
Directions
for Computability Theory
Beyond Pure Mathematical

John Case †

University of Delaware
Newark, USA

This paper begins by briefly indicating the principal, non-standard
motivations of the author for his decades of work in Computability
Theory (CT), a.k.a. Recursive Function Theory.

Then it discusses its proposed, general directions beyond
those from pure mathematics for CT. These directions are as fol-
lows.

(1) Apply CT to basic sciences, for example, biology, psy-
chology, physics, chemistry, and economics.

† The author was supported in part by the National Science Foundation
(NSF) grant CCR 0208616.
Mathematical Problems from Applied Logic. Logics for the XXIst Century. II. Edited by

Dov M. Gabbay et al . / International Mathematical Series, 5, Springer, 2007
53

54 John Case

(2) Apply the resultant insights from (1) to philosophy and,
more generally, apply CT to areas of philosophy in addi-
tion to the philosophy and foundations of mathematics.

(3) Apply CT for insights into engineering and other profes-
sional fields.

Lastly, this paper provides a progress report on the above non-
pure mathematical directions for CT, including examples for biol-
ogy, cognitive science and learning theory, philosophy of science,
physics, applied machine learning, and computational complex-
ity. Interweaved with the report are occasional remarks about the
future.

1. Motivations

Ted Slaman [159] has nicely mentioned the central theme of his
intellectual motivation (deriving from the influence of Sacks) for
working in Computability Theory (CT), a.k.a. Recursive Function
Theory, namely, definability. I like this very much; however, my
own strongest intellectual motivations for devoting much of my
research to CT have a very different nature and origin.

Since these latter motivations are directly or indirectly rele-
vant to some of the directions I propose below, and are, I believe,
fairly atypical among CT researchers, I describe them in some
detail.

Before my undergraduate experiences, I was intellectually
motivated by what I would now describe as philosophically ori-
ented scientific curiosity. I naively hoped to discover the funda-
mental nature of the universe. It is likely I did not consider what
that actually meant. I knew about Einstein, but not about Gödel
and Turing. I considered studying physics, astronomy, or psychol-
ogy. I remained flexible about fields in the future, expecting I
should see what I liked, etc. I would now say I was a naive scien-
tific reductionist and, so, chose physics (over psychology) for my

Directions for Computability Theory 55

UG experience. My UG minors became mathematics and philos-
ophy, and I took but one psychology course. Psychology seemed
more easily learned on my own.

I considered physics, mathematics, or philosophy for gradu-
ate school. For various reasons, including generally better fit of
cognitive style between myself and the field, I selected mathemat-
ics.

When I first learned CT the two major, intellectual ideas that
captivated me were1

• that the definition of computable is an absolute, and
• my realization that, very likely, the universe, above

some level at least, is computable2.

In a sense, re the second bullet just above, with CT I felt
that I was dealing with physics again in the form of a very abstract
mechanics. Also, since biological organisms including humans are
components of the physical universe, with CT I also had a very
abstract handle on biology, psychology Later I found [121]
in which Myhill says on P. 149:

. . . in the author’s view, the theorems of Church and Gödel
are psychological laws. Mr. E. H. Galanter of the Department
of Psychology, University of Pennsylvania, described them in
conversation with the author as “the only known psychologi-
cal laws comparable in exactitude with the laws of physics.”3

1 Many, for me, less major things also helped with the captivation,
for example, the aesthetics of (some of) CT’s tools, for example, recur-
sion theorems [23, 24, 143].

2 N.B. In a discrete, random universe but with computable probabil-
ity distributions for its behaviors (for example, a discrete, quantum me-
chanical universe, perhaps, as I believe, ours is), the statistically expected
behavior will still be computable [60] (and constructively so [72, 73]).

3 However, when, many years later, I got to know Myhill and dis-
cussed with him the idea that people are essentially algorithmic mecha-
nisms, he was, at that time, no longer in favor of the idea.

56 John Case

It is sometimes argued that Gödel’s theorems imply people
are not algorithmic. It is, I believe, never argued that there are
people who can list or decide the set of truths of (first or second
order)4 arithmetic, or who solve the halting problem, or Any-
how, regarding the arguments that are presented: they suffer not
only from the usual problems of confusing “T being consistent”
with “T being known to be consistent,” but also, and more ba-
sically, with confusion about productive sets [148]. Many times
these arguments are essentially, “I know an algorithm witnessing
the set of truths of some arithmetic is productive; i.e., I know
an algorithm which provides counterexamples to alleged complete
recursive axiomatizations [113]; therefore, I am not a machine.”
More simply, “I know an algorithm; therefore, I am not a ma-
chine.” In this form, these arguments are seen as absurd. See also
[50, 51].5

Beginning with the next paragraph I list my suggested direc-
tions. After I present the directions, I present examples of progress
to date and suggest future work.

2. Directions

Direction 2.1. Apply CT to the basic sciences.6

This leads to a second

4 I mean second order in the sense of [148].
5 I plan to write a philosophical paper in which I present some new

arguments in this area and which tend a bit in the opposite direction
of supporting a mechanistic world, or at least one with mechanistic ex-
pected behavior.

6 By basic sciences, I have in mind biology, psychology, physics,
chemistry, economics, etc., sciences which, each to varying degrees of
predictive success, apply scientific method.

I do not consider set theory to be one of the sciences in the above
sense, and it is not clear platonists would consider it to be anyhow —
even if they think sets are a component of the universe independent of
human invention. I am not a platonist. For me, set theory requires
deciding what is useful and interesting to mean by sets, and I personally
expect that that will have no absolute answer.

Directions for Computability Theory 57

Direction 2.2. Apply the understandings from successes re
Direction 2.1 to philosophy and, more generally, apply CT to more
areas of philosophy than at present.7

At least for my personally captivating intellectual motivations
for CT bulleted above, I believe CT deserves to survive! It is not
so clear that it will.8 This partly motivates

Direction 2.3. Apply CT to engineering and other profes-
sional or applied fields more generally.

3. Progress So Far And
How One Might Go From Here

In this section, I proceed approximately chronologically with re-
spect to my own first associations with the general subject head-
ings. I interweave with the progress report occasional remarks
about the future. I also make occasional remarks about proof
techniques employed thus far9, and prove one sample theorem
(Theorem 3.1 in Section 3.2.1 below). I intend the progress re-
port material partly as evidence that progress is possible, not as

7 I like very much the idea of people continuing to apply CT to
foundations of mathematics and associated philosophy. Directions 2.1
and 2.2 are, I believe, a needed expansion to areas outside of mathematics
itself, i.e., moves away from math-centricism.

8 For U.S. mathematical science departments, NSF commis-
sioned [125], and in Appendix 2 Assessment of Subfields,
under Foundations we see, among other things, the following.

Recursion (or computability) theory is quiescent, with a
substantial body of completed work. Barring a major break-
through, or the further exploitation of connections with com-
putational mathematics and computer science, the next decade
is not expected to be very active. England plays a leading role,
with the United States as a contributor, but the aging research
population is not being replenished.
9 I have not seen a need for n-jump priority arguments yet. There

may eventually need to be new, complex methods created to obtain
results in my proposed directions.

58 John Case

how one must necessarily proceed next. I will not be proposing
particular and well-defined problems. Instead and in general I
propose the creation of interesting, insightful, and interpretable
definitions, problems, theorems for the sciences, philosophy, and
applied fields.

Standard computability-theoretic notation will be from [148].
For example, N will denote the set of natural numbers, {0, 1, 2, . . .}.
ϕ will denote a fixed acceptable programming system (or number-
ing) for the class of partially computable functions: N → N , where
ϕp is the partially computable function computed by program (or
index) p in the system. For a partial function ψ, δψ and ρψ de-
note the domain and range of ψ, respectively. We write Wp for the
r.e. set accepted or enumerated by ϕ-program p, where, formally,
Wp

def= δϕp. We also write ↓ for converges or is defined and ↑ for
diverges or is not defined.

3.1. Biology

Kleene [95, p. 59]10 was apparently the first to notice the con-
nection between his second recursion theorem [148, p. 214] and
Von Neumann’s self-reproducing automata [124, 17]. I recall that
Kleene told me (perhaps at the Kleene Symposium) that he had
used his recursion theorem to understand Von Neumann’s con-
struction. This amazed me, since, by contrast, I had used von Neu-
mann’s construction to understand Kleene’s proof of his recursion
theorem [21].11 Myhill’s [123] seems to be the first published ac-
count featuring a connection between CT and self-reproducing au-
tomata although it does not employ a recursion theorem. This

10 This paper is worth a read more generally.
11 Wonderfully, the top level logic/refinement of Von Neumanns’s

construction is essentially identical to the top level logic/refinement
of biological single-celled organisms’ self-reproductive procedure.
http://www.cis.udel.edu/∼case/papers/krt-self-repo.pdf explicitly lays
out the correspondence between Kleene’s proof of his recursion theo-
rem and (the top level of) a single-celled organism’s self-reproductive
procedure. This expands on the discussion of same in [21].

Directions for Computability Theory 59

paper provided me with my first hint of how to connect CT to
modeling the physical world, and it directly motivated my [21]
(and the earlier [20]).

In [123], Myhill considers variants of machines which build
strict copies of themselves, for example, machines which build dis-
tortions such as mirror images of themselves and machines which
deterministically evolve with each generation a better automatic
theorem prover.

Herein, in our brief discussion of [21], I omit most technical
details. Suffice it to say one has a sequence of constructor machines
M0,M1,M2, . . ., and, besides their constructing capabilities, they
have arbitrary effectively pre-assigned respective computing capa-
bilities.

For these constructor machines, we writeMp →Mq to mean
Mp constructs or begets Mq.

One of the emphases in [21] was periodicity in generations
of machines which construct offspring. For example, given any
n ∈ N , we can obtain pairwise distinct constructor machines
Me0 ,Me1 , . . . ,Men

such that Me0 → Me1 → . . . → Men
→

Me0 .
12 This sequence replicates with period n + 1. Self-reproduc-

tion is the n + 1 = 1 case. In nature we also see period two, the
n + 1 = 2 case: the metagenic cœlenterates Aurelia and Obelia
[84, p. 246] alternate between an attached polyp generation and
a free swimming medusa generation with each looking and behav-
ing different from the other. We see period three, the n + 1 = 3
case, in some parasites which occupy a succession of very different
hosts. I could not find evidence of organisms reproducing with pe-
riodicity in generations greater than three. The obvious problem
for biologists suggested by the existence of constructor machines
which replicate every n + 1 generations for arbitrary large n is,
Why do we not see larger periods in nature?

12 The proof can be done by a padded n + 1-ary recursion theorem.
To handle elegantly the cases of aperiodicity in generations (with no
sterile descendent), I invented my Operator Recursion Theorem (ORT)
[21], an infinitary self-reference principle [24]. My ORT is called the
Functional Recursion Theorem in [127].

60 John Case

Another example from [21], given any n ∈ N , we can con-
structively obtain different pairwise distinct constructor machines
Me0 ,Me1 , . . . ,Men

such that Me0 → Me1 → . . . → Men
and

Men
is sterile, and, additionally, where each Mei

, for i � n, has
the same arbitrary pre-assigned computing capabilities. The nth
descendant of Me0 exists and is sterile, where Me0 is considered
to be the zeroth descendant of itself. In drafting this chapter, I
thought of an engineering application. Many times humans have
introduced a new organism into an environment to control a pre-
existing pest organism only to discover that the new organism is
a pest itself. The application is to employ the trick for producing
theMe0 ,Me1 , . . . ,Men

of this paragraph to engineer genetically a
proposed new organism to introduce for pest control so as to have
its nth descendant exist and be sterile (for whatever n is desired),
but to have its non-reproductive functions not be altered. Then,
the altered new organism, if it turns out to be a pest itself, will
die out anyway. If it does not seem to be a pest itself, and it is
still needed to control the original pest, it can be reintroduced.

3.2. Machine inductive inference
and computability-theoretic learning

CT applied to these areas first appeared in [141, 76]. Associated
textbook material appears in [131, 86, 127].

One of the endorsement sentences I composed for MIT Press
regarding the then upcoming [86] reads as follows.13

Just as a conservation assumption from physics provides
boundaries on and insight into the physically possible so
too the computability assumption on learning provides
herein boundaries on and insight into the cognitively pos-
sible.

13 Another sentence with very different content was actually used in
my endorsement on the book jacket.

Directions for Computability Theory 61

The material in this section features Philosophy of Science
(Section 3.2.1), Cognitive Science and Language Learning (Section
3.2.2), and Applied Machine Learning (Section 3.2.3).

Some CT work applied to computational complexity aspects
of learning appears in Section 3.4 below.

3.2.1. Philosophy of Science. On [5, p. 125] it says the fol-
lowing.

Consider the physicist who looks for a law to explain a
growing body of physical data. His data consist of a
set of pairs (x, y), where x describes a particular experi-
ment, for example, a high-energy physics experiment, and
y describes the results obtained, for example, the parti-
cles produced and their respective properties. The law he
seeks is essentially an algorithm for computing the func-
tion f(x) = y.

Here is another example from [35]: x codes a particle dif-
fraction experiment and f(x) the resultant probable distribution
(or fringe pattern) on the other side of the diffraction grating.
Quantum theory provides algorithmic extraction of f(x) from x.
A program for f is, then, a predictive explanation or law for the
set of such diffraction experiments.

If, in our universe, people, including scientists (and collec-
tions thereof, including over historical time), are essentially algo-
rithmic (as I believe), one can use CT to get theorems in philos-
ophy of science. This realization occurred to me in the mid 70s
and, for me, it was extremely intellectually exciting.

Some computability-theoretic inductive inference publications
with something to say for philosophy of science are [141, 76, 4,
5, 93, 184, 46, 47, 37, 10, 35, 66, 105, 38, 1].

Some philosophy of science publications influenced by computa-
bility-theoretic inductive inference are [75, 91, 92, 101, 89, 102,
153, 154, 90].

62 John Case

In the rest of this section, I present a few sample results from
computability-theoretic inductive inference with corresponding in-
dications of their philosophical meaning.

In the following we will model inductive inference machines
M extensionally as partially computable functions which take for
their inputs finite initial segments of functions f : N → N and
which either go undefined or return programs in the ϕ-system. In-
tuitively, for a finite initial segment σ, if M(σ) is defined (written:
↓) = p, then p represents M’s conjecture or hypothesis as to a
program for f based on the data points about f contained in σ.
We write σ ⊂ f to mean σ is a finite initial segment of f , i.e., σ
is a finite initial segment of a function, and its graph is a proper
subset of that of f . We write

∞
∀ to mean for all but finitely many.

R denotes the class of computable functions mapping N into N .
We next consider a criterion of successful inductive inference.

Definition 3.1. M Ex-learns f ⇔ [(∀σ ⊂ f)[M(σ)↓] ∧
(∃p)(

∞
∀σ ⊂ f)[M(σ) = p ∧ ϕp = f]].

Intuitively, M Ex-learns f means that, M fed successively
more data about f , outputs a corresponding succession of conjec-
tures and eventually begins to output the same correct ϕ-program
p for f over and over. For Ex-learning we think of M as eventually
finding a predictive explanation p for f [47].

For p satisfying the right hand side of Definition 3.1 just
above, we write M(f)↓ = p.

Ex def= {S ⊆ R | (∃M)[M Ex-learns each f ∈ S]}. For
example, the class of one-argument primitive recursive functions
is in Ex, but R is not [76, 5]. Hence while some single M is
“clever” enough to Ex-learn every primitive recursive function, no
single M is clever enough to Ex-learn each computable function.

Next we begin to consider alternative criteria of success.

Definition 3.2. M Conf -learns f ⇔ [M Ex-learns f ∧
(∀σ ⊂ f)[M(σ)↓ ∧ (ϕM(σ) ∪ σ) is single-valued]].

Directions for Computability Theory 63

Let f [n] def= f(0), . . . , f(n− 1).
We see that an M which Conf -learns a function f Ex-learns

f and produces, on each input f [n], a corresponding conjecture,
M(f [n]), based on the data in f [n], and this conjecture does not
explicitly output something convergently contradicting any data
in f [n]. A program M(f [n]) may go undefined on some inputs
< n, but on such inputs, it, then, does not converge to anything
different from what f does. This seems like a very reasonable,
common sense restriction. In fact, the stronger looking restriction
for the related Cons-learning criterion may seem reasonable too:
each program M(f [n]) must converge to f on any inputs < n.
This restriction requires that each conjecture of M on f has to be
correct on the data about f on which that conjecture is based.14

Conf def= {S ⊆ R | (∃M)[M Conf -learns each f ∈ S]}.
Also, Cons def= {S ⊆ R | (∃M)[M Cons-learns each f ∈ S]}.

Surprisingly, these natural, common sense restrictions on in-
ductive inference (for Conf and Cons) strictly limit learning or
inductive inference power (as measured by Ex-learning).

Theorem 3.1 (Wiehagen [184]). Cons ⊂ Conf ⊂ Ex.

For example, the second, more surprising non-containment
in Theorem 3.1 just above entails that, in some cases for explana-
tory inductive inference, employing conjectures convergently con-
tradicting known data gives one strictly greater inferring power
than not contradicting known data! This result is, I believe, of
great interest for philosophy of science.

Proof of Theorem 3.1. Of course Cons ⊆ Conf ⊆ Ex.
Since, offhand, I know of no easily available proof of the sec-
ond, somewhat harder, more surprising non-containment, and to
provide herein at least one illustrative, short, and sweet proof

14 Conf is short for Conformal, and Cons is short for Consistent.
I sometimes like referring to Conformal as postdictively-consistent (not
explicitly contradicting known data points in one’s conjectures based on
them) and Consistent as postdictively-complete (not missing any known
data points in one’s conjectures based on them).

64 John Case

re inductive inference, I prove the more surprising of the non-
containments.

Let

S = {f ∈ R | ρf is finite ∧ ϕmax(ρf) = f}, (3.1)

a self-referential class. We will show that

S ∈ (Ex−Conf) .15 (3.2)

Trivially, S ∈ Ex — as witnessed by a machine that, on any
f , outputs the largest thing, if any16, it has seen so far in the range
of f .

Suppose for contradiction M witnesses that S ∈ Conf . Hence

(∀f ∈ S)(∀σ ⊂ f)[M(σ)↓ ∧ (ϕM(σ) ∪ σ) is single-valued]. (3.3)

Claim 3.1.
(∀σ)(∃f ∈ S)[f ⊃ σ]. (3.4)

Hence, by (3.4), (3.3),

(∀σ)[M(σ)↓ ∧ (ϕM(σ) ∪ σ) is single-valued]. (3.5)

Proof. We let max(∅) def= 0.
Suppose σ is given. By a padded version of Kleene’s Recur-

sion Theorem, there is program e such that e > max(ρσ)), and,
on input x, e looks in a mirror to see which program it is17, and,
then,

ϕe(x) =

{
σ(x) if x ∈ δσ,

e otherwise.
(3.6)

Let f = ϕe. Then f ⊃ σ, and f ∈ S. �

15 This and other such examples for witnessing the rest of the theo-
rem as well as for other, related results are stated, but not proven correct,
in [40]. For (Ex−Cons) �= ∅, see [4, 5, 183].

16 If nothing has yet appeared in the range of f , the machine can
output any program.

17 See [24, 143] for more about this way of understanding recursion
theorems and program or machine self-reference in terms of mirrors. It
is also discussed in Section 3.3 below.

Directions for Computability Theory 65

We continue with the proof of the theorem.
We write σ · i for the finite sequence consisting of σ followed

by i.
By a padded version of Kleene’s Recursion Theorem, there is

a different program e > 0, 1 such that this e looks in a mirror to
see which program it is, and, then, the rest of this e’s behavior is
described informally below.

begin Program e;
set ϕe(0) = e;
let ϕs

e be the finite sequence of successive val-
ues of ϕe defined before stage s below18;
do stage s for s = 0 to ∞;

begin stage s;
if (i) M(ϕs

e · 0) = M(ϕs
e · 1) (∗ i.e., M is

insensitive ∗)
then

set ϕs+1
e = ϕe · 0 (∗ passive ploy ∗)

else (ii) (∗ i.e., M is sensitive ∗)
set ϕs+1

e = ϕe ·min({i � 1 |M(ϕs
e) �=

M(ϕs
e · i)}) (∗ aggressive ploy19 ∗)
endif

end stage s
enddo

end Program e.

Clearly, by (3.5), ϕe is total and, then, is ∈ S. Therefore,
(∃p)[M(ϕe)↓ = p ∧ ϕp = ϕe].

Hence (
∞
∀s)[(i) holds at stage s] — since each stage in which

(ii) holds forces M to make another mind change.
Pick s0 so large that [(i) holds at stage s0 ∧M(ϕs0+1

e) =
M(ϕs0

e) = p].
For each i � 1, let σi = ϕs0

e · i.
18 ϕs

e is an initial segment of a function; hence, it has domain
{0, . . . , n− 1} for some n � 0.

19 This strategy forces M to make a change of conjecture, a “mind”
change, on ϕe.

66 John Case

Then, σ0 = ϕs0+1
e �= σ1 ∧ δσ0 = δσ1.

Let xs0 = max(δσ0), which = max(δσ1), and is > 0.
Since M is insensitive at stage s0, M(σ0) = p = M(σ1).
By (3.5),

[(ϕM(σ1) ∪ σ1) is single-valued]. (3.7)

xs0 ∈ δσ0 = δσ1 ∧ σ0(xs0) = 0 �= 1 = σ1(xs0).
ϕM(σ0) = ϕM(σ1) = ϕp = ϕe.
δϕe = N . Therefore, xs0 ∈ δϕe too.
Since ϕM(σ0) = ϕe, (xs0 , 0) ∈ (ϕM(σ0) ∩ σ0).
Since ϕM(σ0) = ϕM(σ1), (xs0 , 0) ∈ ϕM(σ1). Also, (xs0 , 1) ∈ σ1.

Hence

(xs0 , 0), (xs0 , 1) ∈ (ϕM(σ1) ∪ σ1), (3.8)

a contradiction to (3.7) . �

Next is another theorem I like very much.

Theorem 3.2 (Bārzdiņš [4], Blum and Blum [5]). Ex is not
closed under union, i.e., there are classes S0,S1 ∈ Ex such that
(S0 ∪ S1) �∈ Ex.

Here are example such S0,S1 — similar to those from [5]. Let
S0 = {f ∈ R | ϕf(0) = f} and S1 = {f ∈ R|(

∞
∀x)[f(x) = 0]}.

Theorem 3.2 essentially suggests that for success in induc-
tive/scientific inference, one needs the diversity of incomparable
“cognitive” styles of scientists: scientists M0 which Ex-learns S0

and M1 which Ex-learns S1 cannot be combined into a third sci-
entist M2 which Ex-learns all that M0 does together with all that
M1 does.

In physical optics there is a phenomenon called anomalous
dispersion: the classical, quantitative explanation for different

Directions for Computability Theory 67

frequencies of light and, more generally, electromagnetic radia-
tion being differentially bent according to frequency when pass-
ing through a prism does not work for X-rays.20 Physicists used
this model nonetheless until quantum mechanics provided a better
model. In the mid 70s, I began to consider whether I could prove
a theorem re machine inductive inference that would suggest a
vindication of physicists’ employing slightly faulty predictive ex-
planations. For each n ∈ N , for partial functions η, θ, we write
η =n θ to mean that there are at most n counterexamples to
η = θ. We write η =∗ θ to mean that there are at most finitely
many counterexamples to η = θ. For a ∈ N ∪ {∗}, we define a
variant of Ex-learning, called Exa-learning, in which the eventual
final programs p are allowed to be mistaken on up to a inputs in
computing the input function f , i.e., success requires only that
ϕp =a f . A theorem indicating an increase in inferring or learning
power comes with tolerance of some few mistakes in one’s predic-
tive explanations follows.

Theorem 3.3 (Case and Smith [46, 47]). Ex = Ex0 ⊂
Ex1 ⊂ Ex2 ⊂ . . .Ex∗.

Hence we see that tolerating up to just one single anomaly or
mistake in one’s final program provides a strict increase in infer-
ring power, tolerating n + 1 anomalies provides an increase over
tolerating no more than n, and tolerating a finite number provides
an increase over tolerating a bounded number.21 Of course, Ex∗

is not so “practical” a criterion as Exn, for small n, since, for the
former, the finite number of anomalies in a final program p may
include all the data points for which the predictive explanation p
will ever be used. Ex∗ is mathematically interesting though.

In [47], we pointed out that Popper’s Refutability Princi-
ple, the principle that purported scientific explanations ought to
be subject to refutation by suitable experiments, needs some revi-
sion. The anomalies providing the hierarchy of Theorem 3.3 above

20 Of course it is the model or predictive explanation which is anom-
alous, not the physical phenomenon itself.

21 [5] announced the case of Ex ⊂ Ex∗.

68 John Case

are and must be mistakes of omission [47], but this kind of mis-
take cannot be algorithmically detected in general. Explanations
ought to be refutable when they make predictions, but may not
be refutable when they fail to make a prediction at all — even if
they should have.

Let minprogram(f) def= min {p | ϕp = f}.

Definition 3.3 (Freivalds [68]). For S ⊆ R, S ∈ Mex as
witnessed by M⇔ (∃ computable h)(∀f ∈ S)[M Ex-learns f ∧
(∀p)[M(f)↓ = p⇒p � h(minprogram(f))]].

For M,S, h as in the just above definition, M’s final programs
on f ∈ S are within “factor” h of minprogram(f). Mex-learning
is intended as a model of inductive inference obeying a form of
Occam’s Razor. It is common in philosophy of science and in the
applied part of artificial intelligence called machine learning to
assume one’s models for fitting and predicting data should obey
some form of Occam’s Razor. Yet we have the following theorem
which shows that a simple, easily inferred subclass of R is not in
Mex.

Theorem 3.4 (Kinber [93]). S1 = {f ∈ R | f is the charac-
teristic function of a finite set} ∈ (Ex−Mex).

Hence, at least some forms of another common sense prin-
ciple, Occam’s Razor, restrict one’s inferring or learning power!
Theorem 3.4 just above can be proved by a recursion theorem ar-
gument together with a finitary cancellation (zero-injury priority)
scheme.22 For more on Mex and variants, see [32, 33, 1].23

There are costly criteria providing inferring or learning power
beyond that of Ex∗. M Bc-learns f ∈ R means that M on f out-
puts an infinite sequence of programs p0, p1, p2, . . ., and (

∞
∀ i)[ϕpi

=

22 Chen in [32, 33] showed that, by contrast, S0 = {f ∈ R | ϕf(0) =
f} ∈ Mex, and yet, by a recursion theorem argument from [5], self-
referential classes like S0 are so large they contain a finite variant of
each element of R.

23 The latter features infinitary self-reference arguments employing
my ORT Theorem [21, 24].

Directions for Computability Theory 69

f]. Bc or behaviorally correct learning features semantic conver-
gence to correct programs; whereas, Ex-learning features syntactic
convergence to correct programs. Bc def= {S ⊆ R | (∃M)[M Bc-
learns each f ∈ S]}. Steel [47] showed Ex∗ ⊆ Bc. Bārzdiņš [4]
first studied Bc and showed that (Bc − Ex) �= ∅. Harrington
and I [47] showed that (Bc−Ex∗) �= ∅.24 Anyhow, the cost men-
tioned above of Bc-learning is that to realize its full power one has
to contend with the final, correct programs being of unbounded
size.25

In this section, we have quite plausibly been taking a pre-
dictive scientific explanation to be modeled as a ϕ-program for
predicting the results of all experiments regarding a phenomenon
to be explained.26 Essentially, in terms of the arithmetical hier-
archy [148], ϕ-programs are intercompilable with Σ0

1-definitions
of the corresponding (partial) functions. In [37, 10, 48, 49] the
learning or inductive inference of Σ0

2-definitions is also considered.
Of course, from such definitions one may not be able to extract
predictions about the outcomes of associated experiments, but in
some cases, some higher order information may be extractable.
Even if, from such a definition, one cannot calculate values for an
f so defined, one may be able to extract data refutable global or
shape information about the curve of f , for example, that f is
monotone increasing.27

24 Our proof was an infinitary recursion theorem argument based on
my ORT [21, 24].

25 Anomalous variants of Bc-learning, for example, Bca for allowing
up to a anomalies in final programs, and corresponding hierarchies of
learning/inferring power are studied in [47]. Harrington showed [47] that
some machine witnesses R ∈ Bc∗, and [27] shows that such machines
on infinitely many computable functions have their anomalies occurring
in undesirable positions.

26 Fulk [70] argues that the set of distinguishable experiments one
can actually do and record on a phenomenon is countable: lab manuals
can and do contain only finite notations from a finite alphabet and/or
bounded-size, finite-precision images.

27 The difference is somewhat analogous to the difference between
predicting the location of planet at any time and predicting the shape
of the planet’s orbit [37, 10].

70 John Case

The limiting-computable partial functions are those computable
by a total mind-changing algorithm, i.e., those that are the limit
of a computable function [157]. With care one can intercompile
between Σ0

2-definitions and some form of programs for the limiting-
computable partial functions.28 For this reason we write LimEx
for the inference criterion just like Ex except that the “programs”
output and converged to are Σ0

2-definitions (or a suitable form of
limiting programs). N.B. We are, of course, interested in LimEx
for classes of computable functions only. We take ϕ2 to be an
acceptable programming system (numbering) for the Σ0

2 partial
functions, where ϕ2

p is the partial function defined by suitable form
of limiting program p.

For expressions E admitting translation into the language of
first order arithmetic [113] we write # E $ for a fixed, natural
such translation.

η =∞ θ
def⇔ ‖{x | η(x) = θ(x)}‖ is infinite.

Theorem 3.5 (Case and Suraj [48, 49]). Suppose T is a
computably axiomatizable first order theory which extends Peano
Arithmetic (PA) and in which one cannot prove sentences that
are false in the standard model ([113]). Then there is a class of
monotone computable functions C such that

(1) C �∈ ∪k∈NBck,
(2) (∀f ∈ C)(∀p | ϕp =∞ f)[T �� # ϕp is monotone$],29 and
(3) there exists a machine M which LimEx-learns every function

in C and, for every f ∈C, for every e such that M(f)↓=e,
(a) PA � # ϕ2

e is monotone$,
(b) (∀x, y)[T �� # ϕ2

e(x) = y $]30, and
(c) PA � # ϕ2

e is computable$.

28 The trick is to express the limiting computable partial functions
as the uniform limit of a single, suitable computable function [143, 49].

29 Therefore, (∀f ∈ C)(∀p | ϕp =∞ f and ϕp is monotone)[T ��
ϕp is monotone $]. This is, perhaps, surprisingly strong.

30 Therefore, (∀x, y | ϕ2
e(x) = y)[T �� # ϕ2

e(x) = y $].

Directions for Computability Theory 71

This theorem (Theorem 3.5), then, provides some strong trade-
offs between inferring Σ0

1- vs. Σ0
2-definitions. For C, one can employ

the latter, but not the former for successful inference and to prove
monotonicity. But, by the important Clause 3b in Theorem 3.5
just above, one cannot predict, from the latter and T, for the sake
of Popper’s Refutability Principle for science, any data points at
all in the graphs of the ϕ2

e’s! The output Σ0
2-definitions are not,

in principle, refutable by incorrect data point predictions, but in
principle, they admit of being refuted by non-monotonicity (in the
input data itself). Hence this result exhibits, then, some new sub-
tleties re the application of Popper’s Refutability Principle: one
cannot inductively infer C ⊆ R without being forced to accept a
weakened refutability principle.

I would like to see more CT learning theory theorems like
those above with some insight and/or shock value for philosophy
of science.

3.2.2. Cognitive science and language learning. In this sec-
tion, we look at learning grammars for (formal) languages from
positive information about them. The original paradigm was Gold’s
[76]. Thanks to code numbering and for mathematical conve-
nience we can and will take our languages to be r.e. subsets of N .
Grammars will be type 0 [81], and, hence, we can take a grammar
g for an r.e. language L to be an r.e. index for L, i.e., such that
Wg = L.

We say T is a text for L
def⇔ {T (0), T (1), . . .} = L.31 We say,

in this case, T is for L. In this section, Ms will computably map
finite initial segments of texts into grammars/r.e. indices, and,
without loss of generality for what we want to do, we take Ms
to be total. Next are defined some criteria of successful language
learning.

31 In more formal expositions, we allow ρT to contain also #s, where
a # models a pause and is not part of the language L. Then the text
with successive values consisting only of #s is the only text for the empty
language. Herein we need not be so careful about handling the empty
language.

72 John Case

Definition 3.4 ([42, 132, 25]). Suppose b ∈ (N+ ∪ {∗}),
where N+ = {1, 2, . . .} and x � ∗ means x <∞.

(1) L ∈ TxtEx ⇔ (∃M)(∀L ∈ L)(∀T for L)[M on T outputs
g0, g1, g2, . . .⇒(∃t)[gt = gt+1 = · · · ∧Wgt

= L]].

(2) L ∈ TxtBc ⇔ (∃M)(∀L ∈ L)(∀T for L)[M on T outputs
g0, g1, g2, . . .⇒(∃t) [gt, gt+1, . . . each generates/enumerates L]].

(3) L ∈ TxtFexb ⇔ (∃M)(∀L ∈ L)(∀T for L)[M on T out-
puts g0, g1, g2, . . .⇒(∃t) [gt, gt+1, . . . each generates/ enumer-
ates L ∧ ‖{gt, gt+1, . . .}‖ � b]].

The class F of all finite languages ∈ TxtEx, but the class
of all regular languages (from automata theory [81]) is not [76].
K = {K ∪ {x} | x ∈ N} ∈ (TxtBc − TxtEx), where K is the
diagonal halting problem [148]. TxtFexb is like TxtBc except
the set of final, correct programs has cardinality � b. TxtFex1 =
TxtEx & K �∈ TxtFexb.

We have TxtFex1 ⊂ TxtFex2 ⊂ . . . ⊂ TxtFex∗ ⊂ TxtBc
(see [25]).32 33

Some sample publications in computational learning theory
re formal language learning are [76, 3, 22, 131, 70, 71, 96, 8,
86, 25, 9, 29].

The language learning model of the present section, although
obviously limited as a model for human language learning, has,
nonetheless, been influential in cognitive science and in contempo-
rary theories of natural languages, for example, [136, 181, 128,
182, 130, 11, 74, 94].

Regarding this model, I gradually acquired the belief that, in
spite of its limitations, there was the possibility for theorems with
insights into cognitive science. In the rest of this section, I provide

32 [132] showed TxtFex1 ⊂ TxtFex∗ ⊂ TxtBc.
There are also anomaly hierarchies, but we will not go into them

here. See [25].
33 This hierarchy result contrasts with what happens with the crite-

ria for learning programs in the limit for f ∈ R from Section 3.2.1 above:
for Ex style learning, converging to finitely many correct programs in
the limit offers no more learning power than converging to one. See [47].

Directions for Computability Theory 73

an example.34 The motivation comes from empirical observations
from child cognitive development.

U-shaped learning behavior features the pattern of learning,
unlearning, and relearning. It occurs in child development re, for
example, verb regularization [139, 119, 166] and understanding
of various (Piaget-like) conservation principles [162], for example,
temperature and weight conservation and interaction between ob-
ject tracking and object permanence. An example regarding irreg-
ular verbs in English follows. A child first uses spoke, the correct
past tense of the irregular verb to speak. Then the child overregu-
larizes incorrectly using speaked. Lastly, the child returns to using
spoke. Our theoretical examples will involve the formal learning,
unlearning, and relearning of type 0 grammars for whole formal
languages L. The main “theoretical” concern of the empirically
based cognitive science literature on U-shaped learning is with how
to model U-shaped learning. For example, is U-shaped language
learning done employing subconscious general rules vs. tables of
exceptions [14]? That is a nice concern, but not at all my inter-
est. My interest is in the following question. Is U-shaped learning
an unnecessary and harmless accident of human evolution or is
U-shaped learning advantageous in that some classes of tasks can
be learned in U-shaped way, but not otherwise? I.e., are some
classes of tasks learnable only by returning to abandoned correct,
learnable behaviors? Of course, as a question about humans, this
is very difficult to answer. So, I sought some learning theory in-
sights about what could possibly be true.

34 The proof techniques for learning language grammars from posi-
tive data, unlike the results in the just previous section (Section 3.2.1)
feature more than considerations of algorithmicity. They also feature
finite extension arguments which, of course, can be conceptualized in
terms of Baire Category Theory [122, 148, 83, 129, 131]. Some of the
proofs in [25] employ such a mixture but resembling finite injury priority
arguments. These are to obtain results for TxtFexb having to do with
without-loss-of-generality local and global insensitivity to order of data
presentation and whether the texts are restricted to being computable.

74 John Case

Next is the definition of language learning criteria which are
restricted by disallowing U-shaped learning behavior. We think
of Wg as the [summary of the] behavior of g.

Definition 3.5. Suppose C ∈ {TxtFexb,TxtBc}. Then,
L ∈ NonUC ⇔ (∃M)(∀L ∈ L)(∀T for L)[M on T outputs
g0, g1, g2, . . .⇒(∀i, j, k | i < j < k)[Wgi

= Wgk
= L⇒Wgj

= Wgi
]].

Non-U-shaped learners never abandon correct behaviors for
learned L ∈ L and, then, return to those behaviors.

From [29], the transitive closure of the inclusions (denoted
by −→) in Fig. 1 holds and no other inclusions hold.

Figure 1. Results on U-Shaped Learning

Hence U-shaped learning is needed for some class in TxtBc;
is not for TxtEx learning, i.e., for learning one successful gram-
mar in the limit; is needed for some class in TxtFex2 even if we

Directions for Computability Theory 75

allow finitely many grammars in the limit — but not if we allow
infinitely many grammars in the limit; and is needed for some
L ∈ TxtFex3 even if we allow infinitely many grammars in the
limit.

Now that we know some mathematical possibilities, a ques-
tion for the cognitive scientists is: does the class of tasks humans
must learn to be competitive in the genetic marketplace, like this
latter L, necessitate U-shaped learning?

I would like to see more CT learning theory results like the
above which give cognitive science something new to think about.

3.2.3. Applied machine learning. In the context of dealing
with the difficulties of actually applying learning in robotics, Drew
McDermott [110] says, “Learning makes the most sense when it is
thought of as filling in the details in an algorithm that is already
nearly right.” I suggested to colleagues that we get some corre-
sponding learning theory results regarding learning programs for
functions from approximately correct such programs (as well as
from data on the functions). Martin Kummer came up with sev-
eral nice ideas for such approximate programs for a computable
0-1 valued function — including decision programs for bounded
width trees [148] containing or enveloping the function, and we
produced [41]. A sample result from this paper implies that if the
approximately correct programs are for enveloping trees of width
n > 0, then some probabilistic machine (in the sense of [137, 138])
Ex-learns every 0-1 valued computable function with probability
of success 1

n
. For Bc the probability is one.

In the late 90s, I started attending applied machine learning
conferences and workshops. Early on I noticed practical interest
in so-called concept drift and context sensitive learning.

A drifting concept to be learned is one which is a mov-
ing target. See, for example, [6, 7, 61, 67, 79, 103, 186]. I
got some computability theory collaborators together to produce
[34] in which we show, for various learnability criteria (including

76 John Case

some, suggested by Frank Stephan, for learning Martingale bet-
ting strategies), bounds on the speed of the moving target that
permit success at all.

Context sensitive learning involves trying to learn Y by first
[178, 179, 167, 56, 57, 58, 62, 174, 169] or simultaneously
[18, 19, 116, 12, 59, 111, 140, 161] trying to learn also X —
even in cases where there may be no inherent interest in learning
X. There is, in many cases, an empirical advantage in doing this
for some X, Y . It can happen that Y is not learnable by itself, but
is learnable if one learns X first or simultaneously. For example,
to teach a robot to drive a car, it is useful to train it also to
predict the center of the road markings (see, for example, [15,
19]). I realized there was already a CT learning theory paper that
I liked very much, [2], which showed mathematically these context
sensitivity phenomenon must happen for some tasks X, Y . Later
we produced [36] providing a kind of strengthening for the case
one learns X, Y simultaneously.35

These results regarding context sensitive learning provide
mathematical support for the corresponding empirical phenom-
ena suggesting the possibility that these empirical phenomena are
not just accidental or illusory.

I would like to see more of these kinds of CT learning theory
papers.

Next is an interesting four part story.

Part I of the four part story. In my visits to the School
of Computer Science and Engineering, University of New South
Wales, Sydney, Australia, I have learned about the machine learn-
ing projects of Claude Sammut there. I became particularly in-
terested in the behavioral cloning approach to machine learning
of reactive process-control. This is surveyed in [16] and involves
using data from the (non-verbal, performance) behavior of master
or expert human controllers in order to make machine learning

35 Of course machine learning is an engineering endeavor. However,
philosophers of science as well as practitioners in scientific disciplines
should, I believe, be considering their relevance to their endeavors.

Directions for Computability Theory 77

of complex control feasible/possible. For example, it has been
used successfully to teach an autopilot to fly an aircraft simula-
tor [16, 158, 120, 151, 152] and to teach a machine to operate
efficiently a (simulated) free-swinging shipyard crane [16, 175].

One of the difficulties Claude made me aware of in the learning-
to-fly project was that attempts to make use of the behavioral data
from more than one human expert at a time had failed miserably.
Different pilots had very different strategies, and it was not clear
how to mix them.

Part II of the four part story. In a visit to Martin Kummer he
put me onto his theoretical work on learning, from programs for
game trees, etc., winning strategies for infinite reactive process-
control games called closed computable games [98]. I would not
provide here the details but will give the computability-theoretical
flavor of these games with two contrasting examples.36

Example 3.1. Fix n0 ∈ N . Player I is a digital thermo-
stat, Player II is the temperature (which is subject to a discrete
unseen physical disturbance); winning for Player I is: past time
(= move) n0 keeping the temperature within some pre-assigned
integer bounds.

Example 3.1 is a closed computable game. Importantly,
Player I can algorithmically detect if he/she/it has, at any point,
lost.

Example 3.2. Player I is a digital thermostat, Player II is
the temperature (which is subject to a discrete, unseen physical
disturbance); winning for Player I is: past some time (= move) n
keeping the temperature within some pre-assigned integer bounds.

Example 3.2 is not a closed computable game. Importantly,
Player I can not algorithmically detect if he/she/it has, at any
point, lost.

36 For more on these games, also see [45, 118, 168].

78 John Case

Of course the behavioral cloning games in Part I are not
infinite, but there is otherwise some suggestive similarity with the
closed computable games.

Kummer’s co-author, Matthias Ott, had some ideas already
for adding the behavior of masters playing winning strategies as
additional information for the learning of closed computable games.
This looked like behavioral cloning from Part I of the story! We
produced [44], and one of the theorems there said there existed
cases where cloning n + 1 disparate masters enable learning to
win more games than merely cloning n. This was theoretical sup-
port, then, for the possibility that, in the behavioral cloning ex-
periments, there could be a way to clone behaviorally multiple
masters or experts — and with some performance advantage over
merely cloning one master.

Part III of the four part story. I went to an applied machine
learning workshop, and told participants who cared about behav-
ioral cloning about the just above result that there are cases for
which cloning more experts is better than cloning fewer. I am not
sure if I expected them to say, in effect, Oh, good, I will go home
and figure out how to apply that to my behavioral cloning prob-
lems. Instead they asked me how to do it for practical problems.
Our existence theorem had not provided me just how to do it. I
did try after that to get Sammut’s group to see what we could do,
but I was never around them long enough to get much work done
on it.

Part IV of the four part story. Some time later I found out,
from Mike Bain in Sammut’s group, about Dorian Šuc’s wonder-
ful doctoral dissertation in Ljubljana, Slovenia, [177]. He had
found a way to clone behaviorally more than one human expert
simultaneously for the free-swinging shipyard crane problem —
by having more than one level of feedback control, and he got
enhanced performance from cloning the multiple experts! Dorian
had not known anything about our suggestive theoretical result,
he just solved the problem.

Directions for Computability Theory 79

What I would like to see: get more CT learning results which
should inform machine learning practitioners.

3.3. Machine self-reflection

This paragraph is based mostly on [24]. Kleene’s (Second) Re-
cursion Theorem can be conceptualized as follows. Given any
pre-assigned algorithmic task, there is a ϕ-program e which first
looks in a mirror37 to see in detail and exactitude its own code
script, flow chart, or wiring diagram, and, then, e uses this im-
age in the mirror as a datum (and its external input as another
datum) for input to the pre-assigned algorithmic task — which
task it then carries out with these two inputs. Essentially, then,
e has a perfect self-model (a copy of itself) and employs it ac-
cording to the algorithmic pre-assigned task which describes how
to use it (together with its external input). No infinite regress
is required since e’s copy is projected external to e. Such e are
self-reflecting/self-knowing programs.38 39

In the late 70s, I realized that the constructive form of Kleene’s
Recursion Theorem (I will call it KRT) could be conceptualized as
a kind of non-denotational program control structure [163]. Typ-
ical denotational control structures are if–then–else and while–
loop. I believed it would be possible to develop a general theory
of control structures in the context of CT-style programming sys-
tems (numberings). It was. I supervised the doctoral dissertations

37 We can suppose the mirror is a corner mirror so the image in it
does not appear left-right reversed.

38 Examples of using self-knowledge in a simple way were presented
in the proof of Theorem 3.1 in Section 3.2.1 above. Examples of using
self-knowledge in more complex ways are in [21].

39 I intend to write the paper version of [26] in which I describe what,
I believe, Kleene’s Recursion Theorem has to do with the self-reflection
component of consciousness. N.B. I will not provide an elucidation of
what Dave Chalmers in his very influential book [31] describes as the
hard problem of consciousness, for example, the problem of qualia. I
will provide some ideas on the problems of why we are not unconscious
zombies [31] and how we can be machines and, yet, differ in kind from
Searle’s famous Chinese Room [155].

80 John Case

[144, 149] to help work this out.40 In the context of programming
systems (numberings) for the class of partially computable func-
tions where each system has a universal program inside the system,
I showed that the acceptable programming systems [147, 148], are
characterized as those in which each possible control structure has
an implementation [144, 149]. One of my principal goals in all
this was to try to characterize KRT insightfully — in the inter-
est of understanding the utility of self-knowledge. The ancient
Greeks thought self-knowledge was important, and, perhaps, one
could obtain some mathematical insight into its utility. Character-
izations have been elusive, but we have had better luck at insight
into what epitomizes the “complement” of KRT. Here is one of my
favorite theorems of Jim Royer on this latter subject. Again, the
programming systems (numberings) considered are for the class of
partially computable functions where each has a universal program
inside the system.

Theorem 3.6 (Royer [149]). KRT and if–then–else are
complementary in the sense that:

(1) For each there is a programming system with an implementa-
tion of that one but with no implementation of the other one;
and

(2) If a programming system has an implementation of both, it is
acceptable; i.e., has an implementation of all control struc-
tures.

Hence decision branching and self-reflection are complemen-
tary.

I noticed, from the proofs of this theorem (Theorem 3.6) and
related ones in [149], that one of the crucial elements was the con-
structivity component of KRT, but I wanted to understand the
self-knowledge component, period. Let krt be the not necessar-
ily constructive Kleene Recursion Theorem. With a new Ph.D.
student, Sam Moelius, we have begun to find epitomizers of the

40 For definitions, etc., see [144, 145, 149]. For more on this CT
approach to control structures, see [146, 108, 85, 39].

Directions for Computability Theory 81

complement of krt. This is work not yet completed. We will see
how it goes.

I would like to see more CT work on mathematically under-
standing machine self-knowledge.

3.4. CT for computational complexity

In this section, we explore a tiny fraction of the available and some-
what recent literature. I like very much, though, the early results
of abstract complexity theory such as the surprising Blum Speed-
Up Theorem [13, 187], its strengthening [114], and [117].41 Many
more recent results in complexity theory involve limiting some CT
techniques to severely time or space bounded realms. See, for ex-
ample, [143] and its bibliography. Actually, in co-creating [143]
I had in mind bringing CT techniques far down into the subre-
cursive realm, for example, all the way down to linear time com-
putable. Of course, extremely complicated priority arguments or
even finite injury priority arguments with no computable bound
on the injuries do not seem to fit well this realm.42 Priority con-
structions with bounded finite injury can sometimes be used to
get complexity theory results, e.g, in [97] at the cost of exponen-
tial time. Impressively, [30] applies carefully bounded priorities
toward feasible learnability. Employing CT tricks to provide the
practitioner with feasible algorithms, while very difficult, would
be highly desirable for the future.

[28] presents learnability applications of CT to prove results
about the quality of the final learned programs. Below is a special
case of one of the results. Suppose k > 0. Run times are measured

41 [127] surveys much of this work.
Proofs of such results by complicated Kleene Recursion Theorem

arguments can be conceptually simplified by employing instead my ORT.
See [109, 160] for examples of how I do this.

42 Possibly, these kinds of arguments could be introduced into this
realm by employing Hybrid recursion theorems from [143]. These per-
mit, for example, self-other reference between low level subrecursive pro-
gramming systems and systems for functions partial computable in K.

82 John Case

with respect to multi-tape Turing machines, and we suppose ϕTM

is an acceptable system based on them — with ΦTM
p the run time

(partial) function of ϕTM-program p [13]. Let Pk def= the set of
characteristic functions of sets decidable in k-degree polynomial
time (in the length of inputs). Pick an inverse α to Ackermann’s
function computable in linear time — of course α is very slow
growing [43]. Let Qk def= the set of characteristic functions of sets
decidable in time a k-degree polynomial of n times log(n) times
α(n), where n is the length of the input. Pk ⊂ Qk [80, 81],
and this is a tightest known separation. Since each of Pk and
Qk are r.e. classes of computable functions, by the enumeration
technique in [5], they are Ex-learnable. For example, then, Pk is
so learnable by a machine all of whose output conjectures run in
k-degree polynomial time.

Theorem 3.7 (Case, Chen, Jain, Merkle, and Royer [28]).
Suppose M Ex-identifies Qk, where k � 1. Then there is an
“easy” f , the characteristic function of some finite set, such that
(∀a)(

∞
∀x)[ΦTM

M(f)(x) > a · (|x|+ 1)k].

Hence, to learn Qk, a little bigger class than Pk, we have
severe complexity deficiencies in the final programs on very easy
functions f .

Theorem 3.7 just above is proved by delayed diagonalization
(or slowed simulation) [104, 143] with cancellation [13] (or zero
injury), complexity-bounded self-reference [143], and very careful
subrecursive programming [143].

In [28], we have other results of this ilk. For example, if the
classes polynomial time and non-deterministic polynomial time do
separate, then Ex-learning the latter with output conjectures non-
deterministic polynomial time bounded Turing machines will force
there to exist some easy functions f (characteristic functions of
finite sets) whose final learned programs will have some otherwise
unnecessary and undesirable non-determinism. Also obtained is a
similar result comparing quantum polyomial time and polynomial
time (again, if they separate), where, in learning the then larger

Directions for Computability Theory 83

class, the complexity deficiency in final programs for some easy
functions is otherwise unnecessary quantum parallelism. Standard
diagonalizations are too rough to be used in these realms where
we are not even sure currently if there are separations. We resort
instead to lifts of arguments about more delicate Σ0

2-inseparability
of certain subrecursive index sets [23, 143].

In [28], there are additionally results about cases where final
programs are asymptotically optimal, but they are informationally
deficient : one cannot prove about them even suboptimal run time
bounds.

The lesson for the practioner of such results from [28] is: do
not try to learn too much (if you do not have to); else, you may
get undesirable learned programs.

I would like to see more CT results in complexity theory with
even more remarkable advice to the practitioner.

Jim Royer has been working for some time on a program to
bridge between European theoretical computer scientists who seek
to understand higher types in programming languages, but who
generally ignore even issues of algorithmicity and U.S. theoretical
computer scientists interested only in feasible algorithms. For ex-
ample, [150] presents an analog of the Kreisel-Lacombe-Shoenfield
Theorem [148] for feasible type-2 functionals [112, 87, 88, 156,
82].

I would like to see more of this level attempt to provide some
eventual advice to the practitioner, for example, to the designer
of elegant, new programming languages.

3.5. Physics and all the rest

Kreisel has written about the problem of whether the physical
world permits calculations beyond the Turing-computable, for ex-
ample, [99, 100]. See [126] for nice discussion of the issues.
Hypercomputation involves allowing infinitely many computation

84 John Case

steps in finite time.43 The problem is whether in our universe such
computations are executable. Norman Margolus at MIT whose
background includes both physics and computer science explained
to me a few years ago that such computations would require an
unlimited supply of energy. See also [52, 53, 54, 55, 64] for fur-
ther arguments that this sort of computation is not available in
the real world.

Along different lines, we see, though, the impressive and sur-
prising work of Pour-El and Richards [133, 134, 135]. In [134]
they provide a (higher type) uncomputable solution to the wave
equation with a (higher type) computable boundary condition! 44

On the other hand: when I first studied Maxwell’s Equations
as an undergraduate I noticed that they were applied beautifully
and elegantly to clouds of electrons. Problem: the clouds are dis-
crete, yet the mathematics is essentially continuous. Of course, it
is too hard for practical purposes to model a large cloud of elec-
trons discretely, and the continuous mathematics nicely smooths
out the discretness and provides good enough experimental pre-
dictions. My reaction, though, was disillusionment. I naively ex-
pected physicists to seek absolute knowledge and at least to apol-
ogize for not providing it. Of course, they do not care about such
matters. As you may note from some of the things I wrote about
above, for example, in Section 3.2.2, I no longer expect absolute
knowledge.45

So, then, is at least some of physical reality absolutely mod-
eled by continuous mathematics involving real numbers? Per-
haps all but physical space is discrete? [78, pp. 164–165] argues
that there must exist as a universal constant in nature a small-
est length. It may be that the universe, including space, is dis-
crete. Researchers in the cellular automata approach to physics

43 A recursive iteration of the idea would lead to Kreisel’s ℵ0-
mind computability (characterizing the Π1

1-computable partial func-
tions) [148].

44 For a different perspective on this work, see [180].
45 But, anyway, let me at least apologize for not providing it.

Directions for Computability Theory 85

(see [63, 115, 69, 173, 170, 107, 165, 106, 172, 171, 176,
185, 164, 65, 77])46 take this idea seriously.

So regarding the work referenced above by Pour-El and
Richards, while I admire this work very much, I believe one has
to be careful about work on physics equations which may be only
wonderfully convenient continuous approximations to various dis-
crete realities. The resultant work will not really be about physics.

So, I am left with not so many examples of prior applications
of CT to physics I would like to see more of in the future. There
was at least the quantum computing example in Section 3.4 above.

Anyhow, I would like to see future applications of CT with
insights and/or advice to physics (and all the science and engi-
neering disciplines for which I have provided no example prior
applications of CT).

References

1. A. Ambainis, J. Case, S. Jain, and M. Surajm, Parsimony hierar-
chies for inductive inference, J. Symb. Log. 69 (2004), 287–328.

2. D. Angluin, W. Gasarch, and C. Smith, Training sequences, Theor.
Comput. Sci. 66 (1989), no. 3, 255–272.

3. D. Angluin, Inductive inference of formal languages from positive
data, Inf. Control 45 (1980), 117–135.

4. J. Bārzdiņš, Two theorems on the limiting synthesis of functions
(in Russian), Theory of Algorithms and Programs, Riga, Latvian
State Univ. 210 (1974), 82–88.

5. L. Blum and M. Blum, Toward a mathematical theory of inductive
inference, Inf. Control 28 (1975), 125–155.

6. P. Bartlett, S. Ben-David, and S. Kulkarni, Learning changing
concepts by exploiting the structure of change, In: Proceedings of
the Ninth Annual Conference on Computational Learning Theory,
ACM Press, 1996, pp. 131–139.

46 Here [63] is crucial, and [115] lays out the ideas of Ed Fredkin on
some of the ways physical space might be discrete.

86 John Case

7. A. Blum and P. Chalasani, Learning switching concepts, In: Pro-
ceedings of the Fifth Annual Conference on Computational Learn-
ing Theory, ACM Press, 1992, pp. 231–242,

8. G. Baliga, J. Case, and S. Jain, Language learning with some neg-
ative information, J. Comput. Syst. Sci. 51 (1995), 273–285.

9. G. Baliga, J. Case, and S. Jain, The synthesis of language learners,
Inf. Comput. 152 (1999), no. 1, 16–43.

10. G. Baliga, J. Case, S. Jain, and M. Suraj, Machine learning of
higher order programs, J. Symb. Log. 59 (1994), no. 2, 486–500.

11. R. Berwick, The Acquisition of Syntactic Knowledge, The MIT
Press, 1985.

12. K. Bartlmae, S. Gutjahr, and G. Nakhaeizadeh, Incorporating
prior knowledge about financial markets through neural multitask
learning, In: Proceedings of the Fifth International Conference on
Neural Networks in the Capital Markets, 1997.

13. M. Blum, A machine independent theory of the complexity of re-
cursive functions, J. Assoc. Comput. Mach. 14 (1967), 322–336.

14. M. Bowerman, Starting to talk worse: Clues to language acquisi-
tion from children’s late speech errors, In: U-Shaped Behavioral
Growth, S. Strauss and R. Stavy (Eds.), Academic Press, 1982.

15. S. Baluja and D. Pomerleau, Using the representation in a neural
network’s hidden layer for task-specific focus of attention, Technical
Report CMU-CS-95-143, School of Computer Science, CMU, May
1995. [To appear in Proceedings of the 1995 IJCAI]

16. M. Bain and C. Sammut, A framework for behavioural cloning, In:
Machine Intelligence 15, Intelligent Agents, K. Furakawa S. Mug-
gleton, and D. Michie (Eds.), Oxford Univ. Press, 1999, pp. 103–
129.

17. A. W. Burks (Ed.), Essays on Cellular Automata, Univ. Illinois
Press, 1970.

18. R. A. Caruana, Multitask connectionist learning, In: Proceedings
of the 1993 Connectionist Models Summer School, pp. 372–379.

19. R. A. Caruana, Algorithms and applications for multitask learning,
In: Proceedings of the 13th International Conference on Machine
Learning, 1996, pp. 87–95.

20. J. Case, A note on the degrees of self-describing Turing machines,
J. Assoc. Comput. Mach. 18 (1971), 329–338.

Directions for Computability Theory 87

21. J. Case, Periodicity in generations of automata, Math. Syst. Theory
8 (1974), 15–32.

22. J. Case, Learning machines, In: Language Learning and Concept
Acquisition, W. Demopoulos and A. Marras (Eds.), Ablex Publish-
ing Company, 1986.

23. J. Case, Effectivizing inseparability, Z. Math. Logik
Grundlagen Math. 37 (1991), no. 2, 97–111.
[http://www.cis.udel.edu/∼case/papers/mkdelta.pdf corrects
missing set complement signs in definitions in the journal version]

24. J. Case, Infinitary self-reference in learning theory, J. Exp. Theor.
Artif. Intell. 6 (1994), no. 1, 3–16.

25. J. Case, The power of vacillation in language learning, SIAM J.
Comput. 28 (1999), no. 6, 1941–1969.

26. J. Case, Machine self-reference and consciousness, In: Proceed-
ings and Abstracts of the Third Annual Meeting of the Association
for the Scientific Study of Consciousness, London, Ontario, 1999.
[http://www.cis.udel.edu/∼case/slides/krt-consc-slides.pdf]

27. J. Case, K. Chen, and S. Jain, Costs of general purpose learning,
Theor. Comput. Sci. 259 (2001), no. 1-2, 455–473.

28. J. Case, K. Chen, S. Jain, W. Merkle, and J. Royer, Generality’s
price: Inescapable deficiencies in machine-learned programs, Ann.
Pure Appl. Logic 139 (2006), no. 1-3, 303–326.

29. L. Carlucci, J. Case, S. Jain, and F. Stephan, Non U-shaped vacilla-
tory and team learning, In: Algorithmic Learning Theory: 16th In-
ternational Conference, ALT 2005, Singapore, October 8-11, 2005.
Proceedings, S. Jain, H. U. Simon, and E. Tomita (Eds.), Lect.
Notes Comput. Sci. 3734, Springer, 2005,

30. Z. Chen and S. Homer, The bounded injury priority method and
the learnability of unions of rectangles, Ann. Pure Appl. Logic 77
(1996), no. 2, 143–168.

31. D. Chalmers, The Conscious Mind: In Search of a Fundamental
Theory, Oxford, Oxford University Press, 1996.

32. K. Chen, Tradeoffs in Machine Inductive Inference, PhD Thesis,
Computer Science Department, SUNY at Buffalo, 1981.

33. K. Chen, Tradeoffs in the inductive inference of nearly minimal
size programs, Inf. Control 52 (1982), 68–86.

88 John Case

34. J. Case, S. Jain, S. Kaufmann, A. Sharma, and F. Stephan, Pre-
dictive learning models for concept drift, Theor. Comput. Sci. 268
(2001), no. 2, 323–349.

35. J. Case, S. Jain, and S. Ngo Manguelle, Refinements of induc-
tive inference by Popperian and reliable machines, Kybernetika 30
(1994), no. 1, 23–52.

36. J. Case, S. Jain, M. Ott, A. Sharma, and F. Stephan, Robust learn-
ing aided by context, J. Comput. Syst. Sci. 60 (2000), 234–257.

37. J. Case, S. Jain, and A. Sharma, On learning limiting programs,
Int. J. Found. Comput. Sci. 3 (1992), no. 1, 93–115.

38. J. Case, S. Jain, and A. Sharma, Machine induction without revo-
lutionary changes in hypothesis size, Inf. Comput. 128 (1996), no.
2, 73–86.

39. J. Case, S. Jain, and M. Suraj, Control structures in hypothesis
spaces: The influence on learning, Theor. Comput. Sci. 270 (2002),
no. 1-2, 287–308.

40. J. Case, S. Jain, F. Stephan, and R. Wiehagen, Robust learning –
rich and poor, J. Comput. Syst. Sci. 69 (2004), 123–165.

41. J. Case, S. Kaufmann, E. Kinber, and M. Kummer, Learning re-
cursive functions from approximations, J. Comput. Syst. Sci. 55
(1997), 183–196.

42. J. Case and C. Lynes, Machine inductive inference and language
identification, In: Automata, Languages and Programming: Ninth
Colloquium Aarhus, Denmark, July 12-16, 1982, M. Nielsen and E.
M. Schmidt (Eds.), Lect. Notes Comput. Sci. 140 Springer, 1982,
pp. 107–115.

43. T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, The MIT Press, 2001.

44. J. Case, M. Ott, A. Sharma, and F. Stephan, Learning to win
process-control games watching game-masters, Inf. Comput. 174
(2002), no. 1, 1–19.

45. D. Cenzer and J. Remmel, Recursively presented games and strate-
gies, Math. Soc. Sci. 24 (1992), no. 2-3, 117–139.

46. J. Case and C. Smith, Anomaly hierarchies of mechanized induc-
tive inference, In: Conference Record of the Tenth Annual ACM
Symposium on Theory of Computing, San Diego, California, 1-3
May 1978, pp. 314–319.

Directions for Computability Theory 89

47. J. Case and C. Smith, Comparison of identification criteria for
machine inductive inference, Theor. Comput. Sci. 25 (1983), 193–
220.

48. J. Case and M. Suraj, Inductive inference of Σ0
1-vs. Σ0

2-definitions
for computable functions, In: Proceedings of the International Con-
ference on Mathematical Logic, Novosibirsk, Russia, 1999.

49. J. Case and M. Suraj, Weakened refutability for machine learning of
higher order definitions 2006. [Working paper for eventual journal
submission]

50. M. Davis, Is mathematical insight algorithmic? Behav. Brain. Sci.
3 (1990), 659–660.

51. M. Davis, How subtle is Gödel’s theorem? More on Roger Pen-
rosem Behav. Brain. Sci. 16 (1993), 611–612.

52. M. Davis, The myth of hypercomputation In: Alan Turing: Life
and Legacy of a Great Thinker, C. Teuscher (Ed.), Springer, 2004,
pp. 195–212.

53. M. Davis, Computability, computation and the real world, In: Imag-
ination and Rigor: Essays on Eduardo R. Caieniello’s Scientific
Heritage, S. Termini (Ed.), Springer, 2005, pp. 63–70.

54. M. Davis, Why there is no such subject as hypercomputation, Appl.
Math. Comput., 2006. [To appear]

55. M. Davis, The Church-Turing thesis: Consensus and opposition,
In: Proceedings cCiE 2006, Springer Notes on Computer Science,
Swansee, July 2006.

56. H. de Garis, Genetic programming: Building nanobrains with ge-
netically programmed neural network modules, In: IJCNN: Interna-
tional Joint Conference on Neural Networks, Vol. 3, IEEE Service
Center, Piscataway, New Jersey, June 17–21, 1990, pp. 511–516.

57. H. de Garis, Genetic programming: Modular neural evolution for
Darwin machines, In: International Joint Conference on Neural
Networks, Vol. 1, M. Caudill (Ed.), Lawrence Erlbaum Associates,
Publishers, Hillsdale, New Jersey, January 1990. pp. 194–197.

58. H. de Garis, Genetic programming: Building artificial nervous
systems with genetically programmed neural network modules, In:
Neural and Intelligenct Systems Integeration: Fifth and Sixth Gen-
eration Integerated Reasoning Information Systems, B. Souček and
The IRIS Group (Eds.), John Wiley and Sons, 1991, Chapt. 8, pp.
207–234.

90 John Case

59. T. G. Dietterich, H. Hild, and G. Bakiri, A comparison of ID3 and
backpropogation for English text-to-speech mapping, Mach. Learn.
18 (1995), no. 1, 51–80.

60. K. deLeeuw, E. Moore, C. Shannon, and N. Shapiro, Computability
by probabilistic machines, Automata Studies, Ann. Math. Studies
34 (1956), 183–212.

61. M. Devaney and A. Ram, Dynamically adjusting concepts to ac-
commodate changing contexts, In: Proceedings of the ICML-96 Pre-
Conference Workshop on Learning in Context-Sensitive Domains,
Bari, Italy, M. Kubat and G. Widmer (Eds.), 1994. [Journal sub-
mission]

62. S. Fahlman, The recurrent cascade-correlation architecture, In: Ad-
vances in Neural Information Processing Systems 3, R. Lippmann,
J. Moody, and D. Touretzky (Eds.), Morgan Kaufmann, 1991, pp.
190–196.

63. R. Feynman, Simulating physics with computers, Int. J. Theor.
Phys. 21 (1982), no. 6/7.

64. R. Feynman, Feynman Lectures on Computation, A. Hey and R.
Allen (Eds.), Perseus Books, 2000.

65. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-gas automata for
the Navier Stokes equation, Phys. Rev. Letters 56 (1986), no. 14,
1505–1508.

66. M. Fulk and S. Jain, Approximate inference and scientific method,
Inf. Comput. 114 (1994), no. 2, 179–191.

67. Y. Freund and Y. Mansour, Learning under persistent drift, In:
Proceedings of the Third European Conference on Computational
Learning Theory (EuroCOLT’97), S. Ben-David (Ed.), Lect. Notes
Artif. Intell. 1208, Springer, 1997, pp. 94–108.

68. R. Freivalds, Minimal Gödel numbers and their identification in
the limit, In: Mathematical Foundations of Computer Science 1975
4th Symposium, Marianske Lazne, September 1-5, 1975, J. Becvar
(Ed.), Lect. Notes Comput. Sci. 32, Springer, 1975, pp. 219–225.

69. E, Fredkin and T. Toffoli, Conservative logic, Int. J. Theor. Phys.
21 (1982), no. 3/4.

70. M. Fulk, A Study of Inductive Inference Machines, PhD Thesis,
SUNY at Buffalo, 1985.

71. M. Fulk, Prudence and other conditions on formal language learn-
ing, Inf. Comput. 85 (1990), no. 1, 1–11.

Directions for Computability Theory 91

72. J. Gill, Probabilistic Turing Machines and Complexity of Compu-
tation, PhD Thesis, University of California, Berkeley, 1972.

73. J. Gill, Computational complexity of probabilistic Turing machines,
SIAM J. Comput. 6 (1977), 675–695.

74. L. Gleitman, Biological dispositions to learn language, In: Lan-
guage Learning and Concept Acquisition, W. Demopoulos and
A. Marras (Eds.), Ablex Publ. Co., 1986.

75. C. Glymour, Inductive inference in the limit, Erkenntnis, 22 (1985),
23–31.

76. E. Gold, Language identification in the limit, Inf. Control 10
(1967), 447–474.

77. B. Hasslacher, Discrete fluids, Los Alamos Sci. 15) (1987), 175–
217.

78. W. Heisenberg, Physics and Philosophy, Harper and Brothers Pub-
lishers, 1958.

79. D. Helmbold and P. Long, Tracking drifting concepts by minimizing
disagreements, Mach. Learn. 14 (1994), no. 1, 27–45.

80. J. Hartmanis and R. Stearns, On the computational complexity of
algorithms, Trans. Am. Math. Soc. 117 (1965), 285–306.

81. J. Hopcroft and J. Ullman, Introduction to Automata Theory Lan-
guages and Computation, Addison-Wesley, 1979.

82. R. Irwin, B. Kapron, and J. Royer, On characterizations of the
basic feasible functional (Part I), J. Funct. Program. 11 (2001),
no. 1, 117–153.

83. T. Jech, Set Theory, Academic Press, 1978.

84. N. Jessop, Biosphere: A Study of Life, Prentice-Hall, 1989.

85. S. Jain and J. Nessel, Some independence results for control struc-
tures in complete numberings, J. Symb. Log. 66 (2001), no. 1, 357–
382.

86. S. Jain, D. Osherson, J. Royer, and A. Sharma, Systems that Learn:
An Introduction to Learning Theory, The MIT Press, 1999.

87. B. Kapron and S. Cook, A new characterization of Mehlhorn’s poly-
nomial time functionals, In: Proceedings of the 32nd Annual Sym-
posium on Foundations of Computer Science, San Juan, Puerto
Rico, 1-4 October 1991. IEEE Computer Society 1991, pp. 342–
347.

92 John Case

88. B. Kapron and S. Cook, A new characterization of type-2 feasibility,
SIAM J. Comput. 25 (1996), no. 1, 117–132.

89. K. Kelly, The Logic of Reliable Inquiry, Oxford Univ. Press, 1996.

90. K. Kelly, The logic of success, Br. J. Philos. Sci. 51 (2001), 639–666.

91. K. Kelly and C. Glymour, Convergence to the truth and nothing
but the truth, Philos. Sci. 56 (1989), 185–220.

92. K. Kelly and C. Glymour, Theory discovery from data with mixed
quantifiers, J. Philos. Logic 19 (1990), no. 1, 1–33.

93. E. Kinber, On a theory of inductive inference, In: Fundamentals
of Computation Theory: Proceedings of the 1977 International
FCT-Conference, Poznan-Kornik, Poland September 19-23, 1977,
M. Karpinski (Ed.), Lect. Notes Comput. Sci. 56, Springer, 1977,
pp. 435–440.

94. D. Kirsh, PDP learnability and innate knowledge of language, In:
Connectionis: Theory and Practice, S. Davis (Ed.), Oxford Univ.
Press, 1992, pp. 297–322.

95. S. Kleene, Origins of recursive function theory, Ann. Hist. Comput.
3 (1981), no. 1, 52–67.

96. S. Kapur, B. Lust, W. Harbert, and G. Martohardjono, Univer-
sal grammar and learnability theory: The case of binding domains
and the ‘subset principle’, In: Knowledge and Language, Vol. I,
E. Reuland and W. Abraham (Eds.), Kluwer, 1993, pp. 185–216.

97. S. Kurtz, S. Mahaney, and J. Royer, The structure of complete
degrees, In: Complexity Theory Retrospective, A. Selman (Ed.),
Springer, 1990, pp. 108–146.

98. M. Kummer and M. Ott, Learning branches and learning to win
closed games, In: Proceedings of the Ninth Annual Conference on
Computational Learning Theory, ACM Press, 1996, pp. 280–291.

99. G. Kreisel. Mathematical logic, In: Lectures in Modern Mathemat-
ics III, T. L. Saaty (Ed.), J. Wiley and Sons, 1965, pp. 95–195.

100. G. Kreisel, A notion of mechanistic theory, Int. J. Theor. Phys. 29
(1974), 11–26.

101. K. Kelly and O. Schulte, The computable testability of theories with
uncomputable predictions Erkenntnis, 43 (1995), 29–66.

102. K. Kelly, O. Schulte, and C. Juhl, Learning theory and philosophy
of science, Philos. Sci. 64 (1997), 245–267.

Directions for Computability Theory 93

103. M. Kubat, A machine learning based approach to load balancing in
computer networks, Cybernet. Syst. 23 (1992), 389–400.

104. R. Ladner, On the structure of polynomial time reducibility, J. As-
soc. Comput. Mach. 22 (1975), 155–171.

105. S. Lange and P. Watson, Machine discovery in the presence of
incomplete or ambiguous data, In: Algorithmic Learning Theory,
K. Jantke and S. Arikawa (Eds.), Lect. Notes Artif. Intell. 872 ,
Springer, 1994, pp. 438–452.

106. Thinking Machines. Introduction to data level parallelism. Techni-
cal Report 86.14, Thinking Machines, April 1986.

107. N. Margolus, Physics–like models of computation, Physica 10D,
(1984), 81–95.

108. Y. Marcoux, Composition is almost (but not quite) as good as s-1-1,
Theor. Comput. Sci. 120 (1993), no. 2, 169–195.

109. D. Moore and J. Case, The complexity of total order structures, J.
Comput. Syst. Sci. 17 (1978), 253–269.

110. D. McDermott, Robot planning, AI Magazine, 13 (1992), no. 2,
55–79.

111. T. Mitchell, R. Caruana, D. Freitag, J. McDermott, and
D. Zabowski, Experience with a learning, personal assistant, Com-
mun. ACM 37 (1994), no. 7, 81–91.

112. K. Mehlhorn, Polynomial and abstract subrecursive classes, J.
Comput. Syst. Sci. 12 (1976), 147–178.

113. E. Mendelson, Introduction to Mathematical Logic. Chapman and
Hall, London, 1997.

114. A. Meyer and P. Fischer, Computational speed-up by effective op-
erators, J. Symb. Log. 37 (1972), 48–68.

115. M. Minsky, Cellular vacuum, Int. J. Theor. Phys. 21 (1982), no.
6/8, 537–551.

116. S. Matwin and M. Kubat, The role of context in concept learn-
ing, In: Proceedings of the ICML-96 Pre-Conference Workshop on
Learning in Context-Sensitive Domains, Bari, Italy, 1996, M. Ku-
bat and G. Widmer (Eds.), pp. 1–5.

117. E. McCreight and A. Meyer, Classes of computable functions de-
fined by bounds on computation, In: Proceedings of the First An-
nual ACM Symposium on Theory of Computing, 1969, pp. 79–88.

94 John Case

118. O. Maler, A. Pnueli, and J. Sifakis, On the synthesis of discrete con-
trollers for timed systems, In: STACS 95: 12th Annual Symposium
on Theoretical Aspects of Computer Science Munich, Germany,
March 2-4, 1995 Proceedings, E. W. Mayr and C. Puech (Eds.),
Lect. Notes Comput. Sci. 900, Springer, 1995, pp. 229–242.

119. G. Marcus, S. Pinker, M. Ullman, M. Hollander, T. J. Rosen, and
F. Xu, Overregularization in Language Acquisition, Univ. Chicago
Press, 1992. [Includes commentary by H. Clahsen]

120. D. Michie and C. Sammut, Machine learning from real-time input-
output behavior, In: Proceedings of the International Conference
on Design to Manufacture in Modern Industry, 1993, pp. 363–369.

121. J. Myhill, Some philosophical implications of mathematical logic:
I. three classes of ideas, Rev. Metaphysics 6 (1952), no. 2.

122. J. Myhill, A note on the degrees of partial functions, Proc. Am.
Math. Soc. 12 (1961), 519–521.

123. J. Myhill, Abstract theory of self-reproduction, In: Views on Gen-
eral Systems Theory, M. D. Mesarović (Ed.), J. Wiley and Sons,
1964, pp. 106–118.

124. J. Von Neumann, Theory of Self–Reproducing Automata, Univ. Illi-
nois Press, 1966. [Edited and completed by A. W. Burks]

125. Report of the assessment panel for the international as-
sessment of the U.S. math sciences, Technical Report
NSF9895, National Science Foundation, March 1998.
[http://www.nsf.gov/publications/pub summ.jsp?ods key=nsf9895]

126. P. Odifreddi, Classical Recursion Theory, North-Holland, 1989.

127. P. Odifreddi, Classical Recursion Theory. Vol. II, Elsivier, 1999.

128. D. Osherson, M. Stob, and S. Weinstein, Ideal learning machines,
Cognitive Sci. 6 (1982), 277–290.

129. D. Osherson, M. Stob, and S. Weinstein, Note on a central lemma
of learning theory, J. Math. Psychol. 27 (1983), 86–92.

130. D. Osherson, M. Stob, and S. Weinstein, Learning theory and nat-
ural language, Cognition 17 (1984), no. 1, 1–28.

131. D. Osherson, M. Stob, and S. Weinstein, Systems that Learn: An
Introduction to Learning Theory for Cognitive and Computer Sci-
entists, The MIT Press, 1986.

132. D. Osherson and S. Weinstein, Criteria of language learning, Inf.
Control 52 (1982), 123–138.

Directions for Computability Theory 95

133. M. Pour-El and M. B. Richards, A computable ordinary differential
equation which possesses no computable solution Ann. Math. Logic
17 (1979), 61–90.

134. M. Pour-El and M. B. Richards, The wave equation with computable
initial data such that its unique solution is not computable, Adv.
Math. 39 (1981), 215–239.

135. M. Pour-El and M. B. Richards, Computability in Analysis and
Physics, Springer, 1989.

136. S. Pinker, Formal models of language learning, Cognition 7 (1979),
no. 3, 217–283.

137. L. Pitt, A Characterization of Probabilistic Inference, PhD Thesis,
Yale University, 1984.

138. L. Pitt, Probabilistic inductive inference, J. Assoc. Comput. Mach.
36 (1989), 383–433.

139. K. Plunkett and V. Marchman, U-shaped learning and frequency ef-
fects in a multi-layered perceptron: Implications for child language
acquisition, Cognition 38 (1991), no. 1, 43–102.

140. L. Pratt, J. Mostow, and C. Kamm, Direct transfer of learned infor-
mation among neural networks, In: Proceedings of the 9th National
Conference on Artificial Intelligence (AAAI-91), 1991.

141. H. Putnam, Probability and confirmation, In: Voice of America,
Forum on Philosophy of Science, Vol. 10, 1963. [Reprinted as [142]]

142. H. Putnam, Probability and confirmation, In: Mathematics, Mat-
ter, and Method, Cambridge Univ. Press, 1975.

143. J. Royer and J. Case, Subrecursive Programming Systems: Com-
plexity and Succinctness, Birkhäuser, 1994.

144. G. Riccardi, The Independence of Control Structures in Abstract
Programming Systems, PhD Thesis, SUNY Buffalo, 1980.

145. G. Riccardi, The independence of control structures in abstract pro-
gramming systems, J. Comput. Syst. Sci. 22 (1981), 107–143.

146. G. Riccardi, The independence of control structures in program-
mable numberings of the partial recursive functions, Z. Math. Logik
Grundlagen Math. 48 (1982), 285–296.

147. H. Rogers, Gödel numberings of partial recursive functions, J.
Symb. Log. 23 (1958), 331–341.

148. H. Rogers, Theory of Recursive Functions and Effective Com-
putability, McGraw Hill, 1967. [Reprinted: The MIT Press, 1987]

96 John Case

149. J. Royer, A Connotational Theory of Program Structure, Lect.
Notes Comput. Sci. 273, Springer, 1987.

150. J. Royer, Semantics versus syntax versus computations: Machine
models for type-2 polynomial-time bounded functionals, J. Comput.
Syst. Sci. 54 (1997), 424–436.

151. C. Sammut, Acquiring expert knowledge by learning from recorded
behaviors, In: Japanese Knowledge Acquisition Workshop, 1992.

152. C. Sammut, Automatic construction of reactive control systems us-
ing symbolic machine learning, Knowledge Engineering Rev. 11
(1996), no. 1, 27–42.

153. O. Schulte, Means-ends epistemology, Br. J. Philos. Sci. 50 (1999),
1–31.

154. O. Schulte, Inferring conservation principles in particle physics: A
case study in the problem of induction, Br. J. Philos. Sci. 51 (2000),
771–806.

155. J. Searle, Minds, brains, and programs, Behav. Brain. Sci. 3
(91980), 417–424.

156. A. Seth, Complexity Theory of Higher Type Functionals, PhD The-
sis, University of Bombay, 1994.

157. N. Shapiro, Review of “Limiting recursion” by E.M. Gold and
“Trial and error predicates and the solution to a problem of
Mostowski” by H.Putnam, J. Symb. Log. 36 (1971), 342.

158. C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly,
In: Proceedings of the Ninth International Conference on Machine
Learning, D. Sleeman and P. Edwards (Eds.), Morgan Kaufmann,
1992, pp. 385–393.

159. T. Slaman, Long range goals, COMP-THY Archives, #13, April
1998. [http://listserv.nd.edu/archives/comp-thy.html]

160. C. Smith, A Recursive Introduction to the Theory of Computation,
Springer, 1994.

161. T. J. Sejnowski and Ch. Rosenberg, NETtalk: A parallel net-
work that learns to read aloud, Technical Report JHU-EECS-86-01,
Johns Hopkins University, 1986.

162. S. Strauss and R. Stavy (Eds.), U-Shaped Behavioral Growth, Aca-
demic Press, 1982.

163. J. Stoy, Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory, The MIT Press, 1977.

Directions for Computability Theory 97

164. K. Svozil, Are quantum fields cellular automata? Physics Letters
A, 119 (1986), no. 4, 153–156.

165. J. B. Salem and S. Wolfram, Thermodynamics and hydrodynamics
with cellular automata, In: Theory and Applications of Cellular
Automata, S. Wolfram (Ed.), World Scientific, 1986.

166. N. A. Taatgen and J. R. Anderson, Why do children learn to say
“Broke”? A model of learning the past tense without feedback, Cog-
nition, 86 (2002), no. 2, 123–155.

167. F. Tsung and G. Cottrell, A sequential adder using recurrent net-
works, In: IJCNN-89-WASHINGTON D.C.: International Joint
Conference on Neural Networks. Vol. 2, IEEE Service Center, Pis-
cataway, New Jersey, June 18–22, 1989, pp. 133–139.

168. W. Thomas, On the synthesis of strategies in infinite games, In:
STACS 95: 12th Annual Symposium on Theoretical Aspects of
Computer Science Munich, Germany, March 2-4, 1995 Proceedings,
E. W. Mayr and C. Puech (Eds.), Lect. Notes Comput. Sci. 900,
Springer, 1995, pp. 1–13.

169. S. Thrun, Is learning the n-th thing any easier than learning the
first, In: Advances in Neural Information Processing Systems, 8,
Morgan Kaufmann, 1996.

170. T. Toffoli and N. Margolus, Cellular Automata Machines, The MIT
Press, 1987.

171. T. Toffoli, Cellular automata machines, Technical Report 208,
Comp. Comm. Sci. Dept., University of Michigan, 1977.

172. T. Toffoli, Computation and construction universality of reversible
cellular automata, J. Comput. Syst. Sci. 15 (1997), 213–231.

173. T. Toffoli, CAM: A high–performance cellular–automaton machine,
Physica 10D, (1984), 195–204.

174. S. Thrun and J. Sullivan, Discovering structure in multiple learn-
ing tasks: The TC algorithm, In: Proceedings of the Thirteenth
International Conference on Machine Learning (ICML-96), Mor-
gan Kaufmann, 1996, pp. 489–497.

175. T. Urbanc̆ic̆ and I. Bratko, Reconstructing human skill with ma-
chine learning, In: Proceedings of the Eleventh European Con-
ference on Artificial Intelligence, A. Cohn (Ed.), John Wiley and
Sons, 1994.

176. G. Y. Vichniac, Simulating physics with cellular automata, Physica
10D, (1984), 96–116.

98 John Case

177. D. Šuc, Machine reconstruction of human control strategies, In:
Frontiers in Artificial Intelligence and Applications. Vol. 9, IOS
Press, 2003.

178. A. Waibel Connectionist glue: Modular design of neural speech sys-
tems, In: Proceedings of the 1988 Connectionist Models Summer
School, D. Touretzky, G. Hinton, and T. Sejnowski (Eds.), Morgan
Kaufmann, 1989. pp. 417–425.

179. A. Waibel, Consonant recognition by modular construction of large
phonemic time-delay neural networks, In: Advances in Neural In-
formation Processing Systems I, D. S. Touretzky (Ed.), Morgan
Kaufmann, 1989, pp. 215–223.

180. K. Weihrauch and N. Zhong, Is wave propagation computable or
can wave computers beat the Turing machine, Proc. London Math.
Soc. 85 (2002), 312–332.

181. K. Wexler and P. Culicover, Formal Principles of Language Acqui-
sition, The MIT Press, 1980.

182. K. Wexler, On extensional learnability, Cognition, 11 (1982), no.
1, 89–95.

183. R. Wiehagen, Limes-Erkennung rekursiver Funktionen durch
spezielle Strategien, Electron. Inform.-verarb. Kybernetik 12
(1976), 93–99.

184. R. Wiehagen, Zur Theorie der Algorithmischen Erkennung, PhD
Thesis, Humboldt University of Berlin, 1978.

185. S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod-
ern Phys. 55 (1983), no. 33, 601–644.

186. S. Wrobel, Concept Formation and Knowledge Revision, Kluwer,
1994.

187. P. Young, Easy constructions in complexity theory: Gap and speed-
up theorems, Proc. Am. Math. Soc. 37 (1973), 555–563.

