in their spectra, called, not surprisingly, the isotope shift. It
happens that one of the two hyperfine components in the Rb85 spectrum nearly
coincides with the corresponding component in the Rb87 spectrum, while the others
are well separated, as shown in Figure 8.2. Thus starting with a rubidium vapor
lamp filled with enriched Rb87 isotope, whose output contains both hyperfine lines,
we can partially remove one of them by passing the light through a cell containing
enriched Rb85 vapor, which will absorb out of the beam (and re-emit in all direc-
tions) the line coincident with the Rb85 hyperfine component just mentioned. The
match in wavelengths can be improved by a process that, however, we shall see is
detrimental to the long-term stability of the standard: It is the so-called pressure
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Figure 8.2 The hyperfine structure of the dominant emission lines in Rb85 and Rb87
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broadening and shift in spectral lines caused by collisions between the Rb atoms
themselves and with others, principally the atoms of the noble gas introduced as a
buffer. The direction of the shift, whether to higher or lower wavelengths, depends
on which noble gas is used, as does its sensitivity to temperature fluctuations. By
using a mixture of two noble gases, which alone would produce opposing shifts,
it is possible to choose their proportion in the Rb85 vapor absorption cell so as to
reduce the temperature dependence as well as improve the wavelength match.

The earliest successful observations of resonance between hyperfine states in
the alkali atoms by optical means date from 1958. Of these, the one of particular
interest, because of its adoption for further commercial development, was pub-
lished by Bender, Beaty, and Chi (Bender et al., 1958), in which the use of the
isotope filter in Rb was introduced. Their experimental arrangement is shown in
Figure 8.3. The optical hyperfine pumping source was a Rb spectral lamp whose
strongest emission occurs at the two “resonance” lines in the red part of the spec-
trum at wavelengths λ = 780 nm and 795 nm (1 nm = 1 nanometer = 10−9 meter).
These correspond, in terms of the states between which the transitions occur, to the
strong emission lines in a sodium vapor lamp, giving it its familiar yellow color.
They arise from radiative transitions between the first two excited electronic states
and the ground state, forming a fine structure “doublet.” The two hyperfine states
with F = 1 and F = 2, into which the first excited electronic state is split, are much
closer in energy than the two corresponding hyperfine states in the ground state, so
that under the usual degree of resolution the spectrum appears to have each member
of the doublet split into two hyperfine components rather than four. An ordinary Rb
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Rb87 lamp

Rb85 filter

Figure 8.3 The experiment of Bender, Beaty, and Chi on optical hyperfine pumping of Rb87
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vapor lamp, containing a natural mixture of the two isotopes, will therefore emit a
spectrum in which each line of the doublet consists of four hyperfine components,
two from each isotope. The hyperfine separation in Rb85 is about half that in Rb87,
with the lower components of the two isotopes much closer in frequency than the
upper, as Figure 8.2 attempts to make clear. In the actual experiment, the light from
an enriched Rb87 spectral lamp is passed through a filter cell containing enriched
Rb85 vapor and typically 104 Pa of argon buffer gas, whose presence broadens
the spectral lines and somewhat shifts their centers in a direction to enhance the
differential filtering of the two hyperfine lines of Rb87. Ideally, if the filter cell con-
tained only Rb85, it would be almost transparent to the upper component in the
output spectrum of the Rb87 lamp, while strongly scattering the other component,
so that the transmitted light satisfies the basic inequality of intensities required for
hyperfine pumping. The repeated cycle of absorption and re-emission of this light
by the Rb87 in the resonance absorption cell will pump the atoms into the upper
hyperfine state of the electronic ground state, thereby reducing the number left in
the lower absorbing state. This has the effect of decreasing the amount of pumping
light scattered. If an applied microwave magnetic field causes transitions between
the hyperfine states, tending to equalize their populations and thus increasing the
number in the lower absorbing state, then more of the pumping light is scattered
out of the beam, and the transmitted intensity drops, signaling the occurrence
of resonance.

8.5 The Use of Buffer Gases

In those early experiments, the absorption and filter cells were made of relatively
large (≈500 ml) Pyrex bulbs, which were cleaned and baked according to standard
vacuum practice, and a small quantity of pure metallic Rb distilled into each bulb.
The element Rb, like the other alkalis, is very chemically reactive with air and
water; it must be handled either in an inert atmosphere or under vacuum. The cells
are back-filled with pure gas before being sealed from the vacuum system.

Experiments carried out with different species of gases at different pressures
showed that the hyperfine frequency is shifted in proportion to the pressure,
being raised by the light gases—hydrogen, helium, neon, and nitrogen—while for
the larger atoms—argon, krypton, xenon, and methane—the frequency is lowered.
The linear pressure dependence is to be expected, at a fixed temperature, if the
shifts are due to pairs of atoms colliding. There is also an important temperature
dependence, however, which is more complicated to predict. An important practical
application of these findings is to the reduction of the sensitivity of the frequency
to temperature, since some gases cause an increase in frequency with temperature,
while others have the opposite effect. It has been found that a mixture of about 12%
Ne and 88% Ar gives a temperature dependence of about −10 hertz per degree C
at a pressure of about 5.320 × 103 Pa (1 mm Hg ≈ 133 Pa). The sharpest reso-
nance seen for the hyperfine transition at 6.8347. . . GHz (1 GHz = 109 Hz) was
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only about 20 Hz! This is a Q-value of about 300 million; compare this to the best
quartz crystal currently available, which may reach a Q-value of 1 million.

The effects of a buffer gas on spectral line shapes and center positions are
the large-scale average manifestation of interaction between the Rb atoms and the
noble gas atoms; during the collision we have in effect a transient Rb–noble gas
“molecule.” Under the rarefied conditions obtaining here there would be little error
in assuming what may be called the binary collision approximation. In this, it is
assumed that all the particles have negligible interaction except very briefly during
relatively infrequent encounters when the particles come within typical molecular
dimensions of each other. This radically simplifies the problem of predicting the
effect of the presence of the buffer gas by permitting the problem to be separated
into two tractable parts: first, the collision of just two particles under general con-
ditions, and second, the statistical problem of finding the observable averages over
a large number of such collisions. Another circumstance that allows an important
simplification in the analysis of the collision process is that the relative velocity of
the Rb and noble gas atoms at the temperatures under consideration is very much
smaller than the speed with which the electrons in the outer structure of the atoms
can adjust to the changing internuclear distance. This means that the colliding pair
can be thought of as quasi-static at different distances apart, and the energy of
the quantum electron state for the two-atom system can be regarded as potential
energy in computing the change in kinetic energy of the two particles. The poten-
tial energy for the Rb–noble gas collisions, in common with most binary atomic
collisions and in a broader sense all matter, corresponds to an attractive force as
the particles first approach each other; but as their electronic structures start to
interpenetrate, the force turns repulsive and they fly apart. It turns out that during
the initial attractive part of their trajectory, the distortion of the electronic state of
the Rb atom is accompanied by a reduction in the electron–nuclear interaction,
that is, a “red” shift (to lower frequency) in the hyperfine frequency separation,
while the repulsive part has the opposite effect. In the heavier noble gases the attrac-
tive force is of longer range and leads to a net red shift, while for the lighter gases,
He and Ne, it is a blue shift (to higher frequency) because the short-range repulsive
force dominates. The length of time a typical collision lasts is extremely small, as
can easily be verified: The average relative velocity of the particles due to thermal
agitation is on the order of 104 meters per second, while the range of interatomic
force is typically 10−8 meter, so that the time is t = d/V = 10−12 second. On the
other hand, the average time between collisions at the typical gas pressure of 1000
Pa is about 10−7 second, or about 100,000 times the duration of a collision. This
confirms that the impact approximation is indeed valid for the assumed conditions.
Of course, if very much higher buffer gas pressures are used, then the approxi-
mation would become invalid and the prediction of the pressure shifts would be
very much more difficult. The temperature dependence of the frequency shifts has
to do with degree of mutual penetration of the colliding particles; the higher their
thermal kinetic energy, the more violent the collisions.
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The susceptibility of the resonance frequency, which is to be our standard, to
temperature, pressure, and nature of background gases detracts from its accuracy
and reproducibility. However, the presence of the buffer gas not only performs
the essential function of lengthening the interaction time between the atoms and
the resonant field, but also limits broadening of the resonant response by another
phenomenon, namely the Doppler effect.

The frequency width at half maximum of the optical resonance line in rubid-
ium is about 700 MHz, which is about 1/10 the hyperfine splitting of the ground
state. On the other hand, we can easily verify that for the microwave transition the
conditions for the Dicke effect are well satisfied; thus the wavelength of microwave
resonance at around 6.8 GHz is λ = c/ν, or λ ≈ 4.3 cm, and the average distance
between collisions at pressures on the order of 104 Pa is no more than 0.01 cm,
or about 1/400 of the wavelength. Finally, on the subject of the Doppler effect we
should note that if the resonant microwave field is applied in the form of an advanc-
ing wave, as was done in the experiments of Bender, Beaty, and Chi, the observed
resonance will exhibit a small Doppler shift due to a general drift of Rb atoms
across the absorption cell. This arises from the fact that Rb reacts chemically with
the glass surfaces of the cell, and atoms continually diffuse from their source, a
droplet of liquid Rb, towards the walls of the cell. A good deal of effort has been
devoted in the past to finding a suitably inert coating for the inner surfaces of the
cell, not only to reduce this chemical reaction, but indeed to dispose of the need
for a buffer gas altogether. Special aluminosilicate glazes have been developed by
the lamp industry to coat the inner surfaces of sodium lamps used for street light-
ing, lamps that operate at much higher temperatures than the Rb cell, in order to
prevent the sodium vapor from chemically attacking the glass and eventually turn-
ing it black. The ideal of a cell with surfaces totally unreactive with Rb, which
may therefore be “dry filled,” that is, not requiring a liquid droplet to maintain
the vapor density, has never been achieved. Nevertheless, wax coatings made of
high molecular weight paraffins were shown by H. Robinson et al. around 1957 to
be highly successful in preventing a randomization of Rb spin direction when the
atom collides with the coated surface. Their use instead of a buffer gas to increase
the free interaction time between the Rb atoms and the resonant field offers, how-
ever, no particular advantage, since like the buffer gases, these coatings also cause
frequency shifts. In any event, whether the glass surfaces are coated or not, there
will be long-term chemical reaction with the Rb, resulting in the slow evolution of
gases, which will cause the resonance frequency to drift. The use of sapphire and
other exotic materials to solve this problem continues to be investigated.

8.6 Light Shifts in the Reference Frequency

An equally serious but far more subtle phenomenon that affects the resonant
microwave frequency is associated with the pumping light itself; this com-
plex effect is labeled simply the light shift. It was anticipated theoretically by
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Cohen-Tannoudji and Barrat in 1961 and was soon observed in Kastler’s labora-
tory in the radio-frequency spectrum of Hg199. Its detection in studies of microwave
resonance in Rb and Cs was first published in the same year by Arditi and Carver.
Although the shift is exceedingly small—its discovery in itself representing no
mean accomplishment—yet in the context of a frequency standard it is significant.
In addition to the obvious dependence of the shift on the intensity of the light,
it also depends on the detailed spectrum of the light, particularly its position in
relation to the absorption spectrum of the Rb atoms. In trying to understand the
physical origin of light shifts we must distinguish between two types of quantum
transitions involved in the optical pumping cycle: real transitions and the so-called
virtual transitions. A transition is virtual if the probability of the atom being in the
final state returns to zero when the external perturbation is removed rather than
stay there, as in a real transition. In the case of Rb subjected to the optical pumping
cycle, real transitions would take the atoms up to the first excited electronic state,
where they would stay were it not for another mechanism, spontaneous emission,
by which they re-emit photons and return to the ground state. At the same time
there are virtual transitions in which the electric field of the light wave distorts
the electron cloud, and as long as that field is there the atoms are in a quantum
state that in terms of the undisturbed Rb stationary states can only be described as
a linear superposition of them. Once the perturbing electric field is removed, the
atom returns to its initial state. This distortion in the electron distribution manifests
itself in a shift in the position of lines in the optical spectrum called the (quadratic)
AC Stark effect, and it depends in general on E2, where E is the amplitude of
the electric field in the light wave. Because of the quadratic dependence on E ,
the effect does not average to zero for an oscillating optical field that swings
symmetrically through positive and negative values about zero. Unfortunately, the
energy shift of the quantum states is not the same for the initial and final hyperfine
states of the microwave transition we are interested in, resulting in a light shift
in the frequency of that transition. Since this source of change in our standard
frequency is affected by the many complex factors that determine the detailed
spectrum of the light source and absorbing Rb atoms, it seriously detracts from the
quality of the Rb standard.

8.7 Rubidium Frequency Control of Quartz Oscillator

We will now take up the subject of the electronic configuration of clocks controlled
by the Rb resonance. There are two ways in which the microwave resonance can be
used: first, in a passive mode as a resonator or frequency discriminator, and second,
in an active mode as an oscillator (maser) generating a signal at the standard fre-
quency. The passive Rb standard is the one that has been commercially developed
and is in general use; we will therefore treat it in this chapter, leaving the Rb maser
for a later chapter.
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As with other standards using an atomic resonator in a passive mode, notably
the cesium standard, which we shall study in the next chapter, the resonant response
of the atoms to an external microwave field must be monitored. Specifically, it
must be possible to discern whether the frequency of the field is below, above,
or precisely at the center of the resonance curve. This may be accomplished by a
slow periodic modulation of the frequency (or phase) of the microwave field over
a small portion of the resonance line profile, as shown in Figure 8.4. We recall
that if the modulation is slow enough, it is legitimate to think of the frequency as
assuming continuously all frequencies between the limits of the modulation, so that
the optical signal will vary in step with the modulation on the side of the resonance
curve with a positive slope, and will vary in the opposite direction on the side with
the negative slope. If the modulation occurs symmetrically about the center of the
resonance, then since the optical signal falls whether the field frequency swings in
the positive direction or the negative, the optical signal will oscillate at twice the
frequency of modulation. If the modulation is exactly centered on the peak of the
resonance, then the optical signal will have no Fourier component at the modulation
frequency, but only one at double that frequency.

For the ultimate purpose of controlling the frequency of the microwave field
so that it remains locked to the peak of the resonance, we need to derive from the
optical signals described above a voltage that can serve as an error signal indicat-
ing whether the frequency of the field is too high or too low. This requires a circuit
that can selectively amplify signals at the modulation frequency and be sensitive
to the relative phase of these signals with respect to the modulating signal. Such a
phase-sensitive amplifier is called a lock-in amplifier, which in a sense correlates
an incoming signal with a reference frequency signal; if the two are in phase, a
positive output voltage is given: On the other hand, if they are of opposite phase,

t=0 t=0
tt

frequency modulation

Figure 8.4 The reversal of detector output phase for microwave frequency above and below
resonance
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Figure 8.5 The output of the lock-in amplifier as the frequency is swept through resonance

we get a negative output voltage. Moreover, if they are not exactly the same fre-
quency, the output will oscillate as the two signals go in and out of phase; in this
case the average over a sufficiently long time will be zero. With such a lock-in
amplifier we can obtain just the desired error signal for our control circuit; we
simply use the signal producing the frequency modulation of the microwave field
as the reference, and the optical signal as our input to the lock-in amplifier. Its out-
put as the center frequency of the field is very slowly scanned across the resonance
frequency will resemble the plot shown in Figure 8.5 A graph of that form is usu-
ally called a dispersion curve, and in the sense used in calculus, it is the derivative
function of the bell-shaped absorption curve. We see that the output is indeed neg-
ative when the frequency is too high, positive when too low, and zero when at the
peak. This is precisely what we need as an error signal in a feedback control loop
that seeks to make the error zero by controlling the center frequency of the field.

The field is derived ultimately from a high-quality quartz-controlled oscillator
operating typically at 5 MHz (see Figure 8.6). The desired microwave frequency is
produced by a frequency synthesizer, which, starting with the 5 MHz oscillation
as reference, generates signals at multiples and submultiples of that frequency and
then by deriving other signals at the sum or difference of various harmonics, ulti-
mately yields an output signal whose frequency can be preset in fine increments on
a front panel keyboard.

These arithmetical operations on the frequencies of signals are realized through
the use of nonlinear solid-state devices, which can act as harmonic generators and
frequency mixers. Throughout these operations phase relationships are preserved
so that the output is coherent with the stable 5 MHz reference signal. Coherence
here simply means that the outputs of two identical synthesizers, sharing the same
reference signal but set at different frequencies, can produce a stable “beat,” that is,
a pure signal whose frequency is the difference between those of the two outputs.
Clearly, if the frequency of the reference is changed, the frequency of the output of
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Figure 8.6 Block diagram of basic rubidium frequency standard design

the synthesizer will change accordingly. Therefore, a voltage-sensitive element in
the quartz crystal oscillator circuit is provided to control its frequency and hence
that of the microwave field applied to the atoms. If that frequency is too low, the
resulting positive error signal must cause the oscillator frequency to rise steadily
in order to reduce the error. This requires the voltage appearing on the frequency-
controlling element, which is derived from the output of the lock-in amplifier, to
increase steadily in magnitude in the proper direction. The circuit that converts a
steady (DC) voltage into a linearly increasing one is an integrator, which must be
included in the feedback loop for stable operation. As the error signal approaches
zero at the peak of the resonance, the output of the integrator tends to become
constant just at the value to keep the error at zero. Needless to say, a high degree
of stability in the operating voltages of the integrator is critical; any drift in DC
levels would cause frequency offsets from the atomic resonance, degrading the
performance of the standard. Just how closely the frequency is held to the true
center of the atomic resonance depends on a large number of factors, some of
which are of a fundamental nature, while others are a matter of the performance
characteristics of particular devices and the circuits around them.

8.8 Frequency Stability of the Rubidium Standard

We have already mentioned a number of physical phenomena that affect the fre-
quency of the atomic resonance; these are known systematic sources of error, as
distinguished from uncontrollable random fluctuations. Among the latter are the
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various types of electrical noise discussed in a previous chapter. Because of the
high order of multiplication of frequency in going from that of the quartz oscillator
at 5 MHz to the microwave frequency at 6,800 MHz, any residual fluctuations in
the phase of the quartz oscillator are greatly magnified. Therefore, attaining the
highest phase stability in the microwave field and hence the sharpest spectrum puts
a great burden on the spectral purity and low noise of the quartz oscillator. It is the
availability of high-performance quartz oscillators, with extremely high Q-values
and low output noise that has contributed immensely to the success of these
atomic standards.

In discussing the accuracy and stability of any type of standard, questions
must be addressed that would not arise for ordinary instruments. When we use
an ordinary voltmeter, for example, we assume that its calibration and accuracy are
traceable ultimately to some acceptable standard. But if the standard be in doubt
what then? This question is really relevant only to the cesium standard, which
has been elevated to the status of primary time standard. However, as an atomic
resonance-based system, the rubidium clock qualifies, for many applications, as a
secondary standard and as such, absolute accuracy is not expected of it; its fre-
quency must be set by reference to a primary standard. But how is one to know
whether the primary standard is drifting? This question lies at the heart of what is
expected of a standard: Standards are not supposed to drift! The pragmatic answer
is to have a large collection of embodiments of the standard all purporting to dis-
play a unit of time in accordance with its atomic definition. To the extent that there
is agreement among the members of this collection, we can have confidence in
their accuracy and stability.

The accepted method of specifying the stability of frequency standards, useful
particularly for relatively long-term performance, is, as we saw in a previous chap-
ter, in terms of the Allan variance of phase or frequency plotted as a function of
the sampling time over which that quantity is measured. We recall that this analysis
presumes that the condition of stationarity is satisfied, and therefore any long-term
drift in the data must first be separated out. We also noted previously that some
of the fundamental types of noise can be accurately modeled as having a Fourier
spectrum that has a simple power-law dependence on frequency. These power laws
translate into equally simple dependence of the Allan variance σ(τ) on the time
interval τ used in its measurement. Thus for the important flicker noise it can be
shown that σ is independent of the length of the interval, whereas for white fre-
quency noise σ falls as 1/τ1/2. Now, for circuits at ordinary temperatures operating
in the radio-frequency range, thermal (Johnson) noise is very nearly “white” (the
same power density at all frequencies), so that since this is a universal source of
noise, we frequently see a plot of σ versus τ exhibit the 1/τ1/2 characteristic of
this type of noise, at least up to a certain point, after which flicker noise becomes
dominant and the graph flattens out.

Figure 8.7 shows plots of the Allan variance for a typical Rb standard together
with, for the sake of comparison, several other types of atomic standards we shall
be dealing with in succeeding chapters. It is not unusual for a Rb standard to
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have σ bottom out at around 10−12 for time intervals longer than 100 seconds,
after systematic drifts have been separated out. This represents an error of about
30 millionths of a second in a year!

8.9 The Miniaturization of Atomic Clocks

The optically pumped alkali vapor gas-diffusion cell resonator lends itself
admirably to miniaturization, particularly since the development of semicon-
ductor lasers that are tunable and can be stabilized on the rubidium or cesium
optical resonance wavelengths while operating at room temperature. This develop-
ment obviated the need for the UHF driven lamp and isotope filter of the conven-
tional rubidium standard. Coupled with microelectronic integrated circuitry this
has enabled atomic clocks to be built no larger than a walnut! One such clock is
shown in Figure 8.8.

The fundamental consequences of size reduction are an increased frequency of
wall collisions or the need for a higher collision frequency with the molecules of the
buffer gas. In either case the undesirable shifts in the reference transition frequency
are aggravated, and long-term stability is expected to suffer. The other important
consideration is the size of a resonant microwave cavity. For Rb87 and Cs133 the ref-
erence microwave wavelengths are about 4.4 cm and 3.3 cm respectively. Since Rb
has fewer magnetic substates than Cs, a larger fraction of Rb atoms can contribute
to the signal arising from transitions between one particular pair. In either case the
cavity must be “loaded” with a low-loss dielectric material to lower its resonant
frequency as its size is made smaller. It has been shown (I. Liberman, 1992), for
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Figure 8.8 Small “industrial” Rb clock developed by the Neuchâtel observatory (Rochat,
1994)

example, that a miniature standard based on a cesium gas cell not exceeding 4 mm
in diameter and 18 mm long, operating under relatively high vapor pressure, so that
Cs–Cs collisions are dominant in limiting the free lifetime of the Cs states, would
have theoretically a short-term stability σ(τ) on the order of 5 × 10−12τ−1/2 where
τ is in seconds.



Chapter 9
The Classical Cesium Standard

9.1 Definition of the Unit of Time

We will now take up the type of atomic clock that has been elevated to the status of
the primary standard of time, displacing the historical role of astronomical observa-
tions in the definition of the unit of time, the second. In 1967 the 13th General Con-
ference on Weights and Measures, attended by delegates from about 40 countries,
signatories of the Treaty of the Meter, adopted a new definition of the international
unit of time. At that conference there was overwhelming support to the idea that
the time had come to replace the existing definition, based on the earth’s orbital
motion around the sun, by an atomic definition. The wording of the new definition
is as follows: “The second is the duration of 9,192,631,770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the fundamental
state of the atom of cesium-133.” The ten-digit number assigned in the definition
was chosen to agree with the then existing definition of the second, known as the
“ephemeris second,” which had been adopted in 1956. This latter definition was
based on the length of the so-called tropical year, that is, the length of time for the
earth to complete its orbit around the sun and return to a point where its axis again
makes the same angle with respect to the earth–sun direction; it is the repetition
period of the seasons. The obvious drawback to this definition is the practical one
of not being available except through the intermediary of stable clocks that must
be checked after the fact. But more importantly, a decade after its adoption it had
become evident that the accuracy of atomic clocks, which had to be used to imple-
ment the ephemeris time, had reached the point where they had become de facto
standards against which astronomical observations were compared.

9.2 Implementation of the Definition: The Cesium
Standard

This new definition is based on the same type of microwave resonance as in the
Rb standard, but because of some advantages in detail, the resonance chosen is in
the heavier alkali atom, cesium. We should point out, however, that the labels Rb
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standard and Cs standard in common use do not refer merely to the species of atom
used, but rather imply certain ways in which they attempt to extend the interaction
time between the undisturbed atom and the resonant microwave field. In the com-
mon Rb standard we recall that a noble gas is used as a buffer to prevent the free
flight of the Rb atoms to the walls of the cells, where their coherent response to
the field would be interrupted, and the resonance thereby broadened. By contrast,
in the cesium standard the atoms move freely as a beam in a chamber from which
the air has been pumped out, that is, in a vacuum. (The use of the word “beam”
is more than metaphorical; after all, a light beam can be looked on as a stream of
photons.) There is, of course, no fundamental reason that precludes observing the
Cs resonance in a diffusion cell by optical methods, or of observing the Rb reso-
nance in an atomic beam machine; in fact, both possibilities have been explored in
the past.

In the early development of these devices, they differed not only in the
“containment” of the atoms, but also in the way the microwave resonance was
made observable: The Rb clock detected resonance by optical hyperfine pumping
using a “conventional” uhf-excited vapor lamp as a source, and the Cs standard
used magnetic deflection as in the Stern–Gerlach experiment. We will describe
in this chapter what might be justly called the classical Cs beam standard using
magnetic deflection and reserve to a later chapter the laser-based systems.

Observing atoms in free flight ensures that they suffer only the desired interac-
tion with the resonant field, and not with background particles or optical pumping
radiation, both of which, we have seen, produce shifts in the resonance frequency.
It is precisely this freedom from unpredictable frequency shifts that made the Cs
standard uniquely suitable as a primary standard. Ideally, such a standard must
make possible the faithful observation of the sharpest possible resonance with the
highest possible signal-to-noise ratio, on a system insensitive to operating con-
ditions. In fact, we can quantify this statement by recalling the result cited in
Chapter 7 that for any resonator acting as a frequency reference, the uncertainty
in finding the center frequency is �ν/(S/N ), where �ν is the frequency width of
the resonance, and S/N is the signal-to-noise ratio. A figure of merit that increases
with decreasing uncertainty can therefore be defined as F = (S/N )(ν0/�ν). In the
case of the Cs standard, S/N is ultimately limited by shot noise due to the atomic
nature of Cs and S/N = √

n, where n is the number of atoms contributing to the
resonance signal.

In the classical Cs standard the atoms undergoing the resonant transitions move
in vacuo with thermal velocities, acted on by only a weak uniform magnetic
field and the probing resonant microwave field. To deduce the “true” transition
frequency of Cs at rest in zero magnetic field, free of interaction with a microwave
field generator, involves deterministic or systematic corrections based on well-
established theory. Thus as long as we believe that a cesium atom is a cesium
atom no matter what its provenance, we have a universally reproducible standard.
Of course, we can always speculate as to whether it is possible that the fundamental
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Figure 9.1 The energy of magnetic hyperfine states in cesium 133 as a function of an applied
magnetic field

properties of atoms may be slowly evolving relative to a time scale established by
other dynamical processes in the universe; however, this is of no practical concern.

The two hyperfine states between which the resonant frequency of transition
defines the standard second are indicated in Figure 9.1, which shows the energies of
all the hyperfine substates plotted as a function of the intensity of an external mag-
netic field. The cesium atom has only one stable isotope, mass 133, with nuclear
spin I = (7/2)h/2π, which coupled with the outer electron spin J = (1/2)h/2π
yields according to quantum rules the following total angular momentum: F = 4
or F = 3 in units of h/2π. We saw in an earlier chapter that for magnetic field
intensities near zero, the atoms in these two hyperfine states act like bar magnets,
which however obey space quantization rules; that is, they can be observed to have
only (in this case) integral values (in units of h/2π) for their components along the
field axis. Thus an atom in the F = 4 state is further characterized by the magnetic
quantum number m F , giving the discrete components of the angular momentum,
which can have only the integral values +4,+3,+2,+1, 0,−1,−2,−3,−4; and
similarly for the F = 3 state. Near zero magnetic field intensity, the energies of the
states with different mF increase initially in a linear fashion with the field, with a
gradient proportional to mF , as would a bar magnet, to give us straight-line graphs.
In particular, the substates having mF = 0 have zero slope, and therefore a transi-
tion between them, the so called “0–0 transition” is not broadened by small field
inhomogeneity. It is therefore chosen to define the second. As the magnetic field is
made more intense, the energies of all but two of these states no longer increase
in proportion to the intensity of the field; instead, the graphs start curving until
for large field intensity they become grouped in two nearly parallel sets, as shown
in Figure 9.1. The total angular momentum vector is no longer constant in time
(because of the torque exerted by the field), and a different set of quantum numbers
is required to specify the substates. In the limit, for very intense magnetic field, the
electronic moment and the nuclear moment separately have constant components
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along the field. The appropriate quantum description is in terms of quantum
numbers giving the integral or half-integral components of each separately along
the field axis. In the present case we have for I = 7/2 the following 8 possible com-
ponents, with mI = +7/2,+5/2,+3/2,+1/2,−1/2,−3/2,−5/2,−7/2, and for
J = 1/2 only two possible components, mJ = +1/2, and mJ = −1/2. There are
8 × 2 = 16 possible combinations of mI and mJ , the same number as we have in
terms of F and mF , where we had 9 substates with F = 4 and 7 substates with
F = 3: 9 + 7 = 16. This is as it should be, since increasing the field strength alone
cannot generate new quantum states; it can only change their energy.

The way the energy of the substates varies with the intensity of the magnetic
field is of particular interest for us, since that energy constitutes the potential energy
whose gradient determines the force with which the magnetic field acts on an
atom to accelerate it. It follows that atoms in the group of substates whose energy
increases with magnetic field will experience a force in the direction of decreasing
field intensity, while conversely, atoms in the other group of substates will tend to
move in the direction of increasing field intensity. Thus atoms acted on by nonuni-
form magnetic fields will not only execute the usual precessional motion but also
experience a body force affecting the motion of their center of mass. There is a
further essential point that must be made before we describe the beam machine in
more detail: Atoms remain in the same quantum state as long as they move in a
smoothly varying magnetic field without going through zero value, ensuring at all
times that the time-varying field they see has negligible amplitude in the Fourier
spectrum at the precession frequency. These facts are exploited in the atomic beam
machines to deflect the atoms selectively according to their quantum state.

We have already been introduced to the idea of atomic beams, their forma-
tion and use in the study of magnetic resonance in free atoms and molecules.
We have noted the culmination of that technique in the introduction by Ramsey
(Ramsey, 1949) of the two separated field regions to induce transitions, which
ultimately led to the adoption of the Cs standard as the primary one. The essen-
tial elements of a Cs beam machine using magnetic state selection are exemplified
by the PTB (Physikalisch-Technische Bundesanstalt) standard designated as CS1,
shown schematically in Figure 9.2. In a generic design, atoms from the source enter
the strong magnetic field of the polarizer A-magnet, where because of a steep trans-
verse gradient, atoms in the two groups having opposite energy-field dependence
are deflected in opposite directions. By suitable beam stops, the atoms in the F = 3
group, including mF = 0, can be removed, leaving only those in the other group
with F = 4, among which are atoms in the desired mF = 0 substate. These atoms
leave the intense field of the polarizer magnet with greater number in the (F = 4,
mF = 0) state than in the (F = 3, mF = 0) state, and remain in their respective
quantum states as they continue to the much weaker, uniform C-field. If the oscil-
latory field applied there is off resonance with the desired quantum transition, they
will again be deflected by the analyzer B-magnet in the same direction as in the
polarizer and away from the detector. On the other hand, if the oscillatory field in
the C-region is on resonance, some of the atoms in the (F = 4, mF = 0) state will
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Figure 9.2 General layout of a Cs beam atomic standard as exemplified by the CS1 primary
clock at PTB (A. Bauch, et al. 2000)

make the transition to the (F = 3, mF = 0) state, which are deflected in the oppo-
site direction by the analyser, towards the detector. This mode of design is called
“flop-in,” since only atoms that have made the desired transition are detected, to
distinguish it from designs in which resonance leads to atoms being deflected away
from the detector. In general a number of different configurations are possible; the
choice is ultimately determined by considerations of signal-to-noise ratio.

9.3 The Physical Design

9.3.1 The Vacuum System

The entire space through which the atoms pass must be under high vacuum, and
therefore a vacuum shell encloses that space, and suitable vacuum pumps and vac-
uum monitoring instrumentation must be provided. It happens that Cs has, for a
metal, a relatively low melting point at 28.5◦C and has an equilibrium vapor pres-
sure as high as 10−3 Pa at 24◦C. This dictates that a means must be provided to
remove background Cs vapor, since that vapor density is comparable to that in the
beam. In laboratory installations this formerly took the form of “cold traps,” liquid
containers forming part of the vacuum shell that are cooled by filling them with
liquid nitrogen at −196◦C. More commonly now, particularly in compact systems
designed to be more or less portable, getters are used; these are materials onto
whose surface the Cs either physically attaches in a process called adsorption, or
with which it chemically combines, thereby removing it from the volume. In com-
mon vacuum practice molecular adsorbents such as carbon, or zeolites, which are
alkali–metal aluminosilicates, are used. For a chemically reactive element such
as Cs, any number of substances will serve as getters; a secondary criterion must
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Figure 9.3 The field geometry of the titanium ion pump

be used to make a selection, such as low vapor pressure, temperature stability,
and cost. Carbon surfaces are commonly placed at points where unwanted cesium
atoms must be removed from the volume.

The element that occupies a unique position as a getter is titanium, either as
a film deposited by evaporation from a titanium filament or as plates forming the
negative electrodes in an electrical discharge. In the latter case the getter action is
achieved by having the particles to be pumped impinge on the titanium surface as
high-speed ions. The ions are formed in an electrical discharge made possible under
very high vacuum conditions by the entrapment of electrons using a special elec-
trode configuration in a strong magnetic field. This class of ion pump, illustrated
in Figure 9.3, is effective in pumping all gases, including the noble gases. It has,
since its introduction in the 1950s by Varian Associates, revolutionized vacuum
technology, making it possible to reach the vacuum of outer space. It is universally
used now to maintain the requisite high vacuum in Cs beam systems. The need
to operate under high vacuum in a system whose length essentially determines the
accuracy, largely dictates the physical size and aspect of the Cs standard, and in par-
ticular implies that the highest accuracy can be reached only in a fixed laboratory
installation.

9.3.2 The Atomic Beam Source

The source of the Cs beam is a small constant temperature enclosure, the oven, in
which the vapor density of the atoms is raised by heating a small quantity of the
silvery metal to around 100◦C. The Cs vapor from the oven passes through a colli-
mator, or effuser, consisting often of a bundle of capillary tubes or finely crinkled
metal foil forming a multichannel nozzle that is intended to cause atoms to emerge
in as narrow a ribbon (or sometimes cone) as possible. The operating temperature
is such that the vapor density is below the point where collisions between atoms
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Figure 9.4 A recirculating Cs beam source. (Drullinger, et al. 1981)

can occur with significant probability within the collimator. Under this condition
the movement of the atoms through it is described as thermal effusion, to distin-
guish it from the case in which the vapor density is very much higher, in which
case the flow is called hydrodynamic, as in a gas jet. The most critical part of the
source is obviously the collimator, and a great deal of care in the design and oper-
ation of the source must be taken to ensure that no buildup of Cs occurs in the
collimator, causing fluctuations in the beam intensity. This requires that the tem-
perature of the collimator be maintained sufficiently high, with the consequence
that Cs atoms originating from the interior surfaces of the channels themselves add
to the emitted beam. For this reason this type of source is sometimes referred to as a
bright-wall oven to distinguish it from a less common design using an effuser made
of Cs-adsorbing carbon, for example, which would be called a dark-wall oven.

In spite of all efforts in the design of the collimator to project a sharply narrow
beam, it is inevitable in practice that a not inconsiderable amount of the cesium is
sprayed out and lands uselessly on the first beam-defining aperture. This, of course,
limits the useful life of the charge in the oven. In an attempt to overcome this limi-
tation, refluxing, or re-circulating, ovens have been designed, in which the heat
applied to the oven establishes a falling temperature gradient along a single colli-
mator tube, reaching a value just above the melting point of cesium at the tip. The
liquid cesium that would accumulate in the collimator and would be intolerable
in a conventional bright-wall oven, is drawn back, in this design, into a reservoir
filled with a tungsten sponge impregnated with cesium, by a clever use of capillary
action. A form of re-circulating Cs oven is represented schematically in Figure 9.4.

9.3.3 The Polarizing and Analyzing Magnets

The powerful polarizing A-magnet has pole faces specially contoured in order to
produce a steeply varying intensity from one point to another. The purpose of this
magnet, we recall, is to act on the magnetic moments of the atoms to deflect them
and thereby spatially separate them according to their magnetic quantum state.
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There are essentially two different types of state-selecting magnets: focusing and
non-focusing. The original Stern–Gerlach magnet and its later variants are non-
focusing 2-pole magnets, with pole faces contoured to produce the steepest possi-
ble descent in the field intensity as we go from one pole to the other. Since not all
atoms enter the field along precisely the same trajectory, clearly if the field gradi-
ent, and hence the force they experience is not the same at all points in the field,
then the beam “profile,” that is, the distribution of atoms over a cross section of the
beam will be affected. The main object of magnet design is to produce a field gradi-
ent over the cross section of an atomic beam that if anything distorts the profile in a
beneficial way that is, reduces natural divergence. One variant of the Stern–Gerlach
magnet is shown in Figure 9.5.

There are two types of focusing magnets: the quadrupole with a 2-fold axis of
symmetry, and the hexapole magnet with a 3-fold axis of symmetry. First let us
dispose of the simpler quadrupole type of magnet, which has been exploited far
more in the focusing of ion beams than neutral atomic beams. In the neighborhood
of the magnet axis it can be shown that the field components are well approximated
by Hx = kx, Hy = −ky, where x , y are coordinates referred to Cartesian axes
X, Y chosen to bisect the north and south poles of the magnet. The resultant field is
therefore H = k(Hx

2 + Hy
2)

1/2 = k(x2 + y2)
1/2 = kr , where k is a measure of the

overall strength of the magnet and r is the radial distance from the axis to the field
point. The motion of Cs atoms in such a field is complicated by the fact that their
magnetic energy, which acts as potential energy analogous to the potential energy
of an object moving under gravity, is not simply proportional to the magnetic field

Figure 9.5 A constant gradient state selecting magnet
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intensity, as it would be for a bar magnet, but rather is a nonlinear function of
the field, given by the Breit–Rabi formula we have already encountered. It is as if
we were dealing with the motion of a magnet whose strength varied from point to
point according to the strength of the magnetic field it is passing through. We recall
that at sufficiently high field intensities the plots of the energy versus field strength
do tend to become linear, and moreover, in that limit the electronic and nuclear
moments separately maintain a constant (quantized) angle with the direction of the
magnetic field. In this high field limit, it follows that the force experienced by the
atoms is simply proportional to the gradient in the magnetic field intensity, which is
constant and in the radial direction. Under the assumed conditions, then, the atoms
issuing from the source in the quantum states whose energy increases with field
intensity would converge towards the axis, while the others would diverge away
from it. The particle trajectory in a axial plane is similar to that of a particle falling
under gravity.

In the same limit of high field intensity, the focusing properties of the important
hexapole magnet, shown in Figure 9.6 are equally simple to predict. In this case
the field in the neighborhood of the axis is approximated by Hx = k(x2 − y2)
and Hy = −2kxy, which lead to a resultant field H = k(x2 + y2) = kr2 and a
force that is radial and converging or diverging according to the same condition on
atomic state cited above. In this case we see that the gradient of the field, and hence
the force, is proportional to the distance from the axis, analogous to the force of
an elastic spring. In fact, the radial motion will be a simple harmonic oscillation
for atoms in one group of hyperfine states, and rapidly (exponentially) diverging
from the axis for the other group. More will be said about the hexapole magnet in
connection with the hydrogen maser in a later chapter.

Since the field intensity tends to zero on the axis for both types of focusing mag-
nets, beam stops must be used to eliminate atoms that would otherwise go through
without state selection. Unfortunately, since the beam-forming effuser of the source
commonly produces a beam profile that peaks on the axis, such a beam stop would
seriously diminish the utilization efficiency of the Cs. A possible solution would
be an off-axis ring-shaped source.

We should note one very important limitation of both focusing magnets: unlike
the 2-pole magnet, there is no choice as to which states are focused and converge

Figure 9.6 The hexapole atomic beam focusing magnet
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towards the axis and which diverge away from it. In our case, atoms in the F = 4
state will always converge, and those in the other F = 3 state will diverge from
the axis. This makes it impossible to have both the A- and B-magnets focusing in
a “flop-in” design.

9.3.4 The Uniform C-Field

After leaving the intense field of the state-selecting A-magnet, the atoms must pass
through a gradually decreasing intensity to the uniform C-field, without changing
their quantum states. This requires that the time-varying field seen by a moving
atom have negligible amplitude in the Fourier spectrum at the transition frequen-
cies between the magnetic substates. Failure to meet this requirement leads to
undesirable transitions between the magnetic substates, given the name Majorana
transitions. Such transitions would cause relaxation between the desired mF = 0
substates, defeating the state-selecting function of the magnet. The same situa-
tion is encountered in the subsequent transition from the C-field to the powerful
analyzer B-magnet.

In the elongated C-field region, transitions between the two hyperfine states are
resonantly induced by an oscillatory magnetic field. In this region the magnetic
field must be relatively weak to take advantage of the first-order insensitivity of
the energy of the mF = 0 substates to magnetic field intensity in the neighborhood
of zero field. On the other hand, the field must be intense enough to produce a
sufficient separation among the m-substates, mF = 0, 1, 2, 3, etc., so that the reso-
nant field does not also cause field-dependent �mF = ±1 transitions; otherwise,
field variations would further broaden the transition frequency. Needless to say, the
C-field must be as uniform and stable as possible, and therefore magnetic shielding
from extraneous magnetic fields is necessary. This is accomplished by enclosing
the region with one or more thicknesses of high-permeability magnetic alloys such
as mu-metal or supermalloy. A highly uniform magnetic field (the C-field) is pro-
duced typically by current flowing in a pair of rectangular coils placed symmet-
rically parallel to the beam; their separation is chosen to produce a constant field
of the highest possible uniformity over the section of the atomic beam where the
transitions are induced. Alternatively, an electromagnet with precisely machined
plane parallel pole faces could in principle be used; however a properly designed
coil system can realize adequate homogeneity of the field.

9.3.5 The Transition Field

As already indicated, the one refinement of the Cs beam resonance apparatus
that put it in the class of a primary standard is the successive oscillatory field
geometry introduced by Ramsey in 1949 for probing the atomic resonance. To
appreciate this, we must go back to the Rabi field and examine the problems atten-
dant upon the attempt to observe a microwave resonance in atoms traveling in a
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beam with thermal velocities on the order of 250 meters per second (about 600
mph). These problems arise from the fact that the length of time the atoms interact
with the resonant field is determined by the length of the field region. We recall
that the frequency width of the resonance is increased as this time is made shorter;
hence the length should be made as great as possible. In fact, the length must be on
the order of one or two meters to yield resonance line widths small enough to be
interesting for a frequency standard. If L is the length of the transition region and V
the average thermal velocity of the atoms, then the average transit time is L/V , and
the resonance line width is about �ν ≈ 1/2(L/V ) = V/(2L). Hence for L = 1 m
and V = 250 m/s we find �ν ≈ 125 Hz. This is a fundamental width, which can
be derived simply from the Fourier spectrum of a pure oscillation of finite duration,
as seen by any given atom. This oscillation starts from zero and rises to a constant
amplitude for a finite period L/V while the atom is in the transition region, then
falls again to zero; its Fourier spectrum is illustrated in Figure 9.7.

A serious consequence of the need to have an extended interaction region is
the Doppler shift arising from the directed motion of the atoms though the oscilla-
tory field. It may be thought that this may be overcome simply by using a stationary
wave pattern in the interaction region. However, aside from the practical difficulty
of ensuring a strictly stationary field, even if there were no net displacement of
the resonance frequency, there would nevertheless be a broadening of the spec-
trum. This may be seen from the following argument: Since the wavelength of the
microwave field is only about 3 cm, the atoms would pass through a field whose
amplitude and phase vary periodically along their path; that is, they see a mod-
ulated field, the frequency of the modulation depending on their velocity. Such a
modulation has a Fourier spectrum consisting of two equal sidebands separated
from the center frequency by the Doppler frequency (V/c)ν0. We can reach this
same conclusion by thinking of the standing wave as a superposition of two equal
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Figure 9.7 An oscillatory field of finite length and its Fourier (power) spectrum
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waves traveling in opposite directions, as when a wave on the surface of water is
reflected back on itself by a straight wall; each wave would have a Doppler shifted
frequency in the direction opposite to the other. Since the atoms do not all have
the same velocity but are distributed continuously over a wide range of velocity,
characteristic of the temperature of the oven, the spectrum would consist of a line
broadened out by the Doppler effect.

9.3.6 The Ramsey Separated Fields

These problems are removed, following Ramsey, by applying the resonant oscil-
latory field coherently (that is, with a definite phase relationship) in two separated
narrow regions, one at the entrance and the other at the exit to the extended C-field
transition region. Although the actual length of time a given atom interacts with
the oscillatory field is thereby drastically reduced, it can be shown that since the
fields in the two regions are in phase, the frequency width of the net response of the
atoms traversing the whole transition region is determined by the much longer time
the atoms spend in the intervening space. In order to ensure that the fields in the
two regions maintain a constant phase relationship, a common microwave source
is used, and the fields are symmetrically located at the ends of a single resonant
microwave cavity, as shown in Figure 9.8. Thus the field in each narrow region can
be limited to one with a single phase and nearly constant amplitude over the cross
section of the beam.

The resonant cavity, the microwave analogue of an echo chamber, is usually
a section of rectangular wave-guide with 90-degree bends at its ends, where aper-
tures are provided for the Cs beam to pass through the standing microwave field
pattern. The cavity is terminated at the two ends by a short circuit and the atoms
pass through an antinode of the standing microwave field pattern. In order to inhibit
the leakage of the microwave field parallel to the atomic beam, small sections
of waveguide are mounted on the beam apertures parallel to the beam. As in all
resonant structures, the resonant modes, with their characteristic frequencies and

Figure 9.8 The Ramsey separated field atomic resonance cavity
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field patterns, are determined by a formula relating the resonant frequencies to the
dimensions of the cavity, a formula that contains three integers, the mode indices.
A particular mode that might be used is designated as TE10n , which represents
what is called a Transverse Electric mode, that is, one in which the electric com-
ponent of the electromagnetic wave is everywhere perpendicular to the length of
the cavity. The indices 1, 0, n give the number of times the electric field passes
through a maximum amplitude of oscillation as we go in the directions of the three
principal dimensions of the wave-guide. Thus if the cross section of the cavity is a
rectangle with sides A and B, where A > B, and the length is C , then the indices
indicate that in this particular mode the field rises to one maximum in the middle
of the A dimension, has no maximum (is constant) along B, and has n maxima
along the length C . For the dimensions A, B, C to be compatible with this mode,
it can be shown that the following condition must be satisfied: C = nλg/2, where
λg = λ0/(1 − λ2

0/4B2)1/2 and λ0 is the free-space wavelength of the microwaves.
Thus in our case the wavelength of the microwaves resonant with the Cs transition
is λ0 = 3.26 cm; if we assume, for example, B = 2.5 cm, then λg = 4.3 cm and
a choice of n = 48 would make the length of the cavity 103.2 cm, appropriate
for a fixed installation. To be effective in inducing transitions between the sub-
states F = 4, m F = 0 and F = 3, m F = 0, it is not enough for the frequency of
the microwaves to satisfy the conservation of energy condition hν = �Eh f s , where
�Eh f s , represents the difference in energy between the two hyperfine states; the
microwave field must also have the correct directional properties, that is, polariza-
tion. We recall that to observe magnetic resonance between Zeeman substates in
which m F increases or decreases by one, the field inducing transitions must have
an angular momentum component along the constant field axis to satisfy the con-
servation of angular momentum law as it applies to the combined system of atom
and radiation field. To have such a component of angular momentum, the radiation
field must have a component rotating about the constant field axis. Similarly here,
since there is no change in m F , being zero before and after the transition, and since
only one quantum of radiation is involved, it must have zero component of angular
momentum along the constant field axis. This will be the case if the radiation field
oscillates parallel to the constant field; this determines the relative orientation of
the microwave cavity and the coils producing the constant field.

To help gain a broader perspective on the use of separated fields we should
mention a closely parallel case in radio astronomy of the use of two separated radio
antennas, as shown in Figure 9.9, to increase the angular resolution in observing
distant sources. By maintaining a common phase reference for the receivers at the
two antennas, the system’s ability to distinguish neighboring sources, that is, its
resolving power, is made to approach that of a much larger antenna having a diame-
ter equal to the distance between the two small antennas. To see this we must recall
that even if an antenna were perfectly parabolic, so that rays coming in parallel
to its axis would geometrically converge to a point focus, physically the reflected
wave pattern does not converge exactly to a point; it approaches this ideal only to
the extent that the aperture, that is, the diameter of the antenna, is large compared
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to the wavelength of the radio waves. The wave pattern near the geometric focus
will be a series of maxima and minima resulting from the antenna cutting off the
incoming wave at its outer rim, whence it spreads in a pattern dictated by inter-
ference from different parts of the aperture. The angular width of this diffraction
pattern is set by the difference in the phase of an incoming wave across the aper-
ture; the first minimum will occur when that difference in phase is on the order
of 360◦. The larger the aperture, the smaller will be the required increment in the
direction of the incoming wave to produce that phase difference, and the greater the
resolving power. We now see that by comparing the signals arriving at two widely
separated antennas, a smaller difference in the angular position of distant sources is
distinguishable because the longer base line magnifies the difference in the phase
of the wave reaching the two antennas, as shown in Figure 9.9.

The same principle is used in the much older “stellar interferometer” of
A.A. Michelson, of the velocity of light fame. In this, two optically flat mirrors are
mounted some distance apart to receive starlight and the light reflected from them
combined through precise optics to a common detector whose output depends on
the relative phase between the two interfering reflected beams. By this interfer-
ometer Michelson was able to determine the (angular) diameter of stars that were
smaller than could be resolved with telescopes available at the time.

Although in the years following its introduction in 1949 the principle of the
separated field method has been applied in a variety ways in spectroscopy, it was
originally developed to achieve greater accuracy in the measurement of atomic
and molecular magnetic moments by the molecular-beam resonance method of
I. Rabi. It is that application that provides the most visual explanation of the special
properties of inducing transitions this way.

We recall that in an earlier discussion of magnetic resonance we described the
gyroscope-like precession of an atomic angular momentum (with an associated
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Figure 9.9 The use of separated antennae in radio astronomy to increase resolution
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magnetic moment) about a static magnetic field, and how the application of a weak
magnetic field oscillating at the frequency of precession will cause the axis of spin
to tilt away from the static field so that the cone it sweeps out opens out to a larger
apex angle. In the Ramsey arrangement, the atoms see an oscillating field in the first
narrow transition region of sufficient strength to produce, for example, a 90-degree
apex angle for atoms with the average thermal velocity. On leaving this first transi-
tion region, the atoms pass through a relatively long region free of any oscillating
field, in which they continue to precess at the same frequency appropriate to the
static uniform C-field. The atoms then enter the second narrow region, where they
are again subject to an identical oscillatory magnetic field, which has a definite
phase relationship with the first, usually the exact same phase. If the frequency
of the oscillating fields is exactly the same as the average precession frequency
appropriate to the static field, then the atoms will enter with the same phase as the
field, and the direction of the spin axis will continue to tilt toward a cone angle of
180 degrees, corresponding to a complete reversal in the direction of the angular
momentum. Note that the phase of the precessing moment relative to the oscilla-
tory field will determine the direction and degree of tilt the latter produces; hence if
the precession frequency in the C-field differs only slightly from the frequency of
the oscillatory field, a large phase difference can develop in the intervening space,
and the degree of tilt will be strongly reduced.

If the atoms all had precisely the same velocity, then there would exist a dif-
ference in frequency between the precession and the oscillatory field that will lead
to a phase difference of exactly 360 degrees being developed between them in the
space between the two transition regions; that is, the atoms would again enter the
second region in phase with the field. In fact, the same would happen at frequencies
leading to a phase difference of any multiple of 360 degrees. However, in reality,
the atoms do not all have the same velocity, and these multiple “sidebands” occur
at frequencies that depend on velocity, since a slow atom spends more time in the
field and requires a smaller difference in frequency to develop the 360-degree phase
difference than does a faster atom. The resonant frequency has the unique property
of being independent of velocity; no phase difference can develop if the oscilla-
tory field and the precession have the same frequency, no matter how long it takes
an atom to reach the second transition region. Moreover, since there is a continu-
ous distribution of velocity among the atoms, the sidebands form a continuum of
reduced strength leaving a prominent central peak at exact resonance.

A quantitative analysis of the probability that an atom passing through the two
separated field regions will emerge having made a transition to the other substate
requires an exact quantum treatment of the problem, as was initially carried out by
Ramsey. It would be inappropriate to attempt to reproduce that theory here; rather,
we will try to gain some insight as to the shape of the resonance signal using a
quantum result that is strictly valid only where the “perturbation” acting on an
atom is weak. It is that the transition probability is proportional to the square of
the Fourier amplitude of the field at the transition frequency. Although the per-
turbation of the atoms here is far from weak, nevertheless it serves to provide
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Figure 9.10 Field seen by an atom in the Ramsey cavity and its Fourier spectrum

some general basis for understanding the system. In any event, since the exact
results are known for this case, there is little danger of being misled by an invalid
approximation.

The time dependence of the assumed separated field is shown with its Fourier
spectrum in Figure 9.10. If this is compared with the Fourier spectrum of an oscil-
latory field extending the full length of the C-field, we find that in fact the central
maximum in the frequency spectrum is even narrower for the two separated fields
than for the single extended one, a fact proved rigorously by Ramsey in a full
quantum-mechanical treatment of the problem.

Since the duration of a given atom’s interaction with the separated fields and
the time spent between them depends on the atom’s velocity, the signal produced
by a beam consisting of a large number of atoms having a thermal distribution of
velocities is obtained by summing over the contributions from individual atoms.
This has been analyzed rigorously by Ramsey, including the effect of introducing
phase differences between the two separated field regions; the result for zero phase
difference is shown in Figure 9.11.

The Ramsey arrangement alleviates another problem: that of ensuring a suffi-
ciently uniform and constant magnetic C-field over an extended space. This would
clearly involve a complex array of compensating coils and impose severe tolerances
on the mechanical and electrical parameters, and particularly the shielding from
external magnetic fields, etc. Fortunately, the phase difference that accumulates
between the atomic moments and the oscillatory field, as the atoms travel between
the two transition regions, depends on the spatial average of the C-field taken
over the path of the atoms. It is reasonable to expect that this average fluctuates
from atom to atom far less than the field strength itself along the path of any
given atom.
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Figure 9.11 Theoretical signal shape for thermal atoms passing through Ramsey field
(Ramsey, 1949)

9.4 Detection of Transitions

Next the atoms pass through the powerful analyzing B-magnet, which serves to
analyze the magnetic states of the atoms, thereby monitoring the occurrence of the
desired microwave transition by the change in the number of atoms reaching the
final element, the detector. Since the greatest challenge in the design of an atomic
beam machine is to achieve a high signal-to-noise ratio, which means, because
of shot noise, a high beam intensity, it would seem advantageous to use focus-
ing magnets for the A- and B-magnets. However, this presents a dilemma, since
both magnets would focus atoms that are in the same state, so that ones that have
made a transition in the C-region to the other state would diverge from the axis. If
the detector is placed on the axis, then it would be exposed to the atoms that had
not made a transition; to detect ones that had made a transition, it would have to
accept atoms over an extended circular area. Neither option is particularly desir-
able, the first because the signal to noise ratio is compromised by the shot noise
due to the larger number of atoms that have not made a transition, and the second
because the increased area may incur greater noise from background Cs vapor.

The availability of an efficient low-noise Cs detector played a critical part in the
development of the Cs beam resonance apparatus It is the so-called hot wire detec-
tor (which in fact is more typically a ribbon) which is based on the phenomenon of
surface ionization of the alkali atom, in which a Cs atom impinging on certain pure
metallic surfaces (which must be maintained at high temperature to prevent surface
layers of adsorbed gases) loses an electron to the metal and emerges as a positively
charged ion. The phenomenon is permitted by the energy conservation law for met-
als whose binding energy of an electron to the interior of the metal (the so-called
work function) is greater than the binding of the outer electron in the Cs atom (3.87
electron volts). This is true of such metals as tungsten, niobium, molybdenum and
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the alloy Pt-Ir. It is remarkable not only that the process occurs at all (the electron
has to pass through a classically forbidden barrier to do it), but that it does so with a
very high probability, so that very nearly all atoms reaching the surface of the metal
become ions. The main difficulty in the early application of this type of detector
was that other ions, particularly those of potassium, are also emitted. Thus for the
highest possible signal-to-noise ratio, not only were the purest available materials
used, but also a mass filter was incorporated into the detector design. The mass
filter often took the simple form of a 60◦-sector magnetic deflection type (now one
would opt for a Paul RF quadrupole mass filter) with the output focused on the
cathode of an electron multiplier capable of counting individual ions.

However this form of detector design has been supplanted in recent years
through advances in the fields of materials science and solid state electronics.
Thus for example the machine designated as NBS-6 at the National Institute
of Science and Technology NIST, Boulder, uses a double ribbon of Pt-Ir detec-
tor and low noise field-effect transistor preamplifiers, without a mass filter. This
design is admissible because of a sufficiently high beam intensity, which simulta-
neously reduces the relative importance of impurities in the ribbons and the thermal
(Johnson) noise that an electron multiplier is designed to overcome.

9.5 Frequency-Lock of Flywheel Oscillator to Cesium

Like the Rb standard, the Cs beam resonator is a passive device, which does not
itself generate any microwave power but merely serves as a frequency reference.
This reference can in principle be used in one of two ways: first, one may attempt
to manually tune to the atomic resonance a frequency synthesized from the source
under test, or more usefully, to automatically control the frequency of a flywheel
oscillator by means of one or more servo loops to provide a convenient reference
frequency output signal. This involves synthesizing from a stable radiofrequency
source a microwave frequency that can be set with the utmost precision at the peak
of the resonant response of the cesium atoms.

We will limit ourselves to the essentials of a Cs clock, in which a high-
quality quartz oscillator, commonly operating at 5 MHz, has its frequency servo-
controlled, so that a synthesized microwave frequency derived from it is locked
to the center of the Cs resonance. The basic ingredients of such control circuitry
have already been described as they apply to the Rb standard. We recall that
in order to obtain an error signal for the servo-control, that is, a measure of
how far, and in what direction, an applied microwave frequency is away from
the center of the resonance curve, we begin by modulating the phase/frequency
of the probing microwave field (or the C-field) at a frequency small compared
with the frequency width of the atomic resonance, and far from any harmonic
or subharmonic of frequencies commonly present in the environment. The form
of modulation, once commonly sinusoidal, is more likely to be binary now with
the probing frequency switched symmetrically between two values, in order to be



9. The Classical Cesium Standard 185

more naturally compatible with the digital synthesizer and processor of the cesium
resonant response. In the case of analog modulation, the component of the output
from the detector at the modulation frequency is zero when the modulation is sym-
metric about the center of the resonance curve (assuming it is symmetrical), and
is of opposite phase on the two sides of the center. For the digital modulation the
output would be ideally zero if the frequency is switched symmetrically about the
resonance center. The detector output is connected to a synchronous demodulator
whose output is the average product of the incoming signal and a reference signal of
the same frequency. By using as reference the signal producing the phase/frequency
modulation, we obtain an error signal that is a negative or positive voltage depend-
ing on whether the applied frequency is too low or too high. The optimum depth of
modulation can be shown to be half the frequency width of the resonant response.

In the case of the Cs beam standard, the modulation of the phase/frequency
poses a problem not encountered in the Rb standard: The transit time of the atoms
between the two separated transition regions allows the phase of the microwave
field (or C-field intensity) seen by the atoms to be different in the second region
from what it was in the first. Now, such a difference is known to cause a shift
in the observed resonance; however, over a modulation cycle, the shift oscillates
symmetrically about zero and merely changes the effective width and phase of
the modulation over the resonance curve. Furthermore, there is a delay between
the time a given atom passes the second transition region and the time it reaches the
detector; these and other possible sources of phase shift dictate that a compensating
phase shifter be included to adjust the reference phase in the synchronous detector.

There are, not unexpectedly, numerous possible circuit designs for deriving
a microwave field resonant with the Cs transition that is phase coherent with a
5 MHz quartz oscillator serving as a convenient frequency standard. The extent of
the sophistication in the electronic design is obviously determined by the tolera-
ble residual phase noise in the probing microwave signal applied to the Cs atoms.
In recent years there has been rapid development of sophisticated digital synthe-
sizer techniques to produce signals with extremely low phase modulation (PM)
noise, and highly stable low-noise microwave generators, spurred by advances in
the spectral resolution of atomic and ionic resonators.

There are broadly two approaches: a multiplication chain synthesis of the fre-
quency to probe the Cs resonance based on a precision 5 MHz voltage controlled
crystal oscillator (VCXO), or using the output of a low-noise microwave generator
(for example a dielectric resonator oscillator (DRO)) and a direct digital synthesizer
(DDS) to synthesize the Cs resonance frequency. An advanced example of a design
that can be spacecraft qualified is shown in Figure 9.12.

The microwave source is a 6.4 GHz voltage controlled DRO whose output
drives a regenerative divider that is expected to have low phase noise and low tem-
perature sensitivity. Its outputs at 3.2 GHz and 9.6 GHz are separated by a diplexer
(not shown in the figure). The 3.2 GHz signal is frequency divided, buffered and
filtered in two stages to yield a 100 MHz reference frequency. A 50 MHz clock
signal for the DDS is derived by dividing the 100 MHz reference by 2. The DDS
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Figure 9.12 Simplified schematic diagram of the Cs frequency synthesizer intended for
space applications (Gupta, et al. 2000)

output is a sine wave with a 2 μHz resolution and range of 20 MHz. It is designed
to have phase continuity and low switching transients. The frequency output is set
at 7.368 MHz and mixed with 400 MHz to obtain 407.368 MHz. This is finally
mixed with the 9.6 GHz from the regenerative divider to obtain the Cs frequency
of 9.192. . . . GHz. Since the use of the DRO avoids the use of high multiplication
of frequencies, it has particularly low phase noise, and the DDS has a very fine
resolution (frequency increments) in order to interrogate the resonance line with
high precision. The output of the cesium beam detector is connected to the syn-
chronous detector and integrator, and the servo loop is closed by connecting to
the 5 MHz VCXO. In order for the VCXO to be phase-locked to exactly 5 MHz
on the atomic time scale, it is necessary to allow for the various frequency off-
sets of the observed Cs resonance frequency from the intrinsic frequency of an
isolated atom at rest. There are several such sources of deterministic frequency
deviations, the more important of which are described in what follows. The devia-
tions determine the setting of the DDS.
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9.6 Corrections to the Observed Cs Frequency

Prior to being adopted as the basis for the definition of the second, exhaustive
studies had been conducted to identify and analyze possible sources of systematic
errors in the observation of the Cs resonance. These, we recall, are persistent errors,
arising from usually subtle factors, affecting the frequency at which the Cs reso-
nance is observed in a deterministic way, rather than as an unpredictable random
fluctuation. It is a primary quest of those responsible for the establishment of phys-
ical standards to seek out all conceivable sources of these errors and to attempt to
correct them. Having a number of systematic errors does not in itself detract from
the acceptability of a standard, provided that they are well understood and calcu-
lable. However, the discovery of previously unsuspected sources would obviously
be disastrous. In order to gain some appreciation of the complexity of establishing
that what is measured is in fact what is called for in the definition of the standard,
we list in what follows some important corrections.

9.6.1 Magnetic C-Field

The transition frequency in weak magnetic fields, ν, is given by

〈ν〉C = ν0 + 427〈B2〉C , 9.1

where 〈 〉C represents the average taken over the transition region of the C-field
expressed in gauss. This equation, of course, applies only to Cs and specifically
to our hyperfine transition. Typically, B is on the order of 50 milligauss, giving a
correction of around 1 Hz. Since it is generally much easier to measure B rather
than B2, some error is incurred if 〈B〉2

C is used in equation 9.1, and B is not exactly
uniform.

9.6.2 Unequal Phases of Ramsey Fields

If the phases of the oscillating fields in the two separated transition regions of the
Ramsey arrangement are not exactly the same, the detector output will not be at its
maximum at resonance. To estimate the displacement in frequency, we note that a
180◦ difference in phase reduces the detector output to its first minimum, that is,
corresponding to a shift in frequency equal to the width of the resonance. If the
latter is, say, 125 Hz, a 1◦ difference in phase would cause a shift in frequency of
about 125/180 = 0.7 Hz, which is not negligible in the context of a frequency
standard. This asymmetry in phase and other asymmetries in the apparatus with
respect to a reversal of the beam direction may have any number of causes; for
example, inertial forces acting on the atoms or strains in the mechanical structure
due to acceleration, such as might be experienced in a spacecraft. Where the envi-
ronment dictates it, or where the utmost accuracy is sought, as in large standards
laboratory installations, the effects of such asymmetries are corrected by providing
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for Cs beams to traverse the apparatus in opposite directions. Any spurious fre-
quency shift due to asymmetry will reverse direction, and a corrected frequency
can be obtained as the average of the two frequencies at which the signal is at its
maximum. To provide for the reversal of the atomic beam without opening up the
vacuum system obviously requires that both an oven and detector be provided at
both ends of the machine, and the ability to move parts and relocate them precisely
under vacuum using bellows or sliding seals.

9.6.3 Relativistic Doppler Shift

As we discussed in Chapter 7, the Doppler effect as manifested by electromagnetic
waves is not accurately described by classical theory; the formula that is in accord
with the principles of relativity cannot differ between situations where only the
frame of reference is different. We saw that Einstein’s theory yields the following:

ν =
√√√√1 − V

c

1 + V
c

ν0. 9.2

In the present case, V/c is only on the order of 10−6, and so in a power series
expansion in V/c, terms beyond the second power are negligible; thus the Doppler
correction to the frequency is given by

ν − ν0 = −V
c

ν0 + 1
2

V2

c2 ν0 + · · · . 9.3

The first term on the right, which involves V/c to the first power and is the domi-
nant effect, agrees with classical theory and is called the linear Doppler effect.
We have already seen how the Ramsey separated field technique circumvents this
linear effect; however, at a level of accuracy on the order of 1 part in 1012, the
second term, involving (V/c)2, becomes significant. The first thing we note about
this second-order Doppler effect is that the shift does not change if the sign of V is
changed; that is, it is the same whether the source and observer are approaching or
receding from each other. Secondly, we note that as “seen” by the moving atoms,
the microwave frequency is higher than would be observed if the atoms were not
moving. Therefore, if a moving atom “sees” a microwave field that is resonant with
its quantum transition, that same field would be below resonance for a stationary
atom; that is, the observed frequency is lower than the “proper frequency” of the
Cs transition.

9.6.4 Spectral Impurity of Microwave Field

An ideal standard would have a microwave field whose spectrum consists of a
single, infinitely narrow line at a frequency that can be controlled to lock on to the
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maximum of the Cs resonance curve. In reality, the microwave field has a distri-
bution of frequencies determined by the microwave oscillator and frequency syn-
thesizer from which it is derived. The potential contributors to this distribution
are transients originating in the synthesizer as well as discrete sidebands spaced
at intervals of 60 Hz, the commercial power frequency, due to modulation of the
crystal oscillator frequency by the ubiquitous AC fields and possibly residual rip-
ple on its DC power supply. This latter source of spectral impurity is aggravated
by high orders of frequency multiplication, since the relative amplitude of the side-
bands can be shown to increase with the order of multiplication. Serious error is
incurred if the sideband amplitude distribution is not symmetrical about the cen-
tral (unmodulated) frequency. Presumably, proper shielding and the use of battery
power would largely eliminate this problem. Of course, just to be able to analyze
the spectrum of microwaves at a frequency around 9 GHz with a resolution in the
sub-Hertz range is no mean challenge, but such is required nowadays to match the
spectral resolution attained in atomic resonances.

9.6.5 Neighboring Transitions

We recall that in addition to the desired (F = 4, m F = 0) − (F = 3, m F = 0)
transition, there are atoms in the beam in neighboring m F = ±1 states that con-
tribute to the signal by making magnetic-field-dependent transitions in which the
magnetic quantum number m F changes by one unit. While the application of a uni-
form magnetic field in the transition region will separate these transitions from the
desired one, there will nevertheless remain a finite probability of their contributing
to the signal. Ideally, these transitions have an amplitude distribution that is sym-
metrical about the center of the desired one; however, in reality it can happen that
the way the atomic trajectories fit within the magnet geometries leads to an asym-
metric overlap between the desired transition and its neighbors. The consequence
is a signal intensity distribution that is distorted, and whose maximum is displaced
with respect to the true resonance frequency.

9.6.6 Residual Linear Doppler Effect

This arises from failure to meet the ideal conditions under which the linear Doppler
effect is eliminated in the Ramsey cavity. In particular, if there is an asymmetrical
flow of microwave power from the source to the two ends of the cavity through
which the atoms pass, the resonance signal will be broadened asymmetrically and
the maximum will be shifted. If we examine closely the microwave field at the
shorted ends of the Ramsey cavity, we see that in the presence of power loss in
the walls, the quasi-stationary field pattern can be analyzed into counter-traveling
components of slightly different amplitudes. The (small) transverse component
of velocity of the Cs atoms passing through the field will lead to a small linear



190 The Quantum Beat

Doppler shift; but because the two traveling components are of different ampli-
tudes, the transition probabilities at the two Doppler-shifted frequencies will not
be equal, leading to an asymmetry in the resonance signal profile and a shift in the
maximum. The presence of such a shift and other possible power-related effects
can be ascertained by varying the microwave power.

9.6.7 Final Word

The listing of so many possible sources of systematic error must not be allowed
to leave the impression that this type of atomic clock is fraught with uncertainties.
Quite the contrary, the sources listed and the many more subtle effects not listed
merely show the exhaustive degree of scrutiny to which this standard has been
subjected. As a primary standard, of course, the achievement of the highest possible
accuracy and reproducibility requires that this be done.

Since the 1970s, when the classical beam machines described in this chapter
had reached a high degree of development and general acceptance, thanks to the
laser there have been fundamental developments that have radically changed the
design of Cs standards, a subject we will take up in a later chapter.



Chapter 10
Atomic and Molecular Oscillators:
Masers

10.1 The Ammonia Maser

The idea of a device using quantum transitions induced in molecules by a radiation
field to achieve microwave amplification by stimulated emission of radiation, now
familiarly known by the acronym maser, was first described by Gordon, Zeiger, and
Townes, of Columbia University (Gordon et al., 1954) and independently proposed
by Basov and Prokhorov, of the Lebedev Institute for Physics, in 1954. Townes,
Basov, and Prokhorov shared the 1964 Nobel Prize in physics, “for fundamental
work in the field of quantum electronics, which has led to the construction of oscil-
lators and amplifiers based on the maser–laser principle.”

The maser was conceived from the beginning as a high–resolution spectrome-
ter for the microwave region of the spectrum, or as a microwave oscillator of great
stability. It combines the techniques of molecular beams and microwave absorption
spectroscopy, in which resonances in the absorption of microwave energy by matter
are studied. The initial experimental implementation was on the so-called inversion
spectrum of ammonia (NH3), a molecule that because of the strength and abun-
dance of its resonances in the microwave region of the spectrum played an impor-
tant role from the beginning in the development of microwave spectroscopy. This
field of study burgeoned in the early postwar period as a result of the rapid develop-
ment of microwave techniques for radar applications during World War II. In fact,
the first operational molecular frequency standard, as developed by Lyons and his
associates at the U.S. National Bureau of Standards in 1948, was based essentially
on the use of a strong absorption line in the ammonia spectrum as a reference to
electronically stabilize the frequency of a quartz crystal oscillator. Following the
initial successful demonstration of the maser principle, it was soon exploited in
a greatly expanded range of applications, including solid-state microwave ampli-
fiers and atomic beam maser oscillators, culminating in the hydrogen maser, about
which a great deal more will be said in the next chapter.
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10.2 Basic Elements of a Beam Maser

To illustrate the principle, we can do no better than follow the original descrip-
tion given by Gordon, Zeiger, and Townes of a molecular (or atomic) beam maser.
Figure 10.1 shows schematically the essential parts of such a maser, with partic-
ular reference to ammonia. A beam of ammonia molecules is formed much as a
Cs atom beam is formed, except that being a gas at room temperature, ammonia
is supplied to the source at reduced pressure (around 100 Pa), and the molecules
effuse through narrow channels into a vacuum sufficiently high to form a beam.
This requires that the background concentration of gas be kept sufficiently low by
high-speed vacuum pumps; otherwise, it would be meaningless to speak of a mole-
cular beam. Since ammonia is a gas at room temperatures (boiling point −33◦C),
there is a greater burden on the vacuum pumps than for solid materials. In addi-
tion to the standard molecular diffusion pumps and turbo-pumps, based on the tur-
bine principle, cryogenic pumping is practical in this case, since the freezing point
is a readily achievable −78◦C (it is near the temperature of dry ice, solid CO2).
Thus by providing for the quadrupole electrodes to be cooled with liquid nitrogen
(−196◦C), for example, ammonia molecules striking them would mostly be frozen
on the surface, rather than accumulate as background gas.

The ammonia molecule, like all molecules, has a vast number of quantum
energy states, corresponding to the complex rotational and vibrational motions
of such a multi-atom system. Among these is a particular pair of states between
which transitions fall in the microwave region and for which there is strong cou-
pling to the radiation field, making it easier to observe and exploit in building a
maser. However, from a source in equilibrium at ordinary temperatures, the popu-
lations of these states are very nearly equal, with the lower-energy state having a
slightly greater population. Therefore, to observe a net transfer of energy to a reso-
nant field requires a means of reducing the population of the lower-energy state in
relation to the upper one. This is accomplished by having the beam pass through a
quantum state selector analogous to the A-magnet in the Cs standard. In this case,
however, the molecules are acted upon through an electric dipole moment, rather
than a magnetic one as in Cs, and therefore the state selector consists of a strong
electrostatic field, as described in more detail in Section 10.4. It is a focusing field
with quadrupole symmetry, in which molecules in the upper energy state converge

Figure 10.1 A schematic diagram of a beam maser oscillator
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toward the axis and enter a resonant microwave cavity through a small opening on
the axis, while the ones in the lower state diverge away from the axis and do not
enter the cavity. Since the probability that the molecules will spontaneously make
a microwave transition to the lower state is small, they will therefore be predomi-
nantly in the upper state inside the cavity.

The existence of a weak resonant microwave field in the cavity, introduced
from an external source, will stimulate the molecules to emit radiation at the same
frequency and in phase with the stimulating field, thereby increasing the amplitude
and providing an amplified output. If the Q-factor of the microwave cavity is high,
there will be a threshold number of state-selected molecules entering the cavity per
unit time beyond which self-sustained oscillation will take place, and we have a
maser oscillator.

10.3 Inversion Spectrum in NH3

We will treat the ammonia maser in some detail, not only because of its obvious
historical importance as the first molecular frequency standard, but also because of
the broader application of some of the ideas involved in its development.

The quantum transition it uses at around 24 GHz occurs between energy states
that are interesting in that they have no classical analogue; they can be pictured only
as a superposition of two classical states, as if one had double vision! To make a
little more sense of this statement, we have to study the quantum implications of
the symmetry properties of the ammonia molecule. The geometrical arrangement
of atoms in ammonia is known to be as shown in Figure 10.2; that is, the chemical
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Figure 10.2 The ammonia molecule
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bonds lie along the edges of a triangular pyramid; the three hydrogen atoms are
in one plane at the vertices of an equilateral triangle, and the one nitrogen atom
is on the symmetry axis perpendicular to that plane. If we imagine the chemical
bonds to be elastic bands, we could pull the nitrogen atom along the symmetry
axis through the center to a position diametrically opposite to where it was; that is,
we can invert the molecule, and the resulting molecule would be indistinguishable
from the original. The quantum description of the molecule must properly take
this symmetry into account, so that no prediction based on that description will
distinguish between these symmetrical states. Now, it happens that the minimum
energy of the system (and therefore its ground state) occurs when the nitrogen
atom is some distance (in either direction) from the plane passing through the H
atoms. This means that if we imagine the nitrogen atom to be placed at different
points along the symmetry axis, the energy of the system, as a function of the
N-atom position, would have minima at equal distances from the H-plane and a
local maximum in that plane. This system energy for an assumed (static) position
of the N atom, which ultimately has its origin in the electrostatic forces between
the fast moving electrons in the molecule, acts as a potential energy governing the
relatively slow motion of the N atom. The consequence of the inversion symmetry
is that the stationary quantum states must also reflect the same symmetry, and a
configuration in which the N atom is located asymmetrically at just one of the
potential minima cannot be a stationary state; that is, it will not remain in that
state indefinitely. In fact, the two states that are stationary are represented by wave
functions giving the N atom equal probability of being in either position! However,
one stationary state is represented by an even wave function, and the other by an
odd wave function with respect to inversion; that is, one is unchanged, and the other
reverses sign when the molecule is inverted. This is analogous to having a pair
of pendulums of exactly the same period of oscillation with a weak exchange of
excitation between them. We have already seen that the only “stationary” states of
motion are those where the two pendulums either swing together in step or exactly
out of step; and if we start only one pendulum swinging while the other is initially
at rest, soon they will exchange roles, with the first pendulum coming to rest and
the second taking up the action, and so on. In the case of the N atom in ammonia,
oscillation is possible about either of the two potential minima on opposite sides
of the hydrogen plane; but there is quantum-mechanical tunneling by the atom
through the potential hill separating them (which they would not be able to cross
classically), providing a coupling between the two oscillations. If somehow we can
place the molecule initially at the minimum of potential on one side of the plane,
then in the course of time it will oscillate from one side to the other through the
potential barrier.

The two stationary inversion states (symmetric and antisymmetric) have differ-
ent energies, and the transition frequency between them is, in fact, around 24 GHz,
as we have already mentioned. If we recall that in quantum theory a frequency
is associated with energy by the equation ν = E /h and that the state in which the N
atom is on one side of the H-plane is a “mixture” of two wave functions of different
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Figure 10.3 Inversion of ammonia as reversal of relative phase of wave functions

frequencies, we would find that as time passes, the two wave functions go period-
ically in and out of phase at the beat frequency. Now, as illustrated in Figure 10.3,
these two phase conditions yield total wave functions with a large amplitude first
on one side of the H-plane, then the other; that is, the N atom oscillates back and
forth across the H-plane at the beat frequency. But the transition frequency, being
given by ν = (E1 − E2)/h, where E1 and E2 are the energies of the stationary
states, can also be written as ν = ν1 − ν2; that is, the microwave transition fre-
quency is equal to the beat frequency with which, we have just seen, the N atom
oscillates across the H-plane.

Of course, this so-called hindered vibration of the N atom along the symmetry
axis is not the only degree of freedom we can visualize classically; in addition to the
orbital angular momentum of the electrons and the nuclear spin of its constituent
atoms, the molecule can rotate about its symmetry axis, which may itself rotate
about the (constant) total angular momentum vector. As has become familiar, the
conserved total angular momentum of the molecule is quantized, and it is conven-
tionally designated by the quantum number J (if nuclear spins are excluded), so
that the observable components along any axis fixed in space are an integer MJ
in units of h/2π, where MJ = −J,−(J − 1), . . . ,+(J − 1),+J . Furthermore,
the angular momentum of the molecule about its symmetry axis is designated by
the quantum number K ; since this is a component of the total angular momentum,
clearly K cannot exceed J . Thus to specify the rotational part of the quantum state
of a molecule, ignoring vibration and electronic excitation, we use the quantum
numbers (J, K ).

Since the maser action is based on stimulated radiation from the molecules in
undergoing transitions from an upper to a lower energy state, it is clearly impor-
tant that there exist states for which the probability of those stimulated transitions
is sufficiently large. Unlike Cs, where the interaction with the radiation field was
magnetic in nature, here the interaction is through the electric dipole moment of the
molecule, which therefore involves the electric component of the radiation field.
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The chemical bonds between the nitrogen atom and the hydrogen atoms in the
molecule are somewhat polar. This means that the center of the negative charges of
the electrons is displaced relative to the positive charges of the nuclei; the measure
of this polar property is the electric dipole moment. This will, in general, cause the
energy of the molecular quantum states to be modified if the molecule is placed
in an external electric field, the Stark effect. The detailed way in which the energy
depends on the electric field intensity is interesting in that it confirms the pecu-
liarly quantum nature of the description necessitated by the inversion symmetry. If
the molecule had a permanent electric dipole moment as might be computed in the
usual classical sense, then the Stark effect shift in the energy of a molecular state
would vary in a linear manner with the electric field intensity; in fact, it does not.
A quantum description is required to properly take into account the symmetry. Our
present interest is limited to how the energy of given quantum states of the mole-
cule varies with the intensity of an electric field, and how strongly the molecule
is coupled to a radiation field inducing transitions. It turns out that the state desig-
nated as J = 3, K = 3 exhibits the largest effective dipole moment, and therefore
the strongest coupling to a resonant microwave field, in the inversion spectrum of
ammonia.

10.4 The Electrostatic State Selector

Molecules issuing from a source in thermal equilibrium have not only a special
distribution of velocity among them, but also a similar distribution among all the
internal quantum energy states. This, according to the Boltzmann theory, means
that there is a certain distribution of molecules among the energy states that through
random collisions will eventually be reached no matter what their initial distribu-
tion might have been. Of course, any individual molecule will in the course of time
be constantly changing its state, but the number of molecules in each of the quan-
tum states will fluctuate about a value appropriate to it. Let En represent the energy
of a molecular state, where the index n stands for a set of quantum numbers that
identify the state, including J , MJ , K , the nuclear spin I of the H atoms, and a
vibrational quantum number. The Boltzmann equilibrium distribution can now be
given as follows:

pn ∼ exp
(

− En

kT

)
, 10.1

where pn is the probability that a molecule is in a state with energy En , k is
Boltzmann’s constant, and T the absolute temperature. As is commonly the case,
the states may fall into groups of degenerate states having the same energy; thus
in the absence of an external field, for example, all the states that differ only in
the value of MJ , and there are (2J + 1) of them, will have the same energy. If we
now use the index q to differentiate only the energy, we can write the Boltzmann
distribution as follows:
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pq ∼ gq exp
(

− Eq

kT

)
, 10.2

where gq , the number of states having the same energy Eq , acts as a statistical
weight. It follows that the ratio of the populations N1/N2 of states having energy
E1 and E2 is given by

N1

N2
= g1

g2
exp

[
E2 − E1

kT

]
. 10.3

There are two physically important conclusions to be drawn from this: First, levels
separated by energy in the microwave region are nearly equally populated at room
temperature, since (E2 − E1)/kT ≈ 0.001 in that case; and second, N2 < N1
if E2 > E1; that is, the lower-energy state has the greater population. The latter
conclusion means that a gas in thermal equilibrium can never lead to maser (or
laser) action. For maser amplification to occur there must be a population inversion;
that is, there must be a non-equilibrium distribution of populations in which the
upper energy level is more populated, rather than less than the lower energy level.
Hence there is a need for a state selector, which in effect produces the inverted
population by eliminating molecules in the lower-energy state.

A focusing electrostatic state selector is used based on the Stark effect, that
is, the change in the molecular energy states due to an externally applied electric
field. We will state without proof that the Stark effect for the rotation–vibration
(inversion) states of ammonia computed to the second order of approximation is
given by the following:

E = E0 ±
√(

hν0

2

)2

+
(

μ · E
M K

J (J + 1)

)2

, 10.4

where ν0 is the inversion frequency, μ the electric dipole moment computed for
a fixed N atom, E the electric field intensity, and (M , K , J ) angular momentum
quantum numbers specifying the molecular state. The plus sign applies to the upper
and the minus to the lower energy of the pair of inversion states. We will not be
making any quantitative use of this result beyond observing that the energy of
the upper state increases with the electric field, while the energy of the lower one
decreases. This is the basis of the electrostatic state selector, in which molecules in
predominantly the upper state are selected to interact with the resonant field in the
microwave cavity. It is based on the quantum-state-dependence of the electrostatic
force that an ammonia molecule experiences in a static electric field having a steep
gradient. Molecules in the upper states are deflected from regions of strong field
towards regions of weak field, and conversely for the lower states.

A focusing electrostatic field having a quadrupole symmetry is ideally suited in
this case. Unlike the magnetic analogue in a magnetic resonance machine, only one
state selector is involved, which simply focuses the desired upper state molecules
into the microwave cavity. The field is produced by applying a high voltage (in
the tens of kilovolt range) between two pairs of equally spaced parallel cylinders,
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Figure 10.4 The electrostatic quadrupole state selector of the ammonia maser

as shown in Figure 10.4. To attain a pure quadrupole field distribution extending
significantly away from the axis, the cylindrical electrodes should have a hyper-
bolic cross section. The field components are given by

Ex = − V0

r2
0

x; Ey = + V0

r2
0

y, 10.5

where V0 is the voltage applied between opposite electrodes and r0 is the inner
quadrupole radius. The resultant electric field depends only on the radius and
increases linearly with it from zero on the axis to a maximum of Emax = V0/r0
at r = r0.

In order to predict the possible trajectories of the molecules, we must com-
pute the gradient in the Stark energy, which plays the role of potential energy in so
far as the motion of the molecules is concerned. That energy function has already
been cited; for moderate electric fields it can be approximated to give a simple
quadratic dependence, which leads to a gradient, and hence force, that increases
linearly with radial distance from the axis. In this approximation the molecules in
the upper inversion states are drawn towards the axis as if by an elastic spring,
causing molecules diverging from the axis at the source to follow trajectories that
converge back on the axis at a point that depends on the applied voltage. By adjust-
ing that voltage, these molecules are made to enter the microwave cavity. Molecules
in the lower inversion states, on the other hand, will follow trajectories that diverge
exponentially away from the axis. Of the molecules effusing from the source, those
whose trajectories are bent to just graze the cylindrical electrodes define a critical
direction of motion with respect to the axis, such that those with a greater initial
angle will strike the electrodes and be lost to the beam, while those with a smaller
angle will continue to be focused back towards the axis. This critical angle, the
acceptance angle, corresponds to the radial part of the thermal kinetic energy of
the molecules being equal to the Stark energy at the points of maximum electric
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field. Those that emerge from the source with greater radial kinetic energy than the
maximum Stark energy will strike the electrode structure and join those making up
the background gas in the surrounding space. The dynamics of the radial motion
are analogous to those of a mass suspended by an elastic spring: If the mass is pro-
jected with a certain kinetic energy in a direction to stretch the spring, the mass will
reach its maximum displacement when the (elastic) potential energy of the spring
equals the initial kinetic energy of the mass.

The detailed analysis of the performance of the state selector is complicated by
the fact that the molecules emerging from the source may be in any of a multitude
of quantum states, each possibly having a different Stark energy, and their kinetic
energy is spread over a wide range characteristic of their temperature. Of critical
importance to the practicability of the technique is the ability to single out mole-
cules in the one particular quantum state (J = 3, K = 3), from among the many
in other states, to enter the resonant cavity in sufficient number per unit time. To
estimate this rate we start with the fact that the ammonia gas in the source is in
thermal equilibrium at some temperature, typically assumed to be 20◦C.

In the case of the symmetric-top ammonia molecule, the determination of the
degeneracy factors gq , involving as it does the counting of the quantum states that
are compatible with the symmetry of the molecule, would take us far beyond the
compass of this book. However, we can attempt to convey the kind of reasoning
that quantum theory invokes where symmetry and statistics are involved. First, the
nuclei of the three H atoms (which are, of course, protons) have each an intrinsic
spin of 1/2: This fact already imposes a restriction on the wave function that can
represent the molecule, since according to the Pauli principle, which applies to
protons as well as electrons, an exchange of the positions and spin states of any
two H atoms should only reverse the sign of the function, and two such exchanges
should leave the sign unchanged. If we label the atoms 1, 2, 3 and two exchanges
are made in succession, for example 1 → 2 followed by 2 → 3, the final result is a
rotation of the molecule through 120◦, equivalent to increasing the angle coordinate
about the axis of symmetry by 120◦. In quantum theory the dependence of the wave
function on this angle is determined by the value of the “conjugate” variable K , the
angular momentum along the same axis. It is for K values that are multiples of 3
that the wave function returns to the same function with the same sign after the
rotation. Moreover, it can be shown that wave functions having K a multiple of
3 can be constructed to have the correct symmetry under an exchange of a single
pair of H atoms by combining functions with opposite sign for K , corresponding
to inverted states. We recall that the states between which our transition occurs
are superpositions of such states. When all the admissible functions having the
proper symmetry are counted and their energy known, it becomes possible to find
what proportion of the molecules in thermal equilibrium will be present in a given
quantum state. Of particular interest to us is the finding that in ammonia, the states
with K a multiple of 3 have twice the statistical weight that states with other values
of K have. A combined measure of the fraction of molecules in the desired state,
and the electric dipole moment coupling the two states, is the resonant absorption
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coefficient of microwave power γ = 8 × 10−4 cm−1, which is the highest among
the microwave inversion lines in ammonia.

10.5 Stimulated Radiation in the Cavity

The state-selected molecular beam emerges from the quadrupole field and enters
a microwave cavity tuned to resonance in a suitable mode of oscillation at the
frequency of the 3–3 inversion line at around 23,870 MHz. The scale of the res-
onant cavity dimensions is governed by the free-space wavelength of microwaves
at this frequency, which is λ = 1.25 cm. The geometry of the cavity is that of
a cylinder, having either a circular or rectangular cross section, with ends closed,
apart from a hole to admit the ammonia beam. An output waveguide is coupled
to the cavity to draw out a part of the microwave power generated by the maser
action. The essential criteria in the design of the cavity are first, that the molecules
pass through regions where the electromagnetic field in the cavity is strongest, to
ensure the greatest possible interaction; and second, to lengthen as much as possi-
ble the duration of the interaction by extending the length of the cavity, to reduce
the width of the resonance. The first condition dictates the diameter of the cavity
in relation to the diameter of the molecular beam, while the second requires that
the cavity, regarded as a section of waveguide, is near cut-off ; that is, the diam-
eter of the waveguide is reduced to almost the free space wavelength, tending to
extend the wave pattern along the length of the wave-guide. Following the work of
the Townes group, a figure of merit M may be defined as follows: M = L Q0/A,
where L , A are the length and cross-sectional area of the cavity and Q0 its free
(unloaded) quality factor, which, we recall, is defined as Q0 = 2πE/�E , where E
is the energy stored in the cavity and �E is the energy lost in one cycle of the field,
mainly as heat in the walls of the cavity. Among the possible resonant modes, with
their characteristic field distributions, the TM010 mode, illustrated in Figure 10.5,
has been shown by the same group to have a significantly higher figure of merit
than the others.

Figure 10.5 Cavity mode TM010 used in the ammonia maser
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In order to achieve sustained oscillation, the power dissipated in the cavity
must be compensated by the microwave power emitted by the ammonia molecules
as they are induced to make quantum transitions from the upper energy state to the
lower. We will not attempt to present the quantum theory of the radiative process
that the molecules undergo, but will be content with a plausible approximation,
which in fact leads to a result that is not far from the truth. We imagine that the
electric dipole moment of a molecule is subject to a resonant electric field and
thereby induced to radiate energy as it makes a quantum transition from the upper
inversion state to the lower. It can be shown that the time dependence of the tran-
sition can be described as a rotation of the dipole at the rate of 2πμE /h, where E
is the electric field amplitude and μ is the dipole moment. If we call θ the angle
of rotation as the molecule traverses the cavity, then to establish the correct cor-
respondence with the quantum theory of the process, we must make the following
assumptions:

p1 + p2 = 1; p1 − p2 = cos θ, 10.6

where p1 and p2 are probabilities of the molecule being in the upper and lower state,
respectively. This is reasonable, since the probability of the molecule being in one
or other of the states is obviously 100%. The second assumption, however, seems
more arbitrary, but at least it leads to the expected results in the particular cases of
θ = 0◦, 90◦, and 180◦, which correspond respectively to all molecules in the upper
state, an equal number in the upper and lower states, and all molecules in the lower
state. If we accept this interpretation of the angle θ, we easily find that as a molecule
traverses the cavity, the probability of the molecule having radiated one quantum
of energy and gone to the lower state increases from zero to (1/2)(1−cos θ), that is,
sin2θ.

10.6 Threshold for Sustained Oscillation

We are now able to derive an expression for the rate at which microwave power
is radiated by the molecules in the cavity, assuming that, say, n molecules pass
through the cavity per second. Since we are only concerned with the threshold con-
dition for self-sustained oscillation, we note that initially, we may assume that E
and hence θ are very small, and may therefore approximate sin θ by θ (in radians).
Now, the amount of energy radiated by a molecule when it undergoes a quantum
transition is hν, and so it follows that the power radiated is simply given approxi-
mately by the following:

Prad = hνn
(

π
μE
h

L
V

)2

, 10.7

Now we must express the power loss in the cavity in terms of the field strength
in the cavity and its quality factor, Q. We will state without proof that the
energy density in the field of the cavity is given by E2/2, and therefore the total
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electromagnetic energy stored in the cavity is on the order of V0 E2/2, where V0 is
the volume enclosed by the cavity and equals AL, where A is the cross-sectional
area. Finally, from the definition of Q, we have for the power loss in the cavity

Ploss = π
AL
Q

νE2. 10.8

We can finally state the threshold condition on the strength of the molecular beam
for sustained oscillation; we simply equate the power loss to the power radiated, to
obtain after some reduction

nth =
(

h
π

)(
A

QL

)(
V
μ

)2

. 10.9

To obtain the level of oscillation as the beam intensity is raised above threshold,
we simply retain in this approximate theory the probability p2 as sin2θ rather than
approximating it as θ2. This leads to the following:

n
nth

= θ2

sin2θ
. 10.10

We note that as θ ranges between 0 and π (radians), n ranges from nth to infinity.
Thus according to this theory, θ and therefore the electric field in the cavity cannot
exceed a certain limiting value obtained by setting θ = π. This tendency of the
microwave field amplitude not to continue increasing with the beam intensity is
called saturation.

To gain an appreciation of the scale of the physical quantities involved, we
draw on the early experimental results published by the Townes group on the rel-
ative merits of cavities oscillating in the TE011 and TM010 modes. For a cavity
of Q = 12,000 operating in the TE011 mode, the minimum state-selector voltage
required to start oscillation was 11 kV for a source pressure of 800 Pa, whereas
for a TM010 cavity with Q = 10,000, the minimum voltage was only 6.9 kV at
the same source pressure. Since for given source parameters, the number of mole-
cules entering the cavity is roughly proportional to the square of the state-selector
voltage, it follows that the threshold number of molecules per second, nth for the
TM010 mode cavity, is about one-third of the value for the TE011 mode cavity. The
actual number of effective molecules per second in their experimental apparatus
was n = 5 × 1013 per second for a source pressure of 800 Pa and state-selector
voltage of 15 kV.

10.7 Sources of Frequency Instability

10.7.1 Cavity Pulling

From the threshold condition for sustained oscillation it is evident that the higher
the Q of the cavity, the lower is the threshold number of molecules that must pass
through the cavity in unit time. Unfortunately, if the cavity is not tuned to precisely
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the molecular frequency, the actual microwave field in the cavity will not oscillate
at the free molecular resonance frequency, but rather the frequency will be pulled
by the cavity resonance to an extent that depends on the relative value of the Q of
the cavity and the sharpness of the molecular resonance line.

To understand the underlying causes of this effect, we must recall two facts dis-
cussed in Chapter 2 concerning resonant systems and the conditions that determine
the frequency of an oscillator. The first is that when a signal near the resonance fre-
quency is injected into a resonant element such as a microwave cavity, the result-
ing output signal will have the same frequency but a shifted phase ranging from
0◦ to 180◦ as the frequency is swept through resonance, as shown schematically
in Figure 2.2. The important feature to note is that the phase varies approximately
linearly at the center frequency, between the maximum and minimum, a frequency
range that can be taken as the line width of the resonance, �ν. It follows that
an input signal whose frequency happens to be slightly displaced from the cen-
ter of the resonance will be shifted in phase by an amount �φ on the order of
180◦ × (ν − ν0)/�ν.

Now, as we noted in the chapter on oscillators, the important condition that
determines the frequency of oscillation is the phase change around the feedback
loop. In the present case it is reasonable to assume that the oscillation of the maser
will occur at such a frequency that the combined phase change in the cavity and
the amplifying NH3 molecules is zero. We can express this condition in practical
terms using the Q-factor of the cavity QC and an equivalent Q-factor for the mole-
cular resonance line QL , defined in a somewhat more general way than was done
originally for a resonant circuit; namely in terms of the fractional frequency width
�ν/ν of the resonance: 1/QL = �ν/ν. If we assume that the cavity is tuned to
within the line width of the molecular resonance and that QL/QC � 1, we arrive
at a relationship for the frequency pulling that can be shown more rigorously to
hold, namely

ν − ν0 = A
QC

QL
(νC − ν0), 10.11

where A is a constant that depends on the level of oscillation, (ν − ν0) is the
deviation from the molecular frequency, and (νC − ν0) is the amount of mistuning
of the cavity. This is a very general result, but it has particular relevance to the
ammonia maser and, as we shall see, to the hydrogen maser, since the resonance
line width, and hence the line Q, is not so large compared with the cavity Q that
this frequency pulling is insignificant for a frequency standard. On the contrary,
unless some scheme is used to correctly tune the cavity, the maser frequency will
be dependent on all the factors that could affect the cavity tuning, for example
temperature. For an ammonia standard that is supposed to reach a stability beyond
one part in 1012 this is intolerable.

One test of whether the cavity is properly tuned consists in varying the fre-
quency width of the molecular resonance, that is, the line QL . When this is done,
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the maser oscillation frequency will vary also unless (νC − ν0) = 0, in which case
(ν − ν0) = 0 no matter what value the line Q assumes. Thus a condition for the
proper tuning of the cavity is that the maser frequency remain constant if the line
Q is modulated.

In one ammonia beam maser described in 1961 by Barnes, Allan, and
Wainwright, of the U.S. National Bureau of Standards (Barnes,1972), automatic
tuning of the cavity was achieved by modulating the molecular resonance line
width using the Zeeman effect. That is, a weak magnetic field is applied to the
molecules in the cavity, causing a splitting of the ammonia line, as shown in
Figure 10.6, effectively broadening it. By modulating the magnetic field at a low
frequency, any mistuning of the cavity leads to a modulation of the output fre-
quency of the maser at double the field modulation frequency; this doubling is due
to the Zeeman broadening being identical for opposite directions of the magnetic
field. For the purposes of this automatic tuning technique, the short-term stability
of a high-quality quartz crystal oscillator is sufficiently high to serve as a refer-
ence in obtaining the modulation of the maser frequency. In the actual ammonia
beam maser cited, the maser frequency is not compared directly with a synthe-
sized frequency based on the crystal frequency, but rather through an intermediary
klystron, phase-locked to the crystal-based frequency. A servo loop controls the
tuning of the cavity by activating a motor-driven tuning stub, so as to annul the
modulation of the maser frequency; this occurs when the cavity is tuned exactly to
the molecular resonance. It might appear that in our attempt to construct a stable
frequency standard, we have assumed that we already have one of equal stability
to serve as a reference to detect the frequency pulling of a mistuned cavity. In fact,
the frequency reference for the automatic tuning of the cavity must only have suf-
ficient stability in the short term, that is, over periods on the order of 1/10 second.
For such short-term stability, the quartz oscillator can be superior to other types
of frequency standards. On the other hand, the maser is intended to have not only
short-term stability, but more important for a time standard, long-term stability
extending over periods of years.

~7 MHz

B = 1 tesla

n0 n

Figure 10.6 The Zeeman splitting of the ammonia line (Barnes, 1961)
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10.7.2 Doppler Shifts

The ammonia beam maser is susceptible to a number of other systematic errors,
which include Doppler shifts due to nonstationary field patterns in the cavity.
Unbalanced traveling wave components in the cavity can arise from asymmetry
in the position of the output coupling hole in the cavity, causing asymmetric power
flow to the output. But a more insidious effect is the variation of the molecular
emission of radiation along the path of the beam in the cavity, which gives rise to
unbalanced traveling waves and a consequent shift in frequency. Since the power
emitted by the molecules is of the same order of magnitude as the output power,
the frequency shift due to this effect will be comparable to that due to the asymmet-
ric coupling to the output. To further complicate the matter, the distribution of the
molecular emission along the beam in the cavity depends on the level of oscillation
(saturation) in the cavity. For weak oscillation near threshold, the emission is more
toward the end of the path in the cavity, in contrast to the case of high saturation,
when the emission is mostly near the entrance to the cavity. Thus the direction of
the unbalanced traveling wave depends on the flux of ammonia molecules in the
beam and the corresponding power level in the cavity. The flux of molecules, in
turn, depends on the pressure of ammonia gas at the source and the voltage on the
quadrupole state-selector. In an attempt to minimize these frequency shifts, ammo-
nia masers with two beams traversing the cavity in opposite directions have been
studied.

10.7.3 Molecular Collisions

Another source of frequency shifts in the molecular resonance is the perturbing
effect of collisions between ammonia molecules, either between those in the beam
or with background molecules. As with any other atomic or molecular system, such
collisions can cause a broadening of spectral lines as well as a shift in the center
of those lines. Again, this would make the maser output frequency susceptible to
fluctuations arising from possible instabilities in any of the parameters that affect
the beam density or background pressure in the cavity. Of course, the same collision
effects are present in the Cs beam standard; however, there the beam intensities can
be very much lower since there is no requirement to go over a threshold value for
oscillation.

10.7.4 Ambient Electric and Magnetic Fields

Again, as with all atomic and molecular spectra, the inversion spectrum of ammo-
nia is affected by external electric and magnetic field; the Stark effect in ammonia
consists not only of shifts in the energy of inversion states; it also induces changes
in the coupling of the various nuclear spins to the molecular rotational motion. The
transition of interest is between states in which the effect of the nuclear spins is the
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same for both the upper and lower inversion states, and the transition frequency is
not altered on that account. Nevertheless, there remains the quadratic Stark shift in
frequency, which is fractionally on the order of (Eμ/hν0)

2, where E is the electric
field strength, μ is the electric dipole moment, and ν0 is the inversion frequency.
Substitution of numerical values leads to shifts on the order of one part in 1012 for
fields in the range of a few volts per meter. It is clear from this that some care must
be exercised in preventing static electrical potentials from developing in the cavity.
As for the Zeeman effect, the first-order effect produces a symmetric splitting that
does not shift the center, but merely results in a broadening of the resonance, as
already indicated in connection with the automatic tuning of the cavity. To second
order of approximation there is a shift in line center having a quadratic dependence
on the magnetic field intensity; however, it is about 106 times smaller than in the
Cs atom, since the molecular magnetic moment arises from the nuclear moments
rather than those of electrons, and is negligible.

Since it was the first molecular oscillator, a great deal of effort was invested in
realizing its promise as the first of a new class of stable oscillators. However, as
a primary standard it proved to have fatal drawbacks: its frequency depended on
many operating parameters; and there was no fundamental prescription to define
what values these parameters should be assigned. For example, the frequency
depends on the source pressure and operating voltage of the state-selector; how
is one to decide what values to use? If arbitrary choices are made, the definition
of the standard would have to include in detail all the dimensions and operating
conditions of the device. Furthermore, the standard would be subject to all the
uncertainties and instabilities that all these parameters may have. Nevertheless, the
ammonia beam maser ushered in the age of stable atomic and molecular oscillators
and a new level of stability approaching one part in 1012.

10.8 The Rubidium Maser

Efforts to realize an active, oscillating form of the rubidium standard in the 1960s
are associated with the names of F. Hartmann, at the Ecole Normale Supérieure in
Paris, and P. Davidovitts and R. Novick, at Columbia, who announced their success
in 1966. Later, the same goal was pursued by J. Vanier, then at Laval University,
and E.N. Bazarov, then of the Soviet Union.

The essential difference in the design of the rubidium maser, as compared to
the passive gas cell resonator, lies in the need to allow the microwave radiation
emitted by the atoms, as they make the reference hyperfine transition, to build up
in a high-Q microwave cavity. Unlike the ammonia maser, this type of transition
involves a magnetic interaction with the microwave field to stimulate emission,
rather than the much stronger electric dipole interaction we have in the ammonia
maser. This raises the threshold for oscillation and makes it necessary to achieve
the greatest possible number of contributing atoms interacting coherently for the
longest possible time in a high-Q resonant cavity.
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Figure 10.7 The essential elements of an optically pumped Rb maser

Of the two isotopes of rubidium, Rb85 has the longer transition wavelength at
around 10 cm, making it the easier of the two to achieve a high Q in its resonant
cavity. The connection between cavity size and Q will be discussed at somewhat
greater length in the next chapter.

The essential elements of an optically pumped gas cell maser are shown
schematically in Figure 10.7. In the original experiments, which predate lasers,
one of the greatest challenges was to achieve a sufficiently intense pumping light
source, with the proper spectral distribution to achieve efficient and rapid pumping
of the hyperfine state populations. The threshold value of atomic number density
is so high that Rb–Rb collisions in which spin states are exchanged can cause
rapid relaxation of the hyperfine populations, counteracting the pumping action
of the light. More is said about spin-exchange collisions in the next chapter. As
discussed in connection with the rubidium clock, another difficulty is that the ref-
erence frequency is shifted by the pumping light itself, an effect that is aggravated
here because of the need to use high-intensity sources to reach the threshold.

Recent developments in optically pumped alkali vapor masers include using
laser pumping sources and circumventing the light shifts using separated regions
for pumping and cavity field interaction. Thus an evacuated double bulb design
was proposed in 1994, in which an inert wall coating, a long-chain hydrocarbon
tetracontane, rather than buffer gases, is used to prevent relaxation of hyperfine
populations at the walls of the container. The atoms are free to travel throughout
the combined volume of the bulbs, which are joined by a short passage tube. The
atoms are optically pumped in one bulb and radiate inside a resonant cavity in the
other.

Residual shifts in the oscillation frequency due to collisions with the walls,
which are strongly dependent on detailed surface conditions, would still preclude
this type of standard from being considered as a primary standard. Nevertheless, it
was felt that a relatively high signal-to-noise ratio could be realized in the output
of such standards, and that they would therefore have excellent short-term stability.



Chapter 11
The Hydrogen Maser

11.1 Introduction

We come now to consider what proved to be the culmination of efforts to enhance
the spectral resolution of atomic resonance machines: the hydrogen maser, one
of the most stable of all present-day atomic frequency standards. Few other
microwave quantum devices exceed its overall mid-term frequency stability.
Conceptually, the H-maser was a natural outgrowth of the continuing experimen-
tal drive to improve the spectral resolution of atomic beam resonance machines
by increasing the interaction time between the atoms and the resonant field.
Since this long predates the development of techniques for cooling atoms with
laser radiation, this was to be achieved by confining the atoms interacting with
the field within a space defined by inert walls; however, few would have pre-
dicted the degree of inertness exhibited by one fluorocarbon polymer named
Teflon and the extraordinary length of perturbation-free interaction time it made
possible.

We recall that in the atomic beam resonance technique, in which transitions are
observed on atoms in free flight such as in the Cs beam standard, the frequency
width of the resonance is determined by the length of time the atoms are free
to interact with the resonant field. The natural line width, caused by the limited
observation time imposed by spontaneous emission, is negligibly small for the
microwave transitions involved here, because years may pass before such transi-
tions occur! But there is obviously a practical limit to how far the time spent by the
atoms interacting with the field can be lengthened simply by increasing the length
of the apparatus. A way must be found either to slow down the atoms or deflect
them from their straight-line path without disturbing their coherent response to the
resonant field, so that the duration of that response can be lengthened in a con-
fined space. As we shall see in later chapters, subsequent developments in laser
techniques have been exploited to cool and manipulate atoms and ions, with far-
reaching advances in the design of atomic frequency standards. However, at the
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time, the “classical” approach was to constrain the motion of the atoms through
elastic collisions with other inert atoms or molecules, either in a gaseous form or
as a solid surface; clearly, in a beam apparatus, reflection from an inert surface is
more compatible.

Accordingly, a series of experiments was carried out around 1958 in Ramsey’s
laboratory at Harvard University on a Cs beam apparatus in which reflect-
ing surfaces of various materials were tried. It was realized that since the
microwave transitions of interest involve changes in magnetic states, the sur-
face atoms or molecules must not be capable of any magnetic type of inter-
action with the colliding atom; this rules out all metallic surfaces and any
surface that has “free radicals” and unsaturated compounds, that is, chemi-
cal entities with unsatisfied bonds. As we pointed out in connection with the
optically pumped Rb standard, where coatings for the absorption cells were
sought for the same purpose, long-chain paraffins were studied as good possi-
ble candidates. Encouraging results were also found with a silicone compound
(dimethyl-dichlorosilane) named Dri-Film. However, it was realized that Cs, a
heavy alkali atom, has a high polarizability; that is, the one outermost electron,
which in the ground state surrounds the inner shells in a spherically symmet-
ric way, is easily distorted in a collision into a nonspherical state. In this state,
the atom has angular momentum that has associated with it a magnetic field
that will interact with the electron spin, thereby inducing transitions between
the magnetic states of interest. The hydrogen atom, on the other hand, although
it is alkali-like in having a single electron, has a very much smaller polariz-
ability, since a great deal more energy is required to put the electron in the
first available nonspherical quantum state. For hydrogen then, surface mate-
rials that lack “dangling” chemical bonds and interact only through a mutual
polarization (van der Waals force) will cause very much smaller perturbation
of the magnetic hyperfine states than in Cs. However, few would have pre-
dicted that hydrogen atoms can make on the average an incredible 100,000
collisions with a specially prepared Teflon surface before a radiating hydro-
gen atom loses coherence. This means, as we shall see, that atoms at ordi-
nary temperatures contained in a bulb of convenient dimensions would remain
with their internal quantum states undisturbed, on the average, a full second
before leaving the bulb. In an atomic context that is a long time. The possi-
bility of such a long storage time means not only a very sharp resonance, but
also the practicability of observing sustained maser oscillation using the rela-
tively weak magnetic dipole coupling to a resonant radiation field. This is in
contrast to the ammonia maser, which is based on a far stronger electric dipole
transition.

We recall that the short-term frequency stability of any quantum oscillator
is determined as much by the signal-to-noise ratio as the width of the atomic
or molecular resonance. The presence, for example, of the fundamental Johnson
(thermal) noise introduces random fluctuations in the oscillation waveform that
can be interpreted as amplitude and phase noise. It has been shown by Townes
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(Townes, 1962) that for the ideal case of an oscillator subject only to the funda-
mental thermal noise, the fractional standard deviation of the frequency is of the
form √〈δν2〉t

ν0
= 1

2QL

√
kT
Pτ

, 11.1

where P is the power radiated by the atoms well above threshold, τ is the averag-
ing time for the 〈 〉 average, QL is the Q-factor of the atomic resonance, and the
product kT, as usual, is a measure of thermal energy. We see from this that whereas
the ammonia maser has the advantage of more power than is to be expected of the
hydrogen maser, the frequency fluctuations of the latter can nevertheless be smaller,
since its QL -value is several thousand times larger. In practice, the fundamen-
tal limitation of thermal noise is rarely reached; many other sources of noise and
instability are usually present, but on balance, the hydrogen maser is unmatched.
As such (although as we shall see, not the most absolutely reproducible), the
hydrogen maser will be described in sufficient detail to appreciate how it achieved
that status.

11.2 The Hyperfine Structure of H Ground State

Its active medium is atomic hydrogen; not the diatomic molecular form H2 in
which it is ordinarily encountered. Hydrogen is the simplest of the elements,
consisting of only one electron surrounding a nucleus that is simply a proton. There
is another stable isotope, deuterium, or heavy hydrogen, with a nucleus consist-
ing of a proton and neutron, but this does not concern us here. As a two-body
problem the quantum energy states of hydrogen can be worked out to any desired
degree of accuracy, taking into account not only the electrostatic Coulomb force
between the electron and the nucleus, but also the magnetic interaction between
them. This latter magnetic interaction arises from the fact that both the proton and
electron have magnetic moments associated with their spin. The electrostatic inter-
action determines the gross features of the energy level structure of the atom, while
its fine structure is due to the magnetic interactions between the magnetic fields
produced by the orbital motion of the electron and its own magnetic moment;
the weaker electron–nucleus magnetic interaction leads to a hyperfine structure.
We have already treated the classification of the quantum states of the hydrogen
atom as the starting point in discussing more complex atoms; we know the set of
quantum numbers necessary to specify them. All but one of these quantum num-
bers, the principal quantum number, n, relate to angular momentum. In the absence
of torques produced by external fields, the total angular momentum of the atom is
conserved, and its component along any fixed axis obeys the space quantization
rules with which we have by now become familiar. Since the electron has spin
angular momentum of 1/2(units of h/2π) and the proton similarly has a spin of
1/2, then for an H atom in its (L = 0) ground state, free of any external magnetic
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field, there are two possible values of total angular momentum: In the notation we
have already introduced for the alkali atoms, these are F = 1/2 + 1/2 = 1, and
F = 1/2−1/2 = 0. The corresponding observed components along any fixed axis
are m F = +1, 0,−1 and m F = 0, respectively.

Atoms in the F = 1 state differ in energy from those in the F = 0 state by what
we know as the hyperfine splitting, the operating frequency of the hydrogen maser.
The difference in energy comes, we recall, from the magnetic interaction between
the proton and electron magnetic moments, leading to the F = 1 state with the
magnetic moments opposed being higher in energy than F = 0, for which they are
parallel. Note that because the proton and electron have opposite charge, states with
parallel spin have the magnetic moments opposed, and vice versa. We have seen
that classically the problem may be thought of as that of finding the potential energy
of a small bar magnet embedded in a spherically symmetric magnetized medium,
whose direction of magnetization is either with or against the direction of the bar
magnet. Note that this is very different from the energy of two magnets side by side.
As mentioned in an earlier chapter, the quantum formula for the hyperfine splitting
of the ground state of any hydrogen-like system was first given by Fermi around
1930; however, a more intuitive derivation based on a classical picture happens to
yield the same result. The derivation hinges on the expression for the magnetic field
inside a uniformly magnetized medium, which is given classically by the formula
B = (2μ0/3)M, where μ0 is a scale factor (called the permeability of free space,
and defined as 4π×10−7), B is the intensity of the magnetic field (measured inside
an imagined small spherical cavity), and M is the magnetization, defined as the
magnetic (dipole) moment per unit volume. Recalling that the magnetic moment
of the electron is one Bohr magneton, μB , we find

M = geμB |�(0)|2s, 11.2

where s, the electron spin, is 1/2, and |�|2 is the probability density of the electron.
Here the one electron is pictured as a continuous (magnetized) charge cloud whose
density is distributed around the nucleus according to the probability density for the
ground state of the electron. We can now derive the intensity of the magnetic field
acting on the proton: It is the field in a vanishingly small spherical cavity drawn
around the proton, where the density in the immediate vicinity may be taken to be
uniform and represented by |�(0)|2; it has the value

B =
(

2μ0
3

)
geμB |�(0)|2s. 11.3

Now, using the classical expression for the (potential) energy of a magnetic dipole
in a magnetic field, E = −μB cos θ, where θ is the angle between the direction of
the dipole and the magnetic field, we find

E(F) =
(

2μ0

3

)
gpgeμnμB |�(0)|2 (F2 − I 2 − S2)

2
. 11.4
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Apart from the quantum numbers, this in fact is the correct Fermi formula for
the electron–nucleus “contact” interaction, giving rise to the magnetic hyperfine
splitting of the ground state. To correct the dependence on the angular momentum
quantum numbers, we must follow the prescription for correcting results obtained
using the vector model, namely, F2 must be replaced by F(F + 1), etc.

As a first approximation, this correctly gives the frequency of transitions
between these hyperfine states as 1,420 MHz, corresponding to a free-space wave-
length of about 21 cm. Thanks to the success of the hydrogen maser, the actual
frequency of this hyperfine transition has been measured to better than one part in
a trillion! Such precision has naturally spurred ever-increasing refinement in the
theoretical computation of the frequency, and in so doing has put the theory to an
extraordinarily stringent test. The theory of quantum electrodynamics has thereby
proven itself to be one of the greatest intellectual achievements of our time.

As the hyperfine interaction between the electron and nucleus considered here
involves magnetic dipoles, we must take into account the unavoidable presence
of external magnetic fields and the way they affect the frequency and line width
of the hyperfine transition that is to be used as a standard. Figure 11.1 shows the
dependence of the energy of the F = 1, m F = +1, 0,−1 and F = 0, m F = 0
states of the ground state of hydrogen on the intensity of an applied magnetic field.
We note as we did in the case of Cs that the graphs for the m F = 0 states are
curves that start in a horizontal direction at B = 0, indicating that their energy is
stationary, that is, unchanging with respect to small changes in the magnetic field
at that point. This, we recall, is the property on which the choice of the standard
transition in Rb and Cs was based, because for B nearly zero, any small variation in
its intensity over the region where the atoms interact with the resonant field will not
broaden the resonance. This is in contrast with transitions involving the m F = ±1

+1

0

F=1

F = 0

B
1.4204.....GHz

−1

0

mF

En

maser transition

Figure 11.1 The energy dependence of the hyperfine states of H on an external magnetic
field
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state, where the energy changes in proportion to the field, and the lines involving
them are broadened by any inhomogeneity in the magnetic field. Thus the maser
operates on the “field-independent” F = 1, m F = 0 → F = 0, m F = 0 transition
near zero magnetic field.

It is important to note that, as with Cs, atoms in a given state will remain in
that state as their energy varies with magnetic field, provided that the change in
field intensity “seen” by an atom is sufficiently slow; this implies the absence of
abrupt changes in the magnetic field either in space or time. We further note that in
the limit of very strong magnetic fields, the graphs reduce to two pairs of parallel
lines of opposite slope, which would be expected of the energy of the electron
and nucleus independently pointing with or against the applied magnetic field. In
this high field region, the interaction between the electron and nucleus is negligi-
ble compared with the interaction of each with the applied field. Again, following
an argument we already made in connection with Cs, if atoms of hydrogen pass
through a region where the magnetic field intensity varies from point to point,
those whose energy increases with magnetic field will be deflected towards regions
of weaker field, since the magnetic energy must be taken as potential energy in
predicting the motion of the atoms. Conversely, those whose energy falls with mag-
netic field will be deflected toward regions of stronger field. This is the basis of the
magnetic state-selector used to separate atoms in the upper F = 1 state from those
in the lower F = 0 state.

11.3 Principles of the Hydrogen Maser

As with the original ammonia maser, the essential components of the hydrogen
maser, shown schematically in Figure 11.2, are (1) a source of hydrogen atoms
collimated into a beam, (2) a quantum state selector, which removes most of the

Figure 11.2 The basic elements of a hydrogen maser
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atoms in the lower of the two energy states between which maser action is to take
place and (3) a resonant cavity, in which the atoms, predominantly in the upper
state, are induced to make transitions to the lower state by emitting radiation.
Sustained oscillation will occur when the power radiated by the atoms is sufficient
to make up cavity losses as reflected in its loaded Q-factor.

The formulation of the conditions for oscillation and analysis of the properties
of the maser, based on the treatment of the ammonia maser by Shimoda, Wang, and
Townes, were published first in 1962 by Kleppner, Goldenberg, and Ramsey, of
Harvard University, followed in 1965 by an article coauthored with Vessot, Peters,
and Vanier of Varian Associates (Kleppner et al., 1965), in which the theory is
extended and experimental techniques are discussed.

Contrary to intuition, there is not only a threshold rate at which atoms in the
beam must enter the cavity in order for the maser to oscillate, but there is also an
upper limit on the rate of atoms entering, beyond which oscillation will cease!

11.3.1 Lifetime of Atoms in the Bulb

There are two fundamental processes, among others, that contribute to the shorten-
ing of the interaction time. First is the escape of atoms from the cavity; this obvi-
ously limits their interaction time with the resonant field and contributes equally to
the relaxation times T1 and T2 of Bloch’s theory (see Chapter 6). To find the prob-
ability (per unit time) of an atom escaping from the bulb through the opening by
which it enters, we assume it makes many random collisions with the surface of the
bulb and therefore has equal probability of occupying any (equal) element of vol-
ume within the bulb. Under the low pressure conditions in the maser bulb, the atoms
are relatively free of collisions among themselves, and we may further assume that
the atoms striking the opening by which the beam enters actually leave the bulb.
If the cross-sectional area of the opening is represented by S, then in order to strike
the opening in unit time the atom must be somewhere within a space defined by a
cylinder of cross-sectional area S and length equal to the average distance it can
travel in unit time perpendicular to S, that is, Vave/4, where Vave is the average
3-dimensional velocity. If we denote the volume of the bulb by Vb, it follows that
the desired probability is given by SVave/4Vb, and therefore the probability of a
given atom remaining in the bulb will decay exponentially as follows:

p(t) = exp
(

− t
Tb

)
; Tb = 4Vb

SVave
. 11.5

In terms of the absolute temperature T of the bulb, the average velocity is given by
Vave = √

8kT/(πM). For example at T = 300 K we have a mean thermal veloc-
ity of about 2.5 × 103 m/sec; hence for a bulb having a diameter of 0.25 m and
a 4 mm diameter opening, the characteristic decay time is very nearly 1 second.
Incidentally, in that time an atom would have made on the order of 20,000 colli-
sions with the surface of the bulb. While the remarkable property of Teflon permits
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the approximations we have made, the actual system is more complicated, in that
some adsorption and recombination into molecular hydrogen do occur on the bulb
surface, and some atoms are scattered back at the opening.

11.3.2 Spin Exchange Collisions

The second inevitable contribution to the broadening of the resonance, which is
essentially different from the first in that it depends on the number density of atoms,
comes from collisions between atoms. These can both randomize the phase of the
radiating atoms and cause nonradiative transitions, thereby reducing the relative
number of radiating atoms. The type of collision between atoms that dominates
under the ordinary operating conditions of the maser is one in which the electrons
of the two colliding hydrogen atoms exchange spin directions. An exchange of
spins manifests itself only when the electrons approach in opposite states, and the
collision results in a mutual spin-flip; so our concern is with a process that we can
write symbolically as follows:

A(↑) + B(↓) → A(↓) + B(↑). 11.6

The duration of such collisions is short compared to the average time between
collisions; so short, in fact, that the nuclei do not have time to be affected; that is,
for the purposes of predicting the resulting states of the atoms, it is as if the hyper-
fine interaction between electron and nucleus were not there. The whole process is
strictly a quantum-mechanical effect; the interaction of the electrons by virtue of
their magnetic dipole moments is far too weak to explain the large cross section
the atoms present each other in encounters that result in spin exchange. The inter-
action between charges ultimately arises from the electrostatic Coulomb force,
which, although not spin-dependent itself, nevertheless manifests itself in a spin-
dependent way because of a certain symmetry requirement on the two-electron
wave functions, which we encountered earlier in connection with the Pauli exclu-
sion principle. The likelihood of an atom undergoing a spin-exchange collision is
expressed in terms of the effective cross section it presents as it travels through the
cloud of other atoms, sweeping out a volume containing all those atoms with which
it will make such a collision. If the number density of the hydrogen atoms in the
bulb is represented by n, the cross section by σex, and the mean relative velocity
of the atoms is Vr then the volume swept out per second is σexVr , and the number
of atoms in that volume will be nσexVr . This then is the average number of spin-
exchange collisions a given atom will undergo per unit time, and the average time
between collisions is the reciprocal of that, namely

Tx = 1
σexnVr

11.7

showing explicitly the dependence of Tx on the number density of atoms in the
bulb, and hence on the rate at which atoms enter the bulb. The spin-exchange
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process contributes to both types of relaxations; however, not to the same extent.
It can be shown that T1 = Tx , while T2 = 2Tx .

11.3.3 Threshold for Sustained Oscillation

We begin by considering the power radiated by the atoms in the cavity. Following
Ramsey et al., we use a result derived from a solution of Bloch’s phenomenologi-
cal equation for the response of the global magnetic moment of a group of atoms
subject to a time-varying magnetic field. The resonant response of the H-atoms
to a microwave magnetic field, inducing transitions between the hyperfine states,
is through the magnetic dipole moment of the atoms, and to the extent that we
may regard the transitions as occurring between just two quantum states, a vector
description in terms of a spin 1/2 particle gives valid results. In the present case
one finds that the net power P radiated by atoms entering the cavity in which the
field amplitude is Bz with an excess of flux �I of atoms in the upper state over
those in the lower state is as follows:

P = 1
2
�I hν

x2

1
T1T2

+ x2 +
(

T2
T1

) [
2π(ν − ν0)

]2
, 11.8

where x = 2πμA Bz/h, ν0 is the frequency of the atomic hyperfine transition, and
μA is the magnetic moment of the atom. Note the presence of an x2 term in the
denominator of the expression for P , which has the effect that for amplitudes of Bz
such that x2 becomes dominant, the value of P reaches saturation, that is, no longer
increases with the field amplitude in the cavity. The graph of P has the shape of a
typical resonance curve with a maximum at ν = ν0 and a (full) frequency width at
the half power level given by

�ν = 1
π

√
1

T 2
2

+
(

T1

T2

)
x2. 11.9

The presence of the term involving x2, and hence Bz
2, in the expression for the

resonance width shows power broadening of the resonance, which can be thought
of as due to the shortening of the time each radiating atom spends in a transition
due to the strength of the inducing field.

Finally, we are in a position to understand the reason it is possible to have
too large a flux of atoms entering the cavity to have oscillation. To that end
we will simplify matters by including only the two fundamental contributions to
the relaxation times and write

1
T1

= 1
Tb

+ 1
Tx

1
T2

= 1
Tb

+ 1
2Tx

11.10

This way of combining relaxation times is justified on the basis that for example,
1/T1 is the average probability per unit time of a certain event taking place. It
follows that if there are two independent ways in which that event can come about,
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and we wish to have the probability of one or the other taking place, then we should
add the individual probabilities. Now we see that since 1/Tx is proportional to n, it
also depends on Itot, the atomic flux entering the bulb. This is evident from the fact
that under steady conditions the total number of atoms in the bulb, N , depends on
the total flux according to the following:

d N
dt

= Itot − N
Tb

= 0; 11.11

and hence the relaxation time Tx depends on Itot as follows:

1
Tx

= σexVr Tb

Vb
Itot. 11.12

The atoms entering the bulb from the state selector are of equal number in the states
designated as (F = 1, m F = 1) and (F = 1, m F = 0), and ideally none in the other
states. If we assume this ideal condition, then the flux of atoms in the radiating
state entering the bulb is Itot/2.

Now, the condition for a sustained level of oscillation can simply be stated as
follows: The power radiated by the atoms must equal the sum of the microwave
power dissipated in the cavity and the power delivered as output. Using the
definition of the Q-factor of the (loaded) cavity, the condition can be formulated
as follows:

Prad = 2πν
E
Q

, 11.13

where Prad is the power radiated by the atoms at resonance and E is the electro-
magnetic energy stored in the cavity, energy that resides in the field and in classical
theory can be expressed (in SI units) in terms of the field amplitude B as follows:

E = 1
2μ0

〈B2〉cVc, 11.14

where the notation 〈 〉c designates an average over the volume of the cavity, equal
elements of volume being given equal weight. There remains the question of relat-
ing 〈B2〉c to the appropriate average, over the volume of the bulb, of Bz the field
component responsible for stimulating transitions. This is done by defining a filling
factor, given the symbol η, as follows:

η = 〈Bz〉2
bVb

〈B2〉cVc
, 11.15

where Vb is the volume of the bulb and the notation 〈 〉b denotes, as before, an
average over the volume of the bulb. The ratio η is important in the analysis of the
conditions for oscillation of the maser—this is hardly surprising, since the numer-
ator is, in fact, proportional to the rate at which the atoms are stimulated to emit
radiation, while the denominator is proportional to the energy stored in the cavity.
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The salient point in this definition of η is that the average in the numerator is taken
to be 〈Bz〉b

2, rather than 〈Bz
2〉b, which would be true for fixed atoms. We will not

attempt to pursue the question beyond saying that the explanation is to be found in
the fact that the atoms rapidly cross the bulb back and forth many times during the
emission process, randomly sampling the field throughout the space in the bulb.
The atoms are confined to a space where the radiation field has almost constant
phase but varying amplitude according to the field pattern of the particular mode.
Under these conditions we further expect the Dicke effect to be observed in the
atomic resonance line: a sharp line center free of (first-order) Doppler broadening
on a broadened pedestal.

In terms of the filling factor, and the (loaded) Q-factor of the cavity, we can now
relate the power loss to 〈Bz〉2 and therefore x2, the saturation factor; the result is a
simple proportionality: Ploss = αx2, where α is a constant involving the physical
parameters of the maser. But we have also the formula for the power radiated at
resonance (ν − ν0) = 0 in terms of x2, hence equating the power loss to the power
radiated, we find that for a sustained level of oscillation we must have

P = 1
2
�I hν − 1

αT 2
b

(
1 + 3

2
Tb

Tx
+ 1

2
T 2

b

T 2
x

)
, 11.16

in which we have substituted for T1 and T2 in terms of Tx and Tb. Recalling that
Tx is proportional to Itot, we see already from the presence of the quadratic term
(Tb/Tx )

2 that there may be two real solutions for Itot to the equation obtained by
setting P = 0; this means that there may be, in addition to the threshold value of Itot
where oscillation begins, another where it ceases, as indeed proves to be the case
experimentally. The range of values of atomic flux for which oscillation occurs
depends on the coefficients of the quadratic equation, and it is useful to write these
in dimensionless form. To that end an important design quantity q is defined as
follows:

q = σx Vr

4πμ0

h

μ2
A

1
ηQ

Itot

�I
. 11.17

This leads to an expression for the power P in a useful form:

2P/hν
�Ith

= �I
�Ith

−
[

1 + 3q
�I
�Ith

2q2
(

�I
�Ith

)2
]

, 11.18

where �Ith is the threshold difference in the flux of the two maser states in the
absence of spin exchange, given by

�Ith = 1
2πμ0

h

μ2
A

Vb

QηT 2
b

11.19

This represents a theoretical limit; the actual threshold will always be higher
because of the spectral broadening effect of spin exchange between atoms. We note
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Figure 11.3 The oscillating range of the H-maser as a function of the parameter q
(Kleppner, 1965)

the importance of a large perturbation-free storage time Tb in the bulb in realizing
maser oscillation, in view of the smallness of μA. It can be shown that the roots are
real if qsatisfies in our case the following condition:

q < 3 − 2
√

2. 11.20

In Figure 11.3 is reproduced a set of graphs showing the dependence on q
of the range of Itot over which oscillation occurs. We note that as q approaches
3 − 2

√
2(≈0.171), the range tends to zero.

11.4 Physical Design of the H-Maser

11.4.1 Atomic Hydrogen Source

We take up now a somewhat more detailed description of the physical apparatus.
We begin with the source of the atomic hydrogen beam. Hydrogen gas naturally
occurs in the diatomic molecular form H2, and therefore the first task is to dissoci-
ate the two atoms that make up a molecule; this requires that the molecule be given
an energy of about 4.4 electron volts to break the bond between the two atoms.
This may be done in one of two ways: either by collisions with free electrons in an
electrical discharge or collisions between molecules at high temperature.

The high temperature approach is relatively more predictable in design and
performance; however, it is now mainly of historical interest in having been
used in some classical experiments on the spectrum of the hydrogen atom by Lamb
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and Retherford. A degree of dissociation of 64% was reported in their experiments
using a tungsten oven operated at 2,220◦C and gas pressure of 102 Pa. Tungsten
has the highest melting point, at about 3,370◦C, but even at this high a temperature
the average kinetic energy of a molecule is only about 0.5 electron volt. For a gas
in thermal equilibrium at a given temperature, the distribution of kinetic energy (or
equivalently, thermal velocity) is the Maxwell–Boltzmann distribution, which may
be written as follows:

d N
N

= 2√
π

1
kT

√
E

kT
exp

(
− E

kT

)
d E, 11.21

where d N/N is the fraction of the molecules having kinetic energy in the interval
dE centered at the value E , T is the absolute temperature, and k = 1.38 × 10−23

joules/degree is Boltzmann’s constant. The distribution reaches a maximum at
E = kT/2 and falls toward zero, but remains finite as E increases, reaching
increasingly higher energies as the temperature is raised. Because of this fact there
can be significant dissociation of molecular hydrogen in a heated tungsten oven,
the actual degree of dissociation depending not only on the temperature, but also
on the competing rates of recombination and influx of molecular hydrogen into
the oven.

There was at one time some effort devoted to developing high temperature
ovens, because there was evidence that there may be a problem with the stability
and aging of the electrical discharge sources then in use. However, these drawbacks
have largely been eliminated, and the high-frequency electrical discharge source is
universally used in hydrogen masers.

The earliest application of an electrical discharge for the production of atomic
hydrogen was first described by R.W. Wood around 1920, and a discharge tube
designed for that purpose was called a Wood’s tube. It essentially consists of a
long, narrow glass tube provided with internal metal electrodes at its ends and
containing hydrogen at low pressure, typically around 102 Pa. The application of
a high DC voltage between the two electrodes results in a glow discharge, much
like the familiar neon signs. Apart from a small region near the negative electrode,
the tube is filled with a glowing column, called the positive column, which con-
sists of a neutral mixture of free electrons, positive ions, and neutral gas particles.
The ions and electrons in this mixture are strongly “coupled” because of the long-
range Coulomb force between opposite charges, causing them to act like a fluid;
hence the name plasma. The ions in the plasma have a Maxwellian distribution of
energy corresponding to a temperature only slightly greater than the neutral gas.
The electrons, however, can have a very much higher temperature and are thus able
to impart enough energy to the gas molecules through collisions to ionize them,
and thereby replace ions that are neutralized on the walls of the tube. Of particular
interest here, of course, is the fact that the electrons will also have enough energy
to cause dissociation of the H2 molecules through collisions, mostly according to
the following reaction:

H2 + e → H + H + e.
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The resulting hydrogen atoms will, however, readily recombine to form molecular
hydrogen, provided that the atoms come together in the presence of a third body,
such as a solid surface. Two isolated atoms coming together in space cannot form a
bound system, since that would violate the conservation of momentum. The prob-
ability of two hydrogen atoms coming together in the presence of a third particle
is extremely small at the number densities contemplated here; however, many sur-
faces, including all metals, will have adsorbed layers of gas and other impurities
that readily provide the “third body” and allow the atoms to stabilize in molecular
form. Therefore, special care must be exercised in cleaning the inner surfaces of
the glass tube to reduce the recombination rate.

The Wood’s tube has been totally supplanted by the more efficient and compact
electrodeless high-frequency discharge source. In this a glass bulb or tube no more
than one or two centimeters in overall dimensions is placed in the high-frequency
electric field of a resonant circuit tuned to a frequency in the range 100–200 MHz.
The principal advantage is that a high electron flux can be sustained in the plasma
without incurring great dissipation of heat caused by electrons hitting the walls of
the bulb. Great care must be exercised in the design and fabrication of the tube; it
is cleaned, and evacuated according to standard vacuum practice, and connected to
a source of hydrogen gas through a heated palladium–silver “leak.” This consists
of a thin-walled tube of the alloy closed at one end and sealed around its rim to
the vacuum shell at the other. It separates the discharge tube from the hydrogen
source and has the remarkable property when heated of acting as a filter admitt-
ing only pure hydrogen from the source. The pressure in the discharge, and hence
the beam intensity, can conveniently be varied by controlling the temperature of
the palladium–silver leak; typically the pressure is in the range 10 to 100 Pa. This
capability of rapidly changing the beam intensity is, as we shall see, of great impor-
tance in the automatic tuning of the maser cavity. The detailed mounting of the tube
in the coil, as well as the matched coupling of the coil to the source of the UHF
power, are crucial factors in achieving a stable discharge. The UHF input power
required is typically in the 10 to 20 watt range. There is a complicated interdepen-
dence between the level of excitation of the coil and the temperature of the bulb
and the electrical characteristics of the plasma. This could easily lead to instabil-
ity; however, in the absence of any useful analysis of the system, there have been
many long-term experimental studies made, and apart from a disconcerting condi-
tion known as the whites, observed in some of the early work, this type of source
has proven itself completely satisfactory. When the source is working normally, the
discharge has a clear bright red color due to lines in the atomic hydrogen spectrum,
whereas the presence of molecular hydrogen gives the glow a bluish-white hue. It
is found that the Pyrex glass surfaces will become discolored due to chemical reac-
tions after prolonged operation of the discharge; however, this does not seriously
affect the operation of the source.

Unlike the other beam sources we have encountered, the beam-forming colli-
mator in the hydrogen source, consisting either of a single narrow tube or a bundle
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of capillary tubes, is limited by the possibility of the atoms recombining into mole-
cules through collisions on the capillary tube walls.

The angular width of the emergent beam is typically very much wider than
the acceptance angle of the state-selecting magnet that follows, making the utiliza-
tion factor of the hydrogen no more than perhaps 0.01%. This results in the need
for high-capacity vacuum pumps to maintain the background pressure in the main
body of the maser at a tolerably low level, such as 10−4 Pa. Fortunately, the back-
ground will be mostly molecular hydrogen which is so different from atomic hydro-
gen that its presence will obviously not contribute to the populations of the atomic
states in the resonant field, and apart from scattering the beam atoms or possibly
causing small frequency shifts in the hydrogen hyperfine frequency through colli-
sions, there are no objectionable effects resulting from its presence. Nevertheless,
the system requires continuous pumping with a large pressure differential main-
tained between the source chamber and the rest of the system. For this purpose ion
pumps are commonly used, since they are highly efficient in pumping hydrogen.
However, their powerful magnets compound the problem of shielding the radiat-
ing atoms from external magnetic fields and add considerably to the weight of
the system.

11.4.2 The Hexapole State-Selecting Magnet

The state-selector that is ideally suited to the hydrogen maser, and is commonly
used, was originally proposed in 1951 by Friedburg and the Nobel laureate
W. Paul for applications in magnetic resonance. It is the hexapole focusing mag-
net already mentioned in connection with the Cs standard (See Figure 9.6). The
somewhat different focusing properties of the quadrupole magnet have also been
exploited for the same purpose. The object is to separate atoms in the F = 1 state
from those in the F = 0 state, and to allow only those in the upper F = 1 energy
state to enter the resonant cavity and be stimulated to radiate at the 1,420 MHz
transition frequency.

We recall that the magnetic field distribution of the hexapole magnet has a
3-fold axis of symmetry; its components in polar coordinates r , θ can be written as
follows:

Br = kr2 cos 3θ; Bθ = −kr2 sin 3θ. 11.22

This shows that at a given radius, as the angle θ goes through a full circle, the field
components will repeat themselves three times. The total field is given simply by
B = kr2, a function only of the radial distance of the field point from the axis. If
we represent by Bm the field at the radius rm that reaches the pole tips of the mag-
net, then the expression for the field at any point r < rm becomes B = (Bm/rm

2)r2.
In practice, the magnetic field is made sufficiently strong that the energy of the
atoms, which in low field start in the F = 1, m F = 0 and F = 0, m F = 0 states, is
proportional to the field, as indicated by the approach to linear form with oppos-
ing slopes of the graphs in Figure 11.1. Thus in the high field region we can write
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the energy as +μ0 B and −μ0 B for these states, where μ0 is an effective magnetic
moment. Introducing the radial dependence of B, we find for the magnetic energy
±μ(Bm/rm

2)r2. Since this energy plays the role of potential energy in determin-
ing the trajectories of the atoms, it follows from the conservation of energy law
that atoms in the upper state with radial kinetic energy 1/2mVr

2 = μ0 Bm will just
graze the poles of the magnet before curving back towards the axis, as shown in
Figure 11.4.

Atoms with any greater initial radial energy will hit the poles and be lost from
the beam. Those leaving the source at an angle of φ (radians) to the axis have
a radial component of velocity of Vr ≈ V φ, and therefore the maximum (planar)
angle φm accepted by the magnet is

1
2

MV 2φ2
m = μ0 Bm . 11.23

A more useful measure in determining the flux of atoms in the focused beam is
the solid angle defined by a cone having a half-angle φm at its apex. We imagine a
unit sphere drawn with the atom source as center; the solid angle is the area on the
sphere enclosed by the circle in which the cone intersects the sphere. In our case
φm � 1, and the solid angle is simply 
m ≈ πφm

2, that is,


m = 2πμ0 Bm

MV 2 . 11.24

In arriving at this maximum acceptance solid angle we have assumed a magnet
design that is universally used in practice, namely one in which the pole-pieces
are straight cylinders, so that the magnetic field is constant along lines parallel to
the axis. However, it can be shown that in principle by making the inner radius of
the magnet rm vary in a particular way with axial distance, the acceptance angle can
be significantly increased. Unfortunately, fabricating the contoured pole-pieces of
such a magnet is difficult, and the implementation of this refinement has not been

Figure 11.4 The acceptance angle of a hexapole magnet
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seriously pursued. In practice, permanent magnets are used, and the limit on Bm
is set by the saturation value in the magnetic material used for the pole pieces,
typically in the range 0.5 T to 1.0 T. The total flux of atoms from a collimated
source is on the order of 1016 atoms/sec, of which a small fraction, perhaps 5×1012

atoms/sec, in the upper state are focused towards the axis.
Now, the force on the atoms, being given by the gradient of the energy, will

be ±2μ0(Bm/rm
2)r , according as they are in the upper or the lower state. Thus

atoms that in low field are in the upper F = 1 , m F = 0 state are drawn toward the
axis with a force that is proportional to the distance from the axis, a force that
produces simple harmonic motion about the axis. The atoms in the lower state,
on the other hand, diverge exponentially away from the axis and are lost from the
beam, becoming part of the molecular background. The question remains, however,
as to whether the atoms in the upper state, issuing from the source in a narrow cone,
are indeed focused back to a point on the axis. We will not attempt to give here
a rigorous description of the focusing action of the hexapole magnet but will be
content with some simplified general arguments. First we point to the simplifying
fact that the acceptance angle of the magnet is in practice very small, since the
magnetic (potential) energy of the atoms at the strongest point in the field is still a
small fraction of the thermal kinetic energy of the atoms as they emerge from the
source. Furthermore, we will assume that the atoms emerge from a point source
rather than a significant area; this allows us to ignore skew off-axis trajectories and
consider only the radial motion of the particles.

To show that atoms of a given velocity are focused to a point on the
axis, we must show with reference to Figure 11.5 that the trajectories emerg-
ing from the magnet intersect the axis at the same point. Now, the trajectory of an
atom in the hexapole field can be shown to be represented by the following:

r = r0 sin
(



z
V

+ α
)

; Vr = 
r0 cos
(



z
V

+ α
)

, 11.25

Figure 11.5 The converging and diverging paths of atoms in a hexapole focusing magnetic
field
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where r0 and α are constants that must be chosen to conform to the given initial
values of the particle position and velocity, and 
 is given by


 =
√

2μ0 Bm

Mr2
m

. 11.26

If all the particles can be assumed to originate from the same point on the
axis, then we may take that point to be z = 0, leading to the choice α = 0, and
the trajectories of all atoms having a given velocity V and r0 < rm will return to
the axis at the same point where 
z/V = π. This assumes, of course, that the par-
ticles remain in the hexapole field, whereas in fact, they must converge to a focus
some distance away from the magnet, at the entrance to the cavity. In that event,

L/V < π, where L is the length of the magnet. On emerging from the magnet
they will of course travel in straight lines, and therefore, in order to intersect the
axis at the same point, they must travel in directions at the exit plane of the mag-
net satisfying r/(dr/dz) = constant. This ratio in fact is constant for motion in a
hexapole field, but only for a given velocity; there is a different focal point for
each velocity. Of course, we know that they do not all have the same velocity;
the velocity has a distribution characteristic of the source temperature. The depen-
dence of the focal distance on velocity is analogous to the dependence in optics of
the focal length of a simple glass lens on the color of the light, a deficiency called
chromatic aberration. This leads to some broadening of the exit-beam image of
the source produced by the magnet. It is tempting to draw on the analogy with
optics to design an achromatic pair of lenses; unfortunately, for the atomic states of
interest the hexapole magnet is necessarily analogous to a converging lens, and two
such lenses cannot be made achromatic in the true sense. Experimentally, the optics
of the hydrogen beam, its profile as a function of distance along the axis, can be
studied with a screen coated with white molybdenum oxide. The hydrogen atoms
falling on the screen chemically reduce the oxide, resulting in a blue spot whose
density gives some indication of the relative distribution of atoms in the beam. In
this way the beam-profile at various crucial points can be analyzed to optimize the
distances between the source, magnet, and cavity.

11.4.3 The Storage Bulb

The heart of the maser is the storage bulb, which confines the atoms to the cen-
tral part of the interior of a microwave cavity tuned to the 1,420 MHz transition
frequency between the hyperfine states. To minimize the loss of microwave power
in the cavity through its conversion to heat in the material of the bulb, the latter is
typically made of a low-loss dielectric material such as fused quartz. It is usually
a spherical bulb, on the order of 15 cm in diameter, provided with a collimator
similar to that used in the source, to admit the atomic beam. As already mentioned,
the inner surface of the bulb is coated with an inert copolymer designated by the
Dupont trade name FEP Teflon. The formation of a satisfactory coherent Teflon
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film on the quartz surface begins by a thorough cleaning of the quartz surface, once
achieved with concentrated chromic and sulfuric acids, but now more commonly
by the use of an organic solvent. After this it is wetted with a liquid suspension
of the Teflon. The bulb is then dried by heating it while circulating clean, dry air
through it. Then it is heated to 360–380◦C to fuse the particles of Teflon into a
coherent coating, while circulating clean air or oxygen through it to aid in oxidiz-
ing contaminants and removing the resulting gases. The bulb is kept at the fusing
temperature for about 20 minutes. The collimating tube in the neck of the bulb may
be a solid Teflon plug drilled with many holes or a Teflon coated Pyrex tube. From
this description of the procedure for preparing the surface of the bulb it is appar-
ent that we are dealing with a recipe that leads to a surface that is not absolutely
defined in physical terms. We might speculate about using an electron microscope
to determine the physical structure of the surface, but unless we can also specify
a procedure that will always lead to that precise structure, it would fall short of
establishing an absolute standard.

11.4.4 The Microwave Cavity

The microwave cavity in which the stored atoms interact with the resonant radiation
field to sustain maser oscillation must do so in a stationary mode such that the
atoms move in an oscillatory field of constant phase. It would do little good to have
a long interaction time if the conditions are such that the Doppler effect can shift
and broaden the spectral line. The cavity commonly used is a right circular cylinder
operated in the TE011 mode; it will resonate at the desired hyperfine frequency if
both the length and diameter are chosen to be about 27.6 cm. The axially symmetric
pattern of the electromagnetic field in this mode is illustrated in Figure 11.6, which
also outlines the space defined by the storage bulb.

As pointed out already in connection with the ammonia maser, while the
Q-factor of the cavity must be high in order to get over the threshold for sustained

Figure 11.6 The magnetic field pattern in the TE011 mode of the H-maser cavity
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oscillation, this introduces the undesirable possibility of cavity pulling of the oscil-
lation frequency. The Q-factor of an isolated, unloaded cavity is determined by
power loss in the form of heat on the inner surfaces of the cavity walls; a silver-
plated cavity in the above mode has a theoretical Q-factor of 87,000. The presence
of the quartz storage bulb has little effect on the Q-factor, but it will significantly
detune the cavity, lowering its resonance frequency. Output microwave power is
coupled to a 50 ohm coaxial cable by a hairpin loop mounted in one of the end
plates, at a point of strong magnetic component in the cavity field. The plane of the
loop must, of course, be set at right angles to the direction of the magnetic field for
optimum induced current in the loop.

The phenomenon of cavity pulling adversely affects the stability of the maser
frequency by making it dependent on the tuning of the cavity, and hence on the
changes of dimensions of the cavity due to temperature fluctuations. There are two
approaches to minimizing this source of instability in the maser frequency. First
is to use a material for the cavity whose dimensions are particularly insensitive to
temperature changes; such a material is CER-VIT, the Owens-Illinois Company
designation for a ceramic-vitreous material whose dimensions are remarkably con-
stant with respect to temperature fluctuations. As with any other dielectric cavity
material, a thin film of silver or gold on the inner surfaces provides sufficient elec-
trical conduction, since at these high frequencies the fields penetrate only a micro-
scopic distance into a metallic conductor. The second approach is to use a metallic
cavity whose temperature is monitored at many points with ultimate sensitivity,
and electronically stabilized with a fast-responding servo control loop. In general
practice, however, fused quartz is used, whose coefficient of thermal expansion is
0.25×10−6 per ◦C, approximately 1/100 that of aluminum; nevertheless, temper-
ature stabilization is still used in an electronically controlled oven.

11.4.5 Magnetic Shielding

As already pointed out, the (F = 1, m F = 0) → (F = 0, m F = 0) hyperfine
transition frequency is “field-independent” only in the neighborhood of zero
static magnetic field B0. It is therefore necessary to reduce the ambient field at the
storage bulb to the lowest possible value. However, there are two conditions on the
static magnetic field that impose, in effect, a lower limit on the intensity at which
the maser will operate. First, the static field must be in the direction parallel to the
microwave magnetic field in the bulb, that is, for the TE011-mode along the axis
of the cavity. This condition on the polarization of the microwave field in relation
to the magnetic field axis, which serves as the axis of quantization for the atomic
states, arises from the fact that in the transition involved, m F is unchanged. There-
fore, the inevitable nonuniformities in the static field intensity must not involve a
reversal of the direction of the field at any point; that is, the average field must be
larger than the fluctuations. The second condition is a little more subtle: It is based
on the fact that atoms moving through a field that varies from point to point can
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undergo Majorana transitions to other hyperfine states. The likelihood of such tran-
sitions diminishes if the magnetic field is sufficiently strong in comparison with
the spatial variations in it. In practice, several layers of high magnetic permeability
material, such as Moly Permalloy, are placed coaxially around the cavity to shield
it from external fields. These materials will develop “hard spots” as a result of spot
welding and shaping and must therefore be properly annealed; furthermore, they
must be thoroughly demagnetized by taking them through cycles of magnetization
by an alternating magnetic field whose amplitude is brought to zero. Inside the
innermost layer a solenoid, wound on a nonmagnetic form, provides an adjustable
uniform magnetic field over the storage bulb. The maser frequency depends on
this magnetic field according to the Breit–Rabi formula, which in the present case
yields:

ν = ν0 + 2.761 × 1011 B2 − 2.68 × 1013 B4 + . . . 11.27

Clearly, for magnetic fields in the milligauss range (≈10−7 tesla), terms higher
than the third are negligible. In order to correct the observed frequency to the
zero-field value, the field intensity is deduced from the frequency of transitions
involving a change in the magnetic quantum number m F , for example (F = 1,
m F = +1) → (F = 1, m F = 0). To induce these transitions requires typically an
oscillatory magnetic field in the kilohertz range perpendicular to the cavity axis,
a field readily generated by passing a current of that frequency through a wire
loop. Since the static field inevitably has some residual variation from point to
point, we should note that the �m F = ±1 magnetic resonance lines (observed by
their effect on the maser oscillation) have center frequencies determined by the
average of the magnetic field, rather than the average of the square of the magnetic
field, as required for the hyperfine frequency correction. However, it is possible
from the width of the magnetic resonance line to estimate the field inhomogeneity
and ascertain that indeed we are permitted to assume 〈B0〉b

2 ≈ 〈B0
2〉b.

11.5 Automatic Cavity Tuning

It is no exaggeration to say that the development of the hydrogen maser into a
standard of exceptional long-term as well as short-term stability hinged on the
ability to electronically control its cavity to remain precisely tuned to the atomic
frequency, thereby avoiding cavity pulling.

The original method for the automatic tuning of the H-maser cavity followed
the principle used in the ammonia maser; namely, to modulate the width of the
atomic resonance and use a high-quality oscillator as a short-term frequency refer-
ence to detect any consequent change in the pulling of the maser output frequency.
The formula for frequency pulling, we recall, is the following:

ν − ν0 = Qc

QL
(νc − ν0), 11.28
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where as before, the fractional line width of the atomic resonance has been written
in terms of a quality factor QL , and Qc is the cavity quality factor. Accordingly,
if the atomic line width, and hence QL , is modulated, the maser output frequency
will remain constant and equal to the atomic resonance frequency if and only if
(νc − ν0)= 0; that is, the cavity is tuned to the atomic frequency.

In this method of automatic tuning, it is common to modulate QL by mod-
ulating the flux of atoms in the beam entering the cavity. As we have seen, this
will vary the number density of atoms in the bulb and consequently the spin-
exchange time Tx , which contributes to the transverse relaxation time T2 and there-
fore the frequency width of the atomic resonance. If we could ideally vary only
the flux of atoms entering the cavity, all other properties of the beam remaining
constant, we would thereby vary not only the atomic resonance width, but also
to a smaller degree a shift in the center frequency, which also results from spin-
exchange collisions. Fortunately, this is an added bonus, for it allows us not only
to tune the cavity, but to do so in a way to compensate for the small spin-exchange
shift in the atomic frequency. The main difficulty in implementing this method of
tuning the cavity is the requirement of an oscillator sufficiently stable to serve as a
reference in detecting any change in the maser output frequency.

This problem is avoided by another approach successfully designed by
Audoin’s group at what was the Laboratoire de l’Horloge Atomique, in Orsay,
which is to inject a frequency-modulated stable signal near the resonance fre-
quency (derived from a crystal oscillator phase-locked to the maser output) into
the maser cavity. It can be shown that the maser output will provide an error signal
if the cavity is not exactly tuned to the center of the atomic frequency. The ten-
dency of the maser oscillator to lock on to the frequency of the injected signal must
be avoided; it can be shown that with the proper Fourier spectrum of the injected
signal (center frequency suppressed), this can be achieved.

11.6 The Wall Shift in Frequency

The collisions of the radiating hydrogen atoms with the Teflon wall coating cause
a residual shift in the atomic frequency, aptly called the wall shift. First let us
recall that the atoms are confined in an enclosed space, assumed to be a spherical
quartz bulb coated on its inner surface with Teflon. It is provided with a small
opening through which the beam enters, and atoms effuse out, after making many
collisions with the Teflon surface. In order to estimate the wall shift in the atomic
resonance frequency, it is necessary to know the relative time a given atom spends
interacting with the wall as a fraction of its free time between wall collisions. If
then we can estimate the shift in phase that occurs during a collision, we will be
able to derive the mean frequency shift. Now, the distance of free travel between
collisions should clearly be proportional to the radius of the bulb; in fact, one can
show that it is 4R/3, and the mean free time between wall collisions is therefore
τc = 4R/3Vave. Surfaces are generally complex physical and chemical structures
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with adsorbed layers of whatever gaseous material they have been exposed to, not
to mention other unintended “impurities.” In addition, the solid substrate itself is
not necessarily uniform throughout. Therefore, it is not only difficult to develop a
satisfactory detailed analysis of the wall shift, it would have to be based on such
an idealized model as to be of very limited value. It is possible, however, to make
some general observations that are useful in understanding some of the factors on
which that shift depends. When a hydrogen atom approaches the Teflon surface,
one of several types of collisions can ensue; but whatever the outcome, it is fairly
certain that it will dwell on the surface for a finite time, trapped in a potential well,
shown schematically in Figure 11.7. It is formed by a force of attraction as the atom
approaches the surface, which however turns repulsive as the atom penetrates into
the surface.

If, on the other hand, it does not get involved in a chemical bond, but rather
only suffers the strong electric forces at the surface derived from the potential well
alluded to above, the electron distribution around the nucleus is distorted, thereby
changing the electron density at the nucleus, and hence the hyperfine frequency
interval, that is, our maser frequency. The duration of these forces is extremely
short, being on the order of the range of intermolecular forces divided by the
average thermal velocity of the atom, that is, on the order of 10−13 sec. In real-
ity, the dwell time at the surface can be considerably longer than this, depending
on the depth of the potential well and the degree to which the atom loses kinetic
energy during the collision, since it has to climb out again by a set of favorable
gains in thermal energy from the surface. Nevertheless, it is only a fraction of the
period of oscillation of our atomic frequency; hence the disturbance of the atomic
state is in the nature of a sharp impulse. It can cause real nonradiative transitions

atom

wall

potential
energy

0

Figure 11.7 Schematic representation of the potential well at a solid surface



232 The Quantum Beat

phase

wall shift

time0

Figure 11.8 Frequency shift due to accumulation of phase shifts at wall collisions

between the hyperfine states, but more seriously, it causes a small shift in the phase
of a radiating atom. This phase shift not only leads to dephasing of the radiating
atoms due to statistical distribution of the phase shift, but also, more significantly,
to a shift in their mean frequency due to the constant accumulation of phase shift,
as illustrated in Figure 11.8.

Thus if the mean phase shift per collision is �φ and the mean time between
collisions is τc we can write for the mean phase of the atomic transition

〈φ〉 = 2πν0t + �φ
τc

t. 11.29

The second term on the right increases linearly with time and represents a shift in
frequency amounting to �ν = �φ/2πτc, which may be rewritten in terms of the
bulb geometry as follows:

D�ν0 = 3Vave
�φ
4π

, 11.30

where D = 2R. It has been experimentally confirmed that D�ν0 is temperature
dependent and ranges from 0.38 Hz · cm at 31.5◦C to 0.35 Hz · cm at 40◦C. Further-
more, studies have indicated that in certain coatings the wall shift passes through
zero at a particular temperature.

11.7 The H-Maser Signal Handling

As already indicated, the power output of the hydrogen maser is very low, typically
on the order of 10−12 watt; therefore, to obtain a useful signal, the maser output is
phase-locked to a synthesized frequency derived from a high-quality 5 MHz quartz
crystal oscillator. The challenge is to do this without significantly affecting the free
oscillation of the maser, a situation analogous, of course, to the problem of the
escapement in mechanical clocks. Whatever is connected to the output port of the
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maser cavity must cause a minimum of detuning and additional noise. This requires
that the maser be presented with a constant low-noise load, that is, a circuit element
drawing little power and with minimal changes in its input capacitance or induc-
tance. Great care is therefore taken to ensure temperature stability of the solid-
state circuitry used in the processing of the maser output. A selected low-noise
preamplifier is typically used to amplify the maser output and to isolate the maser
from subsequent circuits. The figure of merit of such amplifiers, the noise figure, is
roughly defined as the ratio (on a decibel scale) of the actual noise power at the out-
put of the preamplifier to what it would be if only the fundamental Johnson noise
were present. Solid-state preamplifiers are available that operate at the desired fre-
quency of 1,420 MHz with a noise figure around 3 db; that is, the noise power
is 103/10 ≈ 2, or about twice the ideal. In systems where a second maser is used
as reference in the tuning of the cavity, extraordinary steps must be taken to iso-
late the one maser from the other; otherwise, frequency locking will take place, in
which the two masers pull each other to a single common frequency. To avoid this,
microwave devices called circulators, based on a special property of ferrites, may
be used as isolators.

The detailed design of the receiver and synthesizer necessary to phase-lock a
5 MHz quartz oscillator to the maser output in order to obtain useful standard sig-
nals can, of course, vary widely. However, we can illustrate the general principles
by describing briefly the pioneering system developed by H.E. Peters for NASA
satellite tracking stations. The system is shown schematically in Figure 11.9. The
output of the precision 5 MHz quartz oscillator is multiplied to 1,400 MHz and
mixed with the preamplified output of the maser to give a heterodyne frequency at
an intermediate frequency (IF) of 20.405 MHz. This is passed through a tuned IF
amplifier, followed by two further heterodyne stages with IF frequencies at around
405 kHz and 5 kHz. The amplified signal at 5 kHz is connected to a phase detector
(comparator), whose reference phase is derived from the 5 MHz quartz oscillator
through a digital frequency synthesizer. The frequency of the latter, which can
be advanced in steps of 0.0001 Hz, determines the precise frequency to which
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Figure 11.9 An example of an H-maser receiver–synthesizer (Peters, 1969)
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the quartz oscillator will be stabilized, since its actual setting depends on the
corrections for the magnetic field and wall shift. The output of the phase
comparator, which constitutes the error signal for the control loop, then passes
through a filter to ensure stability before closing the loop by connecting it to the
frequency-control input of the quartz oscillator. From the phase-locked 5 MHz
quartz oscillator, frequency dividers provide standard outputs at 1 MHz and
100 kHz as well as one-second pulses to drive a clock.

Finally, we consider the frequency stability actually achieved in masers built at
national standards laboratories around the world. In an earlier chapter we saw that
a conventional “time domain” definition of frequency stability (really instability)
is the so-called Allan variance of the frequency deviation. A typical plot of this
quantity as a function of the measurement period for an actual hydrogen maser is
reproduced in Figure 11.10.

The required stability in the standard used as a reference in obtaining the devi-
ations in frequency is so great that only another hydrogen maser can qualify. As
already emphasized, great care must be taken to isolate the masers from each other.
Otherwise, they will lock on to the same frequency, and the “deviation” would
always be zero! Looking at the graph in Figure 11.10, we cannot but be impressed
by the extraordinary stability this device exhibits; a clock stable to one part in 1015

will gain or lose only 1 second in about 32 million years!
When all the anticipated systematic corrections have been made to the observed

maser frequency, such as the magnetic field correction, the wall shift, and the
second-order Doppler effect, we get the following for the hydrogen hyperfine fre-
quency in terms of the international atomic time scale as defined by the Bureau
International de l’Heure:

νH = 1,420,405,751.778 ± 0.003 Hz.
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Figure 11.10 A plot of the Allan variance in frequency of a typical H-maser (Peters, 1992)
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This is arguably one of the most precisely measured quantities in all of physics.
While the hydrogen maser set new standards of performance in the metrology of
frequency and time, standards that will not be easily surpassed, nevertheless, for
certain applications it suffers from two deficiencies: First, it lacks portability, and
second, the wall shift limits its absolute accuracy. The size and mass of the maser
are a necessary consequence of the relatively large wavelength (21 cm), which
sets the scale of its dimensions. This is further aggravated by the need for elabo-
rate shielding from ambient magnetic fields and the need for a large vacuum shell
and massive vacuum pumps to maintain the required degree of high vacuum in
Earth-based systems. The size would not, of course, be objectionable for laboratory
installations, but it renders it unsuitable for mobile systems. In the one application
where portability is not an important requirement, namely as a primary standard,
the wall shift unfortunately limits its absolute accuracy.



Chapter 12
The Confinement of Particles in Fields

12.1 Introduction

The development of atomic standards based on quantum resonance in neutral atoms
confined by diffusion through a buffer gas, or collisions with inert walls, culmi-
nated in the hydrogen maser, a standard of astonishingly high stability. However,
as explained in the last chapter, for certain applications the hydrogen maser suf-
fers from two deficiencies: First, its lack of portability due to its size and the need
for elaborate magnetic shielding, and second, a wall shift that limits its absolute
accuracy, and disqualifies it as a primary standard.

It is possible to remove all contact between the reference atomic particles and
any other material objects, whether an inert gas or surface, through the use of elec-
tric and/or magnetic fields. We note, however, that the use of such fields for the
purpose of confining otherwise free neutral particles at ordinary temperatures, is
ruled out on the basis that they would perturb the internal quantum states on whose
energy separation the frequency standard depends. Such a method of confinement
of neutral atoms would not even be practicable with static or low-frequency fields;
however with optical frequency fields, the situation is quite different; however,
although, as we shall see in a later chapter, laser optical fields can be made to cool
and entrap neutral atoms, this can be exploited only by techniques that avoid light
shifts in the energy states of the reference atoms.

On the other hand, ions, particularly ones of low kinetic energy, can have their
motion significantly deflected by relatively weak electric and magnetic fields; but
the point which sets field confinement apart from the use of reflecting surfaces
for neutral atoms, is that the fields can be precisely created and measured, and
the perturbation they cause, unlike the wall shift, can be calculated to any desired
degree of accuracy.

We may recall that the hydrogen maser evolved as a frequency standard from
the effort to push to the limit the frequency resolution and sensitivity of beam
machines designed for magnetic resonance spectroscopy. In the same way, the use



238 The Quantum Beat

of fields for particle confinement has its origin in the drive to increase the resolution
and accuracy of radio-frequency spectroscopy on charged particles. Since the rate
of spontaneous microwave (magnetic) transitions is extremely small, high spec-
tral resolution can be obtained by lengthening the observation time by suspending
the particles under observation free from perturbations, for as long as possible.
By using the restraining force that a suitably designed field exerts on the particle,
it can ideally be suspended for an indefinite time, provided it moves in a suffi-
ciently good vacuum. Therefore the ultimate success of field confinement hinged
on an essential technological development: the ion vacuum pump, which we have
already encountered. This is simply another example of a general truth that empiri-
cal science advances only as technology makes it possible, and conversely. The ion
pump made possible the attainment of pressures below 10−10 Pa, a pressure region
called ultrahigh vacuum. In this pressure range, an ion would travel on the average
1,000,000 km before colliding with another particle, were it not for collisions with
the walls of the vacuum chamber!

In considering the use of electromagnetic fields to confine ions, first let us
recall a theorem in the theory of electrostatics, namely, Earnshaw’s theorem, which
states: a charged body placed in an electrostatic field cannot be maintained in stable
equilibrium under the influence of electric forces alone. This can be shown to be
a consequence of the fundamental equations governing the electrostatic field: in
charge-free space the electrostatic potential energy of a test charge cannot be a
minimum at an isolated point in space. This means that there is no point from
which a displacement of a test charge in any direction would cause an increase
in potential energy; at most, we can have the potential energy increasing in some
direction but decreasing in another. Since electrostatic potential energy is analo-
gous to the potential energy of an object acted on by gravity, our statement on the
absence of a minimum is analogous to saying that it is impossible to have a bowl-
shaped valley, but at most a saddle-shaped one, such as we would find between
two peaks. In the neighborhood of a saddle point in the potential distribution, the
charge would be restrained in one direction but repelled in the other. This would
seem to be fairly discouraging to someone trying to trap an ion; but in fact, we are
not limited to static electric fields; we simply have to look to either non-static fields
or combinations of electric and magnetic fields.

12.2 The Penning Trap

We will begin with a brief description of the field configuration that has come to be
called the Penning trap. We do this in spite of the fact that this method of confining
ions, involving as it does a strong magnetic field, is unsuitable for an atomic fre-
quency standard. Nevertheless it has had many other important applications and is
included here primarily for its intrinsic and historical interest in the area of particle
trapping.
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Figure 12.1 The field configuration of a Penning vacuum gauge

The name derives from the fact that it is reminiscent of the Penning vacuum
gauge in its arrangement of electrodes and the use of a magnetic field. The gauge,
first described by Penning in 1936, is illustrated schematically in Figure 12.1.
It extends the range of operation to much higher vacuum than previous types by
the use of a strong magnetic field, in conjunction with high voltage electrodes to
maintain an electrical discharge in what is called the “blackout” vacuum region. In
ordinary discharges, such as we have in a neon sign tube, blackout occurs when the
pressure of neon is reduced below a certain point. The action of the magnetic field is
to cause the electrons in the plasma to move in tight spirals, thereby increasing their
path length, and hence the probability of ionizing collisions with background gas
molecules, before striking and losing energy to the electrodes and other surfaces.

12.2.1 Field Configuration

The pure quadrupole electric field geometry illustrated in Figure 12.2, originally
used for ion confinement was in fact first described by J.R. Pierce of the Bell
Telephone Laboratories (Pierce, 1954). For the confinement of positively charged
particles, an electrostatic field is produced by applying a negative voltage to an
hourglass-shaped cylinder, with coaxial bowl-shaped end caps carrying a common
positive voltage. By placing the electrode system between the pole pieces of a
magnet, a strong axial magnetic field is superimposed on this electric field. If the
charges to be confined are negative, then of course the polarity on the electrodes
would have to be reversed; the direction of the magnetic field along the axis is
immaterial. In terms of circular cylindrical coordinates r, z with the z-axis along



240 The Quantum Beat

−V /2
0

+V /2
0

x,y

2r
0

z

Figure 12.2 The quadrupole electric field geometry

the axis of symmetry of the system, the electric potential of the field between the
electrodes has the form

V = V0

2r2
0
(2z2 − r2). 12.1

The surfaces of equal potential in this field are figures of revolution about the
axis with hyperbolic cross section; the field can be generated by having hyper-
bolic conducting surfaces coinciding with a set of equipotential surfaces. Note that
we have chosen a potential field symmetric about the origin, in the sense that the
potential there is zero, and the potentials on the electrodes are ±V0/2; the total
voltage applied between the cylinder and the end caps (the two sheets of one hyper-
bola) is V0. Along the z-axis (r = 0) the potential varies as z2, increasing as we
go in either direction, and reaching the maximum of V0/2 at the electrodes where
z = ±r0/

√
2.

12.2.2 Ion Motion

If the magnetic field is truly uniform and everywhere in the axial direction, then
the ion motion parallel to the axis is not affected by the magnetic field, since the
Lorentz force comes into play only if the particle has a velocity component per-
pendicular to the magnetic field. The equation of motion for the z-coordinate of a
particle having charge e and mass M at any point (r, z) is therefore as follows:

d2z
dt2 = −ω2

z z; ω2
z = 2

( e
M

) V0

r2
0

, 12.2

which is the equation for simple harmonic motion. The particle therefore oscillates
with a finite amplitude about the origin with a frequency νz = ωz/2π. To avoid hit-
ting the end caps, the amplitude of the particle must be less than z0, since otherwise
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the radial motion of the ion would cause it to strike an end cap. It follows that the
maximum energy an ion can have by virtue of its axial motion is qV0/2, so that
V0/2 is the depth of the “potential well” for the axial motion. The radial component
of the motion is considerably more complicated and is more easily described in
terms of Cartesian coordinates x , y. If the magnetic field were absent we, would
have for the equations of motion of the x- and y-coordinates the following:

d2x
dt2 = +

( e
M

) V0

r2
0

x ; (Bz = 0), 12.3

with an identical equation for the y-coordinate. Because of the plus sign on the
right-hand side, the solution of this equation is the exponential function, which
rapidly goes to infinity. This shows explicitly that in the absence of a magnetic
field, the x- and y-coordinates would continue to increase until the particle hits an
electrode. If the sign of V0 were reversed in order to make the motion along the
x- and y-axes oscillatory, then the motion along the z-axis would diverge expo-
nentially. The same applies, of course, if the sign of the charge on the particles is
reversed; from this we get the important conclusion that the Penning arrangement
does not trap both positive and negative particles simultaneously.

The effect of a magnetic field is to introduce a Lorentz force that causes ions
having a radial component of velocity to swing around in more or less cycloidal
orbits. A cycloid is the geometric figure traced out in space by a point on the rim
of a rolling wheel. In our axially symmetric field geometry, the wheel must be
assumed to lie in a plane perpendicular to the axis and roll around on a circle in
that plane centered on the axis. Thus we see that there are two periodic motions
involved: The wheel turns about its center, making a certain number of revolutions
per second, while its center revolves with uniform speed around the axis of the
system. If the chosen field strengths are such that the magnetic Lorentz force is
dominant over the electrostatic one, then the former motion of the wheel about its
center can be shown to have nearly the frequency νc given by

2πνc = eB
M

, 12.4

which is simply the frequency with which a charged particle executes a circular
orbit in a uniform magnetic field in the absence of any electric field. Since this
frequency is a central quantity in the design of the cyclotron particle accelerator,
it is referred to as the cyclotron frequency. The cyclotron is made possible by the
fact that this frequency is independent of the velocity of the particle (provided that
it is much smaller than the velocity of light) or the size of its circular orbit. This
allows an oscillatory electric field at that frequency to remain in synchronism with
the particle motion as it gains energy from the field and its orbit expands.

The other, slower, motion of the center of the wheel around the axis of the sys-
tem can be shown to occur at the velocity at which the Lorentz force in the magnetic
field is balanced by the electrostatic force. Since the electric field is proportional
to the radial distance, a balancing Lorentz force requires the (linear) velocity to



242 The Quantum Beat

increase the same way; this implies a constant angular velocity around the axis.
The frequency of this motion, sometimes referred to as the magnetron motion,
is as follows:

2πνm = V0

Br2
0
. 12.5

The magnetron is a high-power microwave tube used in radar transmitters and
microwave ovens. Its field configuration differs from the Penning trap in having
a radial electric field between a tubular electron-emitting cathode and a coax-
ial copper ring forming the anode. A strong axial magnetic field causes elec-
trons emitted by the cathode to curve around and across the openings of a series
of microwave cavities machined out of the anode, thereby inducing oscillations
in them at microwave frequencies. Note that this frequency νm does not depend
on the properties of the particles, but only on the geometry and field intensities of
the trap.

This separation into a fast cyclotron motion on which is superposed a slower
magnetron motion is only an approximation valid when νc � νm . Moreover, there
are other possible orbits, namely, circular ones around the axis as center; curiously,
these also have two possible frequencies. The general result for the two frequencies
is as follows:

ν± = νc

2
±
√(νc

2

)2 − ν2
r , 12.6

where νr would be the radial frequency if the electric field were acting alone. From
this result we see that only if 1/2νc > νr are the frequencies ν± real in a mathemat-
ical sense and the motion oscillatory with a finite amplitude. This establishes the
equivalent “binding” potential of a magnetic field, that is, the equivalent electrical
potential well depth created by a magnetic field. If the condition νc � νr is met,
the two frequencies ν± may be approximated as follows:

ν+ ≈ νc − νm; ν− ≈ Vm, 12.7

where

νm = ν2
r

νc
; ν2

r = eV0

4π2 Mr2
0
. 12.8

We should note that ν+ and ν− are in a sense frequencies of the “normal modes”
of vibration of the ion, and further that ν+ is a mixture of cyclotron and magnetron
motions.

Since the fields acting on the confined particles are static, in the absence of
collisions the system has the property of being conservative, which means, among
other things, that the kinetic energy of a particle at any point is determined by
the electrostatic potential at that point, no matter how the particle got there. This
has the important consequence that if a particle enters the field with some energy
through a hole in one of the electrodes, it will not remain in the trap, but pass
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through to strike another electrode, or even to return to strike the same electrode
with the same energy. In order to be trapped in the field, an ion must either sustain a
sufficient loss of energy in the trap or be created in the trap with sufficiently small
initial energy. The situation is analogous to rolling marbles on a smooth surface
at a depression in that surface; they will not settle in the depression unless they
lose some kinetic energy, for example by friction, as they cross the depression. In
the case of atomic or molecular ions, capturing them is readily accomplished by
one of two approaches: First, injecting the ions into the trap, where some make
inelastic collisions with particles in the trap, losing energy to the colliding partner;
or second, having the parent atoms or molecules fill the trap at a very low pressure,
and passing an electron beam through one of the end caps along the axis to ion-
ize them through collisions. The latter method is more convenient, but it has two
objectionable aspects: First, the electron beam adds its own electric field, causing a
deviation from the proper field distribution; and second, the presence of the parent
gas, as we shall see, limits the lifetime of the ions in the trap through collisions.
The disturbing effect of an electron beam can be addressed by separating in time
the operation of filling the trap from that of observing the ion spectrum.

12.3 The Paul High-Frequency Trap

The most important type of trap for ion frequency standards is one named for
Nobel laureate Wolfgang Paul the Paul trap, and its many later variants, such as
the Paul-Straubel trap, about which more will be said later. It achieves ion confine-
ment through the use of high-frequency alternating electric fields. Its precursor, first
described by W. Paul and M. Raether in 1955, was an ion beam mass filter using
a high-frequency electric field between a quadrupole of cylindrical electrodes, as
shown in Figure 12.3. Ions in a narrow mass range are focused by the field, while
all others diverge exponentially from the beam and are lost.

+_

+_

+_

ion beam

Figure 12.3 The Paul high-frequency ion mass filter
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12.3.1 The Classic Paul Trap

Early in the development of the quadrupole filter it was realized that the focusing
action in two dimensions could be generalized to trap charged particles in three
dimensions. A comprehensive description of the successful realization of a rota-
tionally symmetric form of such a device appeared in a government report in 1958,
written by W. Paul, O. Osberghaus, and E. Fischer (Paul et al., 1958), followed by
an account by E. Fischer in the Zeitschrift für Physik, 1959. Figure 12.4 illustrates
the device, designated in German as an Ionen Käfig (ion cage).

The electrode geometry consists of an hour glass-shaped cylinder between two
end caps of hyperbolic cross section, the latter being held electrically at the same
potential. Since the main driving field has a polarity that alternates at high fre-
quency, the sign of the charge is immaterial to the trapping function. Along any
given coordinate axis, a charged particle experiences a force alternately towards
the center and away from it. If the strength of the electric field were the same at
all points, then the motion of a particle would be simply an oscillatory one driven
by the field, superposed on any original uniform motion. Thus it is clear that a uni-
form high-frequency field would not do, since the original uniform motion would
continue undeterred.

The essential property of the quadrupole field is that it is not uniform, having
a minimum at the center; the fact that the field strength varies simply in propor-
tion to the distance from the center merely bestows the advantage that it leads to
ion motion lending itself to exact mathematical analysis. A charged particle placed
in such an alternating quadrupole field will, along any given coordinate direction,
experience a force that alternates but is not entirely symmetric between directions
away and toward the center; it happens that under certain conditions the net result
can be an average force toward the center. This can be anticipated on the basis of
something called the strong focusing principle, which was originally enunciated
in terms of a set of static ion lenses, alternating between focusing and defocusing,

Figure 12.4 The Paul high-frequency 3-dimensional ion trap
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positioned sequentially in space, so that a particle passing through them experi-
enced a time sequence of focusing and defocusing forces. This evolved into the
single lens alternating in time. It can be made plausible that such an alternating
focusing–defocusing sequence can yield a net focusing action by noting that on the
average the defocusing starts nearer the center where the field is weaker, while at
the end of the defocusing half cycle, when the focusing begins, the ion is farther
from the axis where the field is stronger.

The analysis of the ion motion in the Paul trap begins with the definition of the
field, which may include a DC voltage applied between the cylindrical electrode,
sometimes called the ring, and the end caps. The components of the electric field
in the neighborhood of the trap center are as follows using cylindrical co-ordinates
(r, z):

Er = (
U0 − V0 cos 
t

) r

r2
0
; Ez = −2

(
U0 − V0 cos 
t

) z

r2
0
, 12.9

where U0 is a constant voltage, and V0 and 
 are respectively the amplitude and
(angular) frequency of the high frequency voltage. The surfaces of equal potential
in this field are figures of revolution about the axis with hyperbolic cross sec-
tions; the field can be generated by having hyperbolic conducting surfaces coin-
ciding with a set of equipotential surfaces, as illustrated in Figure 12.2. Note that
by choosing z0 = ±r0/

√
2. we have a potential field symmetric about the origin,

in the sense that the potential there is zero, and the potentials on the electrodes are
±V0/2; the total voltage applied between the cylinder and the end caps (the two
sheets of one hyperbola) is V0. Along the z-axis (r = 0) the potential varies as z2,
increasing as we go in either direction, and reaching the maximum of V0/2 at the
end cap electrodes.

The motion of the ions is governed by Newton’s F = ma equation of motion,
which in this case takes on the following form for the r -coordinate:

d2r

dθ2 + (ar − 2qr cos 2θ)r = 0, 12.10

where

ar = 4eU0

M
2r2
0
; qr = 2eV0

M
2r2
0
; θ = 
t

2
. 12.11

The a and q coefficients for the z-equation are given by az = −2ar and qz = 2qr .
Equations of this form are referred to as Mathieu equations after the French math-
ematician E. Mathieu, who in 1868 published his study of the vibrations of an
elliptical membrane, in which this form of equation arises. In fact, this equation
arises in many important practical applications, for example parametric amplifiers,
among other things. We note that it has the form of the equation for a simple har-
monic oscillator, in which, however, the frequency-determining parameter is itself
an oscillatory function of time. The “pumping” of a child’s swing is an example of
such a parameter being modulated at twice the frequency of the swing and leading
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Figure 12.5 The a–q stability diagram of the Mathieu equation

to parametric excitation, as we saw in Chapter 2. It is not our purpose, of course, to
delve into the mathematical properties of this equation and its solutions, but rather
to state the results pertinent to the design of the trap.

The most important property of the Mathieu equation for our purposes is that
its solutions are stable or unstable depending on the values of the parameters a
and q. Here the question of the stability of a solution refers to whether or not
there is an upper bound on how far a particle may move away from the center. All
the solutions are oscillatory (but not necessarily simply periodic) about the center.
However, the unstable ones have an amplitude that increases in time without limit.
If the values of a and q are plotted with respect to a set of Cartesian axes, then the
plane is divided into areas where the equation has stable solutions and areas where
they are unstable, as shown in Figure 12.5. Whether a solution for given values
of a, q is stable or unstable depends on whether the point with these coordinates
lies in a stable or unstable region. In nearly all applications, only the first stability
region has been used; in fact the parameters a and q are often chosen to be much
less than one.

For the particle to be confined in all three dimensions it is necessary that not
only ar , qr lie in a stable region, but az , qz also. Since the latter differ only by
a factor of −2, it is convenient, following Paul, to make a composite plot of the
stability boundaries in which those for az , qz are drawn to half scale and inverted
along the a-axis, as in Figure 12.6. Inverting along the q-axis produces no change
because of symmetry. If then the point ar , qr lies in the region of overlap between
the r - and z-stability regions, then the motion will automatically be stable in three
dimensions. As a numerical illustration, suppose we choose a point well within the
stability region ar = 0.01 and qr = 0.2, and we wish to operate a trap with radius
r0 = 1 cm at a frequency of 500 kHz, then to trap (say) mercury ions (mass number
199), the voltages we would require are U0 = 5 volts and V0 = 200 volts.
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Figure 12.6 A composite plot of the first stability region for both r - and z-stability

From the theory of the Mathieu differential equation, for a, q in a stable region,
the general solution shows that the spectrum of the ion motion consists of a discrete
set of frequencies given by

ωn =
(

±n + β
2

)

, 12.12

where n is an integer and the relative amplitudes and the constant β are functions
of the operating point a, q. (We have for brevity dropped the r and z subscripts and
will do so in all cases where it would not cause ambiguity).

To illustrate the particle trajectories typical of those described by this solution,
we reproduce from the work of W. Paul et al. plots for the special case of a trap
operating at the point a = 0, q = 0.631, β = 0.5, and ions created with zero
initial velocity (see Figure 12.7). The plus and minus signs indicate the focusing
and defocusing half cycles of the field. It is seen, for example, that the ion cre-
ated when the phase of the high-frequency field is π/4 is first defocused and then
focused back at a point farther from the center where the field is stronger and is
thereby caused to swing back more strongly. This results in a finite oscillation of
complicated form reflecting the presence of many frequency components in the
Fourier spectrum. However, one frequency component is evident: the lowest fre-
quency at β
/2, which for β = 0.5 corresponds to one-fourth the frequency of the
field. We should note also the strong dependence of the amplitude on the phase of
the field at the time the ion is created.

Although the operation of a Paul trap does not depend on a magnetic field,
nevertheless when used for microwave frequency standards based on a magnetic
hyperfine transition, a weak magnetic field is essential for the proper functioning
of the standard. From the point of view of the motion of the trapped ions, the effect
of a weak axial magnetic field can be predicted from the Larmor theorem, which we
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Figure 12.7 Particle oscillation in the Paul high frequency quadrupole electric field (Paul,
1958)

encountered in the discussion of magnetic resonance. It states that the effect of an
external field of strength B on the motions of identical ions moving about in finite
orbits is entirely equivalent to what would be observed if the motion was referred to
a frame of reference rotating uniformly with an angular velocity of eB/2M about
the field axis. The component of the motion along the field axis, taken as usual to
be the z-axis, is not affected by the magnetic field; however, the radial component
behaves as if there were a centrifugal “potential,” with a quadratic dependence
on r simply added to the constant potential term U0 applied to the Paul trap. In
consequence, the parameter ar , which is a measure of the constant potential, is
shifted as follows:

ãr = ar +
(

2ωL




)2

, 12.13

where ωL = eB/2M is the Larmor frequency. The spectrum of the ion motion
is also made more complicated; as implied by the Larmor theorem, the equivalent
rotation (or precession) frequency is added to the spectrum of radial frequencies.

It can be shown in general that if the parameters a and q are much less than one,
the amplitudes of the higher frequencies in the motional spectrum rapidly become
negligibly small as n increases beyond n = 1. Therefore, a reasonable approxi-
mation is obtained by retaining only oscillations at frequencies corresponding to
n = 0 and n = ±1; in this case, the theory shows that we have the following
approximate solution:

r(t) = A
(

1 + qr

2
cos 
t

)
cos

βr


2
t; β2 =

(
a + q2

2

)
, 12.14

showing that indeed the motion is bounded, with an upper limit of A(1+q/2). This
result can be interpreted as representing a slow secular oscillation (since under our
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assumption β � 1) at a frequency β
/2, with a micromotion at the frequency of
the field, having an amplitude that is proportional to the low-frequency displace-
ment from the origin.

This last result could have been derived much more simply if the assumed
condition that a and q are very small is used from the beginning, instead of starting
with the general solution for all values of those parameters. To do this we must
recognize that from its definition, q equals the amplitude of oscillation (as a frac-
tion of r0) that a charge would have in a uniform high-frequency field of intensity
V0/r0, which is the maximum it reaches in the trap, at r = r0. Thus a small value of
q means that the field causes only a small high-frequency jitter; that is, the motion
can be analyzed as a superposition of two motions, a fast oscillation at the field
frequency and a slow motion of the center of that oscillation. Under conditions
where this separation of the motions is justified, it was first shown by Kapitza that
a general solution is possible, and not just the specific case of a quadrupole field.
If a charged particle is acted on by a high-frequency electric field E0(x, y, z) cos 
t ,
whose amplitude is a slowly varying function of space, such that it varies little
over the particle jitter, then its motion in the field can be written in the form

I (t) = R(t) − eE0(R)

M
2 cos 
t 12.15

in which the high-frequency jitter is about a point R(t) that moves according to the
following equation of motion:

M
d2 R
dt2 = −e

dU0

d R
− e2

4M
2

d
(
E2

0(R)
)

d R
12.16

This result shows explicitly that in the adiabatic approximation the secular ion
motion is governed by a static potential, sometimes called the pseudo-potential,
given by:

ϕp = eE0
2

4M
2 12.17

To obtain the particular solution for the Paul field we would substitute E =
V0 R/r2

0 . The result agrees with the earlier theory; the oscillation frequency of R(t)
is the lowest frequency β
/2 in the spectrum, where β2 = a + q2/2. We should
note that while the secular (slow) motion may have random phase and amplitude,
having some thermal distribution, the micromotion is driven by the high frequency
field, and is determined by the value of that field at the position of the ion. It is
important to note that in this form of the Paul trap the high frequency field is zero
at only one point, namely the center of the trap. This means that the micromotion
is zero at only one point. The significance of this is that in the drive to cool trapped
ions to the ultimate degree, namely to the lowest quantum state in the trapping field,
there can in principle be only one ion brought to the ground state at the center.

An instructive result, one that gives some insight into the behavior of the
particle motion in a high-frequency field, is obtained by computing the average
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kinetic energy over many cycles of the field. Under conditions where the approx-
imation we used above is valid, and assuming that only a high-frequency field
acts on the particle, so that a = 0, we find that the total kinetic energy aver-
aged over many cycles of the high-frequency field remains constant; it merely
goes over into the high-frequency jitter form as the center of that oscillation slows
down, and it continues to alternate between the two forms of motion as the par-
ticle executes its slow oscillation between regions of strong and weak field inten-
sity. Because the total energy is unchanged, this is sometimes called the adiabatic
approximation.

An analogous exchange of kinetic energy between different components of par-
ticle motion occurs in an axial magnetic field that has a weak axial gradient in its
intensity. In this case, a charged particle with an axial component of velocity will
have that component reduced or increased as the particle cyclotron motion around
the axis gains or loses kinetic energy, depending on whether the gradient is positive
or negative. This is the basis of the magnetic bottle, an ion confinement device con-
sisting of an axial magnetic field, uniform over a certain length but becoming more
intense at the two ends. For ions moving along certain angles with respect to the
axis there exist conditions when they would not only be slowed down in approach-
ing the more intense magnetic fields at the ends, but will in fact be reflected back
and forth between the two ends.

The question of what initial position and velocity an ion may have and still be
confined in the available space is somewhat complicated in the Paul trap. The two
most important complicating circumstances are first, the particle trajectory depends
on the phase of the high-frequency field when the ion is created, and second, the
particle trajectories are not even simply periodic. However, limits can be found to
the amplitude of the motion as a function of initial ion position and velocity at any
given phase of the high-frequency field. For a given initial phase it can be shown
that the particle trajectory will have a given upper limit, provided that the initial
position and velocity are related by a certain quadratic expression; if we plot this
initial velocity versus position, the resulting graph is an ellipse whose parameters
depend on the phase when the ion was created, as shown in Figure 12.8. For each
phase, those initial values of velocity and position that fall within the ellipse lead
to an amplitude smaller than would reach the electrodes.

Changing the operating point in the a–q stability diagram results in signif-
icant changes in the ellipses, as might be expected. From these graphs, no matter
what the initial velocity or phase may be, the ion must be created within the space
defined by the electrodes. It is useful in practice to know what fraction of ions cre-
ated uniformly throughout the trap, say by electron collisions or ionizing radiation
acting on the parent atom or molecule, will in fact be trapped. Since the energy of
ions resulting from these processes is not expected to be much above the thermal
energy of the parent particle, an energy negligibly small compared with the hun-
dreds of volts present in the trap, we may, without appreciable error, assume the
initial velocity to be nearly zero. In terms of the velocity-position ellipses, all points
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Figure 12.8 The initial positions and velocities leading to confinement in a Paul trap (Paul,
1958)

representing ions actually created will lie in a narrow band along the position axis.
It becomes a simple matter to determine for each ellipse the fraction of the number
of points falling inside it.

12.3.2 Cylindrical Traps

In practice it is not necessary to shape the trap electrodes to approximate the hyper-
boloids used in the early constructions of the trap; that was done simply to be able
to predict more accurately the spectrum of the ion motion and the limits of stability.
It is not difficult to show that any axially symmetric electric field having a saddle
point in the potential will have approximately the Paul field in the neighborhood
of that point. Thus, let us expand the potential function in a Taylor series about the
saddle point. Since the gradient of the potential is zero at that point, we have on
applying the given symmetry and Laplace’s equation:

φ = φ0 + i
∂2φ

∂x2
i
ξ2

i + ..... φ = φ0 + ∂2φ

∂x2
1
(ξ2 + η2 − 2ζ 2) 12.18

Since a saddle point can be produced by an unlimited variety of electrode shapes,
the choice of geometry can be made to accommodate the requirements of, for
example, laser beam access to the ions.

One of the earliest geometries used is that of replacing the hyperboloids of the
Paul trap with a right circular cylinder and planar end caps. The relative ease with
which precise cylindrical electrodes could be fabricated, and particularly the avail-
ability of analytical expressions for the microwave field modes in such a cavity,
were strong inducements to use this geometry.

The first theoretical treatment of the motion of ions in a straight cylindrical
trap was given by M-N. Benilan and C. Audoin (Benilan 73). They performed a
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numerical analysis of the motion of an ion in a trap consisting of a right circular
cylinder of radius r0 and length 2z0 with flat end plates at z = ±z0. The calculation
was carried out for the two cases r0 = √

2z0 which conforms to the electrically
symmetric option, and r0 = z0 which is favorable for the Q of the trap, viewed as
a microwave cavity. They found the calculated trajectories to be similar to those in
a Paul field, as should be expected, at least for small amplitudes. If the analytical
solution is expanded about the center with respect to r and z, we find the following:

	 = 2a
(

z0

r0

)
	0 − b

(
z0

r0

)
	0

(r2 − 2z2)

2r02 + · · · . 12.19

where 	0 is the potential applied to the cylindrical trap and the coefficients a and
b are functions of z0/r0. For the two choices of that ratio we find b = 1.103
for z0/r0 = √

2 and 0.712 for the other. If the expansion of the potential func-
tion is carried further we obtain higher order non-linear terms involving products
of the co-ordinates, leading to amplitude-dependent frequencies of oscillation, and
broadening of resonances. By interposing co-axial “guard rings” between the cylin-
der and end caps with adjustable potentials, it is possible to compensate for higher
order terms in the expansion of the potential function.

12.3.3 The Linear Paul Trap

Long after the original rotationally symmetric design, which we will in future
simply refer to as the Paul trap a linear rod version became popular for atomic
clock development since the application of laser resonance fluorescence with its
enormous signal-to-noise advantage supplanted all other detection techniques in
trapped ion spectroscopy. This meant that the ultimate electrode design must meet
the optimal needs of laser cooling and detection of individual ions at the zero-point
energy. The classical Paul trap is unsuitable for multiple ions, since the high fre-
quency field with its attendant micromotion is zero at only one point, the center,
and no more than one ion can occupy the center. We shall see in a later chapter
that to efficiently cool the trapped ions, a minimum condition must be met by the
frequency separations in the motional Fourier spectrum of the ions. If we look at
the expression for the Mathieu parameter q we see that if 
 is made large, then
r0 must be made very small, otherwise the required potential amplitudes would be
impractically high. Thus it was that the introduction of the laser has totally trans-
formed the scale of ion traps to the microscopic realm. In the linear form of the Paul
trap, the high frequency potential on the four conductors is used to achieve what
would be called “focusing” in the context of a mass filter, that is, confinement of
the ion motion in the transverse x–y plane. For axial confinement, various arrange-
ments of electrodes of different geometries have been used, all designed to produce
a shallow potential minimum along the z-axis. Two common designs to achieve this
consist of either two coaxial rings around the rods, carrying a positive DC potential
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Figure 12.9 Schematic drawing of one design of linear Paul ion trap

(for positive ions), or extending the rods through insulating spacers, again apply-
ing a positive DC potential to the extensions of the rods. A typical example of the
former linear arrangement is shown schematically in Figure 12.9. The separation
between the coaxial rings or the rod extensions in relation to the overall diame-
ter of the rod assembly will clearly determine the axial potential distribution at
the center of the trap. In either case, an accurate analysis of the electrode design
involves a rather complicated problem in electrostatics—the fields are of course
not static, but the wavelength corresponding to the frequency of the applied field
is so much larger than the size of the apparatus that retardation effects are entirely
negligible. To analyze the motion of a single ion in this type of trap we assume
a pure high-frequency quadrupole electric field, whose equipotential surfaces are
cylinders with hyperbolic cross sections, on which is superimposed a DC axially
symmetric field with a potential minimum at the center of the trap. If the elec-
trodes are actually rods with circular cross sections, rather than conforming to the
assumed equipotential surfaces, we showed above that the field geometry will nev-
ertheless approximate the ideal field distribution in the neighborhood of the center
of the trap. There it is given by the approximate expressions:

Ex =
[

k
2

+ V0

r02 cos (
t)
]

x Ey =
[

k
2

− V0

r2
0

cos (
t)

]
y Ez = −kz 12.20

where 
 is the (angular) frequency of the electric potential applied between one
pair of opposing rods and the other pair, r0 is the distance from the axis to the
surface of the rods where the electric potential is approximately 	(x, y) = ±V0/2.
In practice the binding force along the z-axis k = ωz

2/(e/M) is made very small
compared with the x, y component of the Paul field; therefore we will neglect the
constant terms k/2 (their effect would be to reduce the radial binding) and write the
equations of motion for an ion of mass M and charge e moving in such a field as:

d2x
dt2 = eV0

Mr2
0

cos (
t)x
d2 y
dt2 = − eV0

Mr2
0

cos (
t)y
d2z
dt2 = −ek

M
z 12.21
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The equation for the z co-ordinate is of course that of simple harmonic motion.
The equations for the x and y coordinates are the same as we encountered in the
original Paul trap geometry, and with the usual substitutions:

qx = −qy = 2eV0/M
2r2
0 θ = 
t/2

we obtain the following:

d2u
dθ2 − [2qu cos 2θ ]u = 0 (u = x, y) 12.22

In practice, qu � 1 and the adiabatic approximation applies, so that the pseudo-
potential function will have a deep minimum with respect to radial displacement,
for ions in the neighborhood of the center of the trap. The theoretically assumed
high frequency field is zero along the z-axis, and hence the micromotion amplitude
is zero there. It is for that reason that the linear form of the Paul trap has gained
wide interest in the field of frequency standards; it permits the laser cooling of
many ions to proceed to the point of crystallization along the z-axis, free of the
spectral complications arising from the micromotion, and the Doppler effect. In a
real device the high frequency field will not be exactly zero on the z-axis: there are
many imperfections one could think of to cause this: the rods may not be parallel,
the potential on opposing rods may not have the same phase, or the DC field may
be misaligned with respect to the z-axis, either because of misalignment of the
electrodes or because of surface charges on the rods. The microscopic dimensions
of the device make surface charges particularly insidious.

12.3.4 Planar Paul Traps

When advances in the techniques of laser manipulation of stored ions had reached
the level of making the observation of just one ion a reality, the required trapping
field had to conform to the Paul quadrupole field only over a microscopic saddle
point region.

In one variant of the Paul trap the cylinder and end caps have degenerated
into parallel plane sheets in order to simplify the fabrication of the electrodes and
maximize the visibility of the ions to probing laser beams. The ring is now a plane
sheet with a circular hole in it, and the end caps are parallel sheets possibly with
large coaxial holes covered with a highly transparent metal mesh.

The potential field at the center of the planar traps produced by the applied
electrode potentials is tractable by standard electrostatic field theory (Major, 2005).
In the neighborhood of the center the potential function can be expressed as a power
series in the cylindrical co-ordinates r and z; thus:

φ = φ0

[
c0− c2

R2 (2z2− r2) + c4

R4

(
1
3

z4− r2z2 + 1
8

r4
)

. . . .

]
, 12.23
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Figure 12.10 Schematic illustration of three miniature electrode geometries of Paul traps

~

Figure 12.11 An array of micro-traps each containing an individual ion

Figure 12.10 shows some of these microscopic traps. These simple shapes, and
many others, are dictated by the difficulty of fabricating electrodes on such a micro-
scopic scale.

The confinement of many laser cooled ions at energies approaching absolute
zero is incompatible with these geometries, since it implies that all the ions
must converge on the center as the temperature is lowered. An approach to a
possible remedy suggested long before the realization of single ion observation
(Major 77), is simply to have a large array of micro-traps, each containing a single
ion at its center. Such an array might be constructed as illustrated in Figure 12.11.
A number of plane parallel conducting sheets, all identically perforated in a regular
pattern, are stacked with the holes aligned. If we join alternate sheets electrically to
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a common terminal, so that all the sheets are connected to one or the other of two
terminals, and then apply the high-frequency voltage between those terminals, we
would create the desired quadrupole field at the center of each hole in the sheets.
Such an arrangement, if successfully constructed, could permit the observation of
a large number of individual non-interacting ions in a fairly compact space.

12.3.5 Miniature Paul-Straubel Trap

Another popular variant for the trapping of single ions, of even simpler geome-
try, is the so-called Paul-Straubel trap, which consists of just a microscopic wire
ring, perhaps 1 mm in diameter, carrying the trapping high frequency potential,
supported by thin straight wires, set between two or more plane electrodes some
distance away, as illustrated in Figure 12.12. The potentials on these plane elec-
trodes provide additional finely adjustable parameters to achieve the desired trap-
ping potential. This is made necessary principally by a problem that plagues all
microscopic traps: stray offset DC fields due to surface charges on the electrodes.
These fields introduce relatively large unwanted micromotion, whose energy is not
removed by laser cooling, and therefore prevents the achievement of quantum zero-
point energy. The Paul-Straubel electrode geometry requires a larger amplitude of
the high frequency field than a conventional Paul geometry for the same depth of
entrapment potential.

Figure 12.12 Geometry of the so-called Paul-Straubel ion trap
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12.4 Field Distortion due to Ions

In applications where many ions are to be contained, there is a limit to their number
set by the mutual Coulomb repulsion between the charged particles. The difficulty
in analyzing this type of system is that the field disturbance produced by the repul-
sion depends on the distribution of the charges, which in turn depends on the same
field disturbance. A rigorous solution therefore has to be self-consistent. It would
go well beyond our present interest to attempt such a calculation; instead, we will
make the crude assumption that the ions are small in number producing a small
perturbation of the field.

In the case of the Paul trap, there is empirical evidence to suggest that under
certain conditions a uniform distribution over the available confinement space is
a reasonable assumption. To the extent that that is true, the corresponding space
charge field would have the same quadratic dependence on the co-ordinates as does
the applied field, and therefore its effect is fully taken into account by increments
(of the same sign) in the values of the a parameters. In this approximation the
shift is �a = ρ/ε0 MΩ2, where ρ is the density of charge. Since these parameters
have opposite signs for the r - and z-coordinates in the Paul trap, it follows that one
will be decreased while the other increased. The effect is that the stability region
defined by the boundaries in the composite a–q diagram are narrowed, as shown
in Figure 12.13. The usefulness of this approximation is limited to establishing
at what ion number the electrostatic repulsion will compete appreciably with the
confining field, rather than as a quantitative model for accurately predicting ion
behavior at high number density. In practice, the maximum number of ions con-
fined is far below the number predicted by the simple theoretical model we have
assumed.

az

qz

Figure 12.13 The effect of space charge on the boundaries of the stability region in the
original Paul trap
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The availability of laser sources, particularly ones tunable to the optical
resonance of an ion species, has made it possible to carry out a scan of the
ion density in the trap through the intensity of the fluorescence. Even non-resonant
laser scattering from stored ions can be observed, as was first done using an Ar+ion
laser by G. Werth of Mainz University back around 1973. The approximate effect
of a space charge field in the linear Paul trap would be similar to the Paul trap;
the stability region is slightly displaced parallel to the a-axis, and the depth of the
pseudo-potential somewhat reduced. In the low temperature limit where only a
group of individual identical ions are strung along the z-axis, the mutual Coulomb
interaction can lead to remarkable patterns, defined by their spacing along the
z-axis as well as displacements in the radial direction. The stability of such a
configuration of ions requires that a displacement of any ion from its equilibrium
position on the z-axis should result in a net restoring force to re-establish equilib-
rium. This requires that the net Coulomb repulsion experienced by a displaced ion
from the other ions, be weaker than the restoring force of the Paul field.

12.5 The Effect of Collisions

Ideally, an ion following a stable orbit within the trap will continue to do so
indefinitely; however, in a real system an ion will eventually collide with other
background gas particles in the trap. Generally, the number density of ions is so
low that the probability of collisions with other ions is negligible; collisions are
most likely to occur with the parent atom or molecule, if ionization with an electron
beam is used to create the ions in the trap. In such a collision, a high-velocity ion
and an atom or molecule with thermal energy exchange roles, leaving an ion with
nearly the original low velocity of the neutral particle. It must not be thought, how-
ever, that this necessarily leaves the ion in a lower-energy orbit; on the contrary,
depending on the phase of the high-frequency field at the time of the collision, it
may go into a higher-amplitude orbit. If it is valid to assume that the probability of
a collision is independent of the velocity of the ion, then it will occur with equal
probability at all phases of the field. In that case, it can be shown that the phase of
the secular motion at the time of the collision determines whether there is a gain
or loss in energy. Clearly, the collisions continuously redistribute the energy of the
secular motion among the ions, and therefore a thermal distribution of velocities
may be established corresponding to a well defined temperature of the ions. In
contrast the micromotion is not statistical but determined by the amplitude of the
high frequency field at the positions of the ions.

Although charge exchange collisions are the most likely in the presence of the
parent particle, collisions with other gas particles may be important, depending
on the degree of ultrahigh vacuum in the system. Among the possible collision
processes that may occur, those conserving the total (translational) kinetic energy,
that is, elastic collisions, are the most likely. In this case the question of whether
a collision results in a gain or loss of energy on the part of the ion depends on the
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relative mass of the collision partners. If an ion is lighter than its collision part-
ner, it will be scattered with an increase in kinetic energy derived ultimately from
the high-frequency field. This can be readily argued on the basis of the adiabatic
approximation, in the limit of elastic scattering from particles that are so heavy as
to be immovable. In that case, collisions will cause changes in direction to occur at
random phases of the field; this can be shown always to lead to a gain in the kinetic
energy. The average increase in energy per collision is expected to be in proportion
to the initial energy, and as a result of successive collisions to continue to increase at
a rate dependent on the frequency of collisions. This is a well-known heating effect
of collisions in any system of charged particles subjected to any high-frequency
field, whether uniform or not. For example, since electrons are much lighter than
atoms, this applies to them particularly, and the effect is called simply rf heating.
The situation is quite different if the collision partners have equal mass; then it can
be shown that on the average there is no gain or loss. Finally, if the collision partner
has a smaller mass, there is a net loss of the average kinetic energy; this is familiar
in limiting cases where a heavy object is subject to numerous weak collisions with
very much lighter particles, as in the damping of oscillation of a pendulum due to
air resistance. In some compact designs of the mercury ion microwave standard, as
we shall see, a light buffer gas, such as helium, is used to cool the ions. However,
under high vacuum conditions, statistical averages on energy gain and loss may
not be particularly useful, since the number of collisions may not always be large
enough as a statistical sample. In some cases only a few collisions may put an ion
on a trajectory that intersects an electrode and be lost. In some of the early work it
was estimated that typically it took on the average tens of collisions before an ion
gained enough energy to reach an electrode and be lost.

12.6 Ion Observation

Central to the application of ion traps is the ability to observe the ions with
a good signal-to-noise ratio, identify them, and manipulate their quantum state.
Several techniques are now available to that end. The original studies of Paul et al.
were mainly motivated by their application to mass spectrometry. This obviously
requires a method that discriminates between ions of different mass (or more pre-
cisely, charge/mass ratio) with high resolution, and gives an accurate measurement
of ion number. The method they developed is analogous to that used in nuclear
magnetic resonance: the resonant absorption of RF energy by the ions from an
oscillating dipole electric field. In comparison with the method of resonant laser
scattering, the method most suited to the development of frequency standards, it
is by far the simplest in practice. The radiofrequency absorption method is imple-
mented by subjecting the ions to an electric field at the low oscillation frequency
β
/2 applied between the two end caps through a high Q tuned L-C circuit.
The complicated oscillatory motion of the confined ions is effectively coupled to
the outside circuit through the charges that they induce on the end caps, which act
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like the plates of a capacitor. Thus it is predominantly the component of the motion
along the z-axis that induces current in the outside circuit, a current that will have
the frequency spectrum of motion along that axis. Since the motions of individ-
ual ions are uncorrelated, the net current they produce would fluctuate as random
shot noise. However, if by exciting an oscillation in the tuned L–C detection cir-
cuit from a suitable outside generator they are subjected to a common oscillatory
electric field, a coherent global oscillation will be superimposed on the random
oscillations of the ions. This will induce a much stronger current to flow in the
detection circuit, since the ions are then moving in concert, at least in their response
to the external excitation field.

In the first stability region in the a − q diagram, where one commonly oper-
ates, the value of β lies between 0 and 1; on the two boundaries of that region β
is constant with β = 0 on one and β = 1 on the other. Elsewhere in that region
its exact value, and therefore the detection frequency, is a complicated function
of a and q, which approaches the simple formula derived above only in the limit
of small a, q. Therefore, in practice it is useful to have a graphical representation
in which points in the a − q diagram having the same value of β are joined to
form iso-β lines; such a diagram is shown in Figure 12.14. Now, from the defini-
tions of the parameters a and q, we can easily verify that the ratio a/q = 2U0/V0
for all ions, independent of their charge or mass. Therefore, for a fixed U0/V0
ratio, a plot of the parameter a versus q for different masses must lie on a straight
line through the origin with a slope of 2U0/V0, intersecting the iso-β contours
at points that depend on the charge/mass ratio of the ion. Therefore, in princi-
ple, if the detection field frequency is swept, ions of different mass will come
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Figure 12.14 The iso-β lines in the stable region of the a–q diagram
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into resonance with it, producing a mass spectrum. Furthermore, if we wish to
study the number of a particular species of ion in the trap, we can, for exam-
ple, vary U0 slightly while keeping V0 constant. Then ions of the given mass will
have their β value varied as the operating point shifts parallel to the a-axis, keep-
ing q constant. A fundamental condition on the required properties of the detec-
tion circuit comes from considerations of electrical noise. The ultimate aim is to
reduce all sources of noise below the fundamental shot noise due to the oscillating
charge being made up of indivisible ions; it depends on the average ion current as
follows:

〈i2
n 〉 = 2e〈i〉�ν, 12.24

where 〈i〉 is the mean signal current and �ν is the frequency bandwidth in which
the mean square noise current, 〈in

2〉 is determined. In addition to environmental
sources of fluctuation, this means ultimately that the fundamental Johnson (ther-
mal) noise must be less than the shot noise. The Johnson noise is given by the
following:

〈i2
n 〉 = 4kT

R
�ν 12.25

where T is the absolute temperature and R is the resistance through which the noise
current flows. It follows that ideally the value of R should be determined by the
condition that R〈i〉 > 2kT/e. But R〈i〉 is simply the voltage drop across the resis-
tance R in the presence of a current 〈i〉, and at room temperature, 2kT/e ≈ 0.05
volts. This is compatible with the signal expected according to our approximate
model from the current induced by 106 ions in a 1 megohm resistance.

If sufficient care is taken in the construction of the trap and detection circuit
to ensure adequate mechanical and electrical stability and isolation from environ-
mental sources of electrical noise, the ideal limit of observing individual ions can
be approached even for heavy ions. The fundamental thermal noise at room tem-
perature on the detection circuit, in a 10 Hz bandwidth, is on the order of 3×10−13

amp, whereas the current induced by a single ion oscillating at 250 kHz is on the
order of 2×10−13 amp. These numbers of course represent theoretical limits not
easily achievable in practice; it makes it all the more remarkable that evidence
of the discreteness of the charge of trapped ions was found early in the devel-
opment of the technique for heavy ions by G. Rettinghaus in Paul’s laboratory.
The evidence is established by analyzing the statistical distribution of the height
of resonance signals that indicate the ion population in the trap. At noise levels
sufficiently low that an increment of one ion is discernible, the ion signals should
fall into discrete levels distributed according to the Poisson distribution about the
average.

A more sophisticated and complex variant of this technique retains the resonant
excitation of the ion motion but instead of using the height of the resonance absorp-
tion signal as a measure of the number of ions, it drives the ions to the outer limit
of the trap where they are extracted out of the trap by a strong electric field, and
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then accelerated onto the cathode of an electron multiplier. Unlike the resonance
absorption signal whose amplitude is a function of many factors in addition to the
number of ions contributing to it, the electron multiplier output count necessarily
reflects more nearly the number of ions dumped out of the trap.

12.7 Laser Resonance Fluorescence Detection

The first successful experiment involving the resonance fluorescence detection of
trapped ions was carried out in 1972 by Major and Werth on the magnetic hyper-
fine resonance in mercury ions for a proposed spacecraft clock. This predates the
advanced development of laser techniques, including laser cooling, and therefore
the source of the resonance radiation at 194.2 nm was a conventional UHF excited
mercury vapor lamp. The detection of the fluorescent signal from the relatively
diffuse distribution of a small number of ions was extremely difficult requiring
automatic data handling and long integration times. More will be said about the
application of ion confinement to atomic frequency standards in the following
chapters.

Since it has become possible to synthesize tunable laser sources, resonance
fluorescence experiments have abounded using all manner of microscopic electrode
structures to confine and cool the ion or ions. The extraordinary brightness and
collimation of a laser beam properly aligned to irradiate an ion, and the use of
wide-angle optics to collect the scattered light ensure an adequate signal-to-noise
ratio even for a single ion! Formations of many ions crystallized in a trap have been
recorded with CCD cameras. In short, the laser has transformed the whole field of
ion confinement and quantum state manipulation and made possible far reaching
applications in addition to atomic clocks.

Since optical resonance fluorescence requires specific laser wavelengths to be
synthesized to suit particular ion species, a detailed description would have to be
directed at specific methods of wavelength synthesis for each particular case. How-
ever there are common essential elements that characterize systems using lasers to
cool and observe confined ions, whether as individuals, or as crystalline patterns of
many ions, and these we will attempt to describe in subsequent chapters.



Chapter 13
Isolated Ion Clock: A New Approach

13.1 The Original Concept

The exploitation of ions in confined isolation for the development of a new kind
of portable atomic frequency standard was first proposed by Major in 1969; it
was seen as an approach that promised extraordinary accuracy in a light, com-
pact device suitable for aerospace applications (Major, 1969). Since then, with the
advent of the laser, unimagined new technical frontiers opened up extending the
field into the regime of optical frequency standards. The original concept of using
resonant optical fluorescence to observe a microwave resonance in ions confined
in a Paul trap, an approach of severely limited signal-to-noise ratio using the then
available conventional lamps, quickly became an eminently fruitful approach when
suitable lasers became available much later.

In the first proposal to develop an ion clock, it was predicted that a microwave
resonance of unprecedented spectral resolution was possible at around 40.5 GHz
in mercury ions of isotopic mass 199, when observed under the perturbation-free
environment of field confinement in vacuum, where free observation times of tens
of seconds were routinely obtainable. Moreover, the relatively large mass of the
mercury ion would have the further advantage of a small (second-order) Doppler
width for a given distribution of kinetic energy, a subject we will consider in
greater detail later. The resonance is at the high end of the microwave region of
the spectrum, where for a given line width the resonance Q is high, and yet falls
in a range that can conveniently be reached by common frequency-synthesis tech-
niques. Finally, the short wavelength of the resonant microwave field (7.4 mm) per-
mits the physical dimensions of the microwave components to be correspondingly
small. For all these reasons it was argued that the choice of mercury is particularly
suited to fully exploit the new technique of field confinement in the development
of a spacecraft clock.

The observation of radio-frequency and microwave transitions in field-confined
ions had previously been successfully demonstrated on the singly charged ions of
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helium (He+) and molecular hydrogen (H2
+). These experiments were motivated

strictly by the intrinsic scientific interest in these atomic and molecular systems;
nevertheless, they are mentioned here as the first successful experiments in which
the Paul trap is used in the field of ion spectra rather than the original applica-
tion of mass spectrometry. They are noteworthy in having solved the problems not
only of producing the difference in population between quantum states necessary
to observe their resonance spectra, but also of adapting the electrode design of
the trap to the needs of microwave structures. To achieve the necessary population
difference between the states involved in the resonant transitions, use was made
of spin-dependent scattering processes with polarized atoms or photons, which
traversed the trap in the form of a beam.

13.2 Hyperfine Resonance in Trapped 199Hg+ Ions

13.2.1 Hyperfine Spectrum of the Ground State

In late 1972 at NASA’s Goddard Space Flight Center, by successfully applying
the technique of optical hyperfine pumping to ions suspended in a Paul trap, a
microwave resonance was observed by Major and Werth in mass 199 mercury ions
that was, as predicted, so sharp as to be beyond measurement by commercially
available equipment at the time (Major, 1973). The estimated fractional line width
had to be less than the best available standard; less than one part in 1010. This work
was discontinued by NASA in 1973, and it was not until a decade later that signifi-
cant progress was made by other groups towards a prototype microwave frequency
standard based on the mercury ion, and its commercial development.

The element mercury has many stable isotopes ranging from mass 196 to 204;
however, only the two with odd mass number are known to have a nonzero nuclear
magnetic moment associated with a nuclear spin: mass 199 and 201. It has his-
torically been a popular element in spectroscopic studies; many of the fundamen-
tal experiments on the technique of optical pumping of magnetic state populations
were first conducted on the isotopes of the mercury atom. The mass 199 isotope has
a natural abundance of 16.9%, a nuclear spin I = 1/2, and the ion has a resonance
fluorescence wavelength λ = 194.2 nm in the ultraviolet region of the spectrum.
The mercury atom and its ion are obviously complicated systems, with respectively
80 and 79 electrons outside the nucleus. The ion has only a single electron in the
outermost n = 6 shell, in a 6s state with zero orbital angular momentum. Therefore,
the ground state of the ion is labeled spectroscopically as 2S1/2

, which is the same
as, for example, the alkali atom Cs. Like that atom, the single “outer” electron
has a finite probability of being at the nucleus, and those isotopes whose nuclei
have a magnetic moment will have a magnetic hyperfine splitting of the ground
state energy, reflecting the two ways the electron spin (S = 1/2) and nuclear spin
(I = 1/2) are coupled according to quantum theory to produce a conserved total
angular momentum (F), namely F = I + 1/2 or F = I − 1/2. As already pointed
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Figure 13.1 The hyperfine structure of the ground state of the mass 199 Hg+ ion

out in connection with the other microwave standards, these two possible states
differ in energy because of the two possible orientations of the magnetic moment
of the nucleus relative to the direction of the magnetic moment of the electron cloud
in which it is immersed. This is the now familiar magnetic hyperfine splitting of
quantum energy levels, between which the standard frequency transitions occur.
The fact that the nucleus of the mass 199 isotope has a small nuclear spin I = 1/2
and yet a relatively strong magnetic interaction with the outer electron is an impor-
tant advantage weighing in favor of choosing the ion of Hg199 as the “working
substance.” The reason is that it gives a simple quantum-level structure, one that is
similar to the simplest of all, the hydrogen atom; hence there are fewer competing
states in trying to place the ions in the one required to observe the resonant transi-
tion. Figure 13.1 shows the relevant hyperfine quantum levels for the ground state
of the (Hg199)+ ion. As is by now familiar, the transition used as reference is the
so-called field independent hyperfine transition between the states with m F = 0.

13.2.2 Optical Pumping of Hyperfine States

In order to be able to observe transitions between these states with m F = 0, a
significant difference in the populations of these two states must be created. This,
it will be recalled, is due to the fact that a resonant magnetic field will stimulate
upward and downward transitions in each ion with equal probability; a net change
in populations can be observed only if there is a difference in the numbers of ions
making these transitions. Of the techniques we might consider for creating a differ-
ence of population between the desired m F = 0 states, spin-dependent collisions
with polarized atoms can be shown not to directly produce the desired difference.
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Figure 13.2 (a) The resonance transitions in mass 202 and 199 mercury ions (b) the observed
hyperfine components of 194.2 nm resonance line

The one fortuitous circumstance that provided an effective compact solution
before the advent of the laser, involves the ultraviolet resonance line in the emission
spectrum of mass 202 mercury ions. In Figure 13.2a are shown the pertinent low-
lying quantum levels for the mass 199 and 202 mercury ions. Figure 13.2b shows
a plot of the hyperfine components of the ultraviolet resonance transition between
the ground state and the first excited state, such as might be obtained with a high-
resolution ultraviolet spectrograph. Naturally, the relative heights of the peaks
depend on the particular lamp design, but their precise relative positions on the
wavelength scale are very nearly constant. We note that in the case of mass 199
ions, the ground state and first excited state are doublets because of the hyperfine
splitting. The separation of the hyperfine components in the first excited state is
very much smaller than that for the ground state because the distribution of the
p-electron responsible for the splitting in the excited state, unlike the ground state
s-electron, has little “contact” with the nucleus. The ground state, on the other hand,
has a relatively large frequency splitting of around 40.5 GHz, a value deduced at
the time of the original microwave experiment only indirectly from spectroscopic
data in the ultraviolet region of the spectrum. It is now known to over twelve signif-
icant figures! Isotopes with an even mass number, such as 202, have zero nuclear
spin and magnetic moment, and therefore their levels are not split. Now, because
of the difference in nuclear structure and mass between the two isotopes, there is
what spectroscopists call an isotopic shift in the spectrum of one isotope relative to
another. From the classic work of S. Mrozowski on high resolution spectroscopic
studies of the shifts in the spectra of the different isotopes of mercury (Mrozowski
1940), it was indirectly deduced that the UV emission line at λ = 194.2 nanome-
ters for mass 202 ions accidentally falls much nearer in wavelength to one com-
ponent in the mass 199 hyperfine doublet than the other. Furthermore, the Doppler
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broadening of the UV spectral lines of ions in the trap, though large, amounting to
perhaps 8 GHz for ions of energy 2.5 electron volts, is still very much less than the
hyperfine splitting. This, coupled with the greater overlap of the coincident lines
brought on by the same Doppler broadening, provides in a mass 202 lamp a rel-
atively simple, compact source for hyperfine pumping mercury 199 ions between
the desired hyperfine states.

While the use of a mercury 202 lamp remains the most suitable pumping source
where a compact, portable standard is required, there are enormous signal-to-noise
advantages to using laser techniques to generate the desired wavelength. A typical
approach would be to triple the frequency of a high-power stabilized laser operating
at three times the wavelength (582.6 nm) in the yellow region of the spectrum.
More will be said about the application of lasers to more recent developments in
ion standards in a later chapter.

The principle of the pumping process is illustrated in Figure 13.3. Mercury 199
ions confined in a Paul trap under ultrahigh vacuum are irradiated with a beam of
UV light from a specially designed mercury vapor lamp containing the enriched
202 isotope of mercury. The mass 199 ions in the trap can absorb radiation to any
significant degree only if the photon polarization and energy match an allowed
transition between its quantum states. Since the light from the mercury 202 lamp
is unpolarized, that is, contains equally all states of polarization, there will be no
restriction on what transitions the ions will make on that account. However, the
interaction between the photon and ion is a resonant phenomenon—it is not just
a matter of the photon having enough energy, it is a matter of having the right
energy. Therefore, only those mass 199 ions that are in the F = 1 state can absorb
the UV resonance light from mercury 202 ions in the lamp and make transitions to
the upper electronic state; the others, in the F = 0 state, are undisturbed. Ions in

194.2  nm

Hg     ion Hg     ion202 199

Figure 13.3 The quantum transitions involved in the optical pumping of Hg199 ions hyper-
fine populations using a Hg202 lamp
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the upper electronic state will, after an extremely short time, reradiate the excitation
energy by making downward transitions to both F = 1 and F = 0 hyperfine states.
Since once an ion reaches the F = 0 state it no longer responds to the pumping
light, eventually all the ions in the trap will end up in that state, creating the desired
difference in populations between the two hyperfine states.

13.2.3 The 202Hg Lamp Design

To anticipate the requirements the lamp must meet, we must consider several
aspects: First, the intensity required to pump the ion population at a sufficient rate,
and the related question of the spectral line width of the 194.2 nm light output,
second, the filtering out of undesirable wavelengths in the output, and finally, the
long-term stability and short-term noise in the light output.

In order to estimate the required light intensity from the lamp, we need to relate
the intensity of the pumping beam to the probability per unit time that an ion will
absorb a photon from it. This requires knowledge of the strength of interaction
between the electrons in the ion and the resonant ultraviolet light. As we saw in
dealing with the identical question with respect to the optical pumping of Rb, this
we can obtain from the process inverse to absorption, namely emission, since the
ion-dependent part of the interaction is the same for both radiation processes.

If the ions are irradiated by a parallel beam of resonant radiation of intensity
Iν, so that jν = Iν/hν is the spectral flux density of photons, that is, the number of
photons crossing unit area per second per hertz, then the probability per unit time
of an ion absorbing a photon can be estimated from the following useful result:

1
τp

= λ2

4
�νn jν. 13.1

The form of this result suggests that λ2/4 is the cross section that the ion presents
to the beam in its resonant response, a cross section that curiously reflects the
wavelength of the radiation rather than the physical size of the ion. This fact has
an important implication for the use of the scattering of a beam of particles as a
method of probing the state of other particles: Resonance scattering can have a far
greater cross section, in our case where λ2 = 3.7×10−10 cm2, compared with (say)
spin exchange, whose cross section is on the order of π(2ratom)2 ≈10−15 cm2.

To gain some appreciation of the numerical scale of the quantities involved, par-
ticularly the required light output from the pumping lamp, assume that τp = 0.1 sec
is the average time between photon absorptions by a given ion, and �νn = 3×108

Hz; we find a required photon flux density of jν = 3×106 photons/m2 · sec · Hz.
Of course, this represents only a small fraction of the total output of the lamp—
the light output of any real lamp will contain many other unwanted wavelengths.
Depending on the “speed” of the optics used to form the beam and the efficiency of
the lamp, the input power to the lamp will usually be on the order of several watts.
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The ability to project the output of the lamp into the trapping region is limited
fundamentally because the lamp output comes from an extended surface, and any
attempt to reduce the beam diameter with some form of optics inevitably leads
to an increase in the angular spread of the rays making up the beam: This is a
consequence of the brightness theorem, which we have already encountered. Since
the acceptable solid angle spanned by the rays entering the trap and the cross
section of the beam they define are limited by the electrode geometry, a conse-
quence of the theorem is that the amount of light that can be made to pass through
the trap depends only on the brightness of the surface of the lamp. This is a far
more significant statement than it may appear: It means that there is a fundamental
limit set by the lamp brightness to the benefit one can achieve by “improving” the
optics. Furthermore, the smaller the solid angle and beam cross section defined by
the electrodes, the lower is that limit.

In the past it was an all-consuming pursuit of researchers to overcome the
limitations of conventional light sources; but now, the challenge is to design a UV
laser source tunable to the resonance fluorescence wavelength of the mercury ion.

13.2.4 Detection of Microwave Resonance

The optical hyperfine pumping technique, as we have observed before, not only
produces the necessary difference in populations of the hyperfine states, but also
allows that difference to be monitored, thereby permitting the resonant transitions
induced by a microwave field to be detected as a function of the frequency of that
field. Unlike the Rb standard, however, in which hyperfine pumping is also used,
the detection of resonance is not made through the change in the intensity of the
transmitted pumping beam, but rather through the fluorescence, that is, reradiated
light. This alternative mode of detection is dictated by signal-to-noise consider-
ations. The relatively small number of ions in the trap means that a given photon
in the beam has a very small probability of being absorbed by an ion; consequently,
the total number of photons passing through the trap is little affected whether
the ions are in an absorbing hyperfine state or not. Even under ideal conditions
where the noise is predominantly the fundamental shot noise, the small change in
the transmitted light due to resonant hyperfine transitions would be swamped by
that noise. In a real system the situation is even worse, since there may be residual
instabilities in the lamp output and other sources of noise.

The fluorescent UV light on the other hand, which is radiated in all directions
(but not necessarily isotropically) can be detected with enhanced signal-to-noise
ratio because photons which are not absorbed and reemitted as fluorescence, are
discriminated against by suitable optics and do not contribute as much to shot noise,
or to any other noise originating from the lamp. Wide-angle optics are needed to
concentrate the radiated fluorescence onto the finite area of the detector. If the
number of ions in the trap contributing to the fluorescence is N , then N /τp is the
average number of fluorescent photons radiated per second into a 4π solid angle,
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and hence if the optics accept a solid angle 
, the number of photons reaching
the detector would be N
/4πτp. An experimentally important quantity is the ratio
of the number of fluorescent photons radiated per second to the total number of
photons in the beam passing through the trap per second. Using the expression we
have found for 1/τp, this ratio is as follows:

ID

I0
= N

λ2

4A
�νn

�νL




4π
, 13.2

where �νL is the spectral width of the light from the lamp and A is the cross-
sectional area of the beam. If, for example, we set N = 106, A = 10−4 m2,
(�νn/�νL) ≈ 0.1, 
/4π = 0.01, we find that the ratio is very small, amounting
to less than 10−7. This shows the severity of the problem of adequately reducing
the amount of spurious light scattered from electrode surfaces or the vacuum shell
and preventing it from reaching the detector.

In the ideal case, where the dominant type of noise present is shot noise, the
signal-to-noise ratio for a fluorescent photon count of n photons is

√
n. If this is

accumulated at a constant rate over a time interval τ, the signal-to-noise improves
with counting time as

√
τ. In reality, there will always be other sources of noise,

particularly from background radiation when a conventional lamp is used. The
other important source of noise is the dark current in the photomultiplier tube
used to count the photons. This noise problem was expected to be minimized by
the choice of the mercury ion with its resonance line well in the ultraviolet region
of the spectrum. This circumstance allows the use of photomultipliers (so-called
solar-blind tubes) whose cathodes have low dark current due to a high work func-
tion, and are sensitive only to UV and shorter wavelength photons, and not to the
light from the hot cathode or other ambient light.

13.2.5 Microwave Resonance Line Shape

Like the Cs beam standard and the Rb gas cell standard, the mercury ion standard is
a passive compact resonator, responding sharply to a particular frequency of exci-
tation by an externally provided microwave field. Its compactness makes it akin to
the Rb resonator, but a resonator without the perturbing effects of collisions with
a background gas of uncertain composition, and one in which the frequency shifts
induced by the pumping light can far more easily be eliminated. Since the ions can
be contained in a space comparable to the wavelength of the resonant microwave
field, the conditions exist for the Dicke effect to be observed, a Doppler-modifying
effect of great importance to the Rb and H-maser standards. We recall that the
Doppler effect, which generally is a source of broadening in optical spectra, has
a radically different effect on the observed spectrum when the particles are not
free to move distances much greater than the wavelength. We recall that under
these conditions, an oscillating particle interacting with a radiation field sees a fre-
quency that is modulated by the Doppler effect with a small index of modulation.
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Since the particle motion has a discrete spectrum, the frequency modulation of the
field is at discrete frequencies, and therefore its Fourier spectrum will consist of an
undisplaced central frequency with well separated discrete frequencies on either
side, called the Doppler sidebands. The observed microwave resonance spectrum
then will have a central sharp line, free of first-order Doppler broadening; however,
its shape and the displacement of the center frequency due to the second-order
(relativistic) Doppler effect depend on the velocity distribution of the ions. It is
reasonable to assume that the ion distribution center in the trap remains fixed as the
individual ions collide with other particles and eventually reach the electrodes and
are neutralized; hence there should be no first-order Doppler shift. To the extent
that this is true, the microwave field need not be stationary; the phase need not be
constant over the ion distribution. This simplifies the technical problem of provid-
ing the resonant microwave field; all that is necessary is to irradiate a suitable hole
in an electrode with the desired microwaves from a horn.

It is interesting that in introducing his analysis of the way the Doppler effect
is manifested in the spectra of gases in thermal equilibrium, Dicke begins with
the example of a particle constrained to move back and forth at constant speed
between two fixed points and considers the way the spectrum depends on the
distance between the points in relation to the wavelength; then he proceeds to
consider the random motion of atoms in thermal equilibrium. In our present case
the confined ions in fact are more like his introductory example; their oscillations
contain theoretically an infinite series of frequencies, but under actual operating
conditions only three dominant frequencies. In general, β is not a rational number
(expressible as a ratio of two whole numbers), and therefore strictly speaking, the
motion is not periodic. Nevertheless, the motional spectrum is discrete, with fre-
quencies β
/2, 
− β
/2, and 
+ β
/2. Now, if we assume that the microwave
field can be resolved into plane waves traveling in random directions, then the
spectrum of one such plane wave as seen by an oscillating ion will, on account of
the first-order Doppler effect, consist of the undisplaced frequency of the wave ν0
and Doppler sideband frequencies at ν0 ± lωr , ν0 ± m(
 − ωr ), ν0 ± n(
 + ωr ),
etc., where ωr = βr
/2, and l, m, n are integers. Similar frequency components
arising from the axial motion are also present. The relative amplitudes of these fre-
quency sidebands depend on the distribution of amplitudes (or energy) of the ions
and the spatial distribution of the field. Naturally, it is desirable that the central,
undisplaced frequency have the dominant amplitude with only weak sidebands; this
will occur if the amplitudes of the ion oscillation are smaller than the wavelength.
Apart from this requirement, the presence of the sidebands may be ignored; the
main concern is the central line and its frequency width. An important contribution
to this width is the second-order Doppler effect, which varies as (V/c)2 and, as we
have seen in an earlier chapter, requires the special theory of relativity to give the
correct expression for it. It is not difficult to estimate the size of the second-order
Doppler broadening of the central line if we assume that it is legitimate to apply the
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relativistic Doppler formula, which is derived for uniform motion, to an oscillating
ion. In that case, for example, the instantaneous frequency of the field seen by an
ion oscillating at an angular frequency ω with amplitude A is given by:

ν = ν0

[
1 − V

c
cos α + 1

2

(
V 2

c2

)
+ . . .

]
, 13.3

where the velocity V = Aω cos (ωt), and α is the angle between the direction of
the wave and the line of oscillation of the ion. The second-order Doppler shift can
be written as a fractional shift amounting to 〈Ek〉ave/Mc2, that is, the mean kinetic
energy divided by Einstein’s rest mass energy Mc2. In the case of ions in a Paul trap
operating with a = 0, q < 1, the average total kinetic energy is, as we have seen,
constant throughout the ion motion, merely alternating between the high-frequency
jitter and the low-frequency oscillation. For a mass 199 mercury ion having an
average kinetic energy of 2.5 electron volts, the fractional frequency shift is about
1.4 × 10−11. This is evidently an important effect which must be reduced either
by using cold ions, or a detailed knowledge of the energy distribution of the ions
must be found, on which a fine theory of the line shape can be based. The first is, of
course, far more promising: since it has become possible through the availability
of laser pumping sources not only to greatly improve the signal-to-noise ratio, but
actually to cool the ions to the point where the second order Doppler effect is
negligible, as we shall see in a later chapter.

It is possible in theory to determine the energy distribution of the ions in a Paul
trap by making use of those same Doppler sidebands we were assured could be
ignored as not affecting the central frequency. Their relative amplitudes, in fact,
contain all the information needed to determine the amplitude distribution of the
ions, if the latter move in a resonant field of known pattern, such as the TE011
mode of a cylindrical trap. Given the spatial dependence of the field in such a
mode, it is possible to compute the amplitudes of the sidebands for each assumed
amplitude and frequency of oscillation of an ion, and ultimately to use the observed
sideband amplitudes to find the motional amplitude distribution. Armed with this,
the second-order Doppler correction to the resonance line shape can be carried out.
Fortunately with laser cooling this is no longer necessary.

13.2.6 The Magnetic Field Correction

As with all standards based on the magnetic hyperfine transition, there is a need
to prevent any significant overlap in frequency between the desired transitions
between the m F = 0 sublevels and those involving the magnetic field-dependent
m F = ±1 sublevels; this dictates that the ions be immersed in a weak uniform
magnetic field. Such a field has, as we saw in the last chapter, a predictable effect
on the ion motion. For a massive ion such as that of mercury, the Larmor frequency
ωL = eB/2m in a field such as 10−4 tesla (1 gauss) is very small, amounting to
only 25 rad/sec, or about 4 Hz. This means that ωL/
 � 1 and the effect on
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the trapping parameter ar is negligible; in any case, an axial magnetic field tends
to enhance radial confinement and has no effect on the axial motion. Moreover,
its presence is beneficial in collimating an axial electron beam, if such is used to
produce the ions from the parent atoms.

However, the magnetic field will displace the reference frequency. But because
the hyperfine frequency for the Hg199 ion is so much larger than, for example, the
hydrogen value, the magnetic field correction will be far smaller. This follows from
the Breit–Rabi formula, which in this case leads to the following:

ν = ν0 + 9.7 × 109 B2, 13.4

where B is in teslas. Since the applied field strength need only just exceed the
residual inhomogeneity of the magnetic field over the space occupied by the ions,
the correction is below the order of 10−2 Hz. As usual, the value of the magnetic
field intensity B can be determined by observing the field-dependent transitions
involving �m F = ±1 and �F = 1, whose frequencies are given with sufficient
accuracy by

νm =±1 = ν0 ± 1.4 × 1010 B + 9.8 × 109 B2. 13.5

For a field of 10−7 tesla these frequencies lie above and below the zero field hyper-
fine frequency by around 1.4 kHz.

13.2.7 The Physical Apparatus

Having dwelt at some length on the principles underlying the operation of the mer-
cury ion resonator, we will now consider some of the salient experimental prob-
lems.

Figure 13.4 shows schematically the general arrangement of the parts that
make up the original NASA mercury ion resonance apparatus. In this design the
electrodes were of stainless steel, precisely machined to the proper hyperbolic
geometry with r0 = 1.13 cm and r0/z0 = √

2. The cylinder is drilled with dia-
metrically opposite holes to admit the pumping light and the resonant microwaves.
Similarly, one end cap is slotted to allow the fluorescent light to pass to the detec-
tion system, while the other end cap has a hole to admit the ionizing electron beam.
UV grade fused quartz or sapphire windows are incorporated in the vacuum shell
for the transmission of the pumping light and fluorescence. The vacuum is main-
tained in the ultrahigh vacuum region below 10−7 Pa with an ion pump. The 83%
enriched mercury 199 is most conveniently obtained in the form of the oxide HgO,
and the mercury is reclaimed by heating the HgO slowly to break down the com-
pound into oxygen gas and metallic mercury (remember Lavoisier?). The copious
volume of oxygen must be pumped away and the pure mercury condensed in a
side arm, whose temperature can be controlled to control the vapor pressure. Since
the equilibrium vapor pressure is relatively high at room temperature (10−1 Pa),
the problem is not to generate a sufficient density of atoms in the trapping region
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Figure 13.4 The original NASA Hg+ ion microwave resonance system

but rather to keep it under control at the desired low pressure. The electron gun
essentially consists of a heated electron-emitting dispenser cathode and a simple
cylinder forming a Wehnelt electrostatic lens, which can also serve as a control
electrode to vary or stop the electron beam from reaching the trap. At the normal
operating cathode temperatures around 1000◦C, the light emitted, although mostly
at a wavelength for which the photomultiplier is “insensitive,” nevertheless can
add to the background photon count unless precautions are taken to avoid it. Fortu-
nately, it is easy to separate the electrons from the photons emitted by the cathode
simply by using electrostatic fields to deflect or focus the electrons onto a small
aperture, leaving the photons to continue in their path onto an absorbing surface.
The electron gun is usually mounted coaxially with the trap behind one of the end
caps, which has a small aperture at its center for admitting the electrons into the
trapping region.

Perhaps the most critical hardware problems center on optimizing the output
of the Hg202 lamp at the desired wavelength, and the wide-angle optics necessary
to detect the fluorescence from the ions while suppressing spurious background
radiation. The lamp is generally a fused quartz (UV grade Supersil) sphere typi-
cally 1.5 cm in diameter with a cylindrical hollow stem for ease of mounting and
control of the mercury vapor pressure through the temperature of the condensed
mercury in it. The 74% enriched Hg202 isotope, like the Hg199, is obtained in the
form of the oxide. The successful detection of the fluorescence from the small num-
ber of ions depends critically on the lamp providing an intense, stable output at the
194.2 nm resonant wavelength, with a manageable amount of the strong line at
253.7 nm emitted by the more numerous neutral mercury atoms. Ordinary mercury
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vapor lamps in fact emit this latter wavelength with great efficiency; and do so in
spite of the fact that it is classified spectroscopically as an “intercombination line,”
which, according to one approximation, is forbidden. General Electric and other
companies have long exploited this fact in the design of the highly efficient fluo-
rescent lamps; it is the UV emitted by mercury that causes the phosphor lining of
the lamp walls to emit that ghastly glow. The presence of almost any background
gas, whether purposely introduced or such as might evolve from the walls of the
lamp, tends to favor the emission of this 253.7 nm line over the desired ionic line.
This is unfortunate, since the presence of a “carrier” gas, typically a noble gas used
in metal vapor lamps, tends to stabilize the lamp and make it far easier to ignite.
As a source of the ionic line at 194.2 nm, the lamp is most brilliant when operated
in an arc mode in high vacuum. Like the Rb lamp, the mercury lamp is excited by
an electrodeless discharge in a UHF coil, but with much greater power, typically
25 watts. The sole drawback to the vacuum lamp is the formation after a few hours
of operation of a grayish deposit on the inner surface, causing deterioration in the
output intensity at 194.2 nm. Even with a vacuum lamp, the emission at 253.7 nm
can still degrade the fluorescence signal from the trapped ions, since it contributes
nothing to the signal but simply adds noise through spurious scattering from other
parts of the apparatus. The ionic line is favored by high vapor density, presum-
ably because of the “imprisonment” of the 253.7 nm radiation by repeated absorp-
tion and reemission by neutral mercury atoms; the ion density remains well below
the point where multiple absorptions can take place. To further reduce the relative
intensity of the 253.7 nm line, an external neutral mercury vapor filter, consisting
of a long cylindrical absorption cell operating around 200◦C, can be used.

13.2.8 Detection of UV Fluorescence

The suppression of stray scattered UV pumping light requires that very sharp edged
apertures be used in defining the pumping beam, with the window leading into
the vacuum chamber as far removed as possible from the ion region and made of
high-quality UV grade quartz. After passing through the ion region, the beam must
be totally absorbed, a problem classically solved with a Wood’s horn, a curved
and gradually constricted tube lined with an absorbing material. Naturally, any
such material used in the vacuum chamber must be compatible with maintain-
ing ultrahigh vacuum; a material particularly useful not only as an absorber of
light but also mercury vapor (through the formation of an amalgam) is gold black
(sic). This is very finely divided gold deposited by vaporizing gold in an inert
atmosphere to form a “cloud,” which results in a thin layer of fine gold particles
being deposited on all surfaces. It is an efficient light absorber and hence looks
black simply because on a microscopic scale the surface is like a dense forest, and
light falling on it has little chance of escaping.

The fluorescence light detector is typically a solar-blind photomultiplier with
a Cs–Te photosensitive, semitransparent end-on cathode. Such a photomultiplier
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may have a cathode quantum efficiency approaching 10%; that is, one in ten
photons falling on the cathode results in one electron being ejected and acceler-
ated to the first of perhaps fourteen dynodes. The material of the dynode (often
beryllium–copper) is such that the impact of the electron causes several secondary
electrons to be ejected, which in turn are accelerated to the next dynode; thus
multiplication in the electron number occurs at each stage by this process of
secondary electron emission. Of course the same precise number of secondary
electrons is not emitted every time; hence there will be some statistical fluctua-
tion in the current gain. However, this is not an additive noise that could swamp a
small signal; rather it is a fluctuation in the multiplication factor, and the smaller
the number of photoelectrons emitted by the cathode, the smaller will be the
output fluctuation. A far more important source of noise in photo-multipliers, and
one that does set a limit on their ability to detect small changes in the number of
photons falling on their cathode, is the dark current and its attendant shot noise.
Even when a photomultiplier is completely shielded from all external sources of
radiation, if it operates at finite temperatures, there will inevitably be some random
thermal “evaporation” of electrons from the cathode surface. The extent to which
this occurs depends on the amount of energy required to free an electron from the
surface, relative to the mean energy of thermal excitation, which of course is pro-
portional to the absolute temperature. One of the important advantages of the mer-
cury ion is that the fluorescence photons, being in the UV region of the spectrum,
have a relatively high energy, and therefore the cathode material can be chosen to
have a large “work function,” that is, energy to free an electron from the surface,
resulting in very low dark current at ordinary temperatures. Furthermore, as already
noted, such a cathode material will be insensitive to smaller energy photons in the
visible region of the spectrum. Experimentally, this is of critical importance, since
it makes the detector quite insensitive to ambient room light, but more especially
to the glow from the heated cathode of the electron gun used to produce ions in the
trap. Further discrimination against 253.7 nm and other visible light is achieved
by placing in front of the photomultiplier an interference filter with a pass-band
centered on 194.2 nm and blocked against the visible region of the spectrum.

13.3 A Portable Hg199 Ion Microwave Standard

13.3.1 The Flywheel Oscillator

As a passive frequency standard an essential element is a flywheel oscillator of
high stability and low noise from which is derived the microwave field tuned to
the ion resonance. A frequency synthesizer using the flywheel as reference then
provides convenient output frequencies. The flywheel may take the form of a
hydrogen maser in laboratory installations, a microwave oscillator such as a dielec-
tric resonator oscillator or a high-quality quartz crystal oscillator in portable units.
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The extraordinary sharpness of the mercury ion resonance places a far greater
demand on the spectral purity of the synthesized frequency inducing transitions
than, for example, the classic Cs standard. In view of the degradation in spectral
purity that occurs in a straight frequency multiplication chain, a critical design
problem is to apply the advanced synthesizer techniques discussed in Chapter 4
to minimize this, or alternatively, optimize the operation of a cavity stabilized
microwave oscillators, such as a Gunn diode, to obtain a spectrally pure low-noise
output.

The Gunn diode is a solid-state device based on a phenomenon called the Gunn
effect, exhibited, for example, in a uniformly doped n-type GaAs crystal. In such a
crystal, the application of a steady voltage beyond a certain threshold value results
in a fast pulsating current. This odd behavior finds explanation in the fact that when
an applied electric field exceeds a certain threshold value the electrons responsible
for conduction in this particular crystal can make quantum transitions to an upper
band of quantum states characterized by an effective electron mass that is larger
than the effective mass for the lower conduction band. The consequence of this
is vaguely reminiscent of electron bunching in the klystron: As the threshold field
across the diode is passed, transitions occur at the negative electrode, putting some
electrons in a more slow-moving state while the others continue with a higher drift
velocity. This creates a narrow region of rapid change in electron concentration
called a “domain,” which advances with fewer electrons in front and a “pileup” of
electrons in the back. When the domain reaches the positive electrode, there is a
pulse of current in the outside circuit, the electric field is again as it was before the
creation of the domain, and the cycle is repeated. Depending on the transit time
of the domain across the diode, the duration of the cycle can equal a period of
oscillation in the microwave region of the spectrum.

13.3.2 Resonance Signal Handling

In order to observe the precise frequency at which the peak of the resonance occurs
in the mercury ions requires first, that the ions be observed freely interacting with
only the microwave field, and second, that an optimum scheme be designed for
averaging the fluorescence signal and its correlation with the microwave frequency.
The first requirement is met simply by interrupting the pumping light during the
“interrogation” of the ions; this may be done either by modulating the power of
excitation of the lamp or, preferably, by an electro-optic shutter, which would allow
the lamp to remain operating in a stable condition. To maintain the ion population
in the trap, the electron beam is also pulsed by a suitable voltage on the control
electrode; this is preferred to operating with a continuous beam, albeit a weaker
one, which may perturb the ions through spin exchange collisions and add spurious
light from particles in the trap excited by electron collisions. At the beginning of
the detection cycle the electron beam is turned on for a short time to “fill” the trap
with ions, while the pumping light beam remains on for an additional period to



278 The Quantum Beat

set up the hyperfine population difference. Then the light is turned off while the
microwave field of fixed frequency is turned on for a period to induce transitions
between hyperfine states “in the dark”; and finally, the pumping light is turned
back on to observe the degree to which transitions have occurred by counting the
fluorescence photons detected by the photomultiplier. The electron gun is again
pulsed on, and the cycle is repeated.

The difficulty of having a weak fluorescent signal, which is aggravated by the
presence of stray background radiation and the need for using a “time bridge” to
compare photon counts taken at different times to determine the extent to which
the microwave field is inducing transitions, makes the statistical handling of the
photon counting data particularly important. The ion number decays in time, and
the initial number produced by successive electron pulses will fluctuate, giving
rise to fluctuations in the intensity of fluorescence. There will also be fluctuations
in the intensity of the pumping light, with possibly a longer-term drift. Clearly,
each detection cycle must be looked on as an independent repetition of the same
measurement, and the photon count data must be taken and reduced in a way that
yields the resonant frequency of the ions, independent of the number of ions or
the intensity of the pumping light. One way is to program the synthesizer to step
the microwave frequency between two values, slightly above and below a center
frequency, which is itself ultimately servo-controlled to lock on resonance with the
ion hyperfine frequency. Just how far above and below the center frequency the
two frequencies should be set is determined by the criterion that the photon count
be most sensitive to changes in frequency at those points, that is, the frequencies
at which the resonance curve has the greatest slope, assuming the noise level is
constant. For an ideal (Lorentzian) resonance curve, such as would result just from
lifetime (or “natural”) broadening of the transitions, the greatest slope occurs at
ν = ν0 ± νm , where νm = �ν/2

√
3 and �ν is the width at half amplitude of

the resonance line. This width being on the order of 1Hz shows the extraordinary
spectral purity implied in the microwaves that must be used, that is, freedom, for
example, from residual frequency-modulation noise. In this scheme a fluorescence
photon count is obtained (after transitions are induced in the dark) at the two fre-
quencies for each detection cycle. Under ideal conditions, the two photon counts
are identical only when the two frequencies are symmetric about the center of the
resonance curve. By subtracting one from the other for each detection cycle and
averaging over many cycles, we would have a signal that would pass from a nega-
tive value through zero to a positive value as the microwave frequencies are swept
across the resonance. This is precisely the kind of error signal needed for a servo
loop to phase-lock the crystal to the ion resonance, since it is zero when the fre-
quency is just right, and it distinguishes between being too low in frequency and
too high. We know, however, that as the ions slowly escape from the trap there is a
slow decrease in the number contributing to the fluorescence within the period of
each cycle. For times short compared to the mean ion lifetime, the rate of decrease
is nearly constant, and a first-order correction is obtained by taking the second
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differences between the photon counts. This requires that a third count be obtained
within each cycle, after the field frequency has been switched back to its initial
value. Symbolically, this amounts to computing the signal as follows:

S = [N1(ν1) − N2(ν2)] − [N2(ν2) − N3(ν1)]. 13.6

Since these counts are accumulated over equal intervals of time, it follows that any
linear decay in the ion number or drift in the pumping light, or even the improbable
aging of the photomultiplier cathode, will result in N3(ν1) having twice the correc-
tion of N1(ν1) because of the additional delay in obtaining it. From the expression
for the second difference we see that such linear variations in the photon counts
will automatically drop out.

To allow for the possibility of fluctuations in the initial number of ions between
different cycles, or variations in the lamp output on a time scale approximating the
cycle repetition time, it would be desirable to “normalize” the counting data by
dividing by the total number in each cycle.

Since the data comes in digital form, its digital processing is readily carried out:
the arithmetical operations to obtain 〈S〉 and the algorithm for its averaging over
the desired number of cycles. That average is converted to an analog signal, and
before it is applied to the controlling element in the flywheel oscillator, it must,
for a stable servo-control loop, be passed through an analog integrator. Such an
integrator produces a voltage ramp in the output for a constant voltage input; the
slope of the ramp is ascending for a constant positive input, descending for a nega-
tive one, and flat for zero input. Needless to say, extreme stability is required of the
integrator; any drift in the output voltage for a given input will cause a frequency
offset from the true ion resonance.

When the servo-control loop is closed, any error signal from the photon-count
computer will cause a voltage ramp to appear at the oscillator control element, tend-
ing to change the oscillator frequency in the direction of reducing the error, until
finally the error reaches zero and the integrator output is constant, fixing the oscil-
lator frequency. At this point the microwave frequency that is coherently derived
from the crystal oscillator is locked on to the center of the ion resonance.

If we compute the figure of merit, as previously defined for the Cs standard,
namely F = (Signal/Noise)ν0/�ν, assuming that the noise is solely due to the
photon shot noise, we find the following:

F = Nr − N0√
Nr − N0

ν0

�ν
13.7

where Nr , N0 are respectively the photon counts at resonance and far off resonance
(background counts). This is an important figure, since in fact the mean fractional
deviation in the frequency is proportional to 1/F ; thus, in terms of the total count-
ing time τ we can write

σ(τ) ≈ �ν
ν0

√
Rr + R0

Rr − R0

1√
τ
, 13.8

where the R’s are the photon counting rates.
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With the potential of realizing resonance line widths on the order of 0.1 Hz
and a signal/noise ratio of 103 for say a 100 second averaging time, the mercury
ion standard promises a fractional deviation in frequency of only 2.4 parts in 1015,
equaling the stability of the hydrogen maser, with the potential for matching the
absolute accuracy of the Cs standard; all this in a device that would fit in a shoebox–
the attribute that first motivated the experiments at NASA.

In recent years it has come under commercial development, and prototype
models have been manufactured and subjected to long-term comparison with other
time standards at the U.S. Naval Observatory. The commercial models use helium
at low pressure as a background gas in the quadrupole trap to produce a viscous
drag on the ion motion, thereby tending to slow it down and reduce the second-
order Doppler broadening of the resonance. As noted in the original NASA report,
since the helium atom is only 1/50 the mass of the mercury ion, the motion of the
latter is affected only in small increments when collisions occur with the helium
atoms. Not every collision results in a loss of kinetic energy, even if the helium gas
is much colder, but over a complete period of oscillation of the ion there will be an
average transfer of a small fraction (proportional to the mass ratio) of the ion kinetic
energy to the helium gas, where it is degraded into heat. Unfortunately, the use of
helium compromises the whole idea of completely isolating the atomic system
responsible for setting the frequency standard. Although the density of helium
needed to cause an appreciable cooling of the ions is small (typically no more than
10−3 Pa), nevertheless, at the level of accuracy being contemplated here (parts in
1015) we should expect it to cause a significant (positive) shift in the hyperfine
frequency. But perhaps more importantly, since the collision rate depends on the
temperature of the helium gas, it makes the ion frequency susceptible to changes
in the environment. Although it has not so far been attempted, it may not be imprac-
ticable to admit the helium in the form of a beam that can be programmed to be
shut off and the remaining gas rapidly pumped out of the trapping region prior to
the “interrogation” of the ions during the observation cycle.

The development of the laser, which we shall take up in the next chapter,
brought the fulfillment of the promise of isolated ions as the basis for the ulti-
mate frequency standard closer to reality. Laser technology brought immediate,
powerful solutions to both experimental difficulties encountered in the mercury
ion standard: First, the degradation of the signal/noise ratio due to stray scattering
of the optical pumping beam, and second, the broad energy distribution of the ions,
leading to a (relatively) large second-order Doppler broadening of the resonance.
The two outstanding attributes of laser light, namely directionality and spectral
purity, are precisely those needed for achieving the optimum signal/noise ratio for
the resonance fluorescence signal from the ions. The brightness of a laser source is
incomparably greater than a conventional lamp, even a mercury lamp operated in
a brilliant “arc” mode, as was developed in the original mercury ion experiment.
This means that radiant energy can be projected in a laser beam with such small
divergence that it has become proverbial.
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In designing the optics for the pumping beam it greatly simplifies matters that
the intensity profile over the cross section of a laser beam falls off very rapidly
with distance from the central axis. Furthermore, any beam-defining apertures that
are used can be very far removed from the ions, without the severe loss of beam
intensity that inevitably occurs with a conventional source.

The remarkable power and elegance with which laser technology removed the
severe difficulties that had to be overcome initially to observe the spectra of isolated
ions illustrates that perhaps Shakespeare’s “There is a tide in the affairs of men. . .”
applies equally to the conduct of research!



Chapter 14
Optical Frequency Oscillators: Lasers

14.1 Fundamentals

14.1.1 Introduction

The first international conference at which papers were presented on the subject
of “optical masers,” as they were then called, was at Ann Arbor, Michigan in
June 1959. The principal topic of the conference was not lasers, but the optical
pumping method of observing magnetic resonance in free atoms, a technique that
had recently been introduced by Kastler in Paris. The session devoted to lasers was
a “miscellaneous session” in which papers on theoretical aspects of laser oscillation
in gas discharges and ruby crystals were presented by Gould, Javan, and Schawlow,
among others.

The workings of a laser do not involve any physical theory or even practical
technique that was not already known for some time. The quantum theory of the
absorption and emission of light by atoms and molecules was well established,
there was abundant spectroscopic data such as wavelengths and line intensities,
and the theory of light wave optics and the techniques of optical interferometry
were well advanced. The study of electrical discharges through rarefied gases and
crystal optics had been pursued since the 19th century. This undoubtedly explains
the veritable explosion that occurred in the number of reports of laser action once
the first appeared.

The special properties of lasers as quantum oscillators in the infrared to
ultraviolet regions of the spectrum will now be treated in the broader context of
quantum oscillators in general. Their impact on the design and performance of the
microwave standards (except the H-maser), which has literally transformed these
standards, and their development as frequency standards in the infrared and optical
regions of the spectrum will be treated in succeeding chapters.
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14.1.2 The Resonance Frequency Width of Optical Cavities

We have seen in the case of atomic and molecular beam masers that the spectral
width of the resonant response of the atoms or molecules is far sharper than the
resonant modes of the cavity in which the particles interact with the radiation field.
Since these cavity modes are well separated, this means that oscillation occurs in
a unique mode of oscillation of the field in the cavity: the one tuned to resonance
with the particle frequency.

In contrast, at optical frequencies it is the “cavity”, which may in fact consist
of only two small parallel mirrors some distance apart, whose resonance modes
have narrow spectral widths compared to those of the “active” atoms or molecules.
The arrangement of two highly reflecting, precisely parallel surfaces to form an
optical resonator has as precursor a high-resolution spectroscopic device called
a Fabry–Pérot interferometer, whose introduction in 1899 far predates the era of
modern optics. Its capability as a high resolution spectroscopic device derives from
the sharp resonant peaks in the intensity of light transmitted through it. The degree
to which it is able to resolve close resonances due to neighboring wavelengths is
specified by a quantity called the finesse. A useful physical insight into the sig-
nificance of this quantity is obtained by the following approximate but instructive
argument: Suppose the light wave to be analyzed is reflected back and forth tra-
versing the distance between the mirrors an average of 2N times before decaying,
and that the distance between the mirrors is such that the light resonates in the nth

longitudinal mode, so that the length of the cavity is nλ/2. It would follow that the
light wave is coherent over a time of Nnλ/c, and therefore the relative width of the
Fourier spectrum �ν = ν/(nN ), hence the resolving power λ/�λ is given by:

λ

�λ
= nN 14.1

It is this quantity N that is a measure of the fineness of resolution, given the name
finesse (F), defined in terms of the (power) reflectivity R of the mirrors as follows:

F = π R1/2

(1 − R)
14.2

Currently extraordinary experimental values of R reaching up to an incredible
99.998% have been reported, corresponding to F = 157,000. Another quantity
important in the design of a Fabry-Pérot cavity is the free spectral range (FSR),
which specifies the range of values of resonant frequencies/wavelengths for which
there is no ambiguity in the assignment of the order n. In terms of frequencies it
is c/2nr L , where nr is here the refractive index. In what follows we shall assume
nr = 1 unless the dispersion of the medium is relevant. For a given cavity length,
the larger the order number n, the closer will be the wavelengths of the resonances.
In fact it is not difficult to show that:

λn − λn+1 = λnλn+1

2L
≈ λ2

2L
. 14.3
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Figure 14.1 Diffraction loss at the mirrors of an optical cavity

Since the Fabry–Pérot interferometer was originally applied to conventional light
sources with limited light wave coherence, the spacing of the mirrors was typi-
cally on the order of millimeters, rather than centimeters or tens of centimeters
as is typical of gas laser cavities. Strictly speaking, such an open arrangement of
mirrors does not have discrete resonance frequencies, unlike a completely closed
cavity with reflecting walls. However, detailed computations on such a cavity have
shown that there exist more or less discrete sets of modes with the optical field
localized along the axis between the two mirrors. For these modes the loss of opti-
cal energy from the cavity due to diffraction, the inevitable spreading out of a wave,
is small. We can readily show this is plausible if we accept the result from wave
theory that a plane wave reflected by a circular plane mirror of diameter D (large
compared to the wavelength) will be diffracted at an angle of about λ/D (radians),
as shown in Figure 14.1. Such a wave traveling to another similar mirror a dis-
tance L away will partly fall outside the rim of that mirror and suffer a fractional
loss of 4λL/D2, provided that we make the crude assumption that the energy of
the beam is spread uniformly over the expanded area. Clearly, even if the mirrors
were perfectly reflecting, the cavity field would still decay in energy due to diffrac-
tion, with a consequent broadening of the resonance spectrum. The fractional loss
of 4λL/D2 occurs at each mirror and repeats at intervals equal to the transit time
of the light wave between the two mirrors, namely L/c, where as usual, c is the
velocity of light. It follows that the average fractional loss of energy per unit time
is 4λc/D2. Now we can apply this result to the two counter-traveling waves of equal
amplitude whose sum is one of the stationary axial modes, belonging to the quasi-
discrete set supported by the cavity. These longitudinal modes are analogous to
vibrations on a string at frequencies such that the phase of the wave after traveling
2L is a whole number of cycles: Symbolically, this means that (2L/c)νn = n,
where n is a whole number, and νn is the frequency of oscillation of the optical
field in the nth mode. Then the diffraction limited Q-factor for that mode is as
follows:

Qn = 2πνn(
1
E

d E
dt

) = πD2

2λ2
n

, 14.4

where λn = c/νn is the wavelength of the nth mode. For example, if we take for
the mirror diameter D = 2.5 cm and λ = 632.8 nm (the common wavelength
of the He–Ne laser output), we find for that pure axial mode Q ≈ 1010. This is
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significantly larger than is typical of microwave cavities and is even higher than
most optical atomic transitions. Actually, the situation is far more complicated,
in that the intensity profile of the beam is far from uniform over the cross sec-
tion of the beam; rather, it has a radial distribution that can be analyzed in terms
of certain radial modes. These are designated as TEM modes (transverse electro-
magnetic) with indices specifying the order and hence the number of zeros in the
intensity distribution. For example, if we take the mirror axis as the z-axis of a coor-
dinate system, then in the TEM21 mode, the field intensity has two zeros along, say,
the x-direction and one zero along the y-direction. Beam profiles for some of the
lower-order radial modes are shown in Figure 14.2. The least complicated mode
(TEM00) has only one maximum, which occurs on the axis and is described by
the form exp(−r2/r0

2), called a Gaussian function. The output beam of a laser
oscillating in this mode is called a Gaussian beam, and the theory of the action
of optical elements such as lenses and mirrors on such beams is called Gaussian
optics. It differs from ordinary ray optics, which takes no account of the wave
nature of light; it is characterized by the absence of sharply defined focal points
and beam profiles. The usual lens and mirror formulae of ray optics are not valid.

Optical wave theory shows that the diffraction loss is radically smaller if instead
of plane mirrors, concave mirrors are used in a confocal arrangement, in which the
focal points of the two mirrors coincide at the midpoint between them, as shown in
Figure 14.3.

intensity
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Figure 14.2 The intensity distribution for some low order-radial modes in an optical cavity
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Figure 14.3 A confocal optical cavity
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Figure 14.4 A plot of the optical loss as a function of D2/4λL (Boyd, 1961)

The results of detailed computations on the diffraction loss for various
oscillation modes in an optical two-mirror cavity are reproduced in Figure 14.4, in
which the fractional loss is plotted against the parameter D2/4λL (Boyd, 1961).

Note that according to the approximate theory outlined above, the graph for
the plane mirrors should be linear with a slope of −1. We see from these results that
even for the unfavorable case of plane mirrors, fractional losses as low as 10−4 are
attainable (assuming the mirrors are perfectly aligned) for D2/4λL ≈ 100, a prac-
tical figure. This points to the limit on the Q of these cavity modes not really being
set by diffraction, but rather by the imperfect reflectance of the mirrors, which in
practice rarely exceeds 99.99%, corresponding to a fractional loss of 10−4. In any
event, to be useful, a laser oscillator must provide an output beam, and therefore at
least one of the mirrors must be partially transparent, with a consequent power loss
from the cavity.

Since an optical cavity commonly has dimensions very large compared to
the wavelength, the various resonance modes, with their characteristic stationary
field distributions, have frequencies that differ fractionally very little from each
other. The mode spacing, of course, need not be small for microwave cavities,
since in that case the cavity dimensions can be of the same order of magnitude
as the wavelength, and the lower mode frequencies are relatively far apart. If
the optical cavity consisted of a truly closed cavity with reflecting walls, analo-
gous to a microwave cavity, then if its dimensions were large compared to the
wavelength, there would be a very large number of modes lying within any given
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frequency band, all having an appreciable Q-value. In fact, that number in the gen-
eral 3-dimensional case appears in the theory of blackbody radiation and is given
by the following:

�N = 8πV

λ3
�ν
ν

, 14.5

where �N is the number of modes having a frequency in the interval �ν
centered on the frequency ν, and V is the volume of the cavity, which classical
theory has shown can have any shape, provided that its dimensions are very much
larger than the wavelength. To illustrate just how large �N can be, let us assume
λ = 500 nm, V = 100 cm3, and �ν/ν = 10−7; substituting into the formula yields
�N ≈ 2 × 109! It is indeed fortunate that quasi-discrete Gaussian modes do exist
in a wide-open Fabry–Pérot resonator, with only a few radial modes having a high
Q-value, to restrict the number of modes into which the stimulated emission from
the atoms occurs. Not only does sustained laser action in these modes become
possible, but it yields the extraordinary directionality of the laser output beam, and
with proper selection of axial modes, great spectral purity.

14.1.3 Conditions for Sustained Oscillation

As with beam masers, sustained optical frequency oscillation of the field in a
resonator is possible if atoms or molecules are present that through stimulated
emission yield a net gain in the field energy sufficient to make up for all losses,
including that represented by the output beam. However, while the general princi-
ples are identical for microwave and optical frequency oscillators, there are many
important practical differences that give them quite different physical aspects. In
addition to the obvious differences attendant upon the very different wavelengths,
the kind of coupling of the atoms or molecules with the optical field is also dif-
ferent: The atomic beam masers involve magnetic dipole transitions, while lasers
involve the much more strongly induced electric dipole transitions. Furthermore,
while in the magnetic dipole transitions the field acts on a permanent atomic mag-
netic moment, the existence of a permanent electric dipole moment is excluded
on the basis of a fundamental symmetry property of the internal forces holding
an atom together. The symmetry is broken when an external electric field is intro-
duced; in that case, oppositely directed forces are exerted on the positive nucleus
and negative electrons, resulting in a dipole moment. Transitions result from the
action of the electric component of the optical field, which induces an oscillating
electric dipole moment in the atom. The amplitude of that dipole moment depends
on the dynamical response of the particular atom; we recall the classical model of
an atom having elastically bound electrons used by Lorentz in his theory of optical
dispersion to predict that response.

To achieve a net gain of power from an atomic or molecular system, it must be
prepared with a preponderance of population in the upper of two quantum energy
levels, between which transitions are to be stimulated. This, it will be recalled, is
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simply because the probability per atom per unit time for stimulated emission is
exactly the same as for absorption. The achievement of this preferential population
of the upper energy state in the case of optical transitions is complicated by two cir-
cumstances: First, unlike the microwave case, an optical quantum (photon) has con-
siderably greater energy than the mean thermal energy of particles in equilibrium
at ordinary temperatures. This, it will be recalled from Boltzmann’s theory, implies
that in thermal equilibrium the number of atoms of a gas in the lower of the two
states will be far greater than the number in the upper state. Thus according to the
theory, if the number in the upper quantum state is N1 and the number in the lower
state N2, then we have in equilibrium at absolute temperature T ,

N1

N2
= e− hν

kT . 14.6

The temperature T is, of course, positive; hence in equilibrium we must always
have N1 < N2. For example, if T = 300◦K and ν = 6 × 1014 Hz, we find that,
on an average, only one atom in 1041 is in the upper state! Clearly, then, for laser
action we require very nonequilibrium conditions; in fact, we require what is called
population inversion, or a “negative (absolute) temperature.”

The second essential difference caused by the greater energy of the optical
photon is that the probability (per atom) per unit time for spontaneous emission is
far from being negligibly small, as it was in the microwave case. We can see this
from the Einstein expression for the ratio of his A- and B-coefficients

Anm

Bnm
= 8πhν3

c3 , 14.7

if we recall that the probability per unit time for stimulated emission is B12ρν,
where ρν is the spectral energy density of the optical field causing the transitions,
given by ρν = Iν/c, for a parallel light beam of spectral intensity Iν. At ordinary
light levels such as might exist in a conventional lamp, where Iν is perhaps on the
order of 10−8 watt/m2 · Hz, we find that the probability of spontaneous emission is
about 2000 times greater than that of stimulated emission. This shows why stimu-
lated emission plays an insignificant role in the operation of a conventional lamp;
in fact, all ordinary sources of light, from the common tungsten lamp to the sun,
are examples of spontaneous emission. However, in a lasing medium the energy
of the optical field is concentrated in a narrower spectral width, which means a
far larger spectral energy density and the emergence of stimulated emission as an
important process. It is important to recall that spontaneous emission, in contrast
with stimulated emission, is indifferent to whether an optical field is present and
is induced with random phase by “zero-point” quantum fluctuations in the optical
field. Stimulated emission/absorption, on the other hand, results from induced elec-
tric dipole oscillation in the individual atomic systems and is correlated in phase to
the common stimulating optical field. In quantum theory, stimulated emission and
absorption are different consequences of the same process; which one is manifested
is simply a matter of whether the initial state is the one with lower energy or higher
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energy. From what has been said about the Boltzmann distribution of populations
in a system in thermal equilibrium, it follows that a light beam passing through a
medium in thermal equilibrium will always suffer absorption at those frequencies
in its spectrum that are resonant with transitions in the system. In such a case, the
intensity of a monochromatic light beam becomes weaker as it passes through a
medium with a resonant transition. On the other hand, if by some means, such as
an electrical discharge or intense optical pumping, a population inversion is sus-
tained, then that monochromatic light beam increases in amplitude; it is amplified,
as shown schematically in Figure 14.5.

To express these notions more quantitatively, suppose a monochromatic
parallel beam of intensity Iν watts/m2 passes through an atomic/molecular medium
with n1 particles/m3 in the upper quantum state and n2 particles/m3 in the lower;
and let them have a frequency response (resonance line shape) g(ν), so that:
according to the definition of B12, the probability of the optical field stimulating
emission (in unit volume) at the frequency ν is n1 B12(Iν/c)g(ν) per unit time,
with an identical expression for absorption, except that n1 is replaced by n2.
In practice, because of the various spectral broadening mechanisms such as the
Doppler effect in gases, the function g(ν) will have a bell-shaped graph, gen-
erally broader than the spectral width of the light, so that the assumption of a
monochromatic beam having the single frequency ν is not an unrealistic one. It
follows that since each transition involves the exchange of one quantum of energy
hν, the net rate of energy exchanged coherently with the field (per unit volume) is
(n1 − n2)B12(Iν/c)hνg(ν). If we choose the direction of the beam to be the z-axis
of a coordinate system and balance the energy flow in the beam with the amount
emitted (or absorbed) by the atoms, we are led to the following:

absorbing medium

amplifying medium

Figure 14.5 A schematic illustration of a light wave passing through absorbing and ampli-
fying media
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d Iν

dz
= (n1 − n2)hνB12g(ν)

Iν

c
. 14.8

This has a solution of the form

Iν(z) = Iν(0)eγz, 14.9

where

γ = (n1 − n2)B12
hν
c

g(ν) 14.10

is the (exponential) gain constant. As expected, this shows that for the light beam
to be amplified, we must have (n1 − n2) > 0, that is, population inversion with
more atoms in the upper state than the lower. In a system in thermal equilibrium,
as already emphasized, we have necessarily (n1 − n2) < 0, and the intensity falls
exponentially, in agreement with the classical experimental law, sometimes called
Lambert’s law. The two cases are illustrated in Figure 14.5. We can usefully rewrite
the gain constant γ in terms of Einstein’s A-coefficient, since the latter is related to
the mean lifetime of the upper state against spontaneous emission, a lifetime that
can be deduced from the empirical “natural” width �νn of the emission line. The
result is as follows:

γ = 1
4
(n1 − n2)λ2�νng(ν). 14.11

The line shape factor g(ν), which gives the spectral response of the atoms to
the optical field, may result from a number of different processes. For some
applications it is important to draw a distinction between two different types
of broadening mechanisms: homogeneous and inhomogeneous. As we saw in
Chapter 7, the distinction applies to a group of atoms: If a broadening mech-
anism affects all atoms identically, such as the natural lifetime of the radiating
state or collisions with other particles that interrupt the radiation process, then it is
homogeneous. Lifetime broadening, for example, we know leads to a Lorentzian
line shape:

g(ν) = 1
π

�ν
2

(ν − ν0)2 + (
�ν
2

)2 , 14.12

where �ν is the width of the g(ν) versus ν curve at half its maximum, which occurs
at ν = ν0 and has a value there of 2/π�ν.

On the other hand, it can happen that each individual atom in the group has its
own slightly different frequency because, for example, the atoms have different
velocities, and therefore different Doppler shifts in their frequency, or perhaps
because each atom sees a slightly different environment; in this case we say the
broadening is inhomogeneous. For the case of Doppler broadening in a gas in
thermal equilibrium, we found

g(ν) ≈ exp
(

−4ln2
(ν − ν0)

2

�ν2

)
. 14.13
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In order to set up the conditions for sustained oscillation at optical frequency, we
combine the essential elements of a feedback oscillator by placing the amplifying
atomic medium inside an optical resonator. And as with any other feedback oscil-
lator, the threshold condition for oscillation to break out is that the feedback be
regenerative and the loop gain G = 1. To obtain an expression of these two con-
ditions explicitly in terms of a specific model, assume that we have a Fabry–Pérot
resonator filled with a population inverted gas acting as a distributed amplifier. Let
R1 and R2 represent the ratios of reflected to incident light intensity at the two
mirrors, and let α be an absorption constant to account for all distributed loss of
intensity due to interaction with the gas, so that we can write the condition on the
loop gain as follows:

R1 R2 exp
[
(γ − α) 2L

] = 1, 14.14

from which we deduce the threshold value of γ to be

γ = α + 1
2L

ln
(

1
R1 R2

)
. 14.15

The condition on the phase is a little more complicated, since the light travels
through an amplifying medium that is dispersive; that is, the velocity of a light
wave through it depends on the frequency of the wave. The interaction of the light
with an atomic medium near a resonance can strongly affect the velocity of the
light wave in a frequency-dependent way. If we define c/n(ν) as the velocity of
light in the medium, then for a light wave starting from any point in the cavity, to
have the same phase after making a complete round trip between the two mirrors
requires the following phase condition:

2L
c/n(ν)

ν = m, 14.16

where m is a whole number. In the absence of the atoms, n(ν) = 1 and ν = νm ,
the cavity resonant frequency in the mth order axial mode. We will not attempt to
derive the expression for n(ν) but merely state the important result that it involves
the frequency dependence of absorption (or in our case the stimulated emission),
and its substitution in the phase condition leads to the following approximate result
for the actual frequency of oscillation:

ν = νm

{
1 − (ν0 − νm)

�ν
γ
k

}
, 14.17

where k = 2π/λ is the magnitude of the wave vector. This shows that oscillation
does not take place exactly at the resonant mode frequency νm of the cavity: an
example of frequency pulling such as we already encountered in the hydrogen
maser. It can be shown that this result can be rewritten to show the same depen-
dence on the relative line widths of the atomic and cavity resonances; here,
however, it is the cavity that has the sharper resonance, rather than the atoms.
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14.1.4 The Sustained Output Power

The threshold conditions alone do not, of course, tell us anything about how and
to what level the optical power builds up in the laser cavity. As with all feedback
oscillators, once the threshold is passed, oscillations will start from ever-present
incoherent zero-point excitations of the field or, as in this case, the spontaneously
emitted light. To predict the further buildup of the optical field, we must take into
account the dependence of the population difference itself on the amplified field it
generates. This involves taking the theory of the interaction of the atoms with the
optical field to a higher order of approximation, beyond the approximation so far
implied. This was done by W.E. Lamb, who by developing the quantum theory of
interaction between atom and field to the third order in the field amplitude gave
explicit expressions for the coefficients αn and βn in the “equation of motion” for
the field amplitude En of the nth mode:

dEn

dt
= αn En − βn E3

n , 14.18

which applies to a loop gain G > 1 (Lamb, 1964). This leads to a steady state when
dEn/dt = 0, which occurs for E2

n = αn /βn . For the stationary field modes assumed
in the theory, Lamb found that the linear gain factor αn as a function of tuning has a
Gaussian shape arising from Doppler broadening, while the nonlinear “saturation”
factor βn is much less Doppler broadened, exhibiting mainly lifetime broadening.
This causes the overall frequency dependence of the laser output to exhibit what is
now called the Lamb dip, a local minimum at the peak of the Doppler line shape, as
shown in Figure 14.6. This sharp spectral feature, whose width reflects the homo-
geneous line width of the atoms, rather than the much broader Doppler width, has
proved very useful in stabilizing the frequency of oscillators in the infrared and
optical regions of the spectrum.

power
output

Dn

n

natural

Dn
doppler

Figure 14.6 The Lamb dip in the output of a gas laser
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14.1.5 Theoretical Limit to Spectral Purity of Lasers

From the point of view of an optical frequency standard, a laser oscillator serves
to provide a strong, spectrally pure source of radiation, much as a klystron might
do for a passive microwave Cs standard. Long-term stability and reproducibility
are achieved by locking the laser frequency on resonance with a suitable reference
atomic or molecular quantum transition, free of Doppler and other sources of spec-
tral line distortion. In this role the essential attribute of the laser is the spectral
purity of its output. In practice, this is broadened by the fluctuations in the optical
and mechanical properties of the cavity, particularly those due to environmental
conditions, such as temperature and mechanical vibrations. We must distinguish,
however, between these “technical” or “artificial” sources of phase/frequency fluc-
tuations and those that are fundamental, that is, those that arise from the quantum
properties of radiation and its interaction with atoms. These residual fluctuations
would remain even if we had an ideal, perfectly stable cavity.

To understand the origin of this inherent, fundamental limit on the spectral
purity of the laser output, and therefore the limit on the phase stability of the laser
as a frequency standard, we must go back to the fundamental processes involved
in its operation. There are two light-emission processes that atoms of the laser
medium undergo: spontaneous and stimulated emission. In spontaneous emission,
which occurs with a probability independent of the prior presence or absence of
photons, the photons emitted by different atoms bear no phase relationship to each
other, nor do photons emitted by the same atom at different times. In contrast, the
stimulated emission of photons occurs with a probability proportional to the num-
ber of interacting photons already present, and the phases of photons emitted by
different atoms, or by the same atom at different times, have a definite relationship;
that is, they are coherent. It is the inevitable presence of spontaneously emitted,
incoherent photons in the otherwise coherent stream of photons constituting the
laser output beam that sets the limit on spectral purity mentioned above. Quanti-
tatively, it can be shown that the mean square deviation in phase 〈�φ2〉 is given
by 〈

�φ2
〉
= Nspont

2Ntot
, 14.19

where the average 〈 〉 is taken over a time during which Nspont photons are spon-
taneously emitted, and Ntot is the total number of photons in the given field mode.
This result can be made plausible by noting that the ratio of photon numbers is pro-
portional to (Espont/Etot)

2, where Espont and Etot are the corresponding optical field
amplitudes. That is, in terms of a field picture we have an oscillating optical field
vector with its phase randomly fluctuating over a narrow range because of the addi-
tion of a (small) phase incoherent field component (the spontaneous photon). The
size of the phase shift we can deduce if we recall further that the phase of a harmon-
ically oscillating quantity Ecos(ωt + φ) can be represented as the angle of rotation
of a radius vector of length E turning with constant angular velocity ω, and that
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Figure 14.7 The phasor representation of the stimulated and spontaneous optical fields

therefore the phase of the resultant of two fields oscillating at the same frequency
can be obtained by vector addition of the two rotating vectors representing them,
as shown in Figure 14.7. Now, under steady oscillating conditions where the pop-
ulation inversion is sustained by pumping at a constant rate, the mean optical field
amplitude Etot remains constant, and in cases of practical interest Espont � Etot.
From the figure it is clear that the maximum change �φ in the phase of the opti-
cal field due to the addition of a small vector increment occurs when the phase
of the latter is at 90◦ to the main field vector. It follows that small fluctuations in
the amplitude Espont can produce a maximum phase change (in radians) given by
�φ = Espont/Etot. Of course, the effect of the spontaneous component varies ran-
domly, sometimes advancing the phase of the resultant, at other times retarding it.
The situation will be recognized as reminiscent of a random walk, of which we
have already given a simple model in an earlier chapter. As we saw there, while the
average of the fluctuations is zero, being equally likely to be positive as negative,
the average of the square of the fluctuations increases linearly with their number.
In this case each spontaneously emitted photon corresponds to a new fluctuation in
the phase, and since the emission occurs at a constant rate, we conclude that 〈�φ2〉
increases linearly with time. It can be shown that this leads to a laser output with a
Lorentzian spectral intensity distribution with a spectral line width �ν given by

�ν = πhν(�νc)
2

P
, 14.20

where �νc is the passive cavity resonance linewidth (in the absence of the lasing
medium) and P is the power in the cavity mode. It was on the basis of an expression
of this form, first derived in 1958 by Townes and Schawlow, prior to the realization
of a working laser, that the extraordinary potential spectral purity of lasers was
predicted. Assume, for example, that we have a laser operating at 633 nanometers
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with an ideal cavity of length L = 1 m and an output mirror with 1% transmission,
so that 1% of the cavity intensity emerges as the output beam. The cavity resonance
line width can be obtained from the average lifetime of a photon in the cavity. Thus
a given photon has a 1% chance of leaving the cavity in the time required to traverse
the cavity in both directions, and will therefore spend on the average 200 L/c before
leaving the cavity. The corresponding (full) spectral width of the cavity resonance
is then �νc = c/π200L; that is, in this case ≈0.5 MHz. For a laser output power of
1 mW we find on substituting into the expression for the laser spectral line width
�ν = 2.5×10−4 Hz! This quantum limit is so small that it was thought at the time
it was first calculated that it was of no practical consequence; however, as we shall
see, recent work on laser stabilization has led to claims of extraordinary spectral
purity, approaching the quantum limit.

14.1.6 Laser Stabilization: The Pound-Drever-Hall Method

An experimental technique that has played a major role in stabilizing lasers with
respect to ultrastable cavities, and thereby brought within reach the realization of
the quantum limit to spectral purity in a laser, is known as the Pound-Drever-Hall
method (Drever et al., 1983). It involves phase modulation and feed-back to lock
the frequency of a laser to a resonant frequency in an ultrastable external cavity of
extremely high finesse. We recall that lasers such as tunable dye lasers and solid
state lasers have a relatively broad spectral width and require frequency narrowing
and stabilization arrangements to achieve spectral purity. The Pound-Drever-Hall
method has been applied with great success in standards laboratories to lock lasers
to high finesse cavities, isolated with extraordinary care to ensure freedom from
vibration and temperature fluctuations. Such stabilized lasers, destined to be local
oscillators for optical standards, have been reported to reach spectral linewidths
in the sub-Hertz range, corresponding to fractional linewidths in the 10−16 range,
a truly astounding achievement.

The principle of the method dates back to 1946, a time when microwave tech-
nology was the hot field of the day. One of the most prominent experimentalists in
that field and in nuclear magnetic resonance was R.V. Pound.

The “Pound stabilizer” (Pound, 1946) was designed to stabilize the output fre-
quency of a microwave oscillator with reference to a high-Q microwave cavity. It
phase modulates the microwave output of the oscillator and couples it to a reso-
nant cavity in one arm of a “magic-T”. The error signal for the feed-back loop was
obtained by first detecting the sum of the two sidebands of the phase modulated
signal and a sample of the carrier signal from the source, and connecting this to
a phase sensitive detector having the (phase adjusted) modulating signal as refer-
ence. The output of the latter can be shown to give a linear measure of the detuning
error in the neighborhood of exact resonance of the cavity.
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14.1.7 Application to Stabilizing a Laser

It might be thought that one could stabilize the frequency of a laser simply by
locking the laser to one of the sharp transmission peaks of a stable, high finesse
Fabry-Pérot cavity, in a fashion analogous to locking a local oscillator to an atomic
resonance. This would certainly work; however, the modulation frequency and
therefore the bandwidth of the servo loop would be limited by the response time
of the cavity. This would limit the ability of the system to reduce higher frequency
fluctuations in the laser output.

The principles of operation of the Pound-Drever-Hall method can be
understood with reference to the simplified diagram shown in Figure 14.8. The
laser is first isolated with a Faraday isolator and then its beam is phase modulated
in a Pockels cell before going through an isolator/reflector into the optical cavity.
The Faraday isolator is essential to prevent any reflected wave from destabilizing
the laser. The intensity of the beam reflected from the optical isolator is measured
in a detector whose output is connected together with a signal from the modulating
oscillator, properly phase-adjusted, to a mixer, yielding a phase-sensitive output
that passes through a low pass filter to control the frequency of the laser. The
distinctive feature in this servo control system is clearly the way the error signal
is derived from the reflected beam. As already emphasized, what is particularly
notable is that the modulation frequency and therefore the bandwidth of the servo
control are not limited by the bandwidth of the cavity, that is, the speed with which
the optical field in the cavity can readjust.

We will not reproduce the general theory of the method, but will be content
with approximate results limited to conditions of practical importance, namely fast
modulation in the neighborhood of resonance with a cavity mode. To begin we need
an approximate expression for the reflection coefficient of a Fabry-Pérot cavity

Figure 14.8 Simplified layout of Pound-Drever Hall laser stabilization method
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near resonance. We give without proof the following expression for the reflection
coefficient R(ω) using complex vectors:

R(ω) = r [exp(iω/�ω) − 1]
1 − r2 exp(iω/�ω)

14.21

where �ω is the free spectral range c/2nr L and r is the amplitude reflection
coefficient of each mirror. In the neighborhood of the N th longitudinal mode we
can write

ω

�ω
= 2Nπ + δω

�ω
14.22

where δω/�ω � 1 is the fractional deviation in the frequency of the laser from the
exact cavity resonance. On substituting this form in (14.21) we obtain to first order
in (δω/�ω):

R(ω) ≈ ir
(

δω
�ω

)
1 − r2 . 14.23

Writing R(ω) in terms of the finesse F = πr/(1 − r2) and using the relationship
�ω1/2 = �ω/F , where �ω1/2 is the half width of the resonance, we find:

R(ω) = i
π

δω

�ω1/2
14.24

If we assume the modulation frequency to be so large that the sidebands are so far
from resonance that we may assume they are fully reflected, then it can be shown
that the reflected intensity Ir is given by:

Ir ≈ 2Is − 4
π

√
Ic Is

δω

�ω1/2
sin 
t + (2
terms) 14.25

where Is and Ic are the sideband and carrier intensities, respectively. On passing
through the phase sensitive detector with the reference frequency 
, the output
error signal applied to control the laser, ε, is given by:

ε ≈ 4
π

√
Ic Is

δω

�ω1/2
14.26

This then shows the linear dependence of the error signal on the frequency
deviation; as required, going through zero at exact resonance and changing sign
from negative to positive on either side of resonance.

14.2 Laser Beam Properties

14.2.1 Laser Beam Quality

The cross sectional intensity profile and spatial coherence of a laser beam are
essential properties which determine how it propagates through an optical sys-
tem. A standard measure of beam quality is clearly required in order to be able to
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compare the outputs of lasers of different designs and manufacture. The theoretical
definition of such a standard measure of beam quality is based on a comparison
between the given beam profile and the ideal lowest order Gaussian beam. The
specification of just how the comparison should be made comes under the purview
of the International Standards Organization (ISO) and the U.S National Institute
for Standards and Technology (NIST).

The beam quality, generally represented by M2, can be defined as the ratio
of the product of the beam’s multimode diameter times the divergence angle to
the same product for an ideal diffraction-limited TEM00 mode Gaussian beam.
Symbolically the definition can be written as follows:

M2 = dmθm

d0θ0
14.27

A theoretically ideal TEM00 beam has by definition the minimum value M2 = 1;
therefore the degree to which a given beam has a value approaching this value is a
measure of its high quality.

Another useful parameter is the Rayleigh range. This is the distance along a
beam from the point of minimum diameter, the waist, at which the diameter has
increased by a factor of

√
2.

14.2.2 Mode-Locked Lasers

While the construction of an optical frequency standard requires that a laser be
forced to oscillate in a single mode in order to attain the high spectral purity, we
shall see that the “clockwork” of an optical clock requires the opposite extreme of
a very wide frequency multi-mode laser, such as a dye laser or Ti:sapphire laser. In
general, a laser cavity will support longitudinal modes spanning a frequency band
as wide as the reflectivity of the mirrors will allow, separated by the frequency
interval �ν = c/2nr L . The laser may oscillate in those modes that fall within
the amplification frequency band of the laser medium, unless special optical ele-
ments are present to narrow that band in order to force single mode operation. If
the gain band-width reflects inhomogeneous broadening, in which the frequency
dependence of the gain is due to the distribution of frequencies among different
particles participating in the optical transitions, then clearly the laser can oscillate
simultaneously in as many longitudinal modes as have sufficient gain. In this case
the onset of oscillation at the frequency of maximum gain involves only a sub-
set of the particles, leaving others with lesser gain to sustain oscillation in other
longitudinal modes.

The spectrum of the output beam will therefore consist of an array of equally
spaced lines, which may or may not be resolved, depending on the optical Q-factor
of the cavity and the resolving power of the spectrum analyzer, among other things.
However, the time dependence of the output intensity would appear to fluctuate
randomly about a certain mean value because the longitudinal modes oscillate with
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uncorrelated phase relative to each other, leading to random interference between
them. On this account the coherence of the laser beam would be degraded, that
is, two such beams would have a very limited ability to produce an interference
pattern. To produce a coherent beam requires that the relative phases of the different
modes be made constant, a process called mode locking. There are many ways in
practice in which this may be achieved, and we will briefly touch on two of these
in what follows.

First let us consider the consequence of mode locking on the time dependence
of the output beam intensity. For simplicity assume that the optical field in the
cavity is a superposition of N longitudinal modes, all having a common phase ϕ,
then if we assume for simplicity that they all have equal amplitude, we have for the
resultant:

E(t) = eiϕ
(N−1)/2∑

−(N−1)/2

En exp[2π i(ν0 + n�ν)t] 14.28

The desired time dependence of the intensity is given by E0(t).E∗
0 (t) averaged over

a period long compared with 1/ν0 but short compared with 1/�ν, which yields the
following:

I (t) = I0

N
sin2(π N�νt)

sin2(π�νt)
14.29

It follows from this that I(t) is zero at constant intervals of T = 1/N�ν except for
those times, which occur at intervals of 1/�ν, when the denominator is also zero.
For large N the result is a train of equally spaced sharp pulses of intensity N I0 and
duration on the order of 1/N�ν recurring every 1/�ν = 2nr L/c seconds, that is
the time it takes a photon to travel back and forth the length of the cavity, as shown
in Figure 14.9. We note that N�ν cannot exceed the total gain band width, since
obviously a mode is sustained only if it falls within the gain bandwidth, but may
approach its limits in practice. The striking fact to be drawn from this is that the
duration of the pulses depends on the gain bandwidth of the active medium and
associated optics of the laser. This gain bandwidth is as much as 3 × 1012 Hz in
Nd3+:glass, corresponding to extremely short pulses lasting 3.3 × 10−13 sec each,
in the femtosecond (10−15 sec) range.

So far we have assumed that the active medium has an inhomogeneously
broadened spectrum, in which different particles may be assumed to sustain their
own modes. However in a homogeneously broadened medium, all particles are
assumed to participate in sustaining the same mode and would suppress the others
by reducing the population inversion for them. In fact multimode oscillation can
be generated by intracavity phase or absorption modulation techniques to give rise
to outputs similar to those from mode-locked lasers with inhomogeneous active
media.

There are several approaches to mode locking a laser: perhaps the most popular
are first by intracavity modulation of the optical gain or phase, and second, with
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Figure 14.9 The function sin2(Nπx)/sin2(πx) for N = 50 (solid line reduced by factor 50)
and N = 5 (dotted line)

a saturable absorber. In the first, the modulation frequency of an intracavity
absorber is set to equal the frequency interval between consecutive longitudinal
modes. The effect on each mode of oscillation is to generate side bands that coin-
cide with adjacent modes and are phase coherent with each other at the value set
by the modulator. If the modulation is sinusoidal only one side band is generated
on each side of the carrier, but these will in turn produce more side bands at twice
the modulation frequency, and so on, until all the modes within the gain bandwidth
oscillate locked in phase. A detailed theory is complicated, but it helps to visualize
the optical field inside the cavity in the mode-locked condition as consisting of a
narrow high amplitude pulse traveling back and forth the length of the cavity. If
the modulated absorber placed in the cavity is imagined to be in the shape of a thin
plate placed perpendicular to the axis, then it is clear that the field configuration
that is favored as having the least loss is a pulse that passes through the absorber
always when it has minimum absorption.

There is another so called passive method of mode-locking a laser: it is through
the use of an absorber that saturates, that is, becomes less absorbent as the inten-
sity of light passing through it is increased beyond a certain point. This tech-
nique applies mainly to high power lasers. A simplified explanation of the physical
process by which mode-locking occurs in this case begins with considering the
laser as it passes through the threshold of oscillation, when the optical field with
its natural random fluctuations is being established. Because of the saturation of
the absorber, any strong fluctuation will “bleach” the absorber and experience a
diminished absorption leading to stronger amplification than the average intensity.
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Again this enhanced pulse will travel back and forth resulting in high peak power
output pulses. It is assumed that the absorber has sufficient time to recover between
pulses.

14.3 Laser Optical Elements

14.3.1 Multilayer Dielectric Mirrors and Filters

The components of a laser optical system, such as mirrors, windows, lenses, etc.
are characterized by the smallness of their size compared with classical optics,
and the high precision of their construction to preserve and exploit the coherence
properties of the laser light. An “optically flat” surface will typically be specified as
λ/20, meaning that at all points on the surface the mean departure from a geometric
plane is less than one-twentieth of an optical wavelength. Furthermore, laser-grade
optical surfaces have a higher degree of polish as specified by the “scratch and
dig” figures, which indicate the “visibility” and number of scratches and pits in the
polished surface.

In classical optics, mirrors were almost universally made by depositing a film of
silver onto the desired surface either from a chemical solution (Rochelle process) or
more commonly now by deposition of silver vapor in vacuum. For laser light much
higher values of reflectance have been achieved using a radically different approach
made possible by the fact that laser light is nearly monochromatic, and therefore the
reflectance needs to be (and in some cases is preferred to be) high only for a very
narrow wavelength range. The new mirrors are called multilayer dielectric mirrors,
formed by vapor deposition onto an optically flat substrate (usually quartz or sap-
phire) of many thin layers of highly transparent dielectric materials, with values of
refractive index alternating between high and low values. The principle underlying
this type of mirror is that of superposition of light waves and the phenomenon of
interference. Suppose we have a set of plane parallel films of alternating refractive
indices n1 and n2, and let a monochromatic beam of light fall perpendicularly on
them. To find the reflectance of such an arrangement we recall Fresnel’s formulas
for the reflection and refraction of light waves at boundary surfaces between differ-
ent media. Originally derived on the basis of the “ether vibrations” theory of light,
which predates Maxwell’s electromagnetic theory, these formulas, with some rein-
terpretation, remain valid. For the particular case of a light wave in a medium with
refractive index n1 falling perpendicularly on the boundary surface with a medium
of refractive index n2, the (amplitude) reflectance for such a light wave is given by

r = n1 − n2

n1 + n2
. 14.30

We note that if n1 < n2, the wave suffers a change of phase of 180◦ (a change of
sign), whereas if n1 > n2, there is zero change in phase. In a multilayer dielectric
mirror, the thicknesses of the films are chosen such that it takes half a period of
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oscillation for the wave to traverse the thickness of any film in both directions.
That is, since the velocity of light is c/n1 and c/n2 in the two media, we require
the following:

2d1n1

c
= 2d2n2

c
= τ

2
, 14.31

where d1 and d2 are the layer thicknesses, and τ = 1/ν is the period of the light
wave.

Now, referring to Figure 14.10 we see that light waves reflected from any
boundary surface are in phase with those reflected from any other surface; that
is, there is constructive interference. To derive the reflectance of a large number of
dielectric layers one makes use of the boundary conditions that the total electric
and magnetic components of the light wave on either side of any boundary must
obey. By applying these conditions of continuity and allowing for the transit delays
between boundaries, it is possible to relate the field components at one boundary
to those at succeeding boundaries. The result of such an analysis we give without
proof; for ideal nonabsorbing dielectrics the reflectivity is as follows:

r =
(

n2
n1

)2N − 1(
n2
n1

)2N + 1
14.32

For example, if magnesium fluoride (n = 1.35) and zinc sulphide (n = 2.36) are
used in a 14-layer (N = 7) mirror, the intensity reflectance r2 = 99.8%. This high
value, it must be emphasized, obtains only for light of a single wavelength, one for
which the optical thickness of each layer is one-fourth the wavelength. Of course,
in reality, the achievable reflectance is ultimately limited not only by absorption in
the media, but also by scattering from irregularities in the boundary surfaces and
within the media. Currently, there are commercially available mirrors fabricated
using the most advanced polishing and coating technology that are claimed to have
a reflectance as high as 99.99%. Of course, a few particles of dust could easily put
that last decimal place in question!

f

(f+p)

(f+p)+n(2p)

substrate
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d1 d2 d1 d2 d1 d2

Figure 14.10 A section of a multilayer dielectric high-reflectance mirror
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If a smaller number of layers is used, for example N = 5, we obtain r2 =
98.4%; hence, since the absorption and scattering are assumed negligible, we have
a partially transparent mirror with a transmittance of t2 = 1−r2; that is, t2 = 1.6%.
Such a mirror would be useful as the output mirror in an optical cavity.

Another type of multilayer mirror that has become an extremely important ele-
ment in the design of optics handling fast pulses is the chirped mirror. In this the
layers are not of equal thickness but rather vary uniformly so that a monochromatic
incident beam will penetrate to the layers where the phase condition (14.20) is sat-
isfied. This means that if two beams of slightly different wavelength are reflected
by this mirror there would be a slight difference in the distance traversed, and hence
in their relative phase. But a light pulse can be Fourier analyzed as a superposition
of continuous waves, and varying the relative phases of these waves amounts to
changing the shape of the pulse. With proper design the effect can be made one
of sharpening a light pulse in time. These chirped mirrors have become common
in systems designed to produce wide band frequency combs, as we shall see in
Chapter 16.

14.3.2 Polarizing Optics

Another optical element that is indispensable in manipulating the spectral
distribution of light is the interference filter. In contrast to the multilayer dielectric
mirror, it is high transmittance rather than reflectance that the filter is designed
to have, and this in a wavelength range as well defined as possible. The simplest
bandpass filter is really a Fabry–Pérot cavity with the space between the parallel
mirrors filled by a dielectric layer with an optical thickness nL equal to half the
wavelength at the center of the desired band. The two mirrors are commonly in the
form of the multilayer dielectric type described above, which, combined with the
half-wavelength layer between them, form one integral unit.

Another optical element that has become indispensable in laser optics is the
Brewster window, an optically flat transparent plate with parallel faces set at the
Brewster, or polarizing, angle to the direction of light falling on it. We recall that a
light wave, being transverse, can be polarized so that, for example, the electric field
oscillates in one plane all along the wave. While polarization effects are generally
associated with crystals such as calcite, it has been known since Malus that light
can be polarized simply by reflection, a fact easily confirmed now by looking at
sunlight reflected from water through polarizing sunglasses. In 1812 Brewster dis-
covered experimentally the law that bears his name, giving quantitatively the angle
at which light reflected from a dielectric is completely polarized. Brewster’s law
states that when a light wave is incident upon the surface of a dielectric medium,
the amplitude of the component in the reflected wave whose electric field is parallel
to the plane of incidence will be zero when the angle of incidence θB satisfies the
condition

tan θB = n2

n1
. 14.33
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Figure 14.11 The angle relationships at the Brewster polarizing angle

For an air–glass interface n2/n1 ≈ 1.5; thus θB ≈ 56.3◦. If we recall Snell’s law,
n1 sin θ1 = n2 sin θ2, we find that for an angle of incidence equal to the Brewster
angle, sin θ2 = cos θ1, and the refracted beam is at right angles to the reflected
one, as shown in Figure 14.11. It follows from Brewster’s law that if an incident
beam is polarized parallel to the plane of incidence and it falls on the boundary
surface at the Brewster angle, there will ideally be no reflected beam. The use of
Brewster windows to avoid reflection losses is particularly important in low gain
gas lasers such the helium–neon laser. In this case, if the plasma tube is to be
separate from the optical cavity, its ends would be sealed with precisely oriented
Brewster windows. When such a polarization-sensitive element is incorporated into
a laser cavity, the result is that oscillation will take place with the field polarized in
the direction having the least loss.

14.3.3 Nonlinear Crystals

The class of nonlinear devices useful beyond 30 THz (λ = 10 μm) includes cer-
tain optical crystals that lack a center of symmetry. In these crystals the electric
field component of the light wave induces an oscillating electric dipole moment
that has a small quadratic dependence on the field amplitude. Moreover, the dipole
moment in a given direction depends not only on the field component in that direc-
tion, but also on the components in other directions, reflecting the anisotropy of
a crystalline medium. The nonlinear behavior is expected to be weak in general,
since even in a 1 megawatt laser beam the electric field amplitude is on the order
of E ≈ 106 volts/m, whereas the interatomic fields in the crystal are on the order
of 10,000 times that. This means that in order to gain a large cumulative effect,
the light wave must interact with the crystal over large distances, containing many
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wavelengths, making the crystal fall in the class of distributed devices. This intro-
duces a requirement on the velocities of light waves of different frequencies in the
crystal medium, since any sum or difference frequency wave generated at points
along the path of the input waves must reinforce waves generated at subsequent
points, in order that there be overall buildup of the mixed frequencies. This means
ideally that all frequencies must travel at the same velocity. In practice, it is only
necessary that any phase difference that develops between waves generated at the
beginning and those at the end of the finite path in the crystal be less than π radi-
ans. For example, let us consider what this means in the case of second harmonic
generation: Let nν and n2ν be the refractive indices of the crystal for the fundamen-
tal and second harmonic frequencies. Now, the second harmonic component of the
electric polarization of the crystal, which acts as the source of the second harmonic
wave, travels at the velocity of the fundamental wave, and hence the condition on
the phase difference that can be allowed to develop over a distance L in the crystal,
�φ, is the following:

�φ = 2π(2ν)

[
nνL

c
− n2νL

c

]
≤ π. 14.34

This is called the phase matching condition. If it is violated, then the contributions
to the second harmonic wave originating from different points along the path of
the fundamental wave will combine in opposing phases, resulting in destructive
interference.

Regarded from the photon point of view, the process amounts to the conversion
of two photons at the fundamental frequency into a single photon of twice the
frequency. Looked at this way, the phase matching condition becomes a statement
of the conservation of photon linear momentum h/λ, which in quantum theory
allows some discrepancy, provided that it is within the Heisenberg uncertainty in
momentum. We recall that this uncertainty is related to the uncertainty in distance
in the same way that the uncertainty in frequency involves the time measurement.
If L is in effect the uncertainty in the positions of the photons, then the Heisenberg
uncertainty in momentum is on the order of h/2L; it follows that for momentum
conservation we require

2
hnνν

c
− hn2ν2ν

c
≤ h

2L
, 14.35

which is clearly the same as the phase matching condition.
Unfortunately, in practice, all transparent media are to some extent dispersive;

that is, the wave velocity, and therefore the refractive index, varies with the fre-
quency. It can happen that a specific material may be found whose refractive index
takes the same value at widely different frequencies, allowing phase matching at
those frequencies. But this is rarely the case. A far more practical approach is to
exploit the birefringence (double refraction) of certain crystals. Without getting
too deeply involved in crystal optics, we will assert that there are crystals of cer-
tain classes of symmetry whose optical properties have symmetry about a single
axis, the optic axis, and are called uniaxial. These crystals have a 3-fold, 4-fold,
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or 6-fold axis of symmetry, and their optical behavior is symmetric about these
axes. Other crystals of a lower degree of symmetry have two preferred axes and are
biaxial. In a uniaxial crystal, a light wave propagates along two wavefronts with
the velocity of one, the extraordinary wave, depending on the direction relative to
the optic axis. The other, the ordinary wavefront, advances with equal velocity in
all directions. Along the optic axis both wavefronts advance with the same veloc-
ity. The directions of the electric (and magnetic) components of the two types of
waves, that is, their polarization vectors, are always at right angles to each other.
The velocity of the extraordinary wavefront may increase or decrease as a function
of the angle with respect to the optic axis, depending on the specific material of the
crystal, as shown in Figure 14.12. In such a crystal, phase matching is achieved
when the phase velocity of the ordinary wavefront at one frequency matches
the phase velocity of the extraordinary wavefront at the other frequency. Since the
difference in phase velocity between the two varies continuously with the angle
the laser beam makes with the optic axis, it is possible in principle to match phases
with a suitable crystal. In practice, this requires a beam with extremely small diver-
gence, critically adjusted to the correct angle with respect to the crystal axes. An
approach less critically sensitive to beam adjustment is to find a suitable crystal
in which the wavefront velocities can be adjusted by varying the temperature,
while fixing the beam direction at right angles to the axis, where the velocity dif-
ference does not change (to first order) with angle Just how critical the matching of
phase velocities (or equivalently, refractive indices) is in practice can be estimated
from the phase matching equation (n2ν − nν) ≤ λ/4L , where λ is the wavelength
of the fundamental frequency wave. Since the degree of nonlinearity is relatively

ordinary
wave

extraordinary
wave

optic axis

Kz

KyKy

Figure 14.12 Ordinary and extraordinary wave vectors and polarizations in a uniaxial
crystal, such as quartz
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small, L is on the order of a centimeter; hence for a λ in the middle of the optical
range, the difference in refractive index must not exceed one part in 105.

Of the many birefringent crystals that show nonlinearity, those few that have
an adequate nonlinear coefficient, are transparent in the desired wavelength range,
and are resistant to surface damage are useful as frequency mixers. Quartz has
already been mentioned as the crystal in which the doubling of an optical fre-
quency was first observed. Other crystals with greater nonlinearity that have been
used include potassium dihydrogen phosphate (KDP) and ammonium dihydrogen
phosphate (ADP), which are adequate for harmonic generation of 1:m infrared
radiation. The widely used lithium niobate (LiNbO3) crystal has a nonlinearity ten
times that of KDP; potassium niobate (KNbO3) has an even larger nonlinearity,
providing phase matching into the blue part of the spectrum; and lithium iodate
(LiIO3) provides a further extension into the ultraviolet.

14.3.4 Diffraction Devices

Whenever a light wave propagates through media whose propagation charac-
teristics vary spatially at a rate comparable to its wavelength, we observe the
phenomenon of diffraction. The variation may take the form of high frequency
acoustic vibrations in a crystal producing alternately high and low refractive index,
or it may be ripples on the boundary surface between two media of differing refrac-
tive index, as in a diffraction grating. Diffraction is characterized by a redistribution
in space of the light energy as determined by interference between waves scattered
from different points in the source of the diffraction.

In classical optics the common wavelength-dispersive element in a mono-
chrometer is a diffraction grating, a plane or concave mirror ruled with fine, closely
spaced parallel grooves, thereby forming a periodically varying reflectivity. If the
spacing of the grooves is d on a plane reflection grating, and light falls on it along
the normal, then the grating equation relating the direction θn in which the spectral
component of the light having the wavelength λ has a maximum reflection is as
follows:

d sin θn = nλ 14.36

where n is an integer, the order of the diffraction. If the incident light is
monochromatic then we can show that the reflected intensity as a function of
θ is distributed over narrow ranges of θ centered on the values obeying the grating
equation. Thus, writing

δ = πd sin θ

λ
14.37

the sum of the partial waves reflected from the grating (applying Huygens
Principle) is given by:

E(t) = eiωt
n=N−1∑

n=0

Eneinδ 14.38
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which leads to:

I (θ) = I0

N
sin2(Nδ)

sin2 δ
14.39

where I0 is the incident intensity over the entire N grooves, in the absence of
interference. It follows that I (θ) reaches a large maximum N I0 whenever δ = nπ,
that is, when the grating equation is satisfied. Furthermore the larger N is, the
closer the zeros of I (θ) at δ = (n+1/N )π will be to the maximum at δ = nπ , that
is the sharper the spectral resolution of the grating.

Of particular importance in the context of laser applications are acousto-optic
deflectors and modulators. The diffraction of light by acoustic waves in certain
crystals was predicted by Brillouin in 1921. The basis of the acousto-optic interac-
tion is fundamentally through the change in electrical permittivity that results from
a mechanical strain or deformation in the crystal. In the case of the acousto-optic
effect of interest to us, the strain is a periodic function of space produced by an
acoustic wave in the medium. For a plane acoustic wave propagating in a direction
we will choose as the z-axis we have:

n(z, t) = n + �n cos[2πνat − kaz] 14.40

where νa , ka are the frequency and wave vector of the acoustic wave, and �n is
the amplitude of modulation of the refractive index due to the acoustic wave. For
an incident laser beam this represents a phase grating traveling with the velocity
of sound in the medium, producing a diffraction pattern in the far field.

In describing the diffractive behavior we must distinguish two limiting regimes:
the so-called Raman-Nath regime and the Bragg regime. The Raman-Nath regime
is observed at relatively low acoustic frequencies and short acousto-optic inter-
action lengths. It can be observed at arbitrary angles of light incidence, and the
diffracted beam contains many orders symmetrically distributed about the direc-
tion of incidence as illustrated in Figure 14.13. In contrast, the Bragg diffraction
regime is observed at high acoustic frequencies exceeding usually 100 MHz. The
observed diffraction pattern, even at high acoustic powers, consists usually of only
two diffraction maxima: the zeroth and first order. Moreover these occur only at
definite angles near the so-called Bragg angle, determined by the Bragg equation
familiar from X-ray diffraction theory, which for an isotropic medium is given by:

2
ka

2π
sin θB = λ

nr
14.41

where nr here is the refractive index of the medium.
If the medium is an anisotropic crystal, then we have to take into account

the birefringence of the medium: two types of diffraction are possible. An
acousto-optic interaction in which there is no change in the type of wave, whether
“ordinary” or “extraordinary”, will obey the Bragg condition given in eq. 14.41,
using the appropriate refractive index. On the other hand if the interaction leads
to a transition, so that the refractive index for the incident beam differs from that
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Figure 14.13 (a) Raman-Nath scattering (b) Bragg diffraction

for the diffracted beam, the theory is far more complicated; nevertheless it is of
great practical importance. We will only state qualitatively that for the special case
of the acousto-optic interaction plane being perpendicular to the optical axis of
a uniaxial crystal, the functional dependence of the Bragg angle on the acoustic
frequency differs according to the relative magnitudes of the refractive indices for
the incident and diffracted beams The optimum choice of acousto-optic crystal
type to perform given functions such as deflection, modulation and filtering, is
dictated by the relative magnitudes of the incident and diffracted beams.



Chapter 15
Laser Systems

15.1 The Gas Lasers

15.1.1 Helium-Neon Laser

We will now consider specific lasers that typify each of several important classes.
Historically, the now ubiquitous helium-neon laser occupies a special place after
the ruby laser, as the first gas laser to implement the emerging ideas on how to
extend the concept of a maser oscillator to optical frequencies, ideas associated
mainly with the names of Townes, Schawlow, and Basov.

The thin red beam of the helium–neon gas laser is familiar to the general public;
it was first successfully made to oscillate at the Bell Telephone Laboratories in
1960 by Javan, Bennett, and Herriott (Javan, 1961). It is the first CW (continuous
wave) laser, achieved by an electrical discharge in a mixture of helium and neon
gases as the amplifying medium, with an output wavelength in the near infrared at
λ = 1.1523 μm; the familiar red beam came somewhat later. Almost immediately
after the announcement of this success, innumerable other reports of laser action in
other substances came in quick succession over the next several years.

The active element in the He–Ne laser is neon, which, like helium, is a noble
gas. It has six equivalent electrons in its outer shell, which occupy all the states in
that shell permitted by the Pauli principle; hence its ground state has zero spin and
zero orbital angular momentum and is designated spectroscopically as a 1S0 state.
The lower excited states must therefore involve an electron going into the next
shell, leaving a vacancy in the previous one, which must therefore have a net angu-
lar momentum equal in magnitude to that of one electron. The resulting possible
total angular momentum states and their fine-structure splittings are complicated,
and so we will content ourselves with accepting the spectroscopic notation simply
as a way of labeling the states without further inquiry. Some of the relevant lower
excited states are shown in Figure 15.1. The laser states, between which transitions
give rise to the familiar red beam at λ = 632.8 nm, are in the groups of fine-
structure levels labeled 3s and 2p; in addition, lasing action occurs in the infrared
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Figure 15.1 The matching of metastable levels in helium with the upper lasing state in neon

at λ = 3.39 μm between states in the 3s and 3p groups, and at λ = 1.15 μm
between states in the 2s and 2p groups. Although excitation of the Ne atoms into
the upper laser state is possible through collisions with electrons in the plasma sus-
tained by the electrical discharge, these collisions will unfortunately also excite the
lower state, making it difficult if not impossible to create the requisite population
inversion. It is true that the radiative lifetime, for example, of the upper 3s state for
the λ = 632.8 nm transition is considerably longer (≈10−7 seconds) than that of
the lower 2s state (≈10−8 seconds), a circumstance that favors the development of
population inversion. Nevertheless, direct electron impact on the Ne atoms would
do little to reinforce that trend. This is the reason for the presence of helium atoms
in relatively large numbers: They act as carriers of excitation energy that preferen-
tially raise the Ne atoms to the upper laser states by a process called collisions of
the second kind. Although originally applied to collisions between excited atoms
and free electrons in which the excitation energy of the atom is given to the electron
in the form of increased kinetic energy, it is now used more broadly to include any
collisions in which the excitation energy of one particle is transferred to another
particle. In our present case, the helium atoms are first excited by collisions with
electrons in the plasma to higher electronic energy states, from which many cascade
down to accumulate in excited metastable states. These are states from which an
atom has little probability, because of quantum selection rules governing changes
in angular momentum, of making spontaneous transitions to lower energy states by
emitting a photon. In a low-pressure discharge through helium gas it is expected
that, at least at some distance away from the walls of the container, there will be
a significant proportion of He atoms in the metastable 23S1 state at 19.8 electron
volts above the ground state, and atoms in another metastable state 21S0 at 20.5
electron volts above the ground state.
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There remains one important condition for the collisional transfer of excita-
tion between the metastable helium atoms and the neon atoms: For such a
collision process to occur with a large cross section, there must be near resonance
between the colliding atoms. That is, the excitation energy of the helium atom
must be nearly equal to the excitation energy of the desired state in neon. The
combination of these two particular gases was chosen precisely in order to fulfill
this requirement. There is indeed a near match between the 23S1 level in helium
and the upper laser level 2s in neon, as well as between the 21S0 level in helium
and the 3s level in neon, as shown in Figure 15.1.

The collision process can be represented as follows:

He∗(21S0) + Ne → He + Ne∗(3s) − 0.05eV.

The discrepancy in the energy is made up from the kinetic energy of the center-
of-mass motion of the colliding atoms.

It is not only the helium atoms that have metastable states of concern to us; the
neon atoms themselves are metastable in the state we have labeled 1s, and they can
accumulate there as a result of rapid transitions from the lower laser 2p state. Unlike
ground state neon atoms, which are subject to excitation through collisions with
metastable helium, those in the metastable 1s state can be removed only through
collisions with the walls of the tube. Their presence is an obstruction to the pump-
ing cycle and could cause a serious reduction in population inversion and hence
optical frequency gain. For this reason the inside diameter of the central section
of the laser tube is generally small, on the order of one millimeter, to shorten the
diffusion time to the walls, where they are de-excited.

In Figure 15.2 is shown schematically the arrangement of a typical He–Ne gas
laser. It consists of a plasma tube, which because of the relatively low power density
required to achieve oscillation can be made of common borosilicate glass. The
geometry is generally a coaxial one consisting of a capillary plasma tube along the
axis of a larger glass cylinder, which provides mechanical support to the capillary
tube, the cathode, and possibly a reservoir of helium. The latter may be provided
since Pyrex at elevated temperatures is slightly permeable to helium gas, and its
pressure in a sealed tube will fall in the course of time. If high-frequency excitation

Figure 15.2 A typical He–Ne laser design
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is used, the electrodes can be external to the plasma tube; however, in this case,
local heating and strong fields, where the high-frequency current enters the tube,
may aggravate the loss of helium. Most portable lasers make the optical cavity an
integral part of the plasma tube assembly; the mirrors are sealed permanently at the
ends of the tube. If the mirrors are to be adjustable, it is possible either to mount
them on bellows or to seal the tube with flat, optical-quality Brewster windows and
mount the tube between two external mirrors.

Although the helium–neon laser has superior spectral purity and directionality,
it has two important limitations: First, the output wavelength can be varied only
over a minute range; that is, it is practically untunable; and second, it is fundamen-
tally a low-power laser, seldom exceeding 100 milliwatts, and more typically rated
in the 1–10 milliwatt range.

15.1.2 The Argon Ion Laser

Among the gas lasers, the noble gas ion lasers using Ar+ or Kr+ ions as the active
medium can be designed to have great CW output power at several wavelengths
in the visible part of the spectrum, making them initially among the most useful
for pumping tunable dye lasers. Argon is a noble gas whose atom has a full com-
plement of six electrons in its 3p outer shell. It requires an energy of about 12
electron volts just to raise it to its first excited state (hence its chemical inertness)
and 15.7 electron volts to completely remove one electron and thereby form the A+
ion. The ground state of the ion has a single vacancy in the 3p shell, giving it an
angular momentum equivalent to one p electron (orbital momentum one unit) and a
fine structure splitting into two close-lying levels. The relevant excited states of the
ion, between which the laser transitions occur, require a further 19 electron volts
to be reached from the ion ground state. They arise from electron configurations in
which one of the 3p electrons goes into the n = 4 s-shell. With so many electrons
involved in the determination of the energy states of the ion, it is not surprising that
the spectrum is complex, and it provides a wealth of transitions on which to obtain
laser oscillation.

The strongest laser outputs are at wavelengths 514.5 nm and 488.0 nm in
the green–blue region of the spectrum, which arise from transitions between fine
structure sublevels in the 3p44p (4D0) state and the 3p44s (2P) state. The radia-
tive lifetime of the upper laser level is a relatively short 9 nanoseconds (9×10−9

sec), while that of the lower is even shorter (as it must be for laser action), at 1.8
nanoseconds. This circumstance makes it necessary that the pumping of ions into
the upper levels be correspondingly fast; but in the process, of course, the output
laser power is much higher. The laser may be classed as a 4-level laser, since the
initial pumping through electron collisions takes the ion to levels above the upper
laser level, to which some cascade back, building up its population. Also, the lower
laser level has a very short lifetime and is far above the ground level of the ion, so
that there will be a far greater density of ions in the ground state than in the lower
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Figure 15.3 A typical Ar+ion laser plasma tube

laser level. Hence the pumping process begins with the excitation of ions from the
ground state and not the lower laser level. On the other hand, since the excitation
produced by electron impact is not particularly selective as to the final state as
long as energy is conserved, there will be some excitation to the lower laser level,
opposing the desired buildup of population inversion.

The ions are produced, and then excited by electron impact in a high current
(some tens of amperes) arc discharge through pure argon gas in a plasma tube, as
shown in Figure 15.3. Since the mean energy of the electrons is on the order of a
few volts, it follows that many collisions with a given ion are required to reach the
laser levels. The electron flux required in these lasers is vastly greater than for the
helium–neon laser; consequently, every effort is made to reduce the heating of
the plasma tube walls. This is done by applying a strong magnetic field coaxial
with the tube, to confine the plasma and slow down the diffusion of ions to the
walls. This field is generated by passing a current through a coaxial solenoid.
In spite of this, there may still be many kilowatts of power dissipated as heat,
requiring water cooling and a plasma tube made of a high-temperature refractory
material such as beryllia (beryllium oxide), with possibly metal fins for efficient
heat exchange. For ease of igniting and maintaining a high current DC arc, the
plasma tube has a hot electron emitting cathode. To maintain the highest possible
electron energy, the gas in the arc must be free of molecular contaminant gases
evolved from interior surfaces of the tube, since such contaminants will tend to
have lower ionization and excitation energies, and the electrons give up their energy
before reaching values high enough to excite the desired Ar+ levels. In a sealed
tube this is accomplished by providing a getter, such as barium, to combine with
such contaminants and remove them from the arc. Finally, it is found that in a DC
arc there is a need to provide a return path for the argon gas outside the arc from
one end of the tube to the other.

In general, if a simple optical cavity is used, an argon ion laser will oscillate
simultaneously on more than one transition; these are commonly at the wavelengths
514.5 nm and 454.5 nm. In order to have oscillation on a single transition, an
intracavity prism is incorporated into the optical cavity design; by a small tilt of
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the prism, the cavity can be tuned with sufficient finesse to select laser transition
wavelengths. However, because of the relatively short radiative lifetime of the laser
levels, the Doppler broadening due to the wide thermal velocity distribution of the
ions in a high-temperature plasma, and the Zeeman effect due to the magnetic field
used to constrict the plasma, the gain curve will encompass many longitudinal
modes. The bandwidth of the output is in the range of 4–12 GHz; however, it
can be drastically reduced by selectively allowing only one longitudinal mode to
oscillate. This is done by introducing a sufficiently narrow transmission filter inside
the optical cavity, a filter that has very high transmittance only over a frequency
band narrow compared with the frequency interval between longitudinal modes.
Such a filter is a Fabry–Pérot type of arrangement consisting of an optically flat
plate of glass or fused quartz, with highly reflective coatings, referred to in this
connection as an étalon (from the French word meaning standard, a reference to
its original use in connection with standards of length). If the thickness of the
etalon is t and the refractive index of its material is n, then it will have sharp
transmission peaks spaced at intervals of c/2nt in frequency; thus for t = 1 cm,
the spacing is around 10 GHz, the precise value depending on the refractive index
and the angle of tilt (if any) between the etalon and the light wave. This spacing
is much larger than that of the longitudinal modes of the cavity, which is c/2n0L
and is typically in practice around 0.15 GHz. By adjusting the system so that one
of the maxima of transmission of the etalon falls at the center of the gain curve,
the number of modes that can oscillate is radically reduced. Furthermore, once the
laser breaks into oscillation in one of the longitudinal modes, the rapid buildup
of the optical field accelerates the stimulated emission and reduces the population
inversion, hence the gain, thereby suppressing oscillation at all but the adjacent
modes. These modes are close enough that it is possible for a fully operating laser
to exhibit mode competition, in which buildup of oscillation at one mode frequency
comes at the expense of gain for another mode. This can manifest itself in mode
hopping if, for example, the etalon position fluctuated slightly. But all these limits
on output frequency stability are still below the megahertz range on an optical
frequency around 6×1014 Hz, a remarkable figure in an instrument that can provide
a CW output of several watts of laser light.

15.2 Liquid Dye Lasers

The next important class of lasers we shall consider is that of organic liquid dye
lasers. Apart from the obvious differences due to the fact that the active medium
is a liquid rather than a gas, these lasers are distinguished by their wide range of
continuous tunability. In fact, by using different dyes, the entire visible range of
the spectrum, from violet to red, can be covered. Since laser action in an organic
dye solution was first reported in 1966 (Sorokin, 1966) the technology and appli-
cations of dye lasers have vastly expanded; they occupy a unique place by virtue
particularly of their broadband gain.
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The active medium in liquid dye lasers consists of complex organic dye
molecules, with names such as rhodamine 6G, coumarin, and stilbene. They are
commonly in a crystalline powder form and are dissolved in some solvent such as
water, ethanol, or ethylene glycol.

These dye solutions are characterized by a strong absorption band in the
ultraviolet or visible region of the spectrum. When irradiated with light match-
ing these bands in wavelength, the dye molecules strongly absorb it and re-emit
light in a broadband shifted to lower frequency, in an intense display of what is
called fluorescence. Previously when we used that term, it was in connection with
atomic resonance fluorescence in alkali atoms, where the re-emitted light had the
same wavelength as the absorbed light. Here the fluorescence is shifted to lower-
energy photons, the balance having been taken up and dissipated by the molecules.
Figure 15.4 shows the absorption and fluorescence spectra of rhodamine 6G dis-
solved in ethanol. The broadband nature of the absorption and fluorescence reflects
the complexity of the polyatomic dye molecule, with each of its electronic states a
complex of rotational and vibrational levels, as depicted schematically for a typical
dye molecule in Figure 15.5. The interaction of the dye molecules with the solvent
is so strong that collisions cause the closely spaced rotation–vibrational sublevels
to be homogeneously broadened to such an extent as to form a continuum, and
consequently, the absorption and fluorescence spectra are broad bands. The fact
that the broadening is the same for all molecules, and therefore homogeneous, is
significant, since under the proper conditions it allows all molecules to contribute
to oscillation at a single frequency. Of course, for a given population inversion the
optical gain is lowered by the broadening, but threshold is reached simultaneously
by all molecules at a single frequency, unlike inhomogeneous broadening, where
different groups of molecules may reach threshold at different frequencies.
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Figure 15.4 The absorption and fluorescence spectrum of the dye rhodamine 6G
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Figure 15.5 Schematic illustration of the quantum level structure in organic dyes

There are two systems of electronic states, designated as singlet (Sn), and
triplet (Tn), which are marked by a difference in their molecular spin state, the
singlet having S = 0 and the triplet S = 1. In consequence, radiative “intersystem”
transitions between them are quantum-mechanically “forbidden.” However, transi-
tions between certain levels within each system are not forbidden and will generally
occur very rapidly. The ground state of the molecules is a singlet electronic state
S0, made up, as already mentioned, of a continuum of rotational and vibrational
sublevels, among which the molecules are distributed in a manner characteristic of
thermal equilibrium at the liquid temperature. The absorption of light by ground
state molecules is through transitions to the complex of rotation–vibrational sub-
levels of the first excited singlet state S1. This results in excited state molecules
whose energy distribution does not correspond to thermal equilibrium; therefore,
through thermal agitation in the liquid environment, there are rapid downward non-
radiative transitions within that complex to reestablish thermal equilibrium. This
equilibrium distribution is reached in a matter of picoseconds (10−12 sec), with the
largest population going into the lowest vibrational sublevel, which is the upper
level of the fluorescence, and hence also of the laser transitions. This permits a
buildup in the population of this laser level, since its lifetime against fluorescence,
that is, transitions to some sublevel in the ground state (S0) complex, the lower
laser level, is on the order of nanoseconds (10−9 sec), that is, very much longer.
The final phase of the pumping cycle is reached when the molecules very quickly
return, again by nonradiative processes, to a thermal distribution among the sub-
levels of the ground state, with most molecules going into the lowest vibrational
sublevel, leaving few in the lower laser level. This pumping scheme can be mod-
eled as involving a 4-level system, if we regard the sublevels of S1 above the upper
laser level as one “level,” and similarly for those in S0 below the lower laser level.
For given transition rates between these levels, it is possible to derive the steady-
state population inversion and hence optical gain before oscillation. However, we
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will not pursue this beyond noting that the fluorescence quantum efficiency (the
ratio of fluorescent to absorbed photons) for some dye solutions can approach
100%, a figure strongly dependent on the molecule and solvent.

It is because the observed fluorescence results from spontaneous transitions
from the lowest sublevel in S1 to upper sublevels of the ground state, an energy
change smaller than that involved in absorption, that the fluorescence is shifted in
wavelength relative to the absorption band. Fortunately, there is a spectral range
(see Figure 15.4) in which the absorption has fallen to zero while the fluorescence
remains strong; this, as we shall see, makes a dye laser possible.

Unfortunately, in addition to the desired fluorescence, other non-radiative
processes can also de-excite molecules in the S1 state, thereby degrading the fluo-
rescence quantum efficiency. These may lead to a return to the S0 ground state, or
what is worse, they may lead to a crossing to T1 in the other system, where they
remain for a much longer average time, since there is no “allowed” radiative tran-
sition to a lower state. As the pumping proceeds, the molecules will consequently
accumulate there, presenting a serious problem, since absorbing transitions in the
triplet system T1 → Tn partially overlap the wavelength of the fluorescent pho-
tons, and therefore also of the photons involved in laser action. This unfortunately
becomes a determining loss factor that prevents continuous laser action by a given
group of molecules. Ultimately, they will return through “spin-forbidden” transi-
tions to the ground S0 state, possibly accompanied by weak light emission, called
phosphorescence. There are two approaches to getting around the difficulty of the
triplet state: The first is to operate in a pulsed mode, and the second is to achieve
CW operation by continual renewal of the dye molecules by making the dye solu-
tion flow through the pumping beam.

The former option of pulsed operation can be achieved either by pumping with
a pulsed laser, such as the nitrogen laser, or a xenon flash lamp. The preferred
source is a (molecular) nitrogen laser, which is remarkable in having an output
whose wavelength is in the near ultraviolet at 337.1 nm and is in the form of very
short (10 nanosecond) high-power pulses, on the order of 100 kilowatts peak. The
quantum-level structure of the N2 molecule is such that the population of the lower
laser level can build up rapidly, destroying the population inversion needed for
continued oscillation, and the laser is self-terminating. To make it oscillate, the
excitation (pumping) must be extremely fast; this is achieved in practice by passing
almost instantaneously an intense electron current at high voltage laterally through
a column of gas at a pressure of around 104 Pa. This requires a special high-voltage
(tens of kilovolts), low-inductance circuit for discharging a capacitor through the
gas. The maximum pulse repetition frequency is ultimately limited by the rate at
which the heat generated by the discharges can be dissipated, typically 60 pulses
per second.

The nitrogen laser is eminently suitable as a pumping source, since not only
does its output wavelength at 337.1 nm overlap the absorption band of many dyes,
but what is equally important, the pulse widths are far shorter than the mean time
for T1 buildup through S1 → T1 intersystem transitions. Furthermore, the high
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peak power makes it possible to reach threshold population inversion in those dyes
that, because of a relatively low fluorescence quantum efficiency, cannot be oper-
ated with a flash lamp.

For CW operation, the dye solution must flow rapidly through the region of
interaction with the laser pumping beam, most popularly an Ar+ ion laser. Owing
to the high power density of a focused laser beam, the windows through which the
beam enters and leaves the dye stream are a common source of trouble in CW oper-
ation. A method of circumventing this problem is to use an unenclosed fast-flowing
jet in the form of a thin ribbon, produced using a specially designed nozzle as part
of a circulating system for the dye solution. In order to establish a sufficiently stable
jet, it has been found that the viscosity of the solvent is important; ethylene glycol
is often used. The ribbon of dye solution is intercepted at the Brewster angle (55◦
for ethylene glycol) by a CW pumping laser beam, which therefore irradiates con-
tinually different molecules. Since the pumping laser beam can be focused down
to a fraction of a millimeter, with flow rates of 1–10 m/sec, transit times across the
beam can easily be made shorter than the T1 population buildup time. Circulating
the dye solution also permits it to be cooled and filtered.

15.2.1 Standing Wave CW Dye Laser

The optical design of a CW dye laser must accommodate the pumping laser as well
as a provision for narrowing the frequency bandwidth of the optical gain around
the desired wavelength. There are obviously numerous possibilities, generally
classified according to whether the pumping beam is parallel to the laser beam
in the cavity or perpendicular to it. Two critical optical requirements must be met:
The pumping beam must be sharply focused onto the active dye medium, where
a cavity mode must have a small beam waist. Figure 15.6 shows an example of a
commercial design using a three-mirror folded cavity with a coarse tuning wedge
and a fine tuning étalon. In this design the focusing of the pumping laser onto the
tilted dye jet is corrected for astigmatism by the tilted input mirror, and the waist

Figure 15.6 A typical commercial dye laser design using a 3-mirror folded optical cavity
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Figure 15.7 Typical output power as a function of wavelength for different dyes

of the cavity beam is made small at the dye jet by the short distance between the
concave mirrors. (In a confocal cavity, the beam waist at the center of the cavity
can be shown to depend on

√
L , where L is the distance between mirrors.) The

features that set dye lasers apart from other lasers and make them so important are
their high quantum efficiency and gain over broad frequency bands. This means
not only that they are tunable to yield an output at any desired wavelength, but
also that they are capable of fast modulation. Thus by applying one of the mode
locking techniques, a pulsed output may be obtained with pulse durations in the
picosecond (10−12 second) range, and by building on that technique pulse widths
in the femtosecond (10−15 second) range!

Each dye covers only a limited part of the optical spectral range, and different
dyes with their appropriate high reflectance mirrors must be used to cover different
parts of the spectrum. However, by doing so, it is possible to generate useful power
over the full visible range, from 400 nm to 800 nm. Figure 15.7 reproduces the
output power curves for different dyes covering different portions of the spectrum.
It is seen that rhodamine 6G and oxazine will yield an output of over 0.5 watts for
a pumping power of 4 watts from an Ar+ ion laser.

15.2.2 The Ring Dye Laser

The ultimate challenge in laser design is to achieve a finely tunable output of great
power, stability and spectral purity. In dye lasers we have relatively broad opti-
cal gain curves, each dye covering a band of wavelengths in different parts of
the visible spectrum. To achieve the narrowest spectral line-width in the output
requires that the laser oscillate in a single mode, whose frequency may require fur-
ther active stabilization. In practice, a combination of interferometric narrow-band
tuning elements, called étalons, with different finesse may be incorporated in the
laser cavity to select a particular oscillation mode and sharpen the spectral width of
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the output. In more sophisticated systems, where stability of the output frequency
is paramount, active stabilization is provided using a servo system to control the
optical length of the laser cavity against a stable, external reference optical cavity.

The output power of a CW single-mode dye laser using a standard standing-
wave cavity is limited by a phenomenon called spatial hole-burning, in which the
population inversion, and hence the optical gain, of the dye saturates at the points
where the stationary optical field pattern has strong maxima. At intermediate points
where the field is zero, the dye is effectively unused, retaining its high gain at
those points. The laser therefore tends also to oscillate in modes making use of that
unused gain, making it necessary to use high-loss frequency-selective elements to
maintain single-mode operation. Efforts to remove these limitations culminated in
the development of the now widely used traveling-wave ring laser. In Figure 15.8
is shown schematically the layout of a commercially available ring dye laser using
four cavity mirrors in a folded configuration. As with most CW dye lasers, the dye
stream is optically pumped with a high-power Ar+ ion laser and is equipped with a
unidirectional filter to suppress the counter-propagating wave that would naturally
be present in such a configuration of mirrors.

Since the light waves propagate continuously around the cavity, all the dye
molecules are subject to the same average optical field; they all contribute equally
to the buildup of the laser field, and the phenomenon of hole-burning does not
occur. This, in combination with the natural tendency for the buildup of one mode
to suppress other modes relaxes the need to sacrifice power in highly selective fil-
ters to maintain single-mode operation. The result is an order of magnitude increase
in single-mode output power for the same pump power. Depending on the desired
wavelength, and therefore the particular dye that is available for that wavelength,
commercially available ring dye lasers are capable of producing CW output powers
of several watts with spectral line widths less than 1 MHz. While special, stabilized
long-cavity gas lasers, such as the He–Ne laser, have demonstrated the possibility
of attaining far narrower line widths, the tunability and power of a stabilized ring
dye laser makes it unparalleled as a laser source, with far-reaching applications.

ion laser beam
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pump mirror
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Figure 15.8 Typical layout of a traveling wave ring dye laser
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The availability of high-power tunable dye lasers, which span the visible
region of the spectrum, provides a means for reaching ultraviolet wavelengths
by frequency doubling, and other optical frequency synthesis techniques. This is
of critical importance, since the resonance wavelengths of many interesting ions
are in the ultraviolet (Hg+ at λ = 194.2 nm, Yb+ at λ = 370 nm, and Mg+ at
λ = 279.7 nm) and are far beyond the direct range of dye lasers. We note that
while the resonance wavelengths for Mg+ and Yb+ can be reached by dividing by
2 the wavelength of light at λ = 559.4 nm and λ = 740 nm respectively, wave-
lengths well within the range of available dyes, the wavelength of the important
Hg+ ion is not so easily accessible. Nevertheless, it is achievable by a number of
frequency synthesis methods involving nonlinear crystal optics to produce optical
harmonic frequencies as well as mixing two or more optical frequencies to produce
light at the sum or difference frequency. When the system is designed to produce
the sum frequency, the process is called up-conversion of frequency and is one
approach to synthesizing the Hg+ ion wavelength.

15.3 Semiconductor Lasers

15.3.1 The p–n Junction

As tunable coherent sources in the red and infrared regions of the spectrum,
semiconductor lasers are important not only in integrated optical systems and as
transmitters in optical fiber communication systems, but also in the present con-
text of frequency standards in the microwave and optical regions of the spectrum.
We take up first the fundamental process of light emission by a junction of p-type
and n-type semiconductors when charge carriers are injected into it by the appli-
cation of an external voltage across it. Figure 15.9a illustrates schematically the
energy band diagram of an isolated p–n junction showing the equilibrium con-
dition where EF , the Fermi level, is the same on both sides of the junction. In
achieving this equilibrium, the energy bands are displaced relative to each other by
the formation of a “dipole layer” in the junction (or depletion) region, consisting
of positive donor ions and negative acceptor ions, caused by the diffusion across
the junction of electrons and holes respectively. If now an external voltage source
is connected to the junction with the p-region connected to the positive side of the
source and the n-region to the negative, that is, forward biased, the equilibrium
is disturbed, and the Fermi levels are no longer aligned across the junction; the
result is that the step in potential energy across the junction is lowered, as shown in
Figure 15.9b. The majority carriers, conduction electrons in the n-region, and holes
in the p-region are now able to penetrate the junction region in far greater numbers
than for an unbiased junction. The result is that in that same region we now have
electrons occupying higher-energy states predominantly near the bottom of the
conduction band, and vacant lower-energy states near the top of the valence band.
The possibility therefore exists of electrons making downward transitions between
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Figure 15.9 The energy bands in (a) an unbiased p–n junction and (b) a forward biased
junction

these states, with the emission of radiation. However, for this radiative process to
occur, the laws of conservation of energy and linear momentum must be obeyed.
Now, the energy is conserved simply by the emitted photon energy hν being equal
to the change in energy of the crystal as a result of the transition: hν = (E1 − E2),
while the conservation of linear momentum requires that the linear momentum p

carried by the photon, as given by the de Broglie formula p = (h/2π)k, should
equal to the (vector) change in the momentum of the electron making the transi-
tion. If we substitute actual numerical values, for example, for GaAs, whose band
gap is about 1.44 electron volts, we quickly find that an emitted photon has a wave
number k ≈ 7.25 × 106 m−1. The wave number of the electron, on the other hand,
is on the order of π/a, where a, the crystal lattice spacing, is on the order of 0.1
nm; hence for the electron, k ≈ 3 × 1010 m−1, that is, about 4000 times greater.
This means that the electron wave number must not change more than one part
in 4000 in a transition. Since the electrons are concentrated near the bottom of the
conduction band and the holes near the top of the valence band, a significant rate of
radiative transitions occurs only when the minimum of the conduction band comes
at the same k value as the maximum in the valence band, that is, in crystals like
GaAs having what we have called a direct energy gap. Crystals that fail to satisfy
this condition, such as silicon and germanium, have radiative efficiencies orders
of magnitude lower than GaAs, because in order to conserve linear momentum,
the emission of a photon must be accompanied by the improbable simultaneous
emission in the crystal of a quantum of acoustic energy called a phonon.

15.3.2 The Gallium-Arsenide (GaAs) Laser

If no provision is made to meet the feedback conditions for laser action, passing a
current through a p–n junction in a direct semiconductor simply leads to the emis-
sion of incoherent radiation, which in the case of GaAs is around λ = 870 nm in the
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Figure 15.10 A gallium arsenide diode laser

near infrared. As such, it would be called a light emitting diode (LED), a member of
a class of devices that includes diodes using other combinations of elements such
as GaP and ternary (3-element) combinations such as GaAs1−x Px to have emission
at other wavelengths. They are of great importance as light sources in fiber-optic
communication systems and are also generally familiar in LED displays.

The physical design of a basic GaAs diode laser is illustrated schematically
in Figure 15.10. Because of the relatively large number density of electron–hole
pairs, the linear optical gain is high; the optical “cavity” is therefore very short,
amounting to perhaps a few microns, with cross-sectional dimensions of a few
hundred microns. Moreover, the reflecting surfaces forming the cavity need not
have very high reflectance; in fact, it is common simply to use the reflection from
cleaved (or polished) faces of the crystal perpendicular to the junction plane, as
shown in Figure 15.10.

The refractive index of a GaAs crystal at the wavelength of the emitted light
is n ≈ 3.6, and thus using Fresnel’s formula for the (intensity) reflectance at per-
pendicular incidence, we find R ≈ 32%, a small figure indeed, but sufficient for
this type of laser. The threshold current density to achieve oscillation is very high
in the kind of p–n junction we have been describing, called a homojunction; it is
on the order of 20,000 A · cm−2 at low temperatures, and more than twice that at
room temperature, so that the heat generated limits operation to a pulsed mode.
The principal reasons for this high threshold current have to do with the factors
that determine the “population inversion,” which in this context means the den-
sity of electrons that can be maintained in the junction region against nonradia-
tive electron–hole recombination. The average number density of conduction elec-
trons in the junction region, below threshold, is determined by the current density
injected into the junction, the thickness of that region, and the average lifetime of
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an electron against nonradiative recombination. In fact, on the basis of a simple
model, we can obtain the following relationship:

ρe = Jτ
ed

, 15.1

where τ is the average electron lifetime, d is the thickness of the active region, and
e as usual is the electronic charge. This shows that a large ρe is favored by having
τ as long as possible and d as small as possible. The former requirement is met by
making the crystal as free of impurities and imperfections as possible, while the
latter suggests that it would be advantageous if the electrons could be confined to
a smaller space in the active region.

15.3.3 The Heterojunction Lasers

It was in 1969 that reports were first published of the successful development
of a new class of semiconductor lasers having greatly reduced threshold currents
at room temperature (Panish, 1969). These were called heterostructure lasers but
are now more commonly referred to as heterojunction lasers. Instead of a simple
junction between p- and n-types of the same semiconductor, this new class has
one or more layers on either side of the GaAS, of sharply different energy gaps
between the valence and conduction bands, as shown in Figure 15.11. The effect
of the sudden jump in band gap is to present the injected electrons with a potential
barrier that tends to concentrate them in the active region, even as the tempera-
ture is raised, and also to act as a wave guide that reduces the loss of stimulated
radiation. For example, a double heterojunction laser is composed of four layers:
n–GaAs, n–Gax Al1−x As, a thin p–GaAs layer, and a p–Gax Al1−x As layer. These
layers are formed epitaxially; that is, the 3-element solid solution Gax Al1−x As
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Figure 15.11 The layers of a heterojunction diode laser
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forms a crystalline layer that continues, without a significant break, the crystal lat-
tice of the GaAs. For this to succeed, it is obviously necessary that the lattice of the
substrate crystal and the would be epitaxial layer be matched as closely as possible
to avoid lattice dislocations, which could serve as nonradiative recombination cen-
ters. It was expected that this match should exist in the case of Gax Al1−x As and
GaAs, since it was known that the lattice parameters of GaAs and AlAs are nearly
the same. To achieve a sharp interface between the layers, they are grown using
liquid-phase epitaxy rather than by diffusion from the vapor. The heterojunction
design dramatically reduces the threshold current density to the neighborhood of
1000 amperes · cm−2, and permits CW operation at room temperature.

The output of these lasers as the threshold current is approached shows a
rapidly increasing intensity called superradiance with a broad spectrum, until as
threshold is passed, the output spectrum breaks up into a number of intensity peaks
equally spaced in frequency. These peaks correspond to the various longitudinal
modes the optical cavity can support within the gain curve of the laser diode. Fur-
ther increase of the current results in the intensity becoming increasingly peaked
around one of these modes. For true single-mode operation, a number of different
approaches have been studied; in one interesting design, distributed feedback is
used to select a particular wavelength. In this, a regular array of corrugated ridges
is formed in the interface between layers to act in an analogous way to an inter-
ference filter, allowing a narrow wavelength band to resonate with low loss. The
output frequency of these layers is sensitive to temperature, a fact that detracts
from their usefulness where extreme frequency stability is required; however, it
does allow them to be tuned over a narrow range, and they may therefore be locked
to a standard.

15.4 Solid Crystalline Lasers

15.4.1 The Ruby Laser

The first account of laser action in any medium is contained in an article entitled
“Stimulated optical radiation in ruby masers,” published August 1960 in the British
journal Nature (Maiman, 1960). In this article Maiman described the first experi-
mental evidence of stimulated emission at optical frequency in ruby. According to
an article in Physics Today (October, 1988) a brief article on the subject submitted
by Maiman two months earlier to Physical Review Letters was turned down by its
then editor, Goudsmit.

Maiman’s historic laser is drawn schematically in Figure 15.12. The “active
atoms” are chromium ions in a matrix of crystalline alumina (Al2O3). Crystalline
alumina found naturally as the mineral corundum is colorless when pure. However,
when “doped” with chromium by the addition of a small amount of chromic oxide
to the powdered alumina fed into the crystal-growing furnace, it becomes artifi-
cial ruby, whose red color varies in intensity according to the concentration of
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Figure 15.12 Schematic diagram of the first laser: Maiman’s ruby laser

chromium. It may be of interest to note in passing that if instead of chromic oxide,
oxides of titanium and iron, for example, are used, one gets artificial blue sapphire.
In Maiman’s experiments a low concentration of about 0.035% by weight was used,
which results in a pink ruby; higher concentrations of chromium are needed to pro-
duce the deep red color of the precious stone. He was very familiar with this mate-
rial, since he had been active in the field of solid-state masers, where paramagnetic
ions, which have a permanent magnetic dipole moment, such as Cr+++ in ruby,
are used. These masers are characterized by the use of high magnetic fields, at low
temperatures, and the application of a pumping microwave field to achieve a pop-
ulation inversion and the conditions for broad-band maser amplification at lower
microwave frequencies.

To understand the special properties of ruby that enabled its successful appli-
cation to reduce to practice the idea of an optical frequency “maser,” we must
recall a few points about the atomic structure of elements such as chromium.
They are called transition elements because of their place in the periodic table of
the elements. They are, in a sense, interlopers interrupting the “normal” progres-
sion of chemical properties among the “representative” elements in each period of
the table. They correspond to the filling up of an internal electron shell, the 3d
shell; their ions, in solution either in liquids or crystalline solids, are characterized
by absorption in the visible part of the spectrum, making them appear colored.
Although resulting from inner shell transitions that are to some extent shielded
from external perturbations, the transitions are nevertheless broadened by the
crystal field and thermal vibrations in the host crystal.

The relevant energy levels are shown in Figure 15.13. The levels between which
quantum transitions give rise to laser action, which we will henceforth refer to
briefly as the “laser levels,” are the excited state labeled 2 E and the ground state,
labeled 4 A2. For our purposes this spectroscopic notation serves only to label the
states. The 2 E state is actually composed of two closely spaced levels labeled 2Ā
and Ē, from which transitions to the ground state lead to a pair of spectral lines
referred to as R1 at λ = 694.3 nm and R2 at λ = 692.9 nm. The radiative lifetime
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Figure 15.13 Quantum levels pertinent to ruby (Cr+++) laser

of the upper laser level Ē is a relatively long 3 milliseconds. The 4A2 ground state
actually consists of two very close levels only 12 GHz apart. The most important
feature of this level structure from the point of view of attaining the prerequisite
inversion of populations between the laser levels is the presence of the broad energy
bands labeled 4F1 and 4F2, to which transitions from the ground state result in
strong absorption of light in the violet and green regions of the spectrum, causing
the red color of ruby. Furthermore, ions in these energy bands undergo rapid nonra-
diative transitions to the upper laser level 2E within an average time of only about
5×10−8 seconds. This provides an effective means of optically pumping ions from
the ground state to the upper laser level: An intense flash lamp, whose output is
spread over a wide spectral range, can nevertheless have a significant fraction of its
energy absorbed by the ions and lead to the desired population inversion. Conven-
tional light sources are limited as to spectral intensity, that is, the power contained
in a given narrow spectral range. The ability to use such a source effectively here
is due to the circumstance that the upper laser level can be reached through the
intermediary of broad absorption bands. On this account, the ruby laser is classed
as a three level laser (the two bands are here regarded as one “level”). The ruby
laser illustrates in a striking manner how a 3-level system makes optical pump-
ing practicable; a 2-level system, on the other hand, does not, since the pumping
light would have to compete directly with the spontaneous emission from the upper
state. Another major advantage of ruby is that the density of ions in ruby (1.6×1019

ions/cm3) is far greater than, for example, in an ionized gas under ordinary condi-
tions. Hence a much larger optical gain γ is possible, and therefore greater losses
can be tolerated, and a shorter optical length in the amplifying medium is required
to reach the threshold for oscillation.

The physical design of a ruby laser consists typically of a cylindrical rod a few
centimeters in length, with a circular cross section a fraction of a centimeter in
diameter. The ends are polished flat to better than 1/20 of a wavelength, parallel to
a few seconds of arc, and coated with silver to form the mirrors of an optical cavity.
One end is coated so as to have a transmittance of around 2% to allow the emer-
gence of the output beam. The pumping source commonly used is a high-power
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helical or straight photoflash lamp, usually containing xenon gas at high pressure.
In the case of a helical lamp, the ruby rod would be mounted along the axis of
the helix, while for a straight lamp it would be parallel to the lamp along the focal
lines of an elliptical reflecting cylinder. The flash is produced by the discharge
through the lamp of a capacitor bank, charged to a potential of several kilovolts, a
discharge triggered by a high-voltage pulse applied to a lamp electrode. The result-
ing intense flash has energy of several hundred joules and lasts about one millisec-
ond; hence the peak power is on the order of hundreds of kilowatts. The peak laser
output power, on the other hand, is on the order of kilowatts; consequently, the
energy conversion efficiency is less than 1%, and most of the lamp energy is ulti-
mately dissipated as heat. Since the spectral lines of the Cr+++ ions are broadened
by thermal vibrations in the host crystal, any heating of the ruby rod is intolerable.
It is on this account that the ruby laser pumped by conventional arc or flash lamps
must be efficiently cooled, and in fact, some of the early experiments were done on
ruby rods cooled to the temperature of liquid nitrogen (−196◦C).

15.4.2 The Nd3+:YAG Laser

Another optically pumped solid-state laser, one that has emerged as one of the most
widely used sources, including such diverse fields as medical, military and indus-
trial applications, is based on the rare earth neodymium ion Nd3+ as the active
element. It is most commonly in the form of a dopant in the host crystal yttrium
aluminum garnet (YAG) in which it substitutes for Y3+ in the crystal lattice. YAG
crystals of high quality were first successfully grown in the 1950’s, providing a
medium of exceptional optical quality, now available commercially typically up
to 10 mm in diameter and lengths up to 150 mm. The first lasing action by triva-
lent Nd3+ in a YAG crystal host was reported by a group at the Bell Telephone
Laboratories in 1964.

The crystal has excellent mechanical and optical properties, can be grown with
very low strain, is optically homogeneous and transparent from about 300 nm in
the ultraviolet to beyond 4 microns in the infrared. Although commonly doped
with neodymium it can accept trivalent ions belonging both to the rare earths and
the transition elements. The optimum level of dopant concentration depends on the
intended mode of operation: for example for mobile applications the size, weight
and power consumption of the laser system are important; therefore, to meet the
power restriction, Q-switched operation is recommended. In this mode the laser
excited level population is allowed to build up before the laser transition energy is
“dumped”. For this, a relatively high doping level of 1.0 to 1.2 atomic percent Nd
is specified to achieve the best efficiency.

The chemical formula of YAG is Y3Al5O12 and has a complex crystal structure,
classified as having a cubic garnet symmetry consisting of interconnected and
slightly distorted octahedra, tetrahedra and dodecahedra. Unlike the ruby laser, it
is a four-level laser, in which the lower lasing quantum level is above the ground
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Figure 15.14 The relevant quantum energy levels in Nd3+

state in energy and consequently remains almost unpopulated during the pump-
ing process, making it easier to achieve population inversion between the lasing
states. Figure 15.14 shows the relevant quantum energy levels of Nd3+. The output
wavelength of the Nd:YAG and Nd:glass lasers is in the near infrared at 1.06
microns. Unlike the ruby laser, these lasers may be designed to operate continu-
ously using semiconductor diode laser pumping, as well as in a repetitive pulse
mode using a high power flash lamp, the power reaching kilowatts at the peak.
The Nd:glass lasers are characterized by their resistance to particularly high power
densities.

15.4.3 The Ti3+:Sapphire Laser

Following its introduction at the 12th International Quantum Electronics Confer-
ence in Munich in 1982 by Peter Moulton, the Ti3+:sapphire laser generated wide
interest and soon enjoyed widespread commercial development to become the most
widely used tunable solid-state laser. It combines the excellent physical and opti-
cal properties of sapphire with a tuning range broader than any other single laser
medium, extending from 660–1050 nm, and supplanting messy dye lasers in many
applications.

The active element is the trivalent titanium ion, which, like chromium in the
ruby laser, is the ion of a transition element with a single 3d electron outside a
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Figure 15.15 The vibrational bands of Ti3+ and its absorption and fluorescence spectra

closed shell structure. In the sapphire (corundum) Al2O3 host crystal the titanium
ion occupies an aluminum ion site in the crystal lattice with trigonal symmetry.
The crystal field splits the five otherwise degenerate 3d states, resulting in, among
others, the two vibrational bands conventionally designated as the 2T2 ground elec-
tronic state and an excited state 2E, as shown in Figure 15.15, which also shows
the 2T2 →2E absorption and fluorescence bands for π-polarization at room tem-
perature. As a laser medium Ti:sapphire is classified as having in effect four levels
(Moulton, 1986).

In addition to the main absorption band in the blue-green region of the spectrum
there are other absorption bands of peripheral interest associated with the Ti3+ion
in sapphire, namely in the ultraviolet at λ = 190 nm and a more significant broad
absorption in the infrared region peaking at around λ = 760 nm. The fluorescence
decay was observed by Moulton to be exponential with a time constant at room
temperature of 3.15 ± 0.05 μs, falling from a value around 3.9 μs at low tempera-
tures, independent of Ti concentration.

In a typical Ti:sapphire laser layout the crystal, measuring several millimeters
across with ends cut at the Brewster angle with respect to the axis, is pumped
collinearly with the resonator to obtain optimal overlap between pump and res-
onator mode. It is placed at the beam waist between two concave mirrors tightly
concentrating the pump beam on it. The laser cavity is usually in a Z-fold con-
figuration, made necessary to compensate for the astigmatism introduced partic-
ularly by the crystal and the internal mirrors. The compensation can be achieved
specifically by the choice of crystal parameters and the adjustment of the folding
angle of the laser mirrors, in a Z-fold cavity design. The pump beam is introduced
into the system through an anti-reflection coated converging lens. The threshold
pumping intensity is relatively high, and can be provided either using a flash lamp-
pumped dye laser for pulsed operation or a CW laser such as a frequency-doubled
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diode-pumped Nd:YVO4 laser for example which can deliver a stable monochro-
matic 5W at λ = 532 nm in the middle of the absorption band.

We will encounter the Ti:sapphire laser again in Chapter 18 where its unique
role in optical frequency measurements will be discussed, a remarkable role that
relies on its exceptionally broad gain bandwidth enabling it to generate pulse trains
in the femtosecond range by passive mode-locking using the Kerr lensing effect in
the sapphire host crystal. There the essential design of such a laser is described in
slightly more detail (see Figure 18.16).

15.4.4 Diode Pumped Solid State (DPSS) Lasers

A development of great technical significance in recent years has been the realiza-
tion of self-contained (semiconductor) diode laser-pumped solid state lasers, in the
form of compact, robust, integrated units of high energy efficiency. These attributes
describe laser modules that come in ever increasing diversity of output powers and
wavelengths, CW or pulsed, contributing to a rapid expansion of applications using
“off the shelf” units to fit many purposes. Gone are the classic manual fine adjust-
ments of individual mirrors and other optical components necessary to generate a
laser beam suitable for the application in hand. In the language of present day elec-
tronics, the integration of diode pumps has produced lasers with a “plug and play”
capability.

Many different laser crystals can in principle be pumped using an assembly of
diode lasers to provide the requisite amount of pumping power. These include the
common neodymium doped crystals and glasses such as the high gain vanadate
Nd:YVO4, and Nd:YAG, which is available in large crystal sizes and capable of
high output power. Other dopants in host crystals include chromium, ytterbium,
and other transition and rare earth elements.

The traditional method of pumping solid state lasers using flash or high volt-
age arc lamps has several drawbacks compared with diode pumping. The principal
one is the energy inefficiency—most of the power consumed appears not as useful
light but as heat, which must be dissipated. Moreover the neodymium ion lasers,
for example, absorb wavelengths in narrow bands, whereas lamps radiate a major
fraction of the energy at wavelengths outside these bands. In contrast, The diode
semiconductor lasers have an output at a wavelength of 808 nm, coincident with a
strong absorption band in neodymium. In a well designed system, as much as 95%
of the diode laser output is absorbed by the laser crystal, an order of magnitude
improvement over conventional lamps.

The lamps are inevitably bulky and fragile, and given to more frequent failure
than a solid state device operating at much lower power levels, with a longer mean
time before failure (MTBF).

Other important advantages are much lower M2, that is, higher quality output
beam from the crystal, and in pulse mode, a greater pulse to pulse stability.
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The laser diode pumps used in these integrated units come in two different
arrangements: bars and stacks. Bars are monolithic linear arrays of diode lasers,
that is, single chips with many emitting facets capable of providing tens of watts of
CW power, useful in combinations of one or more for low to medium power
systems (below 100 watt) Stacks are two-dimensional arrays of many bars
providing a combined power output reaching nearly the kilowatt regime. Typical
commercial systems may use stacks of 6 or 12 laser bars to provide CW pump
power of up to 600 W/stack.

A difficult design problem is the efficient coupling of the output of a diode
bar or stack to the laser crystal. The problem is complicated by the fact that
the diode array output beam is divergent and astigmatic. The specific design of the
coupling obviously depends on the form of the laser crystal, which in turn depends
on whether the desired objective is optimum power or mode quality of the output.
There are three general crystal shapes that have been studied: the rod, slab and
thin disc. Currently most commercial laser systems use rods or slabs, although thin
discs have proven capable of more efficient heat dissipation. Generally slabs are
favored for high power applications, while rods are capable of being optimized for
good beam quality.

For pumping the crystal there are two possible configurations: end pumping
and side pumping. For a crystal rod, end pumping allows efficient mode matching
of the diode beam to the crystal, resulting in good transverse mode quality. The
enhanced efficiency permits smaller crystal rods to be used, enabling the wide-
spread use of the preferred Nd:YVO4, which can be grown only as relatively small
crystals. In this method of pumping there is however a power limitation set by the
smallness of the area of the end facets where the pumping beam is focused. The
intensity of the heat that is generated there can lead to refractive index gradients
and the phenomenon of thermal lensing, causing wave front distortion. To maintain
a robust integration of the system, the outputs of the several diode facets in a stack
can be coupled to the crystal rod by means of optical fibers which can be gathered
into a circular bundle to match the rod, and by appropriate optics couple efficiently
into the TEM00 laser mode to obtain an output beam of high quality.

15.4.5 Thin Disc Laser

In the thin disk laser the crystal is a thin (perhaps ≈0.1 mm thick) disk of typically
Nd:YAG with optically flat faces; one face coated for high reflectivity at both the
pump and laser wavelengths (940 nm and 1030 nm respectively), while the other
face is antireflection coated for both wavelengths. The disk is mounted on the end
of a thermally conducting rod for efficient removal of heat generated in the disk.
Because of the smallness of the thickness of the disk, the temperature rise due
to laser action is small and moreover temperature gradients will be perpendic-
ular to the disc surface and will not give rise to serious wave distortion due to
thermal lensing, even at power levels reaching several hundred watts. An equally
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important consequence of the small thickness of the disk is the need for the pump-
ing beam to traverse the disk many times, a requirement that is met by special
optics involving multiple reflections using a parabolic reflector and an array of
prism retro-reflectors.

15.4.6 Non-planar Ring Oscillators (NPRO)

The non-planar ring oscillators (NPRO’s) are, as the name suggests, ring oscilla-
tors; however not rings formed by a set of separate mirrors but rather using internal
reflection from the polished faces of a single piece of crystal, typically Nd:YAG,
as shown in Figure 15.16.

It was developed in the 1980’s by Byer and Kane of Stanford University, to
prevent a standing wave being established when operated in single mode to achieve
spectral purity; since such a stationary mode would limit the utilization of the laser
medium to the antinodes of the stationary field pattern where hole burning would
occur. A progressive unidirectional mode is forced first by having a non-planar
geometry, which causes a slight relative rotation of the planes of polarization of the
counter circulating waves on each round-trip. The crystal is placed in a magnetic
field which has the effect, through YAG’s natural Faraday rotation of the plane of
polarization on reflection, of increasing the rotation of the plane of polarization for
the wave circulating in one sense, but canceling it for the other. This introduces a
difference in the reflection loss and the removal of the degeneracy between the two
senses in which the light wave circulates around the crystal.

Figure 15.16 Schematic drawing of a non-planar ring oscillator
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Over the past two decades NPRO’s have enjoyed increasing acceptance as
stable, single frequency sources of laser power extending into the watt region.
The upper limit on output power is set by thermal birefringence which defeats
the polarization effect that restricts oscillation to a progressive wave circulating in
one direction around the ring.



Chapter 16
Laser Cooling of Atoms and Ions

16.1 Introduction

As generators of intense, spectrally pure radiation at optical frequencies, lasers
serve not only as stabilized sources for frequency standards in that region of
the spectrum, but equally important, they have changed the entire embodiment
of the microwave cesium standard. They provide a means of slowing down the
thermal motion of atomic particles. This is critically important when the resonance
frequency of a transition in an atom or ion is used as a reference, since it is essential
that the Doppler frequency shifts due to the particle motion be eliminated as far as
possible. This can be accomplished by what is now called laser cooling, a truly
remarkable technique, which we take up in this chapter. It is a technique that has
made it possible to reach particle velocities corresponding to temperatures only a
small fraction of a degree above absolute zero, where all thermal motion ceases.

An understanding of how laser cooling of atomic particles is possible begins
with the realization that the interaction of a light beam with such a particle cannot
only affect the internal motions within the particle, but also its center-of-mass
motion. This ultimately derives from the fact that a light wave not only conveys
energy but also carries with it momentum, both linear and angular. Long before
the famous E = mc2 formula of Einstein’s theory of relativity was established,
giving the equivalence of mass and energy, Maxwell’s classical electromagnetic
theory of light predicted that light falling, for example, upon a reflecting surface
exerts a pressure on it, proportional to the intensity of the light. Even before
that, the question of whether a light beam carried momentum was a subject of
experimentation and philosophical debate for two centuries. The central issue was
whether a light beam was a wave in the ether or a stream of minute particles, as
held by the so-called corpuscular theory. Adherents of the latter, which inciden-
tally included Isaac Newton, believed that the correctness of their theory would be
confirmed if it could be shown that a light beam possesses momentum, as would
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a stream of any material particles. To resolve the question, many investigators
directed powerful light beams at delicately suspended objects and looked for any
minute movement in those objects that could be attributed to the impact of particles.
In one such experiment carried out in mid-18th century, a very thin sheet of copper
was delicately suspended and a beam of sunlight was directed at it by means of a
mirror; a deflection of the copper sheet was observed, and although the presence
of heating of the air near the surface of the copper was recognized as contributing
to that deflection, there were some who believed that nevertheless the observations
confirmed the mechanical impact of the light beam on the surface. Subsequent
experiments by other investigators failed to show any movement in the irradiated
object distinguishable from the effects of heat; this shows, it was concluded, that
light cannot consist of particles and must therefore be vibrations in some medium.
Among those taking the apparent absence of a deflection as an argument favoring
the wave theory was Thomas Young, whose light interference experiments perhaps
clouded his judgment. For it had previously been pointed out by Euler, the great
Swiss mathematician, that light pressure might just as reasonably be expected from
the wave theory as from the corpuscular theory. It is a remarkable historical fact
that Euler not only correctly postulated the existence of light pressure but also,
following a suggestion by Kepler, developed a theory to account for the tail of a
comet based on the pressure of light from the sun acting on small dust particles in
its head.

16.2 Light Pressure

An argument can readily be made for the existence of light pressure on the basis
of Maxwell’s electromagnetic wave theory of light. Thus a light beam falling
perpendicularly, for example, on a reflecting metal surface must be pictured as
subjecting the conducting surface to mutually perpendicular electric and magnetic
fields oscillating at optical frequency in a plane parallel to the surface. The electric
current produced in the metallic surface by the electric field will be acted on by the
magnetic field, producing a Lorentz force perpendicular to both fields, that is, in
the direction of the incident wave. The physical origin of this force is identical to the
force on a current-carrying conductor in a magnetic field, as in an electric motor.
The magnitude of the pressure this causes on the surface is derived in Maxwell’s
original theory in terms of the mechanical stress transmitted through the ether the
postulated universal medium. However, with the abandonment of the concept of
a universal medium, as required by Einstein’s theory, and in order to preserve the
conservation law of linear momentum, Maxwell’s field equations are now inter-
preted as leading to the electromagnetic field itself carrying momentum. From this
it follows that to deflect a light beam requires a force to be exerted, with an equal
reaction on the object providing that force; hence the radiation pressure on light-
scattering objects. The amount of momentum (per unit volume) represented by M ,



16. Laser Cooling of Atoms and Ions 339

which we must attribute to the field in a light beam of intensity I (watts · m−2),
can be shown according to classical theory to be given by

M = I
c2 , 16.1

where as usual, c is the velocity of light. We can interpret the intensity I as the
flow at the velocity c of energy residing in the field and distributed with density ρE
(joules · m−3), with a similar interpretation for the amount of momentum M . The
classical result suggests that we must attribute to the field a mass density ρ given
by the following:

ρ = ρE

c2 . 16.2

This is recognized as a special case of Einstein’s E = mc2, which applies to any
form of energy. That it should appear in classical electromagnetic theory is not sur-
prising, since Einstein’s theory was constructed on the basis that the way Maxwell’s
equations transform from one coordinate reference frame to another should be true
of all physical laws, including those of mechanics. It was this that necessitated the
revolutionary changes in the concepts of space and time that are characteristic of
Einstein’s theory.

If a light beam of intensity I falls on a perfectly absorbing surface, so that the
directed energy of the beam is converted to random thermal motion with zero net
momentum, there is a continual change in momentum of the beam, which must
be taken up by the absorber; hence by Newton’s laws of motion there will be a
pressure P exerted on the surface equal to the rate of change of momentum. Since
the amount of momentum change that occurs per unit time over unit area is Mc,
this being the amount of momentum carried by photons in a cylinder of unit cross
section and length equal to the distance light travels in one second, the pressure is
simply given by the following:

P = Mc = I
c
, 16.3

where I (watt · m−2) is the beam intensity and c is the velocity of light.
The same result immediately follows from the de Broglie formula, which

applies to all particles, including photons, namely p = h/λ, where p is the linear
momentum of the particle. If we suppose the light beam consists of a stream of
photons with a flux density (number of photons crossing unit cross-sectional area
per unit time) represented by j , then clearly we have I = jhν. Furthermore, the
rate at which momentum is lost from the beam over unit area of the surface of an
ideal absorber, which by Newton’s law is the pressure, is given by P = jh/λ, and
the relationship P = I/c follows.

Numerically, the size of radiation pressure is extremely small on the ordinary
scale of things; for example, the pressure due to direct sunlight, whose intensity
is on the order of 1000 watts · m−2, is only about 3 × 10−6 newton · m−2, that
is, about 3 × 10−11 times atmospheric pressure. It is little wonder that so much
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experimental difficulty was encountered in finding unambiguous evidence of its
existence. A sensitive device, now a scientific curiosity called “Crookes’ radiome-
ter,” was devised to demonstrate radiation pressure by William Crookes in 1875,
the year that Maxwell’s treatise was published. It consists of light metallic vanes
blackened on one face and shiny on the other, delicately balanced and free to rotate
inside an evacuated tube. It does indeed spin when exposed to a sunbeam. However,
it soon became evident that the observed spinning of the vanes had more to do with
thermal effects due to the residual gas surrounding them than to any radiation pres-
sure. Later experiments, however, did confirm the essential validity of the theory.

16.3 Scattering of Light from Small Particles

With the advent of the laser it became possible to exploit a different approach to
studying light pressure, with far-reaching ramifications. The ability to achieve high
intensities of monochromatic light by focusing a laser beam down to diameters on
the order of microns meant that the motion of individual small particles could be
observed. Moreover, this can be done in highly transparent nonabsorbing materials,
simply relying on the reflection and refraction of light to bring about a change
in the particle’s momentum; this alleviates the problems associated with heating
effects. In one such experiment, reported by Ashkin in 1970, small transparent
spheres of latex having diameters on the order of one micron (10−6 m) were freely
suspended in pure water. An Ar+ ion laser ion laser beam passed through a glass
cell containing the suspension of latex spheres and was manipulated to converge to
a radius of about 6 microns on an individual sphere, as shown in Figure 16.1. The
strong scattering from the spheres enabled their motion to be observed visually by
means of a microscope. It was found that not only will a sphere be driven in the
direction of the beam by radiation pressure, but also, if the sphere is initially off
the beam axis, it will be drawn toward it. This Ashkin explained using an argument
based on the theory of light pressure and the approximate concept of light rays.
This is valid to the extent that the wavelength of the light is very much smaller than
the radius of the sphere; otherwise, a proper wave solution must be sought.

 Ar  laser l = 514.5 nm latex spheres
~1 μm diam.

water~0.1
mm

+

Figure 16.1 Ashkin’s experiment to study forces on latex spheres due to a laser beam
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Figure 16.2 The balance of radiation forces acting on a dielectric sphere according to Ashkin

The solution to the problem of the scattering of electromagnetic waves from
small particles is of considerable importance in such fields as atmospheric optics
and optical astronomy; the case of plane waves scattered by a homogeneous sphere
permits a general solution, first given by Mie around 1908. For the purposes of an
approximate, qualitative explanation of the behavior of the particles in the laser
beam, there should be little error in assuming ray optics. First we note that the
refractive index of latex at the wavelength of the laser light (n = 1.58) is greater
than that for water (n = 1.33), and therefore the light falling on a sphere will be
converged on the emergent side, as by a thick convex lens, as shown in Figure 16.2.
This means that part of the linear momentum of the beam is deflected away from its
axis and the remaining component along the axis reduced; therefore, to conserve
momentum the latex sphere must experience a force along the axis in the direction
of the initial beam. Moreover, if the sphere is off-axis and the intensity of the beam
varies over its surface, there will be an asymmetry in the amount of momentum
deflected toward the axis versus the amount away from the axis; the result is a net
force on the sphere in the direction of increasing intensity, that is, toward the axis.
The result would have been in the opposite direction had the sphere been of a lower
refractive index than the medium, for example an air bubble.

16.4 Scattering of Light by Atoms

In extending the idea of linear momentum exchange to that between a laser beam
and free atoms or ions, we are faced with the need for an altogether different and
more complicated quantum description of the interactions involved. One of the
important processes that take place has already been met in the optical pumping



342 The Quantum Beat

of free atoms and ions, namely resonance fluorescence. In this, the atomic particle
will interact strongly only if the radiation has a frequency resonant with one of a
set of discrete frequencies in its spectrum. Thus resonant absorption of a photon
from a beam is accompanied by a quantum transition to a higher energy state, from
which the particle ultimately falls back to the ground state, radiating its excitation
energy in all directions in a definite angular pattern. It is as though photons were
taken out of the beam and scattered in all directions away from the atom or ion.
The net transfer of linear momentum resulting from this process is obtained by
applying the law of conservation of linear momentum between the initial state of
the beam–atom system prior to the interaction, and their final state, long after the
interaction, including any photons radiated from the atom. The relative probability
of the photon being radiated in the different directions, that is, in the language
of antenna engineers, its radiation pattern, must conform to the symmetry laws
governing the system. In particular, a free atom spontaneously emitting a photon
does not do so preferentially along any one particular direction; this assumes that
in the process of spontaneous emission the atomic particle has no “memory” of the
excitation by the laser beam. This certainly would not be the case for stimulated
emission.

It does not mean that the radiation pattern must be isotropic, with equal
intensity in all directions; however, it does mean that for any given direction the
intensity will be equal to that along the opposite direction, as shown in Figure 16.3.
The detailed angular distribution of the emitted radiation is complicated, as
we saw in the rubidium case, by the fact that it is determined by the change in the
angular momentum state of the atom or ion accompanying the transition. We recall
that a photon is endowed with an intrinsic spin of one unit of h/2π, and the photon–
atom system exchanges angular momentum as well as linear momentum. If after
the absorption and re-emission of a photon the atom is left in a different angu-
lar momentum state, then in order to conserve angular momentum, the radiation

dipole axis

I(u)
u

Figure 16.3 The polar diagram giving the radiation pattern from an atom undergoing an
electric dipole transition
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pattern resulting from the photon–atom interaction must carry the balance of
the angular momentum the photon had prior to the interaction. It is this type of
exchange on which Kastler’s optical pumping technique for magnetic resonance
in free atoms is based. In any event, as already stated, there can be no preferred
direction of spontaneous emission, and therefore the expected total linear momen-
tum carried off by the scattered photon is zero. It follows that in order to conserve
linear momentum, the linear momentum of the absorbed photon must be taken up
by the atom or ion. Thus as photons are absorbed out of a beam by the atomic
particle, its momentum changes incrementally in the direction of the beam as if it
was impelled by a succession of impulses, producing an average force.

In order to establish the relative scale of these effects, a knowledge of which is
essential to distinguish between what is observable in practice from what may be
only of theoretical interest, let us assume that a laser beam of intensity I watts · m−2

is directed exactly in the direction opposite to the velocity of an otherwise free
particle, so that the flux density of momentum carried by the photons is, as we
have seen, I/c. If a given particle presents an absorption cross section to the beam
of σ, then it will suffer, on the average, a change in momentum of (I/c)σ units per
second, which by Newton’s law is the measure of the force acting on it. Now, if
we assume that the conditions are such that this force continues unchanged while
the particle is slowed down (this assumes that the spectrum of the light is broad
compared to the maximum Doppler shift of the particle resonance frequency), then
the distance traveled by the particle before it is brought to rest can be obtained
simply by using the conservation of energy: If the stopping distance is D, then
the work done on the particle by the radiation pressure is Frad D, and therefore
Frad D = 1/2MV2

z ; that is, finally we have the following:

D = 1
2

MV 2
z

c
I σ

= 1
2

kT
c

I σ
, 16.4

for particles in thermal equilibrium at temperature T . If we substitute realistic
numerical values, for example I = 102 watts · m−2 and σ ≈ 4 × 10−14 m2, we
find for T = 300 K that Dstop ≈ 50 cm, a very practical figure. Of course, the beam
can be focused down to a smaller cross section to increase the intensity at the ion,
thereby reducing the braking distance. However, we should recall that it takes a
finite time (the radiative lifetime) for the emission of the photon from the excited
state, and therefore obviously the rate at which the absorption–emission cycle can
be repeated is limited by this lifetime. As the intensity is raised to the point where
the probability of absorption becomes comparable to that of spontaneous emis-
sion, the particle will be increasingly in the excited state, and stimulated emission
will become significant. The radiation pattern from particles undergoing stimu-
lated emission is radically different from that of spontaneous emission, ultimately
because unlike the latter, stimulated photons are phase coherent with the photons
in the beam. The photon resulting from stimulated emission in fact propagates in
the same direction as the photon stimulating the emission; consequently, the atom
momentum is unchanged in an absorption-stimulated emission cycle. The result is
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that the simple description we have given for momentum exchange with sponta-
neous emission does not apply even approximately to the case where stimulated
emission enters the picture.

16.5 Optical Field Gradient Force

There is another mechanism by which an atomic particle interacting with an opti-
cal field may experience a force affecting its center-of-mass motion; it is mani-
fested only when the intensity of the optical field is strongly inhomogeneous. The
physical origin of this force, sometimes called the gradient force, and some of
its features can be understood in general terms using classical field concepts rather
than the proper quantum description. We recall that the positive (nuclear) and nega-
tive (electronic) charges in an atomic particle are displaced relative to each other by
the electric component of the optical field against their mutual attraction, thereby
inducing an electric dipole moment. By virtue of its position in the electric field,
this induced dipole possesses potential energy proportional to E2, where E is the
electric field component in the light wave. The dynamical response of the charges
to the oscillating electric field is a quantum problem; but suffice it to say that it
exhibits resonant behavior at certain frequencies. It is found that the dipole energy
is positive or negative depending on whether the optical frequency is above or be-
low a resonant frequency of the particle. This behavior can be understood in terms
of the reversal in the phase of the charge displacement (and hence direction of the
induced dipole) relative to the field, which occurs for field frequencies on oppo-
site sides of the resonant frequency. Although the field oscillates at the optical
frequency, the energy of the polarized atomic particle, being proportional to E2,
does not average to zero over time, as we saw in connection with the light shifts in
the energy separation of the hyperfine states in Rb. As a consequence, the particle
has an average potential energy that varies with the intensity of the field where it
happens to be located. As with the AC Stark effect leading to the light shifts, this
potential energy is positive or negative depending on the optical frequency in rela-
tion to the resonance. If the intensity of the optical field varies in space, as in a
laser beam with a Gaussian intensity profile, there will be a strong gradient in the
particle energy, with the result that, it tends to fall like a rock down a hill.

We will not pursue the gradient force any further and will limit ourselves in
what follows to radiation pressure; later in the chapter we will learn of an exciting
new mechanism involving polarization gradients.

16.6 Doppler Cooling

If an atomic particle had an initial velocity component in a direction opposite to
a laser beam tuned to exact resonance, that component would be steadily reduced
and ultimately pass through zero and increase in the reverse direction. That clearly
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would not lead to a steady state in which the particle motion has been slowed,
corresponding to a lowering of temperature; rather we would have a propulsion
mechanism, not a cooling one. To achieve a slowing down of the particle such as
might be caused by a frictional force, it is necessary that the particle experience
a force opposing its motion, no matter in what direction that motion happens to
be. An obvious solution, one might think, is to have two laser beams, one resisting
motion in one direction and the other in the opposite direction. Unfortunately, the
effects of the two beams would cancel each other out, unless the radiation pressure
exerted by a given beam depends on its direction relative to the motion of the
atomic particle. For if we assume for simplicity that the particle experiences a
force only when it is moving in the direction opposite to that of a given beam and
no force otherwise, then it is clear that having two opposed laser beams will cause
a retarding force to act on the particle by either one beam or the other, depending
on which direction it is moving in. This crucial condition on the laser–particle
interaction can be met if the absorption probability depends on whether a particle
moves in the direction of the beam or opposite to it. But in fact, we know that this
is in general the case: the Doppler effect shifts the frequency of the field seen by a
moving particle, and therefore only if the the resonance line shape is symmetrical
and the laser frequency is tuned precisely to the center of the resonance in the
particle frame of reference will the probability of absorption be the same for either
direction of motion.

Suppose then that an atomic particle is placed in two opposing collinear laser
beams, and for simplicity we restrict our attention to the component of the par-
ticle motion along the common beam axis. The frequency profile of the atomic
absorption will be assumed to have a certain natural line width and be symmetrical
about the maximum at its center. Let us consider the interaction of the particle with
the laser beam directed opposite to its velocity component, causing a Doppler dis-
placement of the laser frequency seen by the atom towards a higher frequency. It is
possible then that by tuning the laser so that its frequency would fall on the low side
of the resonance profile if the particle were at rest, the Doppler shift would result
in the absorption becoming more likely, because of the upward shift in frequency
toward the maximum, than it would be if the particle were at rest. And similarly, the
Doppler shift would cause the absorption to be less likely if the atom were moving
in the same direction as the laser beam. The result is that such an atom experi-
ences a much greater force opposing a component of its motion directed opposite
to the beam direction than one accelerating a component in the same direction as
the beam. The total effect in the presence of both laser beams is that there is a
net force opposing the motion in either direction, as desired. Ideally, therefore, the
continued absorption of photons from the laser beams, with the frequency offset
we have described, will cause an atom to be slowed down much like the effect of a
frictional force.

In order to make this last statement a little less confusing and a little more
quantitative, let us assume that the atomic particle is free (aside from the laser
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Figure 16.4 The net force on an atomic particle in two opposed laser beams tuned below
resonance

beams of course) and therefore has a Lorentzian resonance line shape characteristic
of natural broadening due to the finite lifetime of its excited state. If we represent
the full width of the resonance line by �ν and assume that the two laser beams are
tuned to the same frequency νL = ν0 − δ, that is, below the center of the line, then
a plot of the relative strength of the net force exerted on the particle as a function
of its velocity will be as shown in Figure 16.4. We note that for particle velocities
V such that the Doppler shift (V/c)νL is less than δ, the dependence of the force
on velocity is nearly linear and can be approximated for those values of V by the
equation

Frad = −αV, 16.5

where α is a positive constant analogous to the damping factor used to model fric-
tion in a mechanical system. The optimum choice of δ to obtain the greatest damp-
ing factor is δ ≈ �ν/2. Thus an atomic particle whose initial velocity produces a
Doppler shift in the range between +�ν/2 and −�ν/2 (called the capture range)
will experience a viscous drag tending to slow down its motion along the beams’
axis. For beam intensities below the extreme where the rate of absorption becomes
comparable to the rate of spontaneous emission, the value of the coefficient α is
proportional to the intensity of the laser beams. However, for intensities beyond
that point, the proportionality is no longer valid, and α cannot be increased indefi-
nitely. Now we can estimate the rate of loss of kinetic energy by the atomic particle
due to radiation pressure by assuming that the force F is the resultant of the two
forces exerted by the opposing beams. If as before, we assume that the beams are
tuned to ν0 − �ν/2, and recall that the (linear) Doppler frequency shift can be
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written (V/c)ν = kV/2π, then for a scattering cross section having the natural
Lorentzian line shape, we can write for the resultant force the following:

〈F〉 = I
c

(
σ+ − σ−) ; σ± = σ0

(
�ν
2

)2 1(
�ν
2 ± kV

2π
)2 + (

�
2

) , 16.6

where σ0 is the scattering cross section at resonance, and k here represents the
wave vector (2π/λ). In the range of small velocities such that kV << �ν, we can
approximate the expressions for σ± to obtain simply

σ− − σ+ = σ0
kV

π�ν
. 16.7

Hence the net force can be written

〈F〉 = −2I σ0

( ν
c2�ν

)
V . 16.8

Now, the average rate at which this force does work on the particle in resisting its
motion is simply 〈FV〉, which is therefore the rate of loss of kinetic energy by the
particle. It follows that in time t the average loss of kinetic energy is given by

Ek = 2I σ0

( ν
�ν

) V2

c2 t. 16.9

16.7 Theoretical Limit

It might be thought that the slowing-down process would continue until the particle
came to complete rest; but this is not the case. As the particle is slowed down,
the Doppler shift tends toward zero, and the differential force between particle
motion in one direction and the other is diminished. But the fundamental limit is
ultimately set by the discrete quantum nature of the momentum exchange attending
the absorption and emission of photons: The time-dependence of these events is
defined only statistically by certain probabilities; and the direction of spontaneous
emission is also statistically defined. At each of these random events the atomic
particle recoils with a finite jump in momentum in a random direction. The result
is that the atomic particle has a residual random motion similar to the erratic zigzag
motion, called Brownian motion, named for the English botanist Brown, who first
observed the random motion of plant pollen suspended in a liquid.

Its existence is historically important in the kinetic theory of gases, since it
demonstrated directly that thermal energy is, on a molecular scale, the kinetic
energy of their random motion. Since the suspended particle may suffer collisions
from any direction, the average of its displacement from a fixed point is zero; how-
ever, since it executes a “random walk” in the manner we discussed in a previous
chapter, it diffuses out with a mean square displacement that increases linearly with
the number of collisions, and therefore with time.

In our present one-dimensional case, where the particle is subjected to
impulses randomly distributed in time and direction, each imparting (h/λ) units of
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momentum through photon scattering from two opposing laser beams, the mean
square momentum 〈p2〉 increases with time as follows:

〈p2〉 = 2
(

h
λ

)2 I
hν

σ0t, 16.10

where I (watts · m−2) is the intensity of each beam, σ0 the (resonance) atomic
cross section, and t the time.

Finally, if we make the reasonable assumption that these processes will lead to
an equilibrium where the gain and loss of energy exactly balance each other, then
according to our model this occurs when the kinetic energy is the following:

1
2

MV 2
min = 1

4
h�ν. 16.11

Expressed in terms of an equilibrium temperature, this mean kinetic energy along
one dimension must be equated to 1/2kT, where k is the Boltzmann constant; thus
we obtain the lowest temperature Tmin attainable by this Doppler technique:

Tmin = h�ν
2k

16.12

If we substitute for �ν the atomic resonance line width for cesium, that is,
approximately 5×106 Hz, we find that the lowest attainable temperature is on the
order of 120 μK, that is, 120 millionths of a degree above absolute zero! At this
temperature the average linear momentum of a Cs atom reaches within an order
of magnitude of the momentum of a single photon, the fundamental limit to cool-
ing by this method. At such a super-cold temperature the second-order fractional
Doppler shift (Ek/Mc2) in the cesium resonance frequency would be entirely neg-
ligible at only one part in 2.5×1019! In practice, of course, this degree of accuracy
is meaningful only if a multitude of other sources of systematic frequency shifts,
which no doubt become significant at this level, could also be as elegantly reduced
or taken into account.

16.8 Optical “Molasses” and the Magneto-Optical Trap

So far, the discussion has been limited to one dimension; clearly, to cool free parti-
cles in three dimensions, multiple sets of laser beams are required. A configuration
consisting of three mutually perpendicular pairs of opposing lasers has been suc-
cessfully used to cool a cloud of free neutral atoms. In one set of experiments at the
Bell Telephone Laboratories, sodium atoms were observed not only to be cooled
by the action of the lasers but also to manifest another effect of the viscous drag
their motion is subjected to, namely a reduction in their diffusion rate. That is, a
given group of atoms occupying a certain space takes very much longer to diffuse
out into a larger volume and the atoms are in this sense “confined” in what was
dubbed “optical molasses.”
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Used in conjunction with a specially tailored magnetic field, laser cooling can
produce a so-called magneto-optical trap for neutral atoms. It relies on the shift
produced by an external magnetic field in the quantum energy states of atoms,
and hence their optical resonance frequencies, that is, the Zeeman effect. Since
the radiation pressure depends on the rate of photon absorption and reemission,
and hence the frequency detuning of the atomic resonance with respect to the laser
frequency, it follows that the light pressure acting on an atom is a function not
only of its velocity because of the Doppler effect, but also of the magnetic field
acting on it. If this field varies from point to point in space, then the light pressure
the atom experiences will vary as a function not only of its velocity, but also of its
position in space. Now, we recall that with pure Doppler cooling we were able to
produce a net radiation pressure that changed sign with the velocity vector by hav-
ing two oppositely directed laser beams tuned below the peak resonance frequency.
To achieve a similar reversal with respect to displacement from a fixed spatial posi-
tion, we impose a magnetic field that reverses direction at that point, together with
two oppositely directed laser beams whose circular polarizations are in opposite
senses (clockwise or anticlockwise). We recall that in the Zeeman effect, there
are selection rules that govern optical transitions between quantum states which
impose an essential connection between the polarization of the radiation and the
magnetic substates between which transitions are observed. This comes ultimately
from the requirement that angular momentum of the photon–atom system be con-
served in the process of emission or absorption.

Thus, for example, in Figure 16.5 we show the Zeeman effect in the so-
called D2-line of the principal resonance in the Cs atom, arising from the tran-
sition between the ground state, with its electron spin of 1/2 and zero orbital
angular momentum, designated as 2S1/2, and the first excited state with a combined
(orbital + spin) angular momentum of 3/2, designated as 2P3/2. In the presence of
an external magnetic field, the substates with different orientations of the angular
momentum with respect to the direction of the magnetic field, designated by the
quantum numbers m, will be separated in energy by an amount dependent on the
strength of the field.

Now we recall that a photon carries one unit (h/2π) of angular momentum but
has only two possible orientations with respect to a given axis, corresponding to
the electric field in the light wave rotating clockwise or counterclockwise. Thus by
absorbing a photon designated as having a σ+ circular polarization, an atom gains
precisely one unit of angular momentum along the beam axis. Symbolically, we
can write:

m′ − m = +1 (σ+ − radiation), 16.13

where m′ and m are the components (in units of h/2π) of the atomic angular
momentum along the fixed axis, before and after the transition respectively. Simi-
larly, for the oppositely polarized σ−-radiation we have

m′ − m = −1 (σ− − radiation). 16.14
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Figure 16.5 The Zeeman splitting of the D2 line in Cs, neglecting the hyperfine structure

From the figure we see that as the magnetic field strength increases and the
m-substates are more widely separated in energy, the resonance frequency for
excitation with σ+ radiation is shifted to a higher value, whereas resonance with
σ− radiation is at a frequency shifted downward. Let us now limit our attention
to how the resonance frequency of excitation by only one laser beam, having, say,
σ+ polarization, changes when the direction of the magnetic field is reversed with
respect to our fixed axis. We note that the energy displacement of the m-substates is
proportional to the magnetic field, and that if the latter is reversed in direction, we
must reverse the direction of the displacements, so that the order of the m-values
on an energy level diagram is reversed, as shown in Figure 16.6.

It is clear that now excitation with the same σ+ radiation is resonant at a fre-
quency that is shifted downward rather than upward as the magnetic field strength
increases. By the same argument, excitation with σ− radiation will have an upward
shift on reversal of the field. Thus we see that having two oppositely directed laser
beams, circularly polarized in opposite senses, with a parallel magnetic field of uni-
form gradient in space, passing through zero and reversing at some point, can result
in an atom experiencing a corresponding reversal in the radiation pressure acting
on it as it passes through that point. All that is necessary is that the lasers be tuned
below the zero-field frequency. Such an arrangement, consisting of three mutually
perpendicular pairs of lasers, is therefore called a σ+ − σ− magneto-optical trap.
The essential feature introduced by using σ-radiation in conjunction with a spa-
tially varying magnetic field is that the simple “resistive” force Frad = αkV is
replaced by Frad = α(kV + βB), where α and β are constants. It can be shown
that for a sufficiently intense laser beam, the atoms will follow trajectories with a
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Figure 16.6 The effect of reversal of the magnetic field on the energy of m-sublevels

velocity whose Doppler shift compensates for the Zeeman shift in the resonance
frequency. Stated mathematically, this amounts to the following:

kV = 2πgμB

h
B, 16.15

where k = 2π/λ; g is the g-factor, the measure of the magnetic moment of an
atom accompanying its mechanical angular momentum; μB is the Bohr magneton;
and B is the magnetic field acting on the atom. Suppose that the magnetic field
distribution is chosen so that its (cylindrical) components vary in space according
to the following:

Br = − C
a2 r; Bφ = 0; Bz = 2

C
a2 z. 16.16

Such a field is produced, for example, in the neighborhood of the midpoint (taken as
the origin) between two parallel coaxial circular coils separated by a distance equal
to their radius, the so-called Helmholtz configuration, but having currents circulat-
ing in opposite directions. This is seen to correspond to the “pure” quadrupole field
distribution familiar in the electrostatic case. To the extent that the light pressure
acting on the atom can be accurately modeled as a velocity-dependent term due to
the Doppler effect and a term having the spatial dependence of the magnetic field
due to the Zeeman effect, its motion, for example in the radial direction, will be
governed by an equation of the following form:

d2r
dt2 + α

dr
dt

= −βr, 16.17

where α and β are constants. This is recognized as the equation of motion for a
damped harmonic oscillator, the form of whose solution for r , the radial distance
of the atom from the axis (r = 0), depends on the relative values of the damping
coefficient α and the “restoring force” coefficient β. For β > (α/2)2 the radial
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motion, if allowed to continue, is a damped oscillation with a decaying amplitude;
otherwise, the particle is drawn toward the axis without oscillation. The atoms are
in this sense trapped in the radial direction, their distance from the axis falling
exponentially; that is, they are focused.

Initial attempts to study these effects quantitatively by measuring the temper-
ature of the atoms in the “molasses,” yielded results that seemed to be compati-
ble with the theory as outlined. It was assumed therefore that the well-understood
processes invoked in the theory were adequate to explain fully the phenomena
involved. However, it soon developed that with the application of a more refined
technique to measure the velocity distribution of the cooled atoms by W. Phillips
and his group at the U.S. National Institute of Standards and Technology, there was
revealed a conflict between theory and observation. The temperature was, in fact
considerably lower than the lower limit predicted by the theory. Moreover, contrary
to the theory, the lowest temperature was reached when the lasers were tuned not
one half a line width, but several line widths from resonance. There was under-
standable skepticism at first about these contrary results; not only because of the
well-established nature of the processes assumed in the theory, but also because
experimental results generally fall short of theoretical limits and certainly should
not exceed them! Nevertheless, further experiments on sodium and other atoms
at the Ecole Normale Supérieure, in Paris, and other laboratories in the U.S. con-
firmed that the low temperature limit of Doppler cooling had been broken and an
explanation had to be sought elsewhere.

16.9 Polarization Gradient Cooling: The Sisyphus Effect

To find an explanation for the unexpectedly low temperatures, we must take a much
more detailed view of the interaction of the sodium atoms with the laser beams.
First, the alkali atom is not a two-level atom with a simple ground state and an
excited state. Like the other alkali atoms, rubidium and cesium, which we dis-
cussed in earlier chapters, sodium’s ground state has the spectroscopic designation
2S1/2 with a spin angular momentum J = 1/2, which couples to a nuclear spin
I = 3/2, giving rise to a hyperfine frequency of 1.771 GHz, which is, incidentally,
less than one-third the value for Rb87. In a weak magnetic field it has Zeeman sub-
states with magnetic quantum numbers m J = −2,−1, 0,+1,+2 for the F = 2
hyperfine state and m J = −1, 0,+1 for the F = 1 state. Further, we recall the vast
improvement in the observation of magnetic resonance in free atoms made possi-
ble by an optical method called by its originator, Kastler, optical pumping, which
involves the absorption of circularly polarized resonance light followed by spon-
taneous re-emission. This technique exploits the selection rules governing optical
transitions imposed by the law of conservation of angular momentum applied to the
photon–atom system. By continued repetition of the optical pumping cycle, atoms
are transferred predominantly into that substate in which the angular momentum
is oriented in the direction of that of the absorbed photon. In general, then, we can
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expect that the detailed distribution of atoms among the different magnetic sub-
states will depend on the type of polarization of the absorbed resonance light, since
that determines the component of its angular momentum along the beam axis.

Following Cohen-Tannoudji and Dalibard (Cohen-Tannoudji, 1989) we look
to one of the subtle effects in optical pumping long studied theoretically and con-
firmed experimentally, namely the displacement of quantum energy levels by the
action of the pumping light (Cohen-Tannoudji, 1962), as providing a new cool-
ing mechanism. We have already met this before in connection with the optically
pumped rubidium standard: light shifts. The precise energies of the quantum states
of an atom interacting with the pumping light beam are displaced slightly with
respect to a free atom, and the displacement is in proportion to the intensity of the
beam. Moreover, the energy displacements appear to an extent dependent on the
probability of the transitions, which occur according to the selection rules applied
to the type of light polarization present.

According to Cohen-Tannoudji and Dalibard, we will find that under suitable
conditions, rapid spatial variation in the polarization of the light can lead to a lower
temperature limit than that of Doppler cooling. To do this, consider the idealized
example of a one-dimensional “molasses” consisting of two opposing frequency-
offset laser beams having mutually perpendicular linear polarizations and equal
intensity. Because each laser beam is spatially coherent, that is, there is a well
defined phase relationship between the optical field at different points along the
beam, the fields of the two laser beams will, in the span of half a wavelength, have
a phase difference that varies from zero to 360◦. Thus if we let Ex and Ey represent
the two counterpropagating light waves, we have the following:

Ex = E0 sin(ωt − kz); Ey = E0 sin(ωt + kz), 16.18

and therefore at a fixed point along the axis z0, the two components will have a
difference of phase �φ = 2kz0. This means that at points within each half wave-
length along the common beam axis, the phase difference between the two equal
and perpendicular field vectors will pass continuously through the values 0◦, 90◦,
180◦, 270◦, 360◦. Now, phase differences of 0◦ and 180◦ simply yield combined
fields that are linearly polarized along directions at 45◦ to the original directions,
while phase differences of 90◦ and 270◦ yield circularly polarized fields rotating in
opposite senses about the beam axis. This pattern is repeated every half wavelength
along the beam axis, as shown in Figure 16.7.

In order to bring out the consequences of having such variation in the light
polarization on the optical pumping of an atom and the attendant light shifts, let
us consider the specific example of sodium. Let us ignore its nuclear spin and
assume that the optical pumping cycle occurs between the ground state having the
total angular momentum quantum number J = 1/2 and the excited state hav-
ing J = 3/2. We recall that space quantization of the angular momentum leads
to a multiplicity of substates, so that the ground state is made up of substates
in which the components of angular momentum along a given axis (chosen here
to be in a fixed direction along the light axis) are m J = +1/2 and −1/2, and
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Figure 16.8 Light shifts in sodium atom in two opposed laser beams perpendicularly
polarized

the excited state m′
J = +3/2,+1/2,−1/2, and −3/2. Now, if the atom happens

to be at a point where the polarization is circular, with the field rotating in the
positive sense (the rotation of a right-hand screw advancing in the direction of
the light beam), designated by σ+, it can absorb a photon only if the excitation
results in an increase in the m J value by one unit. Of the two possible transi-
tions, m J = −1/2 → m′

J = +1/2 and m J = +1/2 → m′
J = +3/2, it can

be shown that the former will occur at one-third the rate of the latter, and con-
sequently, the light shift for the latter m J = +1/2 is greater. Moreover, it also
happens that the optical pumping cycle tends to concentrate the atoms in this light
shifted m J = +1/2 state; this, after all, was the whole point of the Kastler opti-
cal pumping technique. Conversely, if the atom happens to be where the polariza-
tion state of the field is circular in the opposite direction, designated as σ−, the
m J = −1/2 substate will suffer the greater light shift and become more popu-
lated than the other. At points where the polarization is linear, the two substates are
equally shifted. Figure 16.8 illustrates the variation in the light shifts of atoms in the
two substates as a function of their position within a range of one half wavelength
along the axis of the laser beams. We see therefore that if we had a set of stationary
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atoms strung along the beam axis, they would alternate between being predomi-
nantly in one substate and predominantly in the other, with their energy varying in
step. This picture is really a static one of an equilibrium situation, achieved after
a sufficient time has allowed the pumping cycle to be repeated many times. As
such, the spatial variation in energy we have found cannot, for the purposes of pre-
dicting the forces acting on a moving atom, be used as a static potential energy
distribution analogous to hills and valleys on the earth’s surface. The dynamical
problem is considerably more complicated; we must take into account the time
development of the pumping cycle itself, simultaneous with the varying polariza-
tion of the light seen by the moving atom. The static energy distribution found
above would apply only if the pumping cycle took place so rapidly that the atomic
substate population was in quasi-equilibrium at every point as the atom moved
along the beam. The word “population” can refer to a single particle; it is used
as the relative probability. Let us imagine the system set in motion: The pumping
cycle repeats itself on the average every τp seconds, the mean pumping time, caus-
ing the populations to evolve in time, to alternate between one substate and the
other, while the atom moves through the different polarization states of the light.
Because of the delay in pumping the atoms into a particular substate, the popu-
lation of that state reaches its maximum only after it has passed the point where
the light shift is maximum, leading to an asymmetry in the population distribution
relative to the periodic light shift, as shown in Figure 16.9. The result is that the
atoms find themselves constantly being optically pumped into the substate whose
energy is on the rising side of the energy curve, no matter in what direction they
are moving. This brings to mind Sisyphus, the Greek mythological figure whose
task in Hades was forever to push a rock uphill, only to have it roll back down;
hence this method of atomic cooling has been dubbed Sisyphus cooling. Without
entering into the difficult question as to how the photon–atom interaction leading
to the light shifts can couple to the center-of-mass motion of the atom, we can use
the law of conservation of energy merely to say that the rising light-shift energy
leads to a corresponding loss of kinetic energy, that is, a cooling of the atom.

energy

optical
pumping

cycle

Figure 16.9 The asymmetry between light shift of energy and substate population distribu-
tion in sodium atoms (Cohen-Tannoudji, 1990)
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The important question remains as to why Sisyphus cooling is effective at a
much lower temperature than Doppler cooling. The answer must be sought in the
essentially different physical processes involved in the cooling and the theoretical
limits these processes set on the lowest achievable temperature. In the Sisyphus
process it is the light shift in energy that plays a central role: If the potential
well created by the light shift is designated as �Em , then each optical pumping
cycle results in the atom losing an amount of energy on the order of �Em . After
many such cycles, the atom will have lost so much energy that it no longer has
enough energy to penetrate the adjacent regions, and it remains trapped. In this
limit the thermal energy kT is on the order of �Em . If the pumping light inten-
sity is reduced, �Em is reduced proportionately, and the limit can be far below the
Doppler value of h�νn , where �νn is the natural line width of the optically excited
state.

Theory shows that the dependence of the friction coefficient α on the pumping
light intensity is radically different for the two processes: In contrast with Doppler
cooling, where α decreases linearly with the intensity as it approaches zero, in the
Sisyphus cooling mechanism α remains essentially constant. To make this fact at
least plausible, we note that although reducing the light intensity makes the light
shift correspondingly smaller, this is offset by the lengthening of the pumping delay
that enhances the population asymmetry, which, as explained above, is the root
cause of the cooling effect. In Figure 16.10 are reproduced curves comparing the
dependence of the average force experienced by the atom on the mean velocity for
Doppler cooling and Sisyphus cooling. We see that in the latter, while the velocity
capture range shrinks as the intensity of the pumping light is reduced, the slope
of the linear portion of the curve where it crosses the origin (which is a measure
of α) remains constant. It is apparent, then, that since the velocity capture range for
Doppler cooling is greater, the initial cooling of an atom is most effectively done by

velocity
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Figure 16.10 Comparison of forces due to Doppler cooling and polarization-gradient as a
function of particle velocity (Cohen-Tannoudji, 1990)



16. Laser Cooling of Atoms and Ions 357

that method; only when the cooling has progressed to a relatively low temperature
would the Sisyphus mechanism become effective.

Finally, we note that the optimum detuning of the laser to obtain the most effec-
tive cooling is determined in the Sisyphus cooling technique by the need to max-
imize the light shift, which can occur at much greater frequency departures from
resonance than is allowed in the Doppler technique.

All these features have been brilliantly confirmed by experiments, initially on
sodium but more especially on cesium, whose energy level structure permitted a
wider confirmation of the dependence of the cooling on laser detuning. Further-
more, the unexpected sensitivity of the molasses to magnetic fields follows log-
ically from the known displacement and “mixing” that such fields cause in the
magnetic substates. Detailed studies of the effect of magnetic fields confirmed that
their influence is diminished, as expected, at higher pumping light intensities.

The extent of the cooling was determined, as in the Doppler technique, by
a time-of-flight method, which yields the velocity distribution of the atoms in the
molasses. As expected, a nonequilibrium double-peaked distribution was observed,
indicating distinct velocity capture ranges for the two types of cooling mecha-
nisms. Velocities corresponding to absolute temperatures around 2.5 μK have been
achieved; this amounts to but a few times the recoil of an atom in scattering a sin-
gle optical photon. More recently, special techniques are being explored to attain
subrecoil energies; temperatures as low as 3 nanodegrees Kelvin (along one dimen-
sion) have been reported by Cohen-Tannoudji et al.

16.10 Laser Cooling of Trapped Ions

Of particular interest to frequency standards is the cooling of isolated ions con-
fined in the kinds of electric and magnetic field configurations described in an
earlier chapter. We recall that the motion of ions in those fields, under conditions
of stable confinement, is oscillatory with a discrete line spectrum. Thus for the Paul
trap, the motion along each of the coordinate axes contains the following discrete
frequencies:

ωn = (2n ± β)



2
, n = 0, 1, 2, . . . , 16.19

where 
 is the frequency of the rf trapping field, and β lies in the range 0 < β < 1
and differs in general between the axial and radial motions. Under the conditions
commonly chosen in practice, where the amplitude of the high-frequency ion jitter
in response to the field is small, β � 1, and the higher frequencies with n > 1 have
a negligibly small amplitude.

The technique of laser cooling can be equally applied to an ion executing such
an oscillatory motion as any neutral atom moving about randomly; in fact, it is
somewhat simpler. First, because the motions along all three dimensions can be
simultaneously slowed by using laser beams along a single axis, as long as it does
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not lie in the x-y symmetry plane of the coordinate system we have been using.
In the absence of the cooling laser beams, our particular choice of axes, namely
taking the z-axis to be along the axis of symmetry of the trapping field, ensures
that the equations are “uncoupled”; that is, in the equation of motion for a particu-
lar coordinate, the other coordinates are not involved. However, the Doppler drag
on the motion of an ion due to a beam directed at some angle to the mid-plane cou-
ples the motions, leading to 3-dimensional cooling. Also, in practice, departures
from the assumed ideal field distribution, and to a lesser extent ion–ion collisions,
could lead to exchange of energy between the different components of the ion
motion. Second, the ions are thermally isolated in ultrahigh vacuum and therefore
can gain heat from the environment (or through rf heating in the case of the Paul
trap) only very slowly, making it easier to observe even a small rate of cooling.

The oscillatory ion motion does, however, have a distinctive effect on the opti-
cal absorption spectrum of the ions. If we imagine a plane monochromatic light
wave of frequency ν falling on an ion executing simple harmonic motion of fre-
quency νm along the direction in which the wave is traveling, the ion will see,
because of the Doppler effect, a wave whose frequency is modulated, rising and
falling as the ion swings back and forth, first counter to the wave direction, then
with it. But we recall from Chapter 7 that there is a curious mathematical fact that
runs counter to intuition here: Except in the limit of infinitely slow modulation, the
frequency of the wave does not actually pass continuously through all the values
in the Doppler range. In fact, the spectrum of such a frequency-modulated (FM)
wave is discrete, containing the undisplaced frequency ν and a series of “side-
bands” spaced at equal intervals of νm extending symmetrically to infinity above
and below ν. The frequency spacing of the sidebands in this spectrum remains
unchanged if the amplitude of oscillation, and therefore the Doppler frequency
range of the ion, is changed; there is merely an increase in the amplitudes of side-
bands at frequencies farther from the undisplaced center frequency. Quantitatively,
the amplitude of the sideband at frequency (ν±nνm) is proportional to Jn(2πa/λ),
where as usual, Jn represents a Bessel function of order n, and a/λ is the ratio of
the amplitude of the ion oscillation to the wavelength of the light wave. The graph
of the Bessel function Jn(2πa/λ) of the first few orders n was given in Chapter 7
in Figure 7.4. If the particle is constrained to oscillate over a range below one
wavelength, that is, if a/λ < 1, then all the amplitudes rapidly approach zero
for increasing n above zero. In this case the power resides principally in the undis-
placed frequency, and the (first-order) Doppler effect is effectively absent. This
is the Dicke effect we found to be so important in the hydrogen maser and the
rubidium standard; however, there the wavelengths involved were in the centime-
ter range, larger than the mean free path at ordinary temperatures, rather than the
submicron range that concerns us here.

The extent to which the discreteness of the spectrum seen by an oscillating
ion alters the circumstances of laser Doppler cooling depends on whether the nat-
ural line width for resonance absorption is greater or less than the spacing of the
Doppler sidebands. If, for example, the spacing is larger than the natural line width,
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then for Doppler cooling it is clearly necessary that the laser be tuned to fall exactly
on some sideband nνm below the undisplaced resonance frequency; this ensures
that the corresponding upper sideband seen by the ion will fall exactly on reso-
nance. As the cooling proceeds and the amplitude of oscillation of the ion dimin-
ishes, the power in that upper sideband will also rapidly decrease, making further
cooling less and less efficient.

The other extreme, in which the natural line width is much larger than the
spacing of the Doppler sidebands, is expected to be more common, since νm is
typically not greater than a megahertz, whereas optical resonance line widths are
perhaps ten times that. In this case we need the resonance line-shape function; for
a free ion it is a Lorentzian function with a frequency width �ν determined by the
radiative lifetime of the states involved in the optical transition. Since the external
fields used to confine the ions are expected to produce a negligible distortion of the
resonance line shape, the cross section for resonance scattering can be written as
follows:

σ(ν) = σ0

(
�ν
2

)2 1

(ν0 − ν)2 + (
�ν
2

)2 . 16.20

Now, as already pointed out, the spectrum that the oscillating ion sees depends
very much on the value of 2πa/λ. At one extreme, 2πa/λ � 1, which is equiva-
lent to the Doppler variation in the light frequency oscillating very slowly, that is,
the oscillation frequency νm being very small compared to the maximum Doppler
shift. In this case the spectrum consists of a large number of closely spaced lines
of significant amplitude for all harmonic numbers n up to (2πa/λ). For a given
maximum Doppler shift, if the ion oscillation is assumed to be very slow (with a
correspondingly large amplitude to keep the Doppler shift constant) the spectrum
is so closely spaced as to form a nearly continuous band of width about equal to the
Doppler shift caused by the ion velocity at its maximum. In this limit it would be
a valid approximation simply to take the light spectrum seen by the oscillating ion
as a single frequency displaced according to the instantaneous velocity of the ion.
However, we would then have to allow for the fact that the ion does not spend the
same length of time at different phases in its oscillation. In this approximation it is
as if the ion were not confined at all, but moving freely, just as was assumed for
the neutral particles discussed earlier. The same description of the Doppler cooling
should then apply here also.

In general, however, 2πa/λ may assume any value, and in the ion frame of
reference, it is as if it were being irradiated, not by a monochromatic beam of fre-
quency ν, but rather by light having independently the several discrete frequencies
ν ± nνm . Furthermore, when an ion absorbs a photon, it does so at the sideband
frequency that it sees, in its own frame of reference, as being at its resonance fre-
quency ν0. That is, the harmonic number n must satisfy ν0 = (ν + nνm); but in the
laboratory frame this corresponds to a photon of energy hν being absorbed. Now
in this process of resonance absorption and re-emission, an atomic particle will,
in its own frame of reference, re-emit radiation of very nearly the same energy
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as it absorbs. (There is a recoil energy of the ion that comes at the expense of
the emitted photon, but for the present purposes this is negligible). However, this
radiation will have, in the laboratory frame with respect to which the ion is oscil-
lating, Doppler sidebands symmetrical about the center frequency, so that on the
average, the energy of the photon emitted will be just that of the photon absorbed
in the ion frame of reference, that is, h(ν + nνm). The result is that in the labora-
tory frame of reference a photon of energy hν has been absorbed and a photon of
average energy h(ν + nνm) has been emitted. If the laser frequency ν is set below
the frequency of maximum resonance absorption ν0, so that the absorption is more
likely for the higher sidebands (n >0) than for the lower ones (n <0), there will be
a net loss of energy by the ion, which must come from its center-of-mass motion.

This way of describing the cooling process is physically equivalent to the one
given earlier in terms of light pressure; a quantitative comparison is of course
meaningful only in the range where both approximate treatments are valid. If we
limit ourselves to the case where 2πa/λ � 1, the instantaneous velocity of the ion
is related to n by equating the Doppler shifts: nνm = (V/c)ν. Now, we had previ-
ously found that a photon beam of intensity I exerted an average force F = I σ/c
on an ion, and therefore the rate at which the ion energy is reduced (FV ) is given
by I σ(V/c), that is, I σnνm/ν, or hnνm per photon absorbed. This is just the result
obtained by balancing the energy between absorbed photons Doppler-shifted in
frequency and the emitted photons.

While the limiting case of 2πa/λ � 1 is expected to be relevant in the initial
stages of ion cooling, it is the opposite extreme, where this parameter approaches a
value much less than unity that will determine the ultimate level of cooling that can
be reached. As already pointed out, in this limit the amplitudes of the Doppler side-
bands above n = 1 become negligible, so that the spectrum seen by the oscillating
ion consists of the center frequency ν and only one side-band on each side of it,
(ν + νm) and (ν − νm). In this case it is relatively easy to obtain an explicit expres-
sion for the rate of cooling, since the intensity of these sidebands, J±1

2(2πa/λ), is
approximately (πa/λ)2. If we again assume a Lorentzian function of width �ν for
the resonance line shape with �ν � νm , we find that there is not just the loss of
energy as a result of absorbing a photon of energy hν followed by emission of one
of average energy h(ν+νm), but also a gain resulting from the absorption/emission
cycle at the other (ν − νm) sideband. The overall rate of cooling, after some sim-
plification, is given by the following:
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= −2
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In arriving at this, we have taken into account the effect on an existing motion as
manifested by the Doppler shift and based the derivation of the laser cooling on the
assumption that in the frame of reference in which an ion is initially at rest, it emits
photons of the same frequency/energy as it absorbs. This is a valid approximation
as long as the energy of recoil of an ion in the act of absorbing or emitting a photon
is negligibly small compared to the energy of any prior motion. This may give rise
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to some confusion, since the Doppler cooling mechanism is also in a sense due to
“recoil”; it is clear that a distinction must be made: They represent two levels of
approximation in terms of the ratio between the photon and ion momenta. As the
ion momentum is brought near zero by cooling, the higher-order approximation,
which applies even to ions at rest, becomes necessary. It is precisely this ulti-
mate recoil energy that will set the minimum ion energy attainable. It is the same
recoil energy which accounts for the residual Brownian motion described earlier.
Since the conservation of linear momentum requires that when a photon is
absorbed, the ion recoil with a momentum hν0/c, it follows that from a zero
initial velocity the ion gains kinetic energy amounting to (hν0/c)2/2M . Now,
under the present conditions J 2

0 (2πa/λ) ≈ 1, and thus nearly all the radiation
the ion sees is at the center frequency ν, which has been assumed to be set at
ν0 − �ν/2. Since at this frequency σ = σ0/2 (by definition), it follows that the
rate of energy gain by the ion is given by the following:
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Finally, in order to obtain the ultimate equilibrium value of the ion energy, we
equate the rate of energy loss to energy gain and obtain, after some simplification,

Emin = 1
2

M(2πνma)2 = h�ν
4

. 16.23

While this analysis does not pretend to be anything more than a rough quantitative
sketch of the basic physical processes involved, it nevertheless leads to the correct
dependence of the cooling on the physical parameters. However, it is flawed in one
serious physical respect: At or near the minimum energy, the conditions may be
approached where the ion motion can no longer be treated using classical mechan-
ics; it becomes a problem in quantum mechanics. This is seen from the fact that
it is possible that Emin may not be much larger than hνm , the quantum of energy
for a harmonic oscillator of frequency νm . The energy of such an oscillator can
assume only the following discrete values: hνm(n + 1/2), where n is a whole num-
ber, and 1/2hνm is the so-called zero point energy. The fact that the energy cannot
reach precisely zero is, of course, a quantum phenomenon; the classical description
is an approximation valid only for very large values of the quantum number n. To
pursue the matter further would take us too far afield; suffice it to say that it is truly
remarkable that the experimental implementation of the ideas we have described
has been so successful as to reach the quantum level of oscillation in the trap. An
ion harmonically bound in a trap with a frequency νm = 105 Hz and cooled down
to the point where there is a 95% chance that it is in the state of zero point energy
would have a temperature around 0.8 μK. In the case of a Hg+ ion it would have
an amplitude of oscillation no more than 0.02 μm, that is, on the order of λ/10, and
a second-order Doppler shift of no more than one part in 1021!



Chapter 17
Application of Lasers to Microwave
Standards

The advent of the laser changed the whole character of atomic frequency/time
standards in a number of fundamental respects: from the manipulation of the inter-
nal quantum states of the reference particles, to cooling of the center-of-mass
motion and prolonged observation of single isolated reference particles. The former
application introduced a radical change in the way the cesium clock transition is
observed, and the latter made possible, in one revolutionary advance, the realization
of the ideal goal that motivated the original pre-laser forays into field suspension of
ions, embodied in the Hg+ ion microwave resonance experiment at NASA. That
goal was to completely isolate the reference particle from its environment, and to
observe its true resonance, free from Doppler shifts and any uncontrolled random
perturbations. In this chapter we will touch on the application of lasers to atomic
frequency standards in the microwave region of the spectrum, and take up their role
as frequency standards in the optical region in later chapters.

17.1 Observation of Individual Ions

17.1.1 Introduction

One of the most significant developments made possible by the laser revolution
is the direct optical observation of individual atomic ions. We can, by focusing a
resonant laser beam onto the region of confinement of the ions, actually scatter
enough photons to literally see the discrete particle nature of whatever is doing the
scattering. It is true that even in the very early days of the Paul trap, the sensitiv-
ity of ion detection by electronic means was pushed to the point of resolving the
discreteness of ions in a cloud, but now with the laser, the signal-to-noise ratio is
incomparably higher, and single ions are observed for extended periods of time.

This remarkable feat of directly observing individual cold ions as spots of light
“crystallized” in a Paul trap was, of course, the culmination of the work of many
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pursuing the many aspects of the interaction of radiation with matter, which the
special properties of lasers made possible. In the beginning, estimates suggested
that the enormous signal-to-noise advantages of using resonance scattering of laser
radiation held out the hope that the observation of individual atomic particles was
within reach. Knowledge of how close one is to resolving individual particles starts
with a theoretical estimate of the number of ions implied by the observed inten-
sity of the scattering, based on what is known about the ion cross section for this
process. This is useful in assessing progress toward the ultimate goal; however,
the approach to resolving individual ions is signaled by the appearance of stepwise
variation in the scattered intensity, jumping between a finite number of discrete
levels, when ions are created or removed from the trap.

The ions are usually created by random ionizing collisions between electrons
and the parent atoms, and a statistically fluctuating number of ions are accumulated
in the trap during any given filling period. However, the frequency of occurrence,
that is, the probability of different values of that number, follows a determinate law.
If, as is generally the case, the number of available parent atoms is infinitely large
compared to the number actually ionized, we can assume that any given ion had
an equal probability of becoming part of the ion population at any time during the
filling period. In that case it can be shown that the frequency of a given ion number
follows what is called the Poisson distribution. If we represent the average number
of ions trapped by 〈n〉, then the probability p(n) that precisely n ions are trapped
is given by the following:

p(n) = 〈n〉n

n! e−〈n〉. 17.1

Figure 17.1 shows a plot of the Poisson distribution, giving the relative probability
of a cluster being formed with different total numbers of ions, for a given average
number of ions trapped. When this number is extremely large, as in the original
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Figure 17.1 The Poisson distribution in the number of stored ions
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Hg+ ion experiment, the discreteness in the fluorescent signal measuring the ion
number would manifest itself only as a small fluctuation, namely shot noise. It is
only when the signal from only a few ions is observed with a large signal-to-noise
ratio that individual ions are clearly discernible.

Through the ability to resolve individual ions in the trap it becomes possible
to limit the ion population to a single ion, or at most a string of individual ions,
located at points where the amplitude of the Paul high frequency field is zero; that
is, where the micromotion, whose energy is determined by the field amplitude, is
zero. In the classical Paul trap there is only one point where the field amplitude
is zero, namely at the center of the trap. Clearly then, if signal-to-noise limitations
required many contributing ions to be observable, their mutual repulsion would
prevent their all occupying the center, and the micromotion of those repelled from
the center would set a lower limit to the energy, since the laser cooling affects
only the secular motion, not the micromotion. It follows that for a cloud of ions,
interaction between ions may not only perturb their internal quantum states, but
will also limit how far the temperature can be lowered, and the (second-order)
Doppler effect thereby eliminated.

As explained in an earlier chapter, collisions involving an ion in the high-
frequency electric field of a Paul trap result in abrupt changes in ion energy due to
a change in the phase of its secular motion. Now the ability to observe an isolated
single ion means that ion–ion collisions can be eliminated; all that would remain
is the possibility of collisions with background gas particles in the vacuum system.
This means that now the experimental burden is on the ultrahigh vacuum system
to maintain a sufficiently low particle density in the ion trap. In the case of an ele-
ment such as mercury with its high vapor pressure, an effective approach is to use
cryogenic pumping, that is, lower the temperature of the system to the point where
everything (except helium) freezes! This is accomplished by immersing the system
in liquid helium. A less drastic approach is to rely on one of the triumphs of mod-
ern vacuum technology, the titanium ion pump, which makes it possible to reach
pressures as low as 10−10 Pa, if extreme care is taken in the design and construction
of the system. Although this is far from a “perfect” vacuum (by comparison, inter-
planetary space has an average particle density more than 10,000 times smaller),
nevertheless, the particle density is so low that the average time between collisions
involving the ion and a background particle can be several days! Thus although a
collision may result in some increase in energy, so much time elapses between col-
lisions that the average rate of energy increase is extremely small. To really benefit
from this low average collision rate, the trap must obviously be designed so that
several collisions are required before the ion acquires sufficient energy to escape.

17.1.2 Trap operating conditions

The design of the physical setup for laser cooling of ions in a Paul trap must begin
with the design of the trap itself. A particularly important physical parameter at
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our disposal is the secular oscillation frequency of the ion. This, it will be recalled,
is given by β
/2, where β is approximately given by β2 ≈ a + q2/2 under the
so-called adiabatic condition, where an ion oscillates at the field frequency with
a small amplitude (the micro-motion) as it executes its slower oscillation about
the trap center (the secular motion). In this case the ion oscillation spectrum is
dominated by the frequency β
/2 with components at the frequencies (2 + β)
/2
and (2 − β)′
/2, which are very much weaker. There are two other important
parameters: the inherent optical resonance line width of the ion and the spectral
line width of the laser light. It simplifies the description of the Doppler cooling
process considerably and can render it effective in reaching the ultimate zero point
energy in the trap if the laser line width is smaller than the optical resonance line
width of the ion, and if in turn, the latter is smaller than the frequency separation
of the Doppler sidebands, so that they are well resolved.

Since optical transitions suitable for laser cooling must occur with the ions pre-
senting a relatively large cross section to the beam, their spectral line widths (due
to the high transition probability) should not typically be far below the megahertz
range; this implies that the ion oscillation frequency β
/2 should be at least on the
order of megahertz, and thus for β ≈ 0.1 (say) the field frequency 
 must be in
the tens of megahertz range. Based on these considerations we can now arrive at
the specifics of a typical trap design suitable for laser cooling of ions. For example,
if we assume a field frequency of 
/2π = 10 MHz, then for the Hg+ ion we find
qr = 2.4 × 10−10V0/r0

2. We are at liberty to choose the exact value of qr , provided
that it falls within the stable region of the a–q diagram; if we choose qr = 0.05
and rr = 1 mm, then the required radio-frequency amplitude would be V0 = 210
volts. We note that the assumption of a relatively high oscillation frequency for
such a massive ion has led us to trap dimensions on a miniature scale compared
with those used in the pre-laser mercury ion standard. The difficulty of attaining
precision and mechanical stability in the construction of such miniature traps has
elicited a variety of ingenious electrode geometries; the only essential requirement
is that a saddle point be produced in the electric potential to trap an ion.

The maximum kinetic energy an ion may have while confined in such a trap
can be readily computed if we recall that under the assumed conditions, the average
kinetic energy of the high-frequency oscillation at frequency 
 is equivalent to an
electrostatic potential that simply adds to the applied static potential in determining
the slow oscillation at frequency β
/2. Using the formula β2 ≈ a + q2/2, we can
show that the maximum energy is Emax = (eU0/2 + eqV0/8). In the example
we have chosen, this has the numerical value on the order of 1.25 electron volts,
which, to give an idea of relative magnitudes, is the mean energy of a particle at a
temperature of about 14,500◦K.

The initial filling of the trap with ions is achieved through ionizing collisions
between electrons in a beam intersecting a beam of parent atoms in the trapping
region. Once the trap is filled, a process that takes only a fraction of a second,
the beams must be interrupted in order on the one hand to minimize the density
of background particles and on the other to remove any distortion of the electric
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field the charged electrons may produce. Since the intention is to trap only a few,
and ultimately only one super-cooled ion, the large initial ion population having an
energy spread reaching perhaps a maximum of 1.25 electron-volts must be reduced
to only those having a small fraction of that energy. This can be done, of course,
by lowering the amplitude of the high-frequency field for a short time, thereby
reducing the maximum energy and allowing the more energetic ions to escape.

17.2 Optical Detection of Hyperfine Transitions

17.2.1 Laser System Design Considerations

The design of the laser system is determined primarily by the wavelength of the
resonance fluorescence transition in the particular atomic species under study.
Experimental work has been published on a number of ions in addition to the Hg+
ion; for example, the alkali-like ions of the heavy alkaline earth elements, princi-
pally strontium Sr+, and barium Ba+, as well as the ytterbium ion Yb+. From the
point of view of constructing a suitable laser system, the Ba+ ionwith a resonance
fluorescence wavelength in the green region of the spectrum at a wavelength of
λ = 493.4 nm, is the least demanding. Unlike the other ions, whose resonance
occurs in the ultraviolet region of the spectrum, the Ba+ ion resonance wavelength
falls in a range for which there exists an adequate dye (coumarin 102) to use in a
tunable dye laser to generate the desired wavelength directly.

Once we have successfully synthesized the desired optical frequency with suf-
ficient spectral purity for laser cooling the ion, we have in effect solved another
problem we faced in constructing a microwave standard, namely pumping the ions
preferentially into one of the hyperfine levels. This, it will be recalled, was first
accomplished in the mercury ion resonance experiment—and is still used in a num-
ber of portable embodiments of the Hg+ ion microwave standard—by using the
fortuitous overlap of the ion resonance line from a mass 202 mercury lamp with
just one of the hyperfine components in mass 199 ion fluorescence spectrum. With
a resonant laser source tuned to that same wavelength and having a spectral width
as small as 1 MHz, the pumping problem is solved. In fact, if the intent is only to
cool the ions, the hyperfine pumping that will inevitably occur is a problem that
must be circumvented, since the ions tend to end up in the non-absorbing hyperfine
sublevel of the ground state.

17.2.2 “Electron Shelving” Method of Resonance Detection

The extraordinary degree of isolation that a single trapped ion enjoys means that
for very long-lived upper quantum states, an extended interaction time is possi-
ble with a probing field, allowing extremely narrow resonant transitions to the
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ground state to be observed. These long lived states include the familiar mag-
netic hyperfine states, as well as metastable states from which optical transitions
are “forbidden” (for electric dipole), and only electric quadrupole or higher order
electric octupole transitions are “allowed”. In the Hg+ ion case, sharp resonant
transitions are present involving both the microwave hyperfine states and optical
metastable states with unprecedented Q-factor; in the latter case in excess of 1012!
Unfortunately, the very fact of the resonance transition having a small spontaneous
emission probability also means that it will have a small absorption cross section,
making it unsuitable for observing the resonance directly through the resonantly
scattered photons. Simply increasing the intensity of the resonance detection field
to the point of enhancing the transition rate is ruled out since it will power broaden
the resonance frequency, compromising the essential objective of an ultra-narrow
resonance.

As we saw in the case of the Cs and Rb standards, the resonance must
be observed by an indirect “trigger” method, in which the rather weak exchange
of energy involved in the microwave reference transitions causes a much larger
observable effect: in the Cs standard it changed the trajectory of the cesium
atoms, and in the Rb and Hg+ ion standards the absorption of resonant microwave
photons affected the number of very much more energetic optical pumping pho-
tons to be absorbed in “allowed” transitions between one of the reference magnetic
substates and other states.

In the context of a single ion stored free of perturbations for days, it is possible
to manipulate its quantum states and separate in time the functions of inducing
transitions on the one hand and detecting whether they occurred on the other. This
is achievable if the resonance is monitored using a strong fluorescence transition
linking one of the reference states, but with a wavelength far removed from that of
the reference transition. The monitoring beam can then simply be turned off while
the reference transitions are being induced by a weak probing field, and then turned
back on to establish whether transitions were indeed induced.

Prior to the advent of single ion spectroscopy, a precursor to this approach
would have been described as a double resonance method, in which the relative
intensity of the fluorescence at one resonant wave length is monitored as the other
is swept through a second resonance involving a common level. With a single ion
controlling the fluorescence, the method takes on a stark, on-off aspect. The ion is
either in the lower reference state or the upper state. If the reference states share a
common lower state with the states between which a strong fluorescence is allowed,
then the full intensity of that fluorescence will either be present or totally absent
depending on which of the two reference states the ion occupies! As long as the
ion remains in the upper reference state there will be zero fluorescence; not until it
is induced to make a transition (or spontaneously decays) down to the lower state
does the fluorescence again appear in all its glory. This process has been dubbed
using a brilliant metaphor: electron shelving, a term attributed to H. Dehmelt.
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17.2.3 The Signal-to-Noise Ratio

While the suspension of an individual cold ion provides an ideal reference, free
from perturbations and Doppler shifts, the signal-to-noise ratio in determining the
precise center of its resonant frequency will, in addition to photon shot noise and
possible fluctuations in the laser beam frequency and intensity, be limited funda-
mentally by what has been called quantum projection noise. This simply reflects
the statistical nature of the occurrence of a discrete quantum transition. It is ana-
logous to the shot noise described in Chapter 4. The roles of the different types of
noise sources in the present case in which the number of ions is small, are reverse
of what it had been in the original ion cloud standard, with its weak fluorescent
intensity. There the effect of quantum transition noise on the signal-to-noise ratio
was negligible compared with the shot noise of the fluorescent photons because
the number of ions undergoing transitions is much larger than the number of pho-
tons detected. In contrast, here the resonant laser scattering from a cluster of ions
is so large that in practice the photon shot noise may well be less important than
frequency and intensity instabilities in the laser source. Ultimately, however for
scattering by a single ion of a large number of photons from a stable laser, the
fundamental quantum noise is expected to dominate.

To bring out quantitatively the fundamental limits to the signal-to-noise ratio,
we will consider the bare essentials of a scheme to observe the microwave clock
transition in 199Hg+ ions. In what follows we will often speak of ions, in the plural,
when in fact only one ion may be involved; it is assumed that an ensemble average
taken over many ions is the same as an average taken over many identical repeti-
tions of the same measurement on one ion.

Assume then that we use one laser to both optically pump the hyperfine states
and to detect the microwave clock transition between them; a straight forward
extrapolation of the method first used by the author on a mercury cloud. Since
the clock transition must be observed “in the dark” to avoid light shifts in the fre-
quency, we assume the following sequence of events: 1. The laser is turned on
to pump the ion out of the absorbing lower hyperfine state into the other non-
absorbing state, at which point the fluorescence tends to zero. 2. The laser beam is
cut and the microwave field applied to induce the clock transition, thereby coher-
ently mixing the two sublevels; assume this continues only until the ion has a prob-
ability of 1/2 of having made a transition. This essentially quantum mechanical
description of the ion being in a “mixed state” is counter- intuitive of course and
is the basis of the so-called “Schroedinger’s cat” paradox, in which the cat doesn’t
know if it’s alive or dead! 3. The laser beam is again turned on and if the ion has
made the clock transition, the fluorescent photons radiated by it are counted. Sup-
pose that the average photon count per ion (if there are more than one) taken over
many repetitions of the identical procedure is represented by 〈Np〉, then the rms
deviation of the individual photon counts from the mean is given by

√〈Np〉 (see
Chapter 3).We should note that the photon count so obtained does not give directly
a measure of the probability of the ion having made the transition, since it is being
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pumped into the other state in the act of counting the photons. Ideally we should
have another laser exciting a cycling optical transition for a direct and efficient way
of detecting the probability of an ion being in a particular state. If we assume we
have a cluster of Ni ions in the trap contributing to the total photon count, then
there will also be a statistical fluctuation in the actual number of ions that have
made the clock transition and are contributing to the fluorescent photon count. As
we saw in Chapter 3 in discussing the random walk problem, the rms deviation is
given by 〈�Ni

2〉 = Ni p(1 − p), where p = 1/2 according to our assumption.
We are now ready to compute the total fluctuation in the photon number

detected arising both from the photon shot noise for each ion and the fluctuation in
the number of ions that actually underwent the clock transition. Since these num-
bers are independent they are quadratically combined, that is,

〈�Nd
2〉 = 1

2
〈Np〉Ni + 1

4
〈Np〉2 Ni 17.2

For 〈Np〉�1 the rms fluctuation σp is given by:

od ≈ 1
2

Np
√

Ni 17.3

17.2.4 The Dick Effect

In both the confined ion resonance standards and the cesium standards, whether of
linear or fountain geometry we have passive devices which require a local oscillator
to “interrogate” and lock on to the frequency of the reference ion or atom. In both
cases the interrogation must of necessity be interrupted during part of each cycle
of measurement during which the local oscillator receives no corrective feedback
signal in the servo loop. This periodic pulsed interaction of the reference particles
with the probing field has been shown first by J. Dick in 1989, in the context of
a mercury ion standard, to cause noise in the local oscillator to degrade the long
term stability of the standard (C. Audoin, 1998). The effect is noticeable in recent
ion and fountain standards where interruption times are of relatively long duration,
when the local oscillator is free to run.

Since the control on the local oscillator is discretely periodic it is expected
that an analysis of the system would involve sampling theory, a discipline that is of
course at the core of analog-to-digital conversion technology. An important concept
in this field is aliasing, in which a rapidly varying function is sampled at too low
a frequency resulting in “aliases” at lower frequencies that do not represent the
given function. In sampling a function the applicable criterion to avoid aliasing is
a theorem due to C. E Shannon, called the Sampling Theorem, which states in effect
that in order to represent a given function f (t) exactly, it is necessary to sample
the function at a frequency greater than twice the highest frequency component
in the function.
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In the Dick effect the high frequency noise of the local oscillator is aliased
by the slow sampling rate to frequencies close to the signal, resulting in spurious
frequency shifts in the standard.

17.2.5 Ramsey Time-Separated Excitation

In order to interrogate the ion, that is, determine what frequency of the field
resonates with the reference transition, a version of the Ramsey separated fields
method is adopted. We recall that in the cesium standard the resonance is observed
by making the cesium atoms pass through two spatially separated phase-coherent
microwave field regions, produced in the Ramsey cavity. As Ramsey originally
pointed out, the method can be applied equally using phase-coherent fields sepa-
rated in time rather than space; this is not surprising, since transitions obviously
have to do with the evolution of quantum states in time. The ions are subjected to
two coherent microwave bursts of precisely controlled intensity and duration, sep-
arated by a precise time interval. (Coherent here simply means that it is as though
the two bursts are parts of the same continuous wave). The Ramsey technique is
important in realizing experimentally the sharpness of resonance implied by the
long radiative lifetime of a suspended ion by suppressing the effect of residual
fluctuations.

In discussing transitions in the Ramsey field in the cesium standard, for the
purposes of providing a concrete picture of the process, we spoke in terms of the
motion of a magnetic dipole in a magnetic resonance experiment, in which a tran-
sition can be visualized as a rotation of the dipole axis with respect to a static
magnetic field direction. The same analogy applies here. In quantum terms, the
effect on an ion of a field inducing hyperfine transitions is to put it in a nonstation-
ary quantum “mixed” state involving both initial and final states, with a magnetic
moment varying periodically at the transition frequency. The time development of
the transition is characterized by the Rabi nutation frequency ωR , which is propor-
tional to the amplitude of the field inducing the transition. Now, we recall that in
quantum mechanics the absorption and stimulated emission of radiation are treated
on an equal footing, and that if an otherwise free ion is kept in the microwave field,
it will keep going back and forth between the two hyperfine states. An ion acted on
by a resonant field characterized by the Rabi frequency for a period τ will, start-
ing in one state, make a complete transition to the other state when τ reaches the
value given by ωRτ = π and will return to the original state if it continues until
ωRτ = 2π. In general, it can be shown that the probability that an ion starting in
one state will after some time t have made a transition to the other state is given by
the following:

P = ω2
R

(ω − ω0)2 + ω2
R

sin2 1
2

√
(ω − ω0)2 + ω2

Rt 17.4
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where ω and ω0 are the (angular) frequencies of the field and ion transitions respec-
tively. We easily verify that at resonance, when (ω − ω0) = 0, the probability that
a transition has occurred, P , has the value one when ωRτ = π, as stated above.
The result is a good deal more complex when there are two separate periods during
which the ion is subjected to the resonant field. A classic account of the quantum
theory of spectral line shape with this arrangement was given by Norman Ramsey
back in the early 1950’s. Our only interest is in the line shape in the neighborhood
of the central maximum. For values of the frequency such that (ω0 − ω) � ωR
Ramsey’s result takes the following form:

P(τ ) ≈ 1
2

sin2(ωRτ)[1 + cos (ω − ω0)T ] 17.5

From this we see that P(τ) = Pmax /2 when (ω –ω0) = ±π/(2T ); hence the full
width (in Hz) at half the maximum is 1/(2T ), where T is the time interval between
the two Ramsey interaction periods.

In the usual design, the amplitude of the field (and therefore the Rabi frequency
ωR) and duration τ of each of the two time-separated bursts are chosen such that
ωRτ = π/2. Now, if the field frequency is tuned to exact resonance with the ion
transition frequency, then during the free time the ion spends between burst, the
oscillating moment of the ion remains exactly in phase with the field, so that when
the second burst begins, the situation is indistinguishable from the end of the first
burst. In this case, at the end of the second burst ωRτ = π, and the ion has com-
pleted its transition to the other state. The important point to make here is that if
during the relatively long interval between bursts the ion transition frequency varies
slightly, but randomly, the phase of the ion moment at the end of that interval tends
to average out such frequency fluctuations. If the field is mistuned so that (ω −ω0)
is not zero, then a phase difference �φ = (ω − ω0)T will develop between the ion
moment and the field during the period T between bursts, and the probability of a
transition by the end of the second burst will be less. Since only the relative phase
between the ion moment and the field at the end of the free period T is physically
significant, it follows that a mistuning leading to a phase difference of �φ is indis-
tinguishable from one giving a phase difference of �φ + 2nπ, where n is a whole
number. Figure 17.2 illustrates the periodic nature of the transition probability as
indicated by the scattered photon counts plotted against the frequency mistuning
of the field.

We are now ready to estimate the expected stability of a standard locked to
the resonance observed in this way. Following what has become standard practice
in a digital servo design, the interrogating field frequency is stepped symmetri-
cally about the maximum between the two half-intensity points in the fluorescent
output; that is between (ω − ω0) = +π/(2T ) and (ω − ω0) −π/(2T ). We must
calculate the fluctuation in frequency of the standard caused by the fluctuation in
the photon count described above; this requires knowledge of the rate at which
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Figure 17.2 The periodic resonance signal seen in a time-separated Ramsey field

the photon count varies with the frequency at the sampling points. This is simply
given by :⌊

d Nd

dω

⌋
(ω−ω0)=π/2T

= Np Ni T
2

17.6

where as before the number of photons counted per ion in the fluorescing state is
Np, and Ni is the number of ions. It follows that the fractional frequency fluctu-
ation statistically averaged over a total measuring period which is conventionally
represented by the symbol τ, (not to be confused with the duration of the Ramsey
microwave bursts), that is over τ/(2T ) independent detection cycles, is given by:

oω =
1

ω0
√

Ni T
τ−1/2 17.7

17.3 The NIST Mercury Ion Microwave Standard

While the pre-laser Hg+ ion standard achieves high performance in a compact
portable unit, the use of laser cooling takes it to an altogether new level of sophis-
tication and accuracy; but with present technology it is no longer portable. This is
not, of course, a consideration for a laboratory standard, and as such its accuracy
can be enhanced by laser cooling not only by the near elimination of the second-
order Doppler effect, but also by reaching new limits on the other factors known to
affect the hyperfine frequency, that is, ambient electric and magnetic fields. Thus
the act of cooling the ions reduces their motion to where the high frequency field
amplitude approaches zero; hence the already minor effect the electric field has on
the magnetic hyperfine splitting becomes entirely negligible.

Interest in the use of Hg+ as the basis of both a microwave and optical fre-
quency standard has mainly been implemented by Wineland and his group at the
Time and Frequency Division of the (U.S.) National Institute of Standards and
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Technology (NIST). For the microwave standard at 40.5 GHz, a linear form of the
Paul trap, illustrated schematically in Figure 12.8, was built to enable several ions
to be crystallized along the axis where the high frequency field is zero. The absence
of the ion micro-motion there prevents the ions from gaining kinetic energy through
collisions, thereby allowing the cooling laser to be turned off during the interroga-
tion period.

The optical transitions involved in the operation of the standard involve
the quantum states already introduced in Chapter 13, and reproduced here in
Figure 17.3. The ions are Doppler cooled using a laser beam tuned below the
frequency of the transition between the states 2S1/2, F = 1 and 2P1/2, F = 0.
During the Doppler cooling phase it is necessary that the ions not be pumped into
a “dark” (non-absorbing) state. Ideally, if the laser radiation driving the cooling
transition were spectrally pure the ion population would cycle between just the two
named states (F = 0 → F = 0 is forbidden). In practice some excitation of the
neighboring upper state 2P1/2 is caused by a wing of the laser spectrum leading
to transitions into the lower 2S1/2, F = 0 state. This necessitates the application
of another laser beam during the Doppler cooling phase, to drive the transition
2S1/2, F = 0 to 2P1/2, F = 1. Of course during the hyperfine state pumping phase,
this would be blocked allowing the ions to accumulate in the F = 0 sublevel of
the ground state. At this point in the sequence of operations the laser beams are
interrupted and the microwave interrogating field applied in the form of Ramsey
bursts separated by longer intervals T. Finally the transition 2S1/2, F = 1 →2P1/2,
F = 0 is excited to determine the number of ions that have made a microwave
transition by counting the fluorescent photons.

Figure 17.3 The relevant quantum energy levels of 199Hg+ ion
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The design of the laser system to generate the ultraviolet wavelength at 194 nm,
required for cooling and hyperfine pumping the 199Hg+ion, presents a challenging
problem of optical frequency synthesis. This wavelength is impossible to produce
directly since it is well beyond the range of dye lasers, and even to produce it as a
second harmonic in a crystal, starting with a laser having twice the wavelength, is
ruled out because of the difficulty of finding a crystal to meet the phase matching
requirement, as discussed in Chapter 14. Radiation absorption at this ultraviolet
wavelength severely limits the choice of suitable crystals.

In the work described by the NIST group at Boulder, non-linear crystals of
potassium pentaborate designated KB5, and beta barium borate, BBO, are used
to generate the sum-frequency of a fundamental beam at λ = 792 nm and one
at λ = 257 nm, yielding a beam at the desired 194.03 nm. The λ = 257 beam is
obtained by frequency doubling the λ = 515 nm output of an argon ion laser forced
to operate at a single frequency by a temperature tuned étalon. The non-linear fre-
quency doubling is achieved using a BBO crystal with a face cut at the Brewster
angle to the axis, placed at the beam waist in a ring cavity tuned to resonance with
and mode matched to the input λ = 515 nm beam, and serving to greatly enhance
the intensity of the optical field at the crystal, thereby increasing the non-linear
conversion to the second harmonic λ = 257 nm. Provision is made to finely tilt the
angle of the crystal to meet the phase matching condition.

The other laser beam at wavelength λ = 792 nm is derived from a master
diode laser with an external cavity that is stabilized ultimately with reference to
an iodine-stabilized argon ion laser. This is followed by a mode-matched tapered
amplifier acting as a “slave” laser, phase-locked to the former.

Two resonant overlapping ring cavities have the intracavity beams coincide at
the common waist where the Brewster-cut, sum-frequency BBO crystal is mounted.
Both fundamental beams propagate as ordinary rays through the crystal, while the
sum-frequency beam at λ = 194 nm propagates as an extraordinary ray. The
incidence angles of the fundamental beams into the ring cavities must be finely
adjusted to ensure that they are collinear inside the crystal. In this way it is reported
by Berkeland, et al. (Berkeland, 1998) that as much as 2m W of radiation at the
199Hg+ pumping wavelength was generated.

The extraordinary sharpness of the resonance made possible by laser cooling
has meant that the more common methods of achieving ultrahigh vacuum and mag-
netic shielding are no longer adequate. The group at NIST have proposed (Poitzsch,
1994) that both concerns can be effectively met by operating the linear ion trap sys-
tem at the temperature of liquid helium (around 4.2◦K). Since all forms of matter
(except of course helium itself) are frozen at this temperature, with vapor pressure
so small that it would be a challenge to measure it, this is the ultimate method of
reducing background pressure. It of course introduces a whole new level of com-
plexity into the picture, involving the technology of cryogenics. The ion trap system
must be immersed in a liquid helium bath in a cryostat, consisting of two Dewars
(thermal isolation chambers): an inner one containing the liquid helium, and an
outer one filled with liquid nitrogen. Since the liquid helium has to be continuously
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replenished, a constant source is obviously required. Apart from residual helium in
the ion trap vacuum system, whose pressure can be maintained well below 10−7 Pa
with ion pumps, cryogenic pumping then would put an end to the vacuum problem.

Furthermore, such a cryostat would also enable the ultimate in magnetic shield-
ing: a superconducting metal enclosure. A superconductor is a material that, below
a certain critical temperature Tc, conducts electricity with zero resistance. The phe-
nomenon was first observed in mercury at the temperature of liquid helium and has
since been found to occur in many elements and a large number of alloys and com-
pounds, including the high-Tc oxides discovered in 1985. The most common alloys
are those of niobium with titanium or tin (Nb3Sn), which has Tc = 18◦K. However,
a superconductor is not just a body with zero electrical resistance; it was shown by
Meissner in 1933 that if a material is placed in a magnetic field and then cooled
below its transition temperature, it assumes a unique state in which the magnetic
field is “expelled” from its interior, a phenomenon known as the Meissner effect.
This effect, plus the fact that its zero resistance makes it perfectly diamagnetic,
make a superconducting enclosure an ideal magnetic shield. The diamagnetic prop-
erty refers to its ability to exclude from its interior any externally applied magnetic
field by the free flow of currents whose magnetic field exactly cancels throughout
its interior the applied field.

Thus using known technology, there is great promise that systematic uncertain-
ties in a Hg+ ion frequency standard can be pushed to levels inconceivable only a
few years ago. Resonance frequency shifts due to the second-order Doppler effect,
collisions, and magnetic field can be plausibly kept below parts in 1016! Even the
fractional frequency instability, which is a manifestation of the statistical error in
fixing on the center of the resonance, can, by the use of multiple ion traps reach
10−13 τ−1/2, where τ is the averaging time. In the long term, for averaging times
exceeding, say, one day, the Allan variance, the conventional measure of instability
in frequency, would be less than 4×10−16, surpassing all other standards.

17.4 The Proposed Ytterbium Ion Standard

The development of a portable laser-cooled Hg+ ion standard is handicapped by
the difficulty in synthesizing its 194.2 nm ultraviolet resonance wavelength with
an all solid-state laser optical system. In this regard there is a great deal of interest
in the development of an ion standard based on another species, namely the ion of
the mass 171 isotope of the rare earth element ytterbium (Yb+).

In Figure 17.4 the relevant energy levels for this isotope of Yb+ are shown,
including (on a different scale) the 12.6 GHz magnetic hyperfine splitting of the
ground state, which is used as the reference frequency, and the λ = 369.5 nm ultra-
violet transition used for hyperfine pumping and possible laser cooling. There are
two essential differences between Yb+ as a reference ion and the Hg+ ion: First,
the former has an ultraviolet resonance wavelength that is accessible by a simple
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Figure 17.4 The relevant low-lying energy levels for a proposed Yb+ ion standard

doubling of the frequency of a diode laser output; second, the Hg+ ion reference
frequency at 40.5 GHz is over three times larger than that for Yb+, which under
equal conditions makes the Hg+ ion resonance have a Q-factor three times greater
and the standard based on it three times more stable. Nevertheless, until laser tech-
nology advances to the point where the synthesis of the ultraviolet frequency for
the Hg+ ion becomes possible using small solid-state components, the Yb+ ion is
a promising contender for field applications.

17.5 The Laser Pumped Cesium Beam Standard

17.5.1 The NITS-7

An important early application of lasers to atomic Cs standards is the optically
pumped thermal beam standard; the one constructed at NITS, Boulder, and desig-
nated NITS-7 is a good example. Similar thermal Cs beam standards, substituting
optical pumping for state-selecting magnets, have been put into operation in sev-
eral standards laboratories around the world. They are very similar to the older
magnetic deflection Cs standards, differing only in the method of state selection
and the detection of clock transitions. In terms of both of these functions, laser
pumping and detection have clear advantages over the classical methods. First,
magnetic state selection removes from the beam those atoms that are in the wrong
hyperfine state, whereas optical pumping simply transfers them from one to the
other of the two clock states. Second, the fluorescence detection of the number of
atoms that have made a clock transition is made nearly 100% efficient by using
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a second laser to excite a strong second optical transition, chosen to be a cycling
transition, that is, one allowed just between a given pair of levels. An atom that
has made a clock transition can therefore repeatedly emit fluorescent photons dif-
fering in wavelength from those involved in hyperfine pumping, without leaving
the two states. The third principal advantage relates to the absence of what might
be called “chromatic aberration” in the magnetic state selection of atoms, that is,
the dependence of the trajectories of the atoms on the distribution of their thermal
velocities.

17.5.2 Laser diodes for Cs pumping

We recall that the Cs resonant fluorescence wavelength λ = 852 nm is fortunately
attainable directly using compact solid-state diode lasers; the type commonly used
because of their spectral quality are called distributed Bragg reflection (DBR) diode
lasers. These diode laser-based systems must, however, meet stringent require-
ments as to spectral purity and frequency stability in order to select particular
optical hyperfine transitions. This requires active control of the laser output fre-
quency, not with respect to an absolute reference optical cavity, as is often done,
but with respect to a particular hyperfine component in the optical spectrum of
cesium itself. This is done using a special absorption cell containing cesium vapor.
However, unless special techniques are used, the spectral width of the resonance
spectrum in such a cell would be too great for it to serve as a useful reference, due
to the Doppler effect. In the days before the laser, efforts to reduce the Doppler
width led to the development of atomic beams; now we have another approach,
made practicable by the laser, called saturated absorption spectroscopy. It involves
using two identical laser beams made to pass through the atomic vapor in opposite
directions, in effect producing a stationary wave. If the laser beams cause a suf-
ficiently high transition rate, there results a significant depletion in the number of
those lower-state atoms whose Doppler-shifted frequency is resonant with the laser
field, a depletion that indicates the beginning of saturation. If we imagine a third
(weak) probing laser beam swept in frequency across the atomic resonance line, we
would see successively absorption by different groups of atoms as their Doppler-
shifted frequency comes into resonance with the probing beam, absorption that
reflects the distribution of velocity among the atoms. However, two notches would
appear in the absorption versus frequency curve, symmetrically placed about the
maximum, as shown in Figure 17.5.

The frequency width of these notches, which following W. Bennett are referred
to as “holes,” is the width the atoms would exhibit in the absence of the Doppler
effect. This “hole burning” is due to the saturation of the absorption by those atoms
whose Doppler-shifted frequency is resonant with one or the other of the two laser
beams. By varying the frequency of these two beams, the two holes can be made to
coalesce at the maximum of the Doppler curve, corresponding to selecting atoms
that are resonant with both beams at the same time, that is, those that have near
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Figure 17.6 The transitions in Cs used to stabilize the diode lasers

zero velocity. This, then, is the basis of the saturated absorption technique for
circumventing the Doppler broadening of spectral lines.

Using saturated absorption in a Cs vapor cell, the frequency of the output of one
diode-based laser system (L1)is locked, by a servo-control loop, precisely on the
frequency of the resonance D2 transition between the F = 4 and F ′ = 5 hyperfine
states of the ground (2S1/2) and first excited (2P3/2) states respectively, as shown
in Figure 17.6. The other laser (L2) is locked on the F = 4 → F′ = 3 tran-
sition frequency, and induces transitions between those states, followed quickly
by transitions to either F = 3 or F = 4 according to a certain branching ratio.
The result after several photon absorptions is that the atoms end up mostly in the
F = 3 sublevel. This performs the function of the state-selecting A-magnet in the
old standard. The other diode L1 induces the so-called cycling transition between
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F = 4 and F′ = 5, which is followed quickly by the emission of fluorescence radi-
ation as the atom returns to the original sublevel F = 4. This is a cycling transition
because the transition to F = 3 is forbidden since electric dipole transitions must
obey �F = 0, ±1; therefore any given atom in the F = 4 sublevel can repeatedly
absorb and reemit many fluorescent photons. That is the basis of the claim that as
a detector of transitions into the F = 4 sublevel it is 100% efficient. Clearly an
essential requirement for this scheme to work is that the hyperfine spectrum is well
resolved, both in terms of the spectral width of the two required lasers, and the
fluorescence detection system.

The Ramsey cavity of NBS-7 is 1.55 m long; the line width of the central peak
in the Ramsey pattern is 65Hz corresponding to a Q ≈ 1.5 × 108. The cavity ends
are carefully designed to minimize leakage of microwave power that would lead to
Doppler-related phase shifts. The flow of microwave energy, as measured by the
Poynting vector, should be zero at the center of the atomic beam window.

The microwave source for inducing the clock transition at 9.192 GHz is
obtained by adding to the output of a low noise microwave multiplication chain
at 9.18 GHz a low phase-noise, stable 10.7 MHz signal derived from a computer-
controlled direct digital synthesizer (DDS) of fine resolution (see Chapter 4). The
ultimate frequency reference is a hydrogen maser. The error signal needed to lock
the frequency to the center of the atomic resonance is obtained using square fre-
quency modulation at a rate of about 0.5 Hz.

17.5.3 Corrections to the Observed Cs Frequency

The principal types of corrections which must be applied to the observed resonance
frequency in a beam standard have already been outlined in Chapter 9. As a stan-
dard, all possible sources of systematic error must be analyzed and evaluated to
establish the accuracy with which it embodies the definition of the unit of time.
Naturally the more ambitious the target accuracy is, the greater the number of sub-
tle effects that become significant and must be evaluated. In the present case the
light shift due to stray fluorescent light entering the Ramsey cavity would impose
a grave limitation on the accuracy of this type of standard, if properly operated
shutters are not provided to eliminate that possibility. Also the effects of spurious
transients and sidebands in the interrogating microwave field, particularly accom-
panying the use of digital electronics must be brought within acceptable tolerance.
This involves appropriately blanking the signal, with important consequences on
the performance of the servo that locks the local oscillator to the atomic resonance.

If the various experimental parameters such as microwave power applied to the
Ramsey cavity, the intensity of the magnetic field, the temperature of the Cs oven,
etc. are automatically stabilized to their optimum values, the frequency synthesizer
can be programmed to give the corrected output frequency, on any desired time
scale. The essential performance figure for NBS-7, namely the uncertainty in its
output frequency is reported to be about one part in 2×1014, that is, about an order
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of magnitude better than NBS-6, its magnetic predecessor. Ultimately they are both
up against the available observation time set by the mean thermal velocity of around
100 m/s and the length of the standard.

17.6 The Cesium Fountain Standard

17.6.1 Using Gravity to Return Atoms

We will now take up the subject of what has become the most accurate reduction
to practice of the definition of the unit of time as the duration of a certain number
of oscillations in a Cs atom: the cesium fountain standard. In national standards
laboratories around the world the cesium fountain is superseding the horizontal
thermal beam standard.

The cesium fountain is a remarkable example of how the advent of laser cooling
techniques made possible the practical realization of an early bold idea for increas-
ing the precision of atomic/molecular beam resonance spectroscopy: the molecular
fountain experiment, proposed by Zacharias in 1953 (Zacharias, 1954). In this, the
limitation on the length, and hence resolution of a horizontal beam machine due
to the curvature of the path under gravity would be removed by using a vertical
beam in which the atoms follow narrow parabolic trajectories, reaching a height
dependent on their initial velocity before falling back to the initial plane. Only one
transition cavity would be required for a Ramsey pattern since the atoms could
traverse the same cavity twice: going up and coming down. Since atoms starting
with initial velocities higher than the limit set by the height of the apparatus are
lost, only those at the slow end of the Maxwellian distribution would return to con-
tribute to the resonance signal. For an apparatus of height h the maximum source
velocity of returning particles is given by 1/2MV 2 = Mgh, that is, V = (2gh)1/2;
if for example h = 1.8 m then V ≈ 6 m · sec−1, and the average time of flight of
an atom about 1.2 sec. Unfortunately, for an atom such as Cs (mass number 133),
this would be about the average velocity of particles in thermal equilibrium at a
temperature of about 0.5◦ above absolute zero. At ordinary operating temperatures
of an old Cs beam source, say 50◦C, the number of atoms having a velocity below
6 m · sec−1 would be so small, especially after some inevitable loss through scat-
tering from background particles, that this approach would be not only impractical,
but one in which the gain in spectral line narrowing would be offset by a loss in
signal-to-noise ratio. Zacharias’s attempt in fact failed.

But this is precisely the sort of problem that has been spectacularly overcome
by the laser-cooling and capturing techniques we discussed in the last chapter. In
fact, at the micro-kelvin range of temperatures attainable with laser cooling, a hor-
izontal atomic beam cannot be formed at all with the usual geometry (except in
microgravity, for example on the international space station); the parabolic arcs
characteristic of bodies falling under gravity would have a strong downward trend
that approaches a vertical descent.
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One further critical requirement in order to fully achieve the potential of an
atomic fountain standard is the “launching” of the atoms along a sufficiently nar-
row path as to form a fountain in which most of the atoms traversing the microwave
field in the upward direction will return through it in the downward direction. The
effusion of atoms from an orifice as in a conventional atomic beam source would
be unacceptably slow and divergent. Ideally, the cooled atoms should be concen-
trated in a small space, put into the proper hyperfine state, and projected vertically
upward along the axis. If a strong laser pulse, tuned to resonance, is used to pro-
vide the impulse, a small transverse velocity spread will inevitably be caused by
the re-emitted fluorescent photons. An alternative method is to use a moving optical
molasses to launch the atoms, that is, an optical molasses in which a frequency off-
set is introduced between the vertical pair of oppositely directed laser beams (both
of which have their frequency offset below the atomic resonance); this, through
the Doppler effect, is equivalent to referring the motion of the atoms to a moving
frame of reference. The properties of the molasses are therefore the same in this
moving frame of reference as they would be in the rest frame, in the absence of the
frequency offset.

In 1989 appeared the first published account by a group at Stanford University
of a successful experiment to produce a cold atomic fountain of another alkali ele-
ment, sodium. The source was a magneto-optical trap (MOT) loaded from a ther-
mal Na beam that was slowed by a counter-propagating frequency chirped laser
beam. The atoms were cooled using a CW dye laser to generate the yellow reso-
nance wavelength λ = 589.6 nm of sodium corresponding to the (2S1/2, F = 2) →
(2P3/2, F′ = 3) transition. The relevant states in the sodium atom are shown in
Figure 17.7. Actually the laser was tuned 20 MHz below the exact resonance in
accordance with the laser cooling technique, and a sideband frequency resonant
with the F = 1 → F ′ = 2 transition was generated by an electro-optic modulator
(EOM) in order to counteract the pumping of states out of the F = 2 sublevel.
This is rendered necessary by the fact that evidently the laser spectral line width
did not completely resolve the smaller hyperfine intervals in the 2P3/2 state. The
modulator is turned off when the atoms must be pumped into the lower F = 1 state
for the purposes of observing the microwave resonance.

The atoms were ultimately cooled to a temperature of 50 μK, at which point
the spherical atomic distribution, “the ball” that is “tossed”, has a radius of 2 mm.
A pulsed laser beam imparts to it a vertical velocity of about 240 cm s−1; recoil
from the fluorescent photons contributes to a transverse spread in velocity of 22
cm s−1. The transition cavity is a section of waveguide placed near the top of
the atoms’ ballistic trajectory. A bias uniform magnetic field of intensity around
2 × 10−6T was applied to separate the field-dependent transitions. The interroga-
tion field is applied in two successive π/2 pulses separated by an interval 255 ms,
giving a central Ramsey peak with a full width at half maximum (FWHM) of
2.0 Hz.

This demonstration of the remarkably narrow resonance obtainable with an
atomic fountain was followed by its first application to a primary frequency
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Figure 17.7 The relevant quantum energy levels in sodium

standard around 1994 by the group at the Laboratoire Primaire du Temps et
Fréquence (BNM-LPTF) Paris. An account of the first NIST Boulder Cs fountain
NIST-F1was published in 1999. Several national standards laboratories including
the National Physical laboratory (NPL), Physikalisch-Technische Bundesanstalt
(PTB) and Istituto Elettrotecnico Nationale (IEN) have now operational Cs foun-
tain standards with an accuracy around 10−15. If a standard could maintain this
stability for 31.7 million years, it would lose or gain one second!

17.6.2 The Prototype at the Paris Observatory

As an interesting introduction to the design and operation of a cold Cs fountain
standard we will describe the historically significant first prototype Cs fountain
standard at the LPTF of the Paris Observatory (Santarelli, 1994). Figure 17.8 shows
schematically the essential elements of such a standard. There are four principal
functions that must be performed on the atoms: First, they must be cooled and
accumulated in a source and projected up; second, they must be put preferen-
tially in the lower of the two hyperfine substates of the ground state; third, they
must freely follow their vertical trajectories in a weak uniform magnetic field (the
C-field), interacting with the clock frequency microwave field only at the beginning
and end of their journey (the Ramsey field); and finally, their hyperfine sublevel
population must be monitored to detect clock transitions. The first two functions
are fulfilled in the laser-cooled source, while the Ramsey method of inducing tran-
sitions takes the form here of phase-coherent excitation experienced sequentially
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Figure 17.8 A schematic sketch of the Paris Observatory prototype cesium fountain standard
(Santarelli, 1994)

in time as the atoms pass through the same cavity going up and then coming down,
rather than the space-separated regions in a classical Ramsey cavity. Finally, the
measurement of the transition probability is achieved optically using the detection
of resonance fluorescence from a cycling transition which the narrow spectral
width of the laser light permits to be excited selectively. The Paris Observa-
tory prototype was reported to have a cold atom source in which as many as
108 atoms are trapped and could be cooled to as low as 5 micro-degrees above
absolute zero. It uses the now familiar three pairs of mutually perpendicular
laser beams tuned below the resonance maximum, and can be operated as a pure
lin ⊥ lin optical molasses or as a magneto-optical trap (MOT) with a magnetic field
gradient (−8 × 10−2 T/m) produced by two current-opposed Helmholtz coils. The
cold atoms are projected up through the Ramsey microwave cavity (Q = 30,000)
and into the 70 cm long Ramsey ballistic path region, 30 cm above the cold source,
using the moving molasses technique. A highly uniform and constant magnetic
field (B = 1.7 × 10−7 T) is provided in the Ramsey region by a coaxial solenoid
with correction end coils inside four layers of magnetic shielding from outside dis-
turbances. The background gas pressure is kept under 10−8 Pa to minimize the loss
of projected atoms by scattering off residual gas particles. The overall length of the
standard is about 1.5 m.
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The optical system is built around four diode lasers with sharp spectral output:
one external cavity diode laser is stabilized using saturated absorption in a Cs cell
and tuned 2 MHz below the cycling transition F = 4 → F′ = 5 used for both cool-
ing and detection of clock transitions. This laser is used to injection-lock through
an acousto-optic modulator (AOM) two high power 100 mW diodes that are used
in the formation of the pairs of beams needed to create the atomic molasses in the
source. A fourth “repumper” diode laser is required, tuned to the F = 3 → F′ = 4
transition, to offset the pumping of atoms out of the F = 4 level by the cooling
lasers. The laser beams are spatially filtered and expanded to 1.5 cm diameter with
a maximum power around 10 m W/cm2 for cooling and 1 m W/cm2 for detection.

The fountain standard is operated sequentially through several stages. First the
magneto-optical trap (or optical molasses) must be loaded with atoms; the lasers
at this stage are set at their maximum power and detuned below resonance by
3�, where � is the natural optical linewidth of Cs. This phase is completed in
about 0.4 s, the atoms reaching a temperature of about 60 μK. The next stage
is the launching of the atoms, accomplished most satisfactorily using the moving
molasses technique, which we recall entailed raising the frequency of the upward
vertical beam relative to the downward one. An upward velocity of 5 m/s was
achieved in 0.2 ms. The process heats up the atoms and the molasses lasers are
again turned on at full intensity with the 3� detuning. Finally the cooling is
extended using weaker intensities and 10 � detuning of the lasers to reach, it is
reported, an ultimate temperature of about 5 μK.

In the next phase the atomic cloud enters the microwave cavity driven in the
TE011 mode to induce the first π/2 of the clock transition at 9.192 GHz. For a stan-
dard, the source of the interrogating microwave field must have very low noise and
high spectral purity, free of spurious transients. The method of synthesizing that
frequency in the prototype exploits the low noise short term stability of a dielectric
resonator oscillator (DRO), which is phase locked to a stable frequency synthesized
from a high harmonic of a 10 MHz quartz oscillator (referenced to an H-maser) and
a lower frequency synthesizer. This synthesizer is programmed to set the frequency
alternately on the two sides of the central fringe of the Ramsey pattern.

The final phase is the detection of the number of atoms that have made the clock
transition as a fraction of the total number, and the measurement of the vertical
velocity distribution of the atoms as they fall through the detection region. First,
the atoms are subject to a pair of counter-propagating beams detuned 2 MHz below
the F = 4 → F′ = 5 transition frequency; the resulting fluorescence is detected
as a measure of the number of atoms that have made the clock transition. This is
followed by subjecting the atoms to just one traveling wave beam causing atoms in
the F = 4 level to be pushed aside and the atoms in the lower F = 3 level, that have
not made a clock transition are then pumped into the F = 4 level and their number
measured by their fluorescence as before.

The striking features of the Ramsey pattern obtained with this fountain standard
is the large number of resolved fringes indicating fairly monoenergetic atoms and
the relatively narrow Rabi envelope due to the relatively long cavity. The central
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Ramsey fringes obtained are reported to be 700 mHz obtained with a 500 ms flight
time. Using the two-sample Allan variance formula:

σy (2, τ ) = �ν

πν0

(
N
S

)√
TC

τ
17.8

where �ν is the line width, S/N the signal to noise ratio for one cycle and TC
the period of one cycle. Substituting the experimental value S/N ≈ 300 we find
σy = 10−13τ−1/2, or 3×10−15 over a period of 1000 seconds. This is two orders
of magnitude improvement over the classical thermal beam standards.

Finally, we note that an atomic fountain standard not only has a sharper reso-
nance and therefore enhanced frequency stability, but can also reduce some impor-
tant sources of systematic error. Errors arising from asymmetry in the microwave
resonance field are reduced by the passage of the fountain in both directions
through the same field, as is the (second-order) Doppler shift because of the low
velocity of the atoms. These advantages clearly justify its adoption as a fixed instal-
lation primary standard of the highest accuracy.



Chapter 18
Optical Standards and Measurement

18.1 Introduction

The early development of lasers was marked not only by the explosive prolifera-
tion of laser oscillation on different atomic and molecular transitions, but also by
efforts to stabilize them and narrow their spectral line width. This was driven by
the realization that the very attribute that makes the laser so remarkable is the one
that still left room for spectacular improvement: spectral purity. The fundamental
quantum limit on spectral purity far exceeds that of any common laser subject to
fluctuations in its optical cavity. As we saw in the example given in Chapter 14, the
theoretical spectral line width of a 1mW laser with a 1m long cavity is on the order
of 3 × 10−4 Hz, or a fractional line width of 5 × 10−19!

Considerable early success was achieved in reducing “artificial” broadening of
a laser output by mode selection techniques and servo phase-locking the laser to a
resonant mode in a mechanically isolated external cavity with high finesse. In order
to achieve long term frequency stability however, a narrow atomic or molecular
resonance was sought whose frequency falls within the tuning range of the laser,
to serve as a reference to servo-control the laser frequency. A striking example is
the classic work on the stabilization of the infra-red line of the He-Ne laser using
the saturated absorption method on a resonance line in methane gas. This made
possible a number of important applications: from high-resolution interferometry
to detect continental drift and seismic waves, to high-resolution spectroscopy.

With the development of a number of highly stabilized lasers having fre-
quencies dotting the spectrum from the far infrared to the visible, and nonlinear
devices effective in that frequency range to generate harmonics and combine
frequencies, it became within the realm of possibility to actually measure the
frequency of a light wave. This would have been an unimaginable prospect prior
to the laser, and it is still far from a simple matter, involving advanced laser
techniques. Until recently, only the wavelength of such radiation could be mea-
sured; and it is only since the advances we shall be considering in this chapter
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that it has become useful to describe radiation in terms of its frequency. One now
speaks, for example, of the CO2 laser (λ = 10.6 μm) as having a frequency around
28.3 THz (1 terahertz = 1000 GHz). This extension of the capability of measuring
frequency to the optical regime requires special techniques to generate ultrahigh
order harmonic frequencies, spanning the wide gulf between the microwave pri-
mary standard and optical frequencies. A number of stabilized lasers, including
HCN, H2O, CO2, Ne, and Ar+ are available for the purpose of providing in effect
intermediate secondary standards to form frequency chains.

Recently the whole field of optical frequency measurement has been taken
to a new level of sophistication through two developments: (1) the observation
of ultrasharp optical transitions from long-lived metastable states in laser-cooled
single ions frozen in rf microtraps, and (2) the ability to generate coherent “fre-
quency combs” consisting of coherent equally spaced sideband frequencies above
and below a central carrier optical frequency stretching so far as to span almost a
full octave, reaching the microwave region of the Cs standard.

18.2 Definition of the Meter in Terms of the Second

The effort to measure optical frequencies has been spurred by the adoption in 1983
of a new definition of the unit of length, the meter. It had been felt for some time
that the relativistically invariant scale factor between time and space coordinates,
the velocity of light, could be defined to have a particular value, thereby enabling
the unit of distance to be defined in terms of the much more accurately kept unit of
time. This came to pass at the 17th General Conference on Weights and Measures,
which adopted the definition of the meter as “. . . the length of the path traveled by
light in vacuo in 1/299, 792, 458 of a second.” This means that the velocity of light
is now by definition exactly 299, 792, 458 m/s, the number being chosen, of course,
so that the new meter is very nearly equal to the old standard. As a matter of princi-
ple, the new definition recognizes the relativistic point of view that space and time
are not absolute and separate concepts; and as a practical matter, a standard of time
interval (or frequency) can be maintained and measured with vastly greater accu-
racy than the distance between two points. Moreover, all distance measurements
based on radar methods, and this includes all aerospace and much of interplane-
tary measurements, are in fact propagation times for electromagnetic waves of one
wavelength or another. Previously, the unit of length was defined in terms of the
wavelength of a certain line in the spectrum of krypton gas. With the new definition
of the meter, the measurement of distance between two points is reduced ultimately
to counting the number wavelengths of radiation of measured frequency contained
in that distance. It follows that for the greatest precision, the wavelength used for
this purpose should be as short as possible; hence the need for the measurement of
frequency of radiation extending to the optical region of the spectrum.
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18.3 Secondary Optical Frequency Standards

18.3.1 Saturated Absorption

As with the microwave standards, the discovery of suitable reference atomic/
molecular transitions and the methods of eliminating factors that broaden their
frequency width parallel the study of high-resolution spectroscopy, and its drive
to observe spectra under conditions of the utmost spectral resolution and accuracy.
The reference transition should occur between quantum states whose (spontaneous)
radiative lifetime is adequately long to allow a long interrogation time and hence
a sharp resonance. Also, the frequency of that resonance should be well separated
from neighboring resonances and be relatively insensitive to environmental condi-
tions such as ambient temperature and electromagnetic fields. In the days prior to
the development of advanced techniques for synthesizing different wavelengths
of coherent laser light, these were formidable conditions to fulfill, considering
that suitable lasers with narrow spectral output are few in number and tended to
have limited tunability. The best chance of satisfying them is in the rich spec-
tra of molecules, spectra that characteristically consist of bands, each made up of
closely spaced lines spanning a range of wavelengths. Moreover, there is almost a
limitless variety of molecules, a far greater number than atomic species. To avoid
spectral broadening due to intermolecular forces, the molecules should make up a
low-pressure gas. The challenge is then to reach the resolution permitted by the nat-
ural line width of the absorber in the inevitable presence of a much wider Doppler
broadening due to thermal motion. There have in the past been many approaches
to defeating the ever-present Doppler effect. The most direct way of reducing the
Doppler effect is of course by cooling the particles. Other techniques that have been
developed to achieve sub-Doppler line widths are saturated absorption (or fluores-
cence); two-photon absorption, and Ramsey separated fields, with which we are
familiar.

Great success has been achieved, as we have already seen, in the case of stabi-
lizing a diode laser against a resonance in atomic Cs as reference, using saturated
absorption from two counter-propagating parallel laser beams, tuned to resonance
with the desired atomic transition. Only atoms having a nearly zero velocity com-
ponent along the beam axis are simultaneously resonant with both laser beams; any
other molecules will see two field frequencies Doppler-shifted in opposite direc-
tions. The action of the combined beams can result in such a high rate of absorp-
tion that a significant number are in the excited state, leaving a depletion of the
number in the absorbing ground state. This marks the onset of saturation in the
amount of absorption: the gas becomes more transparent. It is important to dis-
tinguish between this process in which each molecule absorbs only one photon
at a time (but at a higher rate), from another two-photon technique for achieving
sub-Doppler line widths, which we will encounter later.
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18.3.2 Stabilization of He–Ne laser lines

One of the earliest attempts at stabilizing the output frequency of a laser with
respect to a molecular resonance was on the helium–neon laser, because, as a
gaseous laser, it has an inherently narrower spectral width than other types of
lasers. However, because it can be tuned only over a very narrow range, it is
necessary to find a species of atom or molecule that fortuitously has a transition
that can be resonantly induced by the laser radiation. There are two molecular
species that have been exploited with enormous success: one is the hydrocarbon
methane (CH4), otherwise known by the unglamorous name of “marsh gas,” and
the other is molecular iodine vapor (I2). We recall that the He–Ne laser can generate
not only the familiar red light at λ = 633 nm, but also radiation in the near infrared
at λ = 3.39 μm; which wavelength dominates can be controlled by the design
and operating conditions of the laser. It happens that certain lines in the spectra
of CH4 and I2 fall within the narrow tuning range of the He–Ne laser operating at
λ = 3.39 μm and 633 nm respectively.

We will consider some details of the use of methane to stabilize a He-Ne laser
mainly for its historical interest. At ordinary temperatures methane is a gas consist-
ing of molecules each made up of one central carbon nucleus surrounded by four
hydrogen nuclei (protons) at the corners of a regular tetrahedron, all immersed in
a cloud of electrons that holds the molecule together through chemical bonds, as
shown in Figure 18.1 The quantum energy states between which transitions res-
onate with the He–Ne output at 3.39 μm are ones that differ both with respect to
vibration of the nuclei with respect to each other and rotation of the molecule as a
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Figure 18.1 The symmetry of the methane (CH4) molecule
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Figure 18.2 The vibration–rotational levels in CH4 relevant to the stabilization of the He–Ne
laser

whole, as shown schematically in Figure 18.2. The states are grouped according to
vibrational quantum number but are differentiated within each group according to
their angular momentum.

We see that the angular momentum quantum number (J ) can reach fairly large
values. Transitions in which J ′ − J = −1 are conventionally classified as forming
the P-branch of the spectrum; similarly, those in which J ′ − J = +1 form the
R-branch. The specific transition that can be made resonant with the λ = 3.39 μm
output of the laser is in the fine structure of what is designated as the P(7)
component in the ν3 = 0 → ν3 = 1 characteristic vibration band, in which
J = 7 → J = 6.

The physical setup of the saturated absorption system for stabilizing a He–Ne
laser consists essentially of a chamber several meters long containing methane gas
at low pressure, provided with infrared transmitting windows. Beam-expanding
optics and a retroreflector are provided to ensure precisely parallel counterprop-
agating laser beams passing through the gas. The return beam intensity is moni-
tored with an infrared detector, such as a cooled In–Sb photoconductive detector. If
the laser frequency is swept across the resonant frequency, there is a sharp peak in
the intensity of the return beam, which can be used to derive an error signal for the
servo control of the laser. The apparatus is shown schematically in Figure 18.3.

There are several factors that may limit the attainable sharpness of the reso-
nance, and hence the tightness of control of the laser frequency. The most serious
is the finite interaction time as the molecules cross the laser beams with their ther-
mal velocity: The other factors have to do with the parallelism of the reflected
beam with the forward beam, and their angular divergence; these lead to (first-
order) Doppler shifts in the resonance of a molecule moving across the beams.
There is a fundamental lower limit on the divergence set by diffraction, which
can be lowered only by widening the aperture. At the level of spectral resolution
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Figure 18.3 Experimental arrangement for laser stabilization using saturated absorption in
methane gas

involved here, amounting to only a few hundred hertz in a frequency of 1014,
many other subtle sources of spectral broadening and frequency shifts become
significant. These include the second-order Doppler effect, broadening and shift
due to collisions between molecules; and Zeeman broadening in Earth’s magnetic
field.

For the familiar red beam at λ = 633 nm generated by a He–Ne laser, the ref-
erence transition is a hyperfine component in the visible part of the band spectrum
of molecular iodine I2. At room temperature, iodine is a solid with a relatively high
vapor pressure, which reaches around 100 Pa at 38◦C. The stable isotope has mass
number 127 and a nuclear spin of 5/2, giving rise to a hyperfine structure in a rich
spectrum containing a high density of lines in the λ = 500 nm−670 nm range.

As a diatomic molecule, the classification of its energy levels is a good deal
simpler than that for methane. It has, of course, only one mode of vibration and
two equal principal moments of inertia perpendicular to the molecular I–I axis. The
curves showing the mutual potential energy of the two iodine nuclei as a function
of their distance apart, an amount of energy arrived at approximately by solving for
the electron energy states corresponding to fixed nuclei, are shown in Figure 18.4
for the ground state and the first excited electronic state. In the neighborhood of
the points where the potential is minimum, the shape of the curves is parabolic,
as for a simple harmonic oscillator. Thus within each electronic state there is an
array of vibrational energy levels represented by the horizontal lines, and each of
these is further split into closely spaced levels of rotational energy. According to
the Franck-Condon Principle, in a quantum transition from one electronic state to
another, the effect on the nuclear motion is negligibly small, and thus transitions
are represented by vertical lines between points at which the kinetic energy is the
same for the two electronic states.
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Figure 18.4 The molecular potential curves for the iodine molecule I2 relevant to the stabi-
lization of the He–Ne laser

As with methane, saturated absorption is used to obtain sub-Doppler resolution
in stabilizing the He–Ne laser line using an electronic transition in I2 vapor. In
principle, the same basic design considerations, such as beam expansion to increase
transit time across the beam, wave front curvature, and beam alignment are equally
important here as in the methane case. In practice, however, because the I2 line
resonant with the He–Ne λ = 633 nm light is weak, the absorption cell containing
the iodine vapor is placed inside the laser cavity to interact with the intense optical
field there. This circumstance has detracted from the accuracy and resetability that
can be achieved in practice. Nevertheless, it has been widely used as a laboratory
standard of wavelength, since it surpasses the standard krypton lamp.

18.3.3 Stabilization of the CO2 Laser

Another type of laser which, suitably stabilized, plays an important role in provid-
ing a reference frequency, is the carbon dioxide (CO2) laser, which operates in the
infrared around 10.6 μm (28.3 THz).

It is unique in allowing a useful saturation fluorescence signal from CO2 itself
to be used for stabilization. The frequencies of lasing transitions in several isotopes,
such as 12C16O2 and 13C18O2, have been measured to almost 1 part in 1010. There
are altogether some 600 CO2 frequencies that can serve as secondary standards
in the infrared. Unfortunately, the reproducibility is ultimately limited by pressure
shifts in the frequency of the CO2 cell used for stabilization. The spectra of other
molecular candidates for stabilization of the CO2 laser have been studied; the most
promising is osmium tetroxide, OsO4, with which accuracies in the neighborhood
of parts in 1012 have been achieved.
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18.3.4 Stabilization Using Two-Photon Transitions

In the stabilized laser systems so far discussed, sub-Doppler line widths were
achieved in the reference molecular resonance by the saturated absorption (or fluo-
rescence) method, in which each molecule absorbs one photon from counterprop-
agating laser beams. (Simultaneous resonance with both beams simply increases
the probability of absorbing that one photon, in a given time.) But another impor-
tant technique for achieving Doppler-free line widths, which has been exploited in
the context of optical frequency standards, involves the simultaneous absorption by
each atom or molecule of two photons from counterpropagating beams. Although
the probability of such a two-photon process is vastly smaller than that for the
one photon process, nevertheless, it can be significant with sufficient laser power
and a favorable disposition of the quantum levels of the absorber. It had long been
observed in magnetic resonance experiments at microwave and radio frequencies,
where strong coherent fields have been readily available; however, it is only after
the advent of the laser that it has become feasible to observe them at infrared and
optical frequencies. To understand the way in which the Doppler effect is rendered
ineffective in broadening the resonant absorption, suppose ν0 is the frequency of
the reference transition in a molecule placed in two counterpropagating laser beams
of frequency νL . If the molecule has a component of velocity V in the direction of
the common beam axis, then it will see the frequencies of the two beams Doppler
shifted to νL(1 + V/c) and νL(1 − V/c). Now, the simultaneous absorption of two
photons, one photon from each of the two beams, results in the molecule gaining
an amount of energy 2hνL , no matter what its velocity happens to be; and therefore
resonance will occur at 2νL = ν0 for all molecules. The quantum selection rules
that govern two-photon transitions are naturally different from those of the usual
one-photon process; in particular, the angular momentum of the initial and final
states and their dependence on the polarization of the photons. If the two beams
have the same polarization, then it is possible that two-photon absorptions occur
from the same beam, in which case absorption can occur at Doppler-shifted fre-
quencies by groups of molecules having different corresponding velocities. This
would lead to a resonance line shape with a Doppler-broadened base on which is
superposed a sharp Doppler-free peak. It is possible to eliminate the Doppler base
if the two counter-propagating beams have different polarizations (for example,
right and left circular polarizations) and the quantum selection rules applied to the
given transition allow only one photon from each beam.

As an example of the application of this technique in the context of optical
frequency standards we describe briefly the work reported in 1994 by the group at
the LPTF, in collaboration with other groups in France (Touahri et al., 1994), on
the stabilization of a GaAlAs diode laser using two-photon transitions in the rubid-
ium atom. In Figure 18.5 is shown a partial energy level diagram of the Rb atom,
for which the two lower energy states are already familiar from the optical pump-
ing of the Rb standard. The two-photon transition is between the 52S1/2 ground
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Figure 18.5 Partial energy diagram of Rb showing the 2-photon 5S–5D transition and the
intermediate 5P level

state and the 52D1/2 excited state. Such a transition is forbidden in a one-photon
(dipole) process; however, a two-photon process, although generally expected to
be improbable, is in this particular case greatly enhanced by the presence of a level
52P1/2 approximately midway between the initial and final levels. This intermedi-
ate level is only 1.05 THz from the exact middle position The sequence of events
following the simultaneous absorption of two photons is that the atom is raised to
the upper 5D state from which it quickly cascades down by allowed one-photon
transitions, first to the 6P state and then emits a photon in the blue region of the
spectrum at λ = 420.2 nm. in making a strong transition to the 5S ground state.
The emission of the blue line is eminently suitable for detecting the occurrence
of two-photon transitions. Not only does it appear if and only if this two-photon
transition has been induced, but it lies in a region of the spectrum where photo-
multipliers have low dark current, and so far removed from the laser frequency that
spurious background scattering of the laser light is easily filtered out. We recall that
the Rb spectrum contains many hyperfine components, and with the high spectral
resolution implicit in all the techniques we are concerned with, the laser is stabi-
lized on a particular hyperfine resonance. The general layout is shown schemat-
ically in Figure 18.6. The diode laser is in an extended cavity in which spectral
narrowing is achieved by having a diffraction grating forming one of the reflectors,
whose angle is servo-controlled along with the diode current to obtain a frequency
lock. The rubidium vapor absorption cell is placed in an external cavity, allow-
ing for the control of the power and alignment of the counter-propagating beams.
The laser frequency is modulated at 70 kHz, and the blue fluorescence is detected
with a photomultiplier whose output signal goes to a lock-in amplifier in which
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Figure 18.6 Schematic diagram of apparatus for 2-photon resonance in Rb to stabilize
GaAlAs diode laser

the modulation frequency serves as reference. The output of the lock-in amplifier
is the error signal used to servo-control the laser system. The frequency stability
reported of a few parts in 1014 for an integration time of 300 seconds is an order
of magnitude better than has been achieved with a He–Ne laser stabilized using I2
as a reference. The largest correction is the light shift, which amounts to about one
part in 1011. However, it is relatively well understood, and extrapolation to zero
light intensity is good enough to make this system competitive with the stabilized
He–Ne/I2 system.

18.4 Optical Standards Based on Laser Cooled Ions

18.4.1 The 199Hg+ Ion Optical Standard

The degree of sophistication in laser techniques and ion confinement in miniature
electric fields has reached the point of making it possible to observe transitions of
extraordinarily narrow spectral width at optical frequencies in single ions frozen in
a trap. To take advantage of the long unperturbed observation time, an optical fre-
quency “clock” transition must be chosen to be an intrinsically narrow one between
long-lived states; this requirement is met by what are referred to as metastable
excited states, since the only possible transitions from them to the ground state are
“forbidden” in the electric dipole approximation and only the higher order quadru-
pole transitions are allowed. Thus in 199Hg+ one such transition is between a
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metastable 2D5/2 state with the orbital angular momentum quantum number L = 2
and the ground state 2S1/2 with L = 0. A transition for which L2 − L1 = 2 has
zero probability in the dipole approximation, but a small but finite probability in
the next higher order, that is the electric quadrupole approximation.

Several mainly national standards laboratories are pursuing the development
of optical frequency standards based on a variety of ion species: for example,
NIST (USA) on the ion 199Hg+, NRC (Canada) and NPL (Britain) on 88Sr+, PTB
(Germany) and NPL on 171Yb+, and Max Plank Inst. für Quantenoptik. (Germany)
on 115In+. It is apparent from the diversity of ion species chosen by the different
groups that the nascent field of optical clocks is undergoing an evolutionary process
which will ultimately lead to the adoption of a particular ion species to redefine the
unit of time in the future. The accuracy and precision of optical standards have
already matched the best Cs fountain clock, and there is little doubt that they will
eventually supersede the Cs microwave standard.

While the various groups are pursuing different ion species, the essential design
of these various systems is very similar; therefore we will attempt a broad “generic”
description of optical clock development and not be overly burdened with the minu-
tiae of experimental details that in fact often test the ingenuity of researchers in the
laboratory. Our description may be framed in terms of one group’s project for the
sake of clarity, by specifying concrete devices and procedures, but it must be under-
stood that essentially the same is true of the other projects.

Therefore we begin with a brief description in terms of the 199Hg+ optical
clock developed at NIST, since it has been advanced to the point of operating
as a clock over an extended period. A diagram of the relevant energy levels of
199Hg+ is shown in Figure 18.7. The optical frequency reference is chosen to be

Figure 18.7 Relevant energy levels of 199Hg+



398 The Quantum Beat

that of the weak electric quadrupole transition 2S1/2(F = 0, m F = 0)→ 2D5/2
(F = 2, m F = 0) having a natural linewidth of about 2 Hz at a frequency of
1.06 × 1015 Hz corresponding to a theoretical line Q ≈ 5 × 1014! The wavelength
of this transition at λ = 282 nm is in the ultraviolet region of the spectrum, so
the main experimental challenge in realizing this degree of spectral resolution, of
course, is to synthesize laser radiation at this wavelength with an extraordinary
degree of spectral purity, compatible with the spectral width of the transition.

Furthermore, in order to realize in practice the ultra-narrow natural linewidth of
the ion just quoted requires, of course, that all sources of line broadening be elimi-
nated. This begins first by eliminating collisions with background particles, second
providing a proper magnetic field environment, and third, laser cooling the ion to
eliminate Doppler broadening. The central focus around which the whole system
is designed is a single ion confined typically in some version of a miniaturized
Paul trap, which might be a limiting form of the Paul quadrupole trap consisting
of a small ring, and two “end caps” which may in fact be some form of conductors
symmetrically positioned on the axis on either side of the ring. As in the microwave
standard described in the last chapter, the 199Hg+ optical standard of the Boulder
group makes use of cryogenic pumping at liquid helium temperature to freeze out
residual background particles in the space around the trap. The trap is mounted
in a copper vacuum chamber held approximately at a temperature of 4 K inside
a nested liquid He-liquid nitrogen cryostat. This eliminates collisions with back-
ground mercury vapor and other gases which may cause frequency shifts, shields
the ion from external magnetic fields with the same salutary effect, and extends the
lifetime of the ion in the trap to about 100 days!

Laser cooling of the ion begins in the Doppler cooling regime to a limit of
about 1.7 mK. However it will be recalled that with a suitably designed “strong”
miniature trap with a secular ion oscillation frequency sufficiently large that the
Doppler sidebands are well resolved, it is possible to continue the cooling with a
single laser to reach the Lamb-Dicke regime and ultimately the zero point energy
in the trap, in the microkelvin range of temperatures. The transition used to cool
the ion is a hyperfine component of the strong ion resonance line at 194 nm cor-
responding to the transition 2S1/2(F = 1) → 2P1/2(F = 0), while another beam
repumps on the hyperfine component 2S1/2(F = 0) → 2P1/2(F = 1) to counter-
act the optical pumping of the ion into the non-absorbing 2S1/2(F = 0) state by
the cooling transitions. The 194 nm laser frequency is synthesized from the sum of
two frequencies at 257 nm and 792 nm in a nonlinear crystal as was also described
in the last chapter.

The intricate sequence of operations on the different laser beams involved in
probing the clock transition is coordinated using synchronously operated electro-
optic light shutters. First the ion is cooled using both hyperfine resonance frequen-
cies at λ = 194 nm, then pumped into the 2S1/2(S = 0) state by stopping the
repumping component, and finally the λ = 194 nm beam is blocked while the ion
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is interrogated with the stable λ = 282 nm beam for about 50 ms. The interroga-
tion time should theoretically extend to the full lifetime of the metastable state for
maximum resolution. The occurrence of clock transitions to the metastable state
is detected using the optical double resonance (the so-called “electron shelving”)
technique, in which the strong resonance fluorescence at λ = 194 nm enables a
nearly 100% efficient detection of whether a clock transition has occurred.

The synthesis of the clock transition wavelength at λ = 282 nm can be accom-
plished by frequency doubling the output of a highly stabilized dye or solid state
laser operating at twice the wavelength at λ = 563 nm. The laser is first presta-
bilized by being locked to a high finesse (F ≈ 800) Fabry–Pérot cavity using
the Pound-Drever-Hall technique described in Chapter 14. Feedback signals con-
trol the laser separately with respect to long term drift, and with respect to the
short term noise using an electro-optic modulator in the laser cavity. This pre-
stabilization results in a narrowing of the laser output linewidth to about 1 kHz. An
optical fiber is used to connect the output of the laser to a second ultrahigh finesse
(F ≈ 200,000) Fabry–Pérot cavity mounted on a thermally and mechanically iso-
lated table. Again the Pound-Drever-Hall method is used to provide high and low
frequency corrections, this time to the prestabilization cavity.

The stabilization of the laser with reference to a cavity transfers the burden of
achieving high stability to the cavity itself. There are three critical sources of pos-
sible instability: (1) temperature fluctuations causing changes in cavity dimensions
(2) mechanical vibrations and (3) possible refractive index changes due to residual
intracavity scattering by residual particles. The first source of instability is min-
imized by the choice of materials. The NIST group used a low expansion titania
silicate glass developed by Corning for NASA (with NASA funding, no doubt) that
goes under the trademark name ULE (ultra-low expansion). This is the material of
the critical spacer separating the two mirrors of the cavity, a solid cylinder 25 cm
in length and 15 cm in outer diameter with a 1 cm hole drilled along the axis, and
a radial hole to the axis to allow evacuation of the intracavity space. The cavity
is supported inside a vacuum chamber, the temperature of which is stabilized at
around 30◦C , at the point where the temperature coefficient of ULE is zero. The
chamber is mounted on a passively stabilized optical table mechanically isolated
by being suspended by 3 m strands of surgical tubing! The periods of the stretch
and pendulum modes of oscillation are around 0.3 Hz.

The short term (1–10s) fractional frequency instability of the stabilized λ =
282 nm laser is reported by the NIST group to be less than 5 × 10−16, compat-
ible with the predicted shot noise limited stability of the detection signal in the
present single mercury ion standard. The predicted limit to the fractional frequency
instability of this standard is about 1 × 10−15τ−1/2. In practice it is expected that
the fractional instability is determined principally by fluctuations in the cavity for
τ < 30 s, and begins to behave as τ−1/2, as determined by the ion, only for longer
times.
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18.4.2 The Alkaline-Earth Single Ion Standards

These are proposed single-ion optical frequency standards based on 137Ba+, 88Sr+,
and 40Ca+. The singly charged alkaline earth elements have a single electron out-
side a closed shell structure with a 2S1/2 ground state; the odd mass barium isotope
has nuclear spin I = 3/2, whereas the even mass Sr and Ca have nuclear spin
I = 0.

Interest in an ultra narrow quadrupole transition in 137Ba+ as a possible opti-
cal standard has been reported by Norval Fortson’s group at the University of
Washington (Seattle). The work is primarily motivated by the search for possi-
ble drift in the fundamental constants of nature. The relevant energy levels of the
137Ba+ ion are shown in Figure 18.8.

The clock transition is chosen to be the infrared λ = 2051 nm quadrupole
transition between the metastable 52D3/2(F′ = 0) and the 62S1/2(F = 2) ground
state state. The upper state radiative lifetime is about 80 s, implying a line Q >1016,
higher than any other ion candidate. The laser radiation for cooling and repumping
at around the resonance transition wavelength λ = 493 nm, as well as for the clock
transition can all be generated with solid state devices. The cooling wavelength is
generated as the second harmonic of λ = 986 nm light from a diode laser/amplifier
combination. The probe wavelength at λ = 2051 nm is generated by a diode-
pumped Tm,Ho:YLF solid state laser.

Research on the 88Sr+ ion as a potential candidate for an optical frequency
standard has been reported by the groups at NPL (Britain) and NRC (Canada). As
these are national standards laboratories, the optical standard aspect of the work
on the strontium ion is naturally considerably more advanced than in the barium
case. The choice by these laboratories of strontium over barium is presumably a

�

Figure 18.8 The relevant energy levels in 137Ba+
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compromise between extreme accuracy and ease of implementation: the strontium
wavelengths are perhaps more easily realized using solid state lasers. Moreover to
benefit from the much longer natural lifetime of its metastable state, the probe laser
for barium would have to be much more stable.

The optical clock transition in 88Sr+ is chosen to be at λ = 674 nm between the
metastable 2D5/2 and the ground state 2S1/2 , a transition that has a natural spectral
width of about 0.4 Hz. A partial energy diagram for 88Sr+ is shown in Figure 18.9.
The even isotope of strontium has nuclear spin I = 0, so that there is no hyperfine
structure in the energy levels, but of course in the inevitable presence of an external
magnetic field there is Zeeman splitting of the energy terms. The upper state of the
clock transition has a complex Zeeman structure with ten possible Zeeman com-
ponents in the 674 nm clock frequency; therefore careful magnetic shielding of the
earth’s field is required and a uniform field of a few μT is introduced to resolve the
Zeeman components. Cooling of the 88Sr+ ion is carried out using the resonance
transition 2S1/2 → 2P1/2 at λ = 422 nm generated as the frequency-doubled
output of a laser diode system. A Nd3+ doped fiber laser is used as a repumper,
driving the λ = 1092 nm transitions from the 2D3/2 state back to the 2P1/2 state. It
is important to note that if repumping radiation maintains a particular polarization
with respect to the magnetic field and beam direction it is possible to cause optical
(Kastler) pumping into non-absorbing Zeeman sublevels in the 2D3/2 state. The
remedy is to rapidly rotate the polarization vector of the repumping beam using an
electro-optic modulator. The primary source of the radiation probing the clock tran-
sition is a λ = 674 nm diode laser prestabilized and then locked to a high finesse
(F ≈ 200,000) fixed ultra-low expansion (ULE) cavity, temperature stabilized, in
vacuo, free of vibration and mechanically isolated by suspension. To bridge the
frequency interval between the clock frequency and the nearest mode of the ULE

Figure 18.9 The relevant energy levels of 88Sr+
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cavity requires another “slave” extended-cavity diode laser that is modulated and
a sideband locked to the master stabilized laser. By varying the modulation fre-
quency the probe frequency can be tuned to the ion resonance. Otherwise, it is
possible to shift the cavity-stabilized frequency by an electro-optic modulator to
match the ion resonance. Probe laser line widths in the range of tens of hertz have
been reported; with 20 ms interrogation pulse lengths, the ion resonance actually
observed was about 100 Hz wide. Strontium has the drawback of having a linear
Zeeman effect contributing to possible error in the determination of the center of
the clock transition.

Finally we mention among the alkaline earth ions 40Ca+ as a possible candi-
date, although its study in the past has been dedicated to it more in the context of
quantum computing. Thus groups at CRL (Japan) and at U. Innsbruck (Austria)
for example have reported work on this ion in which a single ion was cooled to the
quantum ground state of vibration in a harmonic trap with a 99.9% probability. A
miniature 3D Paul quadrupole trap was used operated with secular frequencies in
the megahertz range, ensuring the ability to carry out sideband laser cooling.

18.4.3 The Indium and Ytterbium Single Ion Standards

A promising ion species that is expected to furnish an ultrahigh resolution refer-
ence optical frequency more immune from perturbations than all the other ions
has been studied by Walther’s group at the Max Planck Institute für Quantenoptik,
(Garching, Germany). Of the ion species so far studied as possible optical fre-
quency standards, the indium ion 115In+, which has nuclear spin I = 9/2, is the
only ion whose ground state has J = 0, nominally designated as 5s2 1S0, with a
two-electron outer structure. The relevant energy levels are shown in Figure 18.10.

λ = 231nm λ = 236 nm

τ = .2s

F�=
11/2

9/2

7/2 F =́ 9/2

F = 9/2

3P1 3P0

1S0

Figure 18.10 The relevant energy levels of 115In+
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There is a finite transition probability at λ = 236.5 nm from the 5s5p3P0 state to
the ground state, a transition proposed as defining the clock frequency. Were it not
for the presence of a nuclear moment, this transition would be strictly forbidden;
being between J = 0 states; it is through the intermediary of the nuclear hyperfine
interaction that it happens at all. Because of that interaction, the 3P0 state in fact
does not have precisely the angular momentum number J = 0, but is a mixture
of J = 1 states. The transition probability is of course small; but that is precisely
what is called for in this case. The fact that the clock transition is between states
that would have J = 0 were it not for a small perturbation, makes this ion uniquely
immune to systematic frequency shifts due to electromagnetic fields, in particular
static electric quadrupole shifts. The natural linewidth of the clock transition is
about 8 Hz corresponding to a resolution of 6 × 10−16.

The transition used for sideband cooling the ion is the resonance line between
the ground state and the excited 5s5p3P1 state at λ = 230.6 nm. This is a so-called
intercombination line since it is between a singlet (S = 0) and a triplet (S = 1)
state, involving a change in the electron spin state; the fact of its relatively large
transition rate with a natural linewidth of 360 kHz is indicative of the approximate
nature of the quantum state assignment.

The experimental procedure follows the now familiar technique of generating
the probe beam by stabilizing a laser, in this case a diode pumped Nd:YAG non-
planar ring laser to a Fabry–Pérot cavity using the Pound-Drever-Hall phase mod-
ulation technique, then quadrupling the frequency in non-linear crystals placed in
field-enhancing cavities. Resonance detection is through the familiar double opti-
cal resonance (“electron shelving”) method. A spectral resolution of 1.3 × 10−13

has been experimentally achieved by the Garching group, a figure limited by the
stability of the probe laser.

Finally we consider the ytterbium ion 171Yb+, a candidate that has been pur-
sued by NPL (Britain) and PTB (Germany). The ion is attractive mainly because
it has convenient wavelengths and offers a choice of more than one possible clock
transition accessible with solid state lasers: in addition to a quadrupole transition to
a 2D5/2 state, similar to the 199Hg+ ion, there is another quadrupole transition to a
2D3/2 metastable state, and a much weaker octupole transition to a 2F7/2 state. The
ytterbium ion, like the mercury ion has nuclear spin I = 1/2; its relevant quantum
levels are shown again for convenience in Figure 18.11. The quadrupole transition
between the 6s2S1/2 (F = 0) ground state and the 5d2D3/2 (F = 2) excited state
at λ = 435.5 nm is in the blue region of the spectrum and has a natural linewidth
of 3.1 Hz.

The other quadrupole clock transition to the metastable 2D5/2 has a wave-
length λ = 411 nm. The clock transitions are chosen between F = 0 hyper-
fine components to avoid the linear Zeeman effect. Sideband cooling is achieved
using the strong resonance transition between the alkali-like states 2S1/2 → 2P1/2
at λ = 369.5 nm. During the cooling phase repumping is required from the
metastable states back to the 2P1/2 state. The inordinately long life of the 2F7/2 state
would make clearing pulses essential in the detection cycle. The laser requirements
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467 nm

Figure 18.11 The relevant energy levels of 171Yb+

are further complicated by the fact that each of these states has a complex hyper-
fine structure that must be addressed. Cooling of the ion can be achieved using
the frequency-doubled output of a Ti:sapphire laser generating radiation at λ =
738 nm. If the octupole transition is to be used as the clock transition then a stable
λ = 467 nm probe is required, which can be obtained by doubling the frequency
of a stabilized λ = 934 nm Ti:sapphire laser. Experimentally the initial tuning
to such a weak transition is no doubt a difficult challenge, requiring sophisticated
spectroscopy.

18.4.4 Summary

We have reviewed the different ion species that are the subject of vigorous study in
several laboratories around the world to evaluate their merit in providing a quantum
transition of such constancy and sharply defined frequency as to serve as an optical
frequency standard. A measure of the sharpness of the frequency is the line Q,
which for optical frequency transitions in isolated ions in vacuo is many orders of
magnitude larger than microwave transitions. Currently the highest observed line
Q (1.5 × 1014) has been reported for the 282 nm quadrupole transition in a single
laser-cooled 199Hg+ ion. The highest theoretical line Q is predicted for the very
weak electric octupole transition in 171Yb+ at 467 nm.

With the development of optical femtosecond pulse combs providing coherent
frequencies over an octave of frequency that bridges the wide frequency interval
between the optical and microwave regions of the spectrum, it becomes practical
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Figure 18.12 Available stabilized lasers plotted on a frequency scale extending from the
microwave to the visible

to redefine the unit of time, the second, in terms of a very much more precise ion
optical standard.

The field of horology is indeed going through a period of revolutionary change!

18.5 Optical Frequency Chains

Even given a series of highly stable and reproducible reference frequencies extend-
ing to the optical range, there remains the equally challenging problem of interrelat-
ing their frequencies and referring them back to the primary microwave standard.
The classical procedure for making frequency comparisons is to mix the optical
signals in a nonlinear device and measure the beat frequency between the higher
frequency ν2 and a harmonic of the lower frequency ν1 according to the following:

ν2 − nν1 = νbeat. 18.1

This is practical, provided that ν2 and ν1 are sufficiently stable and are such that a
coherent low-frequency beat is observable, preferably within the microwave range.
Optical frequencies are so high that even a small fractional deviation will lead to
very large excursions in the beat frequency. Completing the chain of comparisons
from the microwave standard to the optical range is made difficult by the wide gaps
between the limited number of reference lasers, and their narrow tuning range. This
is aggravated by the unavailability until recently of devices that can generate har-
monics of sufficiently high order to bridge those gaps; in the microwave region it is
possible to generate as high as the 1000th harmonic, whereas at infrared frequen-
cies perhaps the 12th harmonic is possible. Even where a multiplicity of neigh-
boring stabilized optical frequencies exists, the separations in frequency are still
orders of magnitude larger than their tuning ranges.

This is demonstrated in Figure 18.12, where we have plotted on a logarithmic
frequency scale (each unit is a tenfold increase) some of the established laser fre-
quencies spanning the spectrum from the microwave to the visible.

18.5.1 The Point Contact MIM Diode

We recall that the generation of harmonics as well as the mixing of different fre-
quencies to produce a sum or difference frequency is achieved using the nonlinear
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response of certain devices. At microwave and lower frequencies, where the wave-
length can be much larger than ordinary electronic components, the nonlinear
device is a diode that can be treated as a lumped circuit element of negligible
size. This is no longer possible when we reach the infrared region of the spec-
trum and beyond. Either we must find a device whose interaction with the light
wave extends only over a microscopic region or failing that, take into account the
oscillatory variation of the light wave across the device, that is, treat it as having a
distributed interaction.

The most important nonlinear device responding to the “lumped” condition
is the point contact metal–insulator–metal (MIM) diode. This is simply a finely
etched tip of a tungsten wire in contact with the oxidized end surface of a nickel
post, properly incorporated into a microwave circuit. These diodes respond to
extremely high frequencies because the contact region has a diameter on the order
of only 1/600 the wavelength of the CO2 laser. Moreover, the resistance and capac-
itance across the junction are relatively small, since electrons can tunnel through
the nickel oxide film, which is only on the order of a few molecules thick. These
MIM point contact diodes can mix and generate sum and difference frequencies
of input light waves up to 200 THz (λ = 1.5 μm) in the near infrared. Given two
infrared frequencies whose beat (difference) falls in the microwave region of the
spectrum, focusing them onto such a device mounted in a microwave circuit will
produce a microwave output for further frequency measurement.

18.5.2 Optical Frequency Multiplication Chains

The pursuit of linking back the several isolated laser-stabilized optical frequencies
with the microwave frequency of the primary Cs standard is as fundamental as
that of gear trains in an analogous mechanical system. Until approximately the last
decade, this took the form of frequency chains requiring a room full of dedicated,
multiple laser systems, frequency mixers, harmonic generators, filters and phase
lock loops (PLL). The result has been a number of successful determinations of
optical frequencies based on different frequency chains. We can distinguish two
different approaches to constructing the frequency bridges: one can be described
briefly as the frequency multiplication method and the other, the more useful fre-
quency division method.

Although the multiplication chains differ in the detailed way in which phase
coherence and stability are transferred from one member of the chain to the next,
they are for the most part based on the harmonic generation principle already men-
tioned. Each link in the chain involves a phase-lock loop of some sort, that is,
a servo loop in which the phase difference between the beat signal derived from
a mixer and a synthesized (relatively) low frequency constitutes the error signal,
properly conditioned, so that apart from the synthesized frequency offset, the phase
of one laser is locked to a harmonic of the other. While this approach has been
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successfully applied to linking a specific optical frequency, such as that of a sta-
bilized He–Ne laser to the microwave standard using a particular frequency chain,
the narrow tuning range of lasers makes it difficult to apply to the measurement of
arbitrary optical frequencies.

For a clock based on an optical frequency standard, it would be at present
necessary to determine the frequency of the chosen optical standard in terms of
the primary microwave Cs standard. As an illustrative example of one such fre-
quency chain developed in the past at the Physikalisch-Technische Bundesanstalt,
is illustrated in Figure 18.13 Currently there are much more powerful techniques
for frequency comparisons, which we take up later in this chapter.

18.5.3 A Frequency Division Chain

There are more recent approaches, based on a more powerful frequency division
principle. In the first, it is not actually the frequency itself that is divided, but rather
at each stage in the chain there is a division by two of the frequency difference
between two laser signals. If at some point in the chain the two frequencies whose
difference is to be divided by two are ν1 and ν2, then the idea is to generate using
nonlinear elements the frequency 1/2(ν1 + ν2). This and the frequency ν2 differ by
1/2(ν1 − ν2); that is, we now have two frequencies that differ by half the original
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Figure 18.13 A frequency chain of the Physikalisch–Technische Bundesanstalt (Kramer,
1992)
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difference. If the process is repeated, the frequencies will differ less and less until
their beat frequency falls in the microwave range and can be compared directly with
the primary standard. The original difference in frequency at the top of the chain
can then be calculated; that difference may in fact be the frequency of the optical
standard itself, simply by taking the other frequency as its second harmonic.

Another noteworthy approach to linking optical to microwave frequencies
exploits the frequency-dividing property of optical parametric oscillators (OPO).
The concept of a parametric excitation of an oscillator has already been encoun-
tered: We recall the mechanical example of the “pumping” of a swing. It occurs
whenever a parameter, such as the “spring constant,” controlling the resonant fre-
quency of an oscillatory system is modulated at certain frequencies. In the opti-
cal case, a modulation of an optical parameter of a medium, such as its refractive
index, can occur if the medium is nonlinear, and an intense optical wave, called the
pump, interacts with it. This can lead to the excitation of optical fields at two other
frequencies called the signal and idler waves, which must satisfy the following
conditions on their frequencies and wave vectors:

ν3 = ν1 + ν2; k3 = k1 + k2, 18.2

where the indices 1, 2, 3 designate the signal, idler, and pump waves, respectively.
These have the general form of the conditions we have already encountered as
the phase conditions in the case of second-harmonic generation, which we would
get in the so-called degenerate case when the signal and idler waves are one and
the same. There is an important difference, however. Here the applied pump beam
has twice the frequency of the excited signal/idler beam; that is, a wave has been
produced at half the frequency of the pump beam, and not one at the second har-
monic. This is the basis, then, for optical frequency division, provided that high
quality nonlinear crystals and stable high-power laser sources are available to act
as pumps.

Optical parametric division was demonstrated in 1992 by N.C. Wong and
D. Lee at MIT (Wong, 1992) using a biaxial KTP crystal in a doubly resonant cav-
ity configuration in which both the signal and idler waves are resonant at slightly
different frequencies. The signal at the beat frequency between the signal and idler
waves (ν1 − ν2) is phase-locked to a microwave reference frequency (νμ), so that
from the known pump frequency ν3 are produced two precisely known frequencies
given by

ν1,2 = ν3

2
± νμ

2
. 18.3

Since νμ is much smaller than the pump frequency, this constitutes a 2:1 frequency
divider stage. It is important to note that the signal and idler wave phases are con-
strained to obey the condition φ3 = φ1+φ2, and that since the phase of the beat sig-
nal is phase-locked to the microwave reference source, the output waves are phase
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Figure 18.14 Optical frequency division using parametric oscillators (Wong, 1992)

coherent with the pump wave. In the actual experiment, illustrated in Figure 18.14,
Lee and Wong used the output of a Kr+ ion laser at λ = 531 nm as the pump to
generate infrared signal and idler beams at approximately the degenerate value of
λ = 1.06 μm. The corresponding threshold power for parametric oscillation was
around 40 mW. The KTP crystal, 8 mm in length, was placed in an optical cavity
made up as follows: At one end the surface of the crystal itself had a radius of cur-
vature of 40 mm and was coated to provide maximum reflectance at the infrared
wavelengths; at the other end was the output mirror, coated to have a 0.5% trans-
mittance. On the other hand, the optical coatings of the reflecting surfaces were
chosen so that the green pumping beam enters the cavity through the crystal and
is reflected back by the output mirror at the other end through the cavity. The fre-
quency separation of the two output infrared beams could be varied by about 1 THz
by changing the angle of incidence of the pump beam with respect to the crystal.
A piezoelectric crystal drive attached to the output mirror controlled the cavity
length, and different mode pairs of signal and idler could be brought into reso-
nance.

The application of this technique in a serial fashion, in which an optical fre-
quency is sequentially divided by two until a microwave frequency is reached,
suffers from loss of power on each conversion and the need for high efficiency
through the far infrared region of the spectrum. A clever alternative parallel
scheme of conversion stages has been proposed by Lee and Wong, in which the
same optical pump source is used to drive a parallel set of parametric oscillators
whose signal–idler frequency separation increases in a regular progression. In this
way a very wideband frequency comb spanning the spectrum between chosen
(rational) fractions of the pump frequency is generated. Each frequency in this
comb is further split into finer “secondary” combs by phase modulation driven
by a reference microwave source. The scheme promises to provide the means of
synthesizing the full range of coherent optical frequencies derived from an optical
reference standard.
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18.6 Optical Frequency Comb Generators

18.6.1 Intracavity Modulation

An interesting optical frequency synthesis device involves the generation of a
multi-THz wide frequency comb using a CW single frequency laser source locked
to an optical cavity in which a microwave electro-optic modulator (EOM), driven
at a multiple of the cavity mode separation, phase locks the longitudinal modes, a
condition reminiscent of a mode-locked laser. The cavity resonance enhances the
efficiency of the modulator and thereby ensures the build up not only of the mode
resonant with the laser but also the sideband longitudinal modes. At the modulation
index �ν/ν0 typical in practice the EOM generates principally the first order res-
onant sidebands, which in turn produce their own sidebands, and so on extending
the frequency comb until a limit is reached depending on the modulation index and
the finesse of the cavity. Figure 18.15 shows schematically the layout of an optical
frequency comb generator.

A number of interesting frequency comparisons have been made using this
device to bridge frequency gaps as large as 1.78 THz; for example between the Cs
resonance line at 852 nm and the fourth harmonic of methane stabilized He–Ne
laser. This is probably near the limit of the bandwidth practicable with this design,
set by practical limits of modulation index, finesse and optical dispersion in which
differences in the phase velocity of different frequency modes become significant.
The drive to reach wider bandwidths ultimately led in the last few years to a number
of refinements, the most notable being the use of parametric gain in a non-linear
crystal, which is incorporated into a parametric oscillator cavity together with an
electro-optic modulator to generate a comb of sidebands.

Such attempts however have been overtaken by recent revolutionary advances
in the field of mode-locked lasers, which we outline in somewhat more detail
below.

Figure 18.15 Intra-cavity EOM comb generator
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18.6.2 Kerr Lens Mode (KLM) Locking Technique

We saw at the end of Chapter 14 how a laser may oscillate simultaneously in many
longitudinal modes that can extend over a very wide frequency range in certain
amplifying media, and how they may be locked to a common phase. We may
describe such a mode-locked output equivalently in the time domain as a train
of short pulses or, through the Fourier transform, as having a frequency spectrum
consisting of equally spaced lines separated by the free spectral range of the loaded
optical cavity, that is, on the order of c/2nr L . Such a spectrum of equally spaced
lines is called a frequency comb. Mode locked lasers as generators of wide fre-
quency combs have several advantages: among these are: (1) they have a spectral
span that can equal a full octave (a factor of two in frequency), and (2) they do not
require the active tuning of a modulator frequency to cavity resonance; ultra-short
pulses result from all modes being phase locked simultaneously.

The earliest application of the frequency comb generated by a mode-locked dye
laser was to two-photon transitions in sodium reported back in 1978 by Hänsch and
his coworkers. However it was not until around 1991 that a transforming develop-
ment in the field occurred with the development by Sibbett, et al. at St Andrews
University (Sibbett, 1991) of the Kerr-lens-mode-locked (KLM) Ti:sapphire laser,
which, when combined with the use of the so-called photonic crystal fibers proved
ultimately in the hands of Hänsch and his group at the Max Planck Institut für
Quantenoptik capable of generating a frequency comb spanning a full octave. Fol-
lowing this breakthrough came a flood of activity exploiting this type of device.

It owes its remarkable success mainly to two factors: (1) the Kerr lensing effect
which in effect can be made to favor, in terms of laser gain, high intensity fields in
the cavity without the limitation of a finite recovery-time that saturable absorbers
have, and (2) effective means of correcting for optical dispersion, which limits
the extent of the comb because the different constituent (Fourier) frequencies (or
modes) propagate with slightly different velocities, with ultimate loss of coherence.

Before discussing the KLM Ti:sapphire laser further it may be useful to recall
the optical Kerr effect. First we should distinguish between the optical frequency
Kerr effect and the old fashioned static field effect as exploited in the Kerr cell
shutter. In the latter, a constant or low frequency electric field is applied to an opti-
cal medium, inducing birefringence similar to a uniaxial crystal with the optic axis
parallel to the field direction. The amount of induced birefringence as measured
by the difference between the refractive indices (no − ne) is proportional to E2.
This quadratic dependence on the field is somewhat misleading because it is really
a third order effect when described in terms of the induced electrical polarization.
Because the induced polarization is not a quadratic function of the electric field,
the effect can be observed in varying degrees in any crystal, even those that have
a center of symmetry. Nitrobenzene has an unusually large Kerr constant, while
different types of glass have values that vary widely, the largest being on the order
of 3 × 10−14 cmV−2. On the other hand, the so-called “linear” electro-optic effect
(the Pockels effect) is not present in crystals with a center of symmetry since the
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change in polarization (not the refractive index) is in fact a quadratic function of
the electric field. As for the optical Kerr effect, as it relates to the propagation of
an optical frequency wave, we are confronted with the complex field of non-linear
optics in which it is most useful to work in the frequency domain, involving the
(Fourier) spectral densities of the field quantities.

The essential fact that makes Kerr lens mode locking possible is that the optical
field amplitude in a laser cavity is maximum along the axis, falling off rapidly
away from it, generally following a Gaussian function. Such a field distribution in a
medium such as Ti:sapphire, that exhibits the Kerr effect, the optical wavefront will
travel slower along the axis than the periphery, causing the wavefront to converge
toward the axis, exactly as if it were passing through a convex lens. Since the
change in refractive index increases with intensity, the tighter the convergence the
more it is reinforced. This can lead to mode locking under two circumstances:
(1) the effective presence of a “soft” aperture, or (2) the insertion of an actual
beam limiting “hard” aperture. The first exists if the Ti:sapphire crystal is optically
pumped by a laser beam narrowly concentrated along the crystal axis, then the
convergence produced by the Kerr effect on the laser field increases the overlap
with the pumping beam and hence the optical gain. On the other hand a physical
aperture appropriately placed in the cavity to absorb all radiation beyond a fixed
radius would again favor the build up of high intensity fields through phase locking
of what would otherwise be randomly phased longitudinal modes. From the initial
condition in which the optical field appears to fluctuate randomly in time with
highs and lows where some modes happen to reinforce or cancel each other, the
occurrence of a momentary high will, through the Kerr lens effect, make the modes
favor being in phase to produce an even stronger Kerr focus. This ultimately leads
to the phase locking of all the modes and an output consisting of a succession of
sharp laser pulses at equal time intervals.

The basic elements of a mode-locked Ti:sapphire laser are shown schematically
in Figure 18.16. The design is the standard four-mirror Z-folded resonator, with
focusing spherical mirrors and two arms bounded by plane mirrors, one of which
is partially transmitting, labeled OC, the output coupler. If the effective distance D
between the two focusing mirrors M1 and M2, of focal lengths f1 and f2, is written
as D = f1 + f2 + δ, the quantity δ is an important stability parameter.

As D is varied, the laser CW oscillation power level goes through two sep-
arate maxima, corresponding to stability zones, a consequence of the asymmetry
between the optical path lengths of the two arms of the cavity M1-OC and M2-CM;
Kerr lens mode locking usually starts in a particular range of δ.

To achieve output pulse widths approaching the femtosecond range it is neces-
sary to compensate for optical dispersion. We have already mentioned the use of
chirped multilayer dielectric mirrors for that purpose; another popular technique
is to exploit the dispersive property of a prism. The design calls for two prisms
arranged in such a manner that the optical path length through them is greater for
the red end of the spectrum than the blue, that is, the red wavefront is delayed with
respect to the blue, corresponding to what is defined as negative dispersion, since
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Figure 18.16 Schematic diagram of the layout of a mode-locked Ti:Sapphire laser. The
chirped mirror (CM) and the Brewster prisms (BP) provide phase dispersion correction and
OC is the output coupler

the more common reverse dispersion in media such as glass is defined as positive.
Proper compensation for the group delay dispersion in the system requires that the
distance between the prisms be correctly adjusted. The prisms are set at minimum
deviation with the beam incident at the Brewster angle to minimize loss.

18.6.3 Absolute Determination of Optical Frequencies.

A radical simplification in the measurement of optical frequencies in terms of
the microwave Cs standard was demonstrated in a collaboration between NIST,
Bell Labs and Max Planck Inst. f. Quantenoptik in the year 2000 (Diddams et al.,
2000). It was accomplished by a combination of the femtosecond Ti:sapphire laser
techniques and new developments in optical fiber technology involving the use
of microstructures. The frequency of an iodine-stabilized Nd:YAG laser at about
282 THz (λ = 1064 nm) was measured directly in terms of the microwave separa-
tion of the comb frequencies.

In a microstructure fiber what would normally be a continuous dielectric
cladding surrounding the core is in fact one in which there is a regular array of
holes running the length of the fiber; for that reason it is also sometimes referred to
as photonic crystal fiber (PCF) (the use of the word “crystal” here is only meant to
suggest the periodic variation in the refractive index that the hole structure creates).
In Figure 18.17 is shown a cross section of such an air-silica microstructure fiber.

The two properties that these optical fibers have that are key to making the
direct comparison of optical and microwave frequencies possible are: (1) the enor-
mous peak intensity of the pulsed laser field along the fiber core generating high
order nonlinear effects such as harmonic generation, frequency mixing, Raman
scattering, etc., and (2) the possibility of designing the air-silica microstructure
so that a single mode is propagated, and (3) being able to shift the wavelength at
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Figure 18.17 Cross section of an air-silica microstructure optical fiber

which the phase dispersion is zero to a desired optimum value. It was by exploit-
ing these design capabilities that the frequency comb generated by a Ti:sapphire
mode-locked laser was ultimately broadened to cover an entire optical octave. This
is a critical step. Such a comb provides a frequency yard stick whose “units” can
be referred to the primary microwave standard, a yard stick that extends from the
given unknown frequency to twice that same frequency produced in a nonlinear
crystal.

In the 2000 paper cited above, the air-silica microstructure fiber had a diameter
of only about 1.7 μm, and the group velocity dispersion was designed to occur at
λ = 800 nm; this ensured that the time-spreading of pulses was minimized and the
peak intensities, reaching hundreds of GW/cm2, were maintained over a substantial
distance along the fiber. This is important since the optical nonlinearity of silica
is not particularly large, and spectral broadening through self-phase modulation
due to an intensity dependent refractive index, requires a substantial interaction
length. Figure 18.18 shows the extent to which the band width of the output from
the microstructured fiber is increased.

Their KLM Ti:sapphire laser had a frequency centered at around 800 nm with
output pulses about 10 fs wide. The (loaded) cavity length was such that the out-
put pulse train had a Fourier frequency comb of fm = 100 MHz spacing. This
was stabilized by controlling the laser cavity length with a piezoelectric transducer
(PZT) to phase lock the 100th harmonic of fm to a stabilized 10 GHz source, whose
internal clock was referred to a local rubidium standard. As this work was carried
out co-operatively between groups on opposite sides of the Atlantic Ocean, the fre-
quency offset of the local rubidium standard was referred back to the NIST cesium
standard clocks by means of a common-view GPS time comparison, incidentally
testing the uncertainties in international time dissemination using GPS.



18. Optical Standards and Measurement 415

Figure 18.18 The dotted curve represents the power spectrum of the direct output of the
Ti:sapphire laser; the solid curve the output from the fiber (Diddams et al., 2000)

Figure 18.19 The spectrum of the I2-stabilized Nd:YAG frequency combined with its second
harmonic and the frequency comb generated by the Ti:sapphire laser/crystal fiber

To determine the absolute frequency of the iodine-stabilized Nd:YAG laser ulti-
mately in terms of the NIST Cs standards, the procedure consists of the following:
(1) the fundamental frequency output of the Nd:YAG laser at λ1 = 1064 nm is
frequency doubled to yield λ2 = 532 nm., (2) these two wavelengths are com-
bined and mode-matched with the output of the femtosecond pulse output of the
fiber, (3) the three beams are wavelength-dispersed by a grating, and (4) the rf beat
frequency �1 (�2) between each wavelength λ1(λ2) and its nearest “tooth” of the
frequency comb are detected with fast photodiodes. The measurement of only a
beat frequency between two frequencies does not, of course, by itself establish
which frequency is greater (or less) than the other. The situation is made clearer
by reference to Figure 18.19. To resolve the ambiguity, assume the Nd:YAG laser
cavity length is constant, then any perturbation that causes the comb position to
shift on the frequency scale will not affect the sum of the beat frequencies �1 and
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�2 if the Nd:YAG frequency and its second harmonic are on opposite sides of
their adjacent “teeth” in the frequency comb. Similarly the difference would not
be affected if they are on the same side. In fact, by comparing the fluctuations
observed in the sum and difference of the beat frequencies it was concluded that
the sum is appropriate, and having prior knowledge of the Nd:YAG wavelength
to within 20 kHz, much less than the comb spacing, the remaining ambiguity was
resolved by trying different values of n.

The final measured value for the I2-stabilized Nd:YAG frequency under study
was given as 17.2 kHz higher than the value given by the Comité International des
Poids et Mesures (CIPM), with a statistical uncertainty of about 2 × 10−13.

Since the technical breakthrough by Hänsch and his group that we have just
described, the method has been applied to the absolute determination of the fre-
quency of several other candidates for optical standard. Most notable are the work
on 199Hg+ by the NIST group, on 88Sr+ at NPL and 171Yb+ at PTB. The frequency
of the proposed transition in the mercury ion has been measured by the NIST group
relative to the Cs fountain standard with the result given as (Udem et al., 2001):

f (Hg+) = 1,064, 721, 609, 899, 143(10) Hz

The fractional statistical uncertainty in this value is about 9×10−15! More recently
(Tanaka 2003) a systematic evaluation of an optical 199Hg+ standard was carried
out using a second similar standard over a period of 21 months; the variation in
frequency was found to be less than one part in 10−14.

The measurement on the strontium ion by NPL is reported to be approximately
three times more accurate. Clearly the accelerated pace of development of optical
standards has brought closer the day when precision time will be measured with an
optical clock and the official unit of time, the second, will be defined in terms of
oscillations at optical frequencies.



Chapter 19
Applications: Time-Based Navigation

19.1 Introduction

Among the areas of application made practicable by the advent of atomic clocks
we list the following:

Space Science: Long-distance tracking and data acquisition from “deep” space
probes such as Voyager.

Radio Astronomy: Very long baseline interferometry (VLBI), made possible
through a common phase reference.

Planetary Motion: The dynamics of the Earth as a planet and the variability of
the length of the day.

Radio Navigation: Perhaps the most useful application. Land-based networks
Loran-C and Omega, and the satellite-based systems the TRANSIT system, culmi-
nating in the NAVSTAR Global Positioning System (GPS) and GLONASS.

We will limit our discussion to the fundamental way in which precision timing
is critical to the success of these applications—so fundamental, in fact, that they
are unthinkable without atomic standards. We will devote only a brief discussion
to the first three and reserve our attention to a more detailed description of GPS.

19.2 “Deep” Space Probes

In the tracking of interplanetary probes such as Mariner and Voyager, the great
distances that must be bridged, reaching out over hundreds of millions of miles
into space, and the limited electrical power available aboard such “deep” space
probes clearly put a great burden on the system used to track and communicate
with them. Overcoming the weakness of the return signals received from the probe
at the ground stations is further compounded by the varying Doppler shift in fre-
quency as the probe pursues its trajectory. Large, high-gain (directional) antennas
must be used with tens of kilowatts of power transmitted in the uplink and every
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effort made to enhance the signal-to-noise ratio of the return signal. This has led to
the development of correlation techniques for the handling of digital codes imposed
as phase modulation on a stable carrier wave and the use of phase-locked receivers.
In such a receiver a servo loop forces the phase of a locally generated stable signal
to track the phase of the incoming weak signal. The communication link with the
spacecraft is made by way of a transponder on board the spacecraft; that is, after
the microwave signal “beamed up” from the ground tracking station is received
by the spacecraft and demodulated to retrieve the commands and data impressed
on it, it is converted (coherently) to a different frequency, modulated with the
desired data, and beamed back to the ground station. Since the propagation time for
the microwave (S-band, ν ≈ 3 GHz) signal to complete the round-trip journey may
be tens of minutes, it means that noise and phase instability of the ground station
oscillator over this relatively long time will limit the ability to communicate with
the spacecraft. Phase noise on the order of less than tenths of a radian are required.

Of the atomic standards, the incomparable phase stability of the hydrogen
maser in the time intervals involved in this application was early recognized; in
fact, the earliest application of the maser was as a reference in the Deep Space
Network operated by the Jet Propulsion Laboratory for NASA.

19.3 Very Long Baseline Interferometry

The second natural application is in radio astronomy, namely what is called very
long baseline interferometry (VLBI). As already mentioned in connection with
the Ramsey separated fields in magnetic resonance detection, the use of two sep-
arated antennas effectively increases the aperture of a radio telescope (along one
dimension) to equal the baseline they define. We recall that the ability to resolve
the detailed features of distant radio-emitting objects, that is, the resolving power,
is determined by λ/D, where D is the diameter of the effective antenna and
λ the wavelength. Since ground-based radio astronomy deals with radiation having
wavelengths in the range from about 2 cm to 30 m, even for the short wavelength
limit a resolving power comparable to the human eye for visible radiation implies
an antenna diameter in excess of the world’s largest steerable dish, the 100 m dia-
meter one of the Effelsberg radio telescope in Germany. The largest fixed antenna,
with a diameter of 305 m, is the one near Arecibo in Puerto Rico; it is a huge
bowl of wire netting set in a natural valley with the focal point receiving antenna
mounted on a girder 130 m above the dish. Although capable of detecting the
faintest radio sources, its resolving power is not better than the human eye at visible
wavelengths.

To understand how to get around this practical limit on antenna size, we must
look at the way a radio “image” is constructed in a radio telescope—or an optical
telescope, for that matter. In an ideal model, the radiation from each point in the
distant object arrives at the antenna as a plane wave traveling in a slightly different
direction and reaches different points on the antenna at different times and therefore
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with a different phase. From each of these points, then, the wave is reflected cohe-
rently to converge toward the focus, where it combines with the wave from other
points on the antenna to produce a resultant with a certain amplitude and phase.

In an actual radio telescope using one dish antenna, only the intensity at the
focus is detected, and a plot of the intensity distribution of the distant radio source
is made by scanning the direction of the antenna. If instead of allowing the radio
wave to converge to the focus, we imagine the amplitude and phase at the surface
of the antenna to be measured at different points, then the resultant that would
be obtained at the focus can be calculated theoretically. That is, an “image” can
be theoretically synthesized using amplitude and phase information obtained over
a finite area; it happens that it is not even necessary to have a very high density of
points to gain in resolution. That is, a finite array of widely spaced phase-tracking
receivers with smaller antennas can be used. This is not feasible at optical frequen-
cies, but phase-lock techniques at radio and microwave frequencies allow phase
information even for the weakest signals to be recoverable. Thanks to the exis-
tence of atomic standards to supply a constant, common phase reference for distant
receivers, it is possible to have an effective antenna “the size of the Earth.” Given
such a phase reference, the relative phase of the radio waves reaching antennas that
may be thousands of kilometers apart can be detected. Depending on the frequency
range of the radio waves under observation, this implies synchronization of refer-
ence oscillators at the different antennas to within the order of nanoseconds. With
present-day atomic frequency standards, it is possible to meet this requirement
for antennas literally continents apart, with a proportionate increase in resolving
power. The transfer of phase information, which is equivalent to time transfer,
between such distant locations has been an important challenge for a long time
because it is so critical to the establishment of a radio navigational system, about
which more will be said later in this chapter.

19.4 The Motion of the Earth

The next application we shall briefly mention is in the detailed study of the Earth’s
motion. As we noted in an earlier chapter on time scales based on astronomi-
cal observations, the detailed motion of the Earth is complex. Superposed on the
basic motions of spin about its axis and revolution around the sun we have the
precession of the spin axis relative to the figure axis (movement of the poles),
the precession of the axis of spin in space (precession of the equinoxes), and the
slowing down of the spin rate, among other things. The precession of the spin
axis relative to the axis of symmetry of the Earth is possible because of the slight
oblateness of the Earth’s shape, and it leads to a very small circular movement of
the poles a few meters in radius with a period of 430 days (the Chandler period).
The precession of the spin axis in space, we recall, is due to external torques
exerted on the nonspherical Earth by the sun and moon, and it leads to the much
slower precession of the equinoxes, requiring 26,000 years to complete one cycle.
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This manifests itself as the slipping of the seasons with respect to the months of
the year. Since aside from the Chandler period, these phenomena occur on a rel-
atively long time scale, their precise measurement requires clocks that establish a
precisely uniform time scale extending over these long intervals. By uniform we
mean a scale in which unit intervals are identical no matter at what point along the
scale they happen to be. Faith in the atomic time scale being more uniform than
the astronomical one stems from the belief that to the present accuracy there are no
subtle long-term systematic effects on a quantum system to cause a departure from
uniformity. On the other hand, the dynamical behavior of the Earth is expected to
show those kinds of complex behavior on the basis of well-established theory. The
keeping of precise atomic time over long periods enables data to be obtained that
are useful in checking computational models based on that theory.

19.5 Radio Navigation

We take up now the main subject of this chapter: radio navigation and the Global
Positioning System. Almost from the beginning of radio it was recognized that
communication was not its only application. First came radio direction finding
and radio beacons, then came the rapid development of radar during the second
world war, followed by Loran (from the first letters of long range navigation) and
Omega, which are radio-navigational networks of fixed radio stations of known
location. Finally, after Sputnik came space-borne stations using satellites, which
provide global coverage: the U.S.A TRANSIT and NAVSTAR/GPS, the Russian
GLONASS, and most recently the European GALILEO component of a global
navigation satellite system (GNSS).

19.5.1 Radar

The detection of radio echoes from distant targets, which is the basis of what
came to be called radar (the first letters of radio detection and ranging), was first
achieved around 1937, two years before the beginning of the second world war.
However, its development, a tightly held secret at the time, saw an enormous impe-
tus during the war, since it proved to be of critical importance in providing early
warning of the approach of enemy aircraft. Since then, of course, there have been
developed many types of radars with varied characteristics to fit the many military
and civilian applications. Of particular note is the Doppler radar, in which not only
is the range determined, but also the relative velocity of the target.

In a typical radar system, a short burst of electromagnetic radiation is transmit-
ted using a dish antenna, and the radiation back-scattered by illuminated objects is
focused by the same antenna, detected, and suitably displayed. The range is deter-
mined from the time delay between the instants of transmission of the pulse and
reception of its echo. Since the velocity of the radiation in free space is 3×108 m/s,
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to each microsecond increment in the delay corresponds an increment of 150
meters in the range of the target. The accuracy of the range determination then
clearly depends on the accuracy with which the relative time/phase delay between
the transmitted and received signals can be measured. To focus the return wave
and thereby achieve adequate angular resolution in locating the target requires that
the diffraction of the reflected wave at the antenna be kept small. This dictates the
use of relatively short wavelength radiation in order that a dish antenna of rea-
sonable size can be used. For that reason microwave radiation is generally used:
an early common choice was 3 cm microwaves at a frequency around 10 GHz
(X-band). Since the same antenna is commonly used for both transmission and
reception, a fast-acting electronic switch must protect the receiver during transmis-
sion. As with radio receivers, the radar receiver has a local oscillator to hetero-
dyne with the incoming signal to produce an intermediate frequency signal, which
is then amplified and possibly taken through further lower-frequency amplifying
stages before the signal is finally displayed on the screen of an oscilloscope. In the
PPI (plan position indicator) display, the dot on the oscilloscope screen moves out
from the center on a radial line, and the returning echo causes the intensity of the
dot to brighten. The radial line rotates in synchronism with the antenna and there-
fore gives directly the relative bearing of the target.

Radars in which the phase of the transmitted wave is available to be used as ref-
erence, that is, coherent radars, are widely used to enable Doppler information to be
extracted. An important application of Doppler radar is as a moving target indicator
(MTI), which discriminates between a moving target that reflects a Doppler-shifted
frequency, and the ground, sea, or cloud clutter that appear at the same range. The
phase stability of the oscillator in such radars will clearly determine the velocity
resolution; however, it is only very short term stability that counts, since even for
a range of 1000 km the propagation delay is less than 10 milliseconds. This means
that without a high-power maser or some exotic superconducting cavity oscillator
with extraordinarily low phase noise, a high-quality quartz oscillator is an adequate
choice for this application.

19.5.2 Loran-C

Unlike the operating principle of radar, in which the user must actively trans-
mit radiation in order to receive echoes, Loran involves only the reception of
coded time signals broadcast from a network of fixed stations of known loca-
tion. A radio-frequency carrier in the 1,750 kHz–1,950 kHz range was used in the
original Loran-A chain, now superseded by the more accurate multichain Loran-C
system operating at the even lower frequency of 100 kHz. This lower frequency
gives the Loran-C system a much greater useful range, since the lower the fre-
quency, the smaller the attenuation rate of the propagation mode in which the
wave travels along the surface of the Earth, that is, the ground wave. Other modes
of propagation involve waves reflected from electrically conducting layers of the
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Figure 19.1 The ground wave and sky wave modes of radio propagation around Earth

atmosphere called the ionosphere; these are the sky wave responsible for global
short-wave communication, shown in Figure 19.1. The system depends on the radio
propagation time being an accurate measure of the distance between transmitter
and receiver. Although the sky wave range is much greater than the ground wave,
there is much greater uncertainty in the propagation time, since the altitude of the
ionospheric layers is subject to change between daylight and nighttime hours, and
depends on sunspot activity, etc. They arrive at the receiver later than the desired
ground wave and must be carefully discriminated against in the timing signal cir-
cuitry. The propagation time of ground waves is to a first approximation propor-
tional to distance; however, to achieve accuracies in the microsecond range requires
making secondary corrections, depending mostly on the electrical conductivity of
the surface and to a lesser extent the propagation properties of the atmosphere.
These corrections can be computed accurately for propagation over seawater; how-
ever, transmission times over paths involving land with different types of terrain are
much less predictable.

If a user ship or aircraft maintained precise time in synchronism with a trans-
mitting station, then the one-way signal propagation time, assuming a known radio
wave velocity, could be used to determine the range to that station. This, how-
ever, would require the user to carry a good atomic clock to maintain synchronism
with sufficient accuracy to be useful, severely limiting the number of users who
could avail themselves of the system. To overcome this limitation, the Loran sys-
tem operates on the principle of the user determining the differences in the propa-
gation delays of three or more precisely synchronized transmissions from widely
separated stations, forming a network covering an extended geographical area. If
we neglect at first the curvature of the Earth’s surface, then surface navigation (no
altitude information) requires a minimum of three stations. This can be seen graph-
ically by plotting all the points that have a given constant difference of delay, and
hence difference of range from two stations of known location. Figure 19.2 shows
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Figure 19.2 The hyperbolic lines of constant propagation delay between Loran stations at
A and B

such a plot for two stations A, B; the locus of points having a constant difference
in their distance from two fixed points is, in fact, a hyperbola with A and B as foci.
For this reason this radio navigational system is sometimes called a hyperbolic sys-
tem. The line AB is the baseline, and its perpendicular bisector, the centerline PQ,
is the locus of points equidistant from A and B and therefore corresponds to zero
difference. The extensions of the baseline to infinity away from the points A and B
also correspond to a constant difference, namely the propagation time directly from
A to B. To fix the position of the receiver, another set of hyperbolas is necessary,
giving the lines of constant difference in time delay with respect to another pair of
stations. From two observed delays between different pairs of stations, two hyper-
bolas are selected, one from each set associated with a pair of stations. These may
theoretically intersect at two points; however, in that event independent information
or the delay difference from another pair may be required to resolve the ambiguity.
Since the hyperbolas in the vicinity of the baseline extensions have arms that tend
to close up into a hairpin shape, the likelihood of ambiguity is greatest there, and
navigators avoid using station pairs whose baseline extensions are near enough that
the chance of ambiguity is a source of concern. In fact, there is another important
reason to avoid the baseline extension region: It has to do with the size of the error
in range incurred by a given error in time delay. From Figure 19.2, where lines of
constant time difference are plotted for equal increments in that time difference,
we see that in the neighborhood of the baseline extensions the lines are spread out
much more than, for example, along the baseline itself. This means that for a given
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Figure 19.3 Waveform of a pulse in the groups broadcast by Loran-C stations (Maxim, 1992)

error in the time delay measurement, the error in position is larger in this area than
elsewhere. While on the subject of errors, we note that an important factor is the
angle between the two hyperbolas at the point of intersection. If we admit to a cer-
tain error in the timing from each transmitter, then the hyperbolic lines should be
replaced by hyperbolic bands, whose widths reflect the possible statistical spread
in the time delay. The area of overlap of the two bands now defines the error in the
position, an area that is clearly bigger if the bands are nearly parallel than if they
are nearly perpendicular.

The Loran-C stations are grouped in chains, each covering a certain geograph-
ical region, with each chain having one station designated as master (M) and two
or more other secondary stations (W, X, Y, . . .), any one of which may be paired
with the master to form a master–slave pair, or rate.

Each station broadcasts the same 100 kHz carrier frequency, pulse-modulated
in groups of pulses that are repeated at a rate unique to the chain, which helps to
identify it. Pulse modulation is used with precisely defined pulse envelopes because
of its advantages from the point of view of power utilization in communicating time
with the best signal-to-noise ratio. The phase of the carrier is switched between
successive pulses between 0◦ and 180◦ according to a binary code, the two phases
corresponding to 1 and 0 in the binary system. These phase codes are chosen to dis-
tinguish between the master stations and the secondaries, and they alternate in time
between codes designated as A and B, as shown in Figure 19.3. The phase mod-
ulation has the further benefit of helping to discriminate against the undesirable
sky wave signal. The signal format for the secondary stations consists of groups
of eight equally spaced phase-coded pulses 1 millisecond apart, while the master
broadcasts groups contain an additional pulse 2 milliseconds after the first eight.
The time interval between successive transmissions of the master’s pulse groups
is called the group repetition interval (GRI). Each chain is identified by a GRI
designator, which is the group repetition intervals in units of 10 microseconds;
for example, the northeast U.S. chain has the GRI designator 9960, and therefore
the interval between groups of pulses is 99.6 milliseconds. This interval is chosen
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so that the signals have time to propagate throughout the chain well before the
beginning of the next group of pulses. Possible confusion is avoided by having
a well-ordered, precisely timed sequence of transmissions from members of the
chain. The transmissions occur in a sequence started by the master followed usu-
ally in the order of the letter designations of the secondary stations: W followed
by X , then Y , then Z , etc. First the master begins the cycle; the first secondary
does not transmit until it has received the master’s signal and added a further delay
called the coding delay; then the next secondary transmits after similar delays; and
so on. Since the period between pulse groups is nearly 0.1 second, and the propa-
gation times are typically less than 10 milliseconds, there is no ambiguity as to the
identity of pulses from master and slave—the slave signal is known to arrive later,
except along the extension of the base-line away from the slave station, where the
signals would coincide were it not for the coding delay. This delay not only facil-
itates reading the time difference in this case, but it also may be changed at will,
and it can be used for security in times of war. The timing information is recovered
from the phase-modulated pulse signals using phase-sensitive detection and fixing
a fiduciary point in a pulse to mark the time, independently of the pulse amplitude.
The waveform of each pulse in a group is shown in Figure 19.4. The timing of the
pulse is defined by the third zero crossing of the signal, as indicated in the figure,
to take advantage of the sharp rise in amplitude early in the pulse, where little sky
wave “contamination” is expected. The instrumentation used in the system has a
resolution of a few hundredths of 1 microsecond. By radio communication, the
oscillator at the master station provides corrections to the other station oscillators
in the network as slaves, keeping them within microsecond synchronism. To main-
tain this degree of synchronism independently, without corrections over a period
(say) of one week, implies a long-term stability on the order of 1 part in 1012,
which is assured by using a cesium standard. In order to provide a precise time
distribution service in addition to navigation, and to tie networks covering diverse
regions of the globe, the master oscillator is tracked relative to the time standards at
the U.S. Naval Observatory, and adjustments are made to maintain accuracy within
tolerance.

19.5.3 The Omega Network

The main drawback to Loran is the limited range of the ground wave, on the order
of 1,500 km, necessitating a proliferation of chains and complex receivers to reach
global coverage. An alternative radio navigational network called Omega achieves
long-range coverage with a network of only eight stations by transmitting at much
lower frequencies, in the very low frequency (VLF) band allocated for navigation,
between 10 kHz and 14 kHz. The stations are scattered throughout the world, from
Norway to Hawaii, and they transmit according to a precisely timed schedule; for
example, station A (Norway) begins its transmission format on 10.2 kHz for 0.9 s,
then is silent for 0.2 s, comes back on 13.6 kHz for 1 s, is silent again for 0.2 s,
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and finally transmits on 11.33 kHz for 1.1 s and falls silent for the balance of
10 s before repeating the sequence. Like Loran, Omega is a hyperbolic system;
however, unlike Loran, where the leading edges of pulses received from pairs of
stations are matched to obtain the time difference, in the Omega system it is the
phase difference that is observed. Since the phase repeats periodically along the
wave, there will be an ambiguity as to the whole number of cycles difference that
may be present. To resolve this ambiguity, the Omega receiver must be “initialized”
by setting the initial coordinates, after which the receiver will automatically track
the phase relationship between the received signals.

As already pointed out, by choosing very low frequency transmissions, long-
range propagation is assured—even some penetration into seawater is possible.
However, the waveguide-like modes of propagation between the Earth’s surface
and the lower D-region of the ionosphere have a phase velocity that is sensitive to
the behavior of the ionosphere, giving rise to a number of phenomena that must be
taken into account when assessing the reliability of a fix. Thus there is a change
in the effective height of the ionosphere from around 70 km during daylight hours
and 90 km during the night. Furthermore, disturbances occur in the ionosphere
during and after “sunspot activity,” which has been observed to occur with some
regularity, repeating on the average every 11.4 years. Other potential sources of
error include interference between different waveguide modes of propagation, and
wrong way propagation, where the actual signal has traveled the long way around
the Earth, rather than directly from the transmitter.

19.6 Navigation by Satellite

The use of satellites for navigation, surveying, and time dissemination has the
major advantage of line-of-sight radio communication to cover very large geo-
graphical regions. It avoids the problem in surface communication from ground
stations of uncertainties in the propagation velocity of radio waves over varying
surface conditions around the Earth’s curvature, as well as sky wave contamina-
tion. It is interesting that it was not many years after the launching of the first
satellite, Sputnik I, in 1957, that I. Smith filed a patent describing a satellite system
from which time codes could be emitted that would be received on Earth delayed
by the propagation times, setting up hyperbolic lines of position, a straightforward
extrapolation from the Loran concept.

In the U.S., support for a space-based navigational system came through
military funding first by the Navy, at the Johns Hopkins Applied Physics Labo-
ratory, and then by the Air Force, at the Aerospace Corporation. This typifies the
channeling of research funds in the U.S. through the military services. There are
numerous examples of technological advances made possible by government fund-
ing, usually through the military, which otherwise would not have been realized.
A prime example is the H-maser. Private industry would not have developed it
because the market for it was too small to defray developmental costs and turn a
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profit in a reasonable time frame. As it was, the initial development was undertaken
at NASA and under NASA contracts, first to Varian Associates, and then to Hewlett
Packard Co. Fortunately, in instances such as atomic time standards and satellite
technology the interests of the military happen also to accrue benefits to the public
at large. This is proving to be particularly true of the Global Positioning System.

The Navy-sponsored effort led to the satellite navigational system TRANSIT,
designed as an all-weather surface navigational system for Navy vessels, including
strategic submarines. Its limited application to surface navigation and intermittent
coverage made it unsuitable for high-speed aircraft and missiles, where continuous
three-dimensional navigation is necessary. For this reason the Air Force opted in
1963 for a global navigational system first studied at the Aerospace Corp., a system
that evolved into what came to be called the Global Positioning System (GPS). By
1965 the Air Force had decided to let out contracts for the development of user
receivers. Other systems, such as the Army SECOR, were also being evaluated
at that time, but by 1974 it was determined that a joint military project would be
undertaken based on the Air Force GPS concept.

Such a system would have the advantage of continuous and total geograph-
ical coverage with line-of-sight communication. Its realization, however, clearly
depends on the ability to sustain satisfactory operation of an accurate time stan-
dard on board the spacecraft, and to broadcast time signals and orbital data with
sufficient power and accuracy from an orbiting spacecraft. The use of satellites also
relies on the ability to compute accurate ephemerides (plural of ephemeris: orbital
position as a function of time); this is essentially different from fixed land-based
stations—a satellite occupies many different known positions (albeit at different
times), almost like having several transmitters in a network stretched out along the
orbit. However, to measure propagation delays from the same satellite at widely
separated points along its orbit presumes that the receiver is able to maintain pre-
cise time over the relevant part of the orbit. In the absence of that, to obtain a fix
in three dimensions, that is altitude in addition to latitude and longitude, requires
signals to be received simultaneously from four satellites with synchronized clocks.

In the TRANSIT navigational satellite system developed by the U.S. Navy,
first declared operational in 1964, there were four, and later six, satellites orbiting
at an altitude of around 1100 km in nearly circular polar orbits. They completed
their orbits in a little over 100 minutes, and as the Earth rotated under them, they
provided good global coverage. The system was originally developed to determine
coordinates of Navy vessels and aircraft, but eventually civilian use was authorized,
and the system was used for surveying as well as navigation. Early experiments by
the U.S. Defense Mapping Agency and the U.S. Coast and Geodetic Survey showed
accuracies on the order of 1 m at a fixed point after several day’s observation, using
postprocessed precise ephemerides.

The desire to have the system accessible to users equipped only with a quartz
oscillator with good short-term stability, rather than an atomic standard, is met,
in effect, by measuring a difference in signal delay, but this time not necessarily
between different transmitters as in Loran, but between successive incremental
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positions of the same satellite. But the continuously changing signal delay due to
the motion of the source is nothing more than the Doppler effect. One of the impor-
tant observables is the point at which the Doppler shift in the signal passes through
zero and reverses sign: this occurs when a satellite passes through the point closest
to the receiver. Noting the precise times when this occurs and having an accurately
computed ephemeris, so that the positions of a satellite are accurately known for
those times, ultimately fixes the position of the receiver.

Needless to say, the success of such a system depends on the stability of the
clocks on board the spacecraft and the ability to communicate accurate orbital
information. The system’s reliance on Doppler suggests that it is the short-term
phase/frequency noise that will limit precision, while long-term drifts should be
small to avoid the need for frequent corrections to stay within the tolerance limits.
The Transit satellites were equipped with ultrastable quartz oscillators with a drift
rate of a few parts in 1011 per day—atomic standards for on-board spacecraft appli-
cations were still under development. The long-term drift of these quartz oscillators
could be modeled mathematically, allowing time corrections to be extrapolated.
They controlled the frequency of transmission at 150 MHz and 400 MHz for
Doppler tracking and navigation. The satellites were tracked by widely separated
fixed ground stations of known location (TRANET) using the same basic Doppler
technique used in tracking Sputnik. While the Doppler frequency shift itself gives
information on the relative velocity (range rate), the accumulated phase shift
it causes (computed mathematically by integrating the Doppler frequency with
respect to time) gives the change in satellite–receiver distance. To derive the actual
distances as the satellite continues in its orbit requires independent knowledge
of its distance at least at one point (mathematically, to determine the integration
constant).

The TRANSIT system had two important shortcomings: First, although the
six orbiting satellites were able to provide global coverage, it was not continuous.
A satellite passed overhead (at the equator) every 100 minutes or so, and users had
to interpolate their position using dead reckoning between passes; under worst-case
conditions a user might require several hours between fixes. Second, the naviga-
tional accuracy was only slightly better than Loran-C, relying as it did on on-board
quartz clocks rather than atomic clocks.

19.7 The Global Positioning System (GPS)

In view of these deficiencies, and with the intervening developments in portable
atomic clock and satellite technology, the U.S. Department of Defense in 1973
directed its Joint Program Office to oversee the development, evaluation, and
deployment of an accurate space-based global positioning system (GPS). The prod-
uct of that effort is the present Navigation System with Timing and Ranging
(NAVSTAR). Specifically, the functions of the system are to enable military, and
now civilian, users to determine accurately, under all-weather conditions, their
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Figure 19.4 A typical GPS satellite

position and velocity, and to transfer precise time on a continuous basis anywhere
on or near Earth. This was to be achieved by having coded time and ephemeris
signals broadcast from a number of satellites, each carrying an atomic clock,
in such orbits as to ensure that a sufficient number of them are in view at all
times, anywhere on Earth. The ranging method is again based on the propagation
time of radio waves from the satellites to the user: either using the propagation
delay in receiving the coded time signal, or the accumulated phase difference
between the broadcast carrier wave and the user’s reference oscillator/clock. As
with the other time-based navigation systems, this system is designed to require
receivers equipped only with a relatively inexpensive quartz clock. Since in general
the receiver clock will not remain in exact synchronism with the satellite clocks,
the range computed using the uncorrected propagation time observed is called the
pseudo-range; the true range is obtained by correcting for the clock error. In order
to fix the position of the receiver in three dimensions—longitude, latitude, and
altitude—three true ranges are necessary. This can readily be seen if we imagine
spherical surfaces drawn around the satellites as centers with radii equal to the true
ranges to the receiver. If only two ranges are known, then the receiver may be at
any point on the circle of intersection of the two corresponding spherical shells,
whereas if the range to a third satellite is known, the position of the receiver is
uniquely determined as being at the intersection of the third spherical shell with
that circle. If the ranges to the satellites are only pseudo-ranges because of the
clock error, then of course, the position so determined will be in error, and the
spherical shell drawn around a fourth satellite with the pseudo-range as radius will
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not pass through the same position as the other three. However, if we assume that
all the satellite clocks are in perfect synchronism, so that a single clock error exists
because of a drift in the receiver clock, then it will be possible to compute the cor-
rection to the receiver clock which will convert the pseudo-ranges to true ones, and
make the four spherical surfaces with corrected radii pass through a unique point,
the true position of the receiver. This system then requires that the signals from at
least four satellites be in full view globally at all times.

A description of the system separates naturally into three segments: the satellite
system, the ground monitor and control stations, and the users, including the many
types of receivers. We will give a brief description of these in that order.

19.7.1 The Satellite Constellation

From what has been said, the number of satellites and their orbits must be chosen so
that signals from at least four of them can be received simultaneously anywhere on
Earth, 24 hours a day. This assumes that because of the unpredictable motion of the
receiver, signals must be received from four different satellites at the same epoch;
however, in the event that the receiver is stationary or moving slowly, then signals
received sequentially from satellites at several different epochs would suffice to fix
the position of the receiver, since the satellites will occupy different known posi-
tions at these epochs. Nevertheless, even in this case, to be assured of an immediate
and accurate fix, four satellites must simultaneously be in full view at all times.

The ultimate choice of the number of satellites in the constellation and their
orbits evolved from a number of proposals early in the 1980s, ranging from a
24-satellite constellation in 3 orbital planes inclined 63◦ to the equator to 18 active
satellites with three in each of six orbital planes. The present policy calls for a
constellation consisting of four active satellites orbiting in each of six planes with
an inclination of 55◦, making a total of 24 satellites, plus four more spare satellites
to replace mal-functioning operating satellites.

There are five categories of GPS satellites, designated as Block I, II, IIA,
IIR, and IIF satellites. The typical appearance of a GPS satellite is illustrated in
Figure 19.4. The eleven satellites making up Block I were launched in the period
between 1978 and 1985. With the exception of one booster failure on the seventh in
the series, all the launches were successful. The design life of these satellites was
only 4.5 years, yet two of them were still operating satisfactorily after twice that
period. In common with all the subsequent satellites, these carried atomic clocks in
addition to sophisticated radio communication equipment, as well as a propulsion
system for orbital corrections. They were powered by two 7 sq. meter solar panels,
weighed 845 kg, and were placed in orbits inclined at 63◦. The Block I satellite
signals were not secured to prevent general accessibility to civilian users; this is
in contrast to the Block II satellites, some of which broadcast inaccessible coded
signals. By 1994 the remaining Block I satellites, still functioning at reduced
power, had been made redundant and have been boosted out of orbit and left for
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scientific tests. The first of the Block II satellites, weighing over 1,500 kg, was
launched in 1989 using a Delta II rocket; subsequently, over the period 1989–90
eight more satellites in this series were launched and placed in four different orbital
planes inclined at 55◦ to the equator, with an altitude of about 20,000 km. From
1990 to 1994 fifteen more satellites were launched, which are classed as Block IIA,
the “A” denoting advanced, which have the capability of communicating with each
other, and some of which carry optical corner cube reflectors, which reverse the
direction of a tracking laser beam from a ground station, independently of the ori-
entation of the satellite. This facilitates the tracking of a satellite using laser rang-
ing, the optical analogue to radar, with an accuracy approaching the centimeter
range. This capability is matched by the accuracy of frequency and time made
possible by four on-board atomic standards: two rubidium and two cesium, with
long-term frequency stability of a few parts in 1013 and 1014 per day, respectively.
This corresponds to an average drift of about 3 nanoseconds per day for the cesium
standard, which for a radio wave traveling at 3 × 108 m/s implies an error of about
1 meter in ranging.

The Block IIR (the “R” for “replenishment”) satellites were scheduled for
launch using the Space Shuttle in 1996, however, due to a number of technical
problems, including the production of the sophisticated on-board atomic clocks,
the delivery and launch were delayed. The first Block IIR satellite was delivered
to Cape Canaveral in September, 1996, and after extensive tests to verify a smooth
integration with the existing GPS, was ready for launch in 1997. Unfortunately, that
launch was unsuccessful due to failure in the Delta II launch vehicle. The launch
was rescheduled for a later date. This new generation of satellites has a design
operational lifetime of ten years, two and a half years longer than the Block II/IIA
satellites. They are considerably heavier, at over 2,000 kg, and would be able to
accommodate space-adapted hydrogen masers, as onboard frequency/time stan-
dards; however satellites in this series so far have carried three rubidium frequency
standards. As a class, the H-masers have long demonstrated superior short-term
stability, and the thought of flying them in satellites has long been cherished by
some who have devoted their careers to that end. However, the massive ion vac-
uum pumps and large magnetic shields that characterize laboratory installations
presented a formidable obstacle in meeting the size and weight constraints of a
spacecraft. The frequency stability expected of the hydrogen space masers is better
than one part in 1014, a tenfold improvement over the Block IIA standards, with,
it is hoped, a corresponding upgrade in system performance. Of course now, with
laser-cooled Cs standards and optical ion standards, the choice of on board clocks
is much more competitive.

A fourth generation improved Block IIF satellite series has been under deve-
lopment since 1996, first under a U.S. Air Force contract with Rockwell, and more
recently under a U.S.$1.5 billion development contract with the Boeing company.
These satellites are 50% heavier than the Block IIR satellites will accommodate
more equipment and expanded missions with a design lifetime of 15 years. They
will provide civilian users with significantly more accurate signals. Their launching
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into orbit requires the use of larger launch vehicles, such as ones developed under
the Evolved Expendable Launch Vehicle (EELV) program. This program involves
two families of launch vehicles: Atlas V and Delta IV.

19.7.2 The Orbital Parameters

A major premise in the use of satellites as platforms for radio transmitters forming
a navigational network is that their precise positions are predictable at all times,
and that this information can be communicated to the user. That this is the case
hinges on the fact that the satellites follow orbits that to a very good approximation
are Keplerian ellipses with Earth’s center at one of the foci. To completely specify
the motion of a particle in 3-dimensional space, acted on by known forces, requires
in general six numbers, which may, for example, be the three coordinates and the
three components of velocity at some point in time (epoch). It follows that the most
general elliptical orbit in space requires five parameters to specify it completely,
and one parameter to specify the position of the particle in the orbit. The number
of orbital parameters results from the two angles required for the orientation of
the plane of the orbit, another angle to specify the orientation of the ellipse in that
plane, and two more to specify the semi-major axis and ellipticity of the ellipse.
These parameters are illustrated in Figure 19.5, where the position of the particle
in the orbit, historically known as the anomaly (sic), is shown as the angle θ at the
focus of the ellipse where the center of mass of the system is located. For GPS
satellites the semi-major axis is nominally 26,560 km, and the orbital period is half
a sidereal day, that is, half the time for a complete rotation of the Earth with respect
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Figure 19.5 The definition of the satellite orbital parameters (Hofmann–Wellenhof, 1994)
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to the stars (actually with respect to the vernal equinox, which is very nearly the
same thing). Having the satellite complete its orbit a whole number of times each
sidereal day ensures that its ground track repeats every sidereal day; that is, ideally
it will pass overhead at a given point on Earth at the same time every sidereal day.

The simple reentrant (closed) elliptical Keplerian orbit is predicted theoreti-
cally according to Newton for a satellite attracted only to a rigid, homogeneous,
spherical Earth, which acts on the satellite as would a point mass at the center
of the Earth. An actual Earth satellite is subject to conditions that differ slightly
from that, differences that are called perturbations. Fortunately, these are all small
compared to the forces that give rise to the Keplerian orbits, a fact that is exploited
theoretically in arriving at corrections by a process of successive approximation.
The result is that the orbital parameters are subject to change in time and must
therefore be corrected either by actually activating thrusters, or updating actual
tracking data and computing the changes in the parameters they imply.

19.7.3 Perturbations Affecting the Orbit

There are two types of perturbations: those that have a gravitational origin, such
as those arising from the presence of the moon and sun, and the oblateness of the
Earth; and those that are nongravitational, such as solar radiation pressure, solar
wind, and air drag. Since there is potentially a bewildering number of different fac-
tors that may perturb the motion of the satellite, we need to stipulate what would
be a tolerable error in the satellite position. If we set that tolerance at 1 meter devi-
ation over one orbital period, we would find that a constant perturbing force must
not cause an acceleration greater than 10−9 ms−2. To appreciate the relative size of
such a force, we note that the primary gravitational pull on a GPS satellite due to
the Earth, which keeps it in orbit, is GME/r2, where G is Newton’s gravitational
constant, ME is the mass of the Earth, and r = 26,560 km is the semi-major axis
of the orbit. A quick calculation yields ≈0.57 ms−2, almost a billion times greater
than the tolerable perturbation!

The largest perturbation comes from the nonsphericity of the Earth. Because
of the Earth’s rotation about its axis, there is a centrifugal force that varies from
a maximum at the equator, diminishing with latitude, becoming zero at the poles.
In consequence of this, the net inward force at the surface, the observed weight,
is greatest at the poles and diminishes toward the equator. The equilibrium figure
of a plastic body is an oblate spheroid, a slightly flattened sphere with an elliptical
cross section through its axis. The actual oblateness of the Earth is small—the
diameter from pole to pole is only about 43 km shorter than through the equator, or
about one part in 298. Of course, the detailed shape and structure of the Earth is far
from a smooth homogeneous oblate spheroid; the degree of detail that is significant
clearly depends on how far the satellite is from the surface. Indeed, if the object
had been to study the topography of the Earth through satellites, the orbits would
have been chosen to bring out the very perturbations that the GPS system must
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avoid. At an altitude of about 20,000 km, the GPS satellites are sufficiently far from
the Earth’s surface that the oblate spheroid model, which introduces less than one
part in 104 correction, is considered adequate, and higher-order approximations
are expected to yield negligible improvement in orbital accuracy. An analysis of
the effect of the Earth’s oblateness on a satellite orbit shows that there is a slow
precession (a rotation of the perigee) at a rate proportional to (5 cos2 θ − 1), where
θ is the angle the orbital plane makes with the Earth’s equatorial plane. This rate
is nearly zero if θ ≈ 63◦, which provides a rationale for choosing that angle for
the early satellites. Moreover, the analysis shows that the mean time to complete
an orbit is also a function of θ, and the variation in this case is proportional to
(3 cos2 θ − 1), which is nearly zero for θ ≈ 55◦, hence the choice of that angle for
the later satellites.

The other gravitational type of perturbation comes from the presence of the sun
and moon, and is referred to as tidal effects, since the attractions of the same two
bodies account for the tidal action on the Earth. A rough estimate of the variation
of the sun’s gravitational pull over the orbit of the satellite using Newton’s inverse
square law of gravitation yields for the sun’s perturbation about 2 × 10−6 ms−2,
while for the moon the figure is about 5 × 10−6 ms−2. Related, indirect pertur-
bations due to the tidal deformation of the “solid” Earth, as well as the oceanic
tides, are very much smaller, in the range of 10−9 ms−2.

Of the non-gravitational perturbations, the most important is the solar radiation
pressure. We recall that radiation, whether a laser beam or radio wave, carries linear
momentum, and therefore the absorption and scattering of sunlight by a satellite
results in forces being exerted on it. Since the scattering in general is not the same
in all directions, it follows that the force experienced by a satellite is not necessarily
in the direction of the incoming rays of the sun—there will be a smaller transverse
component. The actual perturbation produced obviously depends on the solar con-
stant, a measure of the intensity of solar radiation falling on the satellite (S = 1.4
kW/m2), the cross section presented by the satellite to the sun’s rays, the reflectiv-
ity of the surfaces, etc. There is the further complication that the satellite may pass
through the shadow of the Earth; that is, it may experience periods of solar eclipse.
The computed size of the perturbation is on the order of SA/cMs , where A/Ms
is the ratio of cross section to mass of the satellite, which yields ≈10−7 ms−2.
This shows that radiation pressure produces a very significant perturbation, one
that must be well modeled and taken into account if the desired accuracy is to be
achieved.

Finally, in addition to solar radiation there is the solar wind: the sun contin-
uously emits particles, mostly high-speed electrons and protons. Near the Earth’s
orbit the average speed of the protons is about 400 kms−1, and its number density
ranges from 2×106 to 107 particles m3. Assuming that the particles are completely
stopped on collision with the spacecraft, the resulting acceleration, for example
on a spacecraft having A/Ms = 0.03, is less than 10−10 ms−2, and therefore
negligible.
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19.7.4 The Control Segment of GPS

The crucial functions of monitoring the orbits of the satellites and the frequency
and phase of their on-board atomic clocks, and updating orbital parameters for
ephemeris prediction, are the responsibility of the control segment of GPS.
This comprises ground-based stations of known geodetic position, including a
master control station and three other control stations, as well as a worldwide
network consisting of five monitoring stations. The master control station is at the
Consolidated Space Operations Center in Colorado Springs, Colorado. It collects
the satellite tracking data from the worldwide monitoring stations, from which it
computes the updated orbital and atomic clock parameters. This information, along
with other operational commands, is sent to the three ground-based control sta-
tions to upload to the satellites. The monitor/tracking network stations are located
at Colorado Springs, Ascension Island (South Atlantic), Diego Garcia (Indian
Ocean), Kwajalein (North Pacific), and Hawaii. These stations are equipped with
precise cesium clocks and receivers that continuously track all satellites in view.
The signal propagation times, which yield the pseudo-ranges, are obtained every
1.5 seconds, are “smoothed” to allow for ionospheric and meteorological variables,
and transmitted as 15 minute interval data to the master control station. The three
ground control stations are positioned also at the three monitor station sites on
Ascension, Diego Garcia, and Kwajalein.

The implementation of a global time-based navigational system clearly requires
the definition of a suitable frame of reference, including time. Position and time of
any element of the system must be referred to a common, invariant set of coor-
dinate axes and clocks. To specify the position of a point over a finite region of the
Earth’s surface, as with Loran-C (or ordinary surveying, for that matter), requires
only certain fiduciary reference points to establish a baseline and the measurement
of appropriate angles, which are then in a sense the coordinates of any point in that
surface region. Obviously, this will not work for a global system, where positions in
space surrounding the Earth is included: For that we need ideally an inertial frame
of reference fixed in space and not tied to the Earth and partaking of its complicated
gyroscopic motion, etc. One such system that neglects only the residual variation in
the gravitational field over the Earth–satellite system, takes the direction at a speci-
fied epoch of the Earth’s angular momentum axis (which is constant apart from the
slow precession of the equinoxes) as the coordinate z-axis, and the direction of the
vernal equinox, which is perpendicular to the Earth’s axis and lies in the orbital
plane (the ecliptic), as the origin of the longitude coordinate. The angle of latitude
with respect to the z-axis and the radial distance from the Earth’s center complete
the system. It is in terms of the coordinates in this quasi-inertial (nonaccelerat-
ing) geocentric system that the computation of the satellite orbits is carried out.
However, for the practical purposes of the navigator, what is required are his coor-
dinates and altitude with respect to an Earth-fixed system using the prime meridian
through Greenwich as the origin of longitude. Such a system is the (Conventional)
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Terrestrial Reference Frame (TRF), in which the z-axis is taken to be the mean
position of the Earth’s rotational axis during the arbitrary period from A.D. 1900
to 1905. For a true prediction of altitude it is not sufficient to assume a spherical
Earth—the oblateness must be taken into account—and therefore, since 1987 GPS
has used the World Geodetic System WGS-84 (these things are regularly updated
and therefore their designation includes the last two digits of the year), in which
the Earth’s figure is an ellipsoid with semi-major axis 6,378,137 meters, and the
geometric flattening is 1 in 298.2572. This system is operationally established by
a set of ground-based control stations serving as reference points, with particularly
accurate position-fixing facilities including laser ranging and very long baseline
interferometry (VLBI). Once the orbits of the satellites are computed using coor-
dinates in the free quasi-inertial system, they must then be transformed into those
in the practical Earth-fixed system, using the known motions of the one system
relative to the other.

The operation of the GPS system presumes that all elements, including the
navigator, maintain close time synchronism, and that when clocks drift apart, as
they naturally will, it is possible to model their behavior mathematically to predict
clock errors. The satellites and ground-based stations are all equipped with precise
atomic clocks, which of course keep what is defined as atomic time. Navigators,
on the other hand, are closely tied to what is called Universal Time (UT), which
is defined in terms of the mean solar day, the basis of civil time. This is the aver-
age of the apparent solar (24 hour) day, which varies throughout the year, taken
over that period. The time scale used by GPS is based on what is called Universal
Time Coordinated (UTC); the unit in this system is the atomic second. However,
because of the possibility of long-term drift of the universal time with respect to
atomic time, they are kept in step to within one second by inserting a “leap” sec-
ond as required. This results in a piecewise uniform time scale that tracks universal
time; any fractional difference between the different time scales is monitored and
published by national observatories charged with this service.

We should recall at this point the Sagnac effect, a relativistic effect on time
measurement associated with the rotation of the Earth, which we introduced in
Chapter 7. A coordinate system fixed in the Earth is noninertial, since its rotation
with respect to “the fixed stars” constitutes an accelerated motion (not of speed,
but changing direction). Consequently, as stated earlier, it is Einstein’s theory of
general relativity that is involved. According to the theory, if we imagine we have
two identical, precise clocks at some point on the Earth’s equator, and one remains
fixed while the other is taken slowly (with respect to the Earth) along the equator
all the way around until it reaches its starting point, then the time indicated on the
two clocks will not agree. The difference �τ was quoted as being given by the
following:

�τ = ±2


c2 S, 19.1



19. Applications: Time-Based Navigation 437

where 
 is the angular velocity of the Earth (7.3 × 10−5 rad/sec) and S is the area
(πR 2

E = 1.3 × 1014 m2) enclosed by the path of the moving clock. The formula
yields a significant time difference of about ±1/5 microsecond. This is not insigni-
ficant in the present context and must be taken into account.

The determination of satellite orbital position as a function of time, from track-
ing data obtained by monitoring stations of known location, is the reciprocal prob-
lem to that of navigation using signals received from satellites having known orbital
positions. We have seen that to completely predict a satellite position requires six
numbers: These may be the three coordinates of position in 3-dimensional space
and the three components of velocity at a given epoch, or the three coordinates
at two distinct epochs. The first instance casts the problem as one of using the
equations of motion to predict the motion subsequent to given initial values, and
the second as fitting the general solution to given boundary values. The satellite
orbital motion is solved using the quasi-inertial space coordinate system, whereas
the positions of the tracking stations (as well as coordinates required by the users)
are naturally with respect to the Earth-fixed conventional terrestrial system. The
observational nexus between the two systems is through the precise tracking of
GPS satellites afforded by laser ranging and VLBI from points coincident with
some of the GPS monitoring stations. The need for mathematical transformations
between the two systems makes the task of determining and updating the satel-
lite ephemerides a complicated one, but nevertheless a manageable one thanks to
integrated circuits and on-board computers.

19.7.5 Coding of GPS Satellite Signals

From the beginning, the idea of a precise global system of satellite navigation was
inspired and brought into being by the U.S. Department of Defense, and its mili-
tary importance makes the need for security pretty obvious. On the other hand,
there was a desire to accommodate civilian users of the system, which has led to an
elaborate coding scheme for controlling full accessibility to the system; unautho-
rized users were to have only a purposely degraded accuracy of positioning. Two
carrier frequencies are actually broadcast in order to provide information on the
dispersion of the radio waves as they traverse the ionosphere, that is, the frequency
dependence of the propagation velocity of the radio waves through the ionized lay-
ers surrounding the Earth. This enables the ionospheric delay to be mathematically
modeled in correcting the observed satellite pseudo-range. The two frequencies are
the 154th and 120th harmonic of the fundamental frequency at 10.23 MHz based
on the on-board atomic frequency standards, with stability on the order of parts in
1013. The two frequencies, which fall in the so-called microwave L-band, are at
L1 = 1.57542 GHz and L2 = 1.22760 GHz, with wavelengths about 19 cm and
24 cm respectively. In addition to the time-ranging codes already mentioned, these
carrier frequencies are also modulated with data including the updated satellite
orbital parameters, GPS time and satellite clock reading and drift, etc.
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The type of code used is the so-called pseudorandom number (PRN) code, a
particularly appropriate choice both for security and precision time comparison.
It is a binary code generated by a shift register in such a way that within a certain
group that repeats periodically, the binary bits are more or less randomly distri-
buted. As an example, consider a 5-bit shift register in which at every clock pulse
the bits advance to the right one place, the extreme right-hand bit becoming part of
the output. The criterion for choosing the bit that replaces the one on the far left is
the key to the code: For example, it may be chosen to be 0 if the bits in the third and
fourth places are the same, otherwise a 1. A possible PRN code generated this way
would be (011010111100010). A different choice of the criterion clearly would
lead to a different output sequence. This binary code is impressed on the carrier
wave as a biphase modulation; that is, the phase for a binary 1 is shifted by 180◦
with respect to a binary 0, as shown in Figure 19.6. The extent of “randomness” of
the PRN code can now be seen by computing the autocorrelation function of the
signal biphase modulated according to it.

To do this we simply form the product of the signal with its duplicate shifted
a whole number of clock intervals, and then sum (integrate) over the whole period
of the sequence. Since a phase shift of 180◦ is equivalent to a reversal of sign, we
find that the autocorrelation has a maximum when there is no shift, since products
of signals with the same sign are summed in the entire code. On the other hand, if
we compute the correlation of the signal with its duplicate shifted even one space
to the right or left, the result is zero, as can be verified for the PRN code we gave as
an example. Moreover, the correlation will be small between the PRN coded signal
and any other binary sequence that does not match it identically, since some nega-
tive products of signals of opposite signs are included in the sum. It follows that not
only does the code provide a sharp time-matching function between a coded signal
and its duplicate, but it also enables this match to be available only to those who
can generate a duplicate code. It therefore fulfills the added function of controlling
access to the information carried on the satellite signals. By assigning different

0                     1                        0                        1                      1                      0

Figure 19.6 Binary phase modulation of satellite pseudorandom number signals
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individual PRN codes to the many satellites that make up the GPS constellation,
the need to be able to identify each satellite is fulfilled without any ambiguity.

The original concern of the U.S. Department of Defense that the precise posi-
tioning capability of GPS be secure against compromise or use by an enemy in
times of war, while allowing a degraded capability to the general public, led to
a rather complicated coding scheme. The dual precision capability is achieved
principally by having two distinct PNR codes for the satellite clock readings
impressed on the carrier waves broadcast from the satellites: the so-called C/A
(Coarse/Acquisition) code, and the P (Precision) code. A further security provision
is A-S (Anti-Spoofing), by which is meant a countermeasure against anyone send-
ing out false signals with the GPS signature, thereby confounding the system, or
worse. The anti-spoofing feature consists in using a code (the W-code) to encrypt
the P-code, yielding what is designated as the Y-code. The C/A-code is available
to the general public, as is the P-code; but of course not the Y-code, although there
is strong support to the idea of making the full capability of the system available to
everyone.

The C/A-code is generated by combining the outputs of two 10-bit fed-back
shift registers using binary addition modulo-2, that is, without “carrying.” The
clock rate for generating the C/A code is one-tenth the 10.23 MHz atomic-based
reference, that is, 1.023 MHz, and it is repeated every millisecond. The interval
between two bits in the code of just under 1 microsecond corresponds to the prop-
agation delay for an increment in the range of 300 meters. It is impressed only on
the L1 carrier wave in phase quadrature (displaced 90◦) to the Y-code, which is on
both carrier waves L1 and L2.

To generate the P-code is somewhat more complicated: It is a certain combi-
nation of two PRN sequences, each generated by two registers, repeating about
every 1.5 seconds, one containing over 15 million bits, while the other contains an
additional 37 bits. Because of the difference in the number of bits in the two PRN
sequences, the combined sequence will repeat only when a whole number of repe-
titions of the one sequence has an equal number of bits as another whole number
of repetitions of the second sequence. Expressed symbolically, if n1 and n2 are the
numbers of bits in the two PNR sequences, then the combined sequence will repeat
after p repetitions of the first sequence, or q repetitions of the second, provided
that p and q are the smallest whole numbers for which pn1 = qn2. For example,
if n1 = 6 and n2 = 4, then p = 2 and q = 3, and the combined sequence repeats
every pn1 = qn2 = 12 bits. Of course, in the language of elementary arithmetic,
12 is simply the least common multiple of 6 and 4. Getting back to the P-code, we
find that the sequence that results from combining one having about 15 million bits
with another of slightly greater number will not repeat until after about 200 trillion
bits! At the clock rate of 10.23 MHz, the interval between successive bits is less
than one-tenth of a microsecond (corresponding to a range interval of 30 meters),
and the code repeats every 266.4 days. The total code length is divided into one-
week segments, which are assigned to satellites defining their PRN identification
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number. To show explicitly the broadcast signal as a function of time, let SC/A(t),
SY(t), SD(t) be the sequence of +1/ − 1 constituting the binary codes C/A, Y, and
the navigational and other data. Then we have

L1 = a1SY(t)SD(t) cos(2πν1t) + b1SC/A(t)SD(t) sin(2πν1t),

L2 = a2SY(t)SD(t) cos(2πν2t),
19.2

where ν1 and ν2 are the frequencies of the carrier waves L1 and L2. The total navi-
gational data message consists of 1500 bits subdivided into 5 subframes, generated
at a clock frequency of 50 Hz, so that it takes 30 seconds for the whole message.
It contains the satellite orbital position (ephemerides) update, GPS and satellite
clock time including various numbers to model the satellite clock correction,
and other data of a “housekeeping” nature. The first subframe contains among
other things the GPS week number, numerical coefficients to model the satel-
lite clock correction, predictions of range accuracy, and age of data. The sec-
ond and third subframes contain the satellite ephemerides. The contents of the
fourth and fifth subframes change from one message to the next, repeating after 25
“pages”; the total information contained in all the different pages therefore takes
25 × 30 seconds, or 12.5 minutes, to broadcast. The pages of the fourth and fifth
subframes are broadcast by all satellites; in addition to those reserved for mili-
tary use, these pages contain data relating to the ionosphere, UTC, satellite health
status, and low-precision orbital data on all GPS satellites.

19.7.6 Corrections to Signal Propagation Velocity

To reach ground-based or airborne receivers, the satellite transmission must penet-
rate the ionospheric layers of the atmosphere, as well as the troposphere. Although
the velocity of propagation of the signal is little different from that in free space,
nevertheless, the great distances involved lead to an accumulated effect on the
arrival time of the signal, which because of dispersion differs for the two carrier
frequencies L1 and L2. It can be shown on the basis of a simple model, in which
the electric field component of the radio wave drives otherwise free electrons
into oscillation, that the frequency dependence of the phase is approximately as
follows:

Vphase = c√
1 − 80.6Ne

ν2

. 19.3

The electron concentration Ne is stratified horizontally, increasing stepwise with
altitude from the E-layer with around 1011 electrons/m3 at 100 km to the F2-
layer above 300 km with around 1012 electrons/m3. At the GPS signal carrier
frequencies, the effect on the velocity is on the order of 3 parts in 105; this cor-
responds to a correction on the order of 10 m. We should note that for a disper-
sive medium, such as the ionosphere, it is necessary to specify exactly what the
velocity refers to: Is it the crests of an infinite wave train, or the leading edge
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of a pulse, or what? We recall that a complex waveform can be analyzed into
its Fourier frequency components, and these will travel with different velocities,
so that the waveform will in general change while it advances, leaving no fea-
ture whose rate of advance would be useful to define the velocity. If the wave-
form is such that its spectrum is contained in a narrow range centered on one
frequency, such as we have in each of the GPS broadcasts, then the modulation
pattern on the carrier is preserved and travels with the so-called group velocity.
In the case of propagation through the ionosphere the group velocity is smaller
than the velocity of light in free space, while the phase velocity is greater. Hence
pseudo-ranges derived from time-code matching are based on a different veloc-
ity from those based on the relative phase between the carrier wave and local
reference oscillator. It is interesting to note in passing that there are instances
where the computed group velocity is actually greater than the velocity of light
in free space: The dispersion in such media is described as anomalous. In the
days before Einstein’s theory of relativity this would not have been considered
particularly unsettling; as it was, in the early days of that theory, there was gen-
eral relief when Sommerfeld and Brillouin showed that in fact the beginning of
a radio transmission always travels with just the velocity of light, and that sig-
nal velocity is not the same as the group velocity in cases where the dispersion
is anomalous. The signal velocity is always less than or equal to the velocity of
light.

As already pointed out, the concentration of electrons in the ionosphere Ne and
its distribution with respect to altitude vary according to exposure to the sun and
sunspot activity. Furthermore, the radio waves must pass through the layers of the
ionosphere along a path that obviously varies with the position of the satellite in its
orbit. The ionospheric correction to the signal delay must therefore be continuously
monitored. This is the justification for using the two broadcast frequencies, L1 and
L2; the signal delays provide two numbers to solve for the two unknown quantities:
the pseudo-range and the effective electron concentration.

Unlike the ionosphere, the neutral troposphere is nondispersive; that is, the
velocity of a wave does not depend on its frequency, and there is no difference
between the velocity of propagation of the phase of the carrier and the modulation
impressed on it. The refractive index is a function of the atmospheric tempera-
ture, pressure, and water vapor concentration. Several semiempirical models of
the refractive index as a function of altitude have been developed; based on one
of these the tropospheric delay is estimated along the slant path from the satel-
lite to the receiver. The correction for this amounts to only a few meters in the
pseudo-range.

19.7.7 The User Segment

Finally, we come to the user segment of the system. This serves in addition to the
military services a large and expanding body of civilian users: navigators ranging
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from those of high-speed aircraft, to pleasure boat operators, to hikers in the woods.
With the ongoing drive to make the full capabilities of the system accessible to the
general public it may not be long before GPS is incorporated into a multitude of
technologies affecting the lifestyle of ordinary people.

The types of GPS receivers currently available are many, and they vary widely
in sophistication and cost. They may have special features to enhance their perfor-
mance in specific applications, such as high-speed navigation, or large-scale sur-
veying, or precise synchronization of remote clocks. But basically, they are special
radio receivers with precise phase/time tracking and navigational data processing
capabilities.

As radio receivers, their first essential component is the antenna. For a GPS
receiver, the design of the antenna and it physical environment are particularly
important. Ideally, it should convert the oscillating electric (or magnetic) field com-
ponent of an otherwise freely propagating wave into an oscillation of current in the
receiver circuitry. The phase of that current oscillation must track exactly that of
the wave, allowing at most a fixed phase offset irrespective of the orientation of
the antenna. This is obviously crucial in applications where the receiver is subject
to rapid movement. To receive signals from several different satellites, whether
simultaneously or sequentially, requires an antenna whose response is not strongly
dependent on the direction of the incoming wave; that is, it should be omnidi-
rectional, although it is desirable to discriminate against low-elevation signals,
which are likely to be contaminated by spurious reflected waves. The directional
properties of a simple dipole antenna (a straight conductor) or loop antenna rule
them out; most antennas in general use are microstrip antennas. The antenna sec-
tion of the receiver may include a pre-amplification stage and a down-conversion
of the frequency before transmission to the radio-frequency section. Some units
are designed to receive only the primary L1 frequency, whereas others receive both
L1 and L2.

In the radio frequency section, the phase of each carrier frequency is tracked
using a phase-lock loop, in which the phase of a controlled oscillator is locked to
that of the received carrier using the output of a phase-comparator in a feedback
loop. The separation of signals from the different satellites is achieved using corre-
lation techniques on the C/A pseudorandom number codes. The locally generated
code is automatically shifted in time to produce a maximum correlation with the
incoming signal; the time shift gives, aside from clock errors etc., the wave prop-
agation delay. An important indicator of the degree of sophistication and cost of
a receiver is the number of satellites it can track simultaneously. Either the signal
from each of four satellites is directed along separate parallel circuits, constituting
four channels, or the same channel may be used to sequentially process the signal
from different satellites. Lower-cost units are of the latter type.

In addition to the radio frequency section, a microprocessor is incorporated
in a GPS unit with memory, keyboard and display. This is necessary, of course, to
make all the necessary corrections to the observed time delays, to use the broadcast
ephemerides of the satellites, and to solve the equations to obtain the coordinates
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satellite

receiver

Figure 19.7 Multipath signals produced by reflections from the environment of the antenna

and time of the user. Care must be exercised in the choice of location of the antenna;
even the best geometric and electrical design of the antenna will be to no avail if
the physical surroundings can reflect portions of the wavefront, causing them to
arrive at the antenna along different paths, as shown in Figure 19.7. The differing
delays thus produced in the arrival time of the signal are called multipath errors.



Chapter 20
Atomic Clocks and Fundamental Physics

20.1 Introduction

Finally in this chapter we will describe contributions of atomic clocks that go
beyond precision time-keeping and its applications, important though these are.
Indeed it would be difficult to exaggerate the importance of the impact that such
exquisitely stable time standards have already had on civilian and military techno-
logy and culture. However, the degree of precision, unimaginable only a few years
ago, that has been achieved in the determination of quantum transition frequencies
in a variety of atoms and ions, has made it possible to subject to ever greater
scrutiny fundamental physical theory, theory that delves deep into the ultimate
structure of the universe and the forces that shape its behavior, from the cosmic
scale down to the subatomic scale. Tests for extremely subtle violations of sym-
metry properties that are at the foundation of unified field theories of our universe
are now possible using earth-bound and spacecraft experiments based on atomic
clocks.

The principal challenge currently facing those engaged in the study of fund-
amental physics is a Theory of Everything (T.O.E), that is, a unified theory in which
the four primary forces of nature arise naturally and logically in a quantum theory
that is compatible with the space-time concept of general relativity, at least in some
approximation. These forces are the electromagnetic one responsible for the forma-
tion of atoms and molecules, the gravitational force that keeps the earth in its orbit,
the short range strong nuclear force that binds the protons and neutrons in atomic
nuclei, and the weak nuclear force usually described as responsible for radioactive
β-decay. Much like the beginning of the twentieth century when classical (19th cen-
tury) physics came to an end with the emergence of relativity and quantum theory,
we are now at the beginning of a new century that will see no doubt the develop-
ment of radically new approaches to the solution of the unified field problem, a
“holy grail” that was sought by Einstein during the second half of his life, essen-
tially without success. The accommodation of the force of gravity into a unified
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quantum field theory has proved to be a Herculean task much worse than cleaning
the stables of King Augeas!

However the development of field theories of the weak and strong nuclear
forces proved to be less daunting, and toward the latter part of the last century,
a quantum field theory describing these forces, given the fanciful name quantum
chromodynamics had been worked out The successful amalgamation of the elec-
tromagnetic with the weak force occurred in the 1970’s and is associated with the
names of the Nobel laureates Glashow, Abdu-Salam and Weinberg, who showed
that at sufficiently high energy, such as might have been present soon after the
Big Bang, these forces are in fact one. There followed intensive experimental
verification of results of high energy interactions among elementary particles pre-
dicted by this combined theory, and in all cases a remarkable degree of agreement
between theory and experiment was found. As a working theory based on certain
input numerical parameters concerning the interacting elementary particles, ade-
quate to the rationalization of experiments realizable in the laboratory, it has been
called the Standard Model.

The marriage of Einstein’s theory of gravitation with the Standard Model has
so far failed, although it is postulated that the gravitational field must be quantized
and a name has been given to the quantum of gravity, the graviton that mediates
the gravitational force in a similar manner to the photon’s role in an electromag-
netic interaction. The stumbling block in trying to incorporate gravity in a quantum
field theory has been the incompatibility of a space-time continuum description
in terms of which Einstein’s theory of gravity is formulated, with the divergent
quantum fluctuations in its ultimate microscopic structure. The scale of length
relevant to the discussion of where quantum and gravity “meet” is thought to be
what is referred to as the Planck length. For lack of a more precise theory one can
apply dimensional analysis to obtain an expression for the Planck length involving
what are presumed to be relevant constants, namely G, Newton’s gravitational con-
stant (6.67 × 10−11m3kg−1s−2), c, the velocity of light (2.998×108ms−1) and h,
Planck’s constant (6.626×10−34 kg · m2 · s−1). The result is given by:

L =
√

Gh
c3 ≈ 10−35m

That this extremely small number should arise naturally in any unified theory is
reminiscent of Dirac’s large number hypothesis. P.A.M. Dirac, the towering figure
in twentieth century physics – some would rank him right alongside Einstein –
once postulated that there might be a relationship between certain dimensionless
(independent of any system of units) numbers in physics. A prime example is the
so-called fine structure constant α = 2πe2/hc, initially introduced by Sommerfeld
in calculating the fine structure in the optical spectrum of hydrogen. Numerically
the measured value of 1/α is about 137, a pure number that any theory must be
able to predict. Among the significant large numbers that Dirac cited is the age of
the universe expressed for example in terms of the period of a quantum transition
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in an atom, a number which according to the Big Bang theory is a well-defined
number. It turns out this number is in the neighborhood (give or take a factor of
10!) of the ratio between the electrical and gravitational forces an electron exerts
on another. If indeed these numbers are interdependent, then since the age of the
universe obviously increases in time, the ratio of forces between electrons must
also vary in time. . .

This is not so far fetched; in fact, early in the twentieth century Ernst Mach
wrote on the subject of forces originating in distant bodies in the universe and
their role in affecting inertia and the dynamics of bodies on the earth. It was
Einstein who, in 1918, coined the name Mach’s Principle, by which he meant that
the “metric field” of space-time and therefore the geodesic (the shortest distance
between two points) along which a body moves is completely determined by the
mass-energy distribution throughout the universe.

Early interest in experimental tests of the validity of Mach’s Principle was
motivated by the question of the isotropy of space, which forms part of Lorentz
covariance, the foundation of Einstein’s theory of Special Relativity. Thus in 1960,
V.W. Hughes, et al. at Yale University carried out experiments on the possible
anisotropy of inertial mass of particles on earth by virtue of the distribution of
mass in our galaxy being anisotropic with respect to the earth. Using a high reso-
lution nuclear magnetic resonance spectrum of the 7Li nucleus (I = 3/2), in a
magnetic field of about 0.5 T, they established an upper bound �m/m < 10−20.

20.2 Einstein’s Equivalence Principle (EEP)

The founding principle of Einstein’s formulation of general relativity derives from
the elementary Galilean observation that all bodies fall under gravity the same way,
irrespective of their mass or composition. Isaac Newton was aware of a more gen-
eral property of gravity, namely that two bodies moving in the gravitational field of
a third will experience an acceleration that does not depend on the mass or compo-
sition of the two bodies. He understood that this implied that the inertial mass of
a body that determines its acceleration under the action of a force is equal to its
gravitational mass that determines its strength as a source of the gravitational field,
irrespective of its composition. This, in effect, is a statement of what is called the
weak equivalence principle (WEP). On the basis of this, Einstein abandoned the
idea of gravitation as exerting a force on bodies causing them to move a certain
way in favor of a geometrical theory in which the bodies move along geodesics
that are shaped by the presence of concentrations of matter/energy. Einstein went
a step further enunciating a stronger form of the principle (EEP), which states that
the gravitational field in the neighborhood of any point can always be transformed
away by a suitable co-ordinate transformation. This together with the following
symmetries constitute the totality of Einstein’s Equivalence Principle: For any
local non-gravitational experiment, the outcome is (1) independent of the orienta-
tion and velocity of the experiment relative to the gravitational field (local Lorentz
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invariance), and (2), independent of the time and position in the gravitational field
the experiment is conducted (local position invariance).

20.3 Lorentz Symmetry

Recall that covariance under the Lorentz transformation of space-time co-ordinates,
which in the Minkowski interpretation corresponds to a rotation in a 4-dimensional
manifold, formed the foundation of Einstein’s Special Theory. We should distin-
guish between covariance with respect to purely spatial rotations from those
involving the time axis, sometimes referred to as boosts, or hyperbolic rotations,
which correspond to change in the velocity.

As indicated in a previous chapter, the abandonment of an absolute and univer-
sal time in Einstein’s theory of relativity means that an operation as fundamental as
the synchronization of remote clocks requires careful redefinition, which may not
even be possible unambiguously in certain gravitational fields where there is a cir-
culation of matter. This obviously brings into question the very idea of simultaneity
of events occurring “at the same time” at separated points.

The concept of simultaneity clearly bears on the question as to whether an
event, defined as something occurring at a given point in space at a particular time,
precedes or follows another event; it is no less than a question about the future
and the past. Now, the concepts of cause and effect, which are at the very founda-
tion of empirical science, have meaning only when the relationships of earlier and
later have a well-defined meaning, independent of the state of the observer. This,
according to relativistic theory, imposes a restriction on events that are admissi-
ble as possibly connected as cause and effect. This restriction arises essentially
from the fact that according to the theory, no interaction can propagate faster than
the velocity of light. The relationship of events occurring at different points and
at different times are best presented using graphs plotted with respect to a set of
Cartesian coordinate axes. In the spirit of relativity, events are represented as world
points, that is, points having four coordinates, the three space coordinates x , y, z
and time t , as shown in Figure 20.1.

In terms of such a representation, the events whose world points lie in the inte-
rior of a certain geometric cone, called the light cone, are the only events that can
be related to the event represented by the origin of the coordinate system as cause
and effect. The light cone is defined as having its axis along the t-axis and its sur-
face inclined to that axis at an angle whose tangent is numerically equal to the
velocity of light, 2.99797 × 108 meters per second. Events represented by points in
the upper half of the cone are in the absolute future and those in the lower half in
the absolute past relative to an event represented by the origin. All events that are
represented by points outside the cone can occur before or after the event at the ori-
gin, according to the state of relative motion between their coordinate systems and
that of the observer. Of course, the very idea that one event can occur either before
or after another event depending on the relative motion of the observer runs counter
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Figure 20.1 Graphical representation of the light cone separating “world points” that are in
the absolute future and past relative to the origin

to our intuitive sense of absolute time and time ordering. We cannot quite escape
the notion that the time ordering merely appears to depend on the state of relative
motion, as some sort of illusion. This attitude presumes an underlying “reality”
that forms a backdrop against which the observed universe can be compared, and
thereby the “effect” of relative motion made manifest. The fact is that the instinct
to look at time as an absolute is misdirected.

On a terrestrial, human scale, where these radical non-intuitive relativistic
effects are extremely small, the precision which the new frequency standards have
made possible puts them beyond the point of mere detection but of precise study.
Other effects such as the gravitational red shift and the Sagnac effect, described
in Chapter 7, will in the foreseeable future, be subject to intensive observational
study using ultra-stable atomic clocks and the ability to transfer ultra-precise time
between distant points.

20.4 Symmetry in Fundamental Physics

Symmetry is a fundamental principle in the structure of physical theory, intimately
connected with conservation laws specific to different symmetry operations. For
example the conservation of angular momentum about an axis is associated with
symmetry with respect to rotation about that axis.
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Symmetry takes many forms: Any operation on a physical system, such as a
reflection in a plane or rotation about an axis or displacement along a straight line
that results in the system being indistinguishable from the original is called a sym-
metry operation. Regular solids such as a cube or sphere may possess symmetry
with respect to several operations. Thus a cube has 9 mirror planes, three 4-fold and
four 3-fold rotation axes, that is, axes about which complete rotations take the cube
through four or three indistinguishable positions. A sphere can be rotated through
any angle about any axis passing through the center and the result is indistinguish-
able for any angle: This is spherical symmetry. More generally, whether it is an
object such as a cube or a mathematical expression, we are dealing with a form or
property returning, after some type of transformation of relevant variables, to the
form it had initially. For the cube it was its invariance under a transformation of the
angle variables defining its orientation, or reversal of signs of coordinates defining
mirror images.

One of the most fundamental questions in the realm of elementary particle
physics, where the fundamental building blocks of matter are studied, is what types
of symmetry do the particle interactions exhibit from which conservation laws can
be deduced. When elementary particles of matter are broken up into their elemen-
tary constituents through high-energy collisions in accelerators, many of these frag-
ment particles keep their identity for only very short intervals of time before other
particles are created through their decay, which in turn decay into still other parti-
cles. This leads to a complex genealogy, which has been largely reduced to some
order thanks to the conservation laws associated with symmetry properties. These
go well beyond the familiar conservation of energy and momentum. They are asso-
ciated with various kinds of symmetry in the (quantum) mathematical expressions
describing the particle interactions, a fact of profound importance that cannot be
discussed within the compass of this book. The conservation of momentum (both
linear and angular) and energy are associated with the invariance of the system with
respect to any (continuous) displacement of its linear and angular position, or the
origin of the time coordinate. The existence of these symmetries in a system means
that the choice of the position of the origin and orientation of the coordinate axes
can be made arbitrarily; indeed, the sense that our space is uniform and isotropic
is so ingrained that these choices are made arbitrarily without our being conscious
of their having any possible physical implications.

Other symmetries of profound importance are those under the operations of:
(1) charge conjugation (C) in which the signs of all the charges are reversed,
thereby replacing particles with antiparticles, and vice versa, (2) symmetry under
a change of sign of all the spatial coordinates (P) and the reversal of time (T).
The latter two symmetry operations deserve further explanation to appreciate their
significance.

It may at first seem that P is no more than a matter of convention as to the
relative positive directions chosen for the x-, y-, and z-axes. Actually, unless
the system is symmetric under inversion, it matters very much how the positive
directions of the axes are chosen. This is best shown by an example: Consider the
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Figure 20.2 A right-handed screw is transformed into a left-handed one by reflection in a
plane mirror

geometrical figure called the helix, as embodied, say, in the threads of a machine
screw or a wire spring, as illustrated in Figure 20.2. This figure, as well as the coor-
dinate axes themselves, can be right-handed or left-handed; this distinction must
be made, since there is no proper rotation that will take one type into the other.
A right-handed screw cannot be made into a left-handed screw simply by changing
its orientation; nor can coordinate axes belonging to one type be brought into coin-
cidence with the other type by any proper rotation. If we take the coordinates of
points lying on a given helix with respect to some coordinate axes, change the sign
of all the coordinates, and replot them on the same set of axes, the result will be
another helix, but with the opposite helicity; that is, a right-handed helix becomes
left-handed, and vice versa. Furthermore, we can verify that the result of inversion
can also be achieved by a mirror reflection followed by a proper rotation, so that
the mirror image of a right-handed screw is a left-handed one. The invariance of
a physical interaction between particles under reflection through the origin means
that the interaction and its consequences are indistinguishable from their mirror
image, and cannot depend on the choice of “handedness” in the coordinate system
used to describe them. This is more than a mathematical curiosity; where it exists,
an important conservation law flows from it, namely the conservation of what is
called parity. This term is used in this context to mean the attribute of a mathe-
matical expression describing the quantum state being odd or even, in the sense of
whether its sign simply changes or remains unaltered when the signs of the coordi-
nates are changed. Thus finally, in an interaction that conserves parity, if the system
starts in a state of definite parity it must retain it throughout the interaction: A state
of even parity remains even, and similarly for an odd state.

In quantum mechanics, parity of states plays an extremely important role, for
example in the analysis of atomic and nuclear spectra. It had tacitly been assumed
from the beginning that parity is always conserved, that the universe and its mirror
image are indistinguishable. It happens, however, that there is an important exam-
ple of a particle interaction in which this type of symmetry is “broken,” namely
the so-called “weak interaction,” which is responsible for the radioactivity of some
atomic nuclei in the form of high-energy electrons (beta particles). The violation
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of parity conservation was postulated by Lee and Yang in 1956 to explain what
seemed bizarre decay patterns of certain fundamental particles and was brilliantly
confirmed in the laboratory by Wu et al. using beta emission from oriented cobalt
nuclei at temperatures approaching absolute zero.

Of more interest to us, however, is the discovery many years later by Fitch and
Cronin (Fitch, 1980) that in the decay of a certain elementary particle, called K◦,
into two other elementary particles, π+ and its antiparticle π−, there is a break
in the symmetry under the combined operations of charge conjugation and spatial
coordinate sign reversal, referred to as CP violation: This strongly suggests that
time-reversal invariance is also violated, since it is expected on the basis of a the-
orem that goes to the very foundation of quantum field theory, known as the CPT
Theorem, that all systems should be invariant under the combined operations of
C, P, and time reversal, T.

20.5 The CPT Symmetry

In recent years the search for a restructuring of fundamental physical theory to
accommodate gravity in a quantum field theory has led to interesting possibilities
that call into question the symmetry (or lack thereof) of physical laws under the
combined transformation of CPT. Of these operations time reversal (T) symme-
try remains to be examined as to its implications. It is simply symmetry under
physically reversing the direction of time, as we would if we ran a motion picture
backwards. The fundamental question is whether the laws of physics are symme-
trical with respect to the reversal of time; that is, whether all the laws of physics
governing the phenomena depicted in the time-reversed movie are indistinguish-
able from those in real life. In other words, can we tell, through any analysis of the
action observed, whether a movie is being projected forwards or backwards.

The answer based solely on our everyday experience is an obvious yes! How-
ever, we must not, of course, use as criteria for distinguishability common human
practices or expected patterns of behavior of living objects. It would not be difficult
to conclude that a movie is being projected backwards if it shows all the cars racing
down a highway backwards! Such a bizarre picture would not violate any physical
law, but our knowledge of traffic laws makes it quite certain that the movie is being
run backwards! In the realm of everyday experience there would seem to be little
question about it: Time is an arrow, pointing in one direction, from a definite past
to a definite future.

Quite apart from examples of the kind just cited, however, there are common
experiences that are, for far more fundamental reasons, never observed in the
reverse direction of time. For these so-called irreversible processes time indeed
does seem to point one way. There are many obvious examples of this: the act of
dissolving a spoonful of sugar in a cup of coffee, and the cooling of that coffee; or
on a far more complex level, the aging process in animals.
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But the laws of physics, except possibly those operating in the realm of high-
energy subatomic particle physics, are in fact symmetric with respect to time
reversal, and the irreversibility of the processes mentioned above has to be recon-
ciled with the physical laws involved. The time reversal invariance of Newton’s
laws of motion, for example, can readily be verified on a process sufficiently lack-
ing in complexity, such as a two-particle collision, as exemplified by two ideal
billiard balls colliding on a frictionless table top. In such a case there is absolutely
no way of knowing the direction of time (assuming that the man with the billiard
cue is out of the picture). However, in the examples of the coffee cup or the aging
animal cited above, we are dealing with systems that comprise a vastly greater
number of variables, with complex internal structures involving chemical and ther-
mal processes. The reconciliation of the large-scale global irreversibility of the
processes undergone by these complex systems with the microscopic particle-on-
particle interactions that are reversible was a major challenge in the history of
physics. Its solution, and the great advances made in the branch of physics called
statistical mechanics in the 19th century, are due mainly to Boltzmann, a name with
which we are already familiar.

In order to understand the basis of the arguments that provide a way out of
what appears a logical dilemma, consider a much simpler example that nevertheless
retains the essentials of the problem. Suppose a shotgun is discharged, resulting in
a large number of lead shot from the cartridge being scattered at high velocity,
usually, it is hoped, in the direction of some hapless game bird. It would indeed
seem miraculous if the time-reversed sequence were ever witnessed, in which a
large number of lead shot starting from widely scattered points converged on the
muzzle of a shotgun and into a cartridge!

Now, because the classical equations of motion are symmetrical with respect
to time reversal, if a particle starts from its final position with precisely the reverse
of its final velocity, it will return along the same trajectory to precisely its orig-
inal position, with the reverse of the original velocity. Thus if the motion of an
individual shot could be followed by some form of high-speed cinematography,
then a reversal of the motion picture would show a motion equally in conformity
with the equations of motion. Again, we must exclude air resistance, since this
introduces interactions with a vast number of particles (the air molecules), whose
motion would then have to be included.

The question remains; Why is the process observed to proceed in only one
direction in time? The answer essentially rests on the knowledge or lack of know-
ledge of the positions and velocities of all the particles involved. If the act of
discharging a shotgun was one requiring that every single lead shot should hit a
precisely prescribed point in the target area with a precisely prescribed velocity,
then firing a shotgun would be just as rare an event as having the same number
of lead shot converging from the target area back into the muzzle of the shotgun!
If the discharge of a shotgun is depicted in an ordinary motion picture, and it is
run backwards starting at a point where the lead shot have almost reached the
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target area, we have set up an initial state consisting of the scattered lead shot
in their final positions and reversed final velocities. With these very special initial
values, the lead shot would indeed go right back into the muzzle of the shotgun!
Of course, in principle, it would be possible to set up an elaborate set of mecha-
nisms that could project lead shot with precisely prescribed velocity vectors from
precisely the right points in space so that they all converge more or less simulta-
neously onto the muzzle of a shotgun; and it is possible that the National Science
Foundation would fund such a project! But that is not what we see when we view
the backwards-run movie; the lead shot are all miraculously in the correct initial
state.

In summary, when the motions of particles are followed in microscopically
fine detail, time reversibility is observed in accordance with the invariance under
time reversal of the equations of motion. That is, there is no preferred direc-
tion to time. However, on what is called a macroscopic scale, in which we deal
with large, complex systems comprising a vast number of constituent particles in
their broad behavior, there are certain processes that are irreversible. To observe
these processes in reverse would require the presetting of such a large number of
initial positions and velocities that it would be as unlikely as the proverbial mon-
key randomly hitting the keys of a typewriter and coming up with Shakespeare’s
Hamlet!

Without getting into the matter more deeply, we will simply state that such
irreversible processes are always ones in which a state of “order” leads to one of
higher “disorder.” It was Boltzmann who gave definitions of what should be an
appropriate measure of disorder, called entropy. Loosely speaking, it refers to the
number of possible assignments of position and velocity to the particles making
up the system of a given total energy and occupying a given volume. It is a law
of nature that time flows in the direction in which the universe evolves into a state
of increasing disorder. In applying this law, care must be taken to include in the
definition of the “universe” all interacting entities.

Finding an explanation that reconciles the unidirectional flow of time for
macrosystems consistent with the microscopic reversibility of time does not prove
or disprove the validity of that reversibility for physical processes involving par-
ticles at a fundamental microscopic level. And in fact, the experimental evidence
suggests that indeed time-reversal symmetry may be broken in the particular decay
process of K◦. Of course, the significance of this result lies in its implications for
physical laws as they apply at the most fundamental level, to processes involving
the creation and decay of elementary particles. As already mentioned in the limit
of the Planck distance scale it is possible that CPT symmetry is violated, casting
doubt on the above conclusion.

For us it can only be a source of wonderment as to how sophisticated physical
theory has become and how divorced from everyday experience the concept of time
has evolved.
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20.6 The String Theory

At present a good deal of experimental fervor centers on the question of whether
with sufficiently powerful techniques violations of Einstein’s Equivalence Principle
and/or Lorentz symmetry might be detected in ground-based or spacecraft experi-
ments. This is driven by the so far incomplete attempt to demonstrably integrate
gravity into a quantum field theory, an attempt which has given rise to radically
new postulates as to the fundamental structure of space-time, as exemplified by
The String Theory. As already stated, the incompatibility of present day quantum
field theory with relativity theory stems from the divergent quantum fluctuations
in the space-time continuum at the ultimate microscopic Planck distance scale of
10−35 m. The String Theory seeks to circumvent this difficulty; it postulates that
the fundamental particles of which the universe is composed are not point particles,
but have a (multi-dimensional) filamentary structure that executes different modes
of vibration, and have therefore different energy/mass. Unlike the Standard Model
which requires for its application inputs relating to the characteristics of interacting
particles, on the basis of which predictions can be made as to reaction rates, for
example, the String Theory does not have such “adjustable parameters”. It claims
to account for all observed particles and interactions and their interactions.

It has been pointed out by Kostelecký, et al. that Lorentz symmetry breakdown
may occur in many string theories, with or without CPT symmetry violation, and
that clock-comparison tests present a sensitive probe for Lorentz violation. Recent
theoretical work by Kostelecký has resulted in the Standard Model Extension,
which includes elements that violate Lorentz symmetry, and explicitly gives the
expected results of clock comparisons using different species of reference atoms
or ions.

These theoretical developments have intensified interest in tests of EEP and the
constancy of physical constants such as α, the fine structure constant. Extremely
small upper bounds have been established for variations in α using geological,
astronomical, and spectroscopic methods. Since the constancy of this important
“constant” bears on the long term constancy of atomic clocks, we will briefly men-
tion the way these methods were applied.

The geological method relies on the dating of a natural nuclear reactor in a
uranium mine near Oklo in Gabon, as having taken place some 2 billion years
ago! By careful analysis of the ratios of isotopes of the fission products, such
as samarium, an estimate can be made of the value of α at that time. The result
was that the upper bound for the change over that period amounts to 2 parts in
108. Astronomically, the absorption spectra of light received from distant quasars
due to intervening interstellar gases were analyzed under high resolution using the
European Kyene 8.2 m telescope. The quasars studied varied in distance between
6 and 11 billion light-years, so that it was possible to compare possible differ-
ences in the value of α at different times in the past few billion years. Clearly
it is an exceedingly difficult experiment, requiring the use of the large telescope;
the signal-to-noise ratio is nevertheless very small, and extended observation times
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were required to build up sufficient statistics in determining possible shifts in the
absorption line spectrum. These two methods have the obvious advantage of enor-
mous time spans compared to earth-based experiments, an advantage somewhat
mitigated by the extremely high frequency resolution of atomic clocks.

A recent series of measurements carried out by the NIST Boulder group over
a period of two years compared the frequency of an optical clock operating on
the quadrupole transition in 199Hg+ with the Cs microwave frequency standard.
The choice of quadrupole versus magnetic hyperfine transition frequencies was
made, of course, in order to have different dependences on α. In fact the authors
(Bize, S. et al. 2003) quote recent atomic structure calculations as giving the frac-
tional time variation of the measured frequencies as proportional to α6. The experi-
mental upper bound on the rate of variation of the ratio of the two frequencies is
given as ±7×10−15yr−1.

20.7 Experiments on ISS (International Space Station)

Several projects are planned to be carried out on ISS devoted to the testing of some
fundamental aspects of physical theory involving space and time symmetry; the lit-
erature is already quite extensive on the subject and a good review can be found in
Lämmerzahl, C., et al. (Lämmerzahl 2004). Primarily the objective is to exploit the
microgravity environment to push to the ultimate sensitivity tests of such funda-
mental properties of space-time as Einstein’s weak equivalence principle and local
position invariance (the red shift) and possible violations of Lorentz and CPT sym-
metry. The microgravity environment of the ISS affords a number of experimental
advantages: long observation times on free atoms, freedom from environmental
perturbations and noise, large orbital velocities and large variations in altitude, to
name a few.

The general experimental approach is to compare the frequencies of two ultra-
stable atomic clocks operating on different transitions in different atomic species.
One clock, the reference, is chosen to be based on a (magnetic) “field independent”
transition between states having m F = 0, since according to the Standard Model
Extension it does not exhibit violations of CPT or Lorentz symmetry. The other,
the test clock, may operate on, for example, a Zeeman hyperfine transition, such as
(F = 1, m F = 1) → (F = 0, m F = 0). As the space station pursues its motion
around its orbit the direction of the axis of quantization of the test oscillator will
vary with respect to (say) the vernal equinox, making any violation of Lorentz
symmetry observable as a frequency shift relative to the reference clock.

The investigation of the red shift requires a determination of the precise ratio
of the two clocks aboard ISS and a real time comparison of that ratio with a similar
one pertaining to an identical pair of clocks on the ground. This would test whether
contrary to Einstein’s theory the red shift depends on the atomic species of the
clocks.
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20.7.1 PARCS

PARCS is an acronym for Primary Atomic Reference Clock in Space, a NASA-
sponsored program to develop a space-qualified Cs clock which was originally
projected to fly on the International Space Station (ISS) in approximately 2005.
The program has been delayed and its very viability has been put in jeopardy by
the Columbia space shuttle failure in 2003, compounded by budgetary demands of
the U.S. war in Iraq. Furthermore in 2004 the U.S. Administration announced a
new long term strategic plan for NASA with emphasis on manned flight, making
the future of PARCS and even ISS itself uncertain.

PARCS began as a collaborative effort involving several groups, principally
at the NIST, the Jet Propulsion Laboratories, Politecnico di Torino, University of
Colorado and the Harvard Smithsonian Center for Astrophysics. The mission is
based on a laser-cooled, space-hardened Cs beam standard, part of an on-board
package which includes a hydrogen maser and another ultrastable clock, the
so-called Superconducting Microwave Oscillator (SUMO), operating on a funda-
mentally different principle, which will also be used to conduct research on Spe-
cial Relativity and a differential red-shift test of General Relativity. By accurately
comparing the PARCS output frequency with that of SUMO for different cavity
orientations the constancy of the velocity of light can be subjected to tests similar
to those of the classical Michelson-Morley and Kennedy-Thorndike experiments,
except with greater precision, particularly in the latter. Other objectives include the
study of laser-cooled atoms in microgravity and to upgrade the precision of global
time dissemination and ultimately global navigation on earth.

The PARCS Cs clock “physics package”, as NASA bureaucrats would call it,
consists of a laser-cooled optically pumped Cs beam standard with an 87 cm overall
length (including magnetic shields) and a Ramsey cavity 40 cm long, which is actu-
ally two T011 cavities resonant at the clock frequency, joined by a linear resonant
structure. To minimize the sensitivity of the phase difference between the ends of
the Ramsey cavity to the temperature, the two T011 cavities are mistuned by five
line widths from the clock frequency.

The Cs source is what is described as a lin ⊥ lin optical molasses source, with a
(1,1,1) launch geometry. This is an esoteric way of describing a laser beam config-
uration consisting of three pairs of counter-propagating linearly polarized beams,
aligned along the three coordinate axes, which are oriented so that the atomic beam
axis is in the (1,1,1) direction (making equal angles with the axes). The directions
of linear polarization of the laser beams in each pair are perpendicular to each other,
similar to the configuration assumed in the discussion of the Sisyphus effect in the
last chapter. The temperature of the atoms in the molasses is designed to reach a
value on the order of 2 μK. They are accumulated in the source region and launched
in the form of “balls” containing on the average 5×106 atoms in the m = 0 state
at the rate of 2 per second. The velocity of the atoms in the beam can be varied
leading to a drift time in the Ramsey cavity that can range up to 10s. The design



458 The Quantum Beat

goal for the fractional frequency uncertainty is an ambitious 3×10−17, as limited
by the known systematic errors and projected duration of experiments.

20.7.2 PHARAO

PHARAO is the acronym for Projet d’Horloge Atomique par Refroidissement
d’Atomes en Orbite, part of a European Space Agency (ESA) sponsored mission
called Atomic Clock Ensemble in Space (ACES). Like PARCS it is also a space-
hardened, laser cooled, optically pumped Cs beam clock. Together with a hydrogen
maser, a primary objective is to establish a time scale that can be compared with
terrestrial clocks with a fractional error of 10−16, a considerable improvement
over current GPS capability. In addition the gravitational red shift will be mea-
sured, and the constancy of the fine structure constant will be tested. By studying
the microwave propagation delays in communication between satellite ACES and
ground-based clocks a search will be made for any dependence of the velocity of
light on the direction of propagation.

It is scheduled to fly on the European module Columbus of the International
Space Station before the end of 2007. A prototype of the clock was constructed
and successfully tested in 1997 on board a zero–g aircraft. The same year, ESA
approved ACES, which integrates the Cs clock with a hydrogen maser and time-
frequency transfer equipment to carry out fundamental physics experiments.

The principles of operation are identical to PARCS with differences only in
the detailed design of subsystems such as the laser diodes, the Ramsey cavity
and the synthesis of the interrogation microwave frequency. Particular effort was
devoted to reduce the noise on the fluorescent detection signal due to laser intensity
and frequency fluctuations by an especially designed extended-cavity diode lasers
servo-locked to Cs in a cell. This leaves the fundamental quantum projection noise
to determine the short term stability, making it necessary to maximize the number
of atoms by limiting the loss of cold atoms during their passage from the molasses
capture region to their final detection. The loss of atoms through collisions with
background gas is kept below a few per cent by maintaining a vacuum pressure
below 10−8 Pa. Graphite getters capture Cs atoms escaping from the capture zone
of the molasses, and a relatively low density broad beam of cold atoms remains.
The density must be kept low in order to reduce the frequency shift due to spin
exchange collisions between the Cs atoms (see Chapter 11) To accommodate the
relatively broad beam, the design of the Ramsey cavity is a non-traditional ring
cavity that allows large apertures (8 mm × 9 mm) while maintaining a minimum
internal phase perturbation. The design objective for the fractional frequency insta-
bility is 1013τ−1/2 and for the accuracy one part in 1016!

The technical achievements in the last two decades in the field of atomic clocks
have made it possible to reach the depths of fundamental physical theory, particu-
larly when applied in the microgravity of the ISS. It is profoundly to be hoped that
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grandiose political promotion of manned flight to Mars will not be allowed to suck
limited funding from this basic research.

20.7.3 RACE

RACE is an acronym for Rubidium Atomic Clock Experiment. This project slated
for 2010, is based on an advance high-flux Rb87 atom laser-cooled double MOT
beam source that allows multiple launches of Rb “balls” from the source. The
high atom throughput translates into higher short-term stability. The choice of Rb
is based on its lower cross section for spin exchange than Cs, and hence lower
density-dependent frequency shift. Furthermore, the method of delivery of the Rb
into the Ramsey cavity ensures minimal leakage of laser light, and consequent
light-shift.

20.8 Conclusion

The exploration of subtle violations in the symmetry laws that have been the pillars
on which physical theory has been based is just beginning to gather momentum
with the planning of spacecraft missions well into the future. A proposed future
mission called simply Space-Time proposes a spacecraft orbit that extends over
large distances and gravitational potentials from Jupiter in towards the sun attaining
velocities as high as V/c ≈ 10−3. A rapid rotation imposed on the spacecraft would
allow efficient collection of data in testing for possible Lorentz and CPT symmetry
violations.

It is apparent that at present the experimental techniques of ultrastable clocks
has now reached a level of sophistication where fundamental questions of physical
theory can be subjected to exacting tests to a degree never before achieved. It will
be up to the workers in fundamental theory to bring order to our understanding of
the forces of nature.
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Tessier, M., Vanier, J. (1971) Théorie du maser au rubidium 87, Canadian J. Phys. (49):
2680–2689.

Touahri, D., Abed, M., Hilico, L., Clairon, A., Zondy, J.J., Millerioux, Y., Felder, R., Nez,
F., Biraben, F., and Julien, L. (1994): Absolute frequency measurement in the visible
and near infrared ranges, Proc. 8th European Frequency and Time Forum, Technical
University, Munich, p. 19.

Townes, C.H. and Schawlow, A.L. (1955): Microwave Spectroscopy, McGraw Hill, New
York.



466 The Quantum Beat

Townes, C.H. (1962): Topics on Radiofrequency Spectroscopy, International School of
Physics “Enrico Fermi”: Course 17, p. 55.

Udem, Th. et al, (2001) Absolute Frequency Measurement of Hg+ and Ca Optical Clock
Transitions with Femtosecond Lasers, Phys Rev Lett. (86) 4996.

Wong, N.C. and Lee, D. (1992): Optical parametric division, Proc. 1992 IEEE International
Frequency Control Symposium, p. 32.

Zacharias, J.R.(1954) Phys. Rev. (94) 751



Further Reading

General Reference
Audoin, C and B. Guinot The Measurement of Time (English translation by S. Lyle)

Cambridge Univ Press 2001.

Historical

Jones, A. Splitting the Second: the Story of AtomicTime Taylor and Francis, 2000

Lippincott, Kristin, Umberto Eco, et al. The Story of Time Merrell Holberton Publishers
in association with the National Maritime Museum (UK), 1999.

Landes, David S., Revolution in Time, Harvard Univ. Press, 1983.

Aveni, Anthony, Empires of Time, Kodansha America, Inc., 1995.

Galison, P. Einstein’s Clocks, Poincaré’s Maps, W.W. Norton , 2003.
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Demtröder, W., Laser Spectroscopy, 2nd ed., Springer, 1995.

Feynman, R.P., Leighton, R.B, and Sands, M., The Feynman Lectures on Physics Vol III,
Addison Wesley, 1965 (for quantum mechanics and nitrogen maser).

Ion Traps

F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps: the Physics and Techniques
of Charged Particle Field Confinement, Springer-Verlag 2005.

Laser cooling

Arimondo, E., Phillips, W.D., Strumia, F., eds., Laser Manipulation of Atoms and Ions,
International School of Physics “Enrico Fermi”, Course 118 Varrena, North-Holland,
New York, 1992.

Minogin, V.G. and Litokhov, V.S., Laser Light Pressure on Atoms., Gordon and Breach
Science Publishers, 1987.



470 The Quantum Beat

Metrology

Evans, A.J., Mullen J.D., and Smith D.H., Basic Electronics Technology, Texas Instrm.,
1985.

Essen, L., The Measurement of Frequency and Time Interval, Her Majesty’s Stationery
Office, London, 1973.

Navigation

Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., GPS Theory and Practice,
3rd ed. Springer-Verlag, Wien, 1994.

USCG-Headquarters Radionavigation Systems/United States Coast Guard, Radionavigation
Div., Doc. No. TD 5.8:R 11/4, 1984.

Maloney, Elbert S., Dutton’s Navigation and Piloting, 14th ed. Naval Inst. Press, 1985.

Schmid, Helmut H., Three-Dimensional Triangulation with Satellites., U.S. Dept.
Commerce NOAA, US Govt. Printing Office, 1974.



Index

3-level laser, 329
absorption

cell, 149, 395
constant, 292
cross section, 343, 368
light, 116, 318, 329
method, 259, 387
microwave, 191
saturated, 378, 379
signal, 261
spectrum, 74, 160, 358

additive noise, 60, 276
adiabatic approximation, 249, 250, 254,

258
ADP, 308
adsorption, 75, 171, 216
aeolian harp, 36
aging, 66, 74, 75, 221, 279, 452, 453
Al2O3, 327, 332
Allan variance, 57, 77, 164, 165, 234, 376,

386
alumina, 327
A-magnet, 170, 173, 176, 192, 379
ammonia maser, 192, 193, 198, 200, 203,

205, 206, 210, 211, 214, 215, 227,
229

amplification, 45, 53, 54, 87, 191, 197, 299,
301, 328, 442

amplitude
field, 201, 217, 293, 305, 412
oscillation, 24, 48, 61, 179, 249, 358
sideband, 139, 189, 272
wave, 32, 34

angular momentum, 91
addition, 96
orbital, 94, 101, 195, 264, 311
spin, 101, 117, 211, 352

anomaly, 104, 432
antenna, 30, 63, 88, 117, 179, 180, 342,

417–421, 442, 423
antireflection, 334
antisymmetric, 99, 106, 194
Ar+ ion laser, 257, 315, 320–322, 340
Arditi, M., 160
Arecibo, 418
Ashkin, A., 340, 341
astrolabe, 10, 11
atomic beam, 125–127, 132, 168, 170, 172,

174–176, 178 183, 188, 191, 192,
209, 226, 288, 378, 380–382, 457

atomic fountain, 382, 386
atomic hydrogen, 132, 211, 220–223
atomic magnetism, 113, 114
atomic plane, 73
atomic second, 436
atomic transitions, 286
Audoin, C., vi, 230, 251, 370

balance-wheel, 18–21
band theory, 106–112
beam quality, 298, 299, 334
Beaty, E.C., 156, 159
Bender, P.L., 156, 159
Benilan, M-N., 251
Bernoulli’s principle, 12, 26
beta barium borate, 375



472 Index

binary counter, 82, 84
blackbody radiation, 40, 88, 89, 288
B-magnet, 170, 176, 183
Bohr magneton, 101, 114, 152, 212, 351
Bohr, N., 90, 92, 95, 97, 101, 114, 152, 212
Boltzmann constant, 137, 348
Boltzmann, L., 107, 124, 137, 196, 221,

290, 453, 454
bond, 67, 68, 100, 109, 143, 194, 196, 210,

220, 231, 390
Bragg reflection, 378
Bragg, W.H., 73,
Bragg, W.L., 73
Breit, G., 150, 152, 175, 229, 273
Breit–Rabi formula, 150–152, 175, 229,

273
Brewster angle, 305, 320, 332, 375, 413
Brewster window, 304, 305, 314, 315
brightness theorem, 269
buffer gas, 138, 141, 148, 149, 157–159,

165, 207, 237, 259

Cady, 66
calendar, 2, 3, 10
causality, 32
cavity

microwave, 52, 163, 193, 200
optical, 54, 285, 320, 392, 409
Ramsey, 178, 384

centrifugal force, 6, 433
cesium standard, 161, 164, 167, 168, 337,

370, 371, 414, 425, 431
Chandler period, 419, 420
charge exchange, 258
Chaucer, G., 10
Chi, A.R., 156, 159
Chilowsky, C., 65
circadian rhythm, 1
circular polarization, 120, 129, 130, 152,

349, 394
Clairaut, 17
clepsydra, 12, 13
clock paradox, 144
CO2 laser, 388, 393, 406
Cohen-Tannoudji, C.N., vi, 160, 353,

355–357
coherence, 55, 83, 125, 162, 210, 285, 298,

300, 302, 406, 411

collimator, 172, 173, 222, 226
collisions, 31, 55, 87, 122, 131

buffer gas, 158
Dicke effect, 138
ion cooling, 258
line broadening, 87
second kind, 312

communication, 64, 83, 323, 325, 418, 420,
422, 425–427, 430, 458

conductors, 51, 107, 252, 398
confocal optical cavity, 287
conservative system, 242
control stations, 430, 435, 436
cooling of atoms, 337–361
cooling of ions, 365, 366
coordinate system, 121, 142, 147, 286, 291,

358, 436, 437, 448, 451
Coulomb, 94, 97, 211, 216, 256, 258
coumarin, 317, 321, 367
covalent bond, 67, 100, 109
Cronin, J.W., 452
cross section

absorption, 343
scattering, 268, 347, 359
spin exchange, 216

crown wheel, 12, 15
cryogenic pumping, 192, 365, 376, 398
crystal symmetry, 67
Curie, P., 65
current density, 325, 327
cycling transition, 378–380, 384, 385
cyclotron frequency, 241

dark current, 270, 276, 395
de Broglie, L., 91, 110, 324, 339
Dehmelt, H.G., v, 104, 132, 154, 368
detectors, 65
Dicke effect, 138, 141, 159, 219, 270, 358
Dicke, R.H., 138, 140, 271
dielectrics, 303
diffraction, 30, 55, 72, 180, 285, 309
diffusion, 132, 165, 192, 313, 323, 348
diode-pumped solid state lasers, 333, 334
Dirac. P.A.M., 96, 446
direct digital synthesizer, 185, 380
direction of time, 452, 453
disc laser, 334, 335
dish antenna, 419–420



Index 473

dispersion, 27, 31, 32, 87, 162, 410, 437
Doppler

cooling, 344–347, 353, 356, 366, 398
effect, vi, 77, 136, 140, 144–146, 189,

270–272
side-bands, 270–272, 358–360, 366, 398

Doppler, C., 136
Dunoyer, L. 126
dye laser, 296, 299, 314, 316, 317,

319–323, 331, 332, 367, 375,
382, 411

dynode, 276

Earnshaw’s theorem, 238
eclipses, 3–5
ecliptic plane, 8
effusion, 173, 382
Einstein, A., 89, 90, 142, 445, 447
Einstein’s equivalence principle, vi, 447,

448, 455
electric dipole moment, 192, 195–197, 199,

201, 206, 288, 305, 344
electric field component, 31, 87, 305, 344,

440
electrodeless discharge, 275
electromagnetic wave, 28, 32, 40, 51, 87,

88, 120, 179, 188, 338, 341, 388
electron magnetic moment, 212
electron multiplier, 184, 261
electron shelving, 367, 368, 399, 403
electronic charge, 99, 116, 326, 344
electrostatic fields, 274
electrostatic quadrupole, 198
emission

electron, 60, 276
black body, 89
recoilless, 146
semiconductor, 89
spontaneous, 54, 55, 90
stimulated, 54, 55, 88, 90

energy bands, 106, 109, 110, 323, 324, 329
energy levels, 93, 97, 98, 108, 115
entropy, 454
ephemerides, 427, 437, 440, 442
epitaxy, 327
equinox, 8, 419, 432, 433, 435, 456
escapement 12, 14–18, 20, 21, 232
étalon, 316, 320, 321, 375

Euler, L., 338
excitation

energy, 90
exchange, 94
level, 76
parametric, 36, 246
Ramsey, 371
resonant, 133, 261
transfer, 313

extended cavity, 395, 396, 402, 458
extraordinary wave, 307
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