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Gödel’s modal logic approach to analyzing provability at-
tracted a great deal of attention and eventually led to two
distinct mathematical models. The first is the modal logic
GL, also known as the Provability Logic, which was shown
in 1979 by Solovay to be the logic of the formal provability
predicate. The second is Gödel’s original modal logic of
provability S4, together with its explicit counterpart, the
Logic of Proofs LP, which was shown in 1995 by Artemov
to provide an exact provability semantics for S4. These
two models complement each other and cover a wide range
of applications, from traditional proof theory to λ-calculi
and formal epistemology.
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1. Introduction

In his 1933 paper [79], Gödel chose the language of propositional
modal logic to describe the basic logical laws of provability. Ac-
cording to his approach, the classical logic is augmented by a new
unary logical connective (modality) ‘�’ where �F should be in-
terpreted as

F is provable.

Gödel’s treatment of provability as modality in [79] has
an interesting prehistory. In his letter to Gödel [185] of
January 12, 1931, John von Neumann actually used for-
mal provability as a modal-like operator B and gave a
shorter, modal-style derivation of Gödel’s second incom-
pleteness theorem. Von Neumann freely used such modal
logic features as the transitivity axiom B(a)→B(B(a)),
equivalent substitution, and the fact that the modality
commutes with the conjunction ‘∧.’

Gödel’s goal was to provide an exact interpretation of intuitionis-
tic propositional logic within a classical logic with the provability
operator, hence giving classical meaning to the basic intuitionistic
logical system.

According to Brouwer, the founder of intuitionism, truth in
intuitionistic mathematics means the existence of a proof. An ax-
iom system for intuitionistic logic was suggested by Heyting in
1930; its full description may be found in the fundamental mono-
graphs [93, 106, 171]. By IPC, we infer Heyting’s intuitionistic
propositional calculus. In 1931–34, Heyting and Kolmogorov gave
an informal description of the intended proof-based semantics for
intuitionistic logic [91, 92, 93, 107], which is now referred to as
the Brouwer-Heyting-Kolmogorov (BHK ) semantics. According
to the BHK -conditions, a formula is ‘true’ if it has a proof. Fur-
thermore, a proof of a compound statement is connected to proofs
of its parts in the following way:

• a proof of A∧B consists of a proof of proposition A and a
proof of proposition B,
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• a proof of A∨B is given by presenting either a proof of A or
a proof of B,

• a proof of A→B is a construction transforming proofs of A
into proofs of B,

• falsehood ⊥ is a proposition which has no proof; ¬A is short-
hand for A→⊥.

From a foundational point of view, it did not make much sense
to understand the above ‘proofs’ as proofs in an intuitionistic sys-
tem, which those conditions were supposed to specify. So in 1933
([79]), Gödel took the first step towards developing an exact se-
mantics for intuitionism based on classical provability. Gödel
considered the classical modal logic S4 to be a calculus describing
properties of provability in classical mathematics:

(i) Axioms and rules of classical propositional logic,
(ii) �(F→G)→(�F→�G),
(iii) �F→F ,
(iv) �F→��F ,

(v) Rule of necessitation:
� F

� �F
.

Based on Brouwer’s understanding of logical truth as provabil-
ity, Gödel defined a translation tr(F ) of the propositional formula
F in the intuitionistic language into the language of classical modal
logic, i.e., tr(F ) was obtained by prefixing every subformula of F
with the provability modality �. Informally speaking, when the
usual procedure of determining classical truth of a formula is ap-
plied to tr(F ), it will test the provability (not the truth) of each
of F ’s subformulas in agreement with Brouwer’s ideas.

Even earlier, in 1928, Orlov published the paper [147]
in Russian, in which he considered an informal modal-
like operator of provability, introduced modal postulates
(ii)–(v), and described the translation tr(F ) from propo-
sitional formulas to modal formulas. On the other hand,
Orlov chose to base his modal system on a type of rele-
vance logic; his system fell short of S4.
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From Gödel’s results in [79], and the McKinsey-Tarski work
on topological semantics for modal logic [130], it follows that the
translation tr(F ) provides a proper embedding of the intuitionistic
logic IPC into S4, i.e., an embedding of IPC into classical logic
extended by the provability operator.

Theorem 1.1 (Gödel, McKinsey, Tarski). IPC proves F ⇔
S4 proves tr(F).

Still, Gödel’s original goal of defining IPC in terms of classical
provability was not reached, since the connection of S4 to the usual
mathematical notion of provability was not established. Moreover,
Gödel noticed that the straightforward idea of interpreting modal-
ity �F as F is provable in a given formal system T contradicted
Gödel’s second incompleteness theorem (cf. [48, 51, 70, 89, 165]
for basic information concerning proof and provability predicates,
as well as Gödel’s incompleteness theorems).

Indeed, �(�F → F ) can be derived in S4 by the rule of
necessitation from the axiom �F→F . On the other hand,
interpreting modality � as the predicate ProvableT (·) of
formal provability in theory T and F as contradiction, i.e.,
0 = 1, converts this formula into the false statement that
the consistency of T is internally provable in T :

ProvableT

(
�Consis(T)	

)
.

To see this, it suffices to notice that the following formulas
are provably equivalent in T :

ProvableT (�0=1	)→(0=1) ,

¬ProvableT (�0=1	) ,

Consis(T) .

Here �ϕ	 stands for the Gödel number of ϕ. Below we
will omit Gödel number notation whenever it is safe, for
example, we will write Provable(ϕ) and Proof(t, ϕ) instead
of Provable(�ϕ	) and Proof(t, �ϕ	).



On Two Models of Provability 5

The situation after Gödel’s paper [79] can be described by the
following figure where ‘↪→’ denotes a proper embedding:

IPC ↪→ S4 ↪→ ? ↪→ CLASSICAL PROOFS .

In a public lecture in Vienna in 1938 [80], Gödel suggested
using the format of explicit proofs t is a proof of F for interpret-
ing his provability calculus S4, though he did not give a complete
set of principles of the resulting logic of proofs. Unfortunately,
Gödel’s work [80] remained unpublished until 1995, when the
Gödelian logic of proofs had already been axiomatized and sup-
plied with completeness theorems connecting it to both S4 and
classical proofs.

The provability semantics of S4 was discussed in [48, 51, 56,
81, 108, 117, 121, 133, 138, 140, 141, 145, 157, 158] and
other papers and books. These works constitute a remarkable
contribution to this area, however, they neither found the Gödelian
logic of proofs nor provided S4 with a provability interpretation
capable of modeling the BHK semantics for intuitionistic logic.
Comprehensive surveys of work on provability semantics for S4
may be found in [12, 17, 21].

The Logic of Proofs LP was first reported in 1994 at a seminar
in Amsterdam and at a conference in Münster. Complete proofs
of the main theorems of the realizability of S4 in LP, and about
the completeness of LP with respect to the standard provability
semantics, were published in the technical report [10] in 1995. The
foundational picture now is

IPC ↪→ S4 ↪→ LP ↪→ CLASSICAL PROOFS .

The correspondence between intuitionistic and modal logics
induced by Gödel’s translation tr(F ) has been studied by Blok,
Dummett, Esakia, Flagg, Friedman, Grzegorczyk, Kuznetsov, Lem-
mon, Maksimova, McKinsey, Muravitsky, Rybakov, Shavrukov,
Tarski, and many others. A detailed survey of modal companions
of intermediate (or superintuitionistic) logics is given in [60]; a
brief one is in [61], Sections 9.6 and 9.8.
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Gödel’s 1933 paper [79] on a modal logic of provability left
two natural open problems:

(A) Find a modal logic of Gödel’s predicate of formal provability
Provable(x), which appeared to be ‘a provability semantics
without a calculus.’

(B) Find a precise provability semantics for the modal logic S4,
which appeared to be ‘a provability calculus without a prov-
ability semantics.’

Problem (A) was solved in 1976 by Solovay, who showed that
the modal logic GL (a.k.a. G, L, K4.W, PRL) axiomatized all
propositional properties of the provability predicate Provable(F )
([48, 51, 63, 166, 167]). The solution to problem (B) was ob-
tained through the Logic of Proofs LP (see above and Section 3).

The provability logic GL is given by the following list of pos-
tulates:

(i) Axioms and rules of classical propositional logic,
(ii) �(F→G)→(�F→�G),
(iii) �(�F→F )→�F ,
(iv) �F→��F ,

(v) Rule of necessitation:
� F

� �F
.

Models (A) and (B) have quite different expressive capabili-
ties. The logic GL formalizes Gödel’s second incompleteness the-
orem ¬�(¬�⊥), Löb’s theorem �(�F→F )→�F , and a number
of other meaningful provability principles. However, proofs as ob-
jects are not present in this model. LP naturally extends typed
λ-calculus, modal logic, and modal λ-calculus ([14, 15]). On the
other hand, model (A) cannot express Gödel’s incompleteness the-
orem.

Provability models (A) and (B) complement each other by
addressing different areas of application. The provability logic GL
finds applications in traditional proof theory (cf. Subsection 2.11).
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The Logic of Proofs LP targets areas of typed theories and pro-
gramming languages, foundations of verification, formal epistemol-
ogy, etc. (cf. Subsection 3.8).

2. Provability Logic

A significant step towards finding a modal logic of formal provabil-
ity was made by Löb who formulated in [125], on the basis of pre-
vious work by Hilbert and Bernays from 1939 (see [94]), a number
of natural modal-style properties of the formal provability pred-
icate and observed that these properties were sufficient to prove
Gödel’s second incompleteness theorem. These properties, known
as the Hilbert-Bernays-Löb derivability conditions, essentially co-
incide with postulates (ii), (iv), and (v) of the above formulation
of GL, i.e., with the modal logic K4. Moreover, Löb found an im-
portant strengthening of the Gödel theorem. He established the
validity of the following Löb Rule about formal provability:

� �F→F

� F
.

It was later noticed in (cf. [127]) that this rule can be formalized
in arithmetic, which gave a valid law of formal provability known
as Löb’s principle:

�(�F→F )→�F .

This principle provided the last axiom of the provability logic GL,
named after Gödel and Löb. Neither Gödel nor Löb formulated
the logic explicitly, though they established the validity of the
underlying arithmetical principles. Presumably, it was Smiley,
whose work [164] on the foundations of ethics was the first to
consider GL a modal logic.

Significant progress in the general understanding of the formal-
ization of metamathematics, particularly in [70], inspired Kripke,
Boolos, de Jongh, and others to look into the problem of modal
axiomatization of the logic of provability. More specifically, the
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effort was concentrated on establishing GL’s completeness with re-
spect to the formal provability interpretation. Independently, a
similar problem in an algebraic context was considered by Magari
and his school in Italy (see [129]). A comprehensive account of
these early developments in provability logic can be found in [52].

H. Friedman formulated the question of decidability of the
letterless fragment of provability logic as his Problem 35 in [74].
This question, which happened to be much easier than the general
case, was immediately answered by a number of people including
Boolos [46], van Benthem, Bernardi, and Montagna. This result
was apparently known to von Neumann as early as 1931 [185].

2.1. Solovay’s completeness theorem
The problem of finding a modal logic of Gödel’s predicate of

formal provability Provable(x) was solved in 1976 by Solovay.
Let ∗ be a mapping from the set of propositional letters to the

set of arithmetical sentences. We call such a mapping an (arith-
metical) interpretation. Given a standard provability predicate
Provable(x) in PA, we can extend the interpretation ∗ to all modal
formulas as follows:

• ⊥∗ = ⊥; �∗ = �;
• ∗ commutes with all Boolean connectives;
• (�G)∗ = Provable(G∗) .

The Hilbert-Bernays-Löb derivability conditions, together with
the validity of Löb’s principle, essentially mean that GL is sound
with respect to the arithmetical interpretation.

Proposition 2.1. If GL � X, then for all interpretations ∗,
PA � X∗.

Solovay in [167] established that GL is also complete with re-
spect to the arithmetical interpretation. Solovay also showed that
the set of modal formulas expressing universally true principles of
provability was axiomatized by a decidable extension of GL, which
is usually denoted by S. The system S has the axioms



On Two Models of Provability 9

• all theorems of GL (a decidable set),
• �X→X,

and modus ponens as the sole rule of inference.

Theorem 2.1 (Solovay, [167]).

(1) GL � X iff for all interpretations ∗, PA � X∗,

(2) S � X iff for all interpretations ∗, X∗ is true.

For the proof of this theorem in [167], Solovay invented an
elegant technique of embedding Kripke models into arithmetic.
Variants and generalizations of this construction have been ap-
plied to obtain arithmetical completeness results for various logics
with provability and interpretability semantics. An inspection of
Solovay’s construction shows that it works for all natural formal
theories containing a rather weak elementary arithmetic EA. Such
robustness allows us to claim that GL is indeed a universal propo-
sitional logic of formal provability.

Whether or not Solovay’s theorem can be extended to bounded
arithmetic theories such as S1

2 or S2 remains an intriguing open
question. Interesting partial results here were obtained by Berar-
ducci and Verbrugge in [43].

Solovay’s results and methods opened a new page in the devel-
opment of provability logic. Several groups of researchers in the
USA (Solovay, Boolos, Smoryński), the Netherlands (D. de Jongh,
Visser), Italy (Magari, Montagna, Sambin, Valentini), and the
former USSR (Artemov and his students), have started to work
intensively in this area. An early textbook by Boolos [48], followed
by Smoryński’s [166], played an important educational role.

The following uniform version of Solovay’s Theorem 2.1.1 was
established independently by Artemov, Avron, Boolos, Montagna,
and Visser [3, 4, 49, 135, 175]:

There is an arithmetical interpretation ∗ such that for each
modal formula X, PA � X∗ iff GL � X .

The main thrust of the research efforts in the wake of Solovay’s
theorem was in the direction of generalizing Solovay’s results to
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more expressive languages. Some of the problems that have re-
ceived prominent attention are covered below.

2.2. Fixed point theorem

As an important early result on the application of modal logic to
the study of the concept of provability in formal systems, a the-
orem stands out that was found independently by de Jongh and
Sambin, who established that GL has the fixed point property (see
[48, 51, 165, 166]). The de Jongh-Sambin fixed point theorem is
a striking reproduction of Gödel’s fixed point lemma in a propo-
sitional language free of coding, self-substitution functions, etc.

A modal formula F (p) is said to be modalized in p if every
occurrence of the sentence letter p in F (p) is within the scope
of �.

Theorem 2.2 (de Jongh, Sambin). For every modal formula
F (p) modalized in the sentence letter p, there is a modal formula
H containing only sentence letters from F , not containing p, and
such that GL proves

H ↔ F (H) .

Moreover, any two solutions to this fixed-point equation with re-
spect to F are provably equivalent in GL.

The uniqueness segment was also established by Bernardi in
[44].

The proof actually provided an efficient algorithm that, given
F , calculates its fixed point H. Here are some examples of F ’s
and their fixed points H.

Modal formula F (p) Its fixed point H

�p �
�¬p �⊥
¬�p ¬�⊥
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¬�¬p ⊥
q ∧�p q ∧�q

Perhaps the most famous fixed point of the above sort is given
by the second Gödel incompleteness theorem. Indeed, consider
¬�p as F (p). By the above table, the corresponding fixed point
H is ¬�⊥. Hence GL proves

¬�⊥→¬�(¬�⊥) . (1)

Since the arithmetical interpretation of ¬�⊥ for a given theory T
is the consistency formula Consis(T), this yields that (1) repre-
sents the formalized second Gödel incompleteness theorem:

If T is consistent, then T does not prove its consistency

and that this theorem is provable in T .
The fixed point theorem for GL allowed van Benthem [173]

and then Visser [184] to interpret the modal µ-calculus in GL.
Together with van Benthem’s observation that GL is faithfully in-
terpretable in µ-calculus [173], this relates two originally disjoint
research areas.

2.3. First-order provability logics

The natural problem of axiomatizing first-order provability logic
was first introduced by Boolos in [48, 50] as the major open ques-
tion in this area. A straightforward conjecture that the first-order
version of GL axiomatizes first-order provability logic was shown
to be false by Montagna [137]. A final negative solution was given
in papers by Artemov [5] and Vardanyan [174].

Theorem 2.3 (Artemov, Vardanyan). First-order provability
logic is not recursively axiomatizable.

In particular, Artemov showed that the set of the first-order
modal formulas that are true under any arithmetical interpretation
is not arithmetical. This proof used Tennenbaum’s well-known
theorem about the uniqueness of the recursive model of Peano
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Arithmetic. Vardanyan showed that the set of first-order modal
formulas that are provable in PA under any interpretation is Π0

2-
complete, thus not effectively axiomatizable. Independently but
somewhat later, similar results were obtained by McGee in his
Ph.D. thesis; they were never published.

Even more dramatically, [7] showed that first-order provability
logics are sensitive to a particular formalization of the provability
predicate and thus are not robustly defined.

The material on first-order provability logic is extensively cov-
ered in a textbook [51] and in a survey [63].

2.4. Intuitionistic provability logic

The question of generalizing Solovay’s results from classical theo-
ries to intuitionistic ones, such as Heyting arithmetic HA, proved
to be remarkably difficult. Visser, in [175], found a number of
nontrivial principles of the provability logic of HA. Similar obser-
vations were independently made by Gargov and Gavrilenko. In
[177], a characterization and a decision algorithm for the letterless
fragment of the provability logic of HA were obtained, thus solving
an intuitionistic analog of Friedman’s 35th problem.

Theorem 2.4 (Visser, [177]). The letterless fragment of the
provability logic of HA is decidable.

Some significant further results were obtained in [65, 95, 96,
97, 177, 180, 182, 183], but the general problem of axiomatizing
the provability logic of HA remains a major open question.

2.5. Classification of provability logics

Solovay’s theorems naturally led to the notion of provability logic
for a given theory T relative to a metatheory U , which was sug-
gested by Artemov in [3, 4] and Visser in [175]. This logic,
denoted PLT (U), is defined as the set of all propositional princi-
ples of provability in T that can be established by means of U . In
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particular, GL is the provability logic PLT (U) with U = T = PA,
and Solovay’s provability logic S from Theorem 2.1.2 corresponds
to T = PA and U ’s being the set of all true sentences of arithmetic.
The problem of describing all provability logics for a given theory
T relative to a metatheory U , where T and U range over exten-
sions of Peano arithmetic, has become known as the classification
problem for provability logics. Each of these logics extends GL and
hence can be represented in the form GLX which is GL with addi-
tional axioms X and modus ponens as the sole rule of inference.
Within this notational convention, S=GL{�p→p}. Consider sen-
tences Fn = �n+1⊥→�n⊥, for n ∈ ω. In [4, 6, 176], the following
three families of provability logics were found:

GLα = GL{Fn | n ∈ α}, where α ⊆ ω ;

GL−
β = GL

{∨
n�∈β

¬Fn

}
, where β is a confinite subset of ω ;

Sβ = S ∩ GL−
β , where β is a confinite subset of ω .

The families GLα, GL−
β and Sβ are ordered by inclusion of their

indices, and GLβ ⊂ Sβ ⊂ GL−
β for cofinite β.

In [6], the classification problem was reduced to finding all
provability logics in the interval between GLω and S. In [101],
Japaridze found a new provability logic D in this interval,

D = GL{¬�⊥,�(�p ∨�q)→(�p ∨�q)} .

He showed that D is the provability logic of PA relative to PA+
formalized ω-consistency of PA. This discovery produced one more
provability logic series,

Dβ = D ∩ GL−
β , where β is a confinite subset of ω ,

with GLβ ⊂ Dβ ⊂ Sβ ⊂ GL−
β for cofinite β.
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The classification was completed by Beklemishev who showed
in [33] that no more provability logics exist.

Theorem 2.5 (Beklemishev, [33]). All provability logics occur
in GLα, GL−

β , Sβ, and Dβ, for α, β ⊆ ω, and β cofinite.

The proof of Theorem 2.5 produced yet another provability
interpretation of D which was shown to be the provability logic of
any Σ1-sound-but-not-sound theory relative to the set of all true
sentences of arithmetic. For more details, see [21, 33, 41].

2.6. Provability logics with additional operators

Solovay’s theorems have been generalized to various extensions of
the propositional language by additional operators having arith-
metical interpretations.

One straightforward generalization is obtained by simultane-
ously considering several provability operators corresponding to
different theories. Already in the simplest case of bimodal prov-
ability logic, the axiomatization of such logics turns out to be very
difficult. The bimodal logics for many natural pairs of theories
have been characterized in [34, 35, 59, 101, 166]. However, the
general classification problem for bimodal provability logics for
pairs of recursively enumerable extensions of PA remains a major
open question.

Bimodal logic has been used to study relationships between
provability and interesting related concepts such as the Mostow-
ski operator, and Rosser, Feferman, and Parikh provabilities (see
[124, 160, 161, 166, 178]). In a number of cases, Solovay-style
arithmetical completeness theorems have been obtained. These
results have their origin in an important paper by Guaspari and
Solovay [86] (see also [166]). They consider an extension of the
propositional modal language by a witness comparison operator,
thus allowing the formalization of Rosser-style arguments from his
well-known proof of the incompleteness theorem [153]. Similar
logics have since been used in [57, 58, 64], for example, in the
study of the speed-up of proofs.
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2.7. Generalized provability predicates

A natural generalization of the provability predicate is given by
the notion of n-provability which is, by definition, a provability
predicate in the set of all true arithmetical Πn-sentences. For
n = 0, this concept coincides with the usual notion of provability.
As was observed in [166], the logic of each individual n-provability
predicate coincides with GL. A joint logic of n-provability pred-
icates for n = 0, 1, 2, . . . contains the modalities [0], [1], [2], etc.
The arithmetical interpretation of a formula in this language is
defined as usual, except that we now require, for each n ∈ ω, that
[n] be interpreted as n-provability.

The system GLP introduced by Japaridze [101, 102] is given
by the following axioms and rules of inference.

(i) Axioms of GL for each operator [n],
(ii) [m]ϕ→ [n]ϕ, for m ≤ n,
(iii) 〈m〉ϕ→ [n]〈m〉ϕ, for m < n,
(iv) Rule modus ponens,
(v) Rule ϕ � [n]ϕ.

Theorem 2.6 (Japaridze). GLP is sound and complete with
respect to the n-provability interpretation.

Originally, Japaridze established in [101, 102] the complete-
ness of GLP for an interpretation of modalities [n] as the provabil-
ity in arithmetic using not more than n nested applications of the
ω-rule. Later, Ignatiev in [99] observed that Japaridze’s theorem
holds for the n-provability interpretation. Ignatiev also found nor-
mal forms for letterless formulas in GLP which play a significant
role in Section 2.11 (where only the soundness of GLP is essential).

2.8. Interpretability and conservativity logics

Interpretability is one of the central concepts of mathematics and
logic. A theory X is interpretable in Y iff the language of X
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can be translated into the language of Y in such a way that Y
proves the translation of every theorem of X. For example, Peano
Arithmetic PA is interpretable in Zermelo-Fraenkel set theory ZF.
The importance of this concept lies in its ability to compare theo-
ries of different mathematical character in different languages, for
example, set theory and arithmetic. The notion of interpretabil-
ity was given a mathematical shape by Tarski in 1953 in [170].
There is not much known about interpretability in general. The
modal logic approach provides insights into the structure of in-
terpretability in some special situations when X and Y are finite
propositional-style extensions of a base theory containing a certain
sufficient amount of arithmetic.

Visser, following Švejdar [168], introduced a binary modality
A � B to stand for the arithmetization of the statement

the theory T + A interprets T + B,

where T contains a sufficient amount of arithmetic, and A’s and
B’s are propositional formulas in the language with ‘�.’ This new
modality emulates provability �F by ¬F � ⊥ and thus is more
expressive than the ordinary �. The resulting interpretability logic
substantially depends on the basis theory T .

The following logic IL is the collection of some basic inter-
pretability principles valid in all reasonable theories: axioms and
rules of GL plus

• �(A→B)→A � B,
• (A � B ∧B � C)→A � C,
• (A � C ∧B � C)→(A ∨B) � C,
• A � B→(♦A→♦B),
• ♦A � A.

(We assume here that the interpretability modality ‘�’ binds strong-
er than the Boolean connectives.)

For two important classes of theories T , the interpretability
logic has been characterized axiomatically.

Let ILP be IL augmented by the principle

A � B → �(A � B) .
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Theorem 2.7 (Visser, [179]). The interpretability logic of
a finitely axiomatizable theory satisfying some natural conditions
is ILP.

In particular, the class of theories covered by this theorem includes
the arithmetical theories IΣn for all n = 1, 2, 3, . . ., the second-
order arithmetic ACA0, and the von Neumann-Gödel-Bernays the-
ory GB of sets and classes.

Let ILM be IL augmented by Montagna’s principle

A � B → (A ∧�C) � (B ∧�C) .

The following theorem was established independently in [159]
and [42].

Theorem 2.8 (Shavrkurov, Berarducci). The interpretability
logic of essentially reflexive theories satisfying some natural con-
ditions is ILM.

In particular, this theorem states that ILM is the interpretability
logic for Peano arithmetic PA and Zermelo-Fraenkel set theory ZF.

An axiomatization of the minimal interpretability logic, i.e., of
the set of interpretability principles that hold over all reasonable
arithmetical theories, is not known. Important progress in this
area has been made by Goris and Joosten, who have found new
universal interpretability principles (cf. [84, 105]). Yet more new
interpretability principles have been found recently by Goris; they
were discovered using Kripke semantics and later shown sound for
arithmetic.

The � modality has a related conservativity interpretation,
which leads to the conservativity logics studied in [87, 88, 98].
Logics of interpolability and of tolerance, introduced by Ignatiev
and Japaridze [66, 67, 100], have a related arithmetical interpre-
tation, but a format which is different from that of interpretability
logics; see [63] for an overview.

An excellent survey of interpretability logic is given in [181];
see also [63].
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2.9. Magari algebras and propositional
second-order provability logic

An algebraic approach to provability logic was initiated by Magari
and his students [128, 129, 135, 136]. The provability algebra
of a theory T , also called the Magari algebra of T , is defined as
the set of T -sentences factorized modulo provable equivalence in
T and equipped with the usual Boolean operations together with
the provability operator mapping a sentence F to ProvableT (F ).

Using the notion of provability algebra, one can impart a
provability semantics to a representative subclass of propositional
second-order modal formulas, i.e., modal formulas with quanti-
fiers over arithmetical sentences. These are just first-order formu-
las over the provability algebra. For several years, the questions of
decidability of the propositional second-order provability logic and
of the first-order theory of the provability algebra of PA remained
open (cf. [20]). Shavrukov in [162] provided a negative solution
to both of these questions.

Theorem 2.9 (Shavrukov, [162]). The first-order theory of
the provability algebra of PA is mutually interpretable with the set
of all true arithmetical formulas TA.

This result was proved by one of the most ingenious extensions of
Solovay’s techniques.

2.10. ‘True and Provable’ modality

A gap between the provability logic GL and S4 can be bridged to
some extent by using the strong provability modality �F which is
interpreted as

(�F )∗ = F ∗ ∧ Provable(F ∗) .

The reflexivity principle
�F→F

is then vacuously provable, hence the strong provability modality
is S4-compliant.
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This approach has been explored in [47, 81, 118], where it
was shown independently that the arithmetically complete modal
logic of strong provability coincides with Grzegorczyk’s logic Grz,
which is the extension of S4 by the axiom

�(�(F→�F )→F )→F .

The modality of strong provability has been further studied in
[142, 143]; it played a significant role in introducing justification
into formal epistemology (cf. [26, 28, 27]), as well as in the
topological semantics for modal logic (cf. surveys [68, 76]).

Strong provability also plays a certain foundational role: it
provides an exact provability-based model for intuitionistic logic
IPC. Indeed, by Grzegorczyk’s result from [85], Gödel’s translation
tr specifies an exact embedding of IPC into Grz (cf. Theorem 1.1):

IPC proves F ⇔ Grz proves tr(F) .

However, the foundational significance of this reduction for in-
tuitionistic logic is somewhat limited by a nonconstructive mean-
ing of strong provability as ‘classically true and formally provable,’
which is incompatible with the intended intuitionistic semantics.
The aforementioned embedding does not bring us closer to the
BHK semantics for IPC either. For more discussion on these mat-
ters, see [8, 12, 119].

2.11. Applications

The methods of modal provability logic are applicable to the study
of fragments of Peano arithmetic.

Using provability logic methods, Beklemishev in [36] answered
a well-known question: what kind of computable functions could
be proved to be total in the fragment of PA where induction is re-
stricted to Π2-formulas without parameters? He showed that these
functions coincide with those that are primitive recursive. In gen-
eral, provability logic analysis substantially clarified the behavior
of parameter-free induction schemata.
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Later results [37, 39] revealed a deeper connection between
provability logic and traditional proof-theoretic questions, such as
consistency proofs, ordinal analysis, and independent combinato-
rial principles. In [39], Beklemishev gave an alternative proof of
Gentzen’s famous theorem on the proof of the consistency of PA
by transfinite induction up to the ordinal ε0.

In [38] (cf. also surveys [21, 40]), Beklemishev suggested a
simple PA-independent combinatorial principle called the Worm
Principle, which is derived from Japaridze’s polymodal extension
GLP of provability logic (cf. Section 2.7). Finite words in the
alphabet of natural numbers will be called worms. The Worm
Principle asserts the termination of any sequence w0, w1, w2, . . .
of worms inductively constructed according to the following two
rules. Suppose wm = x0 . . . xn, then

(i) if xn = 0, then wm+1 := x0 . . . xn−1 (the head of the worm is
cut away);

(ii) if xn > 0, set k := max{i < n : xi < xn} and let wm+1 =
x0 . . . xk(xk+1 . . . xn−1(xn− 1))m+1 (the head of the worm de-
creases by one, and the part after position k is appended to
the worm m times).

Clearly, the emerging sequence of worms is fully determined by
the initial worm w0. For example, consider a worm w0 = 2031.
Then the sequence looks as follows:

w0 = 2031
w1 = 203030
w2 = 20303
w3 = 20302222
w4 = 203022212221222122212221
w5 = 2030(22212221222122212220)6

. . .

Theorem 2.10 (Beklemishev, [38]).

(1) For any initial worm w0, there is an m such that wm is empty.
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(2) The previous statement is unprovable in Peano arithmetic
PA. In fact, Statement 1 is equivalent to the 1-consistency of
PA.

For other PA-independent principles, cf. [169].
Japaridze used a technique from the area of Provability Logic

to investigate fundamental connections between provability, com-
putability, and truth in his work on Computability Logic [103,
104].

Artemov’s Logic of Proofs (Section 3) with its applications also
emerged from studies in Provability Logic.

3. Logic of Proofs

The source of difficulties in the provability interpretation of modal-
ity lies in the implicit nature of the existential quantifier ∃. Con-
sider, for instance, the reflection principle in PA, i.e., all formulas
of type Provable(F )→F . By Gödel’s second incompleteness the-
orem, this principle is not provable in PA, since the consistency
formula Con(PA) coincides with a special case of the reflection
principle, namely Provable(⊥)→⊥. The formula Provable(F ) is
∃xProof(x, F ) where Proof(x, y) is Gödel’s proof predicate

x is (a code of ) a proof of a formula (having code) y.

Assuming Provable(F ) does not yield pointing to any specific
proof of F , since this x may be a nonstandard natural number
which is not a code of any actual derivation in PA.

For proofs represented by explicit terms, the picture is very
different. The principle of explicit reflection Proof(p, F )→ F is
provable in PA for each specific derivation p. Indeed, if Proof(p, F )
holds, then F is evidently provable in PA, and so is the formula
Proof(p, F ) → F . Otherwise, if Proof(p, F ) does not hold, then
¬Proof(p, F ) is true and provable, therefore Proof(p, F ) → F is
also provable.
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This observation suggests a remedy: representing proofs by
terms t in the proof formula Proof(t, F ) instead of implicit rep-
resentation of proofs by existential quantifiers in the provability
formula ∃xProof(x, F ). As we have already mentioned, Gödel sug-
gested using the format of explicit proof terms for the interpreta-
tion of S4 as early as 1938, but that paper remained unpublished
until 1995 ([80]). Independently, the study of explicit modal logics
was initiated in [10, 29, 30, 31, 172]. In modern terminology,
the Logic of Proofs is an instance of Gabbay’s Labelled Deductive
Systems (cf. [75]).

Proof polynomials are terms built from proof variables x, y, z, . . .
and proof constants a, b, c, . . . by means of three operations: ap-
plication ‘·’ (binary), union ‘+’ (binary), and proof checker ‘!’
(unary). The language of Logic of Proofs LP is the language of
classical propositional logic supplemented by a new rule for build-
ing formulas, namely for each proof polynomial p and formula F ,
there is a new formula p:F denoting ‘p is a proof of F .’ It is also
possible to read this language type-theoretically: formulas become
types, and p:F denotes ‘term p has type F .’ We assume also that
‘t:’ and ‘¬’ bind stronger than ‘∧,∨’ which, in turn, bind stronger
than ‘→ .’

Axioms and inference rules of LP:

(i) Axioms of classical propositional logic
(ii) t:(F→G) → (s:F→(t·s):G) (application)
(iii) t:F→F (reflection)
(iv) t:F → !t:(t:F ) (proof checker)
(v) s:F→(s+t):F , t:F→(s+t):F (sum)
(vi) Rule modus ponens
(vii) � c:A, where A is from (i)–(v), and c is a proof constant

(Rule of constant specification)

As one can see from the principles of LP, constants denote
proofs of axioms. The application operation corresponds to the
internalized modus ponens rule: for each s and t, a proof s · t is a
proof of all formulas G such that s is a proof of F →G and t is
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a proof of F for some F . The union ‘s + t’ of proofs s and t is a
proof which proves everything that either s or t does. Finally, ‘!’
is interpreted as a universal program for checking the correctness
of proofs, which given a proof t, produces a proof that t proves F
([10, 12]). In [13], it was noted that proof polynomials represent
the whole set of possible operations on proofs for a propositional
language. It was shown that any operation on proofs which is
invariant with respect to a choice of a normal proof system and
which can be specified in a propositional language can be realized
by a proof polynomial.

In what follows, ‘�’ denotes derivability in LP unless stated
otherwise. By a constant specification CS, we mean a set of formu-
las {c1:A1, c2:A2, . . .} where each Ai is an axiom from (i)–(v) of LP,
and each ci is a proof constant. By default, with each derivation
in LP, we associate a constant specification CS introduced in this
derivation by the use of the rule of constant specification.

One of the basic properties of LP is its capability of internal-
izing its own derivations. The weak form of this property yields
the following admissible rule for LP ([10, 12]):

if � F , then � p:F for some proof polynomial p .

This rule is a translation of the well-known necessitation rule of
modal logic

� F

� �F
into the language of explicit proofs. The following more general
internalization rule holds for LP: if

A1, . . . , An � B ,

then it is possible to construct a proof polynomial t(x1, . . . , xn)
such that

x1:A1, . . . , xn:An � t(x1, . . . , xn):B .

One might notice that the Curry-Howard isomorphism covers only
a simple instance of the proof internalization property where all
of A1, . . . , An, B are purely propositional formulas containing no
proof terms. For the Curry-Howard isomorphism basics, see, for
example, [78].
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The decidability of LP was established in [134]. Kuznets
in [115] obtained an upper bound Σp

2 on the satisfiability prob-
lem for LP-formulas in M -models. This bound was lower than the
known upper bound PSPACE on the satisfiability problem in S4
(under the assumption that Σp

2 �= PSPACE ). A possible explana-
tion of why LP wins in complexity over S4 is that the satisfiability
test for LP is somewhat similar to type checking, i.e., checking the
correctness of assigning types (formulas) to terms (proofs), which
is known to be relatively easy in classical cases. Milnikel in [132]
established Πp

2-completeness of LP for some natural classes of con-
stant specifications, including so-called injective ones, when each
constant denotes a proof of not more than one axiom. Πp

2-hardness
for the whole LP remains an open problem.

N. Krupski in [109, 110] considered a representative subsys-
tem of LP, rLP, consisting of formulas t:F derivable in LP. The
system rLP is as expressible as LP itself, since every F derivable
in LP is represented in rLP by t:F for an appropriate proof term t.
A better upper bound (NP) for the decision procedure in rLP was
found. In addition, the disjunctive property for the original logic
of proofs LP was also established:

if LP � s:F ∨ t:G, then LP � s:F or LP � t:G.

3.1. Arithmetical Completeness

The Logic of Proofs LP is sound and complete with respect to the
natural provability semantics. By proof system we mean

1. provably in PA decidable predicate Proof(x, y) that enu-
merates all theorems of PA, i.e.,

PA � ϕ iff Proof(n, ϕ) holds for some n ,

2. computable functions m(x, y), a(x, y) and c(x) such that,
for all arithmetical formulas ϕ,ψ and all natural numbers k, n the
following holds:

Proof(k, ϕ→ψ) ∧ Proof(n, ϕ)→Prf(m(k, n), ψ)
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Proof(k, ϕ)→Proof(a(k, n), ϕ)

Proof(n, ϕ)→Proof(a(k, n), ϕ)

Proof(k, ϕ)→Proof(c(k),Proof(k, ϕ)) .

The class of proof systems includes the Gödelian proof predi-
cate in PA

x is a Gödel number of a derivation in PA that
contains a formula with a Gödel number y

with the obvious choice of operations m(x, y), a(x, y), and c(x).
In particular, a(k, n) is the concatenation of proofs k and n, and
c is a computable function that given a Gödel number of a proof
k, returns the Gödel number c(k) of a proof, containing formulas
Proof(k, ϕ) for all ϕ’s such that Proof(k, ϕ) holds.

An arithmetical interpretation ∗ is determined by a choice of
proof system as well as an interpretation of proof variables and
constants by numerals (denoting proofs), and propositional vari-
ables by arithmetical sentences. Boolean connectives are under-
stood in the same way in both LP and PA, and a formula p:F is
interpreted as an arithmetical formula Proof(p∗, F ∗).

This kind of provability semantics is referred to as call-
by-value semantics; it was introduced in [11] and used in
[12, 14, 24, 83, 189]. A more sophisticated call-by-name
semantics of the language of LP was introduced in [10] and
used in [112, 113, 163, 186]. Under the call-by-name se-
mantics, proof polynomials are interpreted as Gödel num-
bers of definable provably recursive arithmetical terms.
Call-by-value interpretations may be regarded as a spe-
cial case of call-by-name interpretations since numerals
are definable provably recursive arithmetical terms.

For a given constant specification CS, an interpretation ∗ is called
a CS-interpretation if all formulas from CS are true under a given
∗. The following arithmetical completeness theorem has been es-
tablished in [10] for the call-by-name semantics, and in [11] for
the call-by-value semantics (see also articles [12, 14]):
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Theorem 3.1 (Artemov, [10, 11]). A formula F is derivable
in LP with a given constant specification CS iff PA � F ∗, for any
CS-interpretation ∗.

This theorem stands if one replaces ‘PA � F ∗’ by ‘F ∗ holds in
the standard model of arithmetic.’

3.2. Realization Theorem

Another major feature of the Logic of Proofs is its ability to re-
alize all S4-derivable formulas by restoring corresponding proof
polynomials inside all occurrences of modality. This fact may be
expressed by the following realization theorem ([10, 12]). We un-
derstand forgetful projection of an LP-formula F to be a modal
formula obtained by replacing all occurrences of t:(·) in F by �(·).

Theorem 3.2 (Artemov, [10]). S4 is the forgetful projection
of LP.

That the forgetful projection of LP is S4-compliant is a straight-
forward observation. The converse has been established in [10, 12]
by presenting an algorithm which substitutes proof polynomials
for all occurrences of modalities in a given cut-free Gentzen-style
S4-derivation of a formula F , thereby producing a formula F r

derivable in LP. The original realization algorithms from [10, 12]
were exponential. Brezhnev and Kuznets in [55] offered a realiza-
tion algorithm of S4 into LP which is polynomial in the size of a
cut-free derivation in S4. The lengths of realizing proof polyno-
mials can be kept quadratic in the length of the original cut-free
S4-derivation.

Here is an example of an S4-derivation realized as an LP-
derivation in the style of the realization theorem 3.2. There are
two columns in the table below. The first is a Hilbert-style S4-
derivation of a modal formula �A∨�B→�(�A∨B). The second
column displays corresponding steps of an LP-derivation of a for-
mula

x:A∨y:B →(a·!x+b·y):(x:A∨B)
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with constant specification

{ a:(x:A→x:A ∨B), b:(B→x:A ∨B) } .

Derivation in S4 Derivation in LP

1. �A→�A ∨B x:A→x:A ∨B
2. �(�A→�A ∨B) a:(x:A→x:A ∨B)
3. ��A→�(�A∨B) !x:x:A→(a·!x):(x:A∨B)
4. �A→��A x:A→!x:x:A
5. �A→�(�A∨B) x:A→(a·!x):(x:A∨B)
5′. (a·!x):(x:A∨B)→(a·!x+b·y):(x:A∨B)
5′′. x:A→(a·!x+b·y):(x:A∨B)
6. B→�A ∨B B→x:A ∨B
7. �(B→�A ∨B) b:(B→x:A ∨B)
8. �B→�(�A∨B) y:B→(b·y):(x:A ∨B)
8′. (b·y):(x:A∨B)→(a·!x+b·y):(x:A∨B)
8′′. y:B→(a·!x+b·y):(x:A∨B)
9. �A∨�B→�(�A∨B) x:A∨y:B →(a·!x+b·y):(x:A∨B)

Extra steps 5′, 5′′, 8′, and 8′′ are needed in the LP case to
reconcile different internalized proofs of the same formula: (a·!x):
(x:A∨B) and (b·y):(x:A ∨ B). The resulting realization respects
Skolem’s idea that negative occurrences of existential quantifiers
(here over proofs hidden in the modality of provability) are real-
ized by free variables whereas positive occurrences are realized by
functions of those variables.

Switching from the provability format to the language of spe-
cific witnesses reveals hidden self-referentiality of modal logic, i.e.,
the necessity of using proof assertions of the form t:F (t), where t
occurs in the very formula F (t) of which it is a proof. A recent re-
sult by Kuznets in [55] shows that self-referentiality is an intrinsic
feature of the modal logic approach to provability in general.

Theorem 3.3 (Kuznets, [55]). Self-referential constant spec-
ifications of the sort c :A(c) are necessary for realization of the
modal logic S4 in the Logic of Proofs LP.

In particular, the S4-theorem
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¬�¬(S→�S)
cannot be realized in LP without self-referential constant specifi-
cations of the sort c:A(c).

Systems of proof polynomials for other classical modal log-
ics K, K4, D, D4, T were described in [53, 54]. The case of
S5 = S4 + (¬�F → �¬�F ) was special because of the presence
of negative information about proofs and its connections to for-
mal epistemology. The paper by Artemov, Kazakov, and Shapiro
[24] introduced a system of proof terms for S5, and established
realizability of the logic S5 by these terms, decidability, and com-
pleteness of the resulting logic of proofs. An alternative approach,
not connected to the arithmetical provability, to representing neg-
ative information in the logic of proofs was considered in [126].

3.3. Fitting models

The original idea of epistemic semantics for LP can be traced back
to Mkrtychev and Fitting. It consists of augmenting Boolean or
Kripke models with an evidence function, which assigns ‘admissi-
ble evidence’ terms to a statement before deciding its truth value.

Fitting models are defined as follows. A frame is a structure
(W,R), where W is a non-empty set of possible worlds and R is
a binary reflexive and transitive evidence accessibility relation on
W . Given a frame (W, R), a possible evidence function E is a
mapping from worlds and proof polynomials to sets of formulas.
We can read F ∈ E(u, t) as

‘F is one of the formulas for which
t serves as possible evidence in world u.’

An evidence function respects the intended meanings of the
operations on proof polynomials, i.e., for all proof polynomials s
and t, for all formulas F and G, and for all u, v ∈ W , each of the
following hold:

(i) Monotonicity : uRv implies E(u, t) ⊆ E(v, t);
(ii) Closure
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• Application: F → G ∈ E(u, s) and F ∈ E(u, t) implies
G ∈ E(u, s·t);

• Inspection: F ∈ E(u, t) implies t:F ∈ E(u, !t);
• Sum: E(u, s) ∪ E(u, t) ⊆ E(u, s + t).

A model is a structure M = (W, R, E ,�) where (W, R) is a frame,
E is an evidence function on (W,R), and � is an arbitrary map-
ping from sentence variables to subsets of W . Given a model
M = (W, R, E ,�), the forcing relation � is extended from sen-
tence variables to all formulas by the following rules. For each
u ∈W :

(i) � respects Boolean connectives (u � F ∧G iff u � F and
u � G, u � ¬F iff u �� F , etc.);

(ii) u � t:F iff F ∈ E(u, t) and v � F for every v ∈ W with
uRv.

We consider the modality �, associated with the evidence accessi-
bility relation R. In this terms, the last item of the above definition
can be recast as

(ii′) u � t:F iff u � �F and t is an admissible evidence for F
at u.

Mkrtychev models are Fitting models with singleton W ’s. LP
was shown to be sound and complete with respect to both Mkrty-
chev models ([134]) and Fitting models ([72, 73]). Fitting models
were adapted for a multi-agent epistemic setting in [16, 26, 27,
71] and became the standard semantics for epistemic modal logics
with justification.

In his recent paper [83], Goris showed that LP is sound and
complete with respect to the call-by-value semantics of proofs in
Buss’s weak arithmetic S1

2 , thus showing that explicit knowledge
can be realized by PTIME-computable operations on proofs in a
natural mathematical system. Note that the corresponding ques-
tion for the Provability Logic GL remains a major open problem
(cf. Subsection 2.1).
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3.4. Joint logics of proofs and provability

The problem of finding a joint logic of proofs and provability
has been a natural next step, since there are important princi-
ples formulated in a mixed language of formal provability and
explicit proofs. For example, the modal principle of negative in-
trospection ¬�F →�¬�F is not valid in the provability seman-
tics; neither is a purely explicit version of negative introspection
¬(x:F )→ t(x):¬(x:F ). However, a mixed explicit-implicit principle
¬(t:F )→�¬(t:F ) is valid in the standard provability semantics.

The joint system of provability and explicit proofs without
operations on proof terms, system B, was found in [9]. This system
describes those principles that have a pure logical character and
do not depend on any specific operations of proofs.

The postulates of B consist of those of GL together with the
following new principles:

A1. t:F→F ,
A2. t:F→�t:F ,
A3. ¬t:F→�¬t:F ,

RR. Rule of reflection:
� �F

� F
.

Theorem 3.4 (Artemov, [9]). B is sound and complete with
respect to the semantics of proofs and provability in Peano arith-
metic.

The problem of joining two models of provability, GL and LP,
into one model can be specified as that of finding an arithmetically
complete logic containing postulates of both GL and LP and closed
under internalization.

The first solution to this problem was offered by Yavorskaya
(Sidon) in [163, 186] who found an arithmetically complete sys-
tem of provability and explicit proofs, LPP, containing both GL
and LP. Along with natural extensions of principles and opera-
tions from GL and LP, LPP contains additional operations ‘⇑’ and
‘⇓’ which were used to secure the internalization property of LPP.
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The operation ‘⇑’ given a proof t of F , returns a proof ⇑ t of
Provable(F ). The operation ‘⇓’ takes a proof t of Provable(F ) and
returns a proof ⇓ t of F . The set of postulates of LPP consists of
those of GL and LP together with A2, A3, and RR from B, plus
two new principles:

A4. t:F→(⇑ t):�F ,
A5. t:�F→(⇓ t):F .

Finally, Nogina in [26, 144] noticed that each specific instance
of operations ‘⇑’ and ‘⇓’ can be eliminated, and introduced an
arithmetically complete logic GLA joining GL and LP in their orig-
inal languages. The system GLA is presented in [26, 144] by the
set of postulates of GL and LP augmented by the principles:

• t:F→�F ,
• ¬t:F→�¬t:F ,
• t:�F→F .

and Rule of reflection RR.

Theorem 3.5.

(1) (Yavorskaya (Sidon), [163, 186]) LPP is sound and com-
plete with respect to the semantics of proofs and provability
in Peano arithmetic.

(2) (Nogina, [26, 144]) GLA is sound and complete with respect
to the semantics of proofs and provability in Peano arith-
metic.

It was the system GLA which served in [26, 27] as a prototype
of basic logic of knowledge with justification (cf. Subsection 3.8).

3.5. Quantified logics of proofs

The arithmetical provability semantics for the logic of proofs may
be naturally generalized to first-order language and to the lan-
guage of LP with quantifiers over proofs. Both possibilities of en-
hancing the expressive power of LP were investigated and in both
cases, axiomatizability questions have been answered negatively.



32 Sergei Artemov

Theorem 3.6.

(1) (Artemov, Yavorskaya (Sidon), [32]) The first-order logic of
proofs is not recursively enumerable.

(2) (Yavorsky, [190]) The logic of proofs with quantifiers over
proofs is not recursively enumerable.

An interesting decidable fragment of the first-order logic of the
standard proof predicate was found in [189].

3.6. Intuitionistic logic of proofs

As in the case of Provability Logic, a natural question is that of
efficient axiomatization of the logic of proofs for Heyting Arith-
metic HA. However, unlike the Provability Logic case, the first
layer of problems here has a definite resolution. Let us consider
so-called intuitionistic basic logic of proofs iBLP where no specific
operations on proofs are in the langauge.

The first thing to notice is that in addition to the principles
borrowed from the classical Logic of Proofs, there is a principle of
decidability of proof assertions

t:F ∨ ¬t:F .

Another source of new principles is the set of admissible proposi-
tional rules in HA. As was noticed by Iemhoff, for each admissible
rule F/G in HA there is a logic of proofs principle

x:F→G .

A complete decidable axiomatization iBLP was found by Arte-
mov and Iemhoff in [22, 23] with the use of the ideas and technique
of Ghilardi. The next natural goal in this direction is the estab-
lishment of the arithmetical completeness of intuitionistic logic of
proofs with operations corresponding to all admissible rules in HA,
cf. [22, 23] for precise formulations.
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3.7. The logic of single conclusion proofs

By definition, each single conclusion proof, also known as func-
tional proofs, proves a unique formula. In the functional logic
of proofs, a formula t:F still has the meaning ‘t is a proof of for-
mula F ,’ but the class of its interpretations is limited to functional
proof systems only. It is easy to see that single conclusion proofs
lead to modal identities inconsistent with any normal modal logic,
e.g., x:�→¬x:(�∧�) is a valid principle of the functional proofs
which, however, has the forgetful projection ��→¬�(�∧�) which
is incompatible with any normal modal logic.

The mathematical problem here was to give a full axiomati-
zation of all resulting tautologies in the language of LP (without
the operation ‘+,’ which does not work on functional proofs); this
problem was solved by V. Krupski in [112].

The functionality property of proofs, which states that if p :
F ∧ p:G, then F and G must coincide syntactically, does not look
like a propositional condition, since it operates with the strong
notion of syntactic coincidence. An adequate propositional de-
scription of this property was found in [29] using so-called con-
ditional unification. It was then generalized in [112, 113] to the
full language of the logic of proofs.

Each formula C of type t1:F1 ∧ . . . ∧ tn:Fn generates a set of
quasi-equations of type SC:={ ti = tj ⇒ Fi = Fj | 1 ≤ i, j ≤ n }.
A unifier σ of SC is a substitution σ such that either tiσ �≡ tjσ
or Fiσ ≡ Fjσ holds for any i, j. Here and below ‘X ≡ Y ’ denotes
the syntactic equality of X and Y . A = B (modS) means that
for each unifier σ of system S, the property Aσ ≡ Bσ holds. This
conditional unification was shown to be decidable in the cases
under consideration (cf. [29, 112, 113]). By Unification Axiom
we understand the schema

t1:F1 ∧ . . . ∧ tn:Fn → (A↔ B)

for each condition C of type t1:F1 ∧ . . .∧ tn:Fn and each A, B such
that A = B (modSC).
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The Logic of Functional Proofs FLP was introduced by V. Krup-
ski in [112]. The language of FLP is the language of LP without
the operation “+” and without proof constants. The axioms and
rules of FLP are:

A0. Axiom and rules of classical propositional logic
A1. t:(F→G)→(s:F→(t·s):G)
A2. t:F→F

A3. t:F→!t:t:F
A4. Unification axiom.

Theorem 3.7 (V. Krupski, [112, 113]). The logic FLP is de-
cidable, sound, and complete with respect to the arithmetical prov-
ability interpretation based on functional proof predicates.

The logic of functional proofs was further developed in [114],
where its extension with references FLPref was introduced. Sys-
tem FLPref extends FLP with second-order variables which denote
the operation of reconstructing an object from its reference, e.g.,
determining a formula proven by a given derivation. FLPref may
be also viewed as a natural formal system for admissible inference
rules in arithmetic. See also follow-up articles [156, 187].

3.8. Applications

Here we will list some conceptual applications of the Logic of
Proofs.

1. Existential semantics for modal logic. Proof polynomials
and LP represent an exact existential semantics for mainstream
modal logic. Initially, Gödel regarded the modality �F as the
provability assertion, i.e.,

there exists a proof for F .

Thus, according to Gödel, modality is a Σ1-sentence, i.e., the
one which consists of an existential quantifier (here over proofs)
followed by a decidable condition. Such an understanding of modal-
ity is typical of ‘naive’ semantics for a wide range of epistemic and
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provability logics. Nonetheless, before LP was discovered, major
modal logics lacked a mathematical semantics of an existential
character. The exception to the rule is the arithmetical provabil-
ity interpretation for the Provability Logic GL, which still cannot
be extended to the major modal logics S4 and S5.

Almost 30 years after the first work by Gödel on the subject, a
semantics of a universal character was discovered for modal logic,
namely Kripke semantics. Modality in that semantics is read in-
formally as the sentence:

In each possible situation, F holds.

Such a reading of modality naturally appears in dynamic and tem-
poral logics aimed at describing computational processes, states of
which usually form a (possibly branching) Kripke structure. Uni-
versal semantics has been playing a prominent role in modal logic.
However, it is not the only possible semantical tool in the study
and application of modality. The existential semantics of realiz-
ability by proof polynomials can also be useful for foundations and
application of modal logic. For more discussion on the existential
semantics for modal logic, see [18].

2. Justification Logic. A major area of application of the Logic
of Proofs is epistemology. Books [69, 131] serve as excellent in-
troductions to the mathematical logic of knowledge.

Plato’s celebrated tripartite definition of knowledge as justified
true belief is generally regarded in mainstream epistemology as a
set of necessary conditions for the possession of knowledge. Due to
Hintikka, the ‘true belief’ components have been fairly formalized
by means of modal logic and its possible worlds semantics. The
remaining ‘justification’ condition has received much attention in
epistemology (cf., for example, [45, 77, 82, 90, 120, 122, 123,
146]), but lacked formal representation. The issue of finding a
formal epistemic logic with justification has also been discussed
in [172]. Such a logic should contain assertions of the form �F
(F is known), along with those of the form t:F (t is a justifica-
tion for F ). Justification was introduced into formal epistemology
in [16, 26, 27, 28] by combining Hintikka-style epistemic modal
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logic with justification calculi arising from the Logic of Proofs LP.
Epistemic logic with justification was used in [16, 19] to offer a
new approach to common knowledge. A new modal operator Jϕ
for justified knowledge introduced in [16, 19] is defined as a for-
getful projection of justification assertions t :ϕ in a multi-agent
epistemic logic with common justification. Justified knowledge
was shown to be a lighter, constructive version of common knowl-
edge. In particular, in [2] it was shown that for a typical epistemic
problem, common knowledge systems are conservative over those
of justified knowledge, hence whenever the former work, the latter
can be used, too. This line of research is picking up rapidly, cf.
also [71, 116, 148, 151, 152, 154, 155, 188].

3. Tackling the logical omniscience problem. The traditional
Hintikka-style modal logic approach to knowledge has the well-
known defect of logical omniscience, which is the unrealistic fea-
ture that an agent knows all logical consequences of his/her as-
sumptions ([69, 139, 149, 150]). Epistemic systems with justi-
fication address the issue of logical omniscience in a natural way.
A justified knowledge t:F cannot be asserted without presenting
an explicit justification t for F , hence justified knowledge does not
lead to logical omniscience. This property was formally established
in [25], where it was shown that Justification Logic is logically om-
niscient w.r.t. the usual knowledge represented by Hintikka-style
epistemic modalities ‘F is known’ (modulo common complexity
assumptions), and is not logically omniscient w.r.t. the evidence-
based knowledge ‘t is a justification for F.’

4. Reflection in typed combinatory logic and λ-calculus. Typed
λ-calculi and Combinatory Logic are mathematical prototypes of
functional programming languages with types (cf., for example,
[62]). There are reasons to believe that this area would benefit
from extending λ-calculi and Combinatory Logic by self-referential
capacities which enable systems to simultaneously operate with
related objects of different abstraction level: functions, their high
level programs, their low level codes, etc. Reflexive Combinatory
Logic RCL ([17]) was invented to meet these kinds of expectations.
RCL introduces a reflexivity mechanism into Combinatory Logic,
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hence to λ-calculus. RCL has the implicative intuitionistic (mini-
mal) logic as a type system, a rigid typing. Reflexive combinatory
terms are built from variables, ‘old’ combinators k and s, and new
combinators d, o, and c. The principles of RCL are

A1. t:A→A

A2. k:(A→(B→A))
A3. s:[(A→(B→C))→((A→B)→(A→C))]
A4. d:(t:A→A)
A5. o:[u:(A→B)→(v:A→(u · v):B)]
A6. c:(t:A→ !t:t:A)

Rule modus ponens,

A→B A

B
.

RCL has a natural provability semantics inherited from LP. Com-
binatory terms stand for proofs in PA or in intuitionistic arith-
metic HA. Formulas t:F are interpreted as arithmetical statements
about provability, Proof(t, F ), combinators k, s, d, o, and c de-
note terms corresponding to proofs of arithmetical translations of
axioms A2–A6.

RCL evidently contains implicative intuitionistic logic, ordi-
nary Combinatory Logic CL→, and is closed under the combinatory
application rule

u:(A→B) v:A
(u·v):B

.

Furthermore, RCL enjoys the internalization property ([17]): if
A1, . . . , An � B then for any set of variables x1, . . . , xn of respective
types, it is possible to construct a term t(x1, . . . , xn) such that

x1:A1, . . . , xn:An � t(x1, . . . , xn):B .

It is interesting to consider the following natural (though so far in-
formal) computational semantics for combinators of RCL. This se-
mantics is based on the standard set-theoretic semantics of types,
i.e., a type is a set and the implication type U → V is a set of
functions from U to V . Some elements of a given type may be
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constructive objects which have names, i.e., computational pro-
grams. Terms of RCL are names of constructive objects, some of
them specific, e.g., combinators k, s, d, o, or c). The type t:F
is interpreted as a set consisting of the object corresponding to
term t.

Basic combinators of RCL are understood as follows. Combi-
nators k and s have the same meaning as in the combinatory
logic CL→. For example, k maps an element x ∈ A into the
constant function λy.x with y ranging over B. The denotate
combinator d : [t : F → F ] realizes the function which maps a
name (program) into the object with the given name. A primary
example is the correspondence between indexes of computable
functions and functions themselves. The interpreter combina-
tor o : [u : (F → G)→ (v : F → (u · v) : G)] realizes the program
which maps program u and input v into the result of applying u
to v. The coding combinator c:[t:F→!t:(t:F )] maps program t into
its code !t (alias, specific key in a database, etc.).

In the followup papers [109, 111], N. Krupski established that
typability and type restoration can be done in polynomial time and
that the derivability relation for RCL is decidable and PSPACE -
complete.

In [1], some version of reflexive λ-calculus was considered that
has an unrestricted internalization property.
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79. K. Gödel, Eine Interpretation des intuitionistischen Aus-
sagenkalkuls, Ergebnisse Math. Kolloq. 4 (1933), 39–40; English
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Symb. Log. 1 (1936), 87–91.

154. N. Rubtsova, Semantics for Logic of Explicit Knowledge Corre-
sponding to S5, In: Proceedings of the Rationality and Knowledge
Workshop, ESSLLI, 2006.

155. N. Rubtsova, Evidence Reconstruction of Epistemic Modal Logic
S5, In: Computer Science - Theory and Application, D. Grigoriev,
J. Harrison, and E. Hirsch (Eds.), Lect. Notes Comput. Sci. 3967,
Springer, 2006, pp. 313–321.

156. N. Rubtsova. and T. Yavorskaya-Sidon, Operations on proofs and
labels, J. Appl. Non-Classical Logics. [To appear]

157. S. Shapiro, Epistemic and intuitionistic arithmetic, In: Intensional
Mathematics, S. Shapiro (Ed.), North-Holland, 1985, pp. 11–46.

158. S. Shapiro, Intensional mathematics and constructive mathemat-
ics, In: Intensional Mathematics, S. Shapiro (Ed.), North-Holland,
1985, pp. 1–10.

159. V. Shavrukov, The logic of relative interpretability over Peano
arithmetic, Preprint, Steklov Mathematical Institute, Moscow
(1988), in Russian.



50 Sergei Artemov

160. V. Shavrukov, On Rosser’s provability predicate, Z. Math. Logik
Grundlagen Math. 37 (1991), 317–330.

161. V. Shavrukov, A smart child of Peano’s, N Notre Dame J. Formal
Logic 35 (1994), 161–185.

162. V. Shavrukov, Isomorphisms of diagonalizable algebras, Theoria 63
(1997), 210–221.

163. T. Sidon, Provability logic with operations on proofs, In: Logical
Foundations of Computer Science ‘97, Yaroslavl’, S. Adian and
A. Nerode (Eds.), Lect. Notes Comput. Sci. 1234, Springer, 1997,
pp. 342–353.

164. T. Smiley, The logical basis of ethics, Acta Philos. Fenn. 16 (1963),
237–246.
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