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Computability theory is traditionally understood as a branch
of mathematical logic. However, owing to the ubiquitous use
of computers and other electronic devices, many aspects usually
studied within the framework of computability theory have be-
come actual in numerous various areas even very far from mathe-
matics.

In view of the wide range of applications, the two following
directions of the further development of computability theory are
of great interest.

• Investigate and determine bounds for the applicability of
given computable model and algorithm to an real object ex-
isting in reality and processes flowing there.

• Create computability theory over abstract structures which
could provides a unique approach to both computational
processes in continuous models in reality and their discrete
analogs.

In this paper, we discuss the first direction. We review re-
cent important results and formulate more than 30 actual prob-
lems and open questions dictated by applications of the theory of
computable models.

1. Preliminaries

The theory of constructive and computable models dates back to
the works of Fröhlich and Shepherdson [44], Mal’tsev [101], Ra-
bin [137], and Vaught [152] in the 1950’s. This theory studies
algorithmic properties of abstract models by constructing repre-
sentations of the models on natural numbers and clarify relation-
ships between properties and structural properties of the models.
A systematic study of constructive and computable algebraic sys-
tems was initiated by Mal’tsev [100]. Historically, there were two
approaches to the study of computable models.

The first approach is based on the notion of a numbering of
the basic set of a model by natural numbers. Model properties
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are expressed in the binary form of natural numbers and thereby
can be handled with computer technologies. In general, instead of
numbers, names in some finite alphabet are ascribed to elements
of a model. Since an element can possess several names, recogni-
tion algorithms are required. Such algorithms must recognize the
names of given elements and determine whether certain properties
are realized on elements with given names.

The second approach deals with models whose basic sets con-
sist of natural numbers [101]. This approach leads to the notion
of a recursive (computable) model.

Due to R. Soare and his critical revision of the terminology
used in computability theory, the term “computable model” be-
comes common last years. Indeed, this choice reflects our intuitive
impression of computability.

Both approaches were developed simultaneously and are
closely connected. In fact, they are equivalent from the mathe-
matical point of view.

In this section, we recall basic facts in model theory, num-
berings, computability theory which are necessary for discussing
current problems in the theory of computable models. The mate-
rial of this section mainly follows [40].

Throughout the paper, we use the standard set-theoretic no-
tation: P (M) is the set of all subsets of a set M , idM is the identity
mapping of a set M , and ω = {0, 1, . . .}. If f is a (partial) map-
ping, then Rang f (Dom f) denotes the range (domain) of f . The
symbols “⇒” and “⇔” mean the expressions “if . . . , then . . . ”
and “. . . if and only if . . . ”. The expression a � b means b is
denoted by a. For category theory we refer to [12] and [24].

1.1. Algebraic structures, models, and theories

The classical theory of models and algebraic systems, founded by
Mal’tsev and Tarski, was one of the main directions in mathemat-
ical logic where the key results were obtained during the second
half of the XXth century.
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A signature σ of the language of the first-order predicate
calculus is the pair consisting of the triple of disjoint sets σP , σF ,
σC and a mapping µ: σP ∪ σF → ω+, where ω+ � {1, 2, . . .}. If
P ∈ σP and µ(P ) = n, then P is called an n-ary predicate symbol.
If f ∈ σF and µ(f) = m, then f is called an m-ary functional
symbol. Elements of σC are called constant symbols. We often
write σ in the form σ = 〈P n1

1 , . . . , P nk

k ; fm1
1 , . . . , fms

s ; c1, . . . , ct〉,
where the superscripts are the values of µ for the corresponding
symbols. The expression P ∈ σ (f ∈ σ or c ∈ σ) means that
P (f or c) is a predicate (functional or constant) symbol of the
signature σ.

The set of all formulas of the language of the first-order pred-
icate calculus of a signature σ is denoted by Lσ (cf. definitions in
[16] and [24]). We write Φ(x1, . . . , xn) if every free variable of a
formula Φ belongs to the set {x1, . . . , xn}.

An algebraic structure (or model) A of a signature σ is the
pair consisting of a nonempty set |A|, called the basic set of A, and
a family of (basis) predicates P A ⊆ |A|µ(P ) (P ∈ σP ), operations
fA: |A|µ(f) → |A| (f ∈ σF ), and constants cA ∈ |A| (c ∈ σC).

For a formula Φ(x1, . . . , xn) of a signature σ and an algebraic
structure A of the same signature σ we introduce the notion of
the truth of Φ in A for xi → ai ∈ |A|, i = 1, . . . , n. We write
A � Φ(a1, . . . , an) if Φ is true in A on a1, . . . , an. If T is a system
of sentences (i.e., formulas without free variables), then A � T
means A � Φ for all Φ ∈ T .

A set T of sentences of a signature σ is called a theory if for
any sentence Φ and model A of the signature σ from A � T ⇒ A �
Φ it follows that Φ ∈ T . Using the notion of the deducibility � in
the first-order predicate calculus (cf. [24]), we can define a theory
T as follows: T � Φ ⇒ Φ ∈ T . It is clear that for every class K of
algebraic structures of a signature σ the set of all sentences Φ such
that A ∈ K ⇒ A � Φ is a theory, called the elementary theory of
K and denoted by Th(K).

A subset A of a theory T is called a system of axioms of T
and is denoted by T = [A] if A � A implies A � T for any algebraic
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structure A or, which is the same, T = {Φ | Φ is a sentence of the
signature σ and A � Φ}.

A theory T is consistent if it differs from the set of all sen-
tences. A theory T is complete if it is consistent and Φ ∈ T or
¬Φ ∈ T for any sentence Φ.

Consider an algebraic structure A of a signature σ. Let
a nonempty subset B ⊆ |A| be closed with respect to the ba-
sic operations and constants, i.e., fA(a1, . . . , am) ∈ B for any
a1, . . . , am ∈ B, fm ∈ σF , and cA ∈ B for any c ∈ σC . On B,
we introduce an algebraic structure of the signature σ and denote
it by A � B. If A0 and A1 are algebraic structures of the signature
σ, |A0| ⊆ |A1|, and A0 = A1 � |A0|, then A0 is called a substructure
of A1 and is denoted by A0 � A1.

A substructure A0 of an algebraic structure A1 of a signature
σ is said to be elementary and is denoted by A0 � A1 if A0 �
Φ(a1, . . . , an) ⇔ A1 � Φ(a1, . . . , an) for any formula Φ(x1, . . . , xn)
of the signature σ and a1, . . . , an ∈ |A0|.

Let A and B be algebraic structures of a signature σ. A
mapping ϕ: |A| → |B| is called a homomorphism from A into B

and is denoted by ϕ: A→ B if

• 〈a1, . . . , an〉 ∈ P A ⇒ 〈ϕa1, . . . , ϕan〉 ∈ P B for any predicate
symbol P n ∈ σ and a1, . . . , an ∈ |A|,

• ϕfA(a1, . . . , am) = fB(ϕa1, . . . , ϕam) for any functional sym-
bol fm ∈ σ and a1, . . . , am ∈ |A|,

• ϕ(cA) = cB for any constant symbol c ∈ σ.

An equivalence relation η on the basic set |A| of an alge-
braic structure A of a signature σ is called a congruence on A if
〈fA(a1, . . . , am), fA(b1, . . . , bm)〉 ∈ η for every functional symbol
fm ∈ σ and 〈a1, b1〉, . . . , 〈am, bm〉 ∈ η. A congruence η on A is
said to be strict if 〈a1, . . . , an〉 ∈ P A ⇔ 〈b1, . . . , bn〉 ∈ P A for any
predicate symbol P n ∈ σ and 〈a1, b1〉, . . . , 〈an, bn〉 ∈ η.

If η is a congruence on an algebraic structure A of a signature
σ, then, on the set A∗ � |A|/η, we can introduce an algebraic
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structure A∗, called a quotient structure and denoted by A/η, of
the signature σ as follows:

• if P n ∈ σ, then P A∗ �
{
〈[a1]η, . . . , [an]η〉 | there exist bi ∈

[ai]η, i = 1, . . . , n, such that 〈b1, . . . , bn〉 ∈ P A
}
,

• if fm ∈ σ and [a1]η, . . . , [am]η ∈ A∗, then fA∗
([a1]η, . . . , [am]η)

� [fA(a1, . . . , am)]η,

• if c is a constant symbol of σ, then cA∗ � [cA]η.

Here, [a]η denotes the set of all elements that are η-equivalent
to a. The mapping a '→ [a]η, a ∈ |A|, is a homomorphism. If
ϕ: A→ B is a homomorphism from A into B, then ηϕ � {〈a, b〉 |
a, b ∈ |A|, ϕa = ϕb} is a congruence relation on A.

If a homomorphism ϕ: A→ B is a one-to-one mapping from
|A| onto |B| and the inverse mapping ϕ−1 is a homomorphism from
B into A, then ϕ is called an isomorphism (from A into B). Two
algebraic structures A and B are said to be isomorphic (A ( B)
if there exists an isomorphism ϕ: A → B. If A � B0, A � B1,
and ϕ: B0 → B1 is an isomorphism such that ϕ � |A| = id|A|, then
ϕ is called an A-isomorphism.

For signatures σ and σ′ we write σ ⊆ σ′ if every functional
(predicate, constant) symbol of σ is a functional (predicate, con-
stant) symbol of σ′ with the same arity. If σ ⊆ σ′ and A′ is an
algebraic structure of the signature σ′, then we can construct an
algebraic structure of the signature σ by “forgetting” the values of
symbols of σ′ \ σ. This structure, denoted by A′ � σ, is called the
σ-restriction of A′, and A′ is called the σ′-enrichment of A′ � σ.
We write A � A′ if A � A′ � σ.

Let A be an algebraic structure of a signature σ. We extend
σ by adding constant symbols 〈ca | a ∈ |A|〉. We set σ∗ � σ∪〈ca |
a ∈ |A|〉. Setting cA∗

a � a, we obtain the natural σ∗-enrichment
A∗ of A. A diagram D(A) of A is a set of sentences of the signature
σ∗ such that every sentence in D(A) is an atomic formula or the
negation of an atomic formula and is true in A∗. By a complete
diagram FD(A) we mean the set of sentences of the signature σ∗

that are true in A∗.
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Two algebraic structures A0 and A1 of a signature σ are el-
ementarily equivalent (A0 ≡ A1) if Th(A0) ( � Th({A0})) =
Th(A1) ( � Th({A1})) or, in other words, A0 � Φ if and only if
A1 � Φ for any sentence Φ of the signature σ.

If σ′ ⊆ σ and A0 ≡ A1, then A0 � σ′ ≡ A1 � σ′.
We describe a canonical approach to the study of models

without functional symbols. For every m-ary functional symbol
f ∈ σ we introduce a new (m + 1)-ary predicate symbol Pf . Let
σ∗ be obtained from σ by replacing every functional symbol f
with a predicate symbol Pf (σ∗P � σP ∪ 〈Pf | f ∈ σF 〉, σ∗F � ∅,
σ∗C � σC , µ∗ � σP � µ � σP , µ∗(Pf ) � µ(f) + 1). Any algebraic
structure A of the signature σ can be “transformed” to a model
A∗ of the signature σ∗ by setting

P A∗
f �

{
〈a1, . . . , am, b〉 | a1, . . . , am, b ∈ |A|, fA(a1, . . . , am) = b

}
for fm ∈ σF . It is obvious that A0 ≡ A1 if and only if A∗

0 ≡ A∗
1.

Therefore, in order to obtain a criterion for the elementary
equivalence of two algebraic structures, it suffices to find such a
criterion in the case of a finite signature.

We recall some model-theoretic methods of proving the com-
pleteness of theories.

Proposition 1.1. A consistent theory T is complete if and
only if there exists a model M such that T = Th(M).

Corollary 1.2. A consistent theory T is complete if and only
if any models M0 and M1 of T are elementarily equivalent, i.e.,
Th(M0) = Th(M1).

A theory T is categorical in power α if any two models of T
of power α are isomorphic.

The following assertion is often used in the proof of complete-
ness and decidability.

Proposition 1.3. If a theory T has no finite models and is
categorical in some infinite power, then T is complete.
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A theory T is said to be model-complete if for every model
M of T the theory of the signature σ∗ = σ∪〈ca | a ∈ |M|〉 defined
by the system of axioms T ∪D(M) is complete.

We indicate properties equivalent to the model completeness.

Theorem 1.4. Let T be a theory. The following assertions
are equivalent.

(1) The theory T is model complete.
(2) Let M and N be models of T . If M is a submodel of N , then

M is an elementary submodel of N .
(3) Let M and N be models of T with fixed infinite cardinality κ.

If M is a submodel of N , then M is an elementary submodel
of N .

(4) For any formula ϕ(x) there exists ∃-formula ψ(x) such that
T � ϕ(x) ⇔ ψ(x).

Note that a complete theory is not necessarily model-
complete and, conversely, a model-complete theory is not necessar-
ily complete. However, there is a canonical method of obtaining a
model-complete theory from an arbitrary theory. To demonstrate
it, we need the definition of a first-order definable enrichment of a
theory of a signature σ for a family of formulas. Let Φ(x1, . . . , xn)
be a formula of the signature σ, and let σ′ be obtained from σ
by adding an n-ary predicate symbol PΦ. By a first-order defin-
able enrichment of a theory T of a signature σ for the formula
Φ(x1, . . . , xn) we mean the theory T ′ of the signature σ′ defined
by the following system of axioms:

T ∪
{
∀x1 . . . xN

(
PΦ(x1, . . . , xN) ←→ Φ(x1, . . . , xn)

)}
.

A first-order definable enrichment of a theory for a family
of formulas Φ is defined in a similar way. A first-order definable
enrichment T ′ of T is complete if it is obtained by adding new
predicate symbols for all formulas of the signature σ. If T ′ is a
first-order definable enrichment of T , then T and T ′ have the same
models in the following sense: a model M of T admits a unique
σ′-enrichment to a model of T ′.
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Theorem 1.5. The complete first-order definable enrich-
ment of a theory T is a model-complete theory.

Models M0 and M1 of a signature σ are universally equiv-
alent if M0 � Φ ⇔ M1 � Φ for any universal sentence Φ of the
signature σ.

Proposition 1.6. If any two models of a model-complete
theory T are universally equivalent, then T is complete.

Owing to these assertions, it is reasonable to introduce the
following definition. Let T be a consistent theory of a signature σ.
A theory T ∗ ⊇ T of the signature σ is called the model completion
of T if T ∗ is a model-complete theory relative to T .

The existence of the model completion of an arbitrary the-
ory is not a trivial question. The following condition is sufficient
for existing the model completion of a universally axiomatizable
theory T of a finite signature. If M, M0, and M1 are models of
T and ϕ0: M → M0, ϕ1: M → M1 are isomorphic embeddings,
then there exists a model M∗ of T and isomorphic embeddings
ψ0: M0 → M∗, ψ1:M1 → M∗ such that ψ0ϕ0 = ψ1ϕ1. In this case,
the model completion T ∗ of T exists and is a complete countably
categorical theory admitting the quantifier elimination.

Consider types of models. Let T be a (consistent) theory
of a signature σ. Denote by Frn the set of all formulas of the
signature σ with free variables in {x0, . . . , xn−1}, n ∈ ω. Let Fn(T )
be the quotient set of Frn by the equivalence relation ηT defined
as follows: 〈ϕ,ψ〉 ∈ ηT � ∀x0 . . .∀xn−1 [(ϕ → ψ) & (ψ → ϕ)] ∈ T
for ϕ,ψ ∈ Frn. For ϕ ∈ Frn denote by [ϕ] the element of Fn(T )
containing ϕ. The following natural embeddings hold:

S0(T ) ⊆ S1(T ) ⊆ . . . , F0(T ) ⊆ F1(T ) ⊆ . . .

Remark. The set Fn(T ) can be regarded as a Boolean alge-
bra (cf. [40]) if [ϕ]+ [ψ] � [ϕ∨ψ], [ϕ], [ψ] � [ϕ & ψ], c[ϕ] � [¬ϕ],
0 � [∀x (x �= x)], and 1 � [∃x (x = x)].
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By an n-type of a theory T we mean any maxi-
mal T -inconsistent subset S ⊆ Frn (i.e., the sentence

∃x0 . . .∃xn−1

( k

&
i=1

ϕi

)
belongs to T for any ϕ1, . . . , ϕk ∈ S). If

M � T and a0, . . . , an−1 ∈ |M|, then S � {ϕ | ϕ ∈ Frn,
M � ϕ(a0, . . . , an−1)} is an n-type, called the type of the n-tuple
〈a0, . . . , an−1〉 of elements of M. If a type S of T is the type of
some n-tuple of elements of M, we say that S is realized in M.
Every n-type of a theory T is realized in some model of T .

An n-type S is principal if there exists a formula ϕ ∈ S,
called the complete formula of the type S, such that S is a unique
n-type containing ϕ. Let M be a model of a theory T , and let S
be an n-type of T . We say that M omits the type S if S is not the
type of any n-tuple of elements a0, . . . , an−1 of |M|. Any principal
type is realized in any model, but this is not true for nonprincipal
types in view of the omitting type theorem. As is known (cf. [16]),
if σ is an at most countable signature and S0, S1, . . . is a countable
family of nonprincipal types of a theory T , then there exists a
countable model M of T omitting all the types S0, S1, . . ..

If S is an n-type and k < n, then S ∩ Sk(T ) is a k-type.
Suppose that k < n, S is a k-type, S′ is an n-type, and S ⊆ S′.

The type S′ is principal over the type S if there exists a for-
mula ϕ ∈ S′ such that S′ is a unique n-type containing S ∪ {ϕ}.

There is the natural one-to-one correspondence between n-
types of a theory T and ultrafilters of Boolean algebras Fn(T ):
if U ⊆ Fn(T ) is an ultrafilter, then π−1(U) is an n-type, where
π: Frn → Fn(T ) is the natural projection.

Now, we can characterize countably categorical theories.

Theorem 1.7 ([16]). Let T be a complete theory of an at
least countable signature. The following assertions are equiva-
lent.

(a) T is categorical in countable power.

(b) For every n ∈ ω the theory T has finitely many n-types.

(c) For every n ∈ ω the set Fn(T ) is finite.
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A model M is homogeneous if for any a0, . . . , an−1, an,
b0, . . . , bn−1 ∈ |M| such that the types of the n-tuple 〈a0, . . . , an−1〉
and the n-tuple 〈b0, . . . , bn−1〉 coincide there exists an element b ∈
|M| such that the types of 〈a0, . . . , an−1, an〉 and 〈b0, . . . , bn−1, b〉
coincide.

One of the most pleasant properties of homogeneous count-
able models is presented by the following assertion (cf. the proof
in [16]).

Proposition 1.8. Let M0 and M1 be homogeneous count-
able models of the same signature. The following assertions are
equivalent.

(a) The models M0 and M1 are isomorphic.

(b) The same types are realized in M0 and M1.

Any prime model is homogeneous. Recall that a model M

of a theory T is prime if every model M′ of T has an elementary
submodel M0 isomorphic to M. Only finite principal types (if they
exist) are realized in a prime model. Therefore, a prime model is
unique up to an isomorphism.

We formulate an important sufficient existence condition for
prime models. A theory T of a signature σ is called a Henkin
theory if for any sentence of the form ∃x Φ(x) in T there exists a
constant c of σ such that Φ(c) ∈ T .

Proposition 1.9. Let T be a complete Henkin theory, and
let M be a model of T . The submodel M0 of M determined by the
set of the values of constants of σ is a prime model of T .

To formulate an existence criterion for prime models, we need
the following definition. A family S of types of a theory T of a
signature σ is dense if the following conditions hold.

• Let p ∈ S be an n-type, and let k � n. Then q � p∩Sk(T ) ∈
S. If τ : {x0, . . . , xn−1} → {x0, . . . , xn−1} is a permutation,
then [p]x0,...,xn−1

τx0,...,τxn−1
∈ S.
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• If p ∈ S is an n-type and ϕ(x0, . . . , xn) is a formula of the
signature σ such that ∃xn ϕ ∈ p, then there exists an (n+1)-
type q ∈ S such that p ∪ {ϕ} ⊆ q.

For a model M of a theory T we introduce the family S(M)
of types realized in M. The family S(M) is dense.

Using the Henkin construction, we can prove the following
assertion.

Proposition 1.10. If S is a dense countable family of types
of a complete theory T , then there exists an at most countable
model M of T such that every type realized in M belongs to S.

Corollary 1.11. A complete theory T of an at most count-
able signature σ has a prime model if and only if the family S0 of
all principal types of T is dense.

Remark. The assumption of Corollary 1.11 is equivalent to
the condition that every Boolean algebra Fn(T ), n ∈ ω, is atomic.

A saturated model is homogeneous. Denote by κ a cardinal.
A model M of a signature σ is said to be κ-saturated if for any
subset X ⊆ |M| of power less than κ, any 1-type of Th(M, X) is
realized in the model 〈M, X〉 obtained by the natural enrichment
of M to a model of the signature σX � σ∪〈ca | a ∈ X〉 (c〈M,X〉

a �
a). A countable ω-saturated model M of T is called a countably
saturated model of T .

The following criterion was established in [16].

Criterion 1.12 (existence of a countably saturated model).
A theory T has a countably saturated model if and only if the
Boolean algebra Fn(T ), n ∈ ω, is superatomic.

The following assertion describes the family of all types of
homogeneous countable models of a complete theory T .

Proposition 1.13. Let T be a complete theory. Then S is
a family of all types of T that are realized in some homogeneous
countable model of T if and only if S is a countable dense family
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of types possessing the following property: if p, q ∈ S are (n + 1)-
types such that p∩Frn = q∩Frn, then there exists an (n+2)-type
s ∈ S such that p ∪ [q]xn

xn+1
⊆ s.

1.2. Numberings

The theory of constructive models studies algorithmic properties
of algebraic structures. For this purpose, effective representations
of constructive models are considered and the study is based on
computability theory and the theory of algorithms and computable
functions. We refer to the monographs [103, 140, 146] for basic
methods and details of algorithm theory. In this section, we for-
mulate only the main results which will be used in the following
sections. We follow [140] in presentations of computable func-
tions.

By a numbering of a nonempty set S we mean any mapping ν
from N onto S. Let S0 and S1 be nonempty sets such that S0 ⊆ S1,
and let ν0 and ν1 be numberings of S0 and S1 respectively. We say
that the numbering ν0 is reduced to the numbering ν1 (and write
ν0 � ν1) if there exists a computable function f from N into N

such that ν0(n) = ν1f(n) for any n ∈ N. Numberings ν0 and ν1

are computably equivalent or equivalent (ν0 ≡ ν1) if ν0 � ν1 and
ν1 � ν0. In this case, S0 and S1 coincide. Numberings ν0 and ν1

are computably isomorphic (ν0 (
rec

ν1) if there exists a computable

permutation f of N such that ν0(n) = ν1f(n) for every n. Note
that ν0 (

rec
ν1 implies ν0 ≡ ν1. The converse assertion does not

hold in general.
On the class Num(S) of all numberings of a set S, the relation

≡ is an equivalence relation and the reducibility � induces a partial
order on the equivalence classes by ≡. Let

Num(S) = 〈Num(S)/≡,�〉.
If ν0 and ν1 are numberings of S0 and S1 respectively, then the
numbering ν0 ⊕ ν1 of the union S0 ∪ S1 is defined as follows: ν0 ⊕
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ν1(2n) = ν0(n) and ν0 ⊕ ν1(2n + 1) = ν1(n). If ν and µ are
numberings of S, then ν ⊕ µ is a numbering of S and determines
the least upper bound of the pair ν/≡, µ/≡ in Num(S). Thus,
Num(S) can be regarded as an upper semilattice.

For a language L and an interpretation intL of L on a set S
(intL: L → S) we say that a numbering ν0 of a subset S0 ⊆ S is
computable relative to intL if there exists a computable function f
from N into L such that ν0(n) = intL(f(n)) for any n ∈ N. If ν0 �
ν1, where ν1 is a computable numbering relative to intL, then ν0 is
a computable numbering relative to the same interpretation intL.
If ν0 and ν1 are computable numberings relative to intL, then the
sum ν0 ⊕ ν1 is also computable relative to the interpretation intL.
Thus, if an equivalence class contains some computable numbering
relative to intL, then any numbering of this class is computable
relative to the same interpretation intL.

Denote by R(S, intL) a submodel of Num(S) consisting of
classes containing numberings computable relative to intL. The
upper semilattice R(S, intL) is called the Rogers semilattice of
the class of numberings computable relative to intL. If ν is a
numbering of S and Ξ is some class of subsets of N<∞, then P ⊆
Sk is referred to as an Ξ-set provided that there exists a set A ∈ Ξ
such that P � {〈θn1, . . . , θn)k〉 | 〈n1, . . . , nk〉 ∈ A}.

Consider a family S of partial computable functions. For L
we take the language of Turing machines and for intL we take the
function intp.r.(M) computable by a Turing machine M . Thus, we
arrive at a standard computable numbering of partial computable
functions. In this case, we say that the numbering is computable.
Note that ν is computable relative to intp.r. if and only if there
exists a partial computable function g(n, x) such that ν(n) and
λxg(n, x) coincide for any n ∈ N.

Consider a family S of computably enumerable sets. For L
we take the language of Turing machines and for intL we take
the function intr.e.(M) � Dom (intp.r.(M)), where M is a Turing
machine. In this case, we again obtain the standard notion of a
computable numbering of computably enumerable sets (cf. [27]
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and [36]), i.e., a numbering ν of a family of computably enumer-
able sets is a computable relative to intr.e. if and only if the set
{〈x, y〉 | y ∈ ν(x)} is computably enumerable. A numbering com-
putable relative to intr.e. is referred to as computable. A family S
is computable if there is a computable numbering of S relative to
intr.e..

Let S be a family of total functions on N. Introduce the
topology βS on S as follows. For basis open sets we take sets of
the family

BS = {Vg | g is a finite part of some function in S},

where Vg � {f | f ∈ S, g ⊆ f}. The family S is discrete if the
topology βS is discrete, i.e., for any f ∈ S the finite part g of f
is such that Vg = {f}. The family S is effectively discrete if there
exists a strictly computable sequence of finite sets g0, g1, . . . , gn, . . .
such that Vgn

contains only one element of S for any n and any
element f ∈ S belongs to some Vgn

, n ∈ N. In this case, we say
that the family {gn | n ∈ N} distinguishes S and gn distinguishes
f ⊇ gn. Note that an effectively discrete family is discrete. We
say that a numbering ν of a set S is single-valued (or is a Fried-
berg numbering) if ν is bijective, i.e., ν(x) �= ν(y) for any x �= y
in N. A numbering ν of a set S is positive (negative) if the set
ην = {〈x, y〉 | νx = νy} (ην = {〈x, y〉 | νx �= νy}) is computably
enumerable. A numbering ν is solvable if it is positive and nega-
tive, i.e., ην is computable. A single-valued numbering is solvable.
A numbering ν of a set S is minimal if ν/≡ is a minimal ele-
ment of Num(S). Note that single-valued, solvable, and positive
numberings are minimal.

One can prove that the Rogers semilattice of a computable
nondiscrete family is infinite and, in the case of an effectively dis-
crete family, consists of a single element [36]. There exists a dis-
crete family with infinite Rogers semilattice (cf. [144]). As was
shown in [87], the Rogers semilattice of any computable family of
computably enumerable sets is infinite or has only one element.
Selivanov [144] proved that the effective discreteness is not neces-
sary for the Rogers semilattice to have only one element.



114 Sergei S. Goncharov

1.3. Models and Computability

Computability theory became play an important role in mathe-
matics when the notion of computability was rigorously formulated
and was applied by K. Gödel, A. Church, A. Turing, S. Kleene,
E. Post, and A. Markov to the decidability of classical mathemat-
ical problems and to the proof of the Gödel theorem about the
incompleteness of arithmetics.

In the XXth century, computability theory was rapidly de-
veloped. On the basis of results and methods of computability
theory, new applications of mathematics have been formed, such
as computer science, programing technology, automatization of
various processes, etc. This can be explained by the fact that the
computability approach suggests to represent an information in
terms of natural numbers. Here, we briefly describe how number-
ings can be used for representation of mathematical objects and
their structures.

Algorithmic properties of algebraic structures are naturally
formulated and solved in numbering theory. Consider numberings
of the basic sets of algebraic structures. Based on the standard
algorithm theory, we can study the decidability of relations on
elements with respect to numberings of such structures.

Consider a signature

σ = 〈P n0
0 , . . . , P nk

k , . . . ; F m0
0 , . . . , Fms

s , . . . ; c0, . . . , cn, . . .〉

such that there exist partial computable functions [n] and [m]
defined as follows: [n](i) = ni, where ni is the arity of the predicate
symbol Pi, and [m](i) = mi, where mi is the arity of the functional
symbol Fi. We also consider the signature

σ1 � σ ∪ 〈a0, a1, . . .〉

obtained from σ by adding constant symbols.
Let L and L1 be families of all formulas of the first-order

predicate calculus with equality (P0) of the signature σ and σ1

respectively. By a Gödel numbering of L1 we mean any numbering
γ: L1 → ω such that for a given γ-number we can effectively



Computability and Computable Models 115

construct a formula with this number and for a given formula of
L1 we can effectively find its γ-number.

Now, define the Gödel numbering of formulas and terms of
the signature σ. Note that the functions [n] and [m] from the
definition of σ exist if there are countably many predicate symbols
or functional symbols. If there are countably many symbols with
indices, it is required to recognize effectively the arity by the index.

We fix a set V of variables v0, v1, . . . , vn, . . . and introduce the
set Termσ(V ) of terms of the signature σ with variables in V and
the set Formσ(V ) of formulas in variables of V . The Gödel num-
bering γ is defined as the mapping γσ: Termσ(V )∪Formσ(V )@ >
1− 1 >> N such that we can effectively recognize a number of a
formula or a term and obtain some information about the struc-
ture of formulas and terms. Then we construct γ by induction on
the complexity of formulas. We begin with Termσ(V ):

(1) γ(vi) = c(0, c(0, i)),

(2) γ(ci) = c(0, c(1, i)) for i such that ci ∈ σ,

(3) if t has the form Fi(t1, . . . , tmi
), where Fi is an mi-ary

predicate symbol, and t1, . . . , tmi
have the Gödel numbers

γ(t1) = l1, . . . , γ(tmi
) = lmi

, then γ(t) = c(0, c((i +
2), cmi(l1, . . . , lmi

))).

It is obvious that the set of numbers of terms is computable.
If the number of a term is known, we can recognize variables and
their indices, as well as constants and their indices. Furthermore,
we can find the index of the operation and the numbers of those
subterms from which the term is constructed with the help of the
symbol of this operation.

Define γ on the set of formulas as follows:

(1) if t and q are terms and γ(t) = n, γ(q) = m, then γ(t = q) �
c(1, c(0, c(n,m))),

(2) if Pi is an ni-ary predicate symbol and t1, . . . , tni
are terms

with Gödel numbers γ(t1) = l1, . . . , γ(tni
) = lni

, then
γ(Pi(t1, . . . , tni

)) � c(1, c(1, c(i + 1, cni(l1, . . . , lni
)))) and

γ(t1 = t2) = c(1, c(1, c(0, c(l1, l2)))),
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(3) if ϕ and ψ are formulas with Gödel numbers γ(ϕ) = n and
γ(ψ) = m, then

γ((ϕ & ψ)) � c(1, c(2, c(n,m))),

γ((ϕ ∨ ψ)) � c(1, c(3, c(n,m))),

γ((ϕ → ψ)) � c(1, c(4, c(n,m))),

γ(¬ϕ) � c(1, c(5, n)),

γ((∃vi)ϕ) � c(1, c(6, c(i, n))),

γ((∀vi)ϕ) � c(1, c(7, c(i, n))).

By induction on the complexity of formulas, it is easy to
show that every formula of Formσ(V ) has a Gödel number. Fur-
thermore, we can recognize whether a given number is the Gödel
number of a formula and obtain an information about the struc-
ture of this formula, for example, about free variables constants,
the form of the formula, the presence of quantifiers, the complexity
of the prefix formed by quantifiers, and the numbers of formulas
that can be obtained by substitutions.

If the number of a formula is known, we can find the number
of the equivalent formula in prenex normal form.

With every subset S ⊆ L1 we associate the set γ(S) of
all numbers of formulas of S. A set S is said to be decidable
(enumerable) if γ(S) is computable (computably enumerable).

Choosing some hierarchy of the complexity of subsets of
N (for example, the arithmetic hierarchy, the analytic hierarchy
[140], the Ershov hierarchy [25, 26, 29, 36, 37], etc.), we say
that X belongs to the complexity class ∆ if γ(X) belongs to ∆.

For a given number n we can recognize whether a formula
with number n is an axiom of the first-order predicate calculus
PCσ. For a set of numbers we can recognize whether a given
formula can be obtained from a finite set of formulas with the cor-
responding numbers by some of the rules of PCσ. Hence we can
recognize whether a sequence of formulas with given Gödel num-
bers is a proof in PCσ. Thus, we arrive at the following assertion.
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Proposition 1.14. If a set of formulas is provable in PCσ

from an enumerable set, then it is enumerable.

Proposition 1.14 implies the following assertion.

Proposition 1.15. If the set of axioms A is enumerable,
then the theory TA � {ϕ | A � ϕ} is enumerable.

We define the principal computable numbering
p0(x0), . . . , pn(xn), . . . of the set of all enumerable partial
types consistent with a decidable theory T .

By a partial type p(x) of a theory T we mean the set of
formulas in variables of x such that the set p(x) ∪ T is consis-
tent. A numbering d0(x0), . . . , dn(xn), . . . of partial types of a
theory T is computable if d0, d1, . . . , dn, . . ., where di = {n | n
is the Gödel number of a formula in di}, is a computable number-
ing of computably enumerable sets and there exists a computable
function v such that v(n) is equal to the number of the tuple
〈i1, . . . , imn

〉 of indices such that xn = (vi1 , . . . , vimn
). A number-

ing p0(x0), . . . , pn(xn), . . . of partial types of a theory T is prin-
cipal if for every computable numbering d0(x′

0), . . . , dn(x′
n), . . . of

partial types of T there is a computable function f(n) such that
dn(x′

n) = pf(n)(xf(n)) for any n.
Consider the following sequence of finite sets:

∅ = p0
n(xn) ⊆ p1

n(xn) ⊆ . . . ⊆ pt
n(xn) ⊆ . . .

Let pn(xn) � ∪
t
pt

n(xn). For n we introduce i and k such that

c(i, k) = n. We regard i as the number of the ith computably
enumerable set Wi and k as the number of the tuple 〈i1, . . . , is〉
relative to numberings of all tuples of finite length. We set

W t
i � k � {m ∈W t

i | m is the Gödel number

of a formula in free variables with

indices in {i1, . . . , is} and number k},
pt

n(xn) � {ϕ | ϕ has the Gödel number in W m
l(n) � r(n)},
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where m is the maximal number less than t + 1 and such that the
set

T ∪ {ϕ | ϕ has the Gödel number in W m
l(n) � r(n)}

is consistent. Since T is decidable, the consistency condition is
decidable. Therefore, for n and t we can recognize whether a
formula belongs to pt

n(xn) and indicate its number, i.e., we can
list formulas in pt

n(xn). It is obvious that the Gödel numbers of
such formulas are less than t+1 because of the assumption on W t

n.
By the definition of pn on the basis of Wl(n) and the possibility

to compute exactly the set of free variables in a computable num-
bering of a family of finite types, as well as the fact that {Wn}n∈N

is a principal numbering, we conclude that pn is a principal num-
bering. Since the numbering {pn}n∈N is principal, we obtain the
following assertion.

Proposition 1.16. A family S of partial types of a the-
ory T is computable, i.e., there is a computable numbering
d0(x′

0), . . . , dn(x′
n), . . . such that S = {d0(x′

0), . . . , dn(x′
n), . . .} if

and only if there exists a computably enumerable set W such that
S = {pn(xn) | n ∈W}.

By a numbered model of the signature σ without functional
symbols we mean the pair (M, ν), where M = 〈M,P0, P1, . . .〉 is
a model of the signature σ and ν is a numbering of the basic
set M of the model M. By a homomorphism from a numbered
model (M0, ν0) into a numbered model (M1, ν1) we mean a map-
ping µ: M0 → M1 from the basic set M0 of the model M0 into
the basic set M1 of the model M1, i.e., a homomorphism from M0

into M1 and a morphism from (M0, ν0) into (M1, ν1).
For a numbered model (M, ν) we can construct a σ1-

enrichment Mν of M, i.e., a model of the signature σ1 whose basic
set is the basic set of M and predicates of σ in Mν coincide with
the corresponding predicates of M. Namely, for the value of the
constant ak, k ∈ ω, we take νk ∈M . We say that Th(M, ν) is the
elementary theory of Mν , i.e., the set of all closed formulas of the
signature σ1 that are true in Mν .



Computability and Computable Models 119

A numbered model (M, ν) is constructive if the set
D(M, ν) � {〈k, m1, . . . , mnk

〉 | M � Pk(νm1, . . . , νmnk
)} is com-

putable.
Let D(M, ν) = {ϕ(cm−1, . . . , cmk

| ϕ(x1, . . . , xmk
) be a

quantifier-free formula, and let M |= ϕ(νm1, . . . , νmk)}.
The following special class of constructive models plays an

important role in the study of decidable theories. A numbered
model (M, ν) is strongly constructive if Th(M, ν) is a decidable
theory. Models admitting strong constructivizations are said to
be decidable.

The constructibility of a numbered model (M, ν) is equiv-
alent to the decidability of the set of quantifier-free formulas in
Th(M, ν). Hence every strongly constructive model is construc-
tive.

However, in the case of arbitrary numbered models and alge-
bras, only numberings of algebras with effective operations are
of interest. We consider this case in more detail. Let σ =
〈fm0

0 , fm1
1 , . . .〉. If the signature σ is infinite, we assume that the

function h: n '→ mn is computable.
By a computable numbering of an algebra A = 〈A, g0, g1, . . .〉

of the signature σ we mean a numbering ν: ω → A of the basic set
of A such that there exists a binary computable function G such
that gn(νy1, . . . , νymn

) = νG
(
n, cmn(y1, . . . , ymn

)
)

for any n ∈ ω
and y1, . . . , ymn

.
The pair (A, ν) is referred to as a computable numbered alge-

bra if ν: ω → A is a numbering of A. It turns out that any algebra
admits a computable numbering.

Theorem 1.17 ([37]). Any at most countable algebra A ad-
mits a computable numbering of this algebra.

In this case, the complexity of this algebra depends only from
numbering equivalence of that numbering.

A computable numbered algebra (A, ν) is constructive (i.e., it
is a constructive model of the corresponding signature consisting
of only functions) if and only if the numbering ν is solvable.
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Let A = 〈A; P0, . . . , Pn; F0, . . . , Fk; c0, . . . , cs〉 be an algebraic
structure of a signature σ. If σ is infinite, the functions i → mi

and i→ ni are assumed to be computable. A pair (A, ν), where ν
is a mapping from N or from an initial interval of N to the basic set
A of A, is called a numbered structure and ν is called a numbering
of A.

Let K be a class of subsets and functions on N. For K we can
take, for example, one of the following classes:

• the class R of computable functions and relations,
• the class RA of computable relative to A functions and rela-

tions,
• the class PRIM of primitive computable functions and rela-

tions,
• the class P of relations and functions of the polynomial com-

plexity,
• the class exp of relations and functions of the exponential

complexity,
• the corresponding classes ∆0

α(Σ0,A
α ,Π0,A

α ) of relations and
functions of the arithmetic hierarchy relative to A,

• the corresponding classes ∆1
α(Σ1,A

α ,Π1,A
α ) of relations and

functions of the analytic hierarchy (relative to A),
• the corresponding classes ∆m−1

α (Σm−1,A
α , Σm−1,A

α ) of the Er-
shov hierarchy (relative to A) [25, 26, 29].

Let B be a set or a family of sets, and let A be an alge-
braic structure of a signature σ. A numbered structure (A, ν)
is said to be B-positive if ην � {(n,m) | νn = νm} and
ν−1(Pi) = {〈l1, . . . , lmi

〉 | 〈νl1, . . . , νlmi
〉 ∈ Pi}, i � n, are com-

putably enumerable with respect to a set in B or with respect to
the entire set B and there exist B-computable functions fi, i � k,
such that νfi(l1, . . . , lni

) = Fi(νl1, . . . , νlni
) for all l1, . . . , lni

∈ N.
A B-positive structure (A, ν) is said to be B-constructive if ην

and ν−1(Pi) are B-computable. If the signature σ is infinite, it is
necessary to require the uniform computable numbering [100].
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To study algorithmic properties of models, we need an al-
gorithm checking the truth of formulas. We define the relative
constructibility and strong constructibility. Let B be a class of
subsets of N. Suppose that a quantifier-free formula has no al-
ternating groups of quantifiers and a formula Φ has n alternating
groups of quantifiers if the prenex normal form of Φ has n alter-
nating groups of quantifiers. Denote by Fn the set of formulas
possessing n alternating groups of quantifiers and by Fω the set
of all formulas, called fragments (of the language). The sets Fn

are called restricted fragments (of the language). Let F be a set of
formulas of a signature σ. A numbered structure (A, ν) is said to
be B-F-constructive or F-constructive relative to B if the following
set belongs to B:

{〈s, l1, . . . , lk〉 | s is the number of a formula Φ(x1, . . . , xk)

in F with k free variables and A |= Φ(νl1, . . . , νlk)}.

It is easy to see that a structure is F0-constructive relative to B
if and only if it is B-constructive. For the sake of brevity, we
write F-constructive in the case of the F-constructibility relative
to the class of computable relations and B-constructive in the case
F = F0. If F = F0 or B = ∅, we omit F or B in the notation.

B-Fω-constructive structures are said to be strongly B-
constructive or B-ω-constructive, whereas B-Fn-constructive struc-
tures are referred to as B-n-constructive .

We describe the other approach. Let A be an algebraic struc-
ture of a signature σ such that the basic set A is a subset of N.
Then it is reasonable to consider the effectiveness of different re-
lations without any mention of numbers.

An algebraic structure A is said to be B-computable if
the basic predicates and operations of A belong to a class B.
For many computability classes B an abstract structure is B-
constructivizable if and only if it is isomorphic to a B-computable
structure. For a B-constructive structure we can effectively con-
struct a B-computable structure relative to B provided that we
can choose exactly one number in every set of the numbers of
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elements. We can pass from a B-computable structure to a B-
constructive structure by using the B-computable function that
enumerates the basic set of the B-computable model. Then we
can define the B-constructivization of this structure.

Similarly, for F-constructive structures relative to B we can
define B-F-computable models. If a model is isomorphic to a B-Fω-
computable model, then it is B-decidable. In the case B ⊆ N, the
class of B-computable sets is denoted by B(B). We say that B(B)-
F-computable (B(B)-F-constructive) structures are F-computable
(F-constructive) relative to B.

We give the most important examples of relatively com-
putable models. Assume that the language is computable and
the basic set is a subset of ω. We identify a structure A with its
atomic diagram D(A) and sentences with their Gödel numbers.
In this case, we say that A is computable (arithmetical or hyper-
arithmetical) if D(A), regarded as a subset of ω, is computable
(arithmetical or hyperarithmetical).

We say that a model has constructivization or admits a com-
putable (arithmetical or hyperarithmetical) representation if there
exists an isomorphic computable (arithmetical or hyperarithmeti-
cal) model. If for an abstract model there exists an isomorphic
(arithmetical or hyperarithmetical) decidable model, then we say
that this model has a decidable representation with respect to the
class of (arithmetical or hyperarithmetical) sets.

Let (A, ν) and (B, µ) be numbered models, and let ϕ: A→ B

be a homomorphism. We say that ϕ is C-computable if there exists
a C-computable function f such that ϕν = µf , i.e., the following
diagram is commutative:

N
f→ N

ν ↓ ↓ µ

A
ϕ→ B

In this case, the function f represents ϕ and ϕ is called a C-
homomorphism. If there exists a C-computable isomorphism ϕ
from (A, ν) into (B, µ), then (B, µ) is called a C-extension of
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(A, ν) with respect to ϕ. If A ⊆ B and the identity embedding of
A in B is C-computable, then (B, µ) is a C-extension of (A, ν).

Let (N, ν) and (N, µ) be numbered algebraic structures. Re-
call that numberings ν and µ of N are computably equivalent if
there exist computable functions f and g such that ν = µf and
µ = νg. For constructivizations ν and µ it suffices to require the
existence of only one computable function f such that ν = µf .
We note that if there is the continual group of automorphisms
of a constructivizable structure A, then there is the continuum of
noncomputable equivalent constructivizations. Thus, for an atom-
less Boolean algebra we have the continuum of noncomputable
equivalent constructivizations, although it has simple algorithmic
structure. However, we consider abstract structures up to an iso-
morphism. The definition of the autoequivalence introduced by
Mal’tsev [101] turns out to be more suitable in this situation.
Two numberings ν and µ of an algebraic structure are autoequiv-
alent if they are computably equivalent up to an automorphism,
i.e., there exists an automorphism ϕ of A such that ϕν and µ are
computably equivalent.

The questions on nonequivalent representations and their
classification are important in the study of constructive structures.
Within the framework of the above approaches, we can investigate
the same properties by choosing a suitable language. In fact, the
above approaches are equivalent. To demonstrate this fact, we
show that the corresponding categories are equivalent.(for cate-
gory theory we refer to [12] and [36]).

We consider the category Num of all numbered models with
homomorphisms for morphisms and the category Nat of all models
whose basic sets are subsets of N and morthisms are computable
homomorphisms. Let (M, ν) be a numbered model. We define
the value of the functor Com on (M, ν) by setting Com (M, ν) �
(NM, Σ), where

NM � {n | n is the least number of νn},
P � {〈n1, . . . , nk〉 ∈ NM |M |= P (νn1, . . . , νnk)},
F (n1, . . . , nk) � min{m | F (νn1, . . . , νnk) = νm}.
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If ϕ is a homomorphism from (M, ν) into (N, µ), then

Com (ϕ) � {〈n,m〉 | n ∈ NM,m ∈ NN, and ϕ(νn) = µm}.

Note that Com (ϕ) is a homomorphism from Com (M, ν) into
Com (N, µ).

Remark. M and Com (M, ν) are isomorphic.

Remark. If ϕ is an isomorphism, then Com (ϕ) is also an
isomorphism.

We define the functor K from Nat into Num by setting
K (M) � (M, ν), where ν is a numbering of |M| in ascending
order. If |M| is finite, then all the numbers which do not appear
in this numbering go to the last element (with respect to the num-
bering of M). As a result, we obtain a numbering ν which will be
denoted by νK.

Remark. The functor Com determines an equivalence be-
tween the categories Num and Nat.

Consider the subcategory ConB of Num consisting of B-
constructive models with B-computable homomorphisms for mor-
phisms. We also consider the subcategory ComB of Nat consisting
of B-computable models with B-computable homomorphisms for
morphisms.

Theorem 1.18. The restriction ComB of the functor Com
to the subcategory ConB determines an equivalence between ConB

and ComB.

Proof. It is easy to verify that if (M, ν) is B-constructive,
then the model Com (M, ν) is B-computable. Since the basic sets
are B-computable and there exists a B-computable function f
such that ϕν = µf , we conclude that Com ϕ is a partial B-
computable function with B-computable graph. The restriction
ComB of Com to ConB acts from ConB into ComB. There exist
isomorphisms ϕ: 1ConB → Com K and ψ: 1ComB → K Com such
that Com ϕ = ψ Com. �
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Corollary 1.19. Numbered models (N, ν) and (M, µ) are
isomorphic if and only if Com(N, ν) and Com(M, µ) are isomor-
phic.

Corollary 1.20. B-constructive models (N, ν) and (M, µ)
are B-isomorphic if and only if Com(M, µ) is B-isomorphic to
Com(N, ν).

Thus, the study of constructivizations of a model M, defined
up to an autoequivalence, is equivalent to the study of computable
models isomorphic up to a computable isomorphism to M. Conse-
quently, if ν and µ are constructive models of M, then Com (M, ν)
and Com (M, µ) are computable models isomorphic to M; more-
over, ν and µ are autoequivalent if and only if Com (M, ν) and
Com (M, µ) are computably isomorphic and for any computable
model N isomorphic to M there exists a constructivization ν of
M such that Com (M, ν) and N are computably isomorphic.

Let M = 〈M,P n0
0 , . . . , P nk

k , a0, . . . , as〉 be a finite model of
a finite signature σ without functional symbols, and let ν be a
mapping from [0, n] = {i | 0 � i � n} onto M . The pair (M, ν) is
called a finitely numbered (n-numbered) model.

With every finite signature σ = 〈P n0
0 , . . . , P nk

k , a0, . . . , as〉 we
associate the number 〈〈〈0, n0〉, . . . , 〈k, nk〉〉, s〉, ni � 1. We ex-
tend σ by constant symbols c0, . . . , cn, . . . and define the (n + 1)-
diagram D(M, ν) of (M, ν) by constructing the enrichment Mn

of M to a model of the signature σn = σ ∪ {c0, . . . , cn}. For
this purpose, assume that the value of ci is equal to νi, i � n, and
D(M, ν) = {ϕ | ϕ is an atomic formula of the signature σn without
free variables or the negation of such a formula and Mn � ϕ}. Let
GD(M, ν) be the set of the Gödel numbers of formulas in D(M, ν).
The number 〈n, 〈〈〈0, n0〉, 〈1, n1〉, . . . , 〈k, nk〉〉, s〉, u〉, where u is the
canonical number of the finite set Du = GD(M, ν), is called the
Gödel number of the numbered finite model of the finite signa-
ture σ. Such models are called finitely numbered models and their
numbers are referred to as the Gödel numbers.

A numbering of finitely enumerable models possess the fol-
lowing obvious properties.
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〈1〉 The set of the Gödel numbers of finitely numbered models is
computable.

〈2〉 For a given Gödel number of a finitely numbered model (M, ν)
it is possible to compute the number of elements of |M|.

〈3〉 For a given Gödel number of a finitely numbered model it
is possible to compute how many predicate symbols and con-
stant symbols are contained in σ and compute the arity of all
predicate symbols.

〈4〉 For two Gödel numbers of finitely numbered models it is pos-
sible to recognize whether these models can be considered in
the same signature.

〈5〉 The set of numbers of finite signatures is computable.

〈6〉 For numbers n and m it is possible to recognize whether a
finitely numbered model with number n is a model of the sig-
nature with number m.

〈7〉 For numbers n and m it is possible to recognize whether
a finitely numbered model with number n of the signature
σ = 〈P n0

0 , . . . , P nk

k , a0, . . . , as〉 has an enrichment to a finitely
numbered model of the signature σ′ with number m.

A finite n-numbered model (M, ν) is called an extension of a
k-numbered model (N, µ) if k � n, the models M and N are of the
same signature, and the set {〈ν(i), µ(i)〉 | i � k} is an isomorphic
embedding of M in N.

〈8〉 For numbers n and m it is possible to recognize whether a
finitely numbered model with Gödel number m is an extension
of a finitely numbered model with Gödel number n.

An n-numbered model (M, ν) of the signature σ =
〈P n0

0 , . . . , P nk

k , a0, . . . , as〉 is called an enriched extension
of a k-numbered model (N, µ) of the signature σ′ =
(P m0

0 , . . . , P
mr′
r′ , a0, . . . , as′) if k � n, s′ � s, r′ � r and, for any

0 � i � r′, the arity mi of the predicate Pi is equal to the ar-
ity ni of the predicate Pi; moreover, {〈µ(i), ν(i)〉 | i � k} is an
isomorphism from N into M � σ.
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〈9〉 For n and m it is possible to recognize whether a model with
Gödel number n is an enriched extension of a finitely num-
bered model with Gödel number m.

For a numbered model (M, ν) of the signature σ =
〈P n0

0 , . . . , P nk

k , . . . , a0, . . . , as, . . .〉 we set Mn = {νi | i � n}, n ∈ N,
and consider σn = 〈P n0

0 , . . . , P nr
r , ai1 , . . . , aik

〉, where r = n if σ
contains at least n predicates and r is the number of predicates of
σ otherwise. The set {i1, . . . , ik} consists of the indices i of con-
stants ci of σ such that i � n and the value of ci belongs to Mn.

Let Mn be a submodel of the restriction M � σn with the basic
set Mn. Finitely numbered models (Mn, νn), where νn(k) � ν(k),
k � n, are called finitely numbered submodels of (M, ν). Denote
by (eM, ν) the set of the Gödel numbers of finitely numbered sub-
models of (M, ν). The set W (M, ν) is called the representation of
(M, ν).

Proposition 1.21. A numbered model (M, ν) is constructive
if and only if W (M, ν) is computably enumerable.

By Proposition 1.21, it is possible to construct a univer-
sal computable numbering of all constructive and all computable
models of a fixed signature without functional symbols.

The empty model of the empty signature with the empty
numbering, as well as n-numbered models, is constructive. For a
given set W (M, ν) we define a model M and a numbering ν as
follows. Let M 0

W = {ci | there exists the Gödel number of an n-
numbered model in W (M, ν) and i � n}. Introduce an equivalence
relation on M0

W as ci ∼W cj if ci = cj occurs in the diagram of
some n-numbered model with number in W (M, ν). Let MW be
the quotient set M0

W /∼W . We set νW (i) = ci/∼W , where i ∈M0
W ,

and νW (i) = aj for a constant of the signature σ of the model
M if ci = aj occurs in the diagram of some n-numbered model
with number in W . We set Pi(νW n0, . . . , νW nk) if Pi(cn0 , . . . , cnk

)
occurs in the diagram of some n-numbered model with number
in W .
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Thus, we obtain a model MW of the same signature as M.
We also define the numbering νW . Setting ϕ

(
ci/∼

)
� νi, we con-

clude that ϕ is an isomorphism between (MW , νW ) and (M, ν);
moreover, ϕ is the identity mapping on numbers. If W (M, ν) is
computable, then (MW , νW ) is constructive. The converse asser-
tion is obvious.

Let us consider a finite signature σ without functional sym-
bols and define a numbering κσ of all constructive models of the
signature σ. For this purpose, we consider the principal number-
ing {Wn}n∈N of all computably enumerable subsets of N. As usual,
W t

n is the part of Wn which was already numbered at the step t.
We recall that we enumerate only x < t in W t

n. For Wn we con-
struct Vn as follows. Let V 0

n = ∅. At the step t + 1, we verify the
following conditions:

(a) any element of W t+1
n is the Gödel number of some k-model

of the signature σ,
(b) for any x, y ∈W t+1

n one of finitely numbered models with the
Gödel numbers x and y is an extension of the other.

We set V t+1
n � V t

n if conditions (a) and (b) are not satisfied.
Otherwise, we set V t+1

n � V t
n ∪ W t+1

n . The sequence {Vn}n∈N,
where Vn = ∪V t

n , is computable. Consequently, there is a com-
putable function ρ such that Vn = Wρ(n) for any n. Furthermore,
Wρ(ρ(n)) = Wρ(n) for any n.

It is easy to see that every set Vn is computably enumerable
and represents some constructive model. By the above results,
we can restore the constructive model MVn

and constructivization
νVn

.
We set κσ(n) � (MVn

, νVn
) and write Mκ

n instead of MVn

and νκ

n instead of νVn
. It is easy to see that κσ(n) enumerates all

constructive models of the signature σ including finitely numbered
models and the empty model as well. Assume that σ is infinite and
the function i→ ni is computable, where ni is the arity of the ith
predicate symbol. Arguing as above, we obtain W (M, ν) and the
numbering κσ of all constructive models of the signature σ and
finite constructive models of finite parts of σ if, in the construction
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of Vn, finitely numbered models are models of the initial segments
of the signature σ and the enriched extension condition is used
instead of the extension condition.

The notion of a computable sequence of constructive models
is often used (cf., for example, [22, 34, 37]).

Definition 1.22. A sequence of constructive models
(M0, ν0), . . . , (Mn, νn), . . . is computable if the models are uni-
formly constructive, i.e., all computable functions of numbers of
constants and indices of computable functions defining basic op-
erations and predicates on numbers of elements can be computed
for (Mn, νn) from computable functions by the number n.

Using the idea of numberings of sets, we can define, up to a
recursive isomorphism, a numbering of any class S of constructive
models.

Definition 1.23. A numbering ν of models in S is
called a computable numbering of class S if the sequence
(M0, ν0), . . . , (Mn, νn), . . . of constructive models in S is com-
putable, where (Mn, νn) is a model with number n in the num-
bering ν (ν(n) = (Mn, νn)) and for any constructive model (M, µ)
in S there exists n such that (M, µ) and (Mn, νn) are computably
isomorphic.

A computable sequence of computable models is defined in a
similar way.

Definition 1.24. A sequence M0, . . . ,Mn, . . . of computable
models is computable if the models are uniformly computable, i.e.,
all computable functions of constants and the indices of com-
putable functions defining basic operations and predicates are
computed for the models Mn from computable functions by the
number n.

Using again the ideas of numberings of sets, we can define,
up to a recursive isomorphism, a numbering of any class S of
computable models.
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Definition 1.25. A numbering ν of models in S is called a
computable numbering of class S if the sequence M0, . . . ,Mn, . . . of
computable models in S is computable, where Mn is a computable
model with number n in the numbering ν (ν(n) = Mn) and for
any computable model M in S there exists n such that M and Mn

are computably isomorphic.

Proposition 1.26. A sequence (M0, ν0), . . . , (Mn, νn), . . . of
constructive models is computable if and only if there exist com-
putable functions f and g such that (Mn, νn) and κ(f(n)) are
computably isomorphic for every n and the number g(n) of the
computable function κg(n) defining this computable isomorphism
is computed by g from n, i.e., for ϕn(νn(m)) � νκ

f(n)(κg(n)(m)),
ϕn is an isomorphism from Mn onto Mκ

f(n), where κn is the uni-
versal numbering of all partial computable functions.

Theorem 1.27. The sequence (Mκ

n , νκ

n ) of constructive mod-
els is computable.

The proof is based on the construction and definition of a
computable sequence. Indeed, for (Mκ

n , νκ

n ) and n we can find the
diagram Vn = W (Mκ

n , νκ

n ).
Let α = {〈Mn, νn〉} and β = {(Nn, µn)} be numberings of

numbered models. We say that α is reduced to β if there ex-
ists a computable function f such that the constructive models
(Mn, νn) and (Nf(n), µf(n)) are computably isomorphic (in the
sense of constructive models). The reduction of α to β is de-
noted by α � β. We say that α is effectively reduced to β if
there exist computable functions f and g such that for any n the
function κg(n) defines an isomorphism from a constructive model
(Mn, νn) onto the numbered model (Nf(n), µf(n)), i.e., the map-
ping ϕn(νn(m)) � µf(n)(κg(n)(m)) is well defined and realizes an
isomorphism between Mn and Nf(n).

Similarly, based on general ideas of numbering theory, we can
define the reducibility for numbering of computable models.

Let α = {Mn, n ∈ ω} and β = {Nn, n ∈ ω} be number-
ings of models. We say that α is reduced to β if there exists a
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computable function f such that the constructive models (Mn, νn)
and (Nf(n), µf(n)) are computably isomorphic (in the sense of com-
putable models). The reduction of α to β is denoted by α � β.
We say that α is effectively reduced to β if there exist computable
functions f and g such that for any n the function κg(n) is an
isomorphism from a model Mn onto the model Nf(n), i.e., the
mapping ϕn(νn(m)) � µf(n)(κg(n)(m)) is well defined and realizes
an isomorphism between Mn and Nf(n).

The following assertion follows from definitions.

Proposition 1.28. If a numbering (Mn, νn), n ∈ N, of num-
bered models is effectively reduced to a computable numbering of
constructive models (Nn, µn), n ∈ N, then (Mn, νn), n ∈ N, is a
computable numbering of constructive models.

From the construction of numberings of constructive models
κσ(n) � (MVn

, νVn
) we obtain an important result due to Nur-

tazin about the existence of a universal computable numbering
of constructive models and the existence of universal computable
numbering of all computable models from the existence of a func-
tor between categories.

Theorem 1.29 ([130]). There exists up to a recursive iso-
morphism a universal computable numbering of all constructive
models of a computable signature without functional symbols i.e.,
a computable numbering (Mn, νn), n ∈ N, of constructive models
of the fixed structure such that any other computable numbering of
constructive models of the same signature is reduced to this num-
bering.

Corollary 1.30 ([130]). There exists up to recursive isomor-
phism a universal computable numbering of all computable models
of a comuptable signature without functional symbols i.e., a com-
putable numbering Mn, n ∈ N, of computable models of this fixed
signature to which is reduced any other computable numbering of
computable models of the same signature.
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1.4. Perspective directions in the theory of computable
models

We list the most important topics for the future development of
the theory of computable models (cf. also [39]).

1. One of the main problem is connected with existence of com-
putable representations. In particular, this approach is pre-
sented in [40, 37, 3, 5, 7, 13, 17, 28, 31, 32, 33, 35, 39,
43, 47, 53, 54, 57, 59, 65, 68, 69, 74, 76, 81, 83, 84,
85, 90, 92, 96, 100, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,
125, 129, 130, 132, 133, 134, 135, 136, 138, 150, 151,
152, 154].

2. The second approach is connected with the nonuniqueness of
computable representations and algorithmic dimension (with
some special properties). In particular, it is represented in
[1, 5, 8, 10, 18, 23, 32, 35, 37, 39, 40, 44, 45, 46, 48,
49, 54, 57, 60, 67, 63, 64, 65, 72, 75, 101].

3. Interesting problems on the classification of computable mod-
els relative to structures connected with computable models.
[40, 39].

4. Computable classes of models in the light of the above two
approaches. The computability of families of computable rep-
resentations and the computability of classes of computable
models were studied in [40, 39, 1, 66, 14, 21, 22, 37, 45,
56, 58, 67, 85, 91, 92, 130].

5. Another class of problems connected with the classification
of algorithmic problems with respect to complexity (cf., for
example, [1, 2, 3, 5, 10, 13, 14, 37, 39, 40, 42, 43, 44,
54, 55, 56, 57, 62, 68, 72, 70, 75, 89, 82, 147, 148]).

6. There exists a closed connection between definability and
complexity. An approach based on this fact was used in many
papers, for example, [1, 5, 6, 10, 13, 14, 38, 39, 40, 42, 43,
58, 62, 66, 71, 70, 75, 77, 89, 127, 99, 147, 148, 154].
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2. Bounds for Computable Models

Bounds for computable models are used for describing various
mathematical constructions. We consider bounds for theories of
computable models and the complexity of some models. We also
examine the structure bounds from the point of view of the com-
plexity of descriptions of computable models in a language with
infinite disjunctions and conjunctions.

2.1. Bounds for the theory of computable models

By definition, the theory of a decidable model is decidable. We
establish the existence of computable models satisfying a given
specification in the language of the first-order predicate calculus.

Theorem 2.1 ([32, 152]). A decidable consistent theory T
possesses a decidable model.

The situation is rather complicated if additional model-
theoretic properties are required. Goncharov–Nurtazin and Har-
rington independently proved the following assertion for prime
models.

Theorem 2.2 ([65, 74]). A decidable complete theory T pos-
sesses a decidable prime model if and only if there exists an algo-
rithm that for any formula consistent with T produces a principal
type of the theory containing this formula.

Morley proved the existence theorem for saturated models
and posed the decidability problem for homogeneous models.

Theorem 2.3 ([125]). A decidable complete theory T pos-
sesses a decidable saturated model if and only if the set of all types
of T admits a computable numbering.

Goncharov [52] and Peretyat’kin [136] independently found
the decidability criteria for homogenous models. Goncharov [53]
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constructed an example of a totally transcendental decidable the-
ory without decidable homogeneous models.

Problem 1 (Goncharov). Whether there exists a decidable
homogeneous model, determined up to an isomorphism, for an ar-
bitrary decidable theory with countably many countable models?

The situation is quite simple in the case of countably cate-
gorical theories.

Definition 2.4. A theory T is countably categorical if T has
a unique up to an isomorphism countable model.

Within the framework of model theory, countably categori-
cal theories and models of such theories have been well studied.
The following assertion is a simple consequence of the effective
completeness theorem.

Theorem 2.5. A countably categorical theory T is decidable
if and only if all models of T are decidable, which holds if and only
if T has a decidable model.

Thus, if we are interested in decidable models of countably
categorical theories, an answer can be obtained in terms of decid-
ability. However, the situation essentially changes for computable
models.

If a theory T possessing a computable model is computable
in 0ω, then the degree of the ω–jump of a computable set is 0ω.
This bound is sharp because there exists a theory (for example,
the theory of (ω, +,×,�)) possessing a computable model that is
Turing equivalent to 0ω.

Theorem 2.6. If A is a computable model, then the theory
Th (A∗) is 0ω–decidable and the theory Th Σn+1(A∗) is computably
enumerable in 0n uniformly with respect to n, where A∗ is an
extension of A by constants.

Corollary 2.7. If A is a computable model, then the theory
Th (A∗) is 0ω–decidable.
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These results suggest the following interesting problem.

Problem 2. Find necessary and sufficient conditions for the
existence of computable models.

Our goal is to find natural sufficient conditions for the ex-
istence of computable models of given theories and to determine
bounds for the complexity under different classifications of the
complexity degrees of theories. Consider some special classes of
theories.

2.1.1. Computable countably categorical models.

For countably categorical theories the question is trivial: All
countable models of a countably categorical theory are decidable
if and only if the theory is decidable. Naturally, the situation
becomes much more complicated if we require the computability
condition.

Problem 3. Characterize countably categorical theories pos-
sessing computable models.

Lerman and Schmerl [96] presented a sufficient condition for
an arithmetic countably categorical theory to have a construc-
tive model. More precisely, they proved that if T is a countably
categorical arithmetic theory such that the set of all sentences be-
ginning with the existential quantifier and having n + 1 groups of
quantifiers of the same type (Σn+1–formulas) is Σ0

n for every n,
then T has a constructive model.

It would be useful to weaken this condition, say, as follows:
“the set of all sentences beginning with the existential quantifier
and having n + 1 groups of quantifiers of the same type (Σn+1–
formulas) is Σ0

n+1 for every n.”

Problem 4. Whether a countable model is 1-computable
under the Lerman–Schmerl condition?

Knight [90] generalized the result to the case of non-
arithmetical countably categorical theories. However, none of the
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mentioned results solves the problem. We do not even know any
example of a theory satisfying this sufficient condition for suffi-
ciently large n. Knight conjectured the existence of arithmeti-
cal and non-arithmetical countably categorical theories with com-
putable models. An answer to this conjecture is contained in the
following assertions which develop general methods for construct-
ing computable models from arithmetical models with preserving
some model-theoretical properties.

Theorem 2.8 ([68]). For every n � 1 there exists a count-
ably categorical theory of Turing degree 0n possessing a computable
model.

Theorem 2.9 ([43]). For every arithmetical Turing degree
d there exists a countably categorical theory of Turing degree d
possessing a computable model.

The proof of the following assertion about the existence of
a non-arithmetic countably categorical theory with computable
models was based on the ideas of [68] and [43].

Theorem 2.10 (Fokina, Goncharov, Khoussainov). There
exists a countably categorical theory T with a computable model
such that the Turing degree of T is non-arithmetical.

Having an answer to the question in Problem 5 below, it
would be possible to obtain a complete description of the Turing
degrees of countably categorical theories possessing computable
models.

Problem 5. Is it true that for every Turing degree d �
0(ω) there exists a countably categorical theory of Turing degree d
possessing a computable model?

2.1.2. Computable uncountably categorical models.

Here, we deal only with models of uncountably categorical theo-
ries.
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Morley proved that a theory is categorical in uncountable
power α if and only if the theory is categorical in uncountable
power ω1. Among typical examples of uncountably categorical
theories, there are the theory of algebraically closed fields of fixed
characteristic, the theory of vector spaces over a fixed countable
field, the theory of the structure (ω, S), where S is the successor
function on ω. Roughly speaking, all countable models of each
of these theories can be listed into an ω + 1 chain so that the
first element is the prime model, the last element is the saturated
model, and any two models are embedded each other. Apparently,
it is one of the main structural properties of the class of models of
an uncountably categorical theory.

Baldwin and Lachlan [9] showed that all models of an un-
countably categorical theory T can be listed in the following chain
of elementary embeddings:

chain (T ) : A0 	 A1 	 A2 	 . . .Aω,

where A0 is the prime model of T , Aω is the saturated model of
T , and every Ai+1 is prime over Ai.

Assume that a theory T is decidable. In the general case, the
decidability of T does not imply the decidability of all models of
T . However, the following important result on decidable models
of T was established by Harrington and Khisamiev.

Theorem 2.11 ([74, 83, 84]). Let T be an uncountably cate-
gorical theory. Then T is decidable if and only if T has a decidable
model, which holds if and only if all models of T admit decidable
presentations.

The situation is similar to that for countably categorical the-
ories. Theorem 2.11 mainly answers to the question about the ex-
istence of decidable models of uncountably categorical decidable
theories. However, it does not clarify how to build computable
models of uncountably categorical theories if the decidability as-
sumption is omitted. Correspondingly, the following problem is
actual.
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Problem 6. Characterize uncountably categorical theories
possessing computable models.

The case of uncountably categorical theories is more com-
plicated. In general, the existence of a computable model of an
uncountably categorical theory T does not imply that all models
of T admit constructivizations. As was shown by Goncharov [47],
there exists an uncountably categorical theory T such that only
the prime model of T is computable.

Problem 7. Is it true that any countable model of a strongly
minimal theory possessing a computable prime model is 02–
computable?

Problem 8. Whether there exists an ω1–categorical theory
T such that the model M0 is computable, but any other model
Mn+1, i = 2, 3, . . ., is not 0i-computable?

It is remarkable that all known uncountably categorical the-
ories possessing computable models were regarded as computable
in the double jump of 0 recently. But, at present, some of such
theories are not viewed as computable owing to the lowering of the
complexity of models preserving the basic model-theoretic prop-
erties. New theories with a given arithmetic complexity were con-
structed by the method suggested in [68].

Theorem 2.12 ([68]). There exist uncountably categorical
theories Tn of Turing degree 0n, n > 2, such that all their models
admit constructivizations.

Theorem 2.13 ([43]). For every arithmetical Turing degree
d there exists an uncountably categorical theory T of Turing degree
d such that any countable model of T is isomorphic to a computable
model.

In the case of a special subclass of noncountably categori-
cal theories (for example, strongly minimal theories with trivial
pregeometry), an arithmetical bound holds for the complexity of
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such theories [61]. The sharpness of this bound was later proved
by Khoussainov, Lempp, and Solomon. We consider this special
case in more detail because of a new unexpected property allow-
ing us to derive bounds for the complexity of such theories. A
natural question arises: If the above results can be extended to
the class of all strongly minimal theories or to some a sufficiently
large subclass of such theories?

Definition 2.14. A formula ϕ(x) is a strongly minimal for-
mula of a complete theory T if for any model M of T , elements b
ofM, and a formula ψ(x, y) one of the sets {a|M � ψ(a, b)&ϕ(a)}
or {a|M � ¬ψ(a, b)&ϕ(a)} is finite.

If ϕ(x) is strongly minimal formula of a complete theory T ,
then for any model M of the theory T it is possible to define an
operator of cl(X) from the set P (ϕ(M)) of all subsets ϕ(M) to
P (ϕ(M)).

Let ϕ(M) 
 {a|Mϕ(a)}, and let X be a subset of ϕ(M).
We set cl(X) 
 {a | there exists a formula θ(x) such that M |=
θ(a) and the set θ(M) is finite}. Let ϕ(x) be a strongly minimal
formula of a complete theory T , and let M be a model of T . The
cardinality of any maximal independent subset Y of the model
ϕ(M) is called the dimension of the modelM of T and is denoted
by dim (M).

Baldwin and Lachlan [9] found a remarkable property of the-
ories categorical in uncountable power, owing to which it becomes
possible to clarify globally the structure of all models of such the-
ories.

Theorem 2.15 ([9]). Let T be a complete uncountably cate-
gorical theory. Then there exists a complete formula ρ(z) and con-
stants c such that T ∗ 
 T ∪{ρ(c)} is a complete theory (principal
expansion of T ) and there exists a strongly minimal formula ϕ(x)
of the theory T ∗.
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Theorem 2.16 ([9]). Let M1 and M1 be models of a com-
plete theory T with strongly minimal formula. If dim (M1) =
dim (M2), then the models M1 and M1 are isomorphic.

Consider a natural subclass of theories categorical in un-
countable power.

Definition 2.17. A theory T is strongly minimal if the for-
mula x = x is strongly minimal in T .

Definition 2.18. A model M is strongly minimal if the the-
ory TH(M) is strongly minimal.

Definition 2.19. We say that a strongly minimal theory T
has trivial pregeometry if for any model M of T and any subset
X of the universe of M the following equality holds: cl(X) =
∪a∈Xcl{a}.

Theorem 2.20 ([61]). Let M be a computable strongly min-
imal theory with trivial pregeometry. Then Th(M) forms a 0′′-
computable set of L-sentences. Consequently, all countable models
of Th(M) are 0′′-decidable and, in particular, are 0′′-computable.

Theorem 2.21 ([61]). For any strongly minimal theory T
with trivial pregeometry the elementary diagram FD(M) of any
model M of T is a model complete LM -theory.

Note that a model of a strongly minimal theory T with triv-
ial pregeometry is not necessarily model complete in the original
language (for example, 〈ωS〉 is not model complete).

Proof of Theorem 2.21. Consider a model M0 of T . To
simplify the notation, we write T ∗ instead of Th((M0)M0). Let
L∗ be the language of T ∗ (i.e., L∗ = LM0). Consider two models
M ⊆ N of T ∗ of size κ, where κ > |M0| is fixed. Since M and
N are models of T ∗, we can assume that M0 .M and M0 . N .
We need to show that M . N . For this purpose, we use two
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standard facts, the so-called non-finite cover property and finite
satisfiability.

The non-finite cover property of an uncountably categorical
theory means that for all L∗-formulas ϕ(x, y) there is a number
k such that for any M∗ |= T ∗ and b in M∗ either ϕ(b,M∗) is
infinite or has size at most k. The number k depends only on ϕ
and the partition of free variables in (x, y). Thus, one can use the
quantifiers ∃<∞ and ∃∞, where ∃<∞yϕ(x, y) denotes ∃�kyϕ(x, y)
and ∃∞yϕ(x, y) denotes ¬∃<∞yϕ(x, y).

The following assertion is an immediate consequence of the
pigeon-hole principle.

Lemma 2.22. If N |= ∃∞yϕ(b, y) and lg(y) = k + 1, then
there is a partition of y in wz with lg(w) = 1 and lg(z) = k such
that N |= ∃∞w∃zϕ(b, w, z).

The following general fact, referred to as the finite satisfia-
bility, asserts that if M0 . N are models of a stable theory and
N |= ϕ(b, c) for some LM0-formula and some b, c in N that are
independent (i.e., do not fork over M0), then there is a in M0 such
that N |= ϕ(a, c). This fact is obvious because, in a stable theory,
every complete type over a model is definable. We formulate this
assertion in a special case of strongly minimal theories.

Lemma 2.23. Suppose that M0 . N are models of a
strongly minimal theory and b, c are tuples in N such that
acl(M0b) ∩ acl(M0c) = M0. If N |= ϕ(b, c) for any LM0-formula
ϕ, then there is a in M0 such that N |= ϕ(a, c).

We also need the following notion.

Definition 2.24. An L∗-formula ϕ(x) is absolute if for all b
in M we have M |= ϕ(b) if and only if N |= ϕ(b).

To complete the proof of M . N , it suffices to show that
any L∗-formula is absolute. It is obvious that every quantifier-
free L∗-formula is absolute and a family of absolute formulas is
closed under the Boolean operations. Thus, to obtain the model
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completeness of T ∗, it suffices to show that if an L∗-formula ϕ(x, y)
is absolute, then ∃yϕ(x, y) is also absolute.

Definition 2.25. An L∗-formula ϕ(x, y) is said to be an
(n,m)-formula if lg(x) = n and lg(y) = m. We identify three
interrelated families of statements:

• An,m is the statement that for all absolute (n,m)-formulas
ϕ(x, y) the formula ∃<∞yϕ(x, y) is absolute,

• Bn,m is the statement that for all absolute (n,m)-formulas
ϕ(x, y), if b ∈ Mn and N |= ∃<∞yϕ(b, y), then ϕ(b,N ) =
ϕ(b,M), i.e., every realization of ϕ(b, y) in Nm is an element
of Mm,

• Cn,m is the statement that for all absolute (n,m)-formulas
ϕ(x, y) the formula ∃yϕ(x, y) is absolute.

By the above arguments, to prove the model completeness of
T ∗, it suffices to show that Cn,1 holds for all n ∈ ω.

It is obvious that each of three statements in Definition 2.25 is
preserved if subscripts decrease (for example, Bn,m implies Bn′,m′

for all n′ � n and all m′ � m).

Lemma 2.26. The following assertions hold:

(a) Bn,m implies Cn,m for all n,m ∈ ω,
(b) Bn,m implies An,m+1 for all n,m ∈ ω,
(c) B1,m (consequently, B0,m) holds for all m ∈ ω.

Proposition 2.27. Bn,m+1 and An+1,m imply Bn+1,m for all
n,m ∈ ω.

As was already noted, T ∗ is model complete if M. N .
We show that Bn,m holds for all n, m ∈ ω. For this purpose,

we show by induction on n that Bn,m holds for all n. Note that
B1,m holds for all m ∈ ω. We fix n � 1 and assume that Bn,m holds
for all m. Let us prove that Bn+1,m holds for all m by induction
on m. It is obvious that Bn+1,0 holds. Assume that Bn+1,m holds
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for some m. Then Bn,m+2 holds by the induction assumption
and An+1,m+1 holds since Bn+1,m holds. Thus, Bn+1,m+1 holds by
Proposition 2.27, and the induction procedure is complete.

By Lemma 2.26 (a), Cn,m holds for all n, m ∈ ω. In particu-
lar, Cn,1 holds for all n ∈ ω. This means that the family of absolute
L∗-formulas is closed under the existential quantification. As is
known, the family of absolute L∗-formulas contains quantifier-free
formulas and is closed under Boolean connectives. Hence every
L∗-formula is absolute. Thus, M. N , as required. �

For a structure M we denote by Th∀∃(MM) the set of all
∀∃-sentences σ ∈ Th(MM) (in the language LM).

Lemma 2.28. If the elementary diagram of a structure M
is model complete, then Th∀∃(MM) and Th(MM) are equivalent
LM -theories.

Proof. It is obvious that Th∀∃(MM) is a subset of Th (MM).
On the other hand, if Th(MM) is model complete, then it is ∀∃-
axiomatizable in the language LM . But any ∀∃-axiomatization of
Th(MM) is a subset of Th∀∃(MM). �

It turns out that the model completeness of the elementary
diagram of a structure M is a property of the theory of M. To
prove this fact, we introduce the following definition.

Definition 2.29. An existential L-formula ψ(x, y) and an
∀∃-formula of L form a linked pair (for T ) if T |= ∃yθ(y) and
T |= ∀y∀y′∀x(θ(y) ∧ θ(y′) ∧ ψ(x, y) → ψ(x, y′)).

Proposition 2.30 ([67]). The elementary diagram of an L-
structure M is model complete if and only if for every L-formula
ϕ(x) there is a linked pair (θ, ψ) such that M |= ∃yθ(y) and

M |= ∀y(θ(y) → ∀x[ϕ(x) ↔ ψ(x, y)]). (∗)

Proof. Assume that the elementary diagram of M is model
complete. Fix an L-formula ϕ(x). Since Th(MM) is model com-
plete, there is an existential L-formula ψ(x, y) and a tuple b in M
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such that M |= δ(b), where δ(y) := ∀x[ϕ(x) ↔ ψ(x, y)]. Hence
Th∀∃(MM) |= δ(b) in view of Lemma 2.28. By compactness,
there is an ∀∃-formula θ(y) in L such that θ(b) ∈ Th∀∃(MM)
and {θ(b)} |= δ(b). (Without loss of generality, by padding δ, we
can assume that any constant symbol appearing in θ also appears
in δ.)

Conversely, assume that the right-hand side of (∗) holds. Fix
an LM -formula ϕ(x, a), where ϕ(x, z) is an L-formula and a be-
longs to M . Choose θ(y) and ψ(x, z, y) corresponding to ϕ(x, z).
Let b be any realization of θ(y) in M . Then

M |= ∀x∀z[ϕ(x, z) ↔ ψ(x, z, b)].

In particular, M |= ∀x[ϕ(x, a) ↔ ψ(x, a, b)]. Thus, every
LM -formula is Th(MM)-equivalent to an existential LM -formula,
which implies the model completeness of Th(MM). �

Corollary 2.31 ([61]). IfM and N are elementarily equiva-
lent L-structures then the elementary diagram ofM is model com-
plete if and only if the elementary diagram of N is model complete.
In particular, if T is a complete theory and the elementary dia-
gram of some model of T is model complete, then the elementary
diagram of every model of T is model complete.

Proposition 2.32 ([61]). Let T be an L-theory such that the
elementary diagram of every model of T is model complete. Then
T is ∃∀∃-axiomatizable.

Proof. Let M be an arbitrary model of T . Then Th∀∃(MM)
implies σ. Therefore, there is a conjunction ψ of ∀∃-sentences
of LM that logically implies σ. Since none of the extra constant
symbols in M appears in σ, we can existentially quantify out these
constant symbols and obtain a formula of the desired complexity
which logically implies σ. �

The following assertion immediately follows from Theorem
2.21 and Proposition 2.32.
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Corollary 2.33 ([61]). Every strongly minimal theory with
trivial pregeometry is ∃∀∃-axiomatizable.

Proof. By Theorem 2.21, Th(MM) is model complete and,
consequently, ∀∃-axiomatizable. Then Th∀∃(MM) is a 0′′-
computable set of formulas which axiomatizes Th(MM), and so
Th(MM) and its reduct Th(M) are 0′′-computable sets of for-
mulas as well. By relativisation theorem due to Harrington [74]
and Khisamiev [83], any countable model of the theory Th(M)
decidable relative to 0′′, is 0′′-computable. �

The following question still remains open.

Problem 9. Is the assertion of Corollary 2.33 remains valid
for an arbitrary strongly minimal theory?

Recently, Khoussainov, Lempp, and Solomon proved the fol-
lowing result.

Theorem 2.34 ([86]). There exists an uncountably categor-
ical strongly minimal theory T with trivial pregeometry possessing
a computable prime model such that all other models has the com-
plexity of Turing degree 02.

It is of interest to generalize the result of [86].

Problem 10. Whether there are examples of uncountably
categorical strongly minimal theories Tn possessing a computable
models such that other models have the complexity of Turing de-
gree 0n+3, n � 0?

The following conjecture was suggested by S. Lempp.

Conjecture 2.35. An uncountably categorical theory pos-
sessing a computable model is arithmetical.

Note that the above result of Harrington [74] and Khisamiev
[83, 84] can be relativized to show that if T is uncountably cat-
egorical and arithmetic, then all models of T admit arithmetic
numbering. If Conjecture 2.35 could be confirmed, this would
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mean that all models of an uncountably categorical arithmetic
theory admit arithmetic numberings. To confute Conjecture 2.35,
it suffices to construct a theory with the properties listed in the
following problem.

Problem 11. Whether there exists an uncountably cate-
gorical theory T with models A0 . A1 . . . . . Aω such that
A0 has a constructivization, and every Ai+1, i ∈ ω, has 0i+1–
constructivization, but not 0i–constructivization?

2.1.3. Computable models of Ehrenfeucht theories.

In the case of countably categorical theories, the question about
bounds for theories with decidable models is trivial. All countable
models of such a theory are decidable if and only if the theory
is decidable. The Ehrenfeucht theories are close to the countably
categorical theories. Recall that a theory is a called an Ehrenfeucht
theory if it has finitely many countable models. Naturally, the
question is much more complicated if the computablity condition
is required.

Peretyat’kin [135] proved that a prime model of an Ehren-
feucht theory is decidable. Lachlan constructed the first example
of an Ehrenfeucht theory possessing six countable models such
that only the prime model is decidable. Later, such examples for
any n � 3 were constructed by Peretyat’kin.

However, there are still many open questions concerning the-
ories possessing decidable models. First of all, we recall the well-
known Morley problem.

Problem 12 ([125]). Is it true that any countable model of
any Ehrenfeucht theory with computable types is decidable?

The following weakened version of the Morley problem is also
of interest.

Problem 13. Is it true that any countable models of any
Ehrenfeucht theory with computable types is arithmetical?



Computability and Computable Models 147

Ash and Millar [7] proved that all models of hyperarith-
metical Ehrenfeucht theories are decidable in hyperarithmetical
degrees. Millar [107] and Reed [138] constructed examples of
decidable Ehrenfeucht theories with a given complexity for some
nonprincipal type and, consequently, with a given hyperarithmeti-
cal complexity of their countably saturated model and some other
models. The following problem arises in a natural way.

Problem 14. Is it true that all countable models of any
Ehrenfeucht theory with arithmetical types are decidable (com-
putable) relative to some arithmetical Turing degree?

Note that all homogeneous models of an Ehrenfeucht theory
with decidable (arithmetic) types are decidable (relative to some
arithmetic Turing degree) [40]. This fact immediately follows from
the decidablity theorem for homogeneous models with countable
family of types realized there and countable family of all decidable
types of theories of this model [40].

The above discussion suggests the following strategy.

Problem 15. Show that all almost homogeneous models of
an Ehrenfeucht theory with decidable (arithmetical) types are de-
cidable (relative to some arithmetical type).

The following weaker property is also of interest.

Problem 16. Show that all almost homogeneous models
of an Ehrenfeucht theory with decidable (arithmetical) types are
computable (relative to some arithmetical type).

Recall that a model is said to be almost homogeneous if it is
homogeneous in some enrichment by constants for a finite collec-
tion of its elements.

It is remarkable that, in all known examples of Ehrenfeucht
theories, all countable models are almost homogeneous. The as-
sertion that all countable models of any Ehrenfeucht theory are
almost homogeneous (if it is true) could be helpful for resolving
the problems. On the other hand, a counterexample could open a
door to the negative solution of the Morley problem.
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To consider computable models of such theories, we start
with the following open question.

Problem 17. Characterize Ehrenfeucht theories possessing
computable models.

It is of interest to generalize the result of Lerman and Schmerl
[96] for countably categorical arithmetic theories to the case of
Ehrenfeucht theories. The same question can be considered re-
garding the Knight theorem [90] for non-arithmetic Ehrenfeucht
theories.

The above results on the complexity for countably categorical
theories yield the following assertions.

Corollary 2.36 ([68]). For every n � 1 there exists am
Ehrenfeucht theory of Turing degree 0n that has a computable
model.

Corollary 2.37 ([43]). For every arithmetical Turing degree
d there exists an Ehrenfeucht theory of Turing degree d that has a
computable model.

We complete this section with the following result asserting
the existence of computable models of non-arithmetic countably
categorical theories.

Theorem 2.38 (Fokina, Goncharov, Khoussainov). There
exists an Ehrenfeucht theory T with a computable model and the
Turing degree T is non-arithmetical.

3. Structure Complexity
of Computable Models

In this section, we discuss necessary conditions on the structure of
computable models from the point of view of the model-theoretic
complexity. For this purpose, we choose a language with infinite
disjunctions and conjunctions. Then every countable model can



Computability and Computable Models 149

be described up to an isomorphism and the number of necessary
infinite disjunctions and conjunctions determines the ordinal level
of the structure complexity of the model. Using the theory of
admissible sets, it is possible to obtain an upper bound for the
complexity of a computable model. The sharpness of the bound
and the realizability of all less complexities play an important role
for describing structural properties of computable models. We
present two methods based on the Scott rank and on the Barwise
rank.

3.1. Definability of computable models

Recall that the Scott rank is a measure of the model-theoretic
complexity. This term came from the Scott isomorphism theorem
[144].

Theorem 3.1 (the Scott isomorphism theorem). For every
countable structure A (for a countable language L) there is an Lω1ω

sentence whose countable models are isomorphic copies of A.

To prove this assertion, Scott assigned countable ordinals to
tuples in A and to A itself. There are several different definitions
of the Scott rank.

Let a and b be tuples in A.

• We write a ≡0 b if a and b satisfy the same quantifier-free
formulas.

• Let α > 0. We write a ≡α b if for all β < α and c there exists
d and for every d there exists c such that a, c ≡β b, d.

Definition 3.2. The Scott rank of a tuple a in A is the least
β such that for all b from a ≡β b it follows that (A, a) ∼= (A, b).

Definition 3.3. The Scott rank SR (A) of A is the least
ordinal α greater than the ranks of all tuples in A.
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Example 3.4. IfA is an ordering of type ω, then SR (A) = 2.
We have a ≡0 b if a and b are ordered in the same way. We have
a ≡1 b if the corresponding intervals (before the first element and
between successive elements) are of the same size, and this fact
is enough to assure an isomorphism. Hence the tuples have Scott
rank 1 and the ordering has Scott rank 2.

3.2. The Kleene notation system O

As in the general algorithm theory, for constructing models of
given complexity and estimating the complexity an important role
is played by computable ordinals and the Kleene notation system
O (cf. [140]) for all computable ordinals. The least ordinal having
no notation in the Kleene system is referred to as the Church–
Kleene ordinal and is denoted by ωCK

1 . It is easy to check that it
is the least noncomputable ordinal.

Recall that the Kleene notation system consists of a set O of
notations equipped with a partial ordering <O. The ordinal 0 has
notation 1. If a is the notation of α, then 2a is the notation of
α + 1. Then a <O 2a, and b <O a implies b <O 2a.

Suppose that α is a limit ordinal. If ϕe is a total function
providing notations for an increasing sequence of ordinals with
limit α, then 3 ·5e is the notation of α. For all n we have ϕe(n) <O
3·5e, and b <O ϕe(n) implies b <O 3·5e. The set O is Π1

1 complete.

3.3. Computable infinitary formulas

For any notation from the Kleene notation system O it is possible
to introduce infinitary formulas which are used to describe com-
putable structures. Roughly speaking, we will define infinitary for-
mulas on a fixed level where the disjunctions and conjunctions of
computable formulas from previous levels are computable. They
are essentially the same as the formulas in the least admissible
fragment of Lω1ω.
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We may classify computable infinitary formulas as com-
putable Σα, or computable Πα, for various computable ordinals
α. We have the useful fact that in a computable structure, a rela-
tion defined by a computable Σα (or computable Πα) formula will
be Σ0

α (or Π0
α). To illustrate the expressive power of computable

infinitary formulas, we note that there is a natural computable Π2

sentence characterizing the class of Abelian p-groups. For every
computable ordinal α there is a computable Π2α formula saying
that the height is at least ω·α for an element of an Abelian p-group.

The following theorem presents a well-known useful version
of the compactness theorem for computable infinitary formulas.

Theorem 3.5 (the Barwise–Kreisel compactness theorem).
Let Γ be a Π1

1 set of computable infinitary sentences. If every ∆1
1

subset of Γ has a model, then Γ also has a model.

Theorem 3.5 can be used for obtaining computable structures
and special computable sequences of computable structures.

Corollary 3.6. Let Γ be a Π1
1 set of computable infinitary

sentences. If every ∆1
1 subset has a computable model, then Γ also

has a computable model.

Corollary 3.6 can be applied uniformly to Π1
1 sets of com-

putable infinitary sentences.
The following two assertions demonstrate the expressive

power of computable infinitary formulas.

Corollary 3.7. If A and B are computable structures satis-
fying the same computable infinitary sentences, then A ∼= B.

Corollary 3.8. Suppose that a and b are tuples satisfying the
same computable infinitary formulas in a computable structure A.
Then there is an automorphism of A sending a to b.

Theorem 3.5 and Corollaries 3.6–3.8 are well known and may
be found, for example, in [5] (cf. also [66]).
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3.4. Computable rank

Definition 3.9. The computable rank Rc(A) of a structure
A is the first ordinal α such that for all tuples a, b in A of the
same length the following holds: if for all β < α all computable Πβ

formulas true of a are also true of b, then there is an automorphism
sending a to b.

By Corollary 3.7, if A is a hyperarithmetical structure, then
Rc(A) � ωCK

1 . In this case, Definition 3.9 can be formulated as
follows: The computable rank is the first ordinal α such that for
all tuples a and b of the same length the following holds: if a and
b satisfy the same computable Πβ formulas for β < α, then they
satisfy the same computable Πα formulas.

Proposition 3.10. For any computable language L and com-
putable ordinal α (or any notation) there exists a computable in-
finitary sentence saying that Rc(A) � α for an L-structure A.

Note that the notion of computable rank essentially differs
from that of Scott rank. Nevertheless, in the case of a hyperarith-
metical structure A, the computable rank is a computable ordinal
just as the Scott rank is computable. If Rc(A) is computable, then
A has a computable Scott sentence. The converse assertion is also
true.

Proposition 3.11 (J. Millar1). Suppose that A is a hyper-
arithmetical and Rc(A) = ωCK

1 . If ψ is a computable infinitary
sentence true in A, then ψ is also true in some hyperarithmetical
B �∼= A.

Sketch of Proof. LetA∗ be an expansion ofA with a pred-
icate Rϕ for every computable infinitary formula ϕ, up to complex-
ity α. Since the rank of A is not computable, A∗ is not homoge-
neous. Therefore, there is some tuple a realizing a non-principal
type in A∗. We produce a hyperarithmetical model B∗ of the

1Private communication.



Computability and Computable Models 153

elementary first order theory of A∗ omitting the type of a and
satisfying ψ. To guarantee that ψ is true, we make sure that for
all subformulas ϕ(u)

B∗ |= ∀u [ϕ(u) ↔ Rϕ(u)].

If ϕ(u) is the disjunction of ϕi(u), we need to omit the type consist-
ing of Rϕ(u) and the formulas ¬Rϕi

(u). If ϕ(u) is the conjunction
of ϕi(u), we need to omit the type consisting of ¬Rϕ(u) and the
formulas Rϕi

(u). �

3.5. Rank and isomorphisms

We revise the Scott isomorphism theorem by looking for isomor-
phisms of bounded complexity.

Definition 3.12. Let α be a computable ordinal. A formally
Σ0

α Scott family is a c.e. Scott family Φ made up of computable
Σα formulas, possibly with a fixed tuple of parameters.

Definition 3.13. A computable structure A is ∆0
α categori-

cal if A ∼=∆0
α
B for every computable copy B.

Theorem 3.14 (Ash, Goncharov). Suppose that A is com-
putable. If A has a formally Σ0

α Scott family, then it is ∆0
α cat-

egorical. With some added effectiveness on one copy of A, the
converse holds.

This assertion was proved in [45, 46] in the computable case
and in [1] in the general case.

Proposition 3.15. Let α be a computable ordinal. For a
given index of a computable structure A such that Rc(A) = α
there is an index of a formally Σ0

α+2 Scott family for A without
parameters.

Suppose that K is a class of structures such that there is a
computable bound on Rc(A) for A ∈ Kc. Proposition 3.15 asserts
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that for a given index of A ∈ Kc we can find an index of a Scott
family consisting of formulas of bounded complexity. Then we can
pass to a computable infinitary Scott sentence.

These results yield a bound on the Scott ranks for computable
structures [127]. There are examples of computable structures
having various computable Scott ranks and familiar structures (for
example, the Harrison ordering) with Scott rank ωCK

1 + 1 [70].
Makkai [99] constructed a structure of Scott rank ωCK

1 which can
be made computable [68] and simplified it so that it is just a tree
[14]. As was shown in [13], it is possible to construct further com-
putable structures of Scott rank ωCK

1 in the classes of undirected
graphs, fields of any characteristic, and linear orderings. These
results give us interesting examples of computable structures with
different complexity of the isomorphism problem for different com-
putable representations.

Proposition 3.16. Let A be a computable structure. Then
SR (A) � ωCK

1 + 1.

The further properties of computable structures are listed in
the following assertion.

Proposition 3.17. Let A be a computable structure. Then

(1) SR (A) < ωCK
1 if there is a computable ordinal β such that

the orbits of all tuples are defined by computable Πβ formulas,

(2) SR (A) = ωCK
1 if the orbits of all tuples are defined by com-

putable infinitary formulas, but there is no computable bound
on the complexity of these formulas,

(3) SR (A) = ωCK
1 + 1 if there is some tuple whose orbit is not

defined by any computable infinitary formula.

The low Scott rank is associated with simple Scott sentences.
Recall that a Scott sentence for A is a sentence whose countable
models are just the isomorphic copies of A (as in the Scott iso-
morphism theorem).
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Theorem 3.18 ([127, 128]). Let A be a computable struc-
ture. Then SR (A) is computable if and only if A has a computable
infinitary Scott sentence.

Corollary 3.19. Let Γ be a Π1
1-set of computable infinitary

sentences. If every ∆1
1-set Γ′ ⊆ Γ has a computable model, then Γ

has a computable model.

Proposition 3.20 ([139]). Suppose that A is a hyperarith-
metical structure. Let Γ be a Π1

1-set of computable infinitary sen-
tences in a finite expansion of the language of A. Suppose that for
each ∆1

1-set Γ′ ⊆ Γ the structure A can be expanded to a model of
Γ′. Then A can be expanded to a model of Γ.

Corollary 3.21. Let A be a hyperarithmetical structure. If
a and b are tuples in A satisfying the same computable infinitary
formulas, then there is an automorphism of A sending a to b.

Consider three different types of Scott rank for computable
models described in Proposition 3.17 that are realized in classical
algebras and models.

In the case SR (A) < ωCK
1 , the following structural property

of computable models holds.

Proposition 3.22. All computable members of the following
structures have a computable Scott rank:

• well orderings,
• superatomic Boolean algebras,
• reduced Abelian p-groups.

An interesting class of models is formed by computable mod-
els with SR (A) = ωCK

1 + 1. There are well-known examples of
computable structures of Scott rank ωCK

1 + 1. Harrison showed
that there is a computable ordering of type ωCK

1 (1 + η), called
the Harrison ordering, which gives rise to some other computable
structures with similar properties. The Harrison Boolean algebra
is the interval algebra of the Harrison ordering. The Harrison
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Abelian p-group has length ωCK
1 , with all infinite Ulm invariants

and a divisible part of infinite dimension.

Proposition 3.23. The Harrison ordering, Harrison
Boolean algebra, and Harrison Abelian p-groups have Scott rank
ωCK

1 + 1.

It was unexpected that there exist models with SR (A) =
ωCK

1 .
In the case of the Scott rank ωCK

1 , it is not easy to find
computable examples. An arithmetical example was constructed
by Makkai.

Theorem 3.24 ([99]). There is an arithmetical structure A
of rank ωCK

1 .

Models A of Scott rank SR (A) = ωCK
1 will be referred to as

Makkai models.
In the Makkai example, in contrast to the Harrison order-

ing, the set of computable infinitary sentences that are true in
the structure is ℵ0 categorical. Hence the conjunction of these
sentences is a Scott sentence for the structure. The following as-
sertion can be proved on the basis of the results of [68] and [92].

Theorem 3.25. There exists a computable structure of Scott
rank ωCK

1 .

As was proved in [14], there exists a computable tree of Scott
rank ωCK

1 . This construction may be employed in other situations.
The authors of [14] used the idea to take trees as Knight–Millar
Trees and add a homogeneity property. In more detail, let T be
a subtree of ω<ω. We have a top node ∅. We will define the tree
rank for σ ∈ T and then for T . Below, we use the notation rk(σ),
rk(T ).

• rk(σ) = 0 if σ is terminal.

• For α > 0, rk(σ) = α if all successors of σ have ordinal rank,
and α is the first ordinal greater than these ordinals.
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• rk(σ) =∞ if σ does not have ordinal rank.

We set rk(T ) = rk(∅).

Remark. rk(σ) =∞ if and only if σ extends to a path.

If T is a tree, we denote by Tn the set of elements at level n
in the tree, i.e., Tn = T ∩ ωn.

Definition 3.26. A tree T is thin if for all n the set of ordinal
ranks of elements of Tn has order type at most ω · n.

This definition is used as follows. If T is a computable thin
tree, then for every n there is a computable αn such that for all
σ ∈ Tn from rk(σ) � αn it follows that rk(σ) =∞.

Theorem 3.27 ([92]). The following assertions hold.

(1) There exists a computable thin tree T with a path but no
hyperarithmetical path.

(2) If T is a computable thin tree with a path but no hyperarith-
metical path, then A(T ) is a computable structure of Scott
rank ωCK

1 .

A computable tree of Scott rank ωCK
1 was constructed in [14].

This tree satisfies some conditions from [92] and the following
homogeneity property.

Definition 3.28. A tree T is rank-homogeneous if for all n
the following conditions are satisfied:

• for all σ ∈ Tn and computable α, if there exists τ ∈ Tn+1

such that rk(τ) = α < rk(σ), then σ has infinitely many
successors σ′ with rk(σ′) = α,

• for all σ ∈ Tn, if rk(σ) = ∞, then σ has infinitely many
successors σ′ with rk(σ′) =∞.

Remark. Suppose that T and T ′ are rank-homogeneous
trees and for all n there is an element in Tn of rank α ∈ Ord ∪{∞}
if and only if there is an element in T ′

n of rank α. Then T ∼= T ′.
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In [14], the construction of a tree of Scott rank ωCK
1 is based

on the following result.

Theorem 3.29 ([92]). The following assertions hold.

(1) There is a computable thin rank-homogeneous tree T such
that rk(T ) = ∞ but T has no hyperarithmetical path.

(2) If T is a computable thin rank-homogeneous tree such that
rk(T ) = ∞ but T has no hyperarithmetical path, then
SR (T ) = ωCK

1 .

As in the case of group-trees, the computable infinitary the-
ory is ℵ0 categorical for the trees considered in [14]. But, unlike
group-trees, there are many nontrivial hyperarithmetical automor-
phisms. It is possible to produce a tree as above, with the property
of strong computable approximability [14].

Definition 3.30. A structure A is strongly computably ap-
proximable if for any Σ1

1 set S there exists a uniformly computable
sequence (Cn)n∈ω such that n ∈ S if and only if Cn

∼= A. The struc-
tures Cn with n /∈ S are said to be approximating.

For example, it is well known that the Harrison ordering is
strongly computably approximable by computable well orderings.

Theorem 3.31 ([14]). There is a computable tree T of Scott
rank ωCK

1 such that T is strongly computably approximable. More-
over, the approximating structures are trees of computable Scott
rank.

Using these trees, it is possible to construct many new exam-
ples of Makkai models.

Theorem 3.32 ([13]). Each of the following classes contains
computable structures of Scott rank ωCK

1 :

• undirected graphs,
• linear orderings,
• Boolean algebras,
• fields of any characteristic.
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Thus, it is of interest to clarify how to determine the noncon-
structive Scott rank on a computable model from its computable
representation.

Problem 18. What is the complexity of the index set of
Makkai models in universal computable numberings of computable
models of a fixed signature?

Problem 19. What is the complexity of the index set of
computable models of Scott rank ωCK

1 +1 in universal computable
numberings of computable models of a fixed signature?

3.5.1. Barwise rank.

Recall the definition of the quantifier rank of a formula (we as-
sume that the implication ⇒ is expressed in terms of ¬ and ∧ and
thereby it does not occur directly in the formulas under consider-
ation):

qr(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if ϕ is quantifier-free;

qr(ψ) if ϕ is ¬ψ;

qr(ψ) + 1 if ϕ is ∃vψ or ∀vψ;

sup{qr(ψ) | ψ ∈ Φ} if ϕ is
∧

Φ or
∨

Φ.

Show that for computable models we have SR (A) � ωCK
1 for

the complexity of Barwise rank. Let α be an ordinal.
Models M and N are α-equivalent (M ≡α N) if they satisfy

the same sentences with quantifier rank at most α. Two tuples
a, b ∈ M<ω are α-equivalent (a ≡α b) if they satisfy the same
formulas with quantifier rank at most α.

We say that a tuple a ∈ M<ω has quantifier rank α in M if
(a ≡α b ⇒ a ≡ b) for all tuples b ∈M<ω.

The Barwise rank br (M) of a model M is the minimal ordinal
α such that (a ≡α b ⇒ a ≡α+1 b) for all a, b ∈M<ω.
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As is known, the Barwise rank of a model M ∈ HYPω does
not exceed ωCK

1 .
The following assertion concerning the existence of hyper-

arithmetical isomorphisms for different computable representa-
tions of models shows a close connection between this problem
and the Π1

1Π definability of relations on computable models.

Theorem 3.33 ([71]). Let M be a hyperarithmetical model.
The following assertions are equivalent.

(1) There exist tuples a, b ∈ M<ω such that 〈M, a〉 ∼= 〈M, b〉, but
〈M, a〉 �h

〈
M, b

〉
.

(2) There is a tuple a ∈ M<ω such that there exists an infinite
family (āi)i<ω of tuples in M<ω with the following properties:
(a) 〈M, a〉 ∼= 〈M, āi〉 for all i < ω,

(b) 〈M, ai〉 �h 〈M, aj〉 for all i < j < ω.

(3) The Barwise rank of M is equal to ωCK
1 .

(4) IM /∈ Π1
1, where IM = {〈a, b〉 ∈M<ω ×M<ω | a ∼= b}.

Assume that there exist two isomorphic hyperarithmetical
models M and N that are not hyperarithmetically isomorphic.

Problem 20. Is it true that there exists a computable se-
quence of hyperarithmetical models Mn, n ∈ ω, such that every
Mn is isomorphic, but not hyperarithmetically isomorphic to M?

3.5.2. Intrinsically Π1
1 relations.

In view of Theorem 3.33, it is important to have a description
for relations with Π1

1 complexity in computable hyperarithmetical
models. The first results on analytic complexity were obtained by
Soskov [147, 148].

Proposition 3.34 ([148]). Suppose that A is computable
and R is a ∆1

1 relation invariant under automorphisms of A. Then
R is definable in A by a computable infinitary formula without
parameters.
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Corollary 3.35. For a computable structure A and a rela-
tion R on A the following assertions are equivalent:

(1) R is intrinsically ∆1
1 on A,

(2) R is relatively intrinsically ∆1
1 on A,

(3) R is definable in A by a computable infinitary formula with
finitely many parameters.

Definition 3.36. A relation R on A is formally Π1
1 on A if

it is defined in A by the Π1
1 disjunction of computable infinitary

formulas with finitely many parameters.

We formulate the result of [147] in the following form.

Proposition 3.37. For a computable (hyperarithmetical)
structure A and a relation R on A the following assertions are
equivalent:

(1) R is relatively intrinsically Π1
1 on A,

(2) R is formally Π1
1 on A.

Theorem 3.38 ([70]). Suppose that A is a computable struc-
ture and R is a relation on A such that it is Π1

1 and is invariant
under automorphisms of A. Then R is formally Π1

1. Moreover, it
is possible to define it without parameters.

Corollary 3.39 ([70]). For a computable structure A and a
relation R the following assertions are equivalent:

(1) R is intrinsically Π1
1 on A,

(2) R is relatively intrinsically Π1
1 on A,

(3) R is formally Π1
1 on A.

We say that a relation is properly Π1
1 if it is Π1

1, but not Σ1
1.

Corollary 3.40 ([70]). If a relation R on a computable
structure A is invariant and properly Π1

1, then the image of R
in any computable copy is also properly Π1

1.
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There are several examples of computable structures with
intrinsically Π1

1 relations.

Example 3.41. The Harrison ordering is a computable or-
dering of type ωCK

1 (1 + η). The existence of such an ordering
was proved by Harrison who showed that for any computable tree
T ⊆ ω<ω such that T has paths, but no hyperarithmetical paths,
the Kleene–Brouwer ordering on T is a computable ordering of
type ωCK

1 (1 + η) + α with some computable ordinal α.

Let A be the Harrison ordering, and let R be the initial seg-
ment of type ωCK

1 . This set is intrinsically Π1
1 since it is defined by

the disjunction of computable infinitary formulas saying that the
interval to the left of x has order type β for computable ordinals β.

Example 3.42. The Harrison Boolean algebra is the interval
algebra of the Harrison ordering.

Let A be the Harrison Boolean algebra, and let R be the set
of superatomic elements containing in some of the Frechet ideals.
This set is intrinsically Π1

1 since it is defined by the disjunction
of computable infinitary formulas saying that x is a finite join of
α-atoms, where α is a computable ordinal.

Example 3.43. Recall that a countable Abelian p-group
G is determined up to an isomorphism by its Ulm sequence
(uα(G))α<λ(G) and the dimension of the divisible part. The Harri-
son p-group is a computable Abelian p-group G such that λ(G) =
ωCK

1 , uG(α) = ∞ for all α < ωCK
1 and the divisible part D has

infinite dimension.

By a Harrison group we mean the Harrison p-group for some
p. Let A be a Harrison group, and let R be the set of elements
with computable ordinal height, the complement of the divisible
part. Then R is intrinsically Π1

1 on A since it is defined by the
disjunction of computable infinitary formulas saying that x has
height α, where α is a computable ordinal.
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Theorem 3.44. For the Harrison groups, Harrison Boolean
algebra, and Harrison ordering there are computable representa-
tions without hyperarithmetical isomorphisms.

Problem 21. Characterize Π1
1 relations for other classes of

analytic hierarchy.

4. Isomorphism Problem

In this section, we consider isomorphisms of constructive and com-
putable models. Some of the results described below are taken
from [67].

4.1. Isomorphisms of countably
categorical models

Owing to the fundamental concept of a computable isomorphism,
it is possible to recognize whether or not two constructivizations
of a model have the same computability–theoretic properties.

Definition 4.1. Constructive algebraic systems (A, ν) and
(A, µ) are computably isomorphic if there exists an automorphism
α of A and a computable function f such that αν(n) = µ(f(n))
for all n ∈ ω. In this case, ν and µ are said to be autoequivalent.

A similar definition can be introduced for computable models.

Definition 4.2. Let A be a computable structure. We say
that A is computably categorical if for all computable B ∼= A there
is a computable isomorphism from A onto B.

Computably isomorphic structures cannot be distinguished in
terms of computability–theoretic properties of definable relations.
This means that for any definable relation R in A (or even for
R invariant under automorphisms of A) the Turing degrees of R
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under the constructivizations ν and µ are equivalent, i.e., ν−1(R)
and µ−1(R) have the same Turing degree. In addition, if ν and
µ are bijections, then ν−1(R) and µ−1(R) are computably invari-
ant. Within the study of computable isomorphisms, the following
important notion was introduced by Goncharov.

Definition 4.3. The dimension dim (A) of an algebraic sys-
tem A is the maximal number of its nonautoequivalent construc-
tivizations of A.

It is easy to see that the algebraic dimension can be expressed
in terms of computable models. Namely, the dimension of an alge-
braic system A is equivalent to the maximal number of computable
models that are not computably isomorphic each other, but they
are isomorphic to A. Informally, if we know the dimension of an
algebraic system A, we know the number of effective realizations
of A. The dimension of an algebraic system A can be represented
in computability–theoretic terms as the number of computable iso-
morphism types of A. Thus, if dim A = 1, the algebraic system
A has exactly one effective realization. We single out algebraic
systems of dimension 1.

Definition 4.4 ([100]). An algebraic system A is said to
be autostable if dim(A) = 1 and strongly autostable if all strong
constructivizations of A are autoequivalent.

The notion of an effectively infinite algebraic system, intro-
duced by Goncharov, is used in the study of computable isomor-
phisms. A sequence (A0, ν0), (A1, ν1), . . . of constructive models is
effective if the set {(i, ϕ)|ϕ ∈ ADνi

(Ai)} is uniformly computable.

Definition 4.5. An algebraic system A is said to be ef-
fectively infinite if there is an algorithm such that, applying it
to any index of an effective sequence of constructive systems
(A, ν0), (A, ν1), . . ., we obtain a constructive model (A, ν) such
that (A, ν) is not computably isomorphic to (A, νi) for any i ∈ ω.

Thus, an effectively infinite algebraic system A has infinite
dimension.
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The following characterization of strongly autostable alge-
braic systems was one of the first important results of the theory
of autostable models.

Theorem 4.6 ([129]). A strongly constructive algebraic sys-
tem (A, ν) is strongly autostable if and only if there exists finitely
many elements a0, . . . , an ∈ A such that

(1) the set of all complete formulas of the theory T of the alge-
braic system (A, a0, . . . , an) is computable,

(2) the algebraic system (A, a0, . . . , an) is the prime model of the
theory T .

Furthermore, if (A, ν) is not strongly autostable, then there
exists an algorithm such that, applying it to any index of an effec-
tive sequence of strongly constructive systems (A, ν0), (A, ν1), . . .,
we obtain a strongly constructive algebraic system (A, ν) such
that (A, ν) is not computably isomorphic to (A, νi) for all i ∈ ω.
Thus, the dimension of a strongly constructive algebraic system
that is not strongly autostable is infinite.

Similar questions are considered for other classes of algebraic
structures, for example, linearly ordered sets, Boolean algebras,
Abelian groups, rings, groups, partially ordered sets, fields, vector
spaces, etc. The first results were obtained for linearly ordered
sets, Boolean algebras, and torsion-free Abelian groups.

Together with the result of Nurtazin [130], the following the-
orem provides a characterization of all strongly autostable count-
ably categorical models.

The known Ryll–Nardzewski theorem (cf. [16]) characterizes
countably categorical theories in terms of types. It asserts that
a theory T is countably categorical if and only if for every n the
number of n-types of T is finite. This theorem suggests to in-
troduce a Ryll–Nardzewski type function typeT associating with
every n � 1 the number of n–types of T . For a decidable theory
T the function typeT is a ∆0

2–function.
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Theorem 4.7. A strongly constructive model (A, ν) of a
countably categorical theory T is strongly autostable if and only
if the type function typeT is computable.

Corollary 4.8. Let A be a model of a countably categorical
theory T that admits the effective elimination of quantifiers. Then
the following assertions are equivalent.

(1) The dimension of A is 1.

(2) There exists a finite sequence a0, . . . , an of elements of A such
that (A, a0, . . . , an) is the prime model of the theory T ′ of
(A, a0, . . . , an) and the set of atoms of T ′ is computable.

(3) The type function typeT is computable.

A natural question arises: What can be said about the
computability–theoretic complexity of typeT if T is decidable?
An answer is contained in the following assertion proved inde-
pendently by Venning [153].

Theorem 4.9. For any c.e. degree x there exists a decidable
countably categorical theory T such that typeT has degree x.

Note that there exists a strongly autostable, but not au-
tostable countably categorical model.

At the first glance, it seems that, if typeT of a countably
categorical theory is not computable, the dimension of the model
of T is greater than 1. However, there exists a counterexample
that can be obtained from the following result due to Khoussainov,
Lempp, and Solomon.

Theorem 4.10 ([86]). There exists a countably categorical
theory T such that the type function typeT is not computable,
whereas the model of T is autostable.

If a countably categorical theory T has a computable model,
then the type function of T is computable in Oω. Together with
the above results, this remark leads to the following open question.
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Problem 22. Whether there exists a countably categorical
theory T such that the type function typeT is not arithmetical,
whereas T has a constructive autostable model?

Note that the results concerning the construction of nonau-
tostable algebraic systems of finite dimension do not control the
model–theoretic properties of structures. For example, all the
structures constructed in [48, 49, 40, 18, 85] have theories with-
out prime models. Moreover, all known countably categorical
models have dimensions equal to either 1 or ω. So, it is reasonable
to put the following questions.

Problem 23. Whether a countably categorical model is ef-
fectively infinite if it is not autostable?

Problem 24. Assume that a countably categorical theory
T has a computable model. Is it true that the model of T is not
autostable if T is computable in 0n and typeT is not computable
in 0n?

4.2. Isomorphisms of uncountably
categorical models

Consider the algebraic system (ω, S). The theory T of (ω, S) is
uncountably categorical. The isomorphism type of a model A of
T is determined by the number of its components. The saturated
model of T has infinitely many components. All nonsaturated
models of T are autostable. One can prove that the saturated
model of T is not autostable; moreover, it is effectively infinite.

Let V be a vector space over an infinite computable field F .
Then the theory T of V (in the language consisting of + for vector
addition and unary operation f , f ∈ F , for multiplication by f)
is uncountably categorical. As is known, the isomorphism type of
a model A of T is characterized by the dimension of A.

The saturated model of T has infinite dimension. As above,
every finite dimensional vector space over F is autostable, the
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saturated model of T is not autostable and; moreover, is effectively
infinite.

Theorem 4.11. Let T be the theory of algebraically closed
fields of a fixed characteristic. Then a model A of T is autostable
if and only if it has a finite transcendence degree over its prime
field.

In all these examples, all the theories are decidable and admit
the elimination of quantifiers; moreover, non-saturated models are
autostable. At the same time, there exists a decidable uncountably
categorical theory T admitting the elimination of quantifiers such
that the prime model of T is not autostable.

Let T be a decidable uncountably categorical theory with
strongly autostable prime model.

Problem 25. Is it true that every nonsaturated model of T
is strongly autostable?

Conjecture 4.12. There exists an uncountably categorical
theory such that the countably saturated model is autostable.

Problem 26. Is it true that any field with infinite basis is
not autostable?

Without the requirement of decidability of an uncountably
categorical theory, the situation becomes much more complicated.
No results are known for computable isomorphisms and dimen-
sions of computable models of uncountably categorical theories.
For example, we do not know the spectra of dimensions of un-
countably categorical models. Recall that all models of an un-
countably categorical theory T can be listed in the ω + 1 chain of
models chain (T ): A0 . A1 . A2 . . . . . Aω, where Ai is the
prime model over Āi and Aω is the saturated model.

Problem 27. Let Ai be a model of an uncountably categori-
cal theory T in chain (T ). What sufficient and necessary conditions
for Ai to be autostable?



Computability and Computable Models 169

In Problem 27, it is also of interest to control the dimension
of uncountably categorical models. In particular, the following
open question can be suggested.

Problem 28. Whether there exists an uncountably categor-
ical nonautostable model of finite dimension?

As was already mentioned, Goncharov constructed a nonau-
tostable algebraic system of finite dimension. Thus, it is reason-
able to formulate the following problem.

Problem 29. Whether it is possible to construct an alge-
braic system of finite dimension greater than 1 whose theories be-
long to some class of well–studied theories, for example, countable
or uncountably categorical theories, Erenfeucht theories, etc.

The following problem is of general character.

Problem 30. Characterize uncountably categorical models
of dimension 1.

There are known examples of computable structures of com-
putable Scott rank. At the same time, there are known struc-
tures (for example, the Harrison ordering) of Scott rank ωCK

1 + 1.
Makkai [99] constructed a structure of Scott rank ωCK

1 which can
be made computable [68].““ Then he simplified it in such a way
that it becomes just a tree [14]. As was shown in [13], there are
other computable structures of Scott rank ωCK

1 among undirected
graphs, fields of any characteristic, and linear orderings. The new
examples share a strong approximability property with the Har-
rison ordering and the tree in [14]. These results provide us with
examples of computable structures with different complexity of the
isomorphism problem for different computable representations.

4.3. Computable categoricity

Let A be a computable structure. We say that A is computably
categorical if for all computable B ∼= A there is a computable
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isomorphism from A onto B. Similarly, A is ∆0
α categorical if for

all computable B ∼= A there is a ∆0
α isomorphism. We say that

A is relatively computably categorical if for all B ∼= A there is an
isomorphism that is computable relative to B, and we say that
A is relatively ∆0

α categorical if for all B ∼= A there is a ∆0
α(B)

isomorphism.

Definition 4.13. A Scott family for A is a set Φ of formulas
with a fixed tuple of parameters c in A such that

• every tuple in A satisfies some ϕ ∈ Φ,

• if a, b are tuples in A satisfying the same formula ϕ ∈ Φ,
then there is an automorphism of A sending a to b.

A formally c.e. Scott family is a c.e. Scott family made up
of finitary existential formulas.

A formally Σ0
α Scott family is a Σ0

α Scott family made up of
“computable Σα” formulas.

Proposition 4.14. For a structure A the set {a : A |= ϕ(a)}
is Σ0

α(A) if ϕ is computable Σα, and Π0
α(A) if ϕ is computable

Πα. Moreover, this assertion remains valid with all imaginable
uniformity over structures and formulas.

It is easy to see that if A has a formally c.e. Scott family, then
it is relatively computably categorical, so it is computably cate-
gorical. More generally, if A has a formally Σ0

α Scott family, then
it is relatively ∆0

α categorical and, consequently, ∆0
α categorical.

Goncharov showed that, under some additional effectiveness
conditions (on a single copy), if A is computably categorical, then
it has a formally c.e. Scott family.

Ash showed that, under some effectiveness conditions (on a
single copy), if A is ∆0

α categorical, then it has a formally Σ0
α Scott

family.
For the relative notions, we do not have the effectiveness con-

ditions. The following assertion was proved in [6] and [17].
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Proposition 4.15. A computable structure A is relatively
∆0

α categorical if and only if it has a formally Σ0
α Scott family. In

particular, A is relatively computably categorical if and only if it
has a formally c.e. Scott family.

4.4. Basic results in numbering theory

We present some basic results in numbering theory [72] and ap-
plications to computable models. For S ⊆ P (ω) a numbering
is a binary relation ν such that S = {ν(i) : i ∈ ω}, where
ν(i) = {x : (i, x) ∈ ν}. A numbering ν of S is called a Fried-
berg numbering if it is a bijection in the sense that i �= j implies
ν(i) �= ν(j).

Suppose that ν and µ are two numberings of a family S.
We write ν � µ if there is a computable function f such that
ν(i) = µ(f(i)) for all i, i.e., we can effectively pass from a ν-index
to a µ-index for the same set. We say that ν and µ are computably
equivalent if µ � ν and ν � µ. Note that if µ and ν are Friedberg
numberings of S, then µ � ν implies ν � µ.

Definition 4.16. A family S ⊆ P (ω) is discrete if for every
A ∈ S there exists σ ∈ 2<ω such that for all B ∈ S the following
holds: σ ⊆ χB if and only if B = A.

Definition 4.17. A family is effectively discrete if there is a
c.e. set E ⊆ 2<ω such that

(a) for every A ∈ S there is σ ∈ E such that σ ⊆ χA,

(b) for all σ ∈ E and A, B ∈ S from σ ⊆ χA, χB it follows that
A = B.

Proposition 4.18 ([144]). There exists a unique up to a
computable equivalence family S ⊆ P (ω) with computable Fried-
berg numbering such that it is discrete, but not effectively discrete.
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Proposition 4.19 ([50]). For every finite n � 1 there is a
family of sets with just n computable Friedberg numberings deter-
mined up to a computable equivalence.

Proposition 4.20 ([154, 145]). There is a family S ⊆ P (ω)
with numberings in all noncomputable degrees but not a computable
numbering.

The numbering results of Selivanov, Goncharov, and Wehner
can be relativized. In [40, 72], one can find a general method
of constructing a model from any computable family of c.e. sets
with computable numberings. Owing to this method, problems in
the theory of computable models are reduced to some problems in
numbering theory.

Let S be a family of sets. For every A ∈ S we can construct
a daisy graph GA such that

(a) G(S) is a rigid graph,

(b) if S has a unique computable Friedberg numbering, then G(S)
is computably categorical,

(c) if S has just n computable Friedberg numberings determined
up to a computable equivalence, then G(S) has computable
dimension n,

(d) if S is discrete, then every element of G(S) has a finitary
existential definition without parameters,

(e) if S has a computable Friedberg numbering, and is discrete
but not effectively discrete, then G(S) does not have a for-
mally c.e. defining family.

For lifting the basic results of Goncharov, Manasse, Slaman,
and Wehner, we formulate them in the following form.

Proposition 4.21 ([46, 40]). There is a rigid graph struc-
ture G that is computably categorical without a formally c.e. defin-
ing family.
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Proposition 4.22 ([126]). There is a computable structure
A with a relation R that is intrinsically c.e. but not relatively in-
trinsically c.e.

Consider the cardinal sum of disjoint computable copies of
the graph structure G from Proposition 4.21. Let R be a unique
isomorphism.

Proposition 4.23 ([48, 49, 40, 39]). For every finite n
there is a rigid graph structure G with computable dimension n.

Proposition 4.24 ([145, 154]). There is a structure A with
copies in just the noncomputable degrees.

A coding of a ∆0
α structure in a computable structure was

suggested in [72] to preserve some complexity of algorithmic prop-
erties.

To lift the basic results of Goncharov and Manasse, we rela-
tivize by producing a ∆0

α graph. To pass to a computable struc-
ture, we use a pair of structures for coding the arrow relation.

For a graph G, a pair of structures B1, B2, and a relational
language we set G∗ = (G ∪ U,G,U,Q, . . .), where G is the basic
set of G, G and U are disjoint, Q is a ternary relation assigning
to every pair a, b ∈ G an infinite set U(a,b), the sets U(a,b) form a
partition of U , every relation in the notation “. . .” is the union of
the bounds to U(a,b), and for every pair a, b ∈ G

(U(a,b), . . .) ∼=
{
B1 if G |= a → b,

B2 otherwise.

Theorem 4.25 ([72]). Suppose that G is a graph structure
and G∗ is constructed from G, Bi in the same way as above. In this
case, G has a ∆0

α copy if and only if G∗ has a computable copy.
More generally, for any X the structure G has a ∆0

α(X) copy if
and only if G∗ has an X-computable copy. In addition,
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(a) if G has a unique up to a ∆0
α isomorphism ∆0

α copy, then G∗

is ∆0
α categorical,

(b) if G has just n ∆0
α copies, determined up to a ∆0

α isomor-
phism, then G∗ has ∆0

α dimension n,

(c) if G does not have a Σ0
α Scott family made up of finitary

existential formulas, then G∗ does not have a formally Σ0
α

Scott family.

The following construction allows us to reduce the above con-
sideration to graph structure and other algebraic structures.

Theorem 4.26 ([58]). Suppose that M is a countable struc-
ture of a signature σ such that the arity of all predicate and func-
tional symbols in σ is bounded by a number k. There exists a par-
tial ordering (graph) M∗ with the following properties: The model
M has a computable copy if and only if M∗ has a computable copy.
More generally, for any X the model M has an X-computable copy
if and only if M∗ has an X-computable copy. In addition,

(a) if M is ∆0
α categorical, then M∗ is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then M∗ has ∆0

α dimension n,

(c) if M does not have a formally Σ0
α Scott family, then M∗ does

not have a formally Σ0
α Scott family.

The proof is based on the following constructions [48] of cat-
egories of computable algebraic systems. Consider a computable
signature σ = 〈P n0

0 , P n1
1 , . . . , P nk

k , . . .〉 such that σ is countable or
finite. Denote by Modσ the category whose objects are models
of the signature σ and morphisms are their isomorphisms. Intro-
duce the subcategory Mod σ

com of Mod σ. It is easy to see that
a model M′ is computable if it is computably isomorphic to a
computable model M with computable basic set |M| which is a
computable subset of some sets of words of finite alphabet and
the set {〈i,m1, . . . , mni

〉/M |= Pi(m1, . . . , mni
)} is computable.

If M1 and M2 are computable models, then the isomorphism



Computability and Computable Models 175

ϕ : M1→
onto

M2 is computable provided that ϕ is partially com-
putable. The objects of Mod σ

com are computable models of the
signature σ and the morphisms are computable isomorphisms. If
M is a model of the signature σ, then Mod σ

com(M) is the complete
subcategory of Mod σ

com whose objects are computable models iso-
morphic to M. If K0 is a subcategory of K and F is a function
from K into K1, then denote by F � K0 the restriction of F to
K0. A signature σ is bounded if there exists k such that mi � k
for every i.

Proposition 4.27 ([58]). For an arbitrary bounded signa-
ture σ there exists a finite signature σ0 and a completely univalent
functor F1 from Mod σ to Mod σ0 such that the following assertions
hold.

(i) F1 � Mod σ
com is a completely univalent functor from Mod σ

com

to Mod σ0
com.

(ii) For an arbitrary model M of the signature σ the functor
F1 � Mod σ

com(M) realizes an equivalence of the categories
Mod σ

com(M) and Mod σ0
com(F1(M)). In addition,

(a) if M is ∆0
α categorical, then F1(M) is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then F1(M) has ∆0

α dimen-
sion n,

(c) if M does not have a formally Σ0
α Scott family, then

F1(M) does not have a formally Σ0
α Scott family.

Proof. Let σ = 〈P n0
0 , P n1

1 , . . . , P nk

k , . . .〉. Suppose that the
set 〈ni|i ∈ N〉 is bounded by k. For every k � K we consider
all predicates Pik0 , Pik1 , . . . , Pik

l
, . . . , l ∈ N ′

k, from σ of arity k,
where N ′

k is equal to N or is an initial segment of N . We set
σ0 = {=, P 1

0 , P 2
1 , . . . , P k+1

k , . . . , P k+1
k , A12,�} and define a functor

F1 on objects of Mod σ. Let M be an arbitrary model of the
signature σ. If M is the basic set of M, then for the basic set
of M0 � F1(M) we take M0 = M ∪ {a0, a1, . . . , an, . . .}, where
{a0, a1, . . . , an, . . .} ∩M = ∅ and ai �= aj for i �= j.

Introduce predicates as follows:



176 Sergei S. Goncharov

1) AM0 � {a0, a1, . . . , an, . . .},

2) x � y if x = an and y = an+1 for some n,

3) (x0, x1, . . . , xs) ∈ (Ps)M0 if x0 = ad,
i∧

j=1

xj ∈M and M |=

P s
isd(x1, . . . , xs).

It is easy to see that M0 is a computable model if M is
computable. If M and M0 are objects of the category Mod 0 and
ϕ is an isomorphism of M onto M0, then we define F (M,M0)(ϕ).
We define it only in the case where the basic sets of both models
are subsets of N . The remaining cases are treated in a similar
way. Thus,

[F (M,M0)(ϕ)](x) �
{

x if x ∈ {a0, a1, . . . , an, . . .},
ϕ(x) if x ∈M}.

It is clear that F1(M,M0)(ϕ) is a computable isomorphism
relative to a Turing degree a if ϕ is a computable isomorphism
relative to a.

To prove that F1 from K1 into K2 is completely uni-
valent, it suffices to show that F∗(A,B) : Hom (A,B) −→
Hom(F∗(A), F∗(B)) is a bijection for every pair A,B of objects
of K1. Thus, F1 and F1 � Mod σ

com(M) are completely univa-
lent functors. We can prove that F1 � Mod σ

com(M) realizes an
equivalence by showing that for every object M′ of the cate-
gory Mod σ0

com(F1(M)) there exists an object M′
0 of the category

Mod com(F1)(M) such that M′ and F1(M′
0) are isomorphic in the

category Mod com(F1(M)). Let M′ ∈ Mod σ
com(F1)(M). The case

of a finite model is trivial.
Let M be an infinite model. We can consider a computable

function f : N 1−1
onto

M ′\AM′ . Since M′ is a computable model, it fol-
lows that N ′ \AM′ is computable and the function exists. Let a be
an element of AM′ that does not have a �–predecessor. Let us now
define predicates of the signature σ on N : (n1, . . . , nmk

) ∈ P mk

ik

if and only if (l, f(n1), . . . , f(nmi
)) ∈ P mk+1

mk
, where the elements

l0, l1, l2, . . . , lk are such that li � li+1 for 0 � i < k, a = l0, and
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lk = l. It is easy to see that such a model M′′ of the signature σ is
computable. We show that F (M′′) is computably isomorphic to
M′. For this purpose, consider a function g defined as follows:

g(m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(m) if mεN,

l if m = ak and there exist l0, l1, . . . , lk such

that M′ |=
k−1∧
i=0

li � li+1 and l0 = a&lk = l.

It is clear that g is an isomorphism and a computable function.
Properties (a)–(c) of th Scott families can be derived from the

definability of basic predicates and their negations by ∃–formulas.
�

Proposition 4.28 ([58]). For an arbitrary finite signature
σ0 there exist a signature σ1 consisting of a single predicate symbol
P and a completely univalent functor F2 from Mod σ0 into Mod σ1

such that the following assertions hold.

(i) F2 � Mod σ0
com is a completely univalent functor from Mod σ0

com

into Mod σ1
com.

(ii) For every model M of the signature σ0 the functor
F2 � Mod σ0

com(M) realizes an equivalence of the categories
Mod σ0

com(M) and Mod σ1
com(F2(M)). In addition,

(a) if M is ∆0
α categorical, then F2(M) is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then F2(M) has ∆0

α dimension
n,

(c) if M does not have a formally Σ0
α Scott family, then

F2(M) does not have a formally Σ0
α Scott family.

Proof. Our goal is to define the functor F2. Let σ0 =
〈P n0

0 , P n1
1 , . . . , P nk

k 〉. Suppose that M is a model of the finite sig-

nature σ0. Consider a predicate symbol P of arity n =
k∑

i=0

ni and

a signature σ1 = 〈P n〉. We begin by defining F2 on the objects of
Mod σ0 .
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Let M be a model of the signature σ0 with the basic set M .
For the basic set M0 of the model F2(M) we take {∞} ∪M . We
define P on M0 as follows: 〈x1, . . . , xn〉 ∈ P if and only if one of
the following conditions is satisfied:

(a) x1 = x2 = . . . = xn = 0,

(b) there exist i � k and y1, . . . , yni
such that xj = 0 and yj =

xj+mi
for any j such that 1 � j � ni and M |= Pi(y1, . . . , yni

).

But xj = 0 for any j such that 1 � j � mi or mi + ni + 1 �

j � n. We put m0 = 0 and mi =
i−1∑
l=0

nl for i > 1.

If M is a computable model, the model F2(M) is also com-
putable. Let M and N be two models of the signature σ0. We
define a mapping F2(M,N) : Hom (M,N) → Hom(F2(M), F2(N))
as follows:

[F2(M,N)(ϕ)](x) �
{
∞ if x = ∞,

ϕ(x) if x �= ∞.

It is easy to see that F2(M,N) is an isomorphism if ϕ is
an isomorphism, and it is computable if ϕ is computable. The
remaining assertions can be proved in the same way as in Propo-
sition 4.27. The additional properties (a)–(c) can be proved by
induction. �

4.5. Categories of graphs and partial orders

Consider a signature σ∗ consisting of a single binary predicate
Q. The category Mod σ∗

is called the category of graphs and is
denoted by Graph. Denote by Ord the complete subcategory of
Mod σ∗

whose objects are the models 〈M,Q〉, where Q is a partial
order on M .
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Proposition 4.29 ([58]). For every signature σ1 consisting
of a single predicate of arity n � 3 there exists a completely uni-
valent functor F3 from Mod σ1 into Graph with binary predicate R
such that the following assertions hold.

(i) F3 � Mod σ1
com is a completely univalent functor from Mod σ1

com

into Graph com = Mod σ∗
com.

(ii) For every model M ∈ Ob Mod σ1 the functor F3 � Mod σ1
com(M)

realizes an equivalence between the categories Mod σ1
com(M)

and Mod σ∗
com(F3(M)). In addition,

(a) if M is ∆0
α categorical, then F3(M) is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then F3(M) has ∆0

α dimen-
sion n,

(c) if M does not have a formally Σ0
α Scott family, then

F3(M) does not have a formally Σ0
α Scott family.

Proof. (i) We construct directly the functor F3 from Mod σ1

into Graph. Let 〈M, P 〉 be a model of the signature σ1, where P
is a predicate of arity n. Consider I = {0, 1, . . . , n} and M ′ = I ×
Mn∪M . For the basic set |F3(M)| we take the set M0 � M ′∪{a0,
a1, a2, b0, b1, b2, c0, c1, c2, c3, c4, c5, c6, c7, c8}. Suppose that
all the elements in {a0, a1, a2, b0, b1, b2, c0, c1, c2, c3, c4, c5, c6, c7, c8}
are different and new. Fix a0, a1, a2, b0, b1, b2, c0, c1, c2, c3, c4,
c5, c6, c7, c8. These elements will be referred to as basic elements
for the definability of F3 on M. We define a predicate R on M0 as
follows. Let x, y,∈ M0. We set 〈x, y〉 ∈ R if one of the following
conditions is satisfied:

(a) x = ai&y = cj, and 1 � i � 3 and (i = 0&j ∈ {0, 1}) ∨ (i =
1&j ∈ {2, 3, 4}) ∨ (i = 2&j ∈ {5, 6, 7, 8}),

(b) x = cj&y = bi, and 1 � i � 3 and (i = 0&j ∈ {0, 1}) ∨ (i =
1&j ∈ {2, 3, 4}) ∨ (i = 2&j ∈ {5, 6, 7, 8}),

(c) x ∈ M&y ∈ I ×Mn&y = 〈i, x1, . . . , xn〉&x = xi and n � i �
1,
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(d) x, y ∈ I×Mn&x = 〈i, x1, . . . , xn〉&y = 〈i+1, x1, . . . , xn〉 and
i � 1,

(e) x = a1&y = 〈0, y1, . . . , yn〉 ∈ I ×Mn&M � P (y1, . . . , yn),

(f) x = a0&y = 〈0, y1, . . . , yn〉 ∈ I ×Mn&M |= P (y1, . . . , yn),

(g) x = a2&y ∈M .

Thus, we constructed a graph on M0. Let M and M0 be two
models of the signature σ1, and let ϕ be an isomorphism from M

onto M0. We set

[F ′(M,M0)(ϕ)](x)

�

⎧⎪⎨⎪⎩
ϕ(x), if x ∈M ,
〈i, ϕ(x1), . . . , ϕ(xn)〉 if x = 〈i, x1, . . . , xn〉 ∈ I ×Mn,

x otherwise.

Successively considering all the cases, we can show that
F ′

3(M,M0)(ϕ) is an isomorphism; moreover, it is computable if
ϕ is computable.

It remains to prove that the functor F3 is completely univa-
lent. Let Ψ be an isomorphism from F3(M) onto F3(M0). Then
the restriction of Ψ to the definable by an existential formula sub-
set M in F3(M), equal to {2n | n ∈ N}, induces an isomor-
phism Ψ0 between the models M and M0. Since all the elements
of 〈M0, P 〉 are of the type 〈i, x1, . . . , xn〉 and are definable over
elements of M by existential formulas, it is easy to show that
F3(M,M0)(Ψ0) = Ψ.

(ii) Consider a model M of the signature σ1 and M′ ∈
Mod σ∗

com(F3(M)). Since elements among a0, a1, a2, b0, b1, b2, c0,
c1, c2, c3, c4, c5, c6, c7, c8 are definable by existential formulas over
elements in F3(M), we select them in M′. Suppose that these el-
ements are the following: a0

0, a0
1, a0

2, b0
0, b0

1, b0
2, c0

0, c0
1, c0

2, c0
3, c0

4,
c0
5, c0

6, c0
7, c0

8. Choosing elements connected with a0
2 by the basic

binary predicate, we obtain exactly the definable set X0 which is
isomorphic to M in F3(M).

Define the predicate P n on X0 as follows:
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〈x1, . . . , xn〉 ∈ P n ⇔ M′ |= (∃y1, . . . , yn)(y1R . . . Ryn

&
(∧

1�i�j�n xiRyj

)
&a′

0Ry1)

It is easy to see that

〈x1, . . . , xn〉 /∈ P n ⇔ M′ |= (∃y1 . . . yn)(y1P
2 . . . P 2yn

&(
∧

1�i�j�n xiP
2yj)&a′

1P
2y1).

Therefore, 〈X0, P
n〉 is a computable model of the signature

σ1. A direct verification shows that the model of F ′(〈X0, P 〉) is
computably isomorphic to M′.

It remains to prove the additional properties (a)–(c). All the
elements of M ′ = I×Mn∪{a0, a1, a2, b0, b1, b2, c0, c1, c2, c3, c4, c5,
c6, c7, c8} are definable in F3(M) over elements of M by existential
formulas from the computable set of these formulas. Thus, we can
construct a formally Σ0

α Scott family for F3(M) from the formally
Σ0

α Scott family for M. If we have a formally Σ0
α Scott family for

the model F3(M), we can see that F3(M) is ∆–definable in M with
the basic set M

⋃⋃n+1

i=1 Mn+i�Θi

⋃⋃15

i=1 M2n+1+i�∆i. Here, we
put 〈X, Y 〉 ∈ Θi if X = 〈x1, . . . , xn+i〉, Y = 〈y1, . . . , yn+i〉 and
xj = yj for any 1 � j � n. For the other equivalence relation we
put 〈X, Y 〉 ∈ ∆i for any elements X, Y of M2n+1+i. Since this
model is ∆-definable, we can define a formally Σ0

α Scott family for
M. �

Proposition 4.30 ([58]). For every signature σ1 consisting
of a single binary predicate R there exists a completely univalent
functor F4 from Mod σ1, into Ord such that the following asser-
tions hold.

(i) F4 � Mod σ1
com is a completely univalent functor from Mod σ1

com

into Mod σ∗
com.

(ii) For every model M ∈ Ob Mod σ1 the functor F4 � Mod σ1
com(M)

realizes an equivalence between the categories Mod σ1
com(M)

and Mod σ∗
com(F4(M)). In addition,

(a) if M is ∆0
α categorical, then F4(M) is ∆0

α categorical,
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(b) if M has ∆0
α dimension n, then F4(M) has ∆0

α dimen-
sion n,

(c) if M does not have a formally Σ0
α Scott family, then

F4(M) does not have a formally Σ0
α Scott family.

Proof. We construct the functor F4 from Mod {R} into Ord
satisfying the requirement conditions. Let M = 〈M, R〉 be a
model with a single binary predicate R. We define the par-
tially ordered set 〈M0,�〉, where the basic set M0 is the image
of M under the functor F4. Then we set M0 = M ∪ M2 ×
{0, 1} ∪ {a1, a2, a3, a4, a5} ∪ {b1, . . . , b7, b8}, where elements of the
set {a1, a2, a3, a4, a5} ∪ {b1, . . . , b7, b8} are new.

Introduce a partial order � on M0 such that its transitive
closure is the desired partial order on M0:

1) a1 � a2, a2 � a4, a2 � a3, a4 � a5,

2) b1 � b2, b2 � b3, b3 � b4, b4 � b5, b5 � b6, b5 � b7, b7 � b8,

3) if x1, x2 ∈M and x1 �= x2, then 〈〈x1, x2〉, 0〉 � x1, and
〈〈x1, x2〉, i〉 � x2 for i ∈ {0, 1},

4) if x1 �= x2 ∈M and M |= P (x1, x2), then a5 � 〈〈x1, x2〉, 0〉,

5) if x1 �= x2 ∈M and M � P (x1, x2), then a3 � 〈〈x1, x2〉, 0〉,

6) if x1 ∈M and M |= P (x1, x1), then b6 � 〈〈x1, x2〉, 0〉,

7) if x1 ∈M and M � P (x1, x1), then b8 � 〈〈x1, x2〉, 0〉.
We define F4(M,M′) on isomorphisms ϕ in the same way as

in the case of the functor F3. The proof of the properties of this
functor is similar to that in Proposition 4.29. �

Using the idea of the proof of Proposition 4.29, it is easy to
construct a functor from the category of an arbitrary signature
into the category of a bounded signature.
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Proposition 4.31 ([58]). For every signature Σ there exists
a bounded signature Σ0 and a completely univalent functor F6 from
Mod Σ into Mod Σ0 such that the following assertions hold.

(i) F5 � Mod Σ
com is a completely univalent functor from Mod Σ

com

into Mod Σ0
com.

(ii) For every model M of the signature Σ, the functor
F5 � Mod Σ

com(M) realizes an equivalence of the categories
Mod Σ

com(M) and Mod Σ0
com(F5(M)). In addition,

(a) if M is ∆0
α categorical, then F5(M) is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then F5(M) has ∆0

α dimen-
sion n,

(c) if M does not have a formally Σ0
α Scott family, then

F5(M) does not have a formally Σ0
α Scott family.

Proof. Consider a new signature σ∗. We put in σ∗ all predi-
cates from σ with arity n � 2. If a predicate symbol Pn has arity
mn � 3, then we add three new predicate symbols in σ∗: the bi-
nary predicate symbol Rn and two unary predicate symbols An

and Bn. We also add one new unary predicate symbol U . Then
we consider the impoverishment Mn of the model M of the signa-
ture Σn = 〈P mn

n 〉 for every mn � 3. We consider a model Ln with
M ⊆ |Ln| that is isomorphic to the model F3(Mn) from Proposi-
tion 4.29 with isomorphism ϕn from F3(Mn) on this model Ln such
that for any m ∈ M we have ϕ(m) = m, but |Ln| ∩ |Lk| = M for
any n �= k. The basic set |F5(M)| of the model F5(M) is

⋃
n |Ln|.

We set U = M . Define a predicate symbol P from σ with arity
n � 2 as the interpretation of this predicate in M. Now, define
the remaining symbols of the signature σ∗. Let Rn on |F5(M)| be
equal to the binary predicate from Ln. But An is the set |Ln| \M
and Bn is the set {ϕ(a0), ϕ(a1), ϕ(a2), ϕ(b0), ϕ(b1), ϕ(b2), ϕ(c0),
ϕ(c1), ϕ(c2), ϕ(c3), ϕ(c4),ϕ(c5), ϕ(c6), ϕ(c7), ϕ(c8)}, where {a0, a1,
a2, b0, b1, b2, c0, c1, c2, c3, c4, c5, c6, c7, c8} is the set of basic
elements for the definability of F3 on Mn.

Thus, we get the desired functor F5 on the objects of the
category. Using the construction of Proposition 4.29, we can define
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it on the morphisms of our category. The proof of the remaining
assertions is similar to that of Proposition 4.29. �

Remark. If the signature contains functional symbols, we
can pass to a new signature with predicates for graphs of this
functions.

Thus, we proved the following assertion.

Theorem 4.32 ([58]). For every signature Σ there exist a
signature Σ0 containing only one binary predicate R and a com-
pletely univalent functor F from Mod Σ to Mod Σ0 such that the
following assertions hold.

(i) F � Mod Σ
com is a completely univalent functor from Mod Σ

com

to Mod Σ0
com.

(ii) For every model M of the signature Σ the functor
F � Mod Σ

com(M) realizes an equivalence of the categories
Mod Σ

com(M) and Mod Σ0
com(F5(M)). In addition,

(a) if M is ∆0
α categorical, then F (M) is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then F (M) has ∆0

α dimen-
sion n,

(c) if M does not have a formally Σ0
α Scott family, then

F (M) does not have a formally Σ0
α Scott family.

By Theorem 4.32, it suffices to consider only problems con-
nected to computable equivalence and self-equivalence on partially
ordered sets or graphs since there are no essential difficulties arise
in the case of a more complicated signature.

The above results lead to the following assertion.

Theorem 4.33 (Goncharov–Tusupov, [58]). Suppose that
G is a graph structure and the partial ordering (graph) ∆(G) is
constructed from G, Bi in the same way as in Theorems 4.25 and
4.26. Then G has a ∆0

α copy if and only if ∆(G) has a computable
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copy. In general, for any X the structure G has a ∆0
α(X) copy if

and only if ∆(G) has an X-computable copy. In addition,

(a) if G has a unique up to a ∆0
α isomorphism ∆0

α copy, then
∆(G) is ∆0

α categorical,

(b) if G has just n ∆0
α copies, determined up to a ∆0

α isomor-
phism, then ∆(G) has ∆0

α dimension n,

(c) if G does not have a Σ0
α-computable Scott family made up

of finitary existential formulas, then ∆(G) does not have a
formally Σ0

α–Scott family.

4.6. Lift of basic results

The following assertion lifts the result of Goncharov about com-
putably categorical structures that are not relatively computably
categorical.

Theorem 4.34 ([72]). For every computable successor ordi-
nal α there is a structure that is ∆0

α categorical, but not relatively
∆0

α categorical (and does not have a Σ0
α–Scott family).

Corollary 4.35 (Goncharov–Tusupov, [58]). For every com-
putable successor ordinal α there is a partial ordering (graph) that
is ∆0

α categorical, but not relatively ∆0
α categorical (and does not

have a Σ0
α–Scott family).

The following assertion lifts the result of Manasse [106] about
relations that are intrinsically c.e., but not relatively intrinsically
c.e.

Theorem 4.36 ([72]). For every computable successor or-
dinal α there is a computable structure with a relation that is in-
trinsically Σ0

α, but not relatively intrinsically Σ0
α.

Corollary 4.37 (Goncharov–Tusupov, [58]). For every com-
putable successor ordinal α there is a computable partial ordering
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(graph) with a relation that is intrinsically Σ0
α but not relatively

intrinsically Σ0
α.

The following assertion lifts the result of Goncharov about
structures with finite computable dimension.

Theorem 4.38 ( [72]). For any computable successor ordinal
α and a finite number n there is a computable structure with ∆0

α

dimension n.

Corollary 4.39 (Goncharov–Tusupov, [58]). For any com-
putable successor ordinal α and a finite number n there is a com-
putable partial ordering (graph) with ∆0

α dimension n.

The following assertion lifts the result of Slaman and Wehner.

Theorem 4.40 ([72]). For every computable successor ordi-
nal α there is a structure with copies in just the degrees of sets X
such that ∆0

α(X) is not ∆0
α. In particular, for every finite n there

is a structure with copies in just the non-lown degrees.

Corollary 4.41 (Goncharov–Tusupov, [58]). For every com-
putable successor ordinal α there is a partial ordering (graph) with
copies in just the degrees of sets X such that ∆0

α(X) is not ∆0
α.

In particular, for every finite n there is a structure with copies in
just the non-lown degrees.

Based on examples of computable graphs and the construc-
tion of [77], one can construct many other algebraic structures
with the same properties as in Theorems 4.34, 4.36, 4.38, 4.40.

5. Classes of Computable Models
and Index Sets

In the study of computable models, it is important to consider not
only individual models, but also classes of models defined by cer-
tain properties and to find relationships between the definability
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problems and algorithmic complexity expressed in terms of their
index sets. As was shown by Nurtazin, [130], for a predicate
signature there exists a computable numbering of all computable
models of a given signature which is universal computable num-
bering of this class and is unique up to a recursive permutation.
This fact provides us with a good tool for studying the algorithmic
complexity of different classes of models of this signature.

One of questions in this direction is to express the complex-
ity of definability of a class of mathematical structures in terms of
the complexity of definability of the corresponding index sets in
a universal numbering of all computable models of a given signa-
ture. This question is close to the investigations of Goncharov and
Knight [66] on the structural properties of classes of computable
models.

5.1. Computable classification
or structure theorem

If K is a class, we denote by Kc the set of computable mem-
bers of K. A computable characterization for K should separate
computable members of K from other structures that either are
outside K or belong to K, but are not computable. A computable
classification (or a structure theorem) should describe up to an
isomorphism (or up to a some other equivalence relation) every
member of Kc, in terms of relatively simple invariants. On the
other hand, a computable non-structure theorem should assert
the absence of a computable structure theorem.

We consider three different approaches from [66]. Each of
them gives a “correct” answer in the case of vector spaces over
Q and linear orderings. Under each of these three approaches,
both classes have computable characterization and there is a com-
putable classification for vector spaces, but not for linear orderings.
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In the first approach, K has a computable characterization if
Kc is the set of computable models of some “computable” infini-
tary sentence. There is a computable classification for K if there
is a computable bound on the “ranks” of elements of Kc.

In the second approach, K has a computable characterization
if the set I(K) of computable indices for elements of Kc is hyper-
arithmetical. There is a computable classification for K if the set
E(K) of pairs of indices corresponding to isomorphic structures
is hyperarithmetical. (We also consider computable isomorphisms
or ∆0

α isomorphisms.)
In the third approach, K has a computable characterization

if there is a hyperarithmetical list (an enumeration) of elements of
Kc representing all isomorphism types. A computable classifica-
tion theorem holds for K if there is an enumeration such that every
computable isomorphism type is represented only once. (Again,
we consider computable isomorphisms or ∆0

α isomorphisms.)
Uncountable and countable structures are of great interest

in model theory, The compactness theorem is a central result,
so it is natural to use elementary first order formulas. In model
theory, classes are normally characterized by elementary first or-
der theories. In computable structure theory, we are interested
in computable structures. Within the framework of computable
structure theory, the compactness theorem does not play an es-
sential role since it does not yield computable structures. If the
compactness is established, we can deal with such classes as the
Abelian p-groups which are not characterized by the elementary
first order theory.

5.1.1. First approach.

We discuss characterization and classification in the following
sense.

Computable characterization. There is a computable infini-
tary sentence whose computable models are just elements of Kc.
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Computable classification. In addition to a computable infini-
tary sentence characterizing the computable members of K, there
is a computable bound on “ranks” of elements of Kc.

We beging with a definition of rank and then indicate how it is
connected with the complexity of isomorphisms. Then we consider
applications of the characterization and classification statements
to some well-known classes of structures.

Let us clarify how the above computable characterization and
classification statements can be applied to some well-known classes
of structures.

Computable characterization. Linear orderings, Boolean al-
gebras, and equivalence structures can be characterized by a sin-
gle elementary first order sentence. Vector spaces over Q and
algebraically closed fields of a given characteristic can be charac-
terized by either an infinite set of elementary first order sentences
or a single computable Π2 sentence. The class of Abelian p-groups
is not characterized by any set of elementary first order sentences,
but it is characterized by a single computable Π2 sentence.

Some classes, for example, well orderings, superatomic
Boolean algebras, and reduced Abelian p-groups cannot be char-
acterized by a computable infinitary sentence. In fact, they cannot
be characterized by any Lω1ω sentence. The case of well orderings
was considered by Lopez–Escobar [98].

Computable classification. For vector spaces over Q and al-
gebraically closed fields of a given characteristic the computable
rank is 1; we have the elimination of quantifiers. For equivalence
structures the rank is at most 3.

The following assertion is well known.

Proposition 5.1 ([66]). There is no computable bound on
the ranks for the following classes K :

(a) linear orderings,
(b) Boolean algebras,
(c) Abelian p-groups,
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(d) structures for language with at least one binary relation sym-
bol.

Each of the classes listed in Proposition 5.1 contains a struc-
ture of a noncomputble rank. The following assertion shows that
it is a general fact.

Proposition 5.2 ([66]). Let Kc be a set of computable mod-
els of a computable infinitary sentence ψ. If there is no computable
bound on Rc(A), for A in Kc, then there exists A in Kc such that
Rc(A) = ωCK

1 .

5.1.2. Second approach.

We consider the characterization and classification in terms of in-
dices.

Definition 5.3. The computable index of a structure A is a
number e such that D(A) = We. The index set I(K) of a class K
is the set of computable indices of elements of Kc.

We assume that Ae is a structure with computable index e.
The isomorphism problem for a class K is stated as follows:

E(K) = {(a, b) : a, b ∈ I(K) & Aa
∼= Ab}.

We write A ∼=∆0
α
B if A and B are isomorphic by a ∆0

α isomor-
phism. The ∆0

α isomorphism problem is stated as follows:

E∆0
α
(K) = {(a, b) : a, b ∈ I(K) & Aa

∼=∆0
α
Ab}.

Computable characterization: I(K) is hyperarithmetical.

Computable classification: E(K) is hyperarithmetical.

If we consider ∆0
α isomorphisms, the classification result

means that E∆0
α
(K) is hyperarithmetical.

For many classes the index set is at a low level in the hyper-
arithmetical hierarchy.
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Proposition 5.4 ([66]). I(K) is Π0
2 for the following classes

K :

(a) linear orderings,

(b) Boolean algebras,

(c) Abelian p-groups,

(d) equivalence structures,

(e) vector spaces over Q,

(f) structures for a fixed computable language.

For some well-known classes, the index set is not hyperarith-
metical.

Proposition 5.5 ([140]). I(K) is Π1
1 complete for the fol-

lowing classes K:

(a) well orderings,

(b) superatomic Boolean algebras,

(c) reduced Abelian p-groups.

We refer to [139] or [5] for the proof of (a).
We turn to the isomorphism problems. If I(K) is hyperarith-

metical, then E(K) is at least Σ1
1. For vector spaces over Q and

algebraically closed fields of a given characteristic the isomorphism
problem is at a low level of the hyperarithmetical hierarchy.

Proposition 5.6 (Calvert). E(K) is Π0
3 complete for the

following classes K:

(a) vector spaces over Q (or other infinite computable field),

(b) algebraically closed fields of a given characteristic.

Below, we list several classes for which the isomorphism prob-
lem is Σ1

1 complete (maximum complexity). These results are
firmly established in folklore and are seemed to be known since the
1960’s. However, I am not able to say exactly who was the first
who proved them. In [44], there are related results in descriptive
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set theory concerning the Borel completeness of the isomorphism
problem for various classes of structures with a fixed countable
basic set. Note that the arguments in [44] can serve as the proof
of the assertions formulated below.

Let E(K) be Σ1
1 complete for the following classes K:

(a) Abelian p-groups,

(b) trees,

(c) Boolean algebras,

(d) linear orderings,

(e) arbitrary structures for language with at least one binary
relation symbol.

5.2. Special isomorphisms

We considered the set I(K) with the equivalence relation E(K).
Now, we replace E(K) with a computable isomorphism.

Proposition 5.7. If I(K) is ∆0
3, then E∆0

1
(K) is at least Σ0

3.

Theorem 5.8 ([66]). E∆0
1
(K) is Σ0

3 complete (maximum
complexity) for the following classes K :

(a) linear orderings,

(b) arbitrary structures for language with at least one binary re-
lation symbol,

(c) Boolean algebras,

(d) Abelian p-groups,

(e) equivalence structures.

We consider ∆0
α isomorphisms instead of computable ismor-

phisms and generalize Proposition 5.7 and Theorem 5.8.

Proposition 5.9 ([66]). If I(K) is ∆0
α+2, then E∆0

α
(K) is

Σ0
α+2.
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Theorem 5.10. Let α > 1 be computable. Then E∆0
α
(K)

is Σ0
α+2 complete (maximum complexity) for the following classes

K :

(a) linear orderings,

(b) arbitrary structures for a computable language with at least
one binary relation symbol,

(c) Boolean algebras,

(d) Abelian p-groups.

The following assertion about linear orderings is very useful.
The construction is based on the method from the Ash metatheo-
rem [5, 1]. This method has many applications and, possibly, can
serve as a metaconstruction for new computable models.

Theorem 5.11 ([66]). There is a fixed computable linear
ordering B such that for any Σ0

α+2 set S there is a uniformly com-
putable sequence of linear orderings (Cn)n∈ω such that

{
Cn
∼=∆0

α
B if n ∈ S,

Cn �∼= B otherwise.

To prove this theorem, we need the following lemma.

Lemma 5.12. If A is a ∆0
α ordering, then there is a com-

putable B ∼= ωα · A with a ∆0
α function sending every element of

A to the first element of the corresponding copy of ωα in B and
there is a ∆0

α procedure associating with every b ∈ B the position
of b in the copy of ωα. Moreover, it is possible to pass effectively
from a ∆0

α index for A to a computable index for B, ∆0
α indices

for the rest.

Proof. There are known related results (cf., for example, [4,
5]), but it seems that none of these results provides us with the
desired assertion. Namely, the mentioned results can yield a ∆0

3

embedding of a ∆0
3 ordering A in a computable ordering of type
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ωA, but not a ∆0
2 embedding of a ∆0

2 ordering A in a computable
ordering of type ωA.

We use the metatheorem of Ash [1]. However, the general
formulation is too large and restrict ourselves with some definitions
and verify one nontrivial condition.

We define an α-system (L,U, �̂, P,E, (�β)β<α) and a ∆0
α in-

struction function q such that E(π) is the diagram of the desired
C, whereas π yields the rest. Without loss of generality, we assume
that A has the first element. Suppose that the basic set A of A
is an infinite computable set of constants and the first element in
the ordering is also the first constant. Let U be the set of linear
orderings on initial segments of A, including the first element. For
every u ∈ U we denote by Ou an ordering of type ωαu. Assume
that the following assertions hold.

(i) If u ⊆ v, then Ou ⊆ Ov.

(ii) The orderings Ou are computable uniformly in u and it is
possible to determine effectively the Cantor normal form of
intervals.

Let B be an infinite computable set of constants. Suppose
that L consists of pairs (u, f), where u ∈ U and f is a finite one-
to-one function from B to Ou. Let �̂ = (u, ∅), where u consists
of only the first element. If � = (u, f), we denote by E(�) the set
of atomic sentences and the negations of atomic sentences ϕ(b)
involving constants b from dom (f) such that f makes ϕ(b) true
in Ou. If � = (u, f) and �′ = (v, g), we assume that � �0 �′

if g ◦ f−1 preserves order. Suppose that � �β �′ if it preserves
order and sends elements of a single copy of ωβ to elements at the
corresponding positions, also in the single copy of ωβ. Let � ⊆ �′

if u ⊆ v and f ⊆ g.
Denote by P the set of finite alternating sequences

�̂u1�1u2�2 . . ., where

(1) un ∈ U is an ordering on the first n + 1 constants in A,

(2) un ⊆ un+1,
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(3) �n ⊆ �n+1,

(4) if �n = (u, f), then u = un, dom (f) includes the first n
elements of B, and ran (f) includes the first n elements of
Ok, for all k � n,

Thus, we defined the ingredients of the α-system. As usual,
conditions (1)–(3) are trivially satisfied. Relative to condition (4),
we suppose that σ�0u ∈ P , where �0 �β0 �1 �β1 . . . �βk−1 �k and
α > β0 > β1 > . . . > βk−1 > βk. We set �m = (um, fm). Thus,
we find �′m ⊇ �m such that �′k = �k and �′m+1 �βm+1 �′m. On the
top, we have �′0 ⊇ �0. We set �′0 = (u0, f). We have u ⊇ u0. Let
� = (u, g), where g ⊇ f includes suitable elements in the domain
and range so that σ�0u� ∈ P . This � is what we need to verify
condition (4).

Thus, we have an α-system. Define a ∆0
α instruction function

q such that if σ = �̂u1�1 . . . �n is an element of P of length 2n + 1.
Then q(σ) is the substructure of A whose basic set consists of the
first n + 1 constants. Now, we can use the Ash metatheorem. We
find a ∆0

α run π = �̂u1�1u2�2 . . . of (P, q) (π is a path through the
tree P with un chosen by the instruction function q) such that
E(π) = ∪nE(�n) is c.e.

We set �n = (un, fn). Then ∪nfn is a one-to-one function
from B onto A′ = ∪nOun

, where A′ is a copy of ωαA. Let F be
the inverse, and let B be the copy of A′ induced on B by F . Then
D(B) = E(π), so that B is computable. Now, F and A′ are ∆0

α.
For a given a ∈ A we can use ∆0

α to find the first element of the
corresponding copy of ωα in A′. Similarly, for a given b ∈ B we
can find F−1(b). Since we know the position of F−1(b) in its copy
of ωα, we also know the position of a. This completes the proof of
Lemma 5.12. �

Proof of Theorem 5.11. Relativizing the above lemma to
∆0

α, we obtain a fixed computable ordering B∗ of type ω2 such that
for any Σ0

α+2 set S there is a computable sequence of indices for
∆0

α orderings (C∗n)n∈ω such that C∗n ∼=∆0
α
B∗ for n ∈ S and C∗n �∼= B∗

in the opposite case.
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Let B and Cn be obtained from B∗ and C∗n as in Lemma 5.12.
The sequence (C∗n)n∈ω is uniformly computable. It is easy to see
that if n ∈ S, then C∗n has order type ωα+2, whereas if n /∈ S, then
Cn has type ωα+1. We are interested in ∆0

α isomorphisms.

Claim 5.13. If n ∈ S, then C∗n ∼=∆0
α
B∗ (with no uniformity).

Proof. There is a ∆0
α isomorphism from Cn onto B. There is

a ∆0
α procedure that can be applied to Cn and B for determining

the first element of every copy of ω and the successor relation on
these elements. Consequently, there is a ∆0

α procedure that can
be applied to C∗n and B∗ for determining the Cantor normal form
for the interval preceding every element. Therefore, there is a ∆0

α

isomorphism from C∗n onto B∗. This proves the claim. �

The proof of Theorem 5.11 is complete. �

Let E∆1
1
(K) be the set of pairs (a, b) such that a, b ∈ I(K)

and there is a hyperarithmetical isomorphism between Aa and Ab.
We might think of the statement that E∆1

1
(K) is hyperarithmetical

as an alternative classification statement. If I(K) is hyperarith-
metical, the sets E∆0

α
(K) are hyperarithmetical for all computable

ordinals α. In the cases where we can show that E(K) is hyper-
arithmetical, it is because there is a bound on ranks and E(K) is
equal to one of these sets.

Proposition 5.14 ([66]). If E∆1
1
(K) is hyperarithmetical,

then it is equal to E∆0
α
(K) for some computable ordinal α.

To prove this assertion, we can use the Barwise–Kreisel com-
pactness. By assumptions, I(K) is hyperarithmetical. We form
a hyperarithmetical structure including all of the structures from
Kc, their indices, and the relation E∆1

1
(K). Then we produce a

hyperarithmetical set of computable infinitary sentences, say new
constants a, b a pair of indices in the relation E∆1

1
(K), and there is

no ∆0
α isomorphism between the corresponding structures. Since

we cannot satisfy the whole set, we try to get a suitable bound on
the complexity of isomorphisms.
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5.2.1. Third approach.

Here, we discuss characterization and classification statements in-
volving lists (enumerations). In particular, a list is often taken for
classification. Consider the classification of finite simple groups. A
good list means that isomorphism types (other equivalence classes)
are represented. It is natural to require that no isomorphism type
(or equivalence class) appears twice.

Definition 5.15. An enumeration of Kc/∼= is a sequence
(An)n∈ω representing every isomorphism type in Kc. An enumer-
ation of Kc/∼=∆0

α
is a sequence representing every equivalence class

in Kc under a ∆0
α isomorphism.

Definition 5.16. A Friedberg enumeration of Kc/∼= or
Kc/∼=∆0

α
is an enumeration such that every isomorphism type or

every equivalence class under ∆0
α isomorphism is represented only

once.

Definition 5.17. An enumeration is computable (a ∆0
α enu-

meration) if there is a computable (∆0
α-) sequence of computable

indices for the structures.

Computable characterization. K has a computable character-
ization if there is a hyperarithmetical enumeration of Kc/∼= (other
equivalence can be substituted for an isomorphism).

Computable classification. K has a computable classifica-
tion if there is a hyperarithmetical Friedberg enumeration of Kc/∼=
(other equivalence can be substituted for an isomorphism).

A computable enumeration (An)n∈ω of Kc is universal up to
an isomorphism if for a given computable index for B ∈ Kc there
exists n such that B ∼= An. An enumeration is principal if for
any other enumeration (Bn)n∈ω up to an isomorphism there is a
computable function f such that Bn

∼= Af(n). It is clear that a
universal enumeration is principal.
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5.2.2. Computable enumerations.

The following result of Nurtazin [130] yields the existence condi-
tion for computable enumerations of Kc/∼=.

Theorem 5.18 ([130]). Suppose that K is a class of struc-
tures such that for some U ∈ Kc and every A ∈ Kc there is a
computable embedding of A into U and every c.e. subset W of U
generates a unique structure B ⊆ U in K. Then there is a com-
putable enumeration of Kc/∼= determined up to an isomorphism.
If for a given index for A there is an index for a computable em-
bedding of A into U , then there exists a computable universal enu-
meration of Kc/∼=.

Corollary 5.19 ([66]). A computable universal enumeration
of Kc/∼= exists for each of the following classes K :

(a) linear orderings,

(b) Boolean algebras,

(c) equivalence structures,

(d) Abelian p-groups (not necessarily reduced),

(e) algebraic fields of characteristic p,

(f) structures for a fixed computable relational language.

In case (f), a universal model U can be obtained as the union
of a chain of finite structures, where, at every stage, new elements
are added in order to satisfy all possible open types over the set of
“old” elements. The structure U is computably categorical, and
its theory is ℵ0 categorical.

Further, we can obtain the conclusion of Nurtazin’s theorem
without the assumption of computable embeddings.

Proposition 5.20. If K is the class of vector spaces over Q,
then there is a computable enumeration of Kc/∼=. In fact, there is
a principal enumeration.
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5.2.3. Existence of Friedberg enumerations.

For some classes with simple invariant it is easy to produce com-
putable Friedberg enumerations.

Proposition 5.21 ([66]). There is a computable Friedberg
enumeration of Kc/∼= for the following classes K :

(a) vector spaces over Q,

(b) algebraically closed fields of a given characteristic,

(c) well orderings of type less than a fixed computable ordinal α.

For computable equivalence structures there are natural in-
variants, but they are not so simple as the above examples. We
suspect that there is no computable Friedberg enumeration up to
an isomorphism. We have the following result.

Theorem 5.22 ([66]). If K is the class of equivalence struc-
tures with infinitely many infinite classes, then Kc/∼= has a com-
putable Friedberg enumeration.

A direct proof of the nonexistence of a computable Friedberg
enumeration is apparently a rather difficult question. Suppose
that there exists a computable bound on the ranks of elements of
Kc and there exists a computable Friedberg enumeration (Cn)n∈ω

of K/∼=. To obtain a contradiction, we try to find a computable
A ∈ K satisfying the condition A �∼= Cn for all n. It is difficult
to work out a suitable strategy even if we restrict ourselves to
only one of these conditions, for some n. The following assertions
clarify the difficulties we meet in this way. The assumptions of the
first assertion are the same as in Nurtazin’s theorem.

Theorem 5.23 ([66]). Suppose that there is a U ∈ Kc such
that

(1) for every index e for a structure A ∈ Kc it is possible to find
an index for a computable embedding of A into U ,

(2) every c.e. set W ⊆ U generates a unique substructure B ⊆ U
in K.
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Then there is no partial computable function f such that for any
index e of A ∈ Kc, f(e) is an index of some B ∈ Kc such that
B �∼= A.

Corollary 5.24 ([66]). For the following classes K there is
no effective procedure such that for a given index for a computable
A in K it yields an index for a computable B in K such that
A �∼= B :

(a) linear orderings,

(b) Boolean algebras,

(c) equivalence structures,

(d) arbitrary structures for a computable relational language.

Thus, we clarified some of the difficulties arising in the at-
tempts to obtain a direct proof of the nonexistence of Friedberg
enumerations. Therefore, we use some results on the complexity
of the isomorphism problems.

Proposition 5.25 ([66]). Suppose that I(K) is hyperarith-
metical and E(K) is properly Σ1

1. Then there is no hyperarith-
metical Friedberg enumeration of Kc/∼=.

Corollary 5.26 ([66]). There is no hyperarithmetical Fried-
berg enumeration of Kc/∼= for the following classes K :

(a) linear orderings,

(b) Boolean algebras,

(c) Abelian p-groups,

(d) structures for a computable language with at least one binary
relation symbol.

Some of these results are known for isomorphisms of a fixed
complexity. In particular, one of the results concerns the class K
of vector spaces over Q. Note that the computable members of
K are isomorphic only if they are ∆0

2 isomorphic. As we seen,
Kc/∼= has a computable principal enumeration and a computable
Friedberg enumeration.
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Proposition 5.27 ([66]). If K is a class of vector spaces
over Q, then there is no computable enumeration of Kc/∆0

1
.

Like Proposition 5.25, the following assertion concerns the
nonexistence of Friedberg enumerations of various classes, up to a
∆0

α isomorphism.

Proposition 5.28 ([66]). Suppose that I(K) is ∆0
α+2 and

the ∆0
α isomorphism problem for K is properly Σ0

α+2. Then there
is no ∆0

α+2 Friedberg enumeration of Kc/∼=∆0
α
.

Corollary 5.29 ([66]). Let K be one of the following classes:

(a) linear orderings,

(b) structures for a computable relational language with at least
one binary relation symbol,

(c) Boolean algebras,

(d) Abelian p-groups.

Then Kc has no ∆0
3 Friedberg enumeration up to a com-

putable isomorphism and for a computable ordinal α, Kc has no
∆0

α+2 Friedberg enumeration up to a ∆0
α isomorphism.

We write Kc/∼=∆1
1

for the set of equivalence classes of elements
of Kc under a hyperarithmetical isomorphism. The assertion that
Kc/∼=∆1

1
has a hyperarithmetical Friedberg enumeration is an al-

ternative classification statement.

Proposition 5.30 ([66]). If (An)n∈ω is a hyperarithmetical
enumeration of Kc determined up to a ∆1

1-isomorphism then it is
an enumeration of Kc determined up to a ∆0

α isomorphism for
some computable ordinal α.

Using the Barwise–Kreisel compactness, we obtain a Π1
1 set

of computable infinitary sentences describing a structure B, an
index e, and a function F such that B is computable, F is an
isomorphism from Ae onto B, and there is no ∆0

α isomorphism
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from Ae onto B for any computable ordinal α. If such an α does
not exist, then every ∆1

1 subset is satisfied. Hence we obtain a
model of the whole set, which leads to a contradiction.

5.2.4. Relationship between three approaches.

We present the relationship between the basic characterization
statements in the following form:

I. Kc is the set of computable models of a computable infinitary
sentence
⇓ ⇑

II. I(K) is hyperarithmetical
⇓ �⇑

III. Kc/∼= has a hyperarithmetical enumeration

It is easy to see that I ⇒ II ⇒ III. The result below asserts
that II ⇒ I.

Theorem 5.31 ([66]). Suppose that K is a class of struc-
tures closed under an isomorphism and I(K) is hyperarithmetical.
Then there is a computable infinitary sentence for which Kc is the
class of computable models.

The following result asserts that III �⇒ II.

Proposition 5.32 ([66]). Let K consist of copies of ωCK
1 (1+

η) and the linear orderings of rank at most ω. Then Kc/∼= has a
hyperarithmetical Friedberg enumeration. However, I(K) is not
hyperarithmetical.

In the first classification statement, we added the correspond-
ing characterization statement. A computable bound on the ranks
of elements of Kc, without a sentence whose computable models
are these elements, does not tell us much. The remaining clas-
sification statements imply the corresponding classification state-
ments. We summarize the relations among the basic classification
statements as follows.
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I. There is a computable bound on the ranks of elements of
Kc, in addition to a computable infinitary sentence whose
computable models are these structures
⇓ ⇑ ?

II. E(K) is hyperarithmetical
⇓ �⇑

III. Kc/∼= has a hyperarithmetical Friedberg enumeration

It is easy to see that I ⇒ II ⇒ III. By Proposition 5.32, III
�⇒ II. For a class K in this proposition, Kc/∼= has a hyperarith-
metical Friedberg enumeration, but I(K) is not hyperarithmetical.
Hence E(K) cannot be hyperarithmetical. Under the assumption
that there is a computable infinitary sentence ψ whose computable
models are elements of Kc, it is not known whether III ⇒ II.

We formulate a partial result concerning the implication II
⇒ I or III ⇒ I.

Theorem 5.33 ([66]). Suppose that Kc/∼= has a hyperarith-
metical Friedberg enumeration. Then there is computable ordinal
α such that for A, B in Kc, if every computable Πα sentence true
in A is true in B, then A ∼= B.

The first approach to the characterization problem is natural
from the mathematical point of view. Known classes of structures
(for example, groups and fields) are described by using axioms.
The second approach, involving index sets, seems to be far from
common practice in mathematics. Nevertheless, the characteriza-
tion statements for the first and second approaches are equivalent.
The third approach to the classification problems which yields a
list without repetition of invariants is very natural from the math-
ematical point of view. As we seen, the classification statements
obtained by the second and third approaches are not equivalent,
although there are relations between them. For some classes with
nice invariants (for example, vector spaces over the rational num-
bers) we can give a computable Friedberg enumeration. However,
in the majority of cases, where we established the nonexistence of
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computable Friedberg enumerations, the proof was indirect and
used the complexity of the isomorphism problem.

It is very important to determine precisely the complexity of
the isomorphism problem for various classes. Having a classifica-
tion, it is reasonable to look for the least computable ordinal α
such that E(K) = E∆0

α
(K).

Problem 31. Whether there is an example of a class K for
which the isomorphism problem is properly at some level, Σ1

1, Π0
3,

etc., but is not complete at this level?

In all cases where we located E(K) properly at some level of
complexity (by proving that it is Σ1

1, but not ∆1
1 or by proving that

it is Π0
3, but not ∆0

3), it turned out to be complete at that level.
Problem 31 is related to the long-standing challenge of finding a
“natural” example of a c.e. set such that it is neither computable
nor complete.

The following problem concerns a special case of the missing
implication II⇒ I for the classification problems, where K consists
of copies of a single computable structure A. In this case, E(K)
is essentially the same as I(A).

Problem 32. Whether Rc(A) is computable provided that
I(A) is hyperarithmetical?

Definition 5.34. Let A be a computable structure such that
Rc(A) = ωCK

1 . We say that A is computably approximable if every
computable infinitary sentence true in A is also true in some com-
putable B �∼= A.

The known examples of computable structures of noncom-
putable rank (for example, the Harrison ordering) are computably
approximable. This can be explained by the fact that they were
obtained from a family of computable approximations by using the
Barwise–Kreisel compactness or by some other similar methods.

Problem 33. Let A be computable, and let Rc(A) = ωCK
1 .

(a) Whether A is computably approximable?
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(b) Whether any true computable infinitary sentence in A is also
true in some computable structure B of computable rank?

By Proposition 3.11, if A is computable and Rc(A) = ωCK
1 ,

then any computable infinitary sentence true in A is also true in
some hyperarithmetical B �∼= A.

Remark. Problems 32 and 33 (a) are equivalent. If Problem
33 (a) has a negative answer confirmed by a computable structure
A, then Problem 32 has a negative answer confirmed by the same
structure A. If Problem 33 (a) has a positive answer, then we can
use the Barwise–Kreisel compactness to show that Problem 32 has
a positive answer.

Problem 34. Let K be a class of equivalence structures.
Whether a computable Friedberg enumeration of Kc exists up to
an isomorphism?

5.3. Definability and index sets
of natural classes of computable models

As was already mentioned, the study of the complexity of index
sets for computable models is important for understanding struc-
tural properties, classifications of models, and complexity level
of classifications. On the other hand, if there exists a universal
enumeration of computable classes of models of a given structure
numbering, we can compare classes by the complexity of their de-
scription and choose the most adequate description corresponding
to their real algorithmic complexity.

One of the goals of the theory of computable models is to
characterize the complexity of classes of autostable models of fi-
nite or infinite algorithmic dimension with the Scott family of ∃
formulas in a finite enrichment by constants. This question is also
of interest for a certain level of arithmetic hierarchy and its exten-
sion by notations of constructive ordinals, and the interaction of
the complexity of the definition of these classes of models. Related
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topics are the complexity of index sets of computable models of a
given Scott rank; in particular, the case of nonconstructive Scott
ranks models of Scott rank ωCK

1 and ωCK
1 + 1.

Another cycle of problems is connected with the complexity
of finding computable models with theories of a given type and, in
particular, the case of a theory categorical in uncountable power,
a finitely axiomatizable theory, an Ehrenfeucht theory, a theory
without prime model, a theory with countably many countable
models, an ω-stable theory, a stable theory, a theory with count-
ably many types, a decidable theory, an elementary theory of a
given complexity, a theory with a given complexity of decidability
of computable models with respect to Turing degrees, a theory
with one computable model, a strongly minimal theory, etc. It is
of interest to clarify whether the Turing degree of a theory from
the above list is universal in the corresponding hierarchy class of
complexity.
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