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Preface

In this paper, we present recent results in the region-based theory
of space that concern algebras of regions, the corresponding topo-
logical and discrete models, and representation theory. We also
discuss applications to Qualitative Spatial Reasoning (QSR), an
actively developing branch of AI and Knowledge Representation
(KR). In particular, we show how new results in some practically
motivated areas of QSR and KR can be obtained by combining
methods from such established classical disciplines as Boolean al-
gebras, topology and logic.
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The paper is organized as follows. Section 1 is a historical
excursion into the region-based theory of space. We discuss the
“pointless approach” to this theory, whose roots can be found in
some philosophical ideas of de Laguna [13] and Whitehead [64].
We show connections of region-based theory of space with mereol-
ogy (the theory of part–whole relations) and applications to QSR.
In Section 2, we consider algebras of regions known as contact al-
gebras. We study topological and discrete point-based models of
contact algebras, and discuss different definitions of a point de-
pending on the choice of axioms. We also consider representation
theorems establishing a correspondence between the chosen ax-
iomatizations and the required point-based models. In Section 3,
we deal with a class of spatial logics. Some of them are related to
the well-known system of Region Connection Calculus (RCC). In
that section, we obtain completeness and decidability results by
using representation theorems.

Some of the most important statements and new results are
supplied with brief proofs. Standard definitions and facts from
Boolean algebra can be found in [52], from topology in [24], from
proximity spaces in [42], and from modal logic in [7, 8].

1. Historical Excursion into
the Region-Based Theory of Space

One of the oldest theories of space is classical Euclidean geometry.
It can be regarded as a point-based theory in the sense that the
notion of a point is basic, whereas all other geometrical figures are
defined as sets of points. The same can be said about topology
considered as a more abstract kind of geometry. In general, by a
point we mean the simplest spatial entity without dimension and
internal structure. However, this notion is too abstract to have
an adequate analog in reality, in contrast to many geometrical fig-
ures for which we can find their images in nature. The following
idea then arises: to develop an alternative theory of space where
the basic notion is not a point, but some other objects that are
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more closely related to the real world, for example, solid bodies.
As basic relations between solids we could take, for instance, “one
solid is part of another solid,” “two solids overlap,” or “one solid
touches another solid,” etc. This point of view is close to the
ideas of some abstract philosophical disciplines such as ontology,
the theory of “Existent,” and especially mereology understood as
a theory of “part-whole” relations. One of the founders of mereol-
ogy was Leśnewski [38], who developed it as part of an ambitious
and nonorthodox programme of constructing new foundations of
mathematics. But due to Tarski [58], the mathematical content of
mereology can be clearly presented in terms of complete Boolean
algebras (cf. also [33] for such a presentation, and [53] for some
other systems of mereology). The only difference between mereol-
ogy and complete Boolean algebras is that Boolean algebras have
an analog of the empty set (zero element), whereas mereology ex-
cludes such a zero individual.

The pointless approach does not mean that points are not
considered at all. The notion of a point is necessary for a pointless
theory of space to be equivalent in some sense to the classical
point-based theory. But, in this case, points must be defined in
terms of new primitive notions. This idea, as well as the necessity
to use mereology for constructing a pointless theory of space, was
expressed in the philosophical paper “Point, line and surface as
sets of solids” [13] by de Laguna in 1922 and in the famous book
“Process and Reality” [64] by Whitehead in 1929.

De Laguna considered a ternary relation between solids, “x
connects y with z,” and defined a point, a line, and a surface via
certain collections of solids. Whitehead developed this idea and
simplified the ternary connection relation to the following binary
relation: “x is connected with y,” which he called the connection
relation. Here we use the term contact relation. Whitehead called
solids regions, which later gave the name region-based theory of
space.

As a primitive relation Whitehead took the contact relation
between regions. He also introduced mereological relations such
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as part-of, overlap and some new relations called external connec-
tion, tangential inclusion, and nontangential inclusion. From the
intuitive point of view, two regions are in contact if they have
a common point. However, according to Whitehead, this prop-
erty cannot be taken as a definition because a point is not defined
and points must be defined by means of regions and the contact
relation.

In [64] Whitehead listed explicitly a large number of assump-
tions and definitions about regions and the contact relation, and
illustrated some of them by pictures. He did not make any attempt
to reduce the number of his assumptions to a logical minimum. To
define the notion of point, he introduced quite complicated notions
of geometrical element and the relation of incidence between geo-
metrical elements (see Definitions 13 and 15 in [64]). Then the
definition of a point (Definition 16) sounds as follows: “A geomet-
rical element is called a point when there is no geometrical element
incident with it.” Whitehead pointed out an analogy of his defi-
nition with the first definition of Euclid’s Elements: “A point is
that of which there is no part.” This analogy shows that some
mereological foundations of “pointless” geometry have their roots
even in the old Euclid’s Elements. Whitehead’s final goal was to
approach the Euclidean notions of a straight line and of plane in
a similar way. Note that Whitehead’s pointless theory of space is
quite vague, and it is still a problem to extract a readable axioma-
tization and present it in a standard mathematical format (we refer
the reader to the nice survey of pointless geometry by Gerla [31]).
However, the idea to define points via regions is quite remarkable.
Something similar can be found in Boolean algebras which can be
considered as pointless analogs of sets. In Stone’s representation
theory of Boolean algebras [55] (1937) points in a given Boolean
algebra are identified with ultrafilters, sets of elements of the al-
gebra. So de Laguna–Whitehead’s ideas of pointless approach to
the theory of space could be regarded as early predecessors of the
representation theory of Boolean algebras.

For further references we summarize here some formal prop-
erties of the contact relation and some other Whitehead’s spatial
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relations between regions. We write aCb for “region a is in a
contact with region b.”

(W1) (∀a)(aCa),

(W2) (∀a, b)(aCb→ bCa),

(W3) a = b if, and only if, (∀c)(aCc↔ bCc),

(W4) a is included in b (a � b) if, and only if, (∀c)(aCc→ bCc),

(W5) a and b overlaps (aOb) if, and only if, (∃c)(c � a and
c � b),

(W6) a is externally connected with b (aCextb) if, and only if,
aCb and not aOb,

(W7) a is tangentially included in b (a �◦ b) if, and only if,
a � b and (∃c)(cCexta and cCextb),

(W8) a is non-tangentially included in b (a# b) if, and only if,
a � b and not a �◦ b.

Axiom (W3), known as the axiom of extensionality of con-
tact, is very important. It can be proved that it is equivalent
to axiom (W4), which says that part-of relation in Whitehead’s
system is definable by means of contact.

Another, much simpler, pointless reconstruction of Euclid-
ean geometry was given by Tarski [57] in 1927. He called his
system Geometry of solids. Geometry of solids is an extension of
Leśnewski’s mereology with the primitive notion of sphere. To
define points, Tarski first introduced the relation of two spheres
being concentric, and then points were identified with certain sets
of concentric spheres. A simplified version of Tarski’s system can
be found in [4], where similar approaches are also discussed.

Another attempt to build a pointless theory of space was
made by Grzegorczyk [34] in 1960. Independently from de Laguna
[13] and Whitehead [64], Grzegorczyk developed a system that
was close to Whitehead’s system.

As primitives he took the relations of part-of and separation,
which, in fact, is the complement of the Whitehead contact rela-
tion. Grzegorczyk’s results were presented in [6], where the notion
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of contact was used instead of separation. According to [6], Grze-
gorczyk’s pointless geometry (R, �, C) is given by the following
axioms:

(G0) (R, �) is a mereological field, i.e., a complete Boolean al-
gebra with deleted zero element.

(G1) C is a reflexive relation in R,
(G2) C is a symmetric relation in R,
(G3) C is monotone with respect to � in the sense that we

have: a � b → (∀c ∈ R)(aCc→ bCc).

Then the relation of non-tangential inclusion # is defined in the
same way as by Whitehead (see axiom (W8) above). A set p of re-
gions is called a representative of a point if the following conditions
are satisfied:

(1) p has no minimum and is totally ordered by the relation
#,

(2) given two regions u and v, if we have uOc and vOc, for
every c ∈ p, then uCv.

A filter P in R is called a point if it is generated by a repre-
sentative of a point. We say that P belongs to a region a if a is a
member of P .

Then two additional axioms are introduced:

(G4) every region has at least one point,

(G5) if aCb then there is a point P such that a and b overlap
with every member of P .

Denote by P the set of all points of (R, �, C) and by π(r) the
set of all points of a region r.

Grzegorczyk proved the following two important theorems.

Theorem 1. Let (X, τ) be a Hausdorff topological space, and
let R be a family of nonempty regular open sets of (X, τ). For
any a, b ∈ R, we set aCb if, and only if, Cl(a) ∩ Cl(b) �= ∅.
Then (R,⊆, C) satisfies (G0)–(G3). If every point of X is the
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intersection of a decreasing (with respect to #) family of open
sets, then axioms (G4) and (G5) are also satisfied.

Theorem 2. Suppose that (R, �, C) satisfies (G0)–(G5). Let
τ be a topology in P generated by the set {π(r) : r ∈ R}. Then
{π(r) : r ∈ R} coincides with the set of all nonempty regular open
sets of (P, τ), and π is an isomorphism.

As was noted in [6], the implication in axiom (G3) can be
replaced with equivalence, which eliminates the part-of relation
from the primitives. This means that, as in the case of Whitehead,
the system can be based on the unique primitive C.

Theorems 1 and 2 show that there is an equivalence between
the point-based and pointless theories of space. Theorem 1 also
shows the importance of regular (open or closed) sets in topo-
logical spaces as models of regions. In fact, Theorem 2 is the
first representation theorem of a special system of region-based
theory of space which is an extension of mereology with the prim-
itive of Whitehead’s contact relation. Since the models of such
extended mereologies are topological, some authors prefer to call
them mereotopologies or region-based topologies.

An interesting comparison between the notions of a point
used by Whitehead [64] and Grzegorcyk [34] was given by Biacino
and Gerla in [6]. They proved that these definitions are equivalent
in some sense if the relation of non-tangential inclusion# satisfies
the following additional axiom:

(G6) if a # b, then a# c# b for some region c ∈ R.

Using the complement a∗, we can equivalently express axiom
(G6) in terms of C:

(G6′) if aCb, then aCc and c∗Cb for some c ∈ R.

This axiom is referred to as the normality axiom, since it is
satisfied by regular open (closed) sets in a Hausdorff space pro-
vided that the space is normal.
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One unpleasant feature of Grzegorczyk’s system is that it
includes axioms containing the second-order definition of a point
and, consequently, it is not a first-order system.

It is of interest to note that by accepting the normality ax-
iom (G6) one can obtain first-order axiomatizations of pointless
theory of space. This was done independently by several authors:
[63, 62, 61, 15]. The first to do this was de Vries [63] (1962)
in his thesis “Compact Spaces and Compactifications.” This work,
independent from Whitehead [64] and Grzegorczyk [34], was com-
pletely unknown to the community of authors interested in the
region-based theory of space. Thus, de Vries is mentioned neither
in Gerla’s survey of pointless geometry [31], nor in later papers
on region-based theory of space.

Note that axiom (G6) is well known among specialists in the
theory of Proximity spaces. Proximity spaces are abstract spaces
[42] with the proximity relation AδB between subsets satisfying
almost all axioms for the contact relation C. They can also be
axiomatized using the relation A # B definable by δ in the same
way as # is definable by C. By analogy with the axioms of prox-
imity spaces based on the relation#, de Vries considered Boolean
algebras (B, 0, 1, .,+, ∗,#) with the additional relation #, called
compingent algebras, which satisfy the following first-order axioms:

(P0) (B, 0, 1, . ,+, ∗) is a Boolean algebra with ∗ as the Boolean
complement,

(P1) 0# 0,
(P2) a # b implies a � b,
(P3) a � a′ # b implies a# b,
(P4) a # b and c# d imply a.c# b.d,
(P5) a # b implies b∗ # a∗,
(P6) a # b �= 0 implies ∃c �= 0 with a # c# b.

Note that axiom (P6) can be replaced by two axioms:

(P6′) a # b implies ∃c with a # c # b (which is just the
normality axiom), and

(P7) if b �= 0 then ∃a �= 0 with a# b.



Region-Based Theory of Space 275

Observe that axioms (P1)–(P5), (P6′) are algebraic analogs of
the axioms of Efremovič’s proximity spaces [25] (cf. also [42]). We
will see in Section 2 that axiom (P7) is equivalent to Whitehead’s
extensionality axiom for the contact relation.

Using the well-known techniques from the proximity spaces
and Smirnov’s theory of compactifications, de Vries proved that
each compingent algebra is isomorphic to a subalgebra of the al-
gebra of regular open sets of a compact Hausdorff space with the
compingent relation on regular open sets defined as follows: a # b
if, and only if, Cl (a) ⊆ b. The points defined by de Vries, called
compingent filters, are just lattice analogs of the ends, special fil-
ters used in proximity theory. In fact, de Vries established a one-
to-one correspondence between complete compingent algebras and
compact Hausdorff spaces. Similar results were obtained also by
Fedorčuk [26].

Another, more general than de Vries–Fedorčuk’s, first-order
axiomatization of a region-based theory of space was given by
Roeper [49] in 1997. His theory corresponds to the point-based
theory of locally compact Hausdorff spaces, and his approach is a
skillful combination of de Vries–Fedorčuk’s methods and Leader’s
compactification theory of local proximity (cf. [37], [42]). Roeper’s
axiomatization is based, like Leader’s notion of local proximity, on
two primitive spatial relations: the contact and the unary relation
of limitedness. An attempt to give a different formulation of the
same theory using only one primitive relation, called interior part-
hood, was made by Mormann [41] (see also [61]).

We continue our historical excursion into the region-based
theory of space by mentioning the contribution made by Clarke
[10, 11]. Clarke noted that his system should be understood as
a formalization of the ideas of Whitehead [64]. Clarke’s system
(R, C) is based on a unique primitive relation C of contact sat-
isfying Whitehead’s axioms and definitions (W1)–(W8). Clarke
assumed also the so-called fusion axiom:

If A is a nonempty subset of R, then there exists a ∈ R
(called a fusion of A) such that C(a) =

⋃
{C(x) : x ∈ A}, where

C(x) = {y ∈ R : xCy}.
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Points in Clarke’s system are identified with certain subsets
P of R satisfying some closure conditions. He needed also the
following axiom, containing a definable notion of point:

If aCb, then there exists a point P such that a, b ∈ P .

Biacino and Gerla [5] studied this system in detail and proved
that (R,C) is equivalent to a complete Boolean algebra with zero
element removed (mereological field). It follows from this fact that
the contact C coincides with the overlap O, which is not satisfac-
tory. Another unsatisfactory feature is that the system has an
axiom containing the second-order notion of a point and, conse-
quently it is not a first-order one. Nevertheless, Clarke’s system
had a remarkable impact on some research areas in AI for which
the pointless approach to the theory of space was important. One
such area is the so-called Qualitative Spatial Reasoning (QSR). It
is related to a new generation of information systems dealing with
geographical information and known as Geographical Information
Systems (GIS). It has been recognized that reasoning techniques in
GIS using quantitative methods of classical theory of space are not
efficient and tractable. This motivated researchers in these areas
to look for new, qualitative models of space. Similar problems have
appeared in robotics, computer vision, natural language semantics
related to a commonsense spatial vocabulary, etc. Models of space
based on mereology proved to fit well into the problems of QSR,
and this made region-based theory of space important for AI and
computer science (see [48]). Several attempts to build systems
similar to that of Clarke have been made within the QSR commu-
nity. One of the most important and popular systems is Region
Connection Calculus (RCC), proposed by Randel, Cui and Cohn
[48] in 1992. Now RCC is in the center of an intensive research
in the realm of QSR, and one of the most active is Cohn’s group
at the University of Leeds. A comprehensive overview of the QSR
research and related work was given by Cohn and Hazarika [12]
(2001). Recent collections of papers on QSR are the special is-
sues of Fundamenta Informaticae (2001) edited by I. Düntsch [17]
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and the Journal of Applied Non-Classical Logics (2002) edited by
Balbiani [1].

Stell [54] and Düntsch et al. [20] presented an equivalent
version of RCC based on Boolean algebras satisfying all axioms
for contact given by Whitehead plus an additional axiom of con-
nectedness forcing topological models to be connected spaces. So
connected regular spaces form a correct semantics for RCC. A
representation theorem for RCC in a class of more general spaces,
called weakly regular, was proved by Dünch and Winter [21] in
2005. A representation theorem for a variety of related systems
was proved in [15] (2006).

The main point-based models of the region-based theory of
space considered in QSR are the contact algebras of regular open
or regular closed sets in certain topological spaces. Since topology
aims to formalize some continuous, indiscrete features of space we
may call this kind of models continuous or indiscrete. More special
models of regions generated by polygonal regions were considered
by Pratt and Schoop [46, 47]. It has been pointed out by several
authors that continuous models are not so convenient in computer
modelling of space, and a modified and generalized region-based
theory of space, admitting discrete models, is required. One so-
lution was proposed by Galton [29, 30]. Instead of topological
spaces, Galton proposes to consider the so-called adjacency spaces.
An adjacency space is a relational system of the form (W, R),
where W is a nonempty universe whose elements are called cells
and R is a binary relation between cells, called an adjacency rela-
tion. Galton defines regions to be arbitrary sets of cells, and the
contact relation between regions is defined by taking aCb if, and
only if, ∃x ∈ a,∃y ∈ b with xRy. This definition relates Galton’s
adjacency spaces to the Kripke semantics of modal logic [7] which
makes it possible to use methods from modal logic for studying
discrete region-based theories of space [3]. Pointless formulations
of Galton’s theory of discrete spaces and the corresponding repre-
sentation theory was given in [19]. It was shown in [14] that the
algebras corresponding to discrete spaces have also standard topo-
logical representations in which regions are represented by regular
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closed or open sets. In this way both kinds of models of region-
based theory of space—discrete and indiscrete—can be considered
in a unified way. This unified approach is presented in more detail
in Section 2.

To conclude this historical excursion, we mention that, in
the realm of QSR, different kinds of logical systems for reasoning
about space have been developed and their computational prop-
erties have been studied. Some authors advocated logical systems
based on first-order languages (cf., for example, [43, 45]). One
of the practical motivations for dealing with first-order systems of
region-based theories of space is that this makes it possible to em-
ploy first-order provers for some applications. Using some results
of Grzegorczyk [32], one can show, however, that most of these sys-
tems are undecidable. That is why weaker, quantifier-free systems
with better computational properties have been designed. Exam-
ples are the system RCC-8 introduced by Egenhofer and Franzosa
[23] and its extension with Boolean terms introduced by Wolter
and Zakharyaschev [65]. Completeness theorems and decidability
results for these and other related to RCC quantifier-free systems
with respect to their topological and discrete semantics are given
in [3]. For more information on these logics see Section 3 below.
A decidable system with predicates of component-counting was
presented by Pratt-Hartmann [44]. Dynamic Logics for discrete
region-based theory of space have been studied in [2]. Modal log-
ics with Kripke frames based on the RCC-8 relations have been
introduced by Lutz and Wolter [40]. For various combinations of
spatial and temporal logics see Gabelaia et al. [28] and Konchakov
et al. [36].

This section does not cover all aspects of the region-based the-
ory of space. We have only concentrated on pointless approaches
similar to those of de Laguna and Whitehead. Of course, this
is not the only way to look at the region-based theory of space:
an alternative one is described, for example, by Pratt-Hartmann
[43, 45]. Another alternative is given by Schoop [50] who mo-
tivates the idea of taking both regions and points as primitives.
We hope that the survey above presents the region-based theory
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of space as an active and developing area. Started from some very
abstract philosophical ideas of de Laguna and Whitehead, it has
reached its flourishing stage, with a clear mathematical theory and
multiple applications in practically oriented areas of QSR, GIS and
KR.

2. Algebras of Regions, Models,
and Representation Theory

2.1. Contact algebras

Following [15], by a contact algebra we mean any system B =
(B, C) = (B, 0, 1, .,+, ∗, C), where (B, 0, 1, .,+, ∗) is a nondegene-
rate Boolean algebra, ∗ denotes the complement, and C is a binary
relation in B, called a contact, such that

(C1) if xCy, then x, y �= 0,

(C2) xC(y + z) if and only if xCy or xCz,

(C3) if xCy, then yCx,

(C4) if x.y �= 0, then xCy.

Elements of B are called regions. The negation of C is de-
noted by C. The relation # of nontangential inclusion is defined
as follows: x # y if and only if xCy∗. We say that B is complete
if B is complete.

Axiom (C2) implies the monotonicity of C with respect to �:

(Mono) if aCb and a � a′ and b � b′, then a′Cb′.

A contact algebra can be equivalently defined in terms of #
(cf. the axioms of de Vries in Section 1):

(# 1) 1# 1,

(# 2) if x# y, then x � y,
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(# 3) if x � y # z � t, then x # t,

(# 4) if x# y, then y∗ # x∗,

(# 5) if x# y and x# z, then x # y.z.

Axioms (C1)–(C4) are Boolean versions of the axioms of ba-
sic proximity spaces (known as C̆ech proximity spaces, cf. [9, 56]).
Note that the main intended models of contact algebras are not
basic proximity spaces, but some other models of topological na-
ture that can be constructed in the following way.

Example 2.1.1. (1) Contact algebra of regular closed sets.
Let (X, τ) be a topological space with closure Cl(a) and inte-
rior operations Int(a). A subset a of X is regular closed if a =
Cl(Int(a)). The set of all regular closed subsets of (X, τ) is denoted
by RC(X, τ) or RC(X). As is known, the regular closed sets with
operations a + b = a ∪ b, a.b = Cl(Int(a ∩ b)), a∗ = Cl(X \ a) =
Cl(−a), 0 = ∅, and 1 = X form a Boolean algebra. Moreover, if
we consider the infinite join operation

∑
i∈I ai = Cl(

⋃
i∈I ai), then

the Boolean algebra RC(X) is complete. The contact is defined as
follows: a CX b if and only if a ∩ b �= ∅. It satisfies axioms (C1)–
(C4). This contact is called the standard contact for regular closed
sets and the corresponding contact algebra is called the standard
contact algebra of regular closed sets. The nontangential inclusion
is defined as follows: a# b if and only if a ⊆ Int(b).

(2) Contact algebra of regular open sets. A subset a of (X, τ)
such that a = Int(Cl(a)) is called a regular open set. The set of all
regular open subsets of (X, τ) is denoted by RO(X, τ) or RO(X).
The Boolean operations and contact in RO(X) are defined as fol-
lows: a+b = Int(Cl(a∪b)), a.b = a∩b, a∗ = Int(X \a) = Int(−a),
0 = ∅, 1 = X, and aCXb if and only if Cl(a) ∩ Cl(b) �= ∅ (con-
sequently, a # b if and only if Cl(a) ⊆ b). Then (RO(X), CX) is
a contact algebra and it is complete relative to the infinite meet∏

i∈I ai = Int(
⋂

i∈I ai). In this case, CX is called the standard con-
tact for regular open sets and the corresponding contact algebra
is called the standard contact algebra of regular open sets.
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Note that (RO(X), CX) and (RC(X), CX) are isomorphic
contact algebras. The corresponding isomorphism f is defined
as f(a) = Cl(a) for every a ∈ RO(X). This fact explains, why we
will consider only models with regular closed sets.

In Section 2.5, we will establish the existence of topological
models of contact algebras related to proximity spaces, where ele-
ments of the algebra are regular closed (open) sets, but the contact
is not standard, unlike these examples.

Note that the Boolean part in the definition of a contact
algebra incorporates the mereological component of the notion.
Although the zero element is not traditionally accepted in mere-
ology, we consider the zero element, which makes the definition
more suitable for our considerations.

For a Boolean algebra we introduce the following basic mere-
ological relations between regions:

part-of relation a � b is the lattice ordering of B,

overlap aOb if and only if a.b �= 0.

This definition of an overlap agrees with that introduced by
Whitehead: ∃c ∈ B � {0} : c � a and c � b. Indeed, it suffices to
take c = a.b �= 0.

Another mereological relation is the following:

dual overlap aǑb if and only if a∗Ob∗

or, equivalently:

aǑb if and only if a + b �= 1.

It is natural to find a general definition of a “mereological
relation” and one possibility to do this is to identify them with
all Boolean relations definable by open formulas in the first-order
theory of Boolean algebras. Having such a definition, we can ob-
tain finitely many mereological relations of given arity, so that for
n = 2 there are exactly 30 such relations and each of them can be
defined by an open first-order formula in terms of �, O, and Ǒ.
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Using the notions of contact, overlap, and nontangential in-
clusion, it is possible to introduce the so-called RCC-8 basic mereo-
topological relations between two nonzero regions:

RCC−8 relations
• disconnected DC(a, b): aCb,
• external contact EC(a, b): aCb and aOb,
• partial overlap PO(a, b): aOb and a �� b and b �� a,
• tangential proper part TPP(a, b): a � b and a �# b and b �� a,
• tangential proper part−1 TPP−1(a, b): b � a and b �# a and

a �� b,
• nontangential proper part NTPP(a, b): a# b and a �= b,
• nontangential proper part−1 NTPP−1(a, b): b # a and a �= b,
• equal EQ(a, b): a = b.

It is easy to see that these relations are pairwise disjoint
and exhaustive. Pure topological definitions, introduced by Egen-
hofer and Franzosa [23] and sometimes referred to as Egenhofer–
Franzosa relations, were studied by many authors (cf. Wolter and
Zakharyaschev [65] for complexity and Lutz and Wolter [40] for
more references).

Figure 1

In the language of contact algebras, we can define some other
mereotopological relations, for example, the one-place predicate
Con(a): “the region a is connected or a is a one-piece region”
which is formally expressed as follows:

Con(a) if and only if (∀b, c)(b �= 0 and c �= 0 and
b + c = a → bCc).

In the case of Con(1), the contact algebra is said to be con-
nected. The negation of Con(a) is denoted by Con(a). From an



Region-Based Theory of Space 283

intuitive point of view, Con(a) says that the region a is the sum
of at least two disconnected nonzero regions. We can consider a
more general predicate by assuming that c�n(a) is the sum of n
pairwise disconnected nonzero regions b1, . . . , bn or, formally:

c�n(a) if and only if (∃b1 . . . bn)(a = b1 + . . . + bn and
(∀i = 1 . . . n)(bi �= 0) and (∀i �= j, i, j = 1, . . . , n)(biCbj)).

It is obvious that Con(a) is equivalent to c�2(a). The com-
putational complexity of c�n, called the component counting, and
part-of relation is studied by Pratt-Hartmann [43].

Another interesting mereotopological relation considered by
Gabelaia et al [28] is the following n-ary contact Cn(a1, . . . , an)
with the standard meaning in the contact algebra of regular closed
sets:

Cn(a1, . . . , an) if and only if a1 ∩ . . . ∩ an �= ∅.

We do not know whether this relation is definable in the
language of contact algebras by a first-order formula. In Section
2.3, we will give a definition using a second-order formula.

2.2. Extensions of contact algebras
by adding new axioms

Consider contact algebras satisfying some of the following axioms:

(Con) if a �= 0 and a �= 1, then aCa∗ connectedness

(Ext) if a �= 1, then ∃b �= 0 such that aCb extensionality

(Nor) if a # b, then ∃c such that a # c# b normality

A contact algebra satisfying axiom (Con) ((Ext) or (Nor)) is
said to be connected (extensional or normal).

Contact algebras satisfying axioms (Con) and (Ext) were in-
troduced by Stell in [54] under the name Boolean contact algebras
and were considered as an equivalent formulation of the system
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RCC [48]. Stell proved that (Ext) is equivalent (under axioms
(C1)–(C4)) to each of the following axioms:

(Ext′) a � b if and only if (∀c ∈ B)(aCc→ bCc),

(Ext′′) a = b if and only if (∀c ∈ B)(aCc→ bCc),

(Ext′′′) (∀b �= 0)(∃a �= 0)(a# b).

Note that (Ext′) is just Whitehead’s definition of the part-of
relation and (Ext′′) is Whitehead’s axiom of extensionality.

Contact algebras satisfying (Nor) and (Ext) were first studied
by de Vries [63] and Fedorčuk [26]. Independently, such algebras
were introduced in [62, 61], where the authors noted the connec-
tion with proximity theory and the possibility to use proximity
theory for proving topological and proximity representation theo-
rems for contact algebras.

We recall some topological notions.

A topological space X is said to be
• semiregular if it has a base B of regular closed sets; namely,

every closed set is the intersection of elements of B,
• normal if every pair of closed disjoint sets can be separated

by a pair of open sets,
• κ-normal (cf. [51]) if every pair of regular closed disjoint

sets can be separated by a pair of open sets,
• extensional if RC(X) satisfies axiom (Ext),
• weakly regular (cf. [21]) if it is semiregular and for every

nonempty open set a there exits a nonempty open set b such
that Cl(a) ⊆ b,

• connected if it cannot be represented as the sum of two dis-
joint nonempty open sets,

• a T0-space if for every two different points x �= y there exists
an open set that contains one of them and does not contain
the other,

• a T1-space if every one-point set {x} is a closed set,
• a Hausdorff space (or a T2-space) if every two different points

can be separated by a pair of disjoint open sets,



Region-Based Theory of Space 285

• a compact space if it satisfies the following condition: if {Ai :
i ∈ I} is a nonempty family of closed sets of X such that for
every finite subset J ⊆ I we have

⋂
{Ai : i ∈ J} �= ∅, then⋂

{Ai : i ∈ I} �= ∅.

Lemma 2.2.1. The following assertions hold.

(1) Let X be semiregular. Then X is weakly regular if and only
if RC(X) satisfies (Ext) [21].

(2) X is κ-normal if and only if RC(X) satisfies (Nor) [21].
(3) X is connected if and only if RC(X) satisfies axiom (Con)

[5, 21].
(4) If X is a compact Hausdorff space, then RO(X) (consequently,

RC(X)) satisfies (Ext) and (Nor) [63].
(5) If X is a normal Hausdorff space, then RO(X) satisfies (Nor)

[6].

Note that axiom (Con) is equivalent to the axiom

(Con′) if a �= 0, b �= 0, and a + b = 1, then aCb.

Similarly, (Nor) is equivalent to the axiom

(Nor′) if aCb, then (∃a′b′)(aCa′ and bCb′ and a′ + b′ = 1).

Below, we consider embedding theorems for contact algebras
regarded as contact subalgebras of the contact algebras of regular
closed sets in some topological spaces. It is important to know the
conditions under which an algebra satisfies some of axioms (Con),
(Ext), and (Nor) if and only if its subalgebra satisfies the same
axioms.

A contact subalgebra B1 of B2 is said to be dense if

(Dense) (∀a2 ∈ B2)(a2 �= 0→ (∃a1 ∈ B1)(a1 �= 0 and a1 � a2))

and co-dense if

(Co-dense) (∀a2 ∈ B2)(a2 �= 1→ (∃a1 ∈ B1)(a1 �= 1 and
a2 � a1)).
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It is easy to see that (Dense) is equivalent to (Co-dense).
We say that B1 is a C-separable subalgebra of B2 if

(C-separation) (∀a2b2 ∈ B2)(a2Cb2 → (∃a1b1 ∈ B1)(a2 � a1

and b2 � b1 and a1Cb1)).

If h is an embedding of B1 regarded as a contact subalgebra
of B2, then h is a dense embedding provided that h(B1) is a dense
subalgebra of B2. We say that h is a C-separable if h(B1) is a
C-separable subalgebra of B2.

The following assertion is important.

Theorem 2.2.2. Let B1 be a C-separable contact subalgebra
of B2. Then the following assertions hold.

(1) B1 satisfies (Con) if and only if B2 satisfies (Con).
(2) Let B1 be a dense subalgebra of B2. Then B1 satisfies (Ext)

if and only if B2 satisfies (Ext).
(3) B1 satisfies (Nor) if and only if B2 satisfies (Nor).

Proof. We prove assertion (3) taking (Nor′) instead of (Nor).
(→) Let B1 satisfies (Nor′), and let a2Cb2 for a2, b2 ∈ B2. By

(C-separation), there exist a1 and b1 in B1 (consequently, in B2)
such that a2 � a1, b2 � b1, and a1Cb1. By (Nor), there exist a

′
1

and b
′
1 in B1 (consequently, in B2) such that a

′
1 + b

′
1 = 1, a1Ca

′
1,

and b1Cb
′
1. Since C is monotone and symmetric, we have a2Ca

′
1

and b2Cb
′
1, which shows that B2 satisfies (Nor′).

(←) Let B2 satisfy (Nor′), and let a1Cb1. for a1 and b1 in
B1 (consequently, in B2). By (Nor′), there exist a

′
2, b

′
2 ∈ B2 such

that a
′
2 + b

′
2 = 1, a1Ca

′
2, and b1Cb

′
2. By (C-separation), if a1Ca

′
2,

then there exist c1, d1 ∈ B1 such that a1 � c1, a
′
2 � d1 and c1Cd1.

Similarly, by (C-separation), b1Cb
′
2 implies that there exist e1, f1 ∈

B1 such that b1 � e1, b
′
2 � f1,, and e1Cf1. Therefore, d1 + f1 = 1,

a1Cd1, and b1Cf1, which shows that B1 satisfies (Nor′). �

The following assertion is well known.
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Proposition 2.2.3 ([52]). If h is a dense embedding of a
Boolean algebra B1 in a Boolean algebra B2 and B1 is complete,
then h is a complete isomorphism of B1 onto B2.

2.3. Points in contact algebras and
topological representation
theorems. A simple case

We begin by discussing how to define canonically points in contact
algebras. Then we discuss how to introduce canonically a topology
in the set of points. Finally, we show that regions in the algebra
can be identified with regular closed sets in the topological space
by an appropriate canonical isomorphism. This procedure is not
unique. Choosing different axioms of contact algebra, we obtain
different kinds of points and thereby different canonical construc-
tions implying different kinds of topological spaces. This shows
that the notion of a point is not unique and points of a more
complicated structure can provide better topological spaces. We
illustrate this fact by considering the simplest notion of a point. A
more complicated notion of a point and the corresponding canon-
ical constructions will be considered in Section 2.4. We mainly
follow [15], However, the presented construction is new and leads
to stronger results. Therefore, we give proofs.

Let X be a topological space, and let x ∈ X be a point. The
set Px = {a ∈ RC(X) : x ∈ a} satisfies the following conditions:

(1) X ∈ Px,
(2) a ∪ b ∈ Px if and only if a ∈ Px or b ∈ Px.

(3) If a, b ∈ Px, then aCb.

The set Px is a collection of regions. If the space is at least
T0, then x �= y implies Px �= Py. Another interesting property of
Px is that if regions a and b are in a contact, then there exists
Px such that a, b ∈ Px. Thus, the sets Px react like points. This
fact can be used to identify points with sets Px. There are no
points in contact algebras, but, instead of points, we can consider



288 Dimiter Vakarelov

collections of regions satisfying (1)–(3). The situation is similar to
that in the representation theory of Boolean algebras (cf. [55]),
where abstract points in a Boolean algebra are associated with
ultrafilters, collections of elements of the algebra. Sets satisfying
(1)–(3) are similar to ultrafilters and were considered in the theory
of proximity spaces, where they were called clans (cf. [56]). For
contact algebras clans were used in [61, 21, 15]. A clan is defined
as follows.

Let B = (B, C) be a contact algebra. A set Γ ⊆ B of regions
is called a clan (in B) if it satisfies the following conditions:

(Clan 1) 1 ∈ Γ,

(Clan 2) a + b ∈ Γ if and only if a ∈ Γ or b ∈ Γ,

(Clan 3) If a, b ∈ Γ, then aCb.

Clans in RC(X) in the form Px are called point clans. A clan
is said to be maximal if it is maximal with respect to inclusion. By
the Zorn lemma, every clan is contained in a maximal clan. Denote
by CLANS(B) (MaxCLANS (B)) the set of all clans (maximal
clans) in B. For brevity, we write CLANS and MaxCLANS if
a contact algebra B is fixed. Thus, we have two candidates for
points: CLANS and MaxCLANS. In this section, we consider
only CLANS.

We show how to construct a clan. First of all, note that every
ultrafilter in B satisfies (Clan 1) and (Clan 2) and also (Clan3)
by (C4), which means that it is a clan. Another construction is
as follows. For two filters F and G in B we define: FρG if and
only if F ×G ⊆ C. It is easy to see that the relation ρ is reflexive
and symmetric. Let Σ be a nonempty set of maximal filters of B
such that for any F, G ∈ Σ we have FρG. Then the union of all
elements of Σ is a clan and every clan can be obtained by such a
construction (cf. [15]).

The following assertion is a simple consequence of the Zorn
lemma.

Lemma 2.3.1 ([19, 15]). The following assertions hold.
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(1) If F and G are filters and FρG, then there exist maximal
filters F ′ ⊇ F and G′ ⊇ G such that F ′ρG′.

(2) aCb if and only if there exist maximal filters F and G such
that FρG, a ∈ F , and b ∈ G.

The following assertion characterizes contacts and part-of in
terms of clans.

Lemma 2.3.2 ([15]). The following assertions hold.

(1) aCb if and only if (∃Γ ∈ CLANS (B))(a, b ∈ Γ).
(2) a � b if and only if (∀Γ ∈ CLANS (B))(a ∈ Γ→ b ∈ Γ).
(3) a = 1 if and only if (∀Γ ∈ CLANS (B))(a ∈ Γ).

We explain the idea of the proof of (1). If aCb, then for the
filters F ′ = {a′ : a � a′} and G′ = {b′ : b � b} we have F ′ρG′.
By Lemma 2.3.1, F ′ and G′. can be extended to maximal filters
F and G such that FρG. Then the clan Γ = F ∪G contains both
a and b. The converse implication follows from the properties of
clans. Assertions (2) and (3) are proved in a standard Boolean
way because ultrafilters are clans.

For a ∈ B we introduce the Stone-like mapping h(a) = {Γ ∈
CLANS (B) : a ∈ Γ}.

From Lemma 2.3.2 and the properties of clans we obtain the
following assertion.

Lemma 2.3.3 ([15]). The following assertions hold.

(1) h(a + b) = h(a) ∪ h(b), h(0) = ∅, and h(1) = CLANS (B).
(2) a � b if and only if h(a) ⊆ h(b).
(3) a = 1 if and only if h(a) = CLANS (B).
(4) aCb if and only if h(a) ∩ h(b) �= ∅.

Our next goal is to turn the set X = CLANS into a topo-
logical space and to establish a representation theorem. For this
purpose, as in the Stone representation theory for Boolean alge-
bras, we define a topology τ taking {h(a) : a ∈ B} for the base
of closed sets and considering h as the required embedding. We
expect that h will embed the contact algebra B into the contact
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algebra RC(X). Proposition 2.3.4 shows that in a sense regular
closed sets cannot be excluded. Recall that the reduct (B, 0, 1, +)
of a Boolean algebra (B, 0, 1, +, ., ∗) is a Boolean algebra, called
the upper semi-lattice of B, and it generates the same ordering
relation � as in B.

Proposition 2.3.4. Suppose that X is a topological space,
B = (B, 0, 1, +, ., ∗) is a Boolean algebra, and h is an embedding of
the upper semi-lattice (B, 1, +) in the upper semi-lattice of closed
sets of X such that the set {h(a) : a ∈ B} is a base of closed sets
of X. Then the following assertions hold:

(1) h(a∗) = Cl(−h(a)),
(2) for every a ∈ B, h(a) is a regular closed set in X and, con-

sequently, X is a semiregular space,
(3) h is an embedding in RC(X).

Proof. (1) Consider an arbitrary point x ∈ X. Assertion (1)
follows from the sequence of equivalences

x ∈ Cl(−h(a))⇔ (∀b ∈ B)(−h(a) ⊆ h(b) → x ∈ h(b))

⇔ (∀b ∈ B)(h(a) ∪ h(b) = X → x ∈ h(b)),

⇔ (∀b ∈ B)(a + b = 1 → x ∈ h(b)),

⇔ (∀b ∈ B)(a∗ � b → x ∈ h(b)),

⇔ (∀b ∈ B)(h(a∗) ⊆ h(b)→ x ∈ h(b))⇔ x ∈ h(a∗)

since Cl(−h(a)) is the intersection of all elements in the base con-
taining −h(a). Here, we repeatedly used the assumption that h is
an embedding preserving 1, +, and �.

(2) Applying (1) twice, we find

x ∈ h(a)⇔ x ∈ h(a∗∗)

⇔ x ∈ Cl(−Cl(−h(a)))

⇔ x ∈ Cl(Int(h(a))),

which shows that for every a ∈ B, h(a) is a regular closed set and,
consequently, X is a semiregular space.
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(3) This assertion follows from (2), (1), and the assumption
that h preserves + and 1. �

Combining Lemmas 2.3.2, 2.3.3, and 2.3.4, we obtain the
following assertion.

Lemma 2.3.5. h is an embedding of B in RC(X) with X =
CLANS (B).

Properties of X = CLANS are presented by the following
assertion.

Lemma 2.3.6. The space X = CLANS (B) is semiregular,
possesses the T0 property, and is compact.

Proof. The space X is semiregular since it has the base of
regular closed sets.

To prove the T0 property, we suppose that Γ and ∆ are two
different points of X. Since Γ and ∆ are clans, one of them, say
Γ, is not included in the other, ∆. Then there is a ∈ Γ such that
a �∈ ∆. Hence the open set −h(a) contains ∆ and not Γ.

To prove the compactness of X, it suffices to prove the fol-
lowing. Let I be a nonempty set of indices, and let A =

⋂
{h(a) :

a ∈ I}. If for every finite set I0 ⊆ I we have
⋂
{h(a) : a ∈ I0} �= ∅,

then A �= ∅. Indeed, the condition that
⋂
{h(a) : a ∈ I0} �= ∅ for

all finite subsets I0 of I guarantees the existence of an ultrafilter
U such that {h(a) : a ∈ I} ⊆ U . It is easy to see that the set
Γ = {a : h(a) ∈ U} is a clan. Hence for every a ∈ I

a ∈ I → h(a) ∈ U → a ∈ Γ → Γ ∈ h(a).

Thus, Γ ∈ A and, consequently, A �= ∅. �

We show how the additional axioms (Con), (Ext), and (Nor)
affect the properties of the canonical space X = CLANS (B).

Let A be a regular closed set in the canonical space X. The
set FA = {a ∈ B : A ⊆ h(a)} is called the canonical filter of A.

Lemma 2.3.7. The canonical filter FA possesses the follow-
ing properties:
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(1) FA is a filter,
(2) (∀Γ ∈ X)(Γ ∈ A if and only if FA ⊆ Γ),
(2) If A �= X, then there is a ∈ B such that a �= 1 and A ⊆ h(a),
(4) FA × FB ⊆ C if and only if A ∩B �= ∅,
(5) A∩B = ∅ if and only if (∃a, b ∈ B)(A ⊆ h(a) and B ⊆ h(b)

and aCb).

Proof. (1) This assertion is a direct consequence of the defi-
nition of FA and Lemma 2.3.3.

(2) Since A is a closed set and the set of all h(a) is a closed
base for the topology of X, for any clan Γ

Γ ∈ A⇔ (∀a ∈ B)(A ⊆ h(a) → a ∈ Γ)

⇔ (∀a ∈ B)(a ∈ FA → a ∈ Γ)
⇔ FA ⊆ Γ.

(3) Let A �= X. Then there is a clan Γ such that Γ �∈ A. By
(2), FA �⊆ Γ and, consequently, there is a ∈ B such that a ∈ FA

and a �∈ Γ. Hence A ⊆ h(a), and a �= 1 by Lemma 2.3.3.

(4) (←) Assume that there is a clan Γ ∈ A such that Γ ∈ B.
Then FA ⊆ Γ and FB ⊆ Γ. Consequently, (∀a, b ∈ B)(A ⊆ h(a)
and B ⊆ h(b) → a, b ∈ Γ). Hence (∀a, b ∈ B)(A ⊆ h(a) and
B ⊆ h(b) → aCb), which yields FA × FB ⊆ C.

(→) Let FA×FB ⊆ C. By Lemma 2.3.1, there exist maximal
filters F1 and F2 such that FA ⊆ F1, FB ⊆ F2, and F1ρF2 , i.e.,
F1 × F2 ⊆ C. Then Γ = F1 ∪ F2 is a clan and FA ⊆ Γ, FB ⊆ Γ.
By (2), Γ ∈ A, Γ ∈ B and, consequently, A ∩B �= ∅.

(5) This assertion is equivalent to (4). �

Corollary 2.3.8. h is a dense C-separable embedding of B
in RC(X) with X = CLANS(B).

Proof. The assertion immediately follows from Lemma 2.3.7,
(3), (4). �

The above results yield the following



Region-Based Theory of Space 293

Theorem 2.3.9 (representation of contact algebras). Let
B = (BC) be a contact algebra. Then there exists a compact semi-
regular T0-space (X, τ) and a dense C-separable embedding h of
B in the contact algebra of regular closed sets RC(X). Moreover,

(1) B satisfies (Con) if and only if X is connected,
(2) B satisfies (Ext) if and only if X is weakly regular,
(3) B satisfies (Nor) if and only if X is κ-normal,
(4) if B is a complete algebra, then h is an isomorphism between

B and the complete contact algebra RC(X).

Proof. Assertions (1)–(4) follow from Lemmas 2.2.2, 2.2.1,
and 2.2.3. �

A similar assertion was proved in [15] with the compactness
of X replaced with a stronger notion of C-semiregularity (a semi-
regular T0-space is C-semiregular if every clan in RC(X) is a point
clan). Note that any C-semiregular space is compact, but there
are compact semiregular spaces that are not C-semiregular.

Based on the definition of a point in a contact algebra, we
can give a second-order definition of the n-ary contact:

Cn(a1, . . . , an) if and only if there exists a clan Γ
such that {a1, . . . , an} ⊆ Γ.

Using this definition and Theorem 2.3.9, we find

Cn(a1, . . . , an) if and only if h(a1) ∩ . . . ∩ h(an) �= ∅,

which shows that the above definition agrees with the notion of
the standard topological n-ary contact.

2.4. Another topological representation
of contact algebras

Under additional assumptions, contact algebras can be represented
in better topological spaces, T1 or T2. If contact algebras satisfy
axiom (Ext), we can prove a representation theorem for compact
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weakly regular T1-spaces with maximal clans instead of points. By
axiom (Ext), it is possible to repeat all the arguments of Section
2.3 to obtain a representation result similar to Theorem 2.3.9, but
X should be replaced with T1 in view of the maximality of clans.

Theorem 2.4.1 (representation of extensional contact alge-
bras). Let B = (BC) be a contact algebra satisfying axiom (Ext).
Then there exists a compact weakly regular T1-space (X, τ) and
a dense C-separable embedding h of B in the contact algebra of
regular closed sets RC(X). Moreover,

(1) B satisfies (Con) if and only if X is connected,
(2) B satisfies (Nor) if and only if X is κ-normal,
(3) if B is a complete algebra, then h is an isomorphism between

B and RC(X).

This theorem covers the case of the RCC system. Similar
assertions were proved by Düntsch and Winter in [21] (without
compactness) for RCC system and by Dimov and Vakarelov in
[15], where the compactness was replaced with the stronger con-
dition of CM-semiregularity

For contact algebras satisfying both axioms (Ext) and (Nor)
the representation theorem can be improved.

Theorem 2.4.2 (representation of extensional normal con-
tact algebras, [61, 15]). Let B = (BC) be a contact algebra sat-
isfying both axioms (Ext) and (Nor). Then there exists a compact
Hausdorff space (X, τ) and a dense embedding h of B in the con-
tact algebra of regular closed sets RC(X). Moreover,

(1) B satisfies (Con) if and only if X is connected,
(2) if B is a complete algebra, then h is an isomorphism between

B and RC(X).

An assertion similar to Theorem 2.4.2 was first proved by de
Vries [63] for RO(X) instead of RC(X).

To prove Theorem 2.4.2, we introduce another kind of points.
A subset Γ of B is called a cluster if it is a clan such that

(Cluster) if aCb for every b ∈ Γ, then a ∈ Γ.
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Any cluster is a maximal clan. However, to prove the exis-
tence of clusters in B, we need axioms (Ext) and (Nor). Clusters
were used in proximity theory for obtaining compactification the-
orems for topological spaces (cf. [42]).

For representing contact algebras in some special topological
spaces (for example, regular spaces), other (not necessarily first-
order) axioms can be required. The role of points in such algebras
is played by clusters of special kind, called co-ends. Formally, a
co-end Γ is a cluster such that for every a �∈ Γ there exists b �∈ Γ
such that a# b.

Contact algebras representable in RC(X) with a regular space
X satisfy the following regularity axiom:

(Reg) if aCb, then there exists a co-end Γ containing a and b.

We refer to [15] for details.
Note that (Reg) is not a first-order axiom because it contains

the second-order notion of a co-end. It is not known if there is
a first-order axiom equivalent to (Reg). The following general
question can be posed: For a given class Σ of topological spaces
find axioms providing representation of algebras in RC(X) with
X ∈ Σ.

The above representation theorems are of embedding type,
i.e., they state that a contact algebra B can be embedded in the
contact algebra of regular closed sets RC(X) of some topological
space X. Such representations do not exclude the case where non-
isomorphic contact algebras are embedded in the contact algebra
of the same space X. Moreover, X1 and X2 can be nonhomeomor-
phic, whereas RC(X1) and RC(X2) are isomorphic. To establish
a one-to-one correspondence between contact algebras (up to an
isomorphism) and topological spaces (up to a homeomorphism),
we require the completeness of contact algebras. Then for X we
take the so-called C-semiregular space, i.e., a semiregular space X
such that every clan in RC(X) is a point clan. Representations
theorems for complete contact algebras satisfying some axioms like
(Con), (Ext), and (Nor) can be found in [15].
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2.5. Models of contact algebras
in proximity spaces

Proposition 2.3.4 motivates the following observation: In order
for a topological representation h of contact algebras to generate
a topology, h must be an embedding of the Boolean part of the
contact algebra in the Boolean algebra RC(X) with some semi-
regular space X. However, Proposition 2.3.4 does not guarantee
that the contact relation C in RC(X) is defined in the standard
way, i.e., aCb ⇔ a ∩ b �= ∅.

In this section, we demonstrate topological models for contact
algebras, where elements of the Boolean algebra are regular closed
sets of some topological space, whereas the relation aCb is not the
standard topological contact. To construct such examples, we use
proximity spaces introduced by Efremovič in [25] (cf. also [42])
and known as Efremovič proximity spaces or simply E-proximity
spaces.

An Efremovič proximity space is a system (X, δ), where X is
a nonempty set and δ is a binary relation, called proximity relation,
on subsets of X such that the following axioms are satisfied:

(E1) if AδB, then A,B �= ∅,

(E2) Aδ(B ∪ C) if and only if AδB or AδC,

(E3) if AδB, then BδA,

(E4) if A ∩B �= ∅, then AδB,

(E5) if AδB, then there exists C such that AδC and (X �C)δB.

A proximity space (X, δ) is said to be separated if it satisfies
the following condition:

if x, y ∈ X, then {x}δ{y} implies x = y

.

Spaces satisfying only axioms (E1)–(E4) were considered by
Čech [9]. Other generalizations of E-proximity spaces can be found
in [42].
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The relation # in a Čech proximity space is defined as

A# B if and only if Aδ(X � B).

If A # B, then B is called a δ-neighborhood of A. It is
obvious that the relations δ and # are interdefinable and the
axioms of Čhech proximity space can be expressed in terms of #
as follows:

(# 1) X # X,

(# 2) if A# B, then A � B,

(# 3) if A � B # C � D then A # D,

(# 4) if A# B, then (X � B) # (X � A),

(# 5) if A# B and A# C, then A # B ∩ C.

In terms of #, axiom (E5) takes the form

(# 6) if A# B, then for some C: A# C # B.

Note that axioms (E1)–(E4) are the same as axioms of con-
tact algebras (C1)–(C4); moreover, axiom (E5) or (# 6) is the
same as axiom (Nor). Owing to this fact, it is possible to use
proximity spaces for constructing models of contact algebras.

A standard example of E-proximity space comes from metric
spaces (X, d). Using the distance d(A,B) = inf {d(a, b) : a ∈
A, b ∈ B} between two sets A and B of a metric space, we define
the proximity relation

AδB if and only if d(A,B) = 0.

In this case, all the axioms of E-proximity space are satisfied.
A relational kind of proximity spaces is considered in [60]:

for a given relational system (X, R), where X �= ∅ and R is a
binary relation in X, the relation δR on subsets of X is defined as

AδRB if and only if (∃x ∈ A)(∃y ∈ B)(xRy).

In this case, axiom (E1) and the right and left implications
in axiom (E2) are satisfied by any R, axiom (E3) is satisfied if R
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is symmetric, axiom (E4) is satisfied if R is reflexive, and axiom
(E5) is satisfied if R is transitive relation.

For an example of a Čech proximity space we can consider a
system (X, R) with a reflexive symmetric relation R, and for an
example of an E-proximity space we can take a system (X, R),
where R is an equivalence relation. These examples will be used
for presenting discrete models of contact algebras in the following
section.

Now, we use E-proximity spaces to construct topological mod-
els of contact algebras with a nonstandard proximity model of
contact relation.

Every Čech proximity space (X, δ) defines a topology in X
in the following way. Let Cl(A) = {x ∈ X : {x}δA}. Then Cl
is a Kuratowski closure operator defining a topology in X. The
following assertion shows how Cl and Int are connected with the
relation #.

Lemma 2.5.1 ([42]). The following assertions hold:

(1) A# B implies Cl(A)# B,

(2) A# B implies A# Int(B).

Having a topology in a proximity space X, we can consider
the set of regular closed subsets of X with respect to this topol-
ogy. Consider the Boolean algebra RC(X, δ) of regular closed sets
with respect to the introduced topology in (X, δ). Since axioms
(C1)–(C4) are the same as the axioms of proximity space, we con-
clude that RC(X, δ) is a contact algebra. We show that axioms
(Nor) and (Ext) are also satisfied. Axiom (Nor) follows from the
following stronger version of axiom (# 6):

(# 6′) if A# B, then A # C # B for some regular
closed set C.

Indeed, let A # B. By axiom (# 6), there is a subset D
(not necessarily regular and closed) such that A # D # B. By
Lemma 2.5.1,
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A# Int(D) ⊆ Cl(Int(D)) ⊆ Cl(D) # B.

Hence A# Cl(Int(D))# B. Then C = Cl(Int(D)) is the required
regular closed subset.

To verify axiom (Ext), assume that A �= ∅ is a regular closed
set. Then there is a point x ∈ Int(A) and, consequently, {x} # A.
By (# 6′), we get a regular closed set B such that {x} # B # A
and, consequently, B �= ∅ and B # A. Thus, axiom (Ext) is
satisfied.

The above arguments lead to the following assertion.

Theorem 2.5.2 ([61]). Let (X, δ) be an E-proximity space,
and let RC(X, δ) be the Boolean algebra of regular closed sets in
(X, δ). Then (RC(X, δ), δ) is a contact algebra with contact δ
satisfying axioms (Nor) and (Ext).

Note that the proximity contact defined in Theorem 2.5.2 is
not necessarily the standard topological contact for regular closed
sets. For example, consider the metric space of rational numbers
and the corresponding proximity space. For the regular closed
sets A = {x : 0 � x2 � 2} and B = {x : 2 � x2 � 4} we have
d(A,B) = 0, which implies AδB. But these sets are not in the
relation of the topological contact because A ∩ B = ∅. If we
consider the same sets over the real numbers, then both proximity
and topological contacts hold. In the further consideration, we
have exactly A ∩ B = {

√
2}. The reason is that the space of the

rational numbers does not have points (in this case, the point
√

2)
enough to describe the standard contact, but this can be done with
the help for the proximity contact. Thus, the proximity contact
is more suitable for describing the real picture between regular
closed sets. Generalizing the notion of an Efremovič proximity
space in different ways, we can obtain models with proximity-like
contacts for other contact algebras (some examples are contained
in [16]).
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2.6. Contact algebras with
predicate of boundedness

In this section, we extend the language of contact algebras by
introducing the predicate of boundedness. To explain this notion
at the intuitive level, we consider the real line R. A regular closed
set a in R is bounded if it is contained in a closed interval [x, y]
of R. A generalization to the space Rn is obvious: closed spheres
should be taken instead of [x, y].

The notion of boundedness was used in topology by Hu [35]
and in proximity spaces by Leader [37] (cf. also [42]).

The boundedness is defined as a class B of subsets of a space
X such that

(B1) ∅ ∈ B,
(B2) if B ∈ B and A ⊆ B, then A ∈ B,
(B3) if A,B ∈ B, then A ∪B ∈ B.

From the formal point of view, it is a fixed ideal of sets in
X. The boundedness predicates related to the topology of X are
of great interest. For example, in Rn, the set of bounded regu-
lar closed regions coincides with the set of compact regular closed
regions. Note that Rn is a locally compact Hausdorff space (re-
call that a topological space X is locally compact if for every point
x ∈ X there is a compact regular closed set a such that x ∈ Int(a)).
Therefore, the above definition can be taken for a topological de-
finition of boundedness in locally compact spaces. Based on this
definition of boundedness, Leader [37] introduced local proximity
spaces by adding the following axioms to axioms (B1)–(B3) in the
definition of Čech proximity spaces:

(B4) if AδB, then ∃C ∈ B such that C ⊆ B and AδC,

(C) if A ∈ B and A# C, then ∃C ∈ B such that A# C # B

(A# B ⇔ Aδ −B).

Note that axiom (C) is equivalent to the conjunction of the
axiom
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(B5) if A ∈ B, then ∃B ∈ B such that A# B

and the Efremovič axiom

(E5) if A# B, then ∃C such that A# C # B.

A typical example of a local proximity space is any locally
compact Hausdorff spaces X with AδB defined as Cl(A)∩Cl(B) �=
∅ and A ∈ B if and only if Cl(A) is a compact subset of X. Leader
used this example to develop the local compactification theory for
local proximity spaces.

Using an analogy between contact algebras and proximity
spaces (cf. Section 2.5), we introduce a local contact algebra as
a system B = (B, 0, 1,+, ., ∗, C,B), where (B, 0, 1, +, ., ∗, C) is a
contact algebra and B is a subset of B satisfying axioms similar
to (B1)–(B5) and denoted in the same way:

(B1) 0 ∈ B,

(B2) if b ∈ B and a � b, then a ∈ B,

(B3) if a, b ∈ B, then a + b ∈ B,

(B4) if aCb, then ∃c ∈ B such that c � b and aCc,

(B5) if a ∈ B, then ∃b ∈ B such that a # b (a# b ⇔ aCb∗).

We say that B is connected (extensional or normal) if it
satisfies axiom (Con) ((Ext) or (Nor)).

Standard examples of local contact algebras can be obtained
from a locally compact space X: the contact algebra RC(X) and
the set of bounded regions B(X) coinciding with the compact reg-
ular closed sets in X.

In mereotopology, the notion of boundedness was first used
by Roeper in [49], where it was referred to as the limitedness.
The region-based topology introduced by Roeger is equivalent to
the local contact algebras satisfying axioms (Ext) and (Nor). The
axioms of Roeper are (C1)–(C4), (B1)–(B4), and the following:

(R) if a ∈ B, b �= 0 and a# b, then ∃c ∈ B such that c �= 0 and
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a# c## b.

Note that axiom (R) is close to Leader’s axiom (C) and de
Vries’ axiom (P6). Roeper did not make any reference to their
works, and it is quite impressive that he independently worked
out some ideas and methods of proximity theory. For example, his
definition of a point as a coincidence set is the same as a bounded
cluster introduced by Leader. Roeper gave an elegant proof of the
fact that every complete contact algebra satisfying axioms (Ext)
and (Nor) (the complete region-based topology in the terminology
of Roeper) is isomorphic to the local contact algebra RC(X) of
regular closed sets of a Hausdorff locally compact space X and
that there is a one-to-one correspondence between region-based
topologies (up to an isomorphism) and Hausdorff locally compact
spaces (up to a homeomorphism). Another proof of the Roeper
theorem is contained in [61], where the Leader compactification
theorem is generalized to local proximity spaces.

The goal of this section is to expand the Roeper embedding
theorem to the case of local contact algebras under additional
axioms (Con), (Ext), and (Nor).

Theorem 2.6.1 (representation of local contact algebras).
Let B = (B, C,B) be a local contact algebra. Then there exists a lo-
cally compact semiregular T0-space (X, τ) and a dense C-separable
embedding h of B in the local contact algebra of regular closed sets
RC(X). Moreover,

(1) B satisfies (Con) if and only if X is connected,

(2) B satisfies (Ext) if and only if X is weakly regular,

(3) B satisfies (Nor) if and only if X is κ-normal,

(4) if B is a complete algebra, then h is an isomorphism between
B and the complete local contact algebra RC(X).

The proof of this theorem is similar to that of Theorem
2.3.9, but, instead of ultrafilters and clans, bounded ultrafilters and
bounded clans (ultrafilters and clans possessing bounded regions)
and the constructions from Section 2.3 are used.
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A stronger result (similar to Theorem 2.4.1) for locally com-
pact weakly regular T1-spaces can be obtained under the assump-
tion that local algebras satisfy axiom (Ext). In this case, the role
of points is played by bounded maximal clans. If both axioms
(Ext) and (Nor) are assumed, locally compact Hausdorff spaces
are obtained (as was established by Roeper). If, in addition, ax-
iom (Con) is satisfied, we obtain a connected space.

As was noted by Roeper [49], if axiom (R) (equivalently, ax-
ioms (Ext) and (Nor)) is not assumed, it is impossible to establish
a one-to-one correspondence between local contact algebras and
locally compact spaces.

2.7. Algebras of regions based
on non-Boolean lattices

It is reasonable to weaken the Boolean part of a contact algebra
since it constitutes the mereological basis for the contact algebra,
but the basic mereological relations (part-of, overlap, and under-
lap) admit equivalent definitions in terms of the lattice operations.
Another reason is to examine how much the lattice properties af-
fect properties of the mereological relations. We give two exam-
ples. The relations overlap and underlap are extensional in the
following sense:

(Ext-O) a = b if and only if (∀c)(aOc↔ bOc),

(Ext-U) a = b if and only if (∀c)(aUc↔ bUc).

If we restrict the Boolean part to a distributive lattice with 0
and 1, then (Ext-O) and (Ext-U) are not necessarily valid. In the
case of a distributive lattice, (Ext-O) is equivalent to the following
stronger condition:

(Ext-O′) a � b if and only if (∀c)(aOc→ bOc).

Similarly, (Ext-U) is equivalent to the following:

(Ext-U′) a � b if and only if (∀c)(bUc→ aUc).
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For more details we refer to [22] and [18]).
The following lemma illustrates the importance of the ex-

tensionality principles for the representability results in Boolean
contact algebras of regular closed sets.

Lemma 2.7.1 ([18]). Suppose that X is a topological space,
L = (L, 0, 1, +, .) is a lattice, and h is an embedding of the upper
semi-lattice (L, 0, 1, +) in the lattice C(X) of closed sets of X. Let
B = {h(a) : a ∈ L} be the closed base of a topology for X.

(1) The following conditions are equivalent:
(a) L is U -extensional,
(b) B ⊆ RC(X),
(c) h(a.b) = Cl(Int(h(a) ∩ h(b))) for all a, b ∈ L,
(d) h is the dual dense embedding of L in RC(X).

(2) If some of conditions (a)–(d) in (1) are satisfied, then
(a) L is an U -extensional distributive lattice,
(b) X is a semiregular space.

Lemma 2.7.1 shows that in order for a lattice L to be em-
bedded in RC(X) so that the image of L to form a basis of closed
sets for X, the lattice L should be distributive and U-extensional
with semiregular topology.

Theorem 2.7.2 below shows that such representability results
can also take place for distributive U-extensional lattices with ax-
ioms (C1)–(C4).

Theorem 2.7.2 (topological representation of U -extensional
distributive contact lattices, [18]). Let D = (D, 0, 1, +, ., C) be
an U -extensional distributive contact lattice. Then there exists a
semiregular T0−space X and the dual dense embedding h of D in
RC(X) such that {h(a) : a ∈ D} is a basis of closed sets for X.

Note that the embedding of a distributive contact lattice in
RC(X) is possible even if the lattice is not necessarily U-extensional
provided that we omit the condition that {h(a) : a ∈ D} generates
the topology of X. This shows that this assumption has a lattice
equivalent in the form of the U-extensionality of the lattice.
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We can further weaken the mereological part of contact al-
gebras. In particular, examples with nondistributive lattices were
considered in [22]. The question is: What can be regarded as
a nice point-based representation? For a candidate for topologi-
cal modelling of nondistributive contact lattices we can consider
regions in some bi-topological spaces. Let (X, τ1, τ2) be a space
with two different topologies τ1 and τ2. A set a ⊆ X is called
a mixed regular closed set if a = Cl 1(Int 2(a)). We set 0 = ∅,
1 = X, a + b = a ∪ b, a.b = Cl 1(Int 2(a ∩ b)), and aCb if and
only if a ∩ b �= ∅. Then such mixed regions form a (not neces-
sarily distributive) lattice and C satisfies axioms (C1)– (C4). By
a result of Urquhart [59], any lattice can be embedded in such a
special lattice. The problem is that such a representation does not
hold for the contact relation. The question of finding a satisfac-
tory model and representation theory for nondistributive contact
lattices remains still open.

The further generalization is to drop the entire lattice part
and consider only some mereotopological relations with suitable
axioms that are valid in the standard Boolean model. For example,
as we can see for contact algebras, all the RCC-8 relations are
definable and their definition uses only O, C, �. and #. Thus, it
is of interest to find the complete set of axioms for O, C, �, and
#. The author does not know whether there are results in this
direction.

2.8. Precontact algebras and discrete spaces

In this section, we describe discrete nontopological models of con-
tact algebras. We begin with a general definition.

A precontact algebra is a system B = (B, C) = (B, 0, 1,+, ., ∗,
C), where (B, 0, 1,+, ., ∗) is a Boolean algebra and C is a binary
relation, called a precontact, satisfying the following axioms:

(C1) if aCb, then a, b �= 0,

(C2′) aC(b + c) if and only if aCb or aCc,
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(C2′′) (a + b)Cc if and only if aCc or bCc.

Note that B is a contact algebra if it satisfies axioms (C3)
(i.e., aCb→ bCa) and (C4) (i.e., a.b �= 0 → aCb).

Precontact algebras were considered in [14] and in [19], where
they are called proximity algebras.

We give nontopological examples of precontact and contact
algebras using the notion of an adjacency space introduced by Gal-
ton [29, 30]. An adjacency space is a relational system (X, R),
where X �= ∅ is a set whose elements are called cells and R is a
binary adjacency relation on cells. By a region in (X, R) we mean
any subset of X. We say that two regions a, b ⊆ X are in the adja-
cency contact CR and write aCRb if (∃x ∈ a)(∃y ∈ b)(xRy). Such
a binary relation was used in [60] for defining relational proxim-
ity spaces, but its interpretation there was different from Galton’s
one. Galton assumed that R is reflexive symmetric, whereas R
is arbitrary in [19]. An intuitive example of an adjacency space,
adopted from Galton, is a chess-board table with cells – squares
such that two squares are adjacent if they have a common point.
This is an example of a reflexive symmetric adjacency relation.
However, there are also several nonreflexive nonsymmetric adja-
cency relations, for example: “a to be next on the left of b” or
“a to be on the top of b,” etc., which motivates the choice of an
arbitrary binary relation of R in [19].

It is easy to prove the following assertion.

Lemma 2.8.1 ([19]). Let (X, R) be an adjacency space, and
let B(X) = (B(X), CR), where B(X) is the Boolean algebra of
subsets of X and CR is the adjacency contact. Then the following
assertions hold:

(1) B(X) = (B(X), CR) is a precontact algebra,
(2) B satisfies (C3) if and only if R is symmetric,
(3) B satisfies (C4) if and only if R is reflexive,
(4) B is a contact algebra if R is reflexive and symmetric,
(5) B satisfies (Nor) if and only if R is transitive,



Region-Based Theory of Space 307

(6) B satisfies (Con) if and only if R is connected in the sense
of graphs, i.e. if x �= y then there is an R-path from x to y.

With every precontact algebra we can associate a canonical
adjacency space X(B) = (X(B), RB) taking the set of all ultrafil-
ters of B (“points” of B) for X(B) and setting for two ultrafilters
F and G

FRBG ⇔ F ×G ⊆ C ⇔ FρG,

where the relation ρ was introduced in Section 2.3. The mapping
h(a) = {F ∈ X(B) : a ∈ F} is the Stone embedding of B in the
Boolean algebra of subsets of X(B). By Lemma 2.3.1, h preserves
the relation of precontact. Thus, the following representation re-
sult holds.

Theorem 2.8.2 (representation of precontact algebras in
adjacency spaces, [19]). Suppose that B is a precontact algebra,
(X(B), RB) is the canonical adjacency space, and B(X(B)) is the
precontact algebra over the canonical space. Then the following
assertions hold:

(1) h is an embedding of B in B(X(B)),
(2) B satisfies (C3) if and only if B(X(B)) satisfies (C3),
(3) B satisfies (C4) if and only if B(X(B)) satisfies (C4),
(4) b is a precontact algebra if and only if B(X(B)) is a contact

algebra,
(5) B satisfies (Nor) if and only if B(X(B)) satisfies (Nor).

As was noted in [19], the canonical adjacency space of a con-
nected contact algebra is not in general a connected adjacency
space. That is why Theorem 2.8.2 does not cover the case of
connected contact algebras, unlike topological representation the-
orems.

Theorem 2.8.2 gives examples of nontopological discrete rep-
resentations of contact algebras and normal contact algebras. This
fact is remarkable because this means that a contact algebra has
two essentially different representations: a discrete representation
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in a reflexive symmetric adjacency space and the other in a topo-
logical space. The points of the discrete representation are ultra-
filters and the contact is realized by a binary adjacency relation
between ultrafilters, whereas points in the topological representa-
tion are clans, i.e., special collections of ultrafilters. Considering
both representations in the same space, we see that every region a
have two representations: the first, hultrafilters(a) containing only
ultrafilters and the second, hclans(a) containing hultrafilters(a) and
including some clans. Note that hclans(a) is a regular closed set
with a boundary containing only clans and the ultrafilters are in-
cluded only in Int(hclans(a). These representations reminiscent
to consider ultrafilter-points as analogs of atoms, and clan-points
can be regarded as analogs of molecules. Respectively, the repre-
sentation theory is, in a sense, some kind of establishing certain
atomistic micro-structure of the space, in which different kinds of
points constitute the microlevels of the regions. Note that this
interpretation is quite disputable and arise serious philosophical
questions about the atomicity of space. More about this discus-
sion in the realm of the top-level ontology and mereology can be
found, for example, in [53].

At the first glance, topological modelling of precontact alge-
bras is not possible because the standard topological contact sat-
isfies additional axioms (C3) and (C4). However, for an arbitrary
precontact algebra we can define an additional relation of contact
C# as follows: aC#b if and only if aCb or bCa or a.b �= 0. It is
obvious that C# satisfies all the axioms of contact algebra. Hence
we can look for topological models of precontact algebras withe
lements represented by regular closed sets of a topological space
X and the contact C# is represented as the standard topological
contact. This is possible to be done but in topological structures
of a more complicated nature, containing a binary relation R be-
tween some points of the space. We refer to [14] for definitions
and topological representation theorems of precontact algebras in
more detail.
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3. Region-Based Propositional
Modal Logics of Space

In this section, we present a language for propositional, quantifier-
free logics of the region-based theory of space. The consideration of
a quantifier-free language is mainly motivated by the necessity to
obtain decidable fragments of some well-known systems of region-
based theory of space related to RCC. We present three kinds of
semantics:

• algebraic semantics based on algebras of regions,
• topological semantics based on contact algebras of some classes

of topological spaces,
• Kripke-type semantics based on Kripke structures regarded

as adjacency spaces.

The main tools in the proof of completeness theorems are
the representation theorems for contact and precontact algebras
from Section 2. We use a language similar to that of relative
modal logic introduced by von Wright [66], which motivates us
to call the considered logics region-based propositional modal log-
ics of space (RPMLS). Another motivation is that Kripke-type
semantics is very closed to the Kripke semantics in modal logic.
Moreover, almost all known techniques of modal logic (in partic-
ular, modal definability, filtration, canonical-model constructions,
etc.) used for proving completeness theorems can be transferred to
our case with slight modifications. In addition, the language has
a direct translation into the minimal modal logic K + universal
modality, which also motivates our choice. However, the “modal”
qualification of our logical language is not obligatory and it can
be considered as a quantifier-free version of some first-order lan-
guage. Note that the introduced language is a simplified version
of the language of RCC-8 with Boolean terms, used by Wolter and
Zakharyaschev [65].

The material of this section is mainly based on [3].
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3.1. Syntax and semantics of RPMLS

Syntax

The language L(C,�) of region-based propositional modal logics
of space (RPMLS) consists of
• a denumerable set Var of Boolean variables,
• Boolean operations:: . (Boolean meet), + (Boolean join), ∗

(Boolean complement), and 0, 1 (Boolean constants),
• propositional connectives: ¬,∧,∨,⇒,⇔, and propositional

constants � and ⊥,
• modal connectives: � (part-of) and C (contact).

The set of Boolean terms B is defined in a standard way:
from Boolean atoms and Boolean constants by means of Boolean
operations.

Atomic formulas are formulas of the form a � b and aCb,
where a and b are Boolean terms.

Complex formulas (or simply formulas) are defined in a stan-
dard way from atomic formulas and propositional constants ⊥ and
� by means of propositional connectives.

Abbreviations:
a = b

def= (a � b) ∧ (b � a),

a �= b =def= ¬(a = b),

aCb
def= ¬(aCb),

aOb
def= a.b �= 0 (overlap),

a # b
def= aCb∗ (nontangential inclusion).

Substitution. Let α be a Boolean term or a formula, and
let p1, . . . , pn be a list of different Boolean variables. We write
α(p1, . . . , pn) to indicate that p1, . . . , pn can occur in α.

If b1, . . . , bn are Boolean terms, then α(b1, . . . , bn) or, more
precisely α(p1/b1, . . . , pn/bn) means the simultaneous substitution
of b1, . . . , bn for p1, . . . , pn. The formula α(b1, . . . , bn) is called a
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substitutional instance of α. If we consider p1, . . . , pn as meta vari-
ables for Boolean terms, then α(p1, . . . , pn) is called a “schema.”
Schemes are usually understood as schemes of axioms of some ax-
iomatic systems.

Let A = A(q1, . . . , qn) be a formula of the propositional calcu-
lus built up by different propositional variables q1, . . . , qn and the
propositional connectives ¬,∧,∨,⇒,⇔,⊥, and �. Let α1, . . . , αn

be formulas of our language. Then A(α1, . . . , αn) or, more pre-
cisely, A(q1/α1, . . . , qn/αn) is called the substitutional instance of
the propositional formula A.

Semantics

First of all, we introduce an algebraic semantics of the language
L(�, C). Let B = (B, 0, 1, .,+, ∗, C) be a precontact algebra. A
mapping v from Var into B is called a valuation. It is extended to
arbitrary Boolean terms by induction in a standard way: v(a.b) =
v(a).v(b), v(a + b) = v(a) + v(b), v(a∗) = v(a)∗, v(0) = 0, and
v(1) = 1.

A pair M = (B, v), where B is a precontact algebra and v is
a valuation in B, is called an algebraic model or an interpretation
in B. The truth of a formula α in (B, v), in symbols (B, v) |= α,
is defined inductively as follows:

(B, v) |= a � b if and only if v(a) � v(b),

(B, v) |= aCb if and only if v(a)Cv(b),

(B, v) |= α ∧ β if and only if (B, v) |= α and (B, v) |= β,

(B, v) |= α ∨ β if and only if (B, v) |= α or (B, v) |= β,

(B, v) |= ¬α if and only if (B, v) �|= α.

We say that M is a model of a formula α if M |= α and M
is a model of the set of formulas A if M is a model of all members
of A.

We say that α is true in a precontact algebra B if α is true
in all interpretations in B. If Σ is a class of precontact algebras,
α is said to be true in Σ if α is true in all members of Σ. The set
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of all formulas true in Σ is called the logic of Σ and is denoted by
L(Σ). This is a semantic definition of logic.

Let Σ be a class of topological spaces. The topological se-
mantics of L(C,�) in Σ consists of interpretations in contact al-
gebras RC(X) of regular closed sets of topological spaces X ∈ Σ.
Pairs (X, v), where X is a topological space and v is a valuation
in RC(X), are referred to as topological model or topological in-
terpretation. If α is true in RC(X), we write “α is true in X” for
brevity.

Let Σ be a class of relational systems (X, R) considered as ad-
jacency spaces (cf. Section 2.8). The Kripke semantics of L(C,�)
in Σ consists of interpretations in precontact algebras over struc-
tures (W, R) ∈ Σ. As in modal logic, structures of the form (W, R)
are called frames (Kripke frames or Kripke structures) and the
Kripke semantics is called relational semantics. Triples (X, R, v),
where v is a valuation in the precontact algebra over (W,R), is
called a Kripke model or a Kripke interpretation. If α is true in
the precontact algebra (B(X), CR) over the frame (X, R), we write
α is true in (X, R) for brevity. The class of all frames is denoted
by Σall. Note that the truth of a formula aCb in the Kripke model
(X, R, v) can be expressed in the equivalent way as follows:

(X, R, v) |= aCb if and only if (∃x, y ∈ X)(xRy and
x ∈ v(a) and y ∈ v(b)) if and only if v(a)CRv(b) if and
only if v(a) ∩ 〈R〉v(b) �= ∅, where 〈R〉v(b) = {x ∈ X :
(∃y ∈ X)(xRy and y ∈ v(b))}.

A translation into modal logic K
with universal modality

Owing to the relational semantics, we can define a translation τ of
our language into the modal logic KU with standard modalities,
denoted by [R]A or 〈R〉A, and universal modalities, denoted by
[U ]A or 〈U〉A. The modalities [R]A and 〈R〉A are interpreted by
the relation R in the modal frames, whereas [U ]A and 〈U〉A are
interpreted by the universal relation U = W ×W in the frames
(W,R). The formal definition of τ is the following.
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• For Boolean terms: If p is a Boolean variable, then τp = p
considered as a propositional variable in KU , τa∗ = ¬τa,
τ(a + b) = τa ∨ τb, τ(a.b) = τa ∧ τb, τ0 = ⊥, and τ1 = �.

• For atomic formulas: τ(a � b) = [U ](τa⇒ τb), and τ(aCb) =
〈U〉(τa ∧ 〈R〉τb).

• For compound formulas: τ¬A = ¬τA, τ(A ∧B) = τA ∧ τB,
τ(A ∨ B) = τA ∨ τB, τ(A ⇒ B) = τA ⇒ τB, and τ(A ⇔
B) = τA ⇔ τB.

The following assertion is easily proved by induction.

Lemma 3.1.1 (on translation, [3]). Let F = (W, R) be a
frame. Then for any formula A the following is true: F |= A in
the sense of RPMLS if and only if F |= τA in the sense of the
modal logic KU .

If we consider only reflexive symmetric frames correspond-
ing to the adjacency representation of contact algebras, then the
above-introduced translation is in the logic KTB + universal modal-
ity (T is the code of the reflexivity axiom [R]p ⇒ p and B is the
code of the symmetry axiom p⇒ [R]〈R〉p from modal logic).

3.2. Modal definability and undefinability
in Kripke semantics

Modal definability

The modal definability of a class of frames by a formula is defined
in the same way as the global modal definability in modal logic.
Namely, we say that a class Σ of frames is modally definable by a
formula α if for every frame F = (X, R)

F ∈ Σ if and only if F |= α.

If Σ is defined by a first-order formula F , then we say that
F is modally definable by α or F is a first-order equivalent of α.

Lemma 3.2.1 (modal definability: first-order examples, [3]).
Let F = (W, R) be a frame, and let p, q be Boolean variables. Then
the following equivalencies hold:
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(1) [nonemptiness of R]
R �= ∅ ⇔ F |= 1C1,

(2) [right seriality of R]
(∀x ∈W )(∃y ∈W )(xRy) ⇔ F |= (p �= 0⇒ pC1),

(3) [left seriality of R]
(∀y ∈W )(∃x ∈W )(xRy) ⇔ F |= (p �= 0⇒ 1Cp),

(4) [weak seriality of R]
(∀x ∈ W )(∃y ∈ W )(xRy ∨ yRx) ⇔ F |= (p �= 0 ⇒ 1Cp ∨
pC1),

(5) [reflexivity of R]
(∀x ∈W )(xRx) ⇔ F |= (p �= 0⇒ pCp),

(6) [symmetry of R]
(∀x, y ∈W )(xRy → yRx) ⇔ F |= (pCq ⇒ qCp),

(7) [definability of overlap]
(∀x, y ∈W )(xRy ↔ x = y) ⇔ F |= (pCq ⇔ p.q �= 0),

(8) [universality of R]
(∀x, y ∈W )(xRy) ⇔ F |= (a �= 0 ∧ b �= 0⇒ aCb)

Note that the first-order conditions in (1), (3), (4), and (8) are
not modally definable in the classical modal language. Below we
will show that there are examples of definable first-order conditions
in modal logic that are not modally definable in our language. For
an example the transitivity condition R can be considered.

Since the reflexive symmetric frames are important for our
purposes, we denote Σref (Σsym or Σref,sym) for the class of all
reflexive (symmetric or reflexive and symmetric) frames and Σe

for the class of all equivalence relations. For the corresponding
formulas which modally define these properties we use the notation

(Ref) p �= 0⇒ pCp,

(Sym) pCq ⇒ qCp.

A relation R (or a frame (W,R)) is said to be connected if
for all x �= y ∈W there exists an R-path from x to y.
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Let n > 0 be a natural number. A relation R (or F), regarded
as a graph, is said to be n-colorable if it is an n-colorable graph
(i.e. all points can be colored by the colors from a given set of
n colors in such a way that any two points connected by R have
different colors).

Lemma 3.2.2 (modal definability: second-order examples,
[3]). The following assertions hold for a frame F = (W,R) :

(1) [connectedness of R]
F is connected if and only if
F |= (p �= 0 ∧ p �= 1⇒ pCp∗).

(2) [non-n-colorability of R]
F is not n-colorable if and only if
F |= (

∨
i=1,...,n pi = 1 ∧

∧
i �=j,i,j=1,...,n pi , pj = 0

⇒
∨

i=1,...,n(piCpi)).

Modal undefinability

For obtaining examples of the modal undefinability results, the
following simple assertion is very useful.

Lemma 3.2.3 (modal undefinability criterion). Let Σ and
Σ′ be two classes of frames such that Σ ⊆ Σ′, Σ �= Σ′ and they
determine the same logics, L(Σ) = L(Σ′). Then the class Σ is not
modally definable.

To use this criterion, we need to show that different classes of
frames can determine the same logics. In the case of the classical
modal language, the notion of a p-morphism was used for such a
purpose. We introduce a similar notion adapted for the language
of RPMLS.

Let F = (W, R) and F ′ = (W ′, R′) be two frames. A surjec-
tive function f from W to W ′ is called a p-morphism from F to
F ′ if for any x, y ∈W and x′, y′ ∈W ′ the following conditions are
satisfied:
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(P1) if xRy, then f(x)R′f(y),

(P2) if x′R′y′, then (∃x, y ∈W )(x′ = f(x), y′ = f(y), xRy).

If v is a valuation in W and v′ is a valuation in W ′, then f is
a p-morphism from (W, R, v) to (W ′, R′, v′) provided that for any
Boolean variable p and x ∈W we have

x ∈ v(p) if and only if f(x) ∈ v′(p).

The following assertion can be proved in the same way as the
corresponding analog in modal logic.

Lemma 3.2.4 (p-morphism, [3]). Let f be a p-morphism
from a model M to a model M′. Then for any formula ϕ

M |= ϕ if and only if M′ |= ϕ.

Lemma 3.2.5 ([3]). The following assertions hold.

(1) The logic L(Σref,sym) of all reflexive symmetric frames coin-
cides with the logic L(Σe) of all equivalence relations.

(2) The class Σe is not modally definable.

Idea of the proof. (1) Let F = (W,R) be a reflexive sym-
metric frame, and let R0 = {{x, y} : xRy}. Define W ′ = {(x, α) :
x ∈ α and α ∈ R0}, (x, α)R′(y, β) if and only if α = β. Let
f(x, α) = x. It is obvious that R′ is an equivalence relation in
W ′ and f is a p-morphism from the frame (W ′, R′) to the frame
(W,R). Consequently, the logics L(Σe) and L(Σref,sym) coincide.

(2) By the criterion of modal undefinability (Lemma 3.2.3),
the class Σe is not modally definable. �

Similarly, it is possible to prove that the first-order condition
of transitivity alone is not modally definable.

Lemmas 3.2.1 and 3.2.5 show that RPMLS and the classical
modal language are essentially different from the point of view of
the modal definability.
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3.3. Axiomatizations and completeness theorems

Axiomatization

We first introduce the axiomatic system L
precont
min for the minimal

logic of all precontact algebras. It is a Hilbert-type axiomatic
system consisting of axioms and inference rules.

Axioms of L
precont
min

I. The complete set of axiom schemes of classical propositional
logic (or all formulas which are substitution instances of tau-
tologies of classical propositional logic),

II. The set of axiom schemes for Boolean algebra in terms of the
part-of � (a, b, and c are arbitrary Boolean terms):

a � a, (a � b) ∧ (b � c)⇒ (a � c), 0 � a, a � 1,

(c � a.b) ⇔ (c � a)∧ (c � b), (a+ b � c)⇔ (a � c)∧ (b � c),

(a.(b + c)) � (a.b) + (a.c),

(c.a � 0)⇔ (c � a∗), a∗∗ � a.

III. The set of axiom schemes for the precontact C:

(C1) (aCb) ⇒ (a �= 0) ∧ (b �= 0),

(C2) (aC(b+c)) ⇔ (aCb)∨(aCc), ((b+c)Ca) ⇔ (bCa)∨(cCa).

Inference rule of L
precont
min . Modus ponens: A and A ⇒ B

imply B.

The notion of a proof in L
precont
min is standard. All provable

formulas are called theorems of L
precont
min . It is easy to see that the

set of theorems of L
precont
min is closed under the substitution rule:

if α(p1 . . . , pn) is a theorem of L
precont
min and p1, . . . , pn is a

sequence of different Boolean variables, then for any Boolean
terms b1, . . . , bn, the formula α(b1, . . . , bn) is a theorem of
L

precont
min .
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We consider extensions of L
precont
min by new axioms, for ex-

ample, by some of the formulas from Lemma 3.2.1 considered as
modal schemes (the variables p and q are arbitrary modal terms).
The minimal logic of all contact algebras Lcont

min is an extension of
L

precont
min by the axiom schemes

(C3) aCb⇒ bCa,

(C4) a.b �= 0⇒ aCb.

Let L be an extension of L
precont
min by a set of arbitrary axiom

schemes Ax. Denote it by L
precont
min + Ax and call the axiomatic

extension of L
precont
min . Similar notions are introduced for extensions

of Lcont
min .
We also consider extensions L

precont
min + R of L

precont
min by an

additional inference rule R. In this paper, we are interested only
in some special rules, so a general definition of an inference rule
is omitted. On the other hand, we assume that any set of rules
determines proofs and theorems in the standard sense. We identify
L with the set of its theorems and call it also a logic. Hereinafter,
L is an arbitrary logic considered as an extension of L

precont
min .

Canonical models

Let L be an arbitrary extension of L
precont
min . A set Γ of formulas is

called an L-theory or a theory if it contains all theorems of L and
is closed under the rule

(MP) if A and A⇒ B are in Γ, then B in Γ.

For example, the set of all theorems of L is a theory; more-
over, it is the smallest theory. A theory Γ is said to be consistent
if ⊥ �∈ Γ and maximal if it is consistent and Γ ⊆ ∆ implies Γ = ∆
for any consistent theory ∆. Maximal theories are also referred to
as maximal consistent sets.

Some well-known properties of theories are listed in the fol-
lowing assertion.

Lemma 3.3.1. The following assertions hold.
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(1) Let Γ be a theory, and let α be a formula. Then the set
Γ + α = {β : α ⇒ β ∈ Γ} is the smallest theory containing Γ
and α. The set Γ + α is inconsistent if and only if ¬α ∈ Γ.

(2) The following conditions are equivalent for any theory Γ :
(a) Γ is maximal,
(b) for any formula α, ¬α ∈ Γ if and only if α �∈ Γ,
(c) for any formulas α and β, α∨β ∈ Γ if and only if α ∈ Γ

or β ∈ Γ.
(3) Any consistent theory can be extended to a maximal theory

(the Lindenbaum lemma).

The following assertion presents a semantical construction of
maximal theories in L

precont
min .

Lemma 3.3.2. Let M be a model. Then the set of formulas
Γ = {α : M |= α} is a maximal L

precont
min -theory. If M is a model

over contact algebra, then Γ is a maximal Lcont
min -theory.

A set of formulas A is consistent in L if A is contained in an
L-consistent theory and, consequently, A is contained in a maximal
L-theory in view of the Lindenbaum lemma.

Let S be a maximal theory in L. Based on the Lindenbaum-
algebra construction, we construct in a canonical way a precontact
algebra associated with S. In the set of Boolean terms B, we
introduce the equivalence relation: a ≡ b if and only if a = b ∈ S.
Since ≡ is a congruence relation depending on S, it is possible to
consider equivalence classes of Boolean terms |a| = {b : a ≡ b} and
to define the canonical precontact algebra BS over S by setting
|a|.|b| = |a.b|, |a|+ |b| = |a + b|, |a|∗ = |a∗|, |a| � |b| if and only if
a � b ∈ S, and |a|C|b| if and only if aCb ∈ S.

Using the axioms of logic, we can prove that BS is a precon-
tact algebra and, if L is an extension of Lcont

min , B(S) is a contact
algebra.

We define a canonical valuation for Boolean variables putting
vS(p) = |p|. Then the pair MS = (BS, vS) is called a canonical
model over S. We have vS(a) = |a| for any Boolean term a.
With S we can canonically associate the canonical frame FS =
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(WS, RS) of S by taking for FS the canonical adjacency space
of the canonical precontact algebra BS (cf. Section 2.8). If L

is an extension of Lcont
min , with S we can associate the canonical

topological space XS by taking for XS the canonical topological
space corresponding to the contact algebra BS (cf. Section 2.3).

The following assertion is proved in a standard way.

Lemma 3.3.3. Let L be a logic. Then the following two
conditions are satisfied by any formula α :

(1) α is a theorem of L,
(2) α is true in all canonical models MS of L.

Now, we can state a completeness theorem for the minimal
logics L

precont
min and Lcont

min .

Theorem 3.3.4 (completeness of L
precont
min , [3]). The following

conditions are equivalent for any formula α:

(1) α is a theorem of L
precont
min ,

(2) α is true in all precontact algebras,
(3) α is true in all Kripke frames.

Proof. The implications (1) → (2) → (3) are obvious.
(2) → (1) Let α be true in all precontact algebras. Then α

is true in all canonical models of L
precont
min and α is a theorem of

L
precont
min in view of Lemma 3.3.3.

(3) → (1) Suppose that α is not a theorem of L
precont
min . Then

there is a canonical model MS = (BS, vS) such that MS �|= α. By
the representation theorem for precontact algebras in adjacency
spaces (cf. Theorem 2.8.2), there exists a frame (X, R) and an
embedding h of the canonical precontact algebra BS in the pre-
contact algebra B(X) over the frame (X, R). Define the valuation
v(p) = vS(h(|p|)). Then (X, R, v) �|= α, which means that α is not
true in the Kripke frame (X, R). The proof is complete. �

Theorem 3.3.5 (completeness of Lcont
min , [3]). The following

conditions are equivalent for any formula α :

(1) α is a theorem of Lcont
min ,
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(2) α is true in all contact algebras,
(3) α is true in all reflexive symmetric Kripke frames,
(4) α is true in all topological spaces,
(5) α is true in all compact and semiregular T0-spaces.

Proof. The implications (1)→ (2)→ (3) and (2)→ (4)→ (5)
are obvious. The implications (2) → (1) and (3) → (1) are proved
in the same way as in Theorem 3.3.4 with the help of Theorem
2.8.2. The implication (5) → (1) is proved in the same way as the
implication (3) → (1) in Theorem 3.3.4 with the help of Theorem
2.3.9. �

Theorem 3.3.6 (completeness of Lcont
min + (Con), [3]). The

following conditions are equivalent for any formula α :

(1) α is a theorem of Lcont
min + (Con),

(2) α is true in all connected contact algebras,
(3) α is true in all connected topological spaces.

Note that Theorem 3.3.6 does not assert the completeness
with respect to Kripke semantics. This fact will be proved by
another method in the following section.

Theorems 3.3.5 and 3.3.6 present weak completeness state-
ments. The strong statements are also valid (cf. [3]). For the logic
Lcont

min if can be formulated as follows.

Theorem 3.3.7 (strong completeness of Lcont
min ). The follow-

ing conditions are equivalent for any set A of formulas:

(1) A is consistent in Lcont
min ,

(2) A has an algebraic model,
(3) A has a Kripke model,
(4) A has a topological model.

Theorem 3.3.5 asserts that the logic Lcont
min is complete with

respect to both topological and discrete semantics (semantics with
respect to Kripke frames).
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3.4. Filtration with respect to Kripke semantics
and small canonical models

Filtration

Let Φ be a finite set of formulas closed under subformulas. Denote
by ΓΦ the smallest set of Boolean terms satisfying the following
conditions:

• if aCb ∈ Φ, then a, b ∈ ΓΦ,
• if a � b ∈ Φ, then a, b ∈ ΓΦ,
• ΓΦ is closed under subterms of its members,
• ΓΦ contains 0, 1 and is closed under Boolean combinations of

its members.

Note that ΓΦ is infinite, but it is logically finite in the sense
that there is a finite subset Γ0

Φ of ΓΦ such that any term in ΓΦ

is Boolean equivalent to an element of Γ0
Φ. If n is the number

of Boolean variables occurring in the formulas from Φ, then the
cardinality of Γ0

Φ is equal to 22n

. Denote by Φ′ the set of all
formulas containing only Boolean terms in ΓΦ. It is obvious that
Φ ⊆ Φ′ and Φ′ is infinite, but logically finite.

Let M = (W,R, v) be a model. We define the equivalence
relation ≡ in W (depending on M and Φ) in the same way as in
the definition of a filtration in modal logic:

• x ≡ y if and only if (∀a ∈ ΓΦ)(x ∈ v(a)↔ y ∈ v(a)),
• for x ∈ W define |x| = {y ∈ W : x ≡ y} and set W ′ = {|x| :

x ∈W},
• for |x|, |y| ∈W ′ define: |x|R′|y| if and only if (∃x′ ≡ x)(∃y′ ≡

y)(x′Ry′),
• for any Boolean variable p ∈ ΓΦ define v′(p) = {|x| : x ∈

v(p)}.
The modelM′ = (W ′, R′, v′) is called a filtration of the model

M through Φ. Similarly, the frame (W ′, R′) is called a filtration
of the frame (W, R). The valuation v′ is called the canonical val-
uation of the filtration.
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Note that the above defined filtration coincides with the so-
called minimal filtration in the classical modal language.

Lemma 3.4.1 (filtration, [3]).

(1) The set W ′ is finite and the cardinality of W ′ is less than or
equal to n, where n is the cardinality of Γ0

Φ.
(2) For any x, y ∈W , xRy implies |x|R′|y|.
(3) For any Boolean term a ∈ ΓΦ and x ∈ W , x ∈ v(a) if and

only if |x| ∈ v′(a).
(4) For every formula ψ ∈ Φ′, M |= ψ if and only if M′ |= ψ.

Now, we describe a construction which is also used in fil-
tration theory in modal logic. Let (W ′, R′, v′) be a filtration of
(W,R, v) through Φ, and let w be the new valuation in the fil-
trated frame (W ′, R′). Then for each Boolean variable p in ΓΦ we
define a Boolean term bw(p) obtained as a Boolean combination of
terms in ΓΦ as follows. For every y ∈ W we set b|y| =

∧
{b : b ∈

Γ0
Φ and |y| ∈ v′(b)}. Then define bw(p) =

∨
{b|y| : |y| ∈ w(p)}.

Using bw(p), we define a new valuation w′ in (W, R) for vari-
ables from ΓΦ as follows: w′(p) = {x ∈W : x ∈ v(bw(p))}.

The valuation w defines also the substitution Sub w for vari-
ables from ΓΦ as follows: Sub w(p) = bw(p) and then extended
inductively for Boolean terms from ΓΦ and formulas from Φ.

Then the following stronger version of the filtration lemma
holds. There are no analog of this lemma in the classical modal
logic.

Lemma 3.4.2 (strong filtration, [3]). Let w be a valuation in
F ′ = (W ′, R′), and let w′ be the corresponding valuation in (W, R)
defined by bw(p). Then for a term a ∈ ΓΦ and a formula ψ ∈ Φ′

the following assertions hold for any x ∈W :

(1) x ∈ v(Sub w(a)) if and only if x ∈ w′(a) if and only if |x| ∈
w(a),

(2) F, v |= Sub w(ψ) if and only if F,w′ |= ψ if and only if
F ′, w |= ψ.
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If w coincides with the canonical valuation v′, then w′ acts as v,
i.e., for all a ∈ ΓΦ and ψ ∈ Φ′

(3) x ∈ w′(a) if and only if x ∈ v(a),
(4) F,w′ |= Sub v′(ψ) if and only if F, v |= ψ.

Let Σ be a class of frames. We say that Σ (or the logic
L(Σ)) admits a filtration if for any formula ϕ there is a finite set
of formulas Φ, closed under subformulas and containing ϕ, such
that the filtrated frame F ′ through Φ of any frame F in Σ belongs
to Σ.

Remark 3.4.3. Suppose that Σ admits a filtration and Σfin

is the class of all finite frames in Σ. Then the logics L(Σ) and
L(Σfin) coincide. Thus, L(Σ) possesses the finite model property.

We say that a class of frames Σ is determined if there exists a
set of formulas A such that Σ coincides with the class of all frames
in which the formulas from A are true. In this case, Σ will denoted
by ΣA.

Theorem 3.4.4 ([3]). Every determined class of frames ad-
mits a filtration.

Proof. Let ΣA be a class of frames determined by a set of
formulas A. Suppose that F = (W, R) ∈ ΣA, ϕ is a formula, Φ is
the set of all subformulas of ϕ, and F ′ = (W ′, R′, v′) is a filtration
of the model (F, v) through Φ. We show that F ′ belongs to ΣA,
i.e., all formulas in A are true in F ′. Assume the opposite, i.e.
there exist a formula ψ ∈ A and a valuation w in F ′ such that
F ′, w �|= ψ. Let w′ be the valuation determined by w in (W, R).
By Lemma 3.4.2, F, w′ �|= ψ. Consequently ψ is not true in F and,
consequently, ψ is not true in ΣA. We arrive at a contradiction. �

Small canonical models

Let L be a consistent extension of L
precont
min , and let S be a maximal

theory in L. Consider the canonical frame FS and the canonical
model MS = (FS, vS) for S. Let M

′
S = (F

′
S, v′

S) be any filtration
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of M . Then M
′
S is called a small canonical model of L and F

′
S is

called a small canonical frame of L.

Lemma 3.4.5 (small canonical frame, [3]). Let L be a consis-
tent extension of L

precont
min , let A = Th(L) be the set of all theorems

of L, and let ΣL = ΣA be the set of frames determined by A. Then
ΣL contains all small canonical frames of L.

Proof. Let M
′
S = (W

′
S, R

′
S, v

′
S) be a small canonical model

related to the maximal consistent theory S. It suffices to prove
that all formulas in A are true in the small canonical frame F

′
S =

(W
′
S, R

′
S). Assume the opposite, i.e., for some ψ ∈ A and val-

uation w in (W
′
S, R

′
S) we have (W

′
S, R

′
S, w) �|= ψ. By Lemma

3.4.2, (WS, RS, vS) �|= Sub w(ψ). Hence Sub w(ψ) �∈ S. How-
ever, Sub w(ψ) is a substitution instance of a theorem ψ of L.
Therefore, it belongs to the maximal theory S. We arrive at a
contradiction. �

Weak completeness theorems
for extensions of L

precont
min

Theorem 3.4.6 (weak completeness and the finite model
property of all consistent extensions of L

precont
min , [3]). Let L be a

consistent extension of Lmin, and let ΣL be the class of frames de-
termined by the set Th(L) of all theorems of L. Then the following
conditions are equivalent for any formula ϕ :

(1) ϕ is a theorem of L,
(2) ϕ is true in ΣL,
(3) ϕ is true in Σfin

L
.

The proof is based on Lemmas 3.4.1 and 3.4.5.
Although Theorem 3.4.6 is not too informative concerning

the frames of L, but it asserts that there are no incomplete log-
ics for the relational semantics under consideration and that all
consistent logics are characterized by their finite frames. These
facts have no analogs in the classical modal logic. The following
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assertion gives more information about axiomatic extensions of
L

precont
min .

Theorem 3.4.7 (weak completeness and the finite model
property of all axiomatic extensions of Lmin, [3]). Suppose that
A is a set of formulas, ΣA is the class of all frames determined
by A, and Σfin

A is the class of all finite frames in ΣA. Let L be
an extension of Lmin with formulas from A for additional axiom
schemes. Then for any formula ϕ the following conditions are
equivalent:

(1) ϕ is a theorem of L,
(2) ϕ is true in Σfin

A ,
(3) ϕ is true ΣA.

Hence L possesses the finite model property and is decidable if A
is finite.

Corollary 3.4.8 ([3]). The logics Lcont
min and Lcont

min +(Con) are
complete in the class of their finite frames and. consequently, are
decidable.

3.5. Logics related to RCC

According to Stell’s formulation, the RCC system is equivalent to
the contact algebras satisfying axioms (Ext) and (Con). In a sense,
all extensions of the notion of contact algebras with axioms (Ext),
(Con), and (Nor) are related to RCC as follows: RCC+(Nor) is
an extension with good properties, whereas any other extension is
a subsystem of RCC+(Nor). Considering all these eight types of
contact algebras as first-order region-based theories of space, we
introduce the following abbreviations:

WRCC – weak RCC based on axioms (C1)–(C4),

WRCCCon – weak connected RCC=WRCC+(Con),

WRCCExt – weak extensional RCC=WRCC+(Ext),

WRCCNor – weak normal RCC=WRCC+(Nor),
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WRCCCon,Nor – weak connected normal
RCC=WRCC+(Con)+(Nor),

WRCCExt,Nor – weak extensional normal
RCC=WRCC+(Ext)+(Nor),

RCC – WRCC+(Ext)+(Con),

RCCNor – normal RCC=RCC+(Nor).

The goal of this section is to introduce propositional logics
based on the language L(�,C) corresponding to each of these first-
order systems. For propositional systems we put the letter “P”
before the abbreviation of the corresponding first-order system.
Two propositional systems were already introduced: PWRCC –
Lcont

min and PWRCCCon – Lcont
min + (Con). It is obvious that these

systems are propositional (quantifier-free) analogs of WRCC and
WRCCCon because all the axioms of the first-order systems WRCC
and WRCCCon are universal formulas of the same form as quantifier-
free axioms in PWRCC and PWRCCCon. However, there are no
analogs of axioms (Ext) and (Nor) in our language because they
are not universal sentences. We imitate them by some inference
rules analogous to the quantifier rules in the first-order logic. The
rules have the same impact on the canonical contact algebras as
the corresponding first-order axioms and will be used in the proof
of the strong completeness theorem of the required logic with
respect to the topological semantics which are suggested by the
topological representation theorems for the corresponding contact
algebras.

For an analog of axiom (Nor) we introduce the following rule
of normality :

NOR
α ⇒ (aCp ∨ p∗Cb)

α ⇒ aCb
, where p is a Boolean variable that

does not occur in a, b, and α.

For an analog of the first-order axiom (Ext) we introduce the
rule of extensionality
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EXT
α ⇒ (p = 0 ∨ aCp)

α ⇒ (a = 1)
, where p is a Boolean variable that

does not occur in a and α.

These rules are similar to the irreflexivity rule introduced by
Gabbay [27] in the context of the classical modal logic. In the
language under consideration, these rules were introduced in [3].

Taking into account the correspondences between the first-
order RCC-like systems and the propositional systems, we present
the diagram of extensions of Lcont

min , where the logics are identified
with the sets of additional axioms and rules.

Figure 2

Consider the logics in this diagram. All logics satisfy the as-
sumptions of Theorem 3.4.6 and, consequently, they are complete
in certain classes of finite frames and possess the finite model prop-
erty. Moreover, they are decidable because each of them has a
finite set of axioms. The logics are strongly complete with respect
to their intended topological semantics (cf. the following section).
Concerning the weak completeness theorem, we see that the ad-
ditional rules can be eliminated and thereby these rules do not
affect the sets of the theorems. Thus, these eight logics collapse
to the following two logics: PWRCC and PWRCCCon. Below we
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give some information about these two logics and their relation-
ships with other systems in the literature. Then we discuss the
admissibility of the introduced rules to PWRCC and PWRCCcon.

PWRCC

As was already mentioned, PWRCC, propositional weak RCC,
is Lcont

min . By Theorems 3.3.5 and 3.3.7, PWRCC is weakly and
strongly complete in the class of all topological spaces (and in the
smaller class of all semiregular and compact T0-spaces) and in the
class of all reflexive symmetric Kripke frames considered as adja-
cency spaces. Thus, PWRCC, is complete with respect to both
topological and discrete semantics. By Corollary 3.4.8, PWRCC
has the finite model property and, consequently, is decidable. As
was noted in Section 2.1, all the RCC-8 relations are definable in
our language by means of quantifier-free definitions. Therefore,
we can use the same definitions in the language of propositional
logics. This fact, together with the topological part of the com-
pleteness theorem, shows that the system PWRCC is equivalent
to the system BRCC-8 (RCC-8 with Boolean terms), introduced
by Wolter and Zakharyaschev [65], which can be interpreted in all
topological spaces. Thus, PWRCC can be considered as an axiom-
atization of BRCC-8 with several completeness theorems. Wolter
and Zakharyaschev [65] proved that the satisfiability problem for
BRCC-8 is NP-complete. Respectively, the same assertion holds
for PWRCC.

PWRCCCon

PWRCCCon, propositional weak connected RCC, is an extension
of PWRCC by the connectedness axiom

(Con) a �= 0 ∧ a �= 1⇒ aCa∗

which defines the second-order connectedness property in frames.
By Theorem 3.3.6, PWRCCCon is weakly and strongly complete
in the class of all connected spaces and in the smaller class of
all connected semiregular compact T0-spaces. By Corollary 3.4.8,
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PWRCCCon is weakly complete in the class of all finite connected
reflexive symmetric frames and, consequently, has the finite model
property and is decidable. Thus, PWRCCCon is weakly complete
with respect to both topological and discrete semantics.

As in the case of PWRCC, we can conclude that PWRCCCon

is equivalent to the logic BRCC-8 introduced by Wolter and Za-
kharyaschev [65] who studied this logic in the class of all connected
topological spaces. They proved that the satisfiability problem is
PSPACE-complete. Their result implies a similar assertion for
PWRCCCon.

The completeness of PWRCCCon with respect to the class
of connected reflexive symmetric adjacency spaces shows that the
logic is equivalent to the logic GRCC (generalized region connec-
tion calculus) introduced semantically by Li and Ying [39] as a
discrete version of RCC. Thus, PWRCCCon can be also under-
stood as a complete axiomatization of GRCC.

BRCC-8-like systems were studied only with respect to their
intended topological semantics. Since the modal logic S4 corre-
sponds to the topological interpretation of the classical modal
language, systems like BRCC-8 were also treated by means of a
translation into the modal logic S4 + universal modality. Taking
into account that PWRCC is complete in the class of all reflexive
symmetric frames, we can conclude that the exact translation of
these systems is in KTB + universal modality, which shows that
the weaker modal logic KTB also has a spatial meaning. This
translation is not used in this paper because for our purpose it is
easier to exploit directly the relational semantics of the language
of RPMLS.

Admissibility of EXT and NOR

Lemma 3.5.1 (admissibility of EXT in the logics PWRCC
and PWRCCCon, [3]). The set of theorems of the logics PWRCC
and PWRCCCon are closed with respect to the rule EXT and, con-
sequently, EXT is an admissible rule in PWRCC and PWRCCCon.
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Proof. We use the completeness of the logics PWRCC and
PWRCCCon with respect to the Kripke semantics and the p-morphism
techniques in Section 3.2.

Denote by L the logic PWRCC. We use the completeness of
L in the class Σref,sym of all reflexive symmetric frames. We prove
that if L � ϕ⇒ (p = 0∨aCp), where p does not occur in a and in
ϕ, then L � ϕ⇒ (a = 1). Assume the contrary: L � ϕ ⇒ (a = 1).
By the completeness theorem, we can choose a reflexive symmetric
frame F = (W,R) and a valuation V over F such that M � ϕ and
M � a = 1, where M = (F , V ). Thus, W \ V (a) �= ∅. Consider
two cases.

Case (a). W \ 〈R〉(V (a)) �= ∅.

Case (b). W \ 〈R〉(V (a)) = ∅.

Here, 〈R〉(V (a)) = {x ∈W : (∃y ∈ V (a))(xRy)}.
In case (a), we choose a Boolean variable p that does not

occur in a and ϕ and a valuation V ′ coinciding with V for Boolean
variables different from p: V ′(p) = W \ 〈R〉(V (a)). It is clear that
M′ � ϕ and M′ � ¬(p = 0 ∨ aCp), where M′ = (F , V ′). Hence
L � ϕ ⇒ (p = 0 ∨ aCp).

In case (b), we choose w1 ∈ 〈R〉(V (a)) and w0 �∈ W . We set
W1 = W ∪{w0}, R1 = R∪{(w0, w0), (w0, w1), (w1, w0)}, f(w) = w
if w �= w0, f(w0) = w1, and V1(q) = f−1(V (q)). It is easy to verify
that M is the p-morphic image of M1 = ((W1, R1), V1) under f ,
(W1, R1) is a reflexive symmetric frame (consequently, it verifies
the theorems of L). Thus, we can apply case (a) to M1, which
completes the proof for PWRCC.

For PWRCCCon we proceed in the same way. The only
difference is that we start with a connected reflexive symmetric
frame (W, R). It is easy to see that the above construction of the
p-morphic pre-image (W ′, R′) preserves the connectedness prop-
erty. �

Lemma 3.5.2 (admissibility of NOR in the logics PWRCC
and PWRCCCon, [3]). The set of theorems in the logics PWRCC
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and PWRCCCon are closed under the rule NOR and, consequently,
NOR is an admissible rule in PWRCC and PWRCCCon.

The proof is similar to that of Lemma 3.5.1.

Corollary 3.5.3 ([3]). The following assertions hold.

(1) PWRCC, PWRCCEXT, PWRCCNOR, and PWRCCEXT,NOR

have the same set of theorems.

(2) PWRCCCon, PRCC, PWRCCCON,NOR, and PRCCNOR have
the same set of theorems.

(3) All the eight logics are weakly complete in the corresponding
class of frames determined by their axioms, have the finite
model property, and, consequently, are decidable. The satis-
fiability problem for the logics in (1) is NP-complete and for
the logics in (2) is PSPACE-complete.

3.6. Strong completeness theorems
for RCC-like logics

The purpose of this section is to illustrate how to work with ad-
ditional rules of type NOR and EXT and how to modify the
canonical-model construction in the presence of such rules. For
an example we consider the logic PWRCCNOR which is an exten-
sion of the logic PWRCC with the rule NOR. The material of this
section mainly follows [3]. Some important results are supplied
with sketches of proofs.

PWRCCNOR

We establish the strong completeness of topological semantics of
PWRCCNOR. The proof is a modification of the Henkin construc-
tion for the first-order logic.

For the canonical construction we must modify the notion
of a theory in order to reflect the role of the rule NOR in the
deduction. In this rule, the Boolean variable p plays a special
role like bounded variables in quantifier logics, and this will be
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incorporated in the new notion of a theory. First of all, we need
some preparations.

If A is a formula or a set of formulas, then Var (A) denotes
the set of Boolean variables occurring in the members of A. By
Th (Var) we denote the set of all theorems of PWRCCNOR con-
structed form the set of all Boolean variables Var of our language.
Sometimes, we need to extend the set of Boolean variables to a
set Var′. In this case, Th (Var′) will denote the set of theorems
constructed from Var′. Note that Th (Var) and Th (Var′) are not
too different because theorems in Th (Var′) are versions of theo-
rems in Th (Var). However, it is more convenient to consider them
separately.

A pair T = (V, Γ) is called a NOR-theory if V is a set of
Boolean variables and Γ is a set of formulas satisfying the following
conditions:

(1) all theorems of PWRCCNOR belong to Γ,

(2) if α, α ⇒ β ∈ Γ, then β ∈ Γ,

(3) if α ⇒ aCp ∨ p∗Cb ∈ Γ for some Boolean variable p �∈ V ∪
Var (α ⇒ aCb), then α ⇒ aCb ∈ Γ.

The variables in V are called the free variables of T and the
members of Γ are called formulas of T . We will also write T =
(T1, T2), where T1 is the set of free variables of T and T2 is the set
of formulas of T . We say that a formula α belongs to T and write
α ∈ T if α ∈ T2. By (1) and (2), T2 is a theory. We say that T is
consistent if ⊥�∈ T2 or, equivalently, if T2 is a consistent theory.

A set A of formulas is said to be NOR-consistent if there is
a consistent NOR-theory T such that A ⊆ T2.

A theory T is called a good NOR-theory if out of T1 there are
infinitely many Boolean variables.

For example, (∅,Th (Var)) is a good NOR-theory. If Γ is a
consistent theory, then the pair T = (Var, Γ) is a consistent NOR-
theory because T is trivially closed under the rule NOR (out of
Var there are no variables). But T is not a good theory.
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We say that T is included in T ′ and write T ⊆ T ′ if Ti ⊆ T ′
i ,

i = 1, 2. A theory T is a complete NOR-theory if it is a consistent
NOR-theory and for any formula α we have either α ∈ T2 or
¬α ∈ T2. A theory T is called a rich NOR-theory if for any
formula β of the form α ⇒ aCb

if β �∈ T2, then α ⇒ aCp ∨ p∗Cb �∈ T2 for some Boolean
variable p.

Our next goal is to show that every consistent good NOR-
theory can be extended to a complete rich NOR-theory. For this
purpose, we formulate and prove several lemmas.

Let Γ be a set of formulas, and let α be a formula. Denote
Γ + α = {β : α ⇒ β ∈ Γ}. Let T be an NOR-theory, and let α be
a formula. Denote T ⊕ α = (T1 ∪Var (α), T2 + α).

The following preliminary assertion is used in the proof of
the Lindenbaum lemma (Lemma 3.6.2 below).

Lemma 3.6.1. Let T be a good NOR-theory, and let α be a
formula. Then

(1) T ⊕ α is a good NOR-theory containing T , and α ∈ T2,
(2) T ⊕ α is inconsistent if and only if ¬α ∈ T2,
(3) if for some β of the form ¬(α ⇒ aCb) the theory T ⊕ β is

consistent, then there is a Boolean variable p �∈ T1 ∪ Var (β)
such that (T ⊕ β)⊕ ¬(α ⇒ aCp ∨ p∗Cb) is consistent.

Lemma 3.6.2 (Lindenbaum lemma for NOR-theories). Every
good consistent NOR-theory T = (V, Γ) can be extended to a com-
plete rich NOR-theory T ′ = (V ′, Γ′).

Proof. Let T = (V, Γ) be a consistent good NOR-theory, and
let α1, α2 . . . be an enumeration of all formulas. Introduce an in-
creasing sequence of consistent good NOR-theories Tn = (Vn, Γn),
n = 1, 2, . . ., by induction. Let T1 = T . Assume that T1, . . . , Tn

are already defined. To define Tn+1, we consider several cases.

Case 1. Tn = (Vn, Γn) is consistent.
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(a) αn is not of the form ¬(α ⇒ aCb)). In this case, we put
Tn+1 = Tn ⊕ αn. By Lemma 3.6.1, it is a good NOR-theory.

(b) αn is of the form ¬(α ⇒ aCb)). By Lemma 3.6.1(3), there
exists a Boolean variable p �∈ Vn ∪ Var (αn) such that (Tn ⊕
αn)⊕ ¬(α ⇒ aCp ∨ p∗Cb) is a consistent good NOR-theory.
Let p be the first NOR-theory possessing this property. In
this case, we put Tn+1 = (Tn + αn)⊕ ¬(A⇒ aCp ∨ p∗Cb).

Case 2. Tn + αn is not consistent. Then we put Tn+1 = Tn.
In this case, ¬αn ∈ Γn. Define Γ′ =

⋃∞
n=1 Γn and V ′ =

⋃∞
n=1 Vn.

Then T ′ = (V ′, Γ′) is the required NOR-theory. �

Note that Lindenbaum lemma can be applied only to good
NOR-theories, whereas the “goodness”’ property is not essential
for consistency because it depends on the amount of Boolean vari-
ables in our language. However, this fact is not too important,
because the language can be extended. The following assertion
clarifies this case.

Lemma 3.6.3 (conservativeness). Let T = (V,Γ) be a con-
sistent NOR-theory in the language based on the set Var of Boolean
variables, and let Var′ be an extension of Var by a denumerable
set of Boolean variables. Then there exists a consistent good NOR-
theory U = (W, ∆) in the language with Var′ such that Γ ⊆ ∆.

Idea of the proof. Let ∆ = {γ : (∃β ∈ Γ)(β ⇒ δ ∈
Th (Var′))}, and let U = (V, ∆). Then U is a consistent good
theory in the language with Var′ such that Γ ⊆ ∆. �

Corollary 3.6.4. The following assertions hold.

(1) A set of formulas is NOR-consistent if it is contained in a
good consistent NOR-theory in an extension of the language
by a countable infinite set of new Boolean variables.

(2) A set of formulas is NOR-consistent if it is contained in a
complete rich NOR-theory in an extension of the language by
a countable infinite set of new Boolean variables.
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The canonical construction uses complete rich theories T =
(V, S). For canonical models we use the second component S. All
other constructions are the same as in Section 3.3.

The following assertion shows the influence of the rule NOR
on the canonical contact algebras: all of them are normal.

Lemma 3.6.5. Let T = (V, S) be a complete rich NOR-
theory, and let (BS, vS) be the canonical model corresponding to
S. Then BS satisfies axiom (Nor).

Proof. Let T = (V, S) be a complete rich theory, and let
(BS, vS) be the corresponding canonical model. Suppose that
|a|C|b|. aCb �∈ S. Since S is rich, there exists a Boolean vari-
able p such that aCp ∨ p∗Cb �∈ S and, consequently, aCp �∈ S and
p∗Cb �∈ S. Then |a|C|p| and |p|∗C|b|, which proves that BS is a
normal contact algebra. �

We are ready to prove the main result of this section.

Theorem 3.6.6 (strong completeness of PWRCCNOR, [3]).
Let A be a set of formulas. Then the following conditions are
equivalent:

(1) A is NOR-consistent,
(2) A has an algebraic model in the class of normal contact al-

gebras,
(3) A has a model in the class of all κ-normal semiregular spaces,
(4) A has a model in the class of compact semiregular T0 κ-

normal spaces.

Proof. The implications (4) → (3) → (2) are obvious. To
prove the implication (2)→ (1), we assume that A has an algebraic
model M = (B, v) in the class of normal contact algebras. Let
Γ = {α :M |= α}. It is easy to show that Γ is a consistent theory
containing A. Thus, T = (V AR, Γ) is a consistent (but not good)
NOR-theory containing A. Hence A is NOR-consistent.

(1) → (2) Assume that A is NOR-consistent. By Corollary
3.6.4, A is contained in some complete rich NOR-theory T = (V, S)
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in a possible extension of the language by a countable set of new
Boolean variables. By Lemma 3.6.5, the canonical contact algebra
BS is normal. Hence the canonical model (BS, vS) is a model of A.

(2) → (4) This implication holds in view of the topological
representation theorem (Theorem 2.3.9). �

Corollary 3.6.7 (weak completeness of PWRCCNOR and
PWRCC). Let L be any of the logics PWRCCNOR and PWRCC.
Then the following conditions are equivalent for any formula α :

(1) α is a theorem of L,
(2) α is true in all normal contact algebras,
(3) α is true in all semiregular κ-normal spaces,
(4) α is true in all compact semiregular κ-normal T0-spaces.

Proof. The required assertion is valid for PWRCCNOR by
Theorem 3.6.6 and for PWRCC by the fact that NOR is an ad-
missible rule in PWRCC. �

Strong completeness theorem
for PRCC-like logics

The proof of the completeness of PRCCNOR can be repeated for
any logic in Fig. 2. The canonical construction depends on the
choice of a rule, NOR or EXT. For example, if both rules are
assumed, then the theories are closed under these rules. If these
rules are not assumed either, the notion of a theory becomes stan-
dard. We formulate a completeness theorem in a uniform way for
all the logics in Fig. 2. For the sake of simplicity, we consider only
the algebraic semantics. Using representation theorems for con-
tact algebras, the completeness theorem can be further generalized
to some topological spaces.

Theorem 3.6.8 (strong completeness of PWRCC-like log-
ics). Let L be any of the logics in Fig. 2, and let A be a set of
formulas. Then the following conditions are equivalent:

(1) A is consistent in L,
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(2) A has an algebraic model in the class of contact algebras cor-
responding to L.

We formulate the strongest topological completeness theorem
only for PWRCCNOR,EXT and PRCCNOR.

Theorem 3.6.9 (strong topological completeness of the log-
ics PWRCCNOR,EXT and PRCCNOR).

I. The following conditions are equivalent for any set of formu-
las A :
(1) A is consistent in PWRCCNOR,EXT,
(2) A has a model in the class of all compact Hausdorff

spaces,
II. If, in addition, axiom (Con) is satisfied, then the correspond-

ing spaces are connected.

Corollary 3.6.10 (weak topological completeness theorem
for PWRCC and PWRCCNOR,EXT). Let L be any of the systems
PWRCC or PWRCCNOR,EXT. Then the following conditions are
equivalent for any formula α :

(1) α is a theorem of L,
(2) α is true in all compact Hausdorff spaces.

Note that Corollary 3.6.10 yields a stronger completeness re-
sult for PWRCC than Corollary 3.6.7. The following assertion
states a similar result for PWRCCCon.

Corollary 3.6.11 (weak topological completeness theorem
for PWRCC and PWRCCNOR,EXT). Let L be any of the systems
PWRCC or PWRCCNOR,EXT. Then the following conditions are
equivalent for any formula α :

(1) α is a theorem of L,
(2) α is true in all compact connected Hausdorff spaces.
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3.7. Extending the language with new primitives

We consider some extensions of the language L(�, C) by new prim-
itives: boundedness and connectedness of regions.

The Boundedness is a primitive one-place predicate in bounded
contact algebras. Some of the boundedness axioms are not uni-
versal sentences, but, fortunately, they can be replaced with addi-
tional inference rules for the corresponding axiomatic system.

The connectedness is a definable one-place predicate in con-
tact algebras with quantifiers. Thus, such a predicate must be
taken for the connectedness predicate in a quantifier-free language;
moreover, both sides of the equivalence in the definition must be
imitated by suitable inference rules.

These examples show that some additional rules are very use-
ful in the axiomatic characterizations of the predicates under con-
sideration. Further we discuss the complete axiomatization of the
predicates of connectedness and boundedness.

Connectedness

The predicate of connectedness Con(a) was introduced in Section
2.1 as follows:

(#) Con(a) if and only if (∀b, c)(b �= 0 and c �= 0 and
b + c = a→ bCc).

We extend the language L(�, C) by the predicate Con. We
can also extend the notion of an atomic formula by setting that
Con(a) is an atomic formula for any Boolean term a. The de-
sired topological semantics for Con(a) is as follows. If (X, v) is a
topological model, then

(X, v) |= Con(a) if and only if v(a) is a connected regular
closed set of RC(X).

We can also define the relational semantics in Kripke struc-
tures. We give a complete axiomatization of Con with respect to
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the topological semantics. The implication “⇒” in (#) suggests
the following axiom:

(Connect) Con(a) ∧ p �= 0 ∧ q �= 0 ∧ a = p + q ⇒ pCq.

The implication “⇐” in (#) suggests the following inference
rule:

CONNECT
α ∧ p �= 0 ∧ q �= 0 ∧ p + q = a ⇒ pCq

α ⇒ Con(a)
,

where p and q are Boolean variables not occurring in a and α.
The axiomatic system PWRCC-Connect, for Con(a) is an

extension of the axiomatic system for PWRCC extended by axiom
(Connect) and the inference rule CONNECT.

The following formula is an example of a nontrivial theorem
of PWRCC-Connect:

Con(a) ∧ Con(b) ∧ aCb⇒ Con(a + b).

The canonical-model-construction for PWRCC-Connect can
be done in the same way as for PWRCCNOR. The following lemma
shows how axiom (Connect) and the inference rule CONNECT
affect the canonical contact algebra.

Lemma 3.7.1. Let (BS, vS) be a canonical model of PWRCC-
Connect. Then for any |a| ∈ BS

Con(|a|) if and only if (∀|p|, |q| ∈ BS)(|p| �= |0| and |q| �= |0|
and |a| = |p|+ |q| → |p|C|q|).

Lemma 3.7.1 and the topological representation theorems for
contact algebras lead to the following completeness result.

Theorem 3.7.2 (topological strong completeness of PWR-
CC-Connect). The following conditions are equivalent for any set
of formulas A of PWRCC-Connect:

(1) A is a consistent set in PWRCC-Connect,
(2) A has an algebraic model in the class of all contact algebras

with the definable predicate Con(a),
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(3) A has a model in the class of all topological spaces,
(4) A has a model in the class of all semiregular compact T0-

spaces.

A similar completeness result can be established for the ex-
tensions of PWRCC-Connect by axiom (Con) and the rules EXT
and NOR. However, the question about the completeness with
respect to Kripke models and decidability is still open. It is of
interest to clarify relationships between the contact C and con-
nectedness in special classes of contact algebras. Pratt-Hartmann
[43] shows that in some natural contact algebras C is definable by
Con in some special sense. A natural candidate for C in terms of
Con can be contact algebras satisfying the condition

(C-connect) if aCb, then (∃a′, b′)(a′ � a and b′ � b and Con(a′)
and Con(b′) and a′Cb′).

This condition asserts that a contact between two regions is real-
ized between their connected parts. If (C-connect) is satisfied, we
obtain the following equivalence defining C in terms of Con:

aCb if and only if (∃a′ �= 0, b′ �= 0)(a′ � a and b′ � b and
Con(a′) and Con(b′) and Con(a + b)).

Boundedness

To define the quantifier-free logic of boundedness, we extend the
language L(�, C) by a one-place predicate B with the obvious
extension of the notion of a formula. The algebraic semantics in
local contact algebras (with the boundedness predicate B) was
introduced in Section 2.6. We recall the boundedness axioms:

(B1) 0 ∈ B,

(B2) if b ∈ B and a � b, then a ∈ B,

(B3) if a, b ∈ B, then a + b ∈ B,

(B4) if aCb, then ∃c ∈ B such that c � b and aCc,
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(B5) if a ∈ B, then ∃b ∈ B such that a # b, (a# b ⇔ aCb∗).

Axioms (B1)–(B3) are universal sentences and have direct
translation in the language L(�, C, B) by the following formulas
(denoted by the same symbols):

(B1) B(0),

(B2) B(b) ∧ a � b ⇒ B(a),

(B3) B(a) ∧B(b)⇒ B(a + b).

Axioms (B4) and (B5) are not universal sentences and should
be replaced with the following inference rules:

BOUND-1
α ⇒ (B(p) ∧ p � b ⇒ aCp)

α ⇒ aCb
,

where p is a Boolean variable not occurring in a, b, α,

BOUND-2
α ⇒ a # p

α ⇒ ¬B(a)
,

where p is a Boolean variable not occurring in a and α.

Denote by PWRCC-Bound the extension of PWRCC in the
language L(�, C,B) by axioms (B1)–(B3) and the inference rules
BOUND-1 and BOUND-2. Then we can introduce canonical mod-
els for PWRCC-Bound.

Lemma 3.7.3. Assume that (BS, vS) is a canonical model
with B(|a|) if and only if B(a) ∈ S. Then BS is a local contact
algebra.

Lemma 3.7.3 and the corresponding topological representa-
tion theorems for local contact algebras lead to the following com-
pleteness result.

Theorem 3.7.4 (strong topological completeness of PWR-
CC-Bound). The following assertions hold.

(1) A is a consistent set in PWRCC-Bound,
(2) A has an algebraic model in the class of all local contact al-

gebras,
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(3) A has a model in the class of all locally compact topological
spaces,

(4) A has a model in the class of all locally compact semiregular
T0-spaces.

Similar completeness theorems can be obtained for exten-
sions of PWRCC-Bound by axioms (Con), (Ext), and (Nor). The
question about the decidability of such systems is still open.
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