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1. Introduction
(Logic and Spacetime Geometry)

Throughout their intimately intertwined histories, logic and geom-
etry immensely profited from their interactions. In particular,
logic greatly profited from its applications to geometry. Indeed,
the very birth of logic was brought about by the needs of geome-
try in the times of Socrates, Euclid and their predecessors. Ever
since, their interactions had rejuvenating, invigorating effects on
logic. For brevity, here we mention only Hilbert’s axiomatization
of geometry, Tarski’s improvements on this in the framework of
first-order logic (FOL) [62], Tarski’s school of FOL approaches to
geometry as a small sample. It is no coincidence that Tarskian
algebraic logic is geometrical in spirit.

In this paper, we try to show that this fruitful cooperation
promises new blessings for logic. This is so because there are
breathtaking revolutions in our understanding of space and time,
i.e., in relativity, cosmology, and black hole physics.

What is the subject matter of geometry? Traditionally, geom-
etry was created as a mathematical theory of a physical entity
called space. But recent developments in spacetime theory/general
relativity show that there is no such thing as physical space. Space
is only an illusion and as such is subjective. Space is a “slice” of
a larger entity called spacetime. Spacetime, on the other hand, is
objective, it exists. What is subjective about space is the, neces-
sarily ad hoc, way we decide to “slice” spacetime up into spacelike
slices. Actually, it was logician Kurt Gödel who first discovered
and emphasized that in certain non-negligible cases such slicing is
impossible (non-foliazibility, in the technical terminology) [25].

So, a great challenge for logic and logicians is to continue the
tradition sketched above of providing foundation and conceptual
analysis for geometry by doing the same to spacetime theory, hence
to relativity.

A further motivation for geometry-friendly logicians is the fol-
lowing. Relativity theory can be conceived of geometrizing parts
of physics in a sense (cf. [46]). Special relativity (SR) geometrizes
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some basic aspects of motion (kinematics) including light propa-
gation; general relativity (GR) geometrizes gravitation + SR; the
Kaluza–Klein style extension of GR geometrizes electromagnetic
phenomena + GR; and currently intensively researched extensions
of GR (for example, string theory) search for extending the scope
of this aim for geometrizing more and more aspects of our under-
standing of the world.

Why is this interesting for logicians? Well, because history
tells us that logic is applicable to geometry in an essential way.
Hence if relativity (and its extensions) is the act of geometrizing
more and more of physics, then it also can be regarded as a poten-
tial act of “logicizing” these areas, inviting logicians to take part
in this grandiose adventure of mankind.

2. More Concrete Introduction
(Foundation of Spacetime)

The idea of elaborating the foundational analysis of the logical
structure of spacetime theory and relativity theories (foundation
of relativity) in a spirit analogous with the rather successful foun-
dation of mathematics was initiated by several authors including
David Hilbert [34] (cf. also Hilbert’s 6th problem [33], Patrick
Suppes [59], Alfred Tarski [32] and leading contemporary logician
Harvey Friedman [22, 23]).

There are several reasons for seeking an axiomatic foundation
of a physical theory [60]. One is that the theory may be better un-
derstood by providing a basis of explicit postulates for the theory.
Another reason is that if we have an axiom system we can ask our-
selves what axioms are responsible for which theorems. For more
on this kind of foundational thinking called reverse mathematics,
see, for example, Friedman [22] and Simpson [56]. Furthermore, if
we have an axiom system for special relativity or general relativ-
ity, we can ask what happens with the theory if we change one or
more of the axioms. This could lead us to a new physically inter-
esting theory. This is what happened with Euclid’s axiom system
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for geometry when Bolyai and Lobachevsky altered the axiom of
parallelism and discovered hyperbolic geometry.

Seeking a logical foundation for spacetime theory (i.e., roughly,
relativity) is a worthwhile attempt for several reasons. One of
these is that spacetime can be regarded as a foundation of physics
since spacetime is the arena in which physical phenomena take
place. Another reason for seeking a logical foundation for space-
time is that throughout its history, logic benefited the most from
those applications of logic which were aiming at branches of learn-
ing going through a turmoil or a revolutionary phase, and at the
same time being important for our understanding of the world
[35]. As a quick glance to recent issues of, for example, Scientific
American can convince the reader, spacetime theory and relativ-
ity/cosmology certainly qualify. So we believe that it serves the
best interest of logic community to apply logic to spacetime the-
ory, relativity, cosmology, and black hole physics. Indeed, logic
can benefit from such studies in many ways. As a bonus, as indi-
cated in [14] or [38], spacetime theory can give a feedback to the
foundation of mathematics itself.

For certain reasons, the foundation of mathematics has been
carried through strictly within the framework of first-order logic
(FOL). One of these reasons is that staying inside FOL helps us to
avoid tacit assumptions. Another reason is that FOL has a com-
plete inference system while higher-order logic cannot have one by
Gödel’s incompleteness theorem (cf., for example, Väänänen [65,
p.505]). (For more motivation for staying inside FOL as opposed
to higher-order logic cf., for example, [1], [2, Appendix 1], and
[6, 21, 48, 67].) The same reasons motivate the effort of keep-
ing the foundation of spacetime and relativity theory inside FOL.

The interplay between logic and relativity theory goes back to
around 1920 and has been playing a non-negligible role in works
of researchers like Reichenbach, Carnap, Suppes, Ax, Szekeres,
Malament, Walker, and of many other contemporaries. For more
details cf., for example, [1]. Also, it is no coincidence that relativity
was the main motivating example for the logical positivists of the
Vienna Circle.
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Axiomatizations of SR have been quite extensively studied
in the literature (cf., for example, the references of [1]). However,
these works usually stop with a kind of representation theorem for
their axiomatizations. As a contrast, what we call the foundation
of relativity begins with the axiomatization (and representation
theorems), but the real work and the real fun (the conceptual
analysis) comes afterwards when we investigate, for example, what
axioms are responsible for which statements, what happens if we
change the axioms etc.

While some FOL axiomatizations of the theory of inertial
observers and for SR can be found in the literature (cf. [6, 26,
1]), axiom systems—let alone FOL axiom systems—for accelerated
observers and for GR are not too many in the literature (but cf. [44]
for an exception).

In Section 4, we recall a streamlined FOL axiomatization Ac-
cRel of SR extended with accelerated observers. In Section 5, we
take one step toward GR and investigate an aspect of time warp,
that is the effect of gravitation on clocks, in our FOL setting.
There we use Einstein’s equivalence principle to talk about gravi-
tation and prove the gravitational time dilation effect, that is that
“gravity causes time to run slow,” from AccRel in more than one
sense (cf. Theorems 5.1–5.3). We will also see that gravity can
slow time down arbitrarily (cf. Theorems 5.4–5.6). Furthermore,
we investigate the role of the “direction” and the “magnitude” of
gravitation in gravitational time dilation (cf. Theorems 5.7 and
5.8). We note that the most exotic features of black holes, worm-
holes and the like (mentioned in Section 3 below) can be traced
back to this effect of time warp (to be analyzed in Section 5).

3. Intriguing Features of GR Spacetimes
(Challenges for the Logician)

Both SR and GR have many interesting consequences. Most of
them show that we have to refine our common sense concepts
of space and time. They are full of surprising predictions and
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paradoxes which seriously challenge our common sense picture of
the world. But it is exactly this negation of common sense which
makes this area an attractive field to apply logic.

Gravitation has many surprising effects on time. The com-
mon name for these effects is time warp.

For example, in the Schwarzschild spacetime, which is as-
sociated with a non-rotating black hole (or star), we face one of
the simplest aspect of time warp called gravitational time dilation.
There we see that if we suspend an observer closer to the black
hole and another observer farther away from it, then the clock of
the closer one will run slower than the clock of the one which is
farther away. So in some sense we see that “gravity causes time
run slow.” There are places where this time warp effect becomes
infinite, i.e., some clocks entirely stop ticking, i.e., freeze from the
point of view of some other observers. Moreover, time and space
may get interchanged. These effects are part of the reason why we
said in Section 1 that space does not exist while spacetime does.

The above-mentioned time warp effect leads to even stronger
effects. We meet new interesting aspects of time warp in the
Reissner–Nordström, Kerr and Kerr–Newman spacetimes that are
associated with charged, rotating and charged-rotating black holes,
respectively. For astronomical evidence for the existence of rotat-
ing black holes cf., for example, [49, 58]. In these spacetimes,
there is an event whose causal past contains timelike curves which
are infinitely long in the future direction. Such a curve can be
the life-line of an observer (or computer) who has infinite time for
working and sending light-signals that can be received before the
distinguished event. The spacetimes in which these kinds of events
occur are called Malament–Hogarth spacetimes (cf., for example,
Earman [15, § 4] and [38]). In Malament–Hogarth spacetimes, we
can design a computer that decides non-Turing-computable sets
(cf., for example, [38, 16, 14, 19]). Thus inside these spacetimes,
we can decide whether an axiom system of set theory (for example
ZFC) is consistent or not. Therefore, in contrast with the conse-
quence of Gödel’s second incompleteness theorem, we can find out
whether mathematics is consistent or not. For more detail on these
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kinds of computers in the physically reasonable Kerr spacetime we
refer, for example, to [14, 19]). Recently, the acceleration of the
expansion of the universe made anti-de-Sitter spacetimes very pop-
ular with cosmologists. These also have the Malament–Hogarth
property, hence are also suitable for harboring computers breaking
the Turing barrier.

There are several models of GR in which there are so-called
Closed Timelike Curves (CTC). Such are Gödel’s rotating universe
[25], Kerr and Kerr–Newman spacetimes [47], Gott’s spacetime
[27], Tipler’s rotating cylinder [64], van Stockum’s spacetime [57],
Taub-NUT spacetime [31], to mention only a few. Since timelike
curves correspond to possible life-lines of observers, in these space-
times an observer can go through the same event more than once.
This situation can be interpreted as time travel. This leads to non-
trivial philosophical problems, in analysing/understanding which
the methods of logic can considerably help. We believe, currently
logic is the discipline best positioned for clarifying the apparent
problems with CTC’s, i.e., with time travel. Namely, the only
problem with time travel is that it represents a kind of circular-
ity, because of the following: a time traveler goes back into his
past, changes his past so as to prevent his own existence, but then
who went back into the past? etc. This circularity is not more
vicious than the Liar paradox or self-reference implemented, for
example, in Gödel’s second incompleteness proof. Logic has been
extremely successful in understanding and “de-mystifying” self-
referential situations and the Liar paradox. Examples are provided
by literature of Gödel’s incompleteness method [30], the book on
“The Liar” by Barwise and Etchemendy [7] which used non-well-
founded set theory for providing an explicit semantic analysis for
self-referential situations, [55]. So logic seems to be best suited for
providing rational understanding of situations like the circularity
represented by CTC’s or time travel. (For more on CTC’s cf., for
example, [15, § 6] and [17, 28].)

These are only a few of the many examples that show that
turning Relativity Theory into a real FOL theory, axiomatizing it
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and analyzing its logical structure seem to be a promising, worth-
while undertaking.

What could science gain from such a logical analysis of rela-
tivity theory? Turning GR into a FOL theory will make it more
flexible. By flexibility we mean that we can change some of the ax-
ioms whenever we would like to change the theory, without having
to re-build the whole theory from scratch. By changing the axioms,
we can control the changes of theory better than by changing Ein-
stein’s field equations. This might be useful when we would like to
understand the connection of GR to other theories of gravitation
like the Brans–Dicke theory (cf. [8, 9, 20]). This flexibility can
also be useful when we would like to extend GR. We indeed would
like to extend GR since we do not have a good theory of Quan-
tum Gravity (QG) which is a common extension of the quantum
theory and GR. Some eminent researchers of relativity formulated
an even more optimistic goal of searching for the geometrization
of all physical phenomena known today into a so-called theory of
everything (TOE). Of course, one wants both QG and TOE to be
some kinds of extensions of GR.

Recent astronomical observations provided strong evidence
that the expansion of our universe is accelerating. This discovery
leads to many questions and to the idea that the cosmological
constant might be replaced with a dynamical parameter, i.e., with
a scalar field, under the name of Quintessence or “dark energy”
(cf., for example, [10, 13]). But this leads to a new need for
modifying or at least fine-tuning GR. This also shows the merit of
making GR more flexible by providing a FOL axiom system for it.

So far we have talked mainly about the significance of the
logical foundation of GR, but the logical analysis of SR is also
important since GR is built on SR. Moreover, there are other
different relativity theories such as the Reichenbach–Grünbaum
version (cf. [50, 51, 29] or the Lorentz-Poincaré version of special
relativity (cf. [41]). Their logical structures and connection with
Einstein’s relativity are also worth analyzing in order to get a more
refined understanding of relativity theory. Our research group has
done some work in this direction (cf. [2, § 4.5]).



FOL Foundation of Relativity Theories 225

In the following sections we try to give a sample of the work
done by our research group in Budapest in the direction of a FOL
investigation of relativity theories (including GR).

4. A FOL Axiom System of SR
Extended with Accelerated Observers

We recall one of our axiom systems for SR extended with acceler-
ated observers (hence extended with a handle on gravity). We try
to be as self contained as possible. First occurrences of concepts
used in this work are set in italic to make them easier to find.

The motivation for our choice of vocabulary is summarized
as follows. Here, we deal with the kinematics of relativity only,
that is we deal with motion of bodies (or test-particles). We will
represent motion as changing spatial location in time. To do so,
we will have reference-frames for coordinatizing events and, for
simplicity, we will associate reference-frames with special bodies
which we will call observers. We visualize an observer-as-a-body
as “sitting” in the origin of the space part of its reference-frame, or
equivalently, “living” on the time-axis of the reference-frame. We
will distinguish inertial observers from non-inertial (accelerated)
ones. There will be another special kind of bodies which we will
call photons. For coordinatizing events, we will use an arbitrary
ordered field in place of the field of the real numbers. Thus the
elements of this field will be the “quantities” which we will use
for marking time and space. Allowing arbitrary ordered fields in
place of the field of the reals increases flexibility of our theory and
minimizes the amount of our mathematical presuppositions (cf.,
for example, Ax [6] for further motivation in this direction). Sim-
ilar remarks apply to our flexibility oriented decisions below, for
example, keeping the dimension of spacetime a variable. Using ob-
servers in place of coordinate systems or reference frames is only a
matter of didactic convenience and visualization. Using observers
(or coordinate systems, or reference-frames) instead of a single
observer-independent spacetime structure has many reasons. One
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of them is that it helps us in weeding out unnecessary axioms from
our theories; but we state and emphasize the equivalence/duality
between observer-oriented and observer-independent approaches
to relativity theory (cf. [42, § 4.5]). Motivated by the above, we
now turn to fixing the first-order language of our axiom systems.

We fix a natural number d � 2 for the dimension of spacetime.
Our language contains the following non-logical symbols:

• unary relation symbols B (for Bodies), Ob (for Observers),
IOb (for Inertial Observers), Ph (for Photons) and Q (for
Quantities),

• binary function symbols +, · and a binary relation symbol �
(for the field operations and the ordering on Q), and

• a 2 + d-ary relation symbol W (for World-view relation).

The bodies will play the role of the “main characters” of
our spacetime models and they will be “observed” (coordinatized
using the quantities) by the observers. This observation will be
coded by the world-view relation W. Our bodies and observers
are basically the same as the “test particles” and the “reference-
frames,” respectively, in some of the literature.

We read B(x), Ob(x), IOb(x), Ph(x), and Q(x) as “x is a
body,” “x is an observer,” “x is an inertial observer,” “x is a pho-
ton,” and “x is a quantity.” We use the world-view relation W to
talk about coordinatization, by reading W(x, y, z1, . . . , zd) as “ob-
server x observes (or sees) body y at coordinate point 〈z1, . . . , zd〉.”
This kind of observation has no connection with seeing via pho-
tons, it simply means coordinatization.

B(x), Ob(x), IOb(x), Ph(x), Q(x), W(x, y, z1, . . . , zd), x = y
and x � y are the so-called atomic formulas of our first-order
language, where x, y, z1, . . . , zd can be arbitrary variables or terms
built up from variables by using the field-operations “+” and “·”.
The formulas of our first-order language are built up from these
atomic formulas by using the logical connectives not (¬), and (∧),
or (∨), implies (=⇒), if-and-only-if (⇐⇒) and the quantifiers
exists x (∃x) and for all x (∀x) for every variable x.
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The models of this language are of the form

M = 〈U ; B,Ob, IOb, Ph, Q, +, ·,�, W〉,
where U is a nonempty set and B, Ob, IOb, Ph and Q are unary
relations on U , etc. A unary relation on U is just a subset of
U . Thus we use B, Ob etc. as sets as well, for example, we write
m ∈ Ob in place of Ob(m).

Qd := Q × . . . × Q (d-times) is the set of all d-tuples of el-
ements of Q. If �p ∈ Qd, then we assume that �p = 〈p1, . . . , pd〉,
i.e., pi ∈ Q denotes the i-th component of the d-tuple �p. We write
W(m, b, �p ) in place of W(m, b, p1, . . . , pd), and we write ∀�p in place
of ∀p1, . . . , pd etc.

Let us begin formulating our axioms. We formulate each
axiom at two levels. First we give an intuitive formulation, then
we give a precise formalization using our logical notation (which
easily can be translated into first-order formulas by substituting
the definitions into the formalizations). We aspire to formulate
easily understandable axioms in FOL.

The first axiom expresses our very basic assumptions like:
both photons and observers are bodies, inertial observers are also
observers, etc.

AxFrame: Ob ∪ Ph ⊆ B, IOb ⊆ Ob, U = B ∪ Q, B ∩ Q = ∅,
W ⊆ Ob × B × Qd, + and · are binary operations on Q,
� is a binary relation on Q.

To be able to add, multiply and compare measurements of
observers, we put some algebraic structure on the set of quantities
Q by the next axiom.

AxEOF: A FOL axiom stating that the quantity part 〈Q; +, ·,�〉
is a Euclidean 1 ordered field.

For the first-order definition of linearly ordered field see, for ex-
ample, Chang–Keisler [11].

1 That is a linearly ordered field in which positive elements have
square roots.
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Figure 1. Illustration for the basic definitions

We need some definitions to formulate our other axioms. Let
0, 1,−, /,

√
be the usual field operations which are definable from

“+” and “·” . We use the vector-space structure of Qd, i.e., if
�p, �q ∈ Qd and λ ∈ Q, then �p + �q,−�p, λ�p ∈ Qd; and �o := 〈0, . . . , 0〉
denotes the origin. Qd is called the coordinate system and its
elements are referred to as coordinate points. We use the notation
�ps := 〈p2, . . . , pd〉 for the space component of �p and pt := p1 for the
time component of �p ∈ Qd. The event (the set of bodies) observed
by observer m at coordinate point �p is:

evm(�p ) := { b ∈ B : W(m, b, �p ) } .

The coordinate-domain of observer m is the set of coordinate
points where m observes something:

Cdm :=
{

�p ∈ Qd : evm(�p ) �= ∅
}

.
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Now we formulate our first axiom on observers. This natural
axiom goes back to Galileo Galilei and even to d’Oresme of around
1350 (cf., for example, [1, p.23, § 5]). It simply states that each
observer thinks that he rests in the origin of the space part of his
coordinate system.

AxSelf−: An observer sees himself in an event if and only if the
space component of the coordinate of this event is the
origin:

∀m ∈ Ob ∀�p ∈ Cdm

(
m ∈ evm(�p ) ⇐⇒ �ps = �o

)
.

To formulate our axiom about the constancy of this speed,
we choose 1 for the speed of photons. Below, the Euclidean-length
of �p ∈ Qn is defined as |�p | :=

√
p2

1 + . . . + p2
n, for any n � 1.

AxPh0: For every inertial observer, there is a photon through
two coordinate points �p and �q if and only if the slope of
�p− �q is 1:

∀m ∈ IOb ∀�p, �q ∈ Qd
(
|�ps − �qs| = |pt − qt| ⇐⇒
Ph ∩ evm(�p ) ∩ evm(�q ) �= ∅

)
.

Motivations for this axiom can be found, for example, in [3],
or in d’Inverno [12, § 2.6].

The set of events seen by observer m is:

Evm := { evm(�p ) : �p ∈ Cdm } ,

and the set of all events is

Ev := { e ∈ Evm : m ∈ Ob } .

With the next axiom, we assume that every inertial observer
sees the same set of events.

AxEv: Every inertial observer sees the same events:

∀m, k ∈ IOb Evm = Evk.
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One can prove from AxPh0 and AxEOF that if m is an in-
ertial observer and e ∈ Evm, then there is a unique coordinate
point �p ∈ Qd such that e = evm(�p ). This unique coordinate point
�p ∈ Qd is denoted by Crdm(e).

Convention 4.1. Whenever we write “Crdm(e),” we mean
that there is a unique �q ∈ Cdm such that evm(�q ) = e, and Crdm(e)
denotes this unique �q . That is, if we talk about the value Crdm(e),
we postulate that it exists and is unique (by the present conven-
tion).

We say that events e1 and e2 are simultaneous for observer
m, in symbols e1 ∼m e2, if and only if e1 and e2 have the same
time-coordinate in m’s coordinate-domain, i.e., if Crdm(e1)t =
Crdm(e2)t. To talk about time differences measured by observers,
we use timem(e1, e2) as an abbreviation for |Crdm(e1)t−Crdm(e2)t|
and we call it the elapsed time between events e1 and e2 measured
by observer m. We note that, if m ∈ e1 ∩ e2, then timem(e1, e2)
is called the proper time measured by m between e1 and e2, and
e1 ∼m e2 if and only if timem(e1, e2) = 0. We use distm(e1, e2) as an
abbreviation for |Crdm(e1)s−Crdm(e2)s| and we call it the spatial
distance of events e1 and e2 according to an observer m. We note
that when we write distm(e1, e2) or timem(e1, e2), we assume that
e1 and e2 have unique coordinates by Convention 4.1.

AxSimDist: If events e1 and e2 are simultaneous for both inertial
observers m and k, then m and k agree on the spatial
distance between e1 and e2:

∀m, k ∈ IOb ∀e1, e2 ∈ Evm

(
e1 ∼m e2 ∧ e1 ∼k e2 =⇒
distm(e1, e2) = distk(e1, e2)

)
.

We collect these axioms in an axiom system, called SpecReld :

SpecRel d := {AxFrame , AxEOF , AxSelf −, AxPh 0,

AxEv , AxSimDist}.

Now for each natural number d � 2, we have a FOL theory
of SR. Usually we omit the dimension parameter d. From the
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few axioms introduced so far, we can deduce the most frequently
quoted predictions, called paradigmatic effects, of SR:

(i) “moving clocks slow down,”
(ii) “moving meter-rods shrink,”
(iii) “moving pairs of clocks get out of synchronism.”

For more detail see, for example, [1, 2, 3]. Here, we con-
centrate on the behavior of clocks and indicate a connection with
Minkowski geometry.

Theorem 4.2. Assume SpecRel d , d � 3. Then

timem(e1, e2)2 − distm(e1, e2)2 = timek(e1, e2)2 − distk(e1, e2)2

for any m, k ∈ IOb and e1, e2 ∈ Evm.

The above theorem is the starting point for building Minkowski
geometry, which is the “geometrization” of SR. It also indicates
that time and space are intertwined in SR. Here, we only concen-
trate on its corollary usually stated as “moving clocks slow down.”
Theorem 4.2 shows that SpecRel is a good axiom system for SR
if we restrict our interest to textitinertial motion.

Corollary 4.3 (moving clocks slow down). Assume SpecRel d ,
d � 3. Let m, k ∈ IOb, e1, e2 ∈ Evk. Assume that k ∈ e1 ∩ e2 and
distm(e1, e2) �= 0. Then

timem(e1, e2) > timek(e1, e2).

In Corollary 4.3, a “moving clock” is represented by observer
k, that he is moving relative to m is expressed by distm(e1, e2) �= 0,
k ∈ e1 ∩ e2, and that k’s time is slowing down relative to m’s is
expressed by timem(e1, e2) > timek(e1, e2). This “clock slowing
down” effect is only relative, i.e., “clocks moving relative to m
slow down relative to m.” But this relative effect leads to a new
kind of gravitation-oriented “absolute slowing time down” effect,
as our next theorem as well as the whole of Section 5 will show.

To extend SpecRel, we now formulate axioms about non-
inertial observers. The non-inertial observers are called accelerated
observers. Note that AxSelf− is the only axiom introduced so
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far that talks about non-inertial observers, too. We assume the
following very natural axiom for all observers.

AxEv+: Whenever an observer participates in an event, he also
sees this event:

∀m ∈ Ob ∀e ∈ Ev
(
m ∈ e =⇒ e ∈ Evm

)
.

The set of positive elements of Q is denoted by Q+ := {x ∈ Q :
x > 0}. The interval between x, y ∈ Q is defined as (x, y) := {z ∈
Q : x < z < y}. Let H ⊆ Q. We say that H is connected if and
only if ∀x, y ∈ H (x, y) ⊆ H, and we say that H is open if and
only if ∀x ∈ H ∃ε ∈ Q+ (x− ε, x + ε) ⊆ H.

We assume the following technical axiom.

AxSelf+: The set of time-instances in which an observer is present
in its own world-view is connected and open:

∀m ∈ Ob {pt : m ∈ evm(�p )} is connected and open.

To connect the coordinate-domains of the accelerated and the
inertial observers, we are going to formulate the statement that at
each moment of his life, each accelerated observer sees the nearby
world for a short while as an inertial observer does. To formalize
this, first we introduce the relation of being a co-moving observer.
To do so, we define the (coordinate) neighborhood of event e with
radius r ∈ Q+ according to observer k as:

Br
k(e) := { �p ∈ Cdk : ∃�q ∈ Cdk evk(�q ) = e ∧ |�p− �q | < r } .

We note that Br
k(e) = ∅ if e �∈ Evk by this definition. Observer

m is a co-moving observer of observer k at event e, in symbols
m 1e k, if and only if the following holds:

∀ε ∈ Q+ ∃δ ∈ Q+ ∀�p ∈ Bδ
k(e)

∣∣�p−Crdm(evk(�p ))
∣∣ � ε|�p−Crdk(e)|.

Note that Crdm(e) = Crdk(e) and thus also e ∈ Evm if m 1e k
and e ∈ Evk. Note also that m 1e k for every observer m if
e �∈ Evk, by definition. Behind the definition of the co-moving
observers is the following intuitive image: as we zoom into smaller
and smaller neighborhoods of the coordinate point of the given
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event, the coordinate-domains of the two observers are more and
more similar. This intuitive picture is symmetric while the co-
moving relation 1e is not. Thus we introduce a symmetric version.
We say that observers m and k are strong co-moving observers at
event e, in symbols m 1≺e k, if and only if both m 1e k and
k 1e m hold. The following axiom gives the promised connection
between the coordinate-domains of the inertial and the accelerated
observers.

AxAcc+: At any event in which an observer sees himself, there
is a strong co-moving inertial observer:

∀k ∈ Ob ∀e ∈ Evk ( k ∈ e =⇒ ∃m ∈ IOb m 1≺e k ).

The axioms introduced so far are not strong enough to prove
properties of accelerated clocks like the Twin Paradox (cf. [44,
Theorems 3.5 and 3.7 and Corollary 3.6]). The additional prop-
erty we need is that every bounded non-empty subset of the quan-
tity part has a supremum. This is a second-order logic property
(because it concerns all subsets) which we cannot use in a FOL
axiom system. Instead, we will use a kind of “induction” axiom
schema. It will state that every non-empty, bounded subset of the
quantity part which can be defined by a FOL-formula using possi-
bly the extra part of the model, for example, using the world-view
relation, has a supremum. To formulate this FOL induction axiom
schema, we need some more definitions.

If ϕ is a formula and x is a variable, then we say that x is a
free variable of ϕ if and only if x does not occur under the scope
of either ∃x or ∀x. Sometimes we introduce a formula ϕ as ϕ(�x ),
this means that all the free variables of ϕ lie in �x.

If ϕ(x, y) is a formula and M = 〈U ; . . .〉 is a model, then
whether ϕ is true or false in M depends on how we associate
elements of U to the free variables x, y. When we associate a, b ∈ U
to x, y, respectively, then ϕ(a, b) denotes this truth-value, thus
ϕ(a, b) is either true or false in M. For example, if ϕ is x � y,
then ϕ(0, 1) is true while ϕ(1, 0) is false in any ordered field. A
formula ϕ is said to be true in M if ϕ is true in M no matter how
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we associate elements to the free variables. We say that a subset
H of Q is (parametrically) definable by ϕ(y, �x ) if and only if there
is �a ∈ Un such that H = {b ∈ Q : ϕ(b,�a ) is true in M}. We say
that a subset of Q is definable if and only if it is definable by a
FOL-formula.

Let ϕ(x, �y ) be a FOL-formula of our language.

AxSupϕ: Every subset of Q definable by ϕ(x, �y ) has a supremum
if it is non-empty and bounded.

A FOL formula expressing AxSupϕ can be found in [44].
Our axiom scheme IND below says that every non-empty bounded
subset of Q that is definable in our language has a supremum:

IND := {AxSup ϕ : ϕ is a FOL-formula of our language } .

Note that IND is true in any model whose quantity part is the
field of real numbers. For more detail about IND we refer to [44].

We call the collection of the axioms introduced so far AccReld :

AccRel d := SpecRel d ∪ {AxEv+, AxSelf+, AxAcc +} ∪ IND.

The so-called Twin Paradox is provable in AccRel (cf. [44,
61]). We formulate the Twin Paradox with our logical notation.

The set of events encountered by m ∈ Ob between e1, e2 ∈ Ev
is denoted by

Evm(e1, e2) := { e ∈ Evm : m ∈ e ∧
Crdm(e1)t < Crdm(e)t < Crdm(e2)t } .

Now we can formulate the Twin Paradox in our FOL setting.

TwP: Every inertial observer m measures more time than or
equal time as any other observer k between any two meet-
ing events e1 and e2; and they measure the same time if
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and only if they have encountered the same events be-
tween e1 and e2:

∀e1, e2 ∈ Ev ∀m ∈ IOb ∀k ∈ Ob
(

k,m ∈ e1 ∩ e2 =⇒(
timem(e1, e2) = timek(e1, e2) ⇐⇒ Evm(e1, e2) = Evk(e1, e2)

)
∧ timem(e1, e2) � timek(e1, e2)

)
.

The following theorem states that the Twin Paradox is prov-
able in AccReld if d � 3.

Theorem 4.4. AccRel d |= TwP if d � 3.

For the proof of this theorem cf. [44, 61].

We note that there are non-trivial models of AccRel. For
example, the construction in Misner–Thorne–Wheeler [46, § 6,
especially pp. 172–173 and § 13.6, pp. 327–332] can be used for
constructing models for AccRel.

5. One Step toward GR
(Effect of Gravitation on Clocks)

We would like to investigate the effect of gravitation on clocks in
our FOL setting. As a first step we prove theorems about the
Gravitational Time Dilation that roughly says that “gravitation
makes time flow slower,” i.e., the clocks in the bottom of a tower
run slower than the clocks in the top of the tower. We will use Ein-
stein’s equivalence principle to treat gravitation in AccRel. This
principle says that a uniformly accelerated frame of reference is in-
distinguishable from a rest frame in a uniform gravitational field
(cf., for example, d’Inverno [12, § 9.4]). So, instead of gravitation
we will talk about acceleration and instead of towers we will talk
about spaceships. This way the Gravitational Time Dilation will
become the following statement: “the time in the aft of an accel-
erated spaceship flows slower than in the front of the spaceship.”
We begin to formulate this statement in our FOL language.
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To talk about spaceships, we will need a concept of distance
between events and observers. We have the following two natural
candidates for this:

• Event e is at radar-distance λ ∈ Q+ from observer k if and
only if there are events e1 and e2 and photons ph1 and ph2

such that k ∈ e1 ∩ e2, ph1 ∈ e ∩ e1, ph2 ∈ e ∩ e2 and
timek(e1, e2) = 2λ. Event e is at radar-distance 0 from ob-
server k if and only if k ∈ e (cf. Fig. 2, (a)).

• Event e is at Minkowski–distance λ ∈ Q from observer k if
and only if there is an event e′ such that k ∈ e′, e ∼m e′ and
distm(e, e′) = λ for every inertial co-moving observer m of k
at e′ (cf. Fig. 2, (b)).

Figure 2. (a) for the radar-distance and (b) for the
Minkowski–distance

We say that observer k thinks that body b is at constant radar
(Minkowski) distance from him if and only if the radar-distance
(Minkowski–distance) of every event which b participates in is the
same.
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The life-line2 (or trace) of body b according to observer m is
defined as the set of coordinate points where b was observed by m:

trm(b) :=
{

�p ∈ Qd : W(m, b, �p )
}

.

Note that trm(b) =
{

�p ∈ Qd : b ∈ evm(�p )
}
. For stating that

the spaceship does not change its direction we introduce the fol-
lowing concept. We say that observers k and b are coplanar if
and only if trm(k)∪ trm(b) is a subset of a plane containing a line
parallel with the time-axis, in the coordinate system of an inertial
observer m.

We now introduce two concepts for spaceships. Observers b, k
and c form a radar-spaceship, in symbols >

∣∣b, k, c
〉
rad

, if and only
if b, k and c are coplanar and k thinks that b and c are at con-
stant radar-distances from him. The definition of the Minkowski–
spaceship, in symbols >

∣∣b, k, c
〉
µ
, is analogous.

We say that event e1 (causally) precedes event e2 according
to observer k if and only if Crdm(e1)t � Crdm(e2)t for all inertial
co-moving observers m of k. In this case, we also say that e2

succeeds e1 according to k.
We need some concept for deciding which events happened at

the same time according to an accelerated observer. The following
three natural concepts offer themselves:

• Events e and e′ are radar-simultaneous for observer k, in
symbols e ∼rad

k e′, if and only if k ∈ e and there are events
e1 and e2 and photons ph1 and ph2 such that k ∈ e1 ∩ e2,
ph1 ∈ e ∩ e1, ph2 ∈ e ∩ e2 and timek(e1, e) = timek(e, e2)
or there is an event e3 such that e ∼rad

k e3 and e3 ∼rad
k e′

(cf. Fig. 3, (a)).
• Events e1 and e2 are photon-simultaneous for observer k, in

symbols e1 ∼
ph
k e2, if and only if there is an event e and

photons ph1 and ph2 such that k ∈ e, ph1 ∈ e∩e1, ph2 ∈ e∩e2

and e1 and e2 precedes e according to k (cf. Fig. 3, (b)).
• Events e1 and e2 are Minkowski–simultaneous for observer k,

in symbols e1 ∼
µ
k e2, if and only if there is an event e such

2 Life-line is called world-line in some of the literature.



238 Judit X. Madarász, István Németi, and Gergely Székely

that k ∈ e and e1 and e2 are simultaneous for any inertial
co-moving observer of k at e (cf. Fig. 3, (c)).

We note that, for inertial observers, the concepts of radar–
simultaneity and Minkowski–simultaneity coincide with the con-
cept of simultaneity introduced on p. 230.

Figure 3. (a) is for e ∼rad
k e′, (b) is for e1 ∼

ph
k e2 and

(c) is for e1 ∼
µ
k e2

We will distinguish the front and the aft of the spaceship
by the direction of the acceleration. Thus we need a concept for
direction. We say that the directions of �p ∈ Qd and �q ∈ Qd are
the same, in symbols �p ↑↑�q, if and only if there is a λ ∈ Q+ such
that λ�ps = �qs (cf. Fig. 4, (a)).

Now let us turn our attention towards the definition of accel-
eration in our FOL setting.

We define the life-curve of observer k according to observer
m as the life-line of k according to m parameterized by the time
measured by k, formally:

Trk
m := { 〈t, �p 〉 ∈ Q× Cdm :

∃�q ∈ trk(k) qt = t ∧ evm(�p ) = evk(�q ) } .

The domain of a binary relation R is defined as DomR := {x :
∃y 〈x, y〉 ∈ R}.
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Figure 4. (a) is for illustrating �p ↑↑ �q and (b) is for
illustrating observer b approaching to observer k, as seen
by k with photons

Both the life-curves of observers (according to any inertial
observer) and the derivative f ′ of a given function f are first-order
logic definable concepts (cf. [44]). Thus the following definitions
are also FOL ones: The relative-velocity �v k

m of observer k according
to observer m at instant t ∈ Q is the derivative of the life-curve
of k according to m at t, i.e., �v k

m(t) = (Trk
m)′(t) if t ∈ Dom Trk

m

and undefined otherwise. The relative-acceleration �a k
m of observer

k according to observer m at instant t ∈ Q is the derivative of
the relative-velocity at t if it is differentiable at t and undefined
otherwise.

Events e1 and e2 are called spacelike separated, in symbols
e1 ≡ s e2, if and only if Crdm(e1) and Crdm(e2) can be connected
by a line of slope more than 1 for every inertial observer m, i.e., if
and only if |(Crdm(e1)−Crdm(e2))s| > |(Crdm(e1)−Crdm(e2))t|
for every inertial observer m. We say that the direction of the
spaceship >

∣∣b, k, c
〉

agrees with that of the acceleration of k if and
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only if the following holds:

∀m ∈ IOb ∀t ∈ Dom�a k
m ∀e1, e2 ∈ Ev

(
c ∈ e1 ∧

b ∈ e2 ∧ e1 ≡ s e2 =⇒ �a k
m(t) ↑↑(Crdk(e1)− Crdk(e2))

)
.

The (signed) Minkowski–length of �p ∈ Qd is

µ(�p) :=

⎧⎨⎩
√∣∣p2

t − |�ps|2
∣∣ if p2

t − |�ps|2 � 0,

−
√∣∣p2

t − |�ps|2
∣∣ otherwise

and the Minkowski–distance between �p and �q is µ(�p, �q ) :=µ(�p−�q ).
A motivation for the “otherwise” part of the definition of µ(�p ) is
the following. µ(�p ) codes two kinds of information, (i) the length
of �p and (ii) whether �p is timelike (i.e., |pt| > |�ps|) or spacelike.
Since the length is always non-negative, we can use the sign of
µ(�p ) to code (ii).

The acceleration of an observer k at instant t ∈ Q is defined
as the Minkowski–length of the relative-acceleration seen by any
inertial observer m at t, that is:

ak(t) :=µ
(
�a k

m(t)
)
.

The acceleration is a well defined concept since it is independent
of the choice of the inertial observer m. We say that observer k is
positively accelerated if and only if ak(t) �= 0 for all t ∈ Dom Trk

k .
Observer k is called uniformly accelerated if and only if there is
an a ∈ Q+ such that ak(t) = a for all t ∈ DomTrk

k .
We say that the clock of b runs slower than the clock of c

as seen by k with radar (photons; Minkowski–simultaneity) if and
only if timeb(eb, e

′
b) < timec(ec, e

′
c) for all events eb, e

′
b, ec, e

′
c for

which b ∈ eb ∩ e′b, c ∈ ec ∩ e′c and eb ∼rad
k ec, e′b ∼rad

k e′c. (eb ∼
ph
k ec,

e′b ∼
ph
k e′c; eb ∼

µ
k ec, e′b ∼

µ
k e′c).

Now we can state our first theorem about the clock-slowing
effect of gravitation:

Theorem 5.1. Assume AccReld and d � 3. Let >
∣∣b, k, c

〉
rad

be a radar-spaceship such that

(1) k is positively accelerated,
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(2) the direction of the spaceship agrees with that of the ac-
celeration of k.

Then

(i) the clock of b runs slower than the clock of c as seen by k
with radar and

(ii) the clock of b runs slower than the clock of c as seen by
each of k, b and c with photons.

To state a similar theorem in Minkowski–spaceships, we need
the following concept. We say that observer b is not too far behind
positively accelerated observer k if and only if the following holds:

∀m ∈ IOb ∀t ∈ Dom Trk
m ∀�p, �q ∈ Cdm

(
�p ∈ trm(k) ∧

�q ∈ trm(b) ∧ evm(�p ) ∼
µ
k evm(�q ) ∧ �a k

m(t) ↑↑(�p− �q ) =⇒
∀τ ∈ Dom�a k

m µ(�p− �q ) < 1/ak(τ)
)
.

Now we can state our second theorem about the clock-slowing
effect of gravitation:

Theorem 5.2. Assume AccRel d and d � 3. Let >
∣∣b, k, c

〉
µ

be a Minkowski–spaceship such that

(1) k is positively accelerated,
(2) the direction of the spaceship agrees with that of the ac-

celeration of k,
(3) b is not too far behind k.

Then

(i) the clock of b runs slower than the clock of c as seen by k
with Minkowski–simultaneity or with photons and

(ii) the clock of b runs slower than the clock of c as seen by
each of k, b and c with photons.

In the following theorem we will see that the flow of time
as seen by photons is strongly connected with the following two
concepts. We say that observer b is approaching to (moving away
from) observer k as seen by k with photons if and only if for all
events ek and eb, if b ∈ eb, k ∈ ek and ek ∼

ph
k eb, then there is an
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event e such that k′, b′ ∈ e for all inertial co-moving observers k′

and b′ of k and b at events ek and eb, respectively, and ek precedes
(succeeds) e according to k (cf. Fig. 4, (b)).

Theorem 5.3. Assume AccRel d and d � 3. Let b, k ∈ Ob
be such that b and k are coplanar.

(1) If b is approaching to k as seen by k with photons, then
the clock of k runs slower than the clock of b as seen by k
with photons.

(2) If b is moving away from k as seen by k with photons,
then the clock of b runs slower than the clock of k as seen
by k with photons.

None of the axioms introduced so far require the existence of
accelerated (non-inertial) observers. Our following axiom scheme
says that every definable timelike curve is the life-line of an ob-
server. Since from AxSelf−, AxPh0 and AxEv it follows that the
life-lines of inertial observers are straight lines (cf., for example,
[1, 39, 40]), this will ensure the existence of many non-inertial
observers.

A differentiable function γ is called timelike curve if and only
if the slope of γ′(t) is less than 1 (i.e., |γ′(t))s| < |γ′(t))t|) for all
t ∈ Dom γ and Dom γ is an open and connected subset of Q. It
is clear that this is a first-order logic definable concept since every
fragment of it is such. We say that a function f is (parametrically)
definable by ψ(x, �y, �z ) if and only if there is �a ∈ Un such that
f(b) = �p ⇐⇒ ψ(b, �p,�a ) true in M.

Let ψ be a FOL-formula of our language.

Ax∃Obψ: If a function parametrically definable by ψ is a timelike
curve, then there is an observer whose life-line is the range
of this function.

Now we introduce the promised axiom scheme about the ex-
istence of observers:

Ax∃Ob := {Ax∃Obψ: ψ is a FOL-formula of our language}
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The following three theorems say that the clocks can run
arbitrarily slow or fast, as seen with the three different methods.

Theorem 5.4. Assume AccRel d , Ax∃Ob, and d � 3. Let
m ∈ Ob be positively accelerated such that Dom Trm

m = Q, and let
e, e′ ∈ Ev be such that e �= e′ and m ∈ e∩e′. Then for all λ ∈ Q+,
there is an observer b and events eb, e

′
b ∈ Ev such that b ∈ eb ∩ e′b,

e ∼rad
m eb, e′ ∼rad

m e′b and timeb(eb, e
′
b) = λ timem(e, e′).

Theorem 5.5. Assume AccRel d , Ax∃Ob, and d � 3. Let
m ∈ Ob be uniformly accelerated, and let e, e′ ∈ Ev be such that
e �= e′ and m ∈ e ∩ e′. Then for all λ ∈ Q+, there is an observer
b and events eb, e

′
b ∈ Ev such that b ∈ eb ∩ e′b, e ∼µ

m eb, e′ ∼µ
m e′b

and timeb(eb, e
′
b) = λ timem(e, e′).

Theorem 5.6. Assume AccRel d , Ax∃Ob, and d � 3. Let
m ∈ Ob be positively accelerated and e, e′ ∈ Ev such that e �= e′

and m ∈ e ∩ e′. Then for all λ ∈ Q+, there is an observer b and
events eb, e

′
b ∈ Ev such that b ∈ eb ∩ e′b, e ∼ph

m eb, e′ ∼ph
m e′b and

timeb(eb, e
′
b) = λ timem(e, e′).

We have seen that gravitation (acceleration) makes “time
flow slowly.” However, we left open the question what role the
“magnitude” and the “direction” of the gravitation play in this
effect. The following theorem shows that two observers, say m
and k, can feel the same gravitation while the clock of k runs
slower than the clock of m. Thus it is not the “magnitude” of the
gravitation that makes “time flow more slowly.”

Theorem 5.7. Assume AccRel d , Ax∃Ob, and d � 3. There
are uniformly accelerated observers m and k such that ak(t) =
am(t) for all t ∈ Q, but the clock of k runs slower than the clock
of m as seen by both m and k with photons (or with radar or with
Minkowski– simultaneity).

Now let us see what we can say about the role of the “direc-
tion” of gravitation. Being “more down in a gravitational well”
becomes being “behind” if we translate it from the language of
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gravitation into the language of acceleration. This can be formu-
lated by our notation as follows. We say that observer b is behind
observer k if and only if

∀m ∈ IOb ∀t ∈ Dom Trk
m ∀�p, �q ∈ Cdm �p ∈ trm(k) ∧

�q ∈ trm(b) ∧ evm(�p ) ∼
µ
k evm(�q ) ∧ �a k

m(t) ↑↑(�p− �q ).

The following theorem shows that if observer b is at a lower
level in the tower than observer k is, then his clock runs slower
than the clock of k, as seen by k with radar.

Theorem 5.8. Assume AccRel d and d � 3. Let b, k ∈ Ob
be such that

(1) k is positively accelerated,
(2) b and k are coplanar,
(3) b is behind k.

Then the clock of k runs slower than the clock of b, as seen
by k with radar.

The proofs, along with more explanation and motivation, of
the theorems presented in this section can be found in [45].

6. Questions, Suggestions
for Future Research

1. We hope that the perspective outlined in Sections 1–3, and
the techniques presented in Sections 4–5, [44] already suggest a
research proposal. Sections 4–5 cover only a small fragment of the
research proposed in Sections 1–3. So the proposal is: elaborate a
larger part of the perspective outlined in Sections 1–3 in the style
of Sections 4–5 and [44].

2. The Introduction of [2] contains more ideas both on the
general perspective (of applying logic to spacetime theory) and
also more of the long-distance goals. However, some of the present
results were not available when [2] was written, therefore that
introduction does not replace completely the present section.
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3. In Section 5, we started to elaborate a purely logical theory
of the effects of gravitation on clocks. Elaborate this direction in
more detail, and investigate more aspects of gravitation on clocks.
For example, assume we bore a hole through the Earth from the
North pole to the South pole. Now put a clock into the middle
of the Earth. It will levitate “weightlessly” in the middle. Put
another clock to the surface of the Earth. It will be squeezed by
gravity to the surface. Despite this, the clock levitating in the
middle will run slower than the one on the surface. A third clock
high above in deep space will run even faster (than the one on the
surface). Why? Find a logic style formulation of the above (and
prove it) in the manner of Section 5.

4. Investigate/formulate further aspects of the effects of grav-
ity on instruments (like clocks, meter-rods). For example, define
the so-called gravitational force-field experienced by an accelerated
observer (via acceleration, relative to the observer, of test parti-
cles dropped by the observer). Study this force-field and connect
this study with the investigations in Section 5. Try to make an
integrated coherent picture of gravity, time warp (clock behavior
in gravitational fields), and gravitational force. (Remark: gravita-
tional force is often suppressed in the literature because it is not
“absolute,” i.e., is not observer independent. All the same, if we
keep in mind that it is observer dependent, then it is a helpful con-
cept.) Imagine a long, accelerated spaceship. The gravitational
force experienced in the aft of the ship will be greater than that
in the front of the ship. Why?

5. Continuing in the spirit of Sections 4,5, [44], and the above,
elaborate a FOL theory of the spacetime of a Schwarzschild black
hole [63]. Streamline that theory, make it logically transparent
and illuminating. Apply conceptual analysis to the theory simi-
lar in spirit as conceptual analysis of special relativity is started in
[2, 1, 43]. Using the theory of accelerated observers and Einstein’s
equivalence principle, create a logically convincing, illuminating
theory of such black holes. In this direction it might be helpful
that the analogy between the world-view or reference frame of an
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accelerated spaceship and skyscrapers (towers) on the event hori-
zon of a black hole is described in detail in Rindler’s relativity
book [52, § 12.4, pp. 267–272]. Figure 12.6 is especially useful
therein. Also note how in Rindler’s arrangement of the skyscrap-
ers above the black hole they are prevented from falling by rigid
rods separating them (these rods provide the “acceleration” expe-
rienced by the inhabitants of the towers/spaceships). These rods
are called struts in [52, p. 270].

So, we suggest combining the presently started FOL theory
of accelerated observers and of effects of gravity (acceleration) on
instruments of observers with the just quoted part of Rindler’s
work in order to elaborate a FOL theory of the simplest kind of
black holes. Of course, the main point is that we are striving for a
very special kind of illuminating (etc.) FOL theory (and not just
any FOL theory describing a black hole).

When the above is done, we suggest applying re-coordina-
tization in order to obtain an Eddington–Finkelstein version of
this FOL theory of the black hole. This second (EF) version of
the theory will also describe what the in-falling observer sees, for
example, from inside the event horizon. For the latter question
we suggest assuming that the black hole is huge (galactic size) so
that enough stuff remains to be observed after falling through the
event horizon.

6. After having streamlined, analyzed, simplified FOL theo-
ries of simple (but huge) black holes, we propose turning to what
we call double black holes or exotic black holes. Double black holes
have two event horizons, an outer one and an inner one. In theory
and under certain assumptions, a traveler might fall into the black
hole, survive this and may come out at some other point of space-
time (in our universe or in some other universe). So, some of these
double black holes may be regarded kind of wormholes. Examples
are spinning black holes (Kerr spacetime, Kerr–Newman space-
time), and electrically charged black holes (Reissner-Nordström
spacetime) [63].
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The task here is again to build up, streamline, and concep-
tually analyse, simplify FOL theories for such double black holes.
They offer logically intriguing issues for the logician as indicated
in Section 3.

7. Besides the relatively simple kind of acceleration studied
in Sections 4,5, [44], rotation provides a kind of acceleration ap-
pearing in the form of the centrifugal force. A further research
task is to analyse via FOL the world-view represented by a rotat-
ing coordinate lattice (relative to the gyroscopes) and generally,
the rotational spacetimes. An example for these is the slowly ro-
tating black hole (Kerr spacedtime), other examples are Gödel’s
rotating universe, Tipler–Stockum spacetime. In these spacetimes
rotation leads to CTC’s and to many other exotic effects like the
so-called dragging of inertial frames or the drag effect. Finding
out more about these is the task of NASA’s recent “Probe B.”
Here again a FOL theory of such spacetimes waits for the cre-
ation, conceptual analysis and detailed illuminating explanation
of what happens and exactly why. A particular question wait-
ing to be answered is to find out and analyse what the common
features/mechanisms/principles of these rotating spacetimes (with
CTC’s) are. For example, many features of the above mentioned
three spacetimes coincide. Is this a coincidence or is there a more
general “theory of rotating spacetimes” lurking in the background.
For more on this question we refer to [5]. In particular, we are
looking for a logical answer to the quasi-philosophical question:
“Exactly why and how CTC’s are generated in rotating black holes
and in Gödel’s universe. Why do they counter-rotate with mat-
ter?” (More on what we call “counter-rotation” can be found
in [5].)
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of Relativity Theories, Research report, Alfréd Rényi Institute of
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[To appear]
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13. Gy. Dávid, Modern cosmology - astronomical, physical and logical
approaches, Abstracts of Invited talks in “Logic in Hungary 2005.”
[http://atlas-conferences.com/cgi-bin/abstract/caqb-64]
[http://www.logicart.hu/events/lh05/index.php]



FOL Foundation of Relativity Theories 249
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