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Summary. The study of gene functions requires a high-quality DNA library. A 
large amount of testing and screening needs to be performed to obtain a high-
quality DNA library. Therefore, the efficiency of testing and screening becomes very 
important. Pooling design is a very helpful tool, which has developed a lot of appli-
cations in molecular biology. In this chapter, we introduce recent developments in 
this research direction. 

1 Molecular Biology and Group Testing 

One of the recent important developments in biology is the success of Hu-
man Genome Project. This project was done with a great deal of help from 
computer technology, which made molecular biology a hot research area con-
jugated with computer science. Bio-informatics is a new born research area 
tha t grows very rapidly from this conjugation. 

The technology for obtaining sequenced genome da ta is getting more de-
veloped as and more and more sequenced genome da ta is available to the scien-
tific research community. Based on those data, the study of gene functions has 
become a very important research direction. This requires high-quality gene 
libraries. The high-quality gene libraries are obtained from extensive testing 
and screening of DNA clones, tha t is, identifying clones used in the libraries. 
Therefore, the efficiency of DNA screening is very important . For example, 
in 1998, the Life Science Division of Los Alamos National Laboratories [14] 
was dealing with a dataset of 220,000 clones. Individual testing those clones 
requires 220,000 tests. However, they used only 376 tests with a technology 
called group testing. 

The group testing takes advantage of small percentage of clones containing 
target probes. It tests subsets of clones called pools^ instead of testing each 
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of them individually. For example, in the above mentioned testing at Los 
Alamos National Laboratories, each pool contained about 5,000 clones. The 
technology of group testing was started from Wassernan-type blood test in 
World War IL A very simple design that was used in the earlier stage is as 
follows: Divide each blood sample into two parts. First, mix all first parts into 
a pool and test the pool. If the outcome is positive, i.e., there is a presence of 
syphilitic antigen, then test the second part individually. Otherwise, all men 
in the pool passed the test. During the past 60 years, more efficient designs 
have been developed. These designs have gained more and more attention due 
to significant applications in the study of genome. 

A typical application of pooling designs is DNA library screening. A DNA 
library is a collection of cloned DNA segments usually taken from a specific 
organism. Those cloned DNA segments are called clones. Given a DNA library, 
the problem is to identify whether each clone contains a probe from a given set 
of probes. A probe is a piece of DNA labeled with radioisotope or fiuorescence. 
The probe is often used to detect specific DNA sequences by hybridization. A 
clone is said to be positive if it contains a given probe and negative otherwise. 
A pool is positive if it contains a positive clone and negative otherwise. In a 
group testing algorithm a clone may appear in two or more pools. Therefore, 
making copies is a necessary preprocessing procedure. 

Hybridization is one of the techniques to reproduce clones or perform DNA 
cloning. To better understand the concept of hybridization, let us describe the 
composition of DNA. DNA is a large molecule with double helix structure that 
consists of two nucleic acids which in turn are strings of nucleotides. There 
are four types of nucleotides A (adenine), T (thymine), G (guanine) and C 
(cytosine). Thus, each nucleic acid can be seen as a string of four symbols 
A, T, G, C. When two nucleic acids are joined into a double helix, A must 
bond with T and G must bond with C. Heating can break the DNA into two 
separated nucleic acids. Through the action of an enzyme each nucleic acid 
may be jointed with a probe and consequently the probe would grow into a 
dual nucleic acid. This process is referred to as hybridization. 

By repeating hybridization we can clone unlimited number of copies of any 
piece of DNA. This approach is called Polymerase Chain Reaction (PCR). It 
is a cell-free, fast, and inexpensive technique. Another technique for DNA 
cloning is cell-based. It contains four steps: 

(1) Insert the DNA fragment (to be cloned) into an agent called vector. 
This step results in a recombinant. 

(2) Put the recombinant DNA into a host cell to proliferate. This step is 
called transformation. 

(3) Reproduce the transformed cell. 

(4) Isolate the desired DNA clones from the cells obtained from (3). 

In general, there are two conditions that need to be satisfied for group 
testing: (a) copies of items are available and (b) testing on a subset of items is 
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available. In DNA library screening both conditions are available due to DNA 
cloning, especially hybridization. 

2 Pooling Design 

There are two types of group testing, sequential and non-adaptive. To explain 
them, let us look at two examples of group testing algorithms. 

Consider a set of nine clones with one positive clone. In the first example, 
the method is sequential. At each iteration, bisect the positive pool into two 
equal or almost equal pools and test each of the obtained two pools until only 
one positive clone is found in the pool. In the worst case, this method takes 
at most six tests to identify the positive clone. In general, for a set of n clones 
with one positive clone, the bisection would take at most 2 [log2 n] tests to 
identify the positive one. 

In the second example, the method is to put the nine clones into a 3 x 3 
matrix. Each row and each column represent a test. Since there is only one 
positive clone, there is exactly one positive row and one positive column. Their 
intersection is the positive clone. In general, for n clones tha t include a positive 
one, this method takes 0{y^) tests. For large n, this method needs more tests 
than the first one. However, all tests in this method are independent. They can 
be performed simultaneously. This type of group testing is called non-adaptive 
group testing. 

Group testing in molecular biology is usually called pooling design. The 
pooling design is often non-adaptive [3, 8]. This is due to the t ime consuming 
nature of tests in molecular biology. Therefore, we may simply refer to the 
pooling design as the non-adaptive group testing. Hence, every pooling de-
sign can be represented as a binary matrix by indexing rows with pools and 
columns with clones and assigning 1 to cell (i, j ) if and only if the ith pool 
contains the jth clone. 

A positive clone would imply the positivity of all pools containing it. There-
fore, d positive clones would result in the positivity of all pools containing any 
of them. If we consider each column (clone) as a set of pools with 1-entry in the 
column, then the union of the d columns represents the testing outcome when 
those d clones form the set of all positive clones. Therefore, if a binary matr ix 
representing a pooling design can identify up to d positive clones, all unions 
of up to d columns should be distinct. A binary matrix with this property is 
called d-separable. 

For a J-separable matrix, a naive way for decoding a given testing outcome 
vector to find all positive clones is to compare it with all unions of up to d 
columns. This takes 0{n^) t ime. Is it possible to do bet ter? The following 
result of Li mentioned in [18] gives a negative answer. 

T h e o r e m 1 Decoding for d-separable matrix can be done in polynomial time 
with respect to n and d if and only if the hitting set problem is polynomial-time 
solvable, i.e., if and only if P=NP. 
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Indeed, decoding is equivalent to finding a subset of at most d clones 
hitt ing every positive pool. By a set hitt ing another set, we mean tha t the 
intersection of two sets is nonempty. Note tha t every clone in a negative pool 
is negative. Therefore, the input size of this hitt ing problem is controlled by 
the union of negative pools. The following result gives an interesting condition 
on the size of this union. 

T h e o r e m 2 For a d-separable matrix, the union of negative pools always con-
tains at least n — d — k-\-l clones if and only if no d-union contains a k-union, 
where a d-union means a union of d columns. 

When /c = 1, the union of negative pools contains at least n — d clones. 
Thus, the number of clones tha t are not in any negative pool is at most (i, 
and hence they form a hitt ing set of at most d clones, which should be the 
solution. The binary matr ix with the property tha t no column is contained in 
any (i-union is said to be d-disjunct. For any (i-disjunct matrix, decoding can 
be done in 0{n) t ime. 

3 Simplicial Complex and Graph Properties 

Finding the best (i-disjunct matr ix is an intractable problem for computer sci-
ence. So far, its computational complexity is unknown. Therefore, we can only 
make approximate designs with various tools, including classical combinatorial 
designs, finite geometry, finite fields, etc. Recently, the construction of pooling 
designs using simplicial complexes was developed. A simplicial complex is an 
important concept in geometric topology [15, 18]. 

A simplicial complex zA is a family of subsets of a finite set E such tha t 
A ^ A and B C A imply B ^ A. Every element in E is called a vertex. Every 
member in the family A is called a face and furthermore called a k-face if it 
contains exactly k vertices. Motivated by the work of Macula [12, 13], Park 
et al. [15] construct a binary matrix M{A,d,k) for a simplicial complex A 
by indexing rows with all (i-faces and columns with all /c-faces (k > d) and 
assigning 1 to cell {i^j) if and only if the ith. (i-face is contained in the j t h 
/c-face. They proved the following theorem. 

T h e o r e m 3 M{A^d^k) is d-disjunct. 

An important family of simplicial complexes is induced by monotone graph 
properties. A graph property is monotone increasing if every graph contain-
ing a subgraph having this property also has this property. Similarly, a graph 
property is monotone decreasing if every subgraph of a graph with this prop-
erty has this property. If one fixes a vertex set and considers edge sets of all 
graphs satisfying a monotone decreasing property, they will form a simplicial 
complex. Since graphs not satisfying a monotone increasing property form 
a monotone decreasing property, every monotone increasing property is also 
associated with a simplicial complex. 
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Matching is an example of a monotone decreasing property. Let A^ be 
the the simplicial complex consisting of all matchings in a complete graph of 
order m. Then /c-matching (a matching of k edges) is a /c-face of zA^. There 
is an error tolerance result for matching [7]. 

Theorem 4 If k-matching is perfect, then M{Am,d, k) is a d-error detecting 
d-disjunct matrix. 

Here, by a d-error detecting matrix, we mean that if there exist at most d 
erroneous tests, the matrix is still able to identify all positive clones. 

Park et al. [15] also generalized this result to the case of a simplicial com-
plex. 

Theorem 5 If for any two k-faces A and B \A\B\ > 2, then M{A^d^k) is 
a d-error detecting d-disjunct matrix. 

Huang and Weng [10] generalized Theorem 3 to a class of partial ordering 
sets, including lattices. 

4 Error-Tolerant Decoding 

Error-tolerant decoding is a very interesting issue in various pooling design 
models. To see it, let us study a so-called inhibitor model. 

In fact, in some situations, a clone can be negative, positive or anti-positive. 
An anti-positive clone can cancel the positivity of a pool, that is, a test out-
come on a pool containing an anti-positive clone must be negative, even if 
the pool contains a positive clone. An anti-positive clone is also called an 
inhibitor. If we know a positive clone, then all inhibitors can be identified 
by testing all pairs of clones consisting of the known positive clone and all 
clones in negative pools. However, if no positive clone is known, it is not so 
easy to identify inhibitors. Therefore, it is an interesting problem to decode 
all positive clones without knowing inhibitors. 

Du and Hwang [4] developed the following method. 
For each clone j and a possible subset / of inhibitors, compute t{j,I), 

the number of negative pools containing j , but disjoint from / . Set T{j) = 
mint( j , / ) over all possible subsets / . 

They proved the following theorem. 

Theorem 6 For a {d-\-r-\-e)-disjunct matrix, if the input sample contains at 
most r inhibitors and at most d positive clones, and testing contains at most 
e erroneous tests, then T{j) < T{j') for any positive clone j and any negative 
clone j ' . 

Consequently, the following results can be formulated. 

file:///A/B/
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Theorem 7 (Du and Hwang [4]) A {d-\-r -\- e)-disjunct matrix can iden-
tify all positive clones for every sample with d positive clones and at most r 
inhibitors subject to at most e erroneous tests. 

Theorem 8 (Hwang and Liu [9]) A {d-\-r-\-2e)-disjunct matrix can iden-
tify all positive clones for every sample with at most d positive clones and at 
most r inhibitors subject to at most e erroneous tests. 

The inhibitor model was proposed by Farach et al. [6]. De Bonis and 
Vaccaro [1] developed a sequential algorithm for this model and raised an open 
problem of finding non-adaptive algorithm in this model. While D'yachkov et 
al. [5] solved the error-free case, Hwang and Liu [9] gave a general solution. 

5 Future Research 

The development of error-tolerant pooling designs is very important in prac-
tice. Theorems 3 and 4 established connections between error-tolerant designs 
and simplicial complexes. Since all monotone graph properties induce simpli-
cial complexes, these connections may open a new research direction joint 
with graph theory to develop efficient designs. 

There are many issues that we need to consider when constructing a pool-
ing design. For example, after receiving test outcomes on all pools, the ques-
tion to be addressed is how to decode this data to obtain information on 
each clone. The different designs have different computational complexity for 
decoding. One can find some interesting contributions and open problems in 
this area in [17]. 

In practice, DNA screening is closely related to information retrieval and 
data mining. In fact, database systems have already employed the technique 
of group testing. This opens an opportunity to attack some problems in data 
processing by applying our new designs. Therefore, our research work can be 
widely extended into different areas of computer science. 
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