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Aims and Scope 
Optimization has been expanding in all directions at an astonishing rate 
during the last few decades. New algorithmic and theoretical techniques have 
been developed, the diffusion into other disciplines has proceeded at a rapid 
pace, and our knowledge of all aspects of the field has grown even more 
profound. At the same time, one of the most striking trends in optimization is 
the constantly increasing emphasis on the interdisciplinary nature of the field. 
Optimization has been a basic tool in all areas of applied mathematics, 
engineering, medicine, economics and other sciences. 

The series Optimization and Its Applications publishes undergraduate 
and graduate textbooks, monographs and state-of-the-art expository works 
that focus on algorithms for solving optimization problems and also study 
applications involving such problems. Some of the topics covered include 
nonlinear optimization (convex and nonconvex), network flow problems, 
stochastic optimization, optimal control, discrete optimization, multi-
objective programming, description of software packages, approximation 
techniques and heuristic approaches. 
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Preface 

Data mining techniques are applied in a great variety of practical problems 
nowadays. With the overwhelming growth of the amounts of data arising in 
diverse areas, the development of appropriate methods for extracting useful 
information from this data becomes a crucial task. 

Biomedicine has always been one of the most important areas where in-
formation obtained from massive datasets can assist medical researchers and 
practitioners in understanding the structure of human genome, exploring the 
dynamics of human brain, disease diagnosis and treatment, drug discovery, 
etc. Data mining techniques play an essential role in analyzing and integrat-
ing these datasets, as well as in discovering biological processes underlying 
this data. 

This volume presents a collection of chapters covering various aspects of 
data mining problems in biomedicine. The topics include new approaches for 
the analysis of biomedical data, applications of data mining techniques to 
diverse problems in medical practice, and comprehensive reviews of recent 
trends in this exciting research area. 

A significant part of the book is devoted to applications of data min-
ing techniques in genomics. The success of the Human Genome Project has 
provided the data on the DNA sequences of the human genome. New tools 
for analyzing this data have been recently developed, including the widely 
used DNA microarrays. A number of chapters present novel approaches to 
microarray data analysis with applications in disease diagnosis based on gene 
expression profiling. 

Analyzing protein structure and protein fold prediction is another inter-
esting research field addressed in this volume. The methods discussed here 
include global optimization models and topological methods that proved to 
be applicable in practice. 

One more exciting research area discussed in this book deals with data 
mining techniques for studying human brain dynamics. Recent advances in 
this field are associated with the extensive use of electroencephalographic 
(EEG) recordings, which can be treated as a quantitative representation of 



X Preface 

the brain function. The analysis of EEG data combines different methodolo-
gies, including statistical preprocessing and hypothesis testing, chaos theory, 
classification models, and network-based techniques. 

Moreover, several chapters present new promising methodological frame-
works for addressing data mining problems in biomedicine, including Logical 
Analysis of Data, Sparse Component Analysis, and Entropy Minimization. 

We believe that this book will be of interest to both theoreticians and 
practitioners working in diverse fields of biomedical research. It can also be 
helpful to graduate students and young researchers looking for new exciting 
directions in their work. 

We would like to take the opportunity to thank the authors of the chap-
ters for their valuable contributions, and Springer staff for their assistance in 
producing this book. 

Gainesville, Florida, USA Panos M. Pardalos 
Vladimir Boginski 

Alkis Vazacopoulos 
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Part I 

Recent Methodological Developments for Data 
Mining Problems in Biomedicine 



Pattern-Based Discriminants in the Logical 
Analysis of Data 

Sorin Alexe and Peter L. Hammer * 

RUTCOR - Rutgers University Center for Operations Research, 
Piscataway, NJ, USA 

Summary. Based on the concept of patterns, fundamental for the Logical Analysis 
of Data (LAD), we define a numerical score associated to every observation in a 
dataset, and show that its use allows the classification of most of the observations 
left unclassified by LAD. The accuracy of this extended LAD classification is com-
pared on several publicly available benchmark datasets to that of the original LAD 
classification, and to that of the classifications provided by the most frequently used 
statistical and data mining methods. 

K e y words: Data mining, machine learning, classification, rule-based induc-
tive learning, discriminants. 

1 Introduction 

The development of large databases in various sectors of the economy as well 
as in numerous areas of science and technology led to the creation of power-
ful instruments for their analysis. Besides the classical domain of statistics, 
entire new disciplines including da ta mining and machine learning appeared, 
having as aim the development of da ta analysis tools. Among the many new 
sophisticated da ta analysis methods we mention in particular decision trees 
[10,11], artificial neural networks [21], nearest neighborhood methods [7], and 
support vector machines [13,20,22]. 

The Logical Analysis of Data (LAD) is a combinatorics and optimization-
based method [12,16] to extract knowledge from a dataset, consisting of "pos-
itive" and "negative" observations, represented as n-dimensional real vectors. 
A specific feature of LAD is the extraction of large collections of patterns^ or 
rules, specific for either positive or negative observations in the dataset . One 
of the typical uses of LAD is the pattern-based classification of new observa-
tions, i.e., of real-valued vectors not included in the original dataset . The basic 

Corresponding author. Phone: 732-445-4812, Fax: 732-445-5472, e-mail: 
hammerOrutcor.rutgers.edu. 
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assumption of LAD is tha t new observations satisfying some of the positive 
patterns (i.e., pat terns characteristic for positive observations), but none of 
the negative patterns (i.e., pat terns characteristic for negative observations), 
are positive, while those satisfying some negative pat terns, but no positive 
ones, are negative. On the other hand, new observations satisfying some of 
the positive as well as some of the negative pat terns are not classified; simi-
larly, those observations which do not satisfy any of the detected pat terns are 
also left unclassified. 

The main objective of this chapter is to propose an extension of the orig-
inal LAD classification system, capable of classifying all those observations 
which satisfy some of the pat terns in the collection, even if the satisfied pat-
terns include both positive and negative ones. The proposed extension of the 
LAD classification system relies on the determination of a numerical score 
which balances the relative importance of the positive pat terns satisfied by 
a new observation, compared to tha t of the negative pat terns satisfied by it. 
The performance of the proposed extension of the LAD classification scheme 
is demonstrated on several publicly available benchmark datasets, and its 
accuracy - evaluated by computational experiments - is shown to compare 
positively with tha t of the best, frequently used statistical and da ta mining 
classification methods. 

The first section of the chapter describes the basic elements on which 
the derivation of the scoring systems relies, including the description of the 
way in which observations are represented, the definition of the pat terns con-
sidered in LAD and LAD^s pa t tern classification system, discussion of the 
accuracy measures used in this chapter, and of the benchmark datasets used 
in computational experiments. The second section of the chapter discusses a 
new pattern-based representation system of observations, introduces two nu-
merical scores associated to observations, and shows tha t the classification 
systems based on the signs of these two scores are equivalent. In the third 
section, it is shown tha t the score-based extension of the LAD classification 
system increases the accuracy of classification, and compares favorably with 
most frequently used statistical and da ta mining classification systems. 

2 Methods and Data 

2.1 Bas ic E l e m e n t s of LAD 

A. Discrete Space Representation of Observations 

The datasets considered in a large variety of applications consist of finite sets 
of vectors (sometimes called da ta points, or observations, or cases) defined in 
the n dimensional real space, along with "positive" or "negative" outcomes 
associated to them, signifying the "quality" of the corresponding vector. Be-
cause of the inherent difficulties of working in real space, it is frequently 
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assumed that each dimension i of the real space is subdivided by outpoints 
into intervals 

jO = {-<^,cj]^ 1} = {c\,c}]^ ..., If- = ( c ^ , + ( ^ 

In this way, each observation (<fi,<f27 •••7<fn) iii R^ is transformed into a 
vector {TII,TI2, ...^Tjn) in a discrete space D^, by defining rji = h if the corre-
sponding ^i is in I^ (/i = 0,1, . . . , /c )̂. This type of transformation was stud-
ied in [8] where it was shown that finding a minimum set of cutpoints which 
separate the positive observations from the negative ones (i.e., which have 
the property that none of the n-dimensional intervals defined by them will 
contain simultaneously positive and negative observations) is NP hard; an 
extension of the set-covering model introduced in [9,10] for cutpoint identifi-
cation provides however efficient heuristics for finding reasonably small sets of 
cutpoints. Within this study we shall not be concerned with the identification 
of cutpoints, and shall simply assume the dataset to be given in a discrete 
space. 

Given a dataset i? = {CJ^,CJ^, ...,cj"^} consisting of m positive and neg-
ative observations represented as points in D^^ we shall associate to every 
observation uu^ an outcome uu^ G {0,1}, defined to be 1 if the observation is 
positive, and 0 if it is negative. 

B. Patterns 

The set of points y = (^i, ^2, •••, 1/n) in D^ satisfying a system of constraints 

^i ^ cxi {i ^ I) and uuj > (3j {j G J) (1) 

will be called a cylinder. The positive (negative) homogeneity of a cylin-
der is the proportion of positive (negative) points among all the points 
cj = (cji,cj2, •••,^n) ^ ^ contained in the cylinder. Clearly, the sum of the 
positive and negative homogeneities of any non-empty cylinder is 100%. The 
number of variables used in (1) for the definition of the cylinder is its degree. 
It can be assumed that (1) does not contain redundant constraints. It can 
also be noted that if a variable appears bounded from above, as well as from 
below, it is counted for the degree calculation only once. 

A positive pure pattern is a cylinder containing some of the positive but 
none of the negative points of i7. Negative pure patterns are defined in a 
similar way. 

In many practical problems, the concepts of positive or negative pure pat-
terns may turn out to be too restrictive, since their numbers as well as their 
coverages may be too limited for a meaningful analysis. One way of overcom-
ing this difficulty is offered by the use of positive and negative (not necessarily 
pure) patterns. A cylinder is called a positive (negative) pattern if its positive 
(negative) homogeneity exceeds a given threshold (set usually close to 100%, 
and lowered in the case of less "clean" datasets to 90% or even to 80%). 
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Beside the degree and homogeneity, prevalence is another important char-
acteristic parameter associated with pat terns. The positive (negative) preva-
lence of a pa t te rn is the proportion of positive (negative) observations in 
i? which is covered by the pat tern, i.e., which satisfies the pattern-defining 
system of constraints (1). Positive (negative) pat terns having a low positive 
(negative) prevalence have a low significance for classification. On the other 
hand, many of the benchmark datasets frequently quoted in the li terature con-
tains several pat terns with extremely large prevalences, going in some cases 
up to 75%-90%, or even to 100%. 

We shall illustrate the concept of pure pat terns on the case of the Wis-
consin Breast Cancer (bcw) dataset [15]. This dataset includes records of 239 
positive (malignant breast tumor) patients and 444 negative (benign breast 
tumor) cases, each of the patients being described as a 9 dimensional vector 
with positive integer coordinates ranging from 1 to 10. The 9 discrete valued 
variables considered in this dataset are the following: 1. Clump Thickness, 2. 
Uniformity of Cell Size, 3. Uniformity of Cell Shape, 4. Marginal Adhesion, 
5. Single Epithelial Cell Size, 6. Bare Nuclei, 7. Bland Chromatin, 8. Normal 
Nucleoli, 9. Mitoses. 

Example 

A typical positive pure pattern is defined by the constraints ^^Uniformity of 
Cell Size > 5, and Bland Chromatin > 5^\ This pattern is of degree 2, and 
it covers 129 of the 239 positive cases, and none of the 444 negative ones; 
clearly, its positive and negative prevalences are of 54% and 0%, respectively, 
while its positive and negative homogeneities are of 100% and 0%, respectively. 
The constraints ^^Uniformity of Cell Size < 3, Bare Nuclei < 2, and Normal 
Nucleoli < 3^^ define a negative pure pattern of degree 3, which covers 402 of 
the 444 negative cases, and none of the 239 positive ones; the positive and 
negative prevalences of this pattern are 0% and 90.5%, respectively, and its 
positive and negative homogeneities are 0% and 100%, respectively. 

C Pattern-Based Classification 

Pat terns represent the key concept on which the LAD method is based, and 
several efficient algorithms have been developed [1,5,15] for the generation of 
large collections of pat terns. In this chapter, we shall concentrate on LAD 
models consisting of prime patterns (i.e., inclusion wise maximal pat terns) , 
since a series of recent case studies showed tha t , on one hand large classes of 
these pat terns can be efficiently enumerated [5], and on the other hand, they 
can be used for constructing high accuracy LAD classification models. 

Although the problem of finding all pat terns corresponding to a dataset is 
NP hard, efficient ways for finding certain types of pat terns are known. For 
example, a polynomial method has been given in [5] for enumerating all the 
bounded degree prime patterns, i.e., those prime pat terns for which | / | + | J | < S, 
for some small value of 6 (e.g., 2, 3, or 4). For instance, it has been shown 
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in [5] tha t in all the benchmark problems considered in tha t study, the set of 
all prime pat terns of degree 3 or less can be generated in 2-4 seconds, while 
those of degree 4 or less can be still generated in a few minutes. 

Let C be a collection of positive pat terns P i , P2, •••, ^g, and negative pat-
terns A^i, A^2, •••,^r7 and let us assume tha t every point cj* G i? is covered by 
at least one of the pat terns in C, i.e., its coordinates satisfy all the defining 
conditions of at least one of the pat terns in C. The existence of a collection 
with this property can be easily obtained, e.g., by associating with every point 
cj* G i? a set of conditions of type (1) covering cj% and no other point in i7, 
and then "relaxing" this pat tern in order to increase its coverage as much as 
possible. In fact, efficient heuristics [2,17] can be found for constructing such 
systems which cover the entire set Q and contain only pat terns of relatively 
large coverage. 

Example (continued) 

For the hew dataset, a collection C consisting of 13 positive and 13 negative 
patterns is given in Table 1. Each pattern is shown as a row of the table, e.g., 
the pattern PI is defined by the conditions "Uniformity of Cell Size > 5, and 
Bland Chromatin > 5^\ it covers 129 of the 239 positive points, and none of 
the 444 negative points in the dataset. 

A point cj G D^ is classified by LAD as positive if it is covered by at least 
one of the pat terns P i , P2, •••, ^g, but is not covered by any of the pat terns 
A^i, A^2, •••, ^ r - Similarly, it is classified by LAD as negative if it is covered by 
at least one of the pat terns A^i, A^2, • • •, ̂ r , but is not covered by any of the 
pat terns P i , P2, . . . , Pg. If the point is covered both by some positive and some 
negative pat terns in C, as well as the case when the point is not covered by 
any of the pat terns in C, LAD leaves the point unclassified. 

Example (continued) 

In order to illustrate the LAD classification system, we shall first introduce 
a random partition of the dataset into a "training sef^ and a "test set^\ de-
velop then, using only information in the training set, a set of positive and 
negative patterns covering all the observations in the training set, and finally 
using these patterns, classify the observations in the test set. In this example, 
we have randomly generated a training set consisting of 50% of the positive 
and 50% of the negative observations in the original dataset. The model built 
on this training set consists of the 12 positive and 11 negative patterns shown 
in Table 2. The collection of positive and negative patterns described in Table 
2 provides the following LAD classification of the 119 positive and 222 neg-
ative points in the test set. Table 3 shows that 325 (=108+217) of the 341 
observations in the test set, i.e., 95.3%, are correctly classified. 
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Table 3. LAD Classification for the bcw Dataset 

Positive Observations 
Negative Observations 

Classified as 
Positive 

108 
4 

Negative 

1 
217 

Unclassified 
Mixed 
Cover-
ings 

9 
1 

Not 
Covered 

1 
0 

Total 

119 
222 

2.2 A c c u r a c y of Class i f icat ion 

A classifier C is a function which associates a binary value C{x) to the vectors 
X in D^. Given an arbitrary finite subset S of Q along with the outcome co^ 
associated to every element uu e S^ the accuracy of the classifier C on the set 
S is defined in [14] as the frequency of correct classifications in S^ i.e.. 

accs {C) 
\{u;eS\C{u;)=u;^} 

\s\ 
(2) 

We shall introduce two changes in this formula in order to address problems 
related on the one hand to the fact tha t in frequent applications the number 
of positive observations can be disproportionately larger or smaller than tha t 
of negative observations, and on the other hand to the fact tha t the function 
C{x) constructed by LAD does not necessarily classify every observation as 
positive or negative, but may leave some (usually few) of the observations 
unclassified. 

Let us first deal with the problems caused by the possibly disproportion-
ate sizes of the subsets of positive and of negative points in the dataset . 
For this, let us associate to a classifier C a classification matrix Mc = 

t+ f-
f+t-

respectively the number of positive and negative, points in S correctly classi-
fied by C, while / ~ and / + represent the number of positive observations in 
S which are classified by C as negative, respectively the number of negative 
observations in S classified by C as positive. Then the proportions of cor-
rect classifications among all observations classified as positive, respectively 
as negative will be equal to ^+\f- and f+_^^- respectively. 

Let C be a classifier and let /i (C) = a-\- ^+lf- + f+t-t- ^^ ^ measure of its 
accuracy, which takes into account the possibly unequal sizes of the subsets of 
positive and negative observations. It is natural to demand tha t if a classifier 
does not make any errors, than the corresponding value of /i should be 1; 

,whose entries are defined in the following way: t+and t represent 

since in this case =1, it follows tha t a -\- b -\- c= 1. Similarly, t + + / - ~ /++t-
if a classifier misclassifies every observation, then the corresponding value of 

/i should be 0; since in this case =0 it follows tha t a = 0. t + + / - ~ /++t-
Replacing now 6 by a parameter A which takes values between 0 and 1, and 
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replacing c by 1 — A, we can see that all the accuracy measures which satisfy 
the above described conditions are of the form 

. . ( C ) = A ^ + ( l - A ) ^ . (3) 

This accuracy measure will be used in the evaluation of the classification 
tools to be introduced in this chapter. In the absence of any additional infor-
mation, we shall fix the value of the parameter A to 1/2. However, in problems 
in which the major objective is the avoidance of false positives (false nega-
tives) the parameter A can be fixed to a higher (lower) value, i.e., closer to 1 
(respectively to 0). 

Turning now to the second problem mentioned at the beginning of this 
section, we shall modify the proposed accuracy measure by allowing the clas-
sifier not to classify every observation as positive or as negative, but to leave 
some of them unclassified. In such cases, we shall replace the classification 
matrix Mc by 

where ix+ and u~ represent the number of unclassified positive and negative 
points in S^ respectively, while the numbers t~^^t~^f~^ and / ~ are the same 
as in the definition of Mc-

In order to calculate an expression of accuracy in this case, we shall as-
sume that an unclassified observation has the same chance of being correct as 

of being incorrect. Clearly, ^XS^f^-^^u+ ^^^ t^-+'f^+^+u- ^^P^^sent respectively 
the proportions of good classifications among all observations classified as 
positive, respectively as negative. It is easy to see that a measure of classifi-
cation accuracy jl (C) can be obtained analogously to the previous case. The 
resulting expression of the classification accuracy 

includes again a parameter A which takes values between 0 and 1. Clearly, if C 
classifies all the observations in S as positive or negative (i.e., ix+ = ix~ = 0), 
the formulas (2) and (3) give the same results. 

Throughout this chapter, we shall evaluate the accuracy of the various 
classification schemes using (4), with A = 0.5. 

Given a dataset i7, the set of all prime positive patterns having a limited 
degree (say, < (5+), a sufficiently large positive prevalence (say, > 7r+), and a 
sufficiently large positive homogeneity (say, > x^) is called the ((^+,7r+, x^)-
positive pandect of Q. The ((5~,7r~, x~)-'̂ e^<^^ '̂̂ e pandect of Q is defined in a 
similar way. The values (5+,7r+, x^, ^"^TT", x~ are called the control parame-
ters defining a pandect. 
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Since the generation of every conceivable prime pat tern is computationally 
intractable, in every classification problem we determine first a set of control 
parameters and generate all the prime pat terns of the corresponding pandect. 
The determination of control parameters for which the associated pandect 
offers a high accuracy classification of new points is carried out through an 
experimental procedure in which various sets of control parameters are pro-
duced, for each such set of values the corresponding pandect is generated, 
and its accuracy statistically estimated then through /c-folding experiments. 
In these experiments, the dataset is randomly divided into k approximately 
equal subsets, and k classification experiments are carried then out; in each of 
these experiments the observations appearing in k-1 of the subsets form the 
training set, while the remaining subset is taken as the test set. 

The experimental procedure described above identifies the values of the 
control parameters which gave the highest average accuracy during the k-
folding test process. The pandect defined by these control parameter values 
is selected then as the proposed classification system. 

2.3 C o m p u t a t i o n a l E x p e r i m e n t s 

The concepts discussed in this chapter have applied to four frequently an-
alyzed benchmark datasets, which are publicly available at the repository 
h t t p : / / w w w l . i c s . u c i . e d u / ^ m l e a r n / MLReposi tory .h tml of the Univer-
sity of California at Irvine. The four datasets are: Wisconsin Breast Cancer 
( b c w ) , BUPA Liver Disorders (bid). Congressional Voting Records (vot) and 
StatLog Heart Disease (hea). Table 4 presents some basic information about 
these datasets. 

Table 4. Basic Information on Benchmark Datasets 

1 
2 
3 
4 

Dataset 

Congressional voting records 
Wisconsin breast cancer 
StatLog heart disease 
BUPA liver disorder 

Dataset 
ID 

vot 
bCAV 

hea 
bid 

Number of At t r ibutes 

Binary 
16 
0 
3 
0 

Numerical 
0 
9 
10 
6 

Number of 
Observations 

435 
683 
297 
345 

Proport ion of 
Positive 
Observations 

61.38% 
34.99% 
46.13% 
57.97% 

In order to make possible the execution of a large number (tens of thou-
sands) of computational experiments, we have selected the following control 
parameters. First we have selected (5+ = (5~ = 3 as the upper bound on the 
degrees of all the positive and negative pat terns generated; clearly, the gener-
ation of higher degree pat terns would have required excessive computer t ime. 
The following values of the other control parameters have been considered 
7r+= 5%, 10%, . . . , 50%; TT" = 5%, 10%, . . . , 50%; x+ = 80%, 85%, . . . , 
100%;x~ = 0%, 5%, . . . , 20%. For each of these values, the generated pan-
dects were sufficiently "rich" to cover almost completely the corresponding 

http://wwwl
http://uci.edu/
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datasets. For the validation process, we have set k =10. Examining the 25,000 
experiments (i.e., 10-folding cross-validations for each of the 1 0 x 1 0 x 5 x 5 = 
2,500 parameter value combinations) for each of the four datasets, we found 
tha t the optimal accuracies of LAD classification schemes were detected for 
the following values of the control parameters (Table 5). 

Table 5. Optimal Control Parameter Values for Classification by LAD among 2,500 
Combinations/Dataset 

Dataset 

vot 
bcw 
hea 
bid 

Prevalence (%) 
Positive 

35 
25 
35 
10 

Negative 
45 
45 
50 
30 

Homogeneity (%) 
Positive 

100 
100 
95 
100 

Negative 
5 
0 
10 
20 

Average Accuracy (%) 
(on 10 folds) 

94.50 
95.93 
81.67 
70.45 

3 Extended LAD Classification 

3.1 P a t t e r n - S p a c e R e p r e s e n t a t i o n 

The existence of a collection C of positive and negative pat terns P i , P2, •••, ^g, 
respectively A^i, A^2, •••, ^ r , leads naturally to the idea of a pattern-space rep-
resentation of every point x in D^^ i.e., the representation of every point y 
in D^ as a 0-1 vector y = (Pi (y),..., Pq (y); Ni (y),..., N^ (^)), whose entries 
equal 1 if the vector ^satisfies the defining conditions of the corresponding pat-
tern, and 0 otherwise. We shall denote by 71 the set of binary {q + r)-vectors 
associated to the points y in D^. 

The pattern-space representation of points in D^ has been shown to be 
extremely informative [2,4]; in particular, the application of clustering tech-
niques in n has lead to the identification of previously unknown groups of 
ovarian cancer [3], and breast cancer patients. 

It is also interesting to remark tha t the sets of positive and negative ob-
servations in i? are linearly separable in LI. Indeed, for any set of positive 
coefficient cei, ce2, •••, c^g, A , /52, •••, /^r, the expression 

A{y) = ^aiPi{y)-Y,PjNj{y) (5) 

takes a positive value for the positive observations in i7, and a negative value 
for the negative observations in i7. 

The idea of considering weighted sum of classifiers is known in the litera-
ture [11]. It should be remarked however, tha t the pat terns appearing in the 
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weighted sum (18) are not classifiers. Indeed, if a positive or negative pattern 
takes the value 1 in an observation, that is an indication that the observation 
is positive respectively negative. However, the fact that a pattern takes the 
value 0 in an observation does not lead to any conclusion. 

3.2 Compass Index and Score 

Using now the pattern space representation of the data, we shall define 
the vector | = (1,1,. . . , 1, 0,0,..., 0) whose first q components are 1 and last 
r components are 0, as the positive pole of 71, while its "complement" 
1= (0, 0,..., 0,1,1,. . . , 1) will be called the negative pole of 71. Clearly, the 
definition of poles does not assume the actual existence of points in D^ whose 
image in 71 is t or | . 

It is natural to expect the outcome of a point to be positive or negative 
according to the class of the "closest" pole. In order to measure closeness, we 
shall define the positive and negative attractions a-^ (y) and a | (y) of a point 
X in D^, as cor r ( | , ^ ) and corr {I, y), respectively; here corr denotes the 
Pearson correlation coefficient. Clearly, the equality corr (T, ^) = —corr ( j , ^) 
holds, and therefore, we shall focus only on the first of these two measures. 

The numerical value of a-\ (y) is called the compass score of y in D^^ while 
the compass index c{y) is defined as 

r 1 i / at (y) > 0 
ciy)=\ Oifa^{y)<0 . 

[ 1/2 if «T (Y) = 0 

3.3 Balance Index and Score 

An other natural way of evaluating the positive or the negative nature of a 
point y in D^ can be based on the sign of a discriminant A (y) defined as in 
(4). In order specify (18), we shall take here all the coefficients ai = 1/q^ and 
all the coefficients (3j = 1/r. A simplified version of the balance score using a 
limited number of patterns was used efficiently for risk stratification among 
cardiac patients [6,19]. 

The balance score of a point x in D^ is defined then as 

Q T 

while the balance index b (y) of y is defined as 

1 if A* (y) > 0 
biy)={ Oif A*{y)<0 

1/2 if A* {y) = 0 
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3.4 Extended LAD Classification by Compass or Balance Index 

The compass index can be used for classifying the observations in D^ by 
saying that an observation y in D^ is positive if c(i/)=l, negative c{y)=0, and 
unclassified is c{y) = 1/2. Similarly, the balance index can also be used for 
classification by using the corresponding values of b{y). 

Theorem 1. For any observation, the classification provided by the balance 
index is identical to that provided by the compass index, i.e., c{y) = b{y), for 
every y in D^. 

Proof. Clearly, the condition c{y) = b{y)^ is equivalent to the following two 
relations: a^ \y) > 0 iff zA* {y) > 0, and a | {y) > 0 iff zA* {y) < 0. Let us 
introduce now some notations. First, let 

f Q r \ 
E [y] = -^ ^ Pi{y) ^ ^ ^j (y) denote the average value of the com-

^ "̂  V̂ =̂  ^=^ / 
ponents of the vector y, and 

E [T] = ^ f denote the average value of the components of the vector | . 
With these notations, obviously the positive compass of an observation y 

can be expressed as: 

'E^{yk-E[y]){u-E[^]) 
a^{y) = corr{ty) 

k+r q+r 

\h:{yk-E[y])\h:{u-E[]]f 
V k=l V ^=1 

Simple algebraic manipulations applied to the numerator of the above 
fraction show that 

g + r q 

Y^iVk-E [y]) (tfc -E [T]) = Y,{yk-E [y]) {U -E [t]) + 
k=l k=l 

r 

J2{y,+k-E[y]){^,+,-E[W 
k=l 

Since 1^= 1, Tq+/c= 0, 1 — ^ [|] = - ^ , the above expression equals to: 

k=l k=l 

q r 

^—Y.y^ - ^ — ^ ^ \-y\ - ^—Y.y^+^ + ^—rE [y] = ^ + ^ r ^ g' + r q^r"^ q^r 
k=l k=l 

r 
q^r k=l ^ k=l ^ \^ k=l k=l J 
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/ ^ 
Yl otkVk - Y PkVp+k = -—A"" (y). 
k=i k=i J ^ 

In conclusion, a^ (y) = - ^ J ^ (y^ - ^ [^^^'^ 'S ^^^ " ^ t^^^'^* ^̂ ^ 

showing that - in view of the positivity of -^ - the sign of a^ (y) is the 

same as that of ZA* (i/), thus completing the proof. 

4 Accuracy of Extended LAD (e-LAD) Classification 

In order to evaluate the accuracy of the extended LAD (e-LAD) classification 
system, we have conducted a series of computational experiments to compare 
it with tha t of LAD, of the Fisher discriminant, and of several frequently used 
classification techniques in da ta mining. In view of the equivalence of the 
classification systems given by the compass index and the balance index, and 
the easiness of calculating the balance index, the discussions in the following 
sections of this chapter will assume tha t e-LAD is based on the balance index. 

4.1 C o m p u t a t i o n a l Eva luat ion of e-LAD 

Given a dataset and a collection of positive an negative pat terns covering all 
(or at least "almost all") given data, the classification scheme used by LAD 
declares a new observation to be positive (negative) if it is covered by at least 
one positive (negative) pat tern in the collection, and it is not covered by any 
of the negative (positive) pat terns in the collection; an observation which is 
covered both by positive and negative pat terns, or by none of the pat terns in 
the collection is declared unclassified. 

We propose here an extension of the above LAD classification scheme, 
using the balance or the compass index for defining the class of a new ob-
servation. This classification leaves unchanged the classification of those ob-
servations which are classified as positive or negative by LAD, but provides 
classifications also of those observations which are covered both by positive 
and negative pat terns. Since Theorem 1 shows tha t classification using the 
compass index is identical to the one using the balance index, we shall only 
describe below one of these two classification systems. In view of the ease 
of calculating the balance index, we shall focus the discussion on the system 
which uses this index. 

In order to find those values of the control parameters which provide the 
highest accuracy for the proposed classification system, we re-examined the 
25,000 experiments described above for each of the four datasets, and found 
the results presented in Table 6. 
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Table 6. e-LAD Classification: Optimal Control Parameter Values among 2,500 
Combinations/Dataset 

Dataset 

vot 
b c w 
h e a 
bid 

Prevalence (%) 
Positive 

5 
50 
35 
10 

Negative 
50 
20 
15 
35 

Homogeneity (%) 
Positive 

100 
95 
95 
100 

Negative 
5 
0 
5 

20 

Average Accuracy (%) 
(on 10 folds) 

95 .77 
97 .78 
84 .62 
70 .44 

4.2 Comparison between LAD and e-LAD 

Comparing the accuracy of the e-LAD classification scheme with the accuracy 
given by LAD, it can be seen (Table 7) that both its maximum and its mean 
show an increase; in the 25,000 experiments the maximum increases on the 
average by 2.5%, and the mean by 3.5%. It is also important to remark that 
the standard deviation of the e-LAD classification accuracies shows an average 
decrease of 55%. In conclusion the proposed classification scheme increases 
clearly both the accuracy and the robustness of the results. 

Table 7. Acci 

vot 
b c w 
h e a 
bid 

A v e r a g e 
e - L A D / L A D 

jracy of L ̂ AD and e-LAD Classification 

A c c u r a c y 
Maximum 

LAD 
94.50% 
95.93% 
81.67% 
70.45% 

85 .64% 

e-LAD 
95.77% 
97.78% 
84.62% 
72.74% 

8 7 . 7 3 % 
1.02 

Mean 
LAD 

93.07% 
94.86% 
76.79% 
62.95% 

81 .92% 

e-LAD 
94.46% 
97.57% 
83.13% 
64.08% 

8 4 . 8 1 % 
1.04 

Standard Deviation 
LAD 

0.72% 
0.73% 
3.78% 
4.74% 

2.49% 

e-LAD 
0.53% 
0.07% 
0.56% 
5.76% 

1.73% 

The observations which remained unclassified by LAD are classified re-
markably well by the e-LAD, as shown in Table 8. This table examines the 
set of those observations which remained unclassified by LAD, showing what 
percentages of these are correctly classified, incorrectly classified, or remain 
unclassified by e-LAD. 

It can be seen that a remarkable proportion (99%) of the observations 
which could not be classified by LAD are classified by e-LAD, and that on 
the average, 4 out of 5 of these observations are classified correctly. 

All those observations which are classified by LAD as positive or negative 
remain classified in the same way by e-LAD. On the other hand, almost all the 
observations which remain unclassified by LAD are classified by e-LAD, and 
the vast majority of them is classified correctly. Taking into account the fact 
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Table 8. Accuracy of e-LAD on the Set of Observations Left Unclassified by LAD 

Dataset 
vot 
bcw 
hea 
bid 

average 

Correct 
84.3% 
85.7% 
74.4% 
68.8% 

78.3% 

Incorrect 
12.0% 
14.3% 
25.6% 
30.7% 

20.7% 

Unclassified 
3.7% 
0.0% 
0.0% 
0.5% 

1.1% 

that the proportion of observations not classified by LAD can be substantial 
(between 8.21% and 97.3% for the benchmark datasets considered above), the 
improvement of the e-LAD based classification over the simple LAD based 
classification can be considerable. Moreover, the accuracy provided by e-LAD 
turns out to be consistently superior to the accuracy given by LAD. 

4.3 e-LAD vs. Other Classifiers 

Having noticed the enhancement of classification provided by e-LAD over 
LAD, in the following sections we shall examine the performance of e-LAD 
compared to that of some frequently used statistical and data mining classi-
fication methods. 

The accuracy of any LAD or e-LAD classification scheme depends on the 
collection of positive and negative patterns used by it. In its turn, this collec-
tion is entirely determined by the set of control parameter values. Clearly, the 
best combination of control parameter values among the 2,500 combinations 
examined is not necessarily optimal. By additional fine-tuning experiments, 
these control parameter values (with the exception of 6, which was kept equal 
to 3 during all the experiments) have been further improved. The best values 
found for the four benchmark datasets examined in this chapter, along with 
the corresponding average accuracies on 10-folding cross validation experi-
ments with the e-LAD classification system are reported in Table 9. 

Table 9. Classification by e-LAD using Enhanced Control Parameter Values 

Dataset 

vot 
bcw 
hea 
bid 

Prevalence (%) 
Positive 

15 
10 
10 
10 

Negative 
15 
10 
10 
10 

Homogeneity (%) 
Positive 

100 
100 
87 
87 

Negative 
3 
0 
17 
17 

Average Accuracy (%) 
(on 10 folds) 

97.44 
98.16 
85.59 
72.91 
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4.4 e-LAD vs. Fisher Discriminant 

One of the most frequently used classification methods is the Fisher (linear) 
discriminant analysis. Since the balance score can be viewed as a linear dis-
criminant in pattern space, we have compared the accuracy given by e-LAD 
with that obtained by the Fisher discriminant classifier [18] applied to the 
original attribute space. The Fisher discriminant was calculated using the 
S-Plus 6.1 software (Insightful Corp., 2002), and the results are presented in 
Table 10. 

Table 10. Ac( 

Experiment 

Fold 1 
Fold 2 
Fold 3 
Fold 4 
Fold 5 
Fold 6 
Fold 7 
Fold 8 
Fold 9 

Fold 10 

Average 
Standard Deviation 

e-LAD/Fisher Accuracy 

:uracy of e-LAL 

v o t 
Fisher 
91.11% 
100.00% 
94.95% 
93.03% 
96.15% 
96.15% 
100.00% 
96.15% 
96.88% 
94.89% 

9 5 . 9 3 % 
2.75% 

e-LAD 
94.23% 

100.00% 
96.88% 
94.95% 
98.08% 
98.08% 

100.00% 
98.08% 

100.00% 
94.13% 

9 7 . 4 4 % 
2.33% 

1.02 

) and of Fisher Discriminant Classifiers 

bCAV 

Fisher 
97.83% 
96.69% 
100.00% 
100.00% 
94.52% 
95.55% 
94.52% 
93.38% 
91.30% 
91.15% 

9 5 . 4 9 % 
3.17% 

e-LAD 
100.00% 

98.86% 
98.86% 
98.86% 
98.86% 
96.59% 
97.73% 
96.59% 
97.83% 
97.40% 

9 8 . 1 6 % 
1.11% 

1.03 

hea 
Fisher 

85.34% 
85.34% 
75.96% 
96.88% 
82.93% 
76.68% 
86.06% 
81.49% 
74.52% 
81.88% 

8 2 . 7 1 % 
6.47% 

e-LAD 
85.34% 
82.93% 
84.13% 
86.78% 
96.51% 
86.78% 
82.93% 
86.06% 
82.57% 
81.88% 

8 5 . 5 9 % 
4.24% 

1.03 

bid 
Fisher 
83.21% 
67.86% 
69.29% 
64.29% 
53.57% 
56.43% 
68.21% 
69.29% 
74.29% 
58.95% 

6 6 . 5 4 % 
8.76% 

e-LAD 
79.64% 
67.86% 
64.29% 
77.86% 
66.07% 
67.50% 
70.00% 
83.21% 
80.71% 
71.97% 

7 2 . 9 1 % 
6.85% 

1.10 

It can be seen that the improvements of accuracy by using e-LAD on 
the four benchmark problems are 2%, 3%, 3% and 10%, respectively (i.e., an 
average increase of 4.5%) over that of the Fisher discriminant classifier. It can 
also be seen that in all four problems the standard deviation of the results 
obtained by e-LAD are substantially lower than those given by the Fisher 
discriminant classifier, indicating the higher robustness of e-LAD. 

4.5 e-LAD vs. "Best" Data Mining Classifiers 

Since many classification techniques are currently available, it is important 
to position e-LAD within the realm of classification schemes. In order to 
evaluate the relative performance of e-LAD, we have compared its accuracy 
with that of the best known classifiers, using the estimations reported in 
[15] for 33 data mining algorithms (including classification trees and rules, 
statistical techniques, and artificial neural networks). It was noticed in [15] 
that the best accuracy among the compared 33 methods varied from dataset 
to dataset. In the case of the bcw dataset, the best accuracy was obtained 
by neural networks (LVQ), in the case of the vot dataset it was obtained by 
classification trees (QLO), in the case of the hea dataset it was obtained by 
linear discriminant analysis (Fisher), and for the bid dataset it was obtained 
by classification trees (OCM). 
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Since there is no universally best method among the 33 reported in [15] 
(which include the Fisher discriminant analysis and 32 other methods), for 
each of the 4 datasets examined in our chapter (bcw, hea, vot and bid) 
we have selected one of the 33 methods which gave the best performance for 
that specific dataset. The performance of e-LAD was then compared with 
that of the 4 methods selected in this way. Clearly, the positive results of the 
comparison with these 4 methods imply that the comparison with other 29 
algorithms examined in [15] is also positive. 

The results of the comparison are presented in Table 11, and show that in 
three of the four cases the performance of e-LAD exceeds that of the best of 
the other methods (by an average of 1.5%), and underperforms (by 0.3%) the 
best of the other methods in only one case. On the average, the performance 
of e-LAD is 4.5% above the average performance of the four selected methods. 

Table 11. Comparison of e-LAD with Best Performing Dataset-Specific Classifiers 
[15]. 

Dataset 

vot 
bCAV 

hea 
bid 
A v e r a g e 
e -LAD/Other 
Classifiers 

Classification Accuracy Results Reported in [7 
Neural 
Networks (LVQ) 
9 5 . 0 % 
97.2% 
65.9% 
67.1% 

8 1 . 3 % 
1.089 

Classification 
Trees (QLO) 
96.4% 
9 6 . 9 % 
84.8% 
69.4% 

8 6 . 9 % 
1.019 

Fisher Dis-
criminant 
95.4% 
96.1% 
8 5 . 9 % 
67.4% 

8 6 . 2 % 
1.027 

Classification 
Trees (OCM) 
94.2% 
95.9% 
77.8% 
7 2 . 1 % 
8 5 . 0 % 
1.041 

Average of 
4 Methods 
95.6% 
96.7% 
78.9% 
68.0% 

84.8% 
1.045 

e-LAD 

97.4% 
98.2% 
85.6% 
72.9% 

8 8 . 5 % 

5 Conclusions 

Classification by e-LAD vs. classification by LAD 

The e-LAD classification significantly increases the number of observations 
classified in the dataset and the accuracy of these classifications. Those obser-
vations which are classified by LAD are classified in the same way by e-LAD. 
On average, the accuracy of e-LAD classification among the observations left 
unclassified by LAD is 78.3%. The average percentage of observations left 
unclassified by e-LAD is 1.1%. The average increase of accuracy over 25,000 
tests on the datasets examined in this chapter is 2.9%. 

The stability of classification by e-LAD is substantially higher than that 
of LAD for various choices of control parameters and training/test samplings, 
illustrated in the computational experiments by a 55% reduction of the stan-
dard deviation. 
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Classification by e-LAD vs. other classification methods 
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The accuracy of classification by e-LAD exceeds tha t given by the Fisher 
discriminant by more than 4% for the benchmark datasets. 

The accuracy of classification by e-LAD exceeds tha t of other da ta min-
ing classification methods. In comparison with the 33 classification methods 
reported in [15], the average improvement for the four benchmark datasets is 
4.5%. 

Relative Positions of LAD and e-LAD Classification Methods in the Ranking 

of [15] 

Lim, Loh and Shih in the Appendix of [15] rank the accuracies of 33 meth-
ods on a series of datasets, which include the four datasets examined in this 
chapter. Table 12 compares the accuracies of LAD and e-LAD with those re-
ported in [15], indicating the ranks of LAD and e-LAD within the collection 
of methods analyzed by Lim, Loh and Shih. 

Table 12. Positioning of LAD and e-LAD within the Hierarchy of Methods Ranked 
by Accuracy in [15 - Appendix]. 

Rank of LAD 
Rank of e-LAD 

vot 
31 
5 

bcw 
15 
1 

hea 
10 
6 

bid 
6 
1 
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Summary . Due to the rapid development of DNA microarray chips it has become 
possible to discover and predict genetic patterns relevant for various diseases on 
the basis of exploration of massive data sets provided by DNA microarray probes. A 
number of data mining techniques have been used for such exploration to achieve the 
desirable results. However, high dimensionality and uncertain accuracy of microarray 
datasets remain the major obstacles in revealing the most crucial genetic factors 
determining a particular disease. This chapter describes a microarray data processing 
technique based on the correspondence analysis that helps to handle this issue. 

1 Introduction 

The importance of da ta analysis in life sciences is steadily increasing. Up to 
recently, biology was a descriptive science providing relatively small amount 
of numerical data. However, nowadays it has become one of the main ap-
plications of da ta mining techniques operating on massive da ta sets. This 
transformation can be particularly a t t r ibuted to two recent advances which 
are complementary to each other. First, the Human Genome Project and 
some other genome-sequencing undertakings have been successfully accom-
plished. They have provided the DNA sequences of the human genome and 
the genomes of a number of other species having various biological characteris-
tics. Second, revolutionary new tools able to monitor quantitative da ta on the 
genome-wide scale have appeared. Among them, there are the DNA microar-
rays widely used at the present time. These devices measure gene expression 
levels of thousands of genes simultaneously, allowing researchers to observe 
how the genes act in different types of cells and under various conditions. 

As a consequence of this progress, the traditional approach of studying one 
particular gene per experiment has been changed. Now it is possible to inves-
tigate not only how a gene behaves itself, but also how it interacts with other 
genes and which gene expression pat terns are formed. It is natual to expect 
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tha t on the basis of microarray data, the genes characterizing certain medical 
phenomena (such as diseases) can be detected and classified. Especially, such 
a study is crucial for understanding genetic diseases caused by a mutat ion 
in a gene or a set of genes. They make the mutant genes inappropriately ex-
pressed or even not expressed at all. For example, it is known tha t cancer 
can be caused by inactivation, deletion or, on the contrary, by constitutive 
activity of p53 tumor suppressor gene. Furthermore, some genetic diseases 
have subtypes tha t are indistinguishable clinically but differ from each other 
in the underlying genetic mechanism. Most likely, it would imply tha t these 
subtypes require different methods of t reatment . However, unless a sophis-
ticated diagnostic technique is available, it would be impossible to properly 
make the right choice. One illustrative example of such a situation considered 
in this chapter is discriminating acute lymphoblastic leukemia (ALL) versus 
acute myeloid leukemia (AML). 

However, the analysis of microarray da ta is not an easy task. High di-
mensionality of the data, poor accuracy of microarray probes, and practical 
difficulties with taking the probes (the procedure might be very painful for 
alive patients while the gene expression levels rapidly degrade in dead tissue) 
hinder the success of microarray technology. Hence, the microarray datasets 
must be processed by a sophisticated da ta mining technique applicable in the 
case of high-dimensional da ta and still able to refine particular da ta values 
known to be critically inaccurate. 

Generally, da ta mining techniques may be divided into three major classes 
tha t sometimes overlap: statistical analysis, clustering, and dimensionality 
reduction (projection methods) . The statistical analysis for microarray da ta 
usually consists in calculating fold change of particular genes across different 
groups of samples and applying classical statistic tests such as t-test, ANOVA, 
Wilcoxon test, etc. These techniques are appropriate when a proper separation 
of samples into classes is known, the number of outliers in each class is in-
significant, and the da ta may be assumed to have certain statistical properties 
(e.g., normal distribution). While the normality assumption is believed to be 
feasible for microarray da ta [4], the other conditions are harder to guarantee, 
taking into account the issues with accuracy of microarray da ta mentioned 
above. Furthermore, the statistical analysis cannot reveal more general pat-
terns in the da ta rather than up- or downregulation of single genes. 

Clustering techniques can be divided into supervised and unsupervised 
learning. Supervised learning techniques are also called sometimes classifica-
tion methods . They take predetermined classes of objects as input and aim at 
deriving characteristics (features) common for samples of a class and discrimi-
nating them against samples of other classes. Examples of supervised learning 
techniques include linear discriminant analysis, classification and regression 
trees, support vector machines, etc. Clearly, supervised learning requires a set 
of training samples whose separation into different classes is known before-
hand. On the contrary, unsupervised clustering techniques do not require such 
a training set; they build classes (clusters) of samples starting from scratch. 
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Examples of clustering techniques are hierarchical clustering, k-means cluster-
ing, self-organizing maps (SOM), etc. Common drawbacks of these methods 
are significant dependence of the results on initialization of the clustering and 
the absence of a clear mathematical criterion to judge quality of the results, 
(i.e., a universal objective function whose optimal value would signify best 
clustering in all instances does not exist). Furthermore, it has been proved in 
[8] tha t there is no clustering algorithm simultaneously satisfying three simple 
properties one might expect to be required: scale-invariance (i.e. multiplying 
all distances by the same positive number should not change the result), rich-
ness (all partit ions should be achievable), and consistency (decreasing the 
distances within the clusters with increasing the distances between the clus-
ters should not change the result). 

The dimensionality reduction methods do not aim at delivering strict cat-
egorization of da ta into classes or separation of relevant versus non-relevant 
features. They rather produce a low-dimensional projection of an originally 
high-dimensional da ta set. As soon as such a projection is presented in the 
form of biplot or 3D diagram, there is the opportunity for a researcher of the 
da ta domain to eyeball the picture and gain an understanding of the crucial 
da ta pat terns. Clearly, there are at least two advantages comparing to strict 
categorization of the data . First, when the da ta dimensionality is small, the 
human eye becomes an analytic tool of remarkable power able to grasp com-
plex da ta pat ters undetectable by any statistical methods generally aimed at 
simple linear relations. Second, optimization of projecting high-dimensional 
spaces onto low-dimensional subspaces is nicely supported by extensive theo-
retical background of linear algebra. The core of projection methods is singular 
value decomposition (SVD), which can provide the subspace of any desirable 
dimension preserving the maximum possible similarity between the original 
da ta set and its projection onto the subspace. Another important point here is 
tha t the SVD procedure is computationally efficient (i.e. it can be performed 
in a short polynomial time, especially if only few dominating singular vectors 
are sought). This compares favorably to many iterative clustering procedures. 
For instance, the convergence of SOM cannot even be guaranteed without 
gradually decreasing the learning rate parameter with each iteration. Hence 
the projection techniques are also attractive from the computational com-
plexity viewpoint. Lastly, the projection techniques do not depend on any 
parameters tha t should be specified by the user before the algorithm is ap-
plied. This potentially makes them more appealing for biological researchers 
typically not familiar in detail with the da ta mining algorithms. We refer the 
reader to [5] for detailed introduction of relevant algebra and SVD algorithms. 

In this chapter we describe one specific dimensionality reduction tech-
nique called correspondence analysis (CA), and consider its application to 
microarray data. The effectiveness of CA is illustrated by discovering AML-
and ALL-relevant genes from a well-known microarray dataset published by 
Golub at al [6]. 
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2 Correspondence Analysis 

2.1 Basic Algorithm 

Like other dimensionality reduction techniques, correspondence analysis is an 
exploratory data analysis technique providing a view of the data set as a 
whole. The main advantage of correspondence analysis over other dimension-
ality reduction techniques is that it allows for simultaneous observation of data 
samples (usually given by columns of the data matrix) and data points (cor-
respondingly, represented by rows of the data matrix) in one low-dimensional 
space. This becomes possible due to the bidirectional nature of correspon-
dence analysis, investigating not only relations within the set of samples and 
the set of data points, but also cross-relations between elements of these two 
sets. The only restriction of this technique is that all data values must be 
nonnegative. 

Thus, correspondence analysis maps all samples and data points of a data 
set onto one low-dimensional space, which can be visualized as a biplot (2-D) 
or 3-D diagram. Each axis of this diagram tends to reveal a profound charac-
terization of the data set, and samples/data points having high similarity with 
respect to this characterization have similar coordinates on it. Like in other 
dimensionality reduction techniques, the construction of the low-dimensional 
space is performed by means of singular value decomposition (SVD). How-
ever, in case of the correspondence analysis, SVD is not applied directly to 
the data matrix, but is used after its specific correspondence matrix is con-
structed. We refer the reader to the existing literature (e.g., [7]) to review 
theoretical background of the method and related algebraic proofs. Here we 
describe the algorithm of correspondence analysis and its generalization in 
case when some data entries are missing or cannot be trusted. 

A data set is normally given as a rectangular matrix A = {aij)mxn of ^ 
samples (columns) and m data points (rows). In the case of microarray data, 
rows represent genes and the value aij shows the expression level of gene i 
in sample j . For the sake of simplicity, we assume further on that m > n. 
However, this does not restrict the generality of the discussed technique, since 
both the columns and the rows of the data matrix are to be treated in a unified 
way, and it is always possible to work with the transposed matrix without 
making any changes in the algorithm. So, to perform correspondence analysis, 
we first construct the correspondence matrix P = {pij)mxn by computing 

Pij = aij/a^^, (1) 

where 
m n 

a++ = ^ ^ a^j (2) 

is called the grand total of A. The correspondence matrix is somewhat anal-
ogous to a two-dimensional probability distribution table, whose entries sum 
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up to 1. We also compute masses of rows and columns (having the analogy 
with the marginal probability densities): 

r^ = a^+/a++, (3) 

Ci = a+_^-/a++, (4) 

where 

n 

ai^ = ^aij, (5) 

m 

a^j = ^aij. (6) 

Then the matrix S = {sij)mxni to which SVD is applied, is formed: 

^ij = (Pij - nCj)/y^r~C~. (7) 

The SVD of S = UAV^ represents the provided matr ix as the product of 
three specific matrices. Columns of the matr ix U = {uij)raxn are orthonormal 
vectors spanning the columns of S^ columns of the matr ix V = {vij)nxn 
are also orthonormal vectors but they span the rows of S^ and finally 
A = diag(Ai, A 2 , . . . , A^) is a diagonal matr ix of nonnegative singular val-
ues of S having a nondecreasing order: Ai > A2 > . . . > A^ > 0. It can be 
shown algebraically tha t the optimal low-dimensional subspace to project the 
columns of S onto, with the minimum possible information loss, is formed by 
a desired number of first columns U. Similarly, the optimal low-dimensional 
subspace for plotting the rows of S is formed by the same number of first 
columns of V. Furthermore, due to specific properties of the matr ix S^ the 
columns and rows of the original da ta set matr ix A may be represented in one 
low-dimensional space of dimensionality K < n as follows: 

fik = ><kUik/y^i, /c = 1, 2 , . . . , K, (8) 

gives the k-th coordinate of row i, and 

gjk = >^kVjk/y^^ /c = 1, 2 , . . . , K, (9) 

gives the k-th coordinate of column j in the new space. Obviously, we select 
K = 2 if we want to obtain a biplot and K = 3 if we want to obtain a 3-D 
diagram of the analyzed da ta set. 

2.2 T r e a t m e n t of miss ing values 

Correspondence analysis allows for an easy and natural t reatment of miss-
ing da ta values. We just need to look at the procedure backward and asnwer 
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the question: if / and g were the positions of rows and columns on the low-
dimensional plot, what value of a data entry aij would minimize the infor-
mation loss incurred due to the dimensionality reduction with respect to the 
constructed low-dimensional representation? It is necessary to mention here 
that the correspondence analysis algorithm constructing the low-diminsional 
space actually solves the following least-squares problem [7]: 

m n 

™^IZIZ(^^^'" «^j)VK+«+j). (10) 

where A = {aij)jnxn is the sought low-dimensional approximation of the data 
that can be expressed as 

aij = (ai^a^j/a^^) I 1 + ^ fikQjk/^/hz 1 • (H) 

So, the relation (11) gives the best guess for the data entry aij provided that 
we already have the low-dimensional coordinates / and ^, and the singu-
lar values A. From here we can infer an iterative E-M algorithm performing 
simultaneously construction of the low-dimensional plot of the data and ap-
proximation of missing data entries (the latter is called imputing the values) 
[7]. 

1. Make some initial guesses for the missing data entries. 
2. Perform the K-dimensional correspondence analysis as specified by the 

formulas (l)-(9) (the M-step, or maximization step of the E-M algorithm). 
3. Obtain new estimations for the imputing data entries by (11) (the E-step, 

or expectation step of the algorithm). 
4. If the new estimations are close enough to the previous estimations, STOP. 

Otherwise repeat from Step 2 with the new estimations. 

The initial guesses for the imputing data entries for Step 1 of the algorithm 
should be made such that pij = ViCj for these entries [7]. This condition is 
equivalent to the equalities 

aij = ai^a^j/a^^ (12) 

for the missing data entries (i, j ) . To find the aij values satisfying (12), we 
employ a simple iterative algorithm: 

1. Initialize all missing data entries with 0. 
2. Compute a++ and all a^+, i = 1, 2 , . . . , m and a+j, j = 1, 2 , . . . , n by (5). 
3. Compute new values aij for the missing data entries by (12). If all the new 

values are close enough to the previous values, STOP. Otherwise repeat 
from Step 2. 

The E-M algorithm is known to converge properly in "well-behaved" sit-
uations (for example, no row or column should be entirely missing). This 
condition is plausable for most microarray experiments. 
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3 Test Framework 

We applied correspondence analysis to a well-researched microarray data set 
containing samples from patients diagnosed with ALL and AML diseases [6]. 
It has been the subject of a variety of research papers, e.g. [1, 2, 10, 11]. 
This data set was also used in the CAMDA data contest [3]. Our primary 
concern was to try to designate genes whose expression levels significantly 
correlate with one of the diseases. It is natural to assume that those genes 
may be responsible to the development of particular conditions causing one 
of the considered leukemia variations. The paper [6] pursues a similar goal, 
but the authors used a statistical analysis algorithm followed by SOM clus-
tering. The data set was divided into two parts - the training set (27 ALL, 11 
AML samples) and the test set (20 ALL, 14 AML samples) - as the authors 
employed a learning algorithm. We considered it without any division since 
correspondence analysis does not require training. Hence there were 72 sam-
ples, 47 of which are ALL and 25 are AML. All the samples were obtained 
with Affymetrix GeneChip^^ microarray technology and contained 7129 data 
points. First 59 data points were miscelaneous Affymetrix control values and 
were removed from the data set, the rest 7070 data points were human genes. 
Affymetrix GeneChip^^ data values represent the difference between perfect 
match (PM) and mismatch (MM) probes that is expected to be significant. 
Usually when such a value is below 20, or even negative, it is not considered 
reliable. Hence we regarded all the data entries that are below 20 in the data 
set to be missing. Furthermore, genes having more than half of the missing 
entries were removed from the data set since the imputing can also not be 
reliable in this case. The residual 4902 data points were used in the analysis. 

4 Computat ional Results 

Fig. 1 shows the biplot obtained. It becomes immediately clear from the vi-
sual inspection that the first principal axis (horizontal) discriminates ALL 
samples from AML samples. Now, we may regard the genes having most pos-
itive coordinates on this axis signifying the ALL condition, while those genes 
having most negative coordinates there signify the AML condition. Similarly 
to [6], we listed top 25 ALL genes and top 25 AML genes with respect to our 
analysis. They are presented in Tables 1 and 2. 

To validate the obtained top gene sets, we tried to estimate their rele-
vance by observing the references made to these genes in MEDLINE articles. 
Each article in the MEDLINE database is categorized by the Medical Subject 
Headings (MeSH) [13]. We employed the same approach as the High-Density 
Array Pattern Interpreter (HAPI) of the University of California, San Diego 
[9, 12], and simply observed into which MeSH categories the articles mention-
ing the found genes fall predominantly. The HAPI web service reports the 
number of terms from each MeSH category matching genes from a provided 
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Fig. 1. Correspondence analysis biplot for the ALL vs. AML dataset 
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Table 1. 25 Top ALL Genes 

# 
1 
2 
3 
4 
5 

6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 
24 
25 

Name 
M89957 
K01911 
AF009426 
D13666 s 
M83233 

D87074 
X82240 rnal 

S50223 
X53586 rnal 

D88270 
M38690 
L33930 s 
U05259 rnal 
U36922 
D21262 
M94250 
M11722 
M54992 
D25304 
U31384 
X97267 rnal s 
M29551 

M92934 
X84373 
X17025 

Description 
IGB Immunoglobulin-associated beta (B29) 
NPY Neuropeptide Y 
Clone 22 mRNA, alternative splice variant alpha-1 
Osteoblast specific factor 2 (OSF-2os) 
TCF12 Transcription factor 12 (HTF4, helix-loop-helix 
transcription factors 4) 
KIAA0237 gene 
TCLl gene (T cell leukemia) extracted from H.sapiens 
mRNA for Tcell leukemia/lymphoma 1 
HKR-Tl 
Integrin alpha 6 (or alpha E) protein gene extracted from 
Human mRNA for integrin alpha 6 
GB DEE = (lambda) DNA for immunoglobin light chain 
CD9 CD9 antigen 
CD24 signal transducer mRNA and 3' region 
MB-1 gene 
GB DEE = Fork head domain protein (EKHR) mRNA, 3' end 
KIAA0035 gene, partial cds 
MDK Midkine (neurite growth-promoting factor 2) 
Terminal transferase mRNA 
CD72 CD72 antigen 
KIAA0006 gene, partial cds 
G protein gamma-11 subunit 
LPAP gene 
Serine/threonine protein phosphatase 2B catalytic 
subunit, beta isoform 
CTGE Connective tissue growth factor 
Nuclear factor RIP140 
Homolog of yeast IPP isomerase 

list. Furthermore, such a report is stored online, so the matchings found for 
our ALL and AML genes are available for future references [14, 15]. 

The report for the ALL genes shows most singnificant matching in such 
categories as "Cells" (37), "Cell Nucleus" (8), "Cells, Cultured" (10), "Hemic 
and Immune Systems" (16), "Immune System" (10), "Neoplasms" (12), "Neo-
plasms by Histologic Type" (8), "Hormones, Hormone Substitutes, and Hor-
mone Antagonists" (8), "Enzymes, Coenzymes, and Enzyme Inhibitors" (30), 
"Enzymes" (30), "Hydrolases" (14), "Esterases" (10), "Transferases" (8), 
"Amino Acids, Peptides, and Proteins" (104), "Proteins" (90), "DNA-Binding 
Proteins" (8), "Glycoproteins" (12), "Membrane Glycoproteins" (8), "Mem-
brane Proteins" (24), "Membrane Glycoproteins" (8), "Receptors, Cell Sur-
face" (12), "Receptors, Immunologic" (12), "Transcription Factors" (12), "Nu-
cleic Acids, Nucleotides, and Nucleosides" (14), "Nucleic Acids" (10), "Im-
munologic and Biological Factors" (78), "Biological Factors" (26), "Biolog-
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Table 2. 25 Top AML Genes 

# 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 
24 
25 

Name 
U60644 
U16306 
M69203 s 

M33195 
M21119S 
D88422 
M27891 

M57731 s 
M31166 
D83920 
X97748 s 
M23178 s 
M92357 
HG2981-HT3127 s 
X04500 
M57710 
U02020 
Y00787 s 
M28130 rnal s 
K01396 
D38583 
J04130 s 

X62320 
J03909 
M14660 

Description 
HU-K4 mRNA 
CSPG2 Chondroitin sulfate proteoglycan 2 (versican) 
SCYA4 Small inducible cytokine A4 (homologous to 
mouse Mip-lb) 
Fc-epsilon-receptor gamma-chain mRNA 
LYZ Lysozyme 
Cystatin A 
CST3 Cystatin C (amyloid angiopathy and cerebral 
hemorrhage) 
GR02 GR02 oncogene 
PTX3 Pentaxin-related gene, rapidly induced by IL-1 beta 
FCNl Ficolin (collagen/fibrinogen domain-containing) 1 
GB DEF = PTX3 gene promotor region 
Macrophage inflammatory protein 1-alpha precursor 
B94 protein 
Epican, Alt. Splice 11 
ILIB Interleukin 1, beta 
LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin 3) 
Pre-B ceh enhancing factor (PBEF) mRNA 
Interleukin-8 precursor 
Interleukin 8 (IL8) gene 
PI Protease inhibitor 1 (anti-elastase), alpha-1-antitrypsin 
Calgizzarin 
SCYA4 Small inducible cytokine A4 (homologous to mouse 
Mip-lb) 
CRN Granuhn 
Gamma-interferon-inducible protein IP-30 precursor 
GB DEF = ISG-54K gene (interferon stimulated gene) 
encoding a 54 kDA protein, exon 2 

ical Markers" (18), "Antigens, Differentiation" (18), "Antigens, CD" (12), 
"Cytokines" (14), "Receptors, Immunologic" (12), "Investigative Techniques" 
(20), "Genetic Techniques" (9), "Biological Phenomena, Cell Phenomena, and 
Immunity" (7), "Genetics" (60), "Genes" (7), "Genetics, Biochemical" (43), 
"Molecular Sequence Data" (32), "Base Sequence" (13), "Sequence Homol-
ogy" (13), "Physical Sciences" (11), "Chemistry" (11), and "Chemistry, Phys-
ical" (9). 

The most significant matchings for the AML genes are in the categories 
"Nervous System" (13), "Cells" (102), "Blood Cells" (18), "Leukocytes" (15), 
"Cells, Cultured" (23), "Cell Line" (13), "Cytoplasm" (13), "Hemic and Im-
mune Systems" (51), "Blood" (18), "Vertebrates" (18), "Algae and Fungi" 
(14), "Fungi" (14), "Organic Chemicals" (14), "Heterocyclic Compounds" 
(18), "Enzymes, Coenzymes, and Enzyme Inhibitors" (40), "Enzymes" (38), 
"Hydrolases" (24), "Carbohydrates and Hypoglycemic Agents" (46), "Carbo-
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hydrates" (46), "Polysaccharides" (36), "Glycosaminoglycans" (18), "Proteo-
glycans" (14), "Lipids and Antilipemic Agents" (16), "Lipids" (16), "Amino 
Acids, Peptides, and Proteins" (384), "Proteins" (370), "Blood Proteins" (48), 
"Acute-Phase Proteins" (14), "Contractile Proteins" (14), "Muscle Proteins" 
(14), "Cytoskeletal Proteins" (28), "Microtubule Proteins" (14), "Globulins" 
(14), "Serum Globulins" (14), "Glycoproteins" (62), "Membrane Glycopro-
teins" (26), "Proteoglycans" (14), "Membrane Proteins" (72), "Membrane 
Glycoproteins" (26), "Receptors, Cell Surface" (28), "Receptors, Immuno-
logic" (20), "Nerve Tissue Proteins" (24), "Scleroproteins" (14), "Extracellu-
lar Matrix Proteins" (14), "Nucleic Acids, Nucleotides, and Nucleosides" (64), 
"Nucleic Acids" (34), "DNA" (20), "Nucleotides" (26), "Immunologic and Bi-
ological Factors" (262), "Biological Factors" (116), "Biological Markers" (26), 
"Antigens, Differentiation" (26), "Antigens, CD" (18), "Chemotactic Factors" 
(16), "Growth Substances" (32), "Interleukins" (18), "Toxins" (18), "Immuno-
logic Factors" (146), "Antibodies" (16), "Antigens" (42), "Antigens, Surface" 
(38), "Antigens, Differentiation" (26), "Antigens, CD" (18), "Cytokines" (68), 
"Growth Substances" (20), "Interleukins" (18), "Monokines" (22), "Recep-
tors, Immunologic" (20), "Specialty Chemicals and Products" (14), "Chem-
ical Actions and Uses" (16), "Diagnosis" (17), "Laboratory Techniques and 
Procedures" (14), "Immunologic Tests" (13), "Investigative Techniques" (63), 
"Genetic Techniques" (18), "Immunologic Techniques" (16), "Immunohisto-
chemistry" (13), "Technology, Medical" (20), "Histological Techniques" (15), 
"Histocytochemistry" (15), "Immunohistochemistry" (13), "Biological Phe-
nomena, Cell Phenomena, and Immunity" (33), "Cell Physiology" (18), "Ge-
netics" (160), "Genes" (21), "Genetics, Biochemical" (97), "Gene Expression" 
(15), "Gene Expression Regulation" (17), "Molecular Sequence Data" (63), 
"Base Sequence" (35), "Sequence Homology" (20), "Sequence Homology, Nu-
cleic Acid" (14), "Biochemical Phenomena, Metabolism, and Nutrition" (100), 
"Biochemical Phenomena" (88), "Molecular Sequence Data" (61), "Base Se-
quence" (33), "Physiological Processes" (15), "Growth and Embryonic Devel-
opment" (13), "Physical Sciences" (25). 

Obviously, such literature scoring can only give an indicative measure of 
the quality of the obtained results. Furthermore, it should be noted that the 
data set contains only leukemia samples and no control samples, so it provides 
no information about the normal state of the gene expressions in absence of 
the diseases. Hence, the data analysis can only discover genes differentiat-
ing the sample classes. However, the HAPI scoring suggests that correspon-
dence analysis enhanced by the missing data imputing feature uncovered genes 
highly relevant to the leukemia conditions. Moreover, the obtained numbers of 
matchings in the relevant MeSH categories compares favorably to the match-
ings of 25 ALL and AML genes reported by Golub at al. [16, 17]. 



36 Stanislav Busygin and Panos M. Pardalos 

5 Conclusions 

Correspondence analysis is able to deliver informative projections of high-
dimensional microarray data onto low-dimensional spaces. Such results in the 
form of pictures can be obtained in absence of any prior information about 
classification of samples and/or data points of the data set. In contrast to 
many other data mining techniques, correspondence analysis is computation-
ally efficient, does not involve any parameters that must be tuned before the 
algorithm is executed, and successfully handles missing/inaccurate data val-
ues as long as their number is moderate. Furthermore, the method proves to 
be useful in uncovering hidden relations between groups of samples and data 
points (genes), possibly outperforming in efficiency more complicated statis-
tical analysis techniques. The obtained lists on genes discriminating ALL and 
AML conditions may be useful for oncology researchers, providing further in-
sights about the roles of particular human genes in the development of the 
acute leukemia cases. 
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Summary. Cluster methods have been successfully applied in gene expression data 
analysis to address tumor classification. Central to cluster analysis is the notion of 
dissimilarity between the individual samples. In clustering microarray data, dissim-
ilarity measures are often subjective and predefined prior to the use of clustering 
techniques. In this chapter, we present an ensemble method to define the dissimi-
larity measure through combining assignments of observations from a sequence of 
data partitions produced by multiple clusterings. This dissimilarity measure is then 
subjective and data dependent. We present our algorithm of hierarchical cluster-
ing based on this dissimilarity. Experiments on gene expression data are used to 
illustrate the application of the ensemble method to discovering sample classes. 

K e y words: Cluster analysis, Dissimilarity measure, Gene expression 

1 Introduction 

Microarrays provide a very effective approach to interrogate hundreds or thou-
sands of genes simultaneously. Such high throughput capability poses great 
challenges in terms of analyzing the da ta and transforming the da ta into use-
ful information. As an exploratory da ta analysis tool, clustering has become 
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a useful technique for identifying different and previously unknown cell types 
[3, 4, 9, 10]. 

Among many clustering methods applied to cluster samples, hierarchical 
clustering and its variations have received a special attention [2, 4, 6, 8]. This is 
mainly because a hierarchical method can produce a dendrogram, which pro-
vides a useful graphical summary of the data. However, dendrograms depend 
on the measures of dissimilarity for each pair of observations. A dissimilarity 
measure is amplified graphically by means of a dendrogram. In microarray 
data analysis, dissimilarity measures are commonly based on Pearson correla-
tion. Such measures are restrictive, since Pearson correlation coefficient only 
describes the linear relationship between the observations on two variables. 
Therefore, it is difficult to see how one might be capable of making valid 
biological inferences. In this chapter, we present an ensemble method to de-
fine the dissimilarity measure. This method derives dissimilarity by combining 
assignments of observations from a sequence of data partitions produced by 
multiple clusterings. Thus, the dissimilarity measure is subjective and data 
dependent. We then present our algorithm of hierarchical clustering based 
on this dissimilarity. Experimental results show that the ensemble method is 
efficient in discovering sample classes using gene expression profiles. 

2 Methods 

Assume that there are k{> 2) distinct tumor tissue classes for the prob-
lem under consideration, and that there are p genes (inputs) and n tumor 
mRNA samples (observations). Suppose xu is the measurement of the expres-
sion level of the Ith gene from the ith sample for / = 1 , . . . , p and i = 1 , . . . , n. 
Let G = {xii)pxn denote the corresponding gene expression matrix. Note 
that the columns and rows of the expression matrix G correspond to sam-
ples and genes, respectively. The ith column may be written as a vector 
^i = {xii^X2ij''' ^XpiY'^ where T represents the transpose operation. We 
consider clustering the data {xi,X2, • • • , x ^ } . Clustering may be viewed as a 
process of finding natural groupings of the observations x^. A key issue re-
lated to this type of groupings is how one measures the dissimilarity between 
data points. Most clustering algorithms presume a measure of dissimilarity. 
For example, /f-means clustering uses Euclidean distance as a dissimilarity 
measure and Hierarchical clustering often uses correlation based dissimilar-
ity measures. In this section, we briefiy review K-means method and linkage 
methods, special cases of Hierarchical clustering techniques. Then we present 
an ensemble clustering algorithm using K-means and linkage methods. 

i^-means 

Cluster analysis aims at partitioning the observations into clusters (or groups) 
so that observations within the same cluster are more closely related to each 
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other than those assigned to different clusters. Partitioning is one of the ma-
jor clustering approaches. A partitioning method constructs a partition of the 
data into clusters that optimizes the chosen partitioning criterion. The K-
means is one of the most popular partitioning methods. This method uses 
Euclidean distance as the dissimilarity measure. It starts with a given as-
signment and proceeds to assign an observation to the cluster whose mean is 
closest. The process is repeated until the assignments do not change. 

Linkage Methods 

Commonly used linkage methods include single linkage (SL), complete link-
age (CL), and average linkage (AL). They are special cases of agglomerative 
clustering techniques and follow the same procedure: beginning with the in-
dividual observations, at each intermediate step two least dissimilar clusters 
are merged into a single cluster, producing one less cluster at the next higher 
level [7]. The difference among the linkage methods lies in the dissimilarity 
measures between two clusters, which are used to merge clusters. SL, CL, and 
AL define the dissimilarity between two clusters to be the minimum distance 
between the two clusters, the maximum distance between the two clusters, and 
the average distance between the two clusters, respectively. Specifically, sup-
pose we have n observations xi , X2, . . . , x^. Let (i(x^, x^) denote the predefined 
dissimilarity between x^ and Xj. Given two clusters Gi and G2, containing ni 
and n2 observations, respectively, the dissimilarity between Gi and G2 defined 
by SL, CL, and AL are 

dsL{Gi,G2)= min (i(x^,x^), 
XiGGi,XjGG2 

dcL{Gi,G2) = max (i(x^,x^), 
XiGGi,XjGG2 

dAL{Gi,G2) = V " (i(x^,x^). 
XiGGi,XoGG2 

Hierarchical Clustering by Ensemble Procedure 

Learning Dissimilarity from Data 

The clustering procedure partitions the data into clusters so that observations 
in one cluster are more like one another than like observations in other clusters. 
This procedure requires a measure of "closeness" or "similarity" between two 
observations. Such a measure can be made by using any metric d{^^-\ which, 
for any observations x^, Xj, and x/ ,̂ satisfies the following four properties: 
(i) (nonnegativity) (i(x^,Xj) > 0; (ii) (refiexivity) (i(x^,Xj) = 0 if and only 
if x^ = Xj; (iii) (symmetry) (i(x^,Xj) = (i(xj,x^); (iv) (triangle inequality) 
(i(x^,Xj) + (i(xj,x/c) > (i(x^,x/c). The smaller the measure (i(x^,Xj) is, the 
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more similar the two observations. As an example, the Euclidean distance 
d{yii,yij) = {Yl^=i{xii - xijfYl^ is a metric. 

Clustering methods also accept other measures of "closeness" tha t may not 
meet the refiexivity or triangle inequality. In general, one can introduce a dis-
similarity function (ii5(x^,Xj) to measure 'closeness" or "similarity" between 
x^ and Xj. A dissimilarity function is a function tha t satisfies nonnegativity 
and symmetry. For example, dis{xi^Xj) = 1 — cos(x^,Xj) is a dissimilarity 
function, where cos(x^,Xj) refers to the cosine of the angle between x^ and 
Xj. (It is easy to show tha t neither refiexivity nor the triangle inequality is 
satisfied by this measure.) 

The notion of dissimilarity is central to cluster analysis. Different choices 
of dissimilarity functions can lead to quite different results. Prior knowledge 
is often helpful in selecting an appropriate dissimilarity measure for a given 
problem. However, it is possible to learn a dissimilarity function from the 
data . We describe such a procedure as follows. 

Parti t ioning methods are usually not stable in the sense tha t the final re-
sults often depend on initial assignments. However, if two observations are 
assigned to the same cluster by a high percentage of the times of use of the 
same partit ioning method, it is then very likely tha t these two observations 
come from a common "hidden" group. This heuristic implies tha t the "ac-
tual" dissimilarity between two observations may be derived by combining 
the various clustering results from repeated use of the same partitioning tech-
nique. Here we formalize this combining process using K-means partitioning 
method. 

For the da ta {x i ,X2, - - - , x ^ } , we can select K centroids and then run 
K-means technique to parti t ion the da ta into K clusters. It is known tha t 
the final assignment usually depends on the initial reallocation. Now we run 
K-means N t imes. Each t ime a number K is randomly picked from a given 
interval [Ki, K2]. By doing this, we may end up with N possibly different final 
assignments. Given observations (samples) x^ and x^, let Pij denote the prob-
ability tha t they are not placed into the same cluster by the final assignment 
of a run of K-means clustering. This probability Pij can be estimated by using 
the results of repeated K-means clustering method. Define Sm{hj) = 1 if the 
m t h use of the K-means algorithm does not assign samples x^ and x^ into the 
same cluster; and Sjn{i,j) = 0 otherwise. Then Si{i,j), ^2{hj)^ •••? ^N^hj) 
are iid Bernoulli(p^j). It is well known tha t the best unbiased estimator oipij 
is Xlm=i ^m{hJ)/N' This estimate will be used as the dissimilarity measure 
between x^ and x^, i.e., 

dzKx„x,) = ^ ^ ^ ^ ^ i M . (1) 

A smaller value of dis{xi^ x^) is expected to imply a bigger chance tha t samples 
x^ and Xj come from the same "hidden" group. 
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We now state our ensemble method using K-means technique and linkage 
methods. Here the word ensemble refers to the sequence of K-means proce-
dures involved in the method. 

Algorithm 

1. Given N, Ki, and K2, run the K-means clustering method N times with 
each K randomly chosen from [Ki,K2]. 

2. Construct the pairwise dissimilarity measure dis{xi,Xj) between the ob-
servations by using the equation (1). 

3. Cluster the n samples (observations) by applying a linkage method and 
the dissimilarity measure dis{xi^Xj) learnt in Step 2. 

3 Results and Discussion 

Datasets 

We considered two gene expression datasets: COLON [1] and OVARIAN [11]. 
The COLON dataset consists of expression profiles of 2000 genes from 22 
normal tissues and 40 tumor samples. The OVARIAN dataset contains ex-
pression profiles of 7129 genes from 5 normal tissues, 27 epithelial ovarian 
tumor samples, and 4 malignant epithelial ovarian cell lines. 

Standardization and Gene Selection 

Following Dudoit and Fridlyand [3], we standardized the gene expression data 
so that the samples have mean 0 and variance 1 across genes. This simple stan-
dardization procedure achieves a location and scale normalization of different 
arrays. 

Each gene dataset considered here contains several thousand genes. Genes 
showing almost constant expression levels across samples are not expected to 
be useful for clustering. Thus, in our analysis, we used p = 100 genes which 
correspond to 100 largest variances of the gene expression levels across the 
samples. 

Parameter Setting 

To run our algorithm, we chose parameters as follows. The choice of N depends 
on the rate at which dis in (1) converges to pij. A large number should be 
chosen for N. For obtaining quick results, we set N = 1000. Since the number 
of true clusters for each dataset is at least 2, we set Ki = 2. A large K2 is 
required to guarantee that Si{i,j), ^2{hj), • • •, ^N^hj) are iid Bernoulli(p^j). 
However, in practice, the algorithm will not work for very large values of K2-
For example, K2> n\s clearly impractical. In our examples, we used K2 = 30. 
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Cluster Analysis 

For both gene expression datasets, we used single linkage in our algorithm. 
Cluster analysis for COLON and OVARIAN is shown in Fig. 1 and Fig. 2, 
respectively. 

n in \\%Mii? 
^ C D CMLO 

Fig. 1. Dendrogram from clustering of COLON data. 

The dendrogram for COLON clearly shows that all the samples are clus-
tered into two classes with 6 misclassihed samples (NORMAL08, N0RMAL18, 
NORMAL20, TUMOR23, TUMOR27, and TUMOR34). Alon et al. [1] con-
ducted a two-way clustering analysis based on 20 genes with the most signif-
icant difference between tumor and normal tissues. They found two clusters 
with 8 misclassihed samples: 5 tumor samples clustered with normal tissues 
and 3 normal tissues clustered with tumor samples. 

From the dendrogram for OVARIAN, our algorithm shows that all the 
samples are clustered into three classes: the class for normal tissues, the class 
for malignant epithelial ovarian cell lines, and the class for tumor samples. 
The hgure indicates that only one sample BCELL is misclassihed. Clearly, 
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Fig. 2. Dendrogram from clustering of OVARIAN data. 

our result is better than that of Welsh et al. [11], where the samples are 
mixed together. 

The above clustering analysis shows that our algorithm could be employed 
to effectively discover sample classes using gene expression profiling. From the 
above two examples, we have found that the dendrograms do not show any 
significant change when increasing Â  or p or both, where p is the number 
of genes used in the analysis. This robustness will be further studied both 
theoretically and experimentally. SL was used in our algorithm for the above 
two gene expression datasets. The effect of linkage methods other than SL 
will be investigated in our future work. Our algorithm uses K-means to de-
fine dissimilarity. In our future work, we will also investigate the effect of 
replacing K-means by other partitioning methods. The ensemble method of 
clustering presented here was discussed in [5] from the perspective of evidence 
accumulation. 
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Summary. Identifying the location and function of human genes in a long sequence 
of genome is difficult due to lack of sufficient information about genes. Experimental 
evidence has suggested that there exists strong correlation between CpG islands and 
genes immediately following them. Much research has been done to identify CpG 
islands in a DNA sequence using various models. In this chapter, we introduce two 
alternative models based on high order and variable order Markov chains. Compared 
with the popular models such as the ffist order Markov chain, HMM, and HMT, these 
two models are much easier to compute and have higher identification accuracies. 
One unsolved problem with the Markov model is that there is no way to decide 
the exact boundary point between CpG and non-CpG islands. In this chapter, we 
provide a novel tool to decide the boundary points using the sequential probability 
test. Sequential data from GeneBank are used for the experiments in this chapter. 

K e y words: DNA sequences, CpG islands, Markov models, Probability Suf-
fix Trees (PST) , sequential probability ratio test (SPRT) 

1 Introduction 

Genome is defined by combining the word "gene" with the suflBx "ome" for 
mass. Most genomes are made of DNA tha t contains the biochemical codes for 
the inheritance. A portion of the DNA tha t is associated with a specific trai t 
or function is defined as a gene. A gene is responsible to initiate the biochem-
ical reactions known as gene expression. DNA is a macromolecule made up 
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of unbranched, linear chains of monomeric subunits called nucleotides. These 
subunits are comprised of a nitrogenous base, a sugar, and a phosphate group 
generally denoted d N T P for deoxyribonucleotide tr iphosphate. The nitrogen-
base can be adenine (A), cytosine (C), guanine (G), or thyamine (T). The list 
of the bases in a DNA strand is called a DNA sequence. 

Recently, DNA sequences of the human genome have been fully deter-
mined. And identifying probable locations of genes in a long DNA sequence 
has become one objective of the field of bioinformatics. In human genome the 
dinucleotide CG is called CpG. Because there are not an adequate number of 
marked genes available in human genome, scientists have designed methods 
to detect the CpG islands instead of identifying the probable location of genes 
directly. When the CpG occurs, the C nucleotide is chemically modified by 
methylation. The chances of this methyl-C mutat ing to a T become higher. 
Therefore, the CpG dinucleotides are usually rarer in the genome than tha t 
expected from the independent C and G. Based on the biological principle, 
methylation process is suppressed at the start ing regions of many genes in a 
genome. As a result, these regions have CpG dinucleotide much higher than 
elsewhere. These regions are called CpG islands. About 56% of the human 
genes are associated with a region of a CpG island. The goal of distinguish-
ing the CpG islands is to locate the probable gene in a long DNA sequence 
indirectly. 

There are many methods available for identifying the CpG island. The first 
order Markov model, hidden Markov model (HMM), and Hidden Markov Tree 
(HMT) are the popular tools. Because of complexity of the real life sequence, 
the short memory assumption of the first order Markov chain usually is not 
satisfied. The HMM model, on the other hand, is a Markov chain with outputs . 
It is more complex and can be slow for large problems. It has been proven 
tha t HMMs can not be trained in polynomial t ime in the alphabet size [5]. 
Besides, the algorithm of HMM can only be guaranteed to converge to a local 
minimum. 

In this chapter we introduce two alternative models to identify CpG is-
lands: higher order Markov chains and variable order Markov chains. The first 
order Markov chain has only 4 states A, C, G, T. The number of states in 
the forth/fifth order chains is not very large (for a forth order chain, there 
are 4^ = 256 states). Therefore, certain higher order Markov chains could be 
used in CpG island identification. To overcome the drawback tha t the size of 
a Markov chain grows exponentially with order, variable order Markov chains 
can be used. In the variable order Markov chain, the order of the Markov 
chain is not fixed [3]. The model is based on the probability suffix trees and 
can also be explained by probability suffix au tomata [5]. 

This chapter is organized as follows. In Section 2, we introduce higher 
order Markov chains. In Section 3, we provide some experimental results from 
real life DNA sequences. Conclusions and remarks are given in Section 4. 
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2 Higher Order Markov Chains 

In this section, we introduce higher order Markov chains and how to control 
the model complexity. A variable order Markov chain algorithm is also given. 

2.1 M a r k o v M o d e l s 

Assume a discrete t ime random variable Xf takes values in the finite set 
{! , . . . , m } . The first order Markov hypothesis says tha t the present value at 
t ime t is entirely explained by the value at t ime t — 1, so tha t we can write 

P{Xt = io\Xo = it,...,Xt-i = ii) =Pi^iQ{t), 

where it,... ,io ^ {! , . . . , m}. Assuming the chain is t ime invariant, we have 
a homogeneous Markov chain: 

/piiPi2 . . A 
P = P21 P22 • • • 1 

V •• • • ) 

Often we need to solve two problems with Markov chains. The first is 
prediction, and the second is estimation [2]. The prediction problem is defined 
as follows. Given a system being in state X^ = i at t ime t, what is the 
probability distribution over the possible states X^+fc at t ime t-\-k? The answer 
is obtained by using the transition probabilities and the parti t ion technique. 
For example, 

P2{Xt+2\Xt) = J2 Pl{Xt+l\Xt)P,{Xt+2\Xt+l), 

where Pk{X^\X) is the k-step transition probability. 
For the estimation problem, we need to estimate the initial s tate distrib-

ution Po{Xo) and the transition probability P i ( X ' | X ) . The answers can be 
obtained using the empirical estimates. Given L observed sequences of differ-
ent lengths 

A Q ^ A ^ ^ ^ 2 ^ ' " ^ ^riL ^ 

the maximum likelihood estimates (observed fractions) are 

L 

Po(Xo=i ) = y ^ 5 ( X « , z ) 
^ ^ 1 
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where S{x,y) = 1 if x = y and zero otherwise. The transition probabilities are 
obtained as observed fractions out of a specific state. The joint estimate over 
successive states is 

Px,x'iX = i,X'=j) = - ^ Y.J2 5{xf\i)5{xfl,J), 

1^1=1 ^l 1=0 t=0 

and the transit ion probability estimates are 

Px,X'{X = i,X'=j) P,{X' = j\X = i) 
j:^Px,x'{X = i,X' = k)-

In a situation where the present depends on the last / observations, we 
have an Ith order Markov chain whose probabilities are 

P{Xt = io\Xo it,...,Xt-i = h) 

P{Xt = io\Xt-i=ii,.... X t-i h) =Pii. 

For i n s t a n c e , if we ) set I = 2 a n d 

is 
fpiii 0 

P = 

P211 0 

P311 0 

0 Pl21 

0 P221 

0 P321 
0 0 

0 0 

î  0 0 

0 

0 

0 

0 

0 

0 

PlSl 

P231 

P331 

771 = 3, t h e c o r r e s p o n d i n g t r a n s i t i o n m a t r i x 

Pll2 0 

P212 0 

P312 0 

0 Pl22 

0 P222 

0 P322 
0 0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 

Pl32 

P232 

P332 

Pll3 0 

P213 0 

P313 0 

0 Pl23 

0 P223 

0 P323 
0 0 

0 0 

0 0 

0 \ 
0 

0 

0 

0 

0 

Pl33 

P233 

P 3 3 3 / 

When the order is greater than 1, the transition matrix P contains several 
elements corresponding to transitions tha t can not occur. For instance, it is 
impossible to go from the row defined by Xt_2 = 1 and X^- i = 2 to the 
column defined by Xt-i = 1 and Xt = I. The probability of this transition 
is then 0. We can rewrite P in a more compact form excluding zeros. For 
example, the reduced form of the matr ix corresponding to / = 2 and m = 3 is 

Q 

(piii 

P211 

P311 

Pl21 

P221 

P321 

Pl31 

P231 

\P331 

Pll2 Pll3\ 

P212 P213 

P312 P313 

Pl22 Pl23 

P222 P223 

P322 P323 

Pl32 Pl33 

P232 P233 

P332 P333 ) 

file:///P331
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Each possible combination of / successive observations of the random vari-
able X is called the state of the model. The number of states is equal to m^ 
(=9 in our example). Whatever the order is, there are m — 1 independent 
probabilities in each row of the matrix P and Q, the last one depending on 
the others since each row is a probability distribution summing to one. The 
total number of independent (free) parameters is p = m^(m — 1). Given a 
set of observations, these parameters can be computed as follows. Let n̂ .̂..̂ ^ 
denote the number of transitions of the type 

Xt-i = ii,... jXt-i = iijXt = io 

in the data. The maximum likelihood estimate of the corresponding transition 
probability is 

PH...10 - , 

where 

m 

io = l 

Given the sequences, the order of a Markov chain can be determined using 
the minimum description length (MDL) [4]. MDL is defined to be 

MDL = - 2LL+p log (n ) , 

where 
m 

LL = log(L) = Y^ Ui^^i^ logp^ .̂..̂ o 
iu...,io = l 

is the log-likelihood of the model, p is the number of independent parameters, 
and n is the number of components in the likelihood. Another popular criterion 
used to determine the order of a Markov chain is the Akaike's Information 
Criterion (AIC): 

AIC = -2LL + 2p. 

The optimal order of a Markov chain can be determined by minimizing either 
MDL or AIC. 

2.2 Variable Order Markov Chains 

Variable Markov chains are based on Probability Suffix Trees (PST). A prob-
ability suffix tree describes a set of conditional distributions for the given 
sequences. Let E be the set of alphabet of 4 nucleic acids (A, C, T, or G) for 
DNA sequences. Let 5 be a substring in the sequences. For cr G i7, we define 
P{a\s) to be the probability of a symbol a given a suffix s. Let the length of 
substring 5 be |5| = L Let Ng be the number of occurrences of string s in the 
sequences and V -̂s be the number of occurrences of string as in the sequences. 



52 Zhenqiu Liu, Dechang Chen, and Xue-wen Chen 

We have the following estimate of p{a\s): P{cr\s) = N^s/Ng. The probability 
of a sequence calculated by PST is the product of the probabilities of each 
letter given its longest suffix in the PST model. 

A complete P S T is a P S T with full leaves. A complete P S T of depth L 
is equivalent to a higher order Markov chain of order L. A noncomplete P S T 
is equivalent to a variable order Markov chain and the order depends on the 
suffix. Hence, P S T is a general model, including both higher order and variable 
order Markov chains as special cases. In the following, we first build a P S T 
and then extract the leaf nodes of P S T to form our variable Markov model. 

T h e A l g o r i t h m for P S T and Variable Order M a r k o v Cha ins 

Let us define a substring of s without first letter as suf{s) = 5 2 ^ 3 , . . . , 5/. 
suf{s) is the parent node of string s in PST. The algorithm for building 
the P S T is based on a simple search method. First we initialize the P S T 
with a single root node and an empty string. Then we gradually calculate 
the conditional probability P{(j\s) of each symbol given a substring in the 
substring space, start ing at the single letter substrings. We then check if it is 
large enough and if it is significantly different from the conditional probability 
of the same letter given the suf{s), which means tha t we check if the current 
node's distributions are significantly different from its parent 's distributions. 
If the difference is significant, the substring and all necessary nodes on its 
pa th are added to our PST. After the PST is established, we can extract 
the variable Markov model based on the leaf nodes and their transitional 
probabilities of the PST. 

Let L be the maximum order of the variable Markov chain, a the minimum 
conditional probability in order for a node to be included in the P S T model, 
Pmin the minimum probability of a string in the sequences, and £ the minimum 
difference of the distribution between the current node and its parents node. 
For a string of length n, the complexity of building a PST takes 0{Ln^) 
t ime by the method of Apostolico and Bejerano [1]. The procedure of their 
algorithm for building P S T and variable Markov chains is given as follows. 

1. Initialize the tree T with a single empty node e and substring set S ^ 
{(j\(j G E and P{a) > Pmin}-

2. Build PST. While S' 7̂  0, we pick up s ^ S and perform the following 
steps: 
• Remove s from S. 
• For a symbol cr G i7, if 

P{cr\s) > a 

and 
\Pia\s) - Pia\sufis))\ 

Pia\sufis)) 

or 

> £ , 

file:///Pia/s
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\P{a\s)-P{a\suf{s))\ 

P{a\s) 
> £ , 

we add the node corresponding to s and all the nodes on the pa th from 
s to the root to our PST. 

• If s < L and P{js) > Pmin for 7 ^ ^^ then add 75 to S. 
3. Extract the leaf nodes and related probabilities to form a transitional 

probability matr ix of the variable Markov model. 

3 Discrimination with Markov Models and SPRT 

A Markov model is fully defined by its states and state transition matrix. 
The first order Markov chain for DNA sequences has the structure shown in 
Figure 1. In this section, we introduce how to use Markov models to identify 

Fig. 1. The structure of the first order chain for a DNA sequence. 

the CpG islands, with an aid of a sequential probability ratio test (SPRT). 

3.1 S P R T 

Assume a sequence of observations {xi} {% = 1 ,2 , . . . ) . The decision for dis-
criminating two simple hypotheses H^ : 0 = OQ and Hi : 6 = 61 {OQ ^ Oi) 
is: accept HQ if Z^ < b and reject HQ if Z^ > a. Here, 0 represents the set of 
parameters of the model. For a Markov model, 0 is the transition probability 
matrix. The random variable Z^ is the natural logarithm of the probability 
ratio at stage n: 

^ri = In — - — w i t h Xn = X1X2 . . . Xn. 
/(Xn|6'o) 
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Without any loss of generality, Z^ can be set to be zero when /(x^|6'i) = 
/(x, |^o) = 0. 

The numbers a and h are two stopping bounds. They are estimated by the 
following Wald approximations: 

0 c::̂  m and a c::̂  m , 
\ — OL a 

where a is the probability that Hi is chosen when HQ is true and f3 is the 
probability that HQ is accepted when Hi is true. It has been a standard 
practice to employ the above equations to approximate the stopping bounds 
in all practical applications. The continuation region b < Zn < a is called the 
critical inequality of the SPRT at length n. 

3.2 SPRT for Markov Model 

To use Markov models in identifying the CpG islands for DNA sequences, we 
need to train two models separately: one for the CpG island, the other for the 
non-CpG island. For simplicity, we shall represent CpG and non-CpG regions 
by '+ ' and '-', respectively. Let the transitional probability for the CpG island 
be a'l- and a~- for the non-CpG island. Given a test DNA sequence x of length 
n, we can discriminate the CpG islands from the non-CpG island using the 
following log-likelihood ratio: 

^ ' ^ i=l ij i=l i=l 

If Rn{^) > C^ the sequence is the CpG island, where C = In ^ ^ for given a 
and (3. For instance, if ce = 0.1 and (3 = 0.1, we have C = ln(0.9/0.1) = 2.1972. 
In our models, we may use different order Markov models for CpG islands and 
non-CpG islands, which is much more flexible in applications. 

4 Computational Results 

All the datasets in our experiments are from GeneBank. GeneBank is a repos-
itory for DNA sequences maintained by NIH. In our training and testing 
datasets, the locations of CpG islands are marked. We first extracted the 
marked CpG regions from the training DNA sequences and built two models, 
one for CpG island and one for non-CpG island. Figures 2 and 3 show the 
monomer density of CpG island and non-CpG island, respectively. The figures 
indicate that CpG island has higher nucleotide percentages of C+G, while the 
non-CpG island does not. 

To test the efficiency of our models, we first split our testing sequences 
into fixed length windows. The step for the window to move forward was set 



CpG Island Identification with Markov Models 

Fig. 3. The nucleotide density of non-CpG islands. 
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to be 1. The decision was then made using the likelihood of each subsequence 
given the two models. Wi th a = 0.01 and /3 = 0.01, the decision boundary for 
SPRT is C = 4.6. The computational results were also compared with those 
from the corresponding HMMs. 

Our first test sequence is a human creatine kinase (CK) pseudogene, with 
an insert of 3 tandem Alu repeats (HSCKBPS). The length of the sequence is 
2980. We split it into subsequences with 120 symbols. The testing results are 
given in Table 1. The numbers in Table 1 represent the relative position of the 
nucleotides with respect to the start ing location of the DNA sequences used 
for testing. Table 1 indicates tha t the third order Markov model (MC3) has 
the best performance, since its boundary prediction is most close to the t rue 
boundary of the sequence. It is interesting to note tha t the hidden Markov 
model lead to a new region tha t does not exist in the sequence. The reason 
for this might be the noise in the da ta sequence. 

Table 1. Performances of different order Markov chains on H S C K B P S 

True Islands 
581-921 
937-1244 
2015-2232 

MC2 
569-900 
915-1237 
2048-2104 

MC3 
569-917 
919-1236 
2040-2112 

VMC 
545-897 
919-1189 
2075-2201 

HMM 
570-894 
914-1218 
2090-2110 
2401-2437 

Our second test sequence is a human alpha-1 collagen type II gene, exons 
1, 2 and 3 (HSCOLII). This sequence has 6723 symbols. We split it into 
subsequences with 120 symbols. The testing results for the HSCOLII sequence 
are given in Table 2. The table shows tha t for this sequence the second order 
Markov and the variable Markov model have the best performance. All the 
models also predicted a region tha t does not exist. 

Table 2. Performances of different order Markov chains on HSCOLII 

True Islands 
570-1109 
1567-1953 
2168-2406 
3102-3348 

MC2 
154-1042 
1494-1728 
2129-2299 
3031-3349 
3384-3540 

MC3 
154-1047 
1494-1726 
2129-2291 
3039-3277 
3398-3541 

VMC 
160-1124 
1508-1838 
2138-2373 
3042-3373 
3398-3728 

HMM 
161-1057 

1492-1726 
2123-2299 
3039-3373 
3399-3581 

Our last test sequence is a human collagen alpha-1-IV and alpha-2-IV 
genes, exons 1-3 (HSCOLAA). This sequence has 2184 symbols. We split it 
into subsequences with 100 symbols. The testing results for the HSCOLAA 
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sequence are given in Table 3. The results in Table 3 indicate tha t the variable 
Markov model has the best performance. 

Table 3. Performances of different order Markov chains on HSCOLAA 

True Islands 
49-877 
953-1538 
1765-2100 

MC2 
15-858 

908-1460 
1910-2015 

MC3 
1-862 

908-1445 
1859-2011 

VMC 
46-887 
919-1489 
1769-2007 

HMM 
7-833 

916-1444 
1858-2007 

5 Conclusions 

In this chapter, we have presented CpG island identification with higher or-
der and variable order Markov models. With these simple models, we have 
identified the CpG islands from 3 DNA sequences. We showed tha t different 
order Markov chains may have different prediction accuracies and it is pos-
sible for us to get more accurate identification with higher order or variable 
order Markov models. Sequential probability ratio test was used to eliminate 
the false alarm and find more accurate boundaries of CpG islands. 
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Summary . In this chapter we study the problem of classifying chemical compound 
datasets. We present a sub-structure-based classification algorithm that decouples 
the sub-structure discovery process from the classification model construction and 
uses frequent subgraph discovery algorithms to find all topological and geometric 
sub-structures present in the dataset. The advantage of this approach is that during 
classification model construction, all relevant sub-structures are available allowing 
the classifier to intelligently select the most discriminating ones. The computational 
scalability is ensured by the use of highly efficient frequent subgraph discovery algo-
rithms coupled with aggressive feature selection. Experimental evaluation on eight 
different classification problems shows that our approach is computationally scalable 
and on the average, outperforms existing schemes by 10% to 35%. 

K e y words: Classification, Chemical Compounds, Virtual Screening, Graphs, 
SVM. 

1 Introduction 

Discovering new drugs is an expensive and challenging process. Any new drug 
should not only produce the desired response to the disease but should do so 
with minimal side effects and be superior to existing drugs. One of the key 
steps in the drug design process is the identification of the chemical compounds 
{hit compounds) tha t display the desired and reproducible behavior against 
the specific biomolecular target [47] and represents a significant hurdle in the 
early stages of drug discovery. The 1990s saw the widespread adoption of 
high-throughput screening (HTS) and ul tra HTS [11, 32], which use highly 
automated techniques to conduct the biological assays and can be used to 
screen a large number of compounds. Although the number of compounds 
tha t can be evaluated by these methods is very large, these numbers are small 
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in comparison to the millions of drug-like compounds tha t exist or can be 
synthesized by combinatorial chemistry methods. Moreover, in most cases it 
is hard to find all desirable properties in a single compound and medicinal 
chemists are interested in not just identifying the hits but studying what 
part of the chemical compound leads to the desirable behavior, so tha t new 
compounds can be rationally synthesized {lead development). 

Computat ional techniques tha t build models to correctly assign chemical 
compounds to various classes of interest can address these limitations, have 
many applications in pharmaceutical research, and are used extensively to re-
place or supplement HTS-based approaches. These techniques are designed to 
computationally search large compound databases to select a limited number 
of candidate molecules for testing in order to identify novel chemical entities 
tha t have the desired biological activity. The combination of HTS with these 
virtual screening methods allows a move away from purely random-based test-
ing, toward more meaningful and directed iterative rapid-feedback searches of 
subsets and focused libraries. However, the challenge in developing practi-
cal virtual screening methods is to develop chemical compound classification 
algorithms tha t can be applied fast enough to rapidly evaluate potentially mil-
lions of compounds while achieving sufficient accuracy to successfully identify 
a subset of compounds tha t is significantly enriched in hits. 

In recent years two classes of techniques have been developed for solv-
ing the chemical compound classification problem. The first class builds a 
classification model using a set of physico-chemical properties derived from 
the compounds structure, called quantitative structure-activity relationships 
(QSAR) [33, 34, 2], whereas the second class operates directly on the structure 
of the chemical compound and t ry to automatically identify a small number 
of chemical sub-structures tha t can be used to discriminate between the dif-
ferent classes [12, 76, 36, 44, 21]. A number of comparative studies [69, 39] 
have shown tha t techniques based on the automatic discovery of chemical sub-
structures are superior to those based on QSAR properties and require limited 
user intervention and domain knowledge. However, despite their success, a key 
limitation of these techniques is tha t they rely on heuristic search methods 
to discover these sub-structures. Even though such approaches reduce the in-
herently high computational complexity associated with these schemes, they 
may lead to sub-optimal classifiers in cases in which the heuristic search failed 
to uncover sub-structures tha t are critical for the classification task. 

In this chapter we present a sub-structure-based classifier tha t overcomes 
the limitations associated with existing algorithms. One of the key ideas of 
this approach is to decouple the sub-structure discovery process from the 
classification model construction step and use frequent subgraph discovery 
algorithms to find all chemical sub-structures tha t occur a sufficiently large 
number of times. Once the complete set of these sub-structures has been iden-
tified, the algorithm then proceeds to build a classification model based on 
them. The advantage of such an approach is tha t during classification model 
construction, all relevant sub-structures are available allowing the classifier to 
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intelligently select the most discriminating ones. To ensure tha t such an ap-
proach is computationally scalable, we use recently developed [42, 44] highly 
efficient frequent subgraph discovery algorithms coupled with aggressive fea-
ture selection to reduce both the amount of t ime required to build as well as to 
apply the classification model. In addition, we present a sub-structure discov-
ery algorithm tha t finds a set of sub-structures whose geometry is conserved, 
further improving the classification performance of the algorithm. 

We experimentally evaluated the performance of these algorithms on eight 
different problems derived from three publicly available datasets and com-
pared their performance against tha t of traditional QSAR-based classifiers and 
existing sub-structure classifiers based on SUBDUE [17] and SubdueCL [29]. 
Our results show tha t these algorithms, on the average, outperform QSAR-
based schemes by 35% and SUBDUE-based schemes by 10%. 

The rest of the chapter is organized as follows. Section 2 provides some 
background information related to chemical compounds, their activity, and 
their representation. Section 3 provides a survey on the related research in this 
area. Section 2 provides the details of the chemical compound classification 
approach. Section 5 experimentally evaluates its performance and compares 
it against other approaches. Finally, Section 6 provides outlines directions of 
future research and provides some concluding remarks. 

2 Background 

A chemical compound consists of different atoms being held together via bonds 
adopting a well-defined geometric configuration. Figure 2(a) represents the 
chemical compound Flucytosine from the D T P AIDS repository [24] it con-
sists of a central aromatic ring and other elements like N, O and F. The 
representation shown in the figure is a typical graphical representation tha t 
most chemists work with. 

There are many different ways to represent such chemical compounds. The 
simplest representation is the molecular formula tha t lists the various atoms 
making up the compound; the molecular formula for Flucytosine is C4H4FN30. 
However this representation is woefully inadequate to capture the structure 
of the chemical compound. It was recognized early on tha t it was possible 
for two chemical compounds to have identical molecular formula but com-
pletely different chemical properties [28]. A more sophisticated representation 
can be achieved using the SMILES [72] representation, it not only repre-
sents the atoms but also represents the bonds between different atoms. The 
SMILES representation for Flucytosine is N c l n c ( 0 ) n c c l F . Though SMILES 
representation is compact it is not guaranteed to be unique, furthermore the 
representation is quite restrictive to work with [41]. 

The activity of a compound largely depends on its chemical structure 
and the arrangement of different atoms in 3D space. As a result, effective 
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(a) NSC 103025 Flucytosine (b) Graph Representation 

Fig. 1. Chemical and Graphical representation of Flucytosine 

classification algorithms must be able to directly take into account the struc-
tural nature of these datasets. In this chapter we represent each compound 
as undirected graphs. The vertices of these graphs correspond to the various 
atoms, and the edges correspond to the bonds between the atoms. Each of the 
vertices and edges has a label associated with it. The labels on the vertices 
correspond to the type of atoms and the labels on the edges correspond to the 
type of bonds. As an example, Figure 2(b) shows the representation of Flucy-
tosine in terms of this graph model. We will refer to this representation as the 
topological graph representation of a chemical compound. Note tha t such 
representations are quite commonly used by many chemical modeling software 
and are referred as the connection table for the chemical compound [47]. 

In addition, since chemical compounds have a physical three-dimensional 
structure, each vertex of the graph has a SD-coordinate indicating the posi-
tion of the corresponding atom in 3D space. However, there are two key issues 
tha t need to be considered when working with the compound's 3D struc-
ture. First, the number of experimentally determined molecular geometries is 
limited (about 270,000 X-ray structures in the Cambridge Crystallographic 
Database compared to 15 millions known compounds). As a result, the 3D 
geometry of a compound needs to be computationally determined, which may 
introduce certain amount of error. To address this problem, we use the Co-
rina [27] software package to compute the 3D coordinates for all the chemical 
compounds in our datasets. Corina is a rule- and data-based system tha t has 
been experimentally shown to predict the 3D structure of compounds with 
high-accuracy. Second, each compound can have multiple low-energy confor-
mations (i.e., multiple 3D structures) tha t need to be taken into account in 
order to achieve the highest possible classification performance. However, due 
to t ime constraints, in this study we do not take into account these multi-
ple conformations but instead use the single low-energy conformation tha t is 
returned by Corina's default settings. However, as discussed in Section 4.1, 
the presented approach for extracting geometric sub-structures can be easily 
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extended to cases in which multiple conformations are considered as well. Nev-
ertheless, despite this simplification, as our experiments in Section 5 will show, 
incorporating 3D structure information leads to measurable improvements in 
the overall classification performance. We will refer to this representation as 
the geometric graph representation of a chemical compound. 

The meaning of the various classes in the input dataset is application 
dependent. In some applications, the classes will capture the extent to which a 
particular compound is toxic, whereas in other applications they may capture 
the extent to which a compound can inhibit (or enhance) a particular factor 
and /or active site. In most applications each of the compounds is assigned 
to only one of two classes, tha t are commonly referred to as the positive and 
negative class. The positive class corresponds to compounds tha t exhibit the 
property in question, whereas the compounds of the negative class do not. 
Throughout this chapter we will be restricting ourselves to only two classes, 
though all the techniques described here can be easily extended to multi-class 
as well as multi-label classification problems. 

Another important aspect of modeling chemical compounds is the naming 
of single and double bonds inside aromatic rings. Typically in an aromatic 
ring of a chemical compound, though the number of single and double bonds 
is fixed, the exact position of double and single bonds is not fixed, this is 
because of the phenomenon of resonance [28]. It is worth noting tha t the 
exact position of double and single bond in an aromatic ring does not affect 
the chemical properties of a chemical compound. To capture this uncertainty 
in the position of single and double bond we represent all the bonds making 
up the aromatic ring with a new bond type called the aromatic bond. Another 
aspect of the chemical compounds is tha t the number of hydrogen bonds 
connected to a particular carbon atom can usually be inferred from the bonds 
connecting tha t carbon atom [28], therefore in our representation we do not 
represent the hydrogen atoms tha t are connected to the carbon atoms, such 
hydrogen atoms are referred as non-polar hydrogen atoms. Note tha t the above 
transformations are widely used by many chemistry modeling tools and are 
usually referred to as structure normalization [47]. 

3 Related Research 

Many approaches have been developed for building classification models for 
chemical compounds. These approaches can be grouped into two broad cat-
egories. The first contains methods tha t represent the chemical compounds 
using various descriptors and then apply various statistical or machine learn-
ing approaches to learn the classification models. The second category contains 
methods tha t automatically analyze the structure of the chemical compounds 
involved in the problem to identify a set of substructure-based rules, which 
are then used for classification. A survey of some of the key methods in both 
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categories and a discussion on their relative advantages and disadvantages is 
provided in the remaining of this section. 

Approaches based on Descriptors A number of different types of descriptors 
have been developed tha t are based on frequency, physicochemical proper-
ties, topological, and geometric substructures [74, 6]. The quality of these 
descriptors improves as we move from frequency-, to property-, to topology-
, to geometry-based descriptors, and a number of studies have shown tha t 
topological descriptors are often superior to those based on simple physico-
chemical properties, and geometric descriptors outperform their topological 
counterparts [67, 5, 10]. The types of properties tha t are captured/measured 
by these descriptors are identified a priori in a dataset independent fashion 
and rely on extensive domain knowledge. Frequency descriptors are counts 
tha t measure basic characteristics of the compounds and include the num-
ber of individual atoms, bonds, degrees of connectivity, rings, etc. Physico-
chemical descriptors correspond to various molecular properties tha t can be 
computed directly from the compounds structure. This includes properties 
such as molecular weight, number of aromatic bonds, molecular connectivity 
index, l o g P , total energy, dipole moment, solvent accessible surface area, mo-
lar refractivity, ionization potential, atomic electron densities, van der Waals 
volume, etc [13, 52, 5]. Topological descriptors are used to measure various 
aspects of the compounds two-dimensional structure, i.e., the connectivity 
pat tern of the compound's atoms, and include a wide-range of descriptors 
tha t are based on topological indices and 2D fragments. Topological indices 
are similar to physicochemical properties in the sense tha t they character-
ize some aspect of molecular da ta by a single value. These indices encode 
information about the shape, size, bonding and branching pat tern [7, 31]. 
2D fragment descriptors correspond to certain chemical substructures tha t 
are present in the chemical compound. This includes various atom-centered, 
bond-centered, ring-centered fragments [1], fragments based on atom-pairs 
[15], topological torsions [59], and fragments tha t are derived by performing a 
rule-based compound segmentation [8, 9, 48]. Geometric descriptors measure 
various aspects of the compounds 3D structure tha t has been either experi-
mentally or computationally determined. These descriptors are usually based 
on pharmacophores [13]. Pharmacophores are based on the types of interac-
tion observed to be important in ligand-protein binding interactions. Pharma-
cophore descriptors consist of three or four points separated by well-defined 
distance ranges and are derived by considering all combinations of three or 
four atoms over all conformations of a given molecule [67, 19, 4, 61, 30]. Note 
tha t information about the 2D fragments and the pharmacophores present in 
a compound are usually stored in the form of a fingerprint, which is fixed-
length string of bits each representing the presence or absence of a particular 
descriptor. 

The actual classification model is learned by transforming each chemical 
compound into a vector of numerical or binary values whose dimensions cor-
respond to the various descriptors tha t are used. Within this representation. 
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any classification technique capable of handling numerical or binary features 
can be used for the classification task. Early research on building these clas-
sification models focused primarily on regression-based techniques [13]. This 
work was pioneered by Hansch et al. [33, 34], which demonstrated that the 
biological activity of a chemical compound is a function of its physicochemical 
properties. This led to the development of the quantitative structure-activity 
relationship (QSAR) methods in which the statistical techniques (i.e., classi-
fication model) enable this relationship to be expressed mathematically. How-
ever, besides regression-based approaches, other classification techniques have 
been used that are in general more powerful and lead to improved accura-
cies. This includes techniques based on principle component regression and 
partial least squares [75], neural networks [3, 51, 79, 23], recursive partition-
ing [16, 65, 2], phylogenetic-like trees [58, 70], binary QSAR [45, 26], linear 
discriminant analysis [60], and support vector machines [14]. 

Descriptor-based approaches are very popular in the pharmaceutical indus-
try and are used extensively to solve various chemical compound classification 
problems. However, their key limitation stems from the fact that, to a large 
extent, the classification performance depends on the successful identification 
of the relevant descriptors that capture the structure-activity relationships for 
the particular classification problem. 

Approaches based on Substructure Rules The pioneering work in this field 
was done by King et al. in the early 1990s [40, 39]. They applied an inductive 
logic programming (ILP) system [56], Golem [57], to study the behavior of 
44 trimethoprin analogues and their observed inhibition of Escherichia coli 
dihydrofolate reductase and reported a considerable improvement in classi-
fication accuracy over the traditional QSAR-based models. In this approach 
the chemical compound is expressed using first order logic. Each atom is rep-
resented as a predicate consisting of atomID and the element, and a bond 
is represented as a predicate consisting of two atomlDs. Using this represen-
tation, an ILP system discovers rules (i.e., conjunction of predicates) that 
are good for discriminating the different classes. Since these rules consist of 
predicates describing atoms and bonds, they essentially correspond to sub-
structures that are present in the chemical compounds. Srinivasan et al. [69] 
present a detailed comparison of the features generated by ILP with the tra-
ditional QSAR properties used for classifying chemical compounds and show 
that for some applications features discovered by ILP approaches lead to a 
significant lift in the performance. 

Though ILP-based approaches are quite powerful, the high computa-
tional complexity of the underlying rule-induction system limits the size of 
the dataset for which they can be applied. Furthermore, they tend to pro-
duce rules consisting of relatively small substructures (usually three to four 
atoms [18, 20]), limiting the size of structural constraints that are being dis-
covered and hence affecting the classification performance. Another drawback 
of these approaches is that in order to reduce their computational complexity 
they employ various heuristics to prune the explored search-space [55], po-
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tentially missing substructures tha t are important for the classification task. 
One exception is the WARMR system [18, 20] tha t is specifically developed for 
chemical compounds and discovers all possible substructures above a certain 
frequency threshold. However, WARMR's computational complexity is very 
high and can only be used to discover substructures tha t occur with relatively 
high frequency. 

One of the fundamental reasons limiting the scalability of ILP-based ap-
proaches is the first order logic-based representation tha t they use. This repre-
sentation is much more powerful than what is needed to model chemical com-
pounds and discover sub-structures. For this reason a number of researchers 
have explored the much simpler graph-based representation of the chemi-
cal compound's topology and transformed the problem of finding chemical 
sub-structures to tha t of finding subgraphs in this graph-based representa-
tion [12, 76, 36]. The best-known approach is the SUBDUE system [35, 17]. 
SUBDUE finds pat terns which can effectively compress the original input da ta 
based on the minimum description length (MDL) principle, by substi tuting 
those pat terns with a single vertex. To narrow the search-space and improve 
its computational efficiency, SUBDUE uses a heuristic beam search approach, 
which quite often results in failing to find subgraphs tha t are frequent. The 
SUBDUE system was also later extended to classify graphs and was referred as 
SubdueCL [29]. In SubdueCL instead of using minimum description length as 
a heuristic a measure similar to confidence of a subgraph is used as a heuristic. 
Finally, another heuristic-based scheme is MOLFEA [41] tha t takes advantage 
of the compound's SMILES string representation and identifies substructures 
corresponding to frequently occurring sub-sequences. 

4 Classification Based on Frequent Subgraphs 

The previous research on classifying chemical compounds (discussed in Sec-
tion 3) has shown tha t techniques based on the automatic discovery of chemi-
cal sub-structures are superior to those based on QSAR properties and require 
limited user intervention and domain knowledge. However, despite their suc-
cess, a key limitation of both the ILP- and the subgraph-based techniques, 
is tha t they rely on heuristic search methods to discover the sub-structures 
to be used for classification. As discussed in Section 3, even though such 
approaches reduce the inherently high computational complexity associated 
with these schemes, they may lead to sub-optimal classifiers in cases in which 
the heuristic search fails to uncover sub-structures tha t are critical for the 
classification task. 

To overcome this problem, we developed a classification algorithm for 
chemical compounds tha t uses the graph-based representation and limits the 
number of sub-structures tha t are pruned a priori. The key idea of our ap-
proach is to decouple the sub-structure discovery process from the classifica-
tion model construction step, and use frequent subgraph discovery algorithms 
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Fig. 2. Frequent Subgraph Based Classification Framework 

to find all chemical sub-structures tha t occur a sufficiently large number of 
times. Once the complete set of such sub-structures has been identified, our 
algorithm then proceeds to build a classification model based on them. To 
a large extent, this approach is similar in spirit to the recently developed 
frequent-itemset-based classification algorithms [50, 49, 22] tha t have been 
shown to outperform traditional classifiers tha t rely on heuristic search meth-
ods to discover the classification rules. 

The overall outline of our classification methodology is shown in Figure 4. 
It consists of three distinct steps: (i) feature generation, (ii) feature selec-
tion, and (iii) classification model construction. During the feature generation 
step, the chemical compounds are mined to discover the frequently occurring 
sub-structures tha t correspond to either topological or geometric subgraphs. 
These sub-structures are then used as the features by which the compounds 
are represented in the subsequent steps. During the second step, a small set 
of features is selected such tha t the selected features can correctly discrimi-
nate between the different classes present in the dataset . Finally, in the last 
step each chemical compound is represented using these set of features and a 
classification model is learned. 

This methodology, by following the above three-step framework is designed 
to overcome the limitations of existing approaches. By using computation-
ally efficient subgraph discovery algorithms to find all chemical substructures 
(topological or geometric) tha t occur a sufficiently large number of times in 
the compounds, they can discover substructures tha t are both specific to the 
particular classification problem being solved and at the same t ime involve 
arbitrarily complex substructures. By discovering the complete set of fre-
quent subgraphs and decoupling the substructure discovery process from the 
feature generation step, they can proceed to select and synthesize the most 
discriminating descriptors for the particular classification problem tha t take 
into account all relevant information. Finally, by employing advanced machine 
learning techniques and utilizing alternate representations, they can account 
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for the relationships between these features at different levels of granularity 
and complexity leading to high classification accuracy. 

4.1 Feature G e n e r a t i o n 

Our classification algorithm finds sub-structures in a chemical compound 
database using two different methods. The first method uses the topological 
graph representation of each compound whereas the second method is based 
on the corresponding geometric graph representation (discussed in Section 2). 
In both of these methods, our algorithm uses the topological or geometric 
connected subgraphs tha t occur in at least a% of the compounds to define 
the sub-structures. 

There are two important restrictions on the type of the sub-structures tha t 
are discovered by our approach. The first has to do with the fact tha t we are 
only interested in sub-structures tha t are connected and is motivated by the 
fact tha t connectivity is a natural property of such pat terns. The second has 
to do with the fact tha t we are only interested in frequent sub-structures (as 
determined by the value of a) as this ensures tha t we do not discover spurious 
sub-structures tha t will in general not be statistically significant. Furthermore, 
this minimum support constraint also helps in making the problem of frequent 
subgraph discovery computationally tractable. 

Frequent Topolog ica l S u b g r a p h s 

Developing frequent subgraph discovery algorithms is particularly challeng-
ing and computationally intensive as graph and/or subgraph isomorphisms 
play a key role throughout the computations. Despite tha t , in recent years, 
four different algorithms have been developed capable of finding all frequently 
occurring subgraphs with reasonable computational efficiency. These are the 
AGM algorithm developed by Inokuchi et al [36], the FSG algorithm developed 
by members of our group [42], the chemical sub-structure discovery algorithm 
developed by Borgelt and Berthold [12], and the gSpan algorithm developed 
by Yan and Han [76]. The enabling factors to the computational efficiency of 
these schemes have been (i) the development of efficient candidate subgraph 
generation schemes tha t reduce the number of times the same candidate sub-
graph is being generated, (ii) the use of efficient canonical labeling schemes to 
represent the various subgraphs; and (iii) the use of various techniques devel-
oped by the data-mining community to reduce the number of times subgraph 
isomorphism computations need to be performed. 

In our classification algorithm we find the frequently occurring subgraphs 
using the FSG algorithm. FSG takes as input a database D of graphs and 
a minimum support a, and finds all connected subgraphs tha t occur in at 
least a% of the transactions. FSG, initially presented in [42], with subsequent 
improvements presented in [44], uses a breadth-first approach to discover the 
lattice of frequent subgraphs. It s tarts by enumerating small frequent graphs 
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consisting of one and two edges and then proceeds to find larger subgraphs 
by joining previously discovered smaller frequent subgraphs. The size of these 
subgraphs is grown by adding one-edge-at-a-time. The lattice of frequent pat-
terns is used to prune the set of candidate pat terns and it only explicitly 
computes the frequency of the pat terns which survive this downward closure 
pruning. Despite the inherent complexity of the problem, FSG employs a num-
ber of sophisticated techniques to achieve high computational performance. 
It uses a canonical labeling algorithm tha t fully makes use of edge and vertex 
labels for fast processing, and various vertex invariants to reduce the com-
plexity of determining the canonical label of a graph. These canonical labels 
are then used to establish the identity and total order of the frequent and 
candidate subgraphs, a critical step of redundant candidate elimination and 
downward closure testing. It uses a sophisticated scheme for candidate gener-
ation [44] tha t minimizes the number of times each candidate subgraph gets 
generated and also dramatically reduces the generation of subgraphs tha t fail 
the downward closure test. Finally, for determining the actual frequency of 
each subgraph, FSG reduces the number of subgraph isomorphism operations 
by using TID-lists [25, 66, 78, 77] to keep track of the set of transactions tha t 
supported the frequent pat terns discovered at the previous level of the lattice. 
For every candidate, FSG takes the intersection of TID-lists of its parents, 
and performs the subgraph isomorphism only on the transactions contained 
in the resulting TID-list. As the experiments presented in Section 5 show, 
FSG is able to scale to large datasets and low support values. 

Frequent G e o m e t r i c S u b g r a p h s 

Topological sub-structures capture the connectivity of atoms in the chemical 
compound but they ignore the 3D shape (3D arrangement of atoms) of the 
sub-structures. For certain classification problems the 3D shape of the sub-
structure might be essential for determining the chemical activity of a com-
pound. For instance, the geometric configuration of atoms in a sub-structure 
is crucial for its ability to bind to a particular target [47]. For this reason we 
developed an algorithm tha t find all frequent sub-structures whose topology 
as well as geometry is conserved. 

There are two important aspects specific to the geometric subgraphs tha t 
need to be considered. First, since the coordinates of the vertices depend on 
a particular reference coordinate axes, we would like the discovered geometric 
subgraphs to be independent of these coordinate axes, i.e., we are interested 
in geometric subgraphs whose occurrences are translation, and rotation in-
variant. This dramatically increases the overall complexity of the geometric 
subgraph discovery process, because we may need to consider all possible 
geometric configurations of a single pat tern. Second, while determining if a 
geometric subgraph is contained in a bigger geometric graph we would like 
to allow some tolerance when we establish a match between coordinates, en-
suring tha t slight deviations in coordinates between two identical topological 
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subgraphs do not lead to the creation of two geometric subgraphs. The amount 
of tolerance (r) should be a user specified parameter. The task of discovering 
such r-tolerant frequent geometric subgraphs dramatically changes the nature 
of the problem. In traditional pattern discovery problems such as finding fre-
quent itemsets, sequential patterns, and/or frequent topological graphs there 
is a clear definition of what a pattern is, given its set of supporting transac-
tions. On the other hand, in the case of r-tolerant geometric subgraphs, there 
are many different geometric representations of the same pattern (all of which 
will be r-tolerant isomorphic to each other). The problem becomes not only 
that of finding a pattern and its support, but also finding the right represen-
tative for this pattern. The selection of the right representative can have a 
serious impact on correctly computing the support of the pattern. For exam-
ple, given a set of subgraphs that are r-tolerant isomorphic to each other, the 
one that corresponds to an outlier will tend to have a lower support than the 
one corresponding to the center. These two aspects of geometric subgraphs 
makes the task of discovering the full hedged geometric subgraphs extremely 
hard [43]. 

To overcome this problem we developed a simpler, albeit less discrimina-
tory, representation for geometric subgraphs. We use a property of a geometric 
graph called the average inter-atomic distance that is defined as the av-
erage Euclidean distance between all pairs of atoms in the molecule. Note 
that the average inter-atomic distance is computed between all pairs of atoms 
irrespective of whether a bonds connects the atoms or not. The average inter-
atomic distance can be thought of as a geometric signature of a topological 
subgraph. The geometric subgraph consists of two components, a topological 
subgraph and an interval of average inter-atomic distance associated with it. 
A geometric graph contains this geometric subgraph if it contains the topo-
logical subgraph and the average inter-atomic distance of the embedding (of 
the topological subgraph) is within the interval associated with the geometric 
subgraph. Note that this geometric representation is also translation and rota-
tion invariant, and the width of the interval determines the tolerance displayed 
by the geometric subgraph. We are interested in discovering such geometric 
subgraphs that occur above a% of the transactions and the interval of average 
inter-atomic distance is bound by r. 

Since a geometric subgraph contains a topological subgraph, for the geo-
metric subgraph to be frequent the corresponding topological subgraph has to 
be frequent, as well. This allows us to take advantage of the existing approach 
to discover topological subgraphs. We modify the frequency counting stage of 
the FSG algorithm as follows. If a subgraph g is contained in a transaction t 
then all possible embeddings of ^ in t are found and the average inter-atomic 
distance for each of these embeddings is computed. As a result, at the end 
of the frequent subgraph discovery each topological subgraph has a list of 
average inter-atomic distances associated with it. Each one of the average 
inter-atomic distances corresponds to one of the embeddings i.e., a geometric 
configuration of the topological subgraph. This algorithm can be easily ex-
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tended to cases in which there are multiple 3D conformations associated with 
each chemical compound (as discussed in Section 2), by simply treat ing each 
distinct conformation as a different chemical compound. 

The task of discovering geometric subgraphs now reduces to identifying 
those geometric configurations tha t are frequent enough, i.e., identify inter-
vals of average inter-atomic distances such tha t each interval contains the 
minimum number geometric configurations (it occurs in a% of the transac-
tions) and the width of the interval is smaller than the tolerance threshold 
(r) . This task can be thought of as ID clustering on the vector of average 
inter-atomic distances such tha t each cluster contains items above the mini-
mum support and the spread of each cluster is bounded by the tolerance r . 
Note tha t not all items will belong to a valid cluster as some of them will be 
infrequent. In our experiments we set the value of r to be equal to half of the 
minimum distance between any two pairs of atoms in the compounds. 

To find such clusters we perform agglomerative clustering on the vector of 
average inter-atomic distance values. The distance between any two average 
inter-atomic distance values is defined as the difference in their numeric values. 
To ensure tha t we get the largest possible clusters we use the maximum-link 
criterion function for deciding which two clusters should be merged [38]. The 
process of agglomeration is continued until the interval containing all the 
items in the cluster is below the tolerance threshold (r) . When we reach a 
stage where further agglomeration would increase the spread of the cluster 
beyond the tolerance threshold, we check the number of items contained in 
the cluster. If the number of items is above the support threshold, then the 
interval associated with this cluster is considered as a geometric feature. Since 
we are clustering one-dimensional datasets, the clustering complexity is low. 
Some examples of the distribution of the average inter-atomic distance values 
and the associated clusters are shown in Figure 4.1. Note tha t the average 
inter-atomic distance values of the third example are uniformly spread and 
lead to no geometric subgraph. 

Note tha t this algorithm for computing geometric subgraphs is approxi-
mate in nature for two reasons. First, the average inter-atomic distance may 
map two different geometric subgraphs to the same average inter-atomic dis-
tance value. Second, the clustering algorithm may not find the complete set of 
geometric subgraphs tha t satisfy the r tolerance. Nevertheless, as our experi-
ments in Section 5 show the geometric subgraphs discovered by this approach 
improve the classification accuracy of the algorithm. 

A d d i t i o n a l Cons idera t ions 

Even though FSG provides the general functionality required to find all fre-
quently occurring sub-structures in chemical datasets, there are a number of 
issues tha t need to be addressed before it can be applied as a black-box tool 
for feature discovery in the context of classification . One issue deals with the 
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r* H 

Fig. 3. Some examples of the one-dimensional clustering of average inter-atomic 
distance values. 

selecting the right value for the a^ the support constraint used for discover-
ing frequent sub-structures. The value of a controls the number of subgraphs 
discovered by FSG. Choosing a good value of a is especially important for 
the dataset containing classes of significantly different sizes. In such cases, in 
order to ensure tha t FSG is able to find features tha t are meaningful for all 
the classes, it must use a support tha t depends on the size of the smaller class. 

For this reason we first parti t ion the complete dataset, using the class 
label of the examples, into specific class specific datasets. We then run FSG 
on each of these class datasets. This partitioning of the dataset ensures tha t 
sufficient subgraphs are discovered for those class labels which occur rarely 
in the dataset . Next, we combine subgraphs discovered from each of the class 
dataset. After this step each subgraph has a vector tha t contains the frequency 
with which it occurs in each class. 

4.2 F e a t u r e S e l e c t i o n 

The frequent subgraph discovery algorithms described in Section 4.1 discovers 
all the sub-structures (topological or geometric) tha t occur above a certain 
support constraint (a) in the dataset . Though the discovery algorithm is com-
putationally efficient, the algorithm can generate a large number of features. A 
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large number of features is detrimental for two reasons. First, it could increase 
the t ime required to build the model. But more importantly, a large number 
of features can increase the t ime required to classify a chemical compound, as 
we need to first identify which of the discovered features it contains before we 
can apply the classification model. Determining whether a compound contains 
a particular feature or not can be computationally expensive as it may require 
a subgraph isomorphism operation. This problem is especially critical in the 
drug discovery process where the classification model is learned on a small set 
of chemical compounds and it is then applied on large chemical compound 
libraries containing millions of compounds. 

One way of solving this problem is to follow a heuristic subgraph discov-
ery approach (similar in spirit to previously developed methods [17, 29]) in 
which during the subgraph discovery phase itself, the discriminatory ability of 
a particular subgraph is determined, and the discovery process is terminated 
as soon as a subgraph is generated tha t is less discriminatory than any of its 
subgraphs. By following this approach, the total number of features will be 
substantially reduced, achieving the desired objective. However, the limitation 
with such an approach is tha t it may fail to discover and use highly discrim-
inatory subgraphs. This is because the discriminatory ability of a subgraph 
does not (in general) consistently increase as a function of its size, and sub-
graphs tha t appear to be poor discriminators may become very discriminatory 
by growing their size. For this reason, in order to develop an effective feature 
selection method, we use a scheme tha t first finds all frequent subgraphs and 
then selects among them a small set of discriminatory features. The advan-
tage of this approach is tha t during feature selection all frequent subgraphs 
are considered irrespective of when they were generated and whether or not 
they contain less or more discriminatory subgraphs. 

The feature selection scheme is based on the sequential covering paradigm 
used to learn rule sets [53]. To apply this algorithm we assume tha t each 
discovered sub-structure corresponds to a rule, with the class label of the 
sub-structure as the target attribute, such rules are referred to as class-rules 
in [50]. The sequential covering algorithm takes as input a set of examples 
and the features discovered from these examples, and iteratively applies the 
feature selection step. In this step the algorithm selects the feature tha t has 
the highest estimated accuracy. After selecting this feature all the examples 
containing this feature are eliminated and the feature is marked as selected. In 
the next iteration of the algorithm the same step is applied, but on a smaller 
set of examples. The algorithm continues in an iterative fashion until either 
all the features are selected or all the examples are eliminated. 

In this chapter we use a computationally efficient implementation of se-
quential covering algorithm known as CBA [50], this algorithm proceeds by 
first sorting the features based on confidence and then applying the sequential 
covering algorithm on this sorted set of features. One of the advantages of this 
approach is tha t it requires minimal number of passes on the dataset , hence is 
very scalable. To obtain a better control over the number of selected features 
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we use an extension of the sequential covering scheme known as Classification 
based on Multiple Rules (CMAR) [49]. In this scheme instead of removing the 
example after it is covered by the selected feature, the example is removed 
only if tha t example is covered by S selected features. The number of selected 
rules increases as the value of 6 increases, an increase in the number of fea-
tures usually translates into an improvement in the accuracy as more features 
are used to classify a particular example. The value of S is specified by the 
user and provides a means to the user to control the number of features used 
for classification . 

4.3 Class i f icat ion M o d e l C o n s t r u c t i o n 

Given the frequent subgraphs discovered in the previous step, our algorithm 
treats each of these subgraphs as a feature and represents the chemical com-
pound as a frequency vector. The ith entry of this vector is equal to the 
number of times (frequency) tha t feature occurs in the compound's graph. 
This mapping into the feature space of frequent subgraphs is performed both 
for the training and the test dataset . Note tha t the frequent subgraphs were 
identified by mining only the graphs of the chemical compounds in the training 
set. However, the mapping of the test set requires tha t we check each frequent 
subgraph against the graph of the test compound using subgraph isomor-
phism. Fortunately, the overall process can be substantially accelerated by 
taking into account the frequent subgraph lattice tha t is also generated by 
FSG. In this case, we traverse the lattice from top to bot tom and only visit 
the child nodes of a subgraph if tha t subgraph is isomorphic to the chemical 
compound. 

Once the feature vectors for each chemical compound have been built, 
any one of the existing classification algorithms can potentially be used for 
classification. However, the characteristics of the transformed dataset and 
the nature of the classification problem itself tends to limit the applicability 
of certain classes of classification algorithms. In particular, the transformed 
dataset will most likely be high dimensional, and second, it will be sparse, 
in the sense tha t each compound will have only a few of these features, and 
each feature will be present in only a few of the compounds. Moreover, in 
most cases the positive class will be much smaller than the negative class, 
making it unsuitable for classifiers tha t primarily focus on optimizing the 
overall classification accuracy. 

In our s tudy we built the classification models using support vector ma-
chines (SVM) [71], as they are well-suited for operating in such sparse and 
high-dimensional datasets. Furthermore, an additional advantage of SVM is 
tha t it allows us to directly control the cost associated with the misclassifi-
cation of examples from the different classes [54]. This allows us to associate 
a higher cost for the misclassification of positive instances; thus, biasing the 
classifier to learn a model tha t tries to increase the true-positive rate, at the 
expense of increasing the false positive rate. 
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5 Experimental Evaluation 

We experimentally evaluated the performance of our classification algorithm 
and compared it against that achieved by earlier approaches on a variety of 
chemical compound datasets. The datasets, experimental methodology, and 
results are described in subsequent sections. 

5.1 Datase ts 

We used three different publicly available datasets to derive a total of eight 
different classification problems. The first dataset was initially used as a part 
of the Predictive Toxicology Evaluation Challenge [68] which was organized 
as a part of PKDD/ECML 2001 Conference.^ It contains data published by 
the U.S. National Institute for Environmental Health Sciences, the data con-
sists of bio-assays of different chemical compounds on rodents to study the 
carcinogenicity (cancer inducing) properties of the compounds [68]. The goal 
being to estimate the carcinogenicity of different compounds on humans. Each 
compound is evaluated on four kinds of laboratory animals {male Mice, female 
Mice, male Rats, female Rats), and is assigned four class labels each indicat-
ing the toxicity of the compound for that animal. There are four classification 
problems one corresponding to each of the rodents and will be referred as PI, 
P2, P3, and PI 

The second dataset is obtained from the National Cancer Institute's DTP 
AIDS Anti-viral Screen program [24, 41].^ Each compound in the dataset is 
evaluated for evidence of anti-HIV activity. The screen utilizes a soluble for-
mazan assay to measure protection of human CEM cells from HIV-1 infection 
[73]. Compounds able to provide at least 50% protection to the CEM cells 
were re-tested. Compounds that provided at least 50% protection on retest 
were listed as moderately active (CM, confirmed moderately active). Com-
pounds that reproducibly provided 100% protection were listed as confirmed 
active (CA). Compounds neither active nor moderately active were listed as 
confirmed inactive (CI). We have formulated three classification problems on 
this dataset, in the first problem we consider only confirmed active (CA) and 
moderately active (CM) compounds and then build a classifier to separate 
these two compounds; this problem is referred as HI. For the second problem 
we combine moderately active (CM) and confirmed active (CA) compounds 
to form one set of active compounds, we then build a classifier to separate 
these active and confirmed inactive compounds; this problem is referred as 
H2. In the last problem we only use confirmed active (CA) and confirmed 
inactive compounds and build a classifier to categorize these two compounds; 
this problem is referred as H3. 

The third dataset was obtained from the Center of Computational Drug 
Discovery's anthrax project at the University of Oxford [64]. The goal of 

^ http://www.inforniatik.uni-freiburg.de/~nil/ptc/. 
^ http://dtp.nci.nih.gov/docs/aids/aids_data.htmL 

http://www.inforniatik.uni-freiburg.de/~nil/ptc/
http://dtp.nci.nih.gov/docs/aids/aids_data.htmL
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this project was to discover small molecules tha t would bind with the hep-
tameric protective antigen component of the anthrax toxin, and prevent it 
from spreading its toxic effects. A library of small sized chemical compounds 
was screened to identify a set of chemical compounds tha t could bind with the 
anthrax toxin. The screening was done by computing the binding free energy 
for each compound using numerical simulations. The screen identified a set of 
12,376 compounds tha t could potentially bind to the anthrax toxin and a set 
of 22,460 compounds tha t were unlikely to bind to the chemical compound. 
The average number of vertices in this dataset is 25 and the average number 
of edges is also 25. We use this dataset to derive a two-class classification 
problem whose goal is to correctly predict whether or not a compound will 
bind the anthrax toxin or not. This classification problem is referred to as Al. 

Table 1. The characteristics of the various datasets. N is the number of compounds 
in the database. NA and NB are the average number of atoms and bonds in each 
compound. LA and LB are the average number of atom- and bond-types in each 
dataset. max A^A/min NA and max A/^s/min NB are the maximum/minimum number 
of atoms and bonds over all the compounds in each dataset. 

N 
NA 

NB 

LA 

LB 
max NA 

min NA 

max NB 

min NB 

Toxic. 
417 

25 
26 
40 

4 
106 

2 
1 

85 

Aids 
42,687 

46 
48 
82 

4 
438 

2 
276 

1 

Anthrax 
34,836 

25 
25 
25 

4 
41 
12 
44 
12 

1 Class Dist. (% +ve cl 
Toxico logy 

P I : Male Mice 
P2: Female Mice 
P 3 : Male Ra t s 

1 P4: Female Ra ts 
A I D S 

HI : C A / C M 
H2: ( C A + C M ) / C I 
H3: C A / C I 

A n t h r a x 
1 A l : act ive/ inact ive 

ass) 

38.3% 
40.9% 
44.2% 
34.4% 

28.1% 
3.5% 
1.0% 

35% 

Some important characteristics of these datasets are summarized in Ta-
ble 1. The right hand side of the table displays the class distribution for 
different classification problems, for each problem the table displays the per-
centage of positive class found in the dataset for tha t classification problem. 
Note tha t both the DTP-AIDS and the Anthrax datasets are quite large con-
taining 42,687 and 34,836 compounds, respectively. Moreover, in the case of 
DTP-AIDS, each compound is also quite large having on an average 46 atoms 
and 48 bonds. 

5.2 E x p e r i m e n t a l M e t h o d o l o g y 8^ M e t r i c s 

The classifications results were obtained by performing 5-way cross validation 
on the dataset, ensuring tha t the class distribution in each fold is identical to 
the original dataset . For the SVM classifier we used SVMLight library [37]. 
All the experiments were conducted on a 1500MHz Athlon MP processors 
having a 2GB of memory. 
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Since the size of the positive class is significantly smaller than the negative 
class, using accuracy to judge a classifier would be incorrect. To get a bet ter 
understanding of the classifier performance for different cost settings we obtain 
the ROC curve [62] for each classifier. ROC curve plots the false positive rate 
(X-axis) versus the t rue positive rate (F-axis) of a classier; it displays the 
performance of the classifier regardless of class distribution or error cost. Two 
classifiers are evaluated by comparing the area under their respective ROC 
curves, a larger area under ROC curve indicating better performance. The 
area under the ROC curve will be referred by the parameter A. 

5.3 R e s u l t s 

Varying Minimum Support 

The key parameter of the proposed frequent sub-structure-based classifica-
tion algorithm is the choice of the minimum support (a) used to discover the 
frequent sub-structures (either topological or geometric). To evaluate the sen-
sitivity of the algorithm on this parameter we performed a set of experiments 
in which we varied a from 10% to 20% in 5% increments. The results of these 
experiments are shown in the left sub-table of Table 2 for both topological 
and geometric sub-structures. 

Table 2. Varying minimum support threshold (a). "A" denotes the area under the 
ROC curve and 'W/" denotes the number of discovered frequent subgraphs. 

D =10.0% 
Topo. 

-AH 
66.0 
65.0 
60.5 
54.3 
81.0 
70.1 
83.9 
78.2 

1211 
967 
597 
275 

27034 
1797 

27019 
476 

Geon 
~A- -AH 
5 1317 
0 1165 
7 808 
4 394 
1 29554 
0 3739 
5 30525 
0 492 

15.0% 
Topo. 

~N 
513 
380 
248 
173 

13531 
307 

13557 
484 

Geom. 
-AH 

64.1 
63.3 
61.3 
57.4 
79.2 
62.2 
88.8 
77.6 

478 
395 
302 
240 

8247 
953 

11240 
332 

20.0% 
Topo 

-A Wf 
64.4 
64.2 
59.9 
57.3 
78.4 
59.0 
84.6 
77.1 

254 
217 
168 
84 

7479 
139 

7482 
312 

Geom. 
A Nf 

60.2 
63.1 
60.9 
58.3 
79.5 
58.1 
87.7 
76.1 

Dset 

P I 
P2 
P3 
P4 
HI 
H2 
H3 
Al 

Optimized a 
Topo. 
A Nf 

65.5 24510 
67.3 7875 
62.6 7504 
63.4 25790 
81.0 27034 
76.5 18542 
83.9 27019 
81.7 3054 

Geom. 
A Nf 

65.0 23612 
69.9 12673 
64.8 10857 
63.7 31402 
82.1 29554 
79.1 29024 
89.5 30525 
82.6 3186 

Per class 
a 

3.0, 3.0 
3.0, 3.0 
3.0, 3.0 
3.0, 3.0 

10.0, 10.0 
10.0, 5.0 

10.0, 10.0 
5.0, 3.0 

Timep 
(sec) 

211 
72 
66 

231 
137 

1016 
392 
145 

268 
235 
204 
104 

7700 
493 

7494 
193 

From Table 2 we observe tha t as we increase a, the classification per-
formance for most datasets tends to degrade. However, in most cases this 



78 Mukund Deshpande, Michihiro Kuramochi, and George Karypis 

degradation is gradual and correlates well with the decrease on the number 
of sub-structures tha t were discovered by the frequent subgraph discovery al-
gorithms. The only exception is the H2 problem for which the classification 
performance (as measured by ROC) degrades substantially as we increase the 
minimum support from 10% to 20%. Specifically, in the case of topological 
subgraphs, the performance drops from 70.1 down to 59.0, and in the case of 
geometric subgraphs it drops from 76.0 to 58.1. 

These results suggest tha t lower values of support are in general bet ter 
as they lead to bet ter classification performance. However, as the support 
decreases, the number of discovered sub-structures and the amount of t ime 
required also increases. Thus, depending on the dataset , some experimenta-
tion may be required to select the proper values of support tha t balances 
these confiicting requirements (i.e., low support but reasonable number of 
sub-structures). 

In our s tudy we performed such experimentation. For each dataset we kept 
on decreasing the value of support down to the point after which the number 
of features tha t were generated was too large to be efficiently processed by the 
SVM library. The resulting support values, number of features, and associated 
classification performance are shown in the right sub-table of Table 2 under 
the table header "Optimized a''\ Note tha t for each problem two different 
support values are displayed corresponding to the supports tha t were used 
to mine the positive and negative class, respectively. Also, the last column 
shows the amount of t ime required by FSG to find the frequent subgraphs 
and provides a good indication of the computational complexity at the feature 
discovery phase of our classification algorithm. 

Comparing the ROC values obtained in these experiments with those ob-
tained for (J = 10%, we can see tha t as before, the lower support values tend 
to improve the results, with measurable improvements for problems in which 
the number of discovered sub-structures increased substantially. In the rest 
of our experimental evaluation we will be using the frequent subgraphs tha t 
were generated using these values of support. 

Varying Mis classification Costs 

Since the number of positive examples is in general much smaller than the 
number of negative examples, we performed a set of experiments in which the 
misclassification cost associated with each positive example was increased to 
match the number of negative examples. Tha t is, if n+ and n~ is the number 
of positive and negative examples, respectively, the misclassification cost f3 
was set equal to {n~ /n~^ — 1) (so tha t n~ = /3n+). We refer to this value 
of (3 as the "EqCost^^ value. The classification performance achieved by our 
algorithm using either topological or geometric subgraphs for /3 = 1.0 and 
f3 = EqCost is shown in Table 3. Note tha t the /3 = 1.0 results are the same 
with those presented in the right subtable of Table 2. 

From the results in this table we can see tha t , in general, increasing the 
misclassification cost so tha t it balances the size of positive and negative class 
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Table 3. The area under the ROC curve obtained by varying the misclassification 
cost. "/3 = 1.0" indicates the experiments in which each positive and negative exam-
ple had a weight of one, and "/3 = EqCosf indicates the experiments in which the 
misclassification cost of the positive examples was increased to match the number 
of negative examples. 

Dataset 

P I 
P2 
P3 
P4 
HI 
H2 
H3 
A l 

Topo 1 
(3 = 1.0 

65.5 
67.3 
62.6 
63.4 
81.0 
76.5 
83.9 
81.7 

/3 = EqCostl 
65.3 
66.8 
62.6 
65.2 
79.2 
79.4 
90.8 
82.1 

1 Geom 
\p = 1.0 

65.0 
69.9 
64.8 
63.7 
82.1 
79.1 
89.5 
82.6 

/3 = EqCost 
66.7 
69.2 
64.6 
66.1 
81.1 
81.9 
94.0 
83.0 

tends to improve the classification accuracy. When f3 = EqCost, the classifica-
tion performance improves for four and five problems for the topological and 
geometric subgraphs, respectively. Moreover, in the cases in which the perfor-
mance decreased, that decrease was quite small, whereas the improvements 
achieved for some problem instances {e.g., P4, HI, and H2) was significant. 
In the rest of our experiments we will focus only on the results obtained by 
setting (3 = EqCost. 

Feature Selection 

We evaluated the performance of the feature selection scheme based on se-
quential covering (described in Section 4.2) by performing a set of experiments 
in which we varied the parameter S that controls the number of times an ex-
ample must be covered by a feature, before it is removed from the set of yet to 
be covered examples. Table 4 displays the results of these experiments. The 
results under the column labeled "Original" shows the performance of the 
classifier without any feature selection. These results are identical to those 
shown in Table 3 for /3 = EqCost and are included here to make comparisons 
easier. 

Two key observations can be made by studying the results in this table. 
First, as expected, the feature selection scheme is able to substantially reduce 
the number of features. In some cases the number of features that was selected 
decreased by almost two orders of magnitude. Also, as S increases, the number 
of retained features increases; however, this increase is gradual. Second, the 
overall classification performance achieved by the feature selection scheme 
when (5 > 5 is quite comparable to that achieved with no feature selection. 
The actual performance depends on the problem instance and whether or 
not we use topological or geometric subgraphs. In particular, for the first four 
problems (PI, P2, P3, and P4) derived from the PTC dataset, the performance 
actually improves with feature selection. Such improvements are possible even 
in the context of SVM-based classifiers as models learned on lower dimensional 
spaces will tend to have better generalization ability [22]. Also note that for 
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Table 4. Results obtained using feature selection based on sequential rule covering. 
"(5" specifies the number of times each example needs to be covered before it is 
removed, "A" denotes the area under the ROC curve and 'W/" denotes the number 
of features that were used for classification. 

Topological Features 
Dataset. 

P I 
P2 
P3 
P4 
HI 
H2 
H3 
Al 

Original 
A Nf\ 

65.3 24510 
66.8 7875 
62.6 7504 
65.2 25790 
79.2 27034 
79.4 18542 
90.8 27019 
82.1 3054 

1 5 = 1 
A Nf 

65.4 143 
69.5 160 
68.0 171 
66.3 156 
78.4 108 
77.1 370 
88.4 111 
80.6 620 

5 = 6 
A Nf 

66.4 85 
69.6 436 
65.2 455 
66.0 379 
79.2 345 
78.0 1197 
89.6 377 
81.4 1395 

5 = 10 
A Nf 

66.5 598 
68.0 718 
64.2 730 
64.5 580 
79.1 571 
78.5 1904 
90.0 638 
81.5 1798 

5 = 16 
A Nf 

66.7 811 
67.5 927 
64.5 948 
64.1 775 
79.5 796 
78.5 2460 
90.5 869 
81.8 2065 

Geometric Features 
Dataset. 

P I 
P2 
P3 
P4 
HI 
H2 
H3 
Al 

Original 
A Nf\ 

66.7 23612 
69.2 12673 
64.6 10857 
66.1 31402 
81.1 29554 
81.9 29024 
94.0 30525 
83.0 3186 

1 5 = 1 
A Nf 

68.3 161 
72.2 169 
71.1 175 
68.8 164 
80.8 128 
80.0 525 
91.3 177 
81.0 631 

5 = 6 
A Nf 

68.1 381 
73.9 398 
70.0 456 
69.7 220 
81.6 396 
80.4 1523 
92.2 496 
82.0 1411 

5 = 10 
A Nf 

67.4 613 
73.1 646 
71.0 241 
67.4 609 
81.9 650 
80.6 2467 
93.1 831 
82.4 1827 

5 = 16 
A Nf 

68.7 267 
73.0 265 
66.7 951 
66.2 819 
82.1 885 
81.2 3249 
93.2 1119 
82.7 2106 

some datasets the number of features decreases as S increases. Even though 
this is counter-intuitive it can happen in the cases in which due to a higher 
value of (5, a feature tha t would have been skipped it is now included into 
the set. If this newly included feature has a relatively high support , it will 
contribute to the coverage of many other features. As a result, the desired 
level of coverage can be achieved without the inclusion of other lower-support 
features. Our analysis of the selected feature-sets showed tha t for the instances 
in which the number of features decreases as S increases, the selected features 
have indeed higher average support . 

Topological versus Geometric Subgraphs 

The various results shown in Tables 2-4 also provide an indication on the 
relative performance of topological versus geometric subgraphs. In almost all 
cases, the classifier tha t is based on geometric subgraphs outperforms tha t 
based on topological subgraphs. For some problems, the performance advan-
tage is marginal whereas for other problems, geometric subgraphs lead to 
measurable improvements in the area under the ROC curve. For example, 
if we consider the results shown in Table 3 for /3 = EqCost, we can see the 
geometric subgraphs lead to improvements tha t are at least 3% or higher for 
P2, P3 , and H3, and the average improvement over all eight problems is 2.6%. 
As discussed in Section 4.1, these performance gains is due to the fact tha t 
conserved geometric structure is a bet ter indicator of a chemical compounds 
activity than just its topology. 
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5.4 Comparison with Other Approaches 

81 

We compared the performance of our classification algorithm against the per-
formance achieved by the QSAR-based approach and the approach that uses 
the SUBDUE system to discover a set of sub-structures. 

Comparison with QSAR 

As discussed in Section 3 there is a wide variety of QSAR properties each 
of which captures certain aspects of a compounds chemical activity. For our 
study, we have chosen a set of 18 QSAR properties that are good descriptors 
of the chemical activity of a compound and most of them have been previously 
used for classification purposes [2]. A brief description of these properties are 
shown in Table 5. We used two programs to compute these attributes; the 
geometric attributes like solvent accessible area, total accessible area/vol, to-
tal Van der Waal's accessible area/vol were computed using the programs 
SASA [46], the remaining attributes were computed using Hyperchem soft-

Table 5. 

Property 
Solvent accessible area 
Total accessible area 
Total accessible volume 
Total Van der Waal's area 
Total Van der Waal's volume 
Dipole moment 
Dipole moment comp. (X, Y, Z) 
Heat of formation 
Multiplicity 

QSAR 

Dim.| 
^ 
AA 

m Â  

m Debyel 
Debyel 
Debyel 

Kcal\ 

Properties. 

1 Property 
1 Moment of Inertia 
Total energy 
Bend energy 
Hbond energy 
Stretch energy 
Nonbond energy 
Estatic energy 
Torsion energy 

[Quantum total charge 

Dim. 
none 

kcal/mol 
kcal/mol 
kcal/mol 
kcal/mol 
kcal/mol 
kcal/mol 
kcal/mol 

eV 

We used two different algorithms to build classification models based on 
these QSAR properties. The first is the C4.5 decision tree algorithm [63] that 
has been shown to produce good models for chemical compound classification 
based on QSAR properties [2], and the second is the SVM algorithm that was 
used to build the classification models in our frequent sub-structure-based 
approach. Since the range of values of the different QSAR properties can 
be significantly different, we first scaled them to be in the range of [0,1] 
prior to building the SVM model. We found that this scaling resulted in 
some improvements in the overall classification results. Note that C4.5 is not 
affected by such scaling. 

Table 6 shows the results obtained by the QSAR-based methods for the 
different datasets. The values shown for SVM correspond to the area under 
the ROC curve and can be directly compared with the corresponding values 
obtained by our approaches (Tables 2-4). Unfortunately, since C4.5 does not 
produce a ranking of the training set based on its likelihood of being in the 
positive class, it is quite hard to obtain the ROC curve. For this reason, the 
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Table 6. Performance of the QSAR-based Classifier. 

Dataset 

P I 
P2 
P 3 
P4 
HI 
H2 
H3 
A l 

SVM 
A 

60.2 
59.3 
55.0 
45.4 
64.5 
47.3 
61.7 
49.4 

C4.5 
Precision 

0.4366 
0.3603 
0.6627 
0.2045 
0.5759 
0.6282 
0.5677 
0.5564 

Recall 
0.1419 
0.0938 
0.1275 
0.0547 
0.1375 
0.4071 
0.2722 
0.3816 

Freq. Sub. Prec. 
Topo 

0.6972 
0.8913 
0.7420 
0.6750 
0.7347 
0.7960 
0.7827 
0.7676 

Geora 
0.6348 
0.8923 
0.7427 
0.8800 
0.7316 
0.7711 
0.7630 
0.7798 

values shown for C4.5 correspond to the precision and recall of the positive 
class for the different datasets. Also, to make the comparisons between C4.5 
and our approach easier, we also computed the precision of our classifier at the 
same value of recall as tha t achieved by C4.5. These results are shown under 
the columns labeled "Fre^. Sub. Prec.'''' for both topological and geometric 
features and were obtained from the results shown in Table 3 for /3 = EqCost 
Note tha t the QSAR results for both SVM and C4.5 were obtained using the 
same cost-sensitive learning approach. 

Comparing both the SVM-based ROC results and the precision/recall val-
ues of C4.5 we can see tha t our approach substantially outperforms the QSAR-
based classifier. In particular, our topological subgraph based algorithm does 
35% better compared to SVM-based QSAR and 72% better in terms of the 
C4.5 precision at the same recall values. Similar results hold for the geometric 
subgraph based algorithm. These results are consistent with those observed 
by other researchers [69, 39] tha t showed tha t sub-structure based approaches 
outperform those based on QSAR properties. 

Comparison with SUBDUE & SubdueCL 

Finally, to evaluate the advantage of using the complete set of frequent sub-
structures over existing schemes tha t are based on heuristic sub-structure 
discovery, we performed a series of experiments in which we used the SUB-
DUE system to find the sub-structures and then used them for classification . 
Specifically, we performed two sets of experiments. In the first set, we obtain 
a set of sub-structures using the s tandard MDL-based heuristic sub-structure 
discovery approach of SUBDUE [35]. In the second set, we used the sub-
structures discovered by the more recent SubdueCL algorithm [29] tha t guides 
the heuristic beam search using a scheme tha t measures how well a subgraph 
describes the positive examples in the dataset without describing the negative 
examples. 

Even though there are a number of parameters controlling SUBDUE's 
heuristic search algorithm, the most critical among them are the width of the 
beam search, the maximum size of the discovered subgraph, and the total 
number of subgraphs to be discovered. In our experiments, we spent a con-
siderable amount of t ime experimenting with these parameters to ensure tha t 
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Table 7. Performance of the SUBDUE and SubdueCL-based approaches. 

Dataset 

P I 
P2 
P3 
P4 
HI 
H2 
H3 
A l 

SUBDUE 
A 

61.9 
64.2 
57.4 
58.5 
74.2 
58.5 
71.3 
75.3 

Nf 
1288 
1374 
1291 
1248 
1450 

901 
905 
983 

Timcp 
303sec 
310sec 
310sec 
310sec 

l,608sec 
232,006sec 
178,343sec 

56,056sec 

SubdueCL 
A 

63.5 
63.3 
59.6 
60.8 
73.8 
65.2 
77.5 
75.9 

Nf 
2103 
2745 
1772 
2678 

960 
2999 
2151 
1094 

TimCp 
301sec 
339sec 
301sec 
324sec 

1002sec 
476,426sec 
440,416sec 

31,177sec 

SUBDUE was able to find a reasonable number of sub-structures. Specifically, 
we changed the width of the beam search from 4 to 50 and set the other two 
parameters to high numeric values. Note tha t in the case of the SubdueCL, 
in order to ensure tha t the subgraphs were discovered tha t described all the 
positive examples, the subgraph discovery process was repeated by increasing 
the value of beam-width at each iteration and removing the positive examples 
tha t were covered by subgraphs. 

Table 7 shows the performance achieved by SUBDUE and SubdueCL on 
the eight different classification problems along with the number of subgraphs 
tha t it generated and the amount of t ime tha t it required to find these sub-
graphs. These results were obtained by using the subgraphs discovered by ei-
ther SUBDUE or SubdueCL as features in an SVM-based classification model. 
Essentially, our SUBDUE and SubdueCL classifiers have the same structure 
as our frequent subgraph-based classifiers with the only difference being tha t 
the features now correspond to the subgraphs discovered by SUBDUE and 
SubdueCL. Moreover, to make the comparisons as fair as possible we used 
(3 = EqCost as the misclassihcation cost. We also performed another set of 
experiments in which we used the rule-based classifier produced by SubdueCL. 
The results of this scheme was inferior to those produced by the SVM-based 
approach and we are not reporting them here. 

Comparing SUBDUE against SubdueCL we can see tha t the latter achieves 
bet ter classification performance, consistent with the observations made by 
other researchers [29]. Comparing the SUBDUE and SubdueCL-based results 
with those obtained by our approach (Tables 2-4) we can see tha t in almost all 
cases both our topological and geometric frequent subgraph-based algorithms 
lead to substantially better performance. This is t rue both in the cases in 
which we performed no feature selection as well as in the cases in which 
we used the sequential covering based feature selection scheme. In particular, 
comparing the SubdueCL results against the results shown in Table 4 without 
any feature selection we can see tha t on the average, our topological and 
geometric subgraph based algorithms do 9.3% and 12.2% better, respectively. 
Moreover, even after feature selection with S = 15 tha t result in a scheme 
tha t have comparable number of features as those used by SubdueCL, our 
algorithms are still better by 9.7% and 13.7%, respectively. Finally, if we 
compare the amount of t ime required by either SUBDUE or SubdueCL to tha t 
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(a) PTC Dataset 

(b)AIDSDataset 

(c) Anthrax Dataset 

Fig. 4. The three most discriminating sub-structures for the PTC, AIDS, and An-
thrax datasets. 

required by the FSG algorithm to find all frequent subgraphs (last column of 
Table 2) we can see tha t despite the fact tha t we are finding the complete set 
of frequent subgraphs our approach requires substantially less t ime. 

6 Conclusions and Directions for Future Research 

In this chapter we presented a highly-effective algorithm for classifying chem-
ical compounds based on frequent sub-structure discovery tha t can scale to 
large datasets. Our experimental evaluation showed tha t our algorithm leads 
to substantially bet ter results than those obtained by existing QSAR- and 
sub-structure-based methods. Moreover, besides this improved classification 
performance, the sub-structure-based nature of this scheme provides to the 
chemists valuable information as to which sub-structures are most critical for 
the classification problem at hand. For example. Figure 4 shows the three 
most discriminating sub-structures for the P T C , D T P AIDS, and Anthrax 
datasets tha t were obtained by analyzing the decision hyperplane produced 
by the SVM classifier. A chemist can then use this information to understand 
the models and potentially use it to design better compounds. 
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Topological Features Geometric Features QSAR Features 

Top 1% Predictions Top 5% Predictions Top 15% Predictions 

Fig. 5. Venn diagrams displaying the relation between the positive examples that 
were correctly classified by the three approaches at different cutoff values for the 
Anthrax dataset. The different cutoffs were obtained by looking at only the top 1%, 
5%, and 15% of the ranked predictions. Each circle in the Venn diagram corresponds 
to one of the three classification schemes and the size of the circle indicates the 
number of positive examples correctly identified. The overlap between two circles 
indicates the number of common correct predictions. 

The classification algorithms presented in this chapter can be improved 
along three different directions. First, as already discussed in Section 2 our 
current geometric graph representation utilizes a single conformation of the 
chemical compound and we believe the overall classification performance can 
be improved by using all possible low-energy conformations. Such conforma-
tions can be obtained from existing 3D coordinate prediction software and 
as discussed in Section 4.1 can be easily incorporated in our existing frame-
work. Second, our current feature selection algorithms only focus on whether 
or not a particular sub-structure is contained in a compound and they do not 
take into account how these fragments are distributed over different parts of 
the molecule. Better feature selection algorithms can be developed by tak-
ing this information into account so tha t to ensure tha t the entire (or most 
of) molecule is covered by the selected features. Third, even though the pro-
posed approaches significantly outperformed tha t based on QSAR, our analy-
sis showed tha t there is a significant difference as to which compounds are 
correctly classified by the sub-structure- and QSAR-based approaches. For 
example. Figure 5 shows the overlap among the different correct predictions 
produced by the geometric, topological, and QSAR-based methods at different 
cutoff values for the Anthrax dataset . From these results we can see tha t there 
is a great agreement between the substructure-based approaches but there is 
a large difference among the compounds tha t are correctly predicted by the 
QSAR approach, especially at the top 1% and 5%. These results suggest tha t 
bet ter results can be potentially obtained by combining the substructure- and 
QSAR-based approaches. 
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Summary. In many practical problems for data mining the data X under consid-
eration (given as (m x A^)-matrix) is of the form X = AS, where the matrices A 
and S with dimensions mxn and nx N respectively (often called mixing matrix or 
dictionary and source matrix) are unknown (m < n < N). We formulate conditions 
(SCA-conditions) under which we can recover A and S uniquely (up to scaling and 
permutation), such that S is sparse in the sense that each column of S has at 
least one zero element. We call this the Sparse Component Analysis problem (SCA). 
We present new algorithms for identification of the mixing matrix (under SCA-
conditions), and for source recovery (under identifiability conditions). The methods 
are illustrated with examples showing good performance of the algorithms. Typical 
examples are EEC and fMRI data sets, in which the SCA algorithm allows us to 
detect some features of the brain signals. Special attention is given to the application 
of our method to the transposed system X ^ = S^ A^ utilizing the sparseness of the 
mixing matrix A in appropriate situations. We note that the sparseness conditions 
could be obtained with some preprocessing methods and no independence conditions 
for the source signals are imposed (in contrast to Independent Component Analy-
sis). We applied our method to fMRI data sets with dimension (128 x 128 x 98) and 
to EEC data sets from a 256-channels EEC machine. 

K e y words: Sparse Component Analysis, Blind Signal Separation, cluster-
ing. 

1 Introduction 

Data mining techniques can be divided into the following classes [3]: 
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1. Predictive Modelling: where the goal is to predict a specific attribute 
(column or field) based on the other attributes in the data. 

2. Clustering: also called segmentation, targets grouping the data records 
into subsets where items in each subset are more "similar" to each other than 
to items in other subsets. 

3. Dependency Modelling: discovering the existence of arbitrary, possibly 
weak, multidimensional relations in data. Estimate some statistical properties 
of the found relations. 

4. Data Summarization: targets finding interesting summaries of parts of 
the data. For example, similarity between a few attributes in a subset of the 
data. 

5. Change and Deviation Detection: accounts for sequence information in 
data records. Most methods above do not explicitly model the sequence order 
of items in the data. 

In this chapter we consider the problem of linear representation or matrix 
factorization of a data set X, given in the form of a (TTI x A^)-matrix: 

X = AS, A G R ^ ^ ^ , S G R ^ ^ ^ , (1) 

where n is the number of source signals, m is the number of observations and 
N is the number of samples. Such representations can be considered as a new 
class of data mining techniques (or a concrete subclass of the above described 
data mining technique 3). In (1) the unknown matrices A (dictionary) and S 
(signals) may have some specific properties, for instance: 

1) the rows of S are as statistically independent as possible — this is the 
Independent Component Analysis (ICA) problem; 

2) S contains as many zeros as possible — this is the sparse representation 
problem or Sparse Component Analysis (SCA) problem; 

3) the elements of X, A and S are nonnegative - this is nonnegative matrix 
factorization (NMF). 

Such linear representations have several potential applications including 
decomposition of objects into "natural" components, learning the parts of the 
objects (e.g. learn from set of faces the parts a face consists of, i.e. eyes, nose, 
mouth, etc.), redundancy and dimensionality reduction, micro-array data min-
ing, enhancement of images in nuclear medicine etc. (see [17, 10]). 

There are many of papers devoted to ICA problems (see for instance [5, 15] 
and references therein) but mostly for the complete case {m = n). We refer 
to [26, 4, 29, 1, 25] and reference therein for some recent papers on SCA and 
overcomplete ICA {m < n). 

A more general related problem is called Blind Source Separation (BSS) 
problem, in which we know a priori that a representation such as in equation 
(1) exists and the task is to recover the sources (and the mixing matrix) as ac-
curately as possible. A fundamental property of the complete BSS problem (for 
771 = n) is that such a recovery (under assumptions in 1 and non-Gaussianity 
of the sources) is possible up to permutation and scaling of the sources, which 
makes the BSS problem so attractive. 
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In this chapter we consider SCA as a special model of BSS problem in the 
overcomplete case {m < n i.e. more sources than sensors), where the additional 
information compensating the lack of sensors is the sparseness of the sources. 
The task of the SCA problem is to represent the given (observed) da ta X as 
in equation (1) such tha t the matr ix S (sources) is sparse in sense tha t each 
column of S has at least one zero element. We present conditions on the da ta 
matr ix X {SCA-conditions on the data), under which the representation in 
equation (1) is unique up to permutat ion and scaling of the sources. 

The task of BSS problem is to estimate the unknown sources S (and the 
mixing matrix A) using the available da ta matr ix X only. We describe con-
ditions {identifiability conditions on the sources) under which this is possible 
uniquely up to permutat ion and scaling of the sources, which is the usual 
condition in the complete BSS problems using ICA. 

In the sequel, we present new algorithms for solving the BSS problem using 
sparseness: matr ix identification algorithms and source recovery algorithm, 
which recovers sparse sources (in sense tha t each column of the source matrix 
S has at least one zero). When the sources are sufficiently sparse (see the 
conditions of Theorem 2) the matr ix identification algorithm is even simpler. 
We used this simpler form for separation of mixtures of images. We present 
several computer simulation examples which illustrate our algorithms, as well 
as application of our method to real data: EEG da ta set obtained by a 256 
channels EEG machine, and fMRI da ta set with dimension 128 x 128 x 98. In 
all considered examples the results obtained by our SCA method are better 
(for the computer simulated examples) and comparable and advantages with 
respect to the ICA method. 

2 Blind Source Separation using sparseness 

In this section we present a method for solving the BSS problem if the following 
assumptions are satisfied: 
A l ) the mixing matr ix A G R"̂ ><"̂  has the property tha t any square m x m 
submatrix of it is nonsingular; 
A2) each column of the source matr ix S has at least one zero element. 
A3) the sources are sufficiently rich represented in the following sense: for 
any index set of n — TTI + 1 elements / = {i i , . . . , i ^ _ ^ + i } C {1, . . . ,n} there 
exist at least m column vectors of the matr ix S such tha t each of them has 
zero elements in places with indexes in / and each TTI — 1 of them are linearly 
independent. 

Columns of X for which A2) is not satisfied are called outliers. We can 
detect them in some cases and eliminate from the matrix X, if the condition 
A3) is satisfied for a big number of columns of S. 
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2.1 M a t r i x ident i f icat ion 

We describe conditions in the sparse BSS problem under which we can identify 
the mixing matr ix uniquely up to permutat ion and scaling of the columns. 
We give two types of such conditions. The first one corresponds to the least 
sparsest case in which such identification is possible. Further, we consider the 
most sparsest (nontrivial) case (for small number of samples) as in this case 
the algorithm is much simpler. 

Genera l case — full identif iabi l i ty 

T h e o r e m 1 [12] (Identif iabi l i ty cond i t ions - general case) Assume that 
the representation X = A S is valid, the matrix A satisfies condition Al), the 
matrix S satisfies conditions A2) and A3) and only the matrix X is known. 
Then the mixing matrix A is identifiable uniquely up to permutation and scal-
ing of the columns. 

The proof of this theorem is contained in [12] and gives the idea for the 
matr ix identification algorithm. 

A l g o r i t h m 1: ident i f icat ion of t h e m i x i n g m a t r i x 

1) Cluster the columns of X in ( ^_^ j groups Hp^p = 1,..., ( ^ ^ ) such 

tha t the span of the elements of each group Tip produces one hyperplane 

and these hyperplanes are different. 

2) Cluster the normal vectors to these hyperplanes in the smallest number 
of groups Gj^j = 1, . . . ,n (which estimates the number of sources n) such 
tha t the normal vectors to the hyperplanes in each group Gj lie in a new 
hyperplane Hj. 
3) Calculate the normal vectors kj to each hyperplane Hj^j = l , . . . , n 

(the one-dimensional subspace spanned by kj is the intersection of all 
hyperplanes in Gj). The matr ix A with columns kj is an estimation of the 
mixing matr ix (up to permutat ion and scaling of the columns). 

R e m a r k . The above algorithm works for da ta for which we know a priori 
tha t they lie on hyperplanes (or near to hyperplanes). 

A very suitable algorithm for clustering da ta near hyperplanes is the k-
plane clustering algorithm of Bradley - Mangasarian [2]. In our case the da ta 
points are supposed to lie on hyperplanes passing trough zero, so their algo-
ri thm is simplified and has the following form: 

We applied this algorithm for real da ta sets of fMRI images and E E C 
recordings in the last two sections. We noticed tha t the algorithms stops very 
often in local minima and need several re-initializations until a reasonably 
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A l g o r i t h m 2: simpUfied a lgor i thm of B r a d l e y — M a n g a s a r i a n 
Start with random w^,...,wl G W with ||i^^||2 = l,i = l , . . . , /c. Hav-

ing wl^...^wl, at iteration j with ||t^^||2 = 1,^ = l, . . . , /c, compute 

wl'^ , •••^w-^^ by the following two steps: 
(a) Clus ter A s s i g n m e n t : A s s i g n each po int t o c loses t p lane P/. 

For each Ai^i = 1,..., TTI, determine l{i) such tha t 

min \Aj w\ .o\ 

(b) Clus ter U p d a t e : F i n d a p lane Pi t h a t m i n i m i z e s t h e s u m of 
t h e squares of d i s tances t o each po int in c luster /. For / = 1,..., /c, 
let Ai be the m(l) x n matr ix with rows corresponding to all Ai assigned to 
cluster /. Define B{1) = [A{l)]^A{l). Set w{^^ to be an eigenvector of B{1) 
corresponding to the smallest eigenvalue of B{1). Stop whenever there is 
a repeated overall assignment of points to cluster planes or a nondecrease 
in the overall objective function. 

good local (or global) minimum is found, measured by the nearness of the 
objective function to zero: the sum of the squared distances from the da ta 
points to the corresponding clustering hyperplanes should be near to zero. 

D e g e n e r a t e case — sparse ins tances 

The following theorem is useful for identification of very sparse sources. Its 
proof can be found in [11]. 

T h e o r e m 2 [11] (Identif iabi l i ty cond i t ions — local ly very sparse rep-
resenta t ion) Assume that (i) for each source Si := S ( i , . ) , i = l , . . . , n there 
are ki > 2 time instances when all of the source signals are zero except Si (so 
each source is uniquely present ki times), and 

(a) the set \j^ {1, '"jN} : X( . ,p ) = cX(.,j ' ) for some c G R k contains 

less than mini<^<^/c^ elements for any p G {1,...,A^} for which S( . ,p) has 
more that one nonzero element. 

Then the matrix A is identifiable up to permutation and scaling. 

Below we include an algorithm for identification of the mixing matrix in 
the case of Theorem 2. 

2.2 Ident i f icat ion of sources 

T h e o r e m 3 [12] ( U n i q u e n e s s of sparse representa t ion) Let H be the 
set of all X G W^ such that the linear system A s = x, A G W^^'^, has a 
solution with at least n — m-\-l zero components. If A fulfills Al), then there 
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A l g o r i t h m 3: ident i f icat ion of t h e m i x i n g m a t r i x in t h e very 
sparse case 

1) Remove all zero columns of X (if any) and obtain a matr ix X i G 

2) Normalize the columns x^, i = 1 , . . . , A î of X i : y^ = x^/||x^|| and set 
£>0. 

Multiply each column y^ by — 1 if the first element of y^ is negative. 
3) Cluster y^, i = 1,..., A î in n = 1 groups G^i,..., G^n+i such tha t for any 

i = l , . . . , n , | | x - y | | < £ ,Vx,y G Gi and | | x - y | | > e for any x , y belonging 
to different groups. 
4) Chose any y^ G Gi and put a^ = y^. The matr ix A with columns 

{^i}2=i is ^^ estimation of the mixing matrix, up to permutat ion and 
scaling. 

exists a subset Ho C H with measure zero with respect to H, such that for 
every x G 7Y \ Ho this system has no other solution with this property. 

From Theorem 3 it follows tha t the sources are identifiable generically i.e. 
up to a set with a measure zero, if they have level of sparseness grater than 
or equal to n — m + 1 (each column of S has at least n — m -\- 1 zeros) and 
the mixing matr ix is known. Below we present an algorithm, based on the 
observation in Theorem 3. 

A l g o r i t h m 4: source recovery a lgor i thm 
1. Identify the set of hyperplanes H produced by taking the linear hull of 

every subsets of the columns of A with m — 1 elements; 
2. Repeat for /c = 1 to N: 
2.1. Identify the space H ^ H containing x/̂  := X(:,/c), or, in practical 

situation with presence of noise, identify the one to which the distance 
from x^ is minimal and project x/̂  onto H to 5^^; 

2.2. if H is produced by the linear hull of column vectors Rkn -"i^km-n 
then find coefficients Ikj such tha t 

771—1 

J = l 

These coefficients are uniquely determined if x/̂  doesn't belong to the set 
Ho with measure zero with respect to H (see Theorem 3); 
2.3. Construct the solution Sk = S(:, k): it contains Ikj in the place kj for 

j ' = l , . . . ,7n — 1, the rest of the components are zero. 
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3 Sparse Component Analysis 

In this section we describe sufficient conditions for the existence of solutions 
to the SCA problem. Note that the conditions are formulated only in terms of 
the data matrix X. The proof of the following theorem can be found in [12]. 

Theorem 4 [12] (SCA conditions) Assume that m < n < N and the 
matrix X G R"̂ ><^ satisfies the following conditions: 

(i) the columns oflL lie in the union H of ( ^_^ j different hyperplanes, 
each column lies in only one such hyperplane, each hyperplane contains at 
least m columns of X such that each m — 1 of them are linearly independent. 

(a) for each i G {!,..., n} there exist p = ( ^~2 ) different hyperplanes 

{Hij}^^^ in H such that their intersection Li = n^^-^Hij is one dimensional 
sub space. 

(Hi) any m different Li span the whole W^. 
Then the matrix X is representable uniquely (up to permutation and scaling 

of the columns of A and S) in the form X = AS^ where the matrices A G 
^mxn ^^^ g ^ ^nxN g^j^tigfy /̂̂ g conditions Al), A2), and A3) respectively. 

4 Overdetermined Blind Source Separation 

In this section we assume that m > n and the identifiability conditions for 
the transposed matrix A-^ are satisfied. So we have the model: 

X^ = S^A^, (2) 

but in order to apply Theorem 1 we select n rows of the matrices X^ and S^ 
(usually the first n, assuming that they (for S-̂ ) are linearly independent: this 
is true with "probability one", i.e. the matrices without this property form a 
set with measure zero). Denoting X^ = X(:, 1 : n) and S^ = S(:, 1 : n), we 
have 

K = S^A^. (3) 
By some of the matrix identification algorithms we identify firstly the matrix 
S^ and then we identify the matrix A: A = X^S~^. Now we recover the 
full matrix S from (10.1) by S = A+X, where A+ means the Moore-Penrose 
pseudo-inverse of A. 

5 Computer simulation examples 

5.1 Overdetermined Blind Source Separation — very sparse case 

We consider the overdetermined mixture of two artificially created non-
independent and non-sparse sources with 10 samples - see Figure 1. The 
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Fig. 1. Example 1. Left:Artificially created non-independent and non-sparse source 
signals. Middle: Their mixtures with matrix A. Right: Recovered source signals. The 
signal-to-noise ratio between the original sources and the recoveries is very high with 
319 and 319 dB after permutation and normalization. 

mixing matr ix and the estimated matr ix with the overcomplete blind source 
separation scheme (see section 4) are respectively 

/O 1 \ 
2 3 
2 0 
1 1 
1 5 
0 - 1 

VI 0 / 

and 

f ̂  
7.3 
7.3 
3.6 
3.6 
0 

V3.6 

1.2 
3.6 
0 

1.2 
6.1 

-1 .2 
0 

The mixtures and estimated sources are shown in Figure 1. In this case we 
applied Algorithm 3 for identification of the matr ix S^ (the transposed of 
the first two rows of the source matr ix S, see (3)). After normalization of 
each row of A we obtain the original matr ix A, which confirms the perfect 
reconstruction of the sources. The transposed matr ix A ^ (considered here as 
a new source matrix) satisfies the conditions of Theorem 2 and this is the 
reason for the perfect reconstruction of the sources. 

5.2 O v e r d e t e r m i n e d B l i n d Source Separa t ion - Sparse Case 

Now let us consider the overdetermined mixture of 3 artificially created non-
independent and non-sparse sources with only 10 samples (in fact only three 
are needed, as in the previous example only two were needed) — see Figure 
2 (left). 

The mixing matr ix and the estimated matr ix with the overcomplete blind 
source separation scheme (see section 4) are respectively 
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Fig. 2. Example 2. Left: Artificially created non-independent and non-sparse source 
signals. Right: Recovered source signals. The signal-to-noise ratio between the orig-
inal sources and the recoveries is very high with 308, 293 and 307 dB after permu-
tation and normalization. 
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Now we apply Algorithm 1 - note tha t only 9 samples are required by the 
identifiability theorem - Theorem 1 (due to condition A3)), and A-^ has pre-
cisely 9 rows. The mixtures are shown in Figure 3, along with a scatter plot 
for a visualization of the matr ix detection in this transposed case with the 
very low sample number of only 9, which is sufficient for a perfect recovery 
of (transposed) mixing matr ix and the original sources (estimated sources are 
shown in Fig. 2 right). 

5.3 C o m p l e t e case 

In this example for the complete case {m = n) of instantaneous mixtures, 
we demonstrate the effectiveness of our algorithm for identification of the 
mixing matr ix in the case considered in Theorem 2. We mixed 3 images of 
landscapes (shown in Fig. 4) with a 3-dimensional randomly generated matrix 
A (detA = 0.0016). We transformed these three mixtures (shown in Fig. 5) 
by two dimensional discrete Haar wavelet transform and took only the 10-
th row (160 points) of the obtained diagonal coefficients cDlL. As a result, 
since this transform is linear, the corresponding diagonal wavelet coefficients 
cDS of the source matr ix S represented by the source images (as well as the 
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Fig. 3. Example 2. Left: mixed signals X (observed sources). Right: Scatterplot of 
the new 'observed sources' X|^ (after transposition of X3 - the first 3 data samples) 
together with the hyperplanes on which they lie, indicated by their intersections 
with the unit sphere (circles). 

horizontal and vertical ones) become very sparse (see Fig. 7) and they satisfy 
the conditions of Theorem 2. Using only one row (the 10-th or any other, 
with 160 points) of cZ^X appears to be enough to estimate very precisely the 
mixing matrix, and therefore, the original images. The estimated images are 
shown in Fig. 6. 

Fig. 4. Original images 

Fig. 5. Mixed (observed) images 
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Fig. 6. Estimated normalized images using the estimated matrix. The signal-to-
noise ratios with the sources from Figure 1 are 232, 239 and 228 dB respectively 

hxdHmR—^—^±¥-F^ 

Fig. 7. Diagonal wavelet coefficients of the original images (displaying only the 
10-th row of each of the three (120 x 160) matrixes). They satisfy the conditions 
of Theorem 1 and this is the reason for the perfect reconstruction of the original 
images, since our algorithm uses only the tenth row of each of the mixed images. 

5.4 U n d e r d e t e r m i n e d case 

We consider a mixture of 7 artificially created sources (see Fig. 9 left) - spar-
sified randomly generated signals with at least 5 zeros in each column - with 
a randomly generated mixing matr ix with dimension 3 x 7 . 

Figure 8 gives the mixed signals together with a normalized scatterplot of 
the mixtures - the da ta lies in 21 = (2) hyperplanes. 

Applying the underdetermined matr ix recovery algorithm (Algorithm 1) 
to the mixtures gives the recovered mixing matr ix exactly, up to permutat ion 
and scaling. Applying the source recovery algorithm (Algorithm 4) we recover 
the source signals up to permutat ion and scaling (see Fig. 9, middle). This 
figure (right) shows also tha t the recovery by / i-norm minimization (known 
as Basis Pursuit method of S. Chen, D. Donoho and M. Saunders [7]) does 
not perform well, even if the mixing matr ix is perfectly known. 
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0 ptvAwvM/VyiA^^ 

0 20 40 

Fig. 8. Mixed signals (left) and normalized scatter plot (density) of the mixtures 
(right) together with the 21 data set hyperplanes, visualized by their intersection 
with the unit sphere in M .̂ 
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Fig. 9. The original source signals are shown in the left column. The middle column 
gives the recovered source signals — the signal-to-noise ratio between the original 
sources and the recoveries is very high (above 278 dB after permutation and normal-
ization). Note that only 200 samples are enough for excellent separation. The right 
column shows the recovered source signals using /i-norm minimization and known 
mixing matrix. Simple comparison confirms that the recovered signals are far from 
the original ones - the signal-to-noise ratio is only around 4 dB. 

6 Extract ion of auditory evoked potentials from EEG 
contaminated by eye movements by Sparse Component 
Analysis 

6.1 I n t r o d u c t i o n 

Ocular artifact contamination is very common in electroencephalographic 

(EEG) recordings. The electro-oculographic (EOG) signals are generated by 
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the horizontal movement of the eyes, which act as charged electric dipoles with 
the positive poles at the cornea and the negative poles at the retina. These 
electric charges of the movement are picked up by frontal EEG electrodes. The 
EOG contamination is normally dealt with by instructing the subjects not to 
blink and not to move the eyes during an EEG experiment, as well as by try-
ing to reject the affected data using voltage threshold criteria. Both of these 
measures leave a lot to be desired, because cognitive commands to subjects 
may introduce additional complexity, while at the same time very slow eye 
movements are difficult to identify only by voltage thresholding because their 
amplitudes may be comparable to those of the underlying electroencephalo-
gram. Recent studies have proposed artifact removal procedures based on 
estimation of correction coefficients [8] and independent component analysis 
[13, 19, 14, 18, 20], etc. The goal of the present section is to demonstrate that 
the new Sparse Component Analysis (SCA) method extracts efficiently for 
further usage the underlying evoked auditory potentials masked by strong eye 
movements. 

6.2 Methods 

The electric potentials on the surface of the scalp of human subjects were 
measured with a geodesic sensor net using a 256-channel electroencephalo-
graphic (EEG) system (Electrical Geodesies Inc., Eugene, Oregon, USA). An 
on-screen pattern image was presented for scanning 20 times. During each 
presentation the subject had to scan 4 lines - two horizontal and two vertical. 
A button was pressed by the subject immediately before a line scan and an-
other button - signaling that the line scan was completed. A 1000 Hz, 100ms, 
100 dB sound accompanied the pattern image each time after the start but-
ton was activated. An eye tracking device (EyeGaze , LC Technologies, Inc.) 
was used for precision recording and control of all eye movements during the 
EEG experiments, scanning the subjects' screen gaze coordinates 60 times per 
second. 

After aligning 20 single epochs of each eye movement type (horizontal 
left-to-right, diagonal down-left, horizontal right-to-left, diagonal up-left) with 
their corresponding sound stimulus onset times, EEG data was segmented into 
trials of 500ms lengths and averaged separately for each line type. We then pre-
processed the segmented contaminated data by reducing its dimensionality 
from 256 to 4 using principal component analysis (PCA). A justification for 
such a reduction is shown in Fig. 11 which shows that the subspace spanned 
by the principal components corresponding to the biggest 4 singular values 
contain most of the information of the data. The new Sparse Component 
Analysis method was applied on this new data set and its performance was 
compared to basic ICA algorithms: Fast ICA algorithm and JADE algorithm 
(see [15] for reference about ICA methods and algorithms). 
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Fig. 10. Experimental design to extract auditory evoked potentials from high-
density EEG data contaminated by eye movements. Ocular artifacts were controlled 
by an eye tracking device. 

1 5 0 0 \-

Fig. 11 . The biggest 10 singular values of the data matrix from 256 channels EEG 
machine 
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6.3 R e s u l t s 

In this experiment we applied Algorithm 2 for matr ix identification (using sev-
eral re-initializations, until obtaining satisfactory local (or global) minimum 
of the cost function: the sum of the squared distances from the da ta points to 
the corresponding clustering hyperplanes should be small. For source recovery 
we apply either Algorithm 4, or inversion of the estimated matrix: the results 
are similar, and as in the the inversion matr ix method the resulting signals 
are slightly more smooth. 

The component related to the evoked auditory N l potential [23] with a 
peak amplitude at 76-124ms [24] was identified (with some differences) by 
all applied algorithms. However, SCA algorithm gives the best result (Fig. 
1 right, 4-th component) which correspond to the reality of the experiment, 
i.e. the auditory stimulus was silent after 150 ms. The Fast ICA and JADE 
algorithms (Fig. 2) show nonzero activity in the auditory component after 
150 ms, which is false. The eye movements, however, were strongly mixed 
and masked, so tha t the various algorithms presented different performance 
capabilities. SCA's component 1 (Fig. 1 right) corresponded to the steady and 
continuous horizontal eye movement of the subject from the left side of the 
image to right side. The initial plateau (0-170 ms) was due to the subjective 
delay before the subject was able to start the actual movement. FastICA and 
JADE (Fig. 2, 3-rd left and 1-st right components respectively) were unable 
to reveal fully the underlying continuous potentials resulting from the eye 
movement. SCA component 3 was slightly different at 250-300 ms, but overall 
similar to component 4, which could have indicated tha t the real number of 
strong sources was 3 and this component was redundant. However, if tha t was 
not the case, then both this component, as well as SCA component 2 were 
either of eye movement origin and had been caused by acceleration jolt in 
response to the sound startle effect, or were related to the but ton press motor 
response potentials in cortex. 

In order to verify or reject the hypothesis tha t the real number of strong 
sources was 3 (and SCA component 3 in Fig. 1, right, was redundant) , we 
performed similar processing with just 3 input signals extracted by PCA sig-
nal reduction. The results are shown in Fig. 4 (right) and Fig. 5. Again, the 
auditory response was mixed with the eye movement potentials in the input 
da ta (Fig. 4 left) and all three algorithms were able to obtain the N l evoked 
potential - SCA (Fig. 4 right, 3-rd component), FastICA and JADE (Fig. 5, 
2-nd and 1-st components respectively), as those found by SCA is minimally 
deviated from zero in the period 150-500 ms. However, the steady eye move-
ment ramp was most difficult to extract by the ICA methods FastICA (Fig. 
5), while SCA (Fig. 4 right, 3-rd component) revealed again a clear basic 
t rend potential without overlapping peaks. SCA component 2 (Fig. 4 right) 
was represented in a varying degree also by the ICA algorithms. 

Our SCA method exhibited a best fit for the hypothesis with 3 sources 
of electrical potentials in the mixed auditory and eye movement data. Nev-
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Fig. 12. Left: Input EEG data with dimensionality reduced from 256 channels to 
4 principal components. This data was not sufficiently separated and still contained 
mixed information about the original cortical and eye dipole sources. Right: Sparse 
Component Analysis (SCA) results. 

Fig. 13. Left: FastICA results. Right: JADE results. 

ertheless, additional experiments may be needed to bet ter reveal the rather 
complex structure of the eye movement signal. 

7 Applications of Sparse Component Analysis to fMRI 
da ta 

7.1 S C A appl ied t o f M R I t o y d a t a 

We simulated a low-dimensional example of fMRI da ta analysis. The typical 
setup of fMRI experiments is the following: NMR brain imaging techniques 
are used to record brain activity da ta over a certain span of time, during which 
the subject is asked to perform some kind of task (e.g. 5 seconds of activity 
in the motor cortex followed by 5 seconds of activity in the visual cortex; this 
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Fig. 14. Left: Input EEG data with dimensionality reduced from 256 channels to 
4 principal components. This data was not sufficiently separated and still contained 
mixed information about the original cortical and eye dipole sources. Right: Sparse 
Component Analysis (SCA) results. 

Fig. 15. Left: FastICA resuhs. Right: JADE resuhs. 

iterative procedure is often called block diagram). The brain recordings show 
areas of high and of low brain activity (using the BOLD effect). Analysis is 
performed on the 2d-image slices recorded at the discrete t ime steps. General 
linear model (GLM) approaches or ICA-based fMRI analysis then decompose 
this da ta set into a certain set of component maps i.e. sets of (hopefully 
independent) images tha t are active at certain t ime steps corresponding to 
the block diagram. 

In the following we simulate a low-dimensional example of such brain ac-
tivity recordings. For this we mix three 'source component maps ' (Fig. 16) 
linearly to three mixture images and add some noise. 

These mixtures represent our recordings at three different t ime steps. From 
the recordings we want to recover the original components or component maps. 
We want to use an unsupervised approach (not GLM, which requires addi-
tional knowledge of the mixing system) but with a different contrast than 
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Fig. 16. Example: artificial non-independent and non-sparse source signals. 

ICA. We believe tha t the assumption of independence of the component maps 
does not hold in a lot of situations, so we replace this assumption by sparse-
ness of the maps, meaning tha t at a certain voxel, not all maps are allowed 
to be active (in the case of as many mixtures as sources). 

We consider a mixture of 3 artificially created non-independent source 
images of size 30 x 30 — see Figure 16 — with the (normalized) mixing 
matr ix 

0.9069 
0.2737 
0.3204 

0.1577 0.4726 
-0.9564 0.0225 
-0.2458 -0.8810 

and 4% of additive white noise. The mixtures are shown in Figure 17 together 
with their scatterplot after normalization to unit length. 

Note tha t due to the circular 'brain region', we have to preprocess the 
da ta ('sparsification') by removing the non-brain voxels from the boundary. 
Then, we apply the matr ix identification algorithm (Algorithm 1). This gives 
the recovered matr ix (after normalization) 

'0.9110 0.1660 0.4693 \ 
0.2823 -0 .9541 0.0135 

^0.3007-0.2494 - 0 . 8 8 2 9 / 

with low crosstalking error 0.12 and the recovered sources S shown in Figure 
18, with high signal-to-noise ratio of 28, 27 and 27 dB with respect to the 
original sources (after permutat ion and normalization). 

This can be enhanced by applying a denoising algorithm to each im-
age. Figure 19 shows the application of local P C A denoising with an MDL-
parameter estimation criterion, which gives SNRs of 32, 31 and 29 dB, so a 
mean enhancement of around 4 dB has been achieved. 

Note tha t if we apply ICA to the previous example (after sparsification 
as above — without sparsification ICA performs even worse), the algorithm 
cannot recover the mixing matrix 
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Fig. 17. Example: mixed signals with 4% additive noise (a), and scatterplot after 
normalization to unit length (b). 

0.6319 
-0.0080 
-0.7750 

-0.3212 
-0.8108 
-0.4893 

0.8094 
-0.3138 
0.4964 

and has a very high crosstalking error of 4.7 with respect to A . Figure 20 
shows the poorly recovered sources; the SNRs with respect to the sources are 
only 3.3, 13 and 12 dB respectively. The reason for ICA not being able to 
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Fig. 18. Example: recovered source signals. The signal-to-noise ratio between the 
original sources (figure 16) and the recoveries is high with 28, 27 and 27 dB after 
permutation and normalization. 

Fig. 19. Example: recovered denoised source signals. Now the SNR is even higher 
than in figure 18 (32, 31 and 29 dB after permutation and normalization). 

recover the sources simply lies in the fact tha t they were not chosen to be 
independent. 

Fig. 20. Example: poorly recovered source signals using ICA. The signal-to-noise 
ratio between the original sources (figure 16) and the recoveries is very low with 3.3, 
13 and 12 dB after permutation and normalization. 
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7.2 SCA applied to real fMRI data 

We now analyze the performance of SCA when applied to real fMRI mea-
surements. fMRI data were recorded from six subjects (3 female, 3 male, age 
20-37) performing a visual task. In five subjects, five slices with 100 images 
(TR/TE = 3000/60 msec) were acquired with five periods of rest and five 
photic simulation periods with rest. Simulation and rest periods comprised 10 
repetitions each, i.e. 30s. Resolution was 3 x 3 x 4 mm. The slices were oriented 
parallel to the calcarine fissure. Photic stimulation was performed using an 8 
Hz alternating checkerboard stimulus with a central fixation point and a dark 
background with a central fixation point during the control periods [27]. The 
first scans were discarded for remaining saturation effects. Motion artifacts 
were compensated by automatic image alignment (AIR, [28]). 

Blind Signal Separation, mainly based on ICA, nowadays is a quite com-
mon tool in fMRI analysis (see for example [21, 22]). Here, we analyze the 
fMRI data set using as a separation criterion a spatial decomposition of fMRI 
data images to sparse component maps. Such an approach we consider as very 
reasonable and advantageous when the stimuli are sparse and dependent, and 
therefore the ICA methods couldn't give good results. Due to the availabil-
ity of fMRI data, it appears that the results of our SCA method and ICA 
method give similar results, which itself we consider as a surprising fact. Here 
we use again Algorithm 2 for matrix identification and Algorithm 4 or matrix 
inversion of the estimated matrix, for estimation of the sources. 

Figure 21 shows the performance of SCA method; see figure caption for 
interpretation. Using only the first 5 principal components, SCA could recover 
the stimulus component as well as detect additional components. It performs 
equally well as fastICA, Figure 22, which is interesting in itself: apparently 
the two different criteria, sparseness and independence, lead to similar results 
in this setting. This can be partially explained by noting that all components, 
mainly the stimulus component, have high kurtoses i.e. strongly peaked den-
sities. 

8 Conclusion 

We rigorously defined the SCA and BSS problems of sparse signals and pre-
sented sufficient conditions for their solution. We presented four algorithms 
applicable to SCA: one for source recovery and three ones for identification of 
the mixing matrix - for the sparse and the very sparse cases and one based on a 
simplified Bradley-Mangasarian's k-plane clustering algorithm. We presented 
several experiments for confirmation of our methods, including applications 
in fMRI and EEG data sets. 

Although it is a standard practice to cut those evoked-potentials in EEG 
data which are contaminated by eye movement artifacts, we have demon-
strated that stimulus-related responses could be recovered successfully and 
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Fig. 21 . SCA fMRI analysis. The data was reduced to the first 5 principal com-
ponents, (a) shows the recovered component maps (white points indicate values 
stronger than 3 standard deviations), and (b) their time courses. The stimulus com-
ponent is given in component 5 (indicated by the high crosscorrelation cc = —0.86 
with the stimulus time course, delayed by roughly 2 seconds due to the BOLD effect), 
which is strongly active in the visual cortex as expected. 
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Fig. 22. FastICA result during fMRI analysis of the same data set as in figure 21. 
The stimulus component is given in component 1 with high stimulus cross-correlation 
cc = 0.90. 
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even better by the Sparse Component Analysis method. In addition, SCA 
has revealed a complex hidden structure of the dynamically accelerating eye 
movement signal, which could become a future basis for a new instrument 
to measure objectively individual psychological characteristics of a human 
subject in startle reflex-type experiments, exploiting sparseness of the signals 
rather than independence. We have also shown that our new method is a 
useful tool in separating the functional EEG components more efliciently in 
signal hyperspace than independent component analysis. Very promising are 
the results with real fMRI data images, which show that revealing the brain 
responses of sparse (and may be dependent) stimuli could be more successful 
by SCA than by ICA. 
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Summary. Data analysis often requires the unsupervised partitioning of the data 
set into clusters. Clustering data is an important but a difficult problem. In the 
absence of prior knowledge about the shape of the clusters, similarity measures for 
a clustering technique are hard to specify. In this work, we propose a framework 
that learns from the structure of the data. Learning is accomplished by applying 
the K-means algorithm multiple times with varying initial centers on the data via 
entropy minimization. The result is an expected number of clusters and a new sim-
ilarity measure matrix that gives the proportion of occurrence between each pair of 
patterns. Using the expected number of clusters, final clustering of data is obtained 
by clustering a sparse graph of this matrix. 

K e y words: K-means clustering, Entropy, Bayesian inference, Maximum 
spanning tree. Graph Clustering. 

1 Introduction 

Data clustering and classification analysis is an important tool in statisti-
cal analysis. Clustering techniques find applications in many areas including 
pat tern recognition and pat tern classification, da ta mining and knowledge 
discovery, da ta compression and vector quantization. Data clustering is a dif-
ficult problem tha t often requires the unsupervised partitioning of the da ta 
set into clusters. In the absence of prior knowledge about the shape of the 
clusters, similarity measures for a clustering technique are hard to specify. 
The quality of a good cluster is application dependent since there are many 
methods for finding clusters subject to various criteria which are both ad hoc 
and systematic [9]. 

Another diflBculty in using unsupervised methods is the need for input 
parameters. Many algorithms, especially the K-means and other hierarchical 
methods [7] require tha t the initial number of clusters be specified. Several 
authors have proposed methods tha t automatically determine the number of 
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clusters in the data [5, 10, 6]. These methods use some form of cluster valid-
ity measures like variance, a priori probabilities and the difference of cluster 
centers. The obtained results are not always as expected and are data de-
pendent [18]. Some criteria from information theory have also been proposed. 
The Minimum Descriptive Length (MDL) criteria evaluates the compromise 
between the likelihood of the classification and the complexity of the model 
[16]. 

In this work, we propose a framework for clustering by learning from the 
structure of the data. Learning is accomplished by randomly applying the 
K-means algorithm via entropy minimization (KMEM) multiple times on the 
data. The (KMEM) enables us to overcome the problem of knowing the num-
ber of clusters a priori. Multiple applications of the KMEM allow us to main-
tain a similarity measure matrix between pairs of input patterns. An entry 
aij in the similarity matrix gives the proportion of times input patterns i and 
j are co-located in a cluster among N clusterings using KMEM. Using this 
similarity matrix, the final data clustering is obtained by clustering a sparse 
graph of this matrix. 

The contribution of this work is the incorporation of entropy minimization 
to estimate an approximate number of clusters in a data set based on some 
threshold and the use of graph clustering to recover the expected number of 
clusters. 

The chapter is organized as follows: In the next section, we provide some 
background on the K-means algorithm. A brief introduction of entropy is pre-
sented in Section 3. K-Means via entropy minimization is outlined in Section 
4. The graph clustering approach is presented in Section 5. The results of our 
algorithms are discussed in Section 6. We conclude briefiy in Section 7. 

2 K-Means Clustering 

The K-means clustering [12] is a method commonly used to partition a data 
set into k groups. In the K-means clustering, we are given a set of n data 
points (patterns) (xi, ...,Xfc) in d dimensional space i?^ and an integer k and 
the problem is to determine a set of points (centers) in R^ so as to minimize 
the square of the distance from each data point to its nearest center. That is 
find k centers (ci, ...,c/c) which minimize: 

•̂  = E E K '̂Cfe)!'- (1) 
k xECk 

where the C's are disjoint and their union covers the data set. The K-means 
consists of primarily two steps: 

(1) The assignment step where based on initial k cluster centers of classes, 
instances are assigned to the closest class. 
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(2) The re-estimation step where the class centers are recalculated from the 
instances assigned to that class. 

These steps are repeated until convergence occurs; that is when the re-
estimation step leads to minimal change in the class centers. The algorithm 
is outlined in Figure 1. 

The K-means Algorithm 

Input 

P = {p^,...,p^} (points to be clustered) 

k (number of clusters) 

Output 

C = {c^,...Cj^} (clustercenters) 

m:P ^{\,...k} (cluster membership) 

Procedure K-means 

1. Initialize C (random selection of P). 

2. For each/?, e P, m(p.) = argmin^^^ distance(jc>.,c^). 

3. If m has not changed, stop, else proceed. 

4. For each ie {1,...^}, recompute c. as a center of {p \ m(p) = /} 

5. Go to step 2. 

Fig. 1. The K-Means Algorithm 

Several distance metrics like the Manhattan or the Euclidean are com-
monly used. In this chapter, we consider the Euclidean distance metric. Issues 
that arise in using the K-means include: shape of the clusters, choosing, the 
number of clusters, the selection of initial clusters which could affect the final 
results and degeneracy. Degeneracy arises when the algorithm is trapped in a 
local minimum thereby resulting in some empty clusters. In this chapter we 
intend to handle the last threes problem via entropy optimization. 

3 An Overview of Entropy Optimization 

The concept of entropy was originally developed by the physicist Rudolf Clau-
sius around 1865 as a measure of the amount of energy in a thermodynamic 
system [2]. This concept was later extended through the development of sta-
tistical mechanics. It was first introduced into information theory in 1948 by 
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Claude Shannon [15]. Entropy can be understood as the degree of disorder of 
a system. It is also a measure of uncertainty about a parti t ion [15, 10]. 

The philosophy of entropy minimization in the pat tern recognition field 
can be applied to classification, da ta analysis, and da ta mining where one of 
the tasks is to discover pat terns or regularities in a large da ta set. The regu-
larities of the da ta structure are characterized by small entropy values, while 
randomness is characterized by large entropy values [10]. In the da ta mining 
field, the most well known application of entropy is information gain of deci-
sion trees. Entropy based discretization recursively partit ions the values of a 
numeric a t t r ibute to a hierarchy discretization. Using entropy as an informa-
tion measure, one can then evaluate an at t r ibute 's importance by examining 
the information theoretic measures [10]. 

Using entropy as an information measure of the distribution da ta in the 
clusters, we can determine the number of clusters. This is because we can 
represent da ta belonging to a cluster as one bin. Thus a histogram of these 
bins represents cluster distribution of data. From entropy theory, a histogram 
of cluster labels with low entropy shows a classification with high confidence, 
while a histogram with high entropy shows a classification with low confidence. 

3.1 M i n i m u m E n t r o p y and I ts P r o p e r t i e s 

Shannon Entropy is defined as: 

n 

H{X) =-Y^ivd^Pi) (2) 
i=l 

where X is a random variable with outcomes 1, 2, . . . , n and associated proba-

bilities p i ,p2 , ...,Pn. 
Since —pi Inp^ > 0 for 0 < p^ < 1 it follows from (2) tha t H{X) > 0, where 

H{X) = 0 iff one of the pi equals 1; all others are then equal to zero. Hence the 
notation 0 In 0 = 0. For continuous random variable with probability density 
function p(x) , entropy is defined as 

H{X) = - f p{x) \np{x)dx (3) 

This entropy measure tells us whether one probability distribution is more 
informative than the other. The minimum entropy provides us with minimum 
uncertainty, which is the limit of the knowledge we have about a system and its 
s tructure [15]. In da ta classification, for example the quest is to find minimum 
entropy [15]. The problem of evaluating a minimal entropy probability distri-
bution is the global minimization of the Shannon entropy measure subject to 
the given constraints. This problem is known to be NP-hard [15]. 

Two properties of minimal entropy which will be fundamental in the de-
velopment of KMEM model are concentration and grouping [15]. Grouping 
implies moving all the probability mass from one state to another, tha t is, 
reduce the number of states. This reduction can decrease entropy. 
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Proposition 1. Given a partition 13= [8^, B5, ^2 , A3, ...AAT]; we form the 
partition A= [Ai, ^2 , A3, ...AAT] obtained by merging Ba and Bij into Ai, 
where Pa = P{Ba), Pb = P{Pb) and Pi = P{Ai), we maintain that: 

H{A) < H{Q) (4) 

Proof The function cp{p) = —p\np is convex. Therefore for A > 0 and 
pi - A < pi < p2 < P2 + A 
we have: 

^(Pi + P2) < ^{Pi - A) + (p{p2 + A) < (p{pi) + (p{p2) (5) 

Clearly, 

H{Q) - ifipa) - ^{Pb) = H{A) - ^{Pa^Pb) 

because each side equals the contribution to H{i^) and H{A) respectively due 
the to common elements of 13 and A. Hence, (4) follows from (5). 

Concentration implies moving probability mass from a state with low prob-
ability to a state with high probability. Whenever this move occurs, the system 
becomes less uniform and thus entropy decreases. 

Proposition 2. Given two partitions 13 = [61,62,^3,^4, ...AN] and 
A = [Ai, A2, A3, ...ATV] that have the same elements except the first two. 
We maintain that if 
pi = P(Ai), p2 = P(A2) withpi < p2 and (pi - A) = P{bi) < (p2 + A) = P{b2), 
then 

ff(6) < H{A) (6) 

Proof Clearly, 

H{A) - ^{pi) - ^{p2) = H{Q) - ^{p, - A) - ^{p2 + A) 

because each side equals the contribution to i^(i3) and H{A) respectively due 
to the common elements of A and 13. Hence, (6) follows from (5). 

3.2 The Entropy Decomposition Theorem 

Another attractive property of entropy is the way in which aggregation and 
disaggregation are handled [4]. This is because of the property of additivity 
of entropy. Suppose we have n outcomes denoted by X = {xi,...,x^}, with 
probability pi, . . . ,p^. Assume that these outcomes can be aggregated into a 
smaller number of sets Ci,..., CK in such a way that each outcome is in only 
one set C/̂ , where /c = 1, ...K. The probability that outcomes are in set Ck is 
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Pk= ^Pi (7) 
ieCk 

The entropy decomposition theorem gives the relationship between the 
entropy H{X) at level of the outcomes as given in (2) and the entropy HQ{X) 
at the level of sets. HQ{X) is the between group entropy and is given by: 

K 

Ho{X) =-J2iPk^^Pk) (8) 
k=i 

Shannon entropy (2) can then be written as: 

n 

H{X) = -Y^pMPi 

K 

k=lieCk 

K K 

• y ^ f e Inpfc) - Vpfc V —In— 
Pk Pk 

k=i k=i ieCk^'^ ^^ 
K 

Ho{X)^y2pkHk{X) (9) 
k=l 

where 

H,{X) = - V ^ I n ^ (10) 

A property of this relationship is that H{X) > Ho{X) because pk and Hk{X) 
are nonnegative. This means that after data grouping, there cannot be more 
uncertainty (entropy) than there was before grouping. 

4 The K-Means via Entropy Model 

In this section we outline the K-means via entropy minimization. The method 
of this section enables us to perform learning on the data set, in order to 
obtain the similarity matrix and to estimate a value for the expected number 
of clusters based on the clustering requirements or some threshold. 
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4.1 Entropy as a Prior Via Bayesian Inference 

Given a data set represented as X = {xi,...,x^}, a clustering is the partitioning 
of the data set to get the clusters {Cj, j = 1, . . .K}, where K is usually less 
than n. Since entropy measures the amount of disorder of the system, each 
cluster should have a low entropy because instances in a particular cluster 
should be similar. Therefore our clustering objective function must include 
some form of entropy. A good minimum entropy clustering criterion has to 
reflect some relationship between data points and clusters. Such relationship 
information will help us to identify the meaning of data, i.e. the category of 
data. Also, it will help to reveal the components, i.e. clusters and components 
of mixed clusters. Since the concept of entropy measure is identical to that 
of probabilistic dependence, an entropy criterion measured on a posteriori 
probability would suflice. The Bayesian inference is therefore very suitable in 
the development of the entropy criterion. 

Suppose that after clustering the data set X, we obtain the clusters {Cj, 
j = 1, ...K} by Bayes rule, the posterior probability P{Cj\X) is given as; 

P{X\Cj)P{Cj) 
P(X) "̂  ^ y^^i^jj-" \^3) 

P{C,\X) = - ^ - i ^ . y ; ^ ^ . ; ^ P(X|C,)P(C,) (11) 

where P{X\Cj) given in (12) is the likelihood and measures the accuracy 
in clustering the data and the prior P{Cj) measures consistency with our 
background knowledge. 

PiX\Cj)= n P{x^\CJ)=e^''^^''^^"''^'''^^'^ (12) 

By the Bayesian approach, a classifled data set is obtained by maximizing the 
posterior probability (11). In addition to three of the problems presented by 
the K-means which we would like to address: determining number of clusters, 
selecting initial cluster centers and degeneracy, a fourth problem is, the choice 
of the prior distribution to use in (11). We address these issues below. 

Defining the Prior Probability 

Generally speaking, the choice of the prior probability is quite arbitrary [21]. 
This is a problem facing everyone and no universal solution has been found. 
For our our application, we will deflne the prior as an exponential distribution, 
of the form; 

P{Cj)(xe^^'=^P^^''P^ (13) 

where pj = \Cj\/n is the prior probability of cluster j , and /3 > 0 refers to 
a weighting of the a priori knowledge. Hence forth, we call f3 the entropy 
constant. 
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D e t e r m i n i n g N u m b e r of Clus ters 

Let k* be the final unknown number of clusters in our K-means algorithm 
(KMEM). After clustering, the entropy 

k* 

H{X) = -J2P^^^P^ 
i=l 

will be minimum based on the clustering requirement. From previous discus-
sions, we know tha t entropy decreases as clusters are merged. Therefore if 
we start with some large number of clusters K > k*, our clustering algorithm 
will reduce K to /c* because clusters with probability zero will vanish. Note 
tha t convergence to /c* is guaranteed because the entropy of the partit ions is 
bounded below by 0. A rule of thumb on the value of initial number of clusters 
is K = y^ [3]. 

T h e K M E M M o d e l 

The K-Means algorithm works well on a da ta set tha t has spherical clus-
ters. Since our model (KMEM) is based on the K-means, we make the as-
sumption tha t the each cluster has Gaussian distribution with mean values 
Cj^i = ( 1 , . . . , /c) and constant cluster variance. Thus for any given cluster C^, 

1 
P(x,\Cj) = ^ ^ e \ '-' J (14) 

Taking natural log and omitting constants, we have 

l n P ( x , | C , ) = - ^ ^ l ^ ^ (15) 

Using equations (12) and (13), the posterior probability (11) now becomes: 

k* 

P{Cj\X)(xexp Y^ {\np{x,\Cj))exp p^Pilnpi 
i=l 

oc e x p ( - ^ ) (16) 

where E is writ ten as follows: 

k* 

E = - Yl lnp(x , |C , ) - /3^p , lnp . (17) 
Xi^Cj i=l 

If we now use equation (14), equation (17) becomes 

^ = EE^^^^-/5i:P.lnp. (18) 
i=ixieCj i=i 
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or 

k* /- - \2 

^ = E E ^^"^+/^^(^) (19) 
i=ixieCj 

Maximizing the posterior probability is equivalent to minimizing (19). Also, 
notice that since the entropy term in (19) is nonnegative, equation (19) is 
minimized if entropy is minimized. Therefore (19) is the required clustering 
criterion. 

We note that when /3 = 0, E is identical to the cost function of the K-
Means clustering algorithm. 

The Entropy K-means algorithm (KMEM) is given in figure 2. Multiple runs 
of KMEM are used to generate the similarity matrix. Once this matrix is 
generated, the learning phase is complete. 

Entropy K-means Algorithm 

1. Select the initial number of clusters k and a value for the stopping 
criteria s. 

2. Randomly initialize the cluster centers 9.(t\ and the a priori 
probabilities/?., z = 1,2,...,^, j8, and the counter t = 0. 

3. Classify each input vector x^, y = 1,2,..., /7 to get the partition C. 
such that for eachx^ e C^, r = 1,2,...,^ 

[X, -e^iof -^\n{p^)< [x^ -e,{t)f--HP>) 
n n 

4. Update the cluster centers 

and the a priori probabilities of clusters 

n 

5. Check for convergence; that is see if 
maxJ0,(^ + l ) -0 , (OI<£ 

if it is not, update t = t + \ and go to step 3. 

Fig. 2. The Entropy K-means Algorithm 

This algorithm iteratively reduces the numbers of clusters as some empty 
clusters will vanish. 
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5 Graph Matching 

The rationale behind our approach for structure learning is that any pair of 
patterns that should be co-located in a cluster after clustering must appear 
together in the same cluster a majority of the time after N applications of 
KMEM. 

Let G{V, E) be the graph of the similarity matrix where each input pattern 
is a vertex of G and V is the set of vertices of G. An edge between a pair 
of patterns {i^j) exists if the entry {i^j) in the similarity matrix is non-zero. 
^ is a collection of all the edges of G. Graph matching is next applied on 
the maximum spanning tree of the sparse graph G'iV^E) C GiV^E). The 
sparse graph is obtained by eliminating inconsistent edges. An inconsistent 
edge is an edge whose weight is less than some threshold r. Thus a pattern 
pair whose edge is considered inconsistent is unlikely to be co-located in a 
cluster. To understand the idea behind the maximum spanning tree, we can 
consider the minimum spanning tree which can be found in many texts, for 
example [20] pages 278 and 520. The minimum spanning tree (MST) is a 
graph theoretic method, which determines the dominant skeletal pattern of 
points by mapping the shortest path of nearest neighbor connections [19]. 
Thus given a set of input patterns X = xi, ...,Xn each with edge weight dij^ 
the minimum spanning tree is an acyclic connected graph that passes through 
all input patterns of X with a minimum total edge weight. The maximum 
spanning tree on the other hand is a spanning with a maximum total weight. 
Since all of the edge weight in the similarity matrix are nonnegative, we can 
negate these values and the apply the minimum spanning tree algorithm. 

6 Results 

The KMEM and the graph matching algorithms were tested on some synthetic 
image and data from the UCI data repository [22]. The data include the Iris 
data, wine data and heart disease data. The results for the synthetic images 
and iris data are given in 6.1 and 6.2. The KMEM algorithm was run 200 times 
in order to obtain the similarity matrix and the average number of clusters 

6.1 Image Clustering 

For the synthetic images, the objective is to reduce the complexity of the grey 
levels. Our algorithm was implemented with synthetic images for which the 
ideal clustering is known. Matlab and Paint Shop Pro were used for the image 
processing in order to obtain an image data matrix. A total of three test images 
were used with varying numbers of clusters. The first two images, testl and 
test2, have four clusters. Three of the clusters had uniformly distributed values 
with a range of 255, and the other had a constant value. Testl had clusters of 



Data Mining Via Entropy and Graph Clustering 127 

varying size while test2 had equal sized clusters. The third synthetic image, 
tests, has nine clusters each of the same size and each having values uniformly 
distributed with a range of 255. We initialized the algorithm with the number 
of clusters equal to the number of grey levels, and the value of cluster centers 
equal to the grey values. The initial probabilities (pi) were computed from the 
image histogram. The algorithm was able to correctly detect the number of 
clusters. Different clustering results were obtained as the value of the entropy 
constant was changed, as is shown in Table 1. For the image testS, the correct 
number of clusters was obtained using a f3 of 1.5. For the images testl and 
test2, a f3 value of 5.5 yielded the correct number of clusters. In Table 1, the 
optimum number of clusters for each synthetic image are bolded. 

Table 1. The number of clusters for different values of p 

IJ 
roj 
1.5 
3.5 
5.5 

Images 
testl 

10 
6 
5 
4 

test2 
10 
8 
5 
4 

tests 
13 
9 
6 
5 

6.2 Iris Data 

Next we tested the algorithm on the different data obtained from the UCI 
repository and got satisfactory results. The results presented in this section are 
on the Iris data. The Iris data is well known [1, 8] and serves as a benchmark 
for supervised learning techniques. It consists of three types of Iris plants: Iris 
Versicolor, Iris Virginica, and Iris Setosa with 50 instances per class. Each 
datum is four dimensional and consists of a plants' morphology namely sepal 
width, sepal length, petal width, and petal length. One class Iris Setosa is well 
separated from the other two. Our algorithm was able to obtain the three-
cluster solution when using the entropy constant /3's of 10.5 and 11.0. Two 
cluster solutions were also obtained using entropy constants of 14.5, 15.0, 15.5 
and 16.0 Table 2 shows the results of the clustering. 

To evaluate the performance of our algorithm, we determined the per-
centage of data that were correctly classified for three cluster solution. We 
compared it to the results of direct K-means. Our algorithm had a 91% cor-
rect classification while the direct K-means achieved only 68% percent correct 
classification, see Table 3. Another measure of correct classification is entropy. 
The entropy of each cluster is calculated as follows: 

H{Cj) 

J = l 
Tin Tin 

(20) 
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where rij is the size of cluster j and n^ is the number of pat terns from cluster 
i tha t were assigned to cluster j . The overall entropy of the clustering is the 
sum of the weighted entropy of each cluster and is given by 

ff(C) = ^ ^ F ( C , ) (21) 

where n is the number of input pat terns. The entropy is given in table 3. The 
lower the entropy the higher the cluster quality. 

We also determined the effect of (3 and the different cluster sizes on the 
average value of k obtained. The results are given in tables 4, 5 and 6. The 
tables show tha t for a given (3 and different k value the average number of 
clusters converge. 

Table 2. The number of clusters as a function of f3 for the Iris Data 

^ 
k\ 

MI 
3 

11.0 
3 

14.5 
2 

15.0 
2 

15.5 
2 

16 
2 

Table 3. Percentage of correct classification of Iris Data 

k 
% 
Entropy 

3.0 
90 

0.31 

3.0 
91 

0.27 

2.0 
69 

1.33 

2.0 
68 

1.30 

2.0 
68 

1.28 

2.0 
68 

1.31 

Table 4. The average number of clusters for various k using a fixed f3 = 2.5 for the 
Iris Data 

k 
f^ave 

10 
9.7 

15 
14.24 

20 
18.73 

30 
27.14 

50 
42.28 

Table 5. The average number of clusters for various k using a fixed f3 = 5.0 for the 
Iris Data 

k 

f^ave 

10 
7.08 

15 
7.10 

20 
7.92 

30 
9.16 

50 
10.81 

Table 6. The average number of clusters for various k using a fixed p = 10.5 for 
the Iris Data 

k 

f^ave 

vw 
3.25 

15 
3.34 

20 
3.36 

30 
3.34 

50 
3.29 
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7 Conclusion 

The KMEM provided good estimates for the unknown number of clusters. We 
should point out tha t whenever the clusters are well separated, the KMEM 
algorithm is sufficient. Whenever tha t was not the case, further processing by 
the graph clustering produced the required results. Varying the entropy con-
stant /3 allows us to vary the final number of clusters in KMEM. However, we 
had to empirically obtain values for f3. Further work will be how to estimate 
the value of f3 based on the some properties of the da ta set. Our approach 
worked well on the da ta tha t we tested, producing the required number of clus-
ters. While our results are satisfactory, we observed tha t our graph clustering 
approach sometimes matched weakly linked nodes, thus combining clusters. 
Therefore, further work will be required to reduce this problem. Such a result 
would be very useful in image processing and other applications. 
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Summary. The study of gene functions requires a high-quality DNA library. A 
large amount of testing and screening needs to be performed to obtain a high-
quality DNA library. Therefore, the efficiency of testing and screening becomes very 
important. Pooling design is a very helpful tool, which has developed a lot of appli-
cations in molecular biology. In this chapter, we introduce recent developments in 
this research direction. 

1 Molecular Biology and Group Testing 

One of the recent important developments in biology is the success of Hu-
man Genome Project. This project was done with a great deal of help from 
computer technology, which made molecular biology a hot research area con-
jugated with computer science. Bio-informatics is a new born research area 
tha t grows very rapidly from this conjugation. 

The technology for obtaining sequenced genome da ta is getting more de-
veloped as and more and more sequenced genome da ta is available to the scien-
tific research community. Based on those data, the study of gene functions has 
become a very important research direction. This requires high-quality gene 
libraries. The high-quality gene libraries are obtained from extensive testing 
and screening of DNA clones, tha t is, identifying clones used in the libraries. 
Therefore, the efficiency of DNA screening is very important . For example, 
in 1998, the Life Science Division of Los Alamos National Laboratories [14] 
was dealing with a dataset of 220,000 clones. Individual testing those clones 
requires 220,000 tests. However, they used only 376 tests with a technology 
called group testing. 

The group testing takes advantage of small percentage of clones containing 
target probes. It tests subsets of clones called pools^ instead of testing each 
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of them individually. For example, in the above mentioned testing at Los 
Alamos National Laboratories, each pool contained about 5,000 clones. The 
technology of group testing was started from Wassernan-type blood test in 
World War IL A very simple design that was used in the earlier stage is as 
follows: Divide each blood sample into two parts. First, mix all first parts into 
a pool and test the pool. If the outcome is positive, i.e., there is a presence of 
syphilitic antigen, then test the second part individually. Otherwise, all men 
in the pool passed the test. During the past 60 years, more efficient designs 
have been developed. These designs have gained more and more attention due 
to significant applications in the study of genome. 

A typical application of pooling designs is DNA library screening. A DNA 
library is a collection of cloned DNA segments usually taken from a specific 
organism. Those cloned DNA segments are called clones. Given a DNA library, 
the problem is to identify whether each clone contains a probe from a given set 
of probes. A probe is a piece of DNA labeled with radioisotope or fiuorescence. 
The probe is often used to detect specific DNA sequences by hybridization. A 
clone is said to be positive if it contains a given probe and negative otherwise. 
A pool is positive if it contains a positive clone and negative otherwise. In a 
group testing algorithm a clone may appear in two or more pools. Therefore, 
making copies is a necessary preprocessing procedure. 

Hybridization is one of the techniques to reproduce clones or perform DNA 
cloning. To better understand the concept of hybridization, let us describe the 
composition of DNA. DNA is a large molecule with double helix structure that 
consists of two nucleic acids which in turn are strings of nucleotides. There 
are four types of nucleotides A (adenine), T (thymine), G (guanine) and C 
(cytosine). Thus, each nucleic acid can be seen as a string of four symbols 
A, T, G, C. When two nucleic acids are joined into a double helix, A must 
bond with T and G must bond with C. Heating can break the DNA into two 
separated nucleic acids. Through the action of an enzyme each nucleic acid 
may be jointed with a probe and consequently the probe would grow into a 
dual nucleic acid. This process is referred to as hybridization. 

By repeating hybridization we can clone unlimited number of copies of any 
piece of DNA. This approach is called Polymerase Chain Reaction (PCR). It 
is a cell-free, fast, and inexpensive technique. Another technique for DNA 
cloning is cell-based. It contains four steps: 

(1) Insert the DNA fragment (to be cloned) into an agent called vector. 
This step results in a recombinant. 

(2) Put the recombinant DNA into a host cell to proliferate. This step is 
called transformation. 

(3) Reproduce the transformed cell. 

(4) Isolate the desired DNA clones from the cells obtained from (3). 

In general, there are two conditions that need to be satisfied for group 
testing: (a) copies of items are available and (b) testing on a subset of items is 
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available. In DNA library screening both conditions are available due to DNA 
cloning, especially hybridization. 

2 Pooling Design 

There are two types of group testing, sequential and non-adaptive. To explain 
them, let us look at two examples of group testing algorithms. 

Consider a set of nine clones with one positive clone. In the first example, 
the method is sequential. At each iteration, bisect the positive pool into two 
equal or almost equal pools and test each of the obtained two pools until only 
one positive clone is found in the pool. In the worst case, this method takes 
at most six tests to identify the positive clone. In general, for a set of n clones 
with one positive clone, the bisection would take at most 2 [log2 n] tests to 
identify the positive one. 

In the second example, the method is to put the nine clones into a 3 x 3 
matrix. Each row and each column represent a test. Since there is only one 
positive clone, there is exactly one positive row and one positive column. Their 
intersection is the positive clone. In general, for n clones tha t include a positive 
one, this method takes 0{y^) tests. For large n, this method needs more tests 
than the first one. However, all tests in this method are independent. They can 
be performed simultaneously. This type of group testing is called non-adaptive 
group testing. 

Group testing in molecular biology is usually called pooling design. The 
pooling design is often non-adaptive [3, 8]. This is due to the t ime consuming 
nature of tests in molecular biology. Therefore, we may simply refer to the 
pooling design as the non-adaptive group testing. Hence, every pooling de-
sign can be represented as a binary matrix by indexing rows with pools and 
columns with clones and assigning 1 to cell (i, j ) if and only if the ith pool 
contains the jth clone. 

A positive clone would imply the positivity of all pools containing it. There-
fore, d positive clones would result in the positivity of all pools containing any 
of them. If we consider each column (clone) as a set of pools with 1-entry in the 
column, then the union of the d columns represents the testing outcome when 
those d clones form the set of all positive clones. Therefore, if a binary matr ix 
representing a pooling design can identify up to d positive clones, all unions 
of up to d columns should be distinct. A binary matrix with this property is 
called d-separable. 

For a J-separable matrix, a naive way for decoding a given testing outcome 
vector to find all positive clones is to compare it with all unions of up to d 
columns. This takes 0{n^) t ime. Is it possible to do bet ter? The following 
result of Li mentioned in [18] gives a negative answer. 

T h e o r e m 1 Decoding for d-separable matrix can be done in polynomial time 
with respect to n and d if and only if the hitting set problem is polynomial-time 
solvable, i.e., if and only if P=NP. 
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Indeed, decoding is equivalent to finding a subset of at most d clones 
hitt ing every positive pool. By a set hitt ing another set, we mean tha t the 
intersection of two sets is nonempty. Note tha t every clone in a negative pool 
is negative. Therefore, the input size of this hitt ing problem is controlled by 
the union of negative pools. The following result gives an interesting condition 
on the size of this union. 

T h e o r e m 2 For a d-separable matrix, the union of negative pools always con-
tains at least n — d — k-\-l clones if and only if no d-union contains a k-union, 
where a d-union means a union of d columns. 

When /c = 1, the union of negative pools contains at least n — d clones. 
Thus, the number of clones tha t are not in any negative pool is at most (i, 
and hence they form a hitt ing set of at most d clones, which should be the 
solution. The binary matr ix with the property tha t no column is contained in 
any (i-union is said to be d-disjunct. For any (i-disjunct matrix, decoding can 
be done in 0{n) t ime. 

3 Simplicial Complex and Graph Properties 

Finding the best (i-disjunct matr ix is an intractable problem for computer sci-
ence. So far, its computational complexity is unknown. Therefore, we can only 
make approximate designs with various tools, including classical combinatorial 
designs, finite geometry, finite fields, etc. Recently, the construction of pooling 
designs using simplicial complexes was developed. A simplicial complex is an 
important concept in geometric topology [15, 18]. 

A simplicial complex zA is a family of subsets of a finite set E such tha t 
A ^ A and B C A imply B ^ A. Every element in E is called a vertex. Every 
member in the family A is called a face and furthermore called a k-face if it 
contains exactly k vertices. Motivated by the work of Macula [12, 13], Park 
et al. [15] construct a binary matrix M{A,d,k) for a simplicial complex A 
by indexing rows with all (i-faces and columns with all /c-faces (k > d) and 
assigning 1 to cell {i^j) if and only if the ith. (i-face is contained in the j t h 
/c-face. They proved the following theorem. 

T h e o r e m 3 M{A^d^k) is d-disjunct. 

An important family of simplicial complexes is induced by monotone graph 
properties. A graph property is monotone increasing if every graph contain-
ing a subgraph having this property also has this property. Similarly, a graph 
property is monotone decreasing if every subgraph of a graph with this prop-
erty has this property. If one fixes a vertex set and considers edge sets of all 
graphs satisfying a monotone decreasing property, they will form a simplicial 
complex. Since graphs not satisfying a monotone increasing property form 
a monotone decreasing property, every monotone increasing property is also 
associated with a simplicial complex. 
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Matching is an example of a monotone decreasing property. Let A^ be 
the the simplicial complex consisting of all matchings in a complete graph of 
order m. Then /c-matching (a matching of k edges) is a /c-face of zA^. There 
is an error tolerance result for matching [7]. 

Theorem 4 If k-matching is perfect, then M{Am,d, k) is a d-error detecting 
d-disjunct matrix. 

Here, by a d-error detecting matrix, we mean that if there exist at most d 
erroneous tests, the matrix is still able to identify all positive clones. 

Park et al. [15] also generalized this result to the case of a simplicial com-
plex. 

Theorem 5 If for any two k-faces A and B \A\B\ > 2, then M{A^d^k) is 
a d-error detecting d-disjunct matrix. 

Huang and Weng [10] generalized Theorem 3 to a class of partial ordering 
sets, including lattices. 

4 Error-Tolerant Decoding 

Error-tolerant decoding is a very interesting issue in various pooling design 
models. To see it, let us study a so-called inhibitor model. 

In fact, in some situations, a clone can be negative, positive or anti-positive. 
An anti-positive clone can cancel the positivity of a pool, that is, a test out-
come on a pool containing an anti-positive clone must be negative, even if 
the pool contains a positive clone. An anti-positive clone is also called an 
inhibitor. If we know a positive clone, then all inhibitors can be identified 
by testing all pairs of clones consisting of the known positive clone and all 
clones in negative pools. However, if no positive clone is known, it is not so 
easy to identify inhibitors. Therefore, it is an interesting problem to decode 
all positive clones without knowing inhibitors. 

Du and Hwang [4] developed the following method. 
For each clone j and a possible subset / of inhibitors, compute t{j,I), 

the number of negative pools containing j , but disjoint from / . Set T{j) = 
mint( j , / ) over all possible subsets / . 

They proved the following theorem. 

Theorem 6 For a {d-\-r-\-e)-disjunct matrix, if the input sample contains at 
most r inhibitors and at most d positive clones, and testing contains at most 
e erroneous tests, then T{j) < T{j') for any positive clone j and any negative 
clone j ' . 

Consequently, the following results can be formulated. 

file:///A/B/
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Theorem 7 (Du and Hwang [4]) A {d-\-r -\- e)-disjunct matrix can iden-
tify all positive clones for every sample with d positive clones and at most r 
inhibitors subject to at most e erroneous tests. 

Theorem 8 (Hwang and Liu [9]) A {d-\-r-\-2e)-disjunct matrix can iden-
tify all positive clones for every sample with at most d positive clones and at 
most r inhibitors subject to at most e erroneous tests. 

The inhibitor model was proposed by Farach et al. [6]. De Bonis and 
Vaccaro [1] developed a sequential algorithm for this model and raised an open 
problem of finding non-adaptive algorithm in this model. While D'yachkov et 
al. [5] solved the error-free case, Hwang and Liu [9] gave a general solution. 

5 Future Research 

The development of error-tolerant pooling designs is very important in prac-
tice. Theorems 3 and 4 established connections between error-tolerant designs 
and simplicial complexes. Since all monotone graph properties induce simpli-
cial complexes, these connections may open a new research direction joint 
with graph theory to develop efficient designs. 

There are many issues that we need to consider when constructing a pool-
ing design. For example, after receiving test outcomes on all pools, the ques-
tion to be addressed is how to decode this data to obtain information on 
each clone. The different designs have different computational complexity for 
decoding. One can find some interesting contributions and open problems in 
this area in [17]. 

In practice, DNA screening is closely related to information retrieval and 
data mining. In fact, database systems have already employed the technique 
of group testing. This opens an opportunity to attack some problems in data 
processing by applying our new designs. Therefore, our research work can be 
widely extended into different areas of computer science. 
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Summary . Multi-label classification is an important and difficult problem that fre-
quently arises in text categorization. The accurate identification of drugs which are 
responsible for reactions that have occurred is one of the important problems of 
adverse drug reactions (ADR). In this chapter we consider the similarities of these 
two problems and analyze the usefulness of drug reaction relationships for the pre-
diction of possible reactions that may occur. We also introduce a new method for 
the determination of responsibility for subsets of drug(s), out of all drugs taken by a 
particular patient, in reactions that have been observed. This method is applied for 
the evaluation of the level of correctness of suspected drugs reported in Cardiovas-
cular type reactions in the ADR AC database. The problem of interaction of drugs 
is also considered. 

K e y words: Knowledge representation, adverse drug reaction, text catego-
rization, multi-label classification, suspected drugs. 

1 Introduction 

In general the problem of classification is to determine the classes from a set of 
predefined categories tha t an object belongs to, based on a set of descriptors 
of the object. For example the text categorization task is to label an incoming 
message (document) with the label of one or more of the predefined classes. 
There have been a number of approaches to solving categorization problems by 
finding linear discriminant functions. In these approaches there are assump-
tions tha t each class has a Gaussian distribution. Least squares fit has also 
been used. Without any distributional assumptions a linear separator can be 
found by using a perceptron with minimization of the training error. Another 
approach tha t has been used in text categorization and information retrieval 
is logistic regression and this is closely related to support vector machines 
which have recently had much success in text categorization. 



142 Musa Mammadov, Alex Rubinov, and John Yearwood 

In text categorization problems, although techniques have been developed 
for feature selection^ interest has been primarily in classification and there has 
not been much interest in determining the features (words) tha t are respon-
sible for assigning a particular document to a particular class. 

In studies of adverse drug reactions (ADRs) on patients, a patient record 
consists of a list of the drugs tha t have been taken and the reactions tha t 
have been experienced. The question tha t is of interest is "Which drugs are 
responsible for each reaction?" Certainly this is a classification problem, but 
the interest is focused on determining the features (drugs) tha t are most 
important in determining the class (reaction), rather than simply determining 
the class based on the set of drugs tha t the patient took. 

In this chapter we consider a situation in which we have n records. In 
the case of text categorization these would be documents and in the case of 
ADRs each record would represent a patient with a number of drugs taken and 
various reactions tha t were observed or reported. Let the records or objects 
be Xi, . . . ,x^, , where n is the number of records (documents/patients); 

Each record (document/pat ient) is a vector of terms (words/drugs): Xi = 
(x^i, ...^Xi^rn)^ i = 1, . . . ,n. So m is the number of terms (words/drugs). Xij = 1 
if the word (drug) j is used in record i, Xij = 0 if not. 

In a classification task there may be two disjoint classes (binary classifi-
cation), many disjoint classes (multi-class classification) or multiple overlap-
ping classes (multi-label classification). In many cases multi-class classification 
problems are reduced to many binary classification problems. Below we look 
further at binary classification and multi-label classification. 

A. B i n a r y classif ication: Two classes y G { — 1,1}. 

Each document (patient) belongs to one of these classes. We denote by i/i 
the class for x^, i = 1,..., n; tha t is^ i/i = —1 or i/i = 1. The problem is to find 
a weight vector w = {wi^ ...^Wm)] Wi eJR ( that is, weight for each word) such 
tha t , the values wxi and tji {i = 1, . . . ,n) are close overall. We will denote 
the scalar product of two vectors a and b by ab. Closeness can be assessed 
in many ways but considering the least squares fit or the logistic regression 
approach leads to the optimization problems below. 

1. Least squares fit (LLSF) aims to solve: 

1 "̂  
w = Siigmf-y^{wxi -yi)'^. (1) 

2. Logist ic regress ion (LR) aims to solve: 

n 

w = arginf - V l n ( l + g-^^^^M. (2) 
w n 
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B. Multi-label classification: 

Let c be the number of classes. Each record (document/patient) can belong 
to a number of these c classes (reactions). We denote by tji = {yn, ...,yic) 
the vector of classes for x^, i = 1,..., n. We will consider two different versions 
for the representation of the vector yi. 

1) yij = 1^ if Xi belongs to the class j , and yij = — 1 if not. 

2) yij = 1, if Xi belongs to the class j , and yij = 0 if not. 

In this chapter we consider some alternative approaches to solving the 
classification problem. In particular we focus on the Australian Drug Reac-
tions Database and the problem of determining the drugs responsible for the 
various reaction classes. 

2 Optimization Approaches to Feature Weighting 

The problem is to find a weight matrix W = {wi^ ...^Wm)] that is, a weight 
vector Wj = {wij, ...,Wcj) for each feature (word/drug) j ; such that, the 
vectors Wxi and yi {i = l,... ,n) are close overall. Problems (1) and (2) can 
be generalized as 

1. Least squares fit (LLSF) aims to solve (see [20]): 

T^,,./ = a rg in f i f^ ( | |Tya ; , -y , | | )2 . (3) 
i=l 

2. Logistic regression (LR) aims to solve: 

1 "" 
Wir = arginf - V l n ( l + e-^^^^O- (4) 

w n 

In fact, the existence of different numbers of classes for different patients/ 
documents (one may belong to one class, another may belong to many classes) 
means that the errors described by (3) and (4) may not be comparable (the 
error obtained for multi-class patient/document can be equal to the sum of 
errors from many single class patients/documents). This is very important, at 
least, for ADR problems. As a result, the weights may not be best defined as 
a solution to (3) or (4). 

Therefore, we suggest that it makes sense to consider the following formula 
for determining a classifier so that the errors are more effectively measured 
(the versions of algorithm A(p), p = 0,1, 2, see section 6): 
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W, = arginf ^ f]( | | l / . | l )"" ' E ( Jc^'i. ^^^J ' V^J ) 5 (5) 
w n 

i=l 
U\^UH^,l 

where Hij = Y1T=I'^JQ^'^Q^ ^^^ 11̂ ÎI ^̂  ^^^ number of positive coordinates in 
the vector {yn, ...,yic),. 

In the application of this approach to the Australian Adverse Drug Re-
action (ADRAC) database, \\yi\\ is the number of reactions that occurred for 
patient i). To explain the advantage of this formula we consider one example. 

Example 2.1 Assume that there is just one word/drug {m = 1), there 
are 5 classes (c = 5) and there are 4 patients/documents (n = 4), where, the 
first document belongs to the all 5 classes, and the other 3 documents belong 
to the first class. We need to find an optimal weight matrix (vector in this 
example) W = {wi,W2, ...,ws). We note that, this is a typical situation in 
ADR problems, where one drug can cause different reactions (and in different 
combinations). 

Consider both cases 1) and 2). In the calculations, the weight for the first 
class is set to be one. 

Version 1). In this case the vectors for each class are: yi = (1,1,1,1,1), 
yi = (1, - 1 , - 1 , - 1 , -1 ) for i = 2, 3, 4, 5. We have: 

LLSF: W = (1,0,0,0,0); 
LR: W = (1,0,0,0,0); 
A{0) 
A{1) 
A{2) 

W = (1,0.42,0.42,0.42,0.42); 
W = (1,0.06,0.06,0.06,0.06); 
T^ = (1,0,0,0,0). 

We observe that, in this version, the methods LLSF and LR have failed 
to produce sensible results. For this version function (5), for p = 0,1, works 
well. 

Version 2). In this case the class vectors (or vectors of reactions) are: 
yi = (1,1,1,1,1), yi = (1, 0, 0,0, 0) for i = 2, 3, 4, 5. We have: 

LLSF: W = (1, 0.25, 0.25, 0.25, 0.25); 
LR: T^ = (1,1,1,1,1); 
A{0) 
A{1) 
A{2) 

W = (1,0.62,0.62,0.62,0.62); 
W = (1,0.25,0.25,0.25,0.25); 
W = (1,0.06,0.06,0.06,0.06). 

We see that, LR fails in the second version too, whilst all others work 
well. In this simple example, LLSF = A(l), but in general, when there are 
combinations of more than one word/drugs are involved, the outcome will be 
different. 
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Comparison of the weights for the algorithms A(p), p = 0 , 1 , 2, shows tha t , 
the difference between weights for the first class and the others is minimal for 
^4(0), and is maximal for A{2). Which one is bet ter? Of course, we cannot 
answer this question; for different situations different versions could be better. 
Tha t is why, it is very useful to consider different versions p = 0 , 1 , 2. 

This example shows tha t , it is more convenient to represent the vector of 
classes as in the second version; moreover, formula (5) is more preferable than 
formulae (3) and (4). This is the way we will encode class membership in this 
chapter. 

Using functions like (5) requires a more complex solution for the corre-
sponding optimization problem, but the choice of more reasonable distance 
functions is important . 

In the next sections of this chapter we shall concentrate on the applica-
tion of this approach to the study of the drugs tha t are the most suspect or 
responsible for the adverse drug reactions observed in patients. 

3 Adverse Drug Reactions 

An Adverse Drug Reaction (ADR) is defined by the W H O as: "a response to 
a drug tha t is noxious and unintended and occurs at doses normally used in 
man for the prophylaxis, diagnosis or therapy of disease, or for modification 
of physiological function" [18]. ADRs are estimated to be the fourth leading 
cause of death in the USA [11], and the amount of published literature on 
the subject is vast [1]. Some of the problems concerning ADRs are discussed 
in our research report [8]. Many approaches have been tried for the analy-
sis of adverse reaction data, such as: Fisher's Exact Test and matched pair 
designs (McNemar's test) [15], Reporting Odds Ratio (ROR), and Yule's Q 
[16]. One approach tha t has had some success is the Proportional Reporting 
Ratios (PRR) for generating signals from da ta in the United Kingdom. The 
Norwood-Sampson Model has been applied to da ta in the United States of 
America and approved by the Food and Drug Administration. A common 
approach to the assessment of ADRs uses the Bayesian method [4]. For exam-
ple, the Bayesian confidence propagation neural network (BCPNN) [2], and 
an empirical Bayesian statistical da ta mining program called a Gamma Pois-
son Shrinker (GPS) [5], and the Multi-item Gamma Poisson Shrinker (MGPS) 
[13], which have been applied to the United Sates Food and Drug Administra-
tion Spontaneous Reporting System database. The Bayesian method has met 
with success, but is very exacting regarding the quantification of expectations 

[7]. 
Each method has its own advantages and disadvantages with respect to 

applicability in different situations and possibilities for implementation. In 
[8, 9] a new approach was developed where the main goal was to study, for 
each drug, the possible reactions tha t can occur; tha t is, to establish drug-
reaction relationships. In this work the ADR problem was formulated as a text 
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categorization problem having some peculiarities. This approach was applied 
to the Australian Adverse Drug Reaction Advisory Committee (ADRAC) 
database. 

One of the main problems of ADR is the following: given a patient ( that 
is, the sets of drugs and reactions) identify the drug(s) which are responsible 
for the adverse reactions experienced. In the ADRAC database drugs thought 
to be responsible for the reactions are labelled as "suspected" drugs. The 
accurate definition of suspected drugs for each report has a very significant 
impact on the quality of the database for the future study of drug-reaction 
relationships. In this chapter, we develop the approach introduced in [8, 9] for 
the study of suspected drugs. 

The ADRAC database has been developed and maintained by the Ther-
apeutic Goods Administration (TGA) with the aim to detect signals from 
adverse drug reactions as early as possible. It contains 137,297 records col-
lected from 1972 to 2001. A more detailed account of the ADRAC database 
is given in [8]. 

In ADRAC there are 18 System Organ Class (SOC) reaction term classes, 
one of which is the Cardiovascular SOC. The Cardiovascular class consists 
of four sub-classes. In this chapter we will consider the part of the ADRAC 
data related to the cardiovascular type of reactions. We collect all records 
having at least one reaction from these four sub-groups. We call this dataset 
Card20 . In this dataset some records may have a reaction from outside the 
Cardiovascular group. We define four classes according to these four sub-
groups and additionally a fifth class tha t contains reactions belonging to the 
other 17 SOCs. For the number of records see Table 1 below. 

The information about each patient consist of mainly two sets of infor-
mation: individual patient information and information about drug(s) and 
reaction(s). In this chapter we will use only the second set of information. 
By understanding the drug-reaction relationship in the absence of informa-
tion about other factors infiuencing this relationship, we expect to be able 
to establish a clearer relationship between drugs and reactions. Another rea-
son for focussing primarily on drugs and reactions relates to the inconsistent 
quality and quanti ty of relevant da ta on factors which also play a role in the 
drug-reaction association. This is largely due to the voluntary nature of the 
ADRAC reporting system. Some of the problems of such a reporting system 
are discussed in [3, 6, 10, 14, 17]. 

Therefore, we consider drug-reaction relationships not involving any other 
patient information. In other words we define for each drug a vector of weights 
which indicate the probability of occurrence of each reaction. This problem 
can be considered as a text categorization problem, where each patient is 
considered as one document, and the set of drug(s) taken by this patient is 
considered as a text related to this document; tha t is, each drug is considered 
as a word. For a review of some of the issues in text categorization see [12, 
19, 20]. In this chapter, together with the algorithm A(p), described below, 
we applied the algorithm Boostexter (version AdaBoost.MH with real-valued 
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predictions [12]) which seems to be suitable for drug-reaction representations 
purposes. 

4 Drug-Reaction Representations 

We denote by X the set of all patients and by V the set of all drugs used 
by these patients. Let c be a finite number of possible reactions (classes). 
Given patient x G Af, we denote by y{x) = (3^i(x),3^2(^), • • • 7 3^c(^)) a c-
dimensional vector of reactions observed for this patient; where 3^^(x) = 1 if 
the reaction i has occurred, and 3^^(x) = 0 if it has not. Let D{x) be the set 
of all drugs taken by the patient x. In the ADRAC data, the number of drugs 
reported for a patient is restricted to 10. Some of these drugs are reported as 
suspected drugs responsible in the reactions y{x). Therefore, we divide the 
set D{x) into two parts: DS{x) - the set of suspected drugs and DN{x) -
the set of non-suspected drugs. Clearly D{x) = DS{x) U DN{x), and it may 
be DN{x) = 0. We also note tha t , in the ADRAC data, for some patients, 
suspected drugs are reported in the form of interaction. 

The goal of the study of drug-reaction relationships is to find a function 
h : V ^ i ?^ , where given drug d ^ V the components hi of the vector 
h{d) = (/ii, / i 2 , . . . , he) are the weights ("probabilities") of the occurrence of 
the reactions i = 1 ,2 , . . . ,c . Here R^ is the set of all c-dimensional vectors 
with non-negative coordinates. 

In the next step, given a set of drugs A cV^ we need to define a vector 

H{A) = {H,{A),H2{A),...,H,{A)), (6) 

where the component Hi{A) indicates the probability of occurrence of the 
reaction i after taking the drugs A. In other words, we need to define a 
function H : S{V) -^ i ?^ , where S{V) is the set of all subsets of V. 

Let A C V. The vectors h{d) show what kind of reactions are caused by 
the drugs d e A. Therefore the vector H{A) can be considered as potential 
reactions which could occur after taking the drugs A. But what kind of reac-
tions will occur? This will depend upon the individual characteristics of the 
patient as well as external factors. Different patients can have different predis-
positions for different reactions. Some reactions which have potentially high 
degrees of occurrence may not be observed because of the strong resistance of 
the patient to developing these reactions. But the existence of these potential 
reactions could have an infiuence on the patient somehow. The results ob-
tained in [8] have shown tha t the information about the existence of potential 
reactions (but which were not reported to ADRAC) helps to make prediction 
of reaction outcomes {bad and good) more precise. 

The function H can be defined in different ways and it is an interesting 
problem in terms of ADR(s). We will use the linear (sum) function H{A) 
(see [8]), where the components Hi{A) are defined as follows: 
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H,{A) = ^ / i . ( ( i ) , i = l , . . . , c . (7) 
deA 

The use of this function means tha t , we accumulate the effects from different 
drugs. For example, if hi{dn) = 0.2 (n= l , 2 ) for some reaction i, then there 
exists a potential of 0.4 for this reaction; tha t is, the two small effects (i.e. 0.2) 
become a greater effect (i.e. 0.4). This method seems more natural , because 
physically both drugs are taken by the patient, and the outcome could even 
be worse if there were drug-drug interaction(s). 

Given patient x G Af, we can define potential reactions 7Y(x) = H{A) 
corresponding to the set of drugs A C D{x). If A = D{x), then we have 

7Y(x) = l-t^{x) = H{D{x)), which means tha t all the drugs taken by 
the patient x are used in the definition of potential reactions; whereas, if 
A = DS{x), then H{x) = H^{x) = H{DS{x)), which means tha t we 
use only suspected drugs neglecting all the others. We can also consider the 
potential reactions 7Y(x) = H^(x) = H{DN{x)). 

Therefore, drug-reaction relationships will be represented by vectors h{d), 
d e V. The definition of these vectors depends on the drugs tha t are used 
in the calculations: we can use either all drugs or only suspected drugs. The 
evaluation of different drug-reaction representations can be defined by the 
closeness of two vectors: 7Y(x), the vectors of potential (predicted) reactions, 
and y{x), the vectors of observed reactions. We will use the evaluation mea-
sure Average Precision, presented in Section 5, to describe the closeness of 
these reaction vectors. 

Our main goal in this chapter is to study the usefulness and correctness 
of the suspected drugs reported in ADRAC data. 

The usefulness of suspected drugs is examined in the prediction of reac-
tions. For this, first we define vectors h{d) by using all drugs, and then by 
using only suspected drugs. In this way, we obtain potential reactions H^{x) 
and H^ (x), respectively. We evaluate the closeness of these reactions to the 
observed reactions y{x) over the all training and test sets. The calculations 
are made by the algorithms BoosTexter ([12]) and A{p) described below. Note 
tha t , in all cases, the suspected drugs ( that is, potential reactions H^(x)) pro-
vided better results. This means tha t the suspected drugs in the ADRAC data 
are identified "sufficiently correctly". 

Then, we aim to evaluate correctness. We consider the case when the drug-
reaction relations h{d) are defined by using only suspected drugs. We calculate 
potential reactions related to the suspected and non-suspected drugs. To eval-
uate the correctness of suspected drugs, we find the convex combination of 
these two vectors of potential reactions which provides the minimal distance to 
the observed reactions. The weighting of the suspected drugs, in this optimal 
combination, is taken as an evaluation value of the correctness of suspected 
drugs. The calculations are made only by the algorithm A{p). Note tha t the 
algorithm BoosTexter could not be used to evaluate correctness. 
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5 Evaluation Measure: Average Precision 

To evaluate the accuracy of established drug-reaction relations by a given 
classifier (/i, H); tha t is, to evaluate the closeness of the two vectors 7Y(x) 
(predicted reactions) and y{x) (observed reactions) we will use the Average 
Precision measure considered in [12]. Note tha t , this measure allow us to 
achieve more completely evaluation in multi-label classification problems. 

Let Y{x) = {/ G { l , . . . , c } : 3^/(x) = 1} be the set of reactions tha t 
have been observed for the patient x and 7Y(x) = {7Yi(x), • • • ^Tidx)} be 
potential reactions calculated for this patient. We denote by T{x) the set of 
all ordered reactions r = { i i , . . . , i d satisfying the condition 

n^,{x) > ... > n^dx); 
where i^ G { 1 , . . . , c} and i]^ ^ ij^ \i k ^ m. 

In the case, when the numbers 1-Ci{x), i = 1, • • • , c, are different, there 
is just one order r satisfying this condition. But if there are reactions having 
the same potential reactions then we can order potential reactions in different 
ways; tha t is, in this case the set T{x) contains more than one order. 

Given order r = { r i , . . . , r d G T ( x ) , we define the rank for each reaction 
/ G Y{x) as rankr{x;l) = /c, where the number k satisfies Tk = L Then 
Precision is defined as: 

^ ^ ^ ^ ) ~ \V(^M Z^ 
\{k G Y{x) : rankr{x; k) < rankr{x; l)}\ 

\Y(x)\ ^-^ rankr(x:l) 

Here, we use the notation \S\ for the cardinality of the set S. This measure 
has the following meaning. For instance, if all observed reactions Y{x) have 
occurred on the top of ordering r then Pr{x) = 1. Clearly the number Pr{x) 
depends on order r . We define 

Phest{x) = max Pr{x) and Pworst{x) = min Pr{x), 
TeT{x) TeT{x) 

which are related to the "best" and "worst" ordering. Therefore, it is sensi-
ble to define the Precision as the midpoint of these two versions: P{x) = 

•^worst 

(x) ) /2 . 
Average Precision over all records ^ will be defined as: 

-̂ = ^E^(^)-1̂1 

6 The Algorithm A(p) 

Given a vector V = (l^i, • • • , K ) , with nonnegative coordinates, we will use 
the notation 
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\\V\\ = J2V^. (8) 
i=l 

Let X e A!. We define the distance between predicted potential re-
actions H{x) = {Hi{x)^... ^Hc{x)) and observed reactions y{x) = 
(3^i(x),...,3^c(^)) as: 

c 

dist {n{x),y{x)) = J2 (M^) - y^{x)f•. (9) 

where the sign "bar" stands for a normalization with respect to the number 
of observed reactions ||3^(x)|| : 

w,(.) = | l S « ^ ( - ) i f IIW(-)ll>0; (10) 
*̂  ^ \ 0 if \\n{x)\\=Q. ^ ' 

The Algorithm A(p) uses the following distance measure (we assume that 
| |3^(x)||>0): 

distp{i-t{x),y{x)) = \\y{x)\\-P'dist{n{x),y{x)), p = o,i,2. (ii) 

Note that, these distance functions are slightly different from the Linear Least 
Squares Fit (LLSF) mapping function considered in [19], [20]. 

We explain the difference between distances distp, p = 0,1,2. Consider 
the case ||7Y(x)|| > 0. The following representation is true: 

c 

distp {H{x), y{x)) = ^ (a, - bif; 
i=l 

where a, = ^ J ^ J | ^ W,(x), b^ = \\y{x)\\-^ yi{x), and clearly 

C C 

In the distance disto (that is, p = 0) the sums ^ ^ â  and ^ ^ bi are equal 
to the number of reactions II3 (̂x) II. For disti and dist2 the corresponding 
sums are equal to Y^||3^(X)|| and 1, respectively, disti can be considered as 
a middle version, because the number of reactions ||3^(x)|| > 1 and therefore 

1 < VWix)\\ < \\y{x)\\. 

It is not difficult to observe that the following property holds: 

distp {Xn{x), y (x)) = distp {n{x),y{x)), for an A > 0 . (12) 
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The algorithm A{p) aims to define drug-reaction relations h{d) minimizing 
the average distance distp {H{x)^ y(x)) over all training examples. In other 
words, we consider the following optimization problem: 

subject t o : hi{d)>0, i = 1, ...,c, d e V. (14) 

Here \P(^\ s tands for the cardinality of the set Af. Note tha t , taking different 
numbers p = 0 , 1 , 2, we get different versions A{p), p = 0,1,2, which generate 
different drug-reaction representations h{d). 

6.1 Ca lcu la t ion of W e i g h t s for Each D r u g . A So lu t ion t o t h e 
O p t i m i z a t i o n P r o b l e m ( 1 3 ) , ( 1 4 ) . 

The function in (13) is non-convex and non-linear, and therefore may have 
many local minimum points. We need to find the global optimum point. The 
number of variables is \V\ • c. For the da ta Card20, tha t we will consider, 
\T)\ = 3001 and c = 5. Thus we have a global optimization problem with 
15005 variables, which is very hard to handle using existing global optimiza-
tion methods. Note tha t , we also tried to use local minimization methods 
which were unsuccessful. This means tha t there is a clear need to develop new 
optimization algorithms for solving problem (13),(14), taking into account 
some peculiarities of the problem. 

In this chapter we suggest one heuristic method for finding a "good" solu-
tion to the problem (13),(14). This method is based on the proposition given 
below. 

We denote by S the unit simplex in R^] tha t is, 

S = {h = (hi, ...,hc): hi>0, hi^ ...hc = l}. 

In this case for each h{d) G S the component hi{d) indicates simply the 
probability of the occurrence of the reaction i. 

Given drug d we denote by X{d) the set of all records in Af, which used 
just one drug - d. Simply, the set X{d) combines all records where the drug 
d was used alone. 

Consider the problem: 

c 

xex{d) i= i 

h{d) = {hi{d),...,hc{d))eS. (16) 
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P r o p o s i t i o n 6.1 ^ point h*{d) = {h\{d),..., hl{d)), where 

h}{d)=i Yl \\yi^)f~A • E m^n'-'yA^), j = i,...,c, a?) 
\xex(d) J xex(d) 

is the global minimum point for the problem (15), (16). 

Now, given drug (i, we consider the set Xaii (d) which combines all records 
tha t used the drug d. Clearly X{d) C Xaii{d). The involvement of other drugs 
makes it impossible to solve the corresponding optimization problem similar 
to (15), (16). In this case, we will use the following heuristic approach to find 
a "good" solution. 

(S) (Single). The set X{d) carries very important information, because 
here the drug d and reactions are observed in a pure relationship. Therefore, 
if the set X{d) contains a "sufficiently large" number of records, then it will 
be reasonable to define the weights hj{d)^ {j = l , . . . , c ) only by this set 
neglecting all the mixed cases. 

We consider two numbers: |X((i)| - the number of cases where the drug is 
used alone, and P{d) = 100\X{d)\/\Xaii{d)\ - the percentage of these cases. To 
determine whether the set X{d) contains enough records we need to use both 
numbers. We will consider a function (/)((i) = a\X{d)\ -\- bP{d) to describe 
how large the set X{d) is. 

Therefore, if the number (l){d) > p*, where p* is a priori given number, 
then we use only the set X{d) to calculate weights h{d); in other words, we 
use formula (17) which provides a global minimum h{d) = /i*((i) for the part 
of da ta X{d) CX. 

We denote by V the set of all drugs from V for which the weights are 
calculated in this way. 

( M ) (Mixed). If the set X{d) is not "sufficiently large"; tha t is, 0((i) < 
p*, then we have to use the set Xaii{d) which contains patients x e X having 
more than one drug taken. In this case we use h{d) = h**{d)] where 

\x^X{d) J xeX{d) ' ^ '̂ 
(18) 

Here, given a patient x, the set A^\x) = A{x) \ V combines all drugs 
the weights for which are not calculated in the first step. Note tha t , A{x) is 
the set of drugs corresponding to the patient x, and we will consider either 
A{x) = D{x) (all drugs) or A{x) = DS{x) (suspected drugs). 

rem (yj{x))^ j G {1, • • • , c}, stands for the "remaining" part of the reac-
tion 3^j(x), associated with the drugs A\x). For the calculation of rem {yj{x)) 
see Section 6.2. 
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This formula has the following meaning. If |zA''(x)| = 1 for all x G 
Xaii{d)^ then, given rem(3^j(x)), j = !,••• ,c, formula (18) provides a 
global minimum solution (similar to (17)). 

If |zA''(x)| > 1, for some patient x G Xaii{d), then we use the as-
sumption that all suspected drugs are responsible to the same degree; that 
is, for this patient, we associate only the part l/|zA''(x)| of the reactions 
rem {yj{x)) to this drug. 

Therefore, we define h{d) = {hi{d),.. .hc{d)) as follows: 

r/^*(^) if ^{d)>p^; 
n[a)- 1^**^^) otherwise; ^ ^ 

where /i*((i) and /i**((i) are defined by (17) and (18), respectively. 

Remark 6.1 We note that the weight hi{d) is not exactly a probability of 
the occurrence of the reaction i; that is, the sum Xl^=i hi{d) does not need 
to be equal to 1. 

6.2 Calculation of rem {y{x)) 

Consider a particular patient x G Af. We divide the set of drugs A{x) (which 
could be all drugs or suspected drugs used by this patient) into two parts: 

A{x)=A\x)UA'\x); 

where for each drug d, in the set A'{x), the vector h{d) has already been 
defined by (17), and the set A'\x) combines all the other drugs. Note that it 
may be A'{x) = 0. 

We set H{x) = G{x) -\- Z{x) where the sum G{x) = J2deA'(x) ^(^) defines 
a part of potential reactions associated with the drugs A\x)^ and Z{x) the 
other (unknown) part which will be defined by the drugs A^\x) : Z{x) = 
EdeA^^ix)Hd)-

We will use a reasonable assumption that all drugs in A^\x) are responsible 
in the observed reactions y{x) at the same degree; that is, we associate equal 
parts l/|zA''(x)| of Z{x) to each drug in A'\x). Therefore, after accepting 
such an assumption, we need only to find Z{x) which is an optimal solution 
to the problem 

distp {H{x)^y{x)) -^ min . 

This problem is equivalent (see (11)) to 

dist{n{x),y{x)) = }^{n,{x) - y,{x)y ^ min, (20) 
i=l 

where the "bar" stands for a normalization with respect to the reactions y{x) 
(see (10)). 
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As we consider a particular patient x, for sake of simplicity, we will drop 
the sign x. Therefore, to find the vector Z = (Zi, • • • , Zc), we need to solve 
the following problem: 

subject to : 0 < Z^, Ĝ  + Z^ < Z^"^, i = 1,..., c. (22) 

We denote by (j){Z^^^) the optimal value of the objective function in the 
problem (21),(22). 

Proposition 6.2 The vector Z* = (Z^, • • • , Z*), where 

z; = {z^---G,)y,, i = i ,---,c, 

is /̂le optimal solution to the problem (21), (22). Moreover, (j){Z^^^) -^ {) as 

This proposition shows that for the optimal solution Z* the the sums 
Z* + G ,̂ i = 1, • • • , c, 3̂ ^ = 1 are constant being equal to Z^^^. 

We also note that we can decrease the distance (j){Z^^^) by increasing the 
umber Z"^"^. Note that, Z"^"^ serves to restrict the values Z^ in order to get 

max {G,^Zi) = l, (23) 
*=1,--- ,c 

which means that the patient x would be taken into account with the weight 
1 (like the patients in X{d)). Therefore, we need to chose a number Z^^^ 
close to 1. 

We will define the number Z^^^ as follows. Denote G^ = max{G^ : i = 
1, • • • , c, 3̂ ^ = 0}, G^ = max{G^ : i = 1, • • • , c, 3̂ ^ = 1}. Then, we set 

^max _ ^ax{ l , G^ + £, G^}, where £ > 0. 

The choice of such a number Z^^^ has the following meaning. First, we note 
that if G^ < 1 and G^ < 1 then there is a number e > 0 such that Z"^"^ = 1; 
that is, (23) holds. On the other hand, if G^ > 1 and G^ > G^, then the 
weights Z* + Gi^ corresponding to the occurred reactions i (that is, 3̂ ^ = 1) 
will be grater than the weights Z* + G ,̂ corresponding to the non-occurred 
reactions. In this case, choosing the number e > 0 smaller, we get more closer 
approximation to (23). 

Therefore, remiyjix)) will be defined as 

rem{yj{x)) = Z*, j = !,••• ,c. (24) 
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7 Evaluation of Correctness of Suspected Drugs 
Repor ted 

Drug-reaction representations in the form of a vector of weights allow us to 
evaluate the correctness of suspected drugs reported. 

Consider a particular patient x and let D{x) be the set of drugs used by 
this patient and y{x) be the set of observed reactions. The set D{x) consists 
of suspected drugs DS{x) and non-suspected drugs DN{x). Our aim in this 
section is to evaluate how correctly suspected drugs are identified. 

The method of evaluation is based on distance measure (9). Assume that 
for each drug d ^ V the vector of weights h{d) are calculated. Then we can 
define potential reactions H^{x) and 7Y^(x), corresponding to the sets of 
suspected drugs and non-suspected drugs, respectively. We have 

nU^) = H^{DS{x)) = Yl h,{d), i = !,••• ,c', 
deDS{x) 

nf{x)=H,{DN{x))= Y^ h,{d), i = l,-
deDN{x) 

,c. 

The method, used in this chapter for the evaluation of suspected drugs, 
can be identified as "all suspected drugs versus all non-suspected drugs". For 
this aim we consider convex combinations of these two group of drugs and try 
to find the optimal combination which provides the maximal closeness to the 
observed vector of reactions. In other words we are looking for a combination 
of suspected and non-suspected drugs which is optimal in the sense of distance 
(9). Before considering convex combinations we need to be careful about the 
"comparability" of the vectors H^{x) and H^ (x) in the sense of scaling. For 
this reason, it is meaningful to consider convex combinations of normalized 
(see (10)) vectors H^ (x) and H^ (x). Therefore we define 

n{x, /i) = /iH^(x) + (1 - /i) n^{x), 0 < /i < 1. (25) 

Note that, \\n^{x)\\ = \\n^{x)\\ = \\y{x)\\ and, therefore, ||7Y(x,/i)|| = 
||3^(x)|| for ah / iG [0,1]. 

The number /i indicates the proportion of suspected and non-suspected 
drugs in the definition of potential reactions. Clearly, 7Y(x, 1) = H^{x) and 
7Y(x,0) = 7Y^(x), which implies 

dist{n{x, l),y{x)) = dist{H^{x),y{x)) and 

dist{rL{x,^),y{x)) = dist{n^{x),y{x)). 
The combination of all drugs with the same weight; that is, the vector 

H^(x) = H{D{x)) = n^{x) + n^{x) is also included in (25). To confirm 
this, it is sufficient to consider the case ||i!f'^(x)|| > 0 and ||i!f^(x)|| > 0. 
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In this case WH'^ix^ = ||iJ^(x)|| + \\H^{x)\\ > 0. Then we take 
\\n^ix)\\/\\n^(x)\\ e (0,1) and get (see (10)) 

J^ i^) + UZA/^U^ (x) = '>^ {x); \\H^{x)\\ ^ ' \\n\x) 

which implies 

dist(H{x,iJL'),y{x)) = dist{n^{x),y{x)) = dist{n^{x),y{x)). 

Consider the following minimization problem with respect to /i; 
c 

f{fi)=dist{n{x,^),y{x))=J2i^rix,f^)-yi{x)f ^ min; 0 < î < 1. 
i = l 

(26) 
The optimal solution /i* to problem (26) gives an information about the cor-
rectness of definition of suspected drugs. For instance, if /i* = 1 then we see 
that the suspected drugs provide the better approximation to the observed 
reactions than if we involve the other drugs. We refer this situation as 100 
percent correctness. Whereas, if /i* = 0 then non-suspected drugs provide 
better approximation to the observed reactions and we can conclude that in 
this case suspected drugs are defined completely wrong. Therefore, the opti-
mal value /i* can be considered as an evaluation measure for the correctness 
of suspected drugs. 

From (11) we obtain: 

Proposi t ion 7.1 The optimal solution /i* to the problem (26) is optimal with 
respect to the all distance measures distp, P = 0,1,2; that is, given vectors of 
weights h{d), d G D{x), for all p = 0,1,2 the following inequality holds: 

distp{n{x,iu*),y{x)) < distp{n{x,ii),y{x)), for ah /i G [0,1]. 

This proposition shows that given patient x ^ X and given vectors of 
weights h{d), the definition of correctness of suspected drugs, as an optimal 
value /i*, does not depend on choice of distance functions dist and distp, 
p = 0, l ,2 . 

It is clear that problem (26) can have many optimal solutions /i*; that 
is, different proportions of suspected and non-suspected drugs can provide 
the same closeness to the observed reactions. In this case we will define the 
correctness of suspected drugs, as the maximal value among the all optimal 
solutions /i* : 

/i*(x) = max{/i* : /i* is an optimal solution to (26)}. (27) 

The reason for such a definition can be explained; for instance, if /i* = 1 (only 
suspected drugs) and /i* = 0 (only non-suspected drugs) are the two different 

file:////n/x
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optimal solutions, giving the closest approximation to the observed reactions, 
then there would be no reason to doubt about the correctness of suspected 
drugs. 

Problem (26) can be easily solved. Let 

A = j2i^^ m^)\\ -zy^{x)) {z, | |H^(x)| | - zUf {x)) ; 

B = JZ ( ^ f (^) 113̂ (̂ )11 - \\n''{x)\\y,{x)) {z, | |H^(x)| | - zHf{x)) ; 

where z, = nf{x) - H f (x), z = \\n^{x)\\ - \\n^{x)\\. Then, we find the 
derivative of the function /(/i) , defined by (26), in the following form: 

From (28) we have 

Proposition 7.2 The optimal solution /i*(x) to the problem (26) can he 
found as follows. 

1) Let A = 0. Then 

fOif 5 > 0 ; 
^ ^ ' 11 otherwise. 

2) Let A>0. Then 

0 if 5 > 0; 
r' \ J ^ min{l, — B/A} otherwise. 

3) Let A<0. Then 

a^(x) = l^'^ / (o)</(i); 
^ ^ ' 11 otherwise. 

Therefore, we have defined the correctness of suspected drugs for a par-
ticular patient x. Given set of patients Af, Average Correctness of suspected 
drugs will be calculated as 

P.„. = ^E'"* (^) - (29) 
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7.1 R e m a r k 

The above definition of correctness of suspected drugs can be considered as a 
method where the group of suspected drugs (already defined) are taken versus 
the group of non-suspected drugs. In fact, drug-reaction representations in the 
form of vectors of weights allow us to consider more general s tatements of this 
problem. Here, we formulate some of them. 

Consider a patient x G Af. Let D{x) = {c^i,c^2,-** 7^ |D(X) |} be the set 
of drugs tha t have been taken, and h{d), d G D{x), be the vectors of 
weights for these drugs. We introduce a |Z^(x)|—dimensional vector v = 
{vi,V2r '' i'^\D{x)\)i where the i-th component Vi indicates the degree of re-
sponsibility of the drug di in the observed reactions. In this case, potential 
reactions can be defined as follows: 

\Dix)\ 

H{x,v) = ^ Vih{di). 
i=l 

Then we can consider the following optimization problem: 

dist{n{x,v),y{x)) -^ min; 0 < v^ < 1, i = 1,--- ,\D{x)\. (30) 

If, for instance, the optimal value for a particular drug i is 0.6 ( that is, Vi = 
0.6) then we say tha t the degree of responsibility of this drug in the observed 
reactions is 0.6. Such information about drugs is more complete than just 
saying "suspected" or "non-suspected". But the application of this method 
encountered the absence of any such kind of classification of suspected drugs 
in the ADRAC data. 

We can also consider a special case when each variable Vi takes only two 
values: 1 (which means tha t i i s a suspected drug) and 0 (which means tha t i 
is a non-suspected drug). In this case, we obtain a combinatorial optimization 
problem which is to find an optimal subset of drugs tha t provides the closest 
approximation to the observed reactions. 

The application of problem (30) allows us to study suspected drugs in each 
report more precisely. It is our opinion tha t , the determining of responsibility 
of each drug from the set of drugs have been taken, is a very important problem 
in terms of ADRs. But there are some issues tha t should be mentioned. 

Such a precise statement of the problem should be accomplished with 
more precise definitions of function H{x) (in this chapter we use (7)) and 
then weights h{d) which have even more impact on the results. First of all 
the times of start ing and withdrawing drugs should be taking into account. 
Such information is presented in the ADRAC data but more research needs to 
be done in this area. The other factor tha t could be helpful for more precise 
definitions of weights h{d), relates to the amount of general use of each drug, 
and the difficulty of getting such information is the major factor in ADR 
problems. 
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8 Interaction of Drugs 

Interaction of drugs is one of the main problems of ADR. In [8] this problem 
was considered from a statistical point of view. Interaction of drugs was de-
fined as a case when these drugs together cause a reaction which is different 
from the reactions tha t could have occurred if they were used alone. In this 
chapter we aim to study the possibility of using vectors of weights h{d) cal-
culated for each drug d, for drug-drug interactions. In other words, we aim 
to check the closeness of potential reactions to the observed reactions for pa-
tients having interactions of drugs. In this way we establish the accuracy with 
which the potential reactions could be used for the prediction of reactions in 
drug-drug interaction cases. 

We will use the following two methods for the evaluation of correctness. 
1). First we will use the methodology developed in the previous section. 

We divide the set of drugs D{x), taken by a particular patient x, into two 
subsets: I{x) is the set of drugs which are reported as interaction, 0{x) is the 
set of all other drugs. 

As we are interested in drug-drug interactions, we will consider only 
records x where the set I{x) contains at least two drugs and the set 0{x) 
is not empty. 

As in the previous section, we define potential reactions H^ (x) and 7Y^(x), 
corresponding to the drugs I{x) and 0 ( x ) , respectively. Then we consider 
convex combinations of these vectors: 

n{x,fi) = iiH\x) + (1 - ii)H^{x). 

Similar to (26) and (27), the maximal optimal value /i = /i**(x) which mini-
mizes the distance dist (7Y(x,/i),3^(x)), will be taken as the degree of respon-
sibility of the drugs I{x) in the observed reactions y{x). 

Given a set of patients the Af, Average Responsibility of drugs in interaction 
will be calculated as 

Then we apply the evaluation measure presented in Section 5. This will 
provide a precision P{x) calculated for each patient x having interaction effects 
of drugs. 

The numbers /i**(x) and P{x) give some information about each interac-
tion case. For instance, if /i**(x) = 1 and P{x) = 1, ( that is, 100 percent) 
then we can conclude tha t the potential reactions defined by the drugs I{x) 
provide 100 percent correct prediction of reactions. Therefore, in this case, we 
can say tha t the potential reactions could be used for reaction predictions in 
the case of interactions. 
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9 Results of Numerical Experiments 

For our analysis we use two algorithms. The first algorithm A{p) is described 
above. The second algorithm that we use is BoosTexter which has shown good 
performance in text categorization problems. These two algorithms produce 
the weighted vector H{x) for each patient x. The methods of calculating the 
vectors H{x) are quite different: A{p) uses only drugs have been taken by the 
patient x, whilst BoosTexter uses all drugs in the list of ("weak hypotheses" 
generated (that is, the drugs that have not been taken by the patient x, are 
used for the calculation of the vector H{x)). Our hope is that, the applica-
tion of these two quite different methods can make the results obtained more 
accurate. 

We will consider three versions of the algorithm A{p), corresponding to the 
distance functions distp, p = 0,1, 2, respectively. Each of these versions tends 
to minimize the average distance calculated by its own distance measure. 

The weights for each drug are calculated by formula (19). We used a func-
tion (/)((i) = |X((i)| + P{d) to describe the informativeness of the set X{d). 
We also need to set a number p*. The calculations show that the results are 
not essentially changed for different values of p* in the region p* > 30. We set 
p* = 80 in the calculations. 

The second algorithm that we will use is the well known text categoriza-
tion algorithm BoosTexter, version AdaBoost.MH with real-valued predictions 
([12]). The main reason for using this algorithm is that it produces predic-
tions in the form H{x) = {Hi{x),..., Hc{x)), where the numbers Hi{x) are 
real values which can be positive or negative. In other words, this algorithm 
defines potential reactions that we are interested in. 

To apply the distance measure described above, we need to make all 
weights calculated by BoosTexter non-negative. Let Hjnin{x) = min^=î ...̂ c Hi{x). 
Then we set 7Y(x) = H{x), if Hmin{x) > 0; and 

n{x) = {Hi{x) - Hmin{x), . . ',Hc{x) - Hmin{x), if Hmin{x) < 0. 

In the calculations below, we ran this algorithm with the number of rounds 
set at 3000. Note that BoosTexter defines a weak hypothesis using one drug at 
each round. In the Data there are 2896 suspected drugs. Therefore, choosing 
the number of rounds 3000, alows the possibility of using all suspected drugs. 

9.1 New Drugs and Events 

We define a new drug (in the test set) as a case when this drug either is 
a new drug which has not occurred in the training set or has never been 
considered as a suspected drug in the training set. For all such new drugs (i, 
we set /i^((i) = 0, i = 1 , . . . , c. It is possible that for some new (test) example 
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all suspected drugs are new. We call this case s new event This situation 
mainly relates to the fact tha t , new drugs are constantly appearing on the 
market. Obviously, to make predictions for such examples does not make sense. 
Therefore, in the calculations below, we will remove all new events from test 
sets. 

9.2 Training and Test S e t s 

In the calculations below we take as a test set records sequentially from each 
year, starting from 1996 until 2001. For example, if records from 1999 are 
taken as a test set, then all records from years 1971-1998 form a training set. 
In Table 1 we summarized the number of records in test and training sets, 
and, also, the number of new events removed. In the second part of this table 
we presented the number of records in training and test sets having at least 
two drugs have been used. 

Table 1. Card20. The training and test sets. ^Removed' means the number of records 
removed from the test set. For example, in 1996 there are 11^7 records and 98 of 
them are new events. Then, the number of records in the test set for this year is 
1049 (=1147-98) 

Test 
Year 

1996] 
1997 
1998 
1999 
2000 
2001 

Number of Records 
Training 

12600 
13747 
15001 
16684 
18599 
20749 

Test 

1049 
1091 
1418 
1746 
1988 
1054 

Removed 

98 
163 
265 
169 
158 
65 

Records with > 2 drugs 
Training 

6270 
6905 
7513 
8290 
8801 
9329 

Test 

597 
552 
673 
494 
519 
433 

9.3 T h e Effect iveness of U s i n g S u s p e c t e d D r u g s for R e a c t i o n 
P r e d i c t i o n s . P r e d i c t i o n of R e a c t i o n s 

We consider calculations for two cases. First we consider all drugs as suspected; 
tha t is, we do not involve the suspected drugs reported. In the second case we 
consider only suspected drugs. The results obtained by the algorithms A{p) 
and BoosTexter are presented in Table 2. The results for Average Precision 
are presented in percentages. In these tables " ^ / f means tha t all drugs were 
used for definition of the reaction weights for drugs, and "iSi^s" means tha t 
only suspected drugs were used. 

From Table 2 we observe tha t , in all cases, the results obtained for training 
sets are bet ter if only the suspected drugs are considered. This means tha t . 
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Table 2. The results obtained for Average Precision (Pav) by using all (All) drugs 
and suspected (Sus) drugs. The algorithm BoosTexter2-l [12] was set to run 3000 
training rounds. Average Precision is presented in percent 

Test 
Year 

1996 

1997 

1998 

1999 

2000 

2001 

1 drugs 

All 
Sus 
All 
Sus 
All 
Sus 
All 
Sus 
All 
Sus 
All 
Sus 

BoosTexter 
Training 

83.90 
84.15 
83.83 
84.17 
83.77 
84.10 
83.55 
83.90 
83.41 
83.86 
83.13 
83.64 

Test 

V9.0V 
80.42 
79.15 
80.66 
77.32 
78.23 
81.17 
81.30 
77.80 
78.46 
77.70 
77.91 

A(0) 
Training 

81.45 
82.91 
81.53 
82.80 
81.58 
82.82 
81.52 
82.72 
81.69 
82.72 
81.35 
82.32 

Test 

79.97 
80.25 
79.05 
79.79 
77.86 
78.02 
80.41 
80.91 
77.57 
77.88 
76.87 
76.85 

A{1) A{2) 1 
Training 

82.68 
83.96 
82.69 
83.97 
82.69 
83.94 
82.58 
83.79 
82.72 
83.79 
82.51 
83.52 

Test 

80.07 
80.07 
79.48 
80.20 
78.64 
78.59 
80.61 
80.94 
77.85 
78.26 
77.43 
77.29 

Training 

83.74 
84.51 
83.83 
84.51 
83.70 
84.49 
83.55 
84.37 
83.65 
84.35 
83.44 
84.09 

Test 

79.78 
79.61 
79.23 
79.98 
78.47 
78.52 
80.96 
80.89 
77.45 
77.67 
77.58 
77.50 

definition of weights h{d) by using only suspected drugs provides more accu-
rate approximation to the observed reactions. The weights obtained in this 
way also work, in general, bet ter in test sets. This emphasizes the effectiveness 
of determining suspected drugs in each adverse drug reaction case. 

The next problem is to define suspected drugs more accurately. The fact 
tha t using only suspected drugs provided better results allows us to conclude 
tha t , in the ADRAC data (at least records related to the cardiovascular type 
of reactions) suspected drugs are defined "sufficiently correctly". In the next 
section we aim to evaluate this correctness. 

The algorithms BoosTexter and A{p) define the potential reactions 7Y(x) 
in quite different ways. There are some important points tha t make using the 
algorithm A{p) preferable for the study of drug-reaction associations. 

First we note tha t , the algorithm A{p) calculates weights for each drug, 
which is very important because in this case we establish drug-reaction re-
lations for all drugs. BoosTexter does not calculate weights for each drug. 
Moreover, BoosTexter classifies examples so tha t drugs tha t are not used are 
still assigned weights in the function H{x). In the other words, reactions are 
predicted not only by drugs actually used, but also, drugs which were not 
taken. This leads to the situation where we could say tha t , for example, pa-
tient X has the first reaction, because he/she did not take some drugs (which 
are in the list of "week hypothesis" generated by BoosTexter). But anyhow, 
applying the algorithm BoosTexter is very useful for having some idea about 
the possible "maximal" accuracy tha t could be achieved in reaction predic-
tions. 
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One of the advantages of the algorithm A{p) includes the determination 
of weights for each drug, and, then the classification of reactions, observed 
for each patient, on the basis of drugs actually used by this patient. This 
advantage allows us to use the algorithm A{p) to study the identification of 
suspected drugs and of drug-drug interactions. 

9.4 Eva luat ion of Correc tnes s of S u s p e c t e d D r u g s R e p o r t e d 

In this section we will evaluate the correctness of suspected drugs reported. 
The methodology is described in Section 7. As mentioned above, BoosTexter 
can not be used for this. So only the algorithm A{p) is used. 

The results obtained in the previous section have shown tha t potential re-
actions calculated by using suspected drugs provide more accurate predictions 
of reactions. Therefore, in the calculations below weights for each drugs will 
be calculated only by suspected drugs. 

The case when a patient uses only one drug, is not interesting to consider, 
because in this case there is no doubt tha t the drug used should be a suspected 
drug. Tha t is why, we consider records having two or more drugs tha t have 
been taken. The number of patients in training and test sets are presented in 
Table 1. 

Table 3. Evaluation of correctness of suspected drugs (P^^ 
A(p) 

s) obtained by Algorithm 

Test 
Year 

1996 
1997 
1998 
1999 
2000 
2001 

1 ^(0) 
1 Training 

78.1 
78.0 
77.7 
77.3 
77.8 
78.5 

Test 

72.0 
72.2 
71.3 
85.0 
90.4 
70.2 

A{1) 
Training 

78.7 
78.6 
78.2 
77.9 
78.2 
78.8 

Test 

71.9 
71.3 
71.8 
85.4 
90.3 
69.4 

A{2) 
Training 

78.4 
78.2 
77.8 
77.5 
77.6 
78.4 

Test 

72.6 
71.3 
71.0 
85.7 
89.3 
67.8 

The results are presented in Table 3. We see tha t , the suspected drugs 
reported in the ADRAC data are determined with sufficiently high accuracy. 
For instance, the accuracy 78.0 means tha t , in the optimal combination of 
suspected and non-suspected drugs which provides the closest approximation 
to the observed reactions, the suspected drugs are used with weight 0.78 (non-
suspected - 0.22). This could be considered as a high degree of "responsibility". 

Note tha t , the correct identification of suspected drugs in each new re-
port is a very important problem. The method described here provides us an 
alternative method which can be used for this aim. 
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9.5 In terac t ion of D r u g s 

As mentioned before the study of interactions of drugs is one of the interesting 
problems. We consider here the possibility of using vectors of weights in drug-
drug interactions. In other words, we aim to evaluate the closeness of potential 
reactions (calculated by a vector of weights) to the observed reactions in 
drug-drug interaction cases. For the evaluation of closeness we will use two 
measures: Average Responsibility - Pint and Average Precision Pav 

For our analysis we consider the records having more than 3 drugs, where 
some of drugs were reported as an interaction (in ADRAC data the value 2 was 
associated to this drugs) and the others were reported as non-suspected (the 
value 0 was used in this case). Of course, to make the problem of evaluation of 
drug-drug interactions meaningful, we need to consider the records for which 
both parts are not empty sets. 

Table 4. Evaluation of drug-drug interactions by using a vector of weights obtained 
by Algorithm A(j)) 

Test 
Year 

1996 
1997 
1998 
1999 
2000 
2001 

Number of 
records 

4 
17 
16 
6 
5 
14 

62 

J^^^int 

k(Q) 
[TTS" 

70.8 
69.3 
66.7 
63.3 
77.1 

70.9 

A{1) 

83.3 
73.9 
71.3 
66.7 
70.4 
73.1 

72.7 

A{2) 

78.2 
75.5 
65.2 
66.7 
85.6 
63.0 

70.2 

max 

9061 
80.9 
72.0 
66.7 
85.6 
77.1 

77.4 

1 P 
J- av 

k(Q) 
[8916" 
70.3 
61.0 
62.5 
73.3 
85.6 

72.1 

A{1) 

89.6 
79.6 
64.1 
70.8 
73.3 
83.8 

75.8 

A{2) 

89.6 
83.5 
71.4 
64.4 
90.0 
89.1 

80.7 

max 

89.6 
83.5 
71.9 
70.8 
90.0 
92.7 

82.3 

The results obtained are presented in Table 4. Training sets are used for the 
calculating of weights for each drug. AS in the previous section, the weights 
are calculated by using suspected drugs. Then the evaluation of interaction 
of drugs is made only using the test sets, because, in the training sets, the 
interaction of drugs (as suspected) are used for the calculation of weights. The 
number of cases in the test sets are also presented in Table 4. 

In the last row of Table 4, we present the average results obtained by all 
test sets which combines 62 cases. The results obtained by the algorithm A{2) 
is: Psus = 70.2, Pav = 80.7. The first number means tha t , in the observed 
reactions, the "degree of responsibility" of the drugs, in interaction cases, is 
70.2 percent. The second number indicates high accuracy in the prediction of 
these reactions. This emphasizes tha t , drug-drug interaction cases could be 
successfully explained by the weights calculated for each drug. 

In fact the accuracy of this method could be much higher if we could 
calculate weights more "correctly". To show this, we did the following. 
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First we note that, the numbers Pint and Pav are the average values of 
/i**(x) and P{x) calculated for each patient x. Different versions A{p) provide 
different values /i**(x) and P{x). We take the corresponding maximal values 
obtained by different versions, and then calculate the average responsibility 
and precision. The results obtained are presented in the columns "max" in 
Table 4. We see that these results are much better than the results obtained 
by a particular version. 

10 Conclusion 

In this chapter, we have used a new optimization approach to study multi-label 
classification problems. In particular we have focussed on drug-reaction rela-
tions in the domain of the Cardiovascular group of reactions from the ADRAC 
data. The suggested method of representation for drug-reaction relations in 
the form of a vector of weights is examined in the prediction of reactions. 
In particular it was shown that, the suspected drugs reported in the ADRAC 
data provide more accurate drug-reaction information. The suggested method 
was applied for the evaluation of correctness of suspected drugs. The results 
obtained have shown that the reactions that occurred in the cases of interac-
tion of drugs reported in the ADRAC data, could be predicted by this method 
with sufficiently high accuracy. 
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Summary. It is well-recognized that medical datasets are often noisy and incom-
plete due to the difficulties in data collection and integration. Noise and incom-
pleteness in medical data post substantial challenges for accurate classification. A 
differential latent semantic indexing (DLSI) approach which is an improvement of 
the standard LSI method has been proposed for information retrieval and demon-
strated improved performance over standard LSI approach. The key idea is that 
DLSI adapts to the unique characteristics of individual record/document. By ex-
perimental results on real datasets, we show that DLSI outperforms the standard 
LSI method on noisy and incomplete medical datasets. The results strongly indicate 
that the DLSI approach is also capable of medical numerical data analysis. 

K e y words: Medical da ta classification. Latent semantic indexing. Differen-
tial latent semantic indexing 

1 Introduction 

It is well-recognized tha t medical datasets are often noisy and incomplete. For 
example, different breast cancer patients may take different sets of examina-
tions. On the other hand, the laboratory tests may also introduce certain noise 
in probability, though persistent efforts have been committed to the control. 
Noise and incompleteness in medical datasets post substantial challenges to 
da ta analysis. In general, error-tolerant methods are strongly desirable. By 
observing the ways how medical da ta is obtained and fact tha t a physician's 
diagnosis is always based on a patient 's integrated symptoms, we believe tha t 
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the attributes of medical data are always correlated in a certain way, which 
makes error-tolerant methods possible. 

In this chapter, we are particularly interested in the problem of classifi-
cation on noisy and incomplete medical datasets. Classification is a well re-
searched area, with many well developed methods, such as SVM, C4.5, neural 
network methods, and so on. Many previously developed methods can handle 
a limited amount of noise. However, many of the previous methods are not 
robust to incomplete data. For example, the Neural Network and Support 
Vector Machine (SVM) approaches, which have been widely used in the field 
of automated learning, take each attribute as an independent element so that 
their results might be invalid if a data record is incomplete. A vector space 
model-based method. Latent Semantic Indexing (LSI), which relies on the con-
stituent terms to suggest the document's semantic content [1], is popularly 
used for content-based text information retrieval and document classification. 
By using Singular Value Decomposition (SVD), relationships between terms 
can be discovered in the vector space model [2]. The LSI method has been 
successfully extended to the area of content-based image data analysis. How-
ever, like all global projection schemes, LSI also encounters a difficulty in 
adapting to the unique characteristics of each document [3]. Differential La-
tent Semantic Indexing (DLSI) approach, exploiting both the distances to and 
the projections on a reduced document space improves the performance and 
the robustness of the classifier [3]. By simply using a posteriori calculation of 
the intra- and extra-attribute vector statistics, this new method demonstrates 
advantage over standard LSI approach. 

In this chapter, we investigate the application of DLSI approach on medical 
numerical data analysis. The rest of the chapter is organized as follows. We 
present the preliminaries and the algorithm of DLSI approach in Section 2. 
A case study on the Wisconsin Breast Cancer Data (WBCD) is reported in 
Section 3. We conclude the chapter and project our future work in Section 4. 

2 The DLSI Approach 

The DLSI approach takes a data object as a vector of attributes, and projects 
attribute vectors into dimension-reduced spaces as in most of the vector space 
models. However, DLSI uses not only the projections of vectors on the reduced 
space but also the distances from the attribute vectors to the reduced space. 
In this section, we will first provide the preliminaries of the method, and then 
describe the algorithm in detail. 

2.1 Preliminaries 

For an object in a dataset, the attribute vector can be simply formed by 
exploiting the attribute values of the object. 
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Technically, consider a dataset has n objects and each object has m at-
tributes. For each object j , we assign an attribute vector (aij, a2j, • • • , amj)^^ 
where aij is the value of attribute i in object j . For a class of objects whose at-
tribute vectors are / i , /2, • • • , 7^, we calculate the mean vector (si, 52, • • • , Sm)^ 
of the member objects in the class as 

1 ^ 

k 

A differential attribute vector is defined as li — Ij, where li and Ij are two 
attribute vectors. A differential intra-attribute vector Dj is the differential 
attribute vector defined as B^^ — I]^^, where P,'^^ and I]^^ are two attribute 
vectors belonging to the same class. A differential extra-attribute vector DE is 
the differential attribute vector defined as /f ^̂  — /|^^, where /f ^̂  and /|^^ are 
two attribute vectors belonging to two different classes. Note that the mean 
vector of a class is also regarded as an attribute vector of the class. Therefore 
we could use it to construct the differential attribute vector as well. 

The corresponding differential intra-attribute matrices Dj and DE are 
defined as matrices, each column of which comprises a differential intra- and 
extra-attribute vectors, respectively. 

2.2 The Algorithm 

The algorithm consists of two phases, namely the construction of the DLSI-
based classifier and the classification using the DLSI-based classifier. They are 
described as follows. 

Setting Up the DLSI-Based Classifier 

Based on every object in the database, the classifier sets up the parameters of 
the posteriori function for each class. Details of this procedure are described 
as below. 

(1) Construct attribute vector for every item in the database; 
(2) Construct the differential intra-attribute matrix D'^^^^, such that each 

of its columns is a differential intra-attribute vector. For a class with s 
elements, we may include at most (5 —1) differential intra-attribute vectors 
in Dj to avoid linear dependency among columns. 

(3) Decompose Z^/, by an SVD algorithm, into Dj = UiSjVf^ Sj = 
diag{Si^i^Si^2^''')' Find an appropriate kj. The way to choose value k 
is not fixed. Although reduction in k can help removing noise, keeping 
too few dimensions may lose important information as well. Therefore, 
only by applying experiments on certain dataset and observing its perfor-
mance on different /c, can we get the most appropriate value. We apply 
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Di to get an approximate matrix Dj^kn where Dj^ki = UkjSkjV^^. Then 
evaluate the likelihood function: 

P(^\^l) = : ^ ,^-r^k, <• '' (r,-k,)/2 ' (^) 

where y = [ / ,>, e\x) = {\\x\f - YHU vl PJ = 7 ^ Elifc.+i <5f,, and 
r/ is the rank of matrix Dj] 

(4) Construct the differential extra-attribute matrix D'^^^^, such that each 
of its columns is a differential extra-attribute vector; 

(5) Decompose DE by an SVD algorithm into DE = UESEV^^ SE = 
diag{SE,i, ^E,2, . . . ) . Find an appropriate /c ;̂, and apply it to get an ap-
proximate matrix DE,kE^ where DE,kE = ^kE^kE^k • Then calculate the 
likelihood function: 

P{ADE) = r ^ ^ ^ ^ r W ' (2) 

where y = t/J^x, e\x) = {\\x\\f - Y^t^vh PE = ^ ^ E [ f , . + i - ^ 1 , , 
and TE is the rank of matrix DE] 

(6) Define the posteriori function as 

^^^^I ' '^ P{x\Di)P{Di) + P{x\DE)P{DEy ^' 

where P{Di) is set to 1/nc, and Uc is the number of classes in the database 
and P{DE) is set to 1 - P{Di). 

SVD transform is the most time-consuming step in the above algorithm. 
In general, for a database of n objects with m attributes, the computational 
complexity of the algorithm is Oinrm?). 

Automatic Classification 

In order to classify a new object into the most proper class, the classifier 
evaluates the Bayesian posteriori function based on the analysis of the new 
object. The procedure can be described as follows. 

(1) For a new object to be classified, set up its attribute vector Q by assigning 
its attributes' values to the vector. For each class in the database, repeat 
the procedure of objects (2)-(4) below; 

(2) Construct a differential attribute vector x = Q — S, where S is the mean 
vector of the class; 

file://{//x/f
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(3) Calculate the intra-attribute likelihood function P{x\Di) and the extra-
attribute likelihood function P{X\DE) for the object; 

(4) Evaluate the Bayesian posteriori probability function P{Dj\x); 
(5) Select the class having the largest P{Di\x) as the recall candidate. 

3 A Case Study 

In this section, we will describe a case study. We apply the DLSI classifier on 
a real dataset. 

3.1 The W B C D Dataset 

To examine our algorithm, we did experiments on a well-known bench-
mark database, WBCD, to test the effectiveness of the classifier. The data-
base is available from public domain ftp://ftp.cs.wisc.edu/math-prog/cpo-
dataset/machine-learn/. WBCD is a breast cancer sample collection periodi-
cally collected by Dr. Wolberg in his clinical cases. Each sample is assigned a 
9-dimensional vector, whose components are integers between 1 and 10, with 
value 1 corresponding to a normal state and 10 to a most abnormal state 
[4]. The aim of classification is to distinguish between benign and malignant 
cancer objects. The original database has 699 objects. Its class distribution is 
of 65% benign objects and 35% malignant objects. 

3.2 DLSI Space-Based Classifier 

There are two classes in this dataset, denoted as Ci and C2, respectively. 
Firstly, we set up the attribute vector for every sample object in the dataset 
and calculate the mean vectors for Ci and C2, respectively. Then, we con-
struct the differential attribute matrix by assigning each of its columns to 
be liji — Sj2, where liji represents the i-th attribute vector in class ji and 
Sj2 represents the mean vector for class J2. For Dj, ji = J2 holds, while 
for DE, ji 7̂  J2 holds. Using the SVD algorithm, we decompose them into 
Di = UiSiVf and DE = UESEV^. 

The dataset includes 16 objects with missing attributes and 1 outlying ob-
ject. These sample data objects are discarded before training, as it was carried 
out by other methods. We chose kj = b and /ĉ ; = 2 in this example, which 
reserve 88.2% and 92.0% of the original matrices, respectively. Using Equa-
tions (1), (2) and (3), we calculate P{x\Dj)^ P{X\DE) and finally P{Dx\x) for 
each differential attribute vector x = Q — Sj {j=1^2). The class Ci having a 
larger P{Di\Q — Si) value is chosen as the class to which the new object Q 
belongs. Table 1 is the classification accuracy we get based on the classifier 
trained by subsets of the original database. The training subsets range from 
20% to 80% of the whole database, the testing datasets are the corresponding 
complement sets. 

ftp://ftp.cs.wisc.edu/math-prog/cpo-
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Table 1. DLSI Classifier Over Partial Training Set 

Percentage Over 
Database For 20% 30% 40% 50% 60% 70% 80% 
Training Set 
Accuracy On 95.8% 96.6% 95.1% 97.6% 97.1% 96.6% 97.1% 
Testing Set 

In order to demonstrate the ability of our classifier to deal with incom-
plete da ta objects in test dataset (i.e., some a t t r ibute values are missing), we 
artificially add evenly distributed noises into the original database to get the 
noise-contaminated databases. Each t ime we replace the value of a t t r ibute i 
of every sample object in the original database by a randomly picked integer 
whose range is from 1 to 10, to get DBi.^ Table 2 shows its classification 
performance over the database with noises. 

Table 2. DLSI Classifier Over Noise-Contaminated Testing Set 

Testing Set DBi DB2 DBs DB4 DB^ DBQ DBr DBs 
Accuracy 96.0% 96.8% 96.9% 97.1% 96.8% 92.4% 97.4% 96.8% 
Testing Set DBQ 
Accuracy 96.5% 

3.3 Classifier Eva luat ion 

To date, much research work has been done on the W B C D dataset . Methods 
such as the Rule Generation approach, the Fuzzy-Genetic approach, and the 
Neural Network approach have been presented in the literature. These meth-
ods achieve good classification performance on the W B C D dataset as well. 
However, we would like to point out two common features of these methods. 
One is tha t there is always some limitation on the application of the methods 
and their good results highly depend on the success of carefully examining the 
network structure and extracting rules. Taha and Gosh proposed a method 
using a Neural Network to extract rules [6]. But it can be applied to da ta 
with binary at t r ibutes only. Setiono proposed a method based on finding a 
set of concise rules by using pruned Neural Network [7], his classifier achieves 
good performance but the extraction of rules is manually processed, which 
involves much human intervention. Another feature these methods share is 
tha t the incomplete sample objects in the original da ta base have been simply 
discarded [8]. 

DBi denotes database whose attribute i is affected by noise. 
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In our method, the classifier obtains an average of 96.6% accuracy for 
the dataset where all sample objects are complete, as shown in Table 1. An 
accuracy of 97.6% is obtained when we use 50% of the original database to 
train the system and test it on the remaining 50% data. The classification 
performance still achieves 95.8% accuracy when using only 20% data (that 
is, 136 samples) for training. As far as we know, no known method has ever 
reached such a high performance with less than 200 training samples. The 
only comparable result using small training set can be found in Wolberg & 
Mangasarian's paper [9], where an accuracy of 93.5% is achieved by using 185 
samples for training. 

As discussed earlier, in the field of medicine, it is common to encounter 
dataset with incomplete entries. Most of the researchers ignore the cases with 
missing attributes. Experiments displayed in Table 1.2 clearly show that DLSI 
approach is extremely stable for incomplete data. 

4 Concluding Remarks 

We presented a classification method using the DLSI approach for breast 
cancer data. Overall, it achieves very good performance. It also gets good 
classification accuracy for the noise-contaminated databases. Compared to 
some of the best known methods to date, our classifier not only attains high 
performance with a much smaller training sample set, but also demonstrates 
high robustness by achieving promising results on incomplete test sets. 

In our current method, the attribute vector is constructed by the numer-
ical values of the attributes of the objects, without considering the medical 
meaning of the attributes. Based on the understanding that one of the advan-
tages of DLSI approach is its ability in computing with concepts, we believe 
that we should take into account the literal description of the data in the 
future work. 
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Summary. With the explosion of biomedical data, information overload and users' 
inability of expressing their information needs may become more serious. To solve 
those problems, this chapter presents a text data mining method that uses both text 
categorization and text clustering for building concept hierarchies for MEDLINE ci-
tations. The approach we propose is a three-step data mining process for organizing 
MEDLINE database: (1) categorizations according to MeSH terms, MeSH major 
topics, and the co-occurrence of MeSH descriptors; (2) clustering using the results 
of MeSH term categorization; and (3) visualization of categories and hierarchical 
clusters. The hierarchies automatically generated may be used to construct multiple 
viewpoints of a collection. Providing multiple viewpoints of a document collection 
and allowing users to move among these viewpoints will enable both inexperienced 
and experienced searchers to more fully exploit the information contained in a docu-
ment collection. User interfaces with multiple viewpoints for this underlying system 
are also presented. 

K e y words: Da ta mining, MEDLINE, Document Clustering, Self-Organizing 
Map, Multiple Viewpoints 

1 Introduction 

MEDLINE, developed by the U.S. National Library of Medicine (NLM), is 
a database of indexed bibliographic citations and abstracts. It contains over 
4,600 biomedical journals [16]. MEDLINE citations and abstracts are search-
able via PubMed or the NLM Gateway. 

The NLM produces the MeSH (Medical Subject Headings) for the purposes 
of subject indexing, cataloging and searching journal articles in MEDLINE 
with an annual update cycle. MeSH consists of descriptors (or main headings), 
qualifiers (or subheadings), and supplementary concept records. It contains 
more than 19,000 descriptors which are used to describe the subject topic of 
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an article. It also provides less than 100 qualifiers which are used to express 
a certain aspect of the concept represented by the descriptor. MeSH terms 
are arranged both alphabetically and in a hierarchical tree, in which specific 
subject categories are arranged beneath broader terms. MeSH terms provide 
a consistent way of retrieving information regardless of different terminology 
used by the authors in the original articles. By using MeSH terms, the user 
is able to narrow the search space in MEDLINE. As a result, by adding more 
MeSH terms to the query, retrieval performance may be improved [9]. 

However, there are inherent challenges, as well. There may be information 
overload [18], and users may be unable to express their information needs, in 
order to take full advantage of the MEDLINE database. MEDLINE contains 
over 12 million article citations. Beginning in 2002, it began to add over 2,000 
new references on a daily basis [16]. Although the user may be able to limit the 
search space of MEDLINE with MeSH terms, keyword searches often result in 
a long list of results. For instance, when the user queries the term "Parkinson's 
Disease" by limiting it to the MeSH descriptors, PubMed returns over 21,000 
results. Here, there is a problem of information overload, with the user having 
difficulty finding relevant information. 

The inability of users to express information needs may become more se-
rious, unless users have a precise knowledge in their area of interest, or an 
understanding of MeSH and its structure. The use of common abbreviations, 
technical terms, and synonyms in biomedical articles prevent users from artic-
ulating their information needs accurately. To avoid the vocabulary problem, 
MeSH may be used. However, it is difficult for an unfamiliar user to locate 
appropriate descriptors and /or qualifiers, since MeSH is a very complex the-
saurus. Furthermore, new terms are added, some are modified, and others are 
removed each year as biomedical fields change. An imprecise query usually 
results in a long list of irrelevant hits [5]. Under such circumstances, a bet ter 
mechanism is needed to organize information in order to help users explore 
within an organized information space [7]. 

In order to arrange the contents in a useful way, text categorization and 
text clustering have been researched extensively. Text categorization is a boil-
ing down of the specific content of a document into a set of one or more 
pre-defined labels [10]. Text clustering can group similar documents into a set 
of clusters based on shared features among subsets of the documents [5,12]. 

In this chapter, we present a text da ta mining method tha t uses both text 
categorization and text clustering for building a concept hierarchy for MED-
LINE citations. The approach we propose is a three-step da ta mining process 
for organizing MEDLINE database: (1) categorizations according to MeSH 
terms, MeSH major topics, and the co-occurrence of MeSH descriptors, (2) 
clustering using the results of MeSH term categorization, and (3) visualization 
of categories and hierarchical clusters. The hierarchies automatically gener-
ated may be used to support users in browsing behavior as well as help them 
identify good start ing points for searching. An interface for this underlying 
system is also presented. 
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The remainder of the chapter is organized as follows. We describe the 
data mining procedure and the implementation of the SOM (Self-Organizing 
Map) algorithm in Section 2. Section 3 describes the user interfaces with 
multiple viewpoints, the MeSH major topic view, the MeSH term view, the 
MeSH co-occurrence view, and the subject-specific concept view. In Section 4, 
we briefiy introduce related work on document clustering. Section 5 explains 
the problems encountered when we implemented the system. Conclusions are 
given in Section 6. 

2 Data Mining Method for Organizing MEDLINE 
Database 

In this Section, we will explain the data mining method proposed in detail. 
We used MySQL to store MEDLINE citations and additional data that was 
generated by the data mining process. 

2.1 The D a t a 

For the following experiment, we extracted a total of 1,736 citations encoded 
in XML (extensible Markup Language) from the query "Secondary Parkinson 
Disease", limiting the results to the MeSH major topic field and to citations 
with abstracts in MEDLINE. 

2.2 Text Categorizat ion 

Categorization refers to an algorithm or procedure which results in the as-
signment of categories to documents [10]. We chose the MeSH major topic, 
the MeSH descriptor and qualifier, and a co-occurrence of MeSH descriptors 
as a feature to be used in classification. To categorize the collection according 
to the selected features, we first parsed the data collection encoded in XML 
using SAX (Simple API for XML). After extracting the MeSH major topics, 
the MeSH descriptors, and the co-occurrence of MeSH descriptors for each 
citation, we inserted the data into the corresponding MySQL tables. 

2.3 Text Clustering using the Results of MeSH descriptor 
Categorization 

Since many MeSH terms may be assigned to a citation and vice versa, cat-
egorization with the MeSH terms or the co-occurrence of MeSH terms often 
results in a large list or hierarchy. Some categories may contain a large number 
of documents. Simply listing categories associated with documents is inade-
quate for organizing data [10]. 
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To alleviate this problem, the approach we propose here is to cluster the re-
sults of MeSH descriptor categorization using the hierarchical Self-Organizing 
Map (SOM). We chose only those MeSH descriptor categories whose docu-
ment frequencies are over a predetermined threshold for clustering. Document 
frequency is the number of documents in which a term occurs. Terms are ex-
tracted and selected using category dependent document frequency threshold-
ing from the categories chosen. There are two ways tha t document frequency is 
calculated: category independent term selection and category dependent term 
selection [6]. In category independent term selection, document frequency of 
each term is computed from all the documents in the collection and the se-
lected set of terms are used on each category. In category dependent term 
selection, document frequency of each term is calculated from only those doc-
uments belonging to tha t category. Thus, different sets of terms are used for 
different categories. 

After the feature selection and extraction, and the SOM clustering, a con-
cept hierarchy is obtained, by relying on the MeSH descriptors for the top 
layer, and by using feature vectors extracted from the titles and abstracts for 
the sub-layer. 

Feature E x t r a c t i o n and Se lec t ion 

To produce a concept hierarchy using the SOM, documents must be repre-
sented by a set of features. For this purpose, we use full-text indexing to 
extract a list of terms (words or phrases). The input vector is constructed 
by indexing the title and abstract elements of the collection. We then weight 
these terms using the vector space model in Information Retrieval [19]. In the 
vector space model, documents are represented as term vectors using the prod-
uct of the term frequency (TF) and the inverse document frequency (IDF). 
Each entry in the document vector corresponds to the weight of a term in the 
document. We used normalized T F x IDF term weighting scheme, best fully 
weighted scheme [19], so tha t longer documents are not given more weight and 
all values of a document vector are distributed in the range of 0 to 1. Thus, 
weighted word histogram can be viewed as the feature vector describing the 
document [13]. 

The preprocessing procedure is mainly divided into two stages: noun 
phrase extraction and term weighting. In the noun phrase extraction phase, 
we first fetched the MEDLINE identifier, the title and abstract elements from 
the collection and then tokenized the title and abstract elements based on 
Penn Treebank tokenization scheme to detect sentence boundaries, and to 
separate extraneous punctuations from the input text. The MEDLINE iden-
tifier was used as a document identifier. We then automatically assigned part 
of speech tags to words refiecting their syntactic category by using the rule-
based part of speech tagger [2,3]. After recognizing the chunks tha t consist 
of noun phrases from the tagged text, we extracted a set of noun phrases for 
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each citation. At this stage, we removed common terms by consulting a list 
of 906 stop words. 

We computed document frequency of all terms using category dependent 
term selection for those MeSH descriptor categories whose document frequen-
cies were over a predetermined threshold (in this experiment, greater than 
100 times). We then eliminated terms from the feature space whose document 
frequency was less than a predetermined threshold (in this experiment, less 
than 10 times). Finally, we weighted the terms indexed using the best fully 
weighted scheme [19], and assigned corresponding term weights to each doc-
ument for each category selected. Thus, the weighted term vector set can be 
used as the input vector set for the SOM. 

C o n s t r u c t i o n of a C o n c e p t Hierarchy 

Document clustering is defined as grouping similar documents into a cluster. 
To improve retrieval efficiency and effectiveness, related documents should be 
collected together in the same cluster based on some notion of similarity 

The Self-Organizing Map is an unsupervised learning neural network al-
gorithm for the visualization of high-dimensional data . The SOM defines a 
mapping from the input da ta space onto a two-dimensional array of nodes. 
Every node i is represented by a model vector, also called reference vector, 
rrii = [m^i, 771̂ 2; • • •; ' ^m] , where n is input vector dimension. Our algorithm 
is different from other SOM-variant algorithms, in tha t each sub-layer SOM 
dynamically reconstructs a new input vector from an upper-level input vector. 
The following algorithm describes how to construct a subject-specific concept 
hierarchy. 

1. Initialize network by using the subject feature vector as the input vector: 
Create a two-dimensional map and randomly initialize model vectors rrii 
in the range of 0 to 1 to start from an arbitrary initial state. 

2. Present input vector in sequential order: Cyclically present the input vec-
tor x(t), the weighted input vector of an n-dimensional space, to all nodes 
in the network. Each entry in the input vector corresponds to the weight 
of a noun phrase in the document; zero means the term has no significance 
in the document or it simply doesn't exist in the document. 

3. Find the winning node by computing the Euclidean distance for each node: 
In order to compare the input and weight vectors each node computes the 
Euclidean distance between its weight vector and the input vector. The 
smallest of the Euclidean distance identifies the best-matching node tha t 
is chosen as the winning node for tha t particular input vector. The best-
matching node, denoted by the subscript c, is 

\\x - rUcW = m i n j l b - m J l j . 
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4. Update weights of the winning node and its topological neighborhoods: The 
update rule for the model vector of node i is 

mi{t + 1) = mi{t) + a(t)hci(t) [x(t) - mi(t)] , 

where t is the discrete-time coordinate, a(t) is the adaptat ion coefficient, 
and hci{t) is the neighborhood function, a smoothing kernel centered on 
the wining node. 

5. Repeat steps 2-^ until all iterations have been completed. 

6. Label nodes of the trained network with the noun phrases of the subject 
feature vectors: For each node, we determine the dimension with the great-
est value, and label the node with a corresponding noun phrase for tha t 
node, and aggregate nodes with the same noun phrase into groups. Thus, 
a subject-specific top-tier concept map is generated. 

7. Repeat steps 1-6 by using the description feature vector as the input vector 
for each grouped concept region: For each grouped concept region contain-
ing more than k documents (e.g. 100), recursively create a sub-layer SOM 
and repeat steps 1-6 by using the description feature vector as the input 
vector. At this point new input feature vector of the sub-layer SOM is dy-
namically created by selecting only those items tha t belong to the concept 
region represented by its parent SOM from the description feature vector. 
Thus, different sets of feature vectors are used for different clusters and 
this reduces the training t ime significantly. 

For each MeSH descriptor category containing more than 100 documents, 
we generated a concept hierarchy using the SOM, limiting the maximum level 
of hierarchy to 3. We built a 10 x 10 SOM, and presented each input vector 100 
times to the SOM. We then recursively built the sub-layer concept hierarchy 
by training a new 10 x 10 SOM with a new input vector, which is dynamically 
constructed by selecting only a document feature vector contained in the 
concept region from the upper-level feature vector. The concept hierarchy 
generated contains two kinds of information: category labels extracted from 
the MeSH descriptors for the top-level, and the concept hierarchy using the 
SOM for the sub-layer. We inserted this information into the MySQL database 
to build an interactive user interface. 

2.4 R e s u l t s 

For the results of categorization, we extracted 2,210 distinct MeSH descriptors, 
70 distinct MeSH qualifiers, 269 distinct MeSH major topics, and 60,192 co-
occurring MeSH descriptors from the collection. On average, each citation in 
the collection contains 14 MeSH descriptors, 10 MeSH qualifiers, and 4 MeSH 
major topics. 

For text clustering, we identified a total of 20,367 distinct terms from the 
collection after the stop word removal. A total of 22 categories containing 
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more than 100 citations were identified from the results of MeSH descriptor 
categorization. After the category dependent document frequency threshold-
ing, an average of 66 terms were selected per category, ranging from 14 terms 
for one category to 260 terms for another category. After the hierarchical SOM 
clustering, 193 distinct concepts were generated from 22 categories. 

3 User Interfaces 

We provided four different views, three category hierarchies and one clustering 
hierarchy for the users. We represented this hierarchy information as hierar-
chical trees to help users understand MeSH qualifiers and descriptors, so that 
they could find a set of documents of interest, and locate good starting points 
for searching. 

3.1 MeSH Major Topic Tree and MeSH Term Tree 

The MeSH term tree displays the categorized information space, arranged by 
first descriptors and then qualifiers. Figure 1 shows the interface of the MeSH 
term tree. 

In each level of hierarchy, MeSH terms are listed in alphabetical order, 
along with their document frequencies. When the user clicks on a category 
label that is either a descriptor or a qualifier on the left pane, the associated 
document set is displayed on the right pane. At this point, if the category is a 
descriptor, the associated qualifiers in the collection are also expanded as its 
children in the tree. Users can see more detailed information of a document 
by clicking on the title of a document that is shown on the right pane. To 
help users better understand the meaning of an ambiguous MeSH term, the 
corresponding descriptor data and context in the MeSH tree may be displayed 
by clicking on the link "MeSH Descriptor Data & Tree Structures" within each 
level of the tree. 

In some cases, the user may want to see the category arranged by only 
MeSH major topics. The MeSH major topic tree provides the same infor-
mation as the MeSH term tree except that it shows the category hierarchy 
arranged by only MeSH major topics. 

3.2 MeSH Co-occurrence Tree 

The MeSH co-occurrence tree provides the co-occurrence of MeSH descriptors, 
along with their co-occurrence frequency in the collection. Since an average 
of 14 MeSH descriptors are assigned to each citation in the collection, there 
are a large number of nodes in the co-occurrence tree. To better organize the 
co-occurrence tree, the interface allows the user to select the co-occurrence 
frequency range. Thus, the user can easily identify co-occurring semantic types 
in the collection. 
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Fig. 1. Interface of MeSH Major Topic View 

3.3 SOM Tree 

The SOM tree was constructed for each MeSH descriptor whose document 
frequency was less than some predetermined threshold. Typically, 10 to 12 
MeSH descriptors are assigned to each MEDLINE citation. Thus, some cat-
egories associated with a large number of citations do not characterize the 
information in a way that is of interest to the user [10]. To solve this problem, 
we further arrange those categories hierarchically using the SOM. In some 
cases, clustering seems useful in helping users filter out sets of documents 
that are clearly not relevant and should be ignored [10]. Figure 2 shows the 
interface for browsing the SOM tree. 

4 Related Work 

Data mining is defined as the nontrivial extraction of implicit, previously un-
known, and potentially useful information from data [2,3]. To improve retrieval 
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Fig. 2. Interface of SOM Tree View 

efficiency and effectiveness, da ta mining uses document classification, docu-
ment clustering, machine learning, and visualization technologies. We discuss 
related work on document clustering approaches in this section. 

Document clustering is used to group similar documents into a set of clus-
ters [16]. To improve retrieval efficiency and effectiveness, related documents 
should be collected together in the same cluster based on shared features 
among subsets of the documents. 

In general, document clustering methods are divided into two ways: hier-
archical and partitioning approaches [20]. The hierarchical clustering methods 
build a hierarchical clustering tree called a dendrogram, which shows how the 
clusters are related. 

There are two types of hierarchical clustering: agglomerative (bottom-up) 
and divisive (top-down) approaches [20]. In agglomerative clustering, each 
object is initially placed in its own cluster. The two or more most similar 
clusters are merged into a single cluster recursively. A divisive clustering ini-
tially places all objects into a single cluster. The two objects tha t are in the 
same cluster but are most dissimilar are used as seed points for two clusters. 
All objects in this cluster are placed into the new cluster tha t has the closest 
seed. This procedure continues until a threshold distance, which is used to 
determine when the procedure stops, is reached. 
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Partitioning methods divide a data set into a set of disjoint clusters. De-
pending on how representatives are constructed, partitioning algorithms are 
subdivided into /c-means and /c-medoids methods. In /c-means, each cluster is 
represented by its centroid, which is a mean of the points within a cluster. In 
/c-medoids, each cluster is represented by one data point of the cluster, which 
is located near its center. The /c-means method is minimizing the error sum of 
squared Euclidean distances whereas the /c-medoids method is instead using 
dissimilarity. These methods are either minimizing the sum of dissimilarities 
of different clusters or minimizing the maximum dissimilarity between the 
data point and the seed point. 

Partitioning methods are better than hierarchical ones in the sense that 
they do not depend on previously found clusters [20]. On the other hand, 
partitioning methods make implicit assumptions on the form of clusters and 
cannot deal with the tens of thousands of dimensions [20]. For example, the 
/c-means method needs to deflne the number of flnal clusters in advance and 
tends to favor spherical clusters. Hence, statistical clustering methods are not 
suitable for handling high dimensional data, reducing the dimensionality of 
a data set, or visualization of the data. A new approach to addressing clus-
tering and classiflcation problems is based on the connectionist, or neural 
network computing [5,8,12,13,14]. The Self-Organizing Map (SOM) is an ar-
tiflcial neural network algorithm is especially suitable for data survey because 
it has prominent visualization and abstraction properties [5,8,12,13,14]. 

5 Lessons Learned and Discussion 

We have also proposed the multi-layered Self-Organizing Map algorithm for 
building a subject-speciflc concept hierarchy using two input vector sets con-
structed by indexing the MEDLINE citations. The proposed SOM algorithm 
is different from other SOM-variant algorithms. First, it uses two different in-
put vectors to cluster MEDLINE database more meaningfully. Second, after 
constructing the top-level concept map and aggregating nodes with the same 
concept on the map into a group, it dynamically reconstructs input vector by 
selecting only those items that are contained for each concept region from in-
put vector of the higher level to generate the sub-layer map. Thus, new input 
vector would reflect only the contents of the region and not the all collection 
for each SOM. The concept hierarchy generated by the SOM can be used for 
building an interactive concept browsing service with multiple viewpoints. 

To be more eflicient, out system may be improved in several directions. 
However, when new documents are added, the SOM processing for new data 
is not feasible. This is because we have to recalculate input vectors of SOM 
and retrain the SOM with new input vectors. A Further limitation when using 
the SOM is that the size and lattice type of the map should be determined in 
advance [9]. It is diflicult to choose optimal parameters for the SOM without 
knowledge of the type and organization of the documents. Therefore, to obtain 
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the best SOM with the minimum quantization error, we have to repeat train-
ing procedures several times with different parameter settings. This process 
is often very time-consuming for large collections of documents. Finally, doc-
uments can be assigned with more than one concept in SOM clustering. Al-
though documents may contain several topics, users may be confused when 
flnding overlapped documents over several concepts in some cases. 

6 Conclusions 

We have proposed a three-step data mining process for organizing MEDLINE 
database: (1) categorizations according to MeSH terms, MeSH major topics, 
and the co-occurrence of MeSH descriptors; (2) clustering using the results of 
MeSH term categorization; and (3) visualization of categories and hierarchical 
clusters. 

The proposed SOM algorithm is different from other SOM-variant algo-
rithms. First, it uses the results of categorization. Second, after constructing 
the top-level concept map and aggregating nodes with the same concept on 
the map into a group, it dynamically reconstructs input vector by selecting 
only terms that are contained for each concept region from the input vector 
of the higher level and re-computing their weights to generate the sub-layer 
map. Thus, the new input vector would reflect only the contents of the region 
and not the all collection for each SOM. 
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Summary . The aim of this chapter is to analyze computed tomography (CT) data 
by using the Logical Analysis of Data (LAD) methodology in order to distinguish 
between three types of idiopathic interstitial pneumonias (IIPs). The chapter demon-
strates that LAD can distinguish different forms of IIPs with high accuracy It shows 
also that the patterns developed by LAD techniques provide additional information 
about outliers, redundant features, the relative significance of attributes, and makes 
possible the identification of promoters and blockers of various forms of IIPs. 

1 Introduction 

Idiopathic interstitial pneumonias (IIPs) are a heterogeneous group of non-
neoplastic disorders resulting from damage to the lung parenchyma by varying 
pat terns of inflammation and fibrosis. A new classification of IIPs was estab-
lished in 2001 by an International Consensus Statement defining the clinical 
manifestations, pathology and radiological features of patients with IIPs [4]. 
Various forms of I IP differ both in their prognoses and their therapies, but 
are not easily distinguishable using clinical, biological and radiological data, 
and therefore frequently require pulmonary biopsies to establish the diagno-
sis. The aim of this chapter is to analyze computed tomography (CT) da ta 
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by techniques of biomedical informatics to distinguish between three types of 
IIPs: 

Idiopathic Pulmonary Fibrosis (IPF) 
Non Specific Interstitial Pneumonia (NSIP) 
Desquamative Interstitial Pneumonia (DIP) 

2 Patients and Methods 

This study deals with the C T scans in patients with IIPs referred to the 
Department of Respiratory Medicine, Avicenne Hospital, Bobigny, France, 
for medical advice on diagnosis and therapy. The diagnosis was established on 
clinical, radiographic and pathologic (i.e. biopsy-based) data. The 56 patients 
included 34 IPFs , 15 NSIPs, and 7 DIPs. 

We reviewed the C T examination of the chest from these patients. C T 
scans were evaluated for the presence of signs and a score was established 
for the 2 main lesions, ground-glass at tenuation and reticulation. Pulmonary 
disease severity on thin section C T scans was scored semi-quantitatively in 
upper, middle and lower lung zones. The six areas of the lung were defined 
as follows: the upper zones above the level of the carina; the middle zones 
between the level of the carina and the level of the inferior pulmonary veins, 
and the lower zones under the level of the inferior pulmonary veins. The 
profusion of opacities was recorded separately in the six areas of the lung to 
yield a total score of parenchymal opacities. The severity was scored in each 
area according to four basic categories: 0 = normal, 1 = slight, 2 = moderate, 
and 3 = advanced (total: 0-18) 

The da ta consisted of the binary at t r ibutes 1, 2, . . . ,10, and the numerical 
at t r ibutes 11, 12, and 13 listed bellow: 

1. I IT intra-lobular interstitial thickening 
2. HC honeycombing 
3. T B traction bronchiectasis 
4. G G l ground-glass at tenuation 
5. BRVX peri-bronchovascular thickening 
6. PL polygonal lines 
7. HPL hilo-peripheral lines 
8. SL septal lines 
9. AC airspace consolidation 
10. N nodules 
11. GG2 ground-glass at tenuation score 
12. R E T ^ reticulation score 
13. G G 2 / R E T ground-glass at tenuation/ret iculat ion score 

5 RET is a generic term which includes the three main fibrotic lesions : ITT, HC 
and TB 
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The analysis of this dataset was carried out using the combinatorics, op-
timization and logic based methodology called the Logical Analysis of Data 
(LAD) proposed in [7,8]. Detailed description of this methodology appears 
in [5]. Also, a brief outline of LAD appears in this volume (in [3]). Among 
previous studies dealing with applications of LAD to medical problems we 
mention [1,2,10]. 

The choice of LAD for analyzing the IIP data is due on the one hand 
to its proven capability to provide highly accurate classifications, and on the 
other hand to the usefulness of LAD patterns in analyzing the significance 
and nature of attributes. 

The conclusions of LAD have been confirmed by other methods used in 
bioinformatics (neural networks, decision trees, support vector machine, etc.). 
An additional result of the study was the identification by LAD of two outliers, 
which turned out to have complete medical explanation. 

3 Outliers 

We have constructed 3 different LAD models to distinguish between IPF, 
NSIP or DIP patients: 

• model I to distinguish IPF patients (considered to be the positive obser-
vations in this model) from non-IPF patients (negative observations); 

• model II to distinguish NSIP patients (positive in this model) from non-
NSIP patients (negative observations); 

• model III to distinguish DIP patients (positive in this model) from non-
DIP patients (negative observations). 

These models use only pure patterns. Their degrees are at most 4, and 
their prevalences range between 40% and 85.7%. 

a) Two suspicious observations 

The classification given by 3 LAD models for 56 observations in the dataset is 
shown in Table 1. It can be seen that all the 56 classifications are correct, but 
only 54 of them are precise. In fact the classifications of the observations s003 
and s046 are vague. Since observation s003 is classified as either a DIP or an 
NSIP patient, we have built an additional model to distinguish between these 
two classes. It turns out that the model contains only one pattern covering 
observation s003. This pattern shows (correctly) that s003 is a DIP patient, 
however it does not cover any other observation, i.e. its prevalence is so low 
that it cannot be considered reliable. A very similar argument concerning 
the observation s046 shows that in a model distinguishing IPF/NSIP cases, 
it is classified as being an NSIP case; however, this classification is based 
only on extremely weak patterns, whose reliability is low. The above facts 
raise suspicions about the specific nature of these two observations and the 
question of whether they should be included at all in the dataset. 
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b) Medical confirmation 

In view of the suspicions related to these two observations, the medical records 
of these two patients have been re-examined. It was found tha t patient s003 
was exposed to asbestos, and therefore its classification as DIP is uncertain. 
Asbestosis may be responsible for a pathologic aspect similar to tha t of IFF , 
but very different from DIF. It is also possible tha t the pathologic result on 
the biopsy of a very small area of the lung was wrong. Also, it was found tha t 
the da ta of patient s046 are highly atypical in all the features (age, clinical 
da ta and lung pathology). Based on the clinical, radiographic and pathologic 
data, this patient does not seem to belong to any of the three classes in the 
initial classification before C T analysis, and it was suggested tha t in view of 
these reasons, (s)he should be considered non-classable and removed from the 
dataset . 

c) Improving classification accuracy by removing outliers 

The medical confirmation of the suspicions raised by the inability of the LAD 
models to classify the two unusual observations, have led us to check the ways 
in which the accuracy of various classification methods changes when these 
two observations are removed from the dataset . In order to evaluate these 
changes, we have applied five classification methods taken from the W E K A 
package {http: //www. cs.waikato. ac.nz/^ml/weka/index.html) separately to 
the original dataset of 56 observations and to the dataset of 54 observations 
obtained by removing the two suspicious ones. The 5 methods used for this 
purpose were: artificial neural networks ("Multilayer Ferceptron" in WEKA) , 
linear logistic regression classifier ("Simple Logistic" in WEKA) , support vec-
tor machine classifier ("SMO" in WEKA) , nearest-neighbor classifier ("IBl" 
in WEKA) , and decision trees ("J48" in WEKA) . 

Twenty 3-folding experiments were carried out for each of the 3 classifica-
tion problems ( IFF /non- IFF , NSIF/non-NSIF, DIF /non-DIF) . In each of the 
experiments the dataset was randomly partit ioned into three approximately 
equal parts , two of which were used as the training set, and the third one as 
the testing set. By rotating the subset taken as the test set, each experiment 
in fact consisted of three tests, i.e. a total of 60 experiments were carried out 
for each of the three classification problems. The average accuracy of these 
1800 experiments (i.e. five methods applied 60 times to original and reduced 
datasets of three problems) measured on the test sets is shown in Table 2. 

It can be seen from Table 2 tha t by removing the two outliers, the accuracy 
of every single classification method was improved for each of the 3 models. 

In conclusion, the suspicions generated by the weakness of the coverage 
with pat terns of two of the observations, lead to the identification of these 
two patients as outliers, and eventually to medical explanations of the in-
appropriateness of maintaining them in the dataset . The "cleaned" dataset 
obtained by eliminating these two outliers was shown to allow a substantial 
improvement in the accuracy of all the tested classification methods. 
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Table 1. Classification given by 3 LAD models for 56 observations in the dataset 

Observations 

sOOl 
s002 
s003 
s004 
s005 
s006 
s007 
s008 
s009 
sOlO 
sOll 
s012 
s013 
s014 
s015 
s016 
s017 
s018 
s019 
s020 
s021 
s022 
s023 
s024 
s025 
s026 
s027 
s028 
s029 
s030 
s031 
s032 
s033 
s034 
s035 
s036 
s037 
s038 
s039 
s040 
s041 
s042 
s043 
s044 
s045 
s046 
s047 
s048 
s049 
s050 
s051 
s052 
s053 
s054 
s055 
s056 

Given Classification 

DIP 
DIP 
DIP 
DIP 
DIP 
DIP 
DIP 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 

Classification by LAD Models 
I P F / 
non- IPF 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
7 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

N S I P / 
non-NSIP 
7 
0 
7 
0 
7 
7 
0 
0 
7 
7 
0 
0 
0 
0 
0 
7 
7 
0 
0 
0 
7 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
7 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

D I P / 
non-DIP 
1 
1 
7 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
7 
7 
0 
0 
0 
0 
0 
0 
0 

Conclusion 

DIP 
DIP 
NSIP or DIP 
DIP 
DIP 
DIP 
DIP 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
NSIP 
NSIP 
NSIP 
NSIP 
I P F or NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
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Table 2. Classification Accuracies Before/After Elimination of Outliers 

N S I P / n o n - N S I P 

I P F / n o n - I P F 

D I P / n o n - D I P 

D a t a s e t 

Original 
Reduced 
Original 
Reduced 
Original 
Reduced 

Mult i layer 
P e r c e p -
t r o n 
72.00% 
79.26% 
80.27% 
82.87% 
84.07% 
89.07% 

S i m p l e 
Logis t i c 

72.19% 
78.33% 
81.78% 
84.07% 
87.81% 
88.80% 

S M O 

75.35% 
79.63% 
81.25% 
82.04% 
88.23% 
90.37% 

I B l 

66.96% 
75.37% 
70.66% 
72.87% 
84.58% 
88.15% 

J 4 8 

71.32% 
76.48% 
82.74% 
85.28% 
85.97% 
90.74% 

A v e r a g e 
c h a n g e in 
accuracy 

+6.25% 

+2.08% 

+3.29% 

4 Support Sets 

a) Set covering formulation 

Although the dataset involves 13 variables, some of them may be redundant. 
Following the terminology of LAD [6,7,8], we shall call an irredundant set 
of variables or attributes or features a support set of the dataset if there is 
be no overlap between the 3 different types of IIPs after projecting the 13-
dimensional vector representing the patients on this subset. 

The determination of a minimum size support set was formulated as a 
set covering problem. The basic idea of the set covering formulation of this 
problem consists in the simple observation that a subset S is a support set if 
and only if the projections on S of the positive and the negative observations 
in the dataset are disjoint. 

In order to illustrate this reduction we shall identify a minimum size sub-
set of the variables in the dataset which are capable of distinguishing IFF 
observations from non-IFF observations. We shall assume that the three nu-
merical variables x n , Xi2, xis have been ^^binarized^\ i.e. each of them had 
been replaced by one or several 0-1 variables, as proposed in [5, 6]. The bina-
rized variables are associated to so-called cut-points. For instance, there are 
2 cut-points (5.5 and 6.5) associated to the numerical variable x n , and the 
corresponding binary variables x^f and xff are then defined in the following 
way: 

^5.5 
'^ll 

^6.5 
'^ll 

1 if ^11 > 5.5, and x^f = 0 if xn < 5.5 

1 if ^11 ^ 6.5, and xff = 0 if xu < 6.5 

Similarly, two cut-points (7.5, 8.5) are introduced for Xi2, along with two 
associated binary variables. The variable xis is binarized using four 0-1 vari-
ables associated to the cut-points 0.5, 1, 1.05 and 1.2. 

Using the original 10 binary variables along with the 8 binarized variables 
(which replace the numerical variables x n , Xi2, a^is), we shall now repre-
sent the observations as 18 dimensional binary vectors (xi , . . . ,xio, x^f^Xif, 
1̂2̂ 7̂ 12̂ 7 x?3^, . . . , x}3^). For example, the positive (i.e. IFF) observation s008 

= (0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 2, 9, 0.22) will become in this way the binary 
vector b008 = (0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0). Similarly the 
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negative (i.e. non-IPF) observation s006 = (0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 5, 2, 2.5) 
becomes the binary vector b006 = (0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 
1,1). 

Clearly, the positive binarized observation b008 and the negative bina-
rized observation b006 differ only in the following 8 components: X2, X3, 
1̂2̂  7̂ 12̂  7̂ 13̂  r • • 7 ^13^- Î  follows that any support set S must include at least 

one of these variables, since otherwise the projections of the positive observa-
tion boos and the negative observation b006 on S could not be distinguished. 
Therefore, if we denote by (5i,...,5io, slf^s^f, 5̂ 2̂ ,5̂ 2̂ , 5^3 ,̂ . . . , s\-^) the 
characteristic vector of S, one of the necessary conditions for S to be a support 
set will be 

52 + 53 + sli + 5̂ 2̂  + 5?3̂  + . . . + sii > 1. 

A similar inequality can be written for every pair consisting of a positive 
(IPF) and a negative (non-IPF) observation in the binarized dataset. The 
34 X 22 = 748 pairs of positive-negative observations define the constraints 
of a set covering problem for finding a minimum size support set. Since our 
dataset consists of a rather limited number of observations, in order to in-
crease the accuracy of the models to be built on the support sets obtained 
in this way, we have further strengthened the above set covering-type con-
straints, by replacing the 1 on their right-hand side, by 3 (the choice of 3 is 
based on empirical considerations, the basic idea being simply to sharpen the 
requirements of separating positive and negative observations). 

Clearly the objective function of this set covering type problem is simply 
the sum 

b) Three minimum support sets 

a.2 
'13 • 

By solving this problem we found that the binary variables X3, X4, xg, xio are 
redundant, and that a minimum size support set (using the original binary 
and numerical variables) consists of the attributes 1, 2, 5, 6, 7, 8, 11, 12 and 
13. 

In a similar way we can see that a minimum support set distinguishing 
DIP observations from non-DIP ones consists of the 6 original attributes: 1, 
2, 3, 5, 12 and 13, while a minimum support set distinguishing NSIP patients 
from non-NSIP ones consists of the 8 original attributes: 1, 2, 5, 6, 7, 8, 11 
and 12. 

c) Accuracy of classification on minimum support sets 

It is important to point out that the elimination of redundant variables does 
not reduce the accuracy of classification. In order to demonstrate the qualities 
of the minimum support sets obtained for the IPF/non-IPF, DIP/non-DIP 
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and NSIP/non-NSIP problems we have carried out 20 three-folding classifica-
tion experiments on these 3 problems using 5 different classification methods 
from the W E K A package.^ These experiments first used the original 13 vari-
ables, and after tha t the support sets of 9, 6, and 8 variables respectively, 
obtained above for these 3 problems. The results of these experiments are 
presented in Table 3. 

Table 3. Classification Accuracies on all Original Variables and on Support Sets 

NSIP /non-NSIP 

I P F / n o n - I P F 

D I P / n o n - D I P 

Support 
Set 

Original 
Reduced 
Original 
Reduced 
Original 
Reduced 

Multilayer 
Percep-
t ron 
79.26% 
85.19% 
82.87% 
85.28% 
89.07% 
91.76% 

Simple 
Logistic 

78.33% 
78.80% 
84.07% 
83.33% 
88.80% 
90.28% 

S M O 

79.63% 
79.35% 
82.04% 
81.20% 
90.37% 
89.44% 

I B l 

75.37% 
81.57% 
72.87% 
76.39% 
88.15% 
92.87% 

J 4 8 

76.48% 
76.57% 
85.28% 
85.83% 
90.74% 
92.22% 

Average 
change in 
accuracy 

+2.48% 

+0.98% 

+ 1.89% 

In conclusion we can see from Table 3 tha t the elimination of those fea-
tures which were identified as redundant not only maintains the accuracy of 
classification, but also increases it in each of the three models. 

5 Patterns and Models 

Using the support sets developed in the previous section, now we shall apply 
the LAD methodology to this dataset for generating pat terns and classifica-
tion models. It turns out tha t in spite of the very small size of this dataset , 
some surprisingly strong pat terns can be identified in it. For example in the 
I P F / n o n - I P F model, 14 (i.e. 70%) of the 20 non-IPF patients satisfy the sim-
ple pat tern " G G 2 / R E T > 1.2"; moreover none of the 34 I P F patients satisfy 
this condition. While this simple pat tern involves a single variable, other more 
complex pat terns exist and are capable of explaining the I P F or non-IPF char-
acter of large groups of patients. For instance, the negative pat tern 

"RET < 8 and G G 2 / R E T > 1" 

is satisfied by 70% of the non-IPF patients, and by none of the I P F patients. 
As an example of a positive pat tern, we mention 

"HC = 1, HPL = 0 and G G 2 / R E T < 1.2"; 

24 (i.e. 70.6%) of the 34 I P F patients satisfy all the 3 constraints of this 
pat tern, and none of the non-IPF patients satisfy these 3 conditions simulta-
neously. 

http: //www. cs.waikato.ac.nz/r^ml/weka/index.html 
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While the above patterns can distinguish large groups of patients having 
a certain type of IIP from those of other types of IIP, larger collections of 
patterns constructed by LAD can collectively classify the entire set of 54 
observations in the dataset. We shall first illustrate the way the classification 
works by considering the problem of distinguishing IPF and non-IPF patients. 

In Table 4, we present a model consisting of 20 positive and 20 negative 
patterns allowing the accurate classification of IPF/non-IPF patients. Note 
that the equality of the numbers of positive and negative patterns in this 
model is a simple coincidence. 

The way in which the model allows the classification of a new observation 
is the following. First, if an observation satisfies all the conditions describ-
ing some positive (negative) patterns, but does not satisfy all the conditions 
describing any one of the negative (positive) pattern, then the observation is 
classified as positive (negative); this classification is shown in the tables as "1" 
(respectively, "0"). Second, if an observation does not satisfy all the defining 
conditions of any positive or negative pattern, then it remains "unclassified"; 
this is shown in the tables as "?". Third, if an observation satisfies all the 
defining conditions of some positive and also of some negative patterns in the 
model, then a weighting process is applied to decide on the appropriate clas-
sification; the process of finding weights for such classification is described in 
[3]. 

Besides the IPF/non-IPF model discussed above, we have also constructed 
a model to distinguish the 14 NSIP patients from the 40 non-NSIP patients, 
and another model to distinguish the 6 DIP patients from the 48 non-DIP 
patients. The NSIP/non-NSIP model is built on the support set of 8 attributes 
described in the previous section, and includes 16 positive and 4 negative 
patterns. The DIP/non-DIP model is built on the support set of 6 attributes 
described in the previous section, and includes 7 positive and 15 negative 
patterns. 

The combination of the three models allows one to draw additional con-
clusions. For example, if the results of the three classifications are "0", "0" 
and "?" respectively, and one knows that each patient is exactly one of the 
types of IIP, one can conclude that the "?" in the classification of the third 
condition can be replaced by " 1 " . 

The results of the classification of 54 patients given by the three mod-
els, along with the conclusions derived from the knowledge of all the three 
classifications are presented in Table 5. The accuracy of this classification is 
100%. 

It is usually said that the CT diagnosis of NSIP is difficult. In a recent 
study [9] experienced observers considered the CT pattern indistinguishable 
from IPF in 32% of cases. In another investigation the author assessed the 
value of CT in the diagnosis of 129 patients with histologically proven idio-
pathic interstitial pneumonias [11]. Two independent observers were able to 
make a correct first choice diagnosis in more than 70% of IPF cases, in more 
than 60% of DIP, but only in 9% of NSIP cases. In that study, NSIP was 
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Table 4. IFF/non-IFF model 

P a t t e r n 

PI 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 

PIO 
P l l 
P12 
P13 
P14 
P15 
P16 
P17 
P18 
P19 
P20 

N l 
N2 
N3 
N4 
N5 
N6 
N7 
N8 
N9 
NIO 
N i l 
N12 
N13 
N14 
N15 
N16 
N17 
N18 
N19 
N20 

a t t r . l 

I I T 

1 

1 
1 

1 

1 
1 

0 

0 
1 

0 

0 

a t t r . 2 

H C 

1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 

0 

0 
0 
0 
0 
0 

0 

0 

a t t r .5 

B R V X 

0 
0 

0 

0 

1 

a t t r .6 

P L 

1 

1 

1 
1 

0 
0 

0 

0 

a t t r . 7 

H P L 

0 
0 

0 
0 

0 

0 

0 

0 
0 
0 

1 
1 
1 

1 
1 
1 

a t trS 

SL 

0 

1 

0 

0 

0 

0 
0 
0 
1 
0 
0 
0 

a t t r . l l 

G G 2 

> 4 

> 4 

< 3 
> 4 

< 3 

> 4 

> 4 

> 4 

> 4 

> 4 

a t t r . l 2 

R E T 

> 8 

> 6 
> 6 
> 8 

< 8 

> 8 
> 9 

< 8 
> 8 
> 6 
< 8 
> 8 

< 8 

< 5 

< 7 

< 7 
< 8 
< 8 
< 8 

< 8 

a t t r . 1 3 

G G 2 / 
R E T 
< 1.2 

< 1.2 

< 0.5 
< 1.2 
>0.5, 
<1.2 
< 1.2 
>0.5 

< 1.2 
< 0.5 

< 1.2 

> 1 
>1.2 

>0.5 

>0.5 

> 1 

> 1 

>0.5 

> 1 

>0.5 

P o s . 
Preva-
lence 

70.6% 
47.1% 
47.1% 
47.1% 
47.1% 
41.2% 
41.2% 
41.2% 
38.2% 

32.4% 
32.4% 
29.4% 
29.4% 
26.5% 
26.5% 
26.5% 
20.6% 
20.6% 
20.6% 
17.6% 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

N e g . 
Preva -
lence 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

70.0% 
70.0% 
50.0% 
50.0% 
50.0% 
45.0% 
45.0% 
40.0% 
40.0% 
40.0% 
40.0% 
35.0% 
30.0% 
30.0% 
30.0% 
20.0% 
15.0% 
15.0% 
15.0% 
15.0% 

confused most often with DIF, and less often with I F F . It seems tha t LAD 
makes possible to distinguish NSIF from the other entities in the majority of 
cases. 

6 Validation 

It has been shown in the previous section (Table 5) tha t the accuracy of 
classifying by LAD the 54 patients is 100%. It should be added however tha t 
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Table 5. Results of classification of 54 patients by 3 models 

Observations 

sOOl 
s002 
s004 
s005 
s006 
s007 
s008 
s009 
sOlO 
sOll 
s012 
s013 
s014 
s015 
s016 
s017 
s018 
s019 
s020 
s021 
s022 
s023 
s024 
s025 
s026 
s027 
s028 
s029 
s030 
s031 
s032 
s033 
s034 
s035 
s036 
s037 
s038 
s039 
s040 
s041 
s042 
s043 
s044 
s045 
s047 
s048 
s049 
s050 
s051 
s052 
s053 
s054 
s055 
s056 

Given Classification 

DIP 
DIP 
DIP 
DIP 
DIP 
DIP 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 

Classification by LAD Models 
I P F / 
non- IPF 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

N S I P / 
non-NSIP 
7 
0 
0 
? 
? 
0 
0 
7 
7 
0 
0 
0 
0 
0 
7 
0 
0 
0 
0 
7 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

D I P / 
non-DIP 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
7 
0 
0 
0 
7 
0 
0 
7 
0 
0 
0 
0 
0 

Conclusion 

DIP 
DIP 
DIP 
DIP 
DIP 
DIP 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
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this result represents only the correctness of the proposed classification model 
when the entire dataset is used both as a training set, and as a test set. In order 
to establish the reliability of these classifications they have to be validated. 
Because of the very limited size of the dataset (in particular because of the 
availability of da ta for only 6 DIP patients and only 14 NSIP patients) the 
traditional partit ioning of the dataset into a training and a test set would 
produce extremely small subsets, and therefore highly unreliable conclusions. 
In view of this fact, we shall test the accuracy of the LAD classification by 
cross-validation, using the so-called "jackknife" or "leave-one-out" method. As 
an example, the cross-validation of the classification results for the IPF /non -
I P F model will be presented in the next section. 

The basic idea of the "leave-one-out" method is very simple. One of the 
observations is temporarily removed from the dataset, a classification method 
is "learned" from the set of all the remaining observations, and it is applied 
then to classify the extracted observation. This procedure is then repeated 
separately for every one of the observations in the dataset . For example in the 
case of the I P F / n o n - I P F model we have to apply this procedure 54 times. 

Table 6 shows the results of the "leave-one-out" procedure applied to this 
model. The table includes the results of directly applying leave-one-out ex-
periments to the 3 models ( IPF /non- IPF , NSIP/non-NSIP, DIP/non-DIP) 
and the resulting combined classifications. The combined classifications are 
then used to derive the final conclusion about the I P F / n o n - I P F character of 
each observation; the correctness of the conclusion (compared with the given 
classification) is presented in the last column of Table 6 ("evaluation"). 

It can be seen tha t out of 54 observations, 44 are classified correctly, there 
are 6 errors (the I P F patients s009, sOlO and s021 are classified as non-IPF, 
and the non-IPF patients s042, s047 and s053 are classified as IPF) , two 
patients (s007 and s052) are unclassified, and for two other patients (s016 and 
s055) the classifications ("IPF or NSIP") are imprecise. 

If one considers every unclassified and every imprecisely classified patient 
as an error, the accuracy of the classification in the leave-one-out experiment 
is 81.48%. However, if we use the formula established in [3] for accuracy, this 
turns out to be 85.80%. 

Given tha t the size of the dataset is very small, the results of the leave-
one-out tests can be viewed as extremely encouraging. 

7 Attribute Analysis 

a) Importance of attributes 

A simple measure of the importance of an a t t r ibute is the frequency of its 
inclusion in the pat terns appearing in the model. For example, a t t r ibute 1 
(IIT) appears in 11 (i.e. in 27.5%) of the 40 pat terns of the I P F / n o n - I P F 
model in Table 4. 
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Table 6. Validation by Leave-One-Out of IPF/non-IPF Classification 

Obs . 

sOOl 
s002 
s004 
s005 
s006 
s007 
s008 
s009 
sOlO 
sOll 
s012 
s013 
s014 
s015 
s016 
s017 
s018 
s019 
s020 
s021 
s022 
s023 
s024 
s025 
s026 
s027 
s028 
s029 
s030 
s031 
s032 
s033 
s034 
s035 
s036 
s037 
s038 
s039 
s040 
s041 
s042 
s043 
s044 
s045 
s047 
s048 
s049 
s050 
s051 
s052 
s053 
s054 
s055 
s056 

G i v e n 
Class i f icat ion 

DIP 
DIP 
DIP 
DIP 
DIP 
DIP 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 
NSIP 

Class i f icat ion by Leave-
O n e - O u t 
I P F / 
n o n - I P F 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
7 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
1 
0 

N S I P / 
n o n - N S I P 
? 

0 
0 
1 
1 
0 
0 
? 

1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
? 
? 
1 
1 
1 
0 
0 
1 
1 
1 

D I P / 
n o n - D I P 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
7 
0 
0 
0 
1 
0 
0 
7 
0 
0 
0 
0 
0 

D e r i v e d 
Class i f icat ion 

DIP 
DIP 
DIP 
DIP or NSIP 
DIP or NSIP 
7 
I P F 
NSIP 
NSIP 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F or NSIP 
I P F 
I P F 
I P F 
I P F 
NSIP 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
I P F 
NSIP 
NSIP 
NSIP 
I P F 
DIP 
NSIP 
NSIP 
NSIP 
7 
I P F 
NSIP 
NSIP or I P F 
NSIP 

C o n c l u s i o n 

I P F / 
n o n - I P F 
0 
0 
0 
0 
0 
7 
1 
0 
0 
1 
1 
1 
1 
1 
7 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
7 
1 
0 
7 
0 

E v a l u a t i o n 

correct 
correct 
correct 
correct 
correct 
unclassified 
correct 
error 
error 
correct 
correct 
correct 
correct 
correct 
imprecise 
correct 
correct 
correct 
correct 
error 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
correct 
error 
correct 
correct 
correct 
error 
correct 
correct 
correct 
correct 
unclassified 
error 
correct | 
imprecise | 
correct | 
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The frequencies of all the 13 at t r ibutes in the models are shown in Table 7 
for the 3 LAD models considered, along with the averages of these 3 indicators. 

Table 7. Frequencies of Attributes in Models 

Attr ibutes 
I I T 
H C 
T B 
G G l 
BRVX 
P L 
H P L 
SL 
A C 
N 
G G 2 
R E T 
G G 2 / R E T 

I P F / n o n - I P F 
0.275 
0.525 
0 
0 
0.125 
0.2 
0.4 
0.3 
0 
0 
0.25 
0.5 
0.475 

NSIP /non-NSIP 
0.25 
0.813 
0 
0 
0.219 
0.094 
0.375 
0.156 
0 
0 
0.688 
0.5 
0 

D I P / n o n - D I P 
0.343 
0.357 
0.238 
0 
0.381 
0 
0 
0 
0 
0 
0 
0.376 
0.662 

Average 
0.289 
0.565 
0.079 
0.000 
0.242 
0.098 
0.258 
0.152 
0.000 
0.000 
0.313 
0.459 
0.379 

Two of the most important conclusions which can be seen from this table 
are: 

• the most influential at t r ibutes are honeycombing (HC), reticulation score 
(RET) , ground-glass at tenuation/ret iculat ion score ( G G 2 / R E T ) , and 
ground-glass at tenuation score (GG2); 

• the at t r ibutes ground-glass at tenuation (GGl ) , airspace consolidation 
(AC) and nodules (N) have no influence on the classification. 

b) Promoting and Blocking Attributes 

We shall illustrate the promoting or blocking nature of some at tr ibutes on the 
I P F / n o n - I P F model shown in Table 4. It can be seen from the table tha t every 
positive pat tern which includes a condition on HC (honeycombing) requires 
tha t H C = 1 . Conversely, every negative pat tern which includes a condition on 
HC requires tha t H C = 0 . This means tha t if a patient is known to be a non-
I P F case with H C = 1 , and all the at t r ibutes of another patient have identical 
values except for HC which is 0, then this second patient is certainly not an 
I P F case. This type of monotonicity simply means tha t HC is a "promoter" 
of I P F . It is easy to see tha t the a t t r ibute PL (polygonal lines) has a similar 
property. 

On the other hand, the a t t r ibute BRVX (peri-bronchovascular thickening) 
appears to have a converse property. Indeed, every positive pat tern which 
includes this a t t r ibute requires tha t BRVX=0, while the only negative pat tern 
(N19) which includes it requires tha t BRVX=1 . Therefore if a patient 's BRVX 
would change from 1 to 0, the patient 's condition would not change from I P F 
to non-IPF (assuming again tha t none of the other at t r ibutes change their 
values). Similarly to the previous case, this type of monotonicity simply means 
tha t BRVX is a "blocker" of IPF . 
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In this way the IPF/non-IPF model allows the identification of two pro-
moters and of one blocker. None of the other attributes in the support set 
appear to be promoters or blockers. 

A similar analysis of the DIP/non-DIP model shows that intralobular 
interstitial thickening (IIT) and traction bronchiectasis (TB) are blockers 
of DIP. Also, the analysis of the NSIP/non-NSIP model shows that peri-
bronchovascular thickening (BRVX) is a promoter of NSIP, while honeycomb-
ing (HC), polygonal lines (PL) and septal lines (SL) are blockers of NSIP. 

To conclude, in Table 8 we show the promoters and blockers which have 
been identified for the three forms of idiopathic interstitial pneumonias. 

Table 8. Promoters and blockers for three forms of idiopathic interstitial pneumo-

honeycombing 
polygonal lines 
peri-
bronchovascular 
thickening 
intralobular inter-
stitial thickening 
traction bronchiec-
tasis 
septal lines 

Idiopathic Pul-
monary Fibrosis 

promoter 
promoter 
blocker 

Desquamative In-
terstitial Pneumo-
nia 

blocker 

blocker 

Non Specific Inter-
stitial Pneumonia 

blocker 
blocker 
promoter 

blocker 

8 Conclusions 

We have shown that it is possible to use a computational technique (LAD) 
for analyzing CT data for distinguishing with high accuracy different enti-
ties (IPF, NSIP and DIP) of idiopathic interstitial pneumonias (IIPs). This 
is particularly important for NSIP which is yet poorly defined. It was also 
shown that the patterns developed by LAD techniques provide additional in-
formation about outliers, redundant features, the relative significance of the 
attributes, and allow one to identify promoters and blockers of various forms 
of IIPs. These encouraging results will form the basis of a forthcoming study 
of a broader population of IIPs, which will include not only CT data, but also 
clinical and biological ones. 
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Summary. Alport syndrome is a genetic multi-organ disorder, primarily linked 
with the X-Chromosome, although autosomal forms have been reported. Ultra-
structural observations in some cases indicate highly characteristic lesions and mu-
tations in certain genes. Thus the symptomatology of the syndrome is complex and 
diverse. The aim of this chapter is to present a pattern recognition algorithm to 
diagnose with high precision patients who may be subject to Alport syndrome. Im-
ages of the epidermal basement membrane are studied and a rule to classify them 
precisely is presented. Theoretical and experimental results are given regarding the 
possibility of solving this problem. 

1 Introduction 

The diagnosis of pathologies is often carried out through clinical expertise. 
A clinician will use a number of instruments to determine symptoms and 
pathological states to assess the evidence and impart a diagnosis. 

The scientific method requires an evidence-based management consisting 
of an interpersonal and inter-temporal invariance of replicated instances. If 
other experts should repeat the examination, the same diagnosis and treat-
ment should be proposed. For similar cases (replicated) the experts should 
assess identical diagnoses and t reatment every time. Wha t constitutes "sim-
ilar cases" is controversial and extremely difficult to determine before the 
outcome is revealed. Thus it is usually mandatory to perform suitable clinical 
trials to determine tha t this latter aspect is fulfilled and tha t the t reatment 
is beneficial. 
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If, through the subjective evaluations by the physician, a higher precision 
rate in diagnoses is reached than with the best formal methods, then clearly 
the aspects grasped by the clinician are not reproducible by formal methods, 
although these may be useful for other purposes. Instead, if diagnoses by for-
mal methods are at least as accurate, then they should be favored since they 
are free from subjective judgements, replicable and they can be formulated 
from standard invariant definitions and measurements (at least to a predeter-
mined level of approximation) [6]. 

There are many pathologies tha t are difficult to diagnose or their diagnosis 
requires an invasive method. Therefore formal diagnostic methods should be 
available for these and be highly precise, so tha t the patient can enjoy an early 
diagnosis, while the clinician receives better information. 

The Alport syndrome is a genetic multi-organ disorder, primarily X-
Chromosome linked, although autosomal forms and sporadic cases have been 
reported [9]. Ultra-structural observations indicate highly characteristic le-
sions and mutat ions in certain genes are likely to occur. Thus the symptoma-
tology of the syndrome is complex and multi-varied. 

The aim of this chapter is to present a pat tern recognition algorithm to 
diagnose with high precision patients who may be subject to the Alport syn-
drome . Images of the epidermal basement membrane are studied and a rule to 
classify the image precisely is presented. Theoretical and experimental results 
are given regarding the possibility of solving this problem. 

The outline of the chapter is as follows: in the next section the pat tern 
recognition algorithm to be applied called T . R . A . C . E . (Total Recognition 
by Adapt ive Classification Experiments) is described and its properties are 
made evident. In Section 3, the Alport syndrome is presented and the s tandard 
diagnostic procedures, as well as the current ones, are described. In Section 
4, the experimental results obtained with this pat tern recognition algorithm 
are described. Finally, the conclusions follow in Section 5. 

2 The Pa t t e rn Recognition Algorithm for Diagnosis 

In Subsection 1, the pat tern recognition algorithm will be described. Its main 
properties regarding the convergence of the training phase in which the crite-
ria of diagnosis are derived will be presented in Subsection 2. In Subsection 3, 
results related to the classification phase in which the generalization capabil-
ities of the algorithm and its potential level of precision for random samples 
of pat terns to be classified are stated. A number of experimental aspects to 
obtain precise results will be indicated in Subsection 3. 

2 .1 D e s c r i p t i o n of t h e a l g o r i t h m 

Consider a training set of objects which have been characterized by a set of 
common at t r ibutes whose classification is known. This is called a training set 
[12]. 
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The da ta set which includes the training set and the classification set, must 
be coherent, as defined in [12]. This means tha t the training set must have 
objects whose class membership is mutually exclusive, collectively exhaustive 
and such tha t no two identical objects are assigned to different membership 
classes. There are various ways to check tha t this is so, both for the training 
set and for the classification set. Further, the membership class of the ob-
jects in the training set may be assigned precisely or imprecisely (this occurs 
when there are errors in their classification). This aspect is important for the 
coherence of the da ta set. 

The iterative training procedure may be described in this manner. Given 
a training set which is coherent and for which the class of each pat tern is 
known, mean vectors, called barycenters, can be formed for each class. The 
distance (Euclidean or general) of each pat tern from the mean vector of each 
class is determined. Out of all the pat terns which are closer to a barycenter 
of another class, the one tha t is the furthest from the barycenter of its own 
class is chosen. This is selected as the seed of a new barycenter. For some 
class, there will be now two barycenters. All the pat terns of tha t class can be 
reassigned to one or to the other of the barycenters of the class, depending 
on the distance of each pat tern of tha t class from the barycenters of tha t 
class. The pat terns in this class will now form two subgroups based on a least 
distance criterion. 

Each class will have a barycenter vector, except for one class which has two 
barycenters. Calculate all distances of the pat terns from all the barycenters 
anew; and, using the same criterion determine a new pat tern to be used to 
form a new barycenter and repeat the whole procedure as described above. 
The procedure is repeated again and again, until all pat terns result nearer to 
a barycenter of their own class than to one of another class. The algorithm is 
then said to have converged. If the training set is piecewise separable, this will 
always be so, and the set of barycenters formed can be used in classification 
[12]. 

If a classifier is defined according to this method, given tha t the training set 
is piecewise separable and the algorithm is allowed to run until convergence, a 
completely correct parti t ion of the training set will be returned. It can also be 
shown tha t for a large enough training set the error rate in the classification 
of the da ta set can be bounded by a constant, if it is allowed to run until 
convergence [12]. The description of the algorithm T . R . A . C . E . is indicated 
in the fiow diagram in Figure 1. 

2.2 P r o p e r t i e s of t h e A l g o r i t h m 

In this subsection, we define in a more precise way the entities involved and 
show the convergence properties of the algorithm and its generalization accu-
racy. 

Def in i t ion 1. A subset of a data set is termed a training set if every entity 
in the training set has been assigned a class label . 
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F i g . 1. Flow-chart of T . R . A . C . E . a lgori thm 
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Definition 2. Suppose there is a set of entities E and a set P = {Pi, P2, •••, ^n} 
of subsets of the set of entities, i.e. Pj C E^j G J = { l ,2 , . . . ,n} . A sub-
set J C J forms a cover of E if [j-^jPj = E. If in addition for every 
k,j ^ J,j ^ /c, Pj n Pk = 9 it is a partition . 

Definition 3. The data set is coherent if there exists a partition that satisfies 
the following properties: 

1. The relationships defined on the training set and in particular, the mem-
bership classes defined over the dataset are disjoint unions of the subsets 
of the partition. 

2. Stability: the partition is invariant to additions to the data set. This in-
variance should apply both to the addition of duplicate entities and to the 
addition of new entities obtained in the same way as the objects under 
consideration. 

3. Extendability: if further attributes are added to the representation of the 
objects of the data set so that the dimension of the set of attributes is 
augmented to p+1 attributes, then the partition obtained by considering 
the smaller set, will remain valid even for the augmentation, as long as it 
does not alter the existing relationships defined on the data set. 

Definition 4. A data set is linearly separable if there exist linear functions 
such that the entities belonging to one class can be separated from the entities 
belonging to the other classes. It is pairwise linearly separable if every pair 
of classes is linearly separable. Finally, a set is piecewise separable if every 
element of each class is separable from all the other elements of all the other 
classes [5]. 

Clearly, if a set is linearly separable, it is pairwise linearly separable and 
piecewise separable, but the converse may not be true [17]. 

Theorem 1, If a data set is coherent then it is piecewise separable. 

PROOF: By the definition 3, a partition exists for a coherent data set and 
therefore there exists subsets Pj ^ E^j ^ J = {1, 2,..., n} such that for every 
j ^ k ^ J , Pj n Pk = 9, diS indicated by definition 2. 

A given class is formed from distinct subsets of the partition, so no pattern 
can belong to two classes. Therefore each pattern of a given class will be sep-
arable from every pattern in the other subsets of the partition. Consequently 
the data set is piecewise separable. 

Theorem 2. Given a set which does not contain two identical patterns as-
signed to different classes then a classifier can be constructed which defines a 
correct partition on the training set. 

PROOF: The proof is trivial. If the data set does not contain two identical 
patterns that belong to different classes, each pattern or group of identical 
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pat terns can be assigned to different subsets of the partit ion. This classifier 
is necessarily correct and on this basis subsets can be aggregated, as long as 
the aggregated subsets of different classes remain disjoint. 

Corol lary 1. Given that the training set does not contain two or more identi-
cal patterns assigned to different classes, the given partition yields a completely 
correct classification of the patterns in training. 

The avoidance of the juxtaposit ion property, i.e. two identical pat terns 
belonging to different classes, entails tha t the Bayes error is zero [4]. In general, 
this does not mean tha t in any given neighborhood of a pat tern there cannot 
be other pat terns of other classes, but only tha t they cannot lie in the same 
point. Thus, the probability distribution of the pat terns may overlap with 
respect to the classes, although they will exhibit discontinuities in the overlap 
region if juxtaposit ion is to be avoided. 

The algorithm may also be formulated as a combinatorial problem with 
binary variables, see [13] regarding the relationship between the two imple-
mentations. This will avoid the possible formation of more subsets of the 
parti t ion than required, due to the order of processing; although the rule 
adopted to choose the next misclassified pat tern should ensure tha t this will 
not happen. 

Suppose tha t a training set is available with n pat terns, represented by 
appropriate feature vectors indicated by xi i = l , 2 , . . . , n and grouped in c 
classes. An upper bound is selected for the number of barycenters tha t may 
result from the classification. This can be taken "ad abundant iam" as m, or 
on the basis of a preliminary run of the previous algorithm. 

The initial barycenter matr ix will be an n x mc matr ix which is set to 
zero. The barycenter, when calculated, will be writ ten in the matrix. Thus, a 
barycenter of class k will occupy a column of the matr ix between {m{k — l)-\-l) 
and mk. 

Since we consider a training set, the feature vectors can be ordered by 
increasing class label. Thus, the first n i columns of the training set matr ix 
consist of pat terns of class 1; from n i + 1 to n2 of class 2; and in general from 
Uk-i -\-1 to Uk of class k. 

Consider the following optimization problem: 

Mm Z = E7=i^. (1) 
«•*• Ej=fem+i yy = 1 fc = 0, l , . . . , ( c - l ) ; V i = n f e - i + l,...,nfc (2) 

E i = i ViJ - Mzj < 0 Vj = 1, 2, . . . , mc (3) 

( E " = i Vij) X ^j - E " = i XiVij = 0 Wj = 0 , 1 , . . . , mc (4) 
rji rji 

{xi - nij) {xi - nij) X yij - {xi - nik) {xi - nik) < 0 

Vj = 1,2, . . . ,mc; /c = 0 , 1 , . . . , c - 1; Vi = l , 2 , . . . , n (5) 

Zj.yij G {0,1} integer 
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This optimization problem determines the least number of barycenters 
(1) which will satisfy the stated constraints. The n constraints (2) state tha t 
each feature vector from a pat tern in a given class must be assigned to some 
barycenter vector of tha t class. As pat terns and barycenters have been or-
dered by class, the summation should be run over the appropriate index sets. 
The mc constraints (3) impose tha t no pat tern be assigned to a non-existing 
barycenter. Instead the constraints (4) determine the value of the barycenter 
vector by summing over all the elements of the feature vector. Notice tha t Xi is 
a vector, so the number of equations will be mc times the number of elements 
in the feature vector. Finally, the last set of equations (5) indicate tha t each 
feature vector must be nearer to the assigned barycenter of its own class than 
to any other barycenter. Should the barycenter be null, this is immediately 
verified; while, if it is non-zero, this must be imposed. 

T h e o r e m 3 . Given a set which does not contain two identical patterns as-
signed to different classes, a correct classifier will be determined by solving 
the problem (1) - (5). 

P R O O F : If there is no juxtaposition of the pat terns belonging to different 
classes, a feasible solution will always exist to the problem (1) - (5). Such a 
solution assigns a unique barycenter to every pat tern. 

Given tha t a feasible solution exists and tha t the objective function has a 
lower bound formed from the mean vectors to each class, an optimal solution 
to the problem (1) - (5) must exist. 

The binary programming problem (1) - (5) with the control variables 
Zj^tjij, may be solved by suitable branch and bound methods, which will 
determine an optimal solution to the problem (1) - (5) [11], which is assured 
by the above theorem. 

2.3 Class i f icat ion and Prec i s ion P r o p e r t i e s 

Suppose a training set is available, defined over a suitable representation space, 
which is piecewise separable and coherent, as well as a da ta set in which all the 
relevant at t r ibutes are known, but not the class to which each entity belongs. 
The algorithm T . R . A . C . E . considered in either form, will determine the 
classification rules to impose on the da ta set based on the parti t ion which has 
been found for the training set, so tha t to each entity in the da ta set a class 
is assigned. If the training set forms a random sample and the da ta set which 
includes the training set is coherent, then this classification can be performed 
to any desired degree of accuracy by extending the size of the training sample. 

Thus, in classification, new pat terns of unknown class belonging to the 
da ta set are given. For every pat tern the distance is determined from each of 
the available barycenter vectors, and then the pat tern is assigned to the class 
of the barycenter to which it is closest. 
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As it can be seen, this algorithm may be slow in training but it is extremely 
fast in recognition. This is because only a matr ix vector product is involved, 
followed by the determination of the smallest element. 

T h e o r e m 4. Suppose that the data set is coherent. Then the data set can be 
classified correctly. 

P R O O F : Follows by the definition of a coherent da ta set, definition 3 and by 
theorems 1 2 and corollary 1. 

To obtain correct classification results, the training set must be a repre-
sentative sample of the da ta set, and the da ta set must be coherent. 

So consider a da ta set { (x i , i / i ) , (x2,^2), •••, (^n,l /n)}, where Xi is the fea-
ture vector of pat tern i and its membership class is given by i/i. 

Without loss of generality assume tha t two-class classification problems are 
considered, so tha t eventually a series of such problems must be considered 
for a polytomous classification problem. Also, assume tha t the pat terns are 
independently identically distributed with function F (z), where Zi = (xi^i/i). 

Let f{x^a) : R^ ^ {0^1} a e A be the classifier, where A is the set of 
parameters identifying the classification procedure from which the optimal 
parameters must be selected. The loss function of the classifier is given by: 

The misclassification error over the population in this case, is given by the 
risk functional: 

R{a) = J L{y, / ( x , a)) dF{x, y) (7) 

Thus, the value of ce G A, say ce*, which minimizes the expression (7), 
must be chosen. Hence, for any sample, the misclassification error will be: 

1 "̂  
i?,(ce*) = - V L ( l / . , / ( x „ c e * ) ) (8) 

n ^-^ 

It will depend on the actual sample, its size n and the classifier used. 
To avoid having to introduce distributional properties on the da ta set 

considered, the empirical risk minimization inductive principle may be applied 
[15]: 

1. The risk functional R{a)^ given in equation (7), is replaced by the empir-
ical risk functional Rn{a), given by equation (8), constructed purely on 
the basis of the training set. 

2. The function tha t minimizes the risk is approximated by the function tha t 
minimizes the empirical risk. 
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Definition 5. A data set is stable, according to Definition 3, with respect to 
a partition and a population of entities, if the relative frequency of misclassi-
fication is Remp (<̂ *) ^ 0 and 

lim pr{i?emp(ce*)>e} = 0 (9) 
n ^ o o 

where ce* is the classification procedure applied and e > 0 for given arbitrary 
small value and pr{.} is the probability of the event included in the braces. 

In some diagnostic studies the set of attributes considered has no signif-
icant relationship with the outcome or classification attribute of the entity. 
Typically, the classes could be the eye colour and the attributes be the weight, 
height and sex of a person. Such a classification would be spurious, since there 
is no relation between the eye colour and the body indices. 

In general, consider smaller and smaller subsets of the attribute space X. 
If there exists a relationship between the attributes and the classes of the 
entities, the frequency of the entities of a given class for certain subsets will 
increase to the upper limit of one; while in other subsets it will decrease to 
the lower limit of zero. Thus, for a very fine subdivision of the attribute space, 
each subset will tend to include entities only of a given class. 

Definition 6. A proper subset Sk of the attribute space X of the data set 
will give rise to a spurious classification if the conditional probability of a 
pattern to belong to a given class c is equal to unconditional probability over 
the attribute space. The data set is spurious if this holds for all subsets of the 
attribute space X and the data set is non-spurious otherwise 

priVi = c I {yi, Xi) n Sk} = pr{yi = c \ {yi, Xi) n X} (10) 

Theorem 5. Consider a training set of patterns randomly selected and as-
signed to two classes, where the unconditional probability of belonging to class 
1 is p, with the set being of size n greater than a, a suitable large number, 
such that (n > a). Let the training set form b^ barycenters, then under the 
algorithm T.R.A.C.E.^ this training set will provide a spurious classification, 
^f 

— > ( l - p ) \/n>a (11) 
n 

PROOF: From the definition 6 a classification is spurious if the class assigned 
to the entity is independent of the values of the set of attributes considered. 

Any pattern will be assigned to the barycenter which is nearest to it, 
which without loss of generality, may be considered to be a barycenter of 
class 1, being composed of entities in class 1. The probability that the pattern 
considered will result not of class 1 is (1 — p) which is the probability that a 
new barycentre will be formed. As the number of patterns are n, the result 
follows. 
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T h e o r e m 6. Let the probability that a pattern belongs to class 1 be p. The 
number of barycenters formed from the application of the T . R . A . C . E . algo-
rithm, which are required to partition correctly a subset S, containing Ug > a 
non-spurious patterns is bg < Ug, yug > a. 

P R O O F : If the classification is not spurious, by definition 6, without loss of gen-
erality, the following relationship between the conditional and unconditional 
probabilities holds for one or more subsets Sk^Sh G X, Sh(^ Sk = 0: 

pr{y, = 1 I (x„ y,) n Sk} > pr{y^ = 1 | (x„ y,) H X} = p (12) 

pr{y, = 0 I (x„ y,) n Sh} < pr{y^ = 0 | (x„ y,) H X} = {1 - p) (13) 

Thus on the basis of the algorithm, for the subsets Sk(^X the probability 
tha t a new barycenter of class 1 will be formed, because one or more pat terns 
result closer to a pat tern of class zero, is less than (1 - p) . In the set 5̂ /̂ , H X , 
the probability tha t pat terns of class one will appear, is less than p, so tha t 
the probability tha t a pat tern will be formed is less than p. 

Thus if the number of pat terns present in the dominant subsets Sk(^X is 
Uk while the number of pat terns present in the subsets 5̂ /̂  n X is n/^, the total 
number of barycentres for the pat terns of class 1 will be: 

^s < (1 -p)nk^pnh (14) 

As 77,5 = Uk -\- rih, there results bg < Ug, Vng > a. 

Corol lary 2. The Vapnik-Cervonenkis dimension (VC dimension), s{C,n) 
for the class of sets defined by the T . R . A . C . E . algorithm, restricted to the 
classification of a non-spurious data set which is piecewise separable, with 
rig > a elements and two classes, is less than 2'^' [15]. 

P R O O F : By theorem 6 the number of different subsets formed is bg < Ug < 2'^^ 
whenever rig > a and the da ta set is not spurious . 

T h e o r e m 7. Let C be a class of decision functions and V̂ * be a classifier 
restricted to the classification of a data set, which is not spurious and re-
turns a value of the empirical error equal to zero based on the training sample 
(^1,^2, ...,Zn). Thus, Inf^^cL{tlj) = 0̂  i.e. the Bayes decision is contained in 
C. Then [4] 

pr{L{rn)>e}<2s{C,2n)2^ (15) 

By calculating bounds on the VC dimension, the universal consistency 
property can be established for this diagnostic algorithm applied to the clas-
sification of a da ta set which is not spurious. 

Corol lary 3 . A classification problem with a piecewise classifier and a piece-
wise separable training set is strongly universally consistent [12] 
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2.4 E x p e r i m e n t a l Cons idera t ions 

A spurious collection of entities in which there are no similarity relations 
may occur and should be recognized. Wi th the T . R . A . C . E . algorithm, this 
occurrence is easily determined, since many barycenters are formed, almost 
one per object. Such spuriousness may arise even in the presence of some 
meaningful relationships in the da ta which are swamped by noise. In this case 
da ta reduction techniques may be useful [12, 16]. 

The experimental setup used in this chapter must consider a training set 
and a verification set, whose class membership should be known, so tha t the 
accuracy in classification can be determined. Thus, to verify the algorithm, 
the training set, can be split by non-repetitive random sampling into two 
subsets, one used in training and the other for verification. Often a split 90% 
for training and 10% for verification is a nice balance which yields appropriate 
s tandard errors of the estimates. To obtain the probable error estimate, the 
process is replicated 150 times. 

The da ta coherence problem [12] may arise when the training set is very 
small. In such a set, an object may form a distinct barycenter set if it is very 
different from other objects with the same classification. If this item falls in 
the training sample, then it will be set aside to form a distinct barycenter 
set which will be composed of a singleton element. If instead it appears in 
the verification set, then it will be classified wrongly because there will be 
no other similar barycenter in the training set since it is a singleton and will 
be nearer to a barycenter of another class. If this were not so, in training it 
would not have formed a new barycenter. Thus, because of the reduced size 
of the sample, classification errors will be made, which would not be made if 
the training set were larger. 

This phenomenon, akin to under-sampling, is due to the structure of the 
training and da ta sets tha t have randomly occurred which may not be col-
lectively exhaustive. Thus, the training set should be consistent with regard 
to the pat terns in both sets. The presence of different similarity structures in 
the two sets certainly indicates tha t changes have occurred in the sets. Hence, 
if small verification samples are involved, the verification instances should be 
selected by a stratified sample routine instead of a simple random sample 
selection process. The sample design should sample less than proportionally 
those objects tha t appear in very small groups. In practice, instead of defin-
ing these probabilities for each barycenter group, a biased verification sample 
is formed by excluding from the selection those objects which are assigned 
to singleton barycenters and restricting to not more than half those objects 
which are assigned to these subgroups with low consistency [7]. This sampling 
method will provide an asymptotic precision rate as the sample increases if 
the da ta set is coherent [3, 12]. 

In classification, the whole training set is used to determine the classifier. 
When a new pat tern of unknown class is given, its distance is determined from 
each of the available barycenter vectors and then it is assigned to the class 
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of the barycenter which is the closest to it. As it can be seen, this algorithm 
may be slow in training, but it is extremely fast in recognition since only a 
matr ix vector product operation followed by the determination of the smallest 
element is involved. 

A further refinement can be applied. Since the number of objects, which 
define every barycenter, is known, relative certainty levels may be assigned to 
this classification. Thus, if an unknown pat tern is assigned to a class on the 
basis of the closest barycenter, as required, and the latter is formed from a 
consistent number of objects, then this pat tern is said to be classified in the 
certain category. If the number of objects defining this barycenter is limited, 
then it can be classified in the probable category and so on. 

An iterative correction procedure can be enacted in the presence of impre-
cise classifications. The classes in the training set may be assigned because of 
sure at tr ibutions, such as when a person has died, or the autopsy has been 
performed. On the other hand, in many diagnostic procedures, there may be 
some imprecision in their classification. If the training set is large, the verifi-
cation error rate will be small and purely due to sampling variation because 
the sample set is limited. 

By performing the replication of the da ta set as described above, objects 
will appear in the verification set about fifteen times in every 150 replications. 
Thus, if the object should result misclassified with respect to its actual clas-
sification, say two-thirds of the times, then the actual classification can be 
considered imprecise and the class can be corrected to the class to which it 
has most frequently been assigned by the algorithm in the verification process. 
When all misclassified pat terns have been corrected, the training and verifi-
cation procedures are applied anew on the corrected da ta set [3]. The whole 
process is known as classification with an imprecise teacher. 

Finally, the pat terns with unknown classification may in certain circum-
stances be assigned also by a majority rule obtained by the replication of a 
number of different classification procedures or different sampling procedures 
[14]. 

By using T . R . A . C . E . this way for sufficiently large samples, precise clas-
sification results can be obtained and the changes in the characteristics of the 
da ta set can be followed. 

3 Alport Syndrome 

The Alport syndrome (AS) is a hereditary disease of the basement membranes 
with a prevalent genetic inheritance link with the X-chromosome. This disease 
occurs in families tha t are autosomic recessive, or rarely tha t have a dominant 
inheritance. Sporadic cases have also been reported [1, 9, 10]. 

The basement membrane damage is mostly evident in renal glomeruli. The 
usual diagnostic process consists of electron microscopy of kidney biopsies. The 
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syndrome, in fact, arises from a defect of the encoding of genes for isoforms 
of type IV collagen ce-chains [2]: 

• COL4A5 gene on chromosome-X and encoding for COL IV ces-chain (X-
linked AS), 

• COL4A3 and COL4A4 genes on chromosome 2 and encoding for COL IV 
ces and ce4-chains (autosomic AS). 

The Alport syndrome has a variable clinical expression and consists of the 
following: 

• childhood haematuria, 
• progressive renal failure, 
• high tone sensorial deafness, 
• minor ocular lesions. 

The severity of the disease varies among different families and the pathol-
ogy is difficult to diagnose. A careful analysis of renal biopsies though, based 
on a number of morphological criteria identified through the electronic micro-
scope, is helpful even though these are not pathognomonic to the disease. 

To diagnose the pathology, the following morphological changes to the 
renal glomerular basement membrane should be considered [9]: 

1. Thinning of the membrane. The glomerular basement membrane thick-
ness is age related, so this criterion must be carefully applied and is not 
applicable to children under 3 years of age; 

2. Non-specific thickening, which is defined by the presence of peculiar lam-
ina densa changes; 

3. Splitting or lamellation defined as the repentine forking of the lamina 
densa to form two or three unconnected parallel layers; 

4. Basket weaving or reticulation, characterized by an irregular thickening 
of the glomerular basement membrane with a complex replication of the 
lamina densa, transformed into a heterogeneous network of membraneous 
strands. 

None of these electron microscope findings are pathognomonic of AS, al-
though splitting and basket weaving of the glomerular basement membrane 
are considered major changes and are assumed to be cardinal for a diagnosis. 

The possibility of these alterations leads to the definition of three lev-
els of diagnosis for this pathology, based on the features of renal glomerular 
basement membrane indicated above: 

1. Features consistent with AS (presence of AS): 
• all 4 features regarding the glomerular basement membrane are present, 
• or 3 or more of these major features are extensively found. 

2. Features part ly consistent with AS (segmental AS): 
• 2 of the major features are lacking. 
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• or lesions present have a segmental distribution. 
3. No morphological evidence of AS: 

• none of the major changes indicated above are present, 
• or thinning and/or non-specific thickening found sometimes. 

As it can be seen, diagnosing AS is a difficult task due to the non-specificity 
of the ultra-structural investigation of the renal biopsies and of the molecular 
genetic analysis of the ce-chains [2], although in combination this diagnostic 
process may be useful even though it is rather complex. 

The specificity of the diagnoses varies with age, sex and family history but 
the combination of the ultra-structural investigations of kidney biopsies and 
the molecular genetic analysis of the ce-chains leads to a sensitivity precision 
of about 92%. 

Regarding this syndrome, there is a form of a paradox, referred to as 
the skin paradox. The ce-chains are present both in the kidneys and in the 
skin, but at the epidermal level no morphological defects are encountered. 
Immunofiuorescence investigations using antibodies against ce5(/y)-chains is 
routinely used as an additional tool to diagnose the disease. Absence or seg-
mental distribution of the signal is considered to be highly suggestive of the 
Alport Syndrome. It has recently been shown tha t the absence or a segmental 
distribution of as{IV)-chdim along the epidermal basement membrane is as-
sociated with an increased intensity of a fiuorescent signal using a monoclonal 
antibody against collagen type VII, which is usually present along the dermal 
epidermal junction [8]. 

With immunofiuorescence, the abundance of collagen VII can be quanti-
fied. This may be related to the diagnostic levels of the syndrome, as it appears 
to substi tute the missing type IV collagen in patients who are afilicted with 
this pathology. Thus there must be apparent differences in the texture of the 
skin if this relationship holds. 

If it is t rue tha t collagen type VII substitutes in the skin for collagen IV 
for patients afflicted with the Alport syndrome, then the pathology should 
be diagnosable at the electron microscopic level using skin samples [1]. Since 
there must be apparent and recognizable differences in the texture of the skin, 
these differences should be recognizable by a suitable classification algorithm. 

4 Experimental Results 

This section describes the methodology and results of the experimentation 
of T . R . A . C . E . regarding the classification of patients into three diagnostic 
classes of the Alport Syndrome. 

Specimens of skin were considered, which included the epidermal basement 
membrane. Samples were prepared in order to take images under the electronic 
microscope. 

Briefiy, punch biopsies of the skin were fixed in 4 % buffered formaldehyde, 
post-fixed in a 1 % buffered Osmium Tetraoxide and embedded in Epon. Thin 
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(120 — 150 nm (nanometers)) sections were cut with Reichert-Jung ultrami-
crotomer and collected onto copper grids, stained with uranyl acetate and 
lead citrate and observed under a Philips CMIO Transmission electron micro-
scope. All samples were observed and photographed at the same magnification 
(11500X). 

All the photographs were then analyzed by the pathologists but no signif-
icant differences were detected. Therefore, T . R . A . C . E . was applied. 

4 .1 Training a n d Verif icat ion 

Nine patients were considered and grouped as follows: 

three patients were diagnosed with the presence of AS, 
three patients were diagnosed with the presence of segmental AS, 
three individuals without AS were used as controls. 

From each individual a skin specimen was examined. Approximately seven 
images were taken of different areas of the biopsy, so tha t there were obtained 
27 distinct images representing a diagnosis of the presence of AS, 28 images 
representing a diagnosis of the presence of segmented AS, and 21 images 
representing a diagnosis of normality. From each image 5 sub-images were 
randomly selected. Thus, 354 sub-images were formed, tha t is, there were 
129, 125 and 100 sub-images respectively in each category. 

From the image pixel maps, central moments were obtained in the horizon-
tal and vertical direction. The first moment was identically zero, so pat terns 
were formed with 5, 10, 15, moments in each direction. A better feature ex-
traction procedure turned out to be the definition of histograms of the pixel 
distribution, which are bivariate frequency functions. Central moments were 
determined on these structures [1]. 

A series of experiments was performed with simple non-repetitive sampling 
on various pat terns with different moments and on various feature extraction 
implementations. The results of these experiments for some selected feature 
extraction methods are given in Table 1. 

In column 1 of Table 1, various feature extraction procedures are indi-
cated. For each procedure in column 2 the mean precision over 150 trials is 
presented, while in column 3 the s tandard error of the mean precision is given. 
In columns 4 and 5 the best and the worst precision results over the run are 
given. The results indicate tha t in all cases the precision is significantly dif-
ferent, since a random assignment would exhibit a mean precision of 0.3333 
with three classes. Thus, T . R . A . C . E . algorithm does in fact classify the pat-
terns, although with a significant error. This is not surprising as the sample 
of individuals is very small. There were nine individuals and 71 images from 
which 354 sub-images were drawn. Hence, we can expect sampling variation 
to be high. Many other pat tern recognition techniques were also tried, but to 
little avail providing results similar to those obtained with T . R . A . C . E . [1]. 
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Table 1. Classification results for the verification of Alport syndrome sample derived 
from non-repetitive random sampling. 

Pixel distribution (5 moments) 
Pixel distribution (10 moments) 
Pixel distribution (15 moments) 

histogram (5 moments) 
histogram (10 moments) 
histogram (15 moments) 

Mean precision 

0.4425 
0.4367 
0.4226 
0.4970 
0.5000 
0.4734 

Standard error 

0.0066 
0.0066 
0.0065 
0.0066 
0.0067 

0.09066 

Best 

0.6111 
0.6000 
0.5833 
0.6750 
0.7200 
0.7027 

Worst 

0.2308 
0.2500 
0.2500 
0.2500 
0.2600 
0.3243 

As it can be seen from the table, the histogram feature extraction technique 
fares somewhat bet ter than the central moment in the orthogonal directions 
of the moments of the distribution of the pixels. Although the results were 
statistically significant, it was deemed tha t the proper coherency transforma-
tion was worthless in this environment. Hence, the specimens were subjected 
to a stratified sampling procedure, and the obtained results are reported in 
Table 2 using the same format as in Table 1. 

Table 2. Classification results for the verification of Alport syndrome sample derived 
from non-repetitive stratified sampling. 

3 moments 
5 moments 
15 moments 

histogram (5 moments) 

iMean precision 

0.6465 
0.7145 
0.7060 
0.8215 

Standard error 

0.0070 
0.0067 
0.0067 
0.0056 

Best 

0.8667 
0.9355 
0.9091 
0.9643 

Worst 

0.4546 
0.5161 
0.4194 
0.6563 

Although the results are satisfactory, they can be improved. The principal 
requirement is to enlarge the sample, as the whole structure of the classifica-
tion problem shows tha t there is still abundant variability. 

Thus, ten specimen were extracted from the sample randomly. It was en-
sured, however, tha t three were selected from each diagnostic category, while 
the tenth specimen was of the non-pathological class. The iterative classi-
fication procedure was a t tempted on 150 trials as indicated, choosing a ten 
percent verification sample every time. The ten preselected instances appeared 
in classification about 15 times on average, so they were assigned by the ma-
jority rule to a class. The results of this experiment are reported in Table 
3. 

This technique yields bet ter results with an 8% improvement over the 
previous procedure. The obtained result is satisfactory, although efforts are 
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Table 3. Classification by the iterative procedure of 10 patients with regard to the 
Alport syndrome 

[ [[Class 11 Class 2 |Class3| Assigned class [Correct class [ 
I Specimen 1 (pattern 51) |[ 0.19 | 0.26 | 0.55 | 3 I 1 I 

Specimen 2 (pattern 61) 0.86 0.07 0.07 1 1 
Specimen 3 (pattern 94) 0.65 0.0 0.35 1 1 
Specimen 4 (pattern 215) 0.39 0.61 0.0 2 2 
Specimen 5 (pattern 224) 0.30 0.70 0.0 2 2 
Specimen 6 (pattern 226) 0.0 0.64 0.36 2 2 
Specimen 7 (pattern 307) 0.01 0.10 0.89 3 3 
Specimen 8 (pattern 318) 0.17 0.0 0.83 3 3 
Specimen 9 (pattern 333) 0.03 0.16 0.81 3 3 

[Specimen 10 (pattern 343)|| 0.10 | 0.09 | 0.81 | 3 [ 3 [ 

being enacted to further improve the precision to higher levels; and in the 
limit for a sufficiently large sample, achieve recognition with probability one 
[12]. 

4.2 Classification in two classes of a sample with unknown 
diagnoses 

To further study the classification performance of this algorithm, an additional 
series of tests were performed. First, it was felt that the reduction to two 
classes by merging one of the three classes might lead to a more meaningful 
classification. 

Table 4. Classification results for 2 classes from the verification of Alport syndrome 
sample derived from non-repetitive random sampling 

[ [[Mean precision [Standard error I Best | Worst [ 
I 3 moments(12),(3) [1 0.6384 i 0.0074 |0.8333|0.4286| 

3 moments(l),(23) 0.6328 0.0074 0.8333 0.3793 
3 moments(13),(2) 0.6299 0.0074 0.85710.4167 

histogram (5 moments)(12),(3) 0.6130 0.0076 0.8056 0.4571 
histogram (5 moments)(1),(23) 0.6073 0.0077 0.7949 0.4000 
[histogram (5 moments)(13),(2)II 0.7542 | 0.0063 |o.9024|o.5833[ 

Table 4 presents the results of the classification of the sample when it has 
been aggregated into two classes. In column 1 the feature extraction method 
is indicated and then the grouping of the three classes into two classes is 
reported. Thus, the obvious notation (12), (3) indicates that class 2 has been 
merged with class 1 and class 3 is considered alone. 
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All the results are significantly different from equiprobability, which in 
this case is one-half since there are only two classes. But the most interesting 
feature is the result for the classification of the sample when the diagnosis of 
the presence of AS and presence of segmented AS are merged in a pathological 
category to be contrasted to a normal category. The results appear in the last 
row of Table 4. 

Another set of thirteen patients was proposed for diagnosis. The method-
ology was identical to the one described, except tha t the whole training set 
of 354 pat terns was used. On the basis of the barycenters formed from this 
classification, the thirteen new patients, represented by seven images for each 
biopsy from which 465 sub-images in total were formed and classified. 

Table 5. Classification of 13 patients with regard to the Alport syndrome in 2 
classes on the basis of the majority rule. 

Patient f2 
Patient f3 
Patient f4 
Patient f5 
Patient f6 
Patient f7 
Patient f8 
Patient f9 

Patient flO 
Patient fl2 
Patient fl3 
Patient fl4 
Patient fl5 

class 1 

19 
23 
28 
27 
25 
27 
10 
15 
14 
29 
29 
22 
23 

class 2 

16 
12 
12 
8 
10 
8 

25 
25 
21 
6 
6 
13 
12 

total 

35 
35 
40 
35 
35 
35 
35 
40 
35 
35 
35 
35 
35 

assigned class 

i 
1 
1 
1 
1 
1 
2 
2 
2 
1 
1 
1 
1 

The classification of this blind set on the basis of the majority rule gave 
the results reported in Table 5. Patients were given a code number and 35 
or 40 sub-images were obtained for each from the skin biopsy by an identical 
procedure as the one described above. The number of times tha t the images of 
a patient were classified in class 1 (pathological diagnosis) or class 2 (diagnosis 
of normality) are given in columns 2 and 3 respectively. The total number of 
images classified for each patient are reported in column 4, while in column 5 
the class assigned by the majority rule is given. 

Subsequently, the correct classification was communicated for part of the 
classification sample considered, which is presented in Table 6. As it can be 
seen on the basis of these results, the precision rate was 0.6250. 
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Table 6. Comparison of the assigned class and the correct class for Alport syndrome 
for part of the classification sample. 

assigned class 
correct class 

\n_ f8 

2 
1 

f9 

2 
2 

flO 

2 
2 

fl2 

1 
2 

fl3 

1 
2 

fl4 

1 
1 

fl5 

1 
1 

Table 7. Classification of 5 patients with regard to the Alport syndrome in 2 classes 
on the basis of the majority rule. 

Patient f2 
Patient f3 
Patient f4 
Patient f5 
Patient f6 

1 class 1 

18 
20 
35 
30 
27 

class 2 

17 
15 
5 
5 
8 

total 

35 
35 
40 
35 
35 

assigned class 

1 
1 
1 
1 
1 

The training set was enlarged to 639 pat terns with these new images, and 
the rest of the classification sample was classified again. The results are given 
in Table 7. The precision in this case was equal to 1.0000. The pat terns f2 
and f3, though, would appear to be less sure based on intuition. However, the 
process is nonlinear, so no significance can be given to the distance criterion. 

Table 8. Classification results for 2 classes from the verification of Alport syndrome 
sample derived from non-repetitive random sampling 

histogram (5 moments)(13),(2) 
histogram (5 moments)(13),(2) 

[Mean precision 

0.6651 
0.8510 

St. error 

0.0068 
0.0055 

Best 

0.8154 
0.9294 

Worst 

0.4849 
0.7073 

n.patterns 

639 
819 

The last experiment was performed. The original training sample was 
merged with the new samples. This was accomplished by increasing first the 
items in the training set to 639 and then increasing the number of pat terns 
to 819, by making use of all the images available. 

The algorithm was run again 150 times by first removing ten percent of 
the sample to form the verification set and then performing the training of 
the classifier with the rest of the sample. The results are presented in Table 8. 
In this table, the results are reported in an identical way to those in Tables 1 
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and 4. Notice that the classification accuracy of the sample of 639 instances in 
Table 8 is lower than the result obtained with just a sample of 354 instances, as 
indicated in Table 4. The classification accuracy increases substantially when 
the sample is enlarged to 819 patterns. This is not exceptional and indicates 
that sampling variability is still present, due to the small number of considered 
cases (only 22 cases total). 

5 Conclusions 

The Alport Syndrome is a severe pathology which is difficult to diagnose and 
if not identified early leads inevitably to death. The traditional difficulties 
involved in diagnosing such a pathology have been indicated in this chapter. 
Essentially, the malfunctioning of chromosomes on certain genes is responsible 
for the pathology. This malfunctioning may not trigger a pathological state, 
but may lead to the gradual development of the pathology which will progress 
eventually towards end stage renal disease. 

It is imperative that potential patients are periodically tested for this 
disease and if diagnosed the whole family group must be subjected to the 
same tests, as this pathology is family related. Moreover, to have a chance 
to provide an early cure, invasive tests must be performed periodically even 
on young children. It may be that this can be avoided, through the technique 
described, in which a fragment of skin is used to determine the condition of the 
person. This procedure can be repeated as often as desired. At the moment, 
if the estimates are fulfilled there may be about a two percent approximate 
difference in the sensitivity of the techniques. The invasive technique has a 
precision of about 92% and the image recognition technique has a precision 
of 90%. The work in progress is to increase the sample size, which should 
increase the precision [12], and to apply other transformations to stabilize the 
data set without losing beneficial information. 

It may turn out that a series of genetic disorders are at work, but these 
give rise to more or less the same set of symptoms. In this case it might 
be advisable to proceed to a different classification of the disease, i.e. by 
considering the presence of each diagnostic criteria and their combinations as 
different pathological classes. 

If, for a sufficiently large training set, this information is available, one 
could run T.R.A.C.E. on this data set and assess the diagnostic analysis. 
In this way a whole series of diagnostic experiments can be repeated by de-
termining the classes in alternative ways. Some might be fruitful and others 
might not, since they would disregard the important aspect of clinical insight. 

Pattern recognition methods are valuable if a high precision is reached, so 
as to provide a high precision in the classification results. Thus, only those 
techniques that give demonstrable precise results both in theory and in prac-
tice, supported by a complete theoretical analysis of its properties without 
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extraneous assumptions, such as specific parametric distributions, should be 
applied [12], since a reliable analysis which should save lives is at stake. 

The important contribution of this chapter to Alport Syndrome studies is 
that it has been shown that, indeed, the absence of ces-chain in the skin is 
associated with the modification in the epidermal basement membrane of such 
patients and that these changes can be detected by a classification algorithm, 
although apparently not by expert clinicians directly. 
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Summary. The aim of this chapter is to present a classification algorithm and its 
application to an initial set of 156 patients afflicted with dementia syndromes and 
classified by clinicians in the categories of probable Alzheimer, possible Alzheimer 
or vascular dementia pathologies. It will be shown that the diagnoses of dementia 
patients by this method is very accurate, and that the classification criteria can be 
transformed into suitable clinical factors, which can then be interpreted by clinicians. 
This formal implementation suggests that recent research on the general diagnosis 
of dementia can be confirmed. 

1 Introduction 

Diagnostic procedures should apply as widely as possible, to recognize the 
pathological instances and correctly refute all those instances tha t have some 
of the symptoms, but not the pathology. In accordance with the scientific 
method, such procedures should be formal, devoid of value judgements and 
replicable across place and time. 

The eflBcacy of a diagnostic procedure is usually studied through an appro-
priate statistical design of experiments, [3, 9] identifying summary measures 
of the pathology or t reatment effects without chasing after the outliers or 
the vagrant outcome. The objective of statistical analysis is to summarize 
the principal characteristics of the objects being studied in a few meaningful 
measures or by functional relationships [24]. The emphasis is on summary 
descriptors and not on interpreting all possible outcomes. Thus it would be 
surprising if statistics were to satisfy medical needs completely. 

In clinical analysis it is desired to diagnose correctly every patient which 
appears to have the pathology. In pursuing the pathologies wherever and 
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however they occur, knowledge is obtained and one is better able to help 
patients in their recovery. The objective in medicine therefore regards high 
diagnostic precision, but this ideal is rarely achieved and in particular for 
the diagnosing of Alzheimer's disease and vascular dementia, there are many 
conceptual and implementation difficulties. 

The aim of this chapter is to present an algorithm for accurate classification 
of patients afflicted with dementia syndromes and apply it to a set of patients 
to show how the formal characteristics obtained from the application can be 
transformed into clinical terminology and indicate various aspects of recent 
research, which are confirmed by this methodology and these results. 

Alzheimer's disease is the most common form of a complex set of symp-
toms leading to dementia which involve motor, cognitive and physical degener-
ation. Ultimately it causes the slow destruction of brain cells [10]. Considered 
a rare pathology in the past, today Alzheimer's disease represents an im-
portant epidemiological, clinical and social phenomenon. The disease reduces 
life expectancy as the average expected survival t ime is 6-8 years. The cause 
of death is most commonly recurrent pathologies (e.g., bronchopulmonary 
pathologies). 

Although the symptomatological framework is typical of patients afflicted 
with dementia, the actual symptoms presented vary greatly from individual to 
individual, often due to other related pathologies which may affect the patient. 
Many of the principal characteristics of Alzheimer's disease are not specific, 
so tha t a diagnosis can only be made by evaluating the available symptoms in 
a complex way, as the symptoms are conditional on other pathological states 
which afflict the patient [46]. 

Previously, it was thought tha t the disease affected all the associative 
areas of the brain cortex in a diffused and undifferentiated way. Lately, neu-
ropathological studies have shown tha t both the initial localization of the 
histopathological lesions, typical of Alzheimer's disease, and their progression 
in t ime present very specific aspects [45]. 

The characteristics tha t differentiate a brain of a healthy elderly person 
from tha t of one afflicted by Alzheimer's disease are purely quantitative. In 
both cases, there is a reduction in the mass and the volume of the organ, a 
dilation of the ventricular cavities at the level of the cortex, an enlargement of 
the grooves on the surface and a thinning of the cerebral circular components. 
In Alzheimer's disease, there is an exasperation of the loss of cerebral mat ter 
in the reduction of the hemispheric volume and mass of the organ with regard 
to controls of similar age. A number of specific degenerative aspects have 
been reported in the brain of Alzheimer patients, such as diffuse plaques 
[34], neocortical neurofibrillatory tangles [5] and neuronal loss [17], but these 
vary with the progression of the disease and do not correlate across patients. 
Moreover these are diffused within the cerebral matter , so a precise analysis 
of their s tate and their progression can only be determined after death [8]. 

There are a number of characteristics tha t are thought to be risk factors 
of this disease, such as age, genetic t rai ts and familiarity [1]. The putative 
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risk factors, which are thought to affect the process, are sex (more females 
than males are affected) [42], level of instruction: people with lower levels 
of education may be affected more than proportionally [45], cardiovascular 
diseases, smoke, alcohol, depression and head injuries [42]. 

Thus the diagnosis of Alzheimer's disease remains primarily dependent 
on clinical assessment [49]. Historically, clinical diagnostic accuracy has var-
ied due to the use of multiple sets of broadly based diagnostic criteria. A 
notable advancement occurred with the introduction of standardized clinical 
criteria [29] which contributed to improved diagnostic accuracy and allowed 
meaningful comparisons of results from therapeutic trials and other clinical 
investigations [49]. Further, recent results indicate that the use of a com-
puterized system with binary decisions (yes/no) increased the specificity of 
diagnoses when compared to standard clinical diagnosis [21]. It is held that 
the improvement observed is due to the fact that in normal practice, the clin-
ician's overall impression of a case may lead to a less strict application of the 
criteria [21]. 

It will be shown in this chapter that computer programs can achieve size-
able improvements in diagnostic accuracy and that the major confounding 
factor is the abundance of noisy partial information. The presence of too 
many diagnostic elements that must be considered will induce a clinician to 
rely on his overall impression, since he cannot individually weigh many par-
tially confiicting diagnostic elements which contain noise. 

The consideration of all these aspects will give rise to a model of diag-
nosis, exceedingly complex, often with contradicting evidence [28] difficult to 
formalize and thus open to subjective evaluations. On the other hand, all these 
symptoms may be connected in some form, so that a few aspects extracted 
from the set of neuropsychological tests are sufficient to provide the necessary 
diagnostic evidence. 

Accordingly, in the next section on Methods and Materials, the clinical 
characteristics of the sample will be presented and the procedure to carry out 
this selection of independent symptoms will be described, called T .R.A.C.E. 
(Total Recognition by Adaptive Classification Experiments), originally pro-
posed [14], whose convergence results were proven [38]. In the section on Re-
sults, the outcomes of these experiments will be examined. Then in the Dis-
cussion section, the transformations to carry out on the medical diagnostic 
techniques and some other aspects will be specified. Finally, the appropriate 
conclusion will be drawn. 

It will be seen that the method presented is powerful enough to reveal new 
aspects and relationships and thus lead to knowledge discovery. 

2 Methods and Materials 

The study was conducted on 156 patients, 103 females and 53 males who 
endured an initial visit during the period 1999-2001 at the clinical facilities 
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south of Rome (Aquino and Sora), under the auspices of a major Italian 
research project called "the Cronos Project" [15]. 

2.1 T h e D i a g n o s t i c P r o c e d u r e 

Dementia is a group of clinical syndromes characterized by multiple cogni-
tive deficits in an alert patient sufficient to interfere with daily activities and 
quality of life. Dementia represents a decline from previously higher levels 
of cognitive function. Operationally, a demented patient conducts customary 
activities poorly relative to past performance because of cognitive loss [49]. 

Many diseases are known to cause dementia and new ones are still being 
recognized. The term "dementia" does not imply a prognosis. Some dementia 
are fully t reatable and others do not have effective t reatment at the present 
time. Therefore it is increasingly important to accurately diagnose dementia 
so tha t reversible and treatable dementia are appropriately managed [23]. 

The most common forms of dementia is Alzheimer's disease and vascular 
dementia, with the former being more common in Western countries, while 
the latter is more common in the Far East [27, 11]. 

For patients with dementia symptoms, but which had not been assigned 
to other categories of dementia, such as dementia due to Parkinson's disease, 
dementia with Lewy bodies, HIVS/AIDS dementia. Pick's disease etc. [18], 
three diagnostic categories were considered, based on specific criteria formu-
lated by the National Inst i tute of Neurological and Communicative Disorders 
and Stroke and The Alzheimer's Disease and Related Disorders Association 
(NINCDS-ADRDA) [29, 49]. 

Probable Alzheimer^s Disease: 

This represents the most confident level of antemortem diagnosis and is di-
agnosed when subjects present the typical course, including a gradual onset 
and progression of memory and other cognitive problems [49]. 

• Criteria for the clinical diagnosis of Probable Alzheimer's Disease are [29]: 

- Dementia established by clinical examination and documented by the 
Mini /Mental test; Blessed Dementia Scale, or some similar examination 
and confirmed by neuropsychological tests; 

- deficits in two or more areas of cognition; 
- progressive worsening of memory and other cognitive functions; 
- no disturbances of consciousness; 
- absence of systematic disorders or other brain diseases tha t in and of 

themselves could account for the progressive deficits in memory and 
cognition. 

• The diagnosis of Probable Alzheimer's disease is supported by: 
- progressive deterioration of specific cognitive functions such as lan-

guage (aphasia), motor skills (apraxia) and perception (agnosia); 
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- impaired activities of daily living and altered pat terns of behavior; 
- family history of similar disorders, particularly if confirmed neuropatho-

logically; 
- laboratory results should include: 

normal lumbar puncture as evaluated by s tandard techniques; 
normal pat tern, or non-specific changes, in EEG such as increased 
slow-wave activity; 
evidence of cerebral atrophy on computed tomography with pro-
gression documented by serial observation. 

• Clinical features consistent with the diagnosis of Probable Alzheimer's dis-
ease, after exclusion of causes of dementia other than Alzheimer's disease, 
include: 
- plateaus in the course of progression of the illness; 
- associated symptoms of depression, insomnia, incontinence, delusions, 

illusions, hallucinations, catastrophic verbal, emotional or physical out-
bursts, sexual disorders, or weight loss; 

- other neurologic abnormalities in some patients, especially with more 
advanced disease and including motor signs such as increased muscle 
tone, myoclonus or gait disorder; 

- seizures in advanced disease; 
- computed tomography normal for age. 

• Features tha t make the diagnosis of Probable Alzheimer's disease uncertain 
or unlikely, include: 
- sudden apoplectic onset; 
- focal neurological findings such as hemiparesis, sensory loss, visual 

fields deficits and incoordination early in the course of the illness; 
- seizures or gait disturbances at the onset or very early in the course of 

the illness. 

Possible Alzheimer^s Disease: 

This is diagnosed when the patient presents an atypical course of dementia 
(e.g. language problems as an early feature) or when there is a coexistent 
potentially dementing illness, although Alzheimer's Disease is thought to be 
the primary cause of the progressive dementia [49]. 

• evident dementia syndrome; 
• absence of neurological, psychiatric, or systematic disorder a t t r ibutable to 

the dementia; 
• onset of variations of the disorders during the appearance and development 

of the illness; 
• presence of a secondary systematic or cerebral illness, susceptible to pro-

duce a demential syndrome, but which is not considered as the cause of 
this dementia; 
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• may be used as a category in clinical research when a severe and progressive 
cognitive deficit is identified in the absence of the identification of other 
causes. 

The NINCDS-ADRDA criteria have been adopted by the multi-center 
Consortium to establish a Registry for Alzheimer's Disease (CERAD) [33] 
in which the clinical diagnosis of Alzheimer's disease has been validated in 
90% of the cases, after death, when the autopsy can be performed [16]. The 
use of standardized diagnostic criteria along with informant-based history has 
routinely yielded diagnostic accuracy rates of 85% or greater [4, 30, 16]. Note 
tha t none of these criteria utilize a biological marker for Alzheimer's Disease, 
while recent evidence indicates tha t such markers could be helpful in diagno-
sis, although none yet appear sufficiently reliable to warrant diagnostic use in 
the traditional way [37]. 

Vascular Dementia: 

This is considered as probable vascular dementia according to the National 
Inst i tute of Neurological and Communicative Disorders and Stroke and Asso-
ciation Internationale pour la Recherche et I'Enseignement en Neurosciences, 
(NINCDS-AIREN) criteria [43]. 

• Criteria for the clinical diagnosis of probable vascular dementia include all 
the following: 
- Dementia defined by cognitive decline from a previously higher level 

of functioning and manifested by impairment of memory and of two or 
more cognitive domains (orientation, attention, language, visual-spatial 
functions executive functions motor control and praxis). 

Inclusion criteria: 
Dementia established by clinical examination and documented 
by neuropsychological testing; 
Dementia of sufficient severity to interfere with activities of 
daily living not due to physical effects of stroke alone. 

Exclusion criteria: 
cases with disturbance of consciousness, delirium, psychosis, se-
vere aphasia or major sensorimotor impairment precluding neu-
ropsychological testing. 
Systematic disorders or other brain disease (such as Alzheimer's 
Disease) tha t could account for deficits in memory and cognition 
by themselves. 

- Cerebrovascular disease defined by the presence of focal signs on neu-
rologic examination, such as: 

hemiparesis, lower facial weakness, Babinski sign, sensory deficit, 
hemianopia and dysarthria consistent with stroke (with or without 
history of stroke); 
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evidence of relevant cardiovascular disease (CVD) by brain imaging 
(computed tomography or magnetic resonance imaging) including 
large-vessel infarcts or a single strategically placed infarct (angular 
gyrus, thalamus, basal forebrain, or posterior cerebral artery (PCA) 
or the anterior cerebral artery (ACA) territories; 
multiple basal ganglia, and white mat ter lacunes or extensive 
periventricular white mat ter lesions, or a combination thereof; 

- A relationship between the above two disorders manifested or inferred 
by the presence of one or more of the following: 

onset of dementia within three months of a recognized stroke; 
abrupt deterioration in cognitive functions; 
fluctuating or stepwise progression of cognitive deflcits. 

• Clinical features consistent with the diagnosis of Probable vascular demen-
tia include the following: 
- early presence of gait disturbance (small-step gait or marche a peti ts 

pas, or magnetic, apraxic-ataxic or parkinson gait ); 
- history of unsteadiness and frequent unprovoked falls; 
- early increase in urinary frequency, urgency and other urinary symp-

toms not explained by urologic disease; 
- pseudobulbar palsy; 
- personality or mood changes, abulia, depression, emotional inconti-

nence or other subcortical deflcits including psychomotor retardation 
and abnormal executive function. 

• Features tha t make the diagnosis of vascular dementia uncertain or un-
likely, include: 
- early onset of memory deflcit, progressive worsening of memory and 

other cognitive functions such as language (transcortical sensory apha-
sia), motor skills (apraxia) and perception (agnosia) in the absence of 
corresponding focal lesions on brain imaging; 

- absence of focal neurologic signs other than cognitive disturbances; 
- absence of cerebrovascular lesions on brain computed tomography or 

magnetic resonance imaging. 

Of particular importance to differentiate Alzheimer's type dementia from 
multi-infarct dementia is one of the alternative or modifled Hachinski scales. 
The Hachinski ischaemia score is given by assigning the full score of the clinical 
features considered to an individual or assigning zero in the absence of tha t 
feature. No intermediate scores are contemplated for the 2-point features: 
either two or zero. The features and their scores are given in Table 1. 

It is generally believed tha t a Hachinski score value less than or equal to 
two is a strong indication of the patient suffering from Alzheimer's disease, 
while a score value greater than four is considered as an indication of vascular 
dementia if these scores are accompanied in both cases by other supportive 
evidence. 
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Table 1. Hachinski Ischaemia score 
feature 

Abrupt onset 
Stepwise deterioration 

fluctuatung course 
nocturnal confusion 

relative preservation of personality 
Depression 

somatic complaints 

score 
2 
1 
2 
1 
1 
1 
1 

1 feature 
1 emotional incontence 

history of hypertension 
history of strokes 

evidence of associated atherosclerosis 
focal neurological symptoms 

focal neurological signs 

score 
1 
1 
2 
1 
2 
2 

Neuropathological studies of patients with dementia have revealed that 
cerebrovascular disease and Alzheimer's disease frequently coexist, suggesting 
that pure vascular dementia may be relatively rare and that mixed dementia 
may be more common than previously recognized [11, 16, 7, 20]. 

It has also been shown that the concomitant cerebrovascular disease helps 
to determine the severity of dementia among patients with Alzheimer's dis-
ease and thus the synergetic effects of the two pathologies may influence the 
cognitive decline of the patient [20]. Furthermore, even among relatively pure 
cases of vascular dementia and Alzheimer's disease, the clinical manifestations 
of those two dementia subtypes may not be fully distinct [32]. 

These criteria were applied to the sample considered and it was found 
that 111 patients were diagnosed with a form of dementia attributable to 
Alzheimer's disease (75 women and 36 men) and the remaining 45 (28 women 
and 17 men) had a form of dementia originating from vascular dementia. 
Furthermore, of the 111 patients afflicted with Alzheimer's disease, 69 received 
a diagnosis of Possible Alzheimer and 42 one of Probable Alzheimer. 

Each patient was administered the complete set of physical, neuropsycho-
logical laboratory and clinical tests to allow the clinicians to make a diagnosis 
among the three categories considered and assign a therapy. 

From the data set of each patient, a number of responses were singled out 
for the purpose of applying the classification algorithm. These are: 

• 7 variables of the Mini Mental State Examination (MMSE), 
• 7 variables from the Activities of Daily Living index (ADL), 
• 9 variables from the Instrumental Activities of Daily Living index(IADL), 
• the Hachinski Scale value, 
• the Global Deterioration Scale value (GBS), 
• 3 social variables ( sex, age and level of schooling), 
• 18 variable comorbility (IDS) tests, which are not administered to patients 

thought to have vascular dementia. 

Thus 28 variables are available, for all groups of pathologies, while up to 
46 variables had been collected for the Alzheimer patients. 

Except in some preliminary analysis, this additional data for a group of 
patients was of little use, since the main results of this chapter indicate the 
need for appropriate variable reduction procedures, which are better handled 
in the data set containing 28 variables per patient. 
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It is to be noticed tha t in line with the exclusion criteria for vascular de-
mentia diagnosis, patients with pronounced symptoms of Alzheimer's disease 
were not considered for vascular dementia, and vice versa. This aspect is, 
however, rather controversial, as recent research indicates tha t perhaps this 
exclusion principle should not be maintained. 

The ability to recognize distinctive pat terns of cognitive deficits, a t t r ibut-
able to cerebrovascular disease or to a cognitive syndrome is very important 
not only because it provides information regarding the clinical impact of varied 
brain lesions, but also because it facilitates the determination of the demen-
tia subtype (e.g. vascular dementia versus Alzheimer's disease) which can be 
helpful in patient management [12]. 

A recurrent problem in clinical diagnosis regards the rater reliability, or 
if comparisons are made, the interrater reliability [22]. This problem arises 
in decision processes, such as clinical diagnosis, in which human judgement 
must be exercised, which may make diagnoses not free of value judgements 
and therefore not replicable. To remedy this subjectivism, a decision tree 
approach can also be tried, as indicated in [21], where it resulted tha t the 
interrater consistency was much higher because of the formal procedures. 

The formal algorithm proposed below solves these problems in part and 
interrater reliability is high. By formal means another problem can be solved, 
also, the consistency of the criteria used and interpreted. 

The criteria applied may be contradictory. One such criterion has been 
indicated above, but there may be others and recent research results indicate 
tha t this is indeed so [11, 48]. 

Moreover, the replies may be coherent but they may contain noise. The 
satisfaction of many criteria is tan tamount to the multiplication of a number 
of measurements subject to noise together, which can be taken as a percentage 
of the measurement. However, such multiplication measurements with noise 
lead to the addition of the noise percentages, which will reduce the precision 
these evaluations may have. 

It will be seen tha t these problems are very important , but with the proper 
use of formal methods, such as the ones considered here, they can be reduced 
to manageable proportions, if not eliminated completely. 

2.2 T h e C las s i f i ca t ion A l g o r i t h m 

The algorithm indicated as T . R . A . C . E . (Total Recognition by Adapt ive 
Classification Experiments) is a statistical pat tern recognition procedure 
which converges under quite general conditions with precise results if cer-
tain properties of the da ta set are fulfilled [38, 36], as presented in this book 
in [39] regarding a companion application of the algorithm. 

However, in tha t application the da ta sets considered are pixel image maps, 
converted to frequency distributions, so tha t the mapping from the input space 
to the feature space is one to one. In this application, instead, the da ta sets 
consist of noisy measurements, permitt ing different patients with different 
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diagnoses to have similar pat terns. Also, in certain cases, the noise element 
may swamp the da ta set, so all pat terns receive approximately the same values. 

Thus instead of a syntactical description of the algorithm, which has been 
presented in [39], here we shall deal with the semantic aspects of the algorithm. 
This is concerned with the transformation of the da ta so as to retain its 
semantic meaning. Accordingly, the pat tern vector (the vector of measured 
characteristics), is in homomorphic relation to the feature vector (the reduced 
or transformed vector of characteristics), to maintain a homomorphic relation 
with the classification classes and thus make recognition possible. 

Genera l P r o p e r t i e s of t h e A l g o r i t h m 

The problem to be solved is to assign the patients represented by a series 
of appropriate measurements, based on the classification criteria indicated 
above, which will be called an instance, to the appropriate class of pathology, 
when it is not known. This classification is based on a similar set of instances 
whose class membership is however known (the training set). Thus we wish 
to learn the classification rules to apply to these entities, purely on the basis 
of their at t r ibutes, by using those tha t are known and available. 

Often, to verify the precision of the implementation, part of the training 
set is sacrificed to be used as a verification set, usually 10% of the total sample, 
by selecting the instances to be used in training and in the verification set with 
a random procedure and repeating this many times, usually 150. 

Suppose tha t a training set is given with a correct classification (this will 
be generalized below). Then from the pat terns of each class, a mean vector, 
called a barycenter, for each class can be formed. The distance (Euclidean or 
general) of each pat tern from the mean vector of each class can be determined. 
Out of all the pat terns which are closer to a barycenter of another class, choose 
the one tha t is furthest from the barycenter of its own class and select this as 
a new barycenter. 

Thus for some class, there are now two barycenters and all the pat terns 
of tha t class can be reassigned to one or other barycenter, depending on the 
distance of each pat tern of the class from the barycenters of tha t class. The 
pat terns in this class can then be repartitioned on the basis of their closeness 
to the two barycenters, so as to determine two new mean vectors for the two 
resulting subclasses of tha t class. 

Each class has a barycenter vector, except for one class which now has 
two barycenters. Calculate all distances anew and use the same criterion to 
determine a new pat tern to be used to form a new barycenter, and repeat the 
procedure again and again until all pat terns result nearer to a barycenter of 
their own class than to one of another class. The algorithm is then said to have 
converged and this will happen every t ime if some very mild conditions on the 
da ta set are satisfied and if the algorithm is allowed to run until convergence 
[36]. 
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If verification is being implemented, the assigned class is compared to the 
actual class of tha t instance and thus for every trial the proportion of correct 
classification can be determined. 

The accuracy of the classification of each instance can now be checked by 
comparing the classification assigned by T . R . A . C . E . to the actual classifica-
tion. 

In classification, a new pat tern of unknown class is given, its distance 
is determined from each of the available barycenter vectors and then it is 
assigned to the class of the barycenter which results closest to it. 

It can be shown tha t , for a large enough training set, the error rate in the 
classification of the da ta set can be bounded by a constant if it is allowed 
to run until convergence. In practice, given a finite sample, the precision in 
classification will depend on its size and the actual representation used, since 
some representations may require larger training samples for a sufficiently 
precise classification [36]. 

In the presence of some meaningful relationships in the da ta set, which 
may be however swamped by noise, the precision may fall drastically, because 
of the large component of confusion attached to the meaningful underlying 
relationships for a given size of sample. Still the convergence of the classifica-
tion to a sufficiently precise result can be proven. In this case, with such large 
inter class variances, due to noise, convergence may require extremely large 
training sets. Thus, in the presence of noise, suitable formal methods should 
be considered to isolate this noise component and use the meaningful part of 
the da ta to formulate the diagnosis [36]. 

Feature Se lec t ion 

Data samples may contain many characteristics of the patient or more gen-
erally of the object to be classified. These characteristics may be subject to 
imprecise measurements and so be subject to noise. 

Originally, questionnaires completed by the patient, his kin, and the clin-
ician are available, since any psychophysical test can be cast in this form and 
from these a pat tern vector for each instance is defined through a suitable 
procedure to transform the at t r ibutes recorded into a pat tern vector. Thus: 

Def in i t ion 1. A pattern set is obtained from an attribute set by a transfor-
mation of its elements so as to render the structure of a vector space, with a 
similarity measure defined on it or a binary relation defined on its components 
[38, 36]. 

The difference between the a t t r ibute space and the pat tern space is tha t 
the latter satisfies the triangular inequality, while the former may not, so any 
two vectors in tha t space may be incommensurable [38]. 

The pat tern space tha t emerges from this transformation may be too large, 
highly redundant and swamped by noise. Hence, it is considered worthwhile 
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to carry out a further transformation to remove these inconveniences as much 
as possible. 

It is to be noted tha t this is strictly speaking superfluous and is only 
valuable computationally, as defining a mapping from a pat tern space to a 
feature space and then defining another mapping from a feature space to 
the outcome space, is formally equivalent to defining a direct mapping from 
the pat tern space to the outcome space. Computationally, the results may 
be different as the ill-conditioning of matrices may be avoided, as well as 
redundancy and total random error due to error in the variables, both of 
which may be substantially reduced. 

Def in i t ion 2. A feature vector is obtained from a pattern vector by a (non)linear 
transformation, which is applied to all entities of the data set. When the trans-
formation is just a selection of certain elements of the pattern set, it is called 
feature selection, otherwise it is known as feature extraction [36]. 

There are many feature selection and extraction procedures [13, 50], but 
only three were considered in this chapter: 

• feature selection procedures: 
- Stepwise discriminant analysis [44]. 

Given a training set, the relevant pat tern elements are chosen sequen-
tially by determining the pat tern elements either in forward or back-
ward selection, using one of a number of statistical discrimination cri-
teria. Thus a reduced pat tern vector set is defined composed of just 
the elements tha t have been selected. 

- Classification and Regression Trees (CART) [31]. In most general 
terms, logical trees are built from the da ta to determine a set of if-then 
logical (split) conditions so as to build a logical tree with branching 
conditions at each node depending on the element tha t is split and a 
depth which is determined by the user depending on the desired pre-
cision. 
When this method yields good results, it has a number of advantages 
over other techniques, which are: 

simplicity: the interpretation of the results are straight forward, 
consisting in determining the value of the elements to be considered 
and establishing to which branch each element must be assigned. 
Reading the tree by descending a branch pa th leads to the determi-
nation of the intervals which must include the values of the pat tern 
elements for tha t diagnosis to result. 
tree methods are non parametric and nonlinear: as it is evident 
from the above description. The diagnosis does not depend on any 
implicit assumption between the predictor variables and the depen-
dent variables and continuous discrete or categorical variable can 
be considered just as easily. 

• feature extraction procedures: 
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- Principal Component Analysis [13, 24]. 
It consists of a very well known technique, which acts on the variance 
and covariance matrix of the da ta set and effects a diagonalisation 
determining its eigenvalues and its eigenvectors. A certain number of 
eigenvalues and their corresponding eigenvectors are retained. Through 
these eigenvectors the da ta matr ix is rebuilt, but this will have orthog-
onal columns and various other important properties. 
The significance of the transformation is tha t most of the information 
content of the da ta set is retained, while all partial duplication of the 
information spread in various rows and columns is eliminated, as well 
as eventual residual noise. The amount of the latter discarded depends 
on the values and the number of eigenvalues discarded. 
However, the actual pat tern elements considered in the transformed 
da ta set are usually a complex linear combination of the original pat-
tern elements and this is considered a complicating factor which should 
be avoided if possible. 

All feature selection and extraction procedures are a t tempts to reduce 
duplication and noise in the pat tern vectors and if there are non systematic 
errors in the pat tern elements to remove both as much as possible, so tha t 
there will be as little accumulation as possible in the classification process. 

I m p r e c i s e C las s i f i ca t ion 

In many classification experiments, classes assigned to the instances may be 
imprecise due to human error or to accumulated noise. In the diagnosing 
of dementia, this may be particularly true, since the diagnostic criteria are 
so numerous and should be considered interpretations rather than precise 
measurements of characteristics. 

If the training set is not too small, the training sample should be adequate 
and the classification should be precise, with errors made in the verification 
sample purely due to sampling variation. 

If the verification set is composed of 10% of the training set, objects will 
appear in the verification set about 10% of the number of replications. If 150 
trials are made, first by selecting randomly 10% of the training set and then 
using the rest as a training set, every object will appear on average 15 times 
in the verification set. 

It is expected tha t the object will have been misclassified very few times 
and per contra, if it results misclassified with respect to its assigned classifi-
cation, say 2 /3 of the times, then it would appear to be a misclassified object 
which requires tha t the class to which it was assigned be altered to the class 
it has been most frequently assigned in these trials. 

Once this has been performed on all apparently misclassified pat terns, so 
as to correct their class designation, the verification algorithm is applied anew 
on the corrected da ta set and the results recorded. In this way the imprecise 
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classification can be checked and corrected, see [6] for details. The whole 
process is known as classification with an imprecise teacher. 

Fin i t e S a m p l e A p p r o x i m a t i o n 

A further problem in verification may occur because of the da ta coherence 
problem, often due to the small training sample size available. Consider a 
small training set which may contain only one object which forms a distinct 
barycenter, quite unlike the other objects with the same classification. If this 
item falls in the training sample, then it will be set aside to form a distinct 
barycenter set, which will be composed of this instance only as a singleton 
element. Nothing more should happen and, of course, because of the singleton 
sample the barycenter vector, understood as the mean vector of a set of like 
objects, will be not a good estimate of the population values. 

On the other hand, if this object, which would constitute a singleton 
barycenter set in training, falls in the verification set, it will be assigned to the 
wrong class because it will find no opportune barycenter, since in the train-
ing set it would have figured as a singleton and thus it will result nearer to a 
barycenter of another class, for otherwise in training it would not have formed 
a new barycenter. Thus because of reduced size of the sample, classification 
errors will be made, which would not be made if the training set was larger. 

It is often worthwhile to sample the training set with a stratified sample 
instead of a simple random sample. To do this it is advantageous to sample 
those objects tha t appear in very small subgroups less than proportionally. 
Thus a very small probability of being chosen in verification is given to those 
objects tha t in classifying the complete training set tu rn out to form a single-
ton barycenter and are the only member of tha t subgroup. Such a probability 
should be so small, to all intents and purposes, as to exclude tha t pat tern 
from being chosen in verification and a slightly larger probability is chosen 
if a doubleton barycenter set is formed, so tha t on the average one object of 
the couple may be chosen but not both. In the same way, stratified sampling 
probabilities should be chosen for three, four and five-element barycenter sets, 
so tha t on the average not more than half of the constituent elements are likely 
to be chosen. 

In practice, instead of defining these probabilities, a biased verification 
sample is formed by excluding those objects which are assigned to single-
ton barycenters from selection in the verification set and restricting to not 
more than half those objects which are assigned to these subgroups with low 
consistency [25]. These small subsamples are termed labeled. 

When enough confidence has been obtained on the diagnostic experiment, 
through the use of verification and replication, to perform the actual clas-
sification all the instances are used in the training set and as new objects 
arise they are classified by assigning the class membership which belongs to 
tha t barycenter which is nearest to it. Periodically, perhaps, when the actual 
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class of these objects has been ascertained the extended training set can be 
retrained and verification can be performed to check the precision. 

3 Results 

Although the clinical factors studied in the diagnosis of dementia are very 
numerous, each may be related to the pathology in a tenuous way and its 
measurement may be highly noisy, so that if many factors are used to cate-
gorize the sample, the result may be extremely varied. Hence noise reduction 
procedures of various types should be applied by identifying missing factors 
and proxy variables. This yields some relevant results regarding possible cat-
egories of Alzheimer's disease. 

The aim of this section is to carry out this analysis and then determine 
clinical factors, which have a low noise to effect ratio and are sufficient to 
account for all of the diagnostic results. 

An initial analysis was performed with the entire data set and all three 
classes. Without data reduction techniques, the results obtained are statisti-
cally non significant, at a confidence level of 5% [26], while as less and less 
principal components were used, the precision of the diagnosis becomes sig-
nificant. This may be confirmed by using data reduction techniques, such as 
stepwise discriminant analysis to explore the pattern space and indicate the 3, 
5, 7, ..., best variables in terms of the variance explained increment, as shown 
in Table 2 [44]. 

In column 2 of this table, the explained variance by that set of compo-
nents is given, while in column 3, the average precision ratio for a verification 
set drawn from the training set by considering a 10% non-repetitive random 
sample replicated 150 times is presented for each set of principal components 
on applying the algorithm T.R.A.C.E. . In the next column, similar results 
for the verification set are formed from a stratified sample of the training set, 
as described above. In the last column, the percentage of instances which were 
labeled and so subject to less than proportional sampling are indicated. 

Although statistically significant, in most cases the results given are not 
satisfactory. There are ambiguities in the data set, partly due to the relatively 
small size of the sample compared to the number of features considered for 
each pattern. This leads to an excessive number of labeled patterns. 

Close analysis of the individual confusion matrices per replication shows 
that the Alzheimer categories tend to be confused with the vascular data, so 
it is suggested to try to perform the classification in two phases. 

The reasons to separate the data set arise from the results of the appli-
cation of the algorithm, but they are also confirmed by the considerations 
indicated in Section 2.1 and confirmed by recent research results. 

In the first phase, the data is classified with respect to the Alzheimer 
syndrome as compared to the vascular one. Secondly all the patients with 
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Table 2. Classification results for T.R.A.C.E.: precision in the verification samples 
for various sampling procedures, all Alzheimer patients, 3 classes, 28 variables per 
instance 

3 principal components 
5 principal components 
7 principal components 
9 principal components 
12 principal components 

1 Explained Variance 

0.5256 
0.6229 
0.7060 
0.7643 
0.8414 

Random sample 

0.4945 
0.4650 
0.4823 
0.4776 
0.4473 

Stratified Sample 

0.8726 
0.6857 
0.6319 
0.7121 
0.6181 

Labels (%) 

75 
72 
61 
64 
61 

Alzheimer syndrome are classified in two Alzheimer categories. The rationale 
for this subdivision lies in the following consideration. To distinguish probable 
from possible Alzheimer we require a given subset of the at tr ibutes, while to 
distinguish between Alzheimer and vascular afflicted patients another set is 
required. The inclusion of both sets of variables in the at t r ibutes to be applied 
leads to the incorporation of too much noise into the da ta set. This is why 
in Table 2, the random sample precision is so low and the accuracy falls in 
the stratified sample with an increase in the number of features considered 
for each pat tern. 

Thus consider the sample set of 111 patients afflicted with possible 
Alzheimer's disease (69 patients) or with probable Alzheimer's disease (42 
patients). In Table 3, the da ta for 28 at tr ibutes, is used for each instance and 
was first subjected to a principal component analysis and a certain number 
of principal components were considered. The results for such a small sample 
can be considered very good. 

Table 3. Classification results for T.R.A.C.E.: precision in the verification sam-
ples for various sampling procedures, Alzheimer patients, 2 classes, 28 variables per 
instance 

3 principal components 
5 principal components 
7 principal components 
8 principal components 
12 principal components 

[Explained Variance 

0.4433 
0.5591 
0.6547 
0.6925 
0.8156 

Random sample 

0.6213 
0.5798 
0.5633 
0.5617 
0.5468 

Stratified Sample 

0.8667 
0.7700 
0.6870 
0.7532 
0.8001 

Labels (%) 

71 
60 
61 
64 
64 

Other classification techniques were used for comparison, but these fare 
significantly less well, which indicates tha t the training to complete precision 
has an important effect. The analysis above can be repeated with two other 
feature extraction techniques: stepwise discrimination methods [44] and the 
CART method [31], which were applied to a t t r ibute selection and used in var-
ious routines, namely: Linear Discriminant Analysis (LDA) and Classification 
and Regression Trees (CART). The results are indicated in Table 4. 
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Table 4. Classification results for T.R.A.C.E.: precision in the verification samples 
for various selection techniques and sampling procedures, Alzheimer patients, two 
classes, 28 variables per instance 

6 stepwise discrimant 
4 CART variables 

1 LDF 
0.6858 
0.6667 

CART 

0.6211 
0.5730 

Trace random 

0.6255 
0.5904 

Trace Stratified 

0.7635 
0.7535 

Labels (%) 

71 
60 

With Linear Discriminant Analysis [44] the formation of groups based just 
on their labels yields a set of barycenters which are comparable to those ob-
tained in T . R . A . C . E . . With the former method, training yields an imprecise 
classification of objects, while with the latter there is complete precision, since 
this is a termination requirement in the latter but not in the former. If Linear 
Discriminant Analysis provides equivalent precision results, this means tha t 
the algorithm T . R . A . C . E . just partit ions noise. This was in fact so [26]. 

The stepwise discriminant variable selection technique and the CART 
technique have a lower precision than the principal component variable se-
lection technique. However, this procedure does have the advantage tha t the 
at t r ibutes selected have direct medical relevance, while with the principal com-
ponent procedure all the measurements in the bat tery of tests are required to 
extract the desired features. 

In the stepwise discriminant analysis, the number of variables selected were 
six which included: 

• The value on the Hachinski scale, which evaluates the ischemal capacity 
loss. 

• The MMSE_RM value, which indicates the capacity of the patient to reg-
ister concepts in memory. 

• The age of the patient. 
• The IADL_SP value on a 2 point nominal scale, which indicates the ability 

of the patient to move outside of his home. 
• The MMSE_R value on a 3 point ordered scale, which indicates the ca-

pacity of the patient to remember the names of objects listed in the 
MMSE_RM measurement phase. 

• The IADL_C value on a 2 point nominal scale, which indicates the ability 
of the patient to order his home. 

On the other hand, the variables chosen in the CART technique were: 

• Age of the patient. 
• The value on the Hachinski scale. 
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• The MMSE_TC value: A four digit variable, with one decimal digit that 
indicates the global cognitive value of the patient, corrected for age and 
education. 

• The MMSE_RM values. 

The results obtained seem to indicate that in determining patients afflicted 
with possible or probable Alzheimer the distinction is not completely unam-
biguous. Perhaps correction for an imprecise teacher should be used. Certainly 
the original 46 attributes measured contain a lot of duplication, so that noth-
ing is lost if only a subset of 28 variables are chosen and these in their turn can 
be reduced to 4-5 variables, without significant losses in precision. As for the 
previous case, the best policy is to use first 3 principal components obtained 
from the full 28 variable data set. 

The classification of Alzheimer's disease and vascular dementia patients is 
also important and it is composed of 111 patients suffering from Alzheimer and 
45 patients suffering from vascular dementia. The results of this classification 
are given in Table 5. 

Table 5. Classification results for T.R.A.C.E.: precision in the verification samples 
for various sampling procedures, Alzheimer and vascular dementia patients, 2 classes, 
28 variables per instance 

3 principal components 
5 principal components 
7 principal components 
8 principal components 
12 principal components 

1 Explained Variance 

0.5256 
0.6229 
0.7060 
0.7643 
0.8414 

Random sample 

0.6997 
0.7075 
0.7594 
0.7598 
0.7488 

Stratified Sample 

0.8502 
0.8252 
0.8235 
0.8638 
0.8401 

Labels (%) 

45 
50 
34 
37 
38 

Even for such a small sample, the classification of Alzheimer patients and 
vascular dementia patients based on the common set of neuropsychological 
tests can be effected with a high accuracy. 

It is also important to study the selection of an actual subset of variables. 
Thus in Table 6 the results are given for various selections of variables based 
on the stepwise discriminant variable selection technique and the CART tech-
nique. Good results are obtained for all considered pattern recognition tech-
niques and for the T.R.A.C.E. algorithm in both versions. Again, the tendency 
of the stepwise discriminant analysis is to incorporate many variables, while 
for the CARP selection only 3 variables are required, which gives highly ac-
curate values in this case. 

From Table 6, there results that the given stepwise selection of variables 
does not require the finer analysis of the T.R.A.C.E. algorithm. Once se-
lected these attributes are good classifiers of the type of pathology based on 
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Table 6. Classification results for T.R.A.C.E.: precision in the verification samples 
for various selection techniques and sampling procedures, Alzheimer patients, two 
classes, 28 variables per instance 

16 stepwise discriminant 
19 stepwise discriminant 

3 CART variables 

1 LDF 
0.9066 
0.9021 
0.7898 

CART 

0.9057 
0.9057 
0.9057 

Trace random 

0.8046 
0.7858 
0.8522 

Trace Stratified 

0.8363 
0.8314 
0.9383 

Labels (%) 

38 
38 
32 

the determination of the means of the classes and the classification of in-
stances on the basis of the least distance criterion. On the other hand, if the 
variables are selected with the CART variable selection method, then only 
three variables are required, namely: 

• value on the Hachinski scale, 
• MMSE_0 value on an interval scale (0-10), which indicates the orientation 

capacity of the patient, 
• IADL_SP value on a 2 point nominal scale, which indicates the ability of 

the patient to move outside of his home. 

Thus there are two different methods of data selection to diagnose de-
mentia pathologies. One method is to use the 28 variables measured by the 
MMSE, ADL, lADL the Hachinski scale value, the Global Determination scale 
(GDS) value and three social variables (age, sex and education) to extract the 
three principal components and apply T.R.A.C.E. in the classification mode 
to obtain the diagnoses. The other method is to use just one of the feature 
selection techniques which indicate the measures in their natural units, so just 
a few items need to be measured from the battery of neuropsychological tests 
available. This latter feature selection procedure, although it may not be as 
accurate in all cases does provide attributes which are medically meaningful 
and directly measurable. 

The classifications presented in Tables 5 and 6 may be imprecise, so the 
correction technique was implemented with respect to the data results of the 
classification of Alzheimer's disease and vascular dementia for the three prin-
cipal components results and for the data set regarding probable and possible 
Alzheimer's disease for the three CART variable selection results. 

In the first case, one patient classed as Alzheimer's disease resulted im-
precisely classified and should be classed as vascular dementia according to 
this algorithm, while two patients declared afflicted with vascular dementia 
were according to the correction procedure of T.R.A.C.E. to be classed in 
Alzheimer's disease. In the second case, three patients diagnosed with pos-
sible Alzheimer's disease were on the basis of the evidence to be classified 
as probable Alzheimer's disease patients and none vice versa. On this basis 
the resulting classification results for just the implementations of a stratified 
sample designs are indicated in Table 7. 
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Table 7. Classification results for T.R.A.C.E.: precision in the verification samples 
for various selection techniques and stratified sampling procedures, after correction 
procedure (two classes, 28 variables per instance). 

3 CART variables for classification of subtypes of Alzheimer's disease 
3 principal components for classification of the two type of dementia 

Trace Stratified 

0.9636 
0.9355 

It is important now to dwell on the implications of these results. 

4 Discussion 

The aim of this section is to examine a number of the results obtained for their 
implication in diagnostic procedures, current clinical practice and therapeutic 
practice. 

The analysis conducted shows that : 

• By whatever method the diagnoses of the patients in this da ta set 
have been reached clinically, the diagnostic process is a highly consistent 
process, for otherwise such accurate classification results by a formal al-
gorithm such as T . R . A . C . E . could not have resulted. Ambiguity and 
spurious assignments would lead to lower precision. In fact, the high pre-
cision reached with this algorithm implies tha t there has been an elevated 
coherence in the class assignment of the instances. 

• There is, thus, a formal classification procedure to effect these diagnoses 
with high accuracy, which on the basis of the results shown increases the 
precision of the diagnosis for all types of dementia by about 10%, yielding 
very accurate results of diagnostic precision with a mean of 95%. 

• Many at t r ibutes can be measured to diagnose a patient, but 
- Three specific at t r ibutes are necessary and sufficient for the diagnosis 

of Alzheimer's disease and vascular dementia, 
- Four at t r ibutes are necessary and sufficient to diagnose possible from 

probable Alzheimer's disease pathologies. 

An important point concerns how this diagnostic method might fare among 
different clinicians and in different clinics. Since the neuropsychiatric tests 
used as the basic evaluation have been coded [2], it is unlikely tha t they will 
differ from clinic to clinic, in their application so they will tend to quite sta-
ble. If the values expressed by different clinics and experts are approximately 
invariant with regard to a patient, then these barycenters or criteria must be 
applicable from clinic to clinic. 

Instead, the clinics and the schools tha t they represent may give different 
importance to different aspects of the scales, so tha t this would refiect differing 
degrees of precision with respect to the diagnoses made with the T . R . A . C . E . 
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algorithm from site to site and across clinicians. Thus, the comparative ap-
plication of this algorithm across sites may be very useful in the analysis of 
comparative diagnoses. 

Eventual inconsistencies can be examined and the eventual incorrect diag-
noses corrected, then T.R.A.C.E. can be retrained. It is easy to show that 
the procedure will be consistent with the new data. Thus, an invariant test 
applicable to different clinics, schools and countries can be used to harmonize 
diagnoses, should there be existing differences. This could provide a form of 
a 'golden rule diagnostic' method, in which diagnostic experiments can be 
conducted with the T.R.A.C.E. algorithm, to determine if and how these 
change the classification results. 

The principles given in the literature for the diagnoses of dementia [2], 
do not envisage this type of normalization, although a form of classification 
of pathological types is frequently given. Thus, certain representative values 
for the tests according to pathological types are given, and it is suggested to 
assign the patient to the profile that appears to be closest [41]. 

For instance, an often quoted criterion is to be guided by the values of the 
Hachinski scale of a patient. This is an important measure as it is present in 
both classifications of the data set by the algorithm T.R.A.C.E. . 

It is not possible, however, to specify a procedure on the basis of the 
Hachinski scale measure that allows a preliminary diagnosis to be formulated, 
which is then refined or changed on the sequential evaluation of a certain 
number of other measures to yield an accurate diagnosis. In fact, all the three 
or four relevant measures plus the reference measures (the barycenters) must 
intervene simultaneously to formulate a diagnosis. This criterion is necessary 
and sufficient. Efficient diagnoses by clinicians also require the measurement of 
these aspects in a battery of neuropsychological tests and then the application 
of a numerical algorithm to determine the most appropriate class. 

In Table 8, the measures for a number of patients diagnosed for the 
Alzheimer's disease or the vascular dementia syndrome are given. These re-
sults indicate that any value of the Hachinski scale may be associated with 
either syndrome [41]. 

Table 8. Examples of patients' patterns and their diagnosis 

hachinski 

6.000000 
6.000000 
7.000000 
4.000000 
1.000000 
1.000000 

MMSE_0 

8.000000 
4.000000 
5.000000 
5.000000 
0.000000 
2.000000 

IADL_SP 

1.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

Diagnosis 

AD 
VD 
AD 
VD 
VD 
AD 
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Moreover, it can be verified from the dataset that exceptions can be found 
even if the criterion based on the Hachinski scale is extended. Thus it is not 
true that the diagnosis is correct for those values of the Hachinski scale if 
the IADL_SP is 0.0 (see the second and fifth item in the table) or that this 
criterion becomes relevant for the case in which the Hachinski scale is as 
given, the lADL.SP is 0.0 and the MMSE.O value is above 4.0 ( This wih 
discriminate some items in the table, but not consistently). 

Thus, all three values are required and the measures must be made from 
the relative norms according to the procedure indicated. If this is done, then 
the statistical criteria obtained from the extraction of three principal compo-
nents are applied the precision is almost the same regardless of the medical 
criteria. 

As it has been indicated [28] in order to predict the clinical course of this 
disease, it is highly relevant to identify diagnostic criteria. Thus, the increased 
accuracy of diagnosis by this method should be applied to determine the course 
of the disease and its treatment. 

With the T.R.A.C.E. algorithm and this data, about 30 barycenters for 
the classification between Alzheimer's disease and vascular dementia are deter-
mined and about 55 barycenters for the classification of possible and probable 
Alzheimer's disease are formed [26]. 

Clinical differences may exist that justify the distinction of Alzheimer's 
disease into separate subtypes. The recognition of possible subgroups for 
Alzheimer's disease and vascular dementia syndrome may be important in 
predicting variable clinical courses associated with differences in therapeutic 
response [49]. The formation of these subgroups may be linked with cognitive 
decline in Alzheimer's disease, which is discussed frequently without formu-
lating clear conclusions [47, 40, 19]. The poor results obtained may be due 
to the attempt to determine specific causation factors, rather than associa-
tive factors of general structure, which can be achieved with an algorithm like 
T.R.A.C.E. , which avoids eventual subjective inter-comparison of diagnostic 
factors. 

Consider the classification process. These barycenters are average barycen-
ters obtained from the different groups of patients, which are assigned to a 
barycenter so that the attribute vector will result closer to a barycenter of 
its own class than to one of the other classes. Thus each barycenter defines a 
homogeneous group of patients afflicted by the same pathology. 

Each barycenter defines a subtype of the patients with that syndrome and 
these subclasses can be used to define a finer diagnostic distinction for each 
type of pathology. Thus the periodic redetermination of the basic pathology 
through the relevant clinical tests will indicate how the patients move through 
the groups, or whatever relative movement is manifested. 

For instance, although no statistical tests have yet been performed on this 
data, it has been noticed that within this classification, the groups tend to be 
homogeneous with age. Thus patients with diagnosed vascular dementia tend 
to cluster with age and exhibit similar values for some neuropsychiatric tests. 
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If this can be verified by stringent statistical tests, it would mean tha t 
the pathology is such tha t there occur a similar pathology, related with age, 
for all the patients as the pathology progresses, which is testified by this 
movement through the groups. This fact could be used to monitor the progress 
of the pathology and the effect of particular medication might have on the 
progression. In short, an accurate comparative diagnostic instrument could be 
devised to evaluate progress in treating the pathology, which is unavailable at 
this moment. 

Thus by periodic repetition of the bat tery of neuropsychological tests, 
the relative movements of each patient can be determined. By differentiating 
the therapy, it might be found tha t the relative movements differ, suggesting 
further experimental designs and tests. 

It is of interest to notice tha t of the six patients which were reclassified, the 
one tha t had been assigned to the class Alzheimer's disease, but was reclas-
sified by T . R . A . C . E . to the class vascular dementia has recently suffered an 
ictus, which confirms the machine diagnosis. The other five patients, which the 
clinician recognized as involved in complex and difficult diagnoses: to confirm 
or alter their pathology, their destiny must be awaited [35]. 

5 Conclusions 

The suggested methodology seems to be important and applicable in perform-
ing a fine sensitivity and specificity analysis of patients in diagnosis and in 
t reatment . The results indicate tha t the current description of the disease is 
not quite complete and tha t some partially duplicate aspects confound. 

The clinical analysis, both for diagnosis and t reatment , indicates more de-
tailed characterizations are needed and new synergy effects should be studied. 
It also shows tha t since all measures may carry systematic indications of the 
pathology and a noise element, care must be taken regarding increasing the 
number of at t r ibutes considered, which may just have the result of swamping 
the valuable information and prevent accurate diagnoses. 

In this chapter the problem of diagnosing dementia has been examined. 
It has been found tha t the process is indistinguishable from good medical 
diagnostic methods, if the latter are conceived as potentially complex mea-
surement and inference systems. 

The advantage of formal machine diagnostic systems is tha t there will be 
no subjectivity in operation as it may happen with different experts, while 
it will provide the same diagnoses from the same data. Thus the principle of 
coherent replicability, the very essence of scientific method is guaranteed. 

Through such a system a "golden rule" for diagnoses with a very high 
accuracy may be derived. Experts will be able to suggest improvements in 
the "golden rule" and modify it immediately for the whole community. If this 
leads to an improvement the modification will be kept, otherwise it is easy to 
return to the previous methods. 
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Finer diagnostic distinctions can be experimentally defined, which may 
better predict the actual state of a patient. Hence, through a careful study of 
how these patients progress through the pathological states, valuable insights 
can be obtained on the clinical course of this disease and its treatment. 
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Summary. This study utilizes Support Vector Machines (SVM) for multi-class clas-
sification of a real data set with more than two classes. The data is a set of E. coli 
whole-genome gene expression profiles. The problem is how to classify these genes 
based on their behavior in response to changing pH of the growth medium and 
mutation of the acid tolerance response gene regulator GadX. In order to apply 
these techniques, first we have to label the genes. The labels indicate the response of 
genes to the experimental variables: 1-unchanged, 2-decreased expression level and 
3-increased expression level. To label the genes, an unsupervised K-Means clustering 
technique is applied in a multi-level scheme. Multi-level K-Means clustering is itself 
an improvement over standard K-Means applications. SVM is used here in two ways. 
First, labels resulting from multi-level K-Means clustering are confirmed by SVM. 
To judge the performance of SVM, two other methods, K-nearest neighbor (KNN) 
and Linear Discriminant Analysis (LDA) are implemented. The Implementation of 
Multi-class SVM used one-against-one method and one-against-all method. The re-
sults show that SVM outperforms KNN and LDA. The advantage of SVM includes 
the generalization error and the computing time. Second, different from the first 
application, SVM is used to label the genes after it is trained by a set of training 
data obtained from K-Means clustering. This alternative SVM strategy offers an 
improvement over standard SVM applications. 

K e y words: Distance Measures, Euclidean Distance, Generalization Error, 
K-Means Algorithm, Kernel Function, KNN, Minimum Distance, Neural Net-
works, Optimization, RBF, Statistics, Supervised Learning, Support Vector 
Machine, Unsupervised Learning 

1 Introduction 

Recently, a number of new microarray and macroarray technologies have been 
developed for analyzing biological processes such as gene function, cancer, and 

mailto:ttrafalis@ou.edu
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design of new pharmaceutical. These technologies include DNA gene expres-
sion macroarrays tha t allow biologists to s tudy pat terns of gene expression for 
any cell at any t ime under a specific set of conditions. These arrays produce 
large amounts of da ta tha t can provide valuable insight for gene function. For 
example, co-expression of novel genes may provide insight to the functions of 
several genes for which limited information is available. Gene expression da ta 
coming from microarray and macroarray can be analyzed either at the single 
gene level or at multiple genes level. In the first case each gene's behavior 
is investigated in a control versus an experimental or t reatment situation. In 
the second case clusters of genes are analyzed in terms of interactions or co-
regulation. Another approach is to discover the gene or protein networks tha t 
are related to specific pat terns. For each gene X the da ta consist of a finite 
number of measurements Xci,Xc2,--,Xcn(control measurements) and Xti,^t2 
. . ,Xtm(treatment measurements). The measurements are represented through 
the logarithms of the gene expression levels. Note tha t t reatment refers to any 
experimental condition different than the control. 

The fundamental question in gene analysis is to determine whether the 
level of gene expression is significantly different in the control and t reatment 
situations, respectively. In the literature empirical or t-test statistical tech-
niques have been used [8]. However a bet ter framework is needed since the 
replicate measurements are usually small (population size n=m=l ,2 , . . , 5 ) , be-
cause of the experimental cost and difficulty of the experiments. Macroarray or 
microarray expression da ta provides a new method for classifying genes based 
on their expression profile. Numerous unsupervised and supervised learning 
methods have been applied to the task of discovering and learning to recog-
nize classes of co-expressed genes. One of the most frequent tools used to solve 
problems in this area is support vector machine (SVM) [13]. The use of SVM 
in gene expression analysis is relatively new. Brown et al. [7] applied SVM to 
classify genes from S. cerevisiae based on gene expression. They proved tha t 
SVM method outperforms the other techniques including Parzen windows, 
Fisher's linear discriminant, and two decision tree learners [7]. 

In this study, we apply several clustering techniques to classify unknown 
genes into functional categories based on DNA macroarray expression da ta 
using a few known genes. The results of the classification step obtained from 
applying the clustering techniques then are confirmed by applying SVM. 

SVM was originally developed for the binary class case. Here SVM is 
extended to the multi-class case by applying one- against- all method and 
one-against-one method. SVM, Linear Discriminant Analysis (LDA) and K-
Nearest Neighbor (KNN) are included in the supervised learning technique. 
To be able to apply these techniques we need a set of da ta with known labels. 
Therefore, before applying those three techniques, we apply clustering algo-
ri thms to label the data. Multi-level K-Median and K-Means are implemented 
before running SVM, LDA and KNN. By comparing the error measurements 
of the three techniques the best technique is obtained. 
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The chapter is organized as follows. In Section 2, partitioning-clustering 
algorithm is briefly reviewed. Sections 3 and 4 give illustration and formulation 
of SVM. An explanation about the DNA data is given in Section 5. In Section 
6, the experimental setting is described. Section 7 provides the results. In 
section 8, the use of SVM as an exploration tool is discussed, and the results 
are given. Finally, Section 9 concludes the chapter. 

2 Clustering Algorithm 

Based on computing time and memory reasons, partitioning clustering is pre-
ferred to hierarchical clustering especially in large-scale problems. In cases 
where the number of clusters is known, partitioning clustering is more efli-
cient than hierarchical clustering, although the effectiveness is not guaranteed. 
Included in partitioning clustering are K-Means and K-Median [12]. In this 
study K-Median and K-Means are used with Li-norm and I/2-norm. There-
fore, we have four different algorithms to run. For each clustering algorithm, 
the variance within each cluster is calculated. The one with minimum variance 
within a cluster is chosen to label the data. 

The algorithm can be described as follows: 

1. Select the number of clusters k. 
2. Initialize k cluster centers by binning the data into 3k bins. 

K bins with the most data are selected from 3k bins and the midpoints of 
those bins are computed. If the number of nonzero bins is less than k, then 
the initial center is randomly determined. From empirical observations the 
choice of 3k bins gives good results. 

3. Assign each object/data to the closest cluster. 
The closeness is expressed with the I/2-norm distance between each ob-
ject/data to the centers. Then, the data will be clustered into /^clusters. 

4. Re-compute the centers using current cluster memberships. 
The center of a certain cluster is the median/mean of all objects/data in 
the cluster. 

5. Re-assign each object to the new centers. 
If the centers do not change, stop. Otherwise, return to step 3 until the 
centers do not change. 

3 Support Vector Machines (SVMs) 

Consider a problem with two classes, as in Figure 1, where a classifler is 
sought to separate two classes of points. The SVM formulation can be written 
as follows [9]: 
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Fig. 1. SVM classifier for a binary classification problem. 

min^ | | i / ; | | 2 . 
w,b,ri cEvi 

i=l 

(1) 

s.t. yi {w.Xi + b) + Tji > 1, rii>Q,i .,£ 

where C is a parameter to be chosen by the user, w is the vector perpendicular 
to the separating hyperplane, h is the offset and rji are referring to the slack 
variables for possible infeasibilities of the constraints. By this formulation one 
wants to maximize the margin between two classes by minimizing | |w |p . Si-
multanously, the second term of the objective function is used to minimize the 
misclassification errors tha t are described by the slack variables 77̂ . A larger 
C corresponds to assigning a larger penalty to slack variables 77̂ . Introducing 
positive Lagrange multipliers a^, to the inequality constraints in model (1), 
we obtain the following dual formulation [9]: 

min - ^ ^ yiVjaiajXiXj - ^ Q̂^ 

=1 j = i 

s.t. y^^Viaj = 0 (2) 

0<ai<C, i = ! , . . . ,£ 
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The solution of the primal problem is then given by w = J2i ^iVi^i where 
w is the vector tha t is perpendicular to the separating hyperplane. The free 
coefficient b can be found from ai{yi (w- x^ + 6) - 1) = 0, for any i such tha t 
ai is not zero. 

SVMs map a given set of binary labeled training da ta into a high-
dimensional feature space and separate the two classes of da ta linearly with 
a maximum margin hyperplane in the feature space. In the case of nonlinear 
separability, each da ta point x in the input space is mapped into a higher 
dimensional feature space using a feature map cp. In the new space, the dot 
product {x^x') becomes {cp{x),cp{x')). A nonlinear kernel function, k{x^x')^ 
can be used to substi tute the dot product {Lp{x)^Lp{x')). The use of a kernel 
function allows the SVM to operate efficiently in a nonlinear high-dimensional 
feature space without being adversely affected by the dimensionality of tha t 
space. Indeed, it is possible to work with feature spaces of infinite dimension 
[1]. Moreover, it is possible to learn in the feature space without even knowing 
the mapping Lp and the feature space F. The matrix Kij = {Lp{xi)^Lp{xj))\s 
called the kernel matrix. In general, this hyperplane corresponds to a non-
linear decision boundary in the input space. It can be shown tha t for each 
continuous positive definite function K{x,y), there exists a mapping, cp, such 
thditK{x,y) = {cp{x),cp{y))foT all x,y ^ RQ, where R^ is the input space [1]. 

There are several kernel functions usually used in the SVM [1] such as: 

(1) linear: k(x,y) = x^y, 
(2) polynomial: k{x,y) = {x^y + 1)^, and 

(3) radial basis function (RBF): k(x,y )= exp(— [2cr^] \\x — y\\^). 

When we use SVM, for each selection of kernel function, there are some 
parameters for which the values can be altered. The parameters are: t rade off 
cost constant (C), spread a (for R B F kernel function), and degree of polyno-
mial p (for polynomial function). 

4 SVM for Multi-Class Classification 

As mentioned before, SVM were originally designed for binary classification. 
How to effectively extend the SVM approach to multi-class classification is still 
an ongoing research issue. Currently there are two main approaches for multi-
class SVM. One is by constructing and combining several binary classifiers. 
The other one is by directly considering all da ta in one optimization formula-
tion [2, 3, 5]. In this work, we used the first approach. There are two methods 
included in the first approach: One-against-all (OAA) and One-against-one 
(OAO) [3]. 

4.1 One-against -a l l ( O A A ) M e t h o d 

By this method, for k-class classification problem, we construct k SVM models 
where k is the number of classes. The i^^ SVM is trained with all of the 
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examples in the i^^ class with positive labels and all other examples with 
negative labels. Given / training data points (xi, i/i),...,( x/, i//) where Xi e R'^^ 
i = 1, 2 , . . . , / and yi ^ S = {1,.. . , k} is the class of x^, the ith SVM solves the 
following optimization problem [3]: 

min \(w')^w' + CY.^) (3) 

{w'')^cp{xj) + 6' > 1 - r/], if tjj = i, 

r]j>0, j = !,...,£ 

where (p(xj) is the map of point Xj^C is a parameter to be chosen by the 
user, w'^ is the vector perpendicular to the separating hyperplane, 6* is the 
offset and rjj are referring to the slack variables for possible infeasibilities of 
the constraints. After solving (3) there are k decision functions: 

{wY^{x)^b\..,{w^f^{x)^b^ 

Then, the class of a new point x is determined by the largest value of the 
decision function: 

J = arg max {{wY^{x) + b\ where j eS (4) 
i=l...k 

Practically, we solve the dual problem of (3) whose number of variables 
is the same as the number of data in (3). Hence k /-variable quadratic pro-
gramming problems are solved. 

4.2 One-against-one (OAO) Me thod 

This method constructs k{k — l ) /2 classifiers where each one is trained on 
data from two classes. To find classifiers between i^^ and j ^ ^ classes, we solve 
the following binary classification problem [3]: 

.min ^{w'^)^w'^ ^CJ2V? (5) 

s.t. 

iw'^)'^ipixt)+b'^>l-4',iiyt = i, 
{w'^)^ip{xt) + V^ < - 1 + Tft, if yt + j , 

where (p{xt) is the map of point Xt, C is a parameter to be chosen by the user, 
w'^^ is the vector perpendicular to the separating hyperplane, b'^^ is the offset 
and TJI-^ are referring to the slack variables for possible infeasibilities of the 
constraints. Superscripts ij for each parameter denote the classifiers between 
class i and class j . There are different methods for doing the future testing 
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after all k{k — l)/2 classifiers are constructed. One strategy can be described 
as follows; if the sign {w^^)^(p{x) -\- b^^ of point x is in i^^ class, then the vote 
for i^^ class is added by one. Otherwise, the j ^ ^ is increased by one. Then 
we predict x as being in the class with largest vote. In the case where two 
classes have identical votes; we select the one with smaller index. Practically 
we solve the dual problem of (4) whose number of variables is the same as 
the number of data points in two classes. Hence if in average each class has 
l/k data points, we have to solve k{k — l ) /2 quadratic programming problems 
where each of them has about 21/k variables [3]. 

5 DNA Macroarray Data 

The data used for this study is from DNA macroarray experiments [10, 11]. 
An experiment starts with a commercial macroarray, on which several thou-
sand DNA samples are fixed to a membrane. These immobilized DNAs serve 
as probes of known sequence, each corresponding to a single gene from the 
organism under investigation (E. coli). The DNA array is used to monitor 
gene expression in biological samples. The biological samples (i.e., bacterial 
cultures) are grown under various growth conditions that are designed to ask 
questions about gene expression under that particular condition. The first 
step in gene expression of any gene involves the synthesis of messenger RNA; 
each mRNA corresponds to a specific gene and the amount is proportional 
to the level of the gene product required by the cell to function properly. 
Total RNA is extracted from the biological sample and is labeled by mak-
ing cDNA copies of the mRNAs that contain radioactive phosphate (32-P). 
The mixture of labeled cDNAs is hybridized to the DNA array, the excess 
label is washed away, and the array is scanned for radioactive cDNA bound 
by the DNA array. The amount of radioactivity bound to each probe on the 
array is proportional to the original level of mRNA in the biological sample. 
Following hybridization, a scanned densitometry image of the DNA array is 
made and the the pixel density of each probe is determined. The pixel density 
is proportional to the amount of cDNA that hybridizes with DNA affixed to 
the membrane and thus represents the expression level of a particular gene. 
Each data point produced by a DNA macroarray hybridization experiment 
represents the expression level of a particular gene under specific conditions. 

The number of data points, that is the number of genes, is 4290. Prior 
knowledge about these genes is extensive; 75% have known function. The 
dimension of data is 4290 rows by 3 columns. The three columns are the 
attributes: pH5-5GadX(4)vsWt(4).log ratio, pH5-5GadX(kan-)vsWt.log ra-
tio, and pH5-5GadX(kan+)vsWt.log ratio. Each attribute represents a repli-
cated experiment in which gene expression in the wild type (control) is com-
pared to that in the GadX mutant (experimental). For example, in the pH5-
5GadX(4)vsWt(4).log ratio experiment, the data column contains the ratio of 
gene expression in two samples, representing an experimental condition and 
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a control condition: the GadX+ (normal function in wildtype strain) and the 
GadX- mutant with a defect in the GadX regulator gene, respectively, both 
grown in culture medium that was adjusted to pH5.5. The other two data 
columns are replicates of the same comparison of GadX- vs. GadX+ strains, 
each with a separately derived mutant strains. Despite extensive knowledge of 
many E. coli genes, little is known about the genes that are regulated by the 
acid tolerance regulator GadX. GadX is thought to code for regulator that 
controls the expression level of several genes that are involved in survival in 
acid environments. The purpose of the biological experiments was to identify 
the genes whose expression is regulated by GadX and to determine how these 
target genes function to make E. coli tolerant of mild acid. 

6 Experiments 

6.1 Clustering 

Clustering is performed by using two different algorithms: K-Median and K-
Means. For each algorithm two different norms such as city block distance (Li-
norm) and Eucledian distance (I/2-norm) are applied. We considered three 
types of possible responses to mutation of GadX: 1-unchanged, 2-decreased 
expression level and 3-increased expression level. In these clustering imple-
mentations, the number of clusters, /c, is set to be equal to 3. Before running 
the cluster algorithms, there are some genes that the responses to the absence 
of mutant GadX are already known. Based on this prior knowledge of some 
genes, the labels of the other genes can be known after implementing cluster-
ing algorithms. However, with k = 3, the results of clustering are too general. 
In order to obtain more limited genes in class 2, the algorithm was rerun in 
two additional levels. In the first run we are sure that the number of genes 
in class 2 (decreased expression) is too broad. The next run is applied only 
for genes in class 2, again with k = 3. In the third run, k = 3, only small 
number of genes are clustered together with the known genes. By applying 
this three-level clustering we finally have 11 labels for the whole genes. 

6.2 SVM, LDA and K N N 

The SVMs, LDA, and KNN are included in the supervised approaches. Hence, 
to be able to apply these methods we need some data training with known 
labels. The labels are obtained from experiments in section 6.1. Prior knowl-
edge of some genes is very important to label the genes based on the clustering 
results. Based on known genes, we label other genes clustered together with 
these known genes. After labeling the genes, the SVM can be applied. There 
are 4290 data points (number of genes), 60% of data points for training and 
40% for testing. The experiments are run for three sets of training and testing 
samples. 
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Fig. 2. Labeling Scheme 

The one-against-all (OAA) and one-against-one (GAG) methods are used 
to implement SVMs for multi-class. GSU SVM Classifier Matlab Toolbox by 
Junshui et al. [4] is used for implementing the Multi-Class SVM. KNN are 
implemented by using SPIDER software package, which is using a Matlab 
platform. Likewise, LDA is implemented by using the Statistics toolbox in 
Matlab. For LDA, a Mahalanobis distance is used. The Mahalanobis distance 
is defined as the distance between two N dimensional points scaled by the 
statistical variation in each component of the point. For example, if x and 
y are two points from the same distribution which have covariance matrix 

_ _ 1 

C, then the Mahalanobis distance is given by {{x — yyC~^(x — ^ ) ) 2 . The 
Mahalanobis distance is the same as the Euclidean distance if the covariance 
matr ix is the identity matrix. 

7 Results 

Clustering implementation results by using some different algorithms are given 
in Table 1. In the table the values of sum of total variance (SST) and sum of 
variance within clusters (SSW) are shown. 

Table 1. Variances/scatter within cluster for each algorithm 

SST 
SSW 

Kmedianl 
66.2298 
41.9221 

Kmedian2 
66.2298 
41.5656 

Kmeanl 
66.2298 
39.4995 

Kmean2 
66.2298 
38.4629 

From Table 1, we observe tha t the variance within cluster (SSW) value 
of K-Mean with I/2-norm (Kmean2) has the smallest value. Based on this 



270 Budi Santosa, Tyrrell Conway, and Theodore Trafalis 

fact, we can judge that K-Means with I/2-norm is the best one. Therefore, to 
label the data, K-Means with I/2-norm is used. The results of classification 
using three levels of K-Means with k = 3 are satisfactory and consistent with 
biological prediction where the number of genes in class 2 is low. In Table 2, 
summary of multi-level clustering results is shown. After we run K-Means for 
3 levels, there are 5 most decreased expression genes and 40 most increased 
expression genes. 

Table 2. Number of Genes for each level for each Label, k = 3 

Label 
1-unchanged 
2-decreased 
3-increased 

Level 1-2-3 
2392 genes 
825 genes-51 genes-5 genes 
1073 genes -302 genes-40 genes 

Table 3 gives the list of 51 genes that resulted from running two levels of the 
K-Means clustering algorithm. Included in this set are 5 genes with the largest 
differential expression level. The genes are fiiC, gad A, yhiE, gadB and gadX. 
The fact that gadX is differentially expressed in these DNA arrays is a result 
of the mutation that inactivated the gene; this serves as an internal control to 
indicate that the array was working properly. The fliC gene encodes a protein 
that is involved in bacterial cell swimming and its role in acid tolerance is 
not understood. The gadA and gadB genes both encode enzymes, glutamate 
decarboxylase, that are essential for glutamate-dependent acid resistance. It 
is thought that decarboxylation of glutamate consumes a proton inside of the 
cell and thereby reduces acidity. The yhiE gene encodes another regulator and 
has recently been identified as being directly involved in regulating gadA and 
gadB, along with several other genes involved in acid resistance [6]. 

Table 4 contains the results of SVM, LDA and KNN implementations. 
Three samples are selected from the whole data set by considering that each 
training sample has to contain genes from all labels or classes. There are 11 
labels for the whole set of genes obtained from K-Means clustering. Each 
sample consists of a training and testing data set. For each sample, the SVM 
method is run for two different kernel functions: polynomial and RBF. For 
each kernel we apply some parameter values for the same penalty C. 

8 Using SVM as an Exploration Tool 

Results from K-Means algorithm implementation summarized in Table 2 are 
again used as an input for SVM implementation. Now, we consider using only 
3 classes/labels for the whole genes. With this classification scheme, there 
are 2392 genes in class 1, 51 genes in class 2 and 40 genes in class 3. In this 
experiment we try to obtain new classification for the rest of 1807 genes that 
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Table 3. List of 51 Genes Resulted from K-Means Algorithm Implementation 

AceK 
Ar3 

ArtM 
A1016 
A1155 
A1724 
B2352 
B2353 
B2354 
Dps 
ElaB 
FimI 
FlgD 

pphB 
purM 
rpsQ 
rpsV 
sodA 
yafJ 
yafK 
yahO 
ybaD 
ybbL 
ycaC 
yccJ 
ycfA 

fliC 
fliD 
gadA 
gadB 
glgS 
hdeA 
hdeB 
hdeD 
himD 
hofD 
moeA 
pheL 
phoE 

ycgB 
ycgR 
yhiE 
yhiF 
yhiM 
GadX 
yhjL 
yifN 
yjbH 
yjgG 
yjgH 
ymgC 

Table 4. Misclassification Error for SVM, LDA and KNN 

SVM 
Polynomial 
C = 10,000 

SVM RBF 
C = 10,000 

LDAs 
KNN 

Degree 

OAA 
OAO 

Misclassification Error(%) 
Misclassification Error(%) 

Sigma (a) 

OAA 
OAO 

Misclassification Error(%) 
Misclassification Error(%) 
Misclassification error(%) 
Misclassification error(%) 

3 

3.32 
1.32 
OA 

10.5^ 
1.65 

5 

2.49 
1.18 
1 

3.30 
1.36 

10 

2.14 
1.2 
10 

2.16 
1.37 

11.71 
5.73 

15 

2.33 
1.24 
20 

2.16 
1.42 

might be different from K-Means results. It is well known that K-Means is 
using I/i and L2 distance measures as a basis to group objects into clusters 
and is a local approach providing a local minimum. Therefore, the results of 
K-Means implementation might not be precisely correct. We used 2392 genes 
from class 1, 13 genes from class 2 and 40 genes from class 3 as a training 
set. As a validation set, we use 38 genes from class 2. See Figure 3 for the 
experiment scheme. During the validation process, we assure that our SVM 
model classifies genes correctly without error. SVM model then is applied to 
classify the rest of 1807 genes. We are most interested in the genes in class 
2 which indicate decreasing expression level in response to the experimental 
variables. Therefore, only those genes included in class 2 are presented here. 
Table 5 shows the genes that are classified in class 2 by SVM implementation. 
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Training 
process with 
2485 genes 

^ 
w 

Validation with 
38 genes from 
class 2 

^ 
w 

Apply SVM to 
classify the rest 
of 1807 genes 

Fig. 3. SVM Implementation 

Table 5. List of Additional Genes Classified in Class 2 by SVM 

fimA 
flgE 
ycdF 
b2760 
hyfB 
ybaS 
yneJ 
sip 
ycjM 
yfjw 
tktB 
bl810 
cheY 
fliZ 
osmY 
proP 
rbsR 
rfaJ 

YabQ 
YadQ 
YhiN 
YieO 
bl454 
YeaQ 
Hha 
PyrL 
YbiM 
b2833 
CspE 
Pis 
NusB 
RplP 
RpmG 
RpsT 
YadP 
YajG 

yfji 
ygjQ 
yhiO 
yjdi 
ylcD 
ytfA 
bl777 
rpmH 
yccD 
b2073 
hsdM 
polA 
yggH 
tyrB 
xasA 
yaiE 
ycjc 

ymfl 
grxB 
pflA 
yhbH 
yhcN 
yqjc 
yciG 
yieJ 
b0105 
b3776 
dksA 
wecD 
ydbK 
ygffi 
yhbO 
yhbP 

9 Conclusions 

Multi-level K-Means clustering produced very good performance in this data 
set. The prior knowledge about the type of response of the genes to the ex-
perimental variables gives benefit in multi-level K-Means implementation in 
order to obtain a limited amount of genes with largest differential expression 
level. 

Prom the results shown in Section 7, we see that SVM method produced 
a better misclassification error than KNN and PDA for confirming the results 
from K-Means. The performance of SVM is really promising. Considering 
the kernel function selection can improve the performance of the SVM. In 
addition, the appropriate selection of parameter values is also very significant 
to improve the performance of SVM. The other advantage of SVM method is 
that the computing time is significantly shorter than KNN. The SVM method 
is also better than KNN since SVM always converges to the same optimal 
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solution while KNN does not. LDA and KNN produce bad results when the 
distribution of the classes of the training da ta is not balanced. This occurs 
in those experiments where the number of da ta in each class is not equal 
or almost equal. As we know, in LDA the Mahalanobis distance for each 
observation in the test sample to the mean of training sample for each class 
depends on the number of observations in the training sample. This does 
not occur for SVM. Although the distribution of the training sample is not 
balanced, SVM still produces good results. In SVM the discriminant function 
does depend on the geometric mean of the data . In specific for the multi-class 
SVM, one-against-one (OAO) is better than one-against-all method both for 
computing t ime and generalization error. 

Using SVM as an exploration tool to label unknown/unlabeled da ta is a 
good approach to identify unknown genes of similar function from expression 
data . SVMs can use similarity functions, defined through a kernel, t ha t operate 
in high-dimensional feature spaces and allows them to consider correlations 
between gene expression measurements. The SVM approach is different from 
clustering approaches and it provides an interesting tool to explore distinctions 
between different types of genes with some prior information available in terms 
of training da ta labels. 
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Summary. Computational biology problems generally involve the determination 
of discrete structures over biological configurations determined by genomic or pro-
teomic data. Such problems present great opportunities for application of mathe-
matical programming techniques. We give an overview of formulations employed for 
the solution of problems in genomics and proteomics. In particular, we discuss math-
ematical programming formulations for string comparison and selection problems, 
with high applicability in biological data processing. 

K e y words: Integer programming, mathematical programming, computa-
tional biology. 

1 Introduction 

Problems in genomics and proteomics are among the most diflBcult in compu-
tational biology. They usually arise from the task of determining combinator-
ial properties of biological material. Researchers in this area are interested in 
comparing, understanding the structure, finding similarities, and discovering 
pat terns in genomic and proteomic sequences. 

Genomic and proteomic da ta is composed of a sequence of elements, which 
can be thought of as being part of an alphabet A. A sequence of such ele-
ments will be called a string. The strings of genetic material (e.g., DNA and 
RNA) encode "instructions" to produce the proteins tha t regulate the life of 
organisms. Proteins themselves can be mathematically modeled as sequences 
over an alphabet of 20 characters (representing the available amino-acids). 

Supported in part by the Brazilian Federal Agency for Post-Graduate Education 
(CAPES) - Grant No. 1797-99-9. 
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In the last few years, advances in biology allowed the study of such se-
quences of da ta to move from pure biological science to other areas as well. 
This was made possible due to the opportunity of analyzing genomic and 
proteomic material using mathematical models. 

The analysis of biological sequences gives rise to interesting and difficult 
combinatorial problems. As many of these problems are NP-hard, the study of 
improved techniques is necessary in order to solve problems exactly (whenever 
possible), or at least with some guarantee of solution quality. 

We discuss problems related to configurations of genomic and proteomic 
sequences. Our interest is in mathematical programming formulations, gen-
erally involving integer linear programming (ILP) models. The importance 
of this study stems from the fact tha t knowing the mathematical program-
ming properties for a problem usually makes it easier to derive exact as well 
approximation solution techniques. Another reason is tha t ILP models can 
be solved automatically, using s tandard algorithms and commercial packages 
for integer programming, and therefore the knowledge of better mathematical 
models may improve the efficiency of such techniques for the specific problem 
in hand. More information about applications of optimization in biology can 
be viewed in the surveys [10, 23]. 

This chapter is organized as follows. In Section 2, we discuss some string 
comparison problems, including the closest and farthest string, as well as the 
closest and farthest substring problems. In Section 3, the protein structure 
prediction problem is discussed. Sorting by reversals is an interesting problem 
related to the comparison of gene sequences in different species, presented 
in Section 4. Section 5 discusses the important task of identifying biological 
agents in a sample. Integer programming is also very useful in the design 
of probes for the study of DNA. An example is the minimum cost probe 
set problem, presented in Section 6. Finally, in Section 7 we present some 
concluding remarks. 

2 String Comparison Problems 

Comparison of strings is an important subproblem in many biological appli-
cations. Problems involving string comparison appear for example in genetics, 
when comparing genetic material of similar species [12], designing probes for 
the identification of specific positions in genetic sequences [24], or determining 
similarities in functionality among different genes [8]. 

Comparison problems in strings can be classified according to the type of 
comparison function employed. The most common type of comparison func-
tion is called the editing distance measure [19]. The editing distance between 
two strings s^ and 5^ is the number of simple operations tha t must be used 
to transform s^ into 5^. The operations used when computing the editing dis-
tance normally involve the deletion or addition of characters, as well as the 
mutat ion of a character into another. If a cost is given to each of these simple 
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operations, then the total cost of the editing transformation is given by the 
sum of costs of each operation. 

Among problems using the editing distance we can cite for example the 
sequence alignment problem [7, 12], and local sequence alignment [13]. 

A second type of comparison function, which has many applications in 
computational biology, is the Hamming distance. In this kind of measure, the 
distance between two strings with the same size is simply the number of po-
sitions where they differ. This type of distance measure gives rise to many 
interesting combinatorial problems. Some of these problems are discussed in 
more detail in the remaining of this section: the closest string problem, the clos-
est substring problem, the farthest string problem, and the farthest substring 
problem. For these problems, mathematical programming methods have been 
developed by some researchers, giving optimum or near optimal solutions. 

2.1 Closes t Str ing P r o b l e m 

In the closest string problem, given a set S of input strings s^,... ,s'^, each of 
length m, the objective is to find a target string 5* such tha t max^ i!f(5*, 5*) 
is minimum (where H denotes the the Hamming distance). 

In [20], three integer programming formulations for this problem have been 
discussed and compared. The first formulation can be described using variables 
zl, where z^ = 1 if the k-th character in the i-th string and in the target 
string are the same, and zero otherwise. There are also variables t^, for k G 
{ 1 , . . . , n } , storing the index of the k-th character of the target string, as well 
as constants x\, giving the index of the k-th character in input string s^. 

The first mathematical formulation proposed is this 

PI: 

s.t. 

mind 

m 

k=l 

tk - 4 < Kzl 

xl -tk < Kzl 

4 e { 0 , i } 

i = i,.. 

i = i,.. 

i = i,.. 

i = i,. 

., n; k = 1,.. 

., n; k = 1,.. 

. ,n; k = 1,.. 

. . , n 

., m 

., m 

. ,m 

(1) 

(2) 

(3) 

(4) 

(5) 
(6) 

tk eZ^ k = l,...,m, (7) 

where K = \A\ is the size of the alphabet used by instance S. 
In the notation used in the above problem, d is the distance tha t need 

to be minimized, and according to constraint (2) it is equal to the maximum 
number of differences between the target string and the input strings. The 
following two constraints (3) and (4) give upper and lower bounds for the 
difference between the index of characters appearing in a position, for any 
strings s e S. 
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The mathematical formulation P I above can be improved in many ways. 
The first one is by tightening the bounds on constraints (3) and (4) by explor-
ing information about the characters appearing on strings 5 ^ , . . . , 5" .̂ This can 
be done initially by finding the maximum difference between indices of char-
acters appearing in a specific position. If we call this difference the diameter 
of position /c, denoted by K^^ then constraints (3) and (4) become: 

tk - xl < Kkzl 

xl -tk< Kkzl 

i = 1 , . . . , n; /c = 1 , . . . , 771 

i = 1 , . . . , n; /c = 1 , . . . , 771. 

(8) 

(9) 

Another improvement in formulation P I comes from the idea of making 
the index variable tk to be assigned to one of the characters really appearing 
in the k-th position, in at least one of the input strings. This avoids the 
possibility of having a solution with characters which are different from all 
other characters in one position, and therefore reduces the size of the feasible 
solution set for this formulation. We call the resulting formulation P2. For 
example, let S = {"ABC", "DEF"} . Then, "BBF" is a feasible solution for 
P I , but not for P2, since character 'B ' does not appear in the first position in 
any s ^ S. This example shows tha t P2 C P I . 

The proposed improvement can be implemented by adding an extra vari-
able Vj^k ^ {O71}, for j ^ {I7 • • • 7 Ck} and k G {! , . . . , 77i}, where Ck is the 
number of distinct characters appearing in position k in the input strings. 

The resulting integer programming formulation is the following: 

P2: 

s.t. 

min d 

i — 1 
J — ^ 

Ck 

J = l 
m 

k=l 

tk - xl < Kkzl 

xl -tk< Kkzl 

Vj^k e {0,1} 

4 G { O , I } 

(iGZ+, tkeZ^ 

i = l , . 

i = l , . 

J 
i = l , . 

. . , 7 7 ; 

. . , 7 7 ; 

eVk 

. . , 7 7 

/c = l , . 

/c = l , . 

i = l , . 

/c = l , . 

k = 1 , . 

k = l,. 

k = l,. 

/c = l , . 

. ,771 

. ,771 

. . , 7 7 

. ,771 

. ,771 

. ,771 

. ,771 

. ,771 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

Another formulation for the closest string problem presented in [20] ex-
plores the idea of bounding the difference between 771 and the number of match-
ing characters in the target t and the current string 5% for i G { 1 , . . . , 77}. This 
integer program has the advantage tha t it needs less variables than P2, and 
therefore it can be solved more efficiently: 



P3: 

s.t. 

min d 

Yl ^̂'̂  = ̂  
jeVk 

m 

m — 2_^ Vpj < d 

j = i 

Vj^k e {0,1} 

deZ^. 
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(19) 

k = l,...,m (20) 

p is the index of sj in ]/ , i = 1,... ,n (21) 

jeVk,k = l,...,m (22) 

(23) 

A result relating the formulations P I , P2, and P3 is summarized bellow. 

T h e o r e m 1 ([20]). Let RPl and RP2 he the continuous relaxations of for-
mulations PI and P2, respectively. If z^ is the optimum value of RPl and z^ 
is the optimum value of RP2, then z\ = ^ | . 

T h e o r e m 2 ([20]). The IP formulations PI and P3 satisfy P3 C PI. 

Results in [20] suggest tha t the last formulation P3 is very effective for 
the closest string problem. In fact, for all instances run in the computational 
experiments, formulation P3 returned either the optimum solution in a few 
minutes of computation or a solution very close to the optimum. 

2.2 Farthest Str ing P r o b l e m 

In the farthest string problem, given a set S of input strings with the same 
length, it is required to find a string t such tha t the Hamming distance between 
t and any 5 G 5 is maximized. This problem is in practice the opposite of the 
closest string problem, and it can be solved using similar techniques. In [21], 
an integer programming model for this problem was proposed. The model can 
be described in a similar way as the formulation P3 shown above: 

max d (24) 

subject to 2_\ ^j,k = 1 /c = 1 , . . . , m (25) 

m 

m— 2_\'^s^.,j ^d i = l , . . . , n (26) 

Vj^k ^ { 0 , 1 } j eA,k = l,...,m (27) 

d G Z+. (28) 

The difference between this model and the model P3 is tha t now we are con-
cerned with maximizing the distance. Consequently, the sign of constraint (26) 
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must also be inverted, in order to correctly bound the variable d occurring in 
the objective function. 

Experimental results with this model have been presented in [21]. Although 
it cannot be solved in polynomial t ime (since the problem is NP-hard) , the 
experiments have shown tha t exact results can be obtained for instances of 
medium size (around n = 25 and m = 300). Moreover, the linear relaxation 
of this integer programming model has proven to yield a very close approxi-
mation for larger instances. 

2.3 Closes t Subs tr ing and Farthest Subs tr ing P r o b l e m s 

The idea of comparing strings may be useful, even when the input da ta does 
not have exactly the same length. However, in this case the problem becomes 
more complicated, since similarities may occur in different parts of a string. 
The closest substring and farthest substring problems are formulated in a 
similar way to the closest string and farthest string, but the input strings 
may have variable length [17]. More formally, if the set of input strings is «S, 
we assume tha t the length of each s^ e S is at least m. Then, the closest 
substring problem requires the determination of a target string t of length 
m such tha t the Hamming distance between t and at least one substring s 
of 5% for each s^ G «S, is minimum. Similarly, the farthest substring problem 
is defined as finding a target string t of length m such tha t the Hamming 
distance between t and all substrings s of 5% for s^ G 5 , is maximum. 

A formulation for the farthest substring problem can be readily given by 
extending the formulation for the closest string problem (P3 as described 
above). We do this by defining variables Vj^k and d as before and using the 
following integer program: 

Q l : max d (29) 

s.t. Y ^ Vj^k = 1 /c = 1 , . . . , max^ 15* I (30) 
jeVk 

m - yZ^pd — ^ P ^^ ^^^ index of 5̂ -̂ ^ in Vj-^i (31) 
j = i for / = 1 , . . . , |5*| — m, i = 1 , . . . , n 

Vj,k e {0,1} j G Vfe, /c = 1 , . . . , max^ |5 ' | (32) 

deZ^. (33) 

In this integer programming formulation, the binary variable Vj^k determines 
if one of the characters appearing at position /c, for k G { 1 , . . . , max^ |5*|}, is 
used in the target string t. The model Q l has 0{nm'^\A\) constraints. 

On the other hand, a similar linear programming model could not be 
applied for the closest substring problem, since in this case the minimum must 
be taken over at least one substring of each 5* G S. In this case, the formulation 
should be extended with disjunctive constraints as described, e.g., in [22, 
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Chapter 1], and this would make the resulting model much more difficult to 
solve. 

3 Protein Structure Prediction 

One of the difficult problems in the analysis of proteins is related to the 
determination of its three-dimensional form, given only information about 
its sequence of amino-acids. This problem has been investigated by many 
researchers, and although some algorithms have been proposed, the general 
problem is not considered to be solved [16, 18]. 

Examples of techniques for protein structure prediction based on integer 
programming are discussed at length in [10]. We present here two of these 
techniques: contact maps [5] and protein threading [26]. 

3.1 T h e C o n t a c t M a p Over lap P r o b l e m 

Among the problems related to the three-dimensional structure of proteins, 
one of the most interesting from the mathematical point of view is the contact 
map overlap. This problem has the objective of finding a sequence of amino-
acids tha t maximizes the number of common contact points appearing in 
two input sequences, given the matrix of possible contact points, also called 
contact map. 

A contact map is a binary matr ix where the elements equal to one represent 
the fact tha t two amino-acids are in contact, i.e., the distance between them 
is less than some threshold. Contact maps can be produced by experimental 
means and give accurate information about the three-dimensional structure of 
a protein. It is known tha t there are techniques allowing one to pass from the 
da ta in a contact map to a three-dimensional representation [25]. This pos-
sibility justifies the increase of interest in solving problems using the contact 
map representation. The following formalization of the contact map problem 
has been introduced recently in [5]. 

The objective of the contact map overlap problem is to compare two given 
contact maps (corresponding generally to proteins), and determine the degree 
of similarity between them. This is done by matching residues from both 
structures and computing the number of elements in the respective contact 
maps where both positions represent a contact (i.e., are equal to one). 

The problem can also be posed using graphs in the following way. Let G 
be the graph corresponding to the A^^'^ contact map, i.e., G has n nodes, and 
(i^j) G E{G) if and only if Aij = 1. A non-crossing matching m for the contact 
map problem is one where m{i,j) = 1, m{k,l) = 1 and i < j implies k < I. 
In the problem, we are given the graphs G^ = (V^.E^) and G'^ = (V'^.E'^). 
A common contact is defined as the matching of a pair i, j G F ^ to a pair 
k,l G y ^ , such tha t (i^j) G E^ and (k^l) G E^. The contact map overlap 
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problem can now be formalized as finding a matching m such tha t the number 
of common contacts is maximized. 

The contact map problem as defined above is known to be NP-hard [25]. 
Therefore, computational techniques have been studied in order to solve at 
least specific classes of instances to optimality. For example, the mathematical 
programming formulation presented in [5] is the following. Let x G {0 ,1}^ be 
the incidence vector of a non-crossing matching, where L = V^ x V'^. Also, 
if / = (^1,^2) and m = (^1,^2), define constants a/^ = 1 if (^1,^1) G E^ and 
(^2,^2) ^ ^ ^ , CLim = 0 otherwise. Then the problem can be formulated as 

max Y^ bi 
leL,meL 

subject to 

where bim is a value such tha t bim + bmi = ctim = ctmi-
This is a quadratic program, however it can be linearized by defining a 

new variable 

i/ij G {0,1} s.t. i/ij = 1 if and only if x^ = 1 and Xj = 1 

This can be represented using the following linear constraints 

Vij < Xi for a l H , ^ G 1/ 

Vij = Vji f̂ ^ a lH , j G I/, / < m 

Clearly, the original formulation described above is very hard to solve, due 
to the exponential number of constraints. Therefore, a bet ter formulation was 
proposed to allow for computational efficiency. The reformulation is based on 
Lagrangian relaxation, where some constraints of the problem are added to 
the objective function with a negative multiplier. This penalizes the objective 
cost whenever the constraints are not satisfied. 

The resulting formulation given in [5] is 

max 2_, blmyim + ^ Mm{yim - Vml) 
lEL,mEL l,mEL,l<m 

where A/^ and X^i are weights with the objective of penalizing non-feasible 
solutions. The vector A of weights can be computed using sub-gradient opti-
mization, an efficient technique used for example in [11]. Results for this ap-
proach were reported to be satisfactory for instances with about 1000 residues 
and 2000 contacts. 
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3.2 Linear M o d e l for P r o t e i n T h r e a d i n g 

A mathematical programming framework for protein prediction has also been 
proposed in the R A P T O R (rapid protein threading by operations research 
techniques) package [26]. In R A P T O R , the problem of predicting protein 
structure is modeled using information about contact maps, as well as some 
additional information derived by locality and fitness of some possible assign-
ments. 

Given a set S of known protein structures, it is interesting to predict if 
a specific sequence of amino-acids will fold into a structure similar to any 
of the ones in S. This problem is referred to in the li terature as the protein 
threading problem. Typically, information is given about the structures in S 
in the format of contact maps, as discussed in the previous section. The da ta 
stored in the contact maps are paired with some additional information about 
the target sequence t being considered, in order to determine the structure 
tha t is most similar to the real s tructure of t. The motivation for this type 
of problem is the need of determining the structure of the large number of 
existing proteins from a smaller set of known structures. This is necessary 
in computational biology practice, since determining the exact structure of a 
protein is a long and costly process, which can be done just for a few proteins, 
compared to the large number tha t exists in nature. 

The integer linear program used in R A P T O R is large and will not be pre-
sented here. The objective function tries to minimize the summation of some 
energy functions used to quantify the fitness of a specific structure for the 
current target sequence. Constraints of the formulation are concerned with 
the feasibility of the structure when compared to the target. For example, 
the alignment of the two structures cannot present any crossings, such as de-
scribed for contact maps above. Crossings in the candidate alignments are 
called conflicts and solved by the addition of constraints tha t make the solu-
tion infeasible. In [26] a number of different constraints to avoid confiicts are 
presented, and their computational advantages discussed. 

Although the resulting integer linear program used in R A P T O R is more 
complex than the one used in [5], the relaxed linear program could be solved for 
much larger problems, giving results provably very close to the optimum. The 
formulation used there also has the characteristic of using sparse matrices, and 
therefore the computational t ime can be reduced by the careful application of 
techniques for large-scale sparse matr ix computation. 

4 The Sorting by Reversals Problem 

Sorting by reversals is a problem occurring in the study of sequences of genes 
in chromosomes. It is known tha t genes may change their position on chromo-
somes according to single permutat ions [9]. Therefore, one way of determining 
the similarity of two chromosomes a and b is determining the number of single 
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permutat ions of genes, required to transform a into b. Sometimes the simi-
larity of gene permutations in a chromosome yields a bet ter indication of 
genetic similarity than the more conventional techniques of individual gene 
comparison. 

The sorting by reversals problem is a formalization of the gene reversal 
problem, where given two sequences, one wants to find the minimum number 
of permutat ions tha t can be used to transform the first sequence into the 
second. Caprara [3] proved tha t the sorting by reversals is an NP-hard problem 
using properties of alternating cycles in biparti te graphs, answering an open 
question proposed in [14]. 

The number of single permutat ions to transform string a into b is called 
the reversal distance. The general problem of transforming a sequence a into b 
can be clearly reduced to the computation of the reversal distance between a 
permutat ion s and the identity permutat ion [ 1 , . . . , n] (if we denote |5| = n) . 

We describe an integer program for the sorting by reversals problem pro-
posed in [6]. The main result presented there is a column generation algorithm 
based on the given formulation. To develop this formulation, we describe the 
related cycle decomposition problem [1]. 

Given a permutat ion [TTI, . . . , TT^], construct a graph G{V, E^ U E'^) in the 
following way. Let V = { 0 , 1 , . . . , n + 1} for a permutat ion with n elements. 
Let ^ ^ be the set of edges (i, i + 1) such tha t |7r̂  — TT^+I | 7̂  1. Similarly, let E'^ 
be the set of edges (i, i -\- 1) such tha t \p{i) — p{i -\-1)\ ^ 1, where p(i) is the 
position of element i in the permutation. An alternating cycle in the graph G 
described above is a cycle where edges are taken alternately from E^ and E^. 
A cycle decomposition of G is a disjoint set S of alternating cycles, such tha t 
each edge in E appears exactly once in S. 

A result from [1] tha t relates the cycle decomposition problem to the sort-
ing by reversals problem is the following: 

T h e o r e m 3 . Given a graph G{V, E'^UE'^) constructed as described above from 
permutation TT = [TTI, . . . , TTn], let c be the minimum size of a cycle decomposi-
tion ofG; then \E-^\ —c is a lower bound for the optimal solution to the sorting 
by reversals problem on TT. 

The theorem above specifies tha t solving the alternating cycle decomposi-
tion problem may give a good bound for the sorting by reversals problem. In 
fact, computational experiments and theoretical results [4] have demonstrated 
tha t this is a strong bound. Thus, using this bound, an integer program for 
sorting by reversals is defined in the following way. Given a permutat ion TT, let 
S be the set of all alternating cycles in the G[7r] constructed as shown above. 
Let xces be a binary variable equal to 1 if and only if the cycle C G «S is 
selected. Then the integer program is: 

min 2_^ xc 
ces 

subject to 
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^ xc < 1 for all e G ^ 
C: eeC 

Clearly, the number of variables in this formulation is exponential in \V\, 
and therefore extremely difficult to solve exactly. A first simplification of the 
problem above consists of relaxing the binary constraints to have a linear 
problem, with variables xc > 0. A second technique suggested in [6] to make 
the problem tractable is to use a column generation approach^ where the LP 
is solved for a small number of variables, and in a second step the optimality 
of the solution with respect to other variables is tested. If the solution found 
is optimal with respect to all variables, then the problem is indeed optimal for 
the problem. Otherwise, one of the variables that can improve the solution is 
entered into the basis and a new LP is solved. 

In fact, determining the optimality of a solution is equivalent to proving 
that for all alternating cycles C ^ S there is no edge e ^ E such that 

eec 

where Ue is a value associated to edge e, for all e G ^ . 
The formulation shown above was found to be still very difficult to com-

pute, and therefore the weaker notion of surrogate alternating cycle was in-
troduced in [6]. Surrogate alternating cycles have the same requirements of 
alternating cycles, but they allow for a node to appear more than once in a 
cycle. This simple modification makes the code to find violating cycles much 
faster, and therefore the resulting LP can be solved quickly. The authors re-
port the exact solution of instances with size up to 200. Instances with size 
up to 500 could also be approximately solved with an optimality gap of less 
than 2%. 

5 Non-Unique Probe Selection Problem 

Identification of biological agents in a sample is an important problem arising 
in medicine and bio-threat reduction. In this problem, one seeks to determine 
the presence or absence of targets - virus or bacteria - in a biological sam-
ple. A frequently used approach for making that identification is based on 
oligonucleotide arrays. This is better explained using an example. Suppose 
that we would like to identify certain virus types in a sample. By observing 
if a number of probes - short oligonucleotides - hybridizes to the genome of 
the virus one can say if a virus is contained in a sample. In case one has 
more than one virus in the sample, the approach is readily extensible. How-
ever, there are drawbacks associated with this approach, since finding unique 
probes (i.e., probes that hybridize to only one target) is difficult in case of 
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closely related virus subtypes. An alternative approach is using non-unique 
probes, i.e., probes tha t hybridize to more than one target. 

In this section we describe an integer programming formulation for the 
case where non-unique probes are used. This model appears in [15], and it 
is assumed tha t a target-probe incidence matr ix H = {Hij) is available, see 
Table 1, where Hij = 1 if and only if probe j hybridizes to target i. 

Given a target-probe incidence matrix H the goal is to select a minimal 
set of probes tha t helps us to determine the presence or absence of a single 
target. In Table 1, if only one of the targets t i , . . . , ^4 is in the sample, then 
the set with probes p i , P2, Ps resolve the experiment, i.e., p i , P2, Ps detect the 
presence of a single target. This is seen by observing tha t for t i , probes p i , 
P2, P3 hybridize; for 2̂ probes p i , ps hybridize but p2 does not; for ^3 probes 
P2i Ps hybridize but pi does not; for t^ probes p2 hydridize but not p i , ^ 3 . 
In other words, the logical OR of the row vectors in Table 1 has ' 1 ' in the 
columns corresponding to probes pi ,P2,P3-

The problem becomes more difficult when targets 2̂ and ^3 are in the 
sample. In this case, the set p i , p2, Ps hybridize the targets t i , . . . ,^4, and 
this situation cannot be distinguished from the one where only ti is in the 
sample. One way to resolve this is selecting probes p i , . . . ,^9 . Note tha t the 
hybridization pat tern for each subset of two targets is different from the one 
for every other subset of cardinality one or two. Selecting all probes is often 
not cost effective since the experimental cost is proportional to the number 
of probes used in the experiment. We notice tha t using probes p i , p4, p5, 
PQ and Ps resolve the experiment, since any target taken individually can be 
identified uniquely. 

Pi P2 Ps P4 Pb PQ P7 P8 P9 

t i 1 1 1 0 1 1 0 0 0 
2̂ 1 0 1 1 0 0 1 1 0 

^3 0 1 1 1 0 1 1 0 1 
^4 0 1 0 0 1 0 1 1 1 

Table 1. Target-probe incidence matrix H [15]. 

Due to errors in the experiment (i.e., the experiment should report a hy-
bridization but it does not or the experiment reports a hybridization but none 
should be reported), one may require tha t two targets must be separated by 
more than one probe and tha t each target hybridizes to more than one probe. 
Many other constraints may arise in practice. 

Now we state formally the non-unique probe selection problem. Given a 
target-probe incidence matr ix H with non-unique probes and two parameters 
minimum coverage Cj^in and minimum Hamming distance /imm^ hrid a min-
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imal set of probes such tha t all targets are covered by at least Cmin probes 
and all targets are separated with Hamming distance at least hmin-

It can be shown tha t non-unique probe selection problem is NP-hard using 
a reduction from the set covering problem [15] . The following formulation is 
based on the one for the set covering problem. Let P = { p i , . . . , p^} denote the 
set of probes, T = { t i , . . . , t^} denote the set of targets, and M = {(i, k) G 
Z x Z \ l < i < k < m}. Let Xj, j G P , be 1 if probe pj is chosen and 0 
otherwise. Then we have the following integer program. 

min 2_^ Xj 

subject to 
n 

y^HijXj > Cmin for a l H G T [Coverage] 

n 

V ^ \Hij — Hkj\xj > hmin for all (i, k) ^ M [Hamming distance] 

Xj G {0,1} j = l , . . . , n , 

where \x — y\ in the Hamming distance constraints stands for the absolute 
value of the difference between the real numbers x and y. Note tha t Hij and 
Hkj are constants. 

In [15], this formulation is used for solving real and artificial instances of 
the non-unique probe selection problem. 

6 Minimura Cost Probe Set Problem 

The analysis of microbial communities gives rise to interesting combinatorial 
problems. One such problem is tha t of minimizing the number of oligonu-
cleotide probes needed to analyze a given population of clones. Clones and 
probes are represented as sequences over the alphabet {A,C,G,T}. This prob-
lem is relevant since the cost of analysis is proportional to the number of 
probes used in an experiment. 

A probe p is said to distinguish a pair of clones c and d, if p is a substring 
of exactly one of c or d. In some applications clones have length approximately 
1500 and probes have length between 6 and 10. 

The probe set problem can be defined as follows. Let C = { c i , . . . , c ^ } 
denote a set of clones and V = { p i , . . . , P m } denote a set of probes. Let 
C^ = {{c,d) I c,d ^ C,c < d}, where "<" is an arbitrary (e.g., lexicographic) 
ordering of C. We denote by As ^ C^ the set of pairs of clones tha t are 
distinguished by S CP. In order to analyze C at a low cost one needs to find 
a smallest set of probes from V such tha t As = C^. This problem is called 
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minimum cost probe set (MCPS). It can be shown, via a reduction from the 
vertex cover problem, that the MCPS is NP-hard [2]. 

Next we describe an integer programming formulation for the MCPS that 
appears in [2]. Let x = {xp | p G P) be a binary vector satisfying x^ = 1 if 
probe p e S and Xp = 0 if p ^ S. Then we can model the MCPS as follows. 

min 15̂1 = N , ^p 
pev 

subject to 

y Sp^cdXp > 1 for all (c, d) G C^ [Distinguish constraint] 
pev 

Xp G {0,1} for dllpeV, 

where Sp^c,d = 1 if and only if (c, d) G Ap. 
We note that due to the number of probes, this formulation may have 

a large number of constraints and the resulting coefficient matrix may be 
dense. Some instances tested in [2] have about 1,200,000 constraints and 5,000 
variables. In [2], an algorithm based on Lagrangian relaxation is used to find 
near-optimal solutions for MCPS instances. 

7 Conclusion 

In this chapter we presented several examples of mathematical programming 
formulations for problems in genomics and proteomics. These formulations 
show that integer and linear programs constitute important solution tools for 
many problems appearing in computational biology. 

We have seen that although the effectiveness of most of these techniques 
is remarkable, they are not straightforward to implement and require detailed 
knowledge of the structure of the problem. This demonstrates the impor-
tance of research concerning with the combinatorial structure of problems in 
computational biology. There remains a large number of open questions about 
efficient mathematical programming models and solution techniques for many 
of the problems discussed here. These will surely stay during the next years as 
challenging issues for researchers in computational genomics and proteomics. 
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Summary. The extensive production of data concerning structural and functional 
aspects of molecules of fundamental biological interest during the last 30 years, 
mainly due to the rapid evolving of biotechnologies as well as to the accomplish-
ment of the Genome Projects, has led to the need to adopt appropriate computa-
tional approaches for data storage, manipulation and analyses, giving space to fast 
evolving areas of biology: Computational Biology and Bioinformatics. The design 
of suitable computational methods and adequate models is nowadays fundamental 
for the management and mining of the data. Indeed, such approaches and their 
results might have strong impact on our knowledge of biological systems. Here we 
discuss the advantages of novel methodologies to building data warehouses where 
data collections on different aspects of biological molecules are integrated. Indeed, 
when considered as a whole, biological data can reveal hidden features which may 
provide further information in open discussions of general interest in biology. 

1 Introduction 

Nowadays, genome, transcriptome and proteome projects aim to determine 
the structural organization of the genomes and of the expressed molecules, 
such as RNAs and proteins, for all the biotic world, from viruses to Homo 
sapiens. The main goal of these international projects is to characterize the 
genetic material of an organism, its expression and its final products, to collect 
da ta concerning the functionalities of the molecules in each cell, during life 
stages and /or under specific stimuli. These efforts give rise to the exponential 
growth of biomolecular data. The da ta are today available mainly in the form 
of sequences, representing the primary level of molecular structure, or in the 
form of higher order organizations, to define the three-dimensional distribution 
of molecule atoms in the space. 

Corresponding author 
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The biological da ta are collected in molecular databases (see Database 
issue 32 of Nucleic Acids Research (2004) for a description of the currently 
available biological databases). The organization, collection and management 
of these large datasets represent only the starting point of their analysis. Data 
need to be investigated to understand molecular structure organization and 
functions; to derive peculiarities and affinities of specific cellular systems in 
specific conditions; to understand the evolution of living beings. This is the 
key to enhancing our knowledge of the determinants of the organization and 
physiology of the organisms, and of the mechanisms tha t , in a finely tuned 
network of interactions, control the expression of a genome, in time, i.e. during 
development, and in space, i.e. in the single compartments, from the cellular 
locations to the tissue and to the apparatus , when dealing with a multicellular 
life form [76, 67, 75, 52, 89, 85]. 

Bioinformatics and Computat ional Biology support the analysis of the 
structure and function of biological molecules, with applications of major im-
pact in medicine and biotechnologies. This is mainly due to the suitability of 
the computational approaches for large scale da ta analysis and to the higher 
efficiency of simulations with predictive models. 

Though many different experimental and computational programs are be-
ing developed to characterize the structure and function of genomes and their 
products, only 10% of genome functionalities is known.,This means tha t we 
are still far from achieving the favorable ambitious goal of simulation in silico 
of complex living systems. Indeed, this would require the knowledge of the 
functionalities of the genome, transcriptome and proteome, and of their links 
with cellular physiology and pathophysiology. This accounts for the increasing 
need for efficient computational methods which could be suitable to extract 
the still hidden information from the large amount of biological da ta already 
available and to be determined [14, 87, 17, 56, 93, 7, 41]. 

Integrated collections of da ta in fiexible, easily accessible da ta banks 
[8, 80, 42, 60, 57, 59] and the design of algorithms and software for their 
efficient management and analysis [11, 22, 25, 26, 83, 84, 71] are fundamen-
tal prerequisites for fruitful mining of biological data. Therefore, one of the 
main topics stressed in this chapter is the need of a biologically meaningful 
integration of the different da ta sources available. This requires a challenging 
effort which is acquiring wide interest in Bioinformatics and in Computat ional 
Biology [14, 8, 15, 80, 2, 17, 27, 42, 59, 85, 88]. 

In this chapter, we present a method for comprehensive mining on nucleic 
acid and protein structures. Furthermore, we report some of the results we 
obtained by applying the proposed method. Data concerning sequence and 
higher order structure information of both nucleic acid and protein molecules 
are integrated to produce a comprehensive da ta warehouse, which could sup-
port datamining methodology based on graphical approaches and on suitable 
statistics in order to extract biologically interesting information. 

To point out the usefulness of the proposed method, we report a spe-
cific application to the study of relationships between coding region com-
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positions and the corresponding encoded protein structures. Among others 
[18, 20, 21, 34, 81], one of the most interesting results obtained by applying our 
approach to the analysis of different datasets from different organisms was tha t 
the nucleotide frequencies in the second codon position of a coding sequence 
are remarkably different when the encoded amino acid subsequences corre-
spond to different secondary structures in a protein, namely helix, /3-strand 
and aperiodic structures [19]. This evidence, clearly showing a correlation be-
tween nucleotide frequencies and the corresponding protein structures, was 
discussed in terms of the relationship between the physicochemical properties 
of the secondary structures of proteins and the organization of the genetic 
code. This result is considered an interesting contribution in the context of 
discussions about the origin of the genetic code, suggesting tha t the genetic 
code organization evolved to preserve the secondary structures of proteins. 
Indeed, our results show tha t the genetic code is organized so as to disfavor 
nucleotide mutations tha t could be deleterious as they modify amino acid 
composition and hence the average physicochemical properties required to 
determine a given secondary structure in a protein [19]. 

1.1 T h e o r i e s o n t h e origin of t h e gene t i c c o d e 

Amino acid coding at nucleotide level obeys the following scheme: four distinct 
symbols {A,C,G,U}, representing the alphabet F of letters encoding each of 
the four nucleotides in a nucleic acid molecule, are grouped as three consec-
utive, non-overlapping, elements, called triplets, or codons. Each nucleotide 
in the t r iplet /codon can be numbered as the first, the second and the third 
codon position (X1X2X3, where X G F) . When considering all the possible 
combinations of nucleotides, 64 triplets (i.e. 4^) are possible. Each triplet cor-
responds to one of the twenty different amino acids tha t can encode a protein, 
or to a STOP signal which marks the end of a nascent protein during protein 
synthesis, i.e. the biological process tha t produces an amino acid chain [13]. 
There are more triplets encoding the same amino acid. From a mathematical 
point of view, the genetic code is a surjective mapping among the set of the 64 
possible three-nucleotide codons and the set of 21 elements composed of the 20 
amino acids plus the STOP signal [44]. The rules of encoding, i.e. those tha t 
determine which amino acid will be present in the protein at a given triplet in 
the nucleic acids, are termed the genetic code. The organization of the genetic 
code is illustrated in Table 1, where each nucleotide of a t r iplet /codon is read 
using respectively the first (first column), the second (central columns) and 
the third (last columns) position in the table, and the encoded amino acid is 
obtained as the element localized by three nucleotides in the table. Therefore, 
redundancy and degeneracy follow, because one amino acid can be encoded 
by more than one triplet. Codons encoding the same amino acid are named 
synonymous codons. 

The genetic code (Table 1) establishes a mapping between the world of 
nucleic acids and the world of proteins in the sense tha t specific regions, the 
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coding region, of a specific nucleic acid polymer, the messenger RNA (mRNA), 
include a succession of non-overlapping triplets, i.e. of three nucleotides, tha t 
determine one and only one sequence of amino acids, i.e. a specific protein. 
Therefore, understanding the origin of the organization of the genetic code 
entails comprehending the logic according to which a certain amino acid was 
assigned to a certain triplet and, hence, understanding the meaning of the 
relative positions of the amino acids within the genetic code (Table 1), as 
well as understanding why amino acids are encoded by different numbers of 
codons. 

Table 1. Genetic Code organization. The amino acids are represented using the 
three-letter abbreviation, while the 1st, the 2nd and the 3rd position represent the 
nucleotide content at the three codon positions using the four letter alphabet for 
nucleotides. 

2nd base in the codon 
U C A G 

Phe Ser 
U Phe Ser 

Tyr 
Tyr 

CysU 
Cys C 

Leu Ser Stop Stop A 
Leu Ser Stop 
Leu Pro 

C Leu Pro 
1st base Leu Pro 

in the codon Leu Pro 
lie Thr 

A lie Thr 
lie Thr 

Met Thr 
Val Ala 

G Val Ala 
Val Ala 
Val Ala 

His 
His 
Gin 
Gin 
His 
His 
Gin 
Gin 
Asp 
Asp 
Glu 
Glu 

T r p G 
Arg U 
Arg C 
Arg A 3rd base 
Arg G in the codon 

~ S ^ U 
Ser C 

Arg A 
Arg G 

"Gl^U 
G l y C 
GlyA 
GlyG 

Speculation about the origin of the genetic code began even before the 
code was deciphered [77, 37, 69], and this is because the origin of the nucleic 
acid directed protein biosynthesis is one of the main problems in studying 
the origin of living systems. Although the mechanisms of protein biosynthesis 
have been elucidated, the origin of this process remains unknown. Therefore, 
different theories are still discussed to understand the forces and events tha t 
determined the actual specific association between one (or more) triplet (s) 
and the corresponding amino acid. 
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The stereochemical hypothesis suggests tha t the origin of the genetic code 
must lie in the stereochemical interactions between codons (or anti-codons^) 
and amino acids. In other words, this hypothesis establishes tha t , for instance, 
lysine must have been codified by the codons AAA or A AG (Table 1) because 
lysine is somehow stereochemically correlated with these codons. Several mod-
els have been proposed to support this theory [37, 79, 99, 32, 102, 9, 10, 66, 
68, 4, 51, 90, 106]. 

The physicochemical hypothesis suggests tha t the driving force behind the 
origin of the genetic code structure was the one tha t tended to reduce the 
physicochemical distances between amino acids codified by codons differing 
in one position [92, 101]. In particular, Sonneborn [92] identified the selective 
pressure tending to reduce the deleterious effects of mutat ions in one of the 
codon positions as the driving force behind the definition of amino acid al-
locations in the genetic code table. By contrast, Woese et al. [101] suggested 
tha t the driving force behind the definition of the genetic code organization 
must lie in selective pressure tending to reduce the translation errors of the 
primitive genetic message. In both cases, amino acid tha t should be preserved 
in their position are encoded by similar codons. 

Another essentially similar hypothesis is the ambiguity reduction hypothe-
sis. This hypothesis [100, 35, 36] suggests tha t groups of related codons were 
assigned to groups of structurally similar amino acids and tha t the genetic 
code, therefore, reached its current structuring through the reduction of the 
ambiguity in the coding between and within groups of amino acids. A point 
for discussion in the proposed hypotheses concerns whether there was physic-
ochemical similarity between amino acids and the triplets coding for them, 
which might have promoted the origin of the genetic code. Some studies indi-
cate tha t this might be the case [98, 53, 62]. 

The earliest traces of another hypothesis of the origin of the genetic code, 
the coevolution theory^ were found by Nirenberg et al. [70], who recognized the 
existence of contiguity between codons tha t codify for amino acids synthesized 
by a common precursor. However, it was Pelc [78] and, above all, Dillon [31] 
who recognized tha t the distribution of codons among amino acids might 
have been guided by the biosynthetic relationships between amino acids. But 
it was not until later tha t the genetic code coevolution hypothesis was clearly 
formulated [104]. This hypothesis suggests tha t the codon system structure is 
primarily an imprinting of the prebiotic pathways tha t formed amino acids. 
Consequently, the origin of the genetic code could be clarified on the basis of 
the precursor-product relationships between amino acids visible in the current 
biosynthetic pathways. In other words, the hypothesis suggests tha t early on 
in the genetic code, only precursor amino acids were codified and tha t , as these 

^ The complementary sequence of the codon present on a transfer RNA, the mole-
cule which transports a specific amino acid according to its anticodon, and recog-
nizes the exact codon on the mRNA to insert the required amino acid in the 
forming protein chain. 
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gradually formed product amino acids, some of the codons in the precursor 
domain were conceded to the products [104, 105]. 

Since the genetic code mediates the translation of mRNA into proteins, a 
simple conjecture suggests tha t some fundamental themes of protein structure 
are refiected in the genetic code table, as these themes might have character-
ized the main selective pressure promoting code structuring. There are some 
indications tha t support this hypothesis. Jurka and Smith [54, 55] suggest 
tha t the /3-turns of proteins became objects for selection in the prebiotic en-
vironment and infiuenced the origin of the genetic code and the biosynthetic 
pathways of amino acids, as precursor amino acids are also the most abundant 
ones in /3-turns. Furthermore, a study aiming to clarify how the physicochem-
ical properties of amino acids are distributed among the pairs of amino acid in 
precursor-product relationships and those tha t are not, but which are never-
theless defined in the genetic code, found tha t the pairs in precursor-product 
relationships refiect the /3-sheets of proteins through the bulkiness or, more 
generally, the "size" of amino acids [29]. These two studies, therefore, seem 
to point out tha t /3-turns and /3-sheets were the main adaptive themes pro-
moting the origin of genetic code organization. In favor of this view are the 
observations and suggestions of other authors who state tha t these structural 
motifs characterized primitive proteins [72, 73, 74, 12, 97, 65, 49]. The pre-
sumed identification of /3-turns and /3-sheets as the fundamental themes of 
primitive proteins might give some information as to what type of message 
characterized ancestral mRNAs. 

In conclusion, although several hypotheses have been proposed as possible 
explanations for the origin of the genetic code organization, this topic is still 
an open question among researchers. 

1.2 P r o t e i n s e c o n d a r y s t ruc ture features 

Different secondary structures of proteins exhibit considerable differences in 
amino acid frequencies [94, 48, 50, 82, 24, 43, 23, 64]. Some amino acids 
are, indeed, more prone to be present in specific secondary structures while 
others tend to disrupt them [3]. Propensities of amino acids for a secondary 
structure correlate with their physicochemical properties. These properties 
have provided the basic information used in prediction methods. 

Protein secondary structures refiect the physicochemical properties of the 
most frequent amino acids in those structures. For example, the /3-strand 
structure is strongly hydrophobic, while aperiodic structures contain more 
hydrophilic amino acids. Therefore, constraints on the secondary and tert iary 
structures tend to limit accepted mutat ions to those in which an amino acid 
is replaced by another amino acid with similar properties [33, 46, 16]. 

Other investigations have addressed the possible correlation between the 
nucleotides at each codon position and the properties of amino acids [45, 103, 
91, 6, 96, 95]. In particular, hydrophobic amino acids are encoded by codons 
having U in the second position, while hydrophilic amino acids are encoded 
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by triplets with A in the second position. However, previous a t tempts to link 
protein secondary structures to the organization of the genetic code [29] have 
been unsuccessful [86, 45], except in the case of /3-turns [55] and /3-strands 
[29]. Recently Gupta et al. [47] reported tha t the average frequencies of U and 
A at the second codon position are remarkably different between ce-helix and 
/3-strand, although they report no further results or discussion on this topic. 

The present chapter shows tha t the nucleotide distributions in second 
codon positions are strongly related to the average physicochemical prop-
erties of protein secondary structure, and this relationship sheds further light 
on the origin of the genetic code. 

2 Methodology 

2.1 O n e c o d i n g reg ion analys i s 

Our methodology is implemented in C language [20]. It is based on a com-
prehensive analysis of the structural information available "from the gene to 
the encoded protein". In particular, we considered all the information tha t 
can be related to a coding region, i.e. the region of the mRNA tha t , if read 
from the first to the last nucleotide by triplets, gives rise to a sequence of 
amino acids according to the rules embedded in the genetic code. Therefore, 
we considered the coding region codon composition, the encoded protein se-
quence and the information concerning different levels of protein organization 
from a structural and functional point of view. Protein information can be 
derived from specific features of the involved molecules tha t can be obtained 
using specific software and /or can be retrieved from related databases. All the 
information available can be collected and organized in a suitable graphical 
approach, reporting all the da ta "aligned" in a biologically significant way. 

Graphics and basic statistics can be derived to inspect relationships and 
correlations between the different levels of structural and functional organi-
zation of the considered molecules as a basis to perform specific analysis and 
carry out oriented mining on da ta concerning different aspects. 

The software is able to determine the compositional features of the nu-
cleotide sequence as well as of the encoded amino acid chain in a straightfor-
ward way. Therefore, profiles related to the physicochemical properties of the 
amino acid can be reported too. Moreover, the software is designed to con-
sider external sources of information, derived from da ta banks or exploitation 
of already available software: 

i) the structural and the functional information derived from the Swissprot 
da ta bank; 

ii) the prediction of the protein secondary structures, described in terms of 
/3-strand, ce-helix, tu rn and aperiodic structures, from a consensus of five 
different predictive methods [40, 63, 28, 38, 39]; 
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iii) tfie tfiree-dimensional information derived from tfie DSSP program [58], 
wfien tfie experimentally determined tfiree-dimensional structure of tfie 
protein is available. 

All tfie information tfie user needs to consider in fiis/fier analysis is aligned 
versus tfie nucleic acid sequence, because of tfie linear correspondence tfiat re-
lates tfiis sequence to tfie amino acid sequence and to tfie protein structure 
information. Tfie aligned format supports tfie investigation into tfie struc-
tural features of a protein from its nucleotide coding sequence to its tfiree-
dimensional organization. In particular, tfiis software can be useful: 

• to compare different structural aspects and levels of information. For ex-
ample, tfie information coming from secondary structure predictions can 
be compared witfi different structure information determined by predictive 
approacfies and /or from experimental da ta (presence of specific functional 
domains, crystallograpfiic data, presence of disulfide bonds); 

• to derive information on compositional features of tfie coding sequence and 
tfie corresponding protein structure; 

• to cfieck da ta contained in tfie da ta bank tfiat often, due to lack of control, 
can include mistakes. For example, tfie comparison of tfie fiydropfiobicity 
profiles, of tfie structure predictions, of tfie domains or of otfier structural 
information contained in tfie protein da ta banks, can support tfie inspec-
tion of discrepancies tfiat could be furtfier investigated. 

Typical grapfiical outputs of tfie software are sfiown in Figures 1 and 2 
and described in tfie corresponding figure legends. 

2.2 M u l t i p l e c o d i n g reg ion analys i s 

Tfie proposed approacfi can be extended to allow tfie analysis of multiple 
aligned sequences. 

An example of output for a set of multiple aligned nucleotide sequences is 
sfiown in Figure 3. Tfie alignment is made of tfiree sequences of tfie Adenosine 
1 receptor from different mammalian orders. Tfie sequences sfiare a fiigfi simi-
larity. Tfie Adenosine 1 receptor is a t ransmembrane protein wfiose functional 
domains are sfiown in tfie figure as tfiey are reported in tfie Swissprot da ta 
bank (extracellular (ligfit lines), cytoplasmic (left-rigfit lines), t ransmembrane 
(dark lines) domains). 

Tfie software compares tfie aligned coding region sequences reporting tfie 
nucleotide synonymous (tfiose leaving tfie amino acid uncfianged) and nonsyn-
onymous (tfiose cfianging tfie amino acid) substitutions. Tfie superimposition 
of profiles witfi different colors (non-overlapping profiles) fiigfiligfits tfie com-
positional differences. Tfie aligned information also sfiows tfie localization and 
possible effects of tfie substitutions at tfie amino acid level. As an example, it is 
possible to detect from Figure 3 amino acid substitutions tfiat cause dramatic 
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Fig. 1. Example of output in the graphical analysis of a coding region. Nucleic 
acid sequence information is reported as a profile describing the composition along 
the entire sequence (in this example each nucleotide is represented, as well as the 
AT/GC content of the sequence) and in terms of the composition in the three codon 
positions (in this example AT/GC content is reported for each codon position). Two 
similar but not equivalent profiles are reported for describing the protein sequence: 
in the first profile (1) the amino acids are ordered as hydrophobic, polar, and charged 
ones, while in the second profile (2) the amino acids are ordered according to the 
Kyte and Doolittle scale [61]. The protein structure information reported in this 
examples corresponds to the predictions (in terms of helix, /3-strand, turn and ape-
riodic structure) of four different methods, while in the last line a consensus of these 
analyses is reported too. The protein sequence information and the functional do-
mains reported in the Swissprot data bank are included. In this example, a disulfide 
bridge ( ) is reported for the sequence under analysis. 

changes in hydrophobicity. In the example reported in Figure 3, the contem-
porary display of different da ta sources also indicates regions tha t correspond 
to t ransmembrane domains, and confirms tha t these functional domains are 
predicted to assume an ce-helix conformation. Moreover, it is evident tha t the 
t ransmembrane domains are highly conserved both at nucleotide and amino 
acid level, and tha t the rare nonsynonymous substitutions detectable tend to 
be conserved substitutions in terms of physicochemical properties. The perfect 
correspondence between the functional domains as reported in the Swissprot 
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Fig. 2. Example of output in the graphical analysis of a coding region. The image on 
the computer screen can be scaled to investigate more detailed information. Through 
this option, it is possible to read both the nucleic acid (nt sq) and the amino acid 
(aa sq) sequences. The vertical bar on the screen can be moved by the user to scan 
the sequences and the aligned information, while selected positions are indicated on 
the menu bar (nucleotide 38 and amino acid 13, in this example). 

da ta bank for all the three different sequences in Figure 3 confirms the func-
tional similarity due to the high sequence similarity, and the correctness of 
the alignment under consideration. 

The proposed approach can be useful not only to identify conserved re-
gions in a sequence-structure alignment, but also to identify regions which are 
susceptible of variation, either for functional reasons (for example, a specific 
binding site for a ligand in one of the aligned protein may differ from tha t 
of another protein though the general s tructure similarity) or due to a lack 
of involvement in a specific function and, therefore, no presence of selective 
constraints tha t maintain structural conservation. 
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Fig. 3. Example of output in the graphical analysis of multiple aligned sequences. 
Three sequences are aligned in this example. Nucleotide and amino acid sequences 
profiles are superimposed so that nucleotide and amino acid substitutions could be 
identified. In this example, predictions of protein structures are reported only for one 
of the sequence in the alignment (user defined choice). The Swissprot information 
is reported for all the three aligned sequences (1,2,3). Positions of synonymous and 
nonsynonymous substitutions are reported along the alignment ( ^ ) . 

Graphical approaches permit a straightforward inspection of the da ta in-
formation content, which is really useful in the phase of "knowledge detection" 
tha t could drive successive automated analyses. 

The software can also produce simple text-based tables to report da ta in-
tegrating different levels of molecular information, to apply suitable statistics 
to determine significant relationships. 

An example of da ta text-based report is found in Figure 4, where three 
groups of aligned information are visible: i) a multiple alignment of 48 amino 
acid sequences; ii) the corresponding predicted structures derived from a con-
sensus of specific software [40, 63, 28, 38, 39]; the experimental s tructure 
information available for two of the aligned amino acid sequences, as well as 
a predicted model of the three-dimensional structure based on the amino acid 
sequence. This sample output allows the analysis of relationships between 
aligned amino acid sequences sharing sequence similarity and the higher or-
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der structure information available from other source data . All the sequence 
and structure information available, including experimental data, were then 
used in a comprehensive approach to evaluate, in the reported example, the 
reliability of the predicted model [34]. 

Fig. 4. Example of text output of aligned data. In this example, a partial view of 
an alignment of 48 homologous protein sequences (first group) compared with the 
corresponding predicted protein secondary structures (second group). Ibkb and 2eif 
are the experimentally determined structures of sequence 45 and sequences 37 and 
38, respectively. Model is the secondary structure of a predicted three-dimensional 
model [34]. 

Focusing on selected features or selected regions, the software can analyse 
subsets of data, extracting information at different structure levels. For exam-
ple, when the secondary structures of a protein (helices, /3-strands, or coils) 
or a domain in a set of predefined possibilities (for instance a t ransmembrane 
domain, a signal sequence or other) are selected as "reference regions", a set of 
related information is retrieved and stored in different user-requested formats 
so as to become available for analyses in greater depth. 



Inferring the Origin of the Genetic Code 303 

In conclusion, the software supports a comprehensive analysis of functional 
and structural related sequences in the form of multiple alignment to obtain 
further information. It may be used to check the information available in the 
databases, to extend the known information to similar sequences for which 
no information is yet available and to evaluate the quality of sequence multi-
ple alignments, which is no minor problem in the computational analysis of 
biological sequences. 

The software description and some examples of output have been reported 
in this chapter to show the integrated approach we propose. Integrated da ta 
sources highlight information which is otherwise undetectable and support a 
bet ter comprehension of functional, structural and evolutionary relationships 
of biological molecules. 

To stress the usefulness of the method proposed and the keen interest in 
managing integrated da ta to perform comprehensive datamining, we report, 
in the following sections, our application of the described method to the study 
of the relationships between the intragenic variability of the nucleotide compo-
sition at the coding sequence level and the secondary structure of the encoded 
proteins. 

3 Database construction 

Two da ta sets of experimentally determined structures comprising 77 human 
and 232 prokaryotic proteins were used in order to investigate the relationships 
between the nucleotide composition in the second position of t r iplet /codon of 
coding sequences and the secondary structures of the encoded proteins. 

The human protein set was obtained from ISSD [1], a database of 77 
protein structures aligned with their coding regions, while the prokaryotic 
proteins where obtained from the P D B database [5]. 

Nucleotide coding region information aligned with the secondary struc-
tures of experimentally determined protein structures was used to derive the 
frequency of the four nucleotides (A,C,G,U) in the codon second position for 
each type of secondary structure. 

The protein secondary structures, assigned by the DSSP program [58], 
were described in terms of/3-strand, helix (including 3io helices and ce-helices), 
and aperiodic structure (including the tu rn structure and the protein segments 
tha t are not defined and/or lack periodicity). The average hydrophobicity 
levels, based on the Gravy scale [61], and molecular weights of the amino 
acids in each of the three structures were also calculated. 

Basic statistics were used to mine the da ta and the T-test for dependent 
samples was used to evaluate the significance of the pairwise differences in 
nucleotide composition in the three secondary structures. 
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4 Results 

In Table 2, we report the mean values of the nucleotide frequencies (A2,C2,G2, 
U2) at codon second positions in human and prokaryotic proteins calculated 
in the coding regions corresponding to different secondary structures. 

The three structures show marked differences in the frequency of U in the 
codon second position (U2) in both groups of organisms: the aperiodic struc-
ture shows the lowest values; the /3-strand structure shows the highest ones, 
and the helix structure has an intermediate behavior. A2 also differs among 
the three structures, with higher values in helix and aperiodic structures and 
lower ones in the /3-strand structure. G2 and C2 have consistently lower val-
ues in all three structures compared to A2 and U2, with higher figures in the 
aperiodic structure in comparison to helix and /3-strand structures. 

Table 2. Mean, standard deviation, minimum and maximum values of the nu-
cleotide frequencies determined at second codon positions in the coding regions 
corresponding to the three secondary structures. 

aperiodic helix b-strand 

U2 A2 C2 G2 U2 A2 C2 G2 U2 A2 C2 G2 

mean 0.17 0.36 0.23 0.24 0.26 0.38 0.19 0.17 0.42 0.25 0.18 0.15 

human SD 0.05 0.07 0.05 0.06 0.09 0.09 0.07 0.08 0.08 0.07 0.06 0.06 
min 0.04 0.15 0.12 0.11 0 0.22 0 0 0.24 0.1 0 0 
max 0.28 0.53 0.35 0.46 0.5 0.67 0.4 0.43 0.66 0.53 0.3 0.3 

mean 0.2 0.38 0.22 0.2 0.3 0.39 0.19 0.12 0.44 0.27 0.16 0.13 
prokaryotic SD 0.05 0.09 0.06 0.06 0.07 0.11 0.08 0.06 0.09 0.09 0.06 0.05 

min 0.05 0.19 0.05 0 0 0.1 0 0 0.2 0 0 0 
max 0.32 0.63 0.46 0.47 0.5 0.78 0.67 0.28 0.8 0.61 0.36 0.32 

The differences in nucleotide frequency in the codon second position can 
be explained by the different amino acid composition in the three structures 
(Table 3). As expected, the amino acids have different propensities for each 
structure. Interestingly, all amino acids with U in the second position exhib-
ited the highest frequencies in the /3-strand structure, while helix structures 
exhibited higher frequencies for these amino acids than aperiodic structures. 
The amino acids tha t contribute most to these differences are phenylalanine, 
isoleucine and valine, while leucine is strongly differentiated only between the 
aperiodic structure and the remaining two structures. Wi th the sole exception 
of tyrosine, amino acids tha t have A in the second position are more frequent 
in aperiodic and helix structures than in the /3-strand structure. These results 
indicate tha t the differences of U2 and A2observed among structures are not 
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due to any particular amino acid tha t is very frequent in one structure and 
seldom present in the others. Rather, they demonstrate tha t there is a coher-
ent behavior. Amino acids with G2 in their codons do not exhibit preferences 
for any particular structure, with the sole exception of glycine, which is very 
frequent in the aperiodic structure. Amino acids with C2 also exhibit no com-
mon behavior, although alanine is most frequent in the ce-helix and proline is 
very frequent in the aperiodic structure. 

Table 3. Amino acid composition in the three secondary structures. The nucleotide 
at the second codon position is reported for each amino acid. 

lie 
Phe 
Val 
Leu 
Met 
Lys 
Asp 
Tyr 
Glu 
Asp 
Gin 
His 

ThF 
Ala 
Pro 
'Trp 
Cys 
Gly 
Arg 
Ser 

Nucleotide in the 
2nd position 

U 
U 
U 
U 
U 
A 
A 
A 
A 
A 
A 
A 

C 
C 

c 
G 
G 
G 
G 

G/C 

Total 

0.064 
0.068 
0.041 
0.06 
0.046 
0.067 
0.041 
0.068 
0.049 
0.039 
0.023 
0.034 

0.021 
0.047 
0.054 

0.077 
0.092 
0.015 
0.027 
0.066 

b-strand 

0.084 
0.067 
0.122 
0.107 
0.027 
0.055 
0.022 
0.044 
0.056 
0.025 
0.032 
0.022 

0.07 
0.054 
0.023 
0.019 
0.032 
0.047 
0.037 
0.056 

helix 

0.052 
0.044 
0.062 
0.105 
0.027 
0.076 
0.037 
0.032 
0.089 
0.05 
0.046 
0.024 

0.047 
0.098 
0.026 
0.016 
0.023 
0.04 
0.054 
0.055 

aperiodic 

0.027 
0.031 
0.047 
0.063 
0.011 
0.071 
0.064 
0.027 
0.059 
0.074 
0.039 
0.023 

0.062 
0.052 
0.073 
0.011 
0.026 
0.112 
0.047 
0.08 

A further step in examining nucleotide preferences in the secondary struc-
tures of proteins was to analyse their distributions by considering intergenic 
variability. For this purpose all amino acids belonging to the same type of 
secondary structure were pooled for each gene (Figures 5 and 6). The dis-
tinct distributions of the base frequencies in the three structures is clearly 
visible in both human (Figure 5) and prokaryotic (Figure 6) da ta sets: three 
separate ^^clouds^^ can be distinguished, each corresponding to a given struc-
ture. U2 (abscissa) is the frequency tha t best separates the ^^clouds^\ The 
/3-strand structure shows a U2distribution tha t is never lower than 0.24 (hu-



306 Maria Luisa Chiusano, Luigi Frusciante, and Gerardo Toraldo 

Fig. 5. Scatterplots of A2, C2 and G2 versus U2 in human data. 

man data) or 0.2 (prokaryotic data) , and tha t overlaps only marginally with 
the U2distribution for the aperiodic structure. Although the distributions of 
U2 frequencies in the helix structure have some overlapping with both aperi-
odic and /3-strand structures, it occupies a clearly differentiated, intermediate 
position. 

Both Figures 5a and 6a show a separation of the A2 distributions (ordinate) 
between aperiodic and helix structures on the one hand, with higher A2 values, 
and /3-strand on the other, with lower A2 values. 
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Fig. 6. Scatterplots of A2, C2 and G2 versus U2 in prokaryotic data. Symbols are 
as in Fig. 1. 

Although G2 and C2 distributions do not distinguish the three structures 
as clearly as A2 and U2, their values tend to be higher for the aperiodic struc-
ture compared to helix and /3-strand structures, especially in the case of G2. 
In this latter case, the higher values of G2 in the aperiodic structure are due to 
the contribution of tu rn structure. This is shown in Figure 3 where G2 is plot-
ted versus U2 in human proteins, separating the contribution of turns from 
the remaining types of aperiodic structure. It is evident tha t G2 frequency 
is higher in the tu rn structure than in the other types of aperiodic struc-
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Fig. 7. Scatterplots of G2 versus U2 in the secondary structures (a) and in turn and 
b-strand structures (b). In (b) the contribution of the turn structure is separated 
from the remaining aperiodic structure. 

ture, while U2 is lower, making the separation between turn and /3-strands 
even stronger (Figure 7b) than tha t obtained between aperiodic and /3-strand 
structure (Figure 5c, 6c). The same comparison for prokaryotic proteins yields 
similar results (not shown). 

Analysis at the "intragenic level", made in order to understand the con-
tribution of single elements of structure to nucleotide frequencies in a given 
protein secondary structure, suggests tha t each individual element follows the 
general behavior described above for intergenic analysis, though the larger 
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Fig. 8. Intragenic analyses of A2 versus U2 for some sample proteins. Colored 
symbols represent average nucleotide frequencies in individual element of structure. 
Open symbols represent average nucleotide frequencies of all the elements of struc-
ture of the same type in the protein (corresponding to dots in Fig. 5 and 6). 

variability, which is very likely due to the smaller sample size. In Figure 8, 
examples for some genes are shown. 

4.1 P h y s i c o c h e m i c a l proper t i e s of s t ruc tures 

To further understand the reasons for the nucleotide preferences in the three 
structures in the context of the relationship between the physicochemical prop-
erties of amino acids and the genetic code, we investigated the average hy-
drophobicity values and molecular weights of the amino acids in the protein 
secondary structures. 

By plotting the molecular weights versus hydrophobicity, in both human 
and prokaryotic proteins (Figure 9, panels a and b, respectively), we can 
observe tha t the distributions of the values differ among the three types of 
secondary structure. The /3-strand structure has higher hydrophobicity when 
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Fig. 9. Molecular weights versus hydrophobicity 

compared to aperiodic and helix structures. In particular, the hydrophobicity 
interval of aperiodic and /3-strand structures shows only a small overlap. Mole-
cular weights show different, yet widely overlapping distributions. /3-strands 
and helix structures exhibit molecular weights tha t are higher than those of 
the aperiodic structure. 

From this analysis general information may be derived on universal rules 
concerning physicochemical properties of the structures. /3-strand and ape-
riodic structures have diametrically opposite tendencies. The /3-strand has 
higher hydrophobicity and, on average, amino acids with higher molecular 
weights, while the aperiodic structure is less hydrophobic and consists of amino 
acids with lower molecular weight on average. Moreover, the helix structure 
is intermediate, sharing a similar distribution with the /3-strand structure in 
terms of molecular weight, while it follows the behavior of the aperiodic struc-
ture in its hydrophobicity pat terns. 

More important though is the fact tha t molecular weight and hydropho-
bicity are negatively correlated when each kind of secondary structure is con-
sidered separately, the correlations being statistically highly significant. This 
correlation disappears completely, if not becoming positive, when all the struc-
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tures are considered together. Moreover, for the same hydrophobicity the dif-
ference among the structures is given by the molecular weight; likewise, if 
the molecular weight is kept constant, the difference among the structures is 
given by the hydrophobicity values (Figure 9). In other words, if one of these 
two variables is kept constant, changing the other would necessarily imply a 
change in the secondary structure. 

Finally, we would like to mention tha t while each of these two physico-
chemical variables is not powerful enough for discriminating the secondary 
structures when considered separately (due to considerable overlapping), the 
combination of the two is indeed a strong predictor. 

5 Discussion 

In Section 5, we reported the analysis of nucleotide frequencies in the codon 
second position corresponding to different secondary structures of proteins. 
We noted tha t the average nucleotide composition in the three secondary 
structures represents a valid source of information for alternative predictive 
methods and also tha t our results reveal strong implications of protein sec-
ondary structures on the origin of the genetic code. 

As far as the first point is concerned, we showed in this chapter tha t the 
nucleotide frequencies in the codon second position are so strikingly different 
tha t one could imagine straightforward secondary structure predictions from 
a nucleic acid sequence data. So far, a t tempts in this direction have only been 
made by Lesnik and Reiss (1996-1998), who used sequence information to 
predict putative t ransmembrane ce-helix domains. The advantages of using 
nucleotide frequencies (or molecular weights and hydrophobicity) is tha t this 
approach would imply estimating 4 (or 2) parameters (the nucleotides) instead 
of 20 (the amino acids), with the resulting increase in the reliability of the 
estimates. 

However, the main contribution of the present analyses is tha t the physic-
ochemical requirements of protein structures, strongly dependent on amino 
acid composition, are indeed related to well defined choices of second codon 
position. This link between protein structure, amino acid preferences and the 
second position of the codons suggests tha t the organization of the genetic 
code must somehow refiect the secondary structures of proteins, and hence 
one of the main adaptive forces driving the organization of the genetic code 
should be the protein secondary structure. Even though this could be in part 
expected, there are still no clear indications tha t the link between the amino 
acid properties and the organization of the code evolved because these prop-
erties are structural determinants, as we are stating, or are involved in the 
codon-anticodon interactions tha t , according to the stereochemical hypoth-
esis [30], could have promoted the organization of the genetic code. Indeed, 
earlier a t tempts to link secondary protein structures to the genetic code have 
been unsuccessful [86, 45]. More recent papers, tha t analyze the relationship 
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between the genetic code and the putative primitive protein structures, have 
led to the conclusion tha t /3-turn [55] and /3-strand structures [29] are linked 
to the structure of the genetic code, suggesting tha t these structures could 
have molded the code. However, none of these previous approaches defined 
the link between the organization of the genetic code and protein structure 
as clearly as was possible here. 

The stereochemical theory suggests tha t the genetic code originated from 
the interactions between codons or anticodons and amino acids, thus estab-
lishing a direct correlation between the amino acids and their synonymous 
codons. If this is t rue, i.e., if these interactions between amino acids and their 
codons were indeed relevant for the organization of the genetic code, it would 
imply the existence of a highly sophisticated physicochemical determinism. In 
other words, the genetic code would have been organized via intervening forces 
related to the interactions between amino acids and their codons/anticodons, 
the same amino acidic determinants of this interaction being also linked to 
properties involved in the organization of the secondary structures of the pro-
teins. The implication of this proposal is tha t two effects participated in the 
organization of the code, namely the amino acid-anticodon (or -codon) inter-
actions on the one hand, and their role in determining the secondary structure 
of proteins on the other. If one considers this implication too deterministic 
for the putat ive conditions in which the organization of the genetic code took 
place, the stereochemical hypothesis may be weakened by our results. How-
ever, the possibility tha t the same physicochemical properties of amino acids 
(such as hydrophobicity and molecular weight) tha t were definitely relevant 
to determining the secondary structures of proteins, could be important for 
the interaction of amino acids and their anticodons, is also likely. 

We expect tha t natural selection acts on protein structures, while it is 
not immediately obvious why the organization of the code should refiect the 
secondary structures of proteins. The answer is probably related to putative 
selective pressures operating during the origin of the genetic code, in such a 
way tha t an organization like the one we observe tends to reduce the rate of 
very deleterious translation errors tha t could disrupt protein structure through 
deleterious effects on secondary structure requirements. This means tha t the 
secondary structures were the three-dimensional elements of the proteins tha t 
had to be preserved at the t ime the genetic code was organized. To reduce 
translation errors while assembling the amino acid sequence required for the 
determination of a given structure, amino acids with similar physicochemical 
properties were grouped by identical second positions in their codons, leading 
to their present organization in the columns of the s tandard representation of 
the code (Table 1). 

Based on this hypothesis, further details can be discussed, such as the 
clear separation of aperiodic structure and /3-strand structure, shown by the 
second codon position analysis. The separation reveals tha t these two struc-
tures were the fundamental ones when the genetic code was organized. The 
intermediary role of the helix structure demonstrates its fiexibility in terms of 
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structural requirements, but also stresses that the helix structure is not clearly 
distinguished by the genetic code. One hypothesis, which could explain why 
the helix structure was not preserved by the genetic code, is that the rules for 
helix formation are not related to amino acid side chains, but are the results 
of backbone hydrogen bonds. It would not, therefore, have been necessary to 
select amino acids through common choices in their second codon positions, 
in order to guarantee the folding of a region of a protein into a helix structure. 
Moreover, analysis of the preferred second codon position usage on turn struc-
ture, reported here, has shown that this structure is better separated from the 
/3-strand structure than are the remaining kinds of aperiodic structures. This 
separation could be viewed as supporting either the hypothesis that the prim-
itive structures could have been the /3-turn [55] and/or the /3-strand structure 

6 Concluding Remarks 

Building a data warehouse through specific and suitable computational analy-
ses that allow us to collect information on relationships between nucleic acid 
and protein structures can be considered a productive approach to exploiting 
the wide source of information today available in both biological sequence and 
structure data banks and to derive still hidden information from the data. 

The integration of data is one of the best approaches to characterize known 
biological features and reveal new ones. Integrated computational and graph-
ical approaches applied to data analysis help expand our knowledge on these 
molecules, provide the information required for reliable structural predictions, 
for successful interpretation of the whole data, with the end goal of obtain-
ing computer simulations of the biological systems which could indeed refiect 
reality. 

The main message of this chapter is the need to design integrated datasets 
through computational bench work that, overcoming the difficulties of reli-
able computational analyses, related both to incomplete knowledge of biolog-
ical systems and computational limits, could help in-depth investigation into 
nucleic acid and protein data. 

The implementation of computational methods that not only allow the 
analyses of multiple related results obtained by specialized software but that 
also integrate different sources of information related to the data under con-
sideration is fundamental in the era of systems biology. The main concept 
underlying this approach is that information that can be derived from the 
study of each of the different aspects involved in the organization of complex 
biological systems separately cannot achieve the vision that can be obtained 
from considering a comprehensive collection of all these aspects together, in a 
holistic picture from where laws governing the integrated collective properties 
can be derived. 
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The examples reported here, discussing the various aspects related to nu-
cleic acid and protein structures, in particular, the features of protein struc-
tures at coding sequence level, helps to stress the usefulness of such methods. 
The elements of protein structure on which our attention was more deeply 
focused are the secondary structures, described in terms of helix, /3-strand, 
and aperiodic structure. Indeed, through the analysis of information tha t is 
related, but is often taken into consideration separately, some interesting, 
non-evident relationships between nucleic acid and protein molecules were 
derived. In particular, relationships between protein secondary structures and 
the corresponding coding regions were considered in the reported work, show-
ing unexpected peculiarities in the average nucleotide frequencies in the sec-
ond codon position of experimentally determined structures. Further investi-
gations on the physicochemical aspects of the structures, on both the human 
and prokaryotic datasets also added the possibility to determine average prop-
erties of protein secondary structures in terms of average hydrophobicity and 
molecular weight (Figure 9). The representation of these properties with an 
original graphical approach was useful to describe the general organization of 
protein structures. Another example of useful information derived from this 
method is tha t , there are possible interesting start ing points for the design of 
new algorithms for protein secondary structure predictions. 

However, another interesting observation concerns the limited variability 
of each protein secondary structure properties, as this observation strongly 
contributed to the discussions about the origin of the genetic code organization 
[30, 19]. 
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Summary. The completion of the human genome and genomes of many other or-
ganisms calls for the development of faster computational tools which are capable 
of easily identifying the structures and extracting features from DNA sequences. 
Such tools are even more important for sequencing uncompleted genomes of many 
other organisms, such as floro- and neuro- genomes. One of the more important 
structures in a DNA sequence is repeat-related. Often they have to be masked be-
fore protein coding regions along a DNA sequence are to be identified or redundant 
expressed sequence tags are to be sequenced. Here we report a novel recurrence time 
based method for sequence analysis. The method can conveniently study all kinds 
of periodicity and exhaustively find all repeat-related features from a genomic DNA 
sequence. An efficient codon index can also be derived from the recurrence time 
statistics, which has two salient features of being largely species-independent and 
working well on very short sequences. Efficient codon indices are key elements of suc-
cessful gene finding algorithms, and are particularly useful for determining whether 
a suspected expressed sequence tag belongs to a coding or non-coding region. We 
illustrate the power of the method by studying the genomes of E. coli, the yeast 
S. cervisivae, the nematode worm C. elegans, and the human. Homo sapiens. Our 
method only requires approximately 6 • N byte memory and a computational time of 
N log N to extract all the repeat-related and periodic or quasi-periodic features from 
a sequence of length N without any prior knowledge about the consensus sequence 
of those features, therefore enables us to carry out analysis of genomes on the whole 
genomic scale. 

K e y words: Genomic DNA sequence, repeated-related structures, coding 
region identification, recurrence t ime statistics 
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1 Introduction 

Although DNA is relatively simple, the structure of human genome and 
genomes of other organisms is very complicated. With the completion of many 
different types of genomes, especially the human genome, one of the grand 
challenges for the future genomics research is to comprehensively identify the 
structural and functional components encoded in a genome [1]. Among the 
outstanding structural components are repeat-related structures [2, 3], peri-
odicity and quasi-periodicity, such as period-3, which is considered to refiect 
codon usage [4], and period 10-11, which may be due to the alternation of 
hydrophobic and hydrophilic amino acids [5] and DNA bending [6]. Extract-
ing and understanding these structural components will greatly facilitate the 
identification of functional components encoded in a genome, and the study 
of the evolutionary variations across species and the mechanisms underlying 
those variations. Equally or even more important , repeat-related features of-
ten have to be masked before protein coding regions along a DNA sequence 
are to be identified or redundant expressed sequence tags (ESTs) are to be 
sequenced. 

More important than finding repeat-related structures in a genome is the 
identification of genes and other functional units along a DNA sequence. In 
order to be successful, a gene finding algorithm has to incorporate good indices 
for the protein coding regions. A few representative indices are the Codon 
Bias Index (CBI) [7], the Codon Adaptat ion Index (CAI) [8, 9], the period-
3 feature of nucleotide sequence in the coding regions [10, 11, 12, 13] and 
the recently proposed YZ score [14]. Each index captures certain but not 
all features of a DNA sequence. The strongest signal can only be obtained 
when one combines multiple different sources of information [15]. In order to 
improve the accuracy and simplify the training of existing coding-region or 
gene identification algorithms (see the recent review articles [16, 17] and the 
references therein), and to facilitate the development of new gene recognition 
algorithms, it would be highly desirable to find new codon indices. 

Over the past decades, sequence alignment and database search [18, 19, 
20, 21, 22, 23, 24, 25, 26, 27] have played a significant role in molecular biol-
ogy, and extensive research in algorithms has resulted in a few basic software 
tools such as PASTA [28, 29] and BLAST [30, 31, 32, 33]. Although these 
tools have been routinely used in many different types of researches, finding 
biologically significant information with these tools is far from trivial, for the 
following reasons: i) The results of sequence alignment and database search 
strongly depend on some model-based score function [19, 20, 21]. However, 
the model may not be general enough to be appropriate for the biological 
problem under study. For example, a widely used affine gap cost model [21] 
assumes tha t insertions and deletions are exponentially less likely to occur as 
their length increases. Nevertheless, long insertions and deletions may occur 
as a single event, such as insertion of a transposon element, ii) The dynamic 
programming approach to the maximization of the score function, although 
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mathematically sound, requires a computational t ime at least proportional to 
the product of the length of the two sequences being compared. This makes 
the approach less feasible for sequence comparison on the whole genomic 
scale, iii) Assessment of the statistical significance of an alignment is hard 
to make [34, 35, 36, 37, 38, 39, 40]. All theoretically tractable score statistics 
are based upon certain probability models about the sequence under study. 
However, those models may not capture interesting sequence segments such 
as repeat structures inherent in natural DNA sequences. For example, it is a 
common experience for a user of BLAST tha t for some input sequence, the 
output from BLAST may be very noisy: many matches with very high score 
may only hit on low complexity regions and are not biologically interesting, 
while biologically significant units such as binding sites, promoter regions, or 
expression regulation signals do not have a chance to show up as the output 
due to their low scores [26, 27]. 

Here, we propose a simple recurrence t ime based method, which has a 
number of distinct features: i) It does not utilize a score function in general 
and does not penalize gaps in particular. This makes it most convenient to 
find out large blocks of insertions or deletions, ii) Computationally it is very 
efficient: with a computational t ime proportional to A^logA^, where N is the 
size of the sequence, and a memory of 6A^, it can exhaust all repeat-related 
and periodic or quasi-periodic structures. This feature allows us to carry out 
genome analysis on the entire genomic scale by a PC. iii) It is model-free in the 
sense tha t it does not make any assumption about the sequences under study. 
Instead, it builds a representation of the sequence in such a way tha t all inter-
esting sequence units are automatically extracted, (iv) The method defines an 
efficient codon index, which is largely species-independent and works well on 
very short sequences. This feature makes the method especially appealing for 
the study of short ESTs. Below, we shall illustrate the power of the method by 
extracting outstanding structures including insertion sequences (ISs), rRNA 
clusters, repeat genes, simple sequence repeats (SSRs), transposons, and gene 
and genome segmental duplications such as inter-chromosomal duplication 
from genome sequences. We shall also discuss the usefulness of the method for 
the study of the evolutionary variations across species by carefully studying 
mutations, insertions and deletions. Finally, we shall evaluate the effective-
ness of the recurrence t ime based codon index by studying all of the 16 yeast 
chromosomes. 

2 Databases and Methods 

Recurrence t ime based method for sequence analysis can be viewed as a 2-layer 
approach: first organize s t ructures /pat terns embedded in a sequence by the 
values of their recurrence times, then find where those sequences are. Before 
we explain the basic idea of recurrence t ime statistics, let us briefiy describe 
the sequence da ta analyzed here. 
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2.1 D a t a b a s e s 

We have studied the DNA sequence da ta from the following four species: 
(a) E. coli^ [42] , (b) the yeast S. cervisivae^ [43], (c) the nematode worm 
C. elegans^ [44], (d) and the human. Homo sapiens^ [2, 45]. Except the E. 
coli genome, the other three contain gaps, since they are not yet completely 
sequenced. Those gaps are deleted before we compute the recurrence times 
from them. For the yeast S. cervisivae, the sequences of chromosome 1 to 
chromosome 16 are joined together into a single sequence in ascending order. 

2.2 Bas ic Idea of R e c u r r e n c e T i m e Sta t i s t i c s 

Notations 

Let us denote a sequence we want to study by S' = 616263 ••• 6Ar, where N is 
the length of the sequence, 6 ,̂ i = 1, • • • , A ,̂ are nucleotide bases. For instance, 
if we take 

5̂ 1 = ACGAAAAACGATTTTAAA, 

then Â  = 18, 61 = A, 62 = C,-• • , 618 = A. Next, we group consecutive 
nucleotide bases of window size w together and call tha t a word of size w. 
Using maximal overlapping sliding window, we then obtain n = N — w -\- 1 
such words. We associate these words with the positions of the original DNA 
sequence from 1 to n, i.e., Wi = 6^6^+1 • • • bi-^^-i is a word of size w associated 
with the position i along the DNA sequence. Two words are considered equal 
if all of their corresponding bases match. Tha t is, Wi = Wj, if and only 
if bi-^k = ^j+ki k = 0,''' ,w — 1. S[u -^ v] = bubu-\-i.. .by will denote a 
subsequence of S from position u to v. 

Recurrence time 

The recurrence time, T( i ) , of position i for a DNA sequence S' is a discretized 
version of the recurrence times of the second type for dynamical systems 
introduced recently by Gao [46, 47, 48]. It is defined as follows. 

Defini t ion: The recurrence t ime T{i) for a position i along the DNA 
sequence is the smallest j — i such tha t j > i and Wj = VF .̂ If no such 
j exists, then there is no repeat for the word Wi after position i in the 
sequence S, and we indicate such a situation by T{i) = — 1. 

To analyze the T{i) sequence, we first filter out all those T{i) = — 1, then de-
note the remaining positive integer sequence by R{k), k = I , - - - , m, and 
finally estimate the probability distribution functions for both R{k) and 

^ http://www.genome.wisc.edu/sequencing/kl2.htm 
^ ftp://genome-ftp.standford.edu/pub/yeast/data_download/ 
^ http://www.sanger.ac.uk/Projects/C_elegans/ 
^ http://www.ncbi.nlm.nih.gov/genome/guide/human/ 

http://www.genome.wisc.edu/sequencing/kl2.htm
ftp://genome-ftp.standford.edu/pub/yeast/data_download/
http://www.sanger.ac.uk/Projects/C_elegans/
http://www.ncbi.nlm.nih.gov/genome/guide/human/
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logio R{k) sequence. These two probability distribution functions are what 
we mean by the recurrence time statistics. The reason that we also work on 
log]̂ o R{k) is that the largest R{k) computed from a genomic DNA sequence 
can be extremely long, hence, it may be difficult to visualize the distribution 
for R{k) in linear scale. 

Let us take Si as an example. If w = 3, then n = 16, and its recurrence 
time series T{i) is: 

7 , 7 , - 1 , 1 , 1 , 1 0 , - 1 , - 1 , - 1 , - 1 , - 1 , 1 , - 1 , - 1 , - 1 , - 1 

Discarding all the —1 terms from the T{i) sequence, we then get the following 
recurrence time R{i) series: 

7,7,1,1,10,1 

where m = 6. The motivation for introducing the above definition is that 
the recurrence time sequence T(i), i = 1, • • • , n, for a DNA sequence and a 
completely random sequence will be very different, and that by exploiting this 
difference, we would be able to exhaustively identify most of the interesting 
features contained in a DNA sequence. 

2.3 Recurrence Time Statistics for Completely Random 
(Pseudo-DNA) Sequences 

To find the difference between a DNA sequence and a completely random 
sequence in terms of the recurrence times, we study a completely random 
sequence first. We have the following interesting theorem. 

Theorem: Given a sequence of independent words VF̂ , i = 1, • • • , n, 
where there are a total of K distinct words, each occurring with prob-
ability p = l/K, the probability that the recurrence time T{i) being 
T > 1 is given by 

P{T{i) =T}(x[n-T]-p-[l- p]^^-^^ (1 < T < n). (1) 

Proof: It suffices to note that the probability for an arbitrary word VF̂ , where 
i is from the positions 1 to n — T, to repeat exactly after T > 1 positions is 
given by the geometrical distribution, p - [1 — p]^^~-^\ Since there are a total 
of n — T such positions or words, while each position along the sequence from 
1 to n — T has the same role, the total probability is then proportional to the 
summation of n — T terms of p • [1 — p]^^~'^\ This completes the the proof. 

If we assume the four chemical bases A, C, T and G to occur completely 
randomly along a (pseudo) DNA sequence, then there are a total of 4^ words 
of length w, each occurring with probability p = 4~^. Hence, the probability 
for a word to repeat exactly after T > w locations is given by Eq. (1), while 
the distribution for the log-recurrence time loĝ ĝ R{k) is given by 
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/ ( t ) = C - T . [ n - T ] . p . [ l - p ] ( ^ - i ) , ( 0 < t < l o g i o n ) , (2) 

where T = 10^, and C is a normalization constant. To prove Eq. (2), it suffices 
to note tha t p{T)dT = f{t)dt. 

2.4 R e c u r r e n c e T i m e Sta t i s t i c s for D N A S e q u e n c e s 

(A) Recurrence time statistics and a novel codon index 

In Fig. 1, we have plotted the probability density functions (pdfs) of log recur-
rence time, i.e., log^g R{^)i for the DNA sequence da ta from the four species. 
The red curves in Fig. 1 are computed according to Eq. (2) and represent those 
of completely random sequences with their length and the word size chosen to 
analyze them the same as those of the DNA sequences. The word sizes used 
are 12, 15, 16, 15 for Fig. 1 (a) to Fig. 1 (d) respectively. We observe two 
interesting features: (i) the pdfs for the genome sequences are very different 
from those for the random sequences, as signaled by the many sharp peaks in 
the curves of the pdfs for the genome sequences; (ii) The degree of this differ-
ence varies vastly among the four genomes studied. In fact, Eq. (2) describes 
the background distribution for the loĝ ĝ ^ ( 0 sequence for E. coli fairly well, 
but very poorly describes the same distribution for the chromosome 16 of 
the human. This suggests tha t the longer a genome sequence has evolved, 
the more it deviates from the completely random sequence. Each sharp peak 
in Fig. 1 may actually represents many sharp peaks if we plot the pdf for 
the R{i) sequence instead of tha t for the loĝ ĝ ^ ( 0 sequence. This is because 
with logarithmic scale, a whole interval of R(i) will be lumped together. It 
is important to emphasize tha t all the sharp peaks indicate distinct features 
of a genome sequence. To better understand this, let us take an example. A 
sequence of (A)/, which represents a consecutive sequence of A's of length /, 
contributes to a peak at i? = 1, if / i s larger than the word length w. In fact, 
when I > w^ {A)i contributes a total of I — w counts to R = 1. Other single 
base repeats similarly contribute to i? = 1. As another example, we note tha t 
a sequence such as {AC)i contributes to i? = 2 a total of 21 — w counts. 

We are now ready to propose a novel recurrence t ime based codon in-
dex. This index is based on the period-3 feature. To appreciate the idea, in 
Fig. 2, we have shown the probability distributions for the recurrence times 
not greater than 40, for the genome sequences of four species, E.Coli, Yeast, C. 
elegans, and the Human. The black curves are for the coding regions. The red 
curves in Fig. 2(b-d) are for the non-coding regions. Due to the low percentage 
of non-coding regions in the E.Coli genome, such a curve is not computed. We 
observe tha t the black curves all have very well defined peaks at recurrence 
times of 3, 6, 9, etc. Also note tha t the black curves are very similar among 
the four different species. Such period-3 feature can be conveniently used to 
define a codon index, which we shall denote by RTps: 
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Fig. 1. The probabihty density function (pdf) for the recurrence time log^Q R{i) 
sequence computed from the DNA sequence of (a) E. coli, (b) the yeast S. cervisivae, 
(c) chromosome 3 of the nematode worm C. elegans, and (d) chromosome 16 of the 
human. Red curves are computed from Eq. (2) and represent the situation where 
the four bases A, C, T, and G occur completely randomly with equal probability. 
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m 

RTp3 = J2M3i) - p{3i + 1) - p{3i + 2)] (3) 

where p{i) is the probability for the recurrence t ime T = i calculated for a 
coding or non-coding sequence, n is the number of bases of the coding/non-
coding sequence, and TTI is a cutoff parameter typically chosen not to be larger 
than 20 so tha t very short sequences can be studied. 

Fig. 2. The probability distribution curves computed from the genomes of four or-
ganisms studied. The red and black curves are for non-coding and coding sequences, 
respectively. A window size of it; = 3 was used. 

Before we move to evaluate the efficiency of RTps as a codon index, let 
us focus on how we can exhaustively find all the repeat-related structures by 
tracing the peaks in Fig. 1 back to the DNA sequence. This can be easily 
done. 

(B) Computation of exact repeat elements from recurrence times 

Let T{i) be the recurrence t ime for position i of a DNA sequence S, where 
i = 1,2, ••• , n . For each particular value T ( l < T < n) of the recurrence 
time, we build a list of indices L(T : S) by linearly scanning T(i) from i = 1 
to i = n and adding i to L{T : S) whenever T{i) = T. Denote the index set 
L ( T : S) by 

L{T : S) = {ii,i2,--- ,ic}, 
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where T{ik) = T, /c = 1, 2, • • • , C, ik < ik-\-i for /c = 1, 2, • • • , C — 1, and C is 
the count of the occurrence of T in the recurrence t ime series T{i). If we take 
5̂ 1 as an example, then 

L ( l : Si) = {4 ,5 ,12} , L(7 : Si) = {1 ,2} , L(10 : Si) = {6}. 

When the count C is larger than 1, we define the gap between two consecutive 
indices of L{T : S) as: 

gk = ik+1 -ik (/c = 1, 2 , . . . , C - 1) 

Let g* = w. Wha t happens when all gk < ^*? In this situation, the sequence 
segment S^ = S[ii -^ ic — ii-\-w — 1] is an exact repeat with period T. To see 
this, we note tha t for each term ik in L{T : S), we have VF̂ ^ = VF^^+T, or more 
explicitly, bi^^-^j = bi^j^T+j for j = 0 ,1 , • • • , î ; — 1, and /c = 1, 2 , . . . , C Hence, 
we can concatenate bi^ at bi^j^g^ to combine the repeats starting from bi^ and 
bi^. More concretely, for /c = 1, we have ^^i+j = 6 ^ I + T + J , J = 0 ,1 , • • • , '^ — 1; 
similarly, for /c = 2, we have & 2̂+j = ^*2+T+j7 J = O^lr** ^'^ ~ 1- Noting 
gi < w means 12 — H < '^, or 2̂ < H + '^, we have ^^i+j = bi^-^T-\-j for 
j = 0, ! , • • • ^12 — ii -\- w — 1. Continuing this procedure till /c = C, we have 
bi^-^j = bi^j^jj^T for j = 0 , 1 , • • • , i c — U + '^ — 1- Hence, the sequence Sr = 
5'[ii -^ ic — ii ^ w — 1] is an exact repeat with period T with its length 
I = ic — ii^ w.liT <l^ Sr is then a tandem repeat. 

In general, some gaps gk may be larger than g"" = w. When there are P 
such gaps, we can decompose L(T : S) into P + 1 subsets, such tha t within 
each subset all of the gaps are not larger than g*. Then following the procedure 
detailed in the last paragraph, we see tha t each subset represents an exact 
repeat of period T. Taking Si as an example again, then from 1/(7 : Si) = 
{1,2} we get an exact repeat ACGA of period 7, and from 1/(1 : Si) = 
{4, 5,12}, we get two exact repeats of period 1: the first one is AAAAA which 
is a simple sequence repeat, the other is T T T T , which is also a simple sequence 
repeat. 

Before we move on to evaluating the efficiency of PT^a as a codon index, we 
emphasize tha t the procedure outlined here makes the recurrence t ime method 
largely independent of the word size w^ which implies tha t any feature with 
length longer than w can be re-combined. For simplicity, we shall call this a r e -
c o m b i n a t i o n a l g o r i t h m . This algorithm, together with the features related 
to mutations, deletions, and insertions, which are to be discussed shortly, 
makes the recurrence t ime based method especially convenient for identifying 
horizontally transfered genes. 

(C) Single Nucleotide Mutation and Single Nucleotide Polymorphism (SNP) 

Suppose we have two exactly repeating sequence segments, S'lead and S'lag, 
where the subscript lead and lag mean S'lead appears earlier than S'lag in a 
genome. In the simplest case, each word constructed from segments of S'lead 
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has the same period T. In general, however, a few words constructed from 
segments of S\ead may have smaller recurrence times, due to the possibility 
tha t those words may find their copies in between S'lead and S\g,g. Now sup-
pose one nucleotide somewhere within S'lead is mutated. Since the mutated 
nucleotide appears in a consecutive w words, each of length w^ we see tha t for 
those words, the period T will have to be different than T. This means if we 
plot out the recurrence t ime vs. the sequence position curve, then we should 
observe a gap of length w in an otherwise almost constant (T) curve. When 
this is the case, we can suspect tha t there may be a single nucleotide mutat ion 
at the end of the gap. If the gap corresponds to recurrence times larger than 
T or equal to —1 (meaning no repeats), then we can conclude tha t there is a 
single nucleotide mutat ion at the end of the gap. This is actually a sufficient 
condition, since it excludes the possibility tha t a few words may have copies 
in between SiQ^d and S\g,g. 

The study of single nucleotide mutat ion is most relevant to the study 
of Single Nucleotide Polymorphism (SNP), where DNA sequence variations 
occur when a single nucleotide (A, T, C, or G) in the genome sequence among 
different populations is changed, possibly due to evolution. It is clear tha t if 
we concatenate two genome sequences for different subjects together, then we 
can t reat SNP as a special type of single nucleotide mutation. 

(D) Insertion/Deletion and relations between repeat sequences of different 
periods 

Suppose we have a sequence segment starting from the position ia- Wha t hap-
pens if we insert a sequence of length, say, a few thousand bases, in the middle 
of tha t segment, then let the segment with insertion to repeat somewhere in 
the genome? Equivalently, the original sequence segment can be considered 
as a result of deletion from the longer (i.e., with insertion) sequence segment. 
This interesting situation is revealed by a jump in the recurrence t ime vs. 
sequence position plot, with the height of the jump being the length of the 
insertion sequence, as we explain below. 

Let T{i) denote the recurrence t ime for the word at the position i of the 
sequence S. Suppose ia < ib^ ^(^a) = ^(^a+i) = • • • = T{ii,) = Ti > 0, 
and 

ib<ic<ib^w< id, T{i,) = T{i,^i) = . . . = T{id) =T2> Ti . 
Then the sequence segment 

Sa = S[ia-^{id^W-l)] 

can be considered the result of deleting the sequence 

^deletion = ^[(^c + T i - 1) ^ {ic + T2 - 1)] 

from the sequence segment 

Sb = S[{ia + Ti) ^ (i^ + ^ - 1 + T2)]. 
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Equivalently, S^ is the result of inserting the sequence Sdeletion into Sa right 
before the position ic- Note tha t the condition of ic < 6̂ + '^ comes from the 
fact tha t the boundary always affects a consecutive w words, each of length 
w. When the first w bases of the deleted sequence segment do not have their 
copies at the positions starting from ic^ we have ic = % -\- w. Otherwise, we 
have in-equalities. 

3 Results and Discussion 

In this section, we present examples of repeat-related structures extracted by 
the proposed method and evaluate the efficiency of the codon index. 

3.1 E x t r a c t i o n of R e p e a t - R e l a t e d S truc tures 

We now present examples of structures which can be found by tracing the 
peaks in Fig. 1 back to the genome sequences. These structures include in-
sertion sequences (ISs), rRNA clusters, repeat genes, simple sequence repeats 
(SSRs), transposons, and gene and genome segmental duplications such as 
inter-chromosomal duplication. We shall illustrate most of these structures 
using the yeast S. cervisivae as an example. 

We first s tudy SSRs. SSRs are perfect or slightly imperfect t andem repeats 
of particular k-mers. They have been extremely important in human genetic 
studies, because they show a high degree of length polymorphism in human 
population owing to frequent slippage by DNA polymerase during replica-
tion [2]. Any tandem repeat of k-mers, disregarding its exact content, will 
contribute to the count of occurrence of period T = k in recurrence t ime sta-
tistics, hence can be easily found by following the peak of T = k in Fig. 1. 
As an example, we note tha t there are 39 sequence segments contributing to 
k = 13. Three of them are CCACACCCACACA, G G T G T G T G G G T G T , and 
TACCGACGAGGCT. Note tha t by Fig. 1(a) we can conclude tha t E . coli 
has very few SSRs. 

One of the more striking features of the yeast S. cervisivae genome is tha t 
it contains many copies of transposon yeast (Ty) elements. Each T y element is 
about 6.3 kb long, with the last 330 bp at each end constituting direct repeats, 
called S. Those direct end repeats are responsible for the peaks around 5500 
in Fig. 1(b), which enable us to find all of those T y elements on both strands 
of the genome. As two examples, we mention tha t the transposon Ty3-1 on 
the Watson strand of chromosome 7 star ts at the position 707196 and ends at 
712546, and has a period of 5011. The transposon Ty l -1 on the Crick strand 
of chromosome 1 starts at the position 166162 and ends at 160238, and has a 
period of 5588. 

Gene duplication is an important source of evolutionary novelty. Many 
duplicate genes have been found in the yeast S. cerevisiae genome, and they 
often seem to be phenotypically redundant [49, 50, 51]. Any gene duplication 
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will contribute to one of the sharp peaks in Fig. 1(b). As an example, we note 
tha t a gene (standard name MCH2, systematic name YKL221W), which is 
on chromosome 6 start ing from the position 6931, is repeated on chromosome 
13, starting from the position 7749. 

Genome segmental duplications consist of large blocks tha t have been 
copied from one region of the genome to another. They have been found among 
genomes of many species including the yeast S. cervisivae [49], and the Homo 
sapiens [2, 52]. In fact, they contribute to some of the the sharpest peaks in 
Fig. 1. An example of such segmental duplications is the inter-chromosomal 
duplication corresponding to the peak at T = 5150433 in Fig. 1(b). 

3.2 Eva luat ion of t h e N o v e l C o d o n I n d e x 

Fig. 3. The specificity and sensitivity curves for the RTps index evaluated on all of 
the 16 yeast chromosomes. 

In order to evaluate the effectiveness of the RTps as a codon index, we study 
all of the 16 yeast chromosomes. Our sample pool is comprised of two sets of 
DNA segments: the coding set (fully coding regions or exons), which contains 
4125 verified ORFs, 1626 uncharacterized ORFs, and 812 dubious ORFs, and 
the non-coding set, which contains 5993 segments (fully non-coding regions 
or introns). Some of these coding and non-coding segments are very short. 
Regardless of their length, each segment is counted as one when calculating 
the sensitivity and specificity curves. Fig. 3 shows the specificity and sensi-
tivity curves for all of the 16 yeast chromosomes, where the red curve is the 
cumulative distribution function for RTps for the non-coding regions, and the 
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black curves are the complementary cumulative distribution function for the 
coding regions. For clarity, we have computed such distributions for verified 
ORFs, uncharacterized ORFs, and dubious ORFs, separately. To understand 
the meaning of such curves, let us focus on the intersection of the solid black 
curve and the red curve. When we chose RTps^ as a threshold value, then with 
78% probability a coding sequence is characterized as coding sequence, while 
with 78% probability a non-coding sequence is also taken as a non-coding se-
quence. As expected, this percentage is lower for uncharacterized and dubious 
ORFs. It is interesting to note tha t the percentage of accuracy calculated on 
Human genomes is around 74%, close to 78%. Because of this (see also Fig. 2), 
we conclude tha t the method is largely species-independent. 

It is interesting to note tha t the period-3 feature is often quantified by per-
forming the Fourier spectral analysis on fairly long DNA sequences. In order 
to make such analysis applicable to sequences as short as 162 bases, recently a 
lengthen-shuffle algorithm is proposed [11]. Fourier spectral analysis together 
with the lengthen-shuffle algorithm gives about 69% of sensitivity and speci-
ficity when evaluated on a prokaryote genome, the Y.cholerae chromosome I, 
and about 61% when evaluated on eukaryotic genomes [12]. It is clear tha t 
the RTps index is more accurate. Other features of the recurrence t ime based 
method are: (i) DNA sequences as short as 40 bases can be very well stud-
ied. Noting tha t an expressed sequence tag (EST) is usually very short and 
tha t little may be known about the genome to which the EST belongs, this 
feature, together with the species-independent one, makes the method partic-
ularly useful for determining whether a suspected EST belongs to a coding or 
non-coding region, (ii) The method directly works on the DNA sequence. In 
contrast, numerical sequences have to be obtained by certain mapping rules 
in order to use the Fourier spectral analysis based methods. 

3.3 D i s c u s s i o n 

In this chapter, we have proposed a simple recurrence t ime based method for 
DNA sequence analysis, and shown tha t the method can conveniently exhaust 
all repeat-related structures of length greater than an arbitrarily chosen small 
word of size w in di genome. We have also shown tha t the method is very 
convenient for the study of mutations, insertions and deletions, hence, it holds 
great potential for the study of evolutionary variations across species and the 
mechanisms underlying it. By characterizing the peaks at multiples of 3, we 
have defined a very efficient codon index which is largely species independent 
and works well on very short sequences. We emphasize tha t one of the more 
appealing features of RTps as a codon index is tha t no priori knowledge about 
the sequence is used. Hence, the method will be especially convenient for the 
study of genome sequences tha t very little is known. This is the case, for 
example, when a genome sequence is to be sequenced by a few small research 
groups by studying expressed sequence tags (ESTs). 
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While the accuracy of 78% for the yeast genome is already satisfactory, we 
note that it is possible to improve this percentage by designing other indices 
from the recurrence times. Readers interested in this issue are encouraged to 
contact the authors for the raw recurrence time data. 
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Summary. Bioinformatics clustering tools are useful at all levels of proteomic data 
analysis. Proteomics studies can provide a wealth of information and rapidly gener-
ate large quantities of data from the analysis of biological specimens from healthy 
and diseased individuals. The high dimensionality of data generated from these 
studies requires the development of improved bioinformatics tools for efficient and 
accurate data analysis. For proteome profiling of a particular system or organism, 
specialized software tools are necessary. However, there have not been significant 
advances in the informatics and software tools necessary to support the analysis 
and management of the massive amounts of data generated in the process. Cluster-
ing algorithms based on probabilistic and Bayesian models provide an alternative 
to heuristic algorithms. The number of diseased and non-diseased groups (number 
of clusters) is reduced to the choice of the number of component of a mixture of 
underlying probability. Bayesian approach is a tool for including information from 
the data to the analysis. It offers an estimation of the uncertainties of the data 
and the parameters involved. We present novel algorithms that cluster and derive 
meaningful patterns of expression from large scaled proteomics experiments. We 
processed raw data using principal component analysis to reduce the number of 
peaks. Bayesian model-based clustering algorithm was then used on the transformed 
data. The Bayesian model-based approach has shown a superior performance, con-
sistently selecting the correct model and the number of clusters, thus providing a 
novel approach for accurate diagnosis of the disease. 

K e y words: Clustering, Principal component analysis, Proteomics, Bayesian 
analysis 
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1 An Approach to Proteome Analysis Using 
SELDI-Time of Flight-Mass Spectrometry 

There is a variety of new methods for proteome analysis. Unique ioniza-
tion techniques, such as electrospray ionization and matrix-assisted laser-
desorption ionization (MALDI), have facilitated the characterization of pro-
teins by Mass Spectrometry (MS) [26, 23]. Surface-enhanced laser desorption-
ionization t ime of fiight mass spectrometry (SELDI-TOF-MS), originally de-
scribed in [24] overcomes many of the problems associated with sample prepa-
rations inherent with MALDI-MS. The underlying principle in SELDI is 
surface-enhanced affinity capture through the use of specific probe surfaces 
or chips. This protein biochip is the counterpart of the array technology in 
the genomic field and also forms the platform for Ciphergen's ProteinChip 
array SELDI MS system [34]. A 2-DE analysis separation is not necessary 
for SELDI analysis because it can bind protein molecules on the basis of its 
defined chip surfaces. Chips with broad binding properties, including immo-
bilized metal affinity capture, and with biochemically characterized surfaces, 
such as antibodies and receptors, form the core of SELDI. This MS technol-
ogy enables both biomarker discovery and protein profiling directly from the 
sample source without preprocessing. Sample volumes can be scaled down to 
as low as 0.5 /il, an advantage in cases when sample volume is limiting. Once 
captured on the SELDI protein biochip array, proteins are detected through 
the ionization-desorption, TOF-MS process. A retentate (proteins retained on 
the chip) map is generated in which the individual proteins are displayed as 
separate peaks on the basis of their mass and charge (m/z) . Wright et al. [48] 
demonstrated the utility of the ProteinChip SELDI-MS in identifying known 
markers of prostate cancer and in discovering potential markers either over-
or underexpressed in prostate cancer cells and body fiuids. SELDI analyses 
of cell lysates prepared from pure populations from microdissected surgical 
tissue specimens revealed differentially expressed proteins in the cancer cell 
lysate when compared with healthy cell lysates and with benign prostatic hy-
perplasia (BPH) and prostate intraepithelial neoplasia cell lysates [48]. SELDI 
is a method tha t provides protein profiles or pat terns in a short period of t ime 
from a small start ing sample, suggesting tha t molecular fingerprints may pro-
vide insights into changing protein expression levels according to health sta-
tus, i.e. healthy, benign, premalignant or malignant lesions. This appears to 
be the case because distinct SELDI protein profiles for each cell and cancer 
type evaluated, including prostate, lung, ovarian and breast cancer, have been 
described recently [1, 12, 30, 39, 38]. In these studies, protein profiling da ta is 
generated by SELDI ProteinChip Array technology followed by the analysis 
utilizing numerous types of software algorithms. 
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Fig. 1. The proteinChip SELDI-TOF-MS process, sample proteins are applied to 
the chip array of the desired chemistry The samples are analyzed by the mass reader 
and the time of flight recorded. This information is converted to protein mass. The 
process is highly automated and designed for high throughput analysis. 

2 Clustering and Classification Methods for Large 
Proteomics Datasets 

Due to the large array of da ta tha t is generated from a single proteomic 
da ta analysis, it is essential to implement the algorithms tha t can detect 
expression pat terns from such large volumes of da ta correlating to a given bi-
ological/pathological phenotype from multiple samples [6]. Under normality 
assumption, covariance matrices play an important role in statistical analysis 
including clustering. Particularly, a covariance matrix provides information on 
the structure of the da ta to cluster. The geometrical structure of the dataset is 
expressed through the eigenvalues and eigenvectors of the covariance matrix. 
Eigenvectors represents the orientation of the data, whereas eigenvalues repre-
sents its shape (dispersion). K-means [31] uses a minimum distance criteria to 
find the clusters which are not supposed to overlap (which is not the case here), 
and where the number of clusters are given as an input. Self-Organizing maps 
[27], Neural Networks [8] and other clustering algorithms pay less at tention to 
this structure. K-means puts weight on the cluster mean. Kohonen Mapping 
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(SOM) uses a topological structure classification using a priori known weight 
vector to initialize the topology of the clusters. Neural Network, a method 
borrowed from computer science, uses a black box non-linear transformation 
to cluster data. All the previous methods do not account for the choice of the 
number of clusters; it has to be specified a priori. A probabilistic model, par-
ticularly, Bayesian model, offers this possibility. It also proposes probabilistic 
criteria for finding the number of clusters, their geometry, and the uncertainty 
involved in the calculation. 

3 Serum Samples from HTLV-1-Infected Pat ients 

Protein expression profiles generated through SELDI analysis of sera from 
HTLV-1 (Human T-cell Leukemia virus type l)-infected individuals were used 
to determine the changes in the cell proteome that characterize ATL (Adult 
T-cell leukemia), an aggressive lymphoproliferative disease from HAM/TSP 
(HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis), a chronic 
progressive neurodegenerative disease clinically similar to Multiple Sclerosis. 
Both diseases are associated with the infection of the CD4+ T-cell popula-
tion by HTLV-1, which is estimated to infect approximately 20 million people 
worldwide. The HTLV-1 virally encoded oncoprotein Tax has been impli-
cated in the retrovirus mediated cellular transformation and is believed to 
contribute to the oncogenic process through induction of genomic instability 
affecting both DNA repair integrity and cell cycle progression [18, 19]. Serum 
samples were obtained from the Virginia Prostate Center Tissue and Body 
Fluid Bank. All samples had been procured from consenting patients accord-
ing to protocols approved by the Institutional Review Board and stored frozen. 
None of the samples had been thawed more than twice. Triplicate serum sam-
ples (n = 68) from healthy or normal (ni = 37), ATL (n2 = 20) and HAM 
(77,3 = 11) patients were processed. A bioprocessor, which holds 12 chips in 
place, was used to process 96 samples. Each chip can hold up to 8 samples. 
Each chip contained two Quality Control (QC) samples consisting of a serum 
sample from a known cancer patient and a serum sample from a healthy pa-
tient. The QC samples were applied to each chip along with the unknown 
test samples in a random fashion. The QC spots served as quality control for 
assay and chip variability. The samples were blinded for the technicians who 
processed the samples. The reproducibility of the SELDI spectra, i.e., mass 
and intensity from array to array on a single chip (intraassay) and between 
chips (interassay), was determined with the pooled normal serum QC sample. 

4 Principal Component and Model Selection 

Principal Component Analysis (PCA) was first developed by Pearson [37] and 
Hotelling [22]. It is a multivariate procedure to reduce the dimensionality of 
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Fig. 2. Reproducibility of a representative spectra from Normal samples 



344 Halima Bensmail, O. John Semmes, and Abdelali Haoudi 

Fig. 3. Reproducibility of a representative spectra from HAM samples 
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Fig. 4. Reproducibility of a representative spectra for ATL samples 
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the data. The idea is to transform a large set of correlated variables into a 
small set of uncorrelated variables which are ordered by reducing variabil-
ity. The derived uncorrelated variables are linear combinations of the original 
variables. The uncorrelated variables that have small variability can be re-
moved or deemed as residuals without losing much information of the original 
data. There are several algorithms to calculate the principal components that 
can generate the same results from the same dataset. If there is more than 
one possible transformation for the same maximum variation, then the results 
may differ. Suppose X is an n x TTI matrix with n rows and m columns. It can 
be decomposed into its principal components as follows: 

X = tip\ + t2p\ + + tkp\ + E (1) 

where k is the number of components retained in the model with k < 
min(n,7n), ti is the score vector, and pi is the loading vector, which is the 
eigenvector of the covariance matrix if X (i = 1, 2 , . . . , /c). In this expression, 
X is written as a sum of k products of vectors ti and Pi and the residual 
matrix (E). The residual matrix contains all the information of the insignif-
icant components which are not included in the model. The p^'s define the 
principal component coordinate system and are mutually orthogonal. The t^'s 
are the scores of the data on that system. The data can be projected onto the 
principal component space, and these projections are the scores: 

XP = T (2) 

where X is an n x /c matrix, P is di k x k matrix of loading vectors, T is 
an n X /c score matrix. The pairs (ti^pi) are arranged in descending order so 
that the first pair explains the largest amount of variation of the data, the 
second pair explains the next to the largest amount of variation and the k^^ 
explains the least. Usually only a few components are necessary to be kept in 
the model which explain most of the variations in the data. Consequently, the 
PCA can be used to reduce the dimensionality of the data and at the same 
time retain the most information of the original data. One of the effective 
methods to compute the PCA is the singular value decomposition (SVD) 
method. Suppose X is an n x m matrix with n rows and m columns. It can be 
decomposed as follows: X = USV^ where (7 is an n x TTI matrix whose columns 
are orthogonal; S' is an TTI x TTI diagonal matrix S with positive or zero elements, 
which are termed the singular values; V is an TTI x TTI orthogonal matrix. The 
squares of singular values correspond to the eigenvalues of covariance matrix 
of X by descending orders. The columns of V are the eigenvectors associated 
with the eigenvalues. We use the first k eigenvectors of V to define an TTI x /c 
matrix P , where P = [V^i,..., Vk]- Using P , we obtain k principal components 
as T = X P , where T is an n x TTI matrix, X is an n x TTI matrix and P is an 
m X k matrix. The transformed PC's are defined as Z = XB with covariance 
matrix Uz = Cov{Z). We can use Bayesian Information Criteria (BIC) [42] 
to choose the number of principal components. For this information criterion. 
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small values of BIG are preferred. The BIG values calculated by the software 
R for different number of principal component are given in Figure 5. We can 
see tha t the smallest BIG values correspond to two PG's . Therefore, these 
two PG's will be further used in the clustering algorithm. The scatter plot of 

PCI 
Fig. 5. Projection of all spectral data (Normal, Ham and ATL) in the space spanned 
by the first two principal component vectors. X-axis is the first principal component. 
Y-axis is the second principal component. 

The information explained by the first two PCs are much higher. However, 
there is no obvious cut point by looking at the cumulative percentage curve; 
the first two PCs just explained about 30% of the total variation. 



Fig. 6. Level of standard deviation of each Principal Component. SD: standard 
deviation, PCs: principal components 

According to BIC's criterion, the smallest ICOMP value comes from the 
two-PC model. The two-PC model has the smallest BIC values. The first two 
PCs will be used for clustering the data. 

X = T X P^ residual (3) 

= tipci -\- t2pc2 -\- residual (4) 

The transformed da ta is given in Table 1 tha t mentions the new coordinates 
of the first four observations. 

5 Bayesian Cluster Analysis 

In cluster analysis, we consider the problem of determining the structure of 
the da ta with respect to clusters when no information other than the observed 
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Table 1. Transformed data 

Observation 
1 
2 
3 
4 

PCI 
-8.49687 
26.40243 
-5.85782 
768.59 

PC2 
1.590751 
12.00707 
-4.34584 
776.42 

values is available [20, 17, 28, 31, 47, 43, 9]. Various strategies for simultaneous 
determination of the number of clusters and the cluster membership have been 
proposed [15, 11, 10]. 

Mixture models provide a useful statistical frame of reference for cluster 
analysis. In the theory of finite mixture models, the da ta to be classified are 
viewed as coming from a mixture of probability distributions, each represent-
ing a different cluster, so the likelihood is expressed as 

K 

\y) = WY.''kfk(yi\ek) (5) 
= l / c = l 

where TT̂  is the probability tha t an observation belongs to the k^^ component 
or cluster (TT^ > 0; Xl/c=i f̂c = l)^ /fc is the density function of each component 
distribution, and 6k = (/i/c, ^k) is the underlying parameter involved. 

The Bayesian approach is promising for a variety of mixture models, both 
Gaussian and non-Gaussian. Here, our approach uses a Bayesian mixture 
model based on a variant of the s tandard spectral decomposition of E/^, 
namely 

AfcDfcAfcD;. (6) 

where \k is a scalar, A^ = diag{l^ a/c2, • • •, ctkp) where 1 > ak2 > • • • ctkp > 0, 
and T>k is an orthogonal matr ix for each /c = 1 , . . . , K . 

We assume tha t the da ta are generated by a mixture of underlying prob-
ability distributions; each component of the mixture represents a different 
cluster so tha t the observations x^, {i = l , . . . , n ; x ^ G R^) to be classi-
fied arise from a random vector x with density p{0,7r\X = x) as in (5), 
where fk{'\{Ok = fiki^k)) is the multivariate normal density function, fi^ 
is the mean, and 5]/^ is the covariance matrix for the k^^ group. The vector 
'TT = (TTI, . . . ,7rx) is the mixing proportion (TT/̂  > 0, Xl/c=i '̂ r/c = 1). 

We are concerned with Bayesian inference about the model parameters 
^, TT and the classification indicators v. Markov Chain Monte Carlo meth-
ods (MCMC) provide an efficient and general recipe for Bayesian analysis 
of mixtures. Given a classification vector v = ( z / i , . . . , z/^), we use the no-
tat ion Uk = # { ^ : i^i = /c} for the number of observations in cluster /c, 
x/c = Xlriy =/c ^^/'^fc for the sample mean vector of all observations in the 
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cluster /c, and W ^ = J2i-u=k(^'^ ~ ^k){^i — ^kY for the sample covariance 
matrix. 

We use conjugate priors for the parameters TT, /i and X) of the mixture 
model. The prior distribution of the mixing proportions is a Dirichlet distri-
bution 

(7ri , . . . ,7rK) ^ Dirichlet{[3i,...,[3K), (7) 

The prior distributions of the means fik of the mixture components con-
ditionally on the covariance matrices 5]/^ are Gaussian 

/ifc|Efc ^ Np{^k, ^k/Tk) (8) 

with known scale factors T I , . . . , r ^ > 0 and locations <fi,...,<fK ^ R^- The 
conjugate prior distribution of the covariance matrices depends on the model. 
It will be given for each model as detailed in Table 2. 

Table 2. Different geometrical characteristics of the four models for the covariance 
matrix 

Model 
\I 

Xkl 
XDAD^ 
XkDAD^ 
XkDkAkDl 

Volume 
same 
different 
same 
different 
different 

Shape 
same(spherical) 
same(spherical) 
same 
same 
different 

Orientation 
undefined 
undefined 
same 
same 
different 

We estimate the parameters of the models by simulating from the joint 
posterior distribution of TT, and v using the Gibbs sampler, and at iteration 
(t + 1) the Gibbs sampler steps go as follows: 

1. Simulate the classification variables z/} , i = 1 , . . . , n, independently ac-

cording to the posterior probabilities pik = P{i^i = /c|7r, ^ ) , /c = 1 , . . . , K 

conditional on the current values for TT̂ ^̂  and 0^'^\ 

P^k = 7 r f e / f c (x , | 4* \ s (*VE4 * ' / f c (x . |Mi* ' , s i *^ ) (i = l , . . . , n ) (9) 
k=l 

2. Simulate the vector 7r̂ ^+^̂  = (TT} , . . . , 7 r ] ^ ^) of mixing proportions 
from its posterior distribution, namely 

7r<*+i) ~ DirichletiH^ + ^ #{ut'^ = 1 } , . . . , /3K + ^ #{i^f^'^ = K}) (10) 
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where f3k are the known prior parameters of the Dirichlet distribution. 
3. Simulate the parameter ^(^+^) of the model from the posterior distribution 

4. I terate the steps 1 to 3. 

The validity of this procedure, namely the fact tha t the Markov chain 
associated with the algorithm converges in distribution to the t rue posterior 
distribution of 6*, was shown. The proof is based on a duality principle^ which 
uses the finite space nature of the chain associated with the z/^'s. This chain 
is ergodic with state space {! , . . . , K}, and is thus geometrically convergent. 
These properties transfer automatically to the sequence of values of 0 and TT, 
and important properties as the central limit theorem or the law of the iterated 
logarithm are then satisfied. Next, we describe and estimate parameters of the 
four proposed models we used in this chapter: 

(1) Model [XI]: similar spherical clustering 

This model assumes tha t the clusters are spherical with the same volume (A). 
As shown above, the prior distribution of the parameter fi^ is given in (8). The 
posterior distribution of (/i/c|A,z/) is a multivariate normal distribution with 
mean ^k = (^fcy/c -\- ^kCk)/{^^k -\-^k) and covariance matr ix \/{nk -\-rk)I. As A 
is a scale measure, we use an inverse Gamma distribution G~^{mo/2, Po/2) as 
a prior with scale and shape parameters mo and po- The posterior distribution 
of A|/i,y is an inverse Gamma distribution 

Ga' I {n + mop} /2 , i po + t r ( W + ^ ; ^ ^ ^ ( ^ f e - ^0(xfe - 6 ) ' ) [ /2 J (11) 

(2) Model [Xkl] different spherical clustering 

This model assumes tha t the clusters are spherical with different volume (A^). 
If the prior distribution of A^ is an inverse Gamma G~-^{mk/2^ pk/2) with 
scale and shape parameters ruk and pk for each cluster, then the posterior 
distribution of Afc|/i,x is an inverse Gamma distribution 

Ga' (krik +pmfe), Ipk + tr{Wk + ^ ^ ^ ( x ^ - a)(xfe - 6 ) ' ) j f^) (12) 
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(3) Model [E]: similar ellipsoidal clustering 

Using this model, we suppose that all clusters have the same volume, same 
shape and same orientation {E = ADAD^). The prior distribution of U is an 
inverse Wishart distribution with degrees of freedom mo and sample variance 
^0- The posterior distribution of i7|/i,x, has the following inverse Wishart 
distribution 

W-' ( nfc + mo, *o + W + V ^ ^ ( x ^ - Ck){^k - CkY (13) 

(4) Model [Xk^]' proportional ellipsoidal clustering 

Using this model, we suppose that all clusters have different volume, same 
shape and same orientation {E = A/^DAD^). The prior distribution of E is an 
inverse Wishart distribution with degrees of freedom TTIQ and sample variance 
^0- The prior distribution of \k is an inverse Gamma G~^{mk/'l^ pk/"^) with 
scale and shape parameters rrik and pk for each cluster, then the posterior 
distribution of Afc|i7,/i,x is an inverse Gamma distribution 

G-\-{nk^pmk), (14) 

{pu + tr{E{yV + !Ẑo + V ^ ^ ( x , - a)(xfc - a ) ' ) )} /2) 
k 

The posterior distribution of i7|A/c,/i,x, has the following inverse Wishart 
distribution 

W-^ ( n + mo, *o + W + ^ ^ ^ ( x ^ - a)(xfc - &) ' ) (15) 
\ ^ nk+Tk J 

(5) Model [Ek\: different ellipsoidal clustering) 

In this case, we suppose that clusters have different shape, different volume 
and different orientation {E = A/cD/^A/cD^). If the prior distribution of E^ 
is an inverse Wishart distribution with degrees of freedom rrik and a sam-
ple variance ^ki then the posterior distribution of i7/c|/i,x, has the following 
inverse Wishart distribution 

W;^ (uk + mfc, *fc + Wfc + ^ ^ ( x , - a)(xfc - ikA (16) 

We propose a Bayesian approach for selecting the number of clusters. We 
also need to specify which one of the models described above offers the best 
classification. Therefore, we provide an adaptive and fiexible clustering algo-
rithm which considers not only the number of clusters, but also the shape 
of the proposed clusters. The models described above use the geometrical 
specification of the clusters depending upon the data to be analyzed. 
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6 Model selection 

The deviance information criterion (DIG) has been recently introduced as a 
means of comparing models. DIG uses the posterior expectation of the log 
likelihood as a measure of model fit. For a particular model M, the DIG is 
defined as 

where 

Die = 2D-D {OM) , (17) 

5 = - 2 / [logp (X|^M)] P (^M|X, M ) dOM (18) 

= Ee^\AD{OM)]. (19) 

is the posterior expectation of the so-called deviance D (OM) = —2 logp (X|^M)-

The second term in the right hand side of (17) is the deviance evaluated at 
the posterior mean of the parameter vector OM- In order to motivate (17), 
an expansion of the deviance around the posterior mean OM^ and taking ex-
pectations with respect to the posterior distribution of 0 gives the expected 
deviance [45] 

D^D {OM) + tr d^\ogp{y\OM) 
dOMdO', M 

Var{eM\Y)\ (20) 
eM=e J 

where D {OM) = —21ogp (YI^M) , and Var (^MIY) is the variance-covariance 
matrix of the posterior distribution of OM- The second term on the right hand 
side of (20) is measuring model complexity and is called the "effective number 
of parameters". Expression (17) is a result of combining the posterior expecta-
tion of the deviance, given by (18), with the effective number of parameters, 
which from (20), is given approximately hy D — D {OM)- Thus, DIG has a 
term that refiects the fit of the model and another term which introduces a 
penalty due to the complexity of the model. The penalty inherent in DIG is 
stronger than other measures, such as the posterior Bayes Factor (apart from 
the second term in (17), D already includes a penalty factor). Models having 
a smaller DIG should be favored as this indicates a better fit and a lower 
degree of model complexity. Spiegelhalter et al. [46] show that DIG is related 
to other model comparison criteria and has an approximate decision-theoretic 
justification. 

DIG is very easily calculated using the MGMG output. The first term 
in the DIG is estimated using twice the average of the simulated values of 
— logp(yl^M), and the second term is the plug-in estimate of the deviance 
using the average of the MGMG simulated values of OM-
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7 Results 

We applied the Bayesian clustering algorithm and succeeded to detect the 
clusters and their geometrical representation and also provided the uncertainty 
of the classification for each sample. First, the comparison of the Deviance 
Criteria for different number of clusters and different models is summarized 
in Table 3. 

Table 3. DIG scores for the number of clusters and different models 

Clusters/Models 
1 
2 
3 
4 
5 
6 
7 

1 
828.36 
761.36 
703.76 
766.56 
768.59 
764.02 
817.38 

2 
817.95 
780.63 
660.07 
752.62 
776.42 
765.92 
790.34 

3 
818.20 
753.92 
668.43 
770.37 
782.43 
770.53 
789.99 

4 
832.63 
742.34 
652.63 
765.73 
780.55 
795.09 
815.82 

5 
814.10 
659.02 
676.68 
771.02 
782.19 
774.38 
819.77 

Using 1000 iterations of the Gibbs sampler was necessary for the stability 
of the Markov chain. Convergence was immediate as shown in Figures 7 and 
9. The correct model [Xk^] (model 4) and the correct number of groups (3 
clusters), are strongly favored. DIC scored best for the model [Xk^] with 
three components, which means tha t da ta proposes three proportional groups 
with different volume. When we wanted to investigate the performance of 
this choice, we compared the proposed clusters with the ones proposed by 
experts. The error rate of misclassification obtained by the optimal model is 
equal to 8%. Due to the limited space, here we show the time series plots for 
/i only. Figure 7 shows the convergence of each component of /i to the mode 
or expected parameter estimates. 

The expected values of the parameter estimates /i. A, E and TT are /ii = 
(18.03,3.06), /i2 = (-7 .33,3.47) , /is = ( - 8 . 8 6 , - 7 . 0 4 8 ) , A = (2.35,1.23,4.43), 
^ _ / 17.60 - 4 . 5 A ^ _ f 2.37 - 0 . 6 7 \ ^ _ / 11.42 -1 .34^ 
^ 1 - A ^^ ^ AA h ^ 2 - n ^^ 1 Q̂ h ^3 --0.67 1.63 -1.34 3.11 

and 
^ -4.51 7.44 ^ 

7r = (0.30,0.38,0.31). 
The second best choice proposed by DIC is three ellipsoidal groups with 

different volume and different orientation. The expected values of the para-
meter estimates /i, X) and TT are /ii = (15.77, 1.45), /i2 = ( - 8 . 8 2 , - 1 . 4 1 ) , 

(0.33,0.66), A ' 6 - 6 5 -2M\ _ / 3.46 0.017^ 
-2.95 5.29 

, and IJ2 
0.017 1.54 



Fig. 7. Simulation history of three cluster mean vectors and its convergence, (a): 
the two panels represent the mean vector of the first cluster, (b): the two panels 
represent the mean vector of the second cluster, (c): the two panels represent the 
mean of the third cluster. 

8 Summary 

Gancer proteomics encompasses the identification and quanti tat ive analysis 
of differentially expressed proteins relative to healthy tissue counterparts at 
different stages of disease, from preneoplasia to neoplasia. The high dimen-
sionality of the da ta obtained through SELDI-TOF-MS and other recent mass 
spectrometry-based proteomics technologies underscores the need for develop-
ing an artificial-intelligence algorithm capable of analyzing such high volume 
da ta to develop an efficient and reproducible classifier. In order to achieve this 
goal, we have utilized the Bayesian-based principal component algorithm to 
efficiently cluster the data . Wi th our da ta set, the PGA Bayesian approach not 
only showed an extremely good performance, but it also proposed the correct 
number of clusters and their geometrical configuration and the correct model 
using DIG. The diagonal model proposed by DIG performed well. We may be 
misled by the the second best choice (two clusters), which might be surprising 
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Fig. 8. 2D projection of the Bayesian algorithm. Shown are the three clusters found 
by the Bayesian algorithm. 

but not contradictory. The DIG recognizes the normal group but puts HAM 
and ATL together in a second group. This is probably due to the fact that 
HAM and ATL patients were infected by the same virus that might be target-
ing the same group of genes, and therefore proteins, in the two diseases. The 
first and the best choice proposed by DIG generated an ellipsoidal model, with 
different covariance matrices, and proposed three clusters. The three groups 
have a superior similarity to the real data sets (Normal, ATL and HAM) with 
an error rate of 9%. This means that the intensity profile of the proteome can 
distinguish between the normal patients and the diseased patients. Within the 
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Fig. 9. Simulation history of two cluster mean vectors and its convergence, (a): 
the two panels represent the mean vector of the first cluster, (b): the two panels 
represent the mean vector of the second cluster. 

two diseased patients it recognizes the Adult T cell leukemia (ATL) and the 
HTLV-Associated Myelopathy/Tropical Spastic Paraparesis (HAM) and sep-
arates them in two different clusters. HTLV-1 might be targeting a similar set 
of proteins; however, these proteins can be expressed differentially in the two 
diseases, which is reflected by different intensity proflles. The high speciflcity 
obtained using this approach represents a signiflcant advancement in the clus-
tering of high dimensional da ta especially when more than two patient groups 
are considered. Classifying proteomics da ta generated from studies containing 
more than two patient groups represents a serious challenge, and the outcome 
of such classiflcation usually has low speciflcity and sensitivity rates. To boost 
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Fig. 10. 2D projection of the Bayesian algorithm. Shown are the two clusters found 
by the Bayesian algorithm. 

the capabilities of this algorithm and enhance the rate of correct classification, 
one may instead use a non-parametric approach to cluster the proteomics data. 
The use of the normality assumption was strongly emphasized and pushed on 
the transformed data, which causes a satisfactory but still not perfect score 
especially when the mass is used instead of the intensity. 
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Summary . The importance of neuroproteomic studies is that they will help eluci-
date the currently poorly understood biochemical mechanisms or pathways underly-
ing various psychiatric, neurological and neurodegenerative diseases. In this chapter, 
we focus on traumatic brain injury (TBI), a neurological disorder currently with no 
FDA approved therapeutic treatment. This chapter describes data mining strategies 
for proteomic analysis in traumatic brain injury research so that the diagnosis and 
treatment of TBI can be developed. We should note that brain imaging provides 
only coarse resolutions and proteomic analysis yields much finer resolutions to these 
two problems. Our data mining approach is not only at the collected data level, but 
rather an integrated scheme of animal modeling, instrumentation and data analysis. 

1 Introduction 

With the complete mapping of the human genome, we are now armed with 
a finite number of possible human gene products (human proteome). There 
are approximately 30,000 to 40,000 hypothetical protein products transcrib-
able from the human genome [2, 25, 26, 31, 32, 60, 61]. The study of the 
proteome is also aided by recent advances of protein separation, identification 
and quantification technologies not available even 3-5 years ago. Yet, the pro-
teome is still extremely complex because by definition, proteome is organ-, 
cell type-, cell state- and time-specific. Proteins are also subjected to various 
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posttranslational modifications. In addition, cellular proteins are almost con-
stantly subjected to various forms of posttranslational modifications (PTM), 
including phosphorylation/dephosphorylation by different kinases and phos-
phatases, proteolysis or processing acetylation, glycosylation and crosslinking 
by transglutaminases or protein conjugation to small protein tags such as 
ubiquitin or SUMO [35, 58, 59]. It has been proposed tha t a more feasible 
approach is to focus on a subproteome, such as tha t of single tissue or a sub-
cellular organelle [33]. On the other hand, we proposed tha t focusing on the 
study of the proteome of the central and peripheral nervous systems (CNS 
and PNS) maybe more manageable and productive [17]. We further submitted 
tha t although the applications of proteomic technologies to nervous system 
disorders (e.g. neural injury, neurodegeneration, substance abuse and drug 
addiction) is still in its infancy, the potential insights one would gain from 
such endeavors are tremendous. The importance of neuroproteomic studies 
is tha t they will help elucidate the currently poorly understood biochemical 
mechanisms or pathways underlying various psychiatric, neurological and neu-
rodegenerative diseases. The example we will focus on here is t raumat ic brain 
injury (TBI), a neurological disorder currently with no FDA approved thera-
peutic t reatment . In general, proteomic studies of TBI create a huge amount 
of da ta and the bioinformatic challenge is two-fold: (i) to organize and archive 
such da ta into a useful and retrievable database format and (ii) to data-mine 
such database in order to extract the most useful information tha t can be 
used to advance our understanding of the protein pathways relevant to TBI. 

This chapter reports the bioinformatics component of the TBI research 
at the Center of Neuroproteomics and Biomarkers Research and Center for 
Traumatic Brain Injury Studies at the University of Florida. In particular, we 
describe da ta mining strategies for proteomic analysis in TBI research so tha t 
the diagnosis and t reatment of TBI can be developed. We should note tha t 
brain imaging provides only coarse resolutions and proteomic analysis yields 
much finer resolutions to these two problems. Our da ta mining approach is 
not only at the collected da ta level, but rather an integrated scheme of animal 
modeling, instrumentation and da ta analysis. Thus computing infrastructure 
is essential at all the protein separation, protein identification/quantification 
and bioinformatics levels. 

The organization of the chapter is as follows. In Section 2, we describe 
t raumat ic brain injury (TBI). Section 3 considers animal models, while Sec-
tion 4 deals with the source of biological materials. Sections 5 and 6 address 
samples collection and pooling. Proteomic analysis is overviewed in Section 7. 
In Section 8, we present bioinformatics for TBI proteomics. Finally in conclu-
sion we consider our future work and the prospect of systems biology in TBI 
research. 
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2 Traumatic Brain Injury (TBI) 

Traumatic brain injury or traumatic head injury is characterized as a direct 
physical impact or trauma to the head, causing brain injury [17]. Annually 
there are 2 million traumatic brain injury (TBI) cases in the U.S. alone. 
They result in 500,000 hospitalizations, 100,000 deaths, 70,000-90,000 people 
with long-term disabilities and 2,000 survive in permanent vegetative state. 
Medical costs of TBI are estimated to be over $48 billion annually in U.S. The 
cause of TBI can be broken down into the following catalogues: motor vehicle 
accidents (50%), falls (21%), assault & violence (12%), sports & recreation 
(10%) and all others (7%) Importantly, 30-40% of all battlefield injuries have 
a head injury component. 

Due to intensive research in both clinical setting and experimental ani-
mal models of TBI, there is now a general understanding of the pathology of 
TBI. It all starts with the impact zone, where there is mechanical compression-
induced direct tissue injury and often associated with hemorrhage. Significant 
amount of cell death will occur very rapidly in this zone. More distal to the 
injury zone, due to the impact of the force, contusion injury also result, long 
fiber tracts (axons) are especially at risk to this type of injury. Usually af-
ter the first phase of cell injury/cell occurs, there is also the secondary injury 
which is believed to be mediated by neurotoxic glutamate release (neurotoxic-
ity). Other significant alterations include infiammation responses by microglia 
cells, astroglia activation and proliferation and stem cells differentiation. Over 
time, if the TBI patient survives, these events lead to long-lasting brain tis-
sue remodeling. Therefore, the spatial and temporal levels of biochemical and 
proteomic changes of TBI can be investigated. 

3 Animal Models of TBI 

Over the past decades, basic science researchers have developed several animal 
models for TBI [19, 54]. There are several well characterized models of TBI, 
including controlled cortical impact (CCI) with compressed gas control, fiuid 
percussion model that transduce a contusion force due to the movement of 
fiuid in the chamber, and the vertical weight drop model with which a weight 
is dropped from a certain height within a hollow chamber for guidance. Thus 
it creates an acceleration force which direct on the top of the skull (either 
unilateral or bilateral injury [19]). In our work, we employ the rat CCI model 
of TBI. We have argued that the use of proteomic will greatly facilitate the 
biochemical mechanisms underlying the various phases of TBI pathology [17]. 

4 Source of Biological Materials 

Proteomic studies for traumatic brain injury can be generally categorized 
into human studies, animal and cell culture-based studies. For the purposes 
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of this review, cell culture-based studies will not be discussed further. When 
comparing human vs. animal studies, there are pro and con in each scenarios. 
Regarding the sample types tha t can be exploited for proteomic analysis, they 
will include brain tissues, cerebrospinal fluid, blood (serum and plasma). For 
human TBI studies, samples tha t are the easiest to obtain would be blood 
samples (which are further fractionated into plasma or serum). Interestingly, 
there is increasing interests now focus on using cerebrospinal fluid (CSF) as 
its s tatus will reflect the s tatus of the central nervous system itself. Following 
severe t raumat ic brain injury, spinal shun or spinal t ap are routinely done 
thus obtaining the CSF is not an issue. One of the major challenges of using 
clinical samples-based proteomic studies is tha t it is extremely diflicult to 
control individual (biological) and environmental variables 

(I) Brain Samples 

Human brain materials from TBI would inevitably come from deceased TBI 
patients. These brain samples will be subjected to postmortem artifacts, com-
pounded by various and signiflcant t ime delay before samples can be obtained. 

The biggest advantage of animal neuroproteomic studies over human coun-
terpar ts is the ability to obtain brain tissues in a controlled laboratory envi-
ronment. Furthermore, it is possible to harvest samples from deflned anatomic 
regions. For example, for t raumat ic brain injury studies, we often focus on cor-
tical and hippocampal samples. This is important as different brain regions 
might be selectively more vulnerable to t raumat ic or ischemic insults. 

(II) CSF 

CSF can be collected from the cisterna magna from lab animals, such as rats 
and mice. CSF contains rich brain proteome information tha t is relevant to 
disease diagnosis [16]. However, only about 50-100 ul can be withdrawn from 
a rat and 25-30 ul from a mouse. Care must also be taken not to contaminate 
samples with blood due to puncture. While more than one CSF draw might 
be possible, in our laboratory, we generally withdraw only one CSF sample 
followed by sacriflce. In the case of human TBI, CSF can also be collected 
routinely from ventriculotomy or from spinal t ap . 

(III) Blood Samples (Serum, and Plasma) 

In both human and animal t raumat ic brain injury studies, blood can be rou-
tinely collected and usually further processed into either serum or plasma 
fractions before subjecting to proteomic analysis. Like CSF, most proteomic 
researchers believe there is signiflcant proteomic information in the blood 
tha t would reflect the s tatus of the brain, particularly after TBI with possible 
blood-brain barrier compromise [53, 57]. 
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5 Samples Collection and Processing Consistency 

It needs to be emphasized here that for proteomic to be consistent and re-
producible, one needs to take extra attentions to ensure the variables can 
be kept to minimal. All sample collection procedure should be discussed and 
finalized and the operators made familiar with the procedures. Some prac-
tice runs are highly desirable. For human studies, detailed record keeping 
is extremely important for future analysis or trouble-shooting purposes. For 
human studies, for example, CSF or blood samples should be taken at consis-
tent intervals and ideally, food consumption might significantly affect blood 
proteomic profile. For animal studies which are conducted in controlled envi-
ronment, it should be possible to keep brained and befouled sample collection 
time and routine as standardized as possible. Also, for animal studies, the 
animal subjects should be tagged and observed carefully and regularly; with 
any out-of-the norm observations recorded. They might become very help-
ful in enhancing proteomic analysis. Both tissue and biofiuid samples, once 
obtained and processed, should be snap frozen and store at -85C until use. 

6 Sample Pooling Considerations 

There is also an important decision to be made before the proteomic analysis, 
i.e. whether to pool samples for analysis or analyze individual samples. Pool-
ing samples significantly reduce minor individual variability and reduce the 
amount of workload. Yet, at the same time, its disadvantage is that it might 
miss certain proteomic changes that are present in only a subset of samples. 
On the other hand, analysis of individual samples has the advantage of be-
ing an exhaustive analysis of individual proteomic profile but it can be highly 
time-consuming and cost-prohibiting. If the protein amount in the samples are 
limiting factor, it would be useful to pool samples. Additionally, if there is a 
biochemical marker that correlates with TBI (such as alphall-spectrin break-
down products), it can be used as positive controls for quality assurance and 
might even be used to guide inclusion criteria for sample pooling [51, 52]. It is 
also possible to incorporate both pooling and individual proteomic analysis in 
the same studies. For example, for pilot studies or initial proteomic profiling 
of TBI, pooled samples can be used while the final detailed analysis can be 
done with individual samples. 

7 Proteomic Analysis Overview 

Regardless whether we are dealing with human or animal samples or whether 
they are tissue lysate or biofiuid (CSF, serum or plasma). The strategy we de-
veloped can be organized into three interacting scientific disciplines or phases: 
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protein separation, protein identification and quantification and bioinformat-
ics analysis. By design, any proteomic center should spend two-thirds of its 
scientific and financial resources to establish robust readily usable proteomic 
platforms. However, it is equally important for the center to develop new or 
improve existing neuroproteomics technologies on all fronts. 

7.1 P r o t e i n Separat ion M e t h o d s 

In TBI neuroproteomic studies, we are less interested in descriptive and ex-
haustive characterization of the whole neuroproteomic, but rather we will 
focus on protein level or posttranslational changes tha t occur in TBI. Wi th 
this in mind, it is important to devise methods in comparing and contrasting 
the two proteomic da ta sets: "control" versus "TBI". In order to productively 
identify all the proteins in a specific system of interest (subproteome) or a sub-
set of proteins tha t are differentially expressed in TBI, it is essential tha t com-
plex protein mixtures (such as brain sample or biofiuid) be first subjected to 
multi-dimensional protein separation. Since proteins differ in size, hydropho-
bicity, surface charges, abundance and other properties, to date there is no 
single protein separation method tha t can satisfactorily resolve all proteins in 
a proteome. 

Currently, there are two main stream protein separation methods used 
for proteomic analysis: (i) 2D-gel isoelectrofocusing/electrophoresis and (ii) 
multi-dimensional liquid chromatography. 

(i) 2-dimensional gel electrophoresis approach 

Two-Dimensional gel electrophoresis (2D-gel) is the most established protein 
separation method for the analysis of a proteome or subproteome [7]. It is 
achieved by subjecting protein mixtures to two protein separation methods 
under denaturing condition, in the presence of 6-8 M urea and cationic deter-
gent such as SDS. Traditionally, proteins are first separated based on their PI 
value with a tube gel (polyacrylamide) by isoelectrofocusing with the aid of 
mobile ampholytes with different PI values. After lEF , the tube gel is placed 
atop a polyacrylamide gradient gel within which the SDS-bound proteins are 
separated by size. Due to poor gel-consistency, the l E F step (the first di-
mension) is most variable; however, a recent breakthrough in l E F technology 
utilizing immobilized pH gradient strips (IPG) for 2D-gel analysis provides 
improved reproducibility [6, 24, 31, 36]. Another disadvantage with 2D-gels is 
the inevitable gel-to-gel variability in exact location and pat terns of protein 
spots. This proves problematic when comparing two samples directly (such 
as control vs. substance abuse brain). The recent advance of 2D-differential-
in-gel-electrophoresis (2D-DIGE) has resolved this [49, 64]. Two protein mix-
tures are labeled with the fiuorescent cyanine dye pairs Cy3/Cy5 tha t match 
in molecular weight and charge but matched have distinct excitation and 
emission wavelengths. These advantages are incorporated into our approach. 
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They include in particular the high resolving power for complex mixtures of 
proteins, and the capability of resolving post-translationally modified pro-
teins, including acetylation, phosphorylation, and glycosylation and protein 
crosslinking [35, 58]. It is possible to annotate each protein of a proteome by 
PI and molecular weight values as X-Y coordinates to form a 2D protein map 
of which there is already a wealth of 2D-brain protein coordinates in publicly 
accessible and searchable databases [3, 20, 21, 42, 44]. There are however, 
several persistent weaknesses of 2D-gels. Proteins of extreme PI or minute 
quanti ty and proteins tha t are either very small or very large may be missed. 
Also, integral membrane proteins of which many are CNS disorder drug tar-
gets (membrane-bound receptors or neurotransmitter transporters) are lost 
due to their extreme hydrophobicity. 

Regarding protein separation, there are also research in the direction of 
microfiuidic 2D- protein separation with miniaturized l E F and electrophoresis. 
This approach is the advantage of reducing waste and sample usage without 
compromising detection sensitivity [18, 56]. 

(a) 2-dimensional liquid chromatography approach 

Alternative protein separation methods are needed to overcome some of the 
shortcoming of 2D-gels. Recently, there is significant movement toward multi-
dimensional liquid chromatography methods to resolve complex protein mix-
tures [50]. The general idea draws on classic chromatographic principles in-
cluding size chromatography (SEC) (gel filtration), ionic interaction (strong 
cation exchange (SCX) and strong anion exchange (SAX), hydrophobic in-
teraction (C4- or phenyl-agarose chromatography), and isoelectrofocusing 
chromatography. One can envision combining multiple chromatographic ap-
proaches in series to achieve multidimensional separations. When selecting 
chromatographic separation methods, considerations must also been given to 
take advantage of the size, pi and hydrophobicity differences of the proteins 
of interests. IN addition, when dealing with membrane-bound proteins, the 
chromatographic method must be compatible with the use of proper neutral 
detergent (such as Triton X-100 or CHAPS). Importantly, minute proteins 
can be further concentrated to enhance their detect ability. One weakness of 
this approach is tha t even with 2D LC separation, it is often not possible to 
separate all proteins individually. This problem will be addressed under the 
"Protein identification and Quantification" section. In summary, when com-
pared to the 2D-gel electrophoresis method, the tandem liquid chromatogra-
phy method described here is more compatible with membrane-bound proteins 
as well as can enrich proteins in minute quantity. 

7.2 P r o t e i n Ident i f icat ion and Quant i f icat ion M e t h o d s 

The approach we are taking represents an effort to apply systematically the 
most contemporary proteomics approaches to identify and develop clinically 
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useful biomarkers for brain injury from t raumat ic causes, disease or drugs. 
Classical methods of protein identification involving protein separation by 
gels or liquid chromatography coupled to mass spectrometry to provide a po-
tent and novel methodological array never applied systematically before to 
the detection of biomarkers of CNS injury, either alone or in combination. 
This integrated strategy makes possible both "targeted" analyses of known 
potential biomarker candidates as well as "untargeted" searches for novel pro-
teins and protein fragments tha t could prove even more useful. Each of these 
technologies has advantages and disadvantages tha t together are complemen-
tary to each other. Thus, multiple proteomic strategies optimize opportunities 
for successful brain injury proteomic studies. Lastly, protein identification re-
search also benefited from improved bioinformatics tools for protein database 
searching [9]. Thus, importantly, research designs must incorporate appropri-
ate bioinformatics support . 

(i) Mass spectrometry approach 

(a) MALDI-TOF (matrix-assisted laser desorption ionization mass spectrom-
etry) - time-of-fiight (TOF) approach: the most classical method for pro-
tein identification in a given protein mixture is to perform 2D gel elec-
trophoresis followed by in-gel digestion of gel band(s) of interest followed 
by identification of proteins by mass spectrometry. The 2D-gel method has 
been improved by the use of immobilized pH gradient strips for the first 
dimension and the ability to label protein samples from control and experi-
mental tissues with Cy dyes (Cy3 and Cy5) tha t form co-migrating labeled 
samples tha t are compared in the same gel. Differentially expressed pro-
teins are easily found, cut from the gel, digested in the gel spot by trypsin, 
and then identified by MALDI-TOF [5]. It is important to understand 
tha t MALDI identifies peptides based on accurate determination of pep-
tide masses since each amino acid has a unique mass and thus any given 
peptide which is composed of a unique combination of sequence will have 
a unique mass. However, this method of protein identification is not infal-
lible. Although rare, peptides can have identical amino acid composition 
with which the order of these amino acid residues could be different. Thus, 
it is common practice tha t in order to positively identify the presence of a 
specific protein, at least two peptide fragments from the protein must be 
independently identified based on their mass. In addition, any post trans-
lational modifications when occurs at significantly high tachometric ratio, 
will make this type of mass prediction extremely difficult. This method 
is useful for distinguishing proteins tha t are either up-regulated or down-
regulated due to injury, but it is also sub-optimal for finding small peptides 
from basic, very acidic, or hydrophobic proteins. Complementary to this 
method are direct mass spectrometry procedures tha t capture the entire 
range of proteins and peptides, but may not distinguish proteins tha t are 
post-translationally modified, also the maximal protein size is limited to 
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about 25,000 to 30,000 Delton. This approach is taken advantaged of by a 
modified MALDI approach called SELDI (invented by Ciphergen) which 
combines a protein separation phase with the MALDI using an affinity 
matr ix based "Protein Chips" [65]. 

(b) LC-MS/MS approach. There are several ID- and 2D-chromatography tech-
niques [1] tha t can substi tute for the 2D-gels tha t give reasonable res-
olution and include proteins tha t could be missed by the gel methods. 
These chromatography techniques can now be coupled to protein fragmen-
tat ion (trypsinization) and reverse-phase chromatographic peptide sepa-
ration, which is then coupled in-line with mass spectrometers. The main 
advantage of the in-line techniques is bet ter recovery of peptides and thus, 
greater sensitivity. It is now possible to identify proteins tha t are present in 
tissues at the pM range. High-powered mass spectrometers including the 
quadrupole ion-trap (LCQ-Deca), the quadrupole time-of-ffight (QSTAR), 
and the FT- ICR (Bruker Bio Apex 4.7) mass spectrometers can be used for 
identifying proteins. These methods work extremely well, especially when 
coupled with database searching and bioinformatics. Importantly, some 
of these MS can be configured to become tandem MS. The advantage of 
tandem MS (MS/MS) is tha t it can provide peptide sequence information 
while single MS can also provide peptide mass (see above) [29]. Briefiy, 
in MS/MS, when peptides are ionized at the ion source in the first mass 
analyzer, selected peptide ions were further ionized in the collision cell. 
Due to the high energy of ionization inside the collision cells, peptides are 
actually fragmented randomly along the peptide backbone. Depending on 
whether the fragmentation site is at the N-terminal or the C-terminal, 
for each residue site, pair of a- b- and y-daughter ions will be generated. 
The exact mass of all the b-and y-daughter ions are then determined in 
the second mass analyzer. Thus, by analyzing this mass information using 
now available bioinformatic software, the sequence of peptide of interest 
can be reconstructed without ambiguity. 

(a) Protein and peptide quantification by MS 

There are now no less than half a dozen MS-based protein/pept ide quan-
tification methods, which are reviewed recently [17]. In this section, we will 
focus on two most validated quantification methods tha t are applicable to 
TBI proteomics. 

(a) I CAT: A direct chromatographic approach to evaluate differential expres-
sion is the use of isotope-coded affinity tags (ICAT) [28]. These tags can 
be used to label the protein samples on cysteine residues tha t are then 
compared mixed together following digested by trypsin. Fragments tha t 
are labeled by the tags can then be selectively isolated and analyzed by 
mass spectrometry. Differential expression is determined by relative peak 
heights of the two samples, and MS/MS sequencing and database searching 
directly identify the differentially expressed proteins [50, 66]. This method 
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is very powerful and quick. We already have experience with this approach 
and it works well. 

(h) AQUA: Another innovative method to quantify differential expression is 
through the use of Absolute Q u a n t i t a t i o n (AQUA) probes [22], which in-
volves creating synthetic peptides containing heavy isotopes tha t can be 
spiked into the trypsin digest to act as exogenous calibrants for quantita-
tion. For this method to work one must first identify by other means the 
protein tha t is differentially expressed, for example 2D-gel electrophore-
sis coupled to mass spectrometry or ICAT. The calibrant peptide is then 
synthesized and used within t ryptic digests. This is a much quicker way 
of evaluating the effectiveness of a biomarkers and validating differential 
expression than waiting a specific antibody to be developed. Our prelimi-
nary experience with this method suggests tha t it will be a powerful way 
to proceed. 

(in) Antibody panel /array approach 

Protein identification is also assisted by the availability of various platforms of 
antibody arrays or panels (Zyomyx protein Biochips, BD Powerblot and BD 
antibody arrays] [27, 34, 41, 48]. These methods all rely on antibody-based 
capturing of protein of interest. The quantification of the captured protein is 
either achieved by pre-labeling (including differential labeling) of protein with 
fiuorsencent dye (dye-labeling detection), such as BD antibody arrays, simi-
lar to the gene chip mRNA quantification method. Alternatively quantitative 
detection with a second primary antibody specific to the same protein anti-
gen (sandwich detection), similar to the sandwich enzyme-linked immunoab-
sorbant assay (sandwich ELISA) method (such as the Zyomyx protein chips). 
Thirdly, the BD Powerblot, as a variant, is in fact a high-throughput western 
blotting (immunoblotting) system with two distinct protein samples differen-
tially subjected to a set of 5 blots. Each blot has 39 usable lanes with the use 
of a manifold system. Each lane is developed with 5-6 different fiuorophores-
linked monoclonal antibodies (toward antigen with non-overlapping molecular 
weight) Thus with this method, the samples will be probed with a total of 
1,000 monoclonal antibodies. We have actually conducted several Powerblot 
experiments with animal TBI studies. 

The major advantage of the antibody panel or array approach is tha t pro-
teins of interest can be readily identified since all antibodies used have known 
antigens and their positional assignment on the antibody chip or panel is 
known Also, quantification is already built-into this antibody-based approach, 
without any additional effort. On the other hand, the major disadvantage of 
this approach is tha t it is practically impossible to be exhaustive as one would 
only have high fidelity antibodies to a subset of proteins. Furthermore, if anti-
bodies are collected from many different sources it will likely results in uneven 
detection sensitivity. As in other immunoassay methods (Western blotting, im-
munostaining or ELISA). It is a given tha t antibody based method will likely 
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detect specially bound protein as well as non-specifically bound proteins or 
other substances. This will likely give rise to high background or false posi-
tive reactions or both. The authors believe that despite its shortcoming, the 
antibody-based protein identification approach is a perfect complement to the 
MS-based approach discussed above. 

8 TBI Proteomic Bioinformatics 

The current advance in databases and web portals has a natural convergence 
for knowledge and data sharing among local and remote scientists in any NIH 
domain. Large databases will be networked, while web portals will "federate 
and access" large databases. Such efforts need to develop for the neuropro-
teomic domain. Neuroscience has one of the most complex information struc-
tures - concepts, data types and algorithms - among scientific disciplines. Its 
richness in organisms, species, cells, genes, proteins and their signal transduc-
tion pathways provides many challenging issues for biological sciences, compu-
tational sciences, and information technology. The advances in neuroscience 
need urgently developing portal services to access databases for analyzing 
and managing information: sequences, structures, and functions arising from 
genes, proteins, and peptides (e.g. protein segments and biomarkers) [9]. 

In this bioinformatics component, two interlinked mandates are: (i) to 
build a local user-friendly proteomic databases, and (ii), to develop interop-
erable proteomic tools and architecture for multiple data integration and to 
integrate user and public domain-based databases. Data analysis applications 
should be interoperable with database operations and portal access. The TBI 
proteomics core technologies will provide an integrative approach to genomic 
and proteomic information by developing a common portal architecture, the 
TBI proteomics portal, at the University of Florida for data archiving and 
retrieval among core researchers and end users, and data linking and sharing 
to national and international neuroproteomic websites (e.g.. Human Proteome 
Organization (HUPO, USA) [30] and Human Brain Proteome Project (Ger-
many) [47]). (iii) Lastly, bioinformatics tools and software are also needed to 
enhance our ability to mine data, as well as to study protein-protein inter-
action, protein pathways and networks and complex post-translational mod-
ification such as (protein phosphorylation, processing, crosslinking and con-
jugation). This will help us develop knowledge bases about neuroproteomic 
functions and signal transduction pathways in terms of dynamic objects and 
processes [45, 46, 55, 62]. In addition, clinical information should be inte-
grated with genomic and proteomic databases. The following diagram depicts 
the neuroproteomics bioinformatics core: 

The three major functions of the bioinformatics component of TBI pro-
teomic research can be further explained as follows: 
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Neuroproteomics Bioinformatics Core 

Fig. 1. Neuroproteomics Bioinformatics Core 

(i) Permanence 

Permanence is defined here as developing local databases for proteomics 
separation and identification, and link with national and international data 
sources. Local databases will include chromatograms, mass spectra, gel im-
ages, peptide and protein sequences, and fMRI images for control and diseased 
samples. Data modeling and semantics will be developed by proteomics and 
computer scientists together so that semantic equivalence of search attributes 
and semantic associations can be established. 

Our Bioinformatics Core is in the process of combining different data se-
mantics and knowledge trees in separate genomic, proteomic, and clinical 
databases. Our main contribution will be the development of data modeling 
and semantics by proteomics and computer scientists together so that seman-
tic equivalence of search attributes and semantic associations can be estab-
lished. A key requirement is the development of semantics (or ontology) of bio-
logical information, which are then captured in two components - semantic in-
dexing and meta-information - of the intelligent search engines. A recent book 
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of S. Chen [15] has described these two important methods. Semantic index-
ing extends the existing full-text, hypertext, and database indexing schemes 
to include semantics or ontology of information content. Meta-information (or 
metadata) means "information about information" concerning content, con-
text, and archival description. Both semantic indexing and meta-information 
are necessary to the semantic equivalence in intelligent search engines. Meta-
information contains information about not only individual objects but also 
whole da ta collections and even resources. It provides collect ion-wide seman-
tics to organize a widely distributed collection of information resources better. 
Furthermore both semantic indexing and meta-information complement each 
other, reduce the complexity of neural taxonomy and classification, and cor-
relate semantically the proteomic types and phenotypes (e.g. behavior in drug 
abuse) at various (subcellular, cellular, and tissue or fiuid) levels of neural ac-
tivities. Dissemination to national and international da ta sources (e.g. HUPO-
USA and HBPP-Germany) will be consistently maintained through our intel-
ligent search engines. 

(ii) Interoperability 

Interoperability is defined here as integrating existing da ta analysis tools with 
local databases. A proteomic problem-solving environment will be established 
to provide users with rapid access to TBI neuroproteome center databases 
and analysis tools. This will include existing tools for proteomics research 
and drug abuse research. The range of these tools is very broad, from peptide 
sequencing and protein identification to image processing for fMRI images 
and da ta analysis for neuropsychological tests and diagnosis. 

A critical component of our Bioinformatics Core will be distributed search 
at widely distributed resources of da ta analysis and multiple levels of pro-
teomic clinical and behavior information. The distributed collections of het-
erogeneous information resources will be large-scale. The intelligent search 
engines are beyond the capability of current web search engines and proto-
cols. A distributed information retrieval system. Emerge, has implemented 
some aspects of semantic indexing and meta-information of NIH's PubMed 
and Entrez databases, in a collaboration with NCSA of UIUC. The TBI neu-
roproteome center distributed information retrieval component is a set of 
search engines extending Emerge. Such an intelligent search engine should 
allow nomenclature, syntactic, and semantic differences in queries, data, and 
meta-information. It should permit type, format, representation, and model 
differences as well in databases. In our TBI neuroproteome research, we have 
to compare information among proteomic and clinical data, such as chro-
matograms, mass spectra, gel images, peptide and protein sequences, and 
fMRI images. This intelligent search engine must go to different databases to 
retrieve various da ta of potentially different types, formats, representations, 
and models. In an asynchronous way, da ta are compared to an abstract and 
conceptual schema for neuroscience domains. The object-oriented da ta model-
ing helps us to establish these mappings between the abstract and conceptual 
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schema and different database schemas. Due to the diverse nature of neu-
roscience information, we will need a set of interoperable search engines to 
guide users finding information of various domains, formats, types, and levels 
of granularity (e.g. peptide, protein, cell, and system levels). Since some ab-
stract and conceptual schema has been developed for neuroscience domains, 
we will need a set of interoperable search engines for a wider set of analysis 
tools and databases. 

Interoperability with analysis tools will be an important component. The 
starting point will provide a point and click interface for rapid access of neu-
roscience databases and analysis tools. The interoperability of databases and 
analysis tools will establish a proteomic problem-solving environment. Thus 
users of the problem-solving environment will also be factored into the in-
teroperability. Whatever users need - small vs. large data sets, interactive 
vs. batch computation - will require design and implementation of data and 
event services. For the current research, we intend to develop a neuroproteomic 
workbench to gather a collection of data analysis tools for neuroproteomics 
as well as TBI neuroproteomic data sets (see data samples below) : 

(1) Peptide sequencing and protein identification by MALDI-TOF-MS and 
capillary LC-MS/MS [43, 63]. 

(2) Protein peak patterns and single protein retention time from ID or 2D-ion 
exchange or size exclusion chromatograms. 

(3) Protein database searching algorithms such as SEQUEST [67]. 

The integration of databases with proteomic computational algorithms 
will be based on the object-oriented data modeling and data semantics dis-
cussed earlier. The ODMG compliant data analysis and databases are highly 
relevant to the Common Component Architecture [8]. In high throughput 
computing, in terms of parallel or multi-threaded objects, components (data 
and algorithms alike) may be distributed over a wide area grid of resources 
and distributed services. 

(Hi) Data Mining 

Our neuroproteomic initiative has placed significant effort in new data min-
ing and analysis tools for differential protein expression, protein network and 
modification analysis and validation. A unique data-mining workbench will be 
created to explore protein network and pathways underlying the pathobiology 
of TBI from a neuroproteomic perspective. Novel data-mining tools will in-
clude a differential analysis tool for research on proteins and protein fragments 
involved in TBI and construction of cognitive maps [4, 40, 68, 69], a graph-
ical network method to represent knowledge and information. Furthermore, 
the cognitive maps will be used for TBI-induced Differential Neuroproteome 
Validation and possible brain injury diagnosis and severity monitoring. These 
data mining steps are described in the following: 
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Capillary LC separation of tryptic peptides 

Tryptic Peptides Observed in the 1**̂ - ranked protein (Synaptojanin) 
in Gel Slice 22: Injured-Cy3 (I) HC 
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l'*-ranked Tryptic Peptide MS-MS analysis in Gel Slice 22 
(Synaptojanin): Injured-Cy3 (I) HC 

Fig. 2. Observed Data of Tryptic Peptides 
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a) Creating Cognitive Maps for TBI-induced differential proteome 

New data mining tools for TBI-induced differential proteome analysis and val-
idation are being developed at our center. There are three major zones of neu-
roproteomics information (i) pathophysiological stasis (including TBI, other 
CNS injuries, such as ischemic stroke, aging, environmental toxin or substance 
abuse-induced brain injury, neurodegenerative diseases such as Alzheimer's 
disease or Parkinsonism), (ii) neuroproteome stasis (such as differential pro-
tein expression, protein synthesis and metabolism, alternative mRNA splic-
ing and RNA editing, protein-protein interaction, enzymatic activity or pro-
tein functions) post-translational modiflcations (such as protein crosslinking, 
acetylation, glycosylation protein proteolysis and processing, phosphoryla-
tion) and protein-protein interaction networks and signal transduction path-
ways and (iii) sources of neuroproteomic da ta (brain tissue from different 
areas or anatomical regions of the brain, such as hippocampus), biological 
fluids such as the cerebrospinal fluid (CSF), blood samples (including plasma 
and serum) where brain proteins stasis might be reflected upon via diffusion-
based equilibrium or blood brain barrier compromise (e.g. from brain to CSF 
to blood). 

Collection of da ta from these three components will enable the construc-
tion of multiple cognitive maps [4, 40, 68, 69]. For instance, cognitive maps 
can be constructed for the TBI-induced differential proteome in the following 
flgure. Automated reasoning and knowledge discovery algorithms on the cog-
nitive maps [10, 11, 12, 13, 14, 15, 39] will distill the information and present 
the knowledge gained from a systems biology perspective. Thus, cognitive 
maps will enable the brain t r auma researchers to gain a greater understand-
ing of the entire TBI-induced differential neuroproteome and hopefully the 
mechanistic protein-pathways of TBI. 

b) Using Cognitive Maps for TBI-induced Differential Neuroproteome 
Validation 

A statistical analysis tool is also being developed for TBI-induced differential 
neuroproteome validation and possible TBI protein-pathways elucidation. For 
example, up- or down-regulation of multiple proteins and protein fragments in 
control and injured samples will be quantifled by ICAT, AQUA, or ELISA to 
validate differential TBI neuroproteome. Linear discriminant analysis (LDA) 
will be used to calculate the probability of a correct diagnosis given the number 
of injury-speciflc biomarkers measured the number of samples, etc. Thus, sta-
tistical analysis tools are expected to provide an important component for all 
the neuroproteomics research conducted at our neuroproteomic center. These 
statistical analysis da ta will be fed into the cognitive maps to reach decision on 
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Fig. 4. Input Data for Neuroproteomics Cognitive Maps 

diagnosis, monitoring and treatment. We have both statistical/probabilistic 
and fuzzy reasoning capabilities in our cognitive maps [40, 68, 69]. 

Cognitive maps are directed graphs representing relations (by links) among 
concepts/attributes (by nodes). Cognitive maps include several knowledge 
representation schemes. Semantic networks or frames form a special class of 
cognitive maps. Inference networks and causal networks form other classes of 
cognitive maps. In cognitive maps, link weights may be assigned to relations 
representing their compatibility degrees, and node values may be assigned to 
concepts and attributes representing relevance factors. A hierarchical cogni-
tive map consists of several cognitive maps, each of which represents gene 
network interaction or metabolic pathway. The knowledge bases of hierarchi-
cal cognitive maps will effectively capture the complex behavior of biological 
systems. A hierarchical cognitive map is alternatively represented as a large 
cognitive map combining several individual ones in the following diagram. 

Cognitive maps can extend to probabilistic, or fuzzy cognitive maps, and 
further to neural network learning maps. These numerically enabled cognitive 
maps can be interfaced with other numerical simulation packages in biology. 

Now we briefly describe the relaxation computation in a cognitive map. 
Let i7 be a collection of biological objects {xi,...,^^} (e.g., gene sequences, 
protein structures, metabolites, genotypes, and phenotypes), and let yl be a 
collection of labels {Ai,...,A^} with any mathematical structure (e.g., concen-
trations and intensities). The labeling problem is to flnd a consistent labeling 
of biological objects in E by yl, given a set of relations among objects and 
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Fig. 5. Hierarchical Cognitive Maps 

a set of constraints among objects and their labels. For each x^, let Ai be a 
subset of A that is compatible with Xi. For any pair {xi^Xj} of objects {i^j 
distinct), let Aij be a subset of compatible pairs of labels in Ai x yl^. A la-
beling L = {1/1,...,!/^} is an assignment of a set of labels Ai in A to each 
Xi. L is consistent if for each i^j and all A in yl̂ , ({A} x Aj) intersects with 
Aij. L is unambiguous if it is consistent and assigns only a single label to 
each object. The semantic labeling of cognitive maps determines the results 
of TBI-induced differential neuroproteome validation. The semantic labeling 
is to assign a measure m^(A) to the statement "A is the correct label of x / ' . An 
arbitrary labeling of a neuroproteome may not be consistent and unambigu-
ous, because the constraint satisfaction is required among either objects or a 
combination of new input evidences. The interaction with external users and 
systems is through a query system. At the initial stage, the mi{X) is either 
estimated by the user or is provided by another cognitive map or simulation 
tool. Now the initial measures go through a constraint satisfaction checking by 
the label relaxation, which iterates the process until the convergence to final 
measures is reached. The final measures are sent back to the query subsystem 
for either clinical decision or further data analysis. 

The relaxation scheme is mathematically described as follows. An initial 
assignment of measures {m^(0)(A)} to {xi} is given at time 0. A relaxation 
operator R is defined to transform one set {m^(/c)(A)} of measures to another 
set {mi{k -\- 1)(A)}. The limit {m*(A)} of {m^(/c)(A)} gives the unambiguous 
labeling under compatibility constraints, as k approaches to infinity. In reality, 
we expect the limit to be attained after a finite number of iterations. In 
practice, the limit {m*(A)} may not be unique (we are not always getting an 
unambiguous labeling). The multiple labelings are sent back to the users so 
that they can select an appropriate result for further analysis. 

There are several ways to define the relaxation operator R. A relax-
ation operator R should produce mi{k -\- 1)(A) from the combination of 
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mi{k){X) and support Si{k){X) by some update equations, where Si{k){X) = 
Erij{XsX')mj{k){X')^ where r^j(A, A') is the compatibility function of "label A 
is assigned to xi and label A' is assigned to Xj", and j-indices are indices of 
all source nodes leading to the i-th. node. A relaxation operator R is defined 
by the following update equations: 

mi{k + 1)(A) = mm[l, max{0^ m^(/c)(A) + 5^(/c)(A))], 

s,{k){X) = E{uj{k){X,y) ^ Auj{k){\y))mj{k){y), 

Anj{k + 1)(A, X') = a,jAnj{k){X, X') + h,jm,{k + l){X)mj{k){X'), 

where aij and hij are learning parameters. The first equation makes sure that 
mi(k^l)(X) stays between 0 and 1. The second equation provides the network 
input to the (i, A)-th node. The third equation includes the Hebbian learning 
rule. 

9 Conclusion 

In summary, proteomic studies of both human and rat traumatic brain in-
jury, if approached systemically, is a very fruitful and powerful analytic tech-
nology. In order to obtain a comprehensive TBI neuroproteome data set, it 
is important to integrate multiple protein separation and protein identifica-
tion technologies. Equally important is the optimization of individual protein 
separation identification methods. Bioinformatics platform then becomes the 
critical adhesive component by serving two purposes: (i) integrating all pro-
teomic data sets and other relevant biological or clinical information, and (ii) 
inferring and elucidating the protein-based pathways and biochemical mech-
anisms underlying the pathobiology of TBI and identifying and validating 
biomarkers for the diagnosis and monitoring of TBI [23]. Ultimately, if we 
are to be successful in doing these, the TBI proteomic approach outlined here 
must be further integrated with genomic, cytomics as well as systems biology 
approaches [37, 38]. 
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Summary. The prediction of protein native conformations is still a big challenge 
in science, although a strong research activity has been carried out on this topic in 
the last decades. In this chapter we focus on ab-initio computational methods for 
protein fold predictions that do not rely heavily on comparisons with known pro-
tein structures and hence appear to be the most promising methods for determining 
conformations not yet been observed experimentally. To identify main trends in the 
research concerning protein fold predictions, we briefly review several ab-initio meth-
ods, including a recent topological approach that models the protein conformation 
as a tube having maximum thickness without any self-contacts. This representation 
leads to a constrained global optimization problem. We introduce a modification in 
the tube model to increase the compactness of the computed conformations, and 
present results of computational experiments devoted to simulating a-helices and 
all-a proteins. A Metropolis Monte Carlo Simulated Annealing algorithm is used to 
search the protein conformational space. 

K e y words: Protein fold prediction, Ab-initio methods, Native s tate topol-
ogy, Tube thickness, Global optimization, Simulated annealing 

1 Introduction 

Proteins are heteropolymers tha t control and regulate many vital functions 
[66, 67, 68], hence they are considered the building blocks of living organisms. 
A protein is made of a sequence of amino acid residues connected by peptide 
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bonds, called primary structure^ which folds into a unique three-dimensional 
conformation, called tertiary structure or native state. The biological function 
of a protein is largely determined by its native state; the knowledge of the 
native state is therefore critical in understanding the role of the protein in the 
cell and the related molecular mechanisms. Levinthal's paradox [48] and An-
finsen's experiment [5] suggest tha t the Nature applies an "algorithm" to drive 
a protein from its primary structure to its own tert iary structure, and tha t 
the information needed to perform this algorithm is contained in the primary 
structure. Understanding the protein folding problem means understanding 
and reproducing this algorithm. 

Many scientists have been working on the protein folding problem for 
nearly half a century. A growing interest in its solution has been observed 
during the years, because of its impact in several research fields, such as genetic 
disease t reatment , drug design, and the emerging structural and functional 
genomics. However, despite the research has been very active, we are still far 
from a clear and full explanation of the protein folding mechanisms and this 
problem is still considered a big challenge in science. 

Different computational approaches to the protein fold prediction have 
been developed. We focus our attention on the so-called ab-initio methods 
tha t do not rely heavily on comparisons with known protein structures and 
appear to be the most promising for determining three-dimensional conforma-
tions tha t have not yet observed experimentally. These methods are usually 
based on suitable representations of the polypeptide chain and on suitable en-
ergy functions reproducing physicochemical interactions among protein atoms. 
According to Anfinsen's hypotesis, the native state corresponds to the min-
imum energy of the system and its determination requires the solution of a 
(computationally demanding) global constrained optimization problem. 

Recent studies have emphasized the role of the topology of the native state 
in the protein folding process [11, 42, 69, 80]. In this context, an ab-initio 
method has been developed tha t takes into account mainly topological rather 
than physicochemical features of the protein [7, 8, 9, 10, 54]. This method 
is based on a very simplified model tha t represents the polymer chain as 
a tube of nonzero thickness, without self-contacts. As in other approaches, 
this formulation leads to a constrained global optimization problem. In this 
chapter we present a modified version of this model, discuss the choice of 
model parameters and show results of computational experiments devoted to 
simulating ce-helices and all-ce proteins. 

The chapter is organized as follows. In Section 2 we provide a very short 
description of the chemical structure of a protein to better understand the ter-
minology used in the remainder of the chapter. In Section 3 we introduce the 
three main computational approaches to the protein fold prediction problem: 
homology modeling, fold recognition and ab-initio methods. In Sections 4 and 5 
we provide a brief description of energy functions and global optimization tech-
niques, tha t characterize a variety of ab-initio approaches. Following Klepeis 
and Floudas [37], ab-initio methods can be further classified as ab-initio meth-
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ods tha t require database information and "true" ab-initio methods, tha t are 
based only on information obtained from physicochemical principles. A survey 
of methods falling into both classes is provided in Sections 6 and 7. Among 
the t rue ab-initio methods, we present also recent approaches based on topo-
logical features of the proteins. This survey is not meant to be exhaustive; it 
rather gives an idea of the evolution of main trends in the ab-initio protein 
folding research, along with successes and limitations. In Section 8 we focus 
on a specific topological model and give the mathematical description of the 
corresponding constrained global optimization problem, while in Section 9 we 
discuss how the values of the model parameters have been chosen. In Sec-
tion 10, after a short presentation of the Simulated Annealing algorithm used 
to solve the optimization problem, we report results of our computational 
experiments. A few concluding remarks are given in Section 11. 

2 The Chemical Structure of a Protein 

A protein is a polymer composed by a sequence of genetically driven amino 
acid residues. Proteins in living cells are built from a set of only 20 different 
amino acids, all having two main substructures: a common basic substruc-
ture composed by an amide group (NH2), a carboxyl group (COOH) and a 
hydrogen atom (H), all linked to a central carbon atom called CQ., and a sub-
structure tha t differentiates each amino acid, called side chain or R-group^ 
composed by chemically different residues. A schematic representation of an 
amino acid is given in Figure 2. The carbon atom of the carboxyl group is usu-
ally called C . Consecutive amino acids are connected by a peptide bond, i.e. 
the carboxyl group of the i-th amino acid of the sequence is linked, through 
a covalent bond, to the amide group of the {i -\- l ) - th amino acid and a H2O 
molecule is released, as shown in Figure 2. Therefore, the whole structure of 
the protein consists of a "main chain" of atoms, made of the linked N C Q . C ' 0 
components of amino acids, and a number of side chains, with a shape similar 
to a fishbone. For this similarity, the main chain is also called backbone. The 
sequence of amino acids specific of each different protein is called primary 
structure. 

As previously observed, the information contained into the chain of amino 
acid residues determines the unique three-dimensional conformation of a pro-
tein, i.e. its own native state or tertiary structure. Folded proteins usually 
contain one or more local, repetitive spatial arrangements of amino acid 
residues, with characteristic conformations, called secondary structures. The 
most common secondary structures found in proteins are ce-helices, /3-sheets 
and loop/ turns . Examples of ce-helices and /3-sheets are given in Figure 2. 

Protein tert iary structures can be described in terms of bond lengths (i.e. 
distances between two atoms connected with a covalent bond), bond angles 
(i.e. angles between two adiacent bond vectors, where a bond vector is iden-
tified by two atoms connected with a covalent bond) and dihedral angles 
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(i.e. angles between the normals to the planes defined by suitable consecu-
tive triplets of atoms). When the protein is at its equilibrium state, the bond 
lengths and bond angles can be considered approximately fixed, so that the 
three-dimensional conformation is determined by the dihedral angles. These 
angles are conventionally denoted with the letters ^, !Ẑ , uo and x- The former 
three angles characterize the protein backbone, while the latter is related to 
the side chains. A representation of ^, ^ and uo is given in Figure 2, where 
the indices i — 1, i and i -\- 1 identify three consecutive amino acid residues. 
For more details the reader is referred, for example, to [53]. 

Fig. 1. Schematic representation of an amino acid. 

3 Computational Approaches to Protein Fold Prediction 

Computational approaches to predict protein three-dimensional conforma-
tions are usually classified as homology modeling (or comparative modeling), 
fold recognition (or threading) dind folding ah initio (see, for example, [18]). 

Homology modeling is based on the idea that proteins having strong se-
quence similarity have also strong structure and function similarity. Given a 
sequence of amino acid residues, homology modeling methods essentially try 
to align the target sequence to suitable structure templates, stored in protein 
databases, and build a three-dimensional conformation by using alignment 
information (see, for example, [14, 17, 79]). Different alignment methods have 
been developed, such as BLAST [3], PSI-BLAST [4] and the profile-profile 
method [41]. The main limitation of the homology modeling methods is that 
they work effectively only for sequences with at least 30-40% identity. For 
smaller identity percentages, they have a low reliability (see, for example. 
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Fig. 2. A peptide bond between two amino acid residues. 

Fig. 3. Examples of protein secondary structures: a-helix (a), parallel /3-sheet (b), 
anti-parallel /3-sheet (c). 

[22]). A further limitation is tha t only 15-25% of sequences have homologous 
proteins with known three-dimensional conformation in a given genome. 

Fold recognition methods are based on the idea tha t there may be only a 
limited number of different protein folds. Therefore, they t ry to predict the 
protein conformation from known three-dimensional structures tha t do not 
have homologous characteristics. To this aim, a library of s tructure templates 
is defined, then the target sequence is fitted to each library entry and an 
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Fig. 4. The protein dihedral angles #, ^ and LO. 

energy function is used to evaluate the fit and hence to determine the most 
suitable template. Obviously, the quality of the obtained model is limited by 
the actual presence of the correct template into the database and by the actual 
similarity of the selected templates. 

Ab-initio methods are potentially able to predict three-dimensional con-
formations not yet been observed experimentally. The basic idea behind these 
methods is tha t , according to thermodynamic principles, a protein sponta-
neously folds into its native state, which corresponds to a global minimum 
of free energy. As already observed, ab-initio techniques can be divided into 
two categories, one including the methods tha t use knowledge-based informa-
tion, such as secondary structure information stored in databases, the other 
including the methods tha t do not exploit structural databases during folding 
predictions. 

As discussed in [27, 61], ab-initio methods are generally characterized by 
suitable protein representations, by energy functions tha t take into account 
physicochemical interactions, and by efficient algorithms to search the feasible 
conformational space. Computat ional models of proteins explicitly treat ing all 
degrees of freedom are currently impractical because of the huge size of the 
conformational space, of the large number of intramolecular/intermolecular 
interactions and of the protein complex topology. Both high-resolution and 
low-resolution models introduce simplifications. High-resolution models taking 
into account detailed information about the protein conformation are more 
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rigorous, but lead to problems that are more difficult to be solved. On the 
other hand, low-resolution models, based on simplified molecular descriptions 
or structural restraints, can provide only simplified fold descriptions, but are 
able to give insights into thermodynamic and kinetic properties of the protein 
folding process. 

4 Energy Functions 

Energy modeling plays a critical role in protein folding simulations. A large 
number of energy functions, also called force fields, has therefore been devel-
oped to represent the interactions among protein atoms. To better understand 
the ab-initio methods presented in Sections 6 and 7 we give a short description 
of energy functions. This description follows [21]; for more details the reader 
is referred there and to references therein. 

Over the years, a large number of energy models has been empirically 
developed for the protein folding problem, such as AMBER [93], CHARMM 
[15], ECEPP [57, 58], ECEPP/2 [59], ECEPP/3 [60], MM2 [1] and MM3 [2]. 
These models are typically expressed as the sum of potential energy terms rep-
resenting bonded interactions, i.e. related to bonds, bond angles and dihedral 
angles, and nonbonded interactions, such as van der Waals and electrostatic 
ones. These potentials are usually described in terms of relative distances of 
atoms or atom aggregates. 

A simple model of bond potential energy is 

E^^^d = k^^^d{r-rof, 

which measures how much the bond length r is far from its ideal value ro. The 
constant k^^^^ > 0 is called "spring constant", in analogy with Hooke's law. 
This model provides a good approximation of the bond potential just on small 
motions around the equilibrium configuration. A more detailed representation 
of bond stretching is obtained by considering the so-called Morse potential: 

rphond Z,bond/-i a(r—ro)\2 

with po^^^ a > 0. However, the first potential is usually considered because it 
is simpler to evaluate than Morse potential. Small protein structures obtained 
by X-ray crystallography are typically used to compute TQ. 

Angle bending energy is associated with vibrations around the equilibrium 
bond angle OQ, therefore its potential can be modeled by Hooke's law too: 

rpangle i,angle/n /3 ^2 

The value of OQ depends on the triplet of atoms defining the bond angle 0 and 
j^angie ^^^ coutrols the angle stiffness. 

Tortional energy potentials are used to describe the internal rotation en-
ergy of dihedral angles. These potentials are usually modeled as 
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3 

2 
E^'^^^"^^^ = ^ ^ [ 1 + cos{n^ - 7)] 

n = l 

where the Vi^s are rotation energy barriers, tjj is the torsion angle and 7 is the 
angular offset. Note tha t some force fields neglect bond stretching and angle 
bending energies, thus taking into account only torsonal energy. 

Nonbonded interactions involve atoms tha t are not linked by covalent 
bonds. Usually, non bonded energy terms account for the electrostatic en-
ergy and the van der Waals energy. 

On each peptide bond between two amino acid residues there is a dipole 
which is orthogonal to the N — C bond. The energy of this dipole is described 
by the Coulomb law: 

-reelect _ ^i^j 

AireoTi 

where q^ and qj are the magnitudes of the two charges of the dipole, rij is the 
distance between the charges and eo is the dielectric constant. 

The main energy involved in the protein stabilization is the non-bonded 
van der Waals energy, arising from a balance between attractive and repulsive 
subatomic forces. Attractive forces are longer range than repulsive forces, but , 
if the distance among atoms is short, they become dominant. This leads to 
an equilibrium distance in which repulsive and attractive forces are balanced. 
The van der Waals interaction between two atoms i and j is often modeled 
through a Lennard-Jones potential, which includes at tract ion and repulsion 
terms: 

The constants aij and hij control the depth and the position of the potential 
energy well. 

The solvent, usually water, has a fundamental infiuence on the structure, 
dynamics and thermodynamics of biological molecules, both locally and glob-
ally. One of the most important solvent effects is the screening of electrostatic 
interactions. This can be taken into account implicitly, by including a further 
dielectric constant e^ in the electrostatic energy potential: 

•rjelect-\-solv _ ^i^j 

ATreoerTij 

A more rigorous t reatment of solvent effects can be obtained by considering 
the Poisson-Boltzmann equations. As an alternative, the solvent is explicitly 
taken into account, by using models based on the assumption tha t solvation 
energy is proportional to the protein surface area exposed to the solvent, or 
to the solvent accessible volume of a hydration layer. These models account 
also for cavity formations [39]. 

From a thermodynamic point of view, the difference between two molecular 
conformations is determined by their difference in free energy, tha t is defined 
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in terms of enthalpy, H^ entropy, S^ and absolute temperature , T, of the 
molecular system: 

A direct computation of the free energy requires detailed molecular dynamics 
simulations and hence is too costly. A generally accepted alternative approach 
based on statistical mechanics describes the free energy contributions by using 
harmonic approximations [31]. 

5 Optimization Solvers 

As previously observed, ab-initio methods search for conformations corre-
sponding to the global minimum of some energy function, under suitable 
constraints, i.e. lead to constrained global optimization problems. Hence, it is 
useful to give a brief description of optimization solvers applied in this con-
text. We focus here on the solvers tha t are used in the protein fold prediction 
methods described in the next sections. For more details the reader is referred 
to [21, 33, 62, 63, 64]. 

The global optimization solvers can be divided into two main classes: 
heuristic and deterministic. The former includes methods based on proba-
bilistic descriptions, for which convergence to a solution is not ensured, or 
only a convergence in probability is demonstrated. The latter contains meth-
ods tha t , under suitable hypotheses, provide convergence to a solution of the 
global optimization problem. 

Monte Carlo (MC) methods [19] are heuristic methods tha t simulate the 
evolution of a system in terms of probability distribution functions. They 
generate many approximate solutions by random sampling from a probability 
distribution and get the target solution as an average over the generated sam-
ples. In many applications, the variance corresponding to the average solution 
can be predicted, obtaining an estimate of the number of samples needed to 
achieve a given error. Enhancements of the basic MC strategy have been de-
veloped to reduce the possibility of getting t rapped into local minima. They 
include Replica Exchange Monte Carlo (REM) [91], Parallel Hyperbolic Sam-
pling [96] and Electro statically-Driven Monte Carlo (EDMC) [72] methods. 

A further improvement over MC methods is provided by Simulated An-
nealing (SA) methods [40, 52]. They are based on an analogy with the an-
nealing physical process tha t consists in decreasing slowly the tempera ture of 
a given system (e.g. a liquid metal) in order to obtain a crystalline structure. 
SA methods are iterative procedures tha t , at each step, execute a Metropolis 
Monte Carlo algorithm tha t generates a new candidate approximation of the 
solution, by applying a random perturbat ion to the previous one. Through a 
random mechanism controlled by a parameter called temperature , it is decided 
whether to move to the candidate approximation or to stay in the current one 
at the next iteration. The acceptance/rejection of the new approximation is 
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usually based on the evaluation of the so-called Metropolis acceptance func-
tion, tha t is a probability function based on the Boltzmann distribution [55]. 
Higher temperatures correspond to a larger number of accepted conforma-
tions. The tempera ture parameter plays a crucial role in the whole process; it 
must be decreased very slowly, to avoid the simulation gets t rapped in a local 
minimum close to the initial state. A modification of the SA strategy called 
Monte Carlo Minimization (MCM) has been also developed, tha t applies a 
local Monte Carlo minimization to the current conformation, before checking 
if the Metropolis acceptance criterion is satisfied [73, 74]. We come back to 
Metropolis Monte Carlo Simulated Annealing in Section 10.1, since we used 
this method in our experiments. 

Genetic Algorithms (GAs) are heuristic methods based on principles from 
the evolution theory. Indeed, they represent each feasible point in the confor-
mational space as a chromosome and mimic the evolution of a population of 
chromosomes. Two chromosomes can generate child chromosomes (crossover 
operation) and a chromosome can undergo mutations. Furthermore, chromo-
somes are selected depending on their fitness value, which is defined taking 
into account the objective function to be minimized. Starting from an initial 
population, GAs set up an iterative process, where a child population is gen-
erated at each step from a parent one, by applying the above evolutionary 
mechanisms, until suitable termination criteria are satisfied. GAs differ by 
the mechanisms used to simulate mutat ion and crossover and by the fitness 
function. As noted in [21], the choice of these mechanisms greatly infiuences 
the ability of finding global minimum energy configurations. A review on GAs 
is given in [87]. 

Conformational Space Annealing (CSA) methods work with typical con-
cepts of SA, GAs and MCM. As in GAs, an initial population of variables 
called first bank is generated and then a subset of bank conformations called 
seeds are selected. The seeds are perturbed, by replacing (typically small) 
seed portions with the corresponding portions of bank conformations, and 
are used as trial conformations, to obtain a new bank. As in MCM, a local 
minimization is applied to all conformations to work only with the space of 
local minima. The diversity of sampling is controlled by comparing a suit-
able distance measure between two conformations with a cutoff value, Dcut-
A trial conformation is compared with the closest one in the current bank. If 
their distance is smaller than Dcuti they are considered similar and the one 
with lower energy is chosen. Otherwise, the highest energy conformation in 
the bank plus the trial one is discarded. The cutoff value is slowly decreased 
during the simulation process and hence acts as the temperature parameter in 
SA. The algorithm usually stops when all the bank conformations have been 
used as seeds and the cutoff parameter has reached a suitably small value. 
More details can be found in [32, 47]. 

An example of deterministic global optimization strategy is provided by 
Molecular Dynamics (MD) simulations. MD methods simulate the evolution 
of a molecular system by applying the equation of motion to the atoms of 
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the system. They have been able to provide detailed information about het-
eropolymers and to give insights into complex dynamic processes occurring in 
biological systems, such as protein folding [16]. 

Branch and Bound (BB) methods fall into the class of deterministic global 
optimization methods too. These are iterative methods tha t , at each step, find 
lower and upper bounds on the global minimum objective value. The itera-
tions are stopped when the difference between the bounds is smaller than a 
given tolerance. Recently, a deterministic BB algorithm named ceBB has been 
developed by Floudas et al. and applied to molecular conformation problems 
[6, 35, 36]. ceBB determines the upper bounds by function evaluation or lo-
cal minimization of the original objective function, while the lower bounds are 
computed by minimizing convex lower-bounding functions obtained by adding 
a convex term to the original one. The lower-bounding functions depend on a 
parameter tha t controls their shape and must be properly chosen to guarantee 
convexity. Lower-bounding functions are built in such a way tha t they have 
properties ensuring the convergence of the algorithm to a global minimum. 

6 Ab-initio Methods Using Knowledge-Based 
Information 

Ab-initio methods with knowledge-based information usually build template 
models by extracting from databases fragments with sequence or structural 
similarity to fragments of the target sequence. Therefore, there is no clearly 
defined separation between these methods and the homology modeling or fold 
recognition ones. Ab-initio methods exploiting both approches are discussed 
in the next two Sections. 

6.1 Lat t i ce m o d e l s 

To reduce the degrees of freedom of the conformational space, models have 
been developed tha t are based on a simplified representation of the protein 
chain over a lattice. These lattice models use secondary structure predictions 
and threading techniques to derive some constraints; then, they search the con-
formational space by applying Monte Carlo procedures to the lattice. Because 
of these semplifications, lattice models are generally two orders of magnitude 
faster than high-resolution models [45]. On the other hand, simplified models 
of proteins lead to a loss of dynamic mechanisms, so tha t often predicted con-
formations do not fit native structures suitably. First lattice studies did not 
focus on protein structure prediction, but rather on understanding thermody-
namic and kinetic properties of protein folding. Indeed lattice models have a 
long history in modeling polymers, due to their analytical and computational 
simplicity. 

Early in the '90s, Levitt et al. [49] developed a low-resolution method, 
based on a simple representation of the protein backbone as a self-avoiding 
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chain of connected vertices on a tetrahedral lattice, with several amino acid 
residues assigned to each lattice vertex. To reduce the space of feasible lattice 
structures, this model requires the final conformations to be compact and 
globular. Effects of solvent interactions are not considered, because the lattice 
model did not represent accurately the exposed surface of a conformation. 
Starting from observed contact frequencies in X-ray structures, the energy of 
contact between two lattice vertices is defined and a dynamic programming 
strategy is applied to find the best conformational energy. This model was 
validated on real proteins with 52-68 amino acid residues and correct low-
resolution structures were found [49]. A drawback is tha t it can be applied 
only to proteins with a small number of residues; furthermore, it does not 
consider interatomic interactions. 

Lattice models have undergone an evolution over the years. In [77, 94] 
Levitt and co-workers presented a lattice-based hierarchical approach. In this 
case, start ing from the sequence of amino acid residues, all feasible compact 
conformations are identified by using a highly simplified tetrahedral lattice 
model; a lattice-based scoring function is used to select a subset of these 
conformations and to build high-resolution (all-atom) models. Then, by using 
a knowledge-based scoring function, three small subsets are extracted from 
the set of all-atom models and a procedure based on distance geometry is 
used to generate the best conformations from each of the subsets. Using this 
approach, structures of proteins with at most 80 residues were predicted, 

obtaining RMSD values ranging from 4.1 to 7.4 A [77]. Unfortunately, the 
method failed for proteins with complex supersecondary structures. 

Lattice models have been also studied by Skolnick and co-workers [43, 44]. 
They developed a lattice model of the protein structure and dynamics in 
which the polypeptide chain is represented with a simple cubic lattice. The 
emphasis is on the side chain role, rather than on geometry of the backbone. 
The backbone is t reated implicitly, since the Cot coordinates are computed by 
considering the positions of three consecutive side chains. The energy func-
tion takes into account sequence independent properties, such as interactions 
between the i-th. and the {% + 4)-th residues in the ce-helix side chains or long 
distance interactions in the /3-sheets, and sequence dependent properties, such 
as long-range pairwise and multibody interactions tha t simulate hydrofobic 
effects. The lowest energy conformation corresponding to the native state is 
searched by a Replica Exchange Monte Carlo (REM) procedure [91]. The 
model was tested on small and structurally simple single-domain proteins 
considering two sets of sequences, one corresponding to single fragments of 
known structures, the other to known protein tert iary structures. The best 
results, evaluated by using the RMSD values of the predicted versus the orig-
inal conformations, were obtained for the set of single fragments. The method 
evolved into a hierarchical ab-initio lattice approach tha t uses a combination 
of multiple sequence comparison, threading, clustering and refinement [83]. 
In this approach, the starting fragmentary templates for the lattice model 
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are provided by a threading algorithm and a reduced representation of the 
protein conformational space is used, where the center of mass of the Cot and 
side-chain atoms are the interaction centers. The energy function is defined 
through a statistical analysis of known protein structures, leading to statistical 
potentials for pairwise and multiboby side-chain interactions. The conforma-
tional space is sampled by the REM procedure. This method is called SICHO 
(Side CHain Only). Results presented at CASP4 meeting [70] showed that it 
is able to obtain good results on small proteins of not too complex topology 
[83]. 

Another structure prediction lattice-method that combines homology and 
ab-initio modeling is TOUCHSTONE, developed by Skolnick et al. [84]. A 
first version of this method is based on the SICHO lattice model, with force 
field including short-range structural correlations, hydrogen-bonding interac-
tions and long-range pair-wise potential. Two threading restraints are used to 
reduce the conformational search space, concerning side-chain contacts and 
local distances. The former restraint is obtained by using the PROSPECTOR 
threading algorithm [71], while the latter is derived from sequence alignments 
and threading of short sequence fragments. REM is used to search the confor-
mational space. To generate another set of indipendent trajectories, a Monte 
Carlo sampling scheme, called Parallel Hyperolic Sampling (PHS) [96], is used. 
Then the structures generated by the simulations are rebuilt at an atomic 
detail. This method was applied to the genome of Mycoplasma genitalium 
bacterium, that has one of the smallest known genomes among living organ-
isms [85]. 85 proteins with at most 150 amino acid residues were examined, 
obtaining a correct prediction of the topology of 63% of the proteins. 

As discussed in [85], the potential function used in TOUCHSTONE is not 
suitable for predicting multiple-domain structures. To overcome this limita-
tion, both the lattice representation and the force field have been modified 
[86, 97]. The SICHO model has been replaced by the CABS one, in which 
the CQ. trace is confined to a lattice system, while the group made by the 
side chain and the C^ carbon are off-lattice, with positions determined from 
three adjacent Cot atoms. The energy function takes into account pairwise and 
multiboby side-chain interactions, short- and long-range hydrogen-bond inter-
actions, contact and local distance restraints obtained through PROSPEC-
TOR, burial and electrostatic interactions, global propensities to predicted 
contact orders and contact numbers, and local stiffness of global proteins. 
The conformational space search method is PHS, as in the previous TOUCH-
STONE version. 

Experiments were carried out on a set of 125 proteins (43 all-ce proteins, 
41 all-/3 proteins and 51 ce//3-proteins, according to Kabsch and Saunder clas-
sification [30]), with lengths ranging from 36 to 174 amino acid residues. By 
using PROSPECTOR restraints, 83 proteins were successfully folded. Com-
parisons with the previous TOUCHSTONE version showed the efficiency of 
CABS versus SICHO. Furthermore, it was observed that short-range restraints 
considerably speedup local structure formations. 
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Recently, a high-resolution lattice model has been developed by Kolinski 
[45] tha t is based on a representation of the protein backbone over a lattice 
and on the REM searching procedure. For each residue, this model takes into 
account the CQC and C^ carbons, the side-chain and an additional atom located 
along the Cot — C^ virtual bound. Only the C^ coordinates are explicitly 
computed and are used, together with amino acid properties, to calculate the 
coordinates of off-lattice elements. The force field is based on the CABS model 
and the potential used takes into account short- and long-range interactions. 
The simulation process is based on Metropolis Monte Carlo scheme, subject 
to a simulated annealing procedure or controlled by REM. This lattice model 
can be applied to perform ab-initio structure predictions as well as in multi-
template comparative modeling [45]. 

6.2 M e t h o d s B a s e d o n F r a g m e n t A s s e m b l y 

The idea behind these methods is to build protein tert iary structures from 
small protein segments or secondary structures, obtained through sequence 
alignment or threading. 

Such an approach is implemented, for example, in FRAGFOLD, devel-
oped by Jones et al. [26, 28]. In FRAGFOLD simulations, the first step is 
the selection from a library of protein structures of suitable supersecondary 
structural fragments at the position of each residue of the target sequence, and 
hence the prediction of secondary structures by using PSIPRED [25], which 
applies neural-network techniques and PSI-BLAST sequence alignments. The 
predicted secondary structures are used as input to FRAGFOLD. Random 
conformations are then generated until a conformation with no steric clashes 
is obtained. Starting from this one, a Simulated Annealing algorithm is applied 
to minimize an energy function, which is a weighted sum of terms express-
ing short- and long-distance pair potentials, single-residue solvation energy, 
steric interactions (such as the van der Waals energy), and hydrogen-bond 
interactions. Results presented at CASP4 and CASP5 [26, 28] showed tha t 
FRAGFOLD can correctly predict local domains, but fails in predicting en-
tire three-dimensional structures. In particular, there are problems with the 
prediction of /3-structures, since the formation of these structures is a coop-
erative process requiring the convergence of many substructures. 

Another method which exploits sequence alignment and fragment assem-
bly is Rosetta, developed by Baker et al. [12, 13, 81, 82]. This method is based 
on the assumption tha t the distribution of conformations of each three- and 
nine-residue segment can be reasonably approximated by the distribution of 
structures adopted by the corresponding sequence (or closely related ones) in 
known protein conformations. Therefore, Rosetta breaks the target sequence 
into three- and nine-residue segments and applies a profile-profile compari-
son procedure to extract fragment libraries from protein structure databases. 
The fragments are assembled to build three-dimensional structures by using a 
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fragment insertion Metropolis Monte Carlo procedure. Many of such template-
based models are generated and then clustered. For sequences with less than 
100 residues, an all-atom refinement is used instead of clustering. The en-
ergy function used in searching the conformational space describes sequence-
dependent properties, such as non-local interactions (e.g. disulfide bonding, 
backbone hydrogen bonding, electrostatics) and sequence-independent prop-
erties, connected to the formation of ce-helices, /3-strands and to the assembly 
of /3-strands into /3-sheets. Only the backbone atoms are considered explicitly, 
while the side chains are represented as centroids. 

Rosetta underwent a significant evolution since its development. The im-
provements concern the application of filters to reject non-protein-like con-
formations (local low-order contact conformations and /3-strands not prop-
erly assembled into /3-sheets) [76], the modifications of the methodology for 
picking up fragments from the structure database, in order to ensure a re-
markable diversity of secondary structures when dealing with segments with 
a weak propensity to fold into a single secondary structure, the use of a new 
prediction method, JUFO [29], and the exploitation of quantum chemistry 
calculations, traditional molecular mechanics approaches and protein struc-
tural analysis to compute parameters in the energy function [12, 13]. A neural 
network method is under development with the aim of identifying strand-loop-
strand motifs start ing from the protein primary structure [46]. 

Rosetta was applied to CASP5 targets. In particular, for a- or ce//3-proteins 
Rosetta generated models with a correct overall topology and RMSD values 

ranging from 2.8 to 4.2 A. Rosetta method failed for proteins having more than 
280 residues and a complex topology; furthermore, it sometimes generated 
models being too globular or having /3-strands less exposed than in the native 
conformation. 

7 Ab-initio Methods Wi thout Knowledge-Based 
Information 

Knowledge-based ab-initio methods are dependent on the information stored 
in structural databases and on statistical analysis of this information; hence 
they can produce inaccurate predictions of new folds. A way to overcome this 
problem is offered by "true" ab-initio methods which simulate the folding 
process by using only protein models based on physicochemical principles. 
These methods are obviously more challenging, since they require "realistic" 
representations of atomic interactions and powerful algorithms and computa-
tional resources to search the feasible conformational space. A few examples 
of ab-initio methods without database information are discussed in the next 
sections. 
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7.1 Hierarchical A p p r o a c h e s 

Hierarchical approaches start from a reduced representation of protein atoms 
and their interactions and then refine computed reduced conformations to 
obtain all-atom structures to be optimized. 

A simple hierarchical approach to protein folding is given by LINUS (Lo-
cal Independently Nucleated Units of Structure), developed by Srinivasan and 
Rose [89, 90]. This procedure has been used to predict secondary structures 
and to capture a physical interpretation of protein secondary elements. In-
deed, Srinivasan and Rose used LINUS to support the physical theory tha t 
secondary structure propensities are mainly determined by competing local 
effects, involving conformational entropy and hydrogen bonding. 

A Metropolis Monte Carlo procedure is applied to search the conforma-
tional space. The amino acid sequence is considered as an extended chain, 
where the backbone atoms are represented as points, while the side chains are 
modeled as different nonoverlapping spheres, according to amino acid type and 
size. The degrees of freedom are the dihedral angles, ^ , ^ and x- ^ Metropo-
lis Monte Carlo procedure is used to search the conformational space. More 
precisely, the extended chain is subdivided into subsequences of three consec-
utive residues, proceeding from the N-terminus to the C-terminus, tha t are 
perturbed by using a predefined set of random moves to obtain a new config-
uration. This configuration is accepted or rejected according to a Metropolis 
acceptance criterion based on attractive and repulsive contributions [90]. This 
cycle is completed when all the chain residues have been processed. 

LINUS was used also by Mari tan and co-workers in order to estimate 
the rate of successful secondary structure predictions as a function of the 
temperature [24]. In particular, they showed tha t at low temperatures lo-
cal interactions are facilitated and stabilized, leading to ce-helices and turns; 
consequently, /3-strands are favoured at high temperatures . At intermediate 
temperatures some protein subsequences tend to fold into /3-strands, while 
others into ce-helices and turns. They also found tha t ce-helices and /3-strands 
can be predicted with an accuracy greater than 40% [24]. 

A different hierarchical approach has been developed by Scheraga and co-
workers [78] to capture pairwise and multibody interactions during the folding 
process. In this approach, a set of low-energy structures is computed first, by 
using a reduced model based only on the Cot trace and on the so-called UN-
RES (UNited-RESidue) potential force field [50, 51], to describe intra-protein 
interactions and hydrogen bonding. The conformational space is searched by 
a Conformational Space Annealing (CSA) algorithm [47]. The virtual-bond 
chains of these low-energy structures are converted to an all-atom backbone, 
by using the dipole-path method based on alignment of peptide-group dipoles 
[50]. The backbone conformation is optimized by using EDMC [72], a pro-
cedure tha t iteratively looks for low-energy structures in the conformational 
space and takes into account electrostatic interactions and thermal effects. 
All-atom side chains are added to the previous model under constraints of 
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non-overlap; loop and disulfide-bonds are then treated explicitly. The final 
conformation is obtained by using the E C E P P / 3 all-atom energy function 
[60], with gradual reduction of the CQ.-CQ. distance of the parent united-
residue structure. The E C E P P / 3 energy function is the sum of electrostatic, 
hydrogen-bonded, torsional and non-bonded terms. 

The method above described was successfully applied to single-chain pro-
teins as well as to multiple-chain ones. In the latter case, in order to obtain 
correct predictions, interchain interactions were taken into account by suitably 
modyfing UNRES and CSA [78]. 

7.2 A Combinator ia l and Globa l O p t i m i z a t i o n A p p r o a c h 

A novel t rue ab-initio approach for the prediction of three-dimensional struc-
tures of proteins is implemented in ASTRO-FOLD, developed by Floudas 
and co-workers [33, 35, 36, 38, 39]. ASTRO-FOLD combines the classical hi-
erarchical view of protein folding, in which the folding process s tar ts from 
rapid formation of secondary structures and then proceeds to the slower ter-
t iary structure arrangement, with the hydrophobic-collapse view, in which 
secondary and tert iary structures are formed concurrently. The prediction of 
a protein conformation is performed into four steps. First, initiation and ter-
mination sites of ce-helices are identified, then /3-strands are identified and f3-
sheet topologies are predicted, and, later, constraints on the protein structure 
and information on loop segments are derived. Based on the previous informa-
tion, the overall protein tert iary structure is predicted by using a model tha t 
combines both the above views of the protein folding process and by applying 
deterministic global optimization, stochastic optimization and torsion-angle 
dynamics. Therefore, ASTRO-FOLD can be defined as combinatorial and 
global optimization framework based on a four-step approach. 

The main idea behind ce-helix determination is tha t the fold of such sec-
ondary structure is based on local interactions. Hence, in order to identify local 
sites of helix formation, the amino acid sequence is segmented into overlapping 
oligopeptides and ensembles of low potential states are computed, along with 
a global minimum energy state, using a detailed atomic level model based 
on the E C E P P / 3 force field [60]. The determination of these s tate is per-
formed by applying the deterministic branch-and-bound algorithm a-BB [20] 
and the stochastic CSA algorithm [32, 47]. Free energy calculations are then 
performed, with a force field which is the sum of potential, entropic, solva-
tion, ionization and internal cavity contributions. The energy values are used 
to compute the probability tha t each oligopeptide folds into a helix and to 
define a helix propensity for each residue. 

Once ce-helices have been identified, the remaining residues are analyzed 
to identify the locations of /3-strands and /3-sheets, and to predict /3-sheet 
topologies as well as disulfide bridges. Since the formation of such structures 
is driven by long-distance interactions, a different approach is used. The key 
assumption is tha t /3-structure formation depends on hydrophobic forces [37]; 
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to model them, the prediction of hydrofobic residue contacts is required. To 
predict a /3-sheet, /3-strand superstructures are postulated that encompass 
all the /3-strand substructures that may constitute the /3-sheet topology. The 
mathematical model of the superstructures is formulated as a global opti-
mization problem, whose solution maximizes contacts between hydrophobic 
residues, subject to constraints enforcing physically meaningful configurations 
for /3-strands and disulfide bridges. This approach is used to identify a rank-
ordered list of possible /3-sheet structures. 

Once ce-helices and /3-sheets have been identified, secondary structure re-
straints are defined. Dihedral angles, atomic distance and CQC — C^ distance 
bounds are defined according to the main properties of corresponding sec-
ondary structures. Restraints for unassigned residues are also defined either 
through an analysis of overlapping oligopeptides, such as for ce-helices identi-
fication, or through predictions of entire loop fragments. Both approaches are 
implemented by exploiting deterministic and stochastic optimization solvers. 

The final stage of ASTRO-FOLD is the prediction of the protein tertiary 
structure. This problem is formulated as the global minimization of a suitable 
potential energy, subject to the restraints above discussed. This problem is 
solved by a combination of ce-BB and torsion angle dynamics [35]. 

As reported in [36], ASTRO-FOLD was tested on CASP5 targets of at 
least 150 residues, obtaining accurate ce-helix and /3-strand and impressive 

o o 

/3-sheet predictions. Indeed, RMSD values ranging between 4.1 A and 6.9 A, 
and SOV [95] values corresponding to more than 80% accuracy have been 
obtained for the computed conformations. 

As noted in [36], the application of ASTRO-FOLD to medium-size pro-
teins was made possible by using distributed computing environments. The 
framework was parallelized by taking into account the different problems and 
solvers at each stage the prediction process. 

7.3 Topological Approaches 

Experimental and theoretical studies have shown that the folding process is 
widely infiuenced by topological properties of the native state. For example, by 
analyzing a small set of non homologous simple single domain proteins. Baker 
and co-workers revealed that a statistically significant correlation exists be-
tween folding kinetics and native state topological complexity [69]. Starting 
from their results, Koga and Takada studied the relationships between na-
tive topology and folding pathways [42]. By using a simple representation of 
the polypeptide chain through its C^ trace and a free-energy functional ap-
proach, that takes into account chain connectivity, contact interactions and 
entropy, they were able to correctly describe folding pathways of small single-
domain proteins. The correlation between the topology of the native state 
and the folding pathways was confirmed by Maritan et al. [80], by performing 
molecular dynamics simulations of the immunoglobulin, using a model that 
represents only the C^ carbons and an energy function that includes bonding 
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and non-bonding terms. Other studies suggest that folding rates are correlated 
to topological parameters such as contact order and cliquishness [56]. 

An interesting topological approach to the protein folding problem has 
been proposed by a research group led by Banavar and Maritan [7, 8, 9, 10, 54]. 
In this approach, a protein is modeled as a tube of nonzero thickness without 
any self-contacts (see Figure 7.3). The axis of the tube is a suitable curve in-
terpolating the Cot carbons and the thickness is expressed in terms of a metric 
that measures the "distance" among any three points on the curve, Xi^Xj^Xk, 
as the radius r{xi,Xj,Xk) of the circle passing through them (r is assumed to 
be infinity if the points are aligned). Note that l/(r(x^, Xj^XkY ^ P > 0, can be 
regarded as a three-body potential and hence the tube thickness is related to 
a certain interaction energy among chain particles [23]. Indeed, the modeled 
structure is energetically stable, i.e. its conformation corresponds to a mini-
mum of free energy, when it achieves a maximum thickness under constrains 
preventing self-intersection and aligned triplets of amino acids. As pointed 
out in [7], despite its simplicity, this model is able to capture the physical 
thickness of the protein chain, that is due to the presence of the R-groups. 
Furthermore, a nonzero thickness implies that the interactions between two 
spatially close tube segments do not depend only on their distance, but also on 
their relative orientation, so the tube model is able to represent the inherent 
anisotropy associated with the local directionality of the chain. 

Fig. 5. The sequence of N-Ca-C units of the crambin helix composed of the amino 
acids 7^17. The picture is similar to a thickened tube. 

Numerical simulations based on the above model are reported in [7, 10, 92]. 
Different constraints have been considered to take into account the compact-
ness of a polymer chain, such as a pairwise attractive potential with a given 
range [7], or suitable bounds on the global and the local gyration radius or on 
the contact distance and the number of allowed contacts [92]. A Metropolis 
Monte Carlo procedure has been used to search the conformational space, 
obtaining helix- and hairpin-like structures. 

We have focused our attention on the tube model, because it appears both 
simple and capable of representing significant features of the protein chain. 
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Next sections are devoted to describe a modified version of it and related 
computational experiments. 

8 A Modification of the Tube Model 

Following [10, 23], we provide a more detailed description of the tube model, 
which is the basis of our computational approach. Let X = (xi , X 2 , . . . , x^) be 
a n-ple of different points called conformation^ where each Xi G 3^^ represents 
the position of the C^ a tom of the i-th amino acid residue of the polypep-
tide chain. The interaction among any three non-aligned points 
be measured by the radius of the unique circle among them, which has the 
following expression: 

/ \ 'i 7 '̂  k\ 7 /c 'i 7' 

r{x,,Xj,Xk) = AA{x,,Xj,Xk) " 2 | s in^ | 

where 11 • 11 is the Euclidean norm, A{xi^ Xj^Xk) is the area of the triangle with 
vertices x^, Xj and x^, and 0 is the angle between the vectors Xi — Xk and 
Xj — Xk' If the three points are aligned, A{xi,Xj,Xk) and s in^ are null, hence 
the above definition can be extended to these points by setting r(x^,Xj^Xk) = 
00. Note tha t r{xi,Xj,Xk) can be viewed as an approximation of the s tandard 
radius of curvature. Indeed, if the three points vary over a simple (i.e. without 
knots) and smooth curve C, then 

lirn^ r{xi,Xj,Xk) = p{xi), 

Xj,xkec 

where p{xi) is the radius of curvature of C at x^. In the following, the radius 
r{xi,Xj,Xk) is referred to as three-body radius. 

The thickness of the conformation X can be defined as: 

D{X) = min r{xi,Xj,Xk). (1) 
l<*,j,/c<n 

D{X) is a "discrete version" of the thickness A{C) of a simple and smooth 
curve C, which is defined as the maximum thickness of a tube with axis C 
and circular section, tha t does not exhibit any self-contacts. A{C) has the 
following expression: 

ZA(C) = min < minp(x) , - min ||x —i/| 
yx^C 2 {x,y)^Q 

where Q is the set of all pairs of points of C such tha t x ^ y and the vector 
X — y is orthogonal to the tangents to C at both x and y. In other words, 
in the continuous case, the tube thickness is the smallest value between the 
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minimum radius of curvature of C and half the minimum distance of closest 
approach over C. It can be proved that 

A{C) = min r{x,y,z), 
x,y,z^C 

where the definition of r is extended by continuity to coinciding points [23]. 
As pointed out in [10], the three-body radius is able to distinguish among 

local and non-local interactions along the protein chain. When three consec-
utive particles are considered, a discrete version of the radius of curvature is 
used to measure their interaction; when the particles are non-consecutive, the 
distance of approach between two parts of the chain is taken into account (see 
Figure 8). The thickness takes into account that the protein backbone cannot 
have self-contacts and that the side chains cannot overlap; furthermore, it 
provides a global measure of the free space in the protein conformation. 

Fig. 6. Three-body radii of consecutive and non-consecutive points. 

As observed in Section 7.3, finding an energetically stable conformation 
can be achieved by maximizing the thickness under suitable constraints. On 
the other hand, the tube model can be used to predict and analyze compact 
tube-shaped conformations of given thickness. The latter conformations can 
be obtained by maximizing a function counting the number of triplets having 
a three-body radius close to a given thickness value D: 

n—2 n—1 n 

/ ( ^ ) = / (^1^^2, . . . ,^n) = ^ Y^ Y^ fD{r{Xi,Xj,Xk)), (2) 
i=l j=i-\-l k=j-\-l 

where 
Off w I 1 if r{xi,Xj,Xk) ^[D - e,D ^e] . . 

^5(^ (^ -^^ '^^» = U otherwise ^ (3) 
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and e is a real positive constant. As shown in Section 9, typical values of 
thickness, characterizing protein structures, can be obtained by analyzing ex-
isting protein structure da ta sets; therefore, maximizing f{X) under suitable 
constraints, using these typical values of thickness, can provide a means to 
predict meaningful protein-like three dimensional conformations. 

To increase global protein compactness, we have modified / by adding a 
term forcing the points Xi to be inside an ellipsoid, whose surface is thought as 
a rough approximation of the protein surface shape. By changing the lengths 
of the ellipsoid axes, different shapes can be approximated. The added term 
has the following form: 

n 

9{X) =g{xi,X2,...,Xn) = ^ ^ ( a , 6 , c ) ( ^ ^ ) (4) 
i=l 

where 

{ /^ l ^1 \2 / 2 2 \2 / 3 ^3 \2 

^ '* a2 + 52 + c2 - . (5) 
0 otherwise 

XQ = (XQ^X'Q^X^) is the barycenter of X , a, b and c are the lengths of 

the ellipsoid semiaxes, and the superscripts are used to denote the Cartesian 
coordinates of a point. 

Constraints have been imposed to explicitly take into account tha t two 
consecutive ce-carbons are virtually bonded, hence their Euclidean distance 
can have only slight variations, and tha t the Euclidean distance between any 
two non-consecutive amino acid residues cannot fall below a certain thresh-
old. Furthermore, start ing from the observation tha t in ce-helices amino acid 
residues with positions i and i -\- 2 along the chain are closer than in other 
structures, a contraint on the Euclidean distance between Xi and x^+2 has 
been imposed to specifically simulate all-ce conformations. 

The global constrained optimization problem described so far has the fol-
lowing formulation: 

m a x F ( X ) = m a x [ / ( X ) + g{X)] (6) 

subject to 

ci < d{xi, Xi^i) < C2, Vi G {1, 2 , . . . , n - 1}, (7) 

C3<d{xi,Xj), V i , j : i > j + 1, (8) 

C4 < d{xi, Xi^2) < C5, Vi G {1, 2 , . . . , n - 2}. (9) 

where ci , C2, C3, C4 and C5 are real positive constants chosen on the base of 
experimental observations (see Section 9). The costraints (9) are specifically 
related to all-o^ structures. 
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9 Choice of Model Parameters 

The problem (l)-(9) requires the choice of some parameters: the thickness D 
and the related value e in the definition of / (see (2)-(3)), the semiaxis lengths 
a, 6, c in the definition of ^ (see (4)-(5)) and the constants Q in the constraints 
(see (7)-(9)). 

The values of D and e have been chosen by performing an analysis of a set 
of 3639 protein structures available in the PDBSELECT da ta collections with 
R-factor < 0.25 and Resolution < 2.5 [65]. The thickness of each structure 
has been evaluated, obtaining the thickness frequency distribution shown in 
Figure 9. 

Fig. 7. Frequency distribution of the thickness for a set of 3639 proteins from 
PDBSELECT. 

The thickness mean value is 2.40 A, with a s tandard deviation of 0.10 A; 
o 

the minimum thickness is 1.91 A (achieved by only one structure) , while the 
o 

maximum is 2.67 A. The same analysis has been performed considering all the 
ce-helices (14592 structures) and all the /3-sheets (13070 structures) separately. 

o 

The mean thickness value of the ce-helices is 2.65 A, with a s tandard deviation 
of 0.07 A, a minimum of 2.26 A and a maximum of 4.58 A. However, accord-
ing to the small s tandard deviation value, more than 98.5% of the ce-helices 

have a thickness ranging between 2.50 A and 2.90 A. The frequency distrib-
ution of the thickness of the ce-helices in the interval [2.50, 2.90] is reported 
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in Figure 9. The previous results agree with the fact tha t the ce-helices have 

very similar geometries. The mean value of the /3-structures is 2.65 A too, but 
o o 

with a s tandard deviation of 0.46 A, a minimum of 2.12 A and a maximum 
o 

of 9.75 A. Taking into account the low variability of the ce-helices thickness, 
in our experiments we focused our attention on ce-structures. 

Fig. 8. Frequency distribution of the thickness for a set of 14592 a-helices from 
PDBSELECT. 

A deeper analysis has shown tha t in the ce-helices only few triplets of a-
carbons have a three-body radius equal to the thickness. For example, the 
helix of the crambin (PDB code Icrn) composed by the amino acid residues 

o 

7 ^ 17 has a thickness equal to 2.66 A, but just the ce-carbons 15, 16 and 
17 have this three-body radius, while all the other triplets have a three-body 

o 

radius of at least 2.71 A. 
Since the te rm / in the objective function (2) counts the number of triplets 

having a three-body radius close to D^ we made some more studies to find 
out frequent values of the three-body radius. We first analyzed the so-called 
perfect helix, t ha t is the stable conformation of the amino acid sequence made 
only by alanine. In this helix, all the triplets (x^,Xj,Xfc), with constant i— j 
and j — /c, have the same radius. All the triplets (x^,x^+/j,,x/c), with h > 0 
and i -\- h < ky and (xi^Xk-h^Xk), with h > 0 and k — h > i have the same 
radius too. The most frequent triplets with the same radius are of the type 
(xi^Xi-^i^Xi-^s) and (x^,x^+2,^^+3), but the minimum radius, i.e. the thickness. 
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is achieved by the triplets (x^,x^+i,x^+2)- The corresponding values, reported 
in Table 9, show tha t the difference between the minimum radius and the 

most frequent one amounts to 0.13 A. We then considered the same type of 
triplets in the PDBSELECT set and computed the mean radius values, and the 
corresponding s tandard deviations, obtaining the results reported in Table 9. 

In this case, the difference between the mean thickness values (2.65 A) and 
o o 

the triplet mean values is 0.10 A for the triplets (x^,x^+i,x^+2) and 0.23 A 
for the triplets (x^,x^+i,x^+3) and (x^,x^+i,x^+3). 

Uxi,Xi-^l,Xi-^2) 

Uxi,Xi^l,Xi^3) 

\{Xi,Xi-^2,Xi-^3) 

perfect helix 
2.71 
2.84 
2.84 

P D B S E L E C T set 
2.75 (0.12) 
2.88 (0.28) 
2.88 (0.28) 

Table 1. Three-body radii (A) of selected triplets of a-carbons in the perfect helix 
and in a set of 3639 proteins from PDBSELECT. Mean and standard deviation (in 
brackets) of radius values are reported for the PDBSELECT triplets. 

Taking into account the previous analysis, we set Ẑ  = 2.70 and e = 0.20, 
i.e. [zA — e, zA + e] = [2.50, 2.90]. This value of D is very close to the thickness 

of the perfect helix (2.71 A); furthermore, the interval [2.50,2.90] contains 
most of the thickness values of the ce-helices from PDBSELECT and includes 
also the most frequent three-body radii of both the perfect helix and the 
PDBSELECT ce-helices. 

The semiaxis lengths a, b and c tha t define the function g have been 
determined taking into account the volumes of the single amino acids, tha t 
are reported in Table 9. For each protein chain, we computed the sum of the 
volumes of the amino acids, then we increased this sum by 3.8%, to take into 
account tha t proteins have cavities [75], and, finally, we set a, b and c in such 
a way tha t their products was equal to the cube of the radius s of the sphere 
with volume equal to the increased sum of amino acid volumes, i.e. 

a 'b ' c = s 

where 

_3_ 

47r 
\ 

1.038 '^voh 

(10) 

(11) 

and voli is the volume of the i-th amino acid in the protein chain. Obviously, 
the single values of a, 6 and c are not univocally determined by ( lO)-( l l ) ; 
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by varying these values, theoretically possible conformations with different 
shapes can be obtained. Note tha t , by taking into account the amino acid 
volumes, we introduce in the model a distinction among the points x^, tha t 
are considered equal in the original tube model. 

amino acid 
ALA 
ARG 
ASP 
ASN 
CYS 
GLU 
GLN 
GLY 
HIS 
ILE 

volume 
88.6 
173.4 
111.1 
114.1 
108.5 
138.4 
143.8 
60.1 
153.2 
166.7 

amino acid 
LEU 
LYS 
MET 
PHE 
PRO 
SER 
THR 
TRP 
TYR 
VAL 

volume 
166.7 
168.7 
162.9 
189.9 
112.7 
89.0 
116.1 
227.8 
193.6 
140.0 

Table 2. The volumes of the 20 amino acids, in A 

To determine the constants ci and C2, the mean value of the Euclidean 
distances of all pairs of consecutive ce-carbons has been computed for each 
protein of the P D B S E L E C T set (the corresponding frequency distribution is 
shown in Figure 9). However, since the algorithm applied to problem (l)-(9) in 
our numerical experiments does not change these distances (see Section 10.1), 
we set ci and C2 both equal to the most frequent mean Euclidean distance, 

i.e. ci = C2 = 3.81 A. 
The remaining constants C3,C4 and C5 have been chosen by observing the 

perfect helix. In this helix, the Euclidean distance between two ce-carbons xi 
o 

and Xij^2 is 5.43 A, hence we set C4 = 5.0 and C5 = 6.0. Similar observations 
on the minimum distance between two generic ce-carbons led to the choice 
C3 = C4. Actually, these choices of the Q constants have been supported by 
numerical experiments. 

10 Computational Experiments 

Computat ional experiments based on the modified tube model have been car-
ried out to simulate ce-helices and an all-ce protein, using a Metropolis Monte 
Carlo Simulated Annealing algorithm to search the conformational space. This 
algorithm has been implemented in Fortran 77 and in C and the software has 
been run on a personal computer with a 2 GHz Athlon processor and a 516 
MBytes RAM, under the Linux operating system. 
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Fig. 9. Frequency distribution of the mean Euclidean distances of the pairs of 
consecutive amino acids in the proteins of the PDBSELECT set. 

A short description of the Simulated Annealing algorithm and a discussion 
on the results of the computational experiments follow. 

10.1 The Metropolis Monte Carlo Simulated Annealing Algorithm 

As observed in Section 5, Simulated Annealing (SA) algorithms [40, 52] are 
based on an analogy with the annealing physical process, in which the tem-
perature of a given system is decreased slowly, in order to obtain a crystalline 
structure. The structure of a SA algorithm can be described by two nested 
loops. The inner one generates at each iteration a new candidate approxima-
tion to the solution, by applying Monte Carlo perturbations to the previous 
one. The new approximation is accepted or rejected, by using a random mech-
anism based on the evaluation of the so-called Metropolis acceptance func-
tion, whose value depends on a parameter called temperature. The lower is 
the temperature, the smaller is the number of accepted approximations. The 
outer loop controls the decrease of the temperature parameter, i.e. defines the 
so-called cooling schedule. 

From the above description it results that SA algorithms are built up from 
three basic components: next candidate generation, acceptance strategy and 
cooling schedule. 

To generate the next candidate approximation to the solution, we use 
operations called Monte Carlo moves [88]. In particular, we consider the pivot, 
multipivot and crankshaft moves. The pivot move randomly selects a pivot 
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point Xi^ with 1 < i < n and two coordinate axes ^ and r/, and then rotates 
each point x^, with i < /c < n, of a random angle with respect to the axis 
through Xi and orthogonal to ^ and 77. The multipivot move is obtained by 
performing a sequence of pivot moves. In our case, n /10 points x^, with 1 < 
i < n, are randomly selected and used as pivots. Finally, the crankshaft move 
randomly selects two points Xi and Xj, with l < i < j — l < n , and then 
rotates the points x^, with i < k < j , of a random angle around the axis 
passing through Xi and Xj. 

The acceptance strategy used in our experiments is based on the well-
known Metropolis acceptance function [55]. If X^^^ is the approximation of 
the solution at a step k and X is a candidate approximation obtained by a 
Monte Carlo move, then X is accepted if 

A{X^^\X,t^^^)=mmll,e tW I > p, 

where F is the objective function to be maximized (see (1)), t̂ ^^ is the temper-
ature value at step k and p is a random number from the uniform distribution 
in (0,1). The candidate approximation can be accepted even if it does not 
increase the value of F , depending on t̂ ^^ and p. At high temperatures, many 
candidate approximations can be accepted, but , as the temperature decreases, 
the number of candidate approximations decreases, in analogy with the phys-
ical process of annealing. 

The cooling strategy has an important role in SA. The temperature must 
be decreased very slowly to avoid t rapping into local optima tha t are far 
from the global one. This reflects the behaviour of the physical annealing, in 
which a fast tempera ture decrease leads to a polycrystalline or amorphous 
state. In our experiments, a flxed number nsteps of Metropolis Monte Carlo 
iterations is performed at constant temperature and then the temperature 
value is decreased by a flxed factor 7 < 1. The values of nsteps and 7 have 
been experimentally set to lO^n and 0.99, respectively. 

Our algorithm terminates when the value of the objective function F has 
not been changed for ten outer iterations, or a maximum number of outer 
iterations, maxout, is achieved. We set maxout = 300, but this value was 
never reached in our experiments. A sketch of the whole algorithm is provided 
in Figure 10.1. 

We note tha t the cost of evaluating the term / in the objective function F 
(see (1) and (2)-(3)) is usually lower than 0{n^). Indeed, if two points have 
a Euclidean distance greater than 2{D + e), then all the triplets containing 
these points have a three-body radius greater than D^e (in a circle, a chord is 
smaller than the diameter) and hence they do not give any contribution to / . 
Therefore, once the Euclidean distances of all the pairs of points are computed, 
as required by the constraints (8), the three-body radii are computed only for 
triplets such tha t the Euclidean distance of all the pairs in the triplet is not 
greater than 2(L> + e). 
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t = to 
X = random conformation satisfying the constraints 
nout = 0 

{outer loop} 
while ( F{X) not settled down and nout < maxout ) 

nout = nout + 1 

{inner loop} 
for k = 1, nsteps 

X^^^ = random MC move on X 
if ( X^^^ satisfies the constraints ) then 

p = uniform random number in (0,1) 
if ( A(X,X^^\t)) >p) then 

X = X^^^ 
endif 

endif 
endfor 

t = -ft 
endw^hile 

Fig. 10. Metropolis Monte Carlo Simulated Annealing algorithm. 

10.2 S imula t ion of a - h e l i c e s 

First experiments have been performed with very short amino acid chains and 
with the objective function of the original tube model, i.e. without considering 
the compactness term g{X) in the objective function F{X) (see (1)). 

Many simulations have been carried out with n = 10 amino acids, starting 
from different initial conformations. All the computed optimal conformations 
are clock-wise rotated helices with about 3.6 points per helix turn , as in the 
real ce-helices. About 60% of these conformations differ each other by a RMSD 

o o 

value of about 0.5 A; a maximum RMSD of 2.0 A has been observed. The 
value of the objective function at the solution is always equal to 22 and is 
due to ah the triplets (x^,x^+i,x^+2), (x^,x^+i,x^+3) and (x^,x^+2,^^+3) (8, 
7 and 7 triplets, respectively), which have a tree-body radius ranging between 

_ _ _ o o 

D — e and D -\-e, where Ẑ  = 2.70 A and e = 0.20 A, as discussed in Section 9. 
Each simulation was completed in about 7 seconds. An example of computed 
optimal conformation is shown in Figure 10.2. 

Other experiments have been performed by changing the value of D, but 
keeping e = 0.20. In this case, the computed conformations are unrealistic 
helices, with less than 3.6 points per tu rn if D < 2.70 and more than 3.6 if 
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Fig. 11 . Two views of a computed optimal conformation with n = 10 points 

D = 2 . 7 0 A V 

D > 2.70. These results support the choice D = 2.70. Some conformations 
obtained with different values of D are shown in Figure 10.2. 

Fig. 12. Conformations obtained with n = 10 and different values of D 
((a) D = 2.60, (b) D = 2.80, (c) D = 2.90, (d) D = 3.20). 

Further experiments with n > 10 led to similar results. When D = 2.70, 
conformations very close to real ce-helices are obtained, while unrealistic he-
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lices are generated for D ^ 2.70. Furthermore, for n > 30, single long helices 
are computed which do not exist in nature, hence the need of introducing a 
compactness term into the problem objective function. 

10.3 Simulation of All-a Proteins 

Some experiments have been devoted to generate all-ce protein conformations. 
A globular protein composed of 153 amino acid residues, the sperm whale 
myoglobin (PDB code Imbn), has been chosen as reference protein. Obviously, 
we did not expect to generate conformations very close to the myoglobin 
one, since the information contained in the considered model is too poor for 
an accurate fold prediction. On the other hand, we wished to analyze the 
reliability and accuracy provided by such a simplified model. 

The lengths of the ellipsoid semiaxes a, b and c have been computed using 
the amino acid volumes of the selected protein, as explained in Section 9. 
According to the whole myoglobin shape, the following lengths have been 
considered: a = b = 1.155 and c = 0.765, where 5 is radius of the sphere 
with volume equal to the sum of the amino acid volumes, increased by 3.8% 

o 

(see (11)), i.e. 5 = 17.32 A. A few experiments with different semiaxis lengths 
have been also performed to analyze the weight of the compactness term g{X) 
with respect to the thickness term f{X) in the objective function F{X). Sixty 
simulations have been performed until now, each requiring an execution time 
of about two hours. Better simulated conformations could be obtained by 
running a larger number of experiments. 

The results obtained so far show that, as a, b and c get closer, the value 
of the term f{X) at the solution decreases. A minimum value of 300 has 
been achieved with a = b = c. On the other hand, as the difference between 
two semiaxes increases, and hence the formation of longer helices is allowed, 
the value of f{X) at the solution usually increases; f{X) = 360 has been 
obtained for a = 6 = 1.25 and c = 0.75. Conformations with values of g{X) 
varying between 100 and 153 have been obtained, where larger values of ^(X) 
correspond to smaller values of f{X). 

Like the all-a proteins, the computed conformations are globular ob-
jects with secondary structures that are very close to real ce-helices. For 
a = b = 1.155 and c = 0.765, i.e. for semiaxis lengths corresponding to the 
myoglobin shape, we obtained two conformations that have 66.7 and 59.5 iden-
tity percentages of secondary structures with respect to the reference protein. 
If we consider only the ce-helices, the identity percentages are 67.8 and 51.6, re-
spectively. This is shown in Figure 10.3. The corresponding three-dimensional 
representations are given in Figure 10.3. On the other hand, while having a 
certain similarity, the real protein and the computed conformations can have 
different numbers of helices, with different lengths and orientations, thus indi-
cating that more information must be included in the model to perform more 
accurate simulations. 



422 G. Ceci et al. 

Fig. 13. A comparison of the sperm whale myoglobin with two simulated confor-
mations. First row: amino acid sequence of the sperm whale myoglobin; second row: 
myoglobin amino acid residues that are contained into a-helices in the original con-
formation; third and fourth row: myoglobin amino acid residues that are contained 
into helices in the two simulated conformations. The identity percentage is 66.7 for 
the conformation called t e s t l and 59.5 for the one called t es t2. 

Fig. 14. Conformations obtained from the sperm whale myoglobin protein chain 
(a = b = 1.15s and c = 0.76s). The a-helices are lighter, all the other structures are 
darker. 
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11 Conclusions 

The great interest in the solution of the protein folding problem strongly 
pushes the research activity in this area. However, despite the many efforts 
performed so far, this problem is still considered a big challenge in science. 

In this chapter we focused on ab-initio computational methods for protein 
fold predictions that are potentially able to discover unknown native state con-
formations. In this context, we analyzed an interesting topological approach, 
that takes into account geometrical rather than physicochemical protein fea-
tures. This approach is based on a very simplified model that represents the 
polymer chain as a non-intersecting tube of nonzero thickness, by explicitly 
considering only the Cot trace of the protein and describing the amino acid 
interactions through the use of a suitable metric that measures the "distance" 
among any three CQ. atoms. This model leads to the formulation of a global 
constrained optimization problem. 

To enhance compactness and globularity in the computed conformations, 
we introduced a modification into the above model, and presented a methodol-
ogy for choosing the values of characterstic parameters. The results of compu-
tational experiments devoted to simulating ce-helices and all-ce proteins can be 
considered "promising", especially if we take into account the great simplicity 
and the relatively low computational cost of the model. Indeed, simulations 
performed using the sperm whale myoglobin as target protein, generated a 
conformation with a percentage identity equal to 66.7. Hence, we expect that 
the model can be significantly improved by adding some physicochemical fea-
tures to the geometrical ones currently considered. The introduction of the 
amino acid hydrophobicity into the model and the definition of ad hoc con-
straints and suitable parameter values for the simulation of /3-strands and 
/3-sheets are currently under investigation. 
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Summary. We develop an objective characterization of protein structure based en-
tirely on the geometry of its parts. The three-dimensional alpha complex filtration of 
the protein represented as a union of balls (one per residue) captures all the relevant 
information about the geometry and topology of the molecule. The neighborhood of 
a strand of contiguous alpha carbon atoms along the back-bone chain is defined as 
a "tube" which is a sub-complex of the original complex that has been sub-divided. 
We then define a retraction for the tube to another complex that is guaranteed 
to be a 2-manifold with boundary. We capture the topology of the retracted tube 
by computing the most persistent connected components and holes in the entire 
filtration. A "motif" for a 3D structure is characterized by the number of persis-
tent 0- and 1-cycles, and the relative persistences of these cycles in the filtration of 
the "tube" complex. These motifs represent non-random, recurrent, tertiary inter-
actions between parts of the protein back-bone chain that characterize the overall 
structure of the protein. A basis set of 1300 motifs are identified by analyzing the 
alpha complex filt rat ions of several proteins. Any test protein is represented by the 
number of times each motif from the basis set occurs in it. Preliminary results from 
the discrimination of protein families using this representation are provided. 

K e y words: Protein structure, simplicial complexes, homology groups, topo-
logical persistence. 

Structural Similarity Between Proteins 

Understanding the similarities and differences between protein structures is 
central to the study of connections between the sequence, structure, and the 
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function of the proteins, and also for detecting possible evolutionary relation-
ships. With the number of proteins with known structures currently exceeding 
25,000 [21], and rapidly increasing by the day, the need for reliable and au-
tomated methods for structural comparison has never been greater. Various 
techniques for structural comparison have emerged, ranging from those which 
t ry to match the geometric coordinates of the back-bone [23], to those which 
use vector approximations to secondary structure elements [16, 14]. Then there 
are domain-based methods, which t ry to classify proteins based on the units 
of structure (or domains) tha t they contain. Even though there is no exact 
definition available, a structural domain is usually considered as a compact 
and semi-independent unit of a protein, which consists of a small number of 
contiguous segments of the peptide chain, and forms a structurally "sepa-
rate" region in the whole three-dimensional structure of the protein. Widely 
used structural databases such as SCOP [19], and CATH [20] have been con-
structed using domain-based approaches. On the other hand, one of the most 
successful automated classifications of proteins uses concepts from knot the-
ory to reproduce the classification provided by the CATH database with a 
high degree of accuracy. 

This chapter is organized as follows. We review the main features of the 
SCOP database in Section 1. A brief description of the knot theory-based 
classification follows in Section 2. The drawbacks of these methods which 
motivated our line of research are outlined. We provide the necessary back-
ground material on alpha shapes and homology in Section 3. The definition 
of the neighborhood of a s trand in a protein is given in detail in Section 5. 
We outline the algorithm used to characterize the topology of these neighbor-
hoods in Section 6. Finally, we describe the salient features of the structural 
motifs tha t characterize these neighborhoods in Section 8. 

1 The SCOP Database 

The Structural Classification of Proteins (SCOP) database is a comprehensive 
ordering of all proteins of known structure according to their evolutionary and 
structural relationships. A fundamental unit of classification in this database 
is the protein domain. A domain is defined as an evolutionary unit observed 
in nature either in isolation or in more than one context in multi-domain 
proteins. All Protein domains are hierarchically classified into families, super-
families, folds, and classes. The method used to construct this classification 
is essentially the visual inspection and comparison of structures. Any use of 
automatic tools in this process is aimed only at making the task manageable. 
The SCOP database could be considered as containing the most accurate 
and useful results on protein structure classification. Recent updates of the 
database [3] reported the introduction of integer identifiers for each node in the 
hierarchy (called sunid), and a new set of concise classification strings (called 
sees). There is also an initiative [1] to rationalize and integrate the SCOP 
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information with the da ta about protein families housed by other prominent 
sequence and structural databases such as InterPro [17], CATH, and others. 

The classification in SCOP is done on four hierarchical levels - family, 
super-family, common fold, and class. These levels embody the evolutionary 
and structural relationships between the domains. Proteins tha t have at least 
30% sequence identity are classified into the same family. In addition, proteins 
tha t have lower (than 30%) sequence identity, but whose functions and struc-
tures are very similar^ are also classified into the same family. Families, whose 
proteins have low sequence identities, but whose structures, and in many cases, 
functional features suggest tha t a common evolutionary origin is possible, are 
grouped into super-families. In the next level of hierarchy, super-families and 
families tha t have some major secondary structures in the same arrangement 
with the same topological connections are defined to a have common fold. 
Finally, for the convenience of users, different folds have been grouped into 
classes. Most folds are assigned to one of the following five structural classes 
based on their secondary structure composition -

1. all alpha (when the structure is mainly formed by ce-helices), 
2. all beta (when the structure is mainly formed by /3-sheets), 
3. alpha and beta (when ce-helices and /3-strands are largely interspersed), 
4. alpha plus beta (when ce-helices and /3-strands are largely segregated), 

and 
5. multi-domain (for which no homologues are known as of now). 

In the latest version of SCOP (2004), the multi-domain class is further 
subdivided into seven classes, thus giving a total of eleven classes. The CATH 
database assigns to proteins a unique Class, Architecture, Topology, and a 
Homological super-family. The methods used to achieve these assignments are 
similar to those employed in SCOP. 

2 Knot Theory-based Classification 

In 2003, R0gen and Fain [22] introduced a novel method of looking at, an-
alyzing, and comparing protein structures tha t used the concepts from knot 
theory. The topology of a protein is captured by 30 numbers inspired by Vas-
siliev knot invariants. A measure for the similarity of protein shapes called the 
Scaled Gauss Metric (SGM) is created from these 30 numbers. The protein 
back-bone is analyzed as a curve in 3D space. The primary invariant calculated 
by the authors is the writhing number of the curve. This invariant essentially 
measures the self-linking of the curve which is the protein back-bone. The 
first biological applications of this measure were reported in the studies of 
DNA structure. It is related to the linking number and twisting number of two 
curves by the Calugareanu-Fuller-White formula [24]: 

Lk = Wr^ Tw (1) 
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The formula applies to a narrow closed orientable ribbon in 3D space. Here, 
Lk is the linking number of the two boundary curves of the ribbon, Wr is 
the writhing number of the central spine, and Tw is the twisting number 
of the two boundary curves. For a protein, the back-bone plays the role of 
the spine, and it is naturally oriented by the residue numbering order. Now 
imagine projecting the ribbon onto a 2D plane orthogonal to a randomly 
chosen direction. The curves defining the ribbon will seem to cross each other 
at certain locations in the plane of projection. Depending on the orientation 
of the two curve segments and the over-under relationship at each crossing, we 
assign a + 1 or a —1 to the crossing. The linking number Lk counts the sum of 
the signed crossings between the two boundary curves, divided by two. This 
sum is independent of the direction of projection. The writhing number Wr 
counts the sum of the signed self-crossings of the ribbon's spine, now averaged 
over all projections. Finally, the twist Tw is a torsion-dependent term tha t 
measures how much one boundary curve intertwines with the other. 

If we add up the unsigned individual contributions to the writhe, we ob-
tain the (unsigned) average crossing number. A family of structural measures 
could be constructed using the writhe and the average crossing number as the 
building blocks. The authors found it sufficient to compute 30 such measures 
for the purpose of structural classification. Thus each protein is mapped to 
R^^ space. Based on this mapping, the Euclidean distance between two points 
(or proteins) is defined as the Scaled Gauss Metric (SGM). Unlike the metrics 
defined by most other methods, SGM is a proper pseudo-metric - it has a 
zero element, it is symmetric, and most importantly, it satisfies the triangle 
inequality. The last property enables us to use the SGM to identify meaningful 
intermediate and marginal similarities, and also to distinguish between various 
degrees of similarity. Another desirable property of the Gauss metric is tha t it 
requires neither structural nor sequential alignment between chains, thus mak-
ing the pair-wise comparison of proteins almost instantaneous. The authors 
used SGM to construct an automatic classification procedure for the CATH2.4 
database (they essentially clustered the proteins based on the SGM). They 
could accurately assign more than 95% of the chains into the proper C(class), 
A (architecture), T(topology), and H(homologous super-family), find all new 
folds, and detect no false positives. 

Erdmann [12] builds on the ideas of R0gen and Fain in using knot theory 
ideas for studying structural similarity between proteins. Supplementing the 
knot theory concepts with ideas from geometric convolution, the author pro-
poses a definition of similarity based on atomic motions tha t preserve local 
back-bone topology without incurring significant errors. Similarity detection 
then seeks rigid body motions able to overlay pairs of substructures, each re-
quiring a substructure-preserving motion, without necessarily requiring global 
structural preservation. This definition has a very broad scope - one could talk 
about the full rearrangement of one protein into another while preserving the 
global topology, or about rearrangements of sets of smaller substructures tha t 
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preserve local topology, but not the global topology, all under the same frame-
work. 

The techniques for determining structural similarity based on knot theory 
concepts prove to be by far the most efficient, and at the same t ime the most 
accurate method for assigning protein structure automatically. Further, the 
ideas presented by Erdmann could be used to develop an efficient residue-wise 
structural alignment scheme tha t might also be using the information from 
the structural classification. Results are awaited on this particular problem. At 
the same time, there are quite a few open questions tha t have been created by 
this work. There are no intuitive interpretations of the Gauss integrals except 
for the fundamental ones - the writhe and the average crossing number. It is 
also unclear how these Gauss integrals could be combined. Another question 
to investigate would be the relative significance of these invariants. 

In spite of the amazing success in automatically classifying the CATH 
database with a high degree of accuracy, the Gauss integrals method has a 
major drawback. The problem of finding protein domains is not addressed at 
all. A new structure coming to SGM will not be broken into basic biologically 
and structurally significant pieces. From this point of view, the most desirable 
method for determining structural similarity would be the one tha t identifies 
protein domains using their geometric and topological properties alone, and 
would naturally lead to the construction of a pseudo-metric (similar to SGM), 
based on the definition of these domains, for measuring structural similarity. 
Developing a (residue-wise) structural alignment of proteins based on such a 
classification would be the next step. With these aims in mind, we propose 
the ideas for a novel characterization of ter t iary structural units in proteins 
based on their topological and geometric properties. In the next section, we 
review the geometrical construction used as the framework for analyzing pro-
tein structure, and the relevant topological definitions tha t will be used in our 
analysis. 

3 Alpha Shapes 

An accurate representation of the protein molecule is a collection of balls, 
one for each atom. The equivalent picture in 2D will be the union of disks. 
Edelsbrunner et al. analyzed the geometry of a union of disks in 2D as early 
as 1983 [9]. The results for the union of balls in 3D were presented later by 
the author in [6]. Let B denote a finite set of balls (solid spheres) in R^. We 
specify each ball bi = (zi^ri) by its center Zi G R^ and its radius r^ G R. 
The weighted distance of a point x from a ball bi and is defined as the square 
distance from the center of the ball minus the square of the radius. 

ni{x)=\\x-Zif-r^ (2) 

The power Voronoi cell of a ball bi under the power distance is the set of 
points tha t are at least as close to bi as to any other ball in 5 , 
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V, = {xe R ' K , ( x ) < ^ , ( x ) , V j } . (3) 

All ViS tu rn out to be convex polyhedra (see Figure 1). The dual to the power 
Voronoi diagram will constitute the weighted Delaunay triangulation of B, and 
is the collection of the convex hulls of the centers of those balls whose Voronoi 
cells have a non-empty common intersection. 

Fig. 1. Power Voronoi diagram of the disks in 2D (left) and the corresponding dual 
(weighted) Delaunay triangulation (right) 

Edelsbrunner and Miicke [11] generalized the construction of the Delaunay 
triangulation given above to consider the dual of the power Voronoi diagram 
restricted to within the union of the defining balls. The Voronoi cells (3) 
decompose [JB into convex cells Ri = [JB OVi = biOVi. The dual complex 
records the non-empty common intersection of these cells, 

K = {aA\f]R^y^ 0}, (4) 
ieA 

where yl is a subset of the index set, and a A is the convex hull of the centers 
of the balls with index in A. Equivalently, aA ^ K is the common intersection 
of the Voronoi cells tha t have a non-empty intersection with the union of the 
balls. The underlying space is the set of points contained in the simplices of K, 
and is denoted by |K| . In this context, the authors refer to the underlying space 
as the dual shape of B. The concept is illustrated in 2D in Figure 2. Notable 
is the special case where the balls have non-empty pair-wise intersections, 
but have no (non-empty) triple-wise intersections. In this case, K looks like 
the familiar ball-and-stick diagram of a molecule. Each stick (which originally 
represents a covalent bond in the molecule) represents the geometric overlap 
between two balls. 

Now consider growing the balls continuously in t ime and studying how 
their union changes. We set the weight of each ball bi as r | + t at t ime t and let 
t go from — oo to +oo. Each bi has zero weight at t = —r| and negative weight, 
and hence imaginary radius, before tha t t ime. By construction, the Voronoi 
cells of the balls remain unchanged. It follows tha t the dual complexes tha t 
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Fig. 2. The dual complex for the union of disks. The nine edges correspond to pair-
wise intersections and the two triangles correspond to the triple-wise intersections 
of the clipped Voronoi cells of the balls 

arise throughout t ime are sub-complexes of the same Delaunay triangulation. 
Also, the dual complexes can only get larger in t ime. We use the square 
root a = \ft^ as the index for t ime varying sets. Under this convention, with 
r^ = 0 (i.e. the ball is originally a point), the radius of the ball hi at t ime 
t is a. Denote by B^^ the collection of balls and K^^ the dual complex of 
B(^ at t ime t G R, indexed by a. We refer to K^^ as the ce-complex and 
its underlying space as the ce-shape of B. For small enough (large enough 
negative) time, all radii are imaginary, and \}B^ = 0. And for large enough 
time, the dual complex of B^, is equal to the Delaunay triangulation. We 
thus obtain a sequence of complexes tha t begins with the empty complex 
and ends with the Delaunay triangulation, 0 C K^^ C K^^ C D^ for every 
—(X)<o?<0^< +00. Since there are only finitely many simplices, there are 
only finitely many sub-complexes of D tha t arise as dual complexes during 
the growth process. We refer to this sequence as a filtration of the Delaunay 
triangulation, 0 = K^ ^ • • • ^ K'^ = D. We illustrate the construction by 
showing three complexes in the filtration of the union of the disks in the plane 
in Figure 3. We define a function j{a'^) such tha t K^ = K^ if i = j{a'^) in 
order to translate between continuous and discrete rank. 
The Delaunay simplices can be sorted in the order in which they enter the 
dual complex. Define the birth time of a simplex a ^ D SLS the minimum time 
t = a^. such tha t a G K^^ for all a^ > t. Thus the difference between two 
contiguous complexes in the filtration consists of all simplices whose birth-
t ime coincides with the creation of the second complex, 

K'^^ -K' = {aeD\al= j ' ^ i + 1)} (5) 

We represent the filtration by sorting the Delaunay simplices by birth time, 
and in case of a tie by dimension. Remaining ties are broken arbitrarily. Every 
dual complex K^ is a prefix of this ordering. Due to the tie breaking rule, every 
such prefix is a complex, even if does not coincide with a dual complex. This 
property of the ordering will be crucial for the algorithm tha t we will use to 
compute the connectivity of K^. 
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Fig. 3. Three unions of disks and the corresponding dual complexes from the 
filtration. The first complex consists of only the vertices (as all the balls are disjoint). 
The second complex is shown in red (same as the one shown in Figure 2). The 
simplices shown in green get added in the third complex. 

4 Homology Groups 

We will use homology groups as an algebraic means to s tudy the connectivity 
of a topological space. The overview of the main concepts presented here follow 
mainly the t reatment given in [8, §IV.2]. Chapter 4 in [13] presents an easy to 
read discussion of the same subject. Roughly speaking, for any given simplicial 
complex K^ there is one group denoted by Hp{K) in each dimension p with 
0 < p < diuiK, which measures the number of "independent p-dimensional 
holes" in K. 

We will call a set of /c-simplices a /c-chain. By definition, the sum of two 
/c-chains is the symmetric difference of the two sets. 

c + d = (c U d) - (c n d) 

We define the boundary of a simplex a diS da = {r < a \ d i m r = dim cr — 1}. 
The boundary of chain is the sum of the boundaries of its simplices, dc = 
J2aec^^' "^^^ types of chains are particularly important for us: the ones 
without boundary and the ones tha t bound. A k-cjcle is a /c-chain c with 
dc = 0. A k-boundary is a /c-chain c for which there exists a (/c + 1)-chain d 
with dd = c. Ck is the set of /c-chains and (Cfc,+) is the group of /c-chains. 
The zero of this chain group is the empty set. Let Zk and Bk be the set of 
k-cjcles and the set of /c-boundaries respectively. Then (Z/^, + ) is a subgroup 
of (Cfc, + ) , and (B/^, + ) is a subgroup of (Z/^, + ) . 

The k-th homology group is the quotient of the k-th cycle group divided 
by the k-th boundary group, H^ = Z^lBj^. The size of H^ is a measure of how 
many /c-cycles are not /c-boundaries. If Zk = B/^, then Hk is the trivial group 
consisting of only one element. Two /c-cycles are homologous if they belong 
to the same homology class, c ^ d if c + d G B/^. Equivalently, c ^ d if there 
exists e G Z/^+i with d = c-\- de. 
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The most useful parameters associated with the homology groups are their 
ranks, which have intuitive interpretations in terms of the connectivity of the 
space. Given a subset S of di group G, the subgroup called the linear hull of 
S (lines') consists of all ^a^x^, with Xi ^ S and â  G {0,1}. A basis is a 
minimal subset S that generates the entire group, i.e. linS' = G. The rank of 
G is the cardinality of a basis. If the group is the k-th homology group of a 
space, G = H/c, the rank is known as the k-th Betti number of thdit space, and 
is denoted by f3k = rankH/^. Since H^ = Z/c|B/c, we have 

rank Hk = rank Zk — rank Bk (6) 

In general, the 0-th Betti number (/3o) is the number of connected compo-
nents. Similarly, /3i gives the number of independent tunnels, and /32 gives the 
number of independent (enclosed) voids in the space. For example, consider a 
torus. There is a single connected component, and hence /3o = 1. There are two 
independent tunnels - one running inside the torus, and the other one is the 
hole in the middle. Hence /3i = 2. There is only one independent closed void, 
and hence (32 = 1. For the 2-sphere, the Betti numbers are /3o = l,/3i = 0, 
and /32 = 1. All higher Betti numbers are zero in both cases. 

4.1 Persistent Homology Groups 

We will study simplicial complexes for which f3i = 0 for i > 2 (details to follow 
in Section 5). Ideally, we would like to identify the most significant topological 
features of such a complex - the biggest connected components and the largest 
holes. At intermediate levels of growth, we would like to identify those features 
that are persistent - i.e. it takes a long time for them to disappear once they 
appear. Edelsbrunner, Letscher, and Zomorodian have formalized a notion of 
topological simplification within the framework of a filtration of the complex 
[10]. They defined the persistence of a non-bounding cycle as a measure of 
its life-time in the filtration. For each non-bounding cycle, they identify two 
simplices a'^ and a^ that respectively create and destroy the non-bounding 
cycle in the face of the filtration. Then, the persistence of this feature is defined 
as j — i — 1. For a simplicial complex K^^ the p-persistent k-th homology group 
is defined as 

Ht̂  = zl|(Bi+^nzi). (7) 

The p-persistent k-th Betti number of K^ is the rank of this homology group 

To measure the life-time of a non-bounding cycle, we find when its homology 
class is created and when its class merges with the boundary group. We will 
defer the description of the method for computing the topological persistences 
till later. Now we address the main issue facing us - how to define a simplicial 
complex that captures the geometry of three dimensional structural units of 
proteins, such that we could use the tools described above to characterize its 
topology? 
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5 Definition of Neighborhood 

The series of ce-complexes in the filtration of the Delaunay triangulation of the 
protein carries all the information about the geometry of the molecule. Using 
the filtration as a framework, we can analyze structural units or parts tha t 
could be characterized based on their topology, hence leading to the definition 
of domains (or structural motifs). To simplify the t reatment , we consider one 
Ca atom^ per residue instead of looking at the all-atom model. The local 
s tructure in proteins is captured by defining the neighborhood of each C^ 
atom and each consecutive CQ.-CQ. edge as the links of the respective simplices 
in the ce-complex of the protein at any ce-level. We will need certain definitions 
to achieve this task. The notation used is the same as tha t given in [7]. 
Let K be a simplicial complex. The closure of a subset L C K is the smallest 
sub-complex tha t contains L. 

CI L = {reK\r<aeL} (8) 

The star of a simplex r consists of all simplices tha t contain r , and the link 
consists of all faces of simplices in the star tha t do not intersect r . 

Str = {a eK\r <a} (9) 

Lkr = {a eCl Str\anr = 9} (10) 

The star is generally not closed, but the link is always a simplicial complex. 
Given any ce-complex K% we define the link of each vertex (or C^ atom) and 
each back-bone edge as follows [13, pg. 111]. 

Lk{vo) = {vi I (^o^i) e K'} U {{V1V2) I (^o^i^2) e K'} U 

{('^l'^2'^3) I ('̂ 0'̂ 1'̂ 2'̂ 3) e K^} 

Lk{voVi) = {v2 I ('yo'̂ 1'̂ 2) e K'} U {('U2'̂ 3) I ('^o'^i'^2'^3) e K'} (12) 

In words, the link of a C^ a tom consists of all other C^ atoms tha t form an 
edge with it, and all other CQ.-CQ. edges (not necessarily consecutive) tha t 
form a triangle with it, and all other triangles of three C^ atoms tha t form a 
tetrahedron with it. The link of a back-bone edge can be interpreted similarly. 
In Figure 4, We illustrate these definitions in two dimensions. 

Naturally, the links defined above will grow as the ce-complex grows. We 
can study the connectivity of the links of C^ atoms (and CQ.-CQ. edges) by 
finding the homology groups of the links, and observe how the connectivity 
changes with the growth of the ce-complex. We mention here tha t the ranks 
of the homology groups of the Ca and CQ.-CQ. links show specific pat terns of 
variation when we run down an ce-helix or a s trand in a /3-sheet. Such pat-
terns can be used to characterize specific structural domains. The drawback 

^ The reader should be careful not to confuse the a used in the context of an alpha 
carbon atom, with the a used in the context of an a-complex. 
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with this approach is tha t the vertex and edge links provide only "local" in-
formation. We now describe how we combine a series of back-bone C^ links 
and CQ.-CQ. links to effectively capture the neighborhood of a strand, thus 
providing important non-local information. 

Fig. 4. Alpha-complex in 2D with the back-bone shown in red. Link (shown in 
black) of a residue shown in green (left figure), and that of a back-bone edge shown 
in green (right figure). 

5.1 Link of a B a c k - b o n e S trand 

We denote a contiguous strand of back-bone residues and the intermediate 
edges by S. Formally, a s trand of n residues {C^ atoms) and n — 1 back-
bone edges is defined as the sequence of vertices and edges given by S = 
{'Ui,ei,'U2,... ,'̂ 71)7 where Vj-^i = Vj -\-1 and Cj = (vj^Vj-^i) for I < j < n. 
The link (or the boundary of neighborhood to be exact) of such a s t rand in an 
ce-complex K^ is defined as follows. 

Lk{S) = l[JLk{v)\ \ l[jStv\ (13) 
\ves J \ves J 

where Lk{v) and Stv are as defined in (11) and (9) respectively. By construc-
tion, the union of the links of all the vertices in S will include the links of the 
back-bone edges connecting them. The aim of defining the link of a strand 
in this way is to capture the non-trivial interactions of the s t rand with other 
parts of the protein. This is also the reason why we remove the elements of 
the star of each vertex in S from the union in (13). In practice, we are in 
fact even more careful in removing such "trivial" contacts (or interactions). 
For the strand S as defined above, it is natural to expect VQ to be included 
in the link of «S, as the back-bone edge CQ = ('^o^'^i) will be part of the a-
complex, for suflBciently large a. This observation follows from the fact tha t 
the consecutive CQ.-CQ. edges are among the smallest edges tha t appear in 
the Delaunay tessellation of the whole protein. Similarly, one would expect 
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Vn-\-i also to be included in Lk{S). Hence, we usually modify the link of S 
as follows: Lk{S) = Lk{S) \ S'^ where S' = {'UQ, eo, e^+i, '^n+i}- We illustrate 
the link of a s trand in two dimensions in Figure 5. 

Fig. 5. Link (shown in black) of a back-bone strand (shown in green), consisting 
of four residues and the three intermediate edges, in the dual complex of the union 
of disks in 2D. Note that the link shown here is the one before we remove S' from 
the union. 

The link Lk{S) is defined for each ce-complex K^. By construction, Lk{S) 
will itself be a simplicial complex. We denote the link of S defined for K^ 
by Lk'^{S). One can naturally consider a filtration of the link of S defined 
for the final Delaunay triangulation D (denoted by Lk^(S))^ in the form 
0 = Lk^(S) C ••• C Lk'^iS) = Lk^(S). Now we can observe the changes 
in the connectivity of Lk'^{S) as the complex grows. Specific pat terns in the 
connectivity of Lk{S) as a function of growth (a) could be used to characterize 
various structural domains. 

5.2 From Link t o "Tube" 

The definition of the link of a strand given in (13) efficiently captures all ter-
t iary interactions made by the strand with other parts of the protein. The 
topology of the link will indeed be characteristic of these interactions. Nev-
ertheless, there is a drawback with with this definition. Consider a strand 
tha t forms little or no contacts with the rest of the protein. The link defined 
in (13) will possibly be empty in this case. Isolated regions in the protein 
molecule where the strand merely bends on itself could typically lead to such 
a situation. The illustration in 2D shown in Figure 5 in fact displays such 
a strand. The strand of four residues (and the three intermediate back-bone 
edges) appears to be bending on itself. This information is not provided by 
the link (shown in black), as the interactions tha t define the link are located 
only at the ends of the strand. 

We propose the idea of defining the neighborhood of the s trand in the form 
of a "tube" around it. Imagine a tube tha t has the back-bone chain running 
through its center. If we thicken the tube uniformly, the parts of the tube 
around the s trand in question would come into contact with the surface of the 
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tube around other parts depending on the interactions between the strand 
and the other parts of the protein. In the case where the s trand does not form 
any interactions with other parts , the tube around it will also be isolated. At 
the same time, the tube would touch itself if the strand bends on itself, thus 
allowing us to characterize domains of this type. In order to implement this 
idea, we need to modify the representation of the simplicial complex. Consider 
a residue v' tha t is present in the link of the strand because it forms an edge 
e = {v^v') with a vertex v in the strand. Instead of adding v' to the link, we 
now introduce a new vertex at the mid-point of the edge e, and add the new 
point to the link of the strand. We can extend this idea to simplices of higher 
dimensions too. In a way, we are "shrinking" the original link towards the 
strand to define the "tube" around it. Since the new vertex added is not in 
S or S' ^ the tube might be non-empty even when the link is possibly empty 
due to v' ^ S or v' G S'. 

Formally, we perform a barycentric subdivision of the original alpha com-
plex K^. As the name suggests, we subdivide every edge in the middle. Every 
triangle is divided into six smaller triangles by drawing the medians. The 
division of te t rahedra can be understood in a similar fashion. This construc-
tion is used in the classification of closed surfaces [13, Chap. 5]. In general, 
given a simplicial complex K C R" ,̂ a subdivision of K is a simplicial com-
plex K^ C W^ with the property tha t \K-^\ = |K| , and given ai G K^, there 
exists a e K such tha t ai C a. Thus, the simplices of K^ are contained in 
the simplices of K, but K^ and K t r iangulate the same subset of R" .̂ The 
barycentric subdivision is one type of a subdivision. The barycentric subdivi-
sion of a simplex a could also be defined as the complex obtained by adding 
the barycenter (or centroid) of cr as a new vertex, and connecting it to the 
simplices in the barycentric subdivision of the faces [8, See Exercise II.8]. 
Since we are working with proteins, consecutive C^ atoms in the chain form 
the closest interactions. All other interactions, including the ter t iary contacts 
tha t we are trying to characterize, will appear in the ce-complex only after 
the back-bone edges. Hence, we modify the generic barycentric subdivision so 
tha t the back-bone edges are not subdivided. Figure 6 illustrates the proposed 
barycentric subdivision for proteins in 2D. 

Given the barycentrically subdivided complex K^^s ^^ ^^^ ce-complex K% 
we apply the definition of the link of s trand S given by (13) on i^^^ . The 
definitions of vertex and edge links (11) and (12) are also applied on i^^^ . 
The link tha t results from this procedure constitutes the "tube" of S. As 
illustrated in Figure 7, the tube carries all the required information, and will 
not be empty like the link defined earlier. As we had seen earlier, a filtration of 
the final tube around S can be maintained at each index of growth a. We can 
now study the topological connectivity of the tube around the s trand as the 
complex grows. Pat terns observed hence could be used to objectively define 
tert iary structural domains in proteins. 
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Fig. 6. Barycentric subdivision of a triangle. The edge on the left (in green) is a 
back-bone edge and hence is not subdivided. One new point is added in the middle 
of the other two edges, and two new edges are added from this new point to the 
original vertices in each case. A third point is added at the barycenter of the original 
triangle, and five new edges connecting this central point to the other points are 
added. Finally, the five smaller triangles are added in the interior. 

5.3 A R e t r a c t e d T u b e 

A final step of geometric modification needs to be performed on the tube. 
Once again, s trands tha t bend on themselves motivate the proposed change. 
As we have seen, the tube around the strand might touch itself at places. In 
this process, one or more simplices in the tube complex get identified with 
certain others. It is desirable if we could actually create a copy of any such 
simplex, and pull the copy just away from the original simplex, such tha t 
tube is not self-intersecting any more. The critical point in performing such a 
duplication is tha t we do not desire to alter the (topological) connectivity of 
the tube in this process. If we could achieve this goal, we would be left with 
an object tha t is topologically much nicer to handle than the original tube, 
but at the same time, it carries the exact connectivity information as before. 

We achieve this goal by retracting the original tube closer towards the 
strand S in the following way: every vertex in the tube tha t forms an edge 

Fig. 7. Barycentric subdivision of the original complex (left) and the "tube" (shown 
in black) of the strand (in green), now defined on the subdivided complex. 
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with a residue in S is retracted half-way towards the residue. This step auto-
matically retracts every triangle in the tube tha t forms a te trahedron with a 
residue in S. The case of an edge in the tube tha t forms a te trahedron with 
a back-bone edge in «S is a little tricky. Retracting the former edge half-way 
towards the edge in the strand will generate a trapezium. We subdivide this 
t rapezium into two triangles to make sure tha t the complex is tr iangulated. 
By construction, it can be seen tha t this t rapezium will lie in a plane, and 
hence it can be tr iangulated by adding either one of its two diagonals. The 
advantages of this transformation are illustrated in Figure 9. 

Fig. 8. Barycentric subdivision modified so that the retraction can be defined. 
Notice that all edges that have one vertex (end-point) as one of the residues are sub-
divided. Additional edges are added to triangulate any trapezium that gets added, 
as it happens here near the back-bone edge on the left. 

Wi th this additional simplification, the tube will always be a 2-manifold 
(or a surface) with boundary [15, §22], or a collection of disjoint 2-manifolds 
with boundary. In addition, the transformation of the tube described above 
can be shown to be a strong deformation retraction [18, §55]. These properties 
will be important for the method tha t we will employ in Sections 6 to calculate 
the ranks of homology groups as well as their topological persistences. 

6 Computing the Persistences 

We now turn our at tention towards the identification of the topologically 
persistent features of the tube complex. Our task is to pair the positive and 
negative simplices in the filtration of the tube complex such tha t each pair 
represents the life-time of a non-bounding cycle. For 0-cycles, we achieve this 
pairing while maintaining the U N I O N - F I N D da ta structure [4, Chap. 22]. 
When a negative edge comes into the filtration, we pair it with the younger 
vertex (of the two) if tha t is unpaired yet. If not, we pair the edge with tha t 
vertex in the set to which the younger vertex belongs to, which is the oldest 
(i,e. has the lowest ce-rank). At any point, each set is identified by the oldest 
unpaired vertex in tha t set. 
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Fig. 9. Retracted "tube" of the strand with four residues (left), and the tube for 
the strand if we add the residue in the middle of the complex to the strand (right), 
both shown in magenta. The links defined earlier without retraction will be the same 
for both the strands (shown in black dotted lines). 

The construction of the tube ensures tha t all triangles in the tube com-
plex are negative. Also, the tube complex will be a surface (2-manifold) with 
boundary, or a set of disjoint surfaces with boundary. Under these conditions, 
we can make use of the dual relationships between the negative triangles and 
the positive edges tha t create the 1-cycles. We maintain a U N I O N - F I N D for 
/3i's in the following way. The filtration is traversed in the reverse order of 
time. For each (negative) face, we add a SINGLE SET. Then, for each positive 
edge tha t comes in, we do the pairing just as in the case of /3o's, but taking 
care of the fact tha t the t ime scale is reversed now. 

Edelsbrunner et al. [10] achieve the pairings in all dimensions simultane-
ously by performing a cycle search algorithm on a linear array, which acts 
similar to a hash table [4, Chap. 12]. This algorithm works for any simplicial 
complex (need not necessarily be a surface with boundary) and has a running 
t ime of at most O(m^), where m is the total number of sub-complexes in 
the filtration (or the maximum ce-rank). The authors do suggest elsewhere, 
though, tha t the pairings can be achieved in near-linear t ime for the simpler 
case of surfaces, by appropriately modifying the incremental algorithm [5] 
for calculating Betti numbers. They have also provided the idea of using the 
dual graph to label faces when running the incremental algorithm. Borrowing 
these ideas, we achieve the pairings in almost constant t ime by using weighted 
merging for the union and pa th compression for find. Under these conditions, 
the amortized t ime per operation is 0{A~^{m)), where A~^{m) is the inverse 
of the Ackermann function, which grows very slowly [4, Chap. 22]. 

Care needs to be taken when treat ing the positive boundary edges while 
performing the union-find for the dual graph. We add a dummy dual vertex 
to represent the external space and assign it the dual rank of zero. A positive 
boundary edge in the original complex will create a dual edge tha t connects 
the dual vertex corresponding to the triangle bounded by the positive edge 
and the dummy external vertex. For a few of these dual edges, it will happen 
tha t the dual vertex (corresponding to the triangle) as well as the external 
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dummy vertex will both have been paired already. We treat such edges as 
special cases, and record a pairing between the dual edge and the external 
vertex. We call such a pairing a forced pairing. The number of forced pairings 
will be equal to the /3i of the fully grown complex under study. 

We present the details of our pairing algorithm on the following page, 
which is essentially a forward and a backward run of a modified incremental 
algorithm [5]. We assume the sequence of simplices crMor 0 < i < m is a filter, 
and the sequence of sub-complexes K^ = {a^\0 < j < i}, for 0 < i < TTI, is 
the corresponding filtration. Except in the case of forced pairings, each set 
will have one yet unpaired vertex, which will be the oldest in the set. The set 
is represented by this vertex, and the rank of the set (denoted by r{U) for 
set U) will be the rank of this vertex. We maintain two lists of pairings - Vo 
and 7^1, for /3o and /3i pairs respectively. The U N I O N - F I N D da ta structure 
supports three operations: 

FIND(ix): return the representative vertex of the set tha t contains vertex u. 

UNION(ix, 'u): substi tute U U V for U and V (represented by u and v); 
r{U U V) = mm{r{U),r{V)}. 

ADD(ix): add {u} as a new singleton set 

Once we have the lists of paired simplices, we can calculate the relative 
persistence of the feature represented by each pair (a'^^a^) as Xij = {j — i — 
l)/{m — io — l), where m is the maximum number of ce-ranks, and io is the rank 
at which the first simplex entered the tube complex. This measure evaluates 
the relative life-time of each feature as compared to the entire life-time of the 
tube complex. We list the relative persistences of /3o's and /3i's in descending 
order. Choosing a cut-off value for each of these sets of relative persistences, 
we will be left with a fixed small number N^ of A^ 's corresponding to the 
most persistent /3o's, and N^ of A^'s corresponding to the most persistent 
/3i's. We present the persistence signature of the structural motif represented 
by the tube complex of the strand S in question as 

Sign(5) = {Ar^„Ar^ , ;A? , . . . ,A«^^^;Al , . . . ,AJv ,J (14) 

7 A Basis Set of Motifs 

In order to capture all the non-local neighborhoods in a protein, we define 
the tube complex for a series of strands along the back-bone chain Si for 
i = 1, 2 , . . . , each of length \Si\ = L. Here, Si = {vi^ e^, ' ^ ^ + 1 , . . . , Vi-^L-i}- In 
other words, we slide a window of contiguous residues (of length L) along the 
back-bone chain, and study the neighborhood as defined by the tube complex 
for each strand. The lengths of L = 8 and L = 15 were chosen. The idea 
was to capture short-range as well as relatively long-range motifs. As we are 
going to see, the diversity of the basis motifs is higher for a higher value of L. 
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list^ P A I R I N G O 
V^=Vi = 0; 
for i = 0 to 771 — 1 do 

case cr* is a vertex u: 
ADD(ix); r{{u}) = i; 

case cr* is an edge uv: 
Ur = FIND(ix); Vr = F IND(v) ; 
if Ur 7̂  Vr 

mark a'^ as negative 
UNlON{ur^Vr); Po = ^0 U (argmax{r(ix^),r('U^)},cr*); 

else 
mark a'^ as positive 

endif 
endfor 
ADD(e) ; r({e}) = 0; 
for i = m — 1 to 0 do 

case cr* is a triangle (dual vertex u): 
ADD(ix); r{{u}) = m-i; 

case cr* is a positive edge (dual edge ix'U, dual rank m — i): 
Ur = FIND(ix); Vr = F IND(v) ; 

if Ur 7̂  '̂ r 
UNION(ix^,'U^); P i = P i U (argmax{r(ix^),r('U^)},cr*); 

else 
P i = P i U ( e , ( 7 ^ ) ; 

endif 
endfor 
r e t u r n ( P o , ^ i ) ; 

Algorithm 1: Pairing Algorithm 

The particular values were chosen after observing several protein structures 
for structural units. 

For every s t rand 5 , we derive the persistence signature (14). The cut-off 
values for /3o and /3i persistences were chosen as AQ = 0.43, Ai = 0.37 for 
L = 8, and AQ = 0.42, Ai = 0.35 for L = 15. We initially observed ah the 
relative persistences for each motif in several protein chains. The cut-offs were 
picked so tha t most significant topological features would be included in the 
motif, and at the same time, the total number of motifs to consider would 
not be too large. A diverse set of 1143 protein chains was selected. In the first 
run, we identified all possible recurrent motifs. A candidate motif from one of 
the chains was compared to all the motifs already observed (as maintained in 
the set of motifs) with the same number of persistent /3o and (3i (as denoted 
by Np^ and N^^^ in the signature (14)). If each relative persistence component 
was within an interval of 0.12 centered at the corresponding component of 
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one of the motifs in the set, the candidate motif was counted as an instance 
of the particular motif. If not, the candidate motif was added to the set as a 
new motif. The relative persistences for each motif was averaged over all the 
instances of the same. Care was also taken to ensure that adjacent similar 
motifs were not double counted. In several cases, the neighborhood of the 
strand changes very little when we slide it by one or two residues. Thus we 
obtain repeated occurrences of the same motif, which in fact should be counted 
as a single motif that is actually longer than 15 residues. Hence we count a 
repeated occurrence of the same motif only if we slide the strand by at least 
3 residues. 

We chose a lower cut-off of 5 for the number of occurrences of a motif in 
the whole set of protein chains in order to include it the basis set. In case no 
motif with a particular (Np^^Np^) occurred at least 5 times, we grouped all 
of them with the most frequent one among them (and averaged the relative 
persistences). After these simplifications, we obtained a basis motif set of 361 
motifs for 1/ = 8 and 938 motifs for L = 15. We discuss the salient features of 
these structural motifs in the following section. 

8 Features of Structural Motifs 

Conventionally, one looks at the protein as being made of local units such as 
alpha helices and strands from beta sheets combined together in 3D arrange-
ments. Typical units of such combinations are distinguished and given names 
such as a helix bundle, coiled-coil, or alpha-beta barrel. In our analysis, the 
motifs characterize arrangements in the neighborhood of such a unit (strand). 
Hence, a 15-residue portion of an alpha helix will form different motifs de-
pending on how the remaining parts of the protein are arranged around it. 
The values of Np^ and Np^ range from 0 up to 5 for the case of L = 8, and 
from 0 up to 7 for 1/ = 15. The two basis sets of motifs cover almost all 
possible 3D arrangements of strands of the respective lengths in proteins. 

Since /3o measures the number of connected components (section 4), it 
is straightforward to interpret Np^ can as the number of most prominent 
interactions that the strand makes with the other parts of the protein. Np^ 
gives the number of most prominent holes in the filtration of the tube complex, 
but it is not as easy to see how these persistent holes are created. When there 
are two or more adjacent dominant contacts (or interactions) of the strand 
with other parts, space in between two such contacts typically gives rise to a 
persistent hole in the tube complex. The strand bending on itself usually gives 
rise to holes - for example, a single turn of an alpha helix creates a hole in 
the tube complex. At the same time, depending on other tertiary interactions, 
the holes created due to the strand making helix turns might not be highly 
persistent. In other words, if we look at an isolated helical strand (which 
does not interact with any other parts of the protein), the significant holes 
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in the tube complex are the ones due to the helix turns. We illustrate these 
observations by examining a few motifs in detail. 
In Figure 10, we present instances of two {2,2} motifs. For the instance 
of motif 274, the strand appears to make two helix turns and then starts 
to bend on itself. There is significant interaction with two helical regions 
and another strand lying around it. On the other hand, there seems to be 
two prominent interactions made by the strand in the instance of motif 
287 with the beta strands on either side of it. The holes in this case are 
generated due to the strand bending on itself at one end. One would ex-
pect the holes in the latter case (of motif 287) to be less persistent than 
those in the former case, and the /3o persistences to follow the opposite 
trend. The sets of persistences show these relationships clearly - for motif 
274, they are {0.5096 0.4572}{0.4899 0.4060}, and for motif 287, they are 
{0.6655 0.4490}{0.3946 0.3681}. 

Fig. 10. Instances of L15 motifs 274 (in IBKR) on the left and 287 (in 3PRN) on 
the right, both with iV;3o = 2, iV;3i = 2. 

It typically takes a lot of structure to produce motifs with high Np^ and 
Np^. In the same line, strands that have limited interaction with other parts 
usually give rise to smaller numbers. A straight strand (as opposed to a helical 
one) lying on the outside of a protein (thus forming limited contact with the 
rest of the protein) forms motifs with low Np^ and Np^, as illustrated by the 
instance of the Lib motif 27 shown in Figure 11. The strand interacts with 
itself and does not produce any other significant contacts, thus producing 
a {1,0} motif. Similarly, the instance of L8 motif 162 shown in the figure 
produces loose interacts with three other parts of the protein, thus providing 
a {3, 0} motif. 

The instance of the Lib motif 891 shown in Figure 12 depicts the strand 
in the middle of several other portions of the protein, thus forming persis-
tent interactions and holes to give a high-numbered motif ({5,3}). A very 
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interesting high-numbered Lib motif instance is also shown here - tha t of the 
{7, 0} motif 863. The strand appears to lie far from the rest of the protein 
and seems to forms very little interaction. In fact, the tube complex will not 
become significant until the original alpha complex (of the entire protein) is 
grown sufficiently. The long range interactions appear at a later point of t ime 
(in the filtration). Since the lifetime of the tube itself is short, we get large 
relative persistences. One could guess tha t there is no chance of a hole in the 
tube here as all the interaction lies to one side of the strand. The end result 
is an instance of a {7, 0} motif. 

Fig. 11 . Instances of L15 motif 27 (in IICJ) with Nf3o = 1, iV/3i = 0 on the left 
and L8 motif 162 (in IKUH) with Nf3o = 3, Nf3^ = 0 on the right. 

Fig. 12. Instances of L15 motif 891 (in lEDE) with Nfs^ = 5, Nf3^ = 3 on the left 
and L15 motif 863 (in ITMY) with NfSo = 7, Nf3^ = 0 on the right. 
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We have analyzed instances of all the motifs in detail. It is necessary to 
view the motifs in 3D so that we could rotate the protein and clearly see the 
different interactions involved. Visualizations are obtained using the software 
package called VMD. The motifs corresponding to several popular tertiary 
structural units (such as helix bundle) have been identified. Given the choice 
of the relative persistence cut-offs and the length of the strand, we believe that 
these motifs provide a rigorous characterization of parts of proteins using their 
geometry and topology. 

9 The Next Step - Classification 

The structural characterization developed by us will prove useful to the biol-
ogist only when she could use the same to efficiently classify proteins, similar 
to the databases such as SCOP or CATH. The ultimate goal is to establish a 
correspondence between the structural motifs and the function of the proteins. 
We discuss preliminary progress made in this direction and provide ideas for 
achieving these goals. 

The first step towards developing a classification procedure is the definition 
of a distance metric between two proteins based on the structural motifs that 
they consist of. We could collect the number of instances of each LS and each 
1/15 motif in a particular protein. One would also expect the overall size of 
the chain given by the total number of residues to be an important factor. 
While the counts of the individual motifs are typically single-digit numbers, 
the number of residues is more than 250 on an average. Hence it makes sense 
to divide the residue numbers by a factor of 100 and then include it with 
the individual counts to obtain a 1300-vector (from 938 Lib motifs, 361 L8 
motifs, and the residue number) that represents each protein. We could then 
calculate the Euclidean distance or the 1-norm between two such vectors. We 
could naturally think of a way to cluster proteins using such a distance metric. 

To get an idea of the accuracy of this method, we considered pairs of 
proteins from three different families [2] - nuclear receptor ligand-binding do-
mains, serine proteases, and G-proteins. Each pair was distinct due to the func-
tion of the protein chains. The protein pairs considered were (2PRG,1A28), 
(1A0L,1AZZ), and (1EFU,5P21) from the three respective families. It was 
observed that there were certain motifs that occurred only in one of the fam-
ilies - the 1/15 motif 770 ({1,6}) occurred only in 1A28, and the Lib motif 
927 ({6, 3}) occurred only in 2PRG. We tried hierarchically clustering the six 
chains. The first family was clearly separated from the rest, but the hierarchy 
was not exact for the other two families. The distance metric used was the 
1-norm. 

As another preliminary experiment, we took a set containing ten chains 
from the SCOP class a (all alpha) and ten chains from the SCOP class b 
(all beta). A cluster analysis was able to successfully group them into two 
separate hierarchies, with just one chain being mis-classified. A few more 
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similar samples (of 20 chains with 10 each from class a and class b) could be 
classified with an average accuracy of 80%. 

In order to improve the accuracy of the method, it looks essential to add 
some information about how the individual motifs interact with each other. 
The order of the motifs along the back-bone chain could also be helpful in 
making the method more efficient. Defining when two motifs are in contact 
might not be straightforward. One idea might be to measure the common 
area of intersection between the corresponding tube complexes before the 
retraction step. If the area is above certain threshold, we could say that the 
two motifs are in contact at that particular level of growth. Another piece of 
information that could prove discriminative might be the joint-occurrences of 
pairs of motifs in various proteins. 
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Summary . Epilepsy is one of the most common brain disorders. At least 40 mil-
lion people or about 1% of the population worldwide currently suffer from epilepsy. 
Despite advances in neurology and neuroscience, approximately 25-30% of epileptic 
patients remain unresponsive to anti-epileptic drug treatment, which is the standard 
therapy for epilepsy. There is a growing body of evidence and interest in predicting 
epileptic seizures using intracranial electroencephalogram (EEG), which is a tool 
for evaluating the physiological state of the brain. Although recent studies in the 
EEG dynamics have been used to demonstrate seizure predictability, the question 
of whether the brain's normal and pre-seizure epileptic activities are distinctive or 
differentiable remains unanswered. In this study, we apply data mining techniques to 
EEG data in order to verify the classifiability of the brain dynamics. We herein pro-
pose a quantitative analysis derived from the chaos theory to investigate the brain 
dynamics. We employ measures of chaoticity and complexity of EEG signals, includ-
ing Short-Term Maximum Lyapunov Exponents, Angular Frequency, and Entropy, 
which were previously shown capable of contemplating dynamical mechanisms of 
the brain network. Each of these measures can be used to display the state transi-
tion toward seizures, in which different states of patients can be classified (normal, 
pre-seizure, and post-seizure states). In addition, optimization and data mining tech-
niques are herein proposed for the extraction of classifiable features of the brain's 
normal and pre-seizure epileptic states from spontaneous EEG. We use these features 
in study of classification of the brain's normal and epileptic activities. A statistical 
cross validation is implemented to estimate the accuracy of the brain state classifica-
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tion. The results of this study indicate that it may be possible to design and develop 
efficient seizure warning algorithms for diagnostic and therapeutic purposes. 

K e y words: Chaos Theory, Data Mining, Optimization, Electroencephalo-
gram, Classification, Seizure prediction 

1 Introduction 

Epilepsy is the second most common serious brain disorder after stroke. World-
wide, at least 40 million people or 1% of population currently suffer from 
epilepsy. Epilepsy is a chronic condition of diverse etiologies with the com-
mon symptom of spontaneous recurrent seizures, which is characterized by 
intermittent paroxysmal and highly organized rhythmic neuronal discharges 
in the cerebral cortex. Seizures can temporarily disrupt normal brain func-
tions such as motor control, responsiveness and recall, which typically last 
from seconds to a few minutes. There is a localized structural change in neu-
ronal circuitry within the cerebrum which produces organized quasi-rhythmic 
discharges in some types of epilepsy (i.e., focal or partial epilepsy). These 
discharges then spread from the region of origin (epileptogenic zone) to acti-
vate other areas of the cerebral hemisphere. Nonetheless, the mechanism by 
which these fixed disturbances in local circuitry produce intermittent distur-
bances of brain function is not well comprehended. The development of the 
epileptic s tate can be considered as changes in network circuitry of neurons 
in the brain. When neuronal networks are activated, they produce changes in 
voltage potential, which can be captured by an electroencephalogram (EEC) , 
which is one of the most effective tools for evaluating the physiological s tate 
of the brain. These changes are refiected by wriggling lines along the t ime axis 
in a typical E E C recording. A typical electrode montage for E E C recordings 
in our s tudy is shown in Figure 1. The 10-sec E E C profiles during the normal 
(inter-ictal) and pre-seizure (pre-ictal) periods of patient 1 are illustrated in 
Figures 2 (A) and 2 (B). The E E C onset of a typical epileptic seizure is illus-
t ra ted in Figure 2 (C). Figure 2 (D) shows the post-seizure (post-ictal) s tate 
of a typical epileptic seizure, respectively. 

There is a growing body of evidence and interest in predicting epileptic 
seizures using intracranial E E C . During the past decade, recent studies in the 
E E C dynamics have been used to demonstrate seizure predictability. Those 
studies include discoveries previously reported by our group [1, 2, 6, 11, 7, 5, 
9, 16], confirmed by several other groups [3, 12, 17, 13, 14], which indicate 
tha t it may be possible to predict the onset of epileptic seizures based on 
analysis of the brain electrical activity through E E C signals. Such analysis 
was motivated by mathematical models used to analyze multi-dimensional 
complex systems (e.g., neuronal network in the brain) based on the chaos 
theory and optimization techniques. The results of those studies demonstrated 
tha t seizures can no longer be regarded as a purely stochastic phenomenon but 
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Fig. 1. Inferior transverse views of the brain, illustrating approximate depth and 
subdural electrode placement for EEG recordings are depicted. Subdural electrode 
strips are placed over the left orbitofrontal (LOF), right orbitofrontal (ROF), left 
subtemporal (LST), and right subtemporal (RST) cortex. Depth electrodes are 
placed in the left temporal depth (LTD) and right temporal depth (RTD) to record 
hippocampal activity. 

Fig. 2. Twenty-second EEG recordings of (A) Normal Activity (B) Pre-Seizure 
Activity (C) Seizure Onset Activity (D) Post-Seizure Activity from patient 1 ob-
tained from 32 electrodes. Each horizontal trace represents the voltage recorded 
from electrode sites listed in the left column (see Figure 1 for anatomical location 
of electrodes). 
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they are essentially the refiecting transitions of progressive changes of hidden 
dynamical patterns in EEG. Such transitions have been shown to be detectable 
through the quantitative analysis of the brain dynamics [1, 2, 16, 15]. 

In spite of promising signs of seizure predictability, epilepsy research is still 
far from being complete. While the previous studies claim that pre-seizure 
transitions are detectable, the existence of pre-seizure transitions remains to 
be further investigated with respect to its specificity, that is if it only re-
fiects epileptic activity or it also occurs with other brain activity. In addition, 
the fundamental question, whether the brain's normal and pre-seizure epilep-
tic activities are distinctive or differentiable, remains unanswered. In order to 
verify that seizures are predictable, one would have to demonstrate substantial 
evidence that the brain's normal activity differs from the brain's pre-seizure 
epileptic activity. This may require a well-trained neurologist who "eyeballs" 
the direct continuous long-term (over 10 days in duration) EEG recordings 
over time; however, this laborious task is not guaranteed for the success be-
cause of the unrecognizable hidden signatures of the brain's abnormal activity. 

In this research, we employ quantitative measures of the brain dynamics, 
including Short-Term Maximum Lyapunov Exponents, Angular Frequency 
and Entropy, to contemplate hidden mechanisms of the state transition to-
ward seizures. The study of the brain dynamics is motivated by the chaos 
theory, in which understanding the brain dynamics is proved capable of pro-
viding insights about different states of brain activities refiected from patho-
logical dynamical interactions of the brain network [8, 4, 7]. Especially, these 
three measures were previously shown capable of contemplating dynamical 
mechanisms of the brain network [1]. Based on the quantification of the brain 
dynamics, we herein apply optimization and data mining techniques to the 
study in the classifiability of the brain's normal and epileptic activities. These 
techniques are proposed for the extraction of classifiable features of the brain's 
normal and pre-seizure epileptic states from spontaneous EEG. In fact, the 
classifiable features are the characteristics of the brain dynamics, which are 
capable of refiecting the signature of the pre-seizure epileptic activity during 
the brain's abnormal episodes. We use these features in the study of the clas-
sification of the brain's states (normal, pre-seizure, and post-seizure states). 
A statistical cross validation is implemented to estimate the accuracy of the 
brain state classification. This framework is an initial proof of concept inves-
tigations, which is a necessary first step in differentiating the brain's normal 
and pre-seizure epileptic activities. 

The organization of the succeeding sections of this chapter is as follows. 
The background including quantification of the brain dynamics and the mea-
sures of the brain's chaoticity will be discussed in Section 2. In Section 3, 
the experimental design, the characteristics of the EEG data, the statistical 
analysis, the study of multi-parameter in multi-dimensional system, and the 
statistical cross validation will be described. The results on the statistical 
evaluation and the performance characteristics of the proposed classification 
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method will be addressed in Section 4. The concluding remarks will be dis-
cussed in Section 5. 

2 Quantification of Brain Dynamics 

Since the brain is a nonstationary system, algorithms used to estimate mea-
sures of the brain dynamics should be capable of automatically identifying and 
appropriately weighing existing transients in the data. In this study, we divide 
EEG signals into sequential epochs (non-overlapping windows) to properly ac-
count for possible nonstationarities in the epileptic EEG. For each epoch of 
each channel of EEG signals, we quantify the brain dynamics by applying 
measures of chaos. Measures of chaos, employed to quantify the chaoticity of 
the at tractor , include Lyapunov exponents. Angular Frequency, and entropy. 
In a chaotic system, orbits tha t originate from similar initial conditions or 
nearby points in the phase space diverge exponentially in expansion process. 
The entropy measures the uncertainty or information about the future state of 
the system, given information about its previous states in the phase space. The 
Lyapunov exponents and angular frequency measure the average uncertainty 
along the local eigenvectors and phase differences of an at t ractor in the phase 
space, respectively. In fact, the rate of divergence is an important aspect of 
the system dynamics and is reflected in the value of Lyapunov exponents and 
dynamical phase. Next, we will give a short overview of mathematical mod-
els used in the estimation of the maximum Lyapunov exponent, the angular 
frequency, and the entropy. 

In the study of the brain dynamics, the initial step in analyzing the dy-
namical properties of EEG signals is to embed it in a higher dimensional space 
of dimension p, which enables us to capture the behavior in t ime of the p vari-
ables tha t are primarily responsible for the dynamics of the EEG. We can now 
construct p-dimensional vectors X ( t ) , whose components consist of values of 
the recorded EEG signal x(t) at p points in t ime separated by a t ime delay. 
The construction of the embedding phase space from a da ta segment x(t) of 
duration T is performed using the method of delays. The vectors Xi in the 
phase space are constructed as: 

X, = {x{U),x{U + r ) . . . x{U + (p - 1) * r ) ) (1) 

where r is the selected t ime lag between the components of each vector in the 
phase space, p is the selected dimension of the embedding phase space, and 
t, G [ l , T - ( p - l ) r ] . 

2.1 E s t i m a t i o n of M a x i m u m L y a p u n o v E x p o n e n t 

The method for estimation of the Short Term Maximum Lyapunov Exponent 
(STLmax) for nonstationary da ta (e.g., EEG time series) is previously ex-
plained in [4, 7, 18]. In this chapter, we will only give a short description and 
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basic notation of our mathematical models used to estimate STLmax- First, 
let us define the following notation. 

• X{ti) is the point of the fiducial trajectory (/)t(X(to)) with t = ti, X{to) = 
(x(to), . . . , x(to + (p—l)*r)), and X{tj) is a properly chosen vector adjacent 
to X{ti) in the phase space. 

• SXij{0) = X{ti) —X(tj) is the displacement vector at t ,̂ that is, a pertur-
bation of the fiducial orbit at t^, and 5Xi^j{At) = X(t^ + At) — X(tj + At) 
is the evolution of this perturbation after time At. 

• ti = t^ ^ {i — 1) ^ At and tj = to + (j — 1) * At^ where i G [1, Na] and 
JG [1,A ]̂ with j V i 

• At is the evolution time for SXi^j^ that is, the time one allows SXi^j to 
evolve in the phase space. If the evolution time At is given in seconds, 
then L is in bits per second. 

• to is the initial time point of the fiducial trajectory and coincides with 
the time point of the first data in the data segment of analysis. In the 
estimation of L, for a complete scan of the attractor, to should move within 
%At\. 

• Na is the number of local Lmax''^ that will be estimated within a duration 
T data segment. Therefore, if Dt is the sampling period of the time domain 
data, T ={N - 1 )A = NaAt + (p - l ) r . 

Let L be an estimate of the short term maximum Lyapunov exponent, 
defined as the average of local Lyapunov exponents in the state space. L can 
be calculated as follows. 

with 

(5X , , , ( 0 )=X( tO-X( t , ) (3) 

5X,^j{At) = X{t, + At) - X{tj + At). (4) 

Per electrode, we computed the STL^ax profile using the method proposed 
by lasemedis et al. [4], which is a modification of the method by Wolf et al. 
[18]. A modification of Wolf's algorithm is necessary to better estimate of 
STLjnax iri small epochs that include transients, such as inter-ictal spikes. 
The modification is primarily in the searching procedure for a replacement 
vector at each point of a fiducial trajectory. For example, in our analysis of the 
EEG, we found that the crucial parameter of the L^ax estimation procedure, 
in order to distinguish between the pre-ictal, the ictal and the post-ictal stages, 
is the adaptive estimation in time and phase space of the magnitude bounds of 
the candidate displacement vector to avoid catastrophic replacements. Results 
from simulation data of known attractors have shown the improvement in the 
estimates of L achieved by using the proposed modifications [4]. 
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Fig. 3. STLmax profile over 2.5 hours estimated from an EEG signal recorded at 
RTD — 2 (the epileptogenic hippocampus of patient 1). A seizure started at the 
vertical dashed line. 

An example of a typical STLmax profile estimated from an EEG signal 
recorded at RTD —2 (the epileptogenic hippocampus of patient 1) over time is 
given in Figure 3. The estimation of the L^ax values was made by dividing the 
signal into non-overlapping segments of 10.24 sec each, using p = 7 and r = 20 
msec for the phase space reconstruction. In the pre-seizure state, one can see 
a trend of STLmax toward lower values over the whole pre-seizure period. 
This phenomenon can be explained as an attempt of the system toward a new 
state of less degrees of freedom long before the actual seizure [8]. 

2.2 Estimation of Dynamical Phase (Angular Frequency) 

Similar to the estimation of Lyapunov exponents, the estimation of the angular 
frequency is motivated by the representation of a state as a vector in the state 
space. The angular frequency is merely an average uncertainty along the phase 
differences of an attractor in the phase space. 

First, let us define the difference in phase between two evolved states X{ti) 
and X{ti + At) as A^i [10]. Then, denoting by {A^) the average of the local 
phase differences A^i between the vectors in the state space, we have: 
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where N^ is the total number of phase differences estimated from the evolution 
of X{ti) to X{ti -\- At) in the state space, according to: 

Then, the average angular frequency i? is: 

i? = ^ • Z\^. (7) 
At ^ ' 

If At is given in sec, then i? is given in rad/sec. Thus, while STL^aax 
measures the local stability of the state of the system on average, i? measures 
how fast a local state of the system changes on average (e.g. dividing i? by 27r, 
the rate of the change of the state of the system is expressed in sec~^ = Rz). 

Fig. 4. A typical Q, profile before, during, and after an epileptic seizure, estimated 
from an EEG signal recorded at electrode RTD — 2 (the epileptogenic hippocampus 
of patient 1). Note that this segment of EEG signals is the same as the one used to 
estimate the STLmax profile in Figure 3, where the seizure occurred at the moment 
denoted by the vertical dashed line. 

An example of a typical i? profile estimated from an EEG signal recorded 
at RTD — 2 (the epileptogenic hippocampus of patient 1) over t ime is given 
in Figure 4. The values are estimated from a 150-minute-long EEG sample 
recorded from an electrode located in the epileptogenic hippocampus. This 
segment of EEG signals is the same as the one used to estimate the STL^^ax 
profile in Figure 3. The EEG sample includes a seizure tha t occurs at the mo-
ment corresponding to 124 minutes of recording. The state space was recon-
structed from sequential, non-overlapping EEG da ta segments of 2048 points 
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(sampling frequency 200 Hz^ hence each segment of 10.24 sec in duration) 
with p = 7 and r = 4, as for the estimation of STL^ax profiles [10]. The pre-
ictal, ictal and postictal states correspond to medium, high and lower values 
of i? respectively. The highest i? values were observed during the ictal period, 
and higher i? values were observed during the preictal period than during the 
postictal period. This pat tern roughly corresponds to the typical observation 
of the decrease in values of the STL^ax profile. The explanation is tha t the 
higher rate of change of the trajectory in the phase space, the lower change in 
direction (angular frequency) of the trajectory. On the other hand, while the 
rate of change is low, the higher angle (more diverse directions) the trajectory 
can change. 

2.3 E n t r o p y and Informat ion 

One of the key concepts in information theory is tha t information is conveyed 
by randomness. Basically, information is defined, in some mathematical sense, 
as knowledge used to identify structure of the data. It is not difficult to make 
the connection between randomness and information. The information is re-
lated somewhat to the degree of surprise at finding out the answer. In fact, the 
information can be used to measure the amount of pat tern or sequence hidden 
in the data. On the other hand, entropy can thus be viewed as a self-moment 
of the probability, in contrast to the ordinary moments. However, the entropy 
also measures the degree of surprise tha t one should feel upon learning the re-
sults of a measurement. It counts the number of possible states, weighted each 
with its likelihood. The negative of entropy is sometimes called information. 

The entropy can also be considered as the average uncertainty provided by 
a random variable x. For example, the entropy measures average over quanti-
ties tha t provide a different kind of information than the ordinary moments. 
In fact, it is a measure of the amount of information required on the average 
to describe the random variable x. 

The entropy H{p) of a probability density p is 

H{p) = — p{x)\ogp{x)dx. (8) 

The entropy of a distribution over a discrete domain is 

^(P) = -"^Pi^ogpi. (9) 
i 

The entropy of EEG da ta describes the extension to which the distribution 
is concentrated on small sets. If the entropy is low, then the distribution is 
concentrated at a few values of x. It may, however, be concentrated on several 
sets from each other. Thus, the variance can be large while the entropy is small. 
The average entropy explicitly depends on p. The entropy can be writ ten as 

H{p) = -< logp{x) > . (10) 
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As we mentioned, the information is referred to as the negative of entropy 
writ ten as 

I{p) = -H. (11) 

For our purposes the distinction between the two is semantic. Entropy is 
most often used to refer to measures, whereas information typically refers 
to probabilities. Specifically to the study of the brain dynamics, we use the 
entropy to measure the information hidden in the EEG data. In Figure 5, a 
example of the entropy profile from EEG recordings of electrode RTD — 2 
(the epileptogenic hippocampus of patient 1) over 2-hour interval including 
one seizure are illustrated. 

Fig. 5. Plot of the Entropy over time derived from an EEG signal recorded at 
RTD — 2 (the epileptogenic hippocampus of patient 1). Note that this segment of 
EEG signals is the same as the one used to estimate the STLmax profile in Figure 3 
and the phase profile in Figure 4, which the seizure occurred at the vertical dashed 
line. 

3 Materials and Methods 

3.1 E x p e r i m e n t a l D e s i g n 

The present s tudy was undertaken to determine whether it is possible to dis-
criminate different states of the brain's activity (normal, pre-seizure, and post-
seizure) by employing quantitative techniques which continuously analyzes the 
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STLjnaxi phase, and entropy profiles. To do so, we develop a novel statisti-
cal classification approach based on optimization and da ta mining techniques. 
The primary goal of this s tudy is to develop a novel quanti tat ive approach 
capable of capturing hidden signatures of the pre-seizure epileptic activity and 
distinguishing tha t from the normal activity. These hidden signatures can be 
considered as a seizure pre-cursor. The results of this study can be extended 
to the development of a new therapeutic approach, which is used to provide 
an early seizure warning as well as a seizure susceptibility period detection. 

In this framework, we first calculate measures of chaos from EEG signals 
using the methods described in the previous section. We will then test our 
hypothesis whether the measures of chaos can be used as features to discrim-
inate different states of the brain dynamics. Our hypothesis can be stated as 
follow: "The EEG dynamics from the same brain state should be more similar 
than tha t from the different brain states". In other word, the characteris-
tics of the brain dynamics during the brain's normal activity should be more 
similar to each other than the brain's pre-seizure epileptic activity, and vice 
versa. We also postulate tha t the brain functional units should execute differ-
ent activities during the three states of a patient. To classify different brain 
states, we propose a statistical T-test as a statistical distance between two 
EEG data. Applying the T-test, a leave-one-out statistical cross-validation 
will be implemented to evaluate our classification schemes and validate our 
hypothesis. 

3.2 D a t a s e t 

In this study, we test the aforementioned hypothesis in the human subject 
in which long-term (3 to 14 days in duration) multi-channel intracranial 
EEG recordings were obtained from bilaterally, surgically implanted micro-
electrodes in the hippocampus, temporal and frontal lobe cortexes of 3 epilep-
tic patients with medically intractable temporal lobe epilepsy. The recordings 
were obtained as a part of a pre-surgical clinical evaluation. Each record in-
cluded a total of 28 to 32 intracranial electrodes (8 subdural and 6 hippocam-
pal depth electrodes for each cerebral hemisphere). These EEG recordings 
were viewed by two independent electroencephalographers to determine the 
number and type of recorded seizures, seizure onset and end times, and seizure 
onset zones. From our EEG recordings, for an individual patient, we divide 
the EEG da ta into 3 groups: 1) normal state, 2) pre-seizure state, and 3) 
post-seizure state. The normal states of EEG da ta are chosen such tha t the 
recordings are far away from seizures (at least 8 hours) and the patient 's med-
ical conditions are at a steady state. The pre-seizure epileptic states of EEG 
da ta are chosen so tha t the recordings are within the 30-minute interval be-
fore seizures. In addition, we are also interested in the brain recovery period 
(post-seizure); therefore, the post-seizure states of EEG data are chosen such 
tha t the recordings are in the 30-minute interval after seizures. 
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The characteristics of the patients and the test recordings are outlined 
in Figure 6. For individual patient, we randomly select 200 samples (epochs) 
from the group of normal s tate EEC ' s . Each epoch is 5 minutes in length. 
Note tha t in this analysis we only consider clinical seizures and un-clustered 
seizures. From the da ta set, we select 22, 7, and 15 seizures in patients 1, 2, 
and 3, respectively. For every seizure, we randomly select 3 epochs of pre-
seizure EEG da ta and 3 epochs of post-seizure EEG data. In other words, 66, 
21, and 45 epochs of pre-seizure EEG da ta are selected for patients 1, 2 and 
3, respectively. Similarly, 66, 21, and 45 epochs of post-seizure EEG da ta are 
selected in patient 1,2, and 3, respectively. 

Patient ID 

1 
2 
3 

Total 

Gender 

F 
F 
M 

Onset 
region 

RH 
RH 
RH 

Age 
(years) 

41 
45 
29 

Seizure 
types 

CP 
CP,SC 
CP,SC 

Duration of 
recordings 

(days) 

9.06 
3.63 
6.07 

18.76 days 

Number 
of 

seizures 

24 
9 
19 

52 

Inter-seizure 
interval range 

(hours) 

0.30 ~ 14.49 
0.52 ~ 47.93 
0.32 ~ 70.70 

0.30 ~ 70.70 

average inter-
seizure interval 

(hours) 

3.62 
8.69 
6.61 

5.59 

Fig. 6. Data characteristics. Onset region: LH, Left Hippacampal; RH, Right Hip-
pacampal; RF, Right Orbitofrontal. Seizure types: CP, Complex Partial; SC, Sub-
clinical 

3.3 S t a t i s t i c a l D i s t a n c e 

In this section, we propose a similarity measure used to estimate the difference 
of the EEG da ta between different groups of the brain states. We employ the 
T-index as a measure of statistical distance between two epochs of measures of 
chaos. In this section, we will use the notation of measures of chaos as STL^^ax 
to simplify the mathematical models. Note tha t , in practice, we do not only use 
these equations to calculate the statistical distance of two STL^ax samples 
but also use in the case of phase and entropy samples. The T-index at t ime t 
between electrode sites i and j is defined as: 

Tij{t) = VNx \E{STLr, STL max,J }IM,.W (12) 

where E{-} is the sample average difference for the STLj^ 
estimated over a moving window Wt{\) defined as: 

STL max,J 

Wt{\) \ 0 i if A ^ [t-N -l,t], 

where N is the length of the moving window. Then, (Tij{t) is the sample 
s tandard deviation of the STL^ax differences between electrode sites i and 
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j within the moving window Wt{X). The thus defined T-index follows a t-
distribution with Â  — 1 degrees of freedom. 

3.4 Cross -Val idat ion 

In this research, we propose leave-one-out statistical cross-validation to prove 
our main hypothesis. In general, cross-validation can be seen as a way of 
applying partial information about the applicability of alternative classifica-
tion strategies. In other words, cross-validation is a method for estimating 
generalization error based on "resampling". The resulting estimates of gen-
eralization error are often used for choosing among various decision models 
(rules). Generally, people refer cross validation to k-fo\d cross validation. In 
k-fo\d cross-validation, the da ta are divided into k subsets of (approximately) 
equal size. The decision models are trained k times, in which one of the sub-
sets from training is left out each time, by using only the omitted subset to 
compute whatever error criterion interests you. If k equals the sample size, 
this is called "leave-one-out" cross-validation. 

In our study, we have already had the decision rule in classifying the brain 
states. Therefore, we do not have any decision models to train. In fact, we 
can only apply cross-validation to simply estimate the generalization error of 
our decision rule and validate our hypothesis. Since we consider the estimate 
of statistical distance between EEG epochs as our decision rule, we call this 
technique a "statistical cross-validation". Our decision rule is described as 
follows. 

Fig. 7. Cross validation for classification of an unknown-state EEG epoch "A" by 
calculating the statistical distances between "A" and normal, "A" and pre-seizure, 
and "A" and post-seizure 

Given an unknown-state epoch of EEG signals "A", we calculate the av-
erage statistical distance (T-index) between "A" and the groups of normal. 
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pre-seizure, and post-seizure EEG data. Per electrode, we will then obtain 
3 T-index values, which are the average mean statistical distances between 
the epoch "A" and the group of normal, pre-seizure, and post-seizure, respec-
tively (see Figure 7). The EEG epoch "A" will be classified in the group of 
EEG data (normal, pre-seizure, and post-seizure) tha t yields the minimum T-
index value based on 28-32 electrodes. Since our classifier has 28-32 decision 
inputs, we proposed different classification schemes which are based on differ-
ent electrodes and combination of dynamical measures. For all electrodes, the 
classification is based on: 1) average scheme 2) voting scheme. This study will 
indicate the dynamical measures tha t are most useful in classifying different 
states of the brain. In other words, the proposed framework can be further 
used to study the feature selection of the brain dynamics. Next, we will discuss 
the two proposed classification schemes tha t we employ in this study. 

3.5 Class i f icat ion S c h e m e s 

For multi-dimensional systems, such as brain, we have more than one at-
t r ibute used for decision making or classification. In our case, the at t r ibutes 
are electrode sites and dynamical measures. As we mentioned in the previ-
ous section, we apply three measures of chaos derived from 28-32 electrodes, 
which are considered to be at t r ibutes in the classification. In this framework, 
we treat different classification schemes as combinations of measures of chaos. 
For instance, one of the classification schemes can be the combination of L^^ax 
and dynamical phase. Another example can be the combination of L^ax and 
entropy. In addition, we still have 26-30 at t r ibutes used in decision making. 
We propose two schemes to incorporate these at tr ibutes; namely, averaging 
scheme and voting scheme. The averaging scheme is one of the most intu-
itive schemes used to incorporate different at t r ibutes (considered as outputs) . 
The voting scheme is a common technique used for construction of reliable 
decisions in critical systems. For each electrode, an output is separately calcu-
lated and is sent to the voter (see Figure 8). Each version for each electrode is 
usually developed independent of other versions. Based on the 30 electrodes 
(outputs) , the voter then estimates the correct output . The design of the voter 
is essential to the reliable functioning of the system. Majority voting selects 
action with maximum number of votes. 

4 Results 

To evaluate the performance characteristics of our statistical cross-validation 
technique, we calculate the sensitivity and specificity for each of the proposed 
classification schemes. In order to select the optimal classification scheme, 
we propose the receiver operating characteristics (ROC) analysis, which is 
derived from the detection theory. Basically, the sensitivity and the specificity 
of each classification scheme for each combination of dynamical measures are 
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Electrode 1 
• 

Electrode 2 
^ 

Electrode 3 
• 

Electrode 30 
• 

Classifier 1: 
Decision Rules 

Classifier 2: 
Decision Rules 

Classifier 3: 
Decision Rules 

Classifier 30: 
Decision Rules 

1 ^ 

, /yo V 
r 

ter 
V Estimated 
/ output 

Fig. 8. Voting scheme of 30 electrodes (votes) 

calculated. Based on the detection theory, optimal scheme is selected such 
that it is closest to the ideal scheme (100% sensitivity and 100% specificity). 
The performance evaluation and the results on each of classification schemes 
will be discussed in more details later in this section. 

4.1 Performance Evaluation of Classification Schemes 

To evaluate the classifier, we categorize the classification into two classes, 
positive and negative. Then we consider four subsets of classification results, 
1. True positives (TP): True positive answers of a classifier denoting correct 
classifications of positive cases; 2. True negatives (TN): True negative answers 
denoting correct classifications of negative cases; 3. False positives (FP): False 
positive answers denoting incorrect classifications of negative cases into the 
positive class; 4. False negatives (FN): False negative answers denoting incor-
rect classifications of positive cases into the negative class. To better explain 
the concept of the evaluation of classifiers, let us consider in the case of the 
detection of abnormal data (see Figure 9). A classification result was con-
sidered to be true positive if we classify an abnormal sample as an abnormal 
sample. A classification result was considered to be true negative if we classify 
a normal sample as a normal sample. A classification result was considered 
to be false positive when we classify a normal sample as an abnormal sample. 
A classification result was considered to be false negative when we classify an 
abnormal sample as a normal sample. 
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Predict 

Abnormal Normal 

Actual 
Abnormal 

Normal 

True Positive 

False Positive 

False Negative 

True Negative 

Fig. 9. Evaluation of classification results 

In medical community, two classification accuracy measures, sensitivity 
and specificity, are usually employed. Sensitivity measures the fraction of pos-
itive cases tha t are classified as positive. Specificity measures the fraction of 
negative cases classified as negative. The sensitivity and specificity are defined 
as follows: 

Sensitivity = TP/{TP + FN), 

Specificity = TN/{TN + FP). 

In fact, sensitivity can be considered as the probability of accurately clas-
sifying EEG samples in the positive case. Specificity can be considered as 
the probability of accurately classifying EEG samples in the negative case. 
In general, one always wants to increase the sensitivity of classifiers by at-
tempting to increase the correct classifications of positive cases (TP) . On the 
other hand, false positive rate can be considered as 1-Specificity which one 
wants to minimize. In order to decrease the false positive rate, we should t ry 
to decrease the number of incorrect classifications of negative cases into class 
positive (FP) . 

4.2 O p t i m a l Class i f icat ion S c h e m e 

In the algorithm, we have different classification scheme including average and 
voting schemes for dynamical measures, which need to be optimized. In order 
to find the optimal scheme, we employed ROC analysis, which is used to indi-
cate an appropriate trade-off tha t one can achieve between the false positive 
rate (1-Specificity, plotted on X-axis) tha t needs to be minimized, and the de-
tection rate (Sensitivity, plotted on Y-axis) tha t needs to be maximized. For 
individual patient, the optimal classification scheme can be identified by se-
lecting the scheme whose performance is closest to the ideal point (sensitivity 
= 1 and specificity = 1); tha t is, the scheme closest to the top left hand corner 
on ROC plot will be selected. An example of a ROC plot in patient 1 was 
illustrated in Figure 10, in which the scheme tha t incorporates the average of 
Ljnax and Entropy is the optimal scheme. The performance characteristics of 
the optimal scheme for individual patient are listed in Table 1. 

Figure 11 illustrates the classification results of the optimal scheme for pa-
tient 1 (Average Lmax & Entropy). The probabilities of correctly predicting 
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Fig. 10. ROC Plot for all classification schemes in Patient 1 

Table 1. Performance characteristics of the optimal classification scheme for indi-
vidual patient 

Patient Sensitivity Specificity Optimal Scheme 
90.06% 
77.27% 
76.21% 

95.03% Average Lmax & Entropy 
88.64% Average Lmax & Phase 
88.10% Average Lmax & Phase 

pre-seizure, post-seizure, and normal EEC's are about 90%, 81%, and 94%, re-
spectively. Figure 12 illustrates the classification results of the optimal scheme 
for patient 2 (Average Lmax & Phase). The probabilities of correctly predict-
ing pre-seizure, post-seizure, and normal EEC's are about 86%, 62%, and 
78%, respectively. Figure 13 illustrates the classification results of the optimal 
scheme for patient 3 (Average Lmax & Phase). The probabilities of correctly 
predicting pre-seizure, post-seizure, and normal EEC's are about 85%, 74%, 
and 75%, respectively. Note that in practice classifying pre-seizure and nor-
mal EEC's is more meaningful than classifying post-seizure EEC's since the 
post-seizure EEC's can be easily observed (visualized) after the seizure onset. 

The results of this study indicate that we can correctly classify the pre-
seizure and normal EEC's with 90% and 83% accuracy, respectively. These 
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Fig. 11. Patient 1 Results 

results conflrm our hypothesis that the pre-seizure and normal EEC's are 
differentiable. The techniques proposed in this study can be extended to de-
velopment of the online brain activity monitoring, which is used to detect the 
brain's abnormal activity and seizure's pre-cursors. From the optimal clas-
siflcation schemes in 3 patients, we note that L^ax tends to be the most 
classiflable attribute. 

5 Concluding Remarks 

Although evidence for the characteristic pre-seizure state transition and 
seizure predictability were flrst reported by our group [1, 2, 6, 11, 7, 5, 9, 16] 
and was conflrmed by several other groups [3, 12, 17, 13, 14], further studies 
are required before a practical seizure prediction algorithm becomes feasible. 
The open question of whether the brain's normal and pre-seizure epileptic 
activities are distinctive or differentiable needs to be answered before one can 
translate the seizure prediction research into novel therapeutic approaches for 
controlling epileptic seizures. 

This research was motivated by the analysis of the brain spatio-temporal 
dynamics, which was previously shown capable of reflecting the signature of 
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Fig. 12. Patient 2 Results 

the pre-seizure epileptic activity during the brain abnormal episodes [1, 2, 6, 
11, 7, 5, 9, 16]. Tha t study of the brain dynamics was successful because under-
standing the brain dynamics provides insights about different states of brain 
activities reflected from pathological dynamical interactions of brain network. 
Based on the study of the brain dynamics, we have employed optimization 
and da ta mining techniques to classify dynamical states of an epileptic brain 
and identify pre-seizure epileptic activities. To our knowledge, this research 
represents the first a t tempt to s tudy brain state transitions and develop math-
ematical models for the classification of the brain's normal and pre-seizure 
epileptic activities. 

The results of this research confirm our hypothesis tha t it is possible to 
differentiate and classify the brain's pre-seizure and normal activities based on 
optimization, da ta mining, and dynamical system approaches in multichannel 
intracranial EEG recordings. The reliable classification is conceivable because, 
for the vast majority of seizures, the spatio-temporal dynamical features of 
the pre-seizure state sufficiently differs from tha t of the normal state. It can 
be easily observed tha t there are statistical differences in the brain dynamics 
from different states of the same patient. The experiments in this research 
can be done in a practical fashion because the herein proposed statistical 
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Fig. 13. Patient 3 Results 

cross-validation derived from data mining concepts is fast and efficient and 
the dynamical measures of brain dynamics derived from the chaos theory can 
reveal hidden information from EEG signals. 

In future, more cases (patients and seizures) will be studied to validate 
the observation across patients. This pre-clinical research will form a bridge 
between seizure prediction research and the implementation of seizure pre-
diction/warning devices, which will be a revolutionary approach for handling 
epileptic seizures, very much similar to the pacemaker. It will also lead to 
clinical investigations of the effects of medical diagnosis, drug effects, or ther-
apeutic intervention during invasive EEG monitoring of epileptic patients. The 
future research towards the treatment of human epilepsy and therapeutic in-
tervention of epileptic activities as well as the development of seizure feedback 
control devices will be feasible. Thus, it represents a necessary first step in 
the development of implantable biofeedback devices to directly regulate ther-
apeutic pharmacological or physiological intervention to prevent impending 
seizures or other brain disorders. For example, such an intervention might be 
achieved by electrical or magnetic stimulation (e.g., vagal nerve stimulation) 
or by a timely release of an anticonvulsant drug. Another practical applica-
tion of the proposed approach is to help neurosurgeons to quickly identify the 
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epileptogenic zone without having patients stay in the hospital for the invasive 
long-time (10-14 days in duration) EEG monitoring. This research has poten-
tial to revolutionize the protocol to identify the epileptogenic zone, which 
can drastically reduce the healthcare cost during the hospital stay for these 
patients. In addition, this protocol will help physicians to identify epilepto-
genic zones without the necessity to risk patients' safety by implanting depth 
electrodes in the brain. 

In addition, the results from this study will also contribute to the under-
standing of the intermittency of other dynamical neurophysiological disorders 
of the brain (e.g., migraines, panic attacks, sleep disorders, and Parkinsonian 
tremors). We also expect our research to contribute to the localization of 
defects (flaws), classiflcation and prediction of spatiotemporal transitions in 
other high dimensional biological systems. 
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Summary. A recently proposed measure, namely Transfer Entropy (TE), is used 
to estimate the direction of information flow between coupled linear and nonlin-
ear systems. In this study, we suggest improvements in the selection of parameters 
for the estimation of TE that significantly enhance its accuracy and robustness in 
identifying the direction of information fiow and quantifying the level of interaction 
between observed data series from coupled systems. We demonstrate the potential 
usefulness of the improved method through simulation examples with coupled non-
linear chaotic systems. The statistical significance of the results is shown through 
the use of surrogate data. The improved TE method is then used for the study of 
information fiow in the epileptic human brain. We illustrate the application of TE to 
electroencephalographic (EEG) signals for the study of localization of the epilepto-
genic focus and the dynamics of its interaction with other brain sites in two patients 
with Temporal Lobe Epilepsy (TLE). 

K e y words: Nonlinear Dynamics, Coupled Systems, Transfer Entropy, In-
formation Flow, Epilepsy Dynamics, Epileptogenic Focus Localization 

1 Introduction 

Much of the research in the field of nonlinear dynamics has recently focused on 
the analysis of coupled nonlinear systems [1,2]. The motivation for this kind of 
work stems from the fact tha t the identification of the direction of information 
flow and estimation of the strength of interaction between coupled, nonlin-
ear, complex systems of unknown structure has potential application to the 
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understanding of their mechanisms of interactions, and the design and imple-
mentation of relevant control studies, e.g. control of interacting sets of neurons 
in the brain. In a recent paper [3], an information theoretic approach to iden-
tify the direction of information fiow and quantify the strength of coupling 
between complex systems was suggested. This method is based on the study of 
transitional rather than static probabilities of the states of the systems under 
consideration. The proposed measure was termed Transfer Entropy (TE). 

We have observed that the direct application of the method as proposed 
in [3] may not give the expected results, and that tuning of certain involved 
parameters plays a critical role in obtaining the correct direction of informa-
tion fiow [4,5]. We herein show the significance of the selection of two crucial 
parameters for the estimation of TE from time series, without any apriori 
knowledge of the structure of the systems that generate those data sets. The 
measure of TE and the estimation problems we identified are described in 
Section 2. The improvements suggested are given in Section 3. In Section 4, 
results from the application of the method to configurations of coupled Rossler 
and Lorenz oscillators are shown. In Sections 5 and 6, the application of the 
method to EEG data in epilepsy is shown. Discussion of these results and 
conclusions are given in Section 7. 

2 Transfer Enotropy 

Consider a /c^^order Markov process [6] described by 

where P is the conditional probability of finding a random process X in state 
x^+iat time n + 1. Eq. (1) implies that the probability of finding a system 
in a particular state depends only on the past k states [xn Xn-k-\-i] 

= Xn of the system. The definition given in Eq. (1) can be extended to the 
case of Markov interdependence of two random processes X and Y. Then, the 
generalized Markov property 

P ( x „ + i | x f ) = P ( x „ + i | x f , t / i ' ) ) (2) 

where i/n are the past / states of the second random process Y, implies that 
the state x^+iof the process X depends only on the past k states of the 
process X and not on the past / states of the process Y. If the process X also 
depends on the past values of process Y, the divergence from Eq. (2) can be 
quantified using the Kullback-Leibler measure [7], where P {xn-\-i\xri ) is the 
a priori transition probability and P{xn-\-i\xri\yn ) is the true underlying 
transition probability of the system. The Kullback-Leibler measure quantifies 
the transfer of entropy from the driving process Y to the driven process X, 
and is given by: 
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n = l P{Xn+l\x^n ) 

The values of the parameters k and / are the orders of the Markov process 
for the two coupled processes X and Y respectively. The value of N denotes 
the total number of points in the state space. The selection of k and / plays 
a critical role in obtaining reliable values for the Transfer of Entropy. The 
estimation of TE as suggested in [3], also depends on the neighborhood size 
(radius r) in the state space that is used for the calculation of the involved 
joint and conditional probabilities. The value of radius r in the state space 
defines the maximum norm distance measure between two neighboring state 
space points. Intuitively, these different radius values correspond to different 
probability bins that are used in the state space to estimate multidimensional 
probabilities. The values of radius for which the probabilities are not accu-
rately estimated (typically large r values) may eventually lead to an erroneous 
estimation of TE. 

3 Improved Computat ion of Transfer Entropy 

A. Selection of k: 

The value of k used in the calculation of TE (Y ^ X) (see Eq. (1)) represents 
the dependence of the current state Xn of the system on its past k states. One 
of the reasonable methods to estimate this parameter is the delayed mutual 
information [8]. The delay at which the mutual information of X reaches its 
first minimum can be taken as the estimate of the period within which two 
states of X are dynamically correlated with each other. Then, in units of the 
sampling period, this delay would be equal to the order k of the Markov 
process. 

B. Selection of I: 

The value of / (order of the driving system) is chosen to be 1 in all examples 
of the systems presented herein. The assumption for this selection of / is that 
the current state of the driving system is sufficient to produce a considerable 
change in the dynamics of the driven system within one time step in the 
future. Larger values of /(delayed influence of Y on X) have been considered 
and their effect will be shown elsewhere. 

C. Selection of radius r: 

The multi-dimensional transitional probabilities, involved in the Transfer En-
tropy deflned in Eq.(l), are calculated by joint probabilities using the Bayes' 
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Rule P(A|B)=P(A,B)/P(B). Therefore, the Transfer Entropy estimate can be 
rewritten as 

.(^) .M)\ .(^)^ 
TEiY^X)=^p(x„,„4'^),,('))log,":['::;%'';^^(%; (4) 

n = l ^[Xfi ,yn )I^[Xn-\-l,Xn ) 

The above multi-dimensional joint probabilities are estimated at resolution 
r through the generalized correlation integrals C{r) in the state space [9], [10] 
as: 

P (T ^1 r*̂ ^̂  i^^h 
1 

e 
\ 

^ n + l Xm-\-l 

X. n 
(I) Ji) 

ym 

C{r) (5) 

where 0 (x > 0) = 1; 0 (x < 0) = 0 and |.| is the maximum distance norm, 
and m = [0, . . . A ^ - 1]. 

The estimation of joint probabilities between two different state space 
attractors requires simultaneous calculation of distances in both state spaces 
(see Eq. (3)). In the computation of these multivariate distances, a common 
value of distance r is desirable. In order to establish a common radius r in the 
state space for X and Y, the data are first normalized to zero mean and unit 
variance. The joint probabilities thus obtained in the state space are functions 
of r. When any of the joint probabilities in log scale is plotted against the 
corresponding radius r in log scale (see Fig. 2(b)), it is observed that, with 
increase in the value of the radius, they initially increase (for small values of 
r) and then saturate (for large values of r) . This is similar to what occurs in 
the calculation of the correlation dimension from the slope in the linear region 
of InC(r) vs. Inr [9]. We use a similar concept to estimate reliably the values 
of TE at specific values of r* within the linear region of the curve In C(r) vs. 
In r. 

4 Simulation Results 

A. Simulation examples: 

We have applied the thus improved method of TE to several coupled nonlinear 
systems. Herein, we show the application of the method to coupled Rossler 
[11] and coupled Lorenz [11] type of oscillators, governed by the following 
differential Eqs. (6) and (7) respectively, where cĵ  = 1, cê  = 0.38, (3i = 0.3, 
Ji = 4.5 are the parameters of the i—th Rossler oscillator in Eq. (6), and 
ai = 2.0, ri = 175, f3i = 8/3 are the parameters of the i—th Lorenz oscillator 
in Eq. (7), Sji denotes the strength of the diffusive coupling from oscillator j 
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to oscillator i {su denotes self-coupling of the i-th. oscillator, and it is taken 
to be zero for all the simulations reported in this s tudy). 

dxi{t) _ _ , V ^ 

dt ^-^ ̂  

dyAt) , , 
— — = UiXi + aiVi (6) 

dzi{t) 

dt 

dxi(t) 

PiXj, ~r Z-iyXj, ^i 

-(Ji{xi-yi)^ Y^ £j 
dt 

dyijt) _ _ _ . . 

dzjjt) _ _ 

dt 

The parameters selected for each type of oscillator place them in the 
chaotic regime. A total of three different coupled configurations (between any 
two oscillators) are considered herein: one-directional, bi-directional and no 
coupling. Results from the application of the method, with and without the 
suggested improvements, will be shown for each configuration. 

Fig. 1. (a) Configuration 1: Two coupled oscillators with £12 = 0, £21 = 0.15; 
(b) Configuration 2: Three coupled oscillators with £12 = £21 = 0.15, £13 = 0.12, 
£31 = 0.0, £23 = ^32 = 0.0. 

The direction of information fiow is from oscillator 2 ^ 1 in Fig. 1(a) and 
1^2 , 2 ^ 1 and 1 ^ 3 in Fig. 1(b). The da ta from these model configurations 
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were generated from the previously cited differential equations using an inte-
gration step of 0.01 and a 4^^ order Runge-Kutta integration method. A total 
of 30,000 points from the x t ime series of each oscillator were considered for 
the estimation of each value of the T E after down-sampling the da ta produced 
by Runge-Kut ta by a factor of 10. 

Al. Configuration 1: 

C o u p l e d Ross l er osci l lators: Fig. 2(a) shows the mutual information MI 
between the two oscillators of Fig. 1(a) for different values of k. The first 
minimum of MI occurred at /c=16. The state spaces were reconstructed from 
the X t ime series of both oscillators with embedding dimension p = k-\-L Fig. 
2(b) shows the I n C ( r ) vs. In r . Fig. 3 shows the transfer of entropy TE( r ) 
values without (Fig. 3(a)) and with (Fig. 3(b)) our suggested values for /c, 
/ and r . In Fig. 3(a), the TE( r ) is illustrated with arbitrary chosen values 
k = 1=5. No clear preference between 1 ^ 2 and 2 ^ 1 direction of information 
fiow can be seen for values of radius in the linear region of In Cvs. Inr. In this 
configuration, the information fiow exists only in the direction of 2 ^ 1 , whereas 
Fig. 3(a) incorrectly shows a bi-directional fiow for low and high values of r . In 
Fig. 3(b), the optimal value of k=16 (1=1) is used in the estimation of T E ( r ) . 
In this figure, the information fiow is correctly depicted in the direction of 
2 ^ 1 for low values of r . The direction is depicted wrongly for large values of 
r . These observations justify our selection of r* from the low region of In C{r) 
vs. I n r (shown at the vertical line in Fig. 2(b)), according to our discussion 
in Section 3. 

C o u p l e d Lorenz osci l lators: A system of two Lorenz oscillators in Config-
uration 1 (^12 = 0, £21 = 2) shows similar T E results with respect to detection 
of the information fiow (see Fig. 4) as the ones from the Rossler oscillators. 
The estimated parameters here were k=8 and 1=1. 

A 2. Configuration 2: 

Fig. 5 shows the T E of three coupled Rossler oscillators with coupling direc-
tions 1^2 , 2 ^ 1 , 2 ^ 3 and 3 ^ 2 , without (see Fig. 5(a)) and with (see Fig. 
5(b)) the proposed improvements for k and I.The first minimum of mutual 
information from the x da ta series for this model was 15. Therefore k=lb and 
1=1 were further used in T E estimation. It is evident tha t , for these values of 
k and /, we can clearly detect the existing bi-directional information fiow be-
tween oscillators 1 and 2 (see Fig. 5(b)), as well as the absence of interactions 
between oscillators 2 and 3 using r = r* (see Fig. 5(c)). 

A3. Configuration 3: 

In this configuration, a two Rossler oscillator system (see Fig. 6(a)) is used 
to illustrate the performance of the proposed measure T E with respect to 
the quantification of the strength of the directional coupling between the 
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Fig. 2. Configuration 1: Coupled Rossler oscillators, (a) Plot of the mutual in-
formation MI(k) vs. k. (b) Plot of In C vs. In r , where C and r denote average 
joint probability (correlation integrals) and radius in the state space respectively, 
for direction of fiow 1^2 (dotted line) and 2 ^ 1 (solid line) (/c=16, /=1). 

oscillators. While the value of the coupling strength £12 was fixed at 0.05, 
the coupling £21 was let to increase from 0.01 to 0.15. 

Fig. 6(b) shows the value of T E as a function of increasing coupling 
strength £21 at 0.01, 0.05, 0.1 and 0.15, and at a value of r* chosen as before 
in the linear region of the respective In C vs In r. We can see tha t T E ( 2 ^ 1 ) 
increases for a progressive increase in the values of the coupling strength £21-
In addition, as it should, T E ( 2 ^ 1 ) ^ T E ( 1 ^ 2 ) at £12 = £21=0.05. 
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Fig. 3. Configuration 1: Coupled Rossler oscillators.Transfer entropy TE vs. radius 
r (in In scale), between Rossler oscillators 1^2 (dotted line) and 2 ^ 1 (solid line) 
for (a) k = I = 5 and (b) k = 16, I = 1 (values estimated with the proposed 
methodology). The position of the vertical dotted line in the figures corresponds to 
the value of the radius r* within the linear region of In C(r) vs. In r (see Fig. 2(b)). 

B. Statistical significance of the model results: 

The statistical significance of the derived values of T E was tested using the 
method of surrogate analysis. Since T E calculates the direction of information 
transfer between systems by quantifying their conditional statistical depen-
dence, a random shuffling, separately applied to the original da ta series, sig-
nificantly reduces their statistical inter-dependence. The shuffling was based 
on generation of white Gaussian noise and reordering of the original da ta sam-
ples according to the order indicated by the thus generated noise values. The 
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Fig. 4. Configuration 1: Coupled Lorenz oscillators. Transfer entropy TE vs. radius 
r (in logarithmic scale), between Lorenz oscillators (£12 = 0,^21 = 0.15) 1^2 (solid 
line) and 2 ^ 1 (dotted line). The position of the vertical dotted line corresponds to 
the value of the radius r* within the linear region of the InC(r) vs. Inr. 

null hypothesis tha t the obtained values of the directional transfer of entropy 
are not statistically significant was then tested. Transfer entropy TEgValues 
from the shuffled datasets of pairs of oscillators were obtained. If the TE^ 
values from the original t ime series laid well outside the mean of the TE5 
values, the null hypothesis was rejected. A total of 12 surrogate da ta series 
were produced for configurations 1 and 2 analyzed in the previous subsection. 
The TE5 values were calculated at the optimal radius r*estimated from the 
original data . The means and s tandard deviations of TE5 and TE^ for each 
configuration are shown in Table 1. 

In Configuration 1, the null hypothesis is rejected for the direction 2 ^ 1 , 
which is the real direction of the information fiow, at p j 0.0001 (assuming 
Gaussian distribution for the TE5 values of the shuffled da ta sets and using 
the sample t-test with 11 degrees of freedom , see last column in Table 1). 
On the contrary, as expected, the 1 ^ 2 information ffow was not statistically 
significant (p=0.1188), as the TE^ is no more than 0.49 s tandard deviations 
away from the mean of TE5. Results along these lines were produced for the 
other configurations and are given in the last rows of Table 1. This statis-
tical analysis confirms tha t the values of TE, calculated with the suggested 
improvements, capture the direction of the information fiow between the ex-
isting subsystems in all different model configurations and types of oscillators 
investigated herein. 



492 S. Sabesan et al. 

Fig. 5. Configuration 2: Transfer entropy TE vs. radius r (in In scale, between 
Rossler oscillators 1^2 (dotted line) and 2 ^ 1 (solid line) (a) without (k = 5, 
/ = 1), and (b) with improvements (k = 15, / = 1). (c) Transfer entropy TE between 
oscillators 3 ^ 2 (dotted line) and 2 ^ 3 (solid line). The vertical dotted line in the 
figures denotes the value of the radius r* within the linear region of InC(r) vs. Inr. 

5 Transfer Entropy: Application to EEG in Epilepsy 

The need for a reliable method to identify the direction of information flow 
in physiological systems has assumed an extreme importance in the medical 
world today. In particular, the functional description of the human brain still 
poses itself as a perennial problem to the researchers [12-20]. The human brain 
is a highly complex system with nonlinear characteristics. The identification 
of direction of information flow in such systems is a formidable task. Erom 
a system's perspective, the EEG signals tha t we obtain are the output of 
a nonstationary and a multivariable system. Therefore, the importance of 
the development of methods tha t incorporate the dynamics of all individual 
subsystems and quantify their interactions cannot be emphasized enough. 
Epilepsy is a brain disorder with signiflcant alteration of information flow in 
the brain intermittently (between seizures) and during seizures. 

An epileptogenic focus is electrophysiologically deflned as the brain's area 
tha t flrst exhibits the onset of epileptic seizures. Electrical discharges from 
the focus spread and disrupt the normal operation of the brain. The EEG 
signals are very helpful in providing evidence for epilepsy but are often not 
reliable in identifying the epileptogenic focus by visual inspection. The pri-
mary objective in presurgical evaluation of patients is to identify the region, 
which is responsible for generating the patient 's habitual seizures. This region 
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Fig. 6. Configuration 3: (a) Two bi-directionally coupled Rossler Oscillators with 
increasing coupling in one direction (£12 = 0.05, and £21 = 0.01,0.05,0.1,0.15). (b) 
Transfer entropy TE at Inr* = 0.6 versus coupling strength £2^1 (TE (1^2) solid 
line and TE (2^1) dashed line). 

(epileptogenic zone) is generally determined visually from long term mon-
itoring of EEG by localization of the earliest electrographic seizure onset. 
Usually, resection of the focal tissue is sufficient to abolish epileptic seizures 
in carefully selected unifocal patients. Epileptogenic focus localization, us-
ing analytical signal processing and information theoretic techniques on the 
EEG from epileptic patients, in conjunction with the traditional, visual in-
spection of EEG records, is very promising in understanding of the underlying 
dynamics of this disease and a more accurate diagnosis and prognosis. The 
hypothesis we consider in this respect is tha t the epileptogenic focus acts as 
the driver for the brain sites tha t participate in a seizure activity, especially 
in the preictal (prior to seizure) periods. In this section, instead of a system 
of nonlinear oscillators, we analyze the human brain. The individual subsys-
tems of such a system are the brain sites under the recording EEG electrodes. 
Thus, our hypothesis is tha t , by taking a driver-driven system approach, one 
can identify the epileptogenic focus as the electrode or the set of electrodes 
tha t drive other critical electrodes in the pre-ictal (before seizures) and ictal 
(during seizures) state. We apply the method of T E to quantitatively test this 
hypothesis. 
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Table 1. Surrogate analyses of Transfer of entropy (* denotes the real direction of 
coupling 

Directioi 
of flow 

Transfer Entropy (TE) 

Surrogate Data (TE5) 
(bits) 

Original 
Data (TEo) 
(bits) 

TEo-TE, 
(in standard 
deviation 
units) 

p value of t-test 

Conflguration 1: Coupled Rossler oscillators | 
1^2 
2 ^ 1 * 

0.43 ± 0.86 
0.30 ± 1.88 

0.01 
4.50 

0.49 
2.23 

.1188 

.0001 
Conflguration 1: Coupled Lorenz oscillators | 
1^2 
2 ^ 1 * 

1.02 ± 1.01 
1.08 ± .74 

.49 
16.72 

.79 
15.46 

.2383 

.0001 
Conflguration 2 1 
1^2* 
2 ^ 1 * 
2 ^ 3 
3 ^ 2 

0.31 ± 0.91 
0.28 ± 0.97 
0.10 ± 0.90 
0.08 ± 0.88 

1.98 
1.98 
0.09 
0.05 

1.84 
1.76 
0.01 
0.03 

.0001 

.0001 

.97 

.90 

A. Transfer Entropy and its application to EEG: 

As it was shown in section 3, when T E is applied to s tandard coupled nonlinear 
systems, such as the Rossler and Lorenz systems, it requires proper choice of 
the parameters k (order of the Markov process for the driven system), 1 (order 
of the Markov process for the driving system), and r (the multi-dimensional 
bin size for calculation of the involved probabilities). A straightforward exten-
sion of these methods to estimate the involved parameter values from real-life 
da ta may not be possible. For example, human epileptogenic EEG da ta sets 
do not have unique characteristics in terms of their underlying dynamics and 
their noise levels. Also, physiological da ta are nonstationary, and therefore it 
is diflicult to estimate reliably values of the flrst minimum of mutual informa-
tion over t ime [21-23], which may lead to erroneous calculations of the values 
of TE. From a practical point of view, a statistic tha t might be used as an 
optimal solution to this problem is the correlation t ime constant tg, which is 
deflned as the t ime required for the autocorrelation function (AF) to decrease 
to 1/e of its maximum value [24,25]. AF is an easy metric to compute over 
t ime, and has been found to be robust in many simulations. Furthermore, if 
one looks at the estimation of T E from a state space reconstruction perspec-
tive, then a reasonable relation between t ime delay r = 1 and embedding 
dimension p = /c + 1 is: 

te = [p- l ] r = k (8) 



Information Flow in Coupled Nonlinear Systems 495 

Finally, in the analysis of EEG signals, we keep / (Markov order of the 
driving system) to be 1 as in all previous examples investigated herein. 

B. Selection of the range of r for EEG: 

For physiological data sets such as epileptic EEG (i.e. data of finite length and 
corrupted with noise), existence of a linear region of InC(r) vs. Inr is very 
difficult to be found. In fact, the curve InC(r) vs. Inr could be divided into 
three regions based on the values of InC(r) (see also Fig. 2(b)). These three 
regions generated by the estimation of InC(r) from a 10.24 second preictal 
EEG segment, are shown in Fig. 7. 

Region 3 

Fig. 7. Plot of InC(r) vs. Inr from a preictal EEG segment (C(r) and r denote 
average probability and radius respectively) using k = 16, I = 1. 

It is clear that in region 1 (small radius values:-0.8< Inr <-0.2), the pres-
ence of noise in the data is predominant [17,19] and smears the data into the 
entire space (high-dimensional). No linear slope can be observed therein. On 
the other hand, region 3 (Inr > 0.2) corresponds to those values of r for which 
a ffat region in InC(r) is observed (saturation). In between regions 1 and 3, 
we observe a quasi-linear region. In the literature of generalized correlation 
integrals, this region is also called the scaling region or the "linear" region 
(region 2: -0.3} Inr <0.2) [9]. Therefore, a choice of a value for the radius 
from region 2 will result in a value of TE that is more reliable and sensi-
tive to the direction of information ffow. Values of radius from region 2 were 
used in our study of epileptogenic focus localization and did not differ much 
from the r* value we used earlier in the coupled chaotic model configurations 
(Inr* = -0.3). 



496 S. Sabesan et al. 

C. Application of Transfer Entropy to Epileptogenic focus localization: 

TE was estimated from successive, non-overlapping electrocorticographic 
(ECoG) and depth EEG segments of 10.24 seconds in duration (2048 points 
per segment at 200 Hz sampling rate) for a total of 42 minutes (20 minutes 
pre-ictal, 20 minutes postictal and 2 minutes ictal). Two seizures were ana-
lyzed per patient, from two of our patients with temporal lobe epilepsy. The 
EEG signals were recorded from 6 different areas of the brain with a total of 
28 electrodes (see Fig. 8 for the electrode montage used). As TE constitutes a 
bivariate approach to find the direction of information fiow, it is computation-
ally intensive as all pairs of available electrodes are taken into consideration 
for the analysis. For illustration purposes, we herein consider an analysis with 
a subset of only 5 out of the 28 available electrodes. The selection of the sites 
was based on the observed dynamical entrainment of the epileptogenic focus 
with other cortical sites [12-17]. 

One value of TE is estimated for every electrode pair per 10.24 seconds of 
EEG segment. The TE is then calculated for all possible pairs over time. The 
temporal values of TE are subsequently averaged to obtain one value for the 
pre-ictal period per electrode pair (TEpre) at the relevant radius r*. For an 
electrode to be identified as a focal electrode, two conditions were imposed: 

a) A brain site i out of N sites is considered to be a probable focus if 

TEpre{i -^ j) > 1 bit of information (9) 

where i 7̂  j , j = 1 , . . . , A ,̂ and TE{eij) is the Transfer Entropy from i -^ j . 

b) The brain site i that obeys condition (9), and has the largest value of 
TEpre{i -^ i ) , for i = 1 , . . . , Â  and j = 1 , . . . , Â  is identified as the 
dominant focal site. 

The thus obtained results on the epileptogenic focus localization were com-
pared with the patients' clinical records to test their physiological relevance. 

6 EEG Results 

A. Epileptogenic Focus Localization / Information Network: 

The following 5 electrode sites {RTD2, RTD3, LTD2, RST3, L0F2} are se-
lected for both patients 1 and 2 before the occurrence of a seizure of a focal 
right temporal lobe origin. These sites were found to be critical sites in the 
optimal sense described in [14]. TE was calculated for all 10 possible electrode 
pairs in this selected set of electrodes. The values of TEp^e were then calcu-
lated at the relevant radius r*. The optimal value Inr* was chosen equal to 
-0.3. 
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Fig. 8. Schematic diagram of the depth and subdural electrode placement. This view 
from the inferior aspect of the brain shows the approximate location of depth elec-
trodes, oriented along the anterior-posterior plane in the hippocampi (RTD - right 
temporal depth, LTD - left temporal depth), and subdural electrodes located be-
neath the orbitofrontal and subtemporal cortical surfaces (ROF - right orbitofrontal, 
LOF - left orbitofrontal, RST- right subtemporal, LST- left subtemporal). 

1) Patient 1: 

Table 2 gives the values of TEpre ( preictal TE for all possible pairs of 
electrodes at r* for patient 1. From Table 2, it is clear tha t RTD2 drives RTD3 
the most among all possible pair-wise interactions, having a TEprQ{RTD2 -^ 
RTD3) = 7.45 bits. Therefore, in this particular seizure and according to our 
aforementioned criteria (a) and (b), RTD2 is the most probable focal electrode. 
It is easier to visualize Table 2 through an information flow diagram. Such 
a diagram is shown in Fig. 9. In this figure, the solid arrows mark those 
interactions where the mean value of T E over a 20 minute preictal period is 
greater than one bit of information fiow in the corresponding directions. The 
dashed arrows denote all weak interactions, i.e. interactions with less than one 
bit of information fiow in a particular direction. 

Similarly, for the preictal period of the second seizure in the same patient 
1, the values oiTEpre for all possible pairwise interactions are shown in Table 
3. The maximum TEp^^ among all the possible interactions, was again the 
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Table 2. TEpre values for all pairs of electrodes prior to seizure 1 for patient 1. 

TEpre (bits) 
Driven 

Drivmg 

Electrodes 
RTD2 
RTD3 
LTD2 
RST3 
LOF2 

RTD2 
0.00 
3.29 
0.49 
1.19 
0.25 

RTD3 
7.45 
0.00 
0.47 
1.71 
0.35 

LTD2 
0.27 
0.43 
0.00 
0.16 
0.26 

RST3 
0.90 
0.25 
0.23 
0.00 
0.08 

L0F2 
0.22 
0.25 
0.16 
0.08 
0.00 

Fig. 9. Transfer Entropy flow diagram of the electrode interactions from Pre-ictal 
state of seizure 1 in patient 1 (solid arrows indicate stronger interactions, see text 
for more details). 

RTD2 -^ RTD3 with a value of 6.31 bits. This leads us to conclude tha t RTD2 
is the driver among all considered electrodes in this seizure too, and thereby 
the probable focus. An information flow diagram based on Table 3 is shown in 
Fig. 10. Similar to seizure 1, any transfer of information greater than 1 bit is 
considered to be significant and is marked with a solid arrow. All other weaker 
interactions are marked with dashed arrows. Again RTD2 shows up as the 
most probable focal electrode tha t drives RTD3 and RST3. In both seizures, 
these results were in agreement with the identification of the epileptogenic 
focus by the gold s tandard used in clinical practice for identification of the 
epileptogenic focus, tha t is where the earliest onset of seizure activity occurs. 

2) Patient 2: 

Similar analysis of two seizures from patient 2 revealed RTD2 as the probable 
focus in the first seizure {TEpre{RTD2 -^ RTD3) =1.67 bits), whereas RTD3 
shows up as the probable focus in the second seizure with a TEp^e {RTD3 -^ 
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Table 3. TEpre values for all pairs of electrodes prior to seizure 2 for patient 1 

TEpre (bits) 
Driven 

Driving 

Electrodes 
RTD2 
RTD3 
LTD2 
RST3 
L0F2 

RTD2 
0.00 
3.03 
0.36 
1.54 
0.15 

RTD3 
6.31 
0.00 
0.43 
1.47 
0.15 

LTD2 
0.33 
0.30 
0.00 
0.24 
0.17 

RST3 
1.07 
0.76 
0.38 
0.00 
0.07 

LOF2 
0.13 
0.18 
0.16 
0.12 
0.00 

Fig. 10. Transfer Entropy flow diagram of the electrode interactions from Pre-ictal 
state of seizure 2 in patient 1 (solid arrows indicate stronger interactions, see text 
for more details). 

RTD2) value of 1.37 bits. Tables 4 and 5 summarize the TEp^^ values for these 
seizures in patient 2. These results are again in agreement with the clinical 
finding of the epileptogenic focus (RTD) in this patient. The information fiow 
diagrams for both seizures are shown in Figs. 11 and 12. 

Table 4. TEpre values for all pairs of electrodes prior to seizure 1 for patient 2 

Driving 

Electrodes 
RTD2 
RTD3 
LTD2 
RST3 
L0F2 

RTD2 
0.00 
1.26 
0.54 
.84 
0.27 

TEpre (bits) 
Driven 

RTD3 
1.67 
0.00 
0.23 
1.07 
0.27 

LTD2 
0.50 
0.31 
0.00 
0.48 
0.33 

RST3 
0.64 
0.94 
0.41 
0.00 
0.25 

LOF2 
0.29 
0.32 
0.33 
0.42 
0.00 
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Fig. 11 . Transfer Entropy flow diagram of the electrode interactions from Pre-ictal 
state of seizure 1 in patient 2 (solid arrows indicate stronger interaction, see text for 
more details). 

Table 5. TEpre values for all pairs of electrodes prior to seizure 2 for patient 2 

TEpre (bits) 
Driven 

Driving 

Electrodes 
RTD2 
RTD3 
LTD2 
RST3 
LOF2 

RTD2 
0.00 
1.37 
0.54 
.84 
0.27 

RTD3 
1.07 
0.00 
0.23 
.87 
0.27 

LTD2 
0.50 
0.31 
0.00 
0.48 
0.33 

RST3 
0.64 
0.94 
0.41 
0.00 
0.25 

L0F2 
0.29 
0.32 
0.33 
0.42 
0.00 

B. Epileptogenic Focus Dynamics: 

Monitoring of T E over t ime also may shed light on the underlying dynamics 
of the information network in the epileptic brain. For example, in Fig. 13, we 
show the values of the bi-directional T E over the preictal, ictal and postictal 
period for the most interacting electrode pair RTD2 and RTD3 in patient 
1, seizure 1. The hippocampal sites RTD2 and RTD3 are both focal sites in 
this patient. The vertical line marks the onset of this seizure. The duration 
of this seizure was 2 minutes. It is noteworthy tha t the focal electrode RTD2 
is preictally driving the other focal electrode RTD3 {TE{RTD2 -^ RTD3) 
larger than TE{RTD3 -^ RTD2)). This driving is postictally reduced to the 
level of flow in the other direction. In essence, we have a strong uni-directional 
flow preictally, becoming a strong bi-directional flow about 5 minutes before 
the seizure onset, and a weak bi-directional flow postictally. 
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Fig. 12. Transfer Entropy flow diagram of the electrode interactions from Pre-ictal 
state of seizure 2 in patient 2 (solid arrows indicate stronger interactions, see text 
for more details). 

In summary, the EEG analysis of a limited number of seizures by T E 
provided focus localization results tha t are consistent with the clinical local-
ization of the epileptogenic focus in two patients with temporal lobe focal 
epilepsy. It also appears tha t the proposed methodology may be a useful tool 
for the investigation of the dynamical mechanisms involved in the occurrence 
of epileptic seizures. 

7 Conclusion 

In this study, we suggested and implemented improvements for the estimation 
of Transfer Entropy, a measure of the direction and the level of information 
flow between coupled subsystems. The improvements were shown to be critical 
in obtaining consistent and reliable results from complex signals generated by 
systems of coupled, nonlinear (chaotic) oscillators. The application of this 
methodology to epileptogenic focus localization in two patients with focal 
temporal lobe epilepsy produced results in agreement with the location of 
their focus. Accurate localization and further understanding of the dynamics 
of the epileptogenic focus by the use of T E in more patients could further 
elucidate the mechanisms of epileptogenesis. We believe tha t our analytical 
scheme can have several potential applications in diverse sclentiflc flelds, from 
medicine and biology, to physics and engineering. 
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Fig. 13. Long-term dynamics of Information Flow between two focal electrodes 
before and after seizure 1 of patient 1. The seizure duration is 2 minutes. 
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Summary. The existence of complex chaotic, unstable, noisy and nonlinear dy-
namics in the brain electrical and magnetic activities requires new approaches to 
the study of brain dynamics. One approach is the combination of certain multi-
channel global reconstruction concept and data mining techniques. This approach 
assumes that information about the physiological state comes in the form of non-
linear time series with noise. It also involves a geometric description of the brain 
dynamics for the purpose of understanding massive amount of experimental data. 
The novelty in this chapter is in the representation of the brain dynamics by hierar-
chical and geometrical models. Our approach plays an important role in analyzing 
and integrating electromagnetic data sets, as well as in discovering properties of 
the Lyapunov exponents. Further, we discuss the possibility of using our approach 
to control the Lyapunov exponents, predict the brain characteristics, and "correct" 
brain dynamics. We represent the Lyapunov exponents by fiber bundle and its func-
tional space. We compare the reconstructed dynamical system with the geometrical 
model. We discuss an application of this approach to the development novel algo-
rithms for prediction and seizure control through electromagnetic feed-back. 

K e y words: Data mining, epileptic seizures, Lyapunov exponents, geometric 
approach. 

1 Introduction 

Recent years have seen a dramatic increase in the amount of information 
stored in electronic format. It has been estimated tha t the amount of infor-
mation in the world doubles every 20 months and the size and number of 
databases are increasing even faster. Having concentrated so much attention 
on the accumulation of da ta the problem was what to do with this valuable 
resource? It was recognized tha t information is crucial for decision making, 
especially in medicine. For example, prediction of epileptic seizures needs an 



506 Panos M. Pardalos and Vitally A. Yatsenko 

adequate amount of information for calculation of dynamical and information 
characteristics. 

The term 'Data Mining' (or 'Knowledge Discovery') has been proposed 
to describe a variety of techniques to identify sets of information or decision-
making knowledge in bodies of experimental data, and extracting these in such 
a way tha t they can be put to use in areas such as prediction or estimation. 
Data mining, the extraction of hidden predictive information from large da ta 
sets, is a powerful new technology in medicine with great potential to help 
medical personnel focus on the most important diagnostic information in their 
da ta warehouses. Medical da ta mining tools predict future trends and behav-
iors, allowing medical doctors to make proactive, knowledge-driven decisions. 
The automated, prospective analyses offered by da ta mining move beyond 
the analyses of past events provided by retrospective tools typical of decision 
support systems. Data mining tools can answer medical questions tha t tradi-
tionally were too t ime consuming to resolve. They scour databases for hidden 
pat terns, finding predictive information tha t experts may miss because it lies 
outside their expectations. This chapter provides an introduction to the basic 
dynamical reconstruction and prediction technologies of da ta mining. 

Examples of profitable applications illustrate its relevance to today's med-
ical environment as well as a basic description of how da ta warehouse archi-
tectures can evolve to deliver the value of da ta mining to end users. Data 
mining techniques can be implemented rapidly on existing software and hard-
ware platforms to enhance the value of existing information resources, and 
can be integrated with new products and systems as they are brought on-line. 
When implemented on high performance client/server or parallel processing 
computers, da ta mining tools can analyze massive databases to deliver an-
swers to questions such as, "Which clients are most likely to respond to my 
next promotional mailing, and why?" 

Epilepsy, among the most common disorders of the nervous system, af-
fects approximately 1% of the population [7, 8, 9]. About 25% of patients 
with epilepsy have seizures tha t are resistant to medical therapy [10]. Epilep-
tic seizures result from a transient electrical discharge of the brain. These 
discharges often spread first to the ipsilateral, then the contralateral cerebral 
cortex, thereby disturbing normal brain function. Clinical effects may include 
motor, sensory, affective, cognitive, automatic and physical symptomatology. 
The occurrence of an epileptic seizure appears to be unpredictable and the 
underlying mechanisms tha t cause seizures to occur are poorly understood. A 
recent approach in epilepsy research is to investigate the underlying dynam-
ics tha t account for the physiological disturbances tha t occur in the epileptic 
brain [11, 12, 13]. 

One approach to understanding the dynamics of epilepsy is to determine 
the dynamical properties of the electroencephalographic (EEG) signal gener-
ated by the epileptic brain. The traditional approach to this problem in t ime 
series analysis is to fit a linear model to the data, and determine the optimal 
order (dimension) and the optimal parameters of the model. A simple gener-
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alization is to fit the best nonlinear dynamical model. However, the results of 
this approach are usually not very illuminating. Without any prior knowledge, 
any model tha t we fit is likely to be ad hoc. We are more interested in ques-
tions as the following: How nonlinear is the t ime series? How many degrees of 
freedom does it have? 

The Lyapunov exponents measure quantities which constitute the expo-
nential divergence or convergence of nearly initial points in the phase space of 
a dynamical model of the human brain. A positive Lyapunov exponent mea-
sures the average exponential divergence of two near trajectories, whereas a 
negative Lyapunov exponent measures exponential convergence of two near 
trajectories. 

Our purpose is to design and investigate algorithms for calculating the local 
and global Lyapunov exponents such tha t they would achieve the following 
three properties: 

(1) calculate all local and global Lyapunov exponents of the human brain 
from observations; 

(2) achieve greater accuracy of Lyapunov exponent estimates on a rela-
tively short length of observations; 

(3) achieve the accuracy of the estimates tha t is robust to the human brain 
as well as measurement noise. 

In this chapter, we calculate the global and local Lyapunov exponents, 
both of which could be important measures for orbital instability. 

2 Reconstruction of Global Lyapunov Exponents 
From Observed Time Series 

Assume tha t the epileptic human brain dynamics can be described by a dis-
crete dynamical system. The Lyapunov exponents for a dynamical system, 
/ : R^ ^ R^, with the trajectory 

^ t + i = / ( ^ t ) , t = 0 , 1 , 2 , . . . , (1) 

are measures of the average rate of divergence or convergence of a typical 
trajectory [1]. For a n-dimensional system as above, there are n exponents 
which are customarily ranked from largest to smallest: 

Ai > A2 > • • • > An. (2) 

Associated with each component, i = 1, 2 , . . . , n there are nested subspaces 
^z ^ ]^n Q£ (Jiniension n -\- 1 — j and with the property tha t 

\=limt-Hn\\iDf%,i>\\ (3) 
t^OO 

for all i/j e ^^ \ ^^^^. It is a consequence of Oseledec's Theorem [3], tha t 
the limit in (3) exist for a broad class of functions. Additional properties 
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Fig. 1. Functional structure of EEG data analysis adaptive system. 

of Lyapunov exponents and a formal definition are given in [1]. Notice tha t 
for i > 2 the subspaces V^ are sets of Lebegue measure zero, and so for 
almost all V̂  G R"̂  the limit in equation (3) equals A .̂ This is the basis for 
the computational algorithm which is a method for calculating the largest 
Lyapunov exponents. Since 

{Df%,= {Df),,{Df), (Df). (4) 

all of Lyapunov exponents can be calculated by evaluating the Jacobian of 
the function / along a trajectory {xt}. 

In [4] the QR decomposition is proposed for extracting the eigenvalues 
from {Df')xQ' The QR decomposition is one of many ways to calculate eigen-
values. One advantage of the QR decomposition is tha t it performs successive 
rescaling to keep magnitudes under control. It is also well studied and ex-
tremely fast subroutines are available for this type of computation. It is the 
method tha t we use here. 

An at t ractor is a set of points toward which the trajectories of / converge. 
More precisely, A is an at t ractor if there is an open V C W^ with 

A={^f'{V), 
t>0 

where V is the closure of V. The at t ractor A is said to be indecomposable if 
there is no proper subset A C A with f{A) = A. An at t ractor can be chaotic 
or ordinary (i.e. non-chaotic). 
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Suppose tha t there is a function /i : R"̂  ^ R which generates observations, 

yt = h{xt) (5) 

For notation purposes let y"^ = {yt^rn-i,yt±m-2, • • • ,yt)- Under general 
conditions, it is shown in [5] tha t if the the set V is a compact manifold then 
for 771 > 2n + 1 

j^{x) = vT = {h{r-\x)), Kr-\x)),..., h{x)) (6) 

is an embedding of V onto J'^(V). Generically, for m > 2n + 1 there exists a 
function ^ : R"^ ^ R"^ such tha t 

where 

But notice tha t 

Hence from (7) and (9) 

y^l = {yt+rn,yt+m-l, • • • .Vt+l)-

y - 1 = J™(x,+i) = J ' " ( / ( a ; , ) ) . 

J ™ ( / ( x , ) ) = 5 ( J ™ ( x , ) ) . 

(7) 

(8) 

(9) 

(10) 

Under the assumption tha t J^ is homeomorphism, / is topologically conju-
gate to g. This implies tha t certain dynamical properties of / and g are the 
same. From equation (7) the mapping g may be taken to be 

(yt+m-i\ 
yt+m-2 

\ Vi ) 

I v{yt+m-i,yt+m-2, •••,yt)\ 

\ 

yt+m-1 

yt+1 

(11) 

and this reduces to estimating 

yt+m = y{yt+m-i,yt+m-2,..., yt)' (12) 

In (11), (12) a t runcated Taylor series is used to calculate the function n. 
In [6] the feedforward networks are used to calculate the largest Lyapunov 
exponent. 

The derivative of g is the matr ix 

{Dg) Vt 

1 0 0 ••• 0 0 
0 1 0 ••• 0 0 

V 0 0 O--- 1 0 / 

(13) 
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where 
dv dv ,_^ 

^m = ^ , . . . , ^1 = ^—- (14) 
oyt+m-i oyt 

Proposition. Assume that M is the manifold of dimension n, f : M ^ M 
and /i : M ^ R are (at least) C^. Define J ^ : M ^ R^ by J^(x) = 
(M/—i(x) ) , / i ( /—2(x) ) , . . . , / i (x ) ) . Let /ii(x) > fi2{x) > . . . > firnix) be 
the eigenvalues of {Df^y^{DJ^)x, and suppose that 

inf fim{x) > 0, sup /ii(x) < oo. 

There is more then one definition of chaotic attractor in the literature. In 
practice the presence of a positive Lyapunov exponent is taken as a signal 
that the attractor is chaotic. 

Let A{ > A2 > • • • > A^ be the Lyapunov exponents of / and Af > A2 > 
. . . > A^ be the Lyapunov exponents of g^ where g : J^{M) -^ J^{M) and 
J^{f{x)) = g{J^{x)) on M. Then generically A{ = Af for i = 1, 2 , . . . , n. 

This is the basis of our approach: consider the function g based on the data 
sequence {J"^(xt)}, and calculate the Lyapunov exponents of ^. As n increases 
there is a value between n and 2n + 1 at which the n largest exponents remain 
constant and the remaining m — n exponents diverge to —00 as the number 
of observations increases. 

For estimating Lyapunov exponents we use a single layer feedforward net-
work, 

L / m \ 
VN,m{z][3,uj,h) = ^Pjk I ^uJijZi^hi J , (15) 

where z G R"̂  is the input, the parameters to be estimated are /3, cj, and h] 
and /c is a known hidden unit activation function. Here L is the number of 
hidden unit weights, and uj G R >̂<"̂  and b G R^ represent input to hidden 
unit weights. 

For a single layer network, the least squares criterion for a data set of 
length T is 

T - m - l 

t=0 

This is a straightforward multivariate minimization problem. 

3 Simulation of Local and Global Lyapunov Exponents 
by Neural Network 

In this section, we use the model of chaotic neural networks with two internal 
states, ai{t) and /3^(t). Then, defining the 2n-dimensional state as 
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x{t) = (cei(t),.. . , an{t),(3i{t),..., (3n{t)), (17) 

we can interpret the chaotic neural network as the 2n-dimensional dynamical 
system 

xit + 1) = fix{t)), (18) 

where / : R̂ "̂  -^ M?^ is a nonlinear mapping defined by equations 

n 

ai{t^l) = km(^i{t) ^^uJijUj{t), (19) 

A(t + 1) = kmP,(t) + -iu,(t) + a, (20) 

a,(t + 1) = f[a,(t + 1) + A(t + 1)], (21) 

where ix (̂t + 1) is the output of the chaotic neuron at the discrete time t + 1; 
Uij is the connection weight from the j th chaotic neuron to the ith. chaotic 
neuron; / is the continuous output function. 

Considering an infinitesimal derivation 5x(t) from x(t) in equation (18), 
we obtain 

x(t + 1) + 5x(t + 1) = f{x(t) + 5x(t)). (22) 

By expanding equation (22) to the Taylor series and discarding the higher 
order terms, the following linear map is obtained: 

5y{t + l) = Jt5y{t), (23) 

where Jt is the Jacobian matrix of f{t). 
Let us define the following positive matrix 

M(a;(t),L) = [{J ,^ r j ,^ ]A, (24) 

where J^ is an an L times multiplication of the Jacobian matrix Jt from t to 
t+L, T indicates the transpose of a matrix, and L corresponds to a localization 
parameter. Namely if L is small, it corresponds to observing the very local 
dynamics. Oseledec proved that the limit of equation (24) as L ^ oo exists, 
and the global Lyapunov exponents are defined as the logarithm of eigenvalues 
ofM(y(0),L), 

Xi= lim \ogai{M{y{0),L)). (25) 
L^OO 

However, due to the ill-defined problem of the above matrices, it is not 
numerically easy to calculate eigenvalues directly from equation (24). The 
following orthogonalization scheme is utilized for numerically calculating the 
Lyapunov spectrum. First, the matrix JIQQ is decomposed as 

JiQo = Qii^i, (26) 

where Qi is an orthogonal matrix, Ri is an upper triangular matrix with 
nonnegative diagonal elements and QQ is the identity matrix. Next, J2Q1 is 
decomposed as 
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J2Q1 = Q2R2- (27) 

Generally, 

Jj+iQj = Qj+iRj+i. (28) 

Then, the matr ix [{Jt}^Jt] ^̂  decomposed as 

JI ''' JLJL' '' Ji = Q2LR2LR2L-1 • • • Ri' (29) 

Since Q2L is an orthogonal matrix, [{Jt}^Jt] ^^^ R2LR2L-1 • • • Ri have 
the same growth rates. The global Lyapunov exponents Â  are estimated by 
the following equations: 

2L 

^̂  = i!i^^Elogk?|, (30) 

where r't^ is the i th diagonal element of a matr ix Rj, and L is the size of the 
locality. 

The local Lyapunov exponents at t ime t with L are defined in a similar 
way: 

Xi{t,L)=\ogai{M{y{t),L)), (31) 

with the same decomposition into successive QR factors as equation (28), it 
is numerically evaluated by 

1 ' ^ 
A.(t ,L) = — ^ l o g | r f | . (32) 

If the calculated largest Lyapunov exponent Ai is at least positive, the 
dynamic system has orbital instability, which is one of fundamental charac-
teristics of deterministic chaos. 

4 Geometrization of Brain Dynamics 

During the past decade, there has been growing evidence of the independence 
of the two properties of instability and predictability of the human brain 
dynamics. The generic situation of the brain dynamics is instability of the 
trajectories in the Lyapunov sense. Nowdays such instability is called intrinsic 
stochasticity, or chaoticity, of the brain dynamics and is a consequence of 
nonlinearity of the equation of motion. 

In order to characterize the dynamical instability, we first examined some 
properties tha t characterize the EEG signal, including the spectrum of Lya-
punov exponents, the energy, geodesies and fiber bundles. We analyzed the 
parameter spaces as well as related quantities T-index of STLmax, Jacobi -
Levi-Civita equation, and the modelling of EEG time series from the experi-
mental point of view. 
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The approach involves a geometric description of Lyapunov exponents for 
the purpose of correcting the nonlinear process tha t provides adaptive dy-
namic control. The novelty in this section is in the representation of dynamical 
instability by a Riemannian theory in a way tha t permits practical applica-
tions. 

We separate the Lyapunov exponent into a tangent space (fiber bundle) 
and its functional space. Control involves signal processing, calculation of an 
information characteristic, measurement of Lyapunov exponents, and feed-
back to the system. Wi th more information, we can reduce uncertainty by a 
certain degree. 

The actual interest of the Riemannian formulation of dynamics stems from 
the possibility of studying the instability of brain dynamics through the in-
stability of geodesies of a suitable manifold, a circumstance tha t has several 
advantages. 

First of all, a powerful mathematical tool exists to investigate the stability 
or instability of a geodesic fiow: the Jacobi-Levi-Civita (JLC) equation for 
geodesic spread. 

The JLC equation describes covariantly how nearby geodesies locally scat-
ter, and it is a familiar concept in both Riemannian geometry and theoretical 
physics. Moreover, the JLC equation relates the stability or instability of a 
geodesic fiow with curvature properties of the ambient manifold, thus opening 
a wide and largely unexplored field of investigation, as far as physical systems 
are concerned, of the connections among geometry, topology, and geodesic 
instability, hence chaos. 

Geometrization of the brain dynamics includes the following stages: 1) Re-
construction of equations of the epileptic brain from experimental data; 2) Re-
alization in local coordinates of a one-parameter group of diffeomorphisms of a 
manifold M ; 3) Estimation of largest Lyapunov exponent; 4) Geometrization 
of dynamics; 5) Geometric description of dynamical instability; 6) Jacobi -
Levi-Civita equation for geodesic spread; 7) Analytical description of the 
largest Lyapunov exponent. 

By transforming the Jacobi-Levi-Civita equation from geodesic spread into 
a scalar equation for ip variable, the original complexity of the JLC equation 
has been considerably reduced. From a tensor equation we have worked out 
an effective scalar equation formally representing a stochastic oscillator [16]. 

Our Lyapunov exponent is defined as 

, . „ , 1,„£W±*!M, ,33) 

where ^{t) is the solution of the equation 

0 + Q{t)i; = 0, (34) 

f2{t) is a Gaussian stochastic process; 
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0{t) = (fcfi)̂  + fi^{S^KR)U{t), (35) 

if the Eisenhart metric is used. 
The instability growth rate of ip measures the instability growth rate of 

II J p (geodetic separation field) and thus provides the dynamical instability 
exponent in our Riemannian framework. 

Equation (4) is a scalar equation that, independently of the knowledge 
of dynamics, provides a measure of the average degree of instability of the 
dynamics itself through the behavior of ^|J{s). The peculiar properties of a 
given Hamiltonian system enter (4) through the global geometric properties 
(^i?)^ and (S'^KR)/^ of the ambient Riemannian manifold whose geodesies are 
natural motions and are sufficient to determine the average degree of chaoticity 
of the dynamics. 

5 Conclusion 

An approach to global reconstruction of the epileptic brain dynamics using 
massive data has been considered. It is based on new algorithms for estima-
tion of local and global Lyapunov exponents and a geometric technique. We 
have shown that Lyapunov exponents can be calculated by estimation of dif-
feomorphism of the reconstructed system and a chaotic neural network. The 
performance of the algorithm is very satisfactory in the presence of noise as 
well as with limited number of observations. We hypothesize three types of 
changes that the epileptic brain attractors can undergo as a system parameter 
is varied. The first type leads to the sudden destruction of a chaotic attractor. 
The second type leads to the sudden widening of a chaotic attractor. In the 
third type of change two (or more) chaotic attractors merge to form a single 
chaotic attractor and the merged attractor can-be larger in phase-space extent 
than the union of the attractors before the change. All three of these types of 
changes are termed crises and are accompanied by a characteristic temporal 
behavior of orbits after the crisis. 

A geometric approach to the study of the physiological disturbances that 
occur in human epilepsy was proposed. Under reasonable hypotheses, which 
obviously restrict the validity of the geometric approach, our results provide 
the possibility of numerical computation of the state changes in the EEG 
signals using the largest Lyapunov exponent and the combination of the cur-
vature of the underlying manifold and the geodesies. These geodesies fiows 
may have very specific hidden symmetries, mathematically defined through 
Killing tensor field. 
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Summary . The ability to predict epileptic seizures well prior to their clinical onset 
provides promise for new diagnostic applications and novel approaches to seizure 
control. Several groups of investigators have reported that it may be possible to pre-
dict seizures based on the quantitative analysis of EEG signal characteristics. The 
objective of this chapter is first to report an automated seizure warning algorithm, 
and second to compare its performance with other, theoretically sound, statistical 
algorithms. The proposed automated seizure prediction algorithm (ASPA) consists 
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of an optimization method for the selection of critical cortical sites using measures 
from nonlinear dynamics, and a novel method for the detection of preictal transitions 
using adaptive transition thresholds according to the current state of dynamical in-
teractions among brain sites. Continuous long-term (mean 210 hours per patient) 
intracranial EEG recordings obtained from ten patients with intractable epilepsy 
(total of 130 recorded seizures) were analyzed to test the proposed algorithm. For 
each patient, the prediction ROC (receiver operating characteristic) curve, gener-
ated from ASPA, was compared with the ones from periodic and random prediction 
schemes. The results showed that the performance of ASPA is significantly supe-
rior to each naiVe prediction method used (p-value < 0.05). This suggests that 
the proposed nonlinear dynamical analysis of EEG contains relevant information to 
prospectively predict an impending seizure, and thus has potential to be useful in 
clinical applications. 

K e y words: Epilepsy, Dynamical entrainment. Automated seizure predic-
tion. Naive prediction schemes, ROC curves. 

1 Introduction 

Epileptic seizures result from a temporary electrical disturbance of the brain 
and affect at least 50 million people worldwide, including 1.4 million Ameri-
cans. For the patients with epilepsy, the occurrences of seizures interfere with 
their normal life and are sometimes fatal. One of the most disturbing as-
pects of epilepsy is tha t the occurrences of seizures appear to be random 
and unpredictable. Therefore, seizure prediction is listed as one of the most 
important future directions in epilepsy research [13]. The ability to predict 
epileptic seizures well prior to their occurrences provides promise for new di-
agnostic applications and novel approaches to seizure control. Therefore, any 
methods tha t can reliably predict or warn of a seizure occurrence would be 
very clinically significant. An immediate application of such an automatic 
seizure prediction computer algorithm, incorporated into existing long-term 
EEG recording equipment, could be used for diagnostic purposes and to en-
hance patient safety and t reatment by alerting the nursing and technical staff 
of impending seizures. 

Several groups of investigators have reported tha t it may be possible to 
predict seizures based on analysis of the EEG signal characteristics. For ex-
ample, lasemidis and coworkers use STLmax to detect preictal s tate prior to 
seizure onset [5, 11, 12, 21]; Lehnertz and Elger [3, 14] use the effective corre-
lation dimension to detect a change in dynamics before a seizure; Martinerie 
and coworkers [16, 18, 19] apply dynamical similarity analysis to show signif-
icant difference between preictal and interictal states; Litt and coworkers [15] 
reported tha t number of energy bursts s tarts increasing several hours prior to 
seizure onset. Most recently, Mormann, Andrzejak and coworkers [17] showed 
tha t the period preceding a seizure can be characterized by a decrease in syn-
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chronization between different EEG recording sites, with a mean prediction 
t ime of 86^102 minutes. 

Our previous work indicates tha t temporal lobe seizures are preceded by 
a dynamical entrainment of critical cortical sites which can be detected ap-
proximately 70 minutes before a seizure and tha t this entrainment is reset by 
the seizures [11, 9]. This has led us to use a new model to explain the sponta-
neous occurrence of epileptic seizures - dynamical ictogenesis theory. Based 
on this model, we have reported several automated seizure warning systems 
tha t detect the preictal transition from selected "critical" electrode sites and 
provide seizure warnings. Critical sites selection is based on the dynamical 
entrainment-disentrainment behavior before and after a seizure or an entrain-
ment transition. These algorithms have been previously described in detail 
[20, 4, 8]. In this chapter, we propose an improved version of our automated 
seizure warning system using an adaptive transition detection threshold based 
on the degree of the dynamical entrainment. The details of this algorithm will 
be described in the Material and Methods section. 

Before applying any seizure prediction system for diagnostic and treat-
ment applications, it is necessary to assess its performance and reliability. 
The most commonly used criterion to assess seizure prediction algorithms is 
to estimate the sensitivity (probability of a seizure being correctly predicted) 
and false prediction rate (false predictions per unit time) separately. However, 
in different studies, the characteristics of the testing EEG recordings (e.g., the 
duration of the EEG recordings, the seizure frequencies and the number of 
patients) and the criterion to claim a correct prediction are different. With-
out objective and s tandard evaluation methods, it is very difficult to check 
the progress of a prediction method. Hence, it is important to first compare 
its performance with the methods tha t do not use any information from EEG 
or other brain recordings, as a control method to evaluate a seizure prediction 
algorithm. 

Winterhalder [24] and Aschenbrenner-Scheibe [2] reported studies to assess 
a seizure prediction method by qualitatively comparing its ROC curve with 
the ones from non-specified alert systems (periodic and random prediction). 
In this chapter, we have extended this evaluation approach by (1) testing all 
compared prediction methods on the same EEG da ta and (2) quantifying pre-
diction statistics, ROC areas, from ROC curves. The first extension is to make 
sure tha t all the compared methods are tested under the same da ta character-
istics (e.g., recording duration, number of seizures, seizure intervals). In this 
study, all compared prediction methods were tested on long-term continu-
ous (mean 210 hours) multichannel recordings with multiple seizures (average 
number of seizures = 13) from ten test patients. The second extension is to 
allow us to compare the performance of prediction methods quantitatively. 
ROC curves from each of the three prediction methods (periodic, random, 
and ASPA) are generated for each patient and the ROC areas are estimated 
as a prediction performance statistic for the evaluation and comparisons. A 
s tandard nonparametric statistical test is employed to show the statistical sig-
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nificance of the comparisons between the proposed prediction method ASPA 
and the two non-EEG based prediction schemes. 

The rest of this chapter is organized as follows. Materials and methods are 
described in Section 2. The results of the study are presented in Section 3. 
Discussions of the methods and results are given in Section 4, and conclusion 
remarks of this chapter will be in final Section 5. 

2 Materials and Methods 

2.1 Recording Procedure and EEG Data Characteristics 

Electrographic recordings from bilaterally, surgically implanted macro-electrodes 
in the hippocampus, temporal and frontal lobe cortexes of epileptic patients 
with medically intractable temporal lobe, complex, focal epilepsy were ana-
lyzed. The recordings were obtained as part of a pre-surgical clinical evalu-
ation. Figure 1 shows our typical electrode montage. The EEG signals were 
recorded using amplifiers with an input range of ±0.6 mV, and a frequency 
range of 0.5^70 Hz. Prior to storage, the signals were sampled at 200 Hz us-
ing an analog to digital (A/D) converter with 10-bit quantization. The multi-
electrode EEG signals (28 to 32 common reference channels) were obtained 
from long-term (3.18 to 13.45 days) continuous recordings in 10 patients. A 
total of 130 seizures over 87.53 days were recorded with a mean inter-seizure 
interval approximately 13.4 hours (see Table 1 for details). In this study, all 
the EEG recordings were viewed by two independent board-certified elec-
troencephalographers to determine the number and type of recorded seizures, 
seizure onset and end times, and seizure onset zones. 

2.2 Analysis of Nonlinear Dynamics — Short-Term Maximum 
Lyapunov Exponent (STLmax) 

Short-term maximum Lyapunov exponent was utilized to extract the nonlin-
ear dynamical characteristics (chaoticity) of the EEG signal over time for each 
recording channel [6, 7, 10]. The rationale is based on the hypothesis that the 
epileptic brain progresses into and out of the order-disorder states in terms of 
the theory of phase transitions of nonlinear dynamical systems. The largest 
Lyapunov exponent {Lmax or Li) is defined as the average of local Lyapunov 
exponents Lij in the state space, that is: 

ot 

where N is the total number of the local Lyapunov exponents that are es-
timated from the evolution of adjacent points (vectors), Yi = Y(ti) and 
Yj = Y{tj)^ in the state space, and 
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Fig. 1. Diagram of the depth and subdural electrode placement. Electrode strips 
are placed over the left orbitofrontal (LOF), right orbitofrontal (ROF), left sub-
temporal (LST), and right subtemporal cortex. Depth electrodes are placed in the 
left temporal depth (LTD) and right temporal depth (RTD) to record hippocampal 
EEG activity. 

Table 1 

P a t i e n t 

G e n d e r 

# 1 
# 2 
# 3 
# 4 
# 5 
# 6 
# T 
# 8 
# 9 
# 1 0 
Total 

Female 
Male 
Female 
Male 
Male 
Male 
Male 
Male 
Female 
Male 

Summary of analyzed EEG data and patients 

A g e 
45 
60 
41 
19 
33 
38 
44 
29 
37 
37 

D u r a t i o n 
of E E G 
record-
ings 
(days) 

3.63 
11.98 
9.06 
13.45 
12.24 
3.18 
6.24 
6.07 
11.80 
9.88 
87 .53 
days {^ 
2100 hrs) 

# ^ of 
seizures 

7 
7 
18 
15 
16 
8 
17 
14 
17 
11 
130 

Inter-se izure Interval 
>(hours) 

M e a n 
11.58 
20.32 
4.86 
19.55 
17.34 
8.68 
9.09 
10.78 
14.90 
21.44 
13.39 

S t a n d . D e v . 
17.85 
29.43 
3.45 
17.57 
20.88 
6.90 
7.05 
18.87 
16.09 
34.72 
18.29 
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_ 1 \XiU + At)-Xitj + At)\ 
"-''- At'""^^ \X{U)-X{t^)\ 

where At is the evolution time allowed for the vector difference ^^{xij) = 
\Y{ti)- Y{tj)\ to evolve to the new difference 8^{xk) = \Y{ti^ At) - Y{tj + 

zAt)|, where At = k • dt and dt is the sampling period of the data u{t). If At 
is given in sec, L^^ax is in bits/sec. 

Fig. 2. STLmax profile over time (140 minutes), including a 2.5 minute seizure. 

The first step in the STLmax analysis is to divide the EEG time series 
into non-overlapping segments of 10.24 seconds duration (2048 points). Brief 
segments were used in an attempt to ensure that the signal within each seg-
ment was approximately dynamically stationary. By the method described in 
[6], the STLmax values were calculated continuously over time for the entire 
EEG recordings in each patient. Figure 2 shows a STLmax profile in a dura-
tion of two hours before and 20 minutes after a seizure. The values over the 
entire period are positive. This observation has been a consistent finding in all 
recordings in all patients studied to date. Moreover, the STLmax values during 
the seizure are lower than before and after the onset of the ictal discharge. 
This indicates that methods can be developed, using sequential calculations 
of STLmax 1 to detect ictal discharges from the EEG signals. 
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2.3 Quantification of Dynamical Entrainment 

Dynamical entrainment is defined as the convergence of STLmax values among 
the EEG channels within a 10-minute window (approximate 60 STL^^ax val-
ues). This convergence is quantified by the average of pair-T statistics over 
all pairs among the group of channels. We defined this value as T-index. For 
example, the T-index value for a group of 5 channels is the average of 10 
pair-T statistics. The calculation of a pair-T statistic is described as follows: 

For channels i and j , if their STL^ax values in a window Wf of 60 STL^ax 
points are 

Lj = {STL maxf, STL max^+\ . . . , STL max^+^^} 
L^ = {STL m^yi],STL max5+\ . . . , STL max^+^^j ' 

and 

Dl^ =L\- L] = {4j,4+\ ... d*+59} = {STLmax* -STLmax*, 
STLmax'+i -6 'TLmax*+\ . . . , 5TLmax*+^^ -6'TLmax*+^''}, 

then, the pair-T statistic at time window Wt between channels i and j is 
calculated by 

T: 
DI, 

where D^j and ad are the average value and the sample standard deviation of 

2.4 Automated 5TX^acc-based Seizure Warning algorithm 

Based on the STLmax and T-index profiles over time, we proposed a new 
automated seizure warning algorithm that involves the following steps: 

(1) Observing the first recording seizure 

The algorithm utilizes the spatiotemporal characteristics before and after the 
first recorded seizure for the selection of the critical groups of channels. In 
this off-line study, the first seizure time for each patient was given in the 
algorithm to initiate the seizure prediction procedure. However, in the on-line 
real-time testing, the system can be activated manually by an EEG technician, 
a nurse, or a programming engineer when observing the first seizure; or it 
can be activated automatically by incorporating a reliable seizure detection 
subroutine with the prediction system. 
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(2) Selection of anticipated critical groups of channels 

One of the most important tasks to accomplish an automated seizure warning 
algorithm based on the STL^ax profiles is to identify beforehand the group 
of electrodes tha t will participate in the preictal transition of an impend-
ing seizure. We defined these groups of electrodes as "critical groups" and 
they should be detected as early as possible before the impending seizure. 
We have proposed in the past tha t the anticipated critical groups of channels 
can be identified based on the dynamical entrainment/disentrainment (T-
index values [20, 4]) in the t ime windows before and after the first recorded 
seizure. Here, the selection process chooses groups of electrode channels tha t 
exhibit the most disentrainment after the first seizure relative to the en-
trainment preictally. In other words, ASPA selects the groups of channels 
which maximize the difference of average T-indices 10 minutes before and af-
ter the first recorded seizure, conditional on average T-index is larger after the 
seizure. This task can be easily accomplished by creating two T-index matri-
ces (one before and one after the first recorded seizure). Therefore, after the 
first recorded seizure, the algorithm automatically identifies the most critical 
groups of channels for the prediction of the following seizures. In addition, 
with more input EEG channels or more complicated selection constraints, a 
constrained multi-quadratic 0-1 global optimization technique can be em-
ployed to reduce the computational t ime of this selection step. 

(3) Monitoring the average T-index profiles among the selected channels 

After the groups of critical electrode sites are selected, the average T-index 
values of these groups are monitored forward in t ime (i.e., moving Wt 10.24 
seconds at a t ime). Thus, T-index curves over t ime are generated. It is ex-
pected tha t T-index curves will cross the entrainment threshold line before a 
seizure. The idea of such a transition is tha t , the critical electrode sites be-
gin initially disentrained (T-index value larger than an upper threshold, UT), 
then will gradually converge (T-index value less than a lower threshold, LT) 
before a seizure. 

(4) Detection of entrainment transitions and issue of warnings 

The objective of an automated seizure warning algorithm is to prospectively 
detect a preictal transition in order to warn for an impending seizure. In the 
proposed algorithm, a warning is declared when an entrainment transition is 
detected by the T-index curves. An important question is how to determine the 
entrainment thresholds UT and LT. We herein propose an adaptive scheme 
to adjust these thresholds according to the dynamical states of the patient. 
Thus, UT is determined as follows: if the current T-index value is greater 
than max2o, the maximum T-index value in the past 20 minute interval, UT 
is equal to max20i otherwise, the algorithm continues searching to identify 
UT. Once UT is identified, LT is equal to UT-D, where Ẑ  is a preset distance 
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in T-index units. After determining UT and LT, an entrainment transition is 
detected if an average T-index curve is initially above UT and then gradually 
drops below LT. Once an entrainment transition is detected, the thresholds 
are reset and the algorithm will search for a new UT. 

Figure 3 shows the workings of the proposed prediction algorithm for two 
seizures occurring six hours apart from each other. In this example, two groups 
of three critical channels each were considered and their average T-index val-
ues were monitored over time. The algorithm first determined a UT (see star 
in the Figure 3, UT^IO) and then issue a warning when the T-index dropped 
below LT {=UT-D=6). After this warning, UT is reset, that is algorithm is 
to determine a new UT. Warnings that occurred within a pre-set time interval 
of each other were grouped as a single warning. Between the two seizures in 
Figure 3, the algorithm issued three warnings at approximately 120, 235 and 
335 minutes, respectively, where their corresponding UT^s were marked by 
asterisks. After the run, if the prediction horizon is set to one hour, the first 
two warnings (dashed arrows in the Figure) are considered as false warnings 
(false positives), and the third warnings (solid arrow) is considered as a true 
warning. 

2.5 NaYve prediction schemes 

A natural question that was recently arisen is whether an EEG-based analy-
sis is really necessary for seizure prediction and how prediction results from 
such an analysis may differ from a pure naive (non-EEG) statistical analysis 
[1]. Here, we apply two common non-EEG based prediction schemes for such 
a comparison: periodic and random predictions. The former is to predict a 
seizure with a fixed time interval and the latter is to predict according to an 
exponential distribution with a fixed mean. In the periodic prediction scheme, 
the algorithm issue a seizure warning at a given time interval T after the first 
seizure. For each subsequent warning, the process is repeated. The random 
prediction scheme issues a seizure warning at time interval determined by ran-
dom number distributed as an exponential distribution with mean A, (exp(A)). 
The algorithm first issues a warning at an exp(A) distributed random time 
interval after the first seizure. After the first warning, another random time 
interval is chosen from the same distribution for issuing the next warning. 
This procedure is repeated after each warning. 

2.6 Statistical Evaluation and Comparisons of prediction schemes 

To evaluate the prediction accuracy, the prediction horizon, a parameter often 
referred to as the alert interval [23], is necessary because it is practically 
impossible to exactly predict the time when an event occurs. A prediction is 
usually considered true if the event occurs within the prediction horizon. If no 
event occurs within the window of prediction horizon, the prediction is called 
a false prediction. The merit of a prediction scheme is then evaluated by its 
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Fig. 3. 5TL^ax-based prediction algorithm. Two seizures occurred at t=0 and 
t=360 minutes. There are only two (from two groups of critical channels) T-index 
curves shown in this example for better visualization. [/T's are automatically deter-
mined (marked as "*"). The algorithm issues three warnings at approximately 120, 
235 and 335 minutes after the first seizure in the plot. With the prediction horizon 
(PH) set to one hour, the first two warnings (dashed arrows) are considered false 
and the third one (solid arrow) is a true warning. 

probability of correctly predicting the next seizure (sensitivity) and its false 
prediction rate (FPR) (specificity). The unit of F P R used here is per hour 
and thus F P R is estimated as total number of false predictions divided by 
total number of hours of EEG analyzed. An ideal prediction scheme should 
have its sensitivity = 1, and F P R = 0. 

One can compare any two prediction schemes by their sensitivities at a 
given FPR, or conversely, compare their F P R s at a given sensitivity. How-
ever, in practice it is not always possible to fix the sensitivity or F P R in a 
sample with a small number of events. Moreover, there is no universal agree-
ment on what is an acceptable F P R or sensitivity. One can always increase 
the sensitivity at the expense of a higher FPR. A similar situation happens 
in comparing methods in disease diagnosis where the t rade off is between 
sensitivity, defined as probability of a sick patient being correctly diagnosed, 
and specificity, defined as the probability of a healthy patient being correctly 
diagnosed. A common practice in comparing diagnostic methods is to let the 
sensitivity and the specificity vary together and use their relation, called the 
receiver operation characteristic (ROC) curve, for comparison purposes. 
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An ROC curve is estimated by changing a parameter in a given prediction 
scheme. For example, in the periodic prediction scheme, the period can be 
changed from 0 to infinity. When the period is 0, the sensitivity is 1. When 
the period is infinite, the FPR is 0. Thus, the estimated ROC curve is always 
a closed curve between 0 and 1 and its area can be estimated. 

When estimated from real data, the ROC curve may not be smooth and 
the superiority of one prediction scheme over the other is difficult to establish. 
Recent literature for ROC comparisons can be found in [25, 22]. Usually, 
ROC curves are globally parameterized by one value, called the area above 
(or under) the curve. For seizure prediction ROC curves, since the horizontal 
axis FPR is not bounded, the area above the curve is the most appropriate 
measure, that is 

/»oo 

A= [1 - f{x)]dx, 
Jo 

where the ROC is expressed as i/ = f{x) with x and y being the FPR and sen-
sitivity, respectively. Apparently, smaller area Vindicates a better prediction 
performance. 

For each patient, three ROC areas were calculated from the three test pre-
diction algorithms. A two-way non-parametric ANOVA test (Friedman's test) 
was used for overall "algorithm" effects on ROC areas. Wilcoxon signed-rank 
test was then employed to determine the statistical significance of differences 
between each pair of algorithms after an overall significance was observed. 

3 Results 

Seizure prediction results from ten patients (see Table 1) were used to compare 
the performances of the proposed iSTL^ax-based seizure prediction algorithm 
with the ones from the periodic and random schemes. The ROC curves from 
each prediction scheme are shown in Figure 4 and their areas A are given 
in Table 2. The parameter in ROC curves for periodic prediction is the time 
length used for issue of warnings; for random prediction is the mean value of 
the exponential-distributed random intervals between two warnings, and for 
the STLmax-^SiSed prediction algorithm is the distance D between the two 
thresholds UT and LT. It is worthwhile to note that, since the random pre-
diction scheme is a random process, each point in ROC curve (i.e., for each 
A) is estimated as the mean sensitivity and FPR from 100 Monte Carlo simu-
lations. From Figure 4 and Table 2 it is obvious that the proposed prediction 
method is better than the other two methods. It exhibits the smallest A across 
all patients. In particular, the mean ROC area for the STL^ax-^SiSed method 
is 0.093 over all test patients, whereas the mean areas are 0.152 and 0.155 for 
periodic and random prediction schemes, respectively. 

Friedman's test revealed that there is significant "algorithm" effect (p = 
0.0005) on the observed prediction ROC areas. The pairwise comparisons 
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by Wilcoxon sign-rank test showed tha t the ROC area for the AS PA was 
significantly less than the ones from the other two prediction schemes (p = 
0.002 for both comparisons). As expected, the difference between the two naive 
prediction schemes are not significant (p = 0.56). Thus, we can conclude tha t 
the information extracted from analyses of EEG, in particular by the proposed 
prediction method, is useful for the prediction of an impending seizure. 

Fig. 4. Estimated ROC curves for ten patients generated by three prediction meth-
ods: red line = proposed 5TLmax-based method; black solid line = periodic predic-
tion method, and black dashed line = random prediction method. 

Finally, for the proposed ASPA, with at least 80% prediction sensitivity 
for each test patient, an overall sensitivity of 85.0% and false prediction rate 
of 0.159 per hour {^ one false prediction every 6.3 hours) were achieved. The 
average prediction t ime for an impending seizure is 63.6 minutes prior to the 
seizure onset. A summary of these prediction characteristics is given in Table 
3. 
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Table 2. Areas above the ROC curves for the three prediction schemes 

Patient 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
Mean 
(Std) 

^TL^ax-based 
0.0803 
0.0763 
0.0545 
0.1381 
0.0784 
0.0857 
0.0977 
0.0748 
0.1406 
0.1012 
0.0928 
(0.0277) 

Periodic 
0.1703 
0.2058 
0.1108 
0.1842 
0.1486 
0.0976 
0.1269 
0.1534 
0.1589 
0.1644 
0.1521 
(0.0329) 

Random 
0.1535 
0.1789 
0.0961 
0.1884 
0.1691 
0.1289 
0.1252 
0.1635 
0.1775 
0.1710 
0.1552 
(0.0294) 

Table 3. Prediction performance of ASPA with sensitivity larger than 80% per 
patient 

Patient 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
Overall 

Sensitivity 

5/6 = 83.3% 
5/6 = 83.3% 
14/17 = 82.4% 
12/14 = 85.7% 
14/15 = 93.3% 
7/7 = 100% 
13/16 = 81.3% 
11/13 = 84.6% 
13/16 = 81.3% 
8/10 = 80.0% 
102/120 = 
85.0% 

False Predic-
tion Rate (per 
hr) 

0.086/hr 
0.107/hr 
0.097/hr 
0.227/hr 
0.135/hr 
0.082/hr 
0.199/hr 
0.121/hr 
0.210/hr 
0.140/hr 
0.159/hr 

Prediction Time (mins) 

Mean 
63.97 
59.09 
61.98 
56.11 
84.16 
67.12 
68.86 
34.48 
74.62 
54.12 
63.55 

Stand. Dev. 
42.54 
52.41 
35.24 
48.42 
49.48 
47.56 
48.97 
49.73 
46.93 
34.48 
45.90 

4 Discussion 

Ideal EEG characteristics for the assessment of seizure prediction algorithms 

For the validation of a seizure prediction algorithm, the ideal EEG test record-
ings should have: (1) sufficient length with long-term interictal periods, (2) 
continuous recording without arbitrary or subjective selection of interictal 
and /or preictal segments, and (3) sufficient number of seizures. These charac-
teristics allow us to have reliable estimations of prediction sensitivity and false 
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prediction rate. Subjective selections of the test interictal or preictal EEG pe-
riods make the evaluation questionable. In this study, the proposed prediction 
algorithm AS PA was tested and evaluated on the continuous long-term EEG 
recordings from ten patients with multiple seizures. The mean length of the 
recordings was approximately 210 hours per patient and the mean number of 
seizures was 13 seizures per patient. 

Selection of prediction horizon 

Prediction performance depends on the selection of the prediction horizon, 
tha t is, the t ime interval during which a seizure should occur after a warning. 
Short prediction horizon decreases both prediction sensitivity and specificity 
(increase of false prediction rate) . Different choices of prediction horizon could 
benefit patients in different clinical prospective. For example, a long predic-
tion horizon could help patients making decisions whether he/she should stay 
home, ask for medical assistance, drive or take a fiight. On the other hand, 
a more accurate prediction (short prediction horizon) could greatly increase 
the efficiency of antiepileptic drug or intervention device for the prevention of 
an impending seizure. 

Future prospective 

If seizures can be predicted on-line and real-time, major advances in the di-
agnosis and t reatment of epilepsy could be accomplished. For example: 

(1) ROUTINE: A reliable seizure prediction system employed in a diag-
nostic epilepsy-monitoring unit could be used to warn professional staff 
of an impending seizure or to initiate functional imaging procedures to 
determine ictal regional cerebral blood fiow for a more accurate focus lo-
calization, 
(2) T H E R A P E U T I C : A reliable seizure prediction system could be incor-
porated into digital signal processing chips for use in implantable thera-
peutic devices. Such devices could be utilized to activate pharmacological 
or physiological interventions designed to abort impending seizures, 
(3) EMERGENCY: Such a prediction scheme could also be used in the 
ER or ICU with patients in status-epilepticus. Long-term prediction of 
upcoming seizures may then suggest a change of the medication protocol 
for the patients to be able to recover. 

5 Concluding Remarks 

The results of this s tudy confirm the hypothesis tha t it is possible to predict 
an impending seizure based on the quantitative analysis of multichannel in-
tracranial EEG recordings. Prediction is possible because the spatiotemporal 
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dynamical features of the preictal transition among the critical groups of cor-
tical sites are robust. This robustness makes it possible to identify electrode 
sites tha t will participate in the preictal transition, based on the degree of 
dynamical entrainment/disentrainment at the first recorded seizure. Further, 
because the proposed automated seizure prediction algorithm utilized adap-
tive thresholds based upon the dynamical states of the brain, seizures were 
predicted during states of alertness and sleep. Thus, brain dynamics were suf-
ficiently distinct to allow seizure prediction independent of the patient 's s tate 
of alertness. 

The prediction performance (quantified by the areas above prediction ROC 
curves) of the proposed prediction algorithm is superior to the two compared 
statistical prediction schemes (periodic and random), which indicates tha t 
this automated seizure prediction algorithm has potential for clinical applica-
tions. These results also provide support for our dynamical ictogenesis theory. 
However, in order to be beneficial to a variety of clinical applications, such 
as long-term monitoring procedures for presurgical and diagnostic purposes, 
intensive care units in patients with frequent uncontrolled seizures, and devel-
opment of a mechanism to activate implantable therapeutic devices, reducing 
and understanding the false predictions in the algorithm will be the immediate 
steps following this study. 
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Summary . We have previously reported preictal spatiotemporal transitions in hu-
man mesial temporal lobe epilepsy (MTLE) using short term Lyapunov exponent 
(STLmax) and average angular frequency (i7). These results have prompted us to 
apply the quantitative nonlinear methods to a limbic epilepsy rat (CLE), as this 
model has several important features of human MTLE. The present study tests the 
hypothesis that preictal dynamical changes similar to those seen in human MTLE 
exist in the CLE model. Forty-two, 2-hr epoch data sets from 4 CLE rats (mean 
seizure duration 74±20 sec) are analyzed, each containing a focal onset seizure and 
intracranial data beginning 1 hr before the seizure onset. Three nonlinear measures, 
correlation integral, short-term largest Lyapunov exponent and average angular fre-
quency are used in the current study. Data analyses show multiple transient drops 
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in STLmax values during the preictal period followed by a significant drop dur-
ing the ictal period. Average angular frequency values demonstrate transient peaks 
during the preictal period followed by a significant peak during the ictal period. 
Convergence among electrode sites is also observed in both STLmax and i? values 
before seizure onset. Results suggest that dynamical changes precede and accom-
pany seizures in rat CLE. Thus, it may be possible to use the rat CLE model as 
a tool to refine and test real-time seizure prediction, and closed-loop intervention 
techniques. 

K e y words: Epilepsy, Hippocampus, Temporal Lobe Epilepsy, Seizure pre-
diction. Nonlinear dynamics. Limbic epilepsy model 

1 Introduction 

Over the last two decades, a prime focus in epilepsy research has been the 
application of quanti tat ive measures on continuous E E C recordings obtained 
from patients with epilepsy for the purpose of seizure detection and predic-
tion. Advancing this area of research to a laboratory setting using animal 
models is a practical way to initiate and evaluate future control strategies for 
seizures. Several animal models tha t reflect various mechanisms underlying 
human epilepsy have been developed in recent years. It has been shown tha t 
s tatus epilepticus (SE), in addition to structural brain damage and lasting 
neurological deflcits, can cause a condition of chronic epilepsy. The rat CLE 
model originally described by Lothman et al. [49, 50], in which, spontaneous 
seizures develop following SE induced by a period of continuous hippocampal 
electrical stimulation, is widely accepted as a desirable model of human tem-
poral lobe epilepsy. It has the important features of spontaneity, chronicity, 
hippocampal histopathology and temporal distribution of seizures associated 
with human T L E [5, 61, 62]. Hence we have chosen this model for our current 
study. Given the similarities with human epilepsy, one would also expect there 
to be state changes in this model, which can be quantifled using algorithms 
tha t have been applied to human epilepsy. 

By applying nonlinear t ime series analysis and surrogate t ime series tech-
niques, several studies have demonstrated the existence of nonlinear compo-
nents in human EEG [13, 14, 60]. These observations have led to the develop-
ment of nonlinear techniques to extract information in the EEG signal tha t 
traditional signal processing techniques may fail to reveal. Our group, using 
methods based on the short-term maximum Lyapunov exponent, discovered 
tha t seizures are preceded and accompanied by dynamical changes and tha t 
these dynamical changes can be used to predict seizures several minutes prior 
to the actual onset [33, 35, 36, 37]. 

To gain insight into the rat CLE model as a biological test paradigm 
for preclinical seizure prediction and control therapies, we conducted nonlin-
ear quanti tat ive analysis of long-term EEG da ta from spontaneously seizing 
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Sprague-Dawley rats. The principal goal of this s tudy is to determine whether 
the system properties of the CLE model, as reflected by the EEG, are compa-
rable to those observed in patients with intractable mesial temporal epilepsy. 
These properties include: (1) preictal EEG characterized by transient changes 
in dynamical measures, followed by a progressive convergence (entrainment) 
of these measures at speciflc anatomical areas in the brain; (2) ictal EEG char-
acterized by changes in the dynamical values representing a transition from a 
complex state to a less complex state; (3) postictal EEG characterized by a 
divergence (disentrainment) of dynamical values at speciflc anatomical brain 
areas. The nonlinear measures we have employed do not assume any particu-
lar model nor do they rely on a priori understanding of underlying neuronal 
mechanisms responsible for the data . However, it is important to realize tha t 
the brain is not an autonomous system and the EEG signal is not a stationary 
t ime series and thus, only approximations of the dynamical measures of the 
states of the system within a short interval of t ime can be deflned. 

The chapter is organized as follows. We start with a brief explanation of the 
measures used in this study. They are, power spectrum, correlation integral, 
short-term Lyapunov exponent (STLmax) and average angular frequency (i7). 
Applications of these measures on EEG time series is then demonstrated and 
the observations are discussed. We further create and quantify spatial maps 
of multiple STL^ax and i? t ime series to demonstrate the spatiotemporal 
dynamics of the EEG signal tha t precede and accompany a seizure. 

2 Experimental Setup and Data Characteristics 

2.1 A n i m a l P r e p a r a t i o n 

Experiments were performed on two month old (250 g) male Harlan Sprague 
Dawley rats (n = 4) weighing 210-265 g. Protocols and procedures were ap-
proved by the University of Florida Insti tutional Animal Care and Use Com-
mittee. Four 0.8mm stainless steel screws (small parts) were placed in the 
skull to anchor the acrylic headset {Figure 1). Two were located 2mm rostral 
to bregma and 2mm laterally to either side of the midline. One was 3mm 
caudal to bregma and 2mm lateral to the midline. One of these served as 
a screw ground electrode. The last, which served as a screw reference elec-
trode, was located 2mm caudal to lambda and 2mm to the right of midline. 
Holes were drilled to permit insertion of 2 bipolar twist electrodes for elec-
trical stimulation and recording (AP: -5.3; left and right lateral: + / -4 .9mm; 
vertical: -5 mm to dura) and 2 monopolar recording (AP: 3.2mm, lateral: 
1mm left, vertical: -2.5mm; AP: 1mm, lateral: 3mm right, vertical: -2.5mm) 
electrodes. Electrode pins were collected into a plastic strip connector and the 
entire headset was glued into place using cranioplast cement (Plastics One, 
Inc.). Rats were allowed to recover for a week after surgery before further 
procedures were performed. 
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Fig. 1. Electrode placement on the rat head: electrodes are designated arbitrarily 
to indicate relative positions on the brain. Odd numbers indicate left hemisphere 
and even numbers indicate right hemisphere. F: frontal; T: temporal; R: reference 
screw electrode; G: ground screw electrode. 

Rats were electrically stimulated to induce seizures 1 wk after surgery. 
During stimulation and EEG acquisition, rats were housed in specially made 
chambers [8]. Baseline EEG data was collected using the 2 frontal monopolar 
electrodes and 1 branch of each hippocampal, bipolar electrode. After record-
ing baseline data, the cable was changed so that an electrical stimulus could 
be administered to one hippocampal site through a pair of bipolar twist elec-
trodes. The stimulus consisted of a series of 10 sec trains (spaced 2 seconds 
apart) of 1 msec, biphasic square pulses at 50 Hz, at an intensity of 300-400 
/iA, for 50-70 minutes [7]. During the stimulus, a normal response was to dis-
play 'wet dog shakes' and increased exploratory activity. After approximately 
20-30 min, convulsive seizures (up to 1 min duration) were usually observed 
about every 10 min. At the end of the stimulus period, the EEG trace was 
observed for evidence of slow waves in all 4 monopolar traces. If this was not 
the case, the stimulus was re-applied for 10 minute intervals on another 1-3 
occasions until continual slow waves appeared after the stimulus was termi-
nated. Rarely (<10%), unresponsive rats were noted. The lack of response 
was attributed to inaccurate placement of the stimulating electrode. 

With successful seizure induction, the EEG continued to demonstrate <5 
Hz activity for 12-24 hrs and intermittent and spontaneous electrographic 
seizures (30 s - 1 min duration) for 2-4 hrs following an electrical stimulation 
session. Rats were observed for 12-24 hrs after stimulation for seizure activity. 
Once their behavior stabilized, they were returned to their home room for 6 
weeks while spontaneous seizures developed. 

2.2 Data Acquisition 

Each animal was connected through a 6-channel electrical commutator and 
shielded cable to the EEG recording system, which consists of an analog am-
plifier (Grass Telefactor-Model 10), a 12 bit A/D converter (National Instru-
ments, Inc), and recording software (HARMONIE 5.2, Stellate Inc. Montreal), 
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which is synchronized to a video unit for time-locked monitoring behavioral 
changes. Each channel is sampled at a uniform rate of 200 Hz and filtered us-
ing analog high and low pass filters at cutoff frequencies of 0.1 Hz and 70 Hz, 
respectively. The recording system uses a 4 channel referential montage and is 
set to a continuous mode so that prolonged data sets containing ictal as well 
as interictal data can be collected for analysis. The recording electrodes were 
named according to their relative positions on the rat brain. The saved EEG 
and video data is then transferred to a 1.4 TB RAID server for future off-line 
review and analysis. EEG data pre-processing included removal of baseline 
wander using a Butterworth filter. 

2.3 Classification of Seizures and Data Selection 

The test data sets consisted of 42 epochs, each containing a seizure and 1 hr 
continuous intracranial EEG preceding and following the ictal event, obtained 
from four stimulated rats, hereafter referred to as rats A, B, C and D (Table 
1). Stimulation was done on the left hippocampus in rats A and C and on the 
right in rats B and D. The 'focal' electrode referred to in later sections refers 
to the electrode. Seizure 'onset' was defined electrographically as the first 
sustained change in the EEG clearly different from the background activity. 
Seizure 'offset' was defined as the time at which the rhythmic activity dies 
out and postictal spike and wave discharges appear. 

Table 1. Seizure characteristics of four rats obtained from qualitative (visual) analy-
sis of EEG 

Rat ID 

A 
B 
C 
D 
Overall 

Number 
of 
Seizures 
Analyzed 

5 
8 
21 
8 
42 

Seizure Dura-
tion (seconds) 

Mean 
52.8 
96.6 
80 
65 
77.1 

SD 
3 
20.8 
8.6 
11 
12.03 

Inter-Seizure Interval 
(hours) 

Range 
20-218 
2.5-99 
1.5-164 
12.5-100 
1.5-218 

Mean 
71.5 
42.2 
16.8 
43.6 
33.25 

SD 
97.7 
41 
40 
34.2 
48.7 

3 Signal Processing Methods 

3.1 Spectral Analysis 

Power spectral analysis has been traditionally used to categorize electrophys-
iological signals. Any time series can be decomposed into the sum of its sine 
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wave components using Fourier transforms. To get a better understanding 
of the temporal resolution along with the frequency resolution a spectrogram 
method was used. The spectrogram is the squared magnitude of the windowed 
short-time Fourier transform (STFT). It considers the squared modulus of 
the STFT to obtain a spectral energy density of the locally windowed signal 
x{u)h*{u - t): 

SAtJ) x{u)h*{u-t)e-^^''f''du 

where h{t) is a short time analysis window located around t = 0 and / = 0. 
Thus, we can interpret the spectrogram as a measure of the energy of the 
signal contained in the time-frequency domain centered on the point (t, / ) . 

3.2 Phase Space Reconstruction of the EEG Signal 

The EEG, being the output of a multidimensional system, has both spatial 
and temporal statistical properties. Components of the brain (neurons) are 
densely interconnected and there exists an inherent relation between EEG 
recorded from one site and the activity at other sites. This makes the EEG 
a multivariable time series. A well-established technique for visualizing the 
dynamical behavior of a multidimensional (multivariable) system is to gen-
erate a state space portrait of the system. A state space portrait is created 
by treating each time-dependent variable of the system as a component of a 
vector in a multidimensional space. Each vector in the state space represents 
an instantaneous state of the system. These time-dependent vectors are plot-
ted sequentially in the state space to represent the evolution of the state of 
the system over time. For many systems, this graphical mapping creates an 
object confined over time to a sub-region of the phase space. Such sub-regions 
of the phase space are called "attractors." The geometrical properties of these 
attractors provide information about the global state of the system. 

When the variables of a system are related over time, which is a salient 
characteristic of a dynamical system, proper analysis of a single observable 
can provide information about all variables related to this observable. The 
state space reconstruction of the EEG signal can be done using the method 
of delays described by Takens [70]. Figure 2b shows the phase space recon-
struction of an ictal EEG segment recorded from a single electrode located 
on the hippocampus (Figure 2a). According to Takens [70], the embedding 
dimension p should be at least equal to {2D + 1) in order to correctly embed 
an attractor in the phase space. The measure most often used to estimate 
D is the phase space correlation dimension (z/). Methods for calculating the 
correlation dimension from experimental data described in [56] were employed 
in our work to approximate D of the epileptic attractor. 
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Fig. 2. (a) Ictal segment of raw EEG data from a hippocampal electrode, (b) The 
reconstructed EEG segment in phase space. 

3.3 T e s t for N o n l i n e a r i t y — C o r r e l a t i o n I n t e g r a l 

The instantaneous state of a dynamical system is characterized by a point in 
phase space. A sequence of such states subsequent in t ime defines the phase 
space trajectory. If the system is governed by deterministic laws, then after 
a while, it will arrive at a permanent s tate regime. This fact is refiected by 
the convergence of ensembles of phase space trajectories towards an invariant 
subset of phase space, also called the at t ractor of the system. The correlation 
integral, simply put , is a measure of the spatial organization of a point in a 
chaotic at tractor . In other words, it is the probability of two vectors in s tate 
space being closer than a specified distance r, thus the output of the correla-
tion integral depends on the given radius of the phase space neighborhood. 

Two hour epochs of EEG, one hour before and after the seizure from 
each of the 4 rats were analyzed in order to test for signal nonlinearities. 
The EEG segment was first divided into non-overlapping segments of 10.24 
sec duration. To demonstrate the presence of nonlinearity, the original signal 
was compared to surrogate datasets generated from the original signal. We 
used the randomization technique described by Theiler [72] to generate the 
surrogate datasets. In this procedure, the fast Fourier transform (EFT) of the 
original t ime series is calculated. A phase randomization technique was then 
applied to eliminate the nonlinear components while the linear properties 
are preserved. Next, an inverse E F T is computed to obtain the surrogate 
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time series. A total of 10 surrogate datasets were obtained by repeating the 
procedure. All data sets were transformed to produce distributions with zero 
mean and unit variance. 

The correlation integral is estimated after embedding the time series in a 
multi-dimensional state space using the method of delays [70]. For this study 
we used an embedding dimension p = 5 and a time delay r = 3 (equivalent to 15 
ms). The correlation integral C(r) is the probability that two vectors selected 
at random lie within a distance r of each other. The correlation integral of a 
time series xi,X2, ....,XAr as defined by Grassberger and Procaccia [26] is as 
follows: 

K K 

C(r) = ( l / i V p ) ^ ^ h{r-di^) 

where K = N — {p — 1)T is the number of p-dimensional vectors, Vt = 
(xt,X(t_r), • • .X(t_(p_i)r), Np = K{K — 1 — w)/2 is the number of distinct 

pairs of vectors, and h is the Heaviside or step function h{\) = \ r^ -f \ ~ n 

dij = maxo<m<p-i|^*-mr — Xj-mA was used for computational speed [26]. 
We chose the Theiler correction w = b^ (equivalent to 250ms) to avoid au-
tocorrelation effects on the computation of the correlation integral [70]. The 
correlation integral profile from each of the 4 electrodes was generated and 
compared to the ones generated from the corresponding surrogate datasets. 
Statistical significance was defined as: S = (log^g C{r) — x)/(j^ where x\s the 
mean and a is the standard deviation of the logarithm of the correlation inte-
grals of the 10 surrogate datasets, for each 10.24 second segment A difference 
was considered statistically significant \i S > 5. The parameters p = 5, r = 3 
and r=0.1 were chosen in order to optimize the significance of non-linearity 
in as many EEG segments as possible. 

3.4 Estimation of Short-Term Largest Lyapunov Exponent 

The Lyapunov exponent is a measure of chaoticity of a signal. It is estimated 
by examining, for each point of phase space, how quickly nearby trajectories 
that begin at this point diverge (or converge) over time. For the application 
on non-stationary EEG time series with spike transients, we have adopted 
short term largest Lyapunov exponent modified from Wolf's algorithm [74]. 
The algorithm has been described in detail elsewhere [29]. Mathematically, 
the largest Lyapunov exponent is defined as the average of local Lyapunov 
exponents Lij in the state space as follows: 

-'-'max ^ 7Y z_-c -̂ ^J 
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where N is the total number of the local Lyapunov exponents tha t are es-
t imated from the evolution of adjacent points (vectors) in the state space 
according to: 

^ _ 1 . \X(U+At)-X(tj+At)\ 
At \X(U)-X(t,)\ 

.(A) where At is the evolution t ime allowed for the vector distance Sx^ — 

\X{ti) - X{tj)\ to evolve to the new distance si^^ = |X(t^ + At) - X{tj ^ At)\, 

where A = 0 , . . . Â  — 1 and At = k x dt with dt the sampling period of the 
original t ime series {dt = 5 milliseconds in our da ta) . 

Fig. 3. Calculation of average angular frequency (i?) and Lmax- /\^irepresents the 
local phase difference between 2 evolved states in the state space. 

Eor the estimation of STL^^x (measured in bits/sec), a s tate space recon-
struction for each EEG channel t ime series was performed using the method 
of delays [70] from sequential, non-overlapping da ta segments of 10.24 seconds 
in duration (2048 da ta points) with embedding parameters of p = 7 and r = 3 ; 
where p is the embedding dimension and r is the t ime delay between two 
coordinates in the state space vector. We chose these parameters based on 
results from earlier experiments with training sets of EEG. An illustration of 
STLjnax estimation is given in Figure 3. 
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3.5 Estimation of Average Angular Frequency (f?) 

In addition to capturing the local stability of the system, we were also inter-
ested in measuring the rate at which the local state of the system changed over 
time, and we have used a measure termed as average angular frequency [37]. 
After the state space reconstruction, the first step of this algorithm is to esti-
mate the difference in phase between two evolved states X(t^) and X(t^ + At) 
is defined as A<Pi. The average of the local phase differences A<Pi between the 
vectors in the state space is then given by: 

1 ^ A^=--Y.^^^, 

where N is the total number of phase differences estimated from the evolution 
of X{ti) to X{ti -\- At) in the state space: 

A^, 
X(ti)'X(t,^At) \ 

^'"'^^ ' \\X(t,)\\-\\X(t,^At)\\) 

Then, the average angular frequency, defined by 

i 7 = ^A^ 
At 

measures how fast the local state of a system changes on average (e.g. dividing 
Q by 27r, the rate of the change of the state of the system is expressed in 
see"^(Hz). For estimating the average angular frequency Q (rad/sec), the 
state space reconstruction is done in the same manner as that for estimating 
O 1 LijYiQ^x-

4 Quantification of Spatiotemporal Dynamics 

4.1 Statistical T-index 

We will now examine the spatiotemporal dynamical changes in the EEG that 
precede and accompany seizures by quantifying the observed progressive lock-
ing and unlocking of dynamical measures (STL^^x/^) over time and space. 
We use the T-index from the statistical paired-T statistic to measure the 
degree of convergence/divergence of STL^^x/^ between electrode sites. The 
T-index for each electrode pair was calculated in each 10 minute epoch (60 
values of STL^^x/ ^ ) by dividing the mean difference of the measure con-
sidered (i.e. STL 

max or ^) between the two electrode sites by its standard 
deviation. The T-index at time t between electrode sites i and j is defined as: 

/VN 



Seizure Predictability in an Experimental Model of Epilepsy 545 

where |D^, \ denotes the absolute value of the average of all pairwise differ-
ences Djj = {STLuidixl —STLuiajd \t G w{t)} within a moving window w{t) 
defined as: 

w{t) * iV + l,-
10.24s 10.24s 

where Â  is the length (# of STL 
max points) of the moving window, and (j| • 

is the sample standard deviation of Dj. within w{t). Asymptotically, Tij(t) 
index follows a t-distribution with Â  — 1 degrees of freedom. 

The spatiotemporal behavior of the system is quantified by the T-index 
profiles calculated from multiple electrode sites over time. An electrode pair is 
said to be dynamically entrained if the T-index values calculated from the pair 
falls below a critical threshold Tc = 2.662. We have chosen this critical value 
from the T-distribution with a significance level a = 0.01, based on earlier 
human studies. We have defined an 'entrainment transition' as the drop in T-
index values from a preset upper threshold to Tc. A postictal 'disentrainment' 
is defined as a rise in T-index values from the Tc to a value greater than the 
upper threshold within a 20 minute window after the seizure. 

5 Results 

5.1 Frequency Evolution 

Eigure 4 shows seizure # 1 of rat A and its corresponding power spectra rep-
resented in the time-frequency domain. In the EEG, the onset of the seizure 
is at second 72 and is accompanied by a clear spike and wave discharge. In 
the time-frequency plot, this is correlated with a sudden increase in power in 
the 0-10 Hz range. About 12 seconds into the seizure, high amplitude rhyth-
mic activity starts, and this is correlated with an increase in spectral power 
at higher frequencies up to 25 Hz. This activity progressively slows down to 
about 1 Hz towards the end of the seizure. The postictal state is characterized 
by spikes and slow wave activity, and this is correlated with localized power 
distribution in the 0-7 Hz range. This frequency evolution is very similar to 
the pattern seen in depth EEG recordings from human patients [63]. 

5.2 Nonlinearities in the EEG Time Series 

Eigure 5(a) shows the correlation integral estimates calculated from the EEG 
signal obtained from a 'focal' electrode and 10 surrogate datasets created from 
the original time series, plotted as a function of time. Visual inspection reveals 
that the correlation integrals for the original EEG signal are uniformly higher 
than the correlation integrals estimated from any of the 10 surrogates. The 
sudden increase in the correlation integrals of the original time series and the 
surrogates during the postictal period is due to the increased autocorrelation 
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Fig. 4. Three minutes of EEG data from channel T3-R showing seizure # 1 from 
Rat A and corresponding power spectra. The vertical dashed lines represent the 
seizure onset and offset. 

in the EEG during this period. Figure 5(b) shows the statistical significance 
S of nonlinearity in the same EEG epoch. 79% of the total segments (10.24 
sec in duration) in the EEG epoch showed statistically significant nonlinearity 
{S > 5). 

5.3 D y n a m i c a l C h a n g e s in S y s t e m Chaot i c i ty 

T e m p o r a l STL^aa; Profi les 

Figure 6 shows STL^^x profiles of a 'critical' electrode pair (includes the 
'focal' electrode), for a 10 minute epoch containing a seizure. The STL^^x 
curves generally show a drop during a seizure reaching its minimum value 
during the ictal period followed by a gradual rise to a value greater than 
the average preictal value before returning to the normal values. The 'focal' 
electrodes have a consistently lower value of STL^ax when compared to the 
other electrodes. This may account for the observation of a less significant 
drop in the STL^ax values in the 'focal' electrode when compared to the 
other electrodes. During the seizure the STL^ax values of the electrodes are 
very close to each other but gradually drift apart during the postictal state. 
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Fig. 5. (a) The values of correlation integral C(r) of the recording from the stimu-
lated left hippocampal electrode( solid red line) and values of 10 surrogate datasets 
(blue dotted lines), as a function of time, (b) The statistical significance S of non-
linearity in the EEG signal recorded from the same hippocampal electrode. The 
white horizontal line represents a threshold equal to 5 SD. Statistically significant 
nonlinearities are present in 79% of the total segments (10.24 sec in duration) in the 
entire EEG epoch. Vertical dashed lines represent the seizure onset and offset. 

Fig. 6. Sample STL^axprofile for a 10 minute epoch including a grade 5 seizure. 
The dashed line represents the 'focal' electrode (T3-R in this case) and the bold line 
represents the contralateral hippocampal electrode (T4-R). Seizure onset and offset 
are indicated by vertical arrows at the bottom of the plot. Note that the sudden 
drop in STLmaxvalues during the seizure is clearly visible for T4-R while in T3-R 
the drop is more gradual. 
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T e m p o r a l f2 Profi les 

The i? profiles follow a general t rend opposite to tha t seen in the case of 
STLjnaxi with a peak during the seizure and sharp drop during the postictal 
stage. This pat tern roughly corresponds to the typical observation of higher 
frequencies in the original EEG signal during the ictal period and is consistent 
with findings from time-frequency analysis of the seizure epochs (Figure 4). 
Figure 7 shows i? profiles of a pair of critical electrode sites (including the 
'focal' electrode) 5 minutes before and after a seizure. The hippocampal elec-
trode has a consistently higher value of i? compared to the frontal electrode 
except at the seizure when the i? values calculated from frontal electrodes 
reach the same level as those from hippocampal electrodes, sometimes ex-
ceeding it during certain seizures. A gradual convergence in i? values from 
the frontal and hippocampal electrode can be seen prior to the seizure, fol-
lowed by a certain degree of divergence. In the case of Rat C, even though 
i? values showed a characteristic peak at the seizure, there was no preictal 
entrainment transition and postictal disentrainment in a significant fraction 
of the seizures. 

Fig. 7. Sample i? profile for a 10 minute epoch including a grade 5 seizure. The 
dashed line represents the 'focal' electrode (T4-R in this case) and the bold line 
represents the ipsilateral frontal electrode (F4-R). Seizure onset and offset are indi-
cated by vertical arrows at the bottom of the plot. Note that the 'focal' electrode 
peaks first, followed by the frontal electrode, indicating that the seizure progresses 
from the 'focal' site to the frontal lobe. 
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5.4 Spatiotemporal Profiles of STL^acc and f2 

Figures 8 and 9 show examples of the average T-index curves calculated from 
STLjnax and i? values of a pair of electrodes including the 'focal' electrode over 
a period of 2 hours, from each of the 4 rats. This pattern shows the entrainment 
of STLmax and i? values among the 'critical' electrode sites before a seizure 
and the disentrainment after the seizure. From a dynamical perspective, this 
represents an increase in spatio-temporal interactions between the brain sites 
during the preictal period and a postictal desynchronization of these brain 
sites following a seizure. We can see that, except for Rat C, all T-index curves 
show a transition towards a critical value. We have termed this transition 
as 'entrainment transition'. A sudden overshoot during the postictal stage 
followed by significant disentrainment indicates the resetting feature of the 
seizure (the seizure restores the pre-seizure entrainment to a more normal 
state). Note that the degree of disentrainment is significantly less in Rat C. 
Moreover the critical electrode sites are dynamically entrained for almost the 
entire epoch in this rat. This pattern was consistent in a majority of seizures 
analyzed from Rat C. A possible explanation for this observation is provided 
in the discussion section. A summary of test results for preictal transition and 
postictal resetting is given in Table 2. 

Table 2. Summary of test results obtained from non-linear analysis on 42 seizures 
from 4 rats 

Rat ID 

A 
B 
C 
D 
Overall 

Seizures 

5 
8 
21 
8 
42 

# Seizures with preic-
tal transition 
STLmax 
5 
6 
14 
7 
32(76.2%) 

i? 
5 
6 
18 
6 
35(83.3%) 

# Seizures with pos-
tictal disentrainment 
STLmax 
5 
7 
8 
8 
28(66.7%) 

i? 
5 
8 
15 
8 
35(83.3%) 

6 Discussion 

The results of this study point to three major findings. First, the onset of the 
seizure represents a temporal transition of the system from a chaotic state to 
a more ordered state (less chaotic) as revealed by the behavior of non-linear 
dynamical measures over the preictal, ictal and postictal periods. Second, spa-
tiotemporal dynamical analysis with multiple electrode sites reveals a preictal 
entrainment and postictal disentrainment, which we have termed as 'reset-
ting', in a large subset of the seizures analyzed. This finding is particularly 
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Fig. 8. T-index profiles calculated from STLmax values of a pair of electrodes 
from each rat. Figures a, b, c and d correspond to Rats A, B, C and D. Each pair 
includes the 'focal' electrode and a frontal electrode. Vertical dotted lines represent 
seizure onset and offset. The horizontal dashed line represents critical entrainment 
threshold. 

relevant, because it suggests the ability to identify a pre-seizure state. The 
ability to predict an impending seizure in this model ahead of its clinical or 
electrographic onset would be extremely useful in designing new diagnostic 
and therapeutic applications tha t could trigger interventions well before the 
occurrence of a seizure. 

6.1 N o n l i n e a r i t y and T e m p o r a l D y n a m i c s in t h e C L E M o d e l 

The EEG is a complex signal whose statistical properties depend on both t ime 
and space. The presence of highly significant nonlinearities in electrographic 
signals supports the concept tha t the epileptogenic brain in this model of 
epilepsy is a nonlinear system. Several investigations have employed analytic 
techniques with the objective to s tudy dynamical characteristics associated 
with epilepsy. Preliminary results obtained from non-linear EEG analysis in 
the CLE model show dynamical pat terns similar to those previously observed 
in human TLE. In all 4 animals analyzed, a reduction in EEG chaoticity 
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Fig. 9. T-index profiles calculated from i? values of a pair of electrodes from each 
rat. Figures (a), (b), (c) and (d) correspond to Rats A, B, C and D. Each pair 
includes the 'focal' electrode and a frontal electrode. Vertical dotted lines represent 
seizure onset and offset. The horizontal dashed line represents critical entrainment 
threshold. 

was observed during the ictal period after several transient decreases during 
the preictal period. Nonlinear methods have also been said to be useful in 
identifying the seizure foci, for detecting and localizing ictal onset and for 
studying spatial spread of ictal discharges in human epilepsy. This finding 
seems to extend to the CLE model as well, since dynamical measures obtained 
from E E C recorded from the stimulated site of the hippocampus show a clear 
difference in their mean level from the remaining areas. We must, however, 
point out tha t the assumption here is tha t the site of stimulation is indeed 
the seizure focus in this model which could of course be not the case. 

6.2 S p a t i o t e m p o r a l D y n a m i c s , Se izure P r e d i c t i o n and Contro l 

Perhaps the most exciting discovery to emerge from dynamical analysis of 
the E E C in temporal lobe epilepsy is tha t seizures are preceded by dynam-
ical changes in the signal occurring several minutes before the seizure. The 
analysis of spatiotemporal dynamics of long-term EEG recordings in human 
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patients has revealed that seizures are preceded by dynamical changes well in 
advance of the actual seizure onset. In 3 out of 4 rats, the preictal state was 
characterized by a gradual entrainment transition among 'critical' electrode 
sites followed by a high degree of disentrainment during the postictal period, 
which is similar to the pattern seen in humans [29, 33]. This observation 
provides further proof that seizures in this model represent the formation of 
self-organizing spatiotemporal patterns. This preictal entrainment transition 
and postictal disentrainment pattern was however, not observed in a major 
fraction of seizures from one rat (Rat C). One possible explanation for this be-
havior can be given on the basis of the resetting feature (or lack thereof) of the 
seizure in this particular animal. Note that the value of the mean inter-seizure 
interval for this rat could be misleading because of the fact that seizures in 
this rat occurred in two clusters significantly apart in time from each other. 
The inter-seizure interval within these clusters was in the order of 2-4 hours, 
suggesting that the seizures in this rat did not completely reset the brain. 
This could account for the high frequency of seizures observed. In this regard, 
we can assume that the brain dynamics in this rat was 'abnormal' and not 
representative of the general dynamical behavior seen in this model. We have 
used the term 'abnormal' to convey that the animal does not exhibit normal 
seizure dynamical properties. 

Preliminary results suggest that nonlinear quantitative analysis of multi-
ple regions of brain structures may be useful in detecting alterations in the 
behavior of the underlying network before actual seizure manifestation. The 
spatio-temporal patterns seen before the seizures demonstrate that it may be 
possible to anticipate the seizure by several minutes by automated non-linear 
analysis. A seizure warning system utilizing such a model could be used to ac-
tivate pharmacological or physiological interventions designed to prevent an 
impending seizure. Several fundamental questions remain unresolved in the 
field of seizure control. One of the long term goals of this research is to find 
answers to fundamental questions in the field of seizure control such as where 
in the brain the stimulus should be delivered and what type of stimulation 
would be most effective. 

6.3 Comparison with Human Studies 

The results presented in this study reveal a number of similarities in both lin-
ear and nonlinear dynamical properties between the CLE model and human 
TLE. The analysis of spatial and temporal dynamical patterns of long-term 
intracranial EEG recordings, recorded for clinical purposes in patients with 
medically intractable temporal lobe epilepsy has demonstrated preictal tran-
sitions characterized by progressive convergence (entrainment) of dynamical 
measures (e.g. maximum Lyapunov exponent) at specific anatomical areas. 
These dynamical changes have been attributed to spatial interactions or syn-
chronization between the underlying nonlinear components (neurons) of the 
brain. We have demonstrated that the dynamical properties of the preictal. 
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ictal and interictal states in the CLE model are distinctly different and can 
be defined quantitatively. 

In humans, seizures represent a dynamical state of increased spatiotem-
poral order, and also act as a resetting mechanism to return brain dynamics 
back to a more normal state. Qualitative comparison of dynamical patterns in 
the CLE model with those obtained from previous studies in humans indicates 
that the epileptic brain in this model behaves in a similar fashion. Typical dy-
namical studies involving human intracranial EEC recordings have employed 
28-32 channels. Using smaller micro-electrode arrays in future experiments 
could help overcome one of the major limitations of this study, i.e. the num-
ber of recording electrodes. It could be possible to sample from a wider range 
of brain areas and gain a better understanding of seizure progression and sub-
tle dynamic interactions between nearby sites. Identifying and characterizing 
the preictal transition process in this model is extremely important in order 
to develop a seizure anticipation method that can be used in conjunction with 
an intervention scheme. Additional investigations into the underlying neuro-
biology in the CLE model could help us understand the basic mechanisms 
responsible for these dynamical changes. 

7 Summary 

Preliminary results from quantitative EEC analysis indicate that it may be 
possible to use the post-status chronic limbic epilepsy model as a tool to refine 
and test real-time seizure detection and prediction algorithms. Similarities in 
spatiotemporal dynamical properties between the CLE model and humans, as 
revealed from quantitative non-linear EEC analysis, may refiect a similarity 
in underlying network properties and its role in the genesis and expression 
of these seizures. We plan to use this model to investigate new therapeutic 
approaches for controlling epileptic seizures such as administering a single 
fixed dose of anticonvulsant or timed electrical stimuli, based on specific state 
changes of the epileptic brain. Results from this study could be used for de-
signing future experiments in which the spatiotemporal measures discussed, 
can be utilized as control parameters for a closed-loop seizure control system. 
This would be a critical step in developing implantable biofeedback sensors 
that can regulate drug delivery or electrical stimulation as a means of pre-
venting or aborting seizures. However, further investigation and statistical 
verification need to be done before extending any validation results from this 
animal model to the case of humans and clinical applications. 
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Summary. We discuss a novel approach of modeling the behavior of the epileptic 
human brain, which utilizes network-based techniques in combination with statis-
tical preprocessing of the electroencephalographic (EEG) data obtained from the 
electrodes located in different parts of the brain. In the constructed graphs, the 
vertices represent the "functional units" of the brain, where electrodes are located. 
Studying dynamical changes of the properties of these graphs provides valuable 
information about the patterns characterizing the behavior of the brain prior to, 
during, and after an epileptic seizure. 

K e y words: Graph theory, da ta analysis, EEG data, brain, epilepsy. 

1 Introduction 

Human brain is one of the most complex systems ever studied by scientists. 
Enormous number of neurons and the dynamic nature of connections between 
them makes the analysis of brain function especially challenging. One of the 
most important directions in studying the brain is t reat ing disorders of the 
central nervous system. For instance, epilepsy is a common form of such dis-
orders, which affects approximately 1% of the human population. Essentially, 
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epileptic seizures represent excessive and hypersynchronous activity of the 
neurons in the cerebral cortex. 

During the last several years, significant progress in the field of epilep-
tic seizures prediction has been made. The advances are associated with the 
extensive use of electroencephalograms (EEG) which can be t reated as a quan-
ti tative representation of the brain function. Rapid development of computa-
tional equipment has made possible to store and process huge amounts of 
EEG data obtained from recording devices. The availability of these massive 
datasets gives a rise to another problem - utilizing mathematical tools and 
da ta mining techniques for extracting useful information from EEG data. Is 
it possible to construct a "simple" mathematical model based on EEG da ta 
tha t would refiect the behavior of the epileptic brain? 

In this chapter, we make an a t tempt to create such a model using graph-
theoretical approach. A graph (network) - a set of vertices (dots) and edges 
(links) - is a structure tha t can be easily understood and visualized. The 
methodology of representing massive datasets arising in diverse areas as 
graphs are widely discussed in the li terature nowadays [1, 2, 3, 4, 5, 8, 19]. 
In many cases, studying the structure of such graph may give a non-trivial 
information about the properties of the real-life system it represents. 

In the case of the human brain and EEG data, we apply a relatively simple 
network-based approach. We represent the electrodes used for obtaining the 
EEG readings, which are located in different parts of the brain, as the ver-
tices of the constructed graph. The da ta received from every single electrode 
is essentially a t ime series refiecting the change of the EEG signal over time. 
Later in the chapter we will discuss the quantitative measure characterizing 
statistical relationships between the recordings of every pair of electrodes - so 
called T-index. The values of the T-index Tij measured for all pairs of elec-
trodes i and j enable us to establish certain rules of placing edges connecting 
different pairs of vertices i and j depending on the corresponding values of 
Tij. Using this technique, we develop several graph-based mathematical mod-
els and study the dynamics of the structural properties of these graphs. As 
we will see, these models can provide useful information about the behavior 
of the brain prior to, during, and after an epileptic seizure. 

2 Graph Theory Basics 

In this section we give a brief introduction to definitions and notations from 
the graph theory used later in the chapter [7]. 

A graph is a pair G = (V^E)^ where V is any set, called the vertex set^ 
and the edge set E is any subset of the set of all 2-element subsets of V. 
The elements of V are called vertices (or nodes, or points) of the graph G, 
the elements of E are called its edges (or arcs). The number of vertices of a 
graph G = {V, E) is denoted usually as \G\, or \V\ and its number of edges is 
denoted by \\G\\, or \E\. 
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Graphs with a number of edges roughly quadratic in their number of ver-
tices are usually called dense. The value ||G^||/(2)7 which represents the ratio 
of the actual number of edges in the graph and the maximum possible number 
of edges, is called the edge density of the graph. 

A graph having a weight, or a number (which are usually taken to be 
positive), associated with each edge is called weighted. 

Two vertices x, y of G are adjacent^ or neighbors^ if (x, y) is and edge of 
G, i.e. (x, y) G E. If all the vertices of G are pairwise adjacent (i.e., the graph 
contains all possible edges), then G is complete. Any complete subgraph of G 
is called a clique. A clique of a maximum size is called a maximum clique. 

The degree dciv) = d{v) of a vertex v is the number of edges at v^ i.e. the 
number of neighbors of v. The number 

(̂̂ ) = M E (̂«) 
1̂ 1 .ev 

is the average degree of G. 
A path is a non-empty graph P = (V^E) of the form 

V = Xo.Xi,. . . ,Xk E = XoXi,XiX2, . . . ,Xk-lXk, 

where Xi are all distinct . We can refer to a path by the sequence of its vertices, 
that is P = XQXI .. .Xk- The vertices XQ and Xk are linked by P and are called 
ends. The number of edges of a path is its length. If P = XQ ... Xk-i is a path 
then the graph C = P-\-Xk-iXo is called a cycle. As with paths we can denote 
cycle by its (cyclic) sequence of vertices; the above cycle C can be written as 
XQXI . . .Xk-lXQ. 

A graph G is called connected if any two of its vertices are linked by a path 
in G. A maximal connected subgraph of G is called a component of G. 

A spanning tree of a graph is a subset of |y | — 1 edges which form a tree. 
Every connected graph contains a spanning tree and any minimal connected 
spanning subgraph is a tree. A minimum-weight tree in a weighted graph 
which contains all of the graph's vertices is called a minimum spanning tree. 

3 Statistical Preprocessing of EEG Data 

3.1 Datase ts 

The datasets consisting of continuous long-term (3 to 12 days) multichannel 
intracranial EEG recordings that had been acquired from 4 patients with 
medically intractable temporal lobe epilepsy. Each record included a total of 28 
to 32 intracranial electrodes (8 subdural and 6 hippocampal depth electrodes 
for each cerebral hemisphere). A diagram of electrode locations is provided in 
Figure 1. 
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Fig. 1. (A) Inferior transverse and (B) lateral views of the brain, illustrating approx-
imate depth and subdural electrode placement for EEG recordings are depicted. Sub-
dural electrode strips are placed over the left orbitofrontal (A^), right orbitofrontal 
(Ai?), left subtemporal ( B L ) , and right subtemporal (BR) cortex. Depth electrodes 
are placed in the left temporal depth ( C L ) and right temporal depth (CR) to record 
hippocampal activity. 
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3.2 STLmax and T-statistics 

In this subsection we give a brief introduction to nonlinear measures and 
statistics used to analyze EEG data (for more information see [11, 13, 15]). 

Since the brain is a nonstationary system, algorithms used to estimate 
measures of the brain dynamics should be capable of automatically identifying 
and appropriately weighing existing transients in the data. In a chaotic system, 
orbits originating from similar initial conditions (nearby points in the state 
space) diverge exponentially (expansion process). The rate of divergence is 
an important aspect of the system dynamics and is refiected in the value of 
Lyapunov exponents. The method used for estimation of the short time largest 
Lyapunov exponent STL^^axi an estimate of L^^ax for nonstationary data, is 
explained in detail in [10, 12, 18]. 

By splitting the EEG time series recorded from each electrode into a se-
quence of non-overlapping segments, each 10.24 sec in duration, and estimat-
ing STLmax for each of these segments, profiles of STL^ax over time are 
generated. 

Having estimated the STLmax temporal profiles at an individual cortical 
site, and as the brain proceeds towards the ictal state, the temporal evolution 
of the stability of each cortical site is quantified. The spatial dynamics of 
this transition are captured by consideration of the relations of the STLmax 
between different cortical sites. For example, if a similar transition occurs 
at different cortical sites, the STLmax of the involved sites are expected to 
converge to similar values prior to the transition. Such participating sites 
are called "critical sites", and such a convergence "dynamical entrainment". 
More specifically, in order for the dynamical entrainment to have a statistical 
content, we allow a period over which the difference of the means of the 
STLmax values at two sites is estimated. We use periods of 10 minutes (i.e. 
moving windows including approximately 60 STLmax values over time at 
each electrode site) to test the dynamical entrainment at the 0.01 statistical 
significance level. We employ the T-index (from the well-known paired T-
statistics for comparisons of means) as a measure of distance between the 
mean values of pairs of STLmax profiles over time. The T-index at time t 
between electrode sites i and j is defined as: 

T, , , ( t ) = ViV X \E{STLmax^^ ' STLmax^j}\/CJ^A^) (1) 

where E{-} is the sample average difference for the STLmax,i — STLmaxj 
estimated over a moving window Wt{X) defined as: 

. . . _ f l if AG [t-N -l,t] 

where N is the length of the moving window. Then, (Tij{t) is the sample 
standard deviation of the STLmax differences between electrode sites i and j 
within the moving window Wt{X). The T-index follows a t-distribution with 
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N-1 degrees of freedom. For the estimation of the Tij{t) indices in our data 
we used Â  = 60 (i.e., average of 60 differences of STL^ax exponents between 
sites i and j per moving window of approximately 10 minute duration). There-
fore, a two-sided t-test with Â  — 1(= 59) degrees of freedom, at a statistical 
significance level a should be used to test the null hypothesis. Ho', "brain sites 
i and j acquire identical STL^ax values at time t". In this experiment, we 
set the probability of a type I error a = 0.01 (i.e., the probability of falsely 
rejecting Ho if Ho is true, is 1%). For the T-index to pass this test, the Tij{t) 
value should be within the interval [0, 2.662]. We will refer to the upper bound 
of this interval as TcriUcai • 

4 Graph Structure of the Epileptic Brain 

In studying real-life complex systems it is very important to construct an ap-
propriate mathematical model describing this system, using its certain char-
acteristic properties. Network-based approach is one of the most promising 
techniques in this area [6, 9, 19]. In many cases this approach may signifi-
cantly simplify the analysis of a system, and provide a new insight into its 
structural properties. 

4.1 Key Idea of the Model 

If we model the brain (with epilepsy) by a graph (where nodes are " functional 
units" of the system and edges are connections between them) we need to 
answer the following questions: what properties the model has, i.e. what the 
properties of this graph are; how the properties of the graph change prior to, 
during, and after epileptic seizures. We try to answer this question using the 
following idea - we study the system of the electrodes as a weighted graph 
where nodes are electrodes and weights of the edges between nodes are values 
of the corresponding T-index. More specifically, we consider three types of 
graphs constructed using this principle: 

• GRAPH-I is a complete graph, i.e., it has all possible edges, 
• GRAPH-H is obtained from the complete graph by removing all the edges 

(i, j ) for which the corresponding value of Tij is greater than Tcriucah 
• GRAPH-HI is obtained from the complete graph by removing all the edges 

(i^j) for which the corresponding value of Tij is less than TcriUcai 10 
minutes after the seizure point and greater than TcriUcai CL^ the seizure 
point. 

Interpretation of the Considered Graph Models 

Before proceeding with the further discussion, we need to give a conceptual in-
terpretation of the ideas lying behind introducing the aforementioned graphs. 



Network-Based Techniques in EEG Data Analysis 565 

• GRAPH-I contains all the edges connecting the considered brain sites, and 
it is considered in order to refiect the general distribution of the values of T-
indices between each pair of vertices (i.e., the weights of the corresponding 
edges). 

• GRAPH-II contains only the edges connecting the brain sites (electrodes) 
tha t are statistically entrained at a certain time, which means tha t they 
exhibit a similar behavior. Recall tha t a pair of electrodes is considered to 
be entrained if the value of the corresponding T-index between them is less 
than Tcriticai 7 tha t is why we remove all the edges with the weights greater 
than Tcriticai • The main point of our interest is studying the evolution of 
the properties of this graph over t ime. As we will see in the next subsec-
tions, this analysis can help in revealing the dynamical patterns underlying 
the functioning of the brain during preictal, ictal, postictal, and interictal 
states. Therefore, this graph can be used as a basis for the mathematical 
model describing some characteristics of the epileptic brain. 

• GRAPH-III is constructed to refiect the connections only between those 
electrodes tha t are entrained during the seizure, but are not entrained 10 
minutes after the seizure. The motivation for introducing this graph is the 
existence of "resetting" of the brain after the seizure [14, 16, 17], which 
is essentially the divergence of the profiles of the STLmax t ime series. As 
it was indicated above, this divergence is characterized by the values of 
T-index greater than Tcriticai-

4.2 P r o p e r t i e s of t h e G r a p h s 

In this subsection, we investigate the properties of the considered graph mod-
els and give an intuitive explanation of the observed results. As we will see, 
there are specific tendencies in the evolution of the properties of the consid-
ered graphs prior to, during, and after epileptic seizures, which indicates tha t 
the proposed models capture certain trends in the behavior of the epileptic 
brain. 

E d g e D e n s i t y 

Recall tha t GRAPH-II was introduced to refiect the connections between 
brain sites tha t are statistically entrained at a certain t ime moment. Figure 
2 illustrates the typical evolution of the number of edges in GRAPH-II over 
time. As it was indicated above, edge density of the graph is proportional to 
the number of edges in a graph. It is easy to notice tha t the number of edges 
in GRAPH-II dramatically increases at seizure points (represented by dashed 
vertical lines), and it decreases immediately after seizures. It means tha t the 
global structure of the graph significantly changes during the seizure and after 
the seizure, i.e. the density of increases during ictal s tate and decreases in 
postictal state, which supports the idea tha t the epileptic brain (and GRAPH-
II as the model of the brain) experiences a "phase transition" during the 
seizure. 
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Connectivity 

Another important property of GRAPH-II that we are interested in is its 
connectivity. We need to check if this graph is connected prior to, during, 
and after epileptic seizures, and if not, find the size of its largest connected 
component. Clearly, this information will also be helpful in the analysis of 
the structural properties of the brain. If GRAPH-II is connected (i.e., the 
size of the largest connected component is equal to the number of vertices in 
the graph), then all the functional units of the brain are "linked" with each 
other by a path, and in this case the brain can be treated as an "integrated" 
system, however, if the size of the largest connected component in GRAPH-II 
is significantly smaller than the total number of the vertices, it means that 
the brain becomes "separated" into smaller disjoint subsystems. 

The size of the largest connected component of the GRAPH-II is presented 
in Figure 3. One can see that GRAPH-II is connected during the interictal pe-
riod (i.e., the brain is a connected system), however, it becomes disconnected 
after the seizure (during the postical state): the size of the largest connected 
component significantly decreases. This fact is not surprising and can be intu-
itively explained, since after the seizure the brain needs some time to "reset" 
[14, 16, 17] and restore the connections between the functional units. 

Fig. 2. Number of edges in GRAPH-II 



Network-Based Techniques in EEG Data Analysis 567 

Fig. 3. The size of the largest connected component in GRAPH-II. Number of nodes 
in the graph is 30. 

M i n i m u m S p a n n i n g Tree 

The next subject of our discussion is the analysis of minimum spanning trees 
of GRAPH-I, which was defined as the graph with all possible edges, where 
each edge (i, j ) has the weight equal to the value of T-index Tij corresponding 
to brain sites i and j . The definition of Minimum Spanning Tree was given 
in Section 2. Studying minimum spanning trees in GRAPH-I is motivated by 
the hypothesis tha t the seizure signal in the brain propagates to all functional 
units according to the minimum spanning tree^ i.e. along the edges with small 
values of Tij. This hypothesis is partially supported by the behavior of the 
average T-index of the edges corresponding to the Minimum Spanning Tree 
of GRAPH-I, which is shown in Figure 4. 

However, this hypothesis cannot be verified using the considered data, 
since the values of average T-indices are calculated over a 10-minute interval, 
whereas the the seizure signal propagates in a fraction of a second. Therefore, 
in order to check if the seizure signal actually spreads along the minimum 
spanning tree, one needs to introduce other nonlinear measures to refiect the 
behavior of the brain over short t ime intervals. 
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Fig. 4. Average value of T index of the edges in Minimum Spanning Tree of GRAPH-
I. 

Also, note tha t the average value of the T index in the Minimum Spanning 
Tree is less than TcriUcaU which also supports the above statement about the 
connectivity of the system. 

D e g r e e s of t h e Vert ices 

Another important issue tha t we analyze here is the degrees of the vertices in 
GRAPH-IL Recall tha t the degree of a vertex is defined simply as the number 
of edges emanating from it. 

We look at the behavior of the average degree of the vertices in GRAPH-II 
over time. Clearly, this plot is very similar to the behavior of the edge density 
of GRAPH-II (see Figure 5). 

We are also particularly interested in high-degree vertices^ i.e., the func-
tional units of the brain tha t are at a certain t ime moment connected (en-
trained) with many other brain sites. Interestingly enough, the vertex with 
a maximum degree in GRAPH-II usually corresponds to the electrode which 
is located in RTD (right temporal depth) or RST (right subtemporal cor-
tex), in other words, the vertex with the maximum degree is located near the 
epileptogenic focus. 
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Fig. 5. Average degree of the nodes of GRAPH-II. 

M a x i m u m Cl iques 

In the previous works in the field of epileptic seizure prediction, a quadratic 0 -
1 programming approach based on EEG da ta was introduced [13]. In fact, this 
approach utilizes the same preprocessing technique (i.e., calculating the values 
of T-indices for all pairs of electrode sites) as we apply in this chapter. In this 
subsection, we will briefiy describe this quadratic programming technique and 
relate it to the graph models introduced above. 

The main idea of the considered quadratic programming approach is to 
construct a model tha t would select a certain number of so-called "critical" 
electrode sites, i.e., those tha t are the most entrained during the seizure. 
According to Section 3, such group of electrode sites should produce a minimal 
sum of T-indices calculated for all pairs of electrodes within this group. If the 
number of critical sites is set equal to /c, and the total number of electrode 
sites is n, then the problem of selecting the optimal group of sites can be 
formulated as the following quadratic 0-1 problem [13]: 
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min x^ Ax (2) 

X, G {0,1} ViG {!,..., n} (4) 

In this setup, the vector x = ( x i , X 2 , . . . ,Xn) consists of the components 
equal to either 1 (if the corresponding site is included into the group of critical 
sites) or 0 (otherwise), and the elements of the matr ix A = [a^j]^,j=i,...,n are 
the values of T^j's at the seizure point. 

However, as it was shown in the previous studies, one can observe the 
"resetting" of the brain after seizures' onset [17, 14, 16], tha t is, the divergence 
of STLjnax profiles after a seizure. Therefore, to ensure tha t the optimal group 
of critical sites shows this divergence, one can reformulate this optimization 
problem by adding one more quadratic constraint: 

X^Bx > Tcritical k {k - I), (5) 

where the matr ix B = [&^j]^,j=i,...,n is the T-index matr ix of brain sites i and 
j within 10 minute windows after the onset of a seizure. 

This problem is then solved using s tandard techniques, and the group of 
k critical sites is found. It should be pointed out tha t the number of criti-
cal sites k is predetermined^ i.e., it is defined empirically, based on practical 
observations. Also, note tha t in terms of GRAPH-I model this problem repre-
sents finding a subgraph of GRAPH-I of a fixed size, satisfying the properties 
specified above. 

Now, recall tha t we introduced GRAPH-III using the same principles as 
in the formulation of the above optimization problem, tha t is, we considered 
the connections only between the pairs of sites i, j satisfying both of the two 
conditions: Tij < Tcritical at the seizure point, and Tij > TcriUcai 10 minutes 
after the seizure point, which are exactly the conditions tha t the critical sites 
must satisfy. A natural way of detecting such a groups of sites is to find 
cliques in GRAPH-III Since a clique is a subgraph where all vertices are 
interconnected, it means tha t all pairs of electrode sites in a clique would 
satisfy the aforementioned conditions. Therefore, it is clear tha t the size of 
the maximum clique in GRAPH-III would represent the upper bound on the 
number of selected critical sites, i.e., the maximum value of the parameter k 
in the optimization problem described above. 

Computat ional results indicate tha t the maximum clique sizes for different 
instances of GRAPH-III are close to the actual values of k empirically selected 
in the quadratic programming model, which shows tha t these approaches are 
consistent with each other. 

5 Graph as a Macroscopic Model of the Epileptic Brain 

Based on the results obtained in the sections above, we now can formulate 
the graph model which describes the behavior of the epileptic brain at the 
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macroscopic level. The main idea of this model is to use the properties of 
GRAPH-I, GRAPH-II, and GRAPH-III as a characterization of the behav-
ior of the brain prior to, during, and after epileptic seizures. According to 
this graph model, the graphs refiecting the behavior of the epileptic brain 
demonstrate the following properties: 

• Increase and decrease of the edge density and the average degree of the 
vertices during and after the seizures respectively; 

• The graph is connected during the interictal state, however, it becomes 
disconnected right after the seizures (during the postictal state); 

• The vertex with the maximum degree corresponds to the epileptogenic 
focus. 

Moreover, one of the advantages of the considered graph model is the 
possibility to detect special formations in these graphs, such as cliques and 
minimum spanning trees, which can be used for further studying of various 
properties of the epileptic brain. 

6 Concluding Remarks and Directions of Future 
Research 

In this chapter, we have made the initial a t tempt to analyze EEG da ta and 
model the epileptic brain using network-based approaches. Despite the fact 
tha t the size of the constructed graphs is rather small, we were able to de-
termine specific pat terns in the behavior of the epileptic brain based on the 
information obtained from statistical analysis of EEG data. Clearly, this model 
can be made more accurate by considering more electrodes corresponding to 
smaller functional units. 

Among the directions of future research in this field, one can mention the 
possibility of developing directed graph models based on the analysis of EEG 
data. Such models would take into account the natural "asymmetry" of the 
brain, where certain functional units control the other ones. Also, one could 
apply a similar approach to studying the pat terns underlying the brain func-
tion of the patients with other types of disorders, such as Parkinson's disease, 
or sleep disorder. Therefore, the methodology introduced in this chapter can 
be generalized and applied in practice. 
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