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Mathematical Problems from Applied Logic I, II

Logics for the XXIst Century

Two volumes of the International Mathematical Series present the most
important thematic topics of logic confronting us in this century, includ-
ing problems arising from successful applications areas such as computer
science, AI language, etc. etc.

Invited authors—world-known specialists in the field of logic—were asked
to write a chapter (in the form of a survey, a specific problem, or a point
of view) basically outlining
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Main Topics

• Provability logic, intuitionistic provability logic, classification of prov-
ability logics, provability logics with additional operators, general-
ized provability predicates, interpretability and conservativity log-
ics, Magari algebras and propositional second-order provability logic,
logic of proofs, quantified logics of proofs, intuitionistic logic of
proofs, the logic of single conclusion proofs, justification logic

Sergei Artemov, Vol. II

• Nonstandard inferences in description logics; an overview of the
modern state, open problems, and perspectives for future research

Franz Baader and Ralf Küsters, Vol. I

• Logic of provability and a list of open problems in informal concepts
of proof, intuitionistic arithmetic, bounded arithmetic, bimodal and
polymodal logics, Magari algebras and Lindenbaum Heyting alge-
bras, interpretability logic and its kin, graded provability algebras

Lev Beklemishev and Albert Visser, Vol. I

• Logical dynamics: a survey of conceptual issues and open mathe-
matical problems emanating from the recent development of various
“dynamic-epistemic logics” for information update and belief revi-
sion. These systems put many-agent activities at the center stage of
logic, such as speech acts, communication, and general interaction

Johan van Benthem, Vol. I

• Computability theory, appication of computability theory to bi-
ology, psychology, physics, chemistry, economics, and other basic
sciences, machine inductive inference and computability-theoretic
learning, computability theory for computational complexity

John Case, Vol. II



viii Main Topics

• The continuing relevance of Turing’s approach to real-world com-
putability and incomputability, and the mathematical modeling of
emergent phenomena. Related open questions of a research interest
in computability theory

S. Barry Cooper, Vol. I

• What logics do we need? What are logical systems and what should
they be? What is a proof? What foundations do we need?

John N. Crossley, Vol. I

• Computability theory: bounds and complexity for computable mod-
els, isomorphism problem, classes of computable models and index
sets, 30+ open questions in the theory of computable models

Sergei S. Goncharov, Vol. II

• Two doors to open: Mathematical logic and cognitive science. Se-
mantics of medieval Arab linguists

Wilfrid A. Hodges, Vol. I

• Logic and spacetime geometry, first-order logic foundation of rela-
tivity theories, effect of gravitation on clocks

Judit X. Madarász, István Németi, and Gergely Székely, Vol. II

• Applied logic: characterization and relation with other trends in
logic, computer science, and mathematics

Lawrence S. Moss, Vol. I

• Hybrid systems, digital programs, continuous plants and controllers,
discretization, continualization

Anil Nerode, Vol. II

• Region-based theory of space: algebras of regions, models, represen-
tation theory, contact algebras, region-based propositional modal
logics of space

Dimiter Vakarelov, Vol. II
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Ralf Küsters

Institut für Informatik
und Praktische Mathematik
Christian-Albrechts-Universität zu Kiel
Kiel, Germany

Lawrence S. Moss

Indiana University
Bloomington, USA

Albert Visser

Universiteit Utrecht
Utrecht, The Netherlands



Content of Volume I†

Franz Baader and Ralf Küsters
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Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, H-1053 Hungary

turms@renyi.hu
http://www.renyi.hu/˜turms• PhD student

Scientific interests: Logic of spacetime, conceptual analysis of spacetime
and relativity theories.

Dimiter Vakarelov

Department
of Mathematical Logic
and Its Applications
Sofia University
15 Tsar Osvoboditel Blvd.
1504 Sofia, Bulgaria

dvak@fmi.uni-sofia.bg

• Professor of Mathematics, Faculty of Mathematics and Computer
Science, Sofia University

• Editor of ◦ Journal of Applied Non-Classical Logic
Scientific interests: Applied non-classical logic, modal logic, region-based
theory of space.



Content of Volume II

Sergei Artemov

On Two Models of Provability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Provability Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Solovay’s completeness theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Fixed point theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. First-order provability logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. Intuitionistic provability logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5. Classification of provability logics . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6. Provability logics with additional operators . . . . . . . . . . . . . . .14
2.7. Generalized provability predicates . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8. Interpretability and conservativity logics . . . . . . . . . . . . . . . . . 15
2.9. Magari algebras and propositional second-order

provability logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.10. ‘True and Provable’ modality . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.11. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. Logic of Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1. Arithmetical Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2. Realization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3. Fitting models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4. Joint logics of proofs and provability . . . . . . . . . . . . . . . . . . . . . 30
3.5. Quantified logics of proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
3.6. Intuitionistic logic of proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7. The logic of single conclusion proofs . . . . . . . . . . . . . . . . . . . . . . 33
3.8. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



xxvi Content of Volume II

John Case

Directions for Computability Theory
Beyond Pure Mathematical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1. Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2. Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
3. Progress So Far And How One Might Go From Here . . . . . . . . . 57

3.1. Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2. Machine inductive inference and

computability-theoretic learning . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1. Philosophy of Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.2. Cognitive science and language learning . . . . . . . . . . . . . . 71
3.2.3. Applied machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3. Machine self-reflection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
3.4. CT for computational complexity . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5. Physics and all the rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Sergei S. Goncharov

Computability and Computable Models . . . . . . . . . . . . . . . . . . . . . . 99

1. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
1.1. Algebraic structures, models, and theories . . . . . . . . . . . . . . . 101
1.2. Numberings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
1.3. Models and Computability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
1.4. Perspective directions in the theory of computable

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
2. Bounds for Computable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2.1. Bounds for the theory of computable models . . . . . . . . . . . 133
2.1.1. Computable countably categorical models . . . . . . . . . . . 135
2.1.2. Computable uncountably categorical models . . . . . . . . 136
2.1.3. Computable models of Ehrenfeucht theories . . . . . . . . . 146

3. Structure Complexity of Computable Models . . . . . . . . . . . . . . . . 148
3.1. Definability of computable models . . . . . . . . . . . . . . . . . . . . . . 149
3.2. The Kleene notation system O . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.3. Computable infinitary formulas . . . . . . . . . . . . . . . . . . . . . . . . . 150



Content of Volume II xxvii

3.4. Computable rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.5. Rank and isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.5.1. Barwise rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.5.2. Intrinsically Π1

1 relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4. Isomorphism Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.1. Isomorphisms of countably categorical models . . . . . . . . . . . 163
4.2. Isomorphisms of uncountably categorical models . . . . . . . . 167
4.3. Computable categoricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.4. Basic results in numbering theory . . . . . . . . . . . . . . . . . . . . . . . 171
4.7. Categories of graphs and partial orders . . . . . . . . . . . . . . . . . . 178
4.8. Lift of basic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5. Classes of Computable Models and Index Sets . . . . . . . . . . . . . . .186
5.1. Computable classification or structure theorem . . . . . . . . . . 187

5.1.1. First approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.1.2. Second approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.2. Special isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.2.1. Third approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.2.2. Computable enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.2.3. Existence of Friedberg enumerations . . . . . . . . . . . . . . . . 199
5.2.4. Relationship between three approaches . . . . . . . . . . . . . . 202

5.3. Definability and index sets of natural classes of
computable models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Judit X. Madarász,
István Németi,
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Gödel’s modal logic approach to analyzing provability at-
tracted a great deal of attention and eventually led to two
distinct mathematical models. The first is the modal logic
GL, also known as the Provability Logic, which was shown
in 1979 by Solovay to be the logic of the formal provability
predicate. The second is Gödel’s original modal logic of
provability S4, together with its explicit counterpart, the
Logic of Proofs LP, which was shown in 1995 by Artemov
to provide an exact provability semantics for S4. These
two models complement each other and cover a wide range
of applications, from traditional proof theory to λ-calculi
and formal epistemology.
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2 Sergei Artemov

1. Introduction

In his 1933 paper [79], Gödel chose the language of propositional
modal logic to describe the basic logical laws of provability. Ac-
cording to his approach, the classical logic is augmented by a new
unary logical connective (modality) ‘�’ where �F should be in-
terpreted as

F is provable.

Gödel’s treatment of provability as modality in [79] has
an interesting prehistory. In his letter to Gödel [185] of
January 12, 1931, John von Neumann actually used for-
mal provability as a modal-like operator B and gave a
shorter, modal-style derivation of Gödel’s second incom-
pleteness theorem. Von Neumann freely used such modal
logic features as the transitivity axiom B(a)→B(B(a)),
equivalent substitution, and the fact that the modality
commutes with the conjunction ‘∧.’

Gödel’s goal was to provide an exact interpretation of intuitionis-
tic propositional logic within a classical logic with the provability
operator, hence giving classical meaning to the basic intuitionistic
logical system.

According to Brouwer, the founder of intuitionism, truth in
intuitionistic mathematics means the existence of a proof. An ax-
iom system for intuitionistic logic was suggested by Heyting in
1930; its full description may be found in the fundamental mono-
graphs [93, 106, 171]. By IPC, we infer Heyting’s intuitionistic
propositional calculus. In 1931–34, Heyting and Kolmogorov gave
an informal description of the intended proof-based semantics for
intuitionistic logic [91, 92, 93, 107], which is now referred to as
the Brouwer-Heyting-Kolmogorov (BHK ) semantics. According
to the BHK -conditions, a formula is ‘true’ if it has a proof. Fur-
thermore, a proof of a compound statement is connected to proofs
of its parts in the following way:

• a proof of A∧B consists of a proof of proposition A and a
proof of proposition B,
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• a proof of A∨B is given by presenting either a proof of A or
a proof of B,

• a proof of A→B is a construction transforming proofs of A
into proofs of B,

• falsehood ⊥ is a proposition which has no proof; ¬A is short-
hand for A→⊥.

From a foundational point of view, it did not make much sense
to understand the above ‘proofs’ as proofs in an intuitionistic sys-
tem, which those conditions were supposed to specify. So in 1933
([79]), Gödel took the first step towards developing an exact se-
mantics for intuitionism based on classical provability. Gödel
considered the classical modal logic S4 to be a calculus describing
properties of provability in classical mathematics:

(i) Axioms and rules of classical propositional logic,
(ii) �(F→G)→(�F→�G),
(iii) �F→F ,
(iv) �F→��F ,

(v) Rule of necessitation:
� F

� �F
.

Based on Brouwer’s understanding of logical truth as provabil-
ity, Gödel defined a translation tr(F ) of the propositional formula
F in the intuitionistic language into the language of classical modal
logic, i.e., tr(F ) was obtained by prefixing every subformula of F
with the provability modality �. Informally speaking, when the
usual procedure of determining classical truth of a formula is ap-
plied to tr(F ), it will test the provability (not the truth) of each
of F ’s subformulas in agreement with Brouwer’s ideas.

Even earlier, in 1928, Orlov published the paper [147]
in Russian, in which he considered an informal modal-
like operator of provability, introduced modal postulates
(ii)–(v), and described the translation tr(F ) from propo-
sitional formulas to modal formulas. On the other hand,
Orlov chose to base his modal system on a type of rele-
vance logic; his system fell short of S4.
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From Gödel’s results in [79], and the McKinsey-Tarski work
on topological semantics for modal logic [130], it follows that the
translation tr(F ) provides a proper embedding of the intuitionistic
logic IPC into S4, i.e., an embedding of IPC into classical logic
extended by the provability operator.

Theorem 1.1 (Gödel, McKinsey, Tarski). IPC proves F ⇔
S4 proves tr(F).

Still, Gödel’s original goal of defining IPC in terms of classical
provability was not reached, since the connection of S4 to the usual
mathematical notion of provability was not established. Moreover,
Gödel noticed that the straightforward idea of interpreting modal-
ity �F as F is provable in a given formal system T contradicted
Gödel’s second incompleteness theorem (cf. [48, 51, 70, 89, 165]
for basic information concerning proof and provability predicates,
as well as Gödel’s incompleteness theorems).

Indeed, �(�F → F ) can be derived in S4 by the rule of
necessitation from the axiom �F→F . On the other hand,
interpreting modality � as the predicate ProvableT (·) of
formal provability in theory T and F as contradiction, i.e.,
0 = 1, converts this formula into the false statement that
the consistency of T is internally provable in T :

ProvableT

(
�Consis(T)	

)
.

To see this, it suffices to notice that the following formulas
are provably equivalent in T :

ProvableT (�0=1	)→(0=1) ,

¬ProvableT (�0=1	) ,

Consis(T) .

Here �ϕ	 stands for the Gödel number of ϕ. Below we
will omit Gödel number notation whenever it is safe, for
example, we will write Provable(ϕ) and Proof(t, ϕ) instead
of Provable(�ϕ	) and Proof(t, �ϕ	).
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The situation after Gödel’s paper [79] can be described by the
following figure where ‘↪→’ denotes a proper embedding:

IPC ↪→ S4 ↪→ ? ↪→ CLASSICAL PROOFS .

In a public lecture in Vienna in 1938 [80], Gödel suggested
using the format of explicit proofs t is a proof of F for interpret-
ing his provability calculus S4, though he did not give a complete
set of principles of the resulting logic of proofs. Unfortunately,
Gödel’s work [80] remained unpublished until 1995, when the
Gödelian logic of proofs had already been axiomatized and sup-
plied with completeness theorems connecting it to both S4 and
classical proofs.

The provability semantics of S4 was discussed in [48, 51, 56,
81, 108, 117, 121, 133, 138, 140, 141, 145, 157, 158] and
other papers and books. These works constitute a remarkable
contribution to this area, however, they neither found the Gödelian
logic of proofs nor provided S4 with a provability interpretation
capable of modeling the BHK semantics for intuitionistic logic.
Comprehensive surveys of work on provability semantics for S4
may be found in [12, 17, 21].

The Logic of Proofs LP was first reported in 1994 at a seminar
in Amsterdam and at a conference in Münster. Complete proofs
of the main theorems of the realizability of S4 in LP, and about
the completeness of LP with respect to the standard provability
semantics, were published in the technical report [10] in 1995. The
foundational picture now is

IPC ↪→ S4 ↪→ LP ↪→ CLASSICAL PROOFS .

The correspondence between intuitionistic and modal logics
induced by Gödel’s translation tr(F ) has been studied by Blok,
Dummett, Esakia, Flagg, Friedman, Grzegorczyk, Kuznetsov, Lem-
mon, Maksimova, McKinsey, Muravitsky, Rybakov, Shavrukov,
Tarski, and many others. A detailed survey of modal companions
of intermediate (or superintuitionistic) logics is given in [60]; a
brief one is in [61], Sections 9.6 and 9.8.
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Gödel’s 1933 paper [79] on a modal logic of provability left
two natural open problems:

(A) Find a modal logic of Gödel’s predicate of formal provability
Provable(x), which appeared to be ‘a provability semantics
without a calculus.’

(B) Find a precise provability semantics for the modal logic S4,
which appeared to be ‘a provability calculus without a prov-
ability semantics.’

Problem (A) was solved in 1976 by Solovay, who showed that
the modal logic GL (a.k.a. G, L, K4.W, PRL) axiomatized all
propositional properties of the provability predicate Provable(F )
([48, 51, 63, 166, 167]). The solution to problem (B) was ob-
tained through the Logic of Proofs LP (see above and Section 3).

The provability logic GL is given by the following list of pos-
tulates:

(i) Axioms and rules of classical propositional logic,
(ii) �(F→G)→(�F→�G),
(iii) �(�F→F )→�F ,
(iv) �F→��F ,

(v) Rule of necessitation:
� F

� �F
.

Models (A) and (B) have quite different expressive capabili-
ties. The logic GL formalizes Gödel’s second incompleteness the-
orem ¬�(¬�⊥), Löb’s theorem �(�F→F )→�F , and a number
of other meaningful provability principles. However, proofs as ob-
jects are not present in this model. LP naturally extends typed
λ-calculus, modal logic, and modal λ-calculus ([14, 15]). On the
other hand, model (A) cannot express Gödel’s incompleteness the-
orem.

Provability models (A) and (B) complement each other by
addressing different areas of application. The provability logic GL
finds applications in traditional proof theory (cf. Subsection 2.11).
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The Logic of Proofs LP targets areas of typed theories and pro-
gramming languages, foundations of verification, formal epistemol-
ogy, etc. (cf. Subsection 3.8).

2. Provability Logic

A significant step towards finding a modal logic of formal provabil-
ity was made by Löb who formulated in [125], on the basis of pre-
vious work by Hilbert and Bernays from 1939 (see [94]), a number
of natural modal-style properties of the formal provability pred-
icate and observed that these properties were sufficient to prove
Gödel’s second incompleteness theorem. These properties, known
as the Hilbert-Bernays-Löb derivability conditions, essentially co-
incide with postulates (ii), (iv), and (v) of the above formulation
of GL, i.e., with the modal logic K4. Moreover, Löb found an im-
portant strengthening of the Gödel theorem. He established the
validity of the following Löb Rule about formal provability:

� �F→F

� F
.

It was later noticed in (cf. [127]) that this rule can be formalized
in arithmetic, which gave a valid law of formal provability known
as Löb’s principle:

�(�F→F )→�F .

This principle provided the last axiom of the provability logic GL,
named after Gödel and Löb. Neither Gödel nor Löb formulated
the logic explicitly, though they established the validity of the
underlying arithmetical principles. Presumably, it was Smiley,
whose work [164] on the foundations of ethics was the first to
consider GL a modal logic.

Significant progress in the general understanding of the formal-
ization of metamathematics, particularly in [70], inspired Kripke,
Boolos, de Jongh, and others to look into the problem of modal
axiomatization of the logic of provability. More specifically, the
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effort was concentrated on establishing GL’s completeness with re-
spect to the formal provability interpretation. Independently, a
similar problem in an algebraic context was considered by Magari
and his school in Italy (see [129]). A comprehensive account of
these early developments in provability logic can be found in [52].

H. Friedman formulated the question of decidability of the
letterless fragment of provability logic as his Problem 35 in [74].
This question, which happened to be much easier than the general
case, was immediately answered by a number of people including
Boolos [46], van Benthem, Bernardi, and Montagna. This result
was apparently known to von Neumann as early as 1931 [185].

2.1. Solovay’s completeness theorem
The problem of finding a modal logic of Gödel’s predicate of

formal provability Provable(x) was solved in 1976 by Solovay.
Let ∗ be a mapping from the set of propositional letters to the

set of arithmetical sentences. We call such a mapping an (arith-
metical) interpretation. Given a standard provability predicate
Provable(x) in PA, we can extend the interpretation ∗ to all modal
formulas as follows:

• ⊥∗ = ⊥; �∗ = �;
• ∗ commutes with all Boolean connectives;
• (�G)∗ = Provable(G∗) .

The Hilbert-Bernays-Löb derivability conditions, together with
the validity of Löb’s principle, essentially mean that GL is sound
with respect to the arithmetical interpretation.

Proposition 2.1. If GL � X, then for all interpretations ∗,
PA � X∗.

Solovay in [167] established that GL is also complete with re-
spect to the arithmetical interpretation. Solovay also showed that
the set of modal formulas expressing universally true principles of
provability was axiomatized by a decidable extension of GL, which
is usually denoted by S. The system S has the axioms



On Two Models of Provability 9

• all theorems of GL (a decidable set),
• �X→X,

and modus ponens as the sole rule of inference.

Theorem 2.1 (Solovay, [167]).

(1) GL � X iff for all interpretations ∗, PA � X∗,

(2) S � X iff for all interpretations ∗, X∗ is true.

For the proof of this theorem in [167], Solovay invented an
elegant technique of embedding Kripke models into arithmetic.
Variants and generalizations of this construction have been ap-
plied to obtain arithmetical completeness results for various logics
with provability and interpretability semantics. An inspection of
Solovay’s construction shows that it works for all natural formal
theories containing a rather weak elementary arithmetic EA. Such
robustness allows us to claim that GL is indeed a universal propo-
sitional logic of formal provability.

Whether or not Solovay’s theorem can be extended to bounded
arithmetic theories such as S1

2 or S2 remains an intriguing open
question. Interesting partial results here were obtained by Berar-
ducci and Verbrugge in [43].

Solovay’s results and methods opened a new page in the devel-
opment of provability logic. Several groups of researchers in the
USA (Solovay, Boolos, Smoryński), the Netherlands (D. de Jongh,
Visser), Italy (Magari, Montagna, Sambin, Valentini), and the
former USSR (Artemov and his students), have started to work
intensively in this area. An early textbook by Boolos [48], followed
by Smoryński’s [166], played an important educational role.

The following uniform version of Solovay’s Theorem 2.1.1 was
established independently by Artemov, Avron, Boolos, Montagna,
and Visser [3, 4, 49, 135, 175]:

There is an arithmetical interpretation ∗ such that for each
modal formula X, PA � X∗ iff GL � X .

The main thrust of the research efforts in the wake of Solovay’s
theorem was in the direction of generalizing Solovay’s results to
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more expressive languages. Some of the problems that have re-
ceived prominent attention are covered below.

2.2. Fixed point theorem

As an important early result on the application of modal logic to
the study of the concept of provability in formal systems, a the-
orem stands out that was found independently by de Jongh and
Sambin, who established that GL has the fixed point property (see
[48, 51, 165, 166]). The de Jongh-Sambin fixed point theorem is
a striking reproduction of Gödel’s fixed point lemma in a propo-
sitional language free of coding, self-substitution functions, etc.

A modal formula F (p) is said to be modalized in p if every
occurrence of the sentence letter p in F (p) is within the scope
of �.

Theorem 2.2 (de Jongh, Sambin). For every modal formula
F (p) modalized in the sentence letter p, there is a modal formula
H containing only sentence letters from F , not containing p, and
such that GL proves

H ↔ F (H) .

Moreover, any two solutions to this fixed-point equation with re-
spect to F are provably equivalent in GL.

The uniqueness segment was also established by Bernardi in
[44].

The proof actually provided an efficient algorithm that, given
F , calculates its fixed point H. Here are some examples of F ’s
and their fixed points H.

Modal formula F (p) Its fixed point H

�p �
�¬p �⊥
¬�p ¬�⊥
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¬�¬p ⊥
q ∧�p q ∧�q

Perhaps the most famous fixed point of the above sort is given
by the second Gödel incompleteness theorem. Indeed, consider
¬�p as F (p). By the above table, the corresponding fixed point
H is ¬�⊥. Hence GL proves

¬�⊥→¬�(¬�⊥) . (1)

Since the arithmetical interpretation of ¬�⊥ for a given theory T
is the consistency formula Consis(T), this yields that (1) repre-
sents the formalized second Gödel incompleteness theorem:

If T is consistent, then T does not prove its consistency

and that this theorem is provable in T .
The fixed point theorem for GL allowed van Benthem [173]

and then Visser [184] to interpret the modal µ-calculus in GL.
Together with van Benthem’s observation that GL is faithfully in-
terpretable in µ-calculus [173], this relates two originally disjoint
research areas.

2.3. First-order provability logics

The natural problem of axiomatizing first-order provability logic
was first introduced by Boolos in [48, 50] as the major open ques-
tion in this area. A straightforward conjecture that the first-order
version of GL axiomatizes first-order provability logic was shown
to be false by Montagna [137]. A final negative solution was given
in papers by Artemov [5] and Vardanyan [174].

Theorem 2.3 (Artemov, Vardanyan). First-order provability
logic is not recursively axiomatizable.

In particular, Artemov showed that the set of the first-order
modal formulas that are true under any arithmetical interpretation
is not arithmetical. This proof used Tennenbaum’s well-known
theorem about the uniqueness of the recursive model of Peano
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Arithmetic. Vardanyan showed that the set of first-order modal
formulas that are provable in PA under any interpretation is Π0

2-
complete, thus not effectively axiomatizable. Independently but
somewhat later, similar results were obtained by McGee in his
Ph.D. thesis; they were never published.

Even more dramatically, [7] showed that first-order provability
logics are sensitive to a particular formalization of the provability
predicate and thus are not robustly defined.

The material on first-order provability logic is extensively cov-
ered in a textbook [51] and in a survey [63].

2.4. Intuitionistic provability logic

The question of generalizing Solovay’s results from classical theo-
ries to intuitionistic ones, such as Heyting arithmetic HA, proved
to be remarkably difficult. Visser, in [175], found a number of
nontrivial principles of the provability logic of HA. Similar obser-
vations were independently made by Gargov and Gavrilenko. In
[177], a characterization and a decision algorithm for the letterless
fragment of the provability logic of HA were obtained, thus solving
an intuitionistic analog of Friedman’s 35th problem.

Theorem 2.4 (Visser, [177]). The letterless fragment of the
provability logic of HA is decidable.

Some significant further results were obtained in [65, 95, 96,
97, 177, 180, 182, 183], but the general problem of axiomatizing
the provability logic of HA remains a major open question.

2.5. Classification of provability logics

Solovay’s theorems naturally led to the notion of provability logic
for a given theory T relative to a metatheory U , which was sug-
gested by Artemov in [3, 4] and Visser in [175]. This logic,
denoted PLT (U), is defined as the set of all propositional princi-
ples of provability in T that can be established by means of U . In
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particular, GL is the provability logic PLT (U) with U = T = PA,
and Solovay’s provability logic S from Theorem 2.1.2 corresponds
to T = PA and U ’s being the set of all true sentences of arithmetic.
The problem of describing all provability logics for a given theory
T relative to a metatheory U , where T and U range over exten-
sions of Peano arithmetic, has become known as the classification
problem for provability logics. Each of these logics extends GL and
hence can be represented in the form GLX which is GL with addi-
tional axioms X and modus ponens as the sole rule of inference.
Within this notational convention, S=GL{�p→p}. Consider sen-
tences Fn = �n+1⊥→�n⊥, for n ∈ ω. In [4, 6, 176], the following
three families of provability logics were found:

GLα = GL{Fn | n ∈ α}, where α ⊆ ω ;

GL−
β = GL

{∨
n�∈β

¬Fn

}
, where β is a confinite subset of ω ;

Sβ = S ∩ GL−
β , where β is a confinite subset of ω .

The families GLα, GL−
β and Sβ are ordered by inclusion of their

indices, and GLβ ⊂ Sβ ⊂ GL−
β for cofinite β.

In [6], the classification problem was reduced to finding all
provability logics in the interval between GLω and S. In [101],
Japaridze found a new provability logic D in this interval,

D = GL{¬�⊥,�(�p ∨�q)→(�p ∨�q)} .

He showed that D is the provability logic of PA relative to PA+
formalized ω-consistency of PA. This discovery produced one more
provability logic series,

Dβ = D ∩ GL−
β , where β is a confinite subset of ω ,

with GLβ ⊂ Dβ ⊂ Sβ ⊂ GL−
β for cofinite β.



14 Sergei Artemov

The classification was completed by Beklemishev who showed
in [33] that no more provability logics exist.

Theorem 2.5 (Beklemishev, [33]). All provability logics occur
in GLα, GL−

β , Sβ, and Dβ, for α, β ⊆ ω, and β cofinite.

The proof of Theorem 2.5 produced yet another provability
interpretation of D which was shown to be the provability logic of
any Σ1-sound-but-not-sound theory relative to the set of all true
sentences of arithmetic. For more details, see [21, 33, 41].

2.6. Provability logics with additional operators

Solovay’s theorems have been generalized to various extensions of
the propositional language by additional operators having arith-
metical interpretations.

One straightforward generalization is obtained by simultane-
ously considering several provability operators corresponding to
different theories. Already in the simplest case of bimodal prov-
ability logic, the axiomatization of such logics turns out to be very
difficult. The bimodal logics for many natural pairs of theories
have been characterized in [34, 35, 59, 101, 166]. However, the
general classification problem for bimodal provability logics for
pairs of recursively enumerable extensions of PA remains a major
open question.

Bimodal logic has been used to study relationships between
provability and interesting related concepts such as the Mostow-
ski operator, and Rosser, Feferman, and Parikh provabilities (see
[124, 160, 161, 166, 178]). In a number of cases, Solovay-style
arithmetical completeness theorems have been obtained. These
results have their origin in an important paper by Guaspari and
Solovay [86] (see also [166]). They consider an extension of the
propositional modal language by a witness comparison operator,
thus allowing the formalization of Rosser-style arguments from his
well-known proof of the incompleteness theorem [153]. Similar
logics have since been used in [57, 58, 64], for example, in the
study of the speed-up of proofs.
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2.7. Generalized provability predicates

A natural generalization of the provability predicate is given by
the notion of n-provability which is, by definition, a provability
predicate in the set of all true arithmetical Πn-sentences. For
n = 0, this concept coincides with the usual notion of provability.
As was observed in [166], the logic of each individual n-provability
predicate coincides with GL. A joint logic of n-provability pred-
icates for n = 0, 1, 2, . . . contains the modalities [0], [1], [2], etc.
The arithmetical interpretation of a formula in this language is
defined as usual, except that we now require, for each n ∈ ω, that
[n] be interpreted as n-provability.

The system GLP introduced by Japaridze [101, 102] is given
by the following axioms and rules of inference.

(i) Axioms of GL for each operator [n],
(ii) [m]ϕ→ [n]ϕ, for m ≤ n,
(iii) 〈m〉ϕ→ [n]〈m〉ϕ, for m < n,
(iv) Rule modus ponens,
(v) Rule ϕ � [n]ϕ.

Theorem 2.6 (Japaridze). GLP is sound and complete with
respect to the n-provability interpretation.

Originally, Japaridze established in [101, 102] the complete-
ness of GLP for an interpretation of modalities [n] as the provabil-
ity in arithmetic using not more than n nested applications of the
ω-rule. Later, Ignatiev in [99] observed that Japaridze’s theorem
holds for the n-provability interpretation. Ignatiev also found nor-
mal forms for letterless formulas in GLP which play a significant
role in Section 2.11 (where only the soundness of GLP is essential).

2.8. Interpretability and conservativity logics

Interpretability is one of the central concepts of mathematics and
logic. A theory X is interpretable in Y iff the language of X
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can be translated into the language of Y in such a way that Y
proves the translation of every theorem of X. For example, Peano
Arithmetic PA is interpretable in Zermelo-Fraenkel set theory ZF.
The importance of this concept lies in its ability to compare theo-
ries of different mathematical character in different languages, for
example, set theory and arithmetic. The notion of interpretabil-
ity was given a mathematical shape by Tarski in 1953 in [170].
There is not much known about interpretability in general. The
modal logic approach provides insights into the structure of in-
terpretability in some special situations when X and Y are finite
propositional-style extensions of a base theory containing a certain
sufficient amount of arithmetic.

Visser, following Švejdar [168], introduced a binary modality
A � B to stand for the arithmetization of the statement

the theory T + A interprets T + B,

where T contains a sufficient amount of arithmetic, and A’s and
B’s are propositional formulas in the language with ‘�.’ This new
modality emulates provability �F by ¬F � ⊥ and thus is more
expressive than the ordinary �. The resulting interpretability logic
substantially depends on the basis theory T .

The following logic IL is the collection of some basic inter-
pretability principles valid in all reasonable theories: axioms and
rules of GL plus

• �(A→B)→A � B,
• (A � B ∧B � C)→A � C,
• (A � C ∧B � C)→(A ∨B) � C,
• A � B→(♦A→♦B),
• ♦A � A.

(We assume here that the interpretability modality ‘�’ binds strong-
er than the Boolean connectives.)

For two important classes of theories T , the interpretability
logic has been characterized axiomatically.

Let ILP be IL augmented by the principle

A � B → �(A � B) .
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Theorem 2.7 (Visser, [179]). The interpretability logic of
a finitely axiomatizable theory satisfying some natural conditions
is ILP.

In particular, the class of theories covered by this theorem includes
the arithmetical theories IΣn for all n = 1, 2, 3, . . ., the second-
order arithmetic ACA0, and the von Neumann-Gödel-Bernays the-
ory GB of sets and classes.

Let ILM be IL augmented by Montagna’s principle

A � B → (A ∧�C) � (B ∧�C) .

The following theorem was established independently in [159]
and [42].

Theorem 2.8 (Shavrkurov, Berarducci). The interpretability
logic of essentially reflexive theories satisfying some natural con-
ditions is ILM.

In particular, this theorem states that ILM is the interpretability
logic for Peano arithmetic PA and Zermelo-Fraenkel set theory ZF.

An axiomatization of the minimal interpretability logic, i.e., of
the set of interpretability principles that hold over all reasonable
arithmetical theories, is not known. Important progress in this
area has been made by Goris and Joosten, who have found new
universal interpretability principles (cf. [84, 105]). Yet more new
interpretability principles have been found recently by Goris; they
were discovered using Kripke semantics and later shown sound for
arithmetic.

The � modality has a related conservativity interpretation,
which leads to the conservativity logics studied in [87, 88, 98].
Logics of interpolability and of tolerance, introduced by Ignatiev
and Japaridze [66, 67, 100], have a related arithmetical interpre-
tation, but a format which is different from that of interpretability
logics; see [63] for an overview.

An excellent survey of interpretability logic is given in [181];
see also [63].
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2.9. Magari algebras and propositional
second-order provability logic

An algebraic approach to provability logic was initiated by Magari
and his students [128, 129, 135, 136]. The provability algebra
of a theory T , also called the Magari algebra of T , is defined as
the set of T -sentences factorized modulo provable equivalence in
T and equipped with the usual Boolean operations together with
the provability operator mapping a sentence F to ProvableT (F ).

Using the notion of provability algebra, one can impart a
provability semantics to a representative subclass of propositional
second-order modal formulas, i.e., modal formulas with quanti-
fiers over arithmetical sentences. These are just first-order formu-
las over the provability algebra. For several years, the questions of
decidability of the propositional second-order provability logic and
of the first-order theory of the provability algebra of PA remained
open (cf. [20]). Shavrukov in [162] provided a negative solution
to both of these questions.

Theorem 2.9 (Shavrukov, [162]). The first-order theory of
the provability algebra of PA is mutually interpretable with the set
of all true arithmetical formulas TA.

This result was proved by one of the most ingenious extensions of
Solovay’s techniques.

2.10. ‘True and Provable’ modality

A gap between the provability logic GL and S4 can be bridged to
some extent by using the strong provability modality �F which is
interpreted as

(�F )∗ = F ∗ ∧ Provable(F ∗) .

The reflexivity principle
�F→F

is then vacuously provable, hence the strong provability modality
is S4-compliant.
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This approach has been explored in [47, 81, 118], where it
was shown independently that the arithmetically complete modal
logic of strong provability coincides with Grzegorczyk’s logic Grz,
which is the extension of S4 by the axiom

�(�(F→�F )→F )→F .

The modality of strong provability has been further studied in
[142, 143]; it played a significant role in introducing justification
into formal epistemology (cf. [26, 28, 27]), as well as in the
topological semantics for modal logic (cf. surveys [68, 76]).

Strong provability also plays a certain foundational role: it
provides an exact provability-based model for intuitionistic logic
IPC. Indeed, by Grzegorczyk’s result from [85], Gödel’s translation
tr specifies an exact embedding of IPC into Grz (cf. Theorem 1.1):

IPC proves F ⇔ Grz proves tr(F) .

However, the foundational significance of this reduction for in-
tuitionistic logic is somewhat limited by a nonconstructive mean-
ing of strong provability as ‘classically true and formally provable,’
which is incompatible with the intended intuitionistic semantics.
The aforementioned embedding does not bring us closer to the
BHK semantics for IPC either. For more discussion on these mat-
ters, see [8, 12, 119].

2.11. Applications

The methods of modal provability logic are applicable to the study
of fragments of Peano arithmetic.

Using provability logic methods, Beklemishev in [36] answered
a well-known question: what kind of computable functions could
be proved to be total in the fragment of PA where induction is re-
stricted to Π2-formulas without parameters? He showed that these
functions coincide with those that are primitive recursive. In gen-
eral, provability logic analysis substantially clarified the behavior
of parameter-free induction schemata.
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Later results [37, 39] revealed a deeper connection between
provability logic and traditional proof-theoretic questions, such as
consistency proofs, ordinal analysis, and independent combinato-
rial principles. In [39], Beklemishev gave an alternative proof of
Gentzen’s famous theorem on the proof of the consistency of PA
by transfinite induction up to the ordinal ε0.

In [38] (cf. also surveys [21, 40]), Beklemishev suggested a
simple PA-independent combinatorial principle called the Worm
Principle, which is derived from Japaridze’s polymodal extension
GLP of provability logic (cf. Section 2.7). Finite words in the
alphabet of natural numbers will be called worms. The Worm
Principle asserts the termination of any sequence w0, w1, w2, . . .
of worms inductively constructed according to the following two
rules. Suppose wm = x0 . . . xn, then

(i) if xn = 0, then wm+1 := x0 . . . xn−1 (the head of the worm is
cut away);

(ii) if xn > 0, set k := max{i < n : xi < xn} and let wm+1 =
x0 . . . xk(xk+1 . . . xn−1(xn− 1))m+1 (the head of the worm de-
creases by one, and the part after position k is appended to
the worm m times).

Clearly, the emerging sequence of worms is fully determined by
the initial worm w0. For example, consider a worm w0 = 2031.
Then the sequence looks as follows:

w0 = 2031
w1 = 203030
w2 = 20303
w3 = 20302222
w4 = 203022212221222122212221
w5 = 2030(22212221222122212220)6

. . .

Theorem 2.10 (Beklemishev, [38]).

(1) For any initial worm w0, there is an m such that wm is empty.
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(2) The previous statement is unprovable in Peano arithmetic
PA. In fact, Statement 1 is equivalent to the 1-consistency of
PA.

For other PA-independent principles, cf. [169].
Japaridze used a technique from the area of Provability Logic

to investigate fundamental connections between provability, com-
putability, and truth in his work on Computability Logic [103,
104].

Artemov’s Logic of Proofs (Section 3) with its applications also
emerged from studies in Provability Logic.

3. Logic of Proofs

The source of difficulties in the provability interpretation of modal-
ity lies in the implicit nature of the existential quantifier ∃. Con-
sider, for instance, the reflection principle in PA, i.e., all formulas
of type Provable(F )→F . By Gödel’s second incompleteness the-
orem, this principle is not provable in PA, since the consistency
formula Con(PA) coincides with a special case of the reflection
principle, namely Provable(⊥)→⊥. The formula Provable(F ) is
∃xProof(x, F ) where Proof(x, y) is Gödel’s proof predicate

x is (a code of ) a proof of a formula (having code) y.

Assuming Provable(F ) does not yield pointing to any specific
proof of F , since this x may be a nonstandard natural number
which is not a code of any actual derivation in PA.

For proofs represented by explicit terms, the picture is very
different. The principle of explicit reflection Proof(p, F )→ F is
provable in PA for each specific derivation p. Indeed, if Proof(p, F )
holds, then F is evidently provable in PA, and so is the formula
Proof(p, F ) → F . Otherwise, if Proof(p, F ) does not hold, then
¬Proof(p, F ) is true and provable, therefore Proof(p, F ) → F is
also provable.
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This observation suggests a remedy: representing proofs by
terms t in the proof formula Proof(t, F ) instead of implicit rep-
resentation of proofs by existential quantifiers in the provability
formula ∃xProof(x, F ). As we have already mentioned, Gödel sug-
gested using the format of explicit proof terms for the interpreta-
tion of S4 as early as 1938, but that paper remained unpublished
until 1995 ([80]). Independently, the study of explicit modal logics
was initiated in [10, 29, 30, 31, 172]. In modern terminology,
the Logic of Proofs is an instance of Gabbay’s Labelled Deductive
Systems (cf. [75]).

Proof polynomials are terms built from proof variables x, y, z, . . .
and proof constants a, b, c, . . . by means of three operations: ap-
plication ‘·’ (binary), union ‘+’ (binary), and proof checker ‘!’
(unary). The language of Logic of Proofs LP is the language of
classical propositional logic supplemented by a new rule for build-
ing formulas, namely for each proof polynomial p and formula F ,
there is a new formula p:F denoting ‘p is a proof of F .’ It is also
possible to read this language type-theoretically: formulas become
types, and p:F denotes ‘term p has type F .’ We assume also that
‘t:’ and ‘¬’ bind stronger than ‘∧,∨’ which, in turn, bind stronger
than ‘→ .’

Axioms and inference rules of LP:

(i) Axioms of classical propositional logic
(ii) t:(F→G) → (s:F→(t·s):G) (application)
(iii) t:F→F (reflection)
(iv) t:F → !t:(t:F ) (proof checker)
(v) s:F→(s+t):F , t:F→(s+t):F (sum)
(vi) Rule modus ponens
(vii) � c:A, where A is from (i)–(v), and c is a proof constant

(Rule of constant specification)

As one can see from the principles of LP, constants denote
proofs of axioms. The application operation corresponds to the
internalized modus ponens rule: for each s and t, a proof s · t is a
proof of all formulas G such that s is a proof of F →G and t is
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a proof of F for some F . The union ‘s + t’ of proofs s and t is a
proof which proves everything that either s or t does. Finally, ‘!’
is interpreted as a universal program for checking the correctness
of proofs, which given a proof t, produces a proof that t proves F
([10, 12]). In [13], it was noted that proof polynomials represent
the whole set of possible operations on proofs for a propositional
language. It was shown that any operation on proofs which is
invariant with respect to a choice of a normal proof system and
which can be specified in a propositional language can be realized
by a proof polynomial.

In what follows, ‘�’ denotes derivability in LP unless stated
otherwise. By a constant specification CS, we mean a set of formu-
las {c1:A1, c2:A2, . . .} where each Ai is an axiom from (i)–(v) of LP,
and each ci is a proof constant. By default, with each derivation
in LP, we associate a constant specification CS introduced in this
derivation by the use of the rule of constant specification.

One of the basic properties of LP is its capability of internal-
izing its own derivations. The weak form of this property yields
the following admissible rule for LP ([10, 12]):

if � F , then � p:F for some proof polynomial p .

This rule is a translation of the well-known necessitation rule of
modal logic

� F

� �F
into the language of explicit proofs. The following more general
internalization rule holds for LP: if

A1, . . . , An � B ,

then it is possible to construct a proof polynomial t(x1, . . . , xn)
such that

x1:A1, . . . , xn:An � t(x1, . . . , xn):B .

One might notice that the Curry-Howard isomorphism covers only
a simple instance of the proof internalization property where all
of A1, . . . , An, B are purely propositional formulas containing no
proof terms. For the Curry-Howard isomorphism basics, see, for
example, [78].
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The decidability of LP was established in [134]. Kuznets
in [115] obtained an upper bound Σp

2 on the satisfiability prob-
lem for LP-formulas in M -models. This bound was lower than the
known upper bound PSPACE on the satisfiability problem in S4
(under the assumption that Σp

2 �= PSPACE ). A possible explana-
tion of why LP wins in complexity over S4 is that the satisfiability
test for LP is somewhat similar to type checking, i.e., checking the
correctness of assigning types (formulas) to terms (proofs), which
is known to be relatively easy in classical cases. Milnikel in [132]
established Πp

2-completeness of LP for some natural classes of con-
stant specifications, including so-called injective ones, when each
constant denotes a proof of not more than one axiom. Πp

2-hardness
for the whole LP remains an open problem.

N. Krupski in [109, 110] considered a representative subsys-
tem of LP, rLP, consisting of formulas t:F derivable in LP. The
system rLP is as expressible as LP itself, since every F derivable
in LP is represented in rLP by t:F for an appropriate proof term t.
A better upper bound (NP) for the decision procedure in rLP was
found. In addition, the disjunctive property for the original logic
of proofs LP was also established:

if LP � s:F ∨ t:G, then LP � s:F or LP � t:G.

3.1. Arithmetical Completeness

The Logic of Proofs LP is sound and complete with respect to the
natural provability semantics. By proof system we mean

1. provably in PA decidable predicate Proof(x, y) that enu-
merates all theorems of PA, i.e.,

PA � ϕ iff Proof(n, ϕ) holds for some n ,

2. computable functions m(x, y), a(x, y) and c(x) such that,
for all arithmetical formulas ϕ,ψ and all natural numbers k, n the
following holds:

Proof(k, ϕ→ψ) ∧ Proof(n, ϕ)→Prf(m(k, n), ψ)
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Proof(k, ϕ)→Proof(a(k, n), ϕ)

Proof(n, ϕ)→Proof(a(k, n), ϕ)

Proof(k, ϕ)→Proof(c(k),Proof(k, ϕ)) .

The class of proof systems includes the Gödelian proof predi-
cate in PA

x is a Gödel number of a derivation in PA that
contains a formula with a Gödel number y

with the obvious choice of operations m(x, y), a(x, y), and c(x).
In particular, a(k, n) is the concatenation of proofs k and n, and
c is a computable function that given a Gödel number of a proof
k, returns the Gödel number c(k) of a proof, containing formulas
Proof(k, ϕ) for all ϕ’s such that Proof(k, ϕ) holds.

An arithmetical interpretation ∗ is determined by a choice of
proof system as well as an interpretation of proof variables and
constants by numerals (denoting proofs), and propositional vari-
ables by arithmetical sentences. Boolean connectives are under-
stood in the same way in both LP and PA, and a formula p:F is
interpreted as an arithmetical formula Proof(p∗, F ∗).

This kind of provability semantics is referred to as call-
by-value semantics; it was introduced in [11] and used in
[12, 14, 24, 83, 189]. A more sophisticated call-by-name
semantics of the language of LP was introduced in [10] and
used in [112, 113, 163, 186]. Under the call-by-name se-
mantics, proof polynomials are interpreted as Gödel num-
bers of definable provably recursive arithmetical terms.
Call-by-value interpretations may be regarded as a spe-
cial case of call-by-name interpretations since numerals
are definable provably recursive arithmetical terms.

For a given constant specification CS, an interpretation ∗ is called
a CS-interpretation if all formulas from CS are true under a given
∗. The following arithmetical completeness theorem has been es-
tablished in [10] for the call-by-name semantics, and in [11] for
the call-by-value semantics (see also articles [12, 14]):
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Theorem 3.1 (Artemov, [10, 11]). A formula F is derivable
in LP with a given constant specification CS iff PA � F ∗, for any
CS-interpretation ∗.

This theorem stands if one replaces ‘PA � F ∗’ by ‘F ∗ holds in
the standard model of arithmetic.’

3.2. Realization Theorem

Another major feature of the Logic of Proofs is its ability to re-
alize all S4-derivable formulas by restoring corresponding proof
polynomials inside all occurrences of modality. This fact may be
expressed by the following realization theorem ([10, 12]). We un-
derstand forgetful projection of an LP-formula F to be a modal
formula obtained by replacing all occurrences of t:(·) in F by �(·).

Theorem 3.2 (Artemov, [10]). S4 is the forgetful projection
of LP.

That the forgetful projection of LP is S4-compliant is a straight-
forward observation. The converse has been established in [10, 12]
by presenting an algorithm which substitutes proof polynomials
for all occurrences of modalities in a given cut-free Gentzen-style
S4-derivation of a formula F , thereby producing a formula F r

derivable in LP. The original realization algorithms from [10, 12]
were exponential. Brezhnev and Kuznets in [55] offered a realiza-
tion algorithm of S4 into LP which is polynomial in the size of a
cut-free derivation in S4. The lengths of realizing proof polyno-
mials can be kept quadratic in the length of the original cut-free
S4-derivation.

Here is an example of an S4-derivation realized as an LP-
derivation in the style of the realization theorem 3.2. There are
two columns in the table below. The first is a Hilbert-style S4-
derivation of a modal formula �A∨�B→�(�A∨B). The second
column displays corresponding steps of an LP-derivation of a for-
mula

x:A∨y:B →(a·!x+b·y):(x:A∨B)
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with constant specification

{ a:(x:A→x:A ∨B), b:(B→x:A ∨B) } .

Derivation in S4 Derivation in LP

1. �A→�A ∨B x:A→x:A ∨B
2. �(�A→�A ∨B) a:(x:A→x:A ∨B)
3. ��A→�(�A∨B) !x:x:A→(a·!x):(x:A∨B)
4. �A→��A x:A→!x:x:A
5. �A→�(�A∨B) x:A→(a·!x):(x:A∨B)
5′. (a·!x):(x:A∨B)→(a·!x+b·y):(x:A∨B)
5′′. x:A→(a·!x+b·y):(x:A∨B)
6. B→�A ∨B B→x:A ∨B
7. �(B→�A ∨B) b:(B→x:A ∨B)
8. �B→�(�A∨B) y:B→(b·y):(x:A ∨B)
8′. (b·y):(x:A∨B)→(a·!x+b·y):(x:A∨B)
8′′. y:B→(a·!x+b·y):(x:A∨B)
9. �A∨�B→�(�A∨B) x:A∨y:B →(a·!x+b·y):(x:A∨B)

Extra steps 5′, 5′′, 8′, and 8′′ are needed in the LP case to
reconcile different internalized proofs of the same formula: (a·!x):
(x:A∨B) and (b·y):(x:A ∨ B). The resulting realization respects
Skolem’s idea that negative occurrences of existential quantifiers
(here over proofs hidden in the modality of provability) are real-
ized by free variables whereas positive occurrences are realized by
functions of those variables.

Switching from the provability format to the language of spe-
cific witnesses reveals hidden self-referentiality of modal logic, i.e.,
the necessity of using proof assertions of the form t:F (t), where t
occurs in the very formula F (t) of which it is a proof. A recent re-
sult by Kuznets in [55] shows that self-referentiality is an intrinsic
feature of the modal logic approach to provability in general.

Theorem 3.3 (Kuznets, [55]). Self-referential constant spec-
ifications of the sort c :A(c) are necessary for realization of the
modal logic S4 in the Logic of Proofs LP.

In particular, the S4-theorem



28 Sergei Artemov

¬�¬(S→�S)
cannot be realized in LP without self-referential constant specifi-
cations of the sort c:A(c).

Systems of proof polynomials for other classical modal log-
ics K, K4, D, D4, T were described in [53, 54]. The case of
S5 = S4 + (¬�F → �¬�F ) was special because of the presence
of negative information about proofs and its connections to for-
mal epistemology. The paper by Artemov, Kazakov, and Shapiro
[24] introduced a system of proof terms for S5, and established
realizability of the logic S5 by these terms, decidability, and com-
pleteness of the resulting logic of proofs. An alternative approach,
not connected to the arithmetical provability, to representing neg-
ative information in the logic of proofs was considered in [126].

3.3. Fitting models

The original idea of epistemic semantics for LP can be traced back
to Mkrtychev and Fitting. It consists of augmenting Boolean or
Kripke models with an evidence function, which assigns ‘admissi-
ble evidence’ terms to a statement before deciding its truth value.

Fitting models are defined as follows. A frame is a structure
(W,R), where W is a non-empty set of possible worlds and R is
a binary reflexive and transitive evidence accessibility relation on
W . Given a frame (W, R), a possible evidence function E is a
mapping from worlds and proof polynomials to sets of formulas.
We can read F ∈ E(u, t) as

‘F is one of the formulas for which
t serves as possible evidence in world u.’

An evidence function respects the intended meanings of the
operations on proof polynomials, i.e., for all proof polynomials s
and t, for all formulas F and G, and for all u, v ∈ W , each of the
following hold:

(i) Monotonicity : uRv implies E(u, t) ⊆ E(v, t);
(ii) Closure
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• Application: F → G ∈ E(u, s) and F ∈ E(u, t) implies
G ∈ E(u, s·t);

• Inspection: F ∈ E(u, t) implies t:F ∈ E(u, !t);
• Sum: E(u, s) ∪ E(u, t) ⊆ E(u, s + t).

A model is a structure M = (W, R, E ,�) where (W, R) is a frame,
E is an evidence function on (W,R), and � is an arbitrary map-
ping from sentence variables to subsets of W . Given a model
M = (W, R, E ,�), the forcing relation � is extended from sen-
tence variables to all formulas by the following rules. For each
u ∈W :

(i) � respects Boolean connectives (u � F ∧G iff u � F and
u � G, u � ¬F iff u �� F , etc.);

(ii) u � t:F iff F ∈ E(u, t) and v � F for every v ∈ W with
uRv.

We consider the modality �, associated with the evidence accessi-
bility relation R. In this terms, the last item of the above definition
can be recast as

(ii′) u � t:F iff u � �F and t is an admissible evidence for F
at u.

Mkrtychev models are Fitting models with singleton W ’s. LP
was shown to be sound and complete with respect to both Mkrty-
chev models ([134]) and Fitting models ([72, 73]). Fitting models
were adapted for a multi-agent epistemic setting in [16, 26, 27,
71] and became the standard semantics for epistemic modal logics
with justification.

In his recent paper [83], Goris showed that LP is sound and
complete with respect to the call-by-value semantics of proofs in
Buss’s weak arithmetic S1

2 , thus showing that explicit knowledge
can be realized by PTIME-computable operations on proofs in a
natural mathematical system. Note that the corresponding ques-
tion for the Provability Logic GL remains a major open problem
(cf. Subsection 2.1).



30 Sergei Artemov

3.4. Joint logics of proofs and provability

The problem of finding a joint logic of proofs and provability
has been a natural next step, since there are important princi-
ples formulated in a mixed language of formal provability and
explicit proofs. For example, the modal principle of negative in-
trospection ¬�F →�¬�F is not valid in the provability seman-
tics; neither is a purely explicit version of negative introspection
¬(x:F )→ t(x):¬(x:F ). However, a mixed explicit-implicit principle
¬(t:F )→�¬(t:F ) is valid in the standard provability semantics.

The joint system of provability and explicit proofs without
operations on proof terms, system B, was found in [9]. This system
describes those principles that have a pure logical character and
do not depend on any specific operations of proofs.

The postulates of B consist of those of GL together with the
following new principles:

A1. t:F→F ,
A2. t:F→�t:F ,
A3. ¬t:F→�¬t:F ,

RR. Rule of reflection:
� �F

� F
.

Theorem 3.4 (Artemov, [9]). B is sound and complete with
respect to the semantics of proofs and provability in Peano arith-
metic.

The problem of joining two models of provability, GL and LP,
into one model can be specified as that of finding an arithmetically
complete logic containing postulates of both GL and LP and closed
under internalization.

The first solution to this problem was offered by Yavorskaya
(Sidon) in [163, 186] who found an arithmetically complete sys-
tem of provability and explicit proofs, LPP, containing both GL
and LP. Along with natural extensions of principles and opera-
tions from GL and LP, LPP contains additional operations ‘⇑’ and
‘⇓’ which were used to secure the internalization property of LPP.
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The operation ‘⇑’ given a proof t of F , returns a proof ⇑ t of
Provable(F ). The operation ‘⇓’ takes a proof t of Provable(F ) and
returns a proof ⇓ t of F . The set of postulates of LPP consists of
those of GL and LP together with A2, A3, and RR from B, plus
two new principles:

A4. t:F→(⇑ t):�F ,
A5. t:�F→(⇓ t):F .

Finally, Nogina in [26, 144] noticed that each specific instance
of operations ‘⇑’ and ‘⇓’ can be eliminated, and introduced an
arithmetically complete logic GLA joining GL and LP in their orig-
inal languages. The system GLA is presented in [26, 144] by the
set of postulates of GL and LP augmented by the principles:

• t:F→�F ,
• ¬t:F→�¬t:F ,
• t:�F→F .

and Rule of reflection RR.

Theorem 3.5.

(1) (Yavorskaya (Sidon), [163, 186]) LPP is sound and com-
plete with respect to the semantics of proofs and provability
in Peano arithmetic.

(2) (Nogina, [26, 144]) GLA is sound and complete with respect
to the semantics of proofs and provability in Peano arith-
metic.

It was the system GLA which served in [26, 27] as a prototype
of basic logic of knowledge with justification (cf. Subsection 3.8).

3.5. Quantified logics of proofs

The arithmetical provability semantics for the logic of proofs may
be naturally generalized to first-order language and to the lan-
guage of LP with quantifiers over proofs. Both possibilities of en-
hancing the expressive power of LP were investigated and in both
cases, axiomatizability questions have been answered negatively.
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Theorem 3.6.

(1) (Artemov, Yavorskaya (Sidon), [32]) The first-order logic of
proofs is not recursively enumerable.

(2) (Yavorsky, [190]) The logic of proofs with quantifiers over
proofs is not recursively enumerable.

An interesting decidable fragment of the first-order logic of the
standard proof predicate was found in [189].

3.6. Intuitionistic logic of proofs

As in the case of Provability Logic, a natural question is that of
efficient axiomatization of the logic of proofs for Heyting Arith-
metic HA. However, unlike the Provability Logic case, the first
layer of problems here has a definite resolution. Let us consider
so-called intuitionistic basic logic of proofs iBLP where no specific
operations on proofs are in the langauge.

The first thing to notice is that in addition to the principles
borrowed from the classical Logic of Proofs, there is a principle of
decidability of proof assertions

t:F ∨ ¬t:F .

Another source of new principles is the set of admissible proposi-
tional rules in HA. As was noticed by Iemhoff, for each admissible
rule F/G in HA there is a logic of proofs principle

x:F→G .

A complete decidable axiomatization iBLP was found by Arte-
mov and Iemhoff in [22, 23] with the use of the ideas and technique
of Ghilardi. The next natural goal in this direction is the estab-
lishment of the arithmetical completeness of intuitionistic logic of
proofs with operations corresponding to all admissible rules in HA,
cf. [22, 23] for precise formulations.
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3.7. The logic of single conclusion proofs

By definition, each single conclusion proof, also known as func-
tional proofs, proves a unique formula. In the functional logic
of proofs, a formula t:F still has the meaning ‘t is a proof of for-
mula F ,’ but the class of its interpretations is limited to functional
proof systems only. It is easy to see that single conclusion proofs
lead to modal identities inconsistent with any normal modal logic,
e.g., x:�→¬x:(�∧�) is a valid principle of the functional proofs
which, however, has the forgetful projection ��→¬�(�∧�) which
is incompatible with any normal modal logic.

The mathematical problem here was to give a full axiomati-
zation of all resulting tautologies in the language of LP (without
the operation ‘+,’ which does not work on functional proofs); this
problem was solved by V. Krupski in [112].

The functionality property of proofs, which states that if p :
F ∧ p:G, then F and G must coincide syntactically, does not look
like a propositional condition, since it operates with the strong
notion of syntactic coincidence. An adequate propositional de-
scription of this property was found in [29] using so-called con-
ditional unification. It was then generalized in [112, 113] to the
full language of the logic of proofs.

Each formula C of type t1:F1 ∧ . . . ∧ tn:Fn generates a set of
quasi-equations of type SC:={ ti = tj ⇒ Fi = Fj | 1 ≤ i, j ≤ n }.
A unifier σ of SC is a substitution σ such that either tiσ �≡ tjσ
or Fiσ ≡ Fjσ holds for any i, j. Here and below ‘X ≡ Y ’ denotes
the syntactic equality of X and Y . A = B (modS) means that
for each unifier σ of system S, the property Aσ ≡ Bσ holds. This
conditional unification was shown to be decidable in the cases
under consideration (cf. [29, 112, 113]). By Unification Axiom
we understand the schema

t1:F1 ∧ . . . ∧ tn:Fn → (A↔ B)

for each condition C of type t1:F1 ∧ . . .∧ tn:Fn and each A, B such
that A = B (modSC).
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The Logic of Functional Proofs FLP was introduced by V. Krup-
ski in [112]. The language of FLP is the language of LP without
the operation “+” and without proof constants. The axioms and
rules of FLP are:

A0. Axiom and rules of classical propositional logic
A1. t:(F→G)→(s:F→(t·s):G)
A2. t:F→F

A3. t:F→!t:t:F
A4. Unification axiom.

Theorem 3.7 (V. Krupski, [112, 113]). The logic FLP is de-
cidable, sound, and complete with respect to the arithmetical prov-
ability interpretation based on functional proof predicates.

The logic of functional proofs was further developed in [114],
where its extension with references FLPref was introduced. Sys-
tem FLPref extends FLP with second-order variables which denote
the operation of reconstructing an object from its reference, e.g.,
determining a formula proven by a given derivation. FLPref may
be also viewed as a natural formal system for admissible inference
rules in arithmetic. See also follow-up articles [156, 187].

3.8. Applications

Here we will list some conceptual applications of the Logic of
Proofs.

1. Existential semantics for modal logic. Proof polynomials
and LP represent an exact existential semantics for mainstream
modal logic. Initially, Gödel regarded the modality �F as the
provability assertion, i.e.,

there exists a proof for F .

Thus, according to Gödel, modality is a Σ1-sentence, i.e., the
one which consists of an existential quantifier (here over proofs)
followed by a decidable condition. Such an understanding of modal-
ity is typical of ‘naive’ semantics for a wide range of epistemic and
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provability logics. Nonetheless, before LP was discovered, major
modal logics lacked a mathematical semantics of an existential
character. The exception to the rule is the arithmetical provabil-
ity interpretation for the Provability Logic GL, which still cannot
be extended to the major modal logics S4 and S5.

Almost 30 years after the first work by Gödel on the subject, a
semantics of a universal character was discovered for modal logic,
namely Kripke semantics. Modality in that semantics is read in-
formally as the sentence:

In each possible situation, F holds.

Such a reading of modality naturally appears in dynamic and tem-
poral logics aimed at describing computational processes, states of
which usually form a (possibly branching) Kripke structure. Uni-
versal semantics has been playing a prominent role in modal logic.
However, it is not the only possible semantical tool in the study
and application of modality. The existential semantics of realiz-
ability by proof polynomials can also be useful for foundations and
application of modal logic. For more discussion on the existential
semantics for modal logic, see [18].

2. Justification Logic. A major area of application of the Logic
of Proofs is epistemology. Books [69, 131] serve as excellent in-
troductions to the mathematical logic of knowledge.

Plato’s celebrated tripartite definition of knowledge as justified
true belief is generally regarded in mainstream epistemology as a
set of necessary conditions for the possession of knowledge. Due to
Hintikka, the ‘true belief’ components have been fairly formalized
by means of modal logic and its possible worlds semantics. The
remaining ‘justification’ condition has received much attention in
epistemology (cf., for example, [45, 77, 82, 90, 120, 122, 123,
146]), but lacked formal representation. The issue of finding a
formal epistemic logic with justification has also been discussed
in [172]. Such a logic should contain assertions of the form �F
(F is known), along with those of the form t:F (t is a justifica-
tion for F ). Justification was introduced into formal epistemology
in [16, 26, 27, 28] by combining Hintikka-style epistemic modal
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logic with justification calculi arising from the Logic of Proofs LP.
Epistemic logic with justification was used in [16, 19] to offer a
new approach to common knowledge. A new modal operator Jϕ
for justified knowledge introduced in [16, 19] is defined as a for-
getful projection of justification assertions t :ϕ in a multi-agent
epistemic logic with common justification. Justified knowledge
was shown to be a lighter, constructive version of common knowl-
edge. In particular, in [2] it was shown that for a typical epistemic
problem, common knowledge systems are conservative over those
of justified knowledge, hence whenever the former work, the latter
can be used, too. This line of research is picking up rapidly, cf.
also [71, 116, 148, 151, 152, 154, 155, 188].

3. Tackling the logical omniscience problem. The traditional
Hintikka-style modal logic approach to knowledge has the well-
known defect of logical omniscience, which is the unrealistic fea-
ture that an agent knows all logical consequences of his/her as-
sumptions ([69, 139, 149, 150]). Epistemic systems with justi-
fication address the issue of logical omniscience in a natural way.
A justified knowledge t:F cannot be asserted without presenting
an explicit justification t for F , hence justified knowledge does not
lead to logical omniscience. This property was formally established
in [25], where it was shown that Justification Logic is logically om-
niscient w.r.t. the usual knowledge represented by Hintikka-style
epistemic modalities ‘F is known’ (modulo common complexity
assumptions), and is not logically omniscient w.r.t. the evidence-
based knowledge ‘t is a justification for F.’

4. Reflection in typed combinatory logic and λ-calculus. Typed
λ-calculi and Combinatory Logic are mathematical prototypes of
functional programming languages with types (cf., for example,
[62]). There are reasons to believe that this area would benefit
from extending λ-calculi and Combinatory Logic by self-referential
capacities which enable systems to simultaneously operate with
related objects of different abstraction level: functions, their high
level programs, their low level codes, etc. Reflexive Combinatory
Logic RCL ([17]) was invented to meet these kinds of expectations.
RCL introduces a reflexivity mechanism into Combinatory Logic,
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hence to λ-calculus. RCL has the implicative intuitionistic (mini-
mal) logic as a type system, a rigid typing. Reflexive combinatory
terms are built from variables, ‘old’ combinators k and s, and new
combinators d, o, and c. The principles of RCL are

A1. t:A→A

A2. k:(A→(B→A))
A3. s:[(A→(B→C))→((A→B)→(A→C))]
A4. d:(t:A→A)
A5. o:[u:(A→B)→(v:A→(u · v):B)]
A6. c:(t:A→ !t:t:A)

Rule modus ponens,

A→B A

B
.

RCL has a natural provability semantics inherited from LP. Com-
binatory terms stand for proofs in PA or in intuitionistic arith-
metic HA. Formulas t:F are interpreted as arithmetical statements
about provability, Proof(t, F ), combinators k, s, d, o, and c de-
note terms corresponding to proofs of arithmetical translations of
axioms A2–A6.

RCL evidently contains implicative intuitionistic logic, ordi-
nary Combinatory Logic CL→, and is closed under the combinatory
application rule

u:(A→B) v:A
(u·v):B

.

Furthermore, RCL enjoys the internalization property ([17]): if
A1, . . . , An � B then for any set of variables x1, . . . , xn of respective
types, it is possible to construct a term t(x1, . . . , xn) such that

x1:A1, . . . , xn:An � t(x1, . . . , xn):B .

It is interesting to consider the following natural (though so far in-
formal) computational semantics for combinators of RCL. This se-
mantics is based on the standard set-theoretic semantics of types,
i.e., a type is a set and the implication type U → V is a set of
functions from U to V . Some elements of a given type may be
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constructive objects which have names, i.e., computational pro-
grams. Terms of RCL are names of constructive objects, some of
them specific, e.g., combinators k, s, d, o, or c). The type t:F
is interpreted as a set consisting of the object corresponding to
term t.

Basic combinators of RCL are understood as follows. Combi-
nators k and s have the same meaning as in the combinatory
logic CL→. For example, k maps an element x ∈ A into the
constant function λy.x with y ranging over B. The denotate
combinator d : [t : F → F ] realizes the function which maps a
name (program) into the object with the given name. A primary
example is the correspondence between indexes of computable
functions and functions themselves. The interpreter combina-
tor o : [u : (F → G)→ (v : F → (u · v) : G)] realizes the program
which maps program u and input v into the result of applying u
to v. The coding combinator c:[t:F→!t:(t:F )] maps program t into
its code !t (alias, specific key in a database, etc.).

In the followup papers [109, 111], N. Krupski established that
typability and type restoration can be done in polynomial time and
that the derivability relation for RCL is decidable and PSPACE -
complete.

In [1], some version of reflexive λ-calculus was considered that
has an unrestricted internalization property.
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Volume III, S. Feferman (Ed.), Oxford Univ. Press, 1995, pp. 86–
113.

81. R. Goldblatt, Arithmetical necessity, provability and intuitionistic
logic, Theoria 44 (1978), 38–46.

82. A. Goldman, A causal theory of knowing, J. Philos. 64 (1967),
335–372.

83. E. Goris, Logic of proofs for bounded arithmetic, In: Computer
Science - Theory and Application, D. Grigoriev, J. Harrison, and
E. Hirsch (Eds.), Lect. Notes Comput. Sci. 3967, Springer, 2006,
pp. 191–201.

84. E. Goris and J. Joosten, Modal matters in interpretability log-
ics, Technical report, Utrecht University. Institute of Philosophy
(2004), Logic Group preprint series; 226.

85. A. Grzegorczyk, Some relational systems and the associated topo-
logical spaces, Fundam. Math. 60 (1967), 223–231.



On Two Models of Provability 45

86. D. Guaspari and R. Solovay, Rosser sentences, Ann. Pure Appl.
Logic 16 (1979), 81–99.
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This paper begins by briefly indicating the principal, non-standard
motivations of the author for his decades of work in Computability
Theory (CT), a.k.a. Recursive Function Theory.

Then it discusses its proposed, general directions beyond
those from pure mathematics for CT. These directions are as fol-
lows.

(1) Apply CT to basic sciences, for example, biology, psy-
chology, physics, chemistry, and economics.
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(2) Apply the resultant insights from (1) to philosophy and,
more generally, apply CT to areas of philosophy in addi-
tion to the philosophy and foundations of mathematics.

(3) Apply CT for insights into engineering and other profes-
sional fields.

Lastly, this paper provides a progress report on the above non-
pure mathematical directions for CT, including examples for biol-
ogy, cognitive science and learning theory, philosophy of science,
physics, applied machine learning, and computational complex-
ity. Interweaved with the report are occasional remarks about the
future.

1. Motivations

Ted Slaman [159] has nicely mentioned the central theme of his
intellectual motivation (deriving from the influence of Sacks) for
working in Computability Theory (CT), a.k.a. Recursive Function
Theory, namely, definability. I like this very much; however, my
own strongest intellectual motivations for devoting much of my
research to CT have a very different nature and origin.

Since these latter motivations are directly or indirectly rele-
vant to some of the directions I propose below, and are, I believe,
fairly atypical among CT researchers, I describe them in some
detail.

Before my undergraduate experiences, I was intellectually
motivated by what I would now describe as philosophically ori-
ented scientific curiosity. I naively hoped to discover the funda-
mental nature of the universe. It is likely I did not consider what
that actually meant. I knew about Einstein, but not about Gödel
and Turing. I considered studying physics, astronomy, or psychol-
ogy. I remained flexible about fields in the future, expecting I
should see what I liked, etc. I would now say I was a naive scien-
tific reductionist and, so, chose physics (over psychology) for my
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UG experience. My UG minors became mathematics and philos-
ophy, and I took but one psychology course. Psychology seemed
more easily learned on my own.

I considered physics, mathematics, or philosophy for gradu-
ate school. For various reasons, including generally better fit of
cognitive style between myself and the field, I selected mathemat-
ics.

When I first learned CT the two major, intellectual ideas that
captivated me were1

• that the definition of computable is an absolute, and
• my realization that, very likely, the universe, above

some level at least, is computable2.

In a sense, re the second bullet just above, with CT I felt
that I was dealing with physics again in the form of a very abstract
mechanics. Also, since biological organisms including humans are
components of the physical universe, with CT I also had a very
abstract handle on biology, psychology . . . . Later I found [121]
in which Myhill says on P. 149:

. . . in the author’s view, the theorems of Church and Gödel
are psychological laws. Mr. E. H. Galanter of the Department
of Psychology, University of Pennsylvania, described them in
conversation with the author as “the only known psychologi-
cal laws comparable in exactitude with the laws of physics.”3

1 Many, for me, less major things also helped with the captivation,
for example, the aesthetics of (some of) CT’s tools, for example, recur-
sion theorems [23, 24, 143].

2 N.B. In a discrete, random universe but with computable probabil-
ity distributions for its behaviors (for example, a discrete, quantum me-
chanical universe, perhaps, as I believe, ours is), the statistically expected
behavior will still be computable [60] (and constructively so [72, 73]).

3 However, when, many years later, I got to know Myhill and dis-
cussed with him the idea that people are essentially algorithmic mecha-
nisms, he was, at that time, no longer in favor of the idea.
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It is sometimes argued that Gödel’s theorems imply people
are not algorithmic. It is, I believe, never argued that there are
people who can list or decide the set of truths of (first or second
order)4 arithmetic, or who solve the halting problem, or . . . . Any-
how, regarding the arguments that are presented: they suffer not
only from the usual problems of confusing “T being consistent”
with “T being known to be consistent,” but also, and more ba-
sically, with confusion about productive sets [148]. Many times
these arguments are essentially, “I know an algorithm witnessing
the set of truths of some arithmetic is productive; i.e., I know
an algorithm which provides counterexamples to alleged complete
recursive axiomatizations [113]; therefore, I am not a machine.”
More simply, “I know an algorithm; therefore, I am not a ma-
chine.” In this form, these arguments are seen as absurd. See also
[50, 51].5

Beginning with the next paragraph I list my suggested direc-
tions. After I present the directions, I present examples of progress
to date and suggest future work.

2. Directions

Direction 2.1. Apply CT to the basic sciences.6

This leads to a second

4 I mean second order in the sense of [148].
5 I plan to write a philosophical paper in which I present some new

arguments in this area and which tend a bit in the opposite direction
of supporting a mechanistic world, or at least one with mechanistic ex-
pected behavior.

6 By basic sciences, I have in mind biology, psychology, physics,
chemistry, economics, etc., sciences which, each to varying degrees of
predictive success, apply scientific method.

I do not consider set theory to be one of the sciences in the above
sense, and it is not clear platonists would consider it to be anyhow —
even if they think sets are a component of the universe independent of
human invention. I am not a platonist. For me, set theory requires
deciding what is useful and interesting to mean by sets, and I personally
expect that that will have no absolute answer.
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Direction 2.2. Apply the understandings from successes re
Direction 2.1 to philosophy and, more generally, apply CT to more
areas of philosophy than at present.7

At least for my personally captivating intellectual motivations
for CT bulleted above, I believe CT deserves to survive! It is not
so clear that it will.8 This partly motivates

Direction 2.3. Apply CT to engineering and other profes-
sional or applied fields more generally.

3. Progress So Far And
How One Might Go From Here

In this section, I proceed approximately chronologically with re-
spect to my own first associations with the general subject head-
ings. I interweave with the progress report occasional remarks
about the future. I also make occasional remarks about proof
techniques employed thus far9, and prove one sample theorem
(Theorem 3.1 in Section 3.2.1 below). I intend the progress re-
port material partly as evidence that progress is possible, not as

7 I like very much the idea of people continuing to apply CT to
foundations of mathematics and associated philosophy. Directions 2.1
and 2.2 are, I believe, a needed expansion to areas outside of mathematics
itself, i.e., moves away from math-centricism.

8 For U.S. mathematical science departments, NSF commis-
sioned [125], and in Appendix 2 Assessment of Subfields,
under Foundations we see, among other things, the following.

Recursion (or computability) theory is quiescent, with a
substantial body of completed work. Barring a major break-
through, or the further exploitation of connections with com-
putational mathematics and computer science, the next decade
is not expected to be very active. England plays a leading role,
with the United States as a contributor, but the aging research
population is not being replenished.
9 I have not seen a need for n-jump priority arguments yet. There

may eventually need to be new, complex methods created to obtain
results in my proposed directions.
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how one must necessarily proceed next. I will not be proposing
particular and well-defined problems. Instead and in general I
propose the creation of interesting, insightful, and interpretable
definitions, problems, theorems for the sciences, philosophy, and
applied fields.

Standard computability-theoretic notation will be from [148].
For example, N will denote the set of natural numbers, {0, 1, 2, . . .}.
ϕ will denote a fixed acceptable programming system (or number-
ing) for the class of partially computable functions: N → N , where
ϕp is the partially computable function computed by program (or
index) p in the system. For a partial function ψ, δψ and ρψ de-
note the domain and range of ψ, respectively. We write Wp for the
r.e. set accepted or enumerated by ϕ-program p, where, formally,
Wp

def= δϕp. We also write ↓ for converges or is defined and ↑ for
diverges or is not defined.

3.1. Biology

Kleene [95, p. 59]10 was apparently the first to notice the con-
nection between his second recursion theorem [148, p. 214] and
Von Neumann’s self-reproducing automata [124, 17]. I recall that
Kleene told me (perhaps at the Kleene Symposium) that he had
used his recursion theorem to understand Von Neumann’s con-
struction. This amazed me, since, by contrast, I had used von Neu-
mann’s construction to understand Kleene’s proof of his recursion
theorem [21].11 Myhill’s [123] seems to be the first published ac-
count featuring a connection between CT and self-reproducing au-
tomata although it does not employ a recursion theorem. This

10 This paper is worth a read more generally.
11 Wonderfully, the top level logic/refinement of Von Neumanns’s

construction is essentially identical to the top level logic/refinement
of biological single-celled organisms’ self-reproductive procedure.
http://www.cis.udel.edu/∼case/papers/krt-self-repo.pdf explicitly lays
out the correspondence between Kleene’s proof of his recursion theo-
rem and (the top level of) a single-celled organism’s self-reproductive
procedure. This expands on the discussion of same in [21].
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paper provided me with my first hint of how to connect CT to
modeling the physical world, and it directly motivated my [21]
(and the earlier [20]).

In [123], Myhill considers variants of machines which build
strict copies of themselves, for example, machines which build dis-
tortions such as mirror images of themselves and machines which
deterministically evolve with each generation a better automatic
theorem prover.

Herein, in our brief discussion of [21], I omit most technical
details. Suffice it to say one has a sequence of constructor machines
M0,M1,M2, . . ., and, besides their constructing capabilities, they
have arbitrary effectively pre-assigned respective computing capa-
bilities.

For these constructor machines, we writeMp →Mq to mean
Mp constructs or begets Mq.

One of the emphases in [21] was periodicity in generations
of machines which construct offspring. For example, given any
n ∈ N , we can obtain pairwise distinct constructor machines
Me0 ,Me1 , . . . ,Men

such that Me0 → Me1 → . . . → Men
→

Me0 .
12 This sequence replicates with period n + 1. Self-reproduc-

tion is the n + 1 = 1 case. In nature we also see period two, the
n + 1 = 2 case: the metagenic cœlenterates Aurelia and Obelia
[84, p. 246] alternate between an attached polyp generation and
a free swimming medusa generation with each looking and behav-
ing different from the other. We see period three, the n + 1 = 3
case, in some parasites which occupy a succession of very different
hosts. I could not find evidence of organisms reproducing with pe-
riodicity in generations greater than three. The obvious problem
for biologists suggested by the existence of constructor machines
which replicate every n + 1 generations for arbitrary large n is,
Why do we not see larger periods in nature?

12 The proof can be done by a padded n + 1-ary recursion theorem.
To handle elegantly the cases of aperiodicity in generations (with no
sterile descendent), I invented my Operator Recursion Theorem (ORT)
[21], an infinitary self-reference principle [24]. My ORT is called the
Functional Recursion Theorem in [127].
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Another example from [21], given any n ∈ N , we can con-
structively obtain different pairwise distinct constructor machines
Me0 ,Me1 , . . . ,Men

such that Me0 → Me1 → . . . → Men
and

Men
is sterile, and, additionally, where each Mei

, for i � n, has
the same arbitrary pre-assigned computing capabilities. The nth
descendant of Me0 exists and is sterile, where Me0 is considered
to be the zeroth descendant of itself. In drafting this chapter, I
thought of an engineering application. Many times humans have
introduced a new organism into an environment to control a pre-
existing pest organism only to discover that the new organism is
a pest itself. The application is to employ the trick for producing
theMe0 ,Me1 , . . . ,Men

of this paragraph to engineer genetically a
proposed new organism to introduce for pest control so as to have
its nth descendant exist and be sterile (for whatever n is desired),
but to have its non-reproductive functions not be altered. Then,
the altered new organism, if it turns out to be a pest itself, will
die out anyway. If it does not seem to be a pest itself, and it is
still needed to control the original pest, it can be reintroduced.

3.2. Machine inductive inference
and computability-theoretic learning

CT applied to these areas first appeared in [141, 76]. Associated
textbook material appears in [131, 86, 127].

One of the endorsement sentences I composed for MIT Press
regarding the then upcoming [86] reads as follows.13

Just as a conservation assumption from physics provides
boundaries on and insight into the physically possible so
too the computability assumption on learning provides
herein boundaries on and insight into the cognitively pos-
sible.

13 Another sentence with very different content was actually used in
my endorsement on the book jacket.
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The material in this section features Philosophy of Science
(Section 3.2.1), Cognitive Science and Language Learning (Section
3.2.2), and Applied Machine Learning (Section 3.2.3).

Some CT work applied to computational complexity aspects
of learning appears in Section 3.4 below.

3.2.1. Philosophy of Science. On [5, p. 125] it says the fol-
lowing.

Consider the physicist who looks for a law to explain a
growing body of physical data. His data consist of a
set of pairs (x, y), where x describes a particular experi-
ment, for example, a high-energy physics experiment, and
y describes the results obtained, for example, the parti-
cles produced and their respective properties. The law he
seeks is essentially an algorithm for computing the func-
tion f(x) = y.

Here is another example from [35]: x codes a particle dif-
fraction experiment and f(x) the resultant probable distribution
(or fringe pattern) on the other side of the diffraction grating.
Quantum theory provides algorithmic extraction of f(x) from x.
A program for f is, then, a predictive explanation or law for the
set of such diffraction experiments.

If, in our universe, people, including scientists (and collec-
tions thereof, including over historical time), are essentially algo-
rithmic (as I believe), one can use CT to get theorems in philos-
ophy of science. This realization occurred to me in the mid 70s
and, for me, it was extremely intellectually exciting.

Some computability-theoretic inductive inference publications
with something to say for philosophy of science are [141, 76, 4,
5, 93, 184, 46, 47, 37, 10, 35, 66, 105, 38, 1].

Some philosophy of science publications influenced by computa-
bility-theoretic inductive inference are [75, 91, 92, 101, 89, 102,
153, 154, 90].
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In the rest of this section, I present a few sample results from
computability-theoretic inductive inference with corresponding in-
dications of their philosophical meaning.

In the following we will model inductive inference machines
M extensionally as partially computable functions which take for
their inputs finite initial segments of functions f : N → N and
which either go undefined or return programs in the ϕ-system. In-
tuitively, for a finite initial segment σ, if M(σ) is defined (written:
↓) = p, then p represents M’s conjecture or hypothesis as to a
program for f based on the data points about f contained in σ.
We write σ ⊂ f to mean σ is a finite initial segment of f , i.e., σ
is a finite initial segment of a function, and its graph is a proper
subset of that of f . We write

∞
∀ to mean for all but finitely many.

R denotes the class of computable functions mapping N into N .
We next consider a criterion of successful inductive inference.

Definition 3.1. M Ex-learns f ⇔ [(∀σ ⊂ f)[M(σ)↓] ∧
(∃p)(

∞
∀σ ⊂ f)[M(σ) = p ∧ ϕp = f ]].

Intuitively, M Ex-learns f means that, M fed successively
more data about f , outputs a corresponding succession of conjec-
tures and eventually begins to output the same correct ϕ-program
p for f over and over. For Ex-learning we think of M as eventually
finding a predictive explanation p for f [47].

For p satisfying the right hand side of Definition 3.1 just
above, we write M(f)↓ = p.

Ex def= {S ⊆ R | (∃M)[M Ex-learns each f ∈ S]}. For
example, the class of one-argument primitive recursive functions
is in Ex, but R is not [76, 5]. Hence while some single M is
“clever” enough to Ex-learn every primitive recursive function, no
single M is clever enough to Ex-learn each computable function.

Next we begin to consider alternative criteria of success.

Definition 3.2. M Conf -learns f ⇔ [M Ex-learns f ∧
(∀σ ⊂ f)[M(σ)↓ ∧ (ϕM(σ) ∪ σ) is single-valued]].
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Let f [n] def= f(0), . . . , f(n− 1).
We see that an M which Conf -learns a function f Ex-learns

f and produces, on each input f [n], a corresponding conjecture,
M(f [n]), based on the data in f [n], and this conjecture does not
explicitly output something convergently contradicting any data
in f [n]. A program M(f [n]) may go undefined on some inputs
< n, but on such inputs, it, then, does not converge to anything
different from what f does. This seems like a very reasonable,
common sense restriction. In fact, the stronger looking restriction
for the related Cons-learning criterion may seem reasonable too:
each program M(f [n]) must converge to f on any inputs < n.
This restriction requires that each conjecture of M on f has to be
correct on the data about f on which that conjecture is based.14

Conf def= {S ⊆ R | (∃M)[M Conf -learns each f ∈ S]}.
Also, Cons def= {S ⊆ R | (∃M)[M Cons-learns each f ∈ S]}.

Surprisingly, these natural, common sense restrictions on in-
ductive inference (for Conf and Cons) strictly limit learning or
inductive inference power (as measured by Ex-learning).

Theorem 3.1 (Wiehagen [184]). Cons ⊂ Conf ⊂ Ex.

For example, the second, more surprising non-containment
in Theorem 3.1 just above entails that, in some cases for explana-
tory inductive inference, employing conjectures convergently con-
tradicting known data gives one strictly greater inferring power
than not contradicting known data! This result is, I believe, of
great interest for philosophy of science.

Proof of Theorem 3.1. Of course Cons ⊆ Conf ⊆ Ex.
Since, offhand, I know of no easily available proof of the sec-
ond, somewhat harder, more surprising non-containment, and to
provide herein at least one illustrative, short, and sweet proof

14 Conf is short for Conformal, and Cons is short for Consistent.
I sometimes like referring to Conformal as postdictively-consistent (not
explicitly contradicting known data points in one’s conjectures based on
them) and Consistent as postdictively-complete (not missing any known
data points in one’s conjectures based on them).
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re inductive inference, I prove the more surprising of the non-
containments.

Let

S = {f ∈ R | ρf is finite ∧ ϕmax(ρf) = f}, (3.1)

a self-referential class. We will show that

S ∈ (Ex−Conf) .15 (3.2)

Trivially, S ∈ Ex — as witnessed by a machine that, on any
f , outputs the largest thing, if any16, it has seen so far in the range
of f .

Suppose for contradiction M witnesses that S ∈ Conf . Hence

(∀f ∈ S)(∀σ ⊂ f)[M(σ)↓ ∧ (ϕM(σ) ∪ σ) is single-valued]. (3.3)

Claim 3.1.
(∀σ)(∃f ∈ S)[f ⊃ σ]. (3.4)

Hence, by (3.4), (3.3),

(∀σ)[M(σ)↓ ∧ (ϕM(σ) ∪ σ) is single-valued]. (3.5)

Proof. We let max(∅) def= 0.
Suppose σ is given. By a padded version of Kleene’s Recur-

sion Theorem, there is program e such that e > max(ρσ)), and,
on input x, e looks in a mirror to see which program it is17, and,
then,

ϕe(x) =

{
σ(x) if x ∈ δσ,

e otherwise.
(3.6)

Let f = ϕe. Then f ⊃ σ, and f ∈ S. �

15 This and other such examples for witnessing the rest of the theo-
rem as well as for other, related results are stated, but not proven correct,
in [40]. For (Ex−Cons) �= ∅, see [4, 5, 183].

16 If nothing has yet appeared in the range of f , the machine can
output any program.

17 See [24, 143] for more about this way of understanding recursion
theorems and program or machine self-reference in terms of mirrors. It
is also discussed in Section 3.3 below.
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We continue with the proof of the theorem.
We write σ · i for the finite sequence consisting of σ followed

by i.
By a padded version of Kleene’s Recursion Theorem, there is

a different program e > 0, 1 such that this e looks in a mirror to
see which program it is, and, then, the rest of this e’s behavior is
described informally below.

begin Program e;
set ϕe(0) = e;
let ϕs

e be the finite sequence of successive val-
ues of ϕe defined before stage s below18;
do stage s for s = 0 to ∞;

begin stage s;
if (i) M(ϕs

e · 0) = M(ϕs
e · 1) (∗ i.e., M is

insensitive ∗)
then

set ϕs+1
e = ϕe · 0 (∗ passive ploy ∗)

else (ii) (∗ i.e., M is sensitive ∗)
set ϕs+1

e = ϕe ·min({i � 1 |M(ϕs
e) �=

M(ϕs
e · i)}) (∗ aggressive ploy19 ∗)
endif

end stage s
enddo

end Program e.

Clearly, by (3.5), ϕe is total and, then, is ∈ S. Therefore,
(∃p)[M(ϕe)↓ = p ∧ ϕp = ϕe].

Hence (
∞
∀s)[(i) holds at stage s] — since each stage in which

(ii) holds forces M to make another mind change.
Pick s0 so large that [(i) holds at stage s0 ∧M(ϕs0+1

e ) =
M(ϕs0

e ) = p].
For each i � 1, let σi = ϕs0

e · i.
18 ϕs

e is an initial segment of a function; hence, it has domain
{0, . . . , n− 1} for some n � 0.

19 This strategy forces M to make a change of conjecture, a “mind”
change, on ϕe.
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Then, σ0 = ϕs0+1
e �= σ1 ∧ δσ0 = δσ1.

Let xs0 = max(δσ0), which = max(δσ1), and is > 0.
Since M is insensitive at stage s0, M(σ0) = p = M(σ1).
By (3.5),

[(ϕM(σ1) ∪ σ1) is single-valued]. (3.7)

xs0 ∈ δσ0 = δσ1 ∧ σ0(xs0) = 0 �= 1 = σ1(xs0).
ϕM(σ0) = ϕM(σ1) = ϕp = ϕe.
δϕe = N . Therefore, xs0 ∈ δϕe too.
Since ϕM(σ0) = ϕe, (xs0 , 0) ∈ (ϕM(σ0) ∩ σ0).
Since ϕM(σ0) = ϕM(σ1), (xs0 , 0) ∈ ϕM(σ1). Also, (xs0 , 1) ∈ σ1.

Hence

(xs0 , 0), (xs0 , 1) ∈ (ϕM(σ1) ∪ σ1), (3.8)

a contradiction to (3.7) . �

Next is another theorem I like very much.

Theorem 3.2 (Bārzdiņš [4], Blum and Blum [5]). Ex is not
closed under union, i.e., there are classes S0,S1 ∈ Ex such that
(S0 ∪ S1) �∈ Ex.

Here are example such S0,S1 — similar to those from [5]. Let
S0 = {f ∈ R | ϕf(0) = f} and S1 = {f ∈ R|(

∞
∀x)[f(x) = 0]}.

Theorem 3.2 essentially suggests that for success in induc-
tive/scientific inference, one needs the diversity of incomparable
“cognitive” styles of scientists: scientists M0 which Ex-learns S0

and M1 which Ex-learns S1 cannot be combined into a third sci-
entist M2 which Ex-learns all that M0 does together with all that
M1 does.

In physical optics there is a phenomenon called anomalous
dispersion: the classical, quantitative explanation for different
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frequencies of light and, more generally, electromagnetic radia-
tion being differentially bent according to frequency when pass-
ing through a prism does not work for X-rays.20 Physicists used
this model nonetheless until quantum mechanics provided a better
model. In the mid 70s, I began to consider whether I could prove
a theorem re machine inductive inference that would suggest a
vindication of physicists’ employing slightly faulty predictive ex-
planations. For each n ∈ N , for partial functions η, θ, we write
η =n θ to mean that there are at most n counterexamples to
η = θ. We write η =∗ θ to mean that there are at most finitely
many counterexamples to η = θ. For a ∈ N ∪ {∗}, we define a
variant of Ex-learning, called Exa-learning, in which the eventual
final programs p are allowed to be mistaken on up to a inputs in
computing the input function f , i.e., success requires only that
ϕp =a f . A theorem indicating an increase in inferring or learning
power comes with tolerance of some few mistakes in one’s predic-
tive explanations follows.

Theorem 3.3 (Case and Smith [46, 47]). Ex = Ex0 ⊂
Ex1 ⊂ Ex2 ⊂ . . .Ex∗.

Hence we see that tolerating up to just one single anomaly or
mistake in one’s final program provides a strict increase in infer-
ring power, tolerating n + 1 anomalies provides an increase over
tolerating no more than n, and tolerating a finite number provides
an increase over tolerating a bounded number.21 Of course, Ex∗

is not so “practical” a criterion as Exn, for small n, since, for the
former, the finite number of anomalies in a final program p may
include all the data points for which the predictive explanation p
will ever be used. Ex∗ is mathematically interesting though.

In [47], we pointed out that Popper’s Refutability Princi-
ple, the principle that purported scientific explanations ought to
be subject to refutation by suitable experiments, needs some revi-
sion. The anomalies providing the hierarchy of Theorem 3.3 above

20 Of course it is the model or predictive explanation which is anom-
alous, not the physical phenomenon itself.

21 [5] announced the case of Ex ⊂ Ex∗.
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are and must be mistakes of omission [47], but this kind of mis-
take cannot be algorithmically detected in general. Explanations
ought to be refutable when they make predictions, but may not
be refutable when they fail to make a prediction at all — even if
they should have.

Let minprogram(f) def= min {p | ϕp = f}.

Definition 3.3 (Freivalds [68]). For S ⊆ R, S ∈ Mex as
witnessed by M⇔ (∃ computable h)(∀f ∈ S)[M Ex-learns f ∧
(∀p)[M(f)↓ = p⇒p � h(minprogram(f))]].

For M,S, h as in the just above definition, M’s final programs
on f ∈ S are within “factor” h of minprogram(f). Mex-learning
is intended as a model of inductive inference obeying a form of
Occam’s Razor. It is common in philosophy of science and in the
applied part of artificial intelligence called machine learning to
assume one’s models for fitting and predicting data should obey
some form of Occam’s Razor. Yet we have the following theorem
which shows that a simple, easily inferred subclass of R is not in
Mex.

Theorem 3.4 (Kinber [93]). S1 = {f ∈ R | f is the charac-
teristic function of a finite set} ∈ (Ex−Mex).

Hence, at least some forms of another common sense prin-
ciple, Occam’s Razor, restrict one’s inferring or learning power!
Theorem 3.4 just above can be proved by a recursion theorem ar-
gument together with a finitary cancellation (zero-injury priority)
scheme.22 For more on Mex and variants, see [32, 33, 1].23

There are costly criteria providing inferring or learning power
beyond that of Ex∗. M Bc-learns f ∈ R means that M on f out-
puts an infinite sequence of programs p0, p1, p2, . . ., and (

∞
∀ i)[ϕpi

=

22 Chen in [32, 33] showed that, by contrast, S0 = {f ∈ R | ϕf(0) =
f} ∈ Mex, and yet, by a recursion theorem argument from [5], self-
referential classes like S0 are so large they contain a finite variant of
each element of R.

23 The latter features infinitary self-reference arguments employing
my ORT Theorem [21, 24].
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f ]. Bc or behaviorally correct learning features semantic conver-
gence to correct programs; whereas, Ex-learning features syntactic
convergence to correct programs. Bc def= {S ⊆ R | (∃M)[M Bc-
learns each f ∈ S]}. Steel [47] showed Ex∗ ⊆ Bc. Bārzdiņš [4]
first studied Bc and showed that (Bc − Ex) �= ∅. Harrington
and I [47] showed that (Bc−Ex∗) �= ∅.24 Anyhow, the cost men-
tioned above of Bc-learning is that to realize its full power one has
to contend with the final, correct programs being of unbounded
size.25

In this section, we have quite plausibly been taking a pre-
dictive scientific explanation to be modeled as a ϕ-program for
predicting the results of all experiments regarding a phenomenon
to be explained.26 Essentially, in terms of the arithmetical hier-
archy [148], ϕ-programs are intercompilable with Σ0

1-definitions
of the corresponding (partial) functions. In [37, 10, 48, 49] the
learning or inductive inference of Σ0

2-definitions is also considered.
Of course, from such definitions one may not be able to extract
predictions about the outcomes of associated experiments, but in
some cases, some higher order information may be extractable.
Even if, from such a definition, one cannot calculate values for an
f so defined, one may be able to extract data refutable global or
shape information about the curve of f , for example, that f is
monotone increasing.27

24 Our proof was an infinitary recursion theorem argument based on
my ORT [21, 24].

25 Anomalous variants of Bc-learning, for example, Bca for allowing
up to a anomalies in final programs, and corresponding hierarchies of
learning/inferring power are studied in [47]. Harrington showed [47] that
some machine witnesses R ∈ Bc∗, and [27] shows that such machines
on infinitely many computable functions have their anomalies occurring
in undesirable positions.

26 Fulk [70] argues that the set of distinguishable experiments one
can actually do and record on a phenomenon is countable: lab manuals
can and do contain only finite notations from a finite alphabet and/or
bounded-size, finite-precision images.

27 The difference is somewhat analogous to the difference between
predicting the location of planet at any time and predicting the shape
of the planet’s orbit [37, 10].
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The limiting-computable partial functions are those computable
by a total mind-changing algorithm, i.e., those that are the limit
of a computable function [157]. With care one can intercompile
between Σ0

2-definitions and some form of programs for the limiting-
computable partial functions.28 For this reason we write LimEx
for the inference criterion just like Ex except that the “programs”
output and converged to are Σ0

2-definitions (or a suitable form of
limiting programs). N.B. We are, of course, interested in LimEx
for classes of computable functions only. We take ϕ2 to be an
acceptable programming system (numbering) for the Σ0

2 partial
functions, where ϕ2

p is the partial function defined by suitable form
of limiting program p.

For expressions E admitting translation into the language of
first order arithmetic [113] we write # E $ for a fixed, natural
such translation.

η =∞ θ
def⇔ ‖{x | η(x) = θ(x)}‖ is infinite.

Theorem 3.5 (Case and Suraj [48, 49]). Suppose T is a
computably axiomatizable first order theory which extends Peano
Arithmetic (PA) and in which one cannot prove sentences that
are false in the standard model ([113]). Then there is a class of
monotone computable functions C such that

(1) C �∈ ∪k∈NBck,
(2) (∀f ∈ C)(∀p | ϕp =∞ f)[T �� # ϕp is monotone$],29 and
(3) there exists a machine M which LimEx-learns every function

in C and, for every f ∈C, for every e such that M(f)↓=e,
(a) PA � # ϕ2

e is monotone$,
(b) (∀x, y)[T �� # ϕ2

e(x) = y $]30, and
(c) PA � # ϕ2

e is computable$.

28 The trick is to express the limiting computable partial functions
as the uniform limit of a single, suitable computable function [143, 49].

29 Therefore, (∀f ∈ C)(∀p | ϕp =∞ f and ϕp is monotone )[T ��
# ϕp is monotone $]. This is, perhaps, surprisingly strong.

30 Therefore, (∀x, y | ϕ2
e(x) = y)[T �� # ϕ2

e(x) = y $].
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This theorem (Theorem 3.5), then, provides some strong trade-
offs between inferring Σ0

1- vs. Σ0
2-definitions. For C, one can employ

the latter, but not the former for successful inference and to prove
monotonicity. But, by the important Clause 3b in Theorem 3.5
just above, one cannot predict, from the latter and T, for the sake
of Popper’s Refutability Principle for science, any data points at
all in the graphs of the ϕ2

e’s! The output Σ0
2-definitions are not,

in principle, refutable by incorrect data point predictions, but in
principle, they admit of being refuted by non-monotonicity (in the
input data itself). Hence this result exhibits, then, some new sub-
tleties re the application of Popper’s Refutability Principle: one
cannot inductively infer C ⊆ R without being forced to accept a
weakened refutability principle.

I would like to see more CT learning theory theorems like
those above with some insight and/or shock value for philosophy
of science.

3.2.2. Cognitive science and language learning. In this sec-
tion, we look at learning grammars for (formal) languages from
positive information about them. The original paradigm was Gold’s
[76]. Thanks to code numbering and for mathematical conve-
nience we can and will take our languages to be r.e. subsets of N .
Grammars will be type 0 [81], and, hence, we can take a grammar
g for an r.e. language L to be an r.e. index for L, i.e., such that
Wg = L.

We say T is a text for L
def⇔ {T (0), T (1), . . .} = L.31 We say,

in this case, T is for L. In this section, Ms will computably map
finite initial segments of texts into grammars/r.e. indices, and,
without loss of generality for what we want to do, we take Ms
to be total. Next are defined some criteria of successful language
learning.

31 In more formal expositions, we allow ρT to contain also #s, where
a # models a pause and is not part of the language L. Then the text
with successive values consisting only of #s is the only text for the empty
language. Herein we need not be so careful about handling the empty
language.
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Definition 3.4 ([42, 132, 25]). Suppose b ∈ (N+ ∪ {∗}),
where N+ = {1, 2, . . .} and x � ∗ means x <∞.

(1) L ∈ TxtEx ⇔ (∃M)(∀L ∈ L)(∀T for L)[M on T outputs
g0, g1, g2, . . .⇒(∃t)[gt = gt+1 = · · · ∧Wgt

= L]].

(2) L ∈ TxtBc ⇔ (∃M)(∀L ∈ L)(∀T for L)[M on T outputs
g0, g1, g2, . . .⇒(∃t) [gt, gt+1, . . . each generates/enumerates L]].

(3) L ∈ TxtFexb ⇔ (∃M)(∀L ∈ L)(∀T for L)[M on T out-
puts g0, g1, g2, . . .⇒(∃t) [gt, gt+1, . . . each generates/ enumer-
ates L ∧ ‖{gt, gt+1, . . .}‖ � b]].

The class F of all finite languages ∈ TxtEx, but the class
of all regular languages (from automata theory [81]) is not [76].
K = {K ∪ {x} | x ∈ N} ∈ (TxtBc − TxtEx), where K is the
diagonal halting problem [148]. TxtFexb is like TxtBc except
the set of final, correct programs has cardinality � b. TxtFex1 =
TxtEx & K �∈ TxtFexb.

We have TxtFex1 ⊂ TxtFex2 ⊂ . . . ⊂ TxtFex∗ ⊂ TxtBc
(see [25]).32 33

Some sample publications in computational learning theory
re formal language learning are [76, 3, 22, 131, 70, 71, 96, 8,
86, 25, 9, 29].

The language learning model of the present section, although
obviously limited as a model for human language learning, has,
nonetheless, been influential in cognitive science and in contempo-
rary theories of natural languages, for example, [136, 181, 128,
182, 130, 11, 74, 94].

Regarding this model, I gradually acquired the belief that, in
spite of its limitations, there was the possibility for theorems with
insights into cognitive science. In the rest of this section, I provide

32 [132] showed TxtFex1 ⊂ TxtFex∗ ⊂ TxtBc.
There are also anomaly hierarchies, but we will not go into them

here. See [25].
33 This hierarchy result contrasts with what happens with the crite-

ria for learning programs in the limit for f ∈ R from Section 3.2.1 above:
for Ex style learning, converging to finitely many correct programs in
the limit offers no more learning power than converging to one. See [47].
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an example.34 The motivation comes from empirical observations
from child cognitive development.

U-shaped learning behavior features the pattern of learning,
unlearning, and relearning. It occurs in child development re, for
example, verb regularization [139, 119, 166] and understanding
of various (Piaget-like) conservation principles [162], for example,
temperature and weight conservation and interaction between ob-
ject tracking and object permanence. An example regarding irreg-
ular verbs in English follows. A child first uses spoke, the correct
past tense of the irregular verb to speak. Then the child overregu-
larizes incorrectly using speaked. Lastly, the child returns to using
spoke. Our theoretical examples will involve the formal learning,
unlearning, and relearning of type 0 grammars for whole formal
languages L. The main “theoretical” concern of the empirically
based cognitive science literature on U-shaped learning is with how
to model U-shaped learning. For example, is U-shaped language
learning done employing subconscious general rules vs. tables of
exceptions [14]? That is a nice concern, but not at all my inter-
est. My interest is in the following question. Is U-shaped learning
an unnecessary and harmless accident of human evolution or is
U-shaped learning advantageous in that some classes of tasks can
be learned in U-shaped way, but not otherwise? I.e., are some
classes of tasks learnable only by returning to abandoned correct,
learnable behaviors? Of course, as a question about humans, this
is very difficult to answer. So, I sought some learning theory in-
sights about what could possibly be true.

34 The proof techniques for learning language grammars from posi-
tive data, unlike the results in the just previous section (Section 3.2.1)
feature more than considerations of algorithmicity. They also feature
finite extension arguments which, of course, can be conceptualized in
terms of Baire Category Theory [122, 148, 83, 129, 131]. Some of the
proofs in [25] employ such a mixture but resembling finite injury priority
arguments. These are to obtain results for TxtFexb having to do with
without-loss-of-generality local and global insensitivity to order of data
presentation and whether the texts are restricted to being computable.
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Next is the definition of language learning criteria which are
restricted by disallowing U-shaped learning behavior. We think
of Wg as the [summary of the] behavior of g.

Definition 3.5. Suppose C ∈ {TxtFexb,TxtBc}. Then,
L ∈ NonUC ⇔ (∃M)(∀L ∈ L)(∀T for L)[M on T outputs
g0, g1, g2, . . .⇒(∀i, j, k | i < j < k)[Wgi

= Wgk
= L⇒Wgj

= Wgi
]].

Non-U-shaped learners never abandon correct behaviors for
learned L ∈ L and, then, return to those behaviors.

From [29], the transitive closure of the inclusions (denoted
by −→) in Fig. 1 holds and no other inclusions hold.

Figure 1. Results on U-Shaped Learning

Hence U-shaped learning is needed for some class in TxtBc;
is not for TxtEx learning, i.e., for learning one successful gram-
mar in the limit; is needed for some class in TxtFex2 even if we



Directions for Computability Theory 75

allow finitely many grammars in the limit — but not if we allow
infinitely many grammars in the limit; and is needed for some
L ∈ TxtFex3 even if we allow infinitely many grammars in the
limit.

Now that we know some mathematical possibilities, a ques-
tion for the cognitive scientists is: does the class of tasks humans
must learn to be competitive in the genetic marketplace, like this
latter L, necessitate U-shaped learning?

I would like to see more CT learning theory results like the
above which give cognitive science something new to think about.

3.2.3. Applied machine learning. In the context of dealing
with the difficulties of actually applying learning in robotics, Drew
McDermott [110] says, “Learning makes the most sense when it is
thought of as filling in the details in an algorithm that is already
nearly right.” I suggested to colleagues that we get some corre-
sponding learning theory results regarding learning programs for
functions from approximately correct such programs (as well as
from data on the functions). Martin Kummer came up with sev-
eral nice ideas for such approximate programs for a computable
0-1 valued function — including decision programs for bounded
width trees [148] containing or enveloping the function, and we
produced [41]. A sample result from this paper implies that if the
approximately correct programs are for enveloping trees of width
n > 0, then some probabilistic machine (in the sense of [137, 138])
Ex-learns every 0-1 valued computable function with probability
of success 1

n
. For Bc the probability is one.

In the late 90s, I started attending applied machine learning
conferences and workshops. Early on I noticed practical interest
in so-called concept drift and context sensitive learning.

A drifting concept to be learned is one which is a mov-
ing target. See, for example, [6, 7, 61, 67, 79, 103, 186]. I
got some computability theory collaborators together to produce
[34] in which we show, for various learnability criteria (including
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some, suggested by Frank Stephan, for learning Martingale bet-
ting strategies), bounds on the speed of the moving target that
permit success at all.

Context sensitive learning involves trying to learn Y by first
[178, 179, 167, 56, 57, 58, 62, 174, 169] or simultaneously
[18, 19, 116, 12, 59, 111, 140, 161] trying to learn also X —
even in cases where there may be no inherent interest in learning
X. There is, in many cases, an empirical advantage in doing this
for some X, Y . It can happen that Y is not learnable by itself, but
is learnable if one learns X first or simultaneously. For example,
to teach a robot to drive a car, it is useful to train it also to
predict the center of the road markings (see, for example, [15,
19]). I realized there was already a CT learning theory paper that
I liked very much, [2], which showed mathematically these context
sensitivity phenomenon must happen for some tasks X, Y . Later
we produced [36] providing a kind of strengthening for the case
one learns X, Y simultaneously.35

These results regarding context sensitive learning provide
mathematical support for the corresponding empirical phenom-
ena suggesting the possibility that these empirical phenomena are
not just accidental or illusory.

I would like to see more of these kinds of CT learning theory
papers.

Next is an interesting four part story.

Part I of the four part story. In my visits to the School
of Computer Science and Engineering, University of New South
Wales, Sydney, Australia, I have learned about the machine learn-
ing projects of Claude Sammut there. I became particularly in-
terested in the behavioral cloning approach to machine learning
of reactive process-control. This is surveyed in [16] and involves
using data from the (non-verbal, performance) behavior of master
or expert human controllers in order to make machine learning

35 Of course machine learning is an engineering endeavor. However,
philosophers of science as well as practitioners in scientific disciplines
should, I believe, be considering their relevance to their endeavors.
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of complex control feasible/possible. For example, it has been
used successfully to teach an autopilot to fly an aircraft simula-
tor [16, 158, 120, 151, 152] and to teach a machine to operate
efficiently a (simulated) free-swinging shipyard crane [16, 175].

One of the difficulties Claude made me aware of in the learning-
to-fly project was that attempts to make use of the behavioral data
from more than one human expert at a time had failed miserably.
Different pilots had very different strategies, and it was not clear
how to mix them.

Part II of the four part story. In a visit to Martin Kummer he
put me onto his theoretical work on learning, from programs for
game trees, etc., winning strategies for infinite reactive process-
control games called closed computable games [98]. I would not
provide here the details but will give the computability-theoretical
flavor of these games with two contrasting examples.36

Example 3.1. Fix n0 ∈ N . Player I is a digital thermo-
stat, Player II is the temperature (which is subject to a discrete
unseen physical disturbance); winning for Player I is: past time
(= move) n0 keeping the temperature within some pre-assigned
integer bounds.

Example 3.1 is a closed computable game. Importantly,
Player I can algorithmically detect if he/she/it has, at any point,
lost.

Example 3.2. Player I is a digital thermostat, Player II is
the temperature (which is subject to a discrete, unseen physical
disturbance); winning for Player I is: past some time (= move) n
keeping the temperature within some pre-assigned integer bounds.

Example 3.2 is not a closed computable game. Importantly,
Player I can not algorithmically detect if he/she/it has, at any
point, lost.

36 For more on these games, also see [45, 118, 168].
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Of course the behavioral cloning games in Part I are not
infinite, but there is otherwise some suggestive similarity with the
closed computable games.

Kummer’s co-author, Matthias Ott, had some ideas already
for adding the behavior of masters playing winning strategies as
additional information for the learning of closed computable games.
This looked like behavioral cloning from Part I of the story! We
produced [44], and one of the theorems there said there existed
cases where cloning n + 1 disparate masters enable learning to
win more games than merely cloning n. This was theoretical sup-
port, then, for the possibility that, in the behavioral cloning ex-
periments, there could be a way to clone behaviorally multiple
masters or experts — and with some performance advantage over
merely cloning one master.

Part III of the four part story. I went to an applied machine
learning workshop, and told participants who cared about behav-
ioral cloning about the just above result that there are cases for
which cloning more experts is better than cloning fewer. I am not
sure if I expected them to say, in effect, Oh, good, I will go home
and figure out how to apply that to my behavioral cloning prob-
lems. Instead they asked me how to do it for practical problems.
Our existence theorem had not provided me just how to do it. I
did try after that to get Sammut’s group to see what we could do,
but I was never around them long enough to get much work done
on it.

Part IV of the four part story. Some time later I found out,
from Mike Bain in Sammut’s group, about Dorian Šuc’s wonder-
ful doctoral dissertation in Ljubljana, Slovenia, [177]. He had
found a way to clone behaviorally more than one human expert
simultaneously for the free-swinging shipyard crane problem —
by having more than one level of feedback control, and he got
enhanced performance from cloning the multiple experts! Dorian
had not known anything about our suggestive theoretical result,
he just solved the problem.
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What I would like to see: get more CT learning results which
should inform machine learning practitioners.

3.3. Machine self-reflection

This paragraph is based mostly on [24]. Kleene’s (Second) Re-
cursion Theorem can be conceptualized as follows. Given any
pre-assigned algorithmic task, there is a ϕ-program e which first
looks in a mirror37 to see in detail and exactitude its own code
script, flow chart, or wiring diagram, and, then, e uses this im-
age in the mirror as a datum (and its external input as another
datum) for input to the pre-assigned algorithmic task — which
task it then carries out with these two inputs. Essentially, then,
e has a perfect self-model (a copy of itself) and employs it ac-
cording to the algorithmic pre-assigned task which describes how
to use it (together with its external input). No infinite regress
is required since e’s copy is projected external to e. Such e are
self-reflecting/self-knowing programs.38 39

In the late 70s, I realized that the constructive form of Kleene’s
Recursion Theorem (I will call it KRT) could be conceptualized as
a kind of non-denotational program control structure [163]. Typ-
ical denotational control structures are if–then–else and while–
loop. I believed it would be possible to develop a general theory
of control structures in the context of CT-style programming sys-
tems (numberings). It was. I supervised the doctoral dissertations

37 We can suppose the mirror is a corner mirror so the image in it
does not appear left-right reversed.

38 Examples of using self-knowledge in a simple way were presented
in the proof of Theorem 3.1 in Section 3.2.1 above. Examples of using
self-knowledge in more complex ways are in [21].

39 I intend to write the paper version of [26] in which I describe what,
I believe, Kleene’s Recursion Theorem has to do with the self-reflection
component of consciousness. N.B. I will not provide an elucidation of
what Dave Chalmers in his very influential book [31] describes as the
hard problem of consciousness, for example, the problem of qualia. I
will provide some ideas on the problems of why we are not unconscious
zombies [31] and how we can be machines and, yet, differ in kind from
Searle’s famous Chinese Room [155].
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[144, 149] to help work this out.40 In the context of programming
systems (numberings) for the class of partially computable func-
tions where each system has a universal program inside the system,
I showed that the acceptable programming systems [147, 148], are
characterized as those in which each possible control structure has
an implementation [144, 149]. One of my principal goals in all
this was to try to characterize KRT insightfully — in the inter-
est of understanding the utility of self-knowledge. The ancient
Greeks thought self-knowledge was important, and, perhaps, one
could obtain some mathematical insight into its utility. Character-
izations have been elusive, but we have had better luck at insight
into what epitomizes the “complement” of KRT. Here is one of my
favorite theorems of Jim Royer on this latter subject. Again, the
programming systems (numberings) considered are for the class of
partially computable functions where each has a universal program
inside the system.

Theorem 3.6 (Royer [149]). KRT and if–then–else are
complementary in the sense that:

(1) For each there is a programming system with an implementa-
tion of that one but with no implementation of the other one;
and

(2) If a programming system has an implementation of both, it is
acceptable; i.e., has an implementation of all control struc-
tures.

Hence decision branching and self-reflection are complemen-
tary.

I noticed, from the proofs of this theorem (Theorem 3.6) and
related ones in [149], that one of the crucial elements was the con-
structivity component of KRT, but I wanted to understand the
self-knowledge component, period. Let krt be the not necessar-
ily constructive Kleene Recursion Theorem. With a new Ph.D.
student, Sam Moelius, we have begun to find epitomizers of the

40 For definitions, etc., see [144, 145, 149]. For more on this CT
approach to control structures, see [146, 108, 85, 39].
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complement of krt. This is work not yet completed. We will see
how it goes.

I would like to see more CT work on mathematically under-
standing machine self-knowledge.

3.4. CT for computational complexity

In this section, we explore a tiny fraction of the available and some-
what recent literature. I like very much, though, the early results
of abstract complexity theory such as the surprising Blum Speed-
Up Theorem [13, 187], its strengthening [114], and [117].41 Many
more recent results in complexity theory involve limiting some CT
techniques to severely time or space bounded realms. See, for ex-
ample, [143] and its bibliography. Actually, in co-creating [143]
I had in mind bringing CT techniques far down into the subre-
cursive realm, for example, all the way down to linear time com-
putable. Of course, extremely complicated priority arguments or
even finite injury priority arguments with no computable bound
on the injuries do not seem to fit well this realm.42 Priority con-
structions with bounded finite injury can sometimes be used to
get complexity theory results, e.g, in [97] at the cost of exponen-
tial time. Impressively, [30] applies carefully bounded priorities
toward feasible learnability. Employing CT tricks to provide the
practitioner with feasible algorithms, while very difficult, would
be highly desirable for the future.

[28] presents learnability applications of CT to prove results
about the quality of the final learned programs. Below is a special
case of one of the results. Suppose k > 0. Run times are measured

41 [127] surveys much of this work.
Proofs of such results by complicated Kleene Recursion Theorem

arguments can be conceptually simplified by employing instead my ORT.
See [109, 160] for examples of how I do this.

42 Possibly, these kinds of arguments could be introduced into this
realm by employing Hybrid recursion theorems from [143]. These per-
mit, for example, self-other reference between low level subrecursive pro-
gramming systems and systems for functions partial computable in K.
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with respect to multi-tape Turing machines, and we suppose ϕTM

is an acceptable system based on them — with ΦTM
p the run time

(partial) function of ϕTM-program p [13]. Let Pk def= the set of
characteristic functions of sets decidable in k-degree polynomial
time (in the length of inputs). Pick an inverse α to Ackermann’s
function computable in linear time — of course α is very slow
growing [43]. Let Qk def= the set of characteristic functions of sets
decidable in time a k-degree polynomial of n times log(n) times
α(n), where n is the length of the input. Pk ⊂ Qk [80, 81],
and this is a tightest known separation. Since each of Pk and
Qk are r.e. classes of computable functions, by the enumeration
technique in [5], they are Ex-learnable. For example, then, Pk is
so learnable by a machine all of whose output conjectures run in
k-degree polynomial time.

Theorem 3.7 (Case, Chen, Jain, Merkle, and Royer [28]).
Suppose M Ex-identifies Qk, where k � 1. Then there is an
“easy” f , the characteristic function of some finite set, such that
(∀a)(

∞
∀x)[ΦTM

M(f)(x) > a · (|x|+ 1)k].

Hence, to learn Qk, a little bigger class than Pk, we have
severe complexity deficiencies in the final programs on very easy
functions f .

Theorem 3.7 just above is proved by delayed diagonalization
(or slowed simulation) [104, 143] with cancellation [13] (or zero
injury), complexity-bounded self-reference [143], and very careful
subrecursive programming [143].

In [28], we have other results of this ilk. For example, if the
classes polynomial time and non-deterministic polynomial time do
separate, then Ex-learning the latter with output conjectures non-
deterministic polynomial time bounded Turing machines will force
there to exist some easy functions f (characteristic functions of
finite sets) whose final learned programs will have some otherwise
unnecessary and undesirable non-determinism. Also obtained is a
similar result comparing quantum polyomial time and polynomial
time (again, if they separate), where, in learning the then larger
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class, the complexity deficiency in final programs for some easy
functions is otherwise unnecessary quantum parallelism. Standard
diagonalizations are too rough to be used in these realms where
we are not even sure currently if there are separations. We resort
instead to lifts of arguments about more delicate Σ0

2-inseparability
of certain subrecursive index sets [23, 143].

In [28], there are additionally results about cases where final
programs are asymptotically optimal, but they are informationally
deficient : one cannot prove about them even suboptimal run time
bounds.

The lesson for the practioner of such results from [28] is: do
not try to learn too much (if you do not have to); else, you may
get undesirable learned programs.

I would like to see more CT results in complexity theory with
even more remarkable advice to the practitioner.

Jim Royer has been working for some time on a program to
bridge between European theoretical computer scientists who seek
to understand higher types in programming languages, but who
generally ignore even issues of algorithmicity and U.S. theoretical
computer scientists interested only in feasible algorithms. For ex-
ample, [150] presents an analog of the Kreisel-Lacombe-Shoenfield
Theorem [148] for feasible type-2 functionals [112, 87, 88, 156,
82].

I would like to see more of this level attempt to provide some
eventual advice to the practitioner, for example, to the designer
of elegant, new programming languages.

3.5. Physics and all the rest

Kreisel has written about the problem of whether the physical
world permits calculations beyond the Turing-computable, for ex-
ample, [99, 100]. See [126] for nice discussion of the issues.
Hypercomputation involves allowing infinitely many computation
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steps in finite time.43 The problem is whether in our universe such
computations are executable. Norman Margolus at MIT whose
background includes both physics and computer science explained
to me a few years ago that such computations would require an
unlimited supply of energy. See also [52, 53, 54, 55, 64] for fur-
ther arguments that this sort of computation is not available in
the real world.

Along different lines, we see, though, the impressive and sur-
prising work of Pour-El and Richards [133, 134, 135]. In [134]
they provide a (higher type) uncomputable solution to the wave
equation with a (higher type) computable boundary condition! 44

On the other hand: when I first studied Maxwell’s Equations
as an undergraduate I noticed that they were applied beautifully
and elegantly to clouds of electrons. Problem: the clouds are dis-
crete, yet the mathematics is essentially continuous. Of course, it
is too hard for practical purposes to model a large cloud of elec-
trons discretely, and the continuous mathematics nicely smooths
out the discretness and provides good enough experimental pre-
dictions. My reaction, though, was disillusionment. I naively ex-
pected physicists to seek absolute knowledge and at least to apol-
ogize for not providing it. Of course, they do not care about such
matters. As you may note from some of the things I wrote about
above, for example, in Section 3.2.2, I no longer expect absolute
knowledge.45

So, then, is at least some of physical reality absolutely mod-
eled by continuous mathematics involving real numbers? Per-
haps all but physical space is discrete? [78, pp. 164–165] argues
that there must exist as a universal constant in nature a small-
est length. It may be that the universe, including space, is dis-
crete. Researchers in the cellular automata approach to physics

43 A recursive iteration of the idea would lead to Kreisel’s ℵ0-
mind computability (characterizing the Π1

1-computable partial func-
tions) [148].

44 For a different perspective on this work, see [180].
45 But, anyway, let me at least apologize for not providing it.
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(see [63, 115, 69, 173, 170, 107, 165, 106, 172, 171, 176,
185, 164, 65, 77])46 take this idea seriously.

So regarding the work referenced above by Pour-El and
Richards, while I admire this work very much, I believe one has
to be careful about work on physics equations which may be only
wonderfully convenient continuous approximations to various dis-
crete realities. The resultant work will not really be about physics.

So, I am left with not so many examples of prior applications
of CT to physics I would like to see more of in the future. There
was at least the quantum computing example in Section 3.4 above.

Anyhow, I would like to see future applications of CT with
insights and/or advice to physics (and all the science and engi-
neering disciplines for which I have provided no example prior
applications of CT).
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Computability theory is traditionally understood as a branch
of mathematical logic. However, owing to the ubiquitous use
of computers and other electronic devices, many aspects usually
studied within the framework of computability theory have be-
come actual in numerous various areas even very far from mathe-
matics.

In view of the wide range of applications, the two following
directions of the further development of computability theory are
of great interest.

• Investigate and determine bounds for the applicability of
given computable model and algorithm to an real object ex-
isting in reality and processes flowing there.

• Create computability theory over abstract structures which
could provides a unique approach to both computational
processes in continuous models in reality and their discrete
analogs.

In this paper, we discuss the first direction. We review re-
cent important results and formulate more than 30 actual prob-
lems and open questions dictated by applications of the theory of
computable models.

1. Preliminaries

The theory of constructive and computable models dates back to
the works of Fröhlich and Shepherdson [44], Mal’tsev [101], Ra-
bin [137], and Vaught [152] in the 1950’s. This theory studies
algorithmic properties of abstract models by constructing repre-
sentations of the models on natural numbers and clarify relation-
ships between properties and structural properties of the models.
A systematic study of constructive and computable algebraic sys-
tems was initiated by Mal’tsev [100]. Historically, there were two
approaches to the study of computable models.

The first approach is based on the notion of a numbering of
the basic set of a model by natural numbers. Model properties
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are expressed in the binary form of natural numbers and thereby
can be handled with computer technologies. In general, instead of
numbers, names in some finite alphabet are ascribed to elements
of a model. Since an element can possess several names, recogni-
tion algorithms are required. Such algorithms must recognize the
names of given elements and determine whether certain properties
are realized on elements with given names.

The second approach deals with models whose basic sets con-
sist of natural numbers [101]. This approach leads to the notion
of a recursive (computable) model.

Due to R. Soare and his critical revision of the terminology
used in computability theory, the term “computable model” be-
comes common last years. Indeed, this choice reflects our intuitive
impression of computability.

Both approaches were developed simultaneously and are
closely connected. In fact, they are equivalent from the mathe-
matical point of view.

In this section, we recall basic facts in model theory, num-
berings, computability theory which are necessary for discussing
current problems in the theory of computable models. The mate-
rial of this section mainly follows [40].

Throughout the paper, we use the standard set-theoretic no-
tation: P (M) is the set of all subsets of a set M , idM is the identity
mapping of a set M , and ω = {0, 1, . . .}. If f is a (partial) map-
ping, then Rang f (Dom f) denotes the range (domain) of f . The
symbols “⇒” and “⇔” mean the expressions “if . . . , then . . . ”
and “. . . if and only if . . . ”. The expression a � b means b is
denoted by a. For category theory we refer to [12] and [24].

1.1. Algebraic structures, models, and theories

The classical theory of models and algebraic systems, founded by
Mal’tsev and Tarski, was one of the main directions in mathemat-
ical logic where the key results were obtained during the second
half of the XXth century.
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A signature σ of the language of the first-order predicate
calculus is the pair consisting of the triple of disjoint sets σP , σF ,
σC and a mapping µ: σP ∪ σF → ω+, where ω+ � {1, 2, . . .}. If
P ∈ σP and µ(P ) = n, then P is called an n-ary predicate symbol.
If f ∈ σF and µ(f) = m, then f is called an m-ary functional
symbol. Elements of σC are called constant symbols. We often
write σ in the form σ = 〈P n1

1 , . . . , P nk

k ; fm1
1 , . . . , fms

s ; c1, . . . , ct〉,
where the superscripts are the values of µ for the corresponding
symbols. The expression P ∈ σ (f ∈ σ or c ∈ σ) means that
P (f or c) is a predicate (functional or constant) symbol of the
signature σ.

The set of all formulas of the language of the first-order pred-
icate calculus of a signature σ is denoted by Lσ (cf. definitions in
[16] and [24]). We write Φ(x1, . . . , xn) if every free variable of a
formula Φ belongs to the set {x1, . . . , xn}.

An algebraic structure (or model) A of a signature σ is the
pair consisting of a nonempty set |A|, called the basic set of A, and
a family of (basis) predicates P A ⊆ |A|µ(P ) (P ∈ σP ), operations
fA: |A|µ(f) → |A| (f ∈ σF ), and constants cA ∈ |A| (c ∈ σC).

For a formula Φ(x1, . . . , xn) of a signature σ and an algebraic
structure A of the same signature σ we introduce the notion of
the truth of Φ in A for xi → ai ∈ |A|, i = 1, . . . , n. We write
A � Φ(a1, . . . , an) if Φ is true in A on a1, . . . , an. If T is a system
of sentences (i.e., formulas without free variables), then A � T
means A � Φ for all Φ ∈ T .

A set T of sentences of a signature σ is called a theory if for
any sentence Φ and model A of the signature σ from A � T ⇒ A �
Φ it follows that Φ ∈ T . Using the notion of the deducibility � in
the first-order predicate calculus (cf. [24]), we can define a theory
T as follows: T � Φ ⇒ Φ ∈ T . It is clear that for every class K of
algebraic structures of a signature σ the set of all sentences Φ such
that A ∈ K ⇒ A � Φ is a theory, called the elementary theory of
K and denoted by Th(K).

A subset A of a theory T is called a system of axioms of T
and is denoted by T = [A] if A � A implies A � T for any algebraic
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structure A or, which is the same, T = {Φ | Φ is a sentence of the
signature σ and A � Φ}.

A theory T is consistent if it differs from the set of all sen-
tences. A theory T is complete if it is consistent and Φ ∈ T or
¬Φ ∈ T for any sentence Φ.

Consider an algebraic structure A of a signature σ. Let
a nonempty subset B ⊆ |A| be closed with respect to the ba-
sic operations and constants, i.e., fA(a1, . . . , am) ∈ B for any
a1, . . . , am ∈ B, fm ∈ σF , and cA ∈ B for any c ∈ σC . On B,
we introduce an algebraic structure of the signature σ and denote
it by A � B. If A0 and A1 are algebraic structures of the signature
σ, |A0| ⊆ |A1|, and A0 = A1 � |A0|, then A0 is called a substructure
of A1 and is denoted by A0 � A1.

A substructure A0 of an algebraic structure A1 of a signature
σ is said to be elementary and is denoted by A0 � A1 if A0 �
Φ(a1, . . . , an) ⇔ A1 � Φ(a1, . . . , an) for any formula Φ(x1, . . . , xn)
of the signature σ and a1, . . . , an ∈ |A0|.

Let A and B be algebraic structures of a signature σ. A
mapping ϕ: |A| → |B| is called a homomorphism from A into B

and is denoted by ϕ: A→ B if

• 〈a1, . . . , an〉 ∈ P A ⇒ 〈ϕa1, . . . , ϕan〉 ∈ P B for any predicate
symbol P n ∈ σ and a1, . . . , an ∈ |A|,

• ϕfA(a1, . . . , am) = fB(ϕa1, . . . , ϕam) for any functional sym-
bol fm ∈ σ and a1, . . . , am ∈ |A|,

• ϕ(cA) = cB for any constant symbol c ∈ σ.

An equivalence relation η on the basic set |A| of an alge-
braic structure A of a signature σ is called a congruence on A if
〈fA(a1, . . . , am), fA(b1, . . . , bm)〉 ∈ η for every functional symbol
fm ∈ σ and 〈a1, b1〉, . . . , 〈am, bm〉 ∈ η. A congruence η on A is
said to be strict if 〈a1, . . . , an〉 ∈ P A ⇔ 〈b1, . . . , bn〉 ∈ P A for any
predicate symbol P n ∈ σ and 〈a1, b1〉, . . . , 〈an, bn〉 ∈ η.

If η is a congruence on an algebraic structure A of a signature
σ, then, on the set A∗ � |A|/η, we can introduce an algebraic
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structure A∗, called a quotient structure and denoted by A/η, of
the signature σ as follows:

• if P n ∈ σ, then P A∗ �
{
〈[a1]η, . . . , [an]η〉 | there exist bi ∈

[ai]η, i = 1, . . . , n, such that 〈b1, . . . , bn〉 ∈ P A
}
,

• if fm ∈ σ and [a1]η, . . . , [am]η ∈ A∗, then fA∗
([a1]η, . . . , [am]η)

� [fA(a1, . . . , am)]η,

• if c is a constant symbol of σ, then cA∗ � [cA]η.

Here, [a]η denotes the set of all elements that are η-equivalent
to a. The mapping a '→ [a]η, a ∈ |A|, is a homomorphism. If
ϕ: A→ B is a homomorphism from A into B, then ηϕ � {〈a, b〉 |
a, b ∈ |A|, ϕa = ϕb} is a congruence relation on A.

If a homomorphism ϕ: A→ B is a one-to-one mapping from
|A| onto |B| and the inverse mapping ϕ−1 is a homomorphism from
B into A, then ϕ is called an isomorphism (from A into B). Two
algebraic structures A and B are said to be isomorphic (A ( B)
if there exists an isomorphism ϕ: A → B. If A � B0, A � B1,
and ϕ: B0 → B1 is an isomorphism such that ϕ � |A| = id|A|, then
ϕ is called an A-isomorphism.

For signatures σ and σ′ we write σ ⊆ σ′ if every functional
(predicate, constant) symbol of σ is a functional (predicate, con-
stant) symbol of σ′ with the same arity. If σ ⊆ σ′ and A′ is an
algebraic structure of the signature σ′, then we can construct an
algebraic structure of the signature σ by “forgetting” the values of
symbols of σ′ \ σ. This structure, denoted by A′ � σ, is called the
σ-restriction of A′, and A′ is called the σ′-enrichment of A′ � σ.
We write A � A′ if A � A′ � σ.

Let A be an algebraic structure of a signature σ. We extend
σ by adding constant symbols 〈ca | a ∈ |A|〉. We set σ∗ � σ∪〈ca |
a ∈ |A|〉. Setting cA∗

a � a, we obtain the natural σ∗-enrichment
A∗ of A. A diagram D(A) of A is a set of sentences of the signature
σ∗ such that every sentence in D(A) is an atomic formula or the
negation of an atomic formula and is true in A∗. By a complete
diagram FD(A) we mean the set of sentences of the signature σ∗

that are true in A∗.



Computability and Computable Models 105

Two algebraic structures A0 and A1 of a signature σ are el-
ementarily equivalent (A0 ≡ A1) if Th(A0) ( � Th({A0})) =
Th(A1) ( � Th({A1})) or, in other words, A0 � Φ if and only if
A1 � Φ for any sentence Φ of the signature σ.

If σ′ ⊆ σ and A0 ≡ A1, then A0 � σ′ ≡ A1 � σ′.
We describe a canonical approach to the study of models

without functional symbols. For every m-ary functional symbol
f ∈ σ we introduce a new (m + 1)-ary predicate symbol Pf . Let
σ∗ be obtained from σ by replacing every functional symbol f
with a predicate symbol Pf (σ∗P � σP ∪ 〈Pf | f ∈ σF 〉, σ∗F � ∅,
σ∗C � σC , µ∗ � σP � µ � σP , µ∗(Pf ) � µ(f) + 1). Any algebraic
structure A of the signature σ can be “transformed” to a model
A∗ of the signature σ∗ by setting

P A∗
f �

{
〈a1, . . . , am, b〉 | a1, . . . , am, b ∈ |A|, fA(a1, . . . , am) = b

}
for fm ∈ σF . It is obvious that A0 ≡ A1 if and only if A∗

0 ≡ A∗
1.

Therefore, in order to obtain a criterion for the elementary
equivalence of two algebraic structures, it suffices to find such a
criterion in the case of a finite signature.

We recall some model-theoretic methods of proving the com-
pleteness of theories.

Proposition 1.1. A consistent theory T is complete if and
only if there exists a model M such that T = Th(M).

Corollary 1.2. A consistent theory T is complete if and only
if any models M0 and M1 of T are elementarily equivalent, i.e.,
Th(M0) = Th(M1).

A theory T is categorical in power α if any two models of T
of power α are isomorphic.

The following assertion is often used in the proof of complete-
ness and decidability.

Proposition 1.3. If a theory T has no finite models and is
categorical in some infinite power, then T is complete.
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A theory T is said to be model-complete if for every model
M of T the theory of the signature σ∗ = σ∪〈ca | a ∈ |M|〉 defined
by the system of axioms T ∪D(M) is complete.

We indicate properties equivalent to the model completeness.

Theorem 1.4. Let T be a theory. The following assertions
are equivalent.

(1) The theory T is model complete.
(2) Let M and N be models of T . If M is a submodel of N , then

M is an elementary submodel of N .
(3) Let M and N be models of T with fixed infinite cardinality κ.

If M is a submodel of N , then M is an elementary submodel
of N .

(4) For any formula ϕ(x) there exists ∃-formula ψ(x) such that
T � ϕ(x) ⇔ ψ(x).

Note that a complete theory is not necessarily model-
complete and, conversely, a model-complete theory is not necessar-
ily complete. However, there is a canonical method of obtaining a
model-complete theory from an arbitrary theory. To demonstrate
it, we need the definition of a first-order definable enrichment of a
theory of a signature σ for a family of formulas. Let Φ(x1, . . . , xn)
be a formula of the signature σ, and let σ′ be obtained from σ
by adding an n-ary predicate symbol PΦ. By a first-order defin-
able enrichment of a theory T of a signature σ for the formula
Φ(x1, . . . , xn) we mean the theory T ′ of the signature σ′ defined
by the following system of axioms:

T ∪
{
∀x1 . . . xN

(
PΦ(x1, . . . , xN) ←→ Φ(x1, . . . , xn)

)}
.

A first-order definable enrichment of a theory for a family
of formulas Φ is defined in a similar way. A first-order definable
enrichment T ′ of T is complete if it is obtained by adding new
predicate symbols for all formulas of the signature σ. If T ′ is a
first-order definable enrichment of T , then T and T ′ have the same
models in the following sense: a model M of T admits a unique
σ′-enrichment to a model of T ′.



Computability and Computable Models 107

Theorem 1.5. The complete first-order definable enrich-
ment of a theory T is a model-complete theory.

Models M0 and M1 of a signature σ are universally equiv-
alent if M0 � Φ ⇔ M1 � Φ for any universal sentence Φ of the
signature σ.

Proposition 1.6. If any two models of a model-complete
theory T are universally equivalent, then T is complete.

Owing to these assertions, it is reasonable to introduce the
following definition. Let T be a consistent theory of a signature σ.
A theory T ∗ ⊇ T of the signature σ is called the model completion
of T if T ∗ is a model-complete theory relative to T .

The existence of the model completion of an arbitrary the-
ory is not a trivial question. The following condition is sufficient
for existing the model completion of a universally axiomatizable
theory T of a finite signature. If M, M0, and M1 are models of
T and ϕ0: M → M0, ϕ1: M → M1 are isomorphic embeddings,
then there exists a model M∗ of T and isomorphic embeddings
ψ0: M0 → M∗, ψ1:M1 → M∗ such that ψ0ϕ0 = ψ1ϕ1. In this case,
the model completion T ∗ of T exists and is a complete countably
categorical theory admitting the quantifier elimination.

Consider types of models. Let T be a (consistent) theory
of a signature σ. Denote by Frn the set of all formulas of the
signature σ with free variables in {x0, . . . , xn−1}, n ∈ ω. Let Fn(T )
be the quotient set of Frn by the equivalence relation ηT defined
as follows: 〈ϕ,ψ〉 ∈ ηT � ∀x0 . . .∀xn−1 [(ϕ → ψ) & (ψ → ϕ)] ∈ T
for ϕ,ψ ∈ Frn. For ϕ ∈ Frn denote by [ϕ] the element of Fn(T )
containing ϕ. The following natural embeddings hold:

S0(T ) ⊆ S1(T ) ⊆ . . . , F0(T ) ⊆ F1(T ) ⊆ . . .

Remark. The set Fn(T ) can be regarded as a Boolean alge-
bra (cf. [40]) if [ϕ]+ [ψ] � [ϕ∨ψ], [ϕ], [ψ] � [ϕ & ψ], c[ϕ] � [¬ϕ],
0 � [∀x (x �= x)], and 1 � [∃x (x = x)].
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By an n-type of a theory T we mean any maxi-
mal T -inconsistent subset S ⊆ Frn (i.e., the sentence

∃x0 . . .∃xn−1

( k

&
i=1

ϕi

)
belongs to T for any ϕ1, . . . , ϕk ∈ S). If

M � T and a0, . . . , an−1 ∈ |M|, then S � {ϕ | ϕ ∈ Frn,
M � ϕ(a0, . . . , an−1)} is an n-type, called the type of the n-tuple
〈a0, . . . , an−1〉 of elements of M. If a type S of T is the type of
some n-tuple of elements of M, we say that S is realized in M.
Every n-type of a theory T is realized in some model of T .

An n-type S is principal if there exists a formula ϕ ∈ S,
called the complete formula of the type S, such that S is a unique
n-type containing ϕ. Let M be a model of a theory T , and let S
be an n-type of T . We say that M omits the type S if S is not the
type of any n-tuple of elements a0, . . . , an−1 of |M|. Any principal
type is realized in any model, but this is not true for nonprincipal
types in view of the omitting type theorem. As is known (cf. [16]),
if σ is an at most countable signature and S0, S1, . . . is a countable
family of nonprincipal types of a theory T , then there exists a
countable model M of T omitting all the types S0, S1, . . ..

If S is an n-type and k < n, then S ∩ Sk(T ) is a k-type.
Suppose that k < n, S is a k-type, S′ is an n-type, and S ⊆ S′.

The type S′ is principal over the type S if there exists a for-
mula ϕ ∈ S′ such that S′ is a unique n-type containing S ∪ {ϕ}.

There is the natural one-to-one correspondence between n-
types of a theory T and ultrafilters of Boolean algebras Fn(T ):
if U ⊆ Fn(T ) is an ultrafilter, then π−1(U) is an n-type, where
π: Frn → Fn(T ) is the natural projection.

Now, we can characterize countably categorical theories.

Theorem 1.7 ([16]). Let T be a complete theory of an at
least countable signature. The following assertions are equiva-
lent.

(a) T is categorical in countable power.

(b) For every n ∈ ω the theory T has finitely many n-types.

(c) For every n ∈ ω the set Fn(T ) is finite.
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A model M is homogeneous if for any a0, . . . , an−1, an,
b0, . . . , bn−1 ∈ |M| such that the types of the n-tuple 〈a0, . . . , an−1〉
and the n-tuple 〈b0, . . . , bn−1〉 coincide there exists an element b ∈
|M| such that the types of 〈a0, . . . , an−1, an〉 and 〈b0, . . . , bn−1, b〉
coincide.

One of the most pleasant properties of homogeneous count-
able models is presented by the following assertion (cf. the proof
in [16]).

Proposition 1.8. Let M0 and M1 be homogeneous count-
able models of the same signature. The following assertions are
equivalent.

(a) The models M0 and M1 are isomorphic.

(b) The same types are realized in M0 and M1.

Any prime model is homogeneous. Recall that a model M

of a theory T is prime if every model M′ of T has an elementary
submodel M0 isomorphic to M. Only finite principal types (if they
exist) are realized in a prime model. Therefore, a prime model is
unique up to an isomorphism.

We formulate an important sufficient existence condition for
prime models. A theory T of a signature σ is called a Henkin
theory if for any sentence of the form ∃x Φ(x) in T there exists a
constant c of σ such that Φ(c) ∈ T .

Proposition 1.9. Let T be a complete Henkin theory, and
let M be a model of T . The submodel M0 of M determined by the
set of the values of constants of σ is a prime model of T .

To formulate an existence criterion for prime models, we need
the following definition. A family S of types of a theory T of a
signature σ is dense if the following conditions hold.

• Let p ∈ S be an n-type, and let k � n. Then q � p∩Sk(T ) ∈
S. If τ : {x0, . . . , xn−1} → {x0, . . . , xn−1} is a permutation,
then [p]x0,...,xn−1

τx0,...,τxn−1
∈ S.
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• If p ∈ S is an n-type and ϕ(x0, . . . , xn) is a formula of the
signature σ such that ∃xn ϕ ∈ p, then there exists an (n+1)-
type q ∈ S such that p ∪ {ϕ} ⊆ q.

For a model M of a theory T we introduce the family S(M)
of types realized in M. The family S(M) is dense.

Using the Henkin construction, we can prove the following
assertion.

Proposition 1.10. If S is a dense countable family of types
of a complete theory T , then there exists an at most countable
model M of T such that every type realized in M belongs to S.

Corollary 1.11. A complete theory T of an at most count-
able signature σ has a prime model if and only if the family S0 of
all principal types of T is dense.

Remark. The assumption of Corollary 1.11 is equivalent to
the condition that every Boolean algebra Fn(T ), n ∈ ω, is atomic.

A saturated model is homogeneous. Denote by κ a cardinal.
A model M of a signature σ is said to be κ-saturated if for any
subset X ⊆ |M| of power less than κ, any 1-type of Th(M, X) is
realized in the model 〈M, X〉 obtained by the natural enrichment
of M to a model of the signature σX � σ∪〈ca | a ∈ X〉 (c〈M,X〉

a �
a). A countable ω-saturated model M of T is called a countably
saturated model of T .

The following criterion was established in [16].

Criterion 1.12 (existence of a countably saturated model).
A theory T has a countably saturated model if and only if the
Boolean algebra Fn(T ), n ∈ ω, is superatomic.

The following assertion describes the family of all types of
homogeneous countable models of a complete theory T .

Proposition 1.13. Let T be a complete theory. Then S is
a family of all types of T that are realized in some homogeneous
countable model of T if and only if S is a countable dense family
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of types possessing the following property: if p, q ∈ S are (n + 1)-
types such that p∩Frn = q∩Frn, then there exists an (n+2)-type
s ∈ S such that p ∪ [q]xn

xn+1
⊆ s.

1.2. Numberings

The theory of constructive models studies algorithmic properties
of algebraic structures. For this purpose, effective representations
of constructive models are considered and the study is based on
computability theory and the theory of algorithms and computable
functions. We refer to the monographs [103, 140, 146] for basic
methods and details of algorithm theory. In this section, we for-
mulate only the main results which will be used in the following
sections. We follow [140] in presentations of computable func-
tions.

By a numbering of a nonempty set S we mean any mapping ν
from N onto S. Let S0 and S1 be nonempty sets such that S0 ⊆ S1,
and let ν0 and ν1 be numberings of S0 and S1 respectively. We say
that the numbering ν0 is reduced to the numbering ν1 (and write
ν0 � ν1) if there exists a computable function f from N into N

such that ν0(n) = ν1f(n) for any n ∈ N. Numberings ν0 and ν1

are computably equivalent or equivalent (ν0 ≡ ν1) if ν0 � ν1 and
ν1 � ν0. In this case, S0 and S1 coincide. Numberings ν0 and ν1

are computably isomorphic (ν0 (
rec

ν1) if there exists a computable

permutation f of N such that ν0(n) = ν1f(n) for every n. Note
that ν0 (

rec
ν1 implies ν0 ≡ ν1. The converse assertion does not

hold in general.
On the class Num(S) of all numberings of a set S, the relation

≡ is an equivalence relation and the reducibility � induces a partial
order on the equivalence classes by ≡. Let

Num(S) = 〈Num(S)/≡,�〉.
If ν0 and ν1 are numberings of S0 and S1 respectively, then the
numbering ν0 ⊕ ν1 of the union S0 ∪ S1 is defined as follows: ν0 ⊕
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ν1(2n) = ν0(n) and ν0 ⊕ ν1(2n + 1) = ν1(n). If ν and µ are
numberings of S, then ν ⊕ µ is a numbering of S and determines
the least upper bound of the pair ν/≡, µ/≡ in Num(S). Thus,
Num(S) can be regarded as an upper semilattice.

For a language L and an interpretation intL of L on a set S
(intL: L → S) we say that a numbering ν0 of a subset S0 ⊆ S is
computable relative to intL if there exists a computable function f
from N into L such that ν0(n) = intL(f(n)) for any n ∈ N. If ν0 �
ν1, where ν1 is a computable numbering relative to intL, then ν0 is
a computable numbering relative to the same interpretation intL.
If ν0 and ν1 are computable numberings relative to intL, then the
sum ν0 ⊕ ν1 is also computable relative to the interpretation intL.
Thus, if an equivalence class contains some computable numbering
relative to intL, then any numbering of this class is computable
relative to the same interpretation intL.

Denote by R(S, intL) a submodel of Num(S) consisting of
classes containing numberings computable relative to intL. The
upper semilattice R(S, intL) is called the Rogers semilattice of
the class of numberings computable relative to intL. If ν is a
numbering of S and Ξ is some class of subsets of N<∞, then P ⊆
Sk is referred to as an Ξ-set provided that there exists a set A ∈ Ξ
such that P � {〈θn1, . . . , θn)k〉 | 〈n1, . . . , nk〉 ∈ A}.

Consider a family S of partial computable functions. For L
we take the language of Turing machines and for intL we take the
function intp.r.(M) computable by a Turing machine M . Thus, we
arrive at a standard computable numbering of partial computable
functions. In this case, we say that the numbering is computable.
Note that ν is computable relative to intp.r. if and only if there
exists a partial computable function g(n, x) such that ν(n) and
λxg(n, x) coincide for any n ∈ N.

Consider a family S of computably enumerable sets. For L
we take the language of Turing machines and for intL we take
the function intr.e.(M) � Dom (intp.r.(M)), where M is a Turing
machine. In this case, we again obtain the standard notion of a
computable numbering of computably enumerable sets (cf. [27]
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and [36]), i.e., a numbering ν of a family of computably enumer-
able sets is a computable relative to intr.e. if and only if the set
{〈x, y〉 | y ∈ ν(x)} is computably enumerable. A numbering com-
putable relative to intr.e. is referred to as computable. A family S
is computable if there is a computable numbering of S relative to
intr.e..

Let S be a family of total functions on N. Introduce the
topology βS on S as follows. For basis open sets we take sets of
the family

BS = {Vg | g is a finite part of some function in S},

where Vg � {f | f ∈ S, g ⊆ f}. The family S is discrete if the
topology βS is discrete, i.e., for any f ∈ S the finite part g of f
is such that Vg = {f}. The family S is effectively discrete if there
exists a strictly computable sequence of finite sets g0, g1, . . . , gn, . . .
such that Vgn

contains only one element of S for any n and any
element f ∈ S belongs to some Vgn

, n ∈ N. In this case, we say
that the family {gn | n ∈ N} distinguishes S and gn distinguishes
f ⊇ gn. Note that an effectively discrete family is discrete. We
say that a numbering ν of a set S is single-valued (or is a Fried-
berg numbering) if ν is bijective, i.e., ν(x) �= ν(y) for any x �= y
in N. A numbering ν of a set S is positive (negative) if the set
ην = {〈x, y〉 | νx = νy} (ην = {〈x, y〉 | νx �= νy}) is computably
enumerable. A numbering ν is solvable if it is positive and nega-
tive, i.e., ην is computable. A single-valued numbering is solvable.
A numbering ν of a set S is minimal if ν/≡ is a minimal ele-
ment of Num(S). Note that single-valued, solvable, and positive
numberings are minimal.

One can prove that the Rogers semilattice of a computable
nondiscrete family is infinite and, in the case of an effectively dis-
crete family, consists of a single element [36]. There exists a dis-
crete family with infinite Rogers semilattice (cf. [144]). As was
shown in [87], the Rogers semilattice of any computable family of
computably enumerable sets is infinite or has only one element.
Selivanov [144] proved that the effective discreteness is not neces-
sary for the Rogers semilattice to have only one element.
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1.3. Models and Computability

Computability theory became play an important role in mathe-
matics when the notion of computability was rigorously formulated
and was applied by K. Gödel, A. Church, A. Turing, S. Kleene,
E. Post, and A. Markov to the decidability of classical mathemat-
ical problems and to the proof of the Gödel theorem about the
incompleteness of arithmetics.

In the XXth century, computability theory was rapidly de-
veloped. On the basis of results and methods of computability
theory, new applications of mathematics have been formed, such
as computer science, programing technology, automatization of
various processes, etc. This can be explained by the fact that the
computability approach suggests to represent an information in
terms of natural numbers. Here, we briefly describe how number-
ings can be used for representation of mathematical objects and
their structures.

Algorithmic properties of algebraic structures are naturally
formulated and solved in numbering theory. Consider numberings
of the basic sets of algebraic structures. Based on the standard
algorithm theory, we can study the decidability of relations on
elements with respect to numberings of such structures.

Consider a signature

σ = 〈P n0
0 , . . . , P nk

k , . . . ; F m0
0 , . . . , Fms

s , . . . ; c0, . . . , cn, . . .〉

such that there exist partial computable functions [n] and [m]
defined as follows: [n](i) = ni, where ni is the arity of the predicate
symbol Pi, and [m](i) = mi, where mi is the arity of the functional
symbol Fi. We also consider the signature

σ1 � σ ∪ 〈a0, a1, . . .〉

obtained from σ by adding constant symbols.
Let L and L1 be families of all formulas of the first-order

predicate calculus with equality (P0) of the signature σ and σ1

respectively. By a Gödel numbering of L1 we mean any numbering
γ: L1 → ω such that for a given γ-number we can effectively
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construct a formula with this number and for a given formula of
L1 we can effectively find its γ-number.

Now, define the Gödel numbering of formulas and terms of
the signature σ. Note that the functions [n] and [m] from the
definition of σ exist if there are countably many predicate symbols
or functional symbols. If there are countably many symbols with
indices, it is required to recognize effectively the arity by the index.

We fix a set V of variables v0, v1, . . . , vn, . . . and introduce the
set Termσ(V ) of terms of the signature σ with variables in V and
the set Formσ(V ) of formulas in variables of V . The Gödel num-
bering γ is defined as the mapping γσ: Termσ(V )∪Formσ(V )@ >
1− 1 >> N such that we can effectively recognize a number of a
formula or a term and obtain some information about the struc-
ture of formulas and terms. Then we construct γ by induction on
the complexity of formulas. We begin with Termσ(V ):

(1) γ(vi) = c(0, c(0, i)),

(2) γ(ci) = c(0, c(1, i)) for i such that ci ∈ σ,

(3) if t has the form Fi(t1, . . . , tmi
), where Fi is an mi-ary

predicate symbol, and t1, . . . , tmi
have the Gödel numbers

γ(t1) = l1, . . . , γ(tmi
) = lmi

, then γ(t) = c(0, c((i +
2), cmi(l1, . . . , lmi

))).

It is obvious that the set of numbers of terms is computable.
If the number of a term is known, we can recognize variables and
their indices, as well as constants and their indices. Furthermore,
we can find the index of the operation and the numbers of those
subterms from which the term is constructed with the help of the
symbol of this operation.

Define γ on the set of formulas as follows:

(1) if t and q are terms and γ(t) = n, γ(q) = m, then γ(t = q) �
c(1, c(0, c(n,m))),

(2) if Pi is an ni-ary predicate symbol and t1, . . . , tni
are terms

with Gödel numbers γ(t1) = l1, . . . , γ(tni
) = lni

, then
γ(Pi(t1, . . . , tni

)) � c(1, c(1, c(i + 1, cni(l1, . . . , lni
)))) and

γ(t1 = t2) = c(1, c(1, c(0, c(l1, l2)))),
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(3) if ϕ and ψ are formulas with Gödel numbers γ(ϕ) = n and
γ(ψ) = m, then

γ((ϕ & ψ)) � c(1, c(2, c(n,m))),

γ((ϕ ∨ ψ)) � c(1, c(3, c(n,m))),

γ((ϕ → ψ)) � c(1, c(4, c(n,m))),

γ(¬ϕ) � c(1, c(5, n)),

γ((∃vi)ϕ) � c(1, c(6, c(i, n))),

γ((∀vi)ϕ) � c(1, c(7, c(i, n))).

By induction on the complexity of formulas, it is easy to
show that every formula of Formσ(V ) has a Gödel number. Fur-
thermore, we can recognize whether a given number is the Gödel
number of a formula and obtain an information about the struc-
ture of this formula, for example, about free variables constants,
the form of the formula, the presence of quantifiers, the complexity
of the prefix formed by quantifiers, and the numbers of formulas
that can be obtained by substitutions.

If the number of a formula is known, we can find the number
of the equivalent formula in prenex normal form.

With every subset S ⊆ L1 we associate the set γ(S) of
all numbers of formulas of S. A set S is said to be decidable
(enumerable) if γ(S) is computable (computably enumerable).

Choosing some hierarchy of the complexity of subsets of
N (for example, the arithmetic hierarchy, the analytic hierarchy
[140], the Ershov hierarchy [25, 26, 29, 36, 37], etc.), we say
that X belongs to the complexity class ∆ if γ(X) belongs to ∆.

For a given number n we can recognize whether a formula
with number n is an axiom of the first-order predicate calculus
PCσ. For a set of numbers we can recognize whether a given
formula can be obtained from a finite set of formulas with the cor-
responding numbers by some of the rules of PCσ. Hence we can
recognize whether a sequence of formulas with given Gödel num-
bers is a proof in PCσ. Thus, we arrive at the following assertion.
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Proposition 1.14. If a set of formulas is provable in PCσ

from an enumerable set, then it is enumerable.

Proposition 1.14 implies the following assertion.

Proposition 1.15. If the set of axioms A is enumerable,
then the theory TA � {ϕ | A � ϕ} is enumerable.

We define the principal computable numbering
p0(x0), . . . , pn(xn), . . . of the set of all enumerable partial
types consistent with a decidable theory T .

By a partial type p(x) of a theory T we mean the set of
formulas in variables of x such that the set p(x) ∪ T is consis-
tent. A numbering d0(x0), . . . , dn(xn), . . . of partial types of a
theory T is computable if d0, d1, . . . , dn, . . ., where di = {n | n
is the Gödel number of a formula in di}, is a computable number-
ing of computably enumerable sets and there exists a computable
function v such that v(n) is equal to the number of the tuple
〈i1, . . . , imn

〉 of indices such that xn = (vi1 , . . . , vimn
). A number-

ing p0(x0), . . . , pn(xn), . . . of partial types of a theory T is prin-
cipal if for every computable numbering d0(x′

0), . . . , dn(x′
n), . . . of

partial types of T there is a computable function f(n) such that
dn(x′

n) = pf(n)(xf(n)) for any n.
Consider the following sequence of finite sets:

∅ = p0
n(xn) ⊆ p1

n(xn) ⊆ . . . ⊆ pt
n(xn) ⊆ . . .

Let pn(xn) � ∪
t
pt

n(xn). For n we introduce i and k such that

c(i, k) = n. We regard i as the number of the ith computably
enumerable set Wi and k as the number of the tuple 〈i1, . . . , is〉
relative to numberings of all tuples of finite length. We set

W t
i � k � {m ∈W t

i | m is the Gödel number

of a formula in free variables with

indices in {i1, . . . , is} and number k},
pt

n(xn) � {ϕ | ϕ has the Gödel number in W m
l(n) � r(n)},



118 Sergei S. Goncharov

where m is the maximal number less than t + 1 and such that the
set

T ∪ {ϕ | ϕ has the Gödel number in W m
l(n) � r(n)}

is consistent. Since T is decidable, the consistency condition is
decidable. Therefore, for n and t we can recognize whether a
formula belongs to pt

n(xn) and indicate its number, i.e., we can
list formulas in pt

n(xn). It is obvious that the Gödel numbers of
such formulas are less than t+1 because of the assumption on W t

n.
By the definition of pn on the basis of Wl(n) and the possibility

to compute exactly the set of free variables in a computable num-
bering of a family of finite types, as well as the fact that {Wn}n∈N

is a principal numbering, we conclude that pn is a principal num-
bering. Since the numbering {pn}n∈N is principal, we obtain the
following assertion.

Proposition 1.16. A family S of partial types of a the-
ory T is computable, i.e., there is a computable numbering
d0(x′

0), . . . , dn(x′
n), . . . such that S = {d0(x′

0), . . . , dn(x′
n), . . .} if

and only if there exists a computably enumerable set W such that
S = {pn(xn) | n ∈W}.

By a numbered model of the signature σ without functional
symbols we mean the pair (M, ν), where M = 〈M,P0, P1, . . .〉 is
a model of the signature σ and ν is a numbering of the basic
set M of the model M. By a homomorphism from a numbered
model (M0, ν0) into a numbered model (M1, ν1) we mean a map-
ping µ: M0 → M1 from the basic set M0 of the model M0 into
the basic set M1 of the model M1, i.e., a homomorphism from M0

into M1 and a morphism from (M0, ν0) into (M1, ν1).
For a numbered model (M, ν) we can construct a σ1-

enrichment Mν of M, i.e., a model of the signature σ1 whose basic
set is the basic set of M and predicates of σ in Mν coincide with
the corresponding predicates of M. Namely, for the value of the
constant ak, k ∈ ω, we take νk ∈M . We say that Th(M, ν) is the
elementary theory of Mν , i.e., the set of all closed formulas of the
signature σ1 that are true in Mν .
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A numbered model (M, ν) is constructive if the set
D(M, ν) � {〈k, m1, . . . , mnk

〉 | M � Pk(νm1, . . . , νmnk
)} is com-

putable.
Let D(M, ν) = {ϕ(cm−1, . . . , cmk

| ϕ(x1, . . . , xmk
) be a

quantifier-free formula, and let M |= ϕ(νm1, . . . , νmk)}.
The following special class of constructive models plays an

important role in the study of decidable theories. A numbered
model (M, ν) is strongly constructive if Th(M, ν) is a decidable
theory. Models admitting strong constructivizations are said to
be decidable.

The constructibility of a numbered model (M, ν) is equiv-
alent to the decidability of the set of quantifier-free formulas in
Th(M, ν). Hence every strongly constructive model is construc-
tive.

However, in the case of arbitrary numbered models and alge-
bras, only numberings of algebras with effective operations are
of interest. We consider this case in more detail. Let σ =
〈fm0

0 , fm1
1 , . . .〉. If the signature σ is infinite, we assume that the

function h: n '→ mn is computable.
By a computable numbering of an algebra A = 〈A, g0, g1, . . .〉

of the signature σ we mean a numbering ν: ω → A of the basic set
of A such that there exists a binary computable function G such
that gn(νy1, . . . , νymn

) = νG
(
n, cmn(y1, . . . , ymn

)
)

for any n ∈ ω
and y1, . . . , ymn

.
The pair (A, ν) is referred to as a computable numbered alge-

bra if ν: ω → A is a numbering of A. It turns out that any algebra
admits a computable numbering.

Theorem 1.17 ([37]). Any at most countable algebra A ad-
mits a computable numbering of this algebra.

In this case, the complexity of this algebra depends only from
numbering equivalence of that numbering.

A computable numbered algebra (A, ν) is constructive (i.e., it
is a constructive model of the corresponding signature consisting
of only functions) if and only if the numbering ν is solvable.
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Let A = 〈A; P0, . . . , Pn; F0, . . . , Fk; c0, . . . , cs〉 be an algebraic
structure of a signature σ. If σ is infinite, the functions i → mi

and i→ ni are assumed to be computable. A pair (A, ν), where ν
is a mapping from N or from an initial interval of N to the basic set
A of A, is called a numbered structure and ν is called a numbering
of A.

Let K be a class of subsets and functions on N. For K we can
take, for example, one of the following classes:

• the class R of computable functions and relations,
• the class RA of computable relative to A functions and rela-

tions,
• the class PRIM of primitive computable functions and rela-

tions,
• the class P of relations and functions of the polynomial com-

plexity,
• the class exp of relations and functions of the exponential

complexity,
• the corresponding classes ∆0

α(Σ0,A
α ,Π0,A

α ) of relations and
functions of the arithmetic hierarchy relative to A,

• the corresponding classes ∆1
α(Σ1,A

α ,Π1,A
α ) of relations and

functions of the analytic hierarchy (relative to A),
• the corresponding classes ∆m−1

α (Σm−1,A
α , Σm−1,A

α ) of the Er-
shov hierarchy (relative to A) [25, 26, 29].

Let B be a set or a family of sets, and let A be an alge-
braic structure of a signature σ. A numbered structure (A, ν)
is said to be B-positive if ην � {(n,m) | νn = νm} and
ν−1(Pi) = {〈l1, . . . , lmi

〉 | 〈νl1, . . . , νlmi
〉 ∈ Pi}, i � n, are com-

putably enumerable with respect to a set in B or with respect to
the entire set B and there exist B-computable functions fi, i � k,
such that νfi(l1, . . . , lni

) = Fi(νl1, . . . , νlni
) for all l1, . . . , lni

∈ N.
A B-positive structure (A, ν) is said to be B-constructive if ην

and ν−1(Pi) are B-computable. If the signature σ is infinite, it is
necessary to require the uniform computable numbering [100].
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To study algorithmic properties of models, we need an al-
gorithm checking the truth of formulas. We define the relative
constructibility and strong constructibility. Let B be a class of
subsets of N. Suppose that a quantifier-free formula has no al-
ternating groups of quantifiers and a formula Φ has n alternating
groups of quantifiers if the prenex normal form of Φ has n alter-
nating groups of quantifiers. Denote by Fn the set of formulas
possessing n alternating groups of quantifiers and by Fω the set
of all formulas, called fragments (of the language). The sets Fn

are called restricted fragments (of the language). Let F be a set of
formulas of a signature σ. A numbered structure (A, ν) is said to
be B-F-constructive or F-constructive relative to B if the following
set belongs to B:

{〈s, l1, . . . , lk〉 | s is the number of a formula Φ(x1, . . . , xk)

in F with k free variables and A |= Φ(νl1, . . . , νlk)}.

It is easy to see that a structure is F0-constructive relative to B
if and only if it is B-constructive. For the sake of brevity, we
write F-constructive in the case of the F-constructibility relative
to the class of computable relations and B-constructive in the case
F = F0. If F = F0 or B = ∅, we omit F or B in the notation.

B-Fω-constructive structures are said to be strongly B-
constructive or B-ω-constructive, whereas B-Fn-constructive struc-
tures are referred to as B-n-constructive .

We describe the other approach. Let A be an algebraic struc-
ture of a signature σ such that the basic set A is a subset of N.
Then it is reasonable to consider the effectiveness of different re-
lations without any mention of numbers.

An algebraic structure A is said to be B-computable if
the basic predicates and operations of A belong to a class B.
For many computability classes B an abstract structure is B-
constructivizable if and only if it is isomorphic to a B-computable
structure. For a B-constructive structure we can effectively con-
struct a B-computable structure relative to B provided that we
can choose exactly one number in every set of the numbers of
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elements. We can pass from a B-computable structure to a B-
constructive structure by using the B-computable function that
enumerates the basic set of the B-computable model. Then we
can define the B-constructivization of this structure.

Similarly, for F-constructive structures relative to B we can
define B-F-computable models. If a model is isomorphic to a B-Fω-
computable model, then it is B-decidable. In the case B ⊆ N, the
class of B-computable sets is denoted by B(B). We say that B(B)-
F-computable (B(B)-F-constructive) structures are F-computable
(F-constructive) relative to B.

We give the most important examples of relatively com-
putable models. Assume that the language is computable and
the basic set is a subset of ω. We identify a structure A with its
atomic diagram D(A) and sentences with their Gödel numbers.
In this case, we say that A is computable (arithmetical or hyper-
arithmetical) if D(A), regarded as a subset of ω, is computable
(arithmetical or hyperarithmetical).

We say that a model has constructivization or admits a com-
putable (arithmetical or hyperarithmetical) representation if there
exists an isomorphic computable (arithmetical or hyperarithmeti-
cal) model. If for an abstract model there exists an isomorphic
(arithmetical or hyperarithmetical) decidable model, then we say
that this model has a decidable representation with respect to the
class of (arithmetical or hyperarithmetical) sets.

Let (A, ν) and (B, µ) be numbered models, and let ϕ: A→ B

be a homomorphism. We say that ϕ is C-computable if there exists
a C-computable function f such that ϕν = µf , i.e., the following
diagram is commutative:

N
f→ N

ν ↓ ↓ µ

A
ϕ→ B

In this case, the function f represents ϕ and ϕ is called a C-
homomorphism. If there exists a C-computable isomorphism ϕ
from (A, ν) into (B, µ), then (B, µ) is called a C-extension of
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(A, ν) with respect to ϕ. If A ⊆ B and the identity embedding of
A in B is C-computable, then (B, µ) is a C-extension of (A, ν).

Let (N, ν) and (N, µ) be numbered algebraic structures. Re-
call that numberings ν and µ of N are computably equivalent if
there exist computable functions f and g such that ν = µf and
µ = νg. For constructivizations ν and µ it suffices to require the
existence of only one computable function f such that ν = µf .
We note that if there is the continual group of automorphisms
of a constructivizable structure A, then there is the continuum of
noncomputable equivalent constructivizations. Thus, for an atom-
less Boolean algebra we have the continuum of noncomputable
equivalent constructivizations, although it has simple algorithmic
structure. However, we consider abstract structures up to an iso-
morphism. The definition of the autoequivalence introduced by
Mal’tsev [101] turns out to be more suitable in this situation.
Two numberings ν and µ of an algebraic structure are autoequiv-
alent if they are computably equivalent up to an automorphism,
i.e., there exists an automorphism ϕ of A such that ϕν and µ are
computably equivalent.

The questions on nonequivalent representations and their
classification are important in the study of constructive structures.
Within the framework of the above approaches, we can investigate
the same properties by choosing a suitable language. In fact, the
above approaches are equivalent. To demonstrate this fact, we
show that the corresponding categories are equivalent.(for cate-
gory theory we refer to [12] and [36]).

We consider the category Num of all numbered models with
homomorphisms for morphisms and the category Nat of all models
whose basic sets are subsets of N and morthisms are computable
homomorphisms. Let (M, ν) be a numbered model. We define
the value of the functor Com on (M, ν) by setting Com (M, ν) �
(NM, Σ), where

NM � {n | n is the least number of νn},
P � {〈n1, . . . , nk〉 ∈ NM |M |= P (νn1, . . . , νnk)},
F (n1, . . . , nk) � min{m | F (νn1, . . . , νnk) = νm}.
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If ϕ is a homomorphism from (M, ν) into (N, µ), then

Com (ϕ) � {〈n,m〉 | n ∈ NM,m ∈ NN, and ϕ(νn) = µm}.

Note that Com (ϕ) is a homomorphism from Com (M, ν) into
Com (N, µ).

Remark. M and Com (M, ν) are isomorphic.

Remark. If ϕ is an isomorphism, then Com (ϕ) is also an
isomorphism.

We define the functor K from Nat into Num by setting
K (M) � (M, ν), where ν is a numbering of |M| in ascending
order. If |M| is finite, then all the numbers which do not appear
in this numbering go to the last element (with respect to the num-
bering of M). As a result, we obtain a numbering ν which will be
denoted by νK.

Remark. The functor Com determines an equivalence be-
tween the categories Num and Nat.

Consider the subcategory ConB of Num consisting of B-
constructive models with B-computable homomorphisms for mor-
phisms. We also consider the subcategory ComB of Nat consisting
of B-computable models with B-computable homomorphisms for
morphisms.

Theorem 1.18. The restriction ComB of the functor Com
to the subcategory ConB determines an equivalence between ConB

and ComB.

Proof. It is easy to verify that if (M, ν) is B-constructive,
then the model Com (M, ν) is B-computable. Since the basic sets
are B-computable and there exists a B-computable function f
such that ϕν = µf , we conclude that Com ϕ is a partial B-
computable function with B-computable graph. The restriction
ComB of Com to ConB acts from ConB into ComB. There exist
isomorphisms ϕ: 1ConB → Com K and ψ: 1ComB → K Com such
that Com ϕ = ψ Com. �
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Corollary 1.19. Numbered models (N, ν) and (M, µ) are
isomorphic if and only if Com(N, ν) and Com(M, µ) are isomor-
phic.

Corollary 1.20. B-constructive models (N, ν) and (M, µ)
are B-isomorphic if and only if Com(M, µ) is B-isomorphic to
Com(N, ν).

Thus, the study of constructivizations of a model M, defined
up to an autoequivalence, is equivalent to the study of computable
models isomorphic up to a computable isomorphism to M. Conse-
quently, if ν and µ are constructive models of M, then Com (M, ν)
and Com (M, µ) are computable models isomorphic to M; more-
over, ν and µ are autoequivalent if and only if Com (M, ν) and
Com (M, µ) are computably isomorphic and for any computable
model N isomorphic to M there exists a constructivization ν of
M such that Com (M, ν) and N are computably isomorphic.

Let M = 〈M,P n0
0 , . . . , P nk

k , a0, . . . , as〉 be a finite model of
a finite signature σ without functional symbols, and let ν be a
mapping from [0, n] = {i | 0 � i � n} onto M . The pair (M, ν) is
called a finitely numbered (n-numbered) model.

With every finite signature σ = 〈P n0
0 , . . . , P nk

k , a0, . . . , as〉 we
associate the number 〈〈〈0, n0〉, . . . , 〈k, nk〉〉, s〉, ni � 1. We ex-
tend σ by constant symbols c0, . . . , cn, . . . and define the (n + 1)-
diagram D(M, ν) of (M, ν) by constructing the enrichment Mn

of M to a model of the signature σn = σ ∪ {c0, . . . , cn}. For
this purpose, assume that the value of ci is equal to νi, i � n, and
D(M, ν) = {ϕ | ϕ is an atomic formula of the signature σn without
free variables or the negation of such a formula and Mn � ϕ}. Let
GD(M, ν) be the set of the Gödel numbers of formulas in D(M, ν).
The number 〈n, 〈〈〈0, n0〉, 〈1, n1〉, . . . , 〈k, nk〉〉, s〉, u〉, where u is the
canonical number of the finite set Du = GD(M, ν), is called the
Gödel number of the numbered finite model of the finite signa-
ture σ. Such models are called finitely numbered models and their
numbers are referred to as the Gödel numbers.

A numbering of finitely enumerable models possess the fol-
lowing obvious properties.
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〈1〉 The set of the Gödel numbers of finitely numbered models is
computable.

〈2〉 For a given Gödel number of a finitely numbered model (M, ν)
it is possible to compute the number of elements of |M|.

〈3〉 For a given Gödel number of a finitely numbered model it
is possible to compute how many predicate symbols and con-
stant symbols are contained in σ and compute the arity of all
predicate symbols.

〈4〉 For two Gödel numbers of finitely numbered models it is pos-
sible to recognize whether these models can be considered in
the same signature.

〈5〉 The set of numbers of finite signatures is computable.

〈6〉 For numbers n and m it is possible to recognize whether a
finitely numbered model with number n is a model of the sig-
nature with number m.

〈7〉 For numbers n and m it is possible to recognize whether
a finitely numbered model with number n of the signature
σ = 〈P n0

0 , . . . , P nk

k , a0, . . . , as〉 has an enrichment to a finitely
numbered model of the signature σ′ with number m.

A finite n-numbered model (M, ν) is called an extension of a
k-numbered model (N, µ) if k � n, the models M and N are of the
same signature, and the set {〈ν(i), µ(i)〉 | i � k} is an isomorphic
embedding of M in N.

〈8〉 For numbers n and m it is possible to recognize whether a
finitely numbered model with Gödel number m is an extension
of a finitely numbered model with Gödel number n.

An n-numbered model (M, ν) of the signature σ =
〈P n0

0 , . . . , P nk

k , a0, . . . , as〉 is called an enriched extension
of a k-numbered model (N, µ) of the signature σ′ =
(P m0

0 , . . . , P
mr′
r′ , a0, . . . , as′) if k � n, s′ � s, r′ � r and, for any

0 � i � r′, the arity mi of the predicate Pi is equal to the ar-
ity ni of the predicate Pi; moreover, {〈µ(i), ν(i)〉 | i � k} is an
isomorphism from N into M � σ.
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〈9〉 For n and m it is possible to recognize whether a model with
Gödel number n is an enriched extension of a finitely num-
bered model with Gödel number m.

For a numbered model (M, ν) of the signature σ =
〈P n0

0 , . . . , P nk

k , . . . , a0, . . . , as, . . .〉 we set Mn = {νi | i � n}, n ∈ N,
and consider σn = 〈P n0

0 , . . . , P nr
r , ai1 , . . . , aik

〉, where r = n if σ
contains at least n predicates and r is the number of predicates of
σ otherwise. The set {i1, . . . , ik} consists of the indices i of con-
stants ci of σ such that i � n and the value of ci belongs to Mn.

Let Mn be a submodel of the restriction M � σn with the basic
set Mn. Finitely numbered models (Mn, νn), where νn(k) � ν(k),
k � n, are called finitely numbered submodels of (M, ν). Denote
by (eM, ν) the set of the Gödel numbers of finitely numbered sub-
models of (M, ν). The set W (M, ν) is called the representation of
(M, ν).

Proposition 1.21. A numbered model (M, ν) is constructive
if and only if W (M, ν) is computably enumerable.

By Proposition 1.21, it is possible to construct a univer-
sal computable numbering of all constructive and all computable
models of a fixed signature without functional symbols.

The empty model of the empty signature with the empty
numbering, as well as n-numbered models, is constructive. For a
given set W (M, ν) we define a model M and a numbering ν as
follows. Let M 0

W = {ci | there exists the Gödel number of an n-
numbered model in W (M, ν) and i � n}. Introduce an equivalence
relation on M0

W as ci ∼W cj if ci = cj occurs in the diagram of
some n-numbered model with number in W (M, ν). Let MW be
the quotient set M0

W /∼W . We set νW (i) = ci/∼W , where i ∈M0
W ,

and νW (i) = aj for a constant of the signature σ of the model
M if ci = aj occurs in the diagram of some n-numbered model
with number in W . We set Pi(νW n0, . . . , νW nk) if Pi(cn0 , . . . , cnk

)
occurs in the diagram of some n-numbered model with number
in W .
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Thus, we obtain a model MW of the same signature as M.
We also define the numbering νW . Setting ϕ

(
ci/∼

)
� νi, we con-

clude that ϕ is an isomorphism between (MW , νW ) and (M, ν);
moreover, ϕ is the identity mapping on numbers. If W (M, ν) is
computable, then (MW , νW ) is constructive. The converse asser-
tion is obvious.

Let us consider a finite signature σ without functional sym-
bols and define a numbering κσ of all constructive models of the
signature σ. For this purpose, we consider the principal number-
ing {Wn}n∈N of all computably enumerable subsets of N. As usual,
W t

n is the part of Wn which was already numbered at the step t.
We recall that we enumerate only x < t in W t

n. For Wn we con-
struct Vn as follows. Let V 0

n = ∅. At the step t + 1, we verify the
following conditions:

(a) any element of W t+1
n is the Gödel number of some k-model

of the signature σ,
(b) for any x, y ∈W t+1

n one of finitely numbered models with the
Gödel numbers x and y is an extension of the other.

We set V t+1
n � V t

n if conditions (a) and (b) are not satisfied.
Otherwise, we set V t+1

n � V t
n ∪ W t+1

n . The sequence {Vn}n∈N,
where Vn = ∪V t

n , is computable. Consequently, there is a com-
putable function ρ such that Vn = Wρ(n) for any n. Furthermore,
Wρ(ρ(n)) = Wρ(n) for any n.

It is easy to see that every set Vn is computably enumerable
and represents some constructive model. By the above results,
we can restore the constructive model MVn

and constructivization
νVn

.
We set κσ(n) � (MVn

, νVn
) and write Mκ

n instead of MVn

and νκ

n instead of νVn
. It is easy to see that κσ(n) enumerates all

constructive models of the signature σ including finitely numbered
models and the empty model as well. Assume that σ is infinite and
the function i→ ni is computable, where ni is the arity of the ith
predicate symbol. Arguing as above, we obtain W (M, ν) and the
numbering κσ of all constructive models of the signature σ and
finite constructive models of finite parts of σ if, in the construction
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of Vn, finitely numbered models are models of the initial segments
of the signature σ and the enriched extension condition is used
instead of the extension condition.

The notion of a computable sequence of constructive models
is often used (cf., for example, [22, 34, 37]).

Definition 1.22. A sequence of constructive models
(M0, ν0), . . . , (Mn, νn), . . . is computable if the models are uni-
formly constructive, i.e., all computable functions of numbers of
constants and indices of computable functions defining basic op-
erations and predicates on numbers of elements can be computed
for (Mn, νn) from computable functions by the number n.

Using the idea of numberings of sets, we can define, up to a
recursive isomorphism, a numbering of any class S of constructive
models.

Definition 1.23. A numbering ν of models in S is
called a computable numbering of class S if the sequence
(M0, ν0), . . . , (Mn, νn), . . . of constructive models in S is com-
putable, where (Mn, νn) is a model with number n in the num-
bering ν (ν(n) = (Mn, νn)) and for any constructive model (M, µ)
in S there exists n such that (M, µ) and (Mn, νn) are computably
isomorphic.

A computable sequence of computable models is defined in a
similar way.

Definition 1.24. A sequence M0, . . . ,Mn, . . . of computable
models is computable if the models are uniformly computable, i.e.,
all computable functions of constants and the indices of com-
putable functions defining basic operations and predicates are
computed for the models Mn from computable functions by the
number n.

Using again the ideas of numberings of sets, we can define,
up to a recursive isomorphism, a numbering of any class S of
computable models.
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Definition 1.25. A numbering ν of models in S is called a
computable numbering of class S if the sequence M0, . . . ,Mn, . . . of
computable models in S is computable, where Mn is a computable
model with number n in the numbering ν (ν(n) = Mn) and for
any computable model M in S there exists n such that M and Mn

are computably isomorphic.

Proposition 1.26. A sequence (M0, ν0), . . . , (Mn, νn), . . . of
constructive models is computable if and only if there exist com-
putable functions f and g such that (Mn, νn) and κ(f(n)) are
computably isomorphic for every n and the number g(n) of the
computable function κg(n) defining this computable isomorphism
is computed by g from n, i.e., for ϕn(νn(m)) � νκ

f(n)(κg(n)(m)),
ϕn is an isomorphism from Mn onto Mκ

f(n), where κn is the uni-
versal numbering of all partial computable functions.

Theorem 1.27. The sequence (Mκ

n , νκ

n ) of constructive mod-
els is computable.

The proof is based on the construction and definition of a
computable sequence. Indeed, for (Mκ

n , νκ

n ) and n we can find the
diagram Vn = W (Mκ

n , νκ

n ).
Let α = {〈Mn, νn〉} and β = {(Nn, µn)} be numberings of

numbered models. We say that α is reduced to β if there ex-
ists a computable function f such that the constructive models
(Mn, νn) and (Nf(n), µf(n)) are computably isomorphic (in the
sense of constructive models). The reduction of α to β is de-
noted by α � β. We say that α is effectively reduced to β if
there exist computable functions f and g such that for any n the
function κg(n) defines an isomorphism from a constructive model
(Mn, νn) onto the numbered model (Nf(n), µf(n)), i.e., the map-
ping ϕn(νn(m)) � µf(n)(κg(n)(m)) is well defined and realizes an
isomorphism between Mn and Nf(n).

Similarly, based on general ideas of numbering theory, we can
define the reducibility for numbering of computable models.

Let α = {Mn, n ∈ ω} and β = {Nn, n ∈ ω} be number-
ings of models. We say that α is reduced to β if there exists a
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computable function f such that the constructive models (Mn, νn)
and (Nf(n), µf(n)) are computably isomorphic (in the sense of com-
putable models). The reduction of α to β is denoted by α � β.
We say that α is effectively reduced to β if there exist computable
functions f and g such that for any n the function κg(n) is an
isomorphism from a model Mn onto the model Nf(n), i.e., the
mapping ϕn(νn(m)) � µf(n)(κg(n)(m)) is well defined and realizes
an isomorphism between Mn and Nf(n).

The following assertion follows from definitions.

Proposition 1.28. If a numbering (Mn, νn), n ∈ N, of num-
bered models is effectively reduced to a computable numbering of
constructive models (Nn, µn), n ∈ N, then (Mn, νn), n ∈ N, is a
computable numbering of constructive models.

From the construction of numberings of constructive models
κσ(n) � (MVn

, νVn
) we obtain an important result due to Nur-

tazin about the existence of a universal computable numbering
of constructive models and the existence of universal computable
numbering of all computable models from the existence of a func-
tor between categories.

Theorem 1.29 ([130]). There exists up to a recursive iso-
morphism a universal computable numbering of all constructive
models of a computable signature without functional symbols i.e.,
a computable numbering (Mn, νn), n ∈ N, of constructive models
of the fixed structure such that any other computable numbering of
constructive models of the same signature is reduced to this num-
bering.

Corollary 1.30 ([130]). There exists up to recursive isomor-
phism a universal computable numbering of all computable models
of a comuptable signature without functional symbols i.e., a com-
putable numbering Mn, n ∈ N, of computable models of this fixed
signature to which is reduced any other computable numbering of
computable models of the same signature.
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1.4. Perspective directions in the theory of computable
models

We list the most important topics for the future development of
the theory of computable models (cf. also [39]).

1. One of the main problem is connected with existence of com-
putable representations. In particular, this approach is pre-
sented in [40, 37, 3, 5, 7, 13, 17, 28, 31, 32, 33, 35, 39,
43, 47, 53, 54, 57, 59, 65, 68, 69, 74, 76, 81, 83, 84,
85, 90, 92, 96, 100, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,
125, 129, 130, 132, 133, 134, 135, 136, 138, 150, 151,
152, 154].

2. The second approach is connected with the nonuniqueness of
computable representations and algorithmic dimension (with
some special properties). In particular, it is represented in
[1, 5, 8, 10, 18, 23, 32, 35, 37, 39, 40, 44, 45, 46, 48,
49, 54, 57, 60, 67, 63, 64, 65, 72, 75, 101].

3. Interesting problems on the classification of computable mod-
els relative to structures connected with computable models.
[40, 39].

4. Computable classes of models in the light of the above two
approaches. The computability of families of computable rep-
resentations and the computability of classes of computable
models were studied in [40, 39, 1, 66, 14, 21, 22, 37, 45,
56, 58, 67, 85, 91, 92, 130].

5. Another class of problems connected with the classification
of algorithmic problems with respect to complexity (cf., for
example, [1, 2, 3, 5, 10, 13, 14, 37, 39, 40, 42, 43, 44,
54, 55, 56, 57, 62, 68, 72, 70, 75, 89, 82, 147, 148]).

6. There exists a closed connection between definability and
complexity. An approach based on this fact was used in many
papers, for example, [1, 5, 6, 10, 13, 14, 38, 39, 40, 42, 43,
58, 62, 66, 71, 70, 75, 77, 89, 127, 99, 147, 148, 154].
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2. Bounds for Computable Models

Bounds for computable models are used for describing various
mathematical constructions. We consider bounds for theories of
computable models and the complexity of some models. We also
examine the structure bounds from the point of view of the com-
plexity of descriptions of computable models in a language with
infinite disjunctions and conjunctions.

2.1. Bounds for the theory of computable models

By definition, the theory of a decidable model is decidable. We
establish the existence of computable models satisfying a given
specification in the language of the first-order predicate calculus.

Theorem 2.1 ([32, 152]). A decidable consistent theory T
possesses a decidable model.

The situation is rather complicated if additional model-
theoretic properties are required. Goncharov–Nurtazin and Har-
rington independently proved the following assertion for prime
models.

Theorem 2.2 ([65, 74]). A decidable complete theory T pos-
sesses a decidable prime model if and only if there exists an algo-
rithm that for any formula consistent with T produces a principal
type of the theory containing this formula.

Morley proved the existence theorem for saturated models
and posed the decidability problem for homogeneous models.

Theorem 2.3 ([125]). A decidable complete theory T pos-
sesses a decidable saturated model if and only if the set of all types
of T admits a computable numbering.

Goncharov [52] and Peretyat’kin [136] independently found
the decidability criteria for homogenous models. Goncharov [53]
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constructed an example of a totally transcendental decidable the-
ory without decidable homogeneous models.

Problem 1 (Goncharov). Whether there exists a decidable
homogeneous model, determined up to an isomorphism, for an ar-
bitrary decidable theory with countably many countable models?

The situation is quite simple in the case of countably cate-
gorical theories.

Definition 2.4. A theory T is countably categorical if T has
a unique up to an isomorphism countable model.

Within the framework of model theory, countably categori-
cal theories and models of such theories have been well studied.
The following assertion is a simple consequence of the effective
completeness theorem.

Theorem 2.5. A countably categorical theory T is decidable
if and only if all models of T are decidable, which holds if and only
if T has a decidable model.

Thus, if we are interested in decidable models of countably
categorical theories, an answer can be obtained in terms of decid-
ability. However, the situation essentially changes for computable
models.

If a theory T possessing a computable model is computable
in 0ω, then the degree of the ω–jump of a computable set is 0ω.
This bound is sharp because there exists a theory (for example,
the theory of (ω, +,×,�)) possessing a computable model that is
Turing equivalent to 0ω.

Theorem 2.6. If A is a computable model, then the theory
Th (A∗) is 0ω–decidable and the theory Th Σn+1(A∗) is computably
enumerable in 0n uniformly with respect to n, where A∗ is an
extension of A by constants.

Corollary 2.7. If A is a computable model, then the theory
Th (A∗) is 0ω–decidable.
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These results suggest the following interesting problem.

Problem 2. Find necessary and sufficient conditions for the
existence of computable models.

Our goal is to find natural sufficient conditions for the ex-
istence of computable models of given theories and to determine
bounds for the complexity under different classifications of the
complexity degrees of theories. Consider some special classes of
theories.

2.1.1. Computable countably categorical models.

For countably categorical theories the question is trivial: All
countable models of a countably categorical theory are decidable
if and only if the theory is decidable. Naturally, the situation
becomes much more complicated if we require the computability
condition.

Problem 3. Characterize countably categorical theories pos-
sessing computable models.

Lerman and Schmerl [96] presented a sufficient condition for
an arithmetic countably categorical theory to have a construc-
tive model. More precisely, they proved that if T is a countably
categorical arithmetic theory such that the set of all sentences be-
ginning with the existential quantifier and having n + 1 groups of
quantifiers of the same type (Σn+1–formulas) is Σ0

n for every n,
then T has a constructive model.

It would be useful to weaken this condition, say, as follows:
“the set of all sentences beginning with the existential quantifier
and having n + 1 groups of quantifiers of the same type (Σn+1–
formulas) is Σ0

n+1 for every n.”

Problem 4. Whether a countable model is 1-computable
under the Lerman–Schmerl condition?

Knight [90] generalized the result to the case of non-
arithmetical countably categorical theories. However, none of the
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mentioned results solves the problem. We do not even know any
example of a theory satisfying this sufficient condition for suffi-
ciently large n. Knight conjectured the existence of arithmeti-
cal and non-arithmetical countably categorical theories with com-
putable models. An answer to this conjecture is contained in the
following assertions which develop general methods for construct-
ing computable models from arithmetical models with preserving
some model-theoretical properties.

Theorem 2.8 ([68]). For every n � 1 there exists a count-
ably categorical theory of Turing degree 0n possessing a computable
model.

Theorem 2.9 ([43]). For every arithmetical Turing degree
d there exists a countably categorical theory of Turing degree d
possessing a computable model.

The proof of the following assertion about the existence of
a non-arithmetic countably categorical theory with computable
models was based on the ideas of [68] and [43].

Theorem 2.10 (Fokina, Goncharov, Khoussainov). There
exists a countably categorical theory T with a computable model
such that the Turing degree of T is non-arithmetical.

Having an answer to the question in Problem 5 below, it
would be possible to obtain a complete description of the Turing
degrees of countably categorical theories possessing computable
models.

Problem 5. Is it true that for every Turing degree d �
0(ω) there exists a countably categorical theory of Turing degree d
possessing a computable model?

2.1.2. Computable uncountably categorical models.

Here, we deal only with models of uncountably categorical theo-
ries.
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Morley proved that a theory is categorical in uncountable
power α if and only if the theory is categorical in uncountable
power ω1. Among typical examples of uncountably categorical
theories, there are the theory of algebraically closed fields of fixed
characteristic, the theory of vector spaces over a fixed countable
field, the theory of the structure (ω, S), where S is the successor
function on ω. Roughly speaking, all countable models of each
of these theories can be listed into an ω + 1 chain so that the
first element is the prime model, the last element is the saturated
model, and any two models are embedded each other. Apparently,
it is one of the main structural properties of the class of models of
an uncountably categorical theory.

Baldwin and Lachlan [9] showed that all models of an un-
countably categorical theory T can be listed in the following chain
of elementary embeddings:

chain (T ) : A0 	 A1 	 A2 	 . . .Aω,

where A0 is the prime model of T , Aω is the saturated model of
T , and every Ai+1 is prime over Ai.

Assume that a theory T is decidable. In the general case, the
decidability of T does not imply the decidability of all models of
T . However, the following important result on decidable models
of T was established by Harrington and Khisamiev.

Theorem 2.11 ([74, 83, 84]). Let T be an uncountably cate-
gorical theory. Then T is decidable if and only if T has a decidable
model, which holds if and only if all models of T admit decidable
presentations.

The situation is similar to that for countably categorical the-
ories. Theorem 2.11 mainly answers to the question about the ex-
istence of decidable models of uncountably categorical decidable
theories. However, it does not clarify how to build computable
models of uncountably categorical theories if the decidability as-
sumption is omitted. Correspondingly, the following problem is
actual.
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Problem 6. Characterize uncountably categorical theories
possessing computable models.

The case of uncountably categorical theories is more com-
plicated. In general, the existence of a computable model of an
uncountably categorical theory T does not imply that all models
of T admit constructivizations. As was shown by Goncharov [47],
there exists an uncountably categorical theory T such that only
the prime model of T is computable.

Problem 7. Is it true that any countable model of a strongly
minimal theory possessing a computable prime model is 02–
computable?

Problem 8. Whether there exists an ω1–categorical theory
T such that the model M0 is computable, but any other model
Mn+1, i = 2, 3, . . ., is not 0i-computable?

It is remarkable that all known uncountably categorical the-
ories possessing computable models were regarded as computable
in the double jump of 0 recently. But, at present, some of such
theories are not viewed as computable owing to the lowering of the
complexity of models preserving the basic model-theoretic prop-
erties. New theories with a given arithmetic complexity were con-
structed by the method suggested in [68].

Theorem 2.12 ([68]). There exist uncountably categorical
theories Tn of Turing degree 0n, n > 2, such that all their models
admit constructivizations.

Theorem 2.13 ([43]). For every arithmetical Turing degree
d there exists an uncountably categorical theory T of Turing degree
d such that any countable model of T is isomorphic to a computable
model.

In the case of a special subclass of noncountably categori-
cal theories (for example, strongly minimal theories with trivial
pregeometry), an arithmetical bound holds for the complexity of
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such theories [61]. The sharpness of this bound was later proved
by Khoussainov, Lempp, and Solomon. We consider this special
case in more detail because of a new unexpected property allow-
ing us to derive bounds for the complexity of such theories. A
natural question arises: If the above results can be extended to
the class of all strongly minimal theories or to some a sufficiently
large subclass of such theories?

Definition 2.14. A formula ϕ(x) is a strongly minimal for-
mula of a complete theory T if for any model M of T , elements b
ofM, and a formula ψ(x, y) one of the sets {a|M � ψ(a, b)&ϕ(a)}
or {a|M � ¬ψ(a, b)&ϕ(a)} is finite.

If ϕ(x) is strongly minimal formula of a complete theory T ,
then for any model M of the theory T it is possible to define an
operator of cl(X) from the set P (ϕ(M)) of all subsets ϕ(M) to
P (ϕ(M)).

Let ϕ(M) 
 {a|Mϕ(a)}, and let X be a subset of ϕ(M).
We set cl(X) 
 {a | there exists a formula θ(x) such that M |=
θ(a) and the set θ(M) is finite}. Let ϕ(x) be a strongly minimal
formula of a complete theory T , and let M be a model of T . The
cardinality of any maximal independent subset Y of the model
ϕ(M) is called the dimension of the modelM of T and is denoted
by dim (M).

Baldwin and Lachlan [9] found a remarkable property of the-
ories categorical in uncountable power, owing to which it becomes
possible to clarify globally the structure of all models of such the-
ories.

Theorem 2.15 ([9]). Let T be a complete uncountably cate-
gorical theory. Then there exists a complete formula ρ(z) and con-
stants c such that T ∗ 
 T ∪{ρ(c)} is a complete theory (principal
expansion of T ) and there exists a strongly minimal formula ϕ(x)
of the theory T ∗.



140 Sergei S. Goncharov

Theorem 2.16 ([9]). Let M1 and M1 be models of a com-
plete theory T with strongly minimal formula. If dim (M1) =
dim (M2), then the models M1 and M1 are isomorphic.

Consider a natural subclass of theories categorical in un-
countable power.

Definition 2.17. A theory T is strongly minimal if the for-
mula x = x is strongly minimal in T .

Definition 2.18. A model M is strongly minimal if the the-
ory TH(M) is strongly minimal.

Definition 2.19. We say that a strongly minimal theory T
has trivial pregeometry if for any model M of T and any subset
X of the universe of M the following equality holds: cl(X) =
∪a∈Xcl{a}.

Theorem 2.20 ([61]). Let M be a computable strongly min-
imal theory with trivial pregeometry. Then Th(M) forms a 0′′-
computable set of L-sentences. Consequently, all countable models
of Th(M) are 0′′-decidable and, in particular, are 0′′-computable.

Theorem 2.21 ([61]). For any strongly minimal theory T
with trivial pregeometry the elementary diagram FD(M) of any
model M of T is a model complete LM -theory.

Note that a model of a strongly minimal theory T with triv-
ial pregeometry is not necessarily model complete in the original
language (for example, 〈ωS〉 is not model complete).

Proof of Theorem 2.21. Consider a model M0 of T . To
simplify the notation, we write T ∗ instead of Th((M0)M0). Let
L∗ be the language of T ∗ (i.e., L∗ = LM0). Consider two models
M ⊆ N of T ∗ of size κ, where κ > |M0| is fixed. Since M and
N are models of T ∗, we can assume that M0 .M and M0 . N .
We need to show that M . N . For this purpose, we use two
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standard facts, the so-called non-finite cover property and finite
satisfiability.

The non-finite cover property of an uncountably categorical
theory means that for all L∗-formulas ϕ(x, y) there is a number
k such that for any M∗ |= T ∗ and b in M∗ either ϕ(b,M∗) is
infinite or has size at most k. The number k depends only on ϕ
and the partition of free variables in (x, y). Thus, one can use the
quantifiers ∃<∞ and ∃∞, where ∃<∞yϕ(x, y) denotes ∃�kyϕ(x, y)
and ∃∞yϕ(x, y) denotes ¬∃<∞yϕ(x, y).

The following assertion is an immediate consequence of the
pigeon-hole principle.

Lemma 2.22. If N |= ∃∞yϕ(b, y) and lg(y) = k + 1, then
there is a partition of y in wz with lg(w) = 1 and lg(z) = k such
that N |= ∃∞w∃zϕ(b, w, z).

The following general fact, referred to as the finite satisfia-
bility, asserts that if M0 . N are models of a stable theory and
N |= ϕ(b, c) for some LM0-formula and some b, c in N that are
independent (i.e., do not fork over M0), then there is a in M0 such
that N |= ϕ(a, c). This fact is obvious because, in a stable theory,
every complete type over a model is definable. We formulate this
assertion in a special case of strongly minimal theories.

Lemma 2.23. Suppose that M0 . N are models of a
strongly minimal theory and b, c are tuples in N such that
acl(M0b) ∩ acl(M0c) = M0. If N |= ϕ(b, c) for any LM0-formula
ϕ, then there is a in M0 such that N |= ϕ(a, c).

We also need the following notion.

Definition 2.24. An L∗-formula ϕ(x) is absolute if for all b
in M we have M |= ϕ(b) if and only if N |= ϕ(b).

To complete the proof of M . N , it suffices to show that
any L∗-formula is absolute. It is obvious that every quantifier-
free L∗-formula is absolute and a family of absolute formulas is
closed under the Boolean operations. Thus, to obtain the model
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completeness of T ∗, it suffices to show that if an L∗-formula ϕ(x, y)
is absolute, then ∃yϕ(x, y) is also absolute.

Definition 2.25. An L∗-formula ϕ(x, y) is said to be an
(n,m)-formula if lg(x) = n and lg(y) = m. We identify three
interrelated families of statements:

• An,m is the statement that for all absolute (n,m)-formulas
ϕ(x, y) the formula ∃<∞yϕ(x, y) is absolute,

• Bn,m is the statement that for all absolute (n,m)-formulas
ϕ(x, y), if b ∈ Mn and N |= ∃<∞yϕ(b, y), then ϕ(b,N ) =
ϕ(b,M), i.e., every realization of ϕ(b, y) in Nm is an element
of Mm,

• Cn,m is the statement that for all absolute (n,m)-formulas
ϕ(x, y) the formula ∃yϕ(x, y) is absolute.

By the above arguments, to prove the model completeness of
T ∗, it suffices to show that Cn,1 holds for all n ∈ ω.

It is obvious that each of three statements in Definition 2.25 is
preserved if subscripts decrease (for example, Bn,m implies Bn′,m′

for all n′ � n and all m′ � m).

Lemma 2.26. The following assertions hold:

(a) Bn,m implies Cn,m for all n,m ∈ ω,
(b) Bn,m implies An,m+1 for all n,m ∈ ω,
(c) B1,m (consequently, B0,m) holds for all m ∈ ω.

Proposition 2.27. Bn,m+1 and An+1,m imply Bn+1,m for all
n,m ∈ ω.

As was already noted, T ∗ is model complete if M. N .
We show that Bn,m holds for all n, m ∈ ω. For this purpose,

we show by induction on n that Bn,m holds for all n. Note that
B1,m holds for all m ∈ ω. We fix n � 1 and assume that Bn,m holds
for all m. Let us prove that Bn+1,m holds for all m by induction
on m. It is obvious that Bn+1,0 holds. Assume that Bn+1,m holds
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for some m. Then Bn,m+2 holds by the induction assumption
and An+1,m+1 holds since Bn+1,m holds. Thus, Bn+1,m+1 holds by
Proposition 2.27, and the induction procedure is complete.

By Lemma 2.26 (a), Cn,m holds for all n, m ∈ ω. In particu-
lar, Cn,1 holds for all n ∈ ω. This means that the family of absolute
L∗-formulas is closed under the existential quantification. As is
known, the family of absolute L∗-formulas contains quantifier-free
formulas and is closed under Boolean connectives. Hence every
L∗-formula is absolute. Thus, M. N , as required. �

For a structure M we denote by Th∀∃(MM) the set of all
∀∃-sentences σ ∈ Th(MM) (in the language LM).

Lemma 2.28. If the elementary diagram of a structure M
is model complete, then Th∀∃(MM) and Th(MM) are equivalent
LM -theories.

Proof. It is obvious that Th∀∃(MM) is a subset of Th (MM).
On the other hand, if Th(MM) is model complete, then it is ∀∃-
axiomatizable in the language LM . But any ∀∃-axiomatization of
Th(MM) is a subset of Th∀∃(MM). �

It turns out that the model completeness of the elementary
diagram of a structure M is a property of the theory of M. To
prove this fact, we introduce the following definition.

Definition 2.29. An existential L-formula ψ(x, y) and an
∀∃-formula of L form a linked pair (for T ) if T |= ∃yθ(y) and
T |= ∀y∀y′∀x(θ(y) ∧ θ(y′) ∧ ψ(x, y) → ψ(x, y′)).

Proposition 2.30 ([67]). The elementary diagram of an L-
structure M is model complete if and only if for every L-formula
ϕ(x) there is a linked pair (θ, ψ) such that M |= ∃yθ(y) and

M |= ∀y(θ(y) → ∀x[ϕ(x) ↔ ψ(x, y)]). (∗)

Proof. Assume that the elementary diagram of M is model
complete. Fix an L-formula ϕ(x). Since Th(MM) is model com-
plete, there is an existential L-formula ψ(x, y) and a tuple b in M
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such that M |= δ(b), where δ(y) := ∀x[ϕ(x) ↔ ψ(x, y)]. Hence
Th∀∃(MM) |= δ(b) in view of Lemma 2.28. By compactness,
there is an ∀∃-formula θ(y) in L such that θ(b) ∈ Th∀∃(MM)
and {θ(b)} |= δ(b). (Without loss of generality, by padding δ, we
can assume that any constant symbol appearing in θ also appears
in δ.)

Conversely, assume that the right-hand side of (∗) holds. Fix
an LM -formula ϕ(x, a), where ϕ(x, z) is an L-formula and a be-
longs to M . Choose θ(y) and ψ(x, z, y) corresponding to ϕ(x, z).
Let b be any realization of θ(y) in M . Then

M |= ∀x∀z[ϕ(x, z) ↔ ψ(x, z, b)].

In particular, M |= ∀x[ϕ(x, a) ↔ ψ(x, a, b)]. Thus, every
LM -formula is Th(MM)-equivalent to an existential LM -formula,
which implies the model completeness of Th(MM). �

Corollary 2.31 ([61]). IfM and N are elementarily equiva-
lent L-structures then the elementary diagram ofM is model com-
plete if and only if the elementary diagram of N is model complete.
In particular, if T is a complete theory and the elementary dia-
gram of some model of T is model complete, then the elementary
diagram of every model of T is model complete.

Proposition 2.32 ([61]). Let T be an L-theory such that the
elementary diagram of every model of T is model complete. Then
T is ∃∀∃-axiomatizable.

Proof. Let M be an arbitrary model of T . Then Th∀∃(MM)
implies σ. Therefore, there is a conjunction ψ of ∀∃-sentences
of LM that logically implies σ. Since none of the extra constant
symbols in M appears in σ, we can existentially quantify out these
constant symbols and obtain a formula of the desired complexity
which logically implies σ. �

The following assertion immediately follows from Theorem
2.21 and Proposition 2.32.
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Corollary 2.33 ([61]). Every strongly minimal theory with
trivial pregeometry is ∃∀∃-axiomatizable.

Proof. By Theorem 2.21, Th(MM) is model complete and,
consequently, ∀∃-axiomatizable. Then Th∀∃(MM) is a 0′′-
computable set of formulas which axiomatizes Th(MM), and so
Th(MM) and its reduct Th(M) are 0′′-computable sets of for-
mulas as well. By relativisation theorem due to Harrington [74]
and Khisamiev [83], any countable model of the theory Th(M)
decidable relative to 0′′, is 0′′-computable. �

The following question still remains open.

Problem 9. Is the assertion of Corollary 2.33 remains valid
for an arbitrary strongly minimal theory?

Recently, Khoussainov, Lempp, and Solomon proved the fol-
lowing result.

Theorem 2.34 ([86]). There exists an uncountably categor-
ical strongly minimal theory T with trivial pregeometry possessing
a computable prime model such that all other models has the com-
plexity of Turing degree 02.

It is of interest to generalize the result of [86].

Problem 10. Whether there are examples of uncountably
categorical strongly minimal theories Tn possessing a computable
models such that other models have the complexity of Turing de-
gree 0n+3, n � 0?

The following conjecture was suggested by S. Lempp.

Conjecture 2.35. An uncountably categorical theory pos-
sessing a computable model is arithmetical.

Note that the above result of Harrington [74] and Khisamiev
[83, 84] can be relativized to show that if T is uncountably cat-
egorical and arithmetic, then all models of T admit arithmetic
numbering. If Conjecture 2.35 could be confirmed, this would
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mean that all models of an uncountably categorical arithmetic
theory admit arithmetic numberings. To confute Conjecture 2.35,
it suffices to construct a theory with the properties listed in the
following problem.

Problem 11. Whether there exists an uncountably cate-
gorical theory T with models A0 . A1 . . . . . Aω such that
A0 has a constructivization, and every Ai+1, i ∈ ω, has 0i+1–
constructivization, but not 0i–constructivization?

2.1.3. Computable models of Ehrenfeucht theories.

In the case of countably categorical theories, the question about
bounds for theories with decidable models is trivial. All countable
models of such a theory are decidable if and only if the theory
is decidable. The Ehrenfeucht theories are close to the countably
categorical theories. Recall that a theory is a called an Ehrenfeucht
theory if it has finitely many countable models. Naturally, the
question is much more complicated if the computablity condition
is required.

Peretyat’kin [135] proved that a prime model of an Ehren-
feucht theory is decidable. Lachlan constructed the first example
of an Ehrenfeucht theory possessing six countable models such
that only the prime model is decidable. Later, such examples for
any n � 3 were constructed by Peretyat’kin.

However, there are still many open questions concerning the-
ories possessing decidable models. First of all, we recall the well-
known Morley problem.

Problem 12 ([125]). Is it true that any countable model of
any Ehrenfeucht theory with computable types is decidable?

The following weakened version of the Morley problem is also
of interest.

Problem 13. Is it true that any countable models of any
Ehrenfeucht theory with computable types is arithmetical?
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Ash and Millar [7] proved that all models of hyperarith-
metical Ehrenfeucht theories are decidable in hyperarithmetical
degrees. Millar [107] and Reed [138] constructed examples of
decidable Ehrenfeucht theories with a given complexity for some
nonprincipal type and, consequently, with a given hyperarithmeti-
cal complexity of their countably saturated model and some other
models. The following problem arises in a natural way.

Problem 14. Is it true that all countable models of any
Ehrenfeucht theory with arithmetical types are decidable (com-
putable) relative to some arithmetical Turing degree?

Note that all homogeneous models of an Ehrenfeucht theory
with decidable (arithmetic) types are decidable (relative to some
arithmetic Turing degree) [40]. This fact immediately follows from
the decidablity theorem for homogeneous models with countable
family of types realized there and countable family of all decidable
types of theories of this model [40].

The above discussion suggests the following strategy.

Problem 15. Show that all almost homogeneous models of
an Ehrenfeucht theory with decidable (arithmetical) types are de-
cidable (relative to some arithmetical type).

The following weaker property is also of interest.

Problem 16. Show that all almost homogeneous models
of an Ehrenfeucht theory with decidable (arithmetical) types are
computable (relative to some arithmetical type).

Recall that a model is said to be almost homogeneous if it is
homogeneous in some enrichment by constants for a finite collec-
tion of its elements.

It is remarkable that, in all known examples of Ehrenfeucht
theories, all countable models are almost homogeneous. The as-
sertion that all countable models of any Ehrenfeucht theory are
almost homogeneous (if it is true) could be helpful for resolving
the problems. On the other hand, a counterexample could open a
door to the negative solution of the Morley problem.
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To consider computable models of such theories, we start
with the following open question.

Problem 17. Characterize Ehrenfeucht theories possessing
computable models.

It is of interest to generalize the result of Lerman and Schmerl
[96] for countably categorical arithmetic theories to the case of
Ehrenfeucht theories. The same question can be considered re-
garding the Knight theorem [90] for non-arithmetic Ehrenfeucht
theories.

The above results on the complexity for countably categorical
theories yield the following assertions.

Corollary 2.36 ([68]). For every n � 1 there exists am
Ehrenfeucht theory of Turing degree 0n that has a computable
model.

Corollary 2.37 ([43]). For every arithmetical Turing degree
d there exists an Ehrenfeucht theory of Turing degree d that has a
computable model.

We complete this section with the following result asserting
the existence of computable models of non-arithmetic countably
categorical theories.

Theorem 2.38 (Fokina, Goncharov, Khoussainov). There
exists an Ehrenfeucht theory T with a computable model and the
Turing degree T is non-arithmetical.

3. Structure Complexity
of Computable Models

In this section, we discuss necessary conditions on the structure of
computable models from the point of view of the model-theoretic
complexity. For this purpose, we choose a language with infinite
disjunctions and conjunctions. Then every countable model can
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be described up to an isomorphism and the number of necessary
infinite disjunctions and conjunctions determines the ordinal level
of the structure complexity of the model. Using the theory of
admissible sets, it is possible to obtain an upper bound for the
complexity of a computable model. The sharpness of the bound
and the realizability of all less complexities play an important role
for describing structural properties of computable models. We
present two methods based on the Scott rank and on the Barwise
rank.

3.1. Definability of computable models

Recall that the Scott rank is a measure of the model-theoretic
complexity. This term came from the Scott isomorphism theorem
[144].

Theorem 3.1 (the Scott isomorphism theorem). For every
countable structure A (for a countable language L) there is an Lω1ω

sentence whose countable models are isomorphic copies of A.

To prove this assertion, Scott assigned countable ordinals to
tuples in A and to A itself. There are several different definitions
of the Scott rank.

Let a and b be tuples in A.

• We write a ≡0 b if a and b satisfy the same quantifier-free
formulas.

• Let α > 0. We write a ≡α b if for all β < α and c there exists
d and for every d there exists c such that a, c ≡β b, d.

Definition 3.2. The Scott rank of a tuple a in A is the least
β such that for all b from a ≡β b it follows that (A, a) ∼= (A, b).

Definition 3.3. The Scott rank SR (A) of A is the least
ordinal α greater than the ranks of all tuples in A.
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Example 3.4. IfA is an ordering of type ω, then SR (A) = 2.
We have a ≡0 b if a and b are ordered in the same way. We have
a ≡1 b if the corresponding intervals (before the first element and
between successive elements) are of the same size, and this fact
is enough to assure an isomorphism. Hence the tuples have Scott
rank 1 and the ordering has Scott rank 2.

3.2. The Kleene notation system O

As in the general algorithm theory, for constructing models of
given complexity and estimating the complexity an important role
is played by computable ordinals and the Kleene notation system
O (cf. [140]) for all computable ordinals. The least ordinal having
no notation in the Kleene system is referred to as the Church–
Kleene ordinal and is denoted by ωCK

1 . It is easy to check that it
is the least noncomputable ordinal.

Recall that the Kleene notation system consists of a set O of
notations equipped with a partial ordering <O. The ordinal 0 has
notation 1. If a is the notation of α, then 2a is the notation of
α + 1. Then a <O 2a, and b <O a implies b <O 2a.

Suppose that α is a limit ordinal. If ϕe is a total function
providing notations for an increasing sequence of ordinals with
limit α, then 3 ·5e is the notation of α. For all n we have ϕe(n) <O
3·5e, and b <O ϕe(n) implies b <O 3·5e. The set O is Π1

1 complete.

3.3. Computable infinitary formulas

For any notation from the Kleene notation system O it is possible
to introduce infinitary formulas which are used to describe com-
putable structures. Roughly speaking, we will define infinitary for-
mulas on a fixed level where the disjunctions and conjunctions of
computable formulas from previous levels are computable. They
are essentially the same as the formulas in the least admissible
fragment of Lω1ω.
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We may classify computable infinitary formulas as com-
putable Σα, or computable Πα, for various computable ordinals
α. We have the useful fact that in a computable structure, a rela-
tion defined by a computable Σα (or computable Πα) formula will
be Σ0

α (or Π0
α). To illustrate the expressive power of computable

infinitary formulas, we note that there is a natural computable Π2

sentence characterizing the class of Abelian p-groups. For every
computable ordinal α there is a computable Π2α formula saying
that the height is at least ω·α for an element of an Abelian p-group.

The following theorem presents a well-known useful version
of the compactness theorem for computable infinitary formulas.

Theorem 3.5 (the Barwise–Kreisel compactness theorem).
Let Γ be a Π1

1 set of computable infinitary sentences. If every ∆1
1

subset of Γ has a model, then Γ also has a model.

Theorem 3.5 can be used for obtaining computable structures
and special computable sequences of computable structures.

Corollary 3.6. Let Γ be a Π1
1 set of computable infinitary

sentences. If every ∆1
1 subset has a computable model, then Γ also

has a computable model.

Corollary 3.6 can be applied uniformly to Π1
1 sets of com-

putable infinitary sentences.
The following two assertions demonstrate the expressive

power of computable infinitary formulas.

Corollary 3.7. If A and B are computable structures satis-
fying the same computable infinitary sentences, then A ∼= B.

Corollary 3.8. Suppose that a and b are tuples satisfying the
same computable infinitary formulas in a computable structure A.
Then there is an automorphism of A sending a to b.

Theorem 3.5 and Corollaries 3.6–3.8 are well known and may
be found, for example, in [5] (cf. also [66]).
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3.4. Computable rank

Definition 3.9. The computable rank Rc(A) of a structure
A is the first ordinal α such that for all tuples a, b in A of the
same length the following holds: if for all β < α all computable Πβ

formulas true of a are also true of b, then there is an automorphism
sending a to b.

By Corollary 3.7, if A is a hyperarithmetical structure, then
Rc(A) � ωCK

1 . In this case, Definition 3.9 can be formulated as
follows: The computable rank is the first ordinal α such that for
all tuples a and b of the same length the following holds: if a and
b satisfy the same computable Πβ formulas for β < α, then they
satisfy the same computable Πα formulas.

Proposition 3.10. For any computable language L and com-
putable ordinal α (or any notation) there exists a computable in-
finitary sentence saying that Rc(A) � α for an L-structure A.

Note that the notion of computable rank essentially differs
from that of Scott rank. Nevertheless, in the case of a hyperarith-
metical structure A, the computable rank is a computable ordinal
just as the Scott rank is computable. If Rc(A) is computable, then
A has a computable Scott sentence. The converse assertion is also
true.

Proposition 3.11 (J. Millar1). Suppose that A is a hyper-
arithmetical and Rc(A) = ωCK

1 . If ψ is a computable infinitary
sentence true in A, then ψ is also true in some hyperarithmetical
B �∼= A.

Sketch of Proof. LetA∗ be an expansion ofA with a pred-
icate Rϕ for every computable infinitary formula ϕ, up to complex-
ity α. Since the rank of A is not computable, A∗ is not homoge-
neous. Therefore, there is some tuple a realizing a non-principal
type in A∗. We produce a hyperarithmetical model B∗ of the

1Private communication.
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elementary first order theory of A∗ omitting the type of a and
satisfying ψ. To guarantee that ψ is true, we make sure that for
all subformulas ϕ(u)

B∗ |= ∀u [ϕ(u) ↔ Rϕ(u)].

If ϕ(u) is the disjunction of ϕi(u), we need to omit the type consist-
ing of Rϕ(u) and the formulas ¬Rϕi

(u). If ϕ(u) is the conjunction
of ϕi(u), we need to omit the type consisting of ¬Rϕ(u) and the
formulas Rϕi

(u). �

3.5. Rank and isomorphisms

We revise the Scott isomorphism theorem by looking for isomor-
phisms of bounded complexity.

Definition 3.12. Let α be a computable ordinal. A formally
Σ0

α Scott family is a c.e. Scott family Φ made up of computable
Σα formulas, possibly with a fixed tuple of parameters.

Definition 3.13. A computable structure A is ∆0
α categori-

cal if A ∼=∆0
α
B for every computable copy B.

Theorem 3.14 (Ash, Goncharov). Suppose that A is com-
putable. If A has a formally Σ0

α Scott family, then it is ∆0
α cat-

egorical. With some added effectiveness on one copy of A, the
converse holds.

This assertion was proved in [45, 46] in the computable case
and in [1] in the general case.

Proposition 3.15. Let α be a computable ordinal. For a
given index of a computable structure A such that Rc(A) = α
there is an index of a formally Σ0

α+2 Scott family for A without
parameters.

Suppose that K is a class of structures such that there is a
computable bound on Rc(A) for A ∈ Kc. Proposition 3.15 asserts
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that for a given index of A ∈ Kc we can find an index of a Scott
family consisting of formulas of bounded complexity. Then we can
pass to a computable infinitary Scott sentence.

These results yield a bound on the Scott ranks for computable
structures [127]. There are examples of computable structures
having various computable Scott ranks and familiar structures (for
example, the Harrison ordering) with Scott rank ωCK

1 + 1 [70].
Makkai [99] constructed a structure of Scott rank ωCK

1 which can
be made computable [68] and simplified it so that it is just a tree
[14]. As was shown in [13], it is possible to construct further com-
putable structures of Scott rank ωCK

1 in the classes of undirected
graphs, fields of any characteristic, and linear orderings. These
results give us interesting examples of computable structures with
different complexity of the isomorphism problem for different com-
putable representations.

Proposition 3.16. Let A be a computable structure. Then
SR (A) � ωCK

1 + 1.

The further properties of computable structures are listed in
the following assertion.

Proposition 3.17. Let A be a computable structure. Then

(1) SR (A) < ωCK
1 if there is a computable ordinal β such that

the orbits of all tuples are defined by computable Πβ formulas,

(2) SR (A) = ωCK
1 if the orbits of all tuples are defined by com-

putable infinitary formulas, but there is no computable bound
on the complexity of these formulas,

(3) SR (A) = ωCK
1 + 1 if there is some tuple whose orbit is not

defined by any computable infinitary formula.

The low Scott rank is associated with simple Scott sentences.
Recall that a Scott sentence for A is a sentence whose countable
models are just the isomorphic copies of A (as in the Scott iso-
morphism theorem).
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Theorem 3.18 ([127, 128]). Let A be a computable struc-
ture. Then SR (A) is computable if and only if A has a computable
infinitary Scott sentence.

Corollary 3.19. Let Γ be a Π1
1-set of computable infinitary

sentences. If every ∆1
1-set Γ′ ⊆ Γ has a computable model, then Γ

has a computable model.

Proposition 3.20 ([139]). Suppose that A is a hyperarith-
metical structure. Let Γ be a Π1

1-set of computable infinitary sen-
tences in a finite expansion of the language of A. Suppose that for
each ∆1

1-set Γ′ ⊆ Γ the structure A can be expanded to a model of
Γ′. Then A can be expanded to a model of Γ.

Corollary 3.21. Let A be a hyperarithmetical structure. If
a and b are tuples in A satisfying the same computable infinitary
formulas, then there is an automorphism of A sending a to b.

Consider three different types of Scott rank for computable
models described in Proposition 3.17 that are realized in classical
algebras and models.

In the case SR (A) < ωCK
1 , the following structural property

of computable models holds.

Proposition 3.22. All computable members of the following
structures have a computable Scott rank:

• well orderings,
• superatomic Boolean algebras,
• reduced Abelian p-groups.

An interesting class of models is formed by computable mod-
els with SR (A) = ωCK

1 + 1. There are well-known examples of
computable structures of Scott rank ωCK

1 + 1. Harrison showed
that there is a computable ordering of type ωCK

1 (1 + η), called
the Harrison ordering, which gives rise to some other computable
structures with similar properties. The Harrison Boolean algebra
is the interval algebra of the Harrison ordering. The Harrison
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Abelian p-group has length ωCK
1 , with all infinite Ulm invariants

and a divisible part of infinite dimension.

Proposition 3.23. The Harrison ordering, Harrison
Boolean algebra, and Harrison Abelian p-groups have Scott rank
ωCK

1 + 1.

It was unexpected that there exist models with SR (A) =
ωCK

1 .
In the case of the Scott rank ωCK

1 , it is not easy to find
computable examples. An arithmetical example was constructed
by Makkai.

Theorem 3.24 ([99]). There is an arithmetical structure A
of rank ωCK

1 .

Models A of Scott rank SR (A) = ωCK
1 will be referred to as

Makkai models.
In the Makkai example, in contrast to the Harrison order-

ing, the set of computable infinitary sentences that are true in
the structure is ℵ0 categorical. Hence the conjunction of these
sentences is a Scott sentence for the structure. The following as-
sertion can be proved on the basis of the results of [68] and [92].

Theorem 3.25. There exists a computable structure of Scott
rank ωCK

1 .

As was proved in [14], there exists a computable tree of Scott
rank ωCK

1 . This construction may be employed in other situations.
The authors of [14] used the idea to take trees as Knight–Millar
Trees and add a homogeneity property. In more detail, let T be
a subtree of ω<ω. We have a top node ∅. We will define the tree
rank for σ ∈ T and then for T . Below, we use the notation rk(σ),
rk(T ).

• rk(σ) = 0 if σ is terminal.

• For α > 0, rk(σ) = α if all successors of σ have ordinal rank,
and α is the first ordinal greater than these ordinals.
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• rk(σ) =∞ if σ does not have ordinal rank.

We set rk(T ) = rk(∅).

Remark. rk(σ) =∞ if and only if σ extends to a path.

If T is a tree, we denote by Tn the set of elements at level n
in the tree, i.e., Tn = T ∩ ωn.

Definition 3.26. A tree T is thin if for all n the set of ordinal
ranks of elements of Tn has order type at most ω · n.

This definition is used as follows. If T is a computable thin
tree, then for every n there is a computable αn such that for all
σ ∈ Tn from rk(σ) � αn it follows that rk(σ) =∞.

Theorem 3.27 ([92]). The following assertions hold.

(1) There exists a computable thin tree T with a path but no
hyperarithmetical path.

(2) If T is a computable thin tree with a path but no hyperarith-
metical path, then A(T ) is a computable structure of Scott
rank ωCK

1 .

A computable tree of Scott rank ωCK
1 was constructed in [14].

This tree satisfies some conditions from [92] and the following
homogeneity property.

Definition 3.28. A tree T is rank-homogeneous if for all n
the following conditions are satisfied:

• for all σ ∈ Tn and computable α, if there exists τ ∈ Tn+1

such that rk(τ) = α < rk(σ), then σ has infinitely many
successors σ′ with rk(σ′) = α,

• for all σ ∈ Tn, if rk(σ) = ∞, then σ has infinitely many
successors σ′ with rk(σ′) =∞.

Remark. Suppose that T and T ′ are rank-homogeneous
trees and for all n there is an element in Tn of rank α ∈ Ord ∪{∞}
if and only if there is an element in T ′

n of rank α. Then T ∼= T ′.
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In [14], the construction of a tree of Scott rank ωCK
1 is based

on the following result.

Theorem 3.29 ([92]). The following assertions hold.

(1) There is a computable thin rank-homogeneous tree T such
that rk(T ) = ∞ but T has no hyperarithmetical path.

(2) If T is a computable thin rank-homogeneous tree such that
rk(T ) = ∞ but T has no hyperarithmetical path, then
SR (T ) = ωCK

1 .

As in the case of group-trees, the computable infinitary the-
ory is ℵ0 categorical for the trees considered in [14]. But, unlike
group-trees, there are many nontrivial hyperarithmetical automor-
phisms. It is possible to produce a tree as above, with the property
of strong computable approximability [14].

Definition 3.30. A structure A is strongly computably ap-
proximable if for any Σ1

1 set S there exists a uniformly computable
sequence (Cn)n∈ω such that n ∈ S if and only if Cn

∼= A. The struc-
tures Cn with n /∈ S are said to be approximating.

For example, it is well known that the Harrison ordering is
strongly computably approximable by computable well orderings.

Theorem 3.31 ([14]). There is a computable tree T of Scott
rank ωCK

1 such that T is strongly computably approximable. More-
over, the approximating structures are trees of computable Scott
rank.

Using these trees, it is possible to construct many new exam-
ples of Makkai models.

Theorem 3.32 ([13]). Each of the following classes contains
computable structures of Scott rank ωCK

1 :

• undirected graphs,
• linear orderings,
• Boolean algebras,
• fields of any characteristic.
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Thus, it is of interest to clarify how to determine the noncon-
structive Scott rank on a computable model from its computable
representation.

Problem 18. What is the complexity of the index set of
Makkai models in universal computable numberings of computable
models of a fixed signature?

Problem 19. What is the complexity of the index set of
computable models of Scott rank ωCK

1 +1 in universal computable
numberings of computable models of a fixed signature?

3.5.1. Barwise rank.

Recall the definition of the quantifier rank of a formula (we as-
sume that the implication ⇒ is expressed in terms of ¬ and ∧ and
thereby it does not occur directly in the formulas under consider-
ation):

qr(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if ϕ is quantifier-free;

qr(ψ) if ϕ is ¬ψ;

qr(ψ) + 1 if ϕ is ∃vψ or ∀vψ;

sup{qr(ψ) | ψ ∈ Φ} if ϕ is
∧

Φ or
∨

Φ.

Show that for computable models we have SR (A) � ωCK
1 for

the complexity of Barwise rank. Let α be an ordinal.
Models M and N are α-equivalent (M ≡α N) if they satisfy

the same sentences with quantifier rank at most α. Two tuples
a, b ∈ M<ω are α-equivalent (a ≡α b) if they satisfy the same
formulas with quantifier rank at most α.

We say that a tuple a ∈ M<ω has quantifier rank α in M if
(a ≡α b ⇒ a ≡ b) for all tuples b ∈M<ω.

The Barwise rank br (M) of a model M is the minimal ordinal
α such that (a ≡α b ⇒ a ≡α+1 b) for all a, b ∈M<ω.
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As is known, the Barwise rank of a model M ∈ HYPω does
not exceed ωCK

1 .
The following assertion concerning the existence of hyper-

arithmetical isomorphisms for different computable representa-
tions of models shows a close connection between this problem
and the Π1

1Π definability of relations on computable models.

Theorem 3.33 ([71]). Let M be a hyperarithmetical model.
The following assertions are equivalent.

(1) There exist tuples a, b ∈ M<ω such that 〈M, a〉 ∼= 〈M, b〉, but
〈M, a〉 �h

〈
M, b

〉
.

(2) There is a tuple a ∈ M<ω such that there exists an infinite
family (āi)i<ω of tuples in M<ω with the following properties:
(a) 〈M, a〉 ∼= 〈M, āi〉 for all i < ω,

(b) 〈M, ai〉 �h 〈M, aj〉 for all i < j < ω.

(3) The Barwise rank of M is equal to ωCK
1 .

(4) IM /∈ Π1
1, where IM = {〈a, b〉 ∈M<ω ×M<ω | a ∼= b}.

Assume that there exist two isomorphic hyperarithmetical
models M and N that are not hyperarithmetically isomorphic.

Problem 20. Is it true that there exists a computable se-
quence of hyperarithmetical models Mn, n ∈ ω, such that every
Mn is isomorphic, but not hyperarithmetically isomorphic to M?

3.5.2. Intrinsically Π1
1 relations.

In view of Theorem 3.33, it is important to have a description
for relations with Π1

1 complexity in computable hyperarithmetical
models. The first results on analytic complexity were obtained by
Soskov [147, 148].

Proposition 3.34 ([148]). Suppose that A is computable
and R is a ∆1

1 relation invariant under automorphisms of A. Then
R is definable in A by a computable infinitary formula without
parameters.
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Corollary 3.35. For a computable structure A and a rela-
tion R on A the following assertions are equivalent:

(1) R is intrinsically ∆1
1 on A,

(2) R is relatively intrinsically ∆1
1 on A,

(3) R is definable in A by a computable infinitary formula with
finitely many parameters.

Definition 3.36. A relation R on A is formally Π1
1 on A if

it is defined in A by the Π1
1 disjunction of computable infinitary

formulas with finitely many parameters.

We formulate the result of [147] in the following form.

Proposition 3.37. For a computable (hyperarithmetical)
structure A and a relation R on A the following assertions are
equivalent:

(1) R is relatively intrinsically Π1
1 on A,

(2) R is formally Π1
1 on A.

Theorem 3.38 ([70]). Suppose that A is a computable struc-
ture and R is a relation on A such that it is Π1

1 and is invariant
under automorphisms of A. Then R is formally Π1

1. Moreover, it
is possible to define it without parameters.

Corollary 3.39 ([70]). For a computable structure A and a
relation R the following assertions are equivalent:

(1) R is intrinsically Π1
1 on A,

(2) R is relatively intrinsically Π1
1 on A,

(3) R is formally Π1
1 on A.

We say that a relation is properly Π1
1 if it is Π1

1, but not Σ1
1.

Corollary 3.40 ([70]). If a relation R on a computable
structure A is invariant and properly Π1

1, then the image of R
in any computable copy is also properly Π1

1.
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There are several examples of computable structures with
intrinsically Π1

1 relations.

Example 3.41. The Harrison ordering is a computable or-
dering of type ωCK

1 (1 + η). The existence of such an ordering
was proved by Harrison who showed that for any computable tree
T ⊆ ω<ω such that T has paths, but no hyperarithmetical paths,
the Kleene–Brouwer ordering on T is a computable ordering of
type ωCK

1 (1 + η) + α with some computable ordinal α.

Let A be the Harrison ordering, and let R be the initial seg-
ment of type ωCK

1 . This set is intrinsically Π1
1 since it is defined by

the disjunction of computable infinitary formulas saying that the
interval to the left of x has order type β for computable ordinals β.

Example 3.42. The Harrison Boolean algebra is the interval
algebra of the Harrison ordering.

Let A be the Harrison Boolean algebra, and let R be the set
of superatomic elements containing in some of the Frechet ideals.
This set is intrinsically Π1

1 since it is defined by the disjunction
of computable infinitary formulas saying that x is a finite join of
α-atoms, where α is a computable ordinal.

Example 3.43. Recall that a countable Abelian p-group
G is determined up to an isomorphism by its Ulm sequence
(uα(G))α<λ(G) and the dimension of the divisible part. The Harri-
son p-group is a computable Abelian p-group G such that λ(G) =
ωCK

1 , uG(α) = ∞ for all α < ωCK
1 and the divisible part D has

infinite dimension.

By a Harrison group we mean the Harrison p-group for some
p. Let A be a Harrison group, and let R be the set of elements
with computable ordinal height, the complement of the divisible
part. Then R is intrinsically Π1

1 on A since it is defined by the
disjunction of computable infinitary formulas saying that x has
height α, where α is a computable ordinal.
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Theorem 3.44. For the Harrison groups, Harrison Boolean
algebra, and Harrison ordering there are computable representa-
tions without hyperarithmetical isomorphisms.

Problem 21. Characterize Π1
1 relations for other classes of

analytic hierarchy.

4. Isomorphism Problem

In this section, we consider isomorphisms of constructive and com-
putable models. Some of the results described below are taken
from [67].

4.1. Isomorphisms of countably
categorical models

Owing to the fundamental concept of a computable isomorphism,
it is possible to recognize whether or not two constructivizations
of a model have the same computability–theoretic properties.

Definition 4.1. Constructive algebraic systems (A, ν) and
(A, µ) are computably isomorphic if there exists an automorphism
α of A and a computable function f such that αν(n) = µ(f(n))
for all n ∈ ω. In this case, ν and µ are said to be autoequivalent.

A similar definition can be introduced for computable models.

Definition 4.2. Let A be a computable structure. We say
that A is computably categorical if for all computable B ∼= A there
is a computable isomorphism from A onto B.

Computably isomorphic structures cannot be distinguished in
terms of computability–theoretic properties of definable relations.
This means that for any definable relation R in A (or even for
R invariant under automorphisms of A) the Turing degrees of R
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under the constructivizations ν and µ are equivalent, i.e., ν−1(R)
and µ−1(R) have the same Turing degree. In addition, if ν and
µ are bijections, then ν−1(R) and µ−1(R) are computably invari-
ant. Within the study of computable isomorphisms, the following
important notion was introduced by Goncharov.

Definition 4.3. The dimension dim (A) of an algebraic sys-
tem A is the maximal number of its nonautoequivalent construc-
tivizations of A.

It is easy to see that the algebraic dimension can be expressed
in terms of computable models. Namely, the dimension of an alge-
braic system A is equivalent to the maximal number of computable
models that are not computably isomorphic each other, but they
are isomorphic to A. Informally, if we know the dimension of an
algebraic system A, we know the number of effective realizations
of A. The dimension of an algebraic system A can be represented
in computability–theoretic terms as the number of computable iso-
morphism types of A. Thus, if dim A = 1, the algebraic system
A has exactly one effective realization. We single out algebraic
systems of dimension 1.

Definition 4.4 ([100]). An algebraic system A is said to
be autostable if dim(A) = 1 and strongly autostable if all strong
constructivizations of A are autoequivalent.

The notion of an effectively infinite algebraic system, intro-
duced by Goncharov, is used in the study of computable isomor-
phisms. A sequence (A0, ν0), (A1, ν1), . . . of constructive models is
effective if the set {(i, ϕ)|ϕ ∈ ADνi

(Ai)} is uniformly computable.

Definition 4.5. An algebraic system A is said to be ef-
fectively infinite if there is an algorithm such that, applying it
to any index of an effective sequence of constructive systems
(A, ν0), (A, ν1), . . ., we obtain a constructive model (A, ν) such
that (A, ν) is not computably isomorphic to (A, νi) for any i ∈ ω.

Thus, an effectively infinite algebraic system A has infinite
dimension.
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The following characterization of strongly autostable alge-
braic systems was one of the first important results of the theory
of autostable models.

Theorem 4.6 ([129]). A strongly constructive algebraic sys-
tem (A, ν) is strongly autostable if and only if there exists finitely
many elements a0, . . . , an ∈ A such that

(1) the set of all complete formulas of the theory T of the alge-
braic system (A, a0, . . . , an) is computable,

(2) the algebraic system (A, a0, . . . , an) is the prime model of the
theory T .

Furthermore, if (A, ν) is not strongly autostable, then there
exists an algorithm such that, applying it to any index of an effec-
tive sequence of strongly constructive systems (A, ν0), (A, ν1), . . .,
we obtain a strongly constructive algebraic system (A, ν) such
that (A, ν) is not computably isomorphic to (A, νi) for all i ∈ ω.
Thus, the dimension of a strongly constructive algebraic system
that is not strongly autostable is infinite.

Similar questions are considered for other classes of algebraic
structures, for example, linearly ordered sets, Boolean algebras,
Abelian groups, rings, groups, partially ordered sets, fields, vector
spaces, etc. The first results were obtained for linearly ordered
sets, Boolean algebras, and torsion-free Abelian groups.

Together with the result of Nurtazin [130], the following the-
orem provides a characterization of all strongly autostable count-
ably categorical models.

The known Ryll–Nardzewski theorem (cf. [16]) characterizes
countably categorical theories in terms of types. It asserts that
a theory T is countably categorical if and only if for every n the
number of n-types of T is finite. This theorem suggests to in-
troduce a Ryll–Nardzewski type function typeT associating with
every n � 1 the number of n–types of T . For a decidable theory
T the function typeT is a ∆0

2–function.
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Theorem 4.7. A strongly constructive model (A, ν) of a
countably categorical theory T is strongly autostable if and only
if the type function typeT is computable.

Corollary 4.8. Let A be a model of a countably categorical
theory T that admits the effective elimination of quantifiers. Then
the following assertions are equivalent.

(1) The dimension of A is 1.

(2) There exists a finite sequence a0, . . . , an of elements of A such
that (A, a0, . . . , an) is the prime model of the theory T ′ of
(A, a0, . . . , an) and the set of atoms of T ′ is computable.

(3) The type function typeT is computable.

A natural question arises: What can be said about the
computability–theoretic complexity of typeT if T is decidable?
An answer is contained in the following assertion proved inde-
pendently by Venning [153].

Theorem 4.9. For any c.e. degree x there exists a decidable
countably categorical theory T such that typeT has degree x.

Note that there exists a strongly autostable, but not au-
tostable countably categorical model.

At the first glance, it seems that, if typeT of a countably
categorical theory is not computable, the dimension of the model
of T is greater than 1. However, there exists a counterexample
that can be obtained from the following result due to Khoussainov,
Lempp, and Solomon.

Theorem 4.10 ([86]). There exists a countably categorical
theory T such that the type function typeT is not computable,
whereas the model of T is autostable.

If a countably categorical theory T has a computable model,
then the type function of T is computable in Oω. Together with
the above results, this remark leads to the following open question.
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Problem 22. Whether there exists a countably categorical
theory T such that the type function typeT is not arithmetical,
whereas T has a constructive autostable model?

Note that the results concerning the construction of nonau-
tostable algebraic systems of finite dimension do not control the
model–theoretic properties of structures. For example, all the
structures constructed in [48, 49, 40, 18, 85] have theories with-
out prime models. Moreover, all known countably categorical
models have dimensions equal to either 1 or ω. So, it is reasonable
to put the following questions.

Problem 23. Whether a countably categorical model is ef-
fectively infinite if it is not autostable?

Problem 24. Assume that a countably categorical theory
T has a computable model. Is it true that the model of T is not
autostable if T is computable in 0n and typeT is not computable
in 0n?

4.2. Isomorphisms of uncountably
categorical models

Consider the algebraic system (ω, S). The theory T of (ω, S) is
uncountably categorical. The isomorphism type of a model A of
T is determined by the number of its components. The saturated
model of T has infinitely many components. All nonsaturated
models of T are autostable. One can prove that the saturated
model of T is not autostable; moreover, it is effectively infinite.

Let V be a vector space over an infinite computable field F .
Then the theory T of V (in the language consisting of + for vector
addition and unary operation f , f ∈ F , for multiplication by f)
is uncountably categorical. As is known, the isomorphism type of
a model A of T is characterized by the dimension of A.

The saturated model of T has infinite dimension. As above,
every finite dimensional vector space over F is autostable, the
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saturated model of T is not autostable and; moreover, is effectively
infinite.

Theorem 4.11. Let T be the theory of algebraically closed
fields of a fixed characteristic. Then a model A of T is autostable
if and only if it has a finite transcendence degree over its prime
field.

In all these examples, all the theories are decidable and admit
the elimination of quantifiers; moreover, non-saturated models are
autostable. At the same time, there exists a decidable uncountably
categorical theory T admitting the elimination of quantifiers such
that the prime model of T is not autostable.

Let T be a decidable uncountably categorical theory with
strongly autostable prime model.

Problem 25. Is it true that every nonsaturated model of T
is strongly autostable?

Conjecture 4.12. There exists an uncountably categorical
theory such that the countably saturated model is autostable.

Problem 26. Is it true that any field with infinite basis is
not autostable?

Without the requirement of decidability of an uncountably
categorical theory, the situation becomes much more complicated.
No results are known for computable isomorphisms and dimen-
sions of computable models of uncountably categorical theories.
For example, we do not know the spectra of dimensions of un-
countably categorical models. Recall that all models of an un-
countably categorical theory T can be listed in the ω + 1 chain of
models chain (T ): A0 . A1 . A2 . . . . . Aω, where Ai is the
prime model over Āi and Aω is the saturated model.

Problem 27. Let Ai be a model of an uncountably categori-
cal theory T in chain (T ). What sufficient and necessary conditions
for Ai to be autostable?
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In Problem 27, it is also of interest to control the dimension
of uncountably categorical models. In particular, the following
open question can be suggested.

Problem 28. Whether there exists an uncountably categor-
ical nonautostable model of finite dimension?

As was already mentioned, Goncharov constructed a nonau-
tostable algebraic system of finite dimension. Thus, it is reason-
able to formulate the following problem.

Problem 29. Whether it is possible to construct an alge-
braic system of finite dimension greater than 1 whose theories be-
long to some class of well–studied theories, for example, countable
or uncountably categorical theories, Erenfeucht theories, etc.

The following problem is of general character.

Problem 30. Characterize uncountably categorical models
of dimension 1.

There are known examples of computable structures of com-
putable Scott rank. At the same time, there are known struc-
tures (for example, the Harrison ordering) of Scott rank ωCK

1 + 1.
Makkai [99] constructed a structure of Scott rank ωCK

1 which can
be made computable [68].““ Then he simplified it in such a way
that it becomes just a tree [14]. As was shown in [13], there are
other computable structures of Scott rank ωCK

1 among undirected
graphs, fields of any characteristic, and linear orderings. The new
examples share a strong approximability property with the Har-
rison ordering and the tree in [14]. These results provide us with
examples of computable structures with different complexity of the
isomorphism problem for different computable representations.

4.3. Computable categoricity

Let A be a computable structure. We say that A is computably
categorical if for all computable B ∼= A there is a computable
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isomorphism from A onto B. Similarly, A is ∆0
α categorical if for

all computable B ∼= A there is a ∆0
α isomorphism. We say that

A is relatively computably categorical if for all B ∼= A there is an
isomorphism that is computable relative to B, and we say that
A is relatively ∆0

α categorical if for all B ∼= A there is a ∆0
α(B)

isomorphism.

Definition 4.13. A Scott family for A is a set Φ of formulas
with a fixed tuple of parameters c in A such that

• every tuple in A satisfies some ϕ ∈ Φ,

• if a, b are tuples in A satisfying the same formula ϕ ∈ Φ,
then there is an automorphism of A sending a to b.

A formally c.e. Scott family is a c.e. Scott family made up
of finitary existential formulas.

A formally Σ0
α Scott family is a Σ0

α Scott family made up of
“computable Σα” formulas.

Proposition 4.14. For a structure A the set {a : A |= ϕ(a)}
is Σ0

α(A) if ϕ is computable Σα, and Π0
α(A) if ϕ is computable

Πα. Moreover, this assertion remains valid with all imaginable
uniformity over structures and formulas.

It is easy to see that if A has a formally c.e. Scott family, then
it is relatively computably categorical, so it is computably cate-
gorical. More generally, if A has a formally Σ0

α Scott family, then
it is relatively ∆0

α categorical and, consequently, ∆0
α categorical.

Goncharov showed that, under some additional effectiveness
conditions (on a single copy), if A is computably categorical, then
it has a formally c.e. Scott family.

Ash showed that, under some effectiveness conditions (on a
single copy), if A is ∆0

α categorical, then it has a formally Σ0
α Scott

family.
For the relative notions, we do not have the effectiveness con-

ditions. The following assertion was proved in [6] and [17].
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Proposition 4.15. A computable structure A is relatively
∆0

α categorical if and only if it has a formally Σ0
α Scott family. In

particular, A is relatively computably categorical if and only if it
has a formally c.e. Scott family.

4.4. Basic results in numbering theory

We present some basic results in numbering theory [72] and ap-
plications to computable models. For S ⊆ P (ω) a numbering
is a binary relation ν such that S = {ν(i) : i ∈ ω}, where
ν(i) = {x : (i, x) ∈ ν}. A numbering ν of S is called a Fried-
berg numbering if it is a bijection in the sense that i �= j implies
ν(i) �= ν(j).

Suppose that ν and µ are two numberings of a family S.
We write ν � µ if there is a computable function f such that
ν(i) = µ(f(i)) for all i, i.e., we can effectively pass from a ν-index
to a µ-index for the same set. We say that ν and µ are computably
equivalent if µ � ν and ν � µ. Note that if µ and ν are Friedberg
numberings of S, then µ � ν implies ν � µ.

Definition 4.16. A family S ⊆ P (ω) is discrete if for every
A ∈ S there exists σ ∈ 2<ω such that for all B ∈ S the following
holds: σ ⊆ χB if and only if B = A.

Definition 4.17. A family is effectively discrete if there is a
c.e. set E ⊆ 2<ω such that

(a) for every A ∈ S there is σ ∈ E such that σ ⊆ χA,

(b) for all σ ∈ E and A, B ∈ S from σ ⊆ χA, χB it follows that
A = B.

Proposition 4.18 ([144]). There exists a unique up to a
computable equivalence family S ⊆ P (ω) with computable Fried-
berg numbering such that it is discrete, but not effectively discrete.
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Proposition 4.19 ([50]). For every finite n � 1 there is a
family of sets with just n computable Friedberg numberings deter-
mined up to a computable equivalence.

Proposition 4.20 ([154, 145]). There is a family S ⊆ P (ω)
with numberings in all noncomputable degrees but not a computable
numbering.

The numbering results of Selivanov, Goncharov, and Wehner
can be relativized. In [40, 72], one can find a general method
of constructing a model from any computable family of c.e. sets
with computable numberings. Owing to this method, problems in
the theory of computable models are reduced to some problems in
numbering theory.

Let S be a family of sets. For every A ∈ S we can construct
a daisy graph GA such that

(a) G(S) is a rigid graph,

(b) if S has a unique computable Friedberg numbering, then G(S)
is computably categorical,

(c) if S has just n computable Friedberg numberings determined
up to a computable equivalence, then G(S) has computable
dimension n,

(d) if S is discrete, then every element of G(S) has a finitary
existential definition without parameters,

(e) if S has a computable Friedberg numbering, and is discrete
but not effectively discrete, then G(S) does not have a for-
mally c.e. defining family.

For lifting the basic results of Goncharov, Manasse, Slaman,
and Wehner, we formulate them in the following form.

Proposition 4.21 ([46, 40]). There is a rigid graph struc-
ture G that is computably categorical without a formally c.e. defin-
ing family.
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Proposition 4.22 ([126]). There is a computable structure
A with a relation R that is intrinsically c.e. but not relatively in-
trinsically c.e.

Consider the cardinal sum of disjoint computable copies of
the graph structure G from Proposition 4.21. Let R be a unique
isomorphism.

Proposition 4.23 ([48, 49, 40, 39]). For every finite n
there is a rigid graph structure G with computable dimension n.

Proposition 4.24 ([145, 154]). There is a structure A with
copies in just the noncomputable degrees.

A coding of a ∆0
α structure in a computable structure was

suggested in [72] to preserve some complexity of algorithmic prop-
erties.

To lift the basic results of Goncharov and Manasse, we rela-
tivize by producing a ∆0

α graph. To pass to a computable struc-
ture, we use a pair of structures for coding the arrow relation.

For a graph G, a pair of structures B1, B2, and a relational
language we set G∗ = (G ∪ U,G,U,Q, . . .), where G is the basic
set of G, G and U are disjoint, Q is a ternary relation assigning
to every pair a, b ∈ G an infinite set U(a,b), the sets U(a,b) form a
partition of U , every relation in the notation “. . .” is the union of
the bounds to U(a,b), and for every pair a, b ∈ G

(U(a,b), . . .) ∼=
{
B1 if G |= a → b,

B2 otherwise.

Theorem 4.25 ([72]). Suppose that G is a graph structure
and G∗ is constructed from G, Bi in the same way as above. In this
case, G has a ∆0

α copy if and only if G∗ has a computable copy.
More generally, for any X the structure G has a ∆0

α(X) copy if
and only if G∗ has an X-computable copy. In addition,
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(a) if G has a unique up to a ∆0
α isomorphism ∆0

α copy, then G∗

is ∆0
α categorical,

(b) if G has just n ∆0
α copies, determined up to a ∆0

α isomor-
phism, then G∗ has ∆0

α dimension n,

(c) if G does not have a Σ0
α Scott family made up of finitary

existential formulas, then G∗ does not have a formally Σ0
α

Scott family.

The following construction allows us to reduce the above con-
sideration to graph structure and other algebraic structures.

Theorem 4.26 ([58]). Suppose that M is a countable struc-
ture of a signature σ such that the arity of all predicate and func-
tional symbols in σ is bounded by a number k. There exists a par-
tial ordering (graph) M∗ with the following properties: The model
M has a computable copy if and only if M∗ has a computable copy.
More generally, for any X the model M has an X-computable copy
if and only if M∗ has an X-computable copy. In addition,

(a) if M is ∆0
α categorical, then M∗ is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then M∗ has ∆0

α dimension n,

(c) if M does not have a formally Σ0
α Scott family, then M∗ does

not have a formally Σ0
α Scott family.

The proof is based on the following constructions [48] of cat-
egories of computable algebraic systems. Consider a computable
signature σ = 〈P n0

0 , P n1
1 , . . . , P nk

k , . . .〉 such that σ is countable or
finite. Denote by Modσ the category whose objects are models
of the signature σ and morphisms are their isomorphisms. Intro-
duce the subcategory Mod σ

com of Mod σ. It is easy to see that
a model M′ is computable if it is computably isomorphic to a
computable model M with computable basic set |M| which is a
computable subset of some sets of words of finite alphabet and
the set {〈i,m1, . . . , mni

〉/M |= Pi(m1, . . . , mni
)} is computable.

If M1 and M2 are computable models, then the isomorphism
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ϕ : M1→
onto

M2 is computable provided that ϕ is partially com-
putable. The objects of Mod σ

com are computable models of the
signature σ and the morphisms are computable isomorphisms. If
M is a model of the signature σ, then Mod σ

com(M) is the complete
subcategory of Mod σ

com whose objects are computable models iso-
morphic to M. If K0 is a subcategory of K and F is a function
from K into K1, then denote by F � K0 the restriction of F to
K0. A signature σ is bounded if there exists k such that mi � k
for every i.

Proposition 4.27 ([58]). For an arbitrary bounded signa-
ture σ there exists a finite signature σ0 and a completely univalent
functor F1 from Mod σ to Mod σ0 such that the following assertions
hold.

(i) F1 � Mod σ
com is a completely univalent functor from Mod σ

com

to Mod σ0
com.

(ii) For an arbitrary model M of the signature σ the functor
F1 � Mod σ

com(M) realizes an equivalence of the categories
Mod σ

com(M) and Mod σ0
com(F1(M)). In addition,

(a) if M is ∆0
α categorical, then F1(M) is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then F1(M) has ∆0

α dimen-
sion n,

(c) if M does not have a formally Σ0
α Scott family, then

F1(M) does not have a formally Σ0
α Scott family.

Proof. Let σ = 〈P n0
0 , P n1

1 , . . . , P nk

k , . . .〉. Suppose that the
set 〈ni|i ∈ N〉 is bounded by k. For every k � K we consider
all predicates Pik0 , Pik1 , . . . , Pik

l
, . . . , l ∈ N ′

k, from σ of arity k,
where N ′

k is equal to N or is an initial segment of N . We set
σ0 = {=, P 1

0 , P 2
1 , . . . , P k+1

k , . . . , P k+1
k , A12,�} and define a functor

F1 on objects of Mod σ. Let M be an arbitrary model of the
signature σ. If M is the basic set of M, then for the basic set
of M0 � F1(M) we take M0 = M ∪ {a0, a1, . . . , an, . . .}, where
{a0, a1, . . . , an, . . .} ∩M = ∅ and ai �= aj for i �= j.

Introduce predicates as follows:
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1) AM0 � {a0, a1, . . . , an, . . .},

2) x � y if x = an and y = an+1 for some n,

3) (x0, x1, . . . , xs) ∈ (Ps)M0 if x0 = ad,
i∧

j=1

xj ∈M and M |=

P s
isd(x1, . . . , xs).

It is easy to see that M0 is a computable model if M is
computable. If M and M0 are objects of the category Mod 0 and
ϕ is an isomorphism of M onto M0, then we define F (M,M0)(ϕ).
We define it only in the case where the basic sets of both models
are subsets of N . The remaining cases are treated in a similar
way. Thus,

[F (M,M0)(ϕ)](x) �
{

x if x ∈ {a0, a1, . . . , an, . . .},
ϕ(x) if x ∈M}.

It is clear that F1(M,M0)(ϕ) is a computable isomorphism
relative to a Turing degree a if ϕ is a computable isomorphism
relative to a.

To prove that F1 from K1 into K2 is completely uni-
valent, it suffices to show that F∗(A,B) : Hom (A,B) −→
Hom(F∗(A), F∗(B)) is a bijection for every pair A,B of objects
of K1. Thus, F1 and F1 � Mod σ

com(M) are completely univa-
lent functors. We can prove that F1 � Mod σ

com(M) realizes an
equivalence by showing that for every object M′ of the cate-
gory Mod σ0

com(F1(M)) there exists an object M′
0 of the category

Mod com(F1)(M) such that M′ and F1(M′
0) are isomorphic in the

category Mod com(F1(M)). Let M′ ∈ Mod σ
com(F1)(M). The case

of a finite model is trivial.
Let M be an infinite model. We can consider a computable

function f : N 1−1
onto

M ′\AM′ . Since M′ is a computable model, it fol-
lows that N ′ \AM′ is computable and the function exists. Let a be
an element of AM′ that does not have a �–predecessor. Let us now
define predicates of the signature σ on N : (n1, . . . , nmk

) ∈ P mk

ik

if and only if (l, f(n1), . . . , f(nmi
)) ∈ P mk+1

mk
, where the elements

l0, l1, l2, . . . , lk are such that li � li+1 for 0 � i < k, a = l0, and
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lk = l. It is easy to see that such a model M′′ of the signature σ is
computable. We show that F (M′′) is computably isomorphic to
M′. For this purpose, consider a function g defined as follows:

g(m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(m) if mεN,

l if m = ak and there exist l0, l1, . . . , lk such

that M′ |=
k−1∧
i=0

li � li+1 and l0 = a&lk = l.

It is clear that g is an isomorphism and a computable function.
Properties (a)–(c) of th Scott families can be derived from the

definability of basic predicates and their negations by ∃–formulas.
�

Proposition 4.28 ([58]). For an arbitrary finite signature
σ0 there exist a signature σ1 consisting of a single predicate symbol
P and a completely univalent functor F2 from Mod σ0 into Mod σ1

such that the following assertions hold.

(i) F2 � Mod σ0
com is a completely univalent functor from Mod σ0

com

into Mod σ1
com.

(ii) For every model M of the signature σ0 the functor
F2 � Mod σ0

com(M) realizes an equivalence of the categories
Mod σ0

com(M) and Mod σ1
com(F2(M)). In addition,

(a) if M is ∆0
α categorical, then F2(M) is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then F2(M) has ∆0

α dimension
n,

(c) if M does not have a formally Σ0
α Scott family, then

F2(M) does not have a formally Σ0
α Scott family.

Proof. Our goal is to define the functor F2. Let σ0 =
〈P n0

0 , P n1
1 , . . . , P nk

k 〉. Suppose that M is a model of the finite sig-

nature σ0. Consider a predicate symbol P of arity n =
k∑

i=0

ni and

a signature σ1 = 〈P n〉. We begin by defining F2 on the objects of
Mod σ0 .
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Let M be a model of the signature σ0 with the basic set M .
For the basic set M0 of the model F2(M) we take {∞} ∪M . We
define P on M0 as follows: 〈x1, . . . , xn〉 ∈ P if and only if one of
the following conditions is satisfied:

(a) x1 = x2 = . . . = xn = 0,

(b) there exist i � k and y1, . . . , yni
such that xj = 0 and yj =

xj+mi
for any j such that 1 � j � ni and M |= Pi(y1, . . . , yni

).

But xj = 0 for any j such that 1 � j � mi or mi + ni + 1 �

j � n. We put m0 = 0 and mi =
i−1∑
l=0

nl for i > 1.

If M is a computable model, the model F2(M) is also com-
putable. Let M and N be two models of the signature σ0. We
define a mapping F2(M,N) : Hom (M,N) → Hom(F2(M), F2(N))
as follows:

[F2(M,N)(ϕ)](x) �
{
∞ if x = ∞,

ϕ(x) if x �= ∞.

It is easy to see that F2(M,N) is an isomorphism if ϕ is
an isomorphism, and it is computable if ϕ is computable. The
remaining assertions can be proved in the same way as in Propo-
sition 4.27. The additional properties (a)–(c) can be proved by
induction. �

4.5. Categories of graphs and partial orders

Consider a signature σ∗ consisting of a single binary predicate
Q. The category Mod σ∗

is called the category of graphs and is
denoted by Graph. Denote by Ord the complete subcategory of
Mod σ∗

whose objects are the models 〈M,Q〉, where Q is a partial
order on M .
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Proposition 4.29 ([58]). For every signature σ1 consisting
of a single predicate of arity n � 3 there exists a completely uni-
valent functor F3 from Mod σ1 into Graph with binary predicate R
such that the following assertions hold.

(i) F3 � Mod σ1
com is a completely univalent functor from Mod σ1

com

into Graph com = Mod σ∗
com.

(ii) For every model M ∈ Ob Mod σ1 the functor F3 � Mod σ1
com(M)

realizes an equivalence between the categories Mod σ1
com(M)

and Mod σ∗
com(F3(M)). In addition,

(a) if M is ∆0
α categorical, then F3(M) is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then F3(M) has ∆0

α dimen-
sion n,

(c) if M does not have a formally Σ0
α Scott family, then

F3(M) does not have a formally Σ0
α Scott family.

Proof. (i) We construct directly the functor F3 from Mod σ1

into Graph. Let 〈M, P 〉 be a model of the signature σ1, where P
is a predicate of arity n. Consider I = {0, 1, . . . , n} and M ′ = I ×
Mn∪M . For the basic set |F3(M)| we take the set M0 � M ′∪{a0,
a1, a2, b0, b1, b2, c0, c1, c2, c3, c4, c5, c6, c7, c8}. Suppose that
all the elements in {a0, a1, a2, b0, b1, b2, c0, c1, c2, c3, c4, c5, c6, c7, c8}
are different and new. Fix a0, a1, a2, b0, b1, b2, c0, c1, c2, c3, c4,
c5, c6, c7, c8. These elements will be referred to as basic elements
for the definability of F3 on M. We define a predicate R on M0 as
follows. Let x, y,∈ M0. We set 〈x, y〉 ∈ R if one of the following
conditions is satisfied:

(a) x = ai&y = cj, and 1 � i � 3 and (i = 0&j ∈ {0, 1}) ∨ (i =
1&j ∈ {2, 3, 4}) ∨ (i = 2&j ∈ {5, 6, 7, 8}),

(b) x = cj&y = bi, and 1 � i � 3 and (i = 0&j ∈ {0, 1}) ∨ (i =
1&j ∈ {2, 3, 4}) ∨ (i = 2&j ∈ {5, 6, 7, 8}),

(c) x ∈ M&y ∈ I ×Mn&y = 〈i, x1, . . . , xn〉&x = xi and n � i �
1,
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(d) x, y ∈ I×Mn&x = 〈i, x1, . . . , xn〉&y = 〈i+1, x1, . . . , xn〉 and
i � 1,

(e) x = a1&y = 〈0, y1, . . . , yn〉 ∈ I ×Mn&M � P (y1, . . . , yn),

(f) x = a0&y = 〈0, y1, . . . , yn〉 ∈ I ×Mn&M |= P (y1, . . . , yn),

(g) x = a2&y ∈M .

Thus, we constructed a graph on M0. Let M and M0 be two
models of the signature σ1, and let ϕ be an isomorphism from M

onto M0. We set

[F ′(M,M0)(ϕ)](x)

�

⎧⎪⎨⎪⎩
ϕ(x), if x ∈M ,
〈i, ϕ(x1), . . . , ϕ(xn)〉 if x = 〈i, x1, . . . , xn〉 ∈ I ×Mn,

x otherwise.

Successively considering all the cases, we can show that
F ′

3(M,M0)(ϕ) is an isomorphism; moreover, it is computable if
ϕ is computable.

It remains to prove that the functor F3 is completely univa-
lent. Let Ψ be an isomorphism from F3(M) onto F3(M0). Then
the restriction of Ψ to the definable by an existential formula sub-
set M in F3(M), equal to {2n | n ∈ N}, induces an isomor-
phism Ψ0 between the models M and M0. Since all the elements
of 〈M0, P 〉 are of the type 〈i, x1, . . . , xn〉 and are definable over
elements of M by existential formulas, it is easy to show that
F3(M,M0)(Ψ0) = Ψ.

(ii) Consider a model M of the signature σ1 and M′ ∈
Mod σ∗

com(F3(M)). Since elements among a0, a1, a2, b0, b1, b2, c0,
c1, c2, c3, c4, c5, c6, c7, c8 are definable by existential formulas over
elements in F3(M), we select them in M′. Suppose that these el-
ements are the following: a0

0, a0
1, a0

2, b0
0, b0

1, b0
2, c0

0, c0
1, c0

2, c0
3, c0

4,
c0
5, c0

6, c0
7, c0

8. Choosing elements connected with a0
2 by the basic

binary predicate, we obtain exactly the definable set X0 which is
isomorphic to M in F3(M).

Define the predicate P n on X0 as follows:
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〈x1, . . . , xn〉 ∈ P n ⇔ M′ |= (∃y1, . . . , yn)(y1R . . . Ryn

&
(∧

1�i�j�n xiRyj

)
&a′

0Ry1)

It is easy to see that

〈x1, . . . , xn〉 /∈ P n ⇔ M′ |= (∃y1 . . . yn)(y1P
2 . . . P 2yn

&(
∧

1�i�j�n xiP
2yj)&a′

1P
2y1).

Therefore, 〈X0, P
n〉 is a computable model of the signature

σ1. A direct verification shows that the model of F ′(〈X0, P 〉) is
computably isomorphic to M′.

It remains to prove the additional properties (a)–(c). All the
elements of M ′ = I×Mn∪{a0, a1, a2, b0, b1, b2, c0, c1, c2, c3, c4, c5,
c6, c7, c8} are definable in F3(M) over elements of M by existential
formulas from the computable set of these formulas. Thus, we can
construct a formally Σ0

α Scott family for F3(M) from the formally
Σ0

α Scott family for M. If we have a formally Σ0
α Scott family for

the model F3(M), we can see that F3(M) is ∆–definable in M with
the basic set M

⋃⋃n+1

i=1 Mn+i�Θi

⋃⋃15

i=1 M2n+1+i�∆i. Here, we
put 〈X, Y 〉 ∈ Θi if X = 〈x1, . . . , xn+i〉, Y = 〈y1, . . . , yn+i〉 and
xj = yj for any 1 � j � n. For the other equivalence relation we
put 〈X, Y 〉 ∈ ∆i for any elements X, Y of M2n+1+i. Since this
model is ∆-definable, we can define a formally Σ0

α Scott family for
M. �

Proposition 4.30 ([58]). For every signature σ1 consisting
of a single binary predicate R there exists a completely univalent
functor F4 from Mod σ1, into Ord such that the following asser-
tions hold.

(i) F4 � Mod σ1
com is a completely univalent functor from Mod σ1

com

into Mod σ∗
com.

(ii) For every model M ∈ Ob Mod σ1 the functor F4 � Mod σ1
com(M)

realizes an equivalence between the categories Mod σ1
com(M)

and Mod σ∗
com(F4(M)). In addition,

(a) if M is ∆0
α categorical, then F4(M) is ∆0

α categorical,
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(b) if M has ∆0
α dimension n, then F4(M) has ∆0

α dimen-
sion n,

(c) if M does not have a formally Σ0
α Scott family, then

F4(M) does not have a formally Σ0
α Scott family.

Proof. We construct the functor F4 from Mod {R} into Ord
satisfying the requirement conditions. Let M = 〈M, R〉 be a
model with a single binary predicate R. We define the par-
tially ordered set 〈M0,�〉, where the basic set M0 is the image
of M under the functor F4. Then we set M0 = M ∪ M2 ×
{0, 1} ∪ {a1, a2, a3, a4, a5} ∪ {b1, . . . , b7, b8}, where elements of the
set {a1, a2, a3, a4, a5} ∪ {b1, . . . , b7, b8} are new.

Introduce a partial order � on M0 such that its transitive
closure is the desired partial order on M0:

1) a1 � a2, a2 � a4, a2 � a3, a4 � a5,

2) b1 � b2, b2 � b3, b3 � b4, b4 � b5, b5 � b6, b5 � b7, b7 � b8,

3) if x1, x2 ∈M and x1 �= x2, then 〈〈x1, x2〉, 0〉 � x1, and
〈〈x1, x2〉, i〉 � x2 for i ∈ {0, 1},

4) if x1 �= x2 ∈M and M |= P (x1, x2), then a5 � 〈〈x1, x2〉, 0〉,

5) if x1 �= x2 ∈M and M � P (x1, x2), then a3 � 〈〈x1, x2〉, 0〉,

6) if x1 ∈M and M |= P (x1, x1), then b6 � 〈〈x1, x2〉, 0〉,

7) if x1 ∈M and M � P (x1, x1), then b8 � 〈〈x1, x2〉, 0〉.
We define F4(M,M′) on isomorphisms ϕ in the same way as

in the case of the functor F3. The proof of the properties of this
functor is similar to that in Proposition 4.29. �

Using the idea of the proof of Proposition 4.29, it is easy to
construct a functor from the category of an arbitrary signature
into the category of a bounded signature.
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Proposition 4.31 ([58]). For every signature Σ there exists
a bounded signature Σ0 and a completely univalent functor F6 from
Mod Σ into Mod Σ0 such that the following assertions hold.

(i) F5 � Mod Σ
com is a completely univalent functor from Mod Σ

com

into Mod Σ0
com.

(ii) For every model M of the signature Σ, the functor
F5 � Mod Σ

com(M) realizes an equivalence of the categories
Mod Σ

com(M) and Mod Σ0
com(F5(M)). In addition,

(a) if M is ∆0
α categorical, then F5(M) is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then F5(M) has ∆0

α dimen-
sion n,

(c) if M does not have a formally Σ0
α Scott family, then

F5(M) does not have a formally Σ0
α Scott family.

Proof. Consider a new signature σ∗. We put in σ∗ all predi-
cates from σ with arity n � 2. If a predicate symbol Pn has arity
mn � 3, then we add three new predicate symbols in σ∗: the bi-
nary predicate symbol Rn and two unary predicate symbols An

and Bn. We also add one new unary predicate symbol U . Then
we consider the impoverishment Mn of the model M of the signa-
ture Σn = 〈P mn

n 〉 for every mn � 3. We consider a model Ln with
M ⊆ |Ln| that is isomorphic to the model F3(Mn) from Proposi-
tion 4.29 with isomorphism ϕn from F3(Mn) on this model Ln such
that for any m ∈ M we have ϕ(m) = m, but |Ln| ∩ |Lk| = M for
any n �= k. The basic set |F5(M)| of the model F5(M) is

⋃
n |Ln|.

We set U = M . Define a predicate symbol P from σ with arity
n � 2 as the interpretation of this predicate in M. Now, define
the remaining symbols of the signature σ∗. Let Rn on |F5(M)| be
equal to the binary predicate from Ln. But An is the set |Ln| \M
and Bn is the set {ϕ(a0), ϕ(a1), ϕ(a2), ϕ(b0), ϕ(b1), ϕ(b2), ϕ(c0),
ϕ(c1), ϕ(c2), ϕ(c3), ϕ(c4),ϕ(c5), ϕ(c6), ϕ(c7), ϕ(c8)}, where {a0, a1,
a2, b0, b1, b2, c0, c1, c2, c3, c4, c5, c6, c7, c8} is the set of basic
elements for the definability of F3 on Mn.

Thus, we get the desired functor F5 on the objects of the
category. Using the construction of Proposition 4.29, we can define
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it on the morphisms of our category. The proof of the remaining
assertions is similar to that of Proposition 4.29. �

Remark. If the signature contains functional symbols, we
can pass to a new signature with predicates for graphs of this
functions.

Thus, we proved the following assertion.

Theorem 4.32 ([58]). For every signature Σ there exist a
signature Σ0 containing only one binary predicate R and a com-
pletely univalent functor F from Mod Σ to Mod Σ0 such that the
following assertions hold.

(i) F � Mod Σ
com is a completely univalent functor from Mod Σ

com

to Mod Σ0
com.

(ii) For every model M of the signature Σ the functor
F � Mod Σ

com(M) realizes an equivalence of the categories
Mod Σ

com(M) and Mod Σ0
com(F5(M)). In addition,

(a) if M is ∆0
α categorical, then F (M) is ∆0

α categorical,

(b) if M has ∆0
α dimension n, then F (M) has ∆0

α dimen-
sion n,

(c) if M does not have a formally Σ0
α Scott family, then

F (M) does not have a formally Σ0
α Scott family.

By Theorem 4.32, it suffices to consider only problems con-
nected to computable equivalence and self-equivalence on partially
ordered sets or graphs since there are no essential difficulties arise
in the case of a more complicated signature.

The above results lead to the following assertion.

Theorem 4.33 (Goncharov–Tusupov, [58]). Suppose that
G is a graph structure and the partial ordering (graph) ∆(G) is
constructed from G, Bi in the same way as in Theorems 4.25 and
4.26. Then G has a ∆0

α copy if and only if ∆(G) has a computable
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copy. In general, for any X the structure G has a ∆0
α(X) copy if

and only if ∆(G) has an X-computable copy. In addition,

(a) if G has a unique up to a ∆0
α isomorphism ∆0

α copy, then
∆(G) is ∆0

α categorical,

(b) if G has just n ∆0
α copies, determined up to a ∆0

α isomor-
phism, then ∆(G) has ∆0

α dimension n,

(c) if G does not have a Σ0
α-computable Scott family made up

of finitary existential formulas, then ∆(G) does not have a
formally Σ0

α–Scott family.

4.6. Lift of basic results

The following assertion lifts the result of Goncharov about com-
putably categorical structures that are not relatively computably
categorical.

Theorem 4.34 ([72]). For every computable successor ordi-
nal α there is a structure that is ∆0

α categorical, but not relatively
∆0

α categorical (and does not have a Σ0
α–Scott family).

Corollary 4.35 (Goncharov–Tusupov, [58]). For every com-
putable successor ordinal α there is a partial ordering (graph) that
is ∆0

α categorical, but not relatively ∆0
α categorical (and does not

have a Σ0
α–Scott family).

The following assertion lifts the result of Manasse [106] about
relations that are intrinsically c.e., but not relatively intrinsically
c.e.

Theorem 4.36 ([72]). For every computable successor or-
dinal α there is a computable structure with a relation that is in-
trinsically Σ0

α, but not relatively intrinsically Σ0
α.

Corollary 4.37 (Goncharov–Tusupov, [58]). For every com-
putable successor ordinal α there is a computable partial ordering
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(graph) with a relation that is intrinsically Σ0
α but not relatively

intrinsically Σ0
α.

The following assertion lifts the result of Goncharov about
structures with finite computable dimension.

Theorem 4.38 ( [72]). For any computable successor ordinal
α and a finite number n there is a computable structure with ∆0

α

dimension n.

Corollary 4.39 (Goncharov–Tusupov, [58]). For any com-
putable successor ordinal α and a finite number n there is a com-
putable partial ordering (graph) with ∆0

α dimension n.

The following assertion lifts the result of Slaman and Wehner.

Theorem 4.40 ([72]). For every computable successor ordi-
nal α there is a structure with copies in just the degrees of sets X
such that ∆0

α(X) is not ∆0
α. In particular, for every finite n there

is a structure with copies in just the non-lown degrees.

Corollary 4.41 (Goncharov–Tusupov, [58]). For every com-
putable successor ordinal α there is a partial ordering (graph) with
copies in just the degrees of sets X such that ∆0

α(X) is not ∆0
α.

In particular, for every finite n there is a structure with copies in
just the non-lown degrees.

Based on examples of computable graphs and the construc-
tion of [77], one can construct many other algebraic structures
with the same properties as in Theorems 4.34, 4.36, 4.38, 4.40.

5. Classes of Computable Models
and Index Sets

In the study of computable models, it is important to consider not
only individual models, but also classes of models defined by cer-
tain properties and to find relationships between the definability
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problems and algorithmic complexity expressed in terms of their
index sets. As was shown by Nurtazin, [130], for a predicate
signature there exists a computable numbering of all computable
models of a given signature which is universal computable num-
bering of this class and is unique up to a recursive permutation.
This fact provides us with a good tool for studying the algorithmic
complexity of different classes of models of this signature.

One of questions in this direction is to express the complex-
ity of definability of a class of mathematical structures in terms of
the complexity of definability of the corresponding index sets in
a universal numbering of all computable models of a given signa-
ture. This question is close to the investigations of Goncharov and
Knight [66] on the structural properties of classes of computable
models.

5.1. Computable classification
or structure theorem

If K is a class, we denote by Kc the set of computable mem-
bers of K. A computable characterization for K should separate
computable members of K from other structures that either are
outside K or belong to K, but are not computable. A computable
classification (or a structure theorem) should describe up to an
isomorphism (or up to a some other equivalence relation) every
member of Kc, in terms of relatively simple invariants. On the
other hand, a computable non-structure theorem should assert
the absence of a computable structure theorem.

We consider three different approaches from [66]. Each of
them gives a “correct” answer in the case of vector spaces over
Q and linear orderings. Under each of these three approaches,
both classes have computable characterization and there is a com-
putable classification for vector spaces, but not for linear orderings.
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In the first approach, K has a computable characterization if
Kc is the set of computable models of some “computable” infini-
tary sentence. There is a computable classification for K if there
is a computable bound on the “ranks” of elements of Kc.

In the second approach, K has a computable characterization
if the set I(K) of computable indices for elements of Kc is hyper-
arithmetical. There is a computable classification for K if the set
E(K) of pairs of indices corresponding to isomorphic structures
is hyperarithmetical. (We also consider computable isomorphisms
or ∆0

α isomorphisms.)
In the third approach, K has a computable characterization

if there is a hyperarithmetical list (an enumeration) of elements of
Kc representing all isomorphism types. A computable classifica-
tion theorem holds for K if there is an enumeration such that every
computable isomorphism type is represented only once. (Again,
we consider computable isomorphisms or ∆0

α isomorphisms.)
Uncountable and countable structures are of great interest

in model theory, The compactness theorem is a central result,
so it is natural to use elementary first order formulas. In model
theory, classes are normally characterized by elementary first or-
der theories. In computable structure theory, we are interested
in computable structures. Within the framework of computable
structure theory, the compactness theorem does not play an es-
sential role since it does not yield computable structures. If the
compactness is established, we can deal with such classes as the
Abelian p-groups which are not characterized by the elementary
first order theory.

5.1.1. First approach.

We discuss characterization and classification in the following
sense.

Computable characterization. There is a computable infini-
tary sentence whose computable models are just elements of Kc.
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Computable classification. In addition to a computable infini-
tary sentence characterizing the computable members of K, there
is a computable bound on “ranks” of elements of Kc.

We beging with a definition of rank and then indicate how it is
connected with the complexity of isomorphisms. Then we consider
applications of the characterization and classification statements
to some well-known classes of structures.

Let us clarify how the above computable characterization and
classification statements can be applied to some well-known classes
of structures.

Computable characterization. Linear orderings, Boolean al-
gebras, and equivalence structures can be characterized by a sin-
gle elementary first order sentence. Vector spaces over Q and
algebraically closed fields of a given characteristic can be charac-
terized by either an infinite set of elementary first order sentences
or a single computable Π2 sentence. The class of Abelian p-groups
is not characterized by any set of elementary first order sentences,
but it is characterized by a single computable Π2 sentence.

Some classes, for example, well orderings, superatomic
Boolean algebras, and reduced Abelian p-groups cannot be char-
acterized by a computable infinitary sentence. In fact, they cannot
be characterized by any Lω1ω sentence. The case of well orderings
was considered by Lopez–Escobar [98].

Computable classification. For vector spaces over Q and al-
gebraically closed fields of a given characteristic the computable
rank is 1; we have the elimination of quantifiers. For equivalence
structures the rank is at most 3.

The following assertion is well known.

Proposition 5.1 ([66]). There is no computable bound on
the ranks for the following classes K :

(a) linear orderings,
(b) Boolean algebras,
(c) Abelian p-groups,
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(d) structures for language with at least one binary relation sym-
bol.

Each of the classes listed in Proposition 5.1 contains a struc-
ture of a noncomputble rank. The following assertion shows that
it is a general fact.

Proposition 5.2 ([66]). Let Kc be a set of computable mod-
els of a computable infinitary sentence ψ. If there is no computable
bound on Rc(A), for A in Kc, then there exists A in Kc such that
Rc(A) = ωCK

1 .

5.1.2. Second approach.

We consider the characterization and classification in terms of in-
dices.

Definition 5.3. The computable index of a structure A is a
number e such that D(A) = We. The index set I(K) of a class K
is the set of computable indices of elements of Kc.

We assume that Ae is a structure with computable index e.
The isomorphism problem for a class K is stated as follows:

E(K) = {(a, b) : a, b ∈ I(K) & Aa
∼= Ab}.

We write A ∼=∆0
α
B if A and B are isomorphic by a ∆0

α isomor-
phism. The ∆0

α isomorphism problem is stated as follows:

E∆0
α
(K) = {(a, b) : a, b ∈ I(K) & Aa

∼=∆0
α
Ab}.

Computable characterization: I(K) is hyperarithmetical.

Computable classification: E(K) is hyperarithmetical.

If we consider ∆0
α isomorphisms, the classification result

means that E∆0
α
(K) is hyperarithmetical.

For many classes the index set is at a low level in the hyper-
arithmetical hierarchy.
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Proposition 5.4 ([66]). I(K) is Π0
2 for the following classes

K :

(a) linear orderings,

(b) Boolean algebras,

(c) Abelian p-groups,

(d) equivalence structures,

(e) vector spaces over Q,

(f) structures for a fixed computable language.

For some well-known classes, the index set is not hyperarith-
metical.

Proposition 5.5 ([140]). I(K) is Π1
1 complete for the fol-

lowing classes K:

(a) well orderings,

(b) superatomic Boolean algebras,

(c) reduced Abelian p-groups.

We refer to [139] or [5] for the proof of (a).
We turn to the isomorphism problems. If I(K) is hyperarith-

metical, then E(K) is at least Σ1
1. For vector spaces over Q and

algebraically closed fields of a given characteristic the isomorphism
problem is at a low level of the hyperarithmetical hierarchy.

Proposition 5.6 (Calvert). E(K) is Π0
3 complete for the

following classes K:

(a) vector spaces over Q (or other infinite computable field),

(b) algebraically closed fields of a given characteristic.

Below, we list several classes for which the isomorphism prob-
lem is Σ1

1 complete (maximum complexity). These results are
firmly established in folklore and are seemed to be known since the
1960’s. However, I am not able to say exactly who was the first
who proved them. In [44], there are related results in descriptive
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set theory concerning the Borel completeness of the isomorphism
problem for various classes of structures with a fixed countable
basic set. Note that the arguments in [44] can serve as the proof
of the assertions formulated below.

Let E(K) be Σ1
1 complete for the following classes K:

(a) Abelian p-groups,

(b) trees,

(c) Boolean algebras,

(d) linear orderings,

(e) arbitrary structures for language with at least one binary
relation symbol.

5.2. Special isomorphisms

We considered the set I(K) with the equivalence relation E(K).
Now, we replace E(K) with a computable isomorphism.

Proposition 5.7. If I(K) is ∆0
3, then E∆0

1
(K) is at least Σ0

3.

Theorem 5.8 ([66]). E∆0
1
(K) is Σ0

3 complete (maximum
complexity) for the following classes K :

(a) linear orderings,

(b) arbitrary structures for language with at least one binary re-
lation symbol,

(c) Boolean algebras,

(d) Abelian p-groups,

(e) equivalence structures.

We consider ∆0
α isomorphisms instead of computable ismor-

phisms and generalize Proposition 5.7 and Theorem 5.8.

Proposition 5.9 ([66]). If I(K) is ∆0
α+2, then E∆0

α
(K) is

Σ0
α+2.
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Theorem 5.10. Let α > 1 be computable. Then E∆0
α
(K)

is Σ0
α+2 complete (maximum complexity) for the following classes

K :

(a) linear orderings,

(b) arbitrary structures for a computable language with at least
one binary relation symbol,

(c) Boolean algebras,

(d) Abelian p-groups.

The following assertion about linear orderings is very useful.
The construction is based on the method from the Ash metatheo-
rem [5, 1]. This method has many applications and, possibly, can
serve as a metaconstruction for new computable models.

Theorem 5.11 ([66]). There is a fixed computable linear
ordering B such that for any Σ0

α+2 set S there is a uniformly com-
putable sequence of linear orderings (Cn)n∈ω such that

{
Cn
∼=∆0

α
B if n ∈ S,

Cn �∼= B otherwise.

To prove this theorem, we need the following lemma.

Lemma 5.12. If A is a ∆0
α ordering, then there is a com-

putable B ∼= ωα · A with a ∆0
α function sending every element of

A to the first element of the corresponding copy of ωα in B and
there is a ∆0

α procedure associating with every b ∈ B the position
of b in the copy of ωα. Moreover, it is possible to pass effectively
from a ∆0

α index for A to a computable index for B, ∆0
α indices

for the rest.

Proof. There are known related results (cf., for example, [4,
5]), but it seems that none of these results provides us with the
desired assertion. Namely, the mentioned results can yield a ∆0

3

embedding of a ∆0
3 ordering A in a computable ordering of type
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ωA, but not a ∆0
2 embedding of a ∆0

2 ordering A in a computable
ordering of type ωA.

We use the metatheorem of Ash [1]. However, the general
formulation is too large and restrict ourselves with some definitions
and verify one nontrivial condition.

We define an α-system (L,U, �̂, P,E, (�β)β<α) and a ∆0
α in-

struction function q such that E(π) is the diagram of the desired
C, whereas π yields the rest. Without loss of generality, we assume
that A has the first element. Suppose that the basic set A of A
is an infinite computable set of constants and the first element in
the ordering is also the first constant. Let U be the set of linear
orderings on initial segments of A, including the first element. For
every u ∈ U we denote by Ou an ordering of type ωαu. Assume
that the following assertions hold.

(i) If u ⊆ v, then Ou ⊆ Ov.

(ii) The orderings Ou are computable uniformly in u and it is
possible to determine effectively the Cantor normal form of
intervals.

Let B be an infinite computable set of constants. Suppose
that L consists of pairs (u, f), where u ∈ U and f is a finite one-
to-one function from B to Ou. Let �̂ = (u, ∅), where u consists
of only the first element. If � = (u, f), we denote by E(�) the set
of atomic sentences and the negations of atomic sentences ϕ(b)
involving constants b from dom (f) such that f makes ϕ(b) true
in Ou. If � = (u, f) and �′ = (v, g), we assume that � �0 �′

if g ◦ f−1 preserves order. Suppose that � �β �′ if it preserves
order and sends elements of a single copy of ωβ to elements at the
corresponding positions, also in the single copy of ωβ. Let � ⊆ �′

if u ⊆ v and f ⊆ g.
Denote by P the set of finite alternating sequences

�̂u1�1u2�2 . . ., where

(1) un ∈ U is an ordering on the first n + 1 constants in A,

(2) un ⊆ un+1,
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(3) �n ⊆ �n+1,

(4) if �n = (u, f), then u = un, dom (f) includes the first n
elements of B, and ran (f) includes the first n elements of
Ok, for all k � n,

Thus, we defined the ingredients of the α-system. As usual,
conditions (1)–(3) are trivially satisfied. Relative to condition (4),
we suppose that σ�0u ∈ P , where �0 �β0 �1 �β1 . . . �βk−1 �k and
α > β0 > β1 > . . . > βk−1 > βk. We set �m = (um, fm). Thus,
we find �′m ⊇ �m such that �′k = �k and �′m+1 �βm+1 �′m. On the
top, we have �′0 ⊇ �0. We set �′0 = (u0, f). We have u ⊇ u0. Let
� = (u, g), where g ⊇ f includes suitable elements in the domain
and range so that σ�0u� ∈ P . This � is what we need to verify
condition (4).

Thus, we have an α-system. Define a ∆0
α instruction function

q such that if σ = �̂u1�1 . . . �n is an element of P of length 2n + 1.
Then q(σ) is the substructure of A whose basic set consists of the
first n + 1 constants. Now, we can use the Ash metatheorem. We
find a ∆0

α run π = �̂u1�1u2�2 . . . of (P, q) (π is a path through the
tree P with un chosen by the instruction function q) such that
E(π) = ∪nE(�n) is c.e.

We set �n = (un, fn). Then ∪nfn is a one-to-one function
from B onto A′ = ∪nOun

, where A′ is a copy of ωαA. Let F be
the inverse, and let B be the copy of A′ induced on B by F . Then
D(B) = E(π), so that B is computable. Now, F and A′ are ∆0

α.
For a given a ∈ A we can use ∆0

α to find the first element of the
corresponding copy of ωα in A′. Similarly, for a given b ∈ B we
can find F−1(b). Since we know the position of F−1(b) in its copy
of ωα, we also know the position of a. This completes the proof of
Lemma 5.12. �

Proof of Theorem 5.11. Relativizing the above lemma to
∆0

α, we obtain a fixed computable ordering B∗ of type ω2 such that
for any Σ0

α+2 set S there is a computable sequence of indices for
∆0

α orderings (C∗n)n∈ω such that C∗n ∼=∆0
α
B∗ for n ∈ S and C∗n �∼= B∗

in the opposite case.
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Let B and Cn be obtained from B∗ and C∗n as in Lemma 5.12.
The sequence (C∗n)n∈ω is uniformly computable. It is easy to see
that if n ∈ S, then C∗n has order type ωα+2, whereas if n /∈ S, then
Cn has type ωα+1. We are interested in ∆0

α isomorphisms.

Claim 5.13. If n ∈ S, then C∗n ∼=∆0
α
B∗ (with no uniformity).

Proof. There is a ∆0
α isomorphism from Cn onto B. There is

a ∆0
α procedure that can be applied to Cn and B for determining

the first element of every copy of ω and the successor relation on
these elements. Consequently, there is a ∆0

α procedure that can
be applied to C∗n and B∗ for determining the Cantor normal form
for the interval preceding every element. Therefore, there is a ∆0

α

isomorphism from C∗n onto B∗. This proves the claim. �

The proof of Theorem 5.11 is complete. �

Let E∆1
1
(K) be the set of pairs (a, b) such that a, b ∈ I(K)

and there is a hyperarithmetical isomorphism between Aa and Ab.
We might think of the statement that E∆1

1
(K) is hyperarithmetical

as an alternative classification statement. If I(K) is hyperarith-
metical, the sets E∆0

α
(K) are hyperarithmetical for all computable

ordinals α. In the cases where we can show that E(K) is hyper-
arithmetical, it is because there is a bound on ranks and E(K) is
equal to one of these sets.

Proposition 5.14 ([66]). If E∆1
1
(K) is hyperarithmetical,

then it is equal to E∆0
α
(K) for some computable ordinal α.

To prove this assertion, we can use the Barwise–Kreisel com-
pactness. By assumptions, I(K) is hyperarithmetical. We form
a hyperarithmetical structure including all of the structures from
Kc, their indices, and the relation E∆1

1
(K). Then we produce a

hyperarithmetical set of computable infinitary sentences, say new
constants a, b a pair of indices in the relation E∆1

1
(K), and there is

no ∆0
α isomorphism between the corresponding structures. Since

we cannot satisfy the whole set, we try to get a suitable bound on
the complexity of isomorphisms.
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5.2.1. Third approach.

Here, we discuss characterization and classification statements in-
volving lists (enumerations). In particular, a list is often taken for
classification. Consider the classification of finite simple groups. A
good list means that isomorphism types (other equivalence classes)
are represented. It is natural to require that no isomorphism type
(or equivalence class) appears twice.

Definition 5.15. An enumeration of Kc/∼= is a sequence
(An)n∈ω representing every isomorphism type in Kc. An enumer-
ation of Kc/∼=∆0

α
is a sequence representing every equivalence class

in Kc under a ∆0
α isomorphism.

Definition 5.16. A Friedberg enumeration of Kc/∼= or
Kc/∼=∆0

α
is an enumeration such that every isomorphism type or

every equivalence class under ∆0
α isomorphism is represented only

once.

Definition 5.17. An enumeration is computable (a ∆0
α enu-

meration) if there is a computable (∆0
α-) sequence of computable

indices for the structures.

Computable characterization. K has a computable character-
ization if there is a hyperarithmetical enumeration of Kc/∼= (other
equivalence can be substituted for an isomorphism).

Computable classification. K has a computable classifica-
tion if there is a hyperarithmetical Friedberg enumeration of Kc/∼=
(other equivalence can be substituted for an isomorphism).

A computable enumeration (An)n∈ω of Kc is universal up to
an isomorphism if for a given computable index for B ∈ Kc there
exists n such that B ∼= An. An enumeration is principal if for
any other enumeration (Bn)n∈ω up to an isomorphism there is a
computable function f such that Bn

∼= Af(n). It is clear that a
universal enumeration is principal.
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5.2.2. Computable enumerations.

The following result of Nurtazin [130] yields the existence condi-
tion for computable enumerations of Kc/∼=.

Theorem 5.18 ([130]). Suppose that K is a class of struc-
tures such that for some U ∈ Kc and every A ∈ Kc there is a
computable embedding of A into U and every c.e. subset W of U
generates a unique structure B ⊆ U in K. Then there is a com-
putable enumeration of Kc/∼= determined up to an isomorphism.
If for a given index for A there is an index for a computable em-
bedding of A into U , then there exists a computable universal enu-
meration of Kc/∼=.

Corollary 5.19 ([66]). A computable universal enumeration
of Kc/∼= exists for each of the following classes K :

(a) linear orderings,

(b) Boolean algebras,

(c) equivalence structures,

(d) Abelian p-groups (not necessarily reduced),

(e) algebraic fields of characteristic p,

(f) structures for a fixed computable relational language.

In case (f), a universal model U can be obtained as the union
of a chain of finite structures, where, at every stage, new elements
are added in order to satisfy all possible open types over the set of
“old” elements. The structure U is computably categorical, and
its theory is ℵ0 categorical.

Further, we can obtain the conclusion of Nurtazin’s theorem
without the assumption of computable embeddings.

Proposition 5.20. If K is the class of vector spaces over Q,
then there is a computable enumeration of Kc/∼=. In fact, there is
a principal enumeration.
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5.2.3. Existence of Friedberg enumerations.

For some classes with simple invariant it is easy to produce com-
putable Friedberg enumerations.

Proposition 5.21 ([66]). There is a computable Friedberg
enumeration of Kc/∼= for the following classes K :

(a) vector spaces over Q,

(b) algebraically closed fields of a given characteristic,

(c) well orderings of type less than a fixed computable ordinal α.

For computable equivalence structures there are natural in-
variants, but they are not so simple as the above examples. We
suspect that there is no computable Friedberg enumeration up to
an isomorphism. We have the following result.

Theorem 5.22 ([66]). If K is the class of equivalence struc-
tures with infinitely many infinite classes, then Kc/∼= has a com-
putable Friedberg enumeration.

A direct proof of the nonexistence of a computable Friedberg
enumeration is apparently a rather difficult question. Suppose
that there exists a computable bound on the ranks of elements of
Kc and there exists a computable Friedberg enumeration (Cn)n∈ω

of K/∼=. To obtain a contradiction, we try to find a computable
A ∈ K satisfying the condition A �∼= Cn for all n. It is difficult
to work out a suitable strategy even if we restrict ourselves to
only one of these conditions, for some n. The following assertions
clarify the difficulties we meet in this way. The assumptions of the
first assertion are the same as in Nurtazin’s theorem.

Theorem 5.23 ([66]). Suppose that there is a U ∈ Kc such
that

(1) for every index e for a structure A ∈ Kc it is possible to find
an index for a computable embedding of A into U ,

(2) every c.e. set W ⊆ U generates a unique substructure B ⊆ U
in K.
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Then there is no partial computable function f such that for any
index e of A ∈ Kc, f(e) is an index of some B ∈ Kc such that
B �∼= A.

Corollary 5.24 ([66]). For the following classes K there is
no effective procedure such that for a given index for a computable
A in K it yields an index for a computable B in K such that
A �∼= B :

(a) linear orderings,

(b) Boolean algebras,

(c) equivalence structures,

(d) arbitrary structures for a computable relational language.

Thus, we clarified some of the difficulties arising in the at-
tempts to obtain a direct proof of the nonexistence of Friedberg
enumerations. Therefore, we use some results on the complexity
of the isomorphism problems.

Proposition 5.25 ([66]). Suppose that I(K) is hyperarith-
metical and E(K) is properly Σ1

1. Then there is no hyperarith-
metical Friedberg enumeration of Kc/∼=.

Corollary 5.26 ([66]). There is no hyperarithmetical Fried-
berg enumeration of Kc/∼= for the following classes K :

(a) linear orderings,

(b) Boolean algebras,

(c) Abelian p-groups,

(d) structures for a computable language with at least one binary
relation symbol.

Some of these results are known for isomorphisms of a fixed
complexity. In particular, one of the results concerns the class K
of vector spaces over Q. Note that the computable members of
K are isomorphic only if they are ∆0

2 isomorphic. As we seen,
Kc/∼= has a computable principal enumeration and a computable
Friedberg enumeration.
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Proposition 5.27 ([66]). If K is a class of vector spaces
over Q, then there is no computable enumeration of Kc/∆0

1
.

Like Proposition 5.25, the following assertion concerns the
nonexistence of Friedberg enumerations of various classes, up to a
∆0

α isomorphism.

Proposition 5.28 ([66]). Suppose that I(K) is ∆0
α+2 and

the ∆0
α isomorphism problem for K is properly Σ0

α+2. Then there
is no ∆0

α+2 Friedberg enumeration of Kc/∼=∆0
α
.

Corollary 5.29 ([66]). Let K be one of the following classes:

(a) linear orderings,

(b) structures for a computable relational language with at least
one binary relation symbol,

(c) Boolean algebras,

(d) Abelian p-groups.

Then Kc has no ∆0
3 Friedberg enumeration up to a com-

putable isomorphism and for a computable ordinal α, Kc has no
∆0

α+2 Friedberg enumeration up to a ∆0
α isomorphism.

We write Kc/∼=∆1
1

for the set of equivalence classes of elements
of Kc under a hyperarithmetical isomorphism. The assertion that
Kc/∼=∆1

1
has a hyperarithmetical Friedberg enumeration is an al-

ternative classification statement.

Proposition 5.30 ([66]). If (An)n∈ω is a hyperarithmetical
enumeration of Kc determined up to a ∆1

1-isomorphism then it is
an enumeration of Kc determined up to a ∆0

α isomorphism for
some computable ordinal α.

Using the Barwise–Kreisel compactness, we obtain a Π1
1 set

of computable infinitary sentences describing a structure B, an
index e, and a function F such that B is computable, F is an
isomorphism from Ae onto B, and there is no ∆0

α isomorphism
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from Ae onto B for any computable ordinal α. If such an α does
not exist, then every ∆1

1 subset is satisfied. Hence we obtain a
model of the whole set, which leads to a contradiction.

5.2.4. Relationship between three approaches.

We present the relationship between the basic characterization
statements in the following form:

I. Kc is the set of computable models of a computable infinitary
sentence
⇓ ⇑

II. I(K) is hyperarithmetical
⇓ �⇑

III. Kc/∼= has a hyperarithmetical enumeration

It is easy to see that I ⇒ II ⇒ III. The result below asserts
that II ⇒ I.

Theorem 5.31 ([66]). Suppose that K is a class of struc-
tures closed under an isomorphism and I(K) is hyperarithmetical.
Then there is a computable infinitary sentence for which Kc is the
class of computable models.

The following result asserts that III �⇒ II.

Proposition 5.32 ([66]). Let K consist of copies of ωCK
1 (1+

η) and the linear orderings of rank at most ω. Then Kc/∼= has a
hyperarithmetical Friedberg enumeration. However, I(K) is not
hyperarithmetical.

In the first classification statement, we added the correspond-
ing characterization statement. A computable bound on the ranks
of elements of Kc, without a sentence whose computable models
are these elements, does not tell us much. The remaining clas-
sification statements imply the corresponding classification state-
ments. We summarize the relations among the basic classification
statements as follows.
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I. There is a computable bound on the ranks of elements of
Kc, in addition to a computable infinitary sentence whose
computable models are these structures
⇓ ⇑ ?

II. E(K) is hyperarithmetical
⇓ �⇑

III. Kc/∼= has a hyperarithmetical Friedberg enumeration

It is easy to see that I ⇒ II ⇒ III. By Proposition 5.32, III
�⇒ II. For a class K in this proposition, Kc/∼= has a hyperarith-
metical Friedberg enumeration, but I(K) is not hyperarithmetical.
Hence E(K) cannot be hyperarithmetical. Under the assumption
that there is a computable infinitary sentence ψ whose computable
models are elements of Kc, it is not known whether III ⇒ II.

We formulate a partial result concerning the implication II
⇒ I or III ⇒ I.

Theorem 5.33 ([66]). Suppose that Kc/∼= has a hyperarith-
metical Friedberg enumeration. Then there is computable ordinal
α such that for A, B in Kc, if every computable Πα sentence true
in A is true in B, then A ∼= B.

The first approach to the characterization problem is natural
from the mathematical point of view. Known classes of structures
(for example, groups and fields) are described by using axioms.
The second approach, involving index sets, seems to be far from
common practice in mathematics. Nevertheless, the characteriza-
tion statements for the first and second approaches are equivalent.
The third approach to the classification problems which yields a
list without repetition of invariants is very natural from the math-
ematical point of view. As we seen, the classification statements
obtained by the second and third approaches are not equivalent,
although there are relations between them. For some classes with
nice invariants (for example, vector spaces over the rational num-
bers) we can give a computable Friedberg enumeration. However,
in the majority of cases, where we established the nonexistence of



204 Sergei S. Goncharov

computable Friedberg enumerations, the proof was indirect and
used the complexity of the isomorphism problem.

It is very important to determine precisely the complexity of
the isomorphism problem for various classes. Having a classifica-
tion, it is reasonable to look for the least computable ordinal α
such that E(K) = E∆0

α
(K).

Problem 31. Whether there is an example of a class K for
which the isomorphism problem is properly at some level, Σ1

1, Π0
3,

etc., but is not complete at this level?

In all cases where we located E(K) properly at some level of
complexity (by proving that it is Σ1

1, but not ∆1
1 or by proving that

it is Π0
3, but not ∆0

3), it turned out to be complete at that level.
Problem 31 is related to the long-standing challenge of finding a
“natural” example of a c.e. set such that it is neither computable
nor complete.

The following problem concerns a special case of the missing
implication II⇒ I for the classification problems, where K consists
of copies of a single computable structure A. In this case, E(K)
is essentially the same as I(A).

Problem 32. Whether Rc(A) is computable provided that
I(A) is hyperarithmetical?

Definition 5.34. Let A be a computable structure such that
Rc(A) = ωCK

1 . We say that A is computably approximable if every
computable infinitary sentence true in A is also true in some com-
putable B �∼= A.

The known examples of computable structures of noncom-
putable rank (for example, the Harrison ordering) are computably
approximable. This can be explained by the fact that they were
obtained from a family of computable approximations by using the
Barwise–Kreisel compactness or by some other similar methods.

Problem 33. Let A be computable, and let Rc(A) = ωCK
1 .

(a) Whether A is computably approximable?
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(b) Whether any true computable infinitary sentence in A is also
true in some computable structure B of computable rank?

By Proposition 3.11, if A is computable and Rc(A) = ωCK
1 ,

then any computable infinitary sentence true in A is also true in
some hyperarithmetical B �∼= A.

Remark. Problems 32 and 33 (a) are equivalent. If Problem
33 (a) has a negative answer confirmed by a computable structure
A, then Problem 32 has a negative answer confirmed by the same
structure A. If Problem 33 (a) has a positive answer, then we can
use the Barwise–Kreisel compactness to show that Problem 32 has
a positive answer.

Problem 34. Let K be a class of equivalence structures.
Whether a computable Friedberg enumeration of Kc exists up to
an isomorphism?

5.3. Definability and index sets
of natural classes of computable models

As was already mentioned, the study of the complexity of index
sets for computable models is important for understanding struc-
tural properties, classifications of models, and complexity level
of classifications. On the other hand, if there exists a universal
enumeration of computable classes of models of a given structure
numbering, we can compare classes by the complexity of their de-
scription and choose the most adequate description corresponding
to their real algorithmic complexity.

One of the goals of the theory of computable models is to
characterize the complexity of classes of autostable models of fi-
nite or infinite algorithmic dimension with the Scott family of ∃
formulas in a finite enrichment by constants. This question is also
of interest for a certain level of arithmetic hierarchy and its exten-
sion by notations of constructive ordinals, and the interaction of
the complexity of the definition of these classes of models. Related
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topics are the complexity of index sets of computable models of a
given Scott rank; in particular, the case of nonconstructive Scott
ranks models of Scott rank ωCK

1 and ωCK
1 + 1.

Another cycle of problems is connected with the complexity
of finding computable models with theories of a given type and, in
particular, the case of a theory categorical in uncountable power,
a finitely axiomatizable theory, an Ehrenfeucht theory, a theory
without prime model, a theory with countably many countable
models, an ω-stable theory, a stable theory, a theory with count-
ably many types, a decidable theory, an elementary theory of a
given complexity, a theory with a given complexity of decidability
of computable models with respect to Turing degrees, a theory
with one computable model, a strongly minimal theory, etc. It is
of interest to clarify whether the Turing degree of a theory from
the above list is universal in the corresponding hierarchy class of
complexity.
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1. Introduction
(Logic and Spacetime Geometry)

Throughout their intimately intertwined histories, logic and geom-
etry immensely profited from their interactions. In particular,
logic greatly profited from its applications to geometry. Indeed,
the very birth of logic was brought about by the needs of geome-
try in the times of Socrates, Euclid and their predecessors. Ever
since, their interactions had rejuvenating, invigorating effects on
logic. For brevity, here we mention only Hilbert’s axiomatization
of geometry, Tarski’s improvements on this in the framework of
first-order logic (FOL) [62], Tarski’s school of FOL approaches to
geometry as a small sample. It is no coincidence that Tarskian
algebraic logic is geometrical in spirit.

In this paper, we try to show that this fruitful cooperation
promises new blessings for logic. This is so because there are
breathtaking revolutions in our understanding of space and time,
i.e., in relativity, cosmology, and black hole physics.

What is the subject matter of geometry? Traditionally, geom-
etry was created as a mathematical theory of a physical entity
called space. But recent developments in spacetime theory/general
relativity show that there is no such thing as physical space. Space
is only an illusion and as such is subjective. Space is a “slice” of
a larger entity called spacetime. Spacetime, on the other hand, is
objective, it exists. What is subjective about space is the, neces-
sarily ad hoc, way we decide to “slice” spacetime up into spacelike
slices. Actually, it was logician Kurt Gödel who first discovered
and emphasized that in certain non-negligible cases such slicing is
impossible (non-foliazibility, in the technical terminology) [25].

So, a great challenge for logic and logicians is to continue the
tradition sketched above of providing foundation and conceptual
analysis for geometry by doing the same to spacetime theory, hence
to relativity.

A further motivation for geometry-friendly logicians is the fol-
lowing. Relativity theory can be conceived of geometrizing parts
of physics in a sense (cf. [46]). Special relativity (SR) geometrizes
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some basic aspects of motion (kinematics) including light propa-
gation; general relativity (GR) geometrizes gravitation + SR; the
Kaluza–Klein style extension of GR geometrizes electromagnetic
phenomena + GR; and currently intensively researched extensions
of GR (for example, string theory) search for extending the scope
of this aim for geometrizing more and more aspects of our under-
standing of the world.

Why is this interesting for logicians? Well, because history
tells us that logic is applicable to geometry in an essential way.
Hence if relativity (and its extensions) is the act of geometrizing
more and more of physics, then it also can be regarded as a poten-
tial act of “logicizing” these areas, inviting logicians to take part
in this grandiose adventure of mankind.

2. More Concrete Introduction
(Foundation of Spacetime)

The idea of elaborating the foundational analysis of the logical
structure of spacetime theory and relativity theories (foundation
of relativity) in a spirit analogous with the rather successful foun-
dation of mathematics was initiated by several authors including
David Hilbert [34] (cf. also Hilbert’s 6th problem [33], Patrick
Suppes [59], Alfred Tarski [32] and leading contemporary logician
Harvey Friedman [22, 23]).

There are several reasons for seeking an axiomatic foundation
of a physical theory [60]. One is that the theory may be better un-
derstood by providing a basis of explicit postulates for the theory.
Another reason is that if we have an axiom system we can ask our-
selves what axioms are responsible for which theorems. For more
on this kind of foundational thinking called reverse mathematics,
see, for example, Friedman [22] and Simpson [56]. Furthermore, if
we have an axiom system for special relativity or general relativ-
ity, we can ask what happens with the theory if we change one or
more of the axioms. This could lead us to a new physically inter-
esting theory. This is what happened with Euclid’s axiom system
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for geometry when Bolyai and Lobachevsky altered the axiom of
parallelism and discovered hyperbolic geometry.

Seeking a logical foundation for spacetime theory (i.e., roughly,
relativity) is a worthwhile attempt for several reasons. One of
these is that spacetime can be regarded as a foundation of physics
since spacetime is the arena in which physical phenomena take
place. Another reason for seeking a logical foundation for space-
time is that throughout its history, logic benefited the most from
those applications of logic which were aiming at branches of learn-
ing going through a turmoil or a revolutionary phase, and at the
same time being important for our understanding of the world
[35]. As a quick glance to recent issues of, for example, Scientific
American can convince the reader, spacetime theory and relativ-
ity/cosmology certainly qualify. So we believe that it serves the
best interest of logic community to apply logic to spacetime the-
ory, relativity, cosmology, and black hole physics. Indeed, logic
can benefit from such studies in many ways. As a bonus, as indi-
cated in [14] or [38], spacetime theory can give a feedback to the
foundation of mathematics itself.

For certain reasons, the foundation of mathematics has been
carried through strictly within the framework of first-order logic
(FOL). One of these reasons is that staying inside FOL helps us to
avoid tacit assumptions. Another reason is that FOL has a com-
plete inference system while higher-order logic cannot have one by
Gödel’s incompleteness theorem (cf., for example, Väänänen [65,
p.505]). (For more motivation for staying inside FOL as opposed
to higher-order logic cf., for example, [1], [2, Appendix 1], and
[6, 21, 48, 67].) The same reasons motivate the effort of keep-
ing the foundation of spacetime and relativity theory inside FOL.

The interplay between logic and relativity theory goes back to
around 1920 and has been playing a non-negligible role in works
of researchers like Reichenbach, Carnap, Suppes, Ax, Szekeres,
Malament, Walker, and of many other contemporaries. For more
details cf., for example, [1]. Also, it is no coincidence that relativity
was the main motivating example for the logical positivists of the
Vienna Circle.
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Axiomatizations of SR have been quite extensively studied
in the literature (cf., for example, the references of [1]). However,
these works usually stop with a kind of representation theorem for
their axiomatizations. As a contrast, what we call the foundation
of relativity begins with the axiomatization (and representation
theorems), but the real work and the real fun (the conceptual
analysis) comes afterwards when we investigate, for example, what
axioms are responsible for which statements, what happens if we
change the axioms etc.

While some FOL axiomatizations of the theory of inertial
observers and for SR can be found in the literature (cf. [6, 26,
1]), axiom systems—let alone FOL axiom systems—for accelerated
observers and for GR are not too many in the literature (but cf. [44]
for an exception).

In Section 4, we recall a streamlined FOL axiomatization Ac-
cRel of SR extended with accelerated observers. In Section 5, we
take one step toward GR and investigate an aspect of time warp,
that is the effect of gravitation on clocks, in our FOL setting.
There we use Einstein’s equivalence principle to talk about gravi-
tation and prove the gravitational time dilation effect, that is that
“gravity causes time to run slow,” from AccRel in more than one
sense (cf. Theorems 5.1–5.3). We will also see that gravity can
slow time down arbitrarily (cf. Theorems 5.4–5.6). Furthermore,
we investigate the role of the “direction” and the “magnitude” of
gravitation in gravitational time dilation (cf. Theorems 5.7 and
5.8). We note that the most exotic features of black holes, worm-
holes and the like (mentioned in Section 3 below) can be traced
back to this effect of time warp (to be analyzed in Section 5).

3. Intriguing Features of GR Spacetimes
(Challenges for the Logician)

Both SR and GR have many interesting consequences. Most of
them show that we have to refine our common sense concepts
of space and time. They are full of surprising predictions and
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paradoxes which seriously challenge our common sense picture of
the world. But it is exactly this negation of common sense which
makes this area an attractive field to apply logic.

Gravitation has many surprising effects on time. The com-
mon name for these effects is time warp.

For example, in the Schwarzschild spacetime, which is as-
sociated with a non-rotating black hole (or star), we face one of
the simplest aspect of time warp called gravitational time dilation.
There we see that if we suspend an observer closer to the black
hole and another observer farther away from it, then the clock of
the closer one will run slower than the clock of the one which is
farther away. So in some sense we see that “gravity causes time
run slow.” There are places where this time warp effect becomes
infinite, i.e., some clocks entirely stop ticking, i.e., freeze from the
point of view of some other observers. Moreover, time and space
may get interchanged. These effects are part of the reason why we
said in Section 1 that space does not exist while spacetime does.

The above-mentioned time warp effect leads to even stronger
effects. We meet new interesting aspects of time warp in the
Reissner–Nordström, Kerr and Kerr–Newman spacetimes that are
associated with charged, rotating and charged-rotating black holes,
respectively. For astronomical evidence for the existence of rotat-
ing black holes cf., for example, [49, 58]. In these spacetimes,
there is an event whose causal past contains timelike curves which
are infinitely long in the future direction. Such a curve can be
the life-line of an observer (or computer) who has infinite time for
working and sending light-signals that can be received before the
distinguished event. The spacetimes in which these kinds of events
occur are called Malament–Hogarth spacetimes (cf., for example,
Earman [15, § 4] and [38]). In Malament–Hogarth spacetimes, we
can design a computer that decides non-Turing-computable sets
(cf., for example, [38, 16, 14, 19]). Thus inside these spacetimes,
we can decide whether an axiom system of set theory (for example
ZFC) is consistent or not. Therefore, in contrast with the conse-
quence of Gödel’s second incompleteness theorem, we can find out
whether mathematics is consistent or not. For more detail on these
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kinds of computers in the physically reasonable Kerr spacetime we
refer, for example, to [14, 19]). Recently, the acceleration of the
expansion of the universe made anti-de-Sitter spacetimes very pop-
ular with cosmologists. These also have the Malament–Hogarth
property, hence are also suitable for harboring computers breaking
the Turing barrier.

There are several models of GR in which there are so-called
Closed Timelike Curves (CTC). Such are Gödel’s rotating universe
[25], Kerr and Kerr–Newman spacetimes [47], Gott’s spacetime
[27], Tipler’s rotating cylinder [64], van Stockum’s spacetime [57],
Taub-NUT spacetime [31], to mention only a few. Since timelike
curves correspond to possible life-lines of observers, in these space-
times an observer can go through the same event more than once.
This situation can be interpreted as time travel. This leads to non-
trivial philosophical problems, in analysing/understanding which
the methods of logic can considerably help. We believe, currently
logic is the discipline best positioned for clarifying the apparent
problems with CTC’s, i.e., with time travel. Namely, the only
problem with time travel is that it represents a kind of circular-
ity, because of the following: a time traveler goes back into his
past, changes his past so as to prevent his own existence, but then
who went back into the past? etc. This circularity is not more
vicious than the Liar paradox or self-reference implemented, for
example, in Gödel’s second incompleteness proof. Logic has been
extremely successful in understanding and “de-mystifying” self-
referential situations and the Liar paradox. Examples are provided
by literature of Gödel’s incompleteness method [30], the book on
“The Liar” by Barwise and Etchemendy [7] which used non-well-
founded set theory for providing an explicit semantic analysis for
self-referential situations, [55]. So logic seems to be best suited for
providing rational understanding of situations like the circularity
represented by CTC’s or time travel. (For more on CTC’s cf., for
example, [15, § 6] and [17, 28].)

These are only a few of the many examples that show that
turning Relativity Theory into a real FOL theory, axiomatizing it
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and analyzing its logical structure seem to be a promising, worth-
while undertaking.

What could science gain from such a logical analysis of rela-
tivity theory? Turning GR into a FOL theory will make it more
flexible. By flexibility we mean that we can change some of the ax-
ioms whenever we would like to change the theory, without having
to re-build the whole theory from scratch. By changing the axioms,
we can control the changes of theory better than by changing Ein-
stein’s field equations. This might be useful when we would like to
understand the connection of GR to other theories of gravitation
like the Brans–Dicke theory (cf. [8, 9, 20]). This flexibility can
also be useful when we would like to extend GR. We indeed would
like to extend GR since we do not have a good theory of Quan-
tum Gravity (QG) which is a common extension of the quantum
theory and GR. Some eminent researchers of relativity formulated
an even more optimistic goal of searching for the geometrization
of all physical phenomena known today into a so-called theory of
everything (TOE). Of course, one wants both QG and TOE to be
some kinds of extensions of GR.

Recent astronomical observations provided strong evidence
that the expansion of our universe is accelerating. This discovery
leads to many questions and to the idea that the cosmological
constant might be replaced with a dynamical parameter, i.e., with
a scalar field, under the name of Quintessence or “dark energy”
(cf., for example, [10, 13]). But this leads to a new need for
modifying or at least fine-tuning GR. This also shows the merit of
making GR more flexible by providing a FOL axiom system for it.

So far we have talked mainly about the significance of the
logical foundation of GR, but the logical analysis of SR is also
important since GR is built on SR. Moreover, there are other
different relativity theories such as the Reichenbach–Grünbaum
version (cf. [50, 51, 29] or the Lorentz-Poincaré version of special
relativity (cf. [41]). Their logical structures and connection with
Einstein’s relativity are also worth analyzing in order to get a more
refined understanding of relativity theory. Our research group has
done some work in this direction (cf. [2, § 4.5]).
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In the following sections we try to give a sample of the work
done by our research group in Budapest in the direction of a FOL
investigation of relativity theories (including GR).

4. A FOL Axiom System of SR
Extended with Accelerated Observers

We recall one of our axiom systems for SR extended with acceler-
ated observers (hence extended with a handle on gravity). We try
to be as self contained as possible. First occurrences of concepts
used in this work are set in italic to make them easier to find.

The motivation for our choice of vocabulary is summarized
as follows. Here, we deal with the kinematics of relativity only,
that is we deal with motion of bodies (or test-particles). We will
represent motion as changing spatial location in time. To do so,
we will have reference-frames for coordinatizing events and, for
simplicity, we will associate reference-frames with special bodies
which we will call observers. We visualize an observer-as-a-body
as “sitting” in the origin of the space part of its reference-frame, or
equivalently, “living” on the time-axis of the reference-frame. We
will distinguish inertial observers from non-inertial (accelerated)
ones. There will be another special kind of bodies which we will
call photons. For coordinatizing events, we will use an arbitrary
ordered field in place of the field of the real numbers. Thus the
elements of this field will be the “quantities” which we will use
for marking time and space. Allowing arbitrary ordered fields in
place of the field of the reals increases flexibility of our theory and
minimizes the amount of our mathematical presuppositions (cf.,
for example, Ax [6] for further motivation in this direction). Sim-
ilar remarks apply to our flexibility oriented decisions below, for
example, keeping the dimension of spacetime a variable. Using ob-
servers in place of coordinate systems or reference frames is only a
matter of didactic convenience and visualization. Using observers
(or coordinate systems, or reference-frames) instead of a single
observer-independent spacetime structure has many reasons. One
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of them is that it helps us in weeding out unnecessary axioms from
our theories; but we state and emphasize the equivalence/duality
between observer-oriented and observer-independent approaches
to relativity theory (cf. [42, § 4.5]). Motivated by the above, we
now turn to fixing the first-order language of our axiom systems.

We fix a natural number d � 2 for the dimension of spacetime.
Our language contains the following non-logical symbols:

• unary relation symbols B (for Bodies), Ob (for Observers),
IOb (for Inertial Observers), Ph (for Photons) and Q (for
Quantities),

• binary function symbols +, · and a binary relation symbol �
(for the field operations and the ordering on Q), and

• a 2 + d-ary relation symbol W (for World-view relation).

The bodies will play the role of the “main characters” of
our spacetime models and they will be “observed” (coordinatized
using the quantities) by the observers. This observation will be
coded by the world-view relation W. Our bodies and observers
are basically the same as the “test particles” and the “reference-
frames,” respectively, in some of the literature.

We read B(x), Ob(x), IOb(x), Ph(x), and Q(x) as “x is a
body,” “x is an observer,” “x is an inertial observer,” “x is a pho-
ton,” and “x is a quantity.” We use the world-view relation W to
talk about coordinatization, by reading W(x, y, z1, . . . , zd) as “ob-
server x observes (or sees) body y at coordinate point 〈z1, . . . , zd〉.”
This kind of observation has no connection with seeing via pho-
tons, it simply means coordinatization.

B(x), Ob(x), IOb(x), Ph(x), Q(x), W(x, y, z1, . . . , zd), x = y
and x � y are the so-called atomic formulas of our first-order
language, where x, y, z1, . . . , zd can be arbitrary variables or terms
built up from variables by using the field-operations “+” and “·”.
The formulas of our first-order language are built up from these
atomic formulas by using the logical connectives not (¬), and (∧),
or (∨), implies (=⇒), if-and-only-if (⇐⇒) and the quantifiers
exists x (∃x) and for all x (∀x) for every variable x.
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The models of this language are of the form

M = 〈U ; B,Ob, IOb, Ph, Q, +, ·,�, W〉,
where U is a nonempty set and B, Ob, IOb, Ph and Q are unary
relations on U , etc. A unary relation on U is just a subset of
U . Thus we use B, Ob etc. as sets as well, for example, we write
m ∈ Ob in place of Ob(m).

Qd := Q × . . . × Q (d-times) is the set of all d-tuples of el-
ements of Q. If �p ∈ Qd, then we assume that �p = 〈p1, . . . , pd〉,
i.e., pi ∈ Q denotes the i-th component of the d-tuple �p. We write
W(m, b, �p ) in place of W(m, b, p1, . . . , pd), and we write ∀�p in place
of ∀p1, . . . , pd etc.

Let us begin formulating our axioms. We formulate each
axiom at two levels. First we give an intuitive formulation, then
we give a precise formalization using our logical notation (which
easily can be translated into first-order formulas by substituting
the definitions into the formalizations). We aspire to formulate
easily understandable axioms in FOL.

The first axiom expresses our very basic assumptions like:
both photons and observers are bodies, inertial observers are also
observers, etc.

AxFrame: Ob ∪ Ph ⊆ B, IOb ⊆ Ob, U = B ∪ Q, B ∩ Q = ∅,
W ⊆ Ob × B × Qd, + and · are binary operations on Q,
� is a binary relation on Q.

To be able to add, multiply and compare measurements of
observers, we put some algebraic structure on the set of quantities
Q by the next axiom.

AxEOF: A FOL axiom stating that the quantity part 〈Q; +, ·,�〉
is a Euclidean 1 ordered field.

For the first-order definition of linearly ordered field see, for ex-
ample, Chang–Keisler [11].

1 That is a linearly ordered field in which positive elements have
square roots.
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Figure 1. Illustration for the basic definitions

We need some definitions to formulate our other axioms. Let
0, 1,−, /,

√
be the usual field operations which are definable from

“+” and “·” . We use the vector-space structure of Qd, i.e., if
�p, �q ∈ Qd and λ ∈ Q, then �p + �q,−�p, λ�p ∈ Qd; and �o := 〈0, . . . , 0〉
denotes the origin. Qd is called the coordinate system and its
elements are referred to as coordinate points. We use the notation
�ps := 〈p2, . . . , pd〉 for the space component of �p and pt := p1 for the
time component of �p ∈ Qd. The event (the set of bodies) observed
by observer m at coordinate point �p is:

evm(�p ) := { b ∈ B : W(m, b, �p ) } .

The coordinate-domain of observer m is the set of coordinate
points where m observes something:

Cdm :=
{

�p ∈ Qd : evm(�p ) �= ∅
}

.
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Now we formulate our first axiom on observers. This natural
axiom goes back to Galileo Galilei and even to d’Oresme of around
1350 (cf., for example, [1, p.23, § 5]). It simply states that each
observer thinks that he rests in the origin of the space part of his
coordinate system.

AxSelf−: An observer sees himself in an event if and only if the
space component of the coordinate of this event is the
origin:

∀m ∈ Ob ∀�p ∈ Cdm

(
m ∈ evm(�p ) ⇐⇒ �ps = �o

)
.

To formulate our axiom about the constancy of this speed,
we choose 1 for the speed of photons. Below, the Euclidean-length
of �p ∈ Qn is defined as |�p | :=

√
p2

1 + . . . + p2
n, for any n � 1.

AxPh0: For every inertial observer, there is a photon through
two coordinate points �p and �q if and only if the slope of
�p− �q is 1:

∀m ∈ IOb ∀�p, �q ∈ Qd
(
|�ps − �qs| = |pt − qt| ⇐⇒
Ph ∩ evm(�p ) ∩ evm(�q ) �= ∅

)
.

Motivations for this axiom can be found, for example, in [3],
or in d’Inverno [12, § 2.6].

The set of events seen by observer m is:

Evm := { evm(�p ) : �p ∈ Cdm } ,

and the set of all events is

Ev := { e ∈ Evm : m ∈ Ob } .

With the next axiom, we assume that every inertial observer
sees the same set of events.

AxEv: Every inertial observer sees the same events:

∀m, k ∈ IOb Evm = Evk.
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One can prove from AxPh0 and AxEOF that if m is an in-
ertial observer and e ∈ Evm, then there is a unique coordinate
point �p ∈ Qd such that e = evm(�p ). This unique coordinate point
�p ∈ Qd is denoted by Crdm(e).

Convention 4.1. Whenever we write “Crdm(e),” we mean
that there is a unique �q ∈ Cdm such that evm(�q ) = e, and Crdm(e)
denotes this unique �q . That is, if we talk about the value Crdm(e),
we postulate that it exists and is unique (by the present conven-
tion).

We say that events e1 and e2 are simultaneous for observer
m, in symbols e1 ∼m e2, if and only if e1 and e2 have the same
time-coordinate in m’s coordinate-domain, i.e., if Crdm(e1)t =
Crdm(e2)t. To talk about time differences measured by observers,
we use timem(e1, e2) as an abbreviation for |Crdm(e1)t−Crdm(e2)t|
and we call it the elapsed time between events e1 and e2 measured
by observer m. We note that, if m ∈ e1 ∩ e2, then timem(e1, e2)
is called the proper time measured by m between e1 and e2, and
e1 ∼m e2 if and only if timem(e1, e2) = 0. We use distm(e1, e2) as an
abbreviation for |Crdm(e1)s−Crdm(e2)s| and we call it the spatial
distance of events e1 and e2 according to an observer m. We note
that when we write distm(e1, e2) or timem(e1, e2), we assume that
e1 and e2 have unique coordinates by Convention 4.1.

AxSimDist: If events e1 and e2 are simultaneous for both inertial
observers m and k, then m and k agree on the spatial
distance between e1 and e2:

∀m, k ∈ IOb ∀e1, e2 ∈ Evm

(
e1 ∼m e2 ∧ e1 ∼k e2 =⇒
distm(e1, e2) = distk(e1, e2)

)
.

We collect these axioms in an axiom system, called SpecReld :

SpecRel d := {AxFrame , AxEOF , AxSelf −, AxPh 0,

AxEv , AxSimDist}.

Now for each natural number d � 2, we have a FOL theory
of SR. Usually we omit the dimension parameter d. From the
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few axioms introduced so far, we can deduce the most frequently
quoted predictions, called paradigmatic effects, of SR:

(i) “moving clocks slow down,”
(ii) “moving meter-rods shrink,”
(iii) “moving pairs of clocks get out of synchronism.”

For more detail see, for example, [1, 2, 3]. Here, we con-
centrate on the behavior of clocks and indicate a connection with
Minkowski geometry.

Theorem 4.2. Assume SpecRel d , d � 3. Then

timem(e1, e2)2 − distm(e1, e2)2 = timek(e1, e2)2 − distk(e1, e2)2

for any m, k ∈ IOb and e1, e2 ∈ Evm.

The above theorem is the starting point for building Minkowski
geometry, which is the “geometrization” of SR. It also indicates
that time and space are intertwined in SR. Here, we only concen-
trate on its corollary usually stated as “moving clocks slow down.”
Theorem 4.2 shows that SpecRel is a good axiom system for SR
if we restrict our interest to textitinertial motion.

Corollary 4.3 (moving clocks slow down). Assume SpecRel d ,
d � 3. Let m, k ∈ IOb, e1, e2 ∈ Evk. Assume that k ∈ e1 ∩ e2 and
distm(e1, e2) �= 0. Then

timem(e1, e2) > timek(e1, e2).

In Corollary 4.3, a “moving clock” is represented by observer
k, that he is moving relative to m is expressed by distm(e1, e2) �= 0,
k ∈ e1 ∩ e2, and that k’s time is slowing down relative to m’s is
expressed by timem(e1, e2) > timek(e1, e2). This “clock slowing
down” effect is only relative, i.e., “clocks moving relative to m
slow down relative to m.” But this relative effect leads to a new
kind of gravitation-oriented “absolute slowing time down” effect,
as our next theorem as well as the whole of Section 5 will show.

To extend SpecRel, we now formulate axioms about non-
inertial observers. The non-inertial observers are called accelerated
observers. Note that AxSelf− is the only axiom introduced so
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far that talks about non-inertial observers, too. We assume the
following very natural axiom for all observers.

AxEv+: Whenever an observer participates in an event, he also
sees this event:

∀m ∈ Ob ∀e ∈ Ev
(
m ∈ e =⇒ e ∈ Evm

)
.

The set of positive elements of Q is denoted by Q+ := {x ∈ Q :
x > 0}. The interval between x, y ∈ Q is defined as (x, y) := {z ∈
Q : x < z < y}. Let H ⊆ Q. We say that H is connected if and
only if ∀x, y ∈ H (x, y) ⊆ H, and we say that H is open if and
only if ∀x ∈ H ∃ε ∈ Q+ (x− ε, x + ε) ⊆ H.

We assume the following technical axiom.

AxSelf+: The set of time-instances in which an observer is present
in its own world-view is connected and open:

∀m ∈ Ob {pt : m ∈ evm(�p )} is connected and open.

To connect the coordinate-domains of the accelerated and the
inertial observers, we are going to formulate the statement that at
each moment of his life, each accelerated observer sees the nearby
world for a short while as an inertial observer does. To formalize
this, first we introduce the relation of being a co-moving observer.
To do so, we define the (coordinate) neighborhood of event e with
radius r ∈ Q+ according to observer k as:

Br
k(e) := { �p ∈ Cdk : ∃�q ∈ Cdk evk(�q ) = e ∧ |�p− �q | < r } .

We note that Br
k(e) = ∅ if e �∈ Evk by this definition. Observer

m is a co-moving observer of observer k at event e, in symbols
m 1e k, if and only if the following holds:

∀ε ∈ Q+ ∃δ ∈ Q+ ∀�p ∈ Bδ
k(e)

∣∣�p−Crdm(evk(�p ))
∣∣ � ε|�p−Crdk(e)|.

Note that Crdm(e) = Crdk(e) and thus also e ∈ Evm if m 1e k
and e ∈ Evk. Note also that m 1e k for every observer m if
e �∈ Evk, by definition. Behind the definition of the co-moving
observers is the following intuitive image: as we zoom into smaller
and smaller neighborhoods of the coordinate point of the given
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event, the coordinate-domains of the two observers are more and
more similar. This intuitive picture is symmetric while the co-
moving relation 1e is not. Thus we introduce a symmetric version.
We say that observers m and k are strong co-moving observers at
event e, in symbols m 1≺e k, if and only if both m 1e k and
k 1e m hold. The following axiom gives the promised connection
between the coordinate-domains of the inertial and the accelerated
observers.

AxAcc+: At any event in which an observer sees himself, there
is a strong co-moving inertial observer:

∀k ∈ Ob ∀e ∈ Evk ( k ∈ e =⇒ ∃m ∈ IOb m 1≺e k ).

The axioms introduced so far are not strong enough to prove
properties of accelerated clocks like the Twin Paradox (cf. [44,
Theorems 3.5 and 3.7 and Corollary 3.6]). The additional prop-
erty we need is that every bounded non-empty subset of the quan-
tity part has a supremum. This is a second-order logic property
(because it concerns all subsets) which we cannot use in a FOL
axiom system. Instead, we will use a kind of “induction” axiom
schema. It will state that every non-empty, bounded subset of the
quantity part which can be defined by a FOL-formula using possi-
bly the extra part of the model, for example, using the world-view
relation, has a supremum. To formulate this FOL induction axiom
schema, we need some more definitions.

If ϕ is a formula and x is a variable, then we say that x is a
free variable of ϕ if and only if x does not occur under the scope
of either ∃x or ∀x. Sometimes we introduce a formula ϕ as ϕ(�x ),
this means that all the free variables of ϕ lie in �x.

If ϕ(x, y) is a formula and M = 〈U ; . . .〉 is a model, then
whether ϕ is true or false in M depends on how we associate
elements of U to the free variables x, y. When we associate a, b ∈ U
to x, y, respectively, then ϕ(a, b) denotes this truth-value, thus
ϕ(a, b) is either true or false in M. For example, if ϕ is x � y,
then ϕ(0, 1) is true while ϕ(1, 0) is false in any ordered field. A
formula ϕ is said to be true in M if ϕ is true in M no matter how
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we associate elements to the free variables. We say that a subset
H of Q is (parametrically) definable by ϕ(y, �x ) if and only if there
is �a ∈ Un such that H = {b ∈ Q : ϕ(b,�a ) is true in M}. We say
that a subset of Q is definable if and only if it is definable by a
FOL-formula.

Let ϕ(x, �y ) be a FOL-formula of our language.

AxSupϕ: Every subset of Q definable by ϕ(x, �y ) has a supremum
if it is non-empty and bounded.

A FOL formula expressing AxSupϕ can be found in [44].
Our axiom scheme IND below says that every non-empty bounded
subset of Q that is definable in our language has a supremum:

IND := {AxSup ϕ : ϕ is a FOL-formula of our language } .

Note that IND is true in any model whose quantity part is the
field of real numbers. For more detail about IND we refer to [44].

We call the collection of the axioms introduced so far AccReld :

AccRel d := SpecRel d ∪ {AxEv+, AxSelf+, AxAcc +} ∪ IND.

The so-called Twin Paradox is provable in AccRel (cf. [44,
61]). We formulate the Twin Paradox with our logical notation.

The set of events encountered by m ∈ Ob between e1, e2 ∈ Ev
is denoted by

Evm(e1, e2) := { e ∈ Evm : m ∈ e ∧
Crdm(e1)t < Crdm(e)t < Crdm(e2)t } .

Now we can formulate the Twin Paradox in our FOL setting.

TwP: Every inertial observer m measures more time than or
equal time as any other observer k between any two meet-
ing events e1 and e2; and they measure the same time if



FOL Foundation of Relativity Theories 235

and only if they have encountered the same events be-
tween e1 and e2:

∀e1, e2 ∈ Ev ∀m ∈ IOb ∀k ∈ Ob
(

k,m ∈ e1 ∩ e2 =⇒(
timem(e1, e2) = timek(e1, e2) ⇐⇒ Evm(e1, e2) = Evk(e1, e2)

)
∧ timem(e1, e2) � timek(e1, e2)

)
.

The following theorem states that the Twin Paradox is prov-
able in AccReld if d � 3.

Theorem 4.4. AccRel d |= TwP if d � 3.

For the proof of this theorem cf. [44, 61].

We note that there are non-trivial models of AccRel. For
example, the construction in Misner–Thorne–Wheeler [46, § 6,
especially pp. 172–173 and § 13.6, pp. 327–332] can be used for
constructing models for AccRel.

5. One Step toward GR
(Effect of Gravitation on Clocks)

We would like to investigate the effect of gravitation on clocks in
our FOL setting. As a first step we prove theorems about the
Gravitational Time Dilation that roughly says that “gravitation
makes time flow slower,” i.e., the clocks in the bottom of a tower
run slower than the clocks in the top of the tower. We will use Ein-
stein’s equivalence principle to treat gravitation in AccRel. This
principle says that a uniformly accelerated frame of reference is in-
distinguishable from a rest frame in a uniform gravitational field
(cf., for example, d’Inverno [12, § 9.4]). So, instead of gravitation
we will talk about acceleration and instead of towers we will talk
about spaceships. This way the Gravitational Time Dilation will
become the following statement: “the time in the aft of an accel-
erated spaceship flows slower than in the front of the spaceship.”
We begin to formulate this statement in our FOL language.
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To talk about spaceships, we will need a concept of distance
between events and observers. We have the following two natural
candidates for this:

• Event e is at radar-distance λ ∈ Q+ from observer k if and
only if there are events e1 and e2 and photons ph1 and ph2

such that k ∈ e1 ∩ e2, ph1 ∈ e ∩ e1, ph2 ∈ e ∩ e2 and
timek(e1, e2) = 2λ. Event e is at radar-distance 0 from ob-
server k if and only if k ∈ e (cf. Fig. 2, (a)).

• Event e is at Minkowski–distance λ ∈ Q from observer k if
and only if there is an event e′ such that k ∈ e′, e ∼m e′ and
distm(e, e′) = λ for every inertial co-moving observer m of k
at e′ (cf. Fig. 2, (b)).

Figure 2. (a) for the radar-distance and (b) for the
Minkowski–distance

We say that observer k thinks that body b is at constant radar
(Minkowski) distance from him if and only if the radar-distance
(Minkowski–distance) of every event which b participates in is the
same.
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The life-line2 (or trace) of body b according to observer m is
defined as the set of coordinate points where b was observed by m:

trm(b) :=
{

�p ∈ Qd : W(m, b, �p )
}

.

Note that trm(b) =
{

�p ∈ Qd : b ∈ evm(�p )
}
. For stating that

the spaceship does not change its direction we introduce the fol-
lowing concept. We say that observers k and b are coplanar if
and only if trm(k)∪ trm(b) is a subset of a plane containing a line
parallel with the time-axis, in the coordinate system of an inertial
observer m.

We now introduce two concepts for spaceships. Observers b, k
and c form a radar-spaceship, in symbols >

∣∣b, k, c
〉
rad

, if and only
if b, k and c are coplanar and k thinks that b and c are at con-
stant radar-distances from him. The definition of the Minkowski–
spaceship, in symbols >

∣∣b, k, c
〉
µ
, is analogous.

We say that event e1 (causally) precedes event e2 according
to observer k if and only if Crdm(e1)t � Crdm(e2)t for all inertial
co-moving observers m of k. In this case, we also say that e2

succeeds e1 according to k.
We need some concept for deciding which events happened at

the same time according to an accelerated observer. The following
three natural concepts offer themselves:

• Events e and e′ are radar-simultaneous for observer k, in
symbols e ∼rad

k e′, if and only if k ∈ e and there are events
e1 and e2 and photons ph1 and ph2 such that k ∈ e1 ∩ e2,
ph1 ∈ e ∩ e1, ph2 ∈ e ∩ e2 and timek(e1, e) = timek(e, e2)
or there is an event e3 such that e ∼rad

k e3 and e3 ∼rad
k e′

(cf. Fig. 3, (a)).
• Events e1 and e2 are photon-simultaneous for observer k, in

symbols e1 ∼
ph
k e2, if and only if there is an event e and

photons ph1 and ph2 such that k ∈ e, ph1 ∈ e∩e1, ph2 ∈ e∩e2

and e1 and e2 precedes e according to k (cf. Fig. 3, (b)).
• Events e1 and e2 are Minkowski–simultaneous for observer k,

in symbols e1 ∼
µ
k e2, if and only if there is an event e such

2 Life-line is called world-line in some of the literature.
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that k ∈ e and e1 and e2 are simultaneous for any inertial
co-moving observer of k at e (cf. Fig. 3, (c)).

We note that, for inertial observers, the concepts of radar–
simultaneity and Minkowski–simultaneity coincide with the con-
cept of simultaneity introduced on p. 230.

Figure 3. (a) is for e ∼rad
k e′, (b) is for e1 ∼

ph
k e2 and

(c) is for e1 ∼
µ
k e2

We will distinguish the front and the aft of the spaceship
by the direction of the acceleration. Thus we need a concept for
direction. We say that the directions of �p ∈ Qd and �q ∈ Qd are
the same, in symbols �p ↑↑�q, if and only if there is a λ ∈ Q+ such
that λ�ps = �qs (cf. Fig. 4, (a)).

Now let us turn our attention towards the definition of accel-
eration in our FOL setting.

We define the life-curve of observer k according to observer
m as the life-line of k according to m parameterized by the time
measured by k, formally:

Trk
m := { 〈t, �p 〉 ∈ Q× Cdm :

∃�q ∈ trk(k) qt = t ∧ evm(�p ) = evk(�q ) } .

The domain of a binary relation R is defined as DomR := {x :
∃y 〈x, y〉 ∈ R}.
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Figure 4. (a) is for illustrating �p ↑↑ �q and (b) is for
illustrating observer b approaching to observer k, as seen
by k with photons

Both the life-curves of observers (according to any inertial
observer) and the derivative f ′ of a given function f are first-order
logic definable concepts (cf. [44]). Thus the following definitions
are also FOL ones: The relative-velocity �v k

m of observer k according
to observer m at instant t ∈ Q is the derivative of the life-curve
of k according to m at t, i.e., �v k

m(t) = (Trk
m)′(t) if t ∈ Dom Trk

m

and undefined otherwise. The relative-acceleration �a k
m of observer

k according to observer m at instant t ∈ Q is the derivative of
the relative-velocity at t if it is differentiable at t and undefined
otherwise.

Events e1 and e2 are called spacelike separated, in symbols
e1 ≡ s e2, if and only if Crdm(e1) and Crdm(e2) can be connected
by a line of slope more than 1 for every inertial observer m, i.e., if
and only if |(Crdm(e1)−Crdm(e2))s| > |(Crdm(e1)−Crdm(e2))t|
for every inertial observer m. We say that the direction of the
spaceship >

∣∣b, k, c
〉

agrees with that of the acceleration of k if and
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only if the following holds:

∀m ∈ IOb ∀t ∈ Dom�a k
m ∀e1, e2 ∈ Ev

(
c ∈ e1 ∧

b ∈ e2 ∧ e1 ≡ s e2 =⇒ �a k
m(t) ↑↑(Crdk(e1)− Crdk(e2))

)
.

The (signed) Minkowski–length of �p ∈ Qd is

µ(�p) :=

⎧⎨⎩
√∣∣p2

t − |�ps|2
∣∣ if p2

t − |�ps|2 � 0,

−
√∣∣p2

t − |�ps|2
∣∣ otherwise

and the Minkowski–distance between �p and �q is µ(�p, �q ) :=µ(�p−�q ).
A motivation for the “otherwise” part of the definition of µ(�p ) is
the following. µ(�p ) codes two kinds of information, (i) the length
of �p and (ii) whether �p is timelike (i.e., |pt| > |�ps|) or spacelike.
Since the length is always non-negative, we can use the sign of
µ(�p ) to code (ii).

The acceleration of an observer k at instant t ∈ Q is defined
as the Minkowski–length of the relative-acceleration seen by any
inertial observer m at t, that is:

ak(t) :=µ
(
�a k

m(t)
)
.

The acceleration is a well defined concept since it is independent
of the choice of the inertial observer m. We say that observer k is
positively accelerated if and only if ak(t) �= 0 for all t ∈ Dom Trk

k .
Observer k is called uniformly accelerated if and only if there is
an a ∈ Q+ such that ak(t) = a for all t ∈ DomTrk

k .
We say that the clock of b runs slower than the clock of c

as seen by k with radar (photons; Minkowski–simultaneity) if and
only if timeb(eb, e

′
b) < timec(ec, e

′
c) for all events eb, e

′
b, ec, e

′
c for

which b ∈ eb ∩ e′b, c ∈ ec ∩ e′c and eb ∼rad
k ec, e′b ∼rad

k e′c. (eb ∼
ph
k ec,

e′b ∼
ph
k e′c; eb ∼

µ
k ec, e′b ∼

µ
k e′c).

Now we can state our first theorem about the clock-slowing
effect of gravitation:

Theorem 5.1. Assume AccReld and d � 3. Let >
∣∣b, k, c

〉
rad

be a radar-spaceship such that

(1) k is positively accelerated,
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(2) the direction of the spaceship agrees with that of the ac-
celeration of k.

Then

(i) the clock of b runs slower than the clock of c as seen by k
with radar and

(ii) the clock of b runs slower than the clock of c as seen by
each of k, b and c with photons.

To state a similar theorem in Minkowski–spaceships, we need
the following concept. We say that observer b is not too far behind
positively accelerated observer k if and only if the following holds:

∀m ∈ IOb ∀t ∈ Dom Trk
m ∀�p, �q ∈ Cdm

(
�p ∈ trm(k) ∧

�q ∈ trm(b) ∧ evm(�p ) ∼
µ
k evm(�q ) ∧ �a k

m(t) ↑↑(�p− �q ) =⇒
∀τ ∈ Dom�a k

m µ(�p− �q ) < 1/ak(τ)
)
.

Now we can state our second theorem about the clock-slowing
effect of gravitation:

Theorem 5.2. Assume AccRel d and d � 3. Let >
∣∣b, k, c

〉
µ

be a Minkowski–spaceship such that

(1) k is positively accelerated,
(2) the direction of the spaceship agrees with that of the ac-

celeration of k,
(3) b is not too far behind k.

Then

(i) the clock of b runs slower than the clock of c as seen by k
with Minkowski–simultaneity or with photons and

(ii) the clock of b runs slower than the clock of c as seen by
each of k, b and c with photons.

In the following theorem we will see that the flow of time
as seen by photons is strongly connected with the following two
concepts. We say that observer b is approaching to (moving away
from) observer k as seen by k with photons if and only if for all
events ek and eb, if b ∈ eb, k ∈ ek and ek ∼

ph
k eb, then there is an
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event e such that k′, b′ ∈ e for all inertial co-moving observers k′

and b′ of k and b at events ek and eb, respectively, and ek precedes
(succeeds) e according to k (cf. Fig. 4, (b)).

Theorem 5.3. Assume AccRel d and d � 3. Let b, k ∈ Ob
be such that b and k are coplanar.

(1) If b is approaching to k as seen by k with photons, then
the clock of k runs slower than the clock of b as seen by k
with photons.

(2) If b is moving away from k as seen by k with photons,
then the clock of b runs slower than the clock of k as seen
by k with photons.

None of the axioms introduced so far require the existence of
accelerated (non-inertial) observers. Our following axiom scheme
says that every definable timelike curve is the life-line of an ob-
server. Since from AxSelf−, AxPh0 and AxEv it follows that the
life-lines of inertial observers are straight lines (cf., for example,
[1, 39, 40]), this will ensure the existence of many non-inertial
observers.

A differentiable function γ is called timelike curve if and only
if the slope of γ′(t) is less than 1 (i.e., |γ′(t))s| < |γ′(t))t|) for all
t ∈ Dom γ and Dom γ is an open and connected subset of Q. It
is clear that this is a first-order logic definable concept since every
fragment of it is such. We say that a function f is (parametrically)
definable by ψ(x, �y, �z ) if and only if there is �a ∈ Un such that
f(b) = �p ⇐⇒ ψ(b, �p,�a ) true in M.

Let ψ be a FOL-formula of our language.

Ax∃Obψ: If a function parametrically definable by ψ is a timelike
curve, then there is an observer whose life-line is the range
of this function.

Now we introduce the promised axiom scheme about the ex-
istence of observers:

Ax∃Ob := {Ax∃Obψ: ψ is a FOL-formula of our language}
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The following three theorems say that the clocks can run
arbitrarily slow or fast, as seen with the three different methods.

Theorem 5.4. Assume AccRel d , Ax∃Ob, and d � 3. Let
m ∈ Ob be positively accelerated such that Dom Trm

m = Q, and let
e, e′ ∈ Ev be such that e �= e′ and m ∈ e∩e′. Then for all λ ∈ Q+,
there is an observer b and events eb, e

′
b ∈ Ev such that b ∈ eb ∩ e′b,

e ∼rad
m eb, e′ ∼rad

m e′b and timeb(eb, e
′
b) = λ timem(e, e′).

Theorem 5.5. Assume AccRel d , Ax∃Ob, and d � 3. Let
m ∈ Ob be uniformly accelerated, and let e, e′ ∈ Ev be such that
e �= e′ and m ∈ e ∩ e′. Then for all λ ∈ Q+, there is an observer
b and events eb, e

′
b ∈ Ev such that b ∈ eb ∩ e′b, e ∼µ

m eb, e′ ∼µ
m e′b

and timeb(eb, e
′
b) = λ timem(e, e′).

Theorem 5.6. Assume AccRel d , Ax∃Ob, and d � 3. Let
m ∈ Ob be positively accelerated and e, e′ ∈ Ev such that e �= e′

and m ∈ e ∩ e′. Then for all λ ∈ Q+, there is an observer b and
events eb, e

′
b ∈ Ev such that b ∈ eb ∩ e′b, e ∼ph

m eb, e′ ∼ph
m e′b and

timeb(eb, e
′
b) = λ timem(e, e′).

We have seen that gravitation (acceleration) makes “time
flow slowly.” However, we left open the question what role the
“magnitude” and the “direction” of the gravitation play in this
effect. The following theorem shows that two observers, say m
and k, can feel the same gravitation while the clock of k runs
slower than the clock of m. Thus it is not the “magnitude” of the
gravitation that makes “time flow more slowly.”

Theorem 5.7. Assume AccRel d , Ax∃Ob, and d � 3. There
are uniformly accelerated observers m and k such that ak(t) =
am(t) for all t ∈ Q, but the clock of k runs slower than the clock
of m as seen by both m and k with photons (or with radar or with
Minkowski– simultaneity).

Now let us see what we can say about the role of the “direc-
tion” of gravitation. Being “more down in a gravitational well”
becomes being “behind” if we translate it from the language of
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gravitation into the language of acceleration. This can be formu-
lated by our notation as follows. We say that observer b is behind
observer k if and only if

∀m ∈ IOb ∀t ∈ Dom Trk
m ∀�p, �q ∈ Cdm �p ∈ trm(k) ∧

�q ∈ trm(b) ∧ evm(�p ) ∼
µ
k evm(�q ) ∧ �a k

m(t) ↑↑(�p− �q ).

The following theorem shows that if observer b is at a lower
level in the tower than observer k is, then his clock runs slower
than the clock of k, as seen by k with radar.

Theorem 5.8. Assume AccRel d and d � 3. Let b, k ∈ Ob
be such that

(1) k is positively accelerated,
(2) b and k are coplanar,
(3) b is behind k.

Then the clock of k runs slower than the clock of b, as seen
by k with radar.

The proofs, along with more explanation and motivation, of
the theorems presented in this section can be found in [45].

6. Questions, Suggestions
for Future Research

1. We hope that the perspective outlined in Sections 1–3, and
the techniques presented in Sections 4–5, [44] already suggest a
research proposal. Sections 4–5 cover only a small fragment of the
research proposed in Sections 1–3. So the proposal is: elaborate a
larger part of the perspective outlined in Sections 1–3 in the style
of Sections 4–5 and [44].

2. The Introduction of [2] contains more ideas both on the
general perspective (of applying logic to spacetime theory) and
also more of the long-distance goals. However, some of the present
results were not available when [2] was written, therefore that
introduction does not replace completely the present section.
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3. In Section 5, we started to elaborate a purely logical theory
of the effects of gravitation on clocks. Elaborate this direction in
more detail, and investigate more aspects of gravitation on clocks.
For example, assume we bore a hole through the Earth from the
North pole to the South pole. Now put a clock into the middle
of the Earth. It will levitate “weightlessly” in the middle. Put
another clock to the surface of the Earth. It will be squeezed by
gravity to the surface. Despite this, the clock levitating in the
middle will run slower than the one on the surface. A third clock
high above in deep space will run even faster (than the one on the
surface). Why? Find a logic style formulation of the above (and
prove it) in the manner of Section 5.

4. Investigate/formulate further aspects of the effects of grav-
ity on instruments (like clocks, meter-rods). For example, define
the so-called gravitational force-field experienced by an accelerated
observer (via acceleration, relative to the observer, of test parti-
cles dropped by the observer). Study this force-field and connect
this study with the investigations in Section 5. Try to make an
integrated coherent picture of gravity, time warp (clock behavior
in gravitational fields), and gravitational force. (Remark: gravita-
tional force is often suppressed in the literature because it is not
“absolute,” i.e., is not observer independent. All the same, if we
keep in mind that it is observer dependent, then it is a helpful con-
cept.) Imagine a long, accelerated spaceship. The gravitational
force experienced in the aft of the ship will be greater than that
in the front of the ship. Why?

5. Continuing in the spirit of Sections 4,5, [44], and the above,
elaborate a FOL theory of the spacetime of a Schwarzschild black
hole [63]. Streamline that theory, make it logically transparent
and illuminating. Apply conceptual analysis to the theory simi-
lar in spirit as conceptual analysis of special relativity is started in
[2, 1, 43]. Using the theory of accelerated observers and Einstein’s
equivalence principle, create a logically convincing, illuminating
theory of such black holes. In this direction it might be helpful
that the analogy between the world-view or reference frame of an
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accelerated spaceship and skyscrapers (towers) on the event hori-
zon of a black hole is described in detail in Rindler’s relativity
book [52, § 12.4, pp. 267–272]. Figure 12.6 is especially useful
therein. Also note how in Rindler’s arrangement of the skyscrap-
ers above the black hole they are prevented from falling by rigid
rods separating them (these rods provide the “acceleration” expe-
rienced by the inhabitants of the towers/spaceships). These rods
are called struts in [52, p. 270].

So, we suggest combining the presently started FOL theory
of accelerated observers and of effects of gravity (acceleration) on
instruments of observers with the just quoted part of Rindler’s
work in order to elaborate a FOL theory of the simplest kind of
black holes. Of course, the main point is that we are striving for a
very special kind of illuminating (etc.) FOL theory (and not just
any FOL theory describing a black hole).

When the above is done, we suggest applying re-coordina-
tization in order to obtain an Eddington–Finkelstein version of
this FOL theory of the black hole. This second (EF) version of
the theory will also describe what the in-falling observer sees, for
example, from inside the event horizon. For the latter question
we suggest assuming that the black hole is huge (galactic size) so
that enough stuff remains to be observed after falling through the
event horizon.

6. After having streamlined, analyzed, simplified FOL theo-
ries of simple (but huge) black holes, we propose turning to what
we call double black holes or exotic black holes. Double black holes
have two event horizons, an outer one and an inner one. In theory
and under certain assumptions, a traveler might fall into the black
hole, survive this and may come out at some other point of space-
time (in our universe or in some other universe). So, some of these
double black holes may be regarded kind of wormholes. Examples
are spinning black holes (Kerr spacetime, Kerr–Newman space-
time), and electrically charged black holes (Reissner-Nordström
spacetime) [63].
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The task here is again to build up, streamline, and concep-
tually analyse, simplify FOL theories for such double black holes.
They offer logically intriguing issues for the logician as indicated
in Section 3.

7. Besides the relatively simple kind of acceleration studied
in Sections 4,5, [44], rotation provides a kind of acceleration ap-
pearing in the form of the centrifugal force. A further research
task is to analyse via FOL the world-view represented by a rotat-
ing coordinate lattice (relative to the gyroscopes) and generally,
the rotational spacetimes. An example for these is the slowly ro-
tating black hole (Kerr spacedtime), other examples are Gödel’s
rotating universe, Tipler–Stockum spacetime. In these spacetimes
rotation leads to CTC’s and to many other exotic effects like the
so-called dragging of inertial frames or the drag effect. Finding
out more about these is the task of NASA’s recent “Probe B.”
Here again a FOL theory of such spacetimes waits for the cre-
ation, conceptual analysis and detailed illuminating explanation
of what happens and exactly why. A particular question wait-
ing to be answered is to find out and analyse what the common
features/mechanisms/principles of these rotating spacetimes (with
CTC’s) are. For example, many features of the above mentioned
three spacetimes coincide. Is this a coincidence or is there a more
general “theory of rotating spacetimes” lurking in the background.
For more on this question we refer to [5]. In particular, we are
looking for a logical answer to the quasi-philosophical question:
“Exactly why and how CTC’s are generated in rotating black holes
and in Gödel’s universe. Why do they counter-rotate with mat-
ter?” (More on what we call “counter-rotation” can be found
in [5].)
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rial Volume, A. Prékopa and E. Molnár (Eds.), Springer, 2006, pp.
155–185.
[http://www.math-inst.hu/pub/algebraic-logic/lstsamples.ps]
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67. J. Woleński, First-order logic: (philosophical) pro and contra, In:

First-Order Logic Revisited, Logos, Berlin, 2004, pp. 369–398.
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Preface

What does the future hold for mathematical logic? In the early
1950’s I learned all the logic then existing. Until the mid eighties I
read everything published in logic and related computer science. I
am a “quick study,” but the quantity of papers become enormous,
and I now limit my reading. I have watched all the well-known
logicians and their subjects evolve for fifty-six years. Can I say
anything beyond truisms about future trends?

First, what are the truisms? Since 1950 the winds of time
have swept the grains of logic into four dunes, four research disci-
plines: computability theory, model theory, set theory, and proof
theory. Each of these four disciplines has developed a coterie of
respected specialists. In each there have been suites of applica-
tions to mathematics and suites of developments from computer
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science. All four disciplines have bright futures. This is the main
truism, which I leave it to others to elaborate.

Specialists in each discipline are acquainted with the basics
of the other disciplines, but often not with the proofs of any of
the latest theorems or the latest applications of the other three
disciplines. Whether and how these disciplines will fractionate
further into subdisciplines no one can predict. Fractionation is
not peculiar to logic. All of mathematics, perhaps all of knowl-
edge, has been fractionating in the last hundred years. There are
no longer any universal mathematicians. There will be no more
Hilberts. The terrain is too vast. With fractionation goes a wit-
ticism. Robert Maynard Hutchins, President of the University of
Chicago, said sixty years ago that we learn more and more about
less and less, and less and less about more, until we know every-
thing about nothing and nothing about everything.

There are countervailing winds sweeping the dispersed grains
into new dunes. This is the tendency toward merging of disciplines.
In my opinion the most significant mergings do not arise by form-
ing abstract theories encompassing several pre-existing theories,
which was the E.H. Moore dictum and is represented by Bour-
baki’s old textbooks. Such generalizations are mostly useful as
teaching devices intended to communicate a lot briefly and for re-
ducing what looks new to what has already been done. I see the
truly significant mergings as arising from new applied areas which
cannot be understood or modelled or designed or controlled using
previously available concepts and methods. These areas are often
important, murky, and confused. They often demand new ideas or
new ways of fusing old ideas. One recent example in computer sci-
ence is the use of varied logical systems: classical, non-monotonic,
intuitionistic, modal, and temporal, developed for automatic the-
orem proving, program verification, and for the logic of knowl-
edge. Previous to the needs of computer science, the modal and
temporal logics were of interest only to speculative philosophers,
although they had good mathematical semantics due to Kripke.
The new applications required answering new questions and de-
veloping new semantics and new proof procedures. Another new
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application area is the development of logical models, tools, and
algorithms for creating reliable secure networks of communicating
agents. Just writing agent software without having a particular
logical model in mind has created a plethora of badly understood
systems with substantial non-robust and non-secure behaviors.

Most of my past research areas such as automata, computabil-
ity theory, recursive algebra, non-monotonic and intuitionistic and
modal logics, complexity theoretic algebra, concurrency, etc., have
been pursued by many. I leave others to document the future of
those lively areas. I confine myself to a very brief discussion of a
still emerging area of more recent vintage which lies at the bor-
derline of mathematics, computer science, and engineering.

“Hybrid Systems” is the area I am referring to. Hybrid sys-
tems is a concept intended to unify discrete logic and continuous
control engineering. As originally conceived it was logic interact-
ing with differential equations. I introduced the term “Hybrid
Systems” in this context in 1992 to describe interacting networks
of logical (digital) and physical (continuous) devices, motivated by
unfilled needs in business and industry and the military. For in-
stance, hybrid system control is needed to optimize performance
when controlling inherently unstable high performance systems
such as aerospace vehicles and structures, power grids, and au-
tomated intelligent manufacturing facilities, as well as for control
of decision systems involving man-machine interactions such as
automated decision aids for battlefield commanders or air traffic
control. I sponsored several conferences and put out several vol-
umes, with the specific purpose of forming a community around
the world to pursue developing this as a merged discipline of logic
interacting with continuous physical processes. There had been
previous sporadic developments in this direction, but these con-
ferences spurred systematic research. They are listed as the first
references at the end of this paper, volumes still worth perusing.
Since then the study of Hybrid Systems has become a well estab-
lished part of computer science and engineering. Despite a bur-
geoning literature, sampled at the end of this paper, the surface
has hardly been scratched. In this essay I suggest the logical and
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analytic study of far more general structures that more closely fit
applications. But first, here is a brief description of hybrid systems
as Wolf Kohn and I developed them starting in 1992.

1. Digital Programs

Digital programs live in a world in which inputs, outputs, and
internal states are expressed using finite alphabets. The mathe-
matical language for describing digital programs is the language
of logic. The semantics of the language may be state automata,
or continuous maps between cpo’s, or process algebras, among
other possibilities. These are often described by systems of logi-
cal formulas or equations. Digital programs are written to realize
program specifications about their behavior. Conclusions about
behavior of digital programs are drawn by reasoning using logi-
cal deductions expressible in Dynamic, Hoare, Temporal, or other
program logics, or using automated exploration of state space.
Theorems of logic and algorithms of computer science underlie
verifying such properties of programs as termination or fairness or
correctness.

2. Continuous Plants and Controllers

Continuous devices whose state evolution is controlled by contin-
uous physical controllers we refer to as plants with controllers.
They live in a physical world in which inputs, outputs, and inter-
nal states of controller and plant are points in manifolds. Sensors
sense the state of the plant, the controller responds by altering
the state of the plant. The controller exercises control as a func-
tion of the state of the plant. The behavior of such a continuous
feedback system is modelled by systems of coupled ordinary dif-
ferential equations for plant, plant controller, and sensors, with
the controller governed by a control which is a function of plant
state or perhaps a function of time. The theory of optimal control
deals with how to choose the control function of state (time) so
as to minimize, over the space of possible control functions, the
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integral of a non-negative function along the resulting plant state
trajectory. This involves differential geometry, calculus of varia-
tions, numeric and symbolic algorithms for differential equations,
etc. These ideas are used to establish such features as controlla-
bility, observability and reachability. The reasoning used is that
of differential equations and differential geometry.

3. Hybrid Systems

A simple example is a closed loop system which consists of a con-
tinuous plant subject to both external disturbances and to control
by a digital program. The digital control program reads at discrete
intervals sensor data about plant state and computes a new con-
trol law to govern the plant and substitutes it for the previously
used control law. The plant will continue to use this control law
until the next such intervention. The sequence consisting of “read
the sensors” followed by “compute and impose the next control”
constitutes the control cycle. The control law is a function of plant
state. How, and when, to make these control law changes is the
business of the digital control program.

From the point of view of the digital controller, the world
of inputs and outputs is finite sequences of strings, input readings
and output control orders. From the point of view of the controlled
plant, the world of inputs and outputs is real time streams of real
numbers, inputs to the controller and sensor outputs to the digital
control chip.

So on the surface hybrid systems are governed by coupled sets
of equations, logical and differential. That is where Wolf Kohn
and I started. We believe that one should study digital control of
continuous plants at the same intellectual level of sophistication as
has been applied in computer science for the analysis of concurrent
and distributed programs and in control theory for the Pontryagin
analysis of optimal control.
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4. Discretization

A computer scientist’s first reaction is to discretize the continuous
controller and continuous plant and time and input and output,
and to end up representing the hybrid system as an interacting
network of digital devices. Some workers in discrete event systems
do this. Then one gets a pure automaton problem of extracting
a control function of state which controls a discretized automaton
model of the plant. There are two difficulties with this approach.
First, it only guarantees control of the discretized version of the
plant with the derived digital control program. There is no guaran-
tee that this digital control program will control the original mixed
continuous-discrete system. Second, if we extract a near optimal
control for this discretized model relative to a cost function, it may
well be nowhere near an optimal control for the original system.
Systems in practice that we care about are highly non-linear, and
these things happen frequently. Traditional control theory han-
dles linear systems extremely well, but has not been much help
for highly non-linear systems.

5. Continualization

Wolf Kohn and I took the opposite approach. We “continual-
ized” everything, replaced the discrete by the continuous. Physi-
cally this is meaningful though complex. After all, the digital de-
vices interacting with continuous ones ARE in the physical world,
they ARE continuous devices (at least in the quantum mechanical
sense), but are built of components with abrupt but not instan-
taneous changes of state from 0 to 1 and conversely. We did not
model the digital control program in this way. Instead we followed
Boole and replaced Boolean 0, 1 logical conditions such as x∧x = x
by real number equations such as x2 = x. This results in describ-
ing the hybrid system by differential equations for the continuous
elements coupled with algebraic equations for the previously dis-
crete components, where the variables in the algebraic equations
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are functions of time, equations with a control function as parame-
ter. This gives a set of algebraic and differential equations which
represent the hybrid system in purely continuous form. If we have
a non-negative cost function integrated on plant state trajectories
to determine cost, it now makes sense to speak of an optimal or
near optimal control, one which produces a plant state trajectory
with minimal or near minimal cost. This falls under the point of
view of Pontryagin’s optimal control using the calculus of varia-
tions. In this approach the digital world has been completely ab-
sorbed into the continuous. Even in the simplest cases with logical
constraints this gives a highly non-convex optimization problem.
Usually there are no smooth control functions which achieve opti-
mal trajectories. In fact, coding the usual Specker phenomenon of
computable non-negative continuous functions on compact spaces
with no computable point at which minimum value is taken, it is
obvious that there is no general algorithm which will yield a com-
putable optimal control function of state from computable data.

But here is where the magic of classical approximate weak so-
lutions enters, and it is the point at which Kohn and I entered the
game. The argument is that no engineer wants to pay for optimal
behavior, he or she is merely interested in a control function which
yields a trajectory within a prespecified epsilon of minimum cost.
The epsilon is determined by the use and how much he or she is
willing to spend on the project. The 1930’s work of Young and
of McShane on convexifying calculus of variations problems and
proving the existence of relaxed probability measure valued con-
trol functions achieving the minimum shows that for a prescribed
epsilon, one can compute a piecewise linear epsilon optimal solu-
tion which is implementable. These are piecewise linear chattering
controls. The control changes abruptly once in a while based on
what part of the plant state space you are in. Chattering controls
have jump discontinuities but nevertheless yield piecewise smooth
plant state trajectories. We extracted our epsilon optimal digital
control programs as finite automata which take as input at dis-
crete times a letter representing current plant state, and produce
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output a letter at a time which tells what linear control to use
next. The discrete logical side is the logic of these automata.

6. Methodology

6.1. Summary

We continualize the discrete elements of the hybrid system and
solve by numerical continuous methods of relaxed control to get
an epsilon optimal measure valued optimal control. Then we dis-
cretize this control to get a finite digital control automaton en-
forcing approximate optimal control. The technical tools we use
are differential geometric. We think of an integrated cost func-
tion along a segment of a trajectory in a suitable manifold as a
“metric” and think of the geodesics of the corresponding metric
ground form as the optimal trajectories and use approximations
to the relaxed controls leading to geodesics as our intended piece-
wise linear controls, which are then implemented as a digital con-
trol program which represents a large finite automaton. We use
Finsler and higher jet spaces to allow us to incorporate second
order effects (curvature) as necessary. When applied to entirely
discrete problems, this gives new continuous methods for solving
logic problems. This has been used by us, but not investigated in
mathematical depth.

Jennifer Davoren and I wrote a review article on the known
logics for hybrid systems and their semantics and syntax, refer-
enced at the end of this essay. These logics describe the discrete
and the continuous aspects of the same entity and how they in-
teract and how to go from one to the other. One should also look
for inspiration at the continuous logics of Keisler and Hoover in
which the existential quantifier is mathematical expectation, and
the Hopf algebras of Grossman and Sweedler for quantum hybrid
systems.

In 1995 Kohn and I established a corporation to prove our
technology in industrial and business contexts. Getting real time
algorithms took another ten years and produced some commercial
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applications. But even with real time algorithms, we found that
there is a huge additional problem which I now introduce as a good
direction for future research–analytic, geometric, and logical.

6.2. Multiple models

There are often a multiplicity of useful models for the same process,
each giving different information. When you sense plant state,
you have a choice of sensors and what to sense. When you choose
controllers, you have a wide choice of what devices to use. Fur-
ther, measurements sensed are necessarily averages of time varying
quantities. For control, what sensors and controllers should you
use and what average measurements should you record? The prob-
lem is that one can make a variety of somewhat predictive models
based on different sensors and different controllers and get some-
thing out of each, with absolutely no coherent underlying scientific
model. A lesson of control practice is that there is always unmod-
elled dynamics left over to perhaps be treated by a different later
model.

To repeat, in constructing hybrid models for industrial and
business applications we lack complete control over choice and lo-
cation of sensors and controllers and measurement schemes and
often have to deal with multiple models of the same thing. Some
are legacy models. Some are the best that science can provide.
Some have coarse granularity in space and time, some are fine
grained. Often they cannot be naturally or usefully embedded in
any overarching model. But often each contributes unique infor-
mation about plant state that can be used, in conjunction with
the rest, to influence our choice of control to discipline the process.

The hybrid systems concept, while an essential abstraction
for understanding and controlling the evolution of digital-continu-
ous systems, is too narrow for many problems of practical interest
because it is based on a single model for the behavior of the digital
and continuous parts of a real system. This is perhaps an uncon-
scious reflection of the heritage of the mind-body distinction. The
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role of the mind is taken by the digital control program (remem-
ber Turing’s original description of a Turing head as a finite state
mind); the role of the body is taken by the controlled physical
plant; the role of the mind-body interaction is taken by the feed-
back loop between them. Nowadays science presents many differ-
ent models for the mind and the body, based on physics, chemistry,
mechanics, biochemistry of DNA, and so on. These are different
models at different levels of granularity for the body and the brain.
They do not impart the same information. An all-encompassing
single model is a dream, not an actuality. The hope for a uni-
fying model is based on the paradigm that fundamental physics
will eventually explain all. Today there are materials scientists
who treat materials on a macro scale, there are materials scien-
tists who treat them on a quantum scale, there are economists
who study macroeconomic indicators to divine how to influence
the future, there are economists who study the microeconomics of
isolated systems for the same purpose, there are financial analysts
who use a variety of very different conflicting indicators to predict
market behavior, etc. If we want to extract control laws which
constrain the behavior of complex systems with partially mod-
elled dynamics we need to develop a calculus of languages and
models where many models may represent the same underlying
process, and there is a congenial systematic way to incorporate
new models while keeping old ones.

How have Kohn and I treated this so far? We regard the ac-
tual process as input to its several different models, each of which
has its own cost function for plant state trajectories as that model
sees them. We form a composite cost function which is a func-
tion of the cost functions for the individual models and which has
adjustable parameters. For example, we have used a weighted
sum of the Lagrangian cost functions for the various models, the
weights being the parameters. We control so as to approximately
follow the trajectories of minimal cost according to this compos-
ite cost function. We use feedback based on sensor measurements
of plant trajectory performance to adjust the parameters continu-
ously, therefore to adjust the cost function continuously, therefore
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to adjust the geodesic field being followed. This is a powerful ad
hoc device compatible with the differential geometric and calculus
of variations point of view. Embedded in this is a combination of
continualized versions of the logics of the individual models. Con-
tinualization of logics will be a central theme. Can we isolate out
how the logics of such compound views of one process arise from
the logics of the individual views, both in syntax and semantics,
and use them as tools for engineering and objects of mathematical
study? Only time will tell.
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In this paper, we present recent results in the region-based theory
of space that concern algebras of regions, the corresponding topo-
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gebras, topology and logic.
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The paper is organized as follows. Section 1 is a historical
excursion into the region-based theory of space. We discuss the
“pointless approach” to this theory, whose roots can be found in
some philosophical ideas of de Laguna [13] and Whitehead [64].
We show connections of region-based theory of space with mereol-
ogy (the theory of part–whole relations) and applications to QSR.
In Section 2, we consider algebras of regions known as contact al-
gebras. We study topological and discrete point-based models of
contact algebras, and discuss different definitions of a point de-
pending on the choice of axioms. We also consider representation
theorems establishing a correspondence between the chosen ax-
iomatizations and the required point-based models. In Section 3,
we deal with a class of spatial logics. Some of them are related to
the well-known system of Region Connection Calculus (RCC). In
that section, we obtain completeness and decidability results by
using representation theorems.

Some of the most important statements and new results are
supplied with brief proofs. Standard definitions and facts from
Boolean algebra can be found in [52], from topology in [24], from
proximity spaces in [42], and from modal logic in [7, 8].

1. Historical Excursion into
the Region-Based Theory of Space

One of the oldest theories of space is classical Euclidean geometry.
It can be regarded as a point-based theory in the sense that the
notion of a point is basic, whereas all other geometrical figures are
defined as sets of points. The same can be said about topology
considered as a more abstract kind of geometry. In general, by a
point we mean the simplest spatial entity without dimension and
internal structure. However, this notion is too abstract to have
an adequate analog in reality, in contrast to many geometrical fig-
ures for which we can find their images in nature. The following
idea then arises: to develop an alternative theory of space where
the basic notion is not a point, but some other objects that are
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more closely related to the real world, for example, solid bodies.
As basic relations between solids we could take, for instance, “one
solid is part of another solid,” “two solids overlap,” or “one solid
touches another solid,” etc. This point of view is close to the
ideas of some abstract philosophical disciplines such as ontology,
the theory of “Existent,” and especially mereology understood as
a theory of “part-whole” relations. One of the founders of mereol-
ogy was Leśnewski [38], who developed it as part of an ambitious
and nonorthodox programme of constructing new foundations of
mathematics. But due to Tarski [58], the mathematical content of
mereology can be clearly presented in terms of complete Boolean
algebras (cf. also [33] for such a presentation, and [53] for some
other systems of mereology). The only difference between mereol-
ogy and complete Boolean algebras is that Boolean algebras have
an analog of the empty set (zero element), whereas mereology ex-
cludes such a zero individual.

The pointless approach does not mean that points are not
considered at all. The notion of a point is necessary for a pointless
theory of space to be equivalent in some sense to the classical
point-based theory. But, in this case, points must be defined in
terms of new primitive notions. This idea, as well as the necessity
to use mereology for constructing a pointless theory of space, was
expressed in the philosophical paper “Point, line and surface as
sets of solids” [13] by de Laguna in 1922 and in the famous book
“Process and Reality” [64] by Whitehead in 1929.

De Laguna considered a ternary relation between solids, “x
connects y with z,” and defined a point, a line, and a surface via
certain collections of solids. Whitehead developed this idea and
simplified the ternary connection relation to the following binary
relation: “x is connected with y,” which he called the connection
relation. Here we use the term contact relation. Whitehead called
solids regions, which later gave the name region-based theory of
space.

As a primitive relation Whitehead took the contact relation
between regions. He also introduced mereological relations such
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as part-of, overlap and some new relations called external connec-
tion, tangential inclusion, and nontangential inclusion. From the
intuitive point of view, two regions are in contact if they have
a common point. However, according to Whitehead, this prop-
erty cannot be taken as a definition because a point is not defined
and points must be defined by means of regions and the contact
relation.

In [64] Whitehead listed explicitly a large number of assump-
tions and definitions about regions and the contact relation, and
illustrated some of them by pictures. He did not make any attempt
to reduce the number of his assumptions to a logical minimum. To
define the notion of point, he introduced quite complicated notions
of geometrical element and the relation of incidence between geo-
metrical elements (see Definitions 13 and 15 in [64]). Then the
definition of a point (Definition 16) sounds as follows: “A geomet-
rical element is called a point when there is no geometrical element
incident with it.” Whitehead pointed out an analogy of his defi-
nition with the first definition of Euclid’s Elements: “A point is
that of which there is no part.” This analogy shows that some
mereological foundations of “pointless” geometry have their roots
even in the old Euclid’s Elements. Whitehead’s final goal was to
approach the Euclidean notions of a straight line and of plane in
a similar way. Note that Whitehead’s pointless theory of space is
quite vague, and it is still a problem to extract a readable axioma-
tization and present it in a standard mathematical format (we refer
the reader to the nice survey of pointless geometry by Gerla [31]).
However, the idea to define points via regions is quite remarkable.
Something similar can be found in Boolean algebras which can be
considered as pointless analogs of sets. In Stone’s representation
theory of Boolean algebras [55] (1937) points in a given Boolean
algebra are identified with ultrafilters, sets of elements of the al-
gebra. So de Laguna–Whitehead’s ideas of pointless approach to
the theory of space could be regarded as early predecessors of the
representation theory of Boolean algebras.

For further references we summarize here some formal prop-
erties of the contact relation and some other Whitehead’s spatial
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relations between regions. We write aCb for “region a is in a
contact with region b.”

(W1) (∀a)(aCa),

(W2) (∀a, b)(aCb→ bCa),

(W3) a = b if, and only if, (∀c)(aCc↔ bCc),

(W4) a is included in b (a � b) if, and only if, (∀c)(aCc→ bCc),

(W5) a and b overlaps (aOb) if, and only if, (∃c)(c � a and
c � b),

(W6) a is externally connected with b (aCextb) if, and only if,
aCb and not aOb,

(W7) a is tangentially included in b (a �◦ b) if, and only if,
a � b and (∃c)(cCexta and cCextb),

(W8) a is non-tangentially included in b (a# b) if, and only if,
a � b and not a �◦ b.

Axiom (W3), known as the axiom of extensionality of con-
tact, is very important. It can be proved that it is equivalent
to axiom (W4), which says that part-of relation in Whitehead’s
system is definable by means of contact.

Another, much simpler, pointless reconstruction of Euclid-
ean geometry was given by Tarski [57] in 1927. He called his
system Geometry of solids. Geometry of solids is an extension of
Leśnewski’s mereology with the primitive notion of sphere. To
define points, Tarski first introduced the relation of two spheres
being concentric, and then points were identified with certain sets
of concentric spheres. A simplified version of Tarski’s system can
be found in [4], where similar approaches are also discussed.

Another attempt to build a pointless theory of space was
made by Grzegorczyk [34] in 1960. Independently from de Laguna
[13] and Whitehead [64], Grzegorczyk developed a system that
was close to Whitehead’s system.

As primitives he took the relations of part-of and separation,
which, in fact, is the complement of the Whitehead contact rela-
tion. Grzegorczyk’s results were presented in [6], where the notion
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of contact was used instead of separation. According to [6], Grze-
gorczyk’s pointless geometry (R, �, C) is given by the following
axioms:

(G0) (R, �) is a mereological field, i.e., a complete Boolean al-
gebra with deleted zero element.

(G1) C is a reflexive relation in R,
(G2) C is a symmetric relation in R,
(G3) C is monotone with respect to � in the sense that we

have: a � b → (∀c ∈ R)(aCc→ bCc).

Then the relation of non-tangential inclusion # is defined in the
same way as by Whitehead (see axiom (W8) above). A set p of re-
gions is called a representative of a point if the following conditions
are satisfied:

(1) p has no minimum and is totally ordered by the relation
#,

(2) given two regions u and v, if we have uOc and vOc, for
every c ∈ p, then uCv.

A filter P in R is called a point if it is generated by a repre-
sentative of a point. We say that P belongs to a region a if a is a
member of P .

Then two additional axioms are introduced:

(G4) every region has at least one point,

(G5) if aCb then there is a point P such that a and b overlap
with every member of P .

Denote by P the set of all points of (R, �, C) and by π(r) the
set of all points of a region r.

Grzegorczyk proved the following two important theorems.

Theorem 1. Let (X, τ) be a Hausdorff topological space, and
let R be a family of nonempty regular open sets of (X, τ). For
any a, b ∈ R, we set aCb if, and only if, Cl(a) ∩ Cl(b) �= ∅.
Then (R,⊆, C) satisfies (G0)–(G3). If every point of X is the
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intersection of a decreasing (with respect to #) family of open
sets, then axioms (G4) and (G5) are also satisfied.

Theorem 2. Suppose that (R, �, C) satisfies (G0)–(G5). Let
τ be a topology in P generated by the set {π(r) : r ∈ R}. Then
{π(r) : r ∈ R} coincides with the set of all nonempty regular open
sets of (P, τ), and π is an isomorphism.

As was noted in [6], the implication in axiom (G3) can be
replaced with equivalence, which eliminates the part-of relation
from the primitives. This means that, as in the case of Whitehead,
the system can be based on the unique primitive C.

Theorems 1 and 2 show that there is an equivalence between
the point-based and pointless theories of space. Theorem 1 also
shows the importance of regular (open or closed) sets in topo-
logical spaces as models of regions. In fact, Theorem 2 is the
first representation theorem of a special system of region-based
theory of space which is an extension of mereology with the prim-
itive of Whitehead’s contact relation. Since the models of such
extended mereologies are topological, some authors prefer to call
them mereotopologies or region-based topologies.

An interesting comparison between the notions of a point
used by Whitehead [64] and Grzegorcyk [34] was given by Biacino
and Gerla in [6]. They proved that these definitions are equivalent
in some sense if the relation of non-tangential inclusion# satisfies
the following additional axiom:

(G6) if a # b, then a# c# b for some region c ∈ R.

Using the complement a∗, we can equivalently express axiom
(G6) in terms of C:

(G6′) if aCb, then aCc and c∗Cb for some c ∈ R.

This axiom is referred to as the normality axiom, since it is
satisfied by regular open (closed) sets in a Hausdorff space pro-
vided that the space is normal.
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One unpleasant feature of Grzegorczyk’s system is that it
includes axioms containing the second-order definition of a point
and, consequently, it is not a first-order system.

It is of interest to note that by accepting the normality ax-
iom (G6) one can obtain first-order axiomatizations of pointless
theory of space. This was done independently by several authors:
[63, 62, 61, 15]. The first to do this was de Vries [63] (1962)
in his thesis “Compact Spaces and Compactifications.” This work,
independent from Whitehead [64] and Grzegorczyk [34], was com-
pletely unknown to the community of authors interested in the
region-based theory of space. Thus, de Vries is mentioned neither
in Gerla’s survey of pointless geometry [31], nor in later papers
on region-based theory of space.

Note that axiom (G6) is well known among specialists in the
theory of Proximity spaces. Proximity spaces are abstract spaces
[42] with the proximity relation AδB between subsets satisfying
almost all axioms for the contact relation C. They can also be
axiomatized using the relation A # B definable by δ in the same
way as # is definable by C. By analogy with the axioms of prox-
imity spaces based on the relation#, de Vries considered Boolean
algebras (B, 0, 1, .,+, ∗,#) with the additional relation #, called
compingent algebras, which satisfy the following first-order axioms:

(P0) (B, 0, 1, . ,+, ∗) is a Boolean algebra with ∗ as the Boolean
complement,

(P1) 0# 0,
(P2) a # b implies a � b,
(P3) a � a′ # b implies a# b,
(P4) a # b and c# d imply a.c# b.d,
(P5) a # b implies b∗ # a∗,
(P6) a # b �= 0 implies ∃c �= 0 with a # c# b.

Note that axiom (P6) can be replaced by two axioms:

(P6′) a # b implies ∃c with a # c # b (which is just the
normality axiom), and

(P7) if b �= 0 then ∃a �= 0 with a# b.
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Observe that axioms (P1)–(P5), (P6′) are algebraic analogs of
the axioms of Efremovič’s proximity spaces [25] (cf. also [42]). We
will see in Section 2 that axiom (P7) is equivalent to Whitehead’s
extensionality axiom for the contact relation.

Using the well-known techniques from the proximity spaces
and Smirnov’s theory of compactifications, de Vries proved that
each compingent algebra is isomorphic to a subalgebra of the al-
gebra of regular open sets of a compact Hausdorff space with the
compingent relation on regular open sets defined as follows: a # b
if, and only if, Cl (a) ⊆ b. The points defined by de Vries, called
compingent filters, are just lattice analogs of the ends, special fil-
ters used in proximity theory. In fact, de Vries established a one-
to-one correspondence between complete compingent algebras and
compact Hausdorff spaces. Similar results were obtained also by
Fedorčuk [26].

Another, more general than de Vries–Fedorčuk’s, first-order
axiomatization of a region-based theory of space was given by
Roeper [49] in 1997. His theory corresponds to the point-based
theory of locally compact Hausdorff spaces, and his approach is a
skillful combination of de Vries–Fedorčuk’s methods and Leader’s
compactification theory of local proximity (cf. [37], [42]). Roeper’s
axiomatization is based, like Leader’s notion of local proximity, on
two primitive spatial relations: the contact and the unary relation
of limitedness. An attempt to give a different formulation of the
same theory using only one primitive relation, called interior part-
hood, was made by Mormann [41] (see also [61]).

We continue our historical excursion into the region-based
theory of space by mentioning the contribution made by Clarke
[10, 11]. Clarke noted that his system should be understood as
a formalization of the ideas of Whitehead [64]. Clarke’s system
(R, C) is based on a unique primitive relation C of contact sat-
isfying Whitehead’s axioms and definitions (W1)–(W8). Clarke
assumed also the so-called fusion axiom:

If A is a nonempty subset of R, then there exists a ∈ R
(called a fusion of A) such that C(a) =

⋃
{C(x) : x ∈ A}, where

C(x) = {y ∈ R : xCy}.



276 Dimiter Vakarelov

Points in Clarke’s system are identified with certain subsets
P of R satisfying some closure conditions. He needed also the
following axiom, containing a definable notion of point:

If aCb, then there exists a point P such that a, b ∈ P .

Biacino and Gerla [5] studied this system in detail and proved
that (R,C) is equivalent to a complete Boolean algebra with zero
element removed (mereological field). It follows from this fact that
the contact C coincides with the overlap O, which is not satisfac-
tory. Another unsatisfactory feature is that the system has an
axiom containing the second-order notion of a point and, conse-
quently it is not a first-order one. Nevertheless, Clarke’s system
had a remarkable impact on some research areas in AI for which
the pointless approach to the theory of space was important. One
such area is the so-called Qualitative Spatial Reasoning (QSR). It
is related to a new generation of information systems dealing with
geographical information and known as Geographical Information
Systems (GIS). It has been recognized that reasoning techniques in
GIS using quantitative methods of classical theory of space are not
efficient and tractable. This motivated researchers in these areas
to look for new, qualitative models of space. Similar problems have
appeared in robotics, computer vision, natural language semantics
related to a commonsense spatial vocabulary, etc. Models of space
based on mereology proved to fit well into the problems of QSR,
and this made region-based theory of space important for AI and
computer science (see [48]). Several attempts to build systems
similar to that of Clarke have been made within the QSR commu-
nity. One of the most important and popular systems is Region
Connection Calculus (RCC), proposed by Randel, Cui and Cohn
[48] in 1992. Now RCC is in the center of an intensive research
in the realm of QSR, and one of the most active is Cohn’s group
at the University of Leeds. A comprehensive overview of the QSR
research and related work was given by Cohn and Hazarika [12]
(2001). Recent collections of papers on QSR are the special is-
sues of Fundamenta Informaticae (2001) edited by I. Düntsch [17]
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and the Journal of Applied Non-Classical Logics (2002) edited by
Balbiani [1].

Stell [54] and Düntsch et al. [20] presented an equivalent
version of RCC based on Boolean algebras satisfying all axioms
for contact given by Whitehead plus an additional axiom of con-
nectedness forcing topological models to be connected spaces. So
connected regular spaces form a correct semantics for RCC. A
representation theorem for RCC in a class of more general spaces,
called weakly regular, was proved by Dünch and Winter [21] in
2005. A representation theorem for a variety of related systems
was proved in [15] (2006).

The main point-based models of the region-based theory of
space considered in QSR are the contact algebras of regular open
or regular closed sets in certain topological spaces. Since topology
aims to formalize some continuous, indiscrete features of space we
may call this kind of models continuous or indiscrete. More special
models of regions generated by polygonal regions were considered
by Pratt and Schoop [46, 47]. It has been pointed out by several
authors that continuous models are not so convenient in computer
modelling of space, and a modified and generalized region-based
theory of space, admitting discrete models, is required. One so-
lution was proposed by Galton [29, 30]. Instead of topological
spaces, Galton proposes to consider the so-called adjacency spaces.
An adjacency space is a relational system of the form (W, R),
where W is a nonempty universe whose elements are called cells
and R is a binary relation between cells, called an adjacency rela-
tion. Galton defines regions to be arbitrary sets of cells, and the
contact relation between regions is defined by taking aCb if, and
only if, ∃x ∈ a,∃y ∈ b with xRy. This definition relates Galton’s
adjacency spaces to the Kripke semantics of modal logic [7] which
makes it possible to use methods from modal logic for studying
discrete region-based theories of space [3]. Pointless formulations
of Galton’s theory of discrete spaces and the corresponding repre-
sentation theory was given in [19]. It was shown in [14] that the
algebras corresponding to discrete spaces have also standard topo-
logical representations in which regions are represented by regular
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closed or open sets. In this way both kinds of models of region-
based theory of space—discrete and indiscrete—can be considered
in a unified way. This unified approach is presented in more detail
in Section 2.

To conclude this historical excursion, we mention that, in
the realm of QSR, different kinds of logical systems for reasoning
about space have been developed and their computational prop-
erties have been studied. Some authors advocated logical systems
based on first-order languages (cf., for example, [43, 45]). One
of the practical motivations for dealing with first-order systems of
region-based theories of space is that this makes it possible to em-
ploy first-order provers for some applications. Using some results
of Grzegorczyk [32], one can show, however, that most of these sys-
tems are undecidable. That is why weaker, quantifier-free systems
with better computational properties have been designed. Exam-
ples are the system RCC-8 introduced by Egenhofer and Franzosa
[23] and its extension with Boolean terms introduced by Wolter
and Zakharyaschev [65]. Completeness theorems and decidability
results for these and other related to RCC quantifier-free systems
with respect to their topological and discrete semantics are given
in [3]. For more information on these logics see Section 3 below.
A decidable system with predicates of component-counting was
presented by Pratt-Hartmann [44]. Dynamic Logics for discrete
region-based theory of space have been studied in [2]. Modal log-
ics with Kripke frames based on the RCC-8 relations have been
introduced by Lutz and Wolter [40]. For various combinations of
spatial and temporal logics see Gabelaia et al. [28] and Konchakov
et al. [36].

This section does not cover all aspects of the region-based the-
ory of space. We have only concentrated on pointless approaches
similar to those of de Laguna and Whitehead. Of course, this
is not the only way to look at the region-based theory of space:
an alternative one is described, for example, by Pratt-Hartmann
[43, 45]. Another alternative is given by Schoop [50] who mo-
tivates the idea of taking both regions and points as primitives.
We hope that the survey above presents the region-based theory
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of space as an active and developing area. Started from some very
abstract philosophical ideas of de Laguna and Whitehead, it has
reached its flourishing stage, with a clear mathematical theory and
multiple applications in practically oriented areas of QSR, GIS and
KR.

2. Algebras of Regions, Models,
and Representation Theory

2.1. Contact algebras

Following [15], by a contact algebra we mean any system B =
(B, C) = (B, 0, 1, .,+, ∗, C), where (B, 0, 1, .,+, ∗) is a nondegene-
rate Boolean algebra, ∗ denotes the complement, and C is a binary
relation in B, called a contact, such that

(C1) if xCy, then x, y �= 0,

(C2) xC(y + z) if and only if xCy or xCz,

(C3) if xCy, then yCx,

(C4) if x.y �= 0, then xCy.

Elements of B are called regions. The negation of C is de-
noted by C. The relation # of nontangential inclusion is defined
as follows: x # y if and only if xCy∗. We say that B is complete
if B is complete.

Axiom (C2) implies the monotonicity of C with respect to �:

(Mono) if aCb and a � a′ and b � b′, then a′Cb′.

A contact algebra can be equivalently defined in terms of #
(cf. the axioms of de Vries in Section 1):

(# 1) 1# 1,

(# 2) if x# y, then x � y,
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(# 3) if x � y # z � t, then x # t,

(# 4) if x# y, then y∗ # x∗,

(# 5) if x# y and x# z, then x # y.z.

Axioms (C1)–(C4) are Boolean versions of the axioms of ba-
sic proximity spaces (known as C̆ech proximity spaces, cf. [9, 56]).
Note that the main intended models of contact algebras are not
basic proximity spaces, but some other models of topological na-
ture that can be constructed in the following way.

Example 2.1.1. (1) Contact algebra of regular closed sets.
Let (X, τ) be a topological space with closure Cl(a) and inte-
rior operations Int(a). A subset a of X is regular closed if a =
Cl(Int(a)). The set of all regular closed subsets of (X, τ) is denoted
by RC(X, τ) or RC(X). As is known, the regular closed sets with
operations a + b = a ∪ b, a.b = Cl(Int(a ∩ b)), a∗ = Cl(X \ a) =
Cl(−a), 0 = ∅, and 1 = X form a Boolean algebra. Moreover, if
we consider the infinite join operation

∑
i∈I ai = Cl(

⋃
i∈I ai), then

the Boolean algebra RC(X) is complete. The contact is defined as
follows: a CX b if and only if a ∩ b �= ∅. It satisfies axioms (C1)–
(C4). This contact is called the standard contact for regular closed
sets and the corresponding contact algebra is called the standard
contact algebra of regular closed sets. The nontangential inclusion
is defined as follows: a# b if and only if a ⊆ Int(b).

(2) Contact algebra of regular open sets. A subset a of (X, τ)
such that a = Int(Cl(a)) is called a regular open set. The set of all
regular open subsets of (X, τ) is denoted by RO(X, τ) or RO(X).
The Boolean operations and contact in RO(X) are defined as fol-
lows: a+b = Int(Cl(a∪b)), a.b = a∩b, a∗ = Int(X \a) = Int(−a),
0 = ∅, 1 = X, and aCXb if and only if Cl(a) ∩ Cl(b) �= ∅ (con-
sequently, a # b if and only if Cl(a) ⊆ b). Then (RO(X), CX) is
a contact algebra and it is complete relative to the infinite meet∏

i∈I ai = Int(
⋂

i∈I ai). In this case, CX is called the standard con-
tact for regular open sets and the corresponding contact algebra
is called the standard contact algebra of regular open sets.



Region-Based Theory of Space 281

Note that (RO(X), CX) and (RC(X), CX) are isomorphic
contact algebras. The corresponding isomorphism f is defined
as f(a) = Cl(a) for every a ∈ RO(X). This fact explains, why we
will consider only models with regular closed sets.

In Section 2.5, we will establish the existence of topological
models of contact algebras related to proximity spaces, where ele-
ments of the algebra are regular closed (open) sets, but the contact
is not standard, unlike these examples.

Note that the Boolean part in the definition of a contact
algebra incorporates the mereological component of the notion.
Although the zero element is not traditionally accepted in mere-
ology, we consider the zero element, which makes the definition
more suitable for our considerations.

For a Boolean algebra we introduce the following basic mere-
ological relations between regions:

part-of relation a � b is the lattice ordering of B,

overlap aOb if and only if a.b �= 0.

This definition of an overlap agrees with that introduced by
Whitehead: ∃c ∈ B � {0} : c � a and c � b. Indeed, it suffices to
take c = a.b �= 0.

Another mereological relation is the following:

dual overlap aǑb if and only if a∗Ob∗

or, equivalently:

aǑb if and only if a + b �= 1.

It is natural to find a general definition of a “mereological
relation” and one possibility to do this is to identify them with
all Boolean relations definable by open formulas in the first-order
theory of Boolean algebras. Having such a definition, we can ob-
tain finitely many mereological relations of given arity, so that for
n = 2 there are exactly 30 such relations and each of them can be
defined by an open first-order formula in terms of �, O, and Ǒ.
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Using the notions of contact, overlap, and nontangential in-
clusion, it is possible to introduce the so-called RCC-8 basic mereo-
topological relations between two nonzero regions:

RCC−8 relations
• disconnected DC(a, b): aCb,
• external contact EC(a, b): aCb and aOb,
• partial overlap PO(a, b): aOb and a �� b and b �� a,
• tangential proper part TPP(a, b): a � b and a �# b and b �� a,
• tangential proper part−1 TPP−1(a, b): b � a and b �# a and

a �� b,
• nontangential proper part NTPP(a, b): a# b and a �= b,
• nontangential proper part−1 NTPP−1(a, b): b # a and a �= b,
• equal EQ(a, b): a = b.

It is easy to see that these relations are pairwise disjoint
and exhaustive. Pure topological definitions, introduced by Egen-
hofer and Franzosa [23] and sometimes referred to as Egenhofer–
Franzosa relations, were studied by many authors (cf. Wolter and
Zakharyaschev [65] for complexity and Lutz and Wolter [40] for
more references).

Figure 1

In the language of contact algebras, we can define some other
mereotopological relations, for example, the one-place predicate
Con(a): “the region a is connected or a is a one-piece region”
which is formally expressed as follows:

Con(a) if and only if (∀b, c)(b �= 0 and c �= 0 and
b + c = a → bCc).

In the case of Con(1), the contact algebra is said to be con-
nected. The negation of Con(a) is denoted by Con(a). From an
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intuitive point of view, Con(a) says that the region a is the sum
of at least two disconnected nonzero regions. We can consider a
more general predicate by assuming that c�n(a) is the sum of n
pairwise disconnected nonzero regions b1, . . . , bn or, formally:

c�n(a) if and only if (∃b1 . . . bn)(a = b1 + . . . + bn and
(∀i = 1 . . . n)(bi �= 0) and (∀i �= j, i, j = 1, . . . , n)(biCbj)).

It is obvious that Con(a) is equivalent to c�2(a). The com-
putational complexity of c�n, called the component counting, and
part-of relation is studied by Pratt-Hartmann [43].

Another interesting mereotopological relation considered by
Gabelaia et al [28] is the following n-ary contact Cn(a1, . . . , an)
with the standard meaning in the contact algebra of regular closed
sets:

Cn(a1, . . . , an) if and only if a1 ∩ . . . ∩ an �= ∅.

We do not know whether this relation is definable in the
language of contact algebras by a first-order formula. In Section
2.3, we will give a definition using a second-order formula.

2.2. Extensions of contact algebras
by adding new axioms

Consider contact algebras satisfying some of the following axioms:

(Con) if a �= 0 and a �= 1, then aCa∗ connectedness

(Ext) if a �= 1, then ∃b �= 0 such that aCb extensionality

(Nor) if a # b, then ∃c such that a # c# b normality

A contact algebra satisfying axiom (Con) ((Ext) or (Nor)) is
said to be connected (extensional or normal).

Contact algebras satisfying axioms (Con) and (Ext) were in-
troduced by Stell in [54] under the name Boolean contact algebras
and were considered as an equivalent formulation of the system
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RCC [48]. Stell proved that (Ext) is equivalent (under axioms
(C1)–(C4)) to each of the following axioms:

(Ext′) a � b if and only if (∀c ∈ B)(aCc→ bCc),

(Ext′′) a = b if and only if (∀c ∈ B)(aCc→ bCc),

(Ext′′′) (∀b �= 0)(∃a �= 0)(a# b).

Note that (Ext′) is just Whitehead’s definition of the part-of
relation and (Ext′′) is Whitehead’s axiom of extensionality.

Contact algebras satisfying (Nor) and (Ext) were first studied
by de Vries [63] and Fedorčuk [26]. Independently, such algebras
were introduced in [62, 61], where the authors noted the connec-
tion with proximity theory and the possibility to use proximity
theory for proving topological and proximity representation theo-
rems for contact algebras.

We recall some topological notions.

A topological space X is said to be
• semiregular if it has a base B of regular closed sets; namely,

every closed set is the intersection of elements of B,
• normal if every pair of closed disjoint sets can be separated

by a pair of open sets,
• κ-normal (cf. [51]) if every pair of regular closed disjoint

sets can be separated by a pair of open sets,
• extensional if RC(X) satisfies axiom (Ext),
• weakly regular (cf. [21]) if it is semiregular and for every

nonempty open set a there exits a nonempty open set b such
that Cl(a) ⊆ b,

• connected if it cannot be represented as the sum of two dis-
joint nonempty open sets,

• a T0-space if for every two different points x �= y there exists
an open set that contains one of them and does not contain
the other,

• a T1-space if every one-point set {x} is a closed set,
• a Hausdorff space (or a T2-space) if every two different points

can be separated by a pair of disjoint open sets,



Region-Based Theory of Space 285

• a compact space if it satisfies the following condition: if {Ai :
i ∈ I} is a nonempty family of closed sets of X such that for
every finite subset J ⊆ I we have

⋂
{Ai : i ∈ J} �= ∅, then⋂

{Ai : i ∈ I} �= ∅.

Lemma 2.2.1. The following assertions hold.

(1) Let X be semiregular. Then X is weakly regular if and only
if RC(X) satisfies (Ext) [21].

(2) X is κ-normal if and only if RC(X) satisfies (Nor) [21].
(3) X is connected if and only if RC(X) satisfies axiom (Con)

[5, 21].
(4) If X is a compact Hausdorff space, then RO(X) (consequently,

RC(X)) satisfies (Ext) and (Nor) [63].
(5) If X is a normal Hausdorff space, then RO(X) satisfies (Nor)

[6].

Note that axiom (Con) is equivalent to the axiom

(Con′) if a �= 0, b �= 0, and a + b = 1, then aCb.

Similarly, (Nor) is equivalent to the axiom

(Nor′) if aCb, then (∃a′b′)(aCa′ and bCb′ and a′ + b′ = 1).

Below, we consider embedding theorems for contact algebras
regarded as contact subalgebras of the contact algebras of regular
closed sets in some topological spaces. It is important to know the
conditions under which an algebra satisfies some of axioms (Con),
(Ext), and (Nor) if and only if its subalgebra satisfies the same
axioms.

A contact subalgebra B1 of B2 is said to be dense if

(Dense) (∀a2 ∈ B2)(a2 �= 0→ (∃a1 ∈ B1)(a1 �= 0 and a1 � a2))

and co-dense if

(Co-dense) (∀a2 ∈ B2)(a2 �= 1→ (∃a1 ∈ B1)(a1 �= 1 and
a2 � a1)).
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It is easy to see that (Dense) is equivalent to (Co-dense).
We say that B1 is a C-separable subalgebra of B2 if

(C-separation) (∀a2b2 ∈ B2)(a2Cb2 → (∃a1b1 ∈ B1)(a2 � a1

and b2 � b1 and a1Cb1)).

If h is an embedding of B1 regarded as a contact subalgebra
of B2, then h is a dense embedding provided that h(B1) is a dense
subalgebra of B2. We say that h is a C-separable if h(B1) is a
C-separable subalgebra of B2.

The following assertion is important.

Theorem 2.2.2. Let B1 be a C-separable contact subalgebra
of B2. Then the following assertions hold.

(1) B1 satisfies (Con) if and only if B2 satisfies (Con).
(2) Let B1 be a dense subalgebra of B2. Then B1 satisfies (Ext)

if and only if B2 satisfies (Ext).
(3) B1 satisfies (Nor) if and only if B2 satisfies (Nor).

Proof. We prove assertion (3) taking (Nor′) instead of (Nor).
(→) Let B1 satisfies (Nor′), and let a2Cb2 for a2, b2 ∈ B2. By

(C-separation), there exist a1 and b1 in B1 (consequently, in B2)
such that a2 � a1, b2 � b1, and a1Cb1. By (Nor), there exist a

′
1

and b
′
1 in B1 (consequently, in B2) such that a

′
1 + b

′
1 = 1, a1Ca

′
1,

and b1Cb
′
1. Since C is monotone and symmetric, we have a2Ca

′
1

and b2Cb
′
1, which shows that B2 satisfies (Nor′).

(←) Let B2 satisfy (Nor′), and let a1Cb1. for a1 and b1 in
B1 (consequently, in B2). By (Nor′), there exist a

′
2, b

′
2 ∈ B2 such

that a
′
2 + b

′
2 = 1, a1Ca

′
2, and b1Cb

′
2. By (C-separation), if a1Ca

′
2,

then there exist c1, d1 ∈ B1 such that a1 � c1, a
′
2 � d1 and c1Cd1.

Similarly, by (C-separation), b1Cb
′
2 implies that there exist e1, f1 ∈

B1 such that b1 � e1, b
′
2 � f1,, and e1Cf1. Therefore, d1 + f1 = 1,

a1Cd1, and b1Cf1, which shows that B1 satisfies (Nor′). �

The following assertion is well known.
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Proposition 2.2.3 ([52]). If h is a dense embedding of a
Boolean algebra B1 in a Boolean algebra B2 and B1 is complete,
then h is a complete isomorphism of B1 onto B2.

2.3. Points in contact algebras and
topological representation
theorems. A simple case

We begin by discussing how to define canonically points in contact
algebras. Then we discuss how to introduce canonically a topology
in the set of points. Finally, we show that regions in the algebra
can be identified with regular closed sets in the topological space
by an appropriate canonical isomorphism. This procedure is not
unique. Choosing different axioms of contact algebra, we obtain
different kinds of points and thereby different canonical construc-
tions implying different kinds of topological spaces. This shows
that the notion of a point is not unique and points of a more
complicated structure can provide better topological spaces. We
illustrate this fact by considering the simplest notion of a point. A
more complicated notion of a point and the corresponding canon-
ical constructions will be considered in Section 2.4. We mainly
follow [15], However, the presented construction is new and leads
to stronger results. Therefore, we give proofs.

Let X be a topological space, and let x ∈ X be a point. The
set Px = {a ∈ RC(X) : x ∈ a} satisfies the following conditions:

(1) X ∈ Px,
(2) a ∪ b ∈ Px if and only if a ∈ Px or b ∈ Px.

(3) If a, b ∈ Px, then aCb.

The set Px is a collection of regions. If the space is at least
T0, then x �= y implies Px �= Py. Another interesting property of
Px is that if regions a and b are in a contact, then there exists
Px such that a, b ∈ Px. Thus, the sets Px react like points. This
fact can be used to identify points with sets Px. There are no
points in contact algebras, but, instead of points, we can consider



288 Dimiter Vakarelov

collections of regions satisfying (1)–(3). The situation is similar to
that in the representation theory of Boolean algebras (cf. [55]),
where abstract points in a Boolean algebra are associated with
ultrafilters, collections of elements of the algebra. Sets satisfying
(1)–(3) are similar to ultrafilters and were considered in the theory
of proximity spaces, where they were called clans (cf. [56]). For
contact algebras clans were used in [61, 21, 15]. A clan is defined
as follows.

Let B = (B, C) be a contact algebra. A set Γ ⊆ B of regions
is called a clan (in B) if it satisfies the following conditions:

(Clan 1) 1 ∈ Γ,

(Clan 2) a + b ∈ Γ if and only if a ∈ Γ or b ∈ Γ,

(Clan 3) If a, b ∈ Γ, then aCb.

Clans in RC(X) in the form Px are called point clans. A clan
is said to be maximal if it is maximal with respect to inclusion. By
the Zorn lemma, every clan is contained in a maximal clan. Denote
by CLANS(B) (MaxCLANS (B)) the set of all clans (maximal
clans) in B. For brevity, we write CLANS and MaxCLANS if
a contact algebra B is fixed. Thus, we have two candidates for
points: CLANS and MaxCLANS. In this section, we consider
only CLANS.

We show how to construct a clan. First of all, note that every
ultrafilter in B satisfies (Clan 1) and (Clan 2) and also (Clan3)
by (C4), which means that it is a clan. Another construction is
as follows. For two filters F and G in B we define: FρG if and
only if F ×G ⊆ C. It is easy to see that the relation ρ is reflexive
and symmetric. Let Σ be a nonempty set of maximal filters of B
such that for any F, G ∈ Σ we have FρG. Then the union of all
elements of Σ is a clan and every clan can be obtained by such a
construction (cf. [15]).

The following assertion is a simple consequence of the Zorn
lemma.

Lemma 2.3.1 ([19, 15]). The following assertions hold.
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(1) If F and G are filters and FρG, then there exist maximal
filters F ′ ⊇ F and G′ ⊇ G such that F ′ρG′.

(2) aCb if and only if there exist maximal filters F and G such
that FρG, a ∈ F , and b ∈ G.

The following assertion characterizes contacts and part-of in
terms of clans.

Lemma 2.3.2 ([15]). The following assertions hold.

(1) aCb if and only if (∃Γ ∈ CLANS (B))(a, b ∈ Γ).
(2) a � b if and only if (∀Γ ∈ CLANS (B))(a ∈ Γ→ b ∈ Γ).
(3) a = 1 if and only if (∀Γ ∈ CLANS (B))(a ∈ Γ).

We explain the idea of the proof of (1). If aCb, then for the
filters F ′ = {a′ : a � a′} and G′ = {b′ : b � b} we have F ′ρG′.
By Lemma 2.3.1, F ′ and G′. can be extended to maximal filters
F and G such that FρG. Then the clan Γ = F ∪G contains both
a and b. The converse implication follows from the properties of
clans. Assertions (2) and (3) are proved in a standard Boolean
way because ultrafilters are clans.

For a ∈ B we introduce the Stone-like mapping h(a) = {Γ ∈
CLANS (B) : a ∈ Γ}.

From Lemma 2.3.2 and the properties of clans we obtain the
following assertion.

Lemma 2.3.3 ([15]). The following assertions hold.

(1) h(a + b) = h(a) ∪ h(b), h(0) = ∅, and h(1) = CLANS (B).
(2) a � b if and only if h(a) ⊆ h(b).
(3) a = 1 if and only if h(a) = CLANS (B).
(4) aCb if and only if h(a) ∩ h(b) �= ∅.

Our next goal is to turn the set X = CLANS into a topo-
logical space and to establish a representation theorem. For this
purpose, as in the Stone representation theory for Boolean alge-
bras, we define a topology τ taking {h(a) : a ∈ B} for the base
of closed sets and considering h as the required embedding. We
expect that h will embed the contact algebra B into the contact
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algebra RC(X). Proposition 2.3.4 shows that in a sense regular
closed sets cannot be excluded. Recall that the reduct (B, 0, 1, +)
of a Boolean algebra (B, 0, 1, +, ., ∗) is a Boolean algebra, called
the upper semi-lattice of B, and it generates the same ordering
relation � as in B.

Proposition 2.3.4. Suppose that X is a topological space,
B = (B, 0, 1, +, ., ∗) is a Boolean algebra, and h is an embedding of
the upper semi-lattice (B, 1, +) in the upper semi-lattice of closed
sets of X such that the set {h(a) : a ∈ B} is a base of closed sets
of X. Then the following assertions hold:

(1) h(a∗) = Cl(−h(a)),
(2) for every a ∈ B, h(a) is a regular closed set in X and, con-

sequently, X is a semiregular space,
(3) h is an embedding in RC(X).

Proof. (1) Consider an arbitrary point x ∈ X. Assertion (1)
follows from the sequence of equivalences

x ∈ Cl(−h(a))⇔ (∀b ∈ B)(−h(a) ⊆ h(b) → x ∈ h(b))

⇔ (∀b ∈ B)(h(a) ∪ h(b) = X → x ∈ h(b)),

⇔ (∀b ∈ B)(a + b = 1 → x ∈ h(b)),

⇔ (∀b ∈ B)(a∗ � b → x ∈ h(b)),

⇔ (∀b ∈ B)(h(a∗) ⊆ h(b)→ x ∈ h(b))⇔ x ∈ h(a∗)

since Cl(−h(a)) is the intersection of all elements in the base con-
taining −h(a). Here, we repeatedly used the assumption that h is
an embedding preserving 1, +, and �.

(2) Applying (1) twice, we find

x ∈ h(a)⇔ x ∈ h(a∗∗)

⇔ x ∈ Cl(−Cl(−h(a)))

⇔ x ∈ Cl(Int(h(a))),

which shows that for every a ∈ B, h(a) is a regular closed set and,
consequently, X is a semiregular space.
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(3) This assertion follows from (2), (1), and the assumption
that h preserves + and 1. �

Combining Lemmas 2.3.2, 2.3.3, and 2.3.4, we obtain the
following assertion.

Lemma 2.3.5. h is an embedding of B in RC(X) with X =
CLANS (B).

Properties of X = CLANS are presented by the following
assertion.

Lemma 2.3.6. The space X = CLANS (B) is semiregular,
possesses the T0 property, and is compact.

Proof. The space X is semiregular since it has the base of
regular closed sets.

To prove the T0 property, we suppose that Γ and ∆ are two
different points of X. Since Γ and ∆ are clans, one of them, say
Γ, is not included in the other, ∆. Then there is a ∈ Γ such that
a �∈ ∆. Hence the open set −h(a) contains ∆ and not Γ.

To prove the compactness of X, it suffices to prove the fol-
lowing. Let I be a nonempty set of indices, and let A =

⋂
{h(a) :

a ∈ I}. If for every finite set I0 ⊆ I we have
⋂
{h(a) : a ∈ I0} �= ∅,

then A �= ∅. Indeed, the condition that
⋂
{h(a) : a ∈ I0} �= ∅ for

all finite subsets I0 of I guarantees the existence of an ultrafilter
U such that {h(a) : a ∈ I} ⊆ U . It is easy to see that the set
Γ = {a : h(a) ∈ U} is a clan. Hence for every a ∈ I

a ∈ I → h(a) ∈ U → a ∈ Γ → Γ ∈ h(a).

Thus, Γ ∈ A and, consequently, A �= ∅. �

We show how the additional axioms (Con), (Ext), and (Nor)
affect the properties of the canonical space X = CLANS (B).

Let A be a regular closed set in the canonical space X. The
set FA = {a ∈ B : A ⊆ h(a)} is called the canonical filter of A.

Lemma 2.3.7. The canonical filter FA possesses the follow-
ing properties:
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(1) FA is a filter,
(2) (∀Γ ∈ X)(Γ ∈ A if and only if FA ⊆ Γ),
(2) If A �= X, then there is a ∈ B such that a �= 1 and A ⊆ h(a),
(4) FA × FB ⊆ C if and only if A ∩B �= ∅,
(5) A∩B = ∅ if and only if (∃a, b ∈ B)(A ⊆ h(a) and B ⊆ h(b)

and aCb).

Proof. (1) This assertion is a direct consequence of the defi-
nition of FA and Lemma 2.3.3.

(2) Since A is a closed set and the set of all h(a) is a closed
base for the topology of X, for any clan Γ

Γ ∈ A⇔ (∀a ∈ B)(A ⊆ h(a) → a ∈ Γ)

⇔ (∀a ∈ B)(a ∈ FA → a ∈ Γ)
⇔ FA ⊆ Γ.

(3) Let A �= X. Then there is a clan Γ such that Γ �∈ A. By
(2), FA �⊆ Γ and, consequently, there is a ∈ B such that a ∈ FA

and a �∈ Γ. Hence A ⊆ h(a), and a �= 1 by Lemma 2.3.3.

(4) (←) Assume that there is a clan Γ ∈ A such that Γ ∈ B.
Then FA ⊆ Γ and FB ⊆ Γ. Consequently, (∀a, b ∈ B)(A ⊆ h(a)
and B ⊆ h(b) → a, b ∈ Γ). Hence (∀a, b ∈ B)(A ⊆ h(a) and
B ⊆ h(b) → aCb), which yields FA × FB ⊆ C.

(→) Let FA×FB ⊆ C. By Lemma 2.3.1, there exist maximal
filters F1 and F2 such that FA ⊆ F1, FB ⊆ F2, and F1ρF2 , i.e.,
F1 × F2 ⊆ C. Then Γ = F1 ∪ F2 is a clan and FA ⊆ Γ, FB ⊆ Γ.
By (2), Γ ∈ A, Γ ∈ B and, consequently, A ∩B �= ∅.

(5) This assertion is equivalent to (4). �

Corollary 2.3.8. h is a dense C-separable embedding of B
in RC(X) with X = CLANS(B).

Proof. The assertion immediately follows from Lemma 2.3.7,
(3), (4). �

The above results yield the following
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Theorem 2.3.9 (representation of contact algebras). Let
B = (BC) be a contact algebra. Then there exists a compact semi-
regular T0-space (X, τ) and a dense C-separable embedding h of
B in the contact algebra of regular closed sets RC(X). Moreover,

(1) B satisfies (Con) if and only if X is connected,
(2) B satisfies (Ext) if and only if X is weakly regular,
(3) B satisfies (Nor) if and only if X is κ-normal,
(4) if B is a complete algebra, then h is an isomorphism between

B and the complete contact algebra RC(X).

Proof. Assertions (1)–(4) follow from Lemmas 2.2.2, 2.2.1,
and 2.2.3. �

A similar assertion was proved in [15] with the compactness
of X replaced with a stronger notion of C-semiregularity (a semi-
regular T0-space is C-semiregular if every clan in RC(X) is a point
clan). Note that any C-semiregular space is compact, but there
are compact semiregular spaces that are not C-semiregular.

Based on the definition of a point in a contact algebra, we
can give a second-order definition of the n-ary contact:

Cn(a1, . . . , an) if and only if there exists a clan Γ
such that {a1, . . . , an} ⊆ Γ.

Using this definition and Theorem 2.3.9, we find

Cn(a1, . . . , an) if and only if h(a1) ∩ . . . ∩ h(an) �= ∅,

which shows that the above definition agrees with the notion of
the standard topological n-ary contact.

2.4. Another topological representation
of contact algebras

Under additional assumptions, contact algebras can be represented
in better topological spaces, T1 or T2. If contact algebras satisfy
axiom (Ext), we can prove a representation theorem for compact
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weakly regular T1-spaces with maximal clans instead of points. By
axiom (Ext), it is possible to repeat all the arguments of Section
2.3 to obtain a representation result similar to Theorem 2.3.9, but
X should be replaced with T1 in view of the maximality of clans.

Theorem 2.4.1 (representation of extensional contact alge-
bras). Let B = (BC) be a contact algebra satisfying axiom (Ext).
Then there exists a compact weakly regular T1-space (X, τ) and
a dense C-separable embedding h of B in the contact algebra of
regular closed sets RC(X). Moreover,

(1) B satisfies (Con) if and only if X is connected,
(2) B satisfies (Nor) if and only if X is κ-normal,
(3) if B is a complete algebra, then h is an isomorphism between

B and RC(X).

This theorem covers the case of the RCC system. Similar
assertions were proved by Düntsch and Winter in [21] (without
compactness) for RCC system and by Dimov and Vakarelov in
[15], where the compactness was replaced with the stronger con-
dition of CM-semiregularity

For contact algebras satisfying both axioms (Ext) and (Nor)
the representation theorem can be improved.

Theorem 2.4.2 (representation of extensional normal con-
tact algebras, [61, 15]). Let B = (BC) be a contact algebra sat-
isfying both axioms (Ext) and (Nor). Then there exists a compact
Hausdorff space (X, τ) and a dense embedding h of B in the con-
tact algebra of regular closed sets RC(X). Moreover,

(1) B satisfies (Con) if and only if X is connected,
(2) if B is a complete algebra, then h is an isomorphism between

B and RC(X).

An assertion similar to Theorem 2.4.2 was first proved by de
Vries [63] for RO(X) instead of RC(X).

To prove Theorem 2.4.2, we introduce another kind of points.
A subset Γ of B is called a cluster if it is a clan such that

(Cluster) if aCb for every b ∈ Γ, then a ∈ Γ.
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Any cluster is a maximal clan. However, to prove the exis-
tence of clusters in B, we need axioms (Ext) and (Nor). Clusters
were used in proximity theory for obtaining compactification the-
orems for topological spaces (cf. [42]).

For representing contact algebras in some special topological
spaces (for example, regular spaces), other (not necessarily first-
order) axioms can be required. The role of points in such algebras
is played by clusters of special kind, called co-ends. Formally, a
co-end Γ is a cluster such that for every a �∈ Γ there exists b �∈ Γ
such that a# b.

Contact algebras representable in RC(X) with a regular space
X satisfy the following regularity axiom:

(Reg) if aCb, then there exists a co-end Γ containing a and b.

We refer to [15] for details.
Note that (Reg) is not a first-order axiom because it contains

the second-order notion of a co-end. It is not known if there is
a first-order axiom equivalent to (Reg). The following general
question can be posed: For a given class Σ of topological spaces
find axioms providing representation of algebras in RC(X) with
X ∈ Σ.

The above representation theorems are of embedding type,
i.e., they state that a contact algebra B can be embedded in the
contact algebra of regular closed sets RC(X) of some topological
space X. Such representations do not exclude the case where non-
isomorphic contact algebras are embedded in the contact algebra
of the same space X. Moreover, X1 and X2 can be nonhomeomor-
phic, whereas RC(X1) and RC(X2) are isomorphic. To establish
a one-to-one correspondence between contact algebras (up to an
isomorphism) and topological spaces (up to a homeomorphism),
we require the completeness of contact algebras. Then for X we
take the so-called C-semiregular space, i.e., a semiregular space X
such that every clan in RC(X) is a point clan. Representations
theorems for complete contact algebras satisfying some axioms like
(Con), (Ext), and (Nor) can be found in [15].
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2.5. Models of contact algebras
in proximity spaces

Proposition 2.3.4 motivates the following observation: In order
for a topological representation h of contact algebras to generate
a topology, h must be an embedding of the Boolean part of the
contact algebra in the Boolean algebra RC(X) with some semi-
regular space X. However, Proposition 2.3.4 does not guarantee
that the contact relation C in RC(X) is defined in the standard
way, i.e., aCb ⇔ a ∩ b �= ∅.

In this section, we demonstrate topological models for contact
algebras, where elements of the Boolean algebra are regular closed
sets of some topological space, whereas the relation aCb is not the
standard topological contact. To construct such examples, we use
proximity spaces introduced by Efremovič in [25] (cf. also [42])
and known as Efremovič proximity spaces or simply E-proximity
spaces.

An Efremovič proximity space is a system (X, δ), where X is
a nonempty set and δ is a binary relation, called proximity relation,
on subsets of X such that the following axioms are satisfied:

(E1) if AδB, then A,B �= ∅,

(E2) Aδ(B ∪ C) if and only if AδB or AδC,

(E3) if AδB, then BδA,

(E4) if A ∩B �= ∅, then AδB,

(E5) if AδB, then there exists C such that AδC and (X �C)δB.

A proximity space (X, δ) is said to be separated if it satisfies
the following condition:

if x, y ∈ X, then {x}δ{y} implies x = y

.

Spaces satisfying only axioms (E1)–(E4) were considered by
Čech [9]. Other generalizations of E-proximity spaces can be found
in [42].
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The relation # in a Čech proximity space is defined as

A# B if and only if Aδ(X � B).

If A # B, then B is called a δ-neighborhood of A. It is
obvious that the relations δ and # are interdefinable and the
axioms of Čhech proximity space can be expressed in terms of #
as follows:

(# 1) X # X,

(# 2) if A# B, then A � B,

(# 3) if A � B # C � D then A # D,

(# 4) if A# B, then (X � B) # (X � A),

(# 5) if A# B and A# C, then A # B ∩ C.

In terms of #, axiom (E5) takes the form

(# 6) if A# B, then for some C: A# C # B.

Note that axioms (E1)–(E4) are the same as axioms of con-
tact algebras (C1)–(C4); moreover, axiom (E5) or (# 6) is the
same as axiom (Nor). Owing to this fact, it is possible to use
proximity spaces for constructing models of contact algebras.

A standard example of E-proximity space comes from metric
spaces (X, d). Using the distance d(A,B) = inf {d(a, b) : a ∈
A, b ∈ B} between two sets A and B of a metric space, we define
the proximity relation

AδB if and only if d(A,B) = 0.

In this case, all the axioms of E-proximity space are satisfied.
A relational kind of proximity spaces is considered in [60]:

for a given relational system (X, R), where X �= ∅ and R is a
binary relation in X, the relation δR on subsets of X is defined as

AδRB if and only if (∃x ∈ A)(∃y ∈ B)(xRy).

In this case, axiom (E1) and the right and left implications
in axiom (E2) are satisfied by any R, axiom (E3) is satisfied if R
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is symmetric, axiom (E4) is satisfied if R is reflexive, and axiom
(E5) is satisfied if R is transitive relation.

For an example of a Čech proximity space we can consider a
system (X, R) with a reflexive symmetric relation R, and for an
example of an E-proximity space we can take a system (X, R),
where R is an equivalence relation. These examples will be used
for presenting discrete models of contact algebras in the following
section.

Now, we use E-proximity spaces to construct topological mod-
els of contact algebras with a nonstandard proximity model of
contact relation.

Every Čech proximity space (X, δ) defines a topology in X
in the following way. Let Cl(A) = {x ∈ X : {x}δA}. Then Cl
is a Kuratowski closure operator defining a topology in X. The
following assertion shows how Cl and Int are connected with the
relation #.

Lemma 2.5.1 ([42]). The following assertions hold:

(1) A# B implies Cl(A)# B,

(2) A# B implies A# Int(B).

Having a topology in a proximity space X, we can consider
the set of regular closed subsets of X with respect to this topol-
ogy. Consider the Boolean algebra RC(X, δ) of regular closed sets
with respect to the introduced topology in (X, δ). Since axioms
(C1)–(C4) are the same as the axioms of proximity space, we con-
clude that RC(X, δ) is a contact algebra. We show that axioms
(Nor) and (Ext) are also satisfied. Axiom (Nor) follows from the
following stronger version of axiom (# 6):

(# 6′) if A# B, then A # C # B for some regular
closed set C.

Indeed, let A # B. By axiom (# 6), there is a subset D
(not necessarily regular and closed) such that A # D # B. By
Lemma 2.5.1,
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A# Int(D) ⊆ Cl(Int(D)) ⊆ Cl(D) # B.

Hence A# Cl(Int(D))# B. Then C = Cl(Int(D)) is the required
regular closed subset.

To verify axiom (Ext), assume that A �= ∅ is a regular closed
set. Then there is a point x ∈ Int(A) and, consequently, {x} # A.
By (# 6′), we get a regular closed set B such that {x} # B # A
and, consequently, B �= ∅ and B # A. Thus, axiom (Ext) is
satisfied.

The above arguments lead to the following assertion.

Theorem 2.5.2 ([61]). Let (X, δ) be an E-proximity space,
and let RC(X, δ) be the Boolean algebra of regular closed sets in
(X, δ). Then (RC(X, δ), δ) is a contact algebra with contact δ
satisfying axioms (Nor) and (Ext).

Note that the proximity contact defined in Theorem 2.5.2 is
not necessarily the standard topological contact for regular closed
sets. For example, consider the metric space of rational numbers
and the corresponding proximity space. For the regular closed
sets A = {x : 0 � x2 � 2} and B = {x : 2 � x2 � 4} we have
d(A,B) = 0, which implies AδB. But these sets are not in the
relation of the topological contact because A ∩ B = ∅. If we
consider the same sets over the real numbers, then both proximity
and topological contacts hold. In the further consideration, we
have exactly A ∩ B = {

√
2}. The reason is that the space of the

rational numbers does not have points (in this case, the point
√

2)
enough to describe the standard contact, but this can be done with
the help for the proximity contact. Thus, the proximity contact
is more suitable for describing the real picture between regular
closed sets. Generalizing the notion of an Efremovič proximity
space in different ways, we can obtain models with proximity-like
contacts for other contact algebras (some examples are contained
in [16]).
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2.6. Contact algebras with
predicate of boundedness

In this section, we extend the language of contact algebras by
introducing the predicate of boundedness. To explain this notion
at the intuitive level, we consider the real line R. A regular closed
set a in R is bounded if it is contained in a closed interval [x, y]
of R. A generalization to the space Rn is obvious: closed spheres
should be taken instead of [x, y].

The notion of boundedness was used in topology by Hu [35]
and in proximity spaces by Leader [37] (cf. also [42]).

The boundedness is defined as a class B of subsets of a space
X such that

(B1) ∅ ∈ B,
(B2) if B ∈ B and A ⊆ B, then A ∈ B,
(B3) if A,B ∈ B, then A ∪B ∈ B.

From the formal point of view, it is a fixed ideal of sets in
X. The boundedness predicates related to the topology of X are
of great interest. For example, in Rn, the set of bounded regu-
lar closed regions coincides with the set of compact regular closed
regions. Note that Rn is a locally compact Hausdorff space (re-
call that a topological space X is locally compact if for every point
x ∈ X there is a compact regular closed set a such that x ∈ Int(a)).
Therefore, the above definition can be taken for a topological de-
finition of boundedness in locally compact spaces. Based on this
definition of boundedness, Leader [37] introduced local proximity
spaces by adding the following axioms to axioms (B1)–(B3) in the
definition of Čech proximity spaces:

(B4) if AδB, then ∃C ∈ B such that C ⊆ B and AδC,

(C) if A ∈ B and A# C, then ∃C ∈ B such that A# C # B

(A# B ⇔ Aδ −B).

Note that axiom (C) is equivalent to the conjunction of the
axiom
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(B5) if A ∈ B, then ∃B ∈ B such that A# B

and the Efremovič axiom

(E5) if A# B, then ∃C such that A# C # B.

A typical example of a local proximity space is any locally
compact Hausdorff spaces X with AδB defined as Cl(A)∩Cl(B) �=
∅ and A ∈ B if and only if Cl(A) is a compact subset of X. Leader
used this example to develop the local compactification theory for
local proximity spaces.

Using an analogy between contact algebras and proximity
spaces (cf. Section 2.5), we introduce a local contact algebra as
a system B = (B, 0, 1,+, ., ∗, C,B), where (B, 0, 1, +, ., ∗, C) is a
contact algebra and B is a subset of B satisfying axioms similar
to (B1)–(B5) and denoted in the same way:

(B1) 0 ∈ B,

(B2) if b ∈ B and a � b, then a ∈ B,

(B3) if a, b ∈ B, then a + b ∈ B,

(B4) if aCb, then ∃c ∈ B such that c � b and aCc,

(B5) if a ∈ B, then ∃b ∈ B such that a # b (a# b ⇔ aCb∗).

We say that B is connected (extensional or normal) if it
satisfies axiom (Con) ((Ext) or (Nor)).

Standard examples of local contact algebras can be obtained
from a locally compact space X: the contact algebra RC(X) and
the set of bounded regions B(X) coinciding with the compact reg-
ular closed sets in X.

In mereotopology, the notion of boundedness was first used
by Roeper in [49], where it was referred to as the limitedness.
The region-based topology introduced by Roeger is equivalent to
the local contact algebras satisfying axioms (Ext) and (Nor). The
axioms of Roeper are (C1)–(C4), (B1)–(B4), and the following:

(R) if a ∈ B, b �= 0 and a# b, then ∃c ∈ B such that c �= 0 and
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a# c## b.

Note that axiom (R) is close to Leader’s axiom (C) and de
Vries’ axiom (P6). Roeper did not make any reference to their
works, and it is quite impressive that he independently worked
out some ideas and methods of proximity theory. For example, his
definition of a point as a coincidence set is the same as a bounded
cluster introduced by Leader. Roeper gave an elegant proof of the
fact that every complete contact algebra satisfying axioms (Ext)
and (Nor) (the complete region-based topology in the terminology
of Roeper) is isomorphic to the local contact algebra RC(X) of
regular closed sets of a Hausdorff locally compact space X and
that there is a one-to-one correspondence between region-based
topologies (up to an isomorphism) and Hausdorff locally compact
spaces (up to a homeomorphism). Another proof of the Roeper
theorem is contained in [61], where the Leader compactification
theorem is generalized to local proximity spaces.

The goal of this section is to expand the Roeper embedding
theorem to the case of local contact algebras under additional
axioms (Con), (Ext), and (Nor).

Theorem 2.6.1 (representation of local contact algebras).
Let B = (B, C,B) be a local contact algebra. Then there exists a lo-
cally compact semiregular T0-space (X, τ) and a dense C-separable
embedding h of B in the local contact algebra of regular closed sets
RC(X). Moreover,

(1) B satisfies (Con) if and only if X is connected,

(2) B satisfies (Ext) if and only if X is weakly regular,

(3) B satisfies (Nor) if and only if X is κ-normal,

(4) if B is a complete algebra, then h is an isomorphism between
B and the complete local contact algebra RC(X).

The proof of this theorem is similar to that of Theorem
2.3.9, but, instead of ultrafilters and clans, bounded ultrafilters and
bounded clans (ultrafilters and clans possessing bounded regions)
and the constructions from Section 2.3 are used.
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A stronger result (similar to Theorem 2.4.1) for locally com-
pact weakly regular T1-spaces can be obtained under the assump-
tion that local algebras satisfy axiom (Ext). In this case, the role
of points is played by bounded maximal clans. If both axioms
(Ext) and (Nor) are assumed, locally compact Hausdorff spaces
are obtained (as was established by Roeper). If, in addition, ax-
iom (Con) is satisfied, we obtain a connected space.

As was noted by Roeper [49], if axiom (R) (equivalently, ax-
ioms (Ext) and (Nor)) is not assumed, it is impossible to establish
a one-to-one correspondence between local contact algebras and
locally compact spaces.

2.7. Algebras of regions based
on non-Boolean lattices

It is reasonable to weaken the Boolean part of a contact algebra
since it constitutes the mereological basis for the contact algebra,
but the basic mereological relations (part-of, overlap, and under-
lap) admit equivalent definitions in terms of the lattice operations.
Another reason is to examine how much the lattice properties af-
fect properties of the mereological relations. We give two exam-
ples. The relations overlap and underlap are extensional in the
following sense:

(Ext-O) a = b if and only if (∀c)(aOc↔ bOc),

(Ext-U) a = b if and only if (∀c)(aUc↔ bUc).

If we restrict the Boolean part to a distributive lattice with 0
and 1, then (Ext-O) and (Ext-U) are not necessarily valid. In the
case of a distributive lattice, (Ext-O) is equivalent to the following
stronger condition:

(Ext-O′) a � b if and only if (∀c)(aOc→ bOc).

Similarly, (Ext-U) is equivalent to the following:

(Ext-U′) a � b if and only if (∀c)(bUc→ aUc).
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For more details we refer to [22] and [18]).
The following lemma illustrates the importance of the ex-

tensionality principles for the representability results in Boolean
contact algebras of regular closed sets.

Lemma 2.7.1 ([18]). Suppose that X is a topological space,
L = (L, 0, 1, +, .) is a lattice, and h is an embedding of the upper
semi-lattice (L, 0, 1, +) in the lattice C(X) of closed sets of X. Let
B = {h(a) : a ∈ L} be the closed base of a topology for X.

(1) The following conditions are equivalent:
(a) L is U -extensional,
(b) B ⊆ RC(X),
(c) h(a.b) = Cl(Int(h(a) ∩ h(b))) for all a, b ∈ L,
(d) h is the dual dense embedding of L in RC(X).

(2) If some of conditions (a)–(d) in (1) are satisfied, then
(a) L is an U -extensional distributive lattice,
(b) X is a semiregular space.

Lemma 2.7.1 shows that in order for a lattice L to be em-
bedded in RC(X) so that the image of L to form a basis of closed
sets for X, the lattice L should be distributive and U-extensional
with semiregular topology.

Theorem 2.7.2 below shows that such representability results
can also take place for distributive U-extensional lattices with ax-
ioms (C1)–(C4).

Theorem 2.7.2 (topological representation of U -extensional
distributive contact lattices, [18]). Let D = (D, 0, 1, +, ., C) be
an U -extensional distributive contact lattice. Then there exists a
semiregular T0−space X and the dual dense embedding h of D in
RC(X) such that {h(a) : a ∈ D} is a basis of closed sets for X.

Note that the embedding of a distributive contact lattice in
RC(X) is possible even if the lattice is not necessarily U-extensional
provided that we omit the condition that {h(a) : a ∈ D} generates
the topology of X. This shows that this assumption has a lattice
equivalent in the form of the U-extensionality of the lattice.
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We can further weaken the mereological part of contact al-
gebras. In particular, examples with nondistributive lattices were
considered in [22]. The question is: What can be regarded as
a nice point-based representation? For a candidate for topologi-
cal modelling of nondistributive contact lattices we can consider
regions in some bi-topological spaces. Let (X, τ1, τ2) be a space
with two different topologies τ1 and τ2. A set a ⊆ X is called
a mixed regular closed set if a = Cl 1(Int 2(a)). We set 0 = ∅,
1 = X, a + b = a ∪ b, a.b = Cl 1(Int 2(a ∩ b)), and aCb if and
only if a ∩ b �= ∅. Then such mixed regions form a (not neces-
sarily distributive) lattice and C satisfies axioms (C1)– (C4). By
a result of Urquhart [59], any lattice can be embedded in such a
special lattice. The problem is that such a representation does not
hold for the contact relation. The question of finding a satisfac-
tory model and representation theory for nondistributive contact
lattices remains still open.

The further generalization is to drop the entire lattice part
and consider only some mereotopological relations with suitable
axioms that are valid in the standard Boolean model. For example,
as we can see for contact algebras, all the RCC-8 relations are
definable and their definition uses only O, C, �. and #. Thus, it
is of interest to find the complete set of axioms for O, C, �, and
#. The author does not know whether there are results in this
direction.

2.8. Precontact algebras and discrete spaces

In this section, we describe discrete nontopological models of con-
tact algebras. We begin with a general definition.

A precontact algebra is a system B = (B, C) = (B, 0, 1,+, ., ∗,
C), where (B, 0, 1,+, ., ∗) is a Boolean algebra and C is a binary
relation, called a precontact, satisfying the following axioms:

(C1) if aCb, then a, b �= 0,

(C2′) aC(b + c) if and only if aCb or aCc,
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(C2′′) (a + b)Cc if and only if aCc or bCc.

Note that B is a contact algebra if it satisfies axioms (C3)
(i.e., aCb→ bCa) and (C4) (i.e., a.b �= 0 → aCb).

Precontact algebras were considered in [14] and in [19], where
they are called proximity algebras.

We give nontopological examples of precontact and contact
algebras using the notion of an adjacency space introduced by Gal-
ton [29, 30]. An adjacency space is a relational system (X, R),
where X �= ∅ is a set whose elements are called cells and R is a
binary adjacency relation on cells. By a region in (X, R) we mean
any subset of X. We say that two regions a, b ⊆ X are in the adja-
cency contact CR and write aCRb if (∃x ∈ a)(∃y ∈ b)(xRy). Such
a binary relation was used in [60] for defining relational proxim-
ity spaces, but its interpretation there was different from Galton’s
one. Galton assumed that R is reflexive symmetric, whereas R
is arbitrary in [19]. An intuitive example of an adjacency space,
adopted from Galton, is a chess-board table with cells – squares
such that two squares are adjacent if they have a common point.
This is an example of a reflexive symmetric adjacency relation.
However, there are also several nonreflexive nonsymmetric adja-
cency relations, for example: “a to be next on the left of b” or
“a to be on the top of b,” etc., which motivates the choice of an
arbitrary binary relation of R in [19].

It is easy to prove the following assertion.

Lemma 2.8.1 ([19]). Let (X, R) be an adjacency space, and
let B(X) = (B(X), CR), where B(X) is the Boolean algebra of
subsets of X and CR is the adjacency contact. Then the following
assertions hold:

(1) B(X) = (B(X), CR) is a precontact algebra,
(2) B satisfies (C3) if and only if R is symmetric,
(3) B satisfies (C4) if and only if R is reflexive,
(4) B is a contact algebra if R is reflexive and symmetric,
(5) B satisfies (Nor) if and only if R is transitive,



Region-Based Theory of Space 307

(6) B satisfies (Con) if and only if R is connected in the sense
of graphs, i.e. if x �= y then there is an R-path from x to y.

With every precontact algebra we can associate a canonical
adjacency space X(B) = (X(B), RB) taking the set of all ultrafil-
ters of B (“points” of B) for X(B) and setting for two ultrafilters
F and G

FRBG ⇔ F ×G ⊆ C ⇔ FρG,

where the relation ρ was introduced in Section 2.3. The mapping
h(a) = {F ∈ X(B) : a ∈ F} is the Stone embedding of B in the
Boolean algebra of subsets of X(B). By Lemma 2.3.1, h preserves
the relation of precontact. Thus, the following representation re-
sult holds.

Theorem 2.8.2 (representation of precontact algebras in
adjacency spaces, [19]). Suppose that B is a precontact algebra,
(X(B), RB) is the canonical adjacency space, and B(X(B)) is the
precontact algebra over the canonical space. Then the following
assertions hold:

(1) h is an embedding of B in B(X(B)),
(2) B satisfies (C3) if and only if B(X(B)) satisfies (C3),
(3) B satisfies (C4) if and only if B(X(B)) satisfies (C4),
(4) b is a precontact algebra if and only if B(X(B)) is a contact

algebra,
(5) B satisfies (Nor) if and only if B(X(B)) satisfies (Nor).

As was noted in [19], the canonical adjacency space of a con-
nected contact algebra is not in general a connected adjacency
space. That is why Theorem 2.8.2 does not cover the case of
connected contact algebras, unlike topological representation the-
orems.

Theorem 2.8.2 gives examples of nontopological discrete rep-
resentations of contact algebras and normal contact algebras. This
fact is remarkable because this means that a contact algebra has
two essentially different representations: a discrete representation
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in a reflexive symmetric adjacency space and the other in a topo-
logical space. The points of the discrete representation are ultra-
filters and the contact is realized by a binary adjacency relation
between ultrafilters, whereas points in the topological representa-
tion are clans, i.e., special collections of ultrafilters. Considering
both representations in the same space, we see that every region a
have two representations: the first, hultrafilters(a) containing only
ultrafilters and the second, hclans(a) containing hultrafilters(a) and
including some clans. Note that hclans(a) is a regular closed set
with a boundary containing only clans and the ultrafilters are in-
cluded only in Int(hclans(a). These representations reminiscent
to consider ultrafilter-points as analogs of atoms, and clan-points
can be regarded as analogs of molecules. Respectively, the repre-
sentation theory is, in a sense, some kind of establishing certain
atomistic micro-structure of the space, in which different kinds of
points constitute the microlevels of the regions. Note that this
interpretation is quite disputable and arise serious philosophical
questions about the atomicity of space. More about this discus-
sion in the realm of the top-level ontology and mereology can be
found, for example, in [53].

At the first glance, topological modelling of precontact alge-
bras is not possible because the standard topological contact sat-
isfies additional axioms (C3) and (C4). However, for an arbitrary
precontact algebra we can define an additional relation of contact
C# as follows: aC#b if and only if aCb or bCa or a.b �= 0. It is
obvious that C# satisfies all the axioms of contact algebra. Hence
we can look for topological models of precontact algebras withe
lements represented by regular closed sets of a topological space
X and the contact C# is represented as the standard topological
contact. This is possible to be done but in topological structures
of a more complicated nature, containing a binary relation R be-
tween some points of the space. We refer to [14] for definitions
and topological representation theorems of precontact algebras in
more detail.
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3. Region-Based Propositional
Modal Logics of Space

In this section, we present a language for propositional, quantifier-
free logics of the region-based theory of space. The consideration of
a quantifier-free language is mainly motivated by the necessity to
obtain decidable fragments of some well-known systems of region-
based theory of space related to RCC. We present three kinds of
semantics:

• algebraic semantics based on algebras of regions,
• topological semantics based on contact algebras of some classes

of topological spaces,
• Kripke-type semantics based on Kripke structures regarded

as adjacency spaces.

The main tools in the proof of completeness theorems are
the representation theorems for contact and precontact algebras
from Section 2. We use a language similar to that of relative
modal logic introduced by von Wright [66], which motivates us
to call the considered logics region-based propositional modal log-
ics of space (RPMLS). Another motivation is that Kripke-type
semantics is very closed to the Kripke semantics in modal logic.
Moreover, almost all known techniques of modal logic (in partic-
ular, modal definability, filtration, canonical-model constructions,
etc.) used for proving completeness theorems can be transferred to
our case with slight modifications. In addition, the language has
a direct translation into the minimal modal logic K + universal
modality, which also motivates our choice. However, the “modal”
qualification of our logical language is not obligatory and it can
be considered as a quantifier-free version of some first-order lan-
guage. Note that the introduced language is a simplified version
of the language of RCC-8 with Boolean terms, used by Wolter and
Zakharyaschev [65].

The material of this section is mainly based on [3].
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3.1. Syntax and semantics of RPMLS

Syntax

The language L(C,�) of region-based propositional modal logics
of space (RPMLS) consists of
• a denumerable set Var of Boolean variables,
• Boolean operations:: . (Boolean meet), + (Boolean join), ∗

(Boolean complement), and 0, 1 (Boolean constants),
• propositional connectives: ¬,∧,∨,⇒,⇔, and propositional

constants � and ⊥,
• modal connectives: � (part-of) and C (contact).

The set of Boolean terms B is defined in a standard way:
from Boolean atoms and Boolean constants by means of Boolean
operations.

Atomic formulas are formulas of the form a � b and aCb,
where a and b are Boolean terms.

Complex formulas (or simply formulas) are defined in a stan-
dard way from atomic formulas and propositional constants ⊥ and
� by means of propositional connectives.

Abbreviations:
a = b

def= (a � b) ∧ (b � a),

a �= b =def= ¬(a = b),

aCb
def= ¬(aCb),

aOb
def= a.b �= 0 (overlap),

a # b
def= aCb∗ (nontangential inclusion).

Substitution. Let α be a Boolean term or a formula, and
let p1, . . . , pn be a list of different Boolean variables. We write
α(p1, . . . , pn) to indicate that p1, . . . , pn can occur in α.

If b1, . . . , bn are Boolean terms, then α(b1, . . . , bn) or, more
precisely α(p1/b1, . . . , pn/bn) means the simultaneous substitution
of b1, . . . , bn for p1, . . . , pn. The formula α(b1, . . . , bn) is called a
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substitutional instance of α. If we consider p1, . . . , pn as meta vari-
ables for Boolean terms, then α(p1, . . . , pn) is called a “schema.”
Schemes are usually understood as schemes of axioms of some ax-
iomatic systems.

Let A = A(q1, . . . , qn) be a formula of the propositional calcu-
lus built up by different propositional variables q1, . . . , qn and the
propositional connectives ¬,∧,∨,⇒,⇔,⊥, and �. Let α1, . . . , αn

be formulas of our language. Then A(α1, . . . , αn) or, more pre-
cisely, A(q1/α1, . . . , qn/αn) is called the substitutional instance of
the propositional formula A.

Semantics

First of all, we introduce an algebraic semantics of the language
L(�, C). Let B = (B, 0, 1, .,+, ∗, C) be a precontact algebra. A
mapping v from Var into B is called a valuation. It is extended to
arbitrary Boolean terms by induction in a standard way: v(a.b) =
v(a).v(b), v(a + b) = v(a) + v(b), v(a∗) = v(a)∗, v(0) = 0, and
v(1) = 1.

A pair M = (B, v), where B is a precontact algebra and v is
a valuation in B, is called an algebraic model or an interpretation
in B. The truth of a formula α in (B, v), in symbols (B, v) |= α,
is defined inductively as follows:

(B, v) |= a � b if and only if v(a) � v(b),

(B, v) |= aCb if and only if v(a)Cv(b),

(B, v) |= α ∧ β if and only if (B, v) |= α and (B, v) |= β,

(B, v) |= α ∨ β if and only if (B, v) |= α or (B, v) |= β,

(B, v) |= ¬α if and only if (B, v) �|= α.

We say that M is a model of a formula α if M |= α and M
is a model of the set of formulas A if M is a model of all members
of A.

We say that α is true in a precontact algebra B if α is true
in all interpretations in B. If Σ is a class of precontact algebras,
α is said to be true in Σ if α is true in all members of Σ. The set
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of all formulas true in Σ is called the logic of Σ and is denoted by
L(Σ). This is a semantic definition of logic.

Let Σ be a class of topological spaces. The topological se-
mantics of L(C,�) in Σ consists of interpretations in contact al-
gebras RC(X) of regular closed sets of topological spaces X ∈ Σ.
Pairs (X, v), where X is a topological space and v is a valuation
in RC(X), are referred to as topological model or topological in-
terpretation. If α is true in RC(X), we write “α is true in X” for
brevity.

Let Σ be a class of relational systems (X, R) considered as ad-
jacency spaces (cf. Section 2.8). The Kripke semantics of L(C,�)
in Σ consists of interpretations in precontact algebras over struc-
tures (W, R) ∈ Σ. As in modal logic, structures of the form (W, R)
are called frames (Kripke frames or Kripke structures) and the
Kripke semantics is called relational semantics. Triples (X, R, v),
where v is a valuation in the precontact algebra over (W,R), is
called a Kripke model or a Kripke interpretation. If α is true in
the precontact algebra (B(X), CR) over the frame (X, R), we write
α is true in (X, R) for brevity. The class of all frames is denoted
by Σall. Note that the truth of a formula aCb in the Kripke model
(X, R, v) can be expressed in the equivalent way as follows:

(X, R, v) |= aCb if and only if (∃x, y ∈ X)(xRy and
x ∈ v(a) and y ∈ v(b)) if and only if v(a)CRv(b) if and
only if v(a) ∩ 〈R〉v(b) �= ∅, where 〈R〉v(b) = {x ∈ X :
(∃y ∈ X)(xRy and y ∈ v(b))}.

A translation into modal logic K
with universal modality

Owing to the relational semantics, we can define a translation τ of
our language into the modal logic KU with standard modalities,
denoted by [R]A or 〈R〉A, and universal modalities, denoted by
[U ]A or 〈U〉A. The modalities [R]A and 〈R〉A are interpreted by
the relation R in the modal frames, whereas [U ]A and 〈U〉A are
interpreted by the universal relation U = W ×W in the frames
(W,R). The formal definition of τ is the following.
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• For Boolean terms: If p is a Boolean variable, then τp = p
considered as a propositional variable in KU , τa∗ = ¬τa,
τ(a + b) = τa ∨ τb, τ(a.b) = τa ∧ τb, τ0 = ⊥, and τ1 = �.

• For atomic formulas: τ(a � b) = [U ](τa⇒ τb), and τ(aCb) =
〈U〉(τa ∧ 〈R〉τb).

• For compound formulas: τ¬A = ¬τA, τ(A ∧B) = τA ∧ τB,
τ(A ∨ B) = τA ∨ τB, τ(A ⇒ B) = τA ⇒ τB, and τ(A ⇔
B) = τA ⇔ τB.

The following assertion is easily proved by induction.

Lemma 3.1.1 (on translation, [3]). Let F = (W, R) be a
frame. Then for any formula A the following is true: F |= A in
the sense of RPMLS if and only if F |= τA in the sense of the
modal logic KU .

If we consider only reflexive symmetric frames correspond-
ing to the adjacency representation of contact algebras, then the
above-introduced translation is in the logic KTB + universal modal-
ity (T is the code of the reflexivity axiom [R]p ⇒ p and B is the
code of the symmetry axiom p⇒ [R]〈R〉p from modal logic).

3.2. Modal definability and undefinability
in Kripke semantics

Modal definability

The modal definability of a class of frames by a formula is defined
in the same way as the global modal definability in modal logic.
Namely, we say that a class Σ of frames is modally definable by a
formula α if for every frame F = (X, R)

F ∈ Σ if and only if F |= α.

If Σ is defined by a first-order formula F , then we say that
F is modally definable by α or F is a first-order equivalent of α.

Lemma 3.2.1 (modal definability: first-order examples, [3]).
Let F = (W, R) be a frame, and let p, q be Boolean variables. Then
the following equivalencies hold:
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(1) [nonemptiness of R]
R �= ∅ ⇔ F |= 1C1,

(2) [right seriality of R]
(∀x ∈W )(∃y ∈W )(xRy) ⇔ F |= (p �= 0⇒ pC1),

(3) [left seriality of R]
(∀y ∈W )(∃x ∈W )(xRy) ⇔ F |= (p �= 0⇒ 1Cp),

(4) [weak seriality of R]
(∀x ∈ W )(∃y ∈ W )(xRy ∨ yRx) ⇔ F |= (p �= 0 ⇒ 1Cp ∨
pC1),

(5) [reflexivity of R]
(∀x ∈W )(xRx) ⇔ F |= (p �= 0⇒ pCp),

(6) [symmetry of R]
(∀x, y ∈W )(xRy → yRx) ⇔ F |= (pCq ⇒ qCp),

(7) [definability of overlap]
(∀x, y ∈W )(xRy ↔ x = y) ⇔ F |= (pCq ⇔ p.q �= 0),

(8) [universality of R]
(∀x, y ∈W )(xRy) ⇔ F |= (a �= 0 ∧ b �= 0⇒ aCb)

Note that the first-order conditions in (1), (3), (4), and (8) are
not modally definable in the classical modal language. Below we
will show that there are examples of definable first-order conditions
in modal logic that are not modally definable in our language. For
an example the transitivity condition R can be considered.

Since the reflexive symmetric frames are important for our
purposes, we denote Σref (Σsym or Σref,sym) for the class of all
reflexive (symmetric or reflexive and symmetric) frames and Σe

for the class of all equivalence relations. For the corresponding
formulas which modally define these properties we use the notation

(Ref) p �= 0⇒ pCp,

(Sym) pCq ⇒ qCp.

A relation R (or a frame (W,R)) is said to be connected if
for all x �= y ∈W there exists an R-path from x to y.
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Let n > 0 be a natural number. A relation R (or F), regarded
as a graph, is said to be n-colorable if it is an n-colorable graph
(i.e. all points can be colored by the colors from a given set of
n colors in such a way that any two points connected by R have
different colors).

Lemma 3.2.2 (modal definability: second-order examples,
[3]). The following assertions hold for a frame F = (W,R) :

(1) [connectedness of R]
F is connected if and only if
F |= (p �= 0 ∧ p �= 1⇒ pCp∗).

(2) [non-n-colorability of R]
F is not n-colorable if and only if
F |= (

∨
i=1,...,n pi = 1 ∧

∧
i �=j,i,j=1,...,n pi , pj = 0

⇒
∨

i=1,...,n(piCpi)).

Modal undefinability

For obtaining examples of the modal undefinability results, the
following simple assertion is very useful.

Lemma 3.2.3 (modal undefinability criterion). Let Σ and
Σ′ be two classes of frames such that Σ ⊆ Σ′, Σ �= Σ′ and they
determine the same logics, L(Σ) = L(Σ′). Then the class Σ is not
modally definable.

To use this criterion, we need to show that different classes of
frames can determine the same logics. In the case of the classical
modal language, the notion of a p-morphism was used for such a
purpose. We introduce a similar notion adapted for the language
of RPMLS.

Let F = (W, R) and F ′ = (W ′, R′) be two frames. A surjec-
tive function f from W to W ′ is called a p-morphism from F to
F ′ if for any x, y ∈W and x′, y′ ∈W ′ the following conditions are
satisfied:
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(P1) if xRy, then f(x)R′f(y),

(P2) if x′R′y′, then (∃x, y ∈W )(x′ = f(x), y′ = f(y), xRy).

If v is a valuation in W and v′ is a valuation in W ′, then f is
a p-morphism from (W, R, v) to (W ′, R′, v′) provided that for any
Boolean variable p and x ∈W we have

x ∈ v(p) if and only if f(x) ∈ v′(p).

The following assertion can be proved in the same way as the
corresponding analog in modal logic.

Lemma 3.2.4 (p-morphism, [3]). Let f be a p-morphism
from a model M to a model M′. Then for any formula ϕ

M |= ϕ if and only if M′ |= ϕ.

Lemma 3.2.5 ([3]). The following assertions hold.

(1) The logic L(Σref,sym) of all reflexive symmetric frames coin-
cides with the logic L(Σe) of all equivalence relations.

(2) The class Σe is not modally definable.

Idea of the proof. (1) Let F = (W,R) be a reflexive sym-
metric frame, and let R0 = {{x, y} : xRy}. Define W ′ = {(x, α) :
x ∈ α and α ∈ R0}, (x, α)R′(y, β) if and only if α = β. Let
f(x, α) = x. It is obvious that R′ is an equivalence relation in
W ′ and f is a p-morphism from the frame (W ′, R′) to the frame
(W,R). Consequently, the logics L(Σe) and L(Σref,sym) coincide.

(2) By the criterion of modal undefinability (Lemma 3.2.3),
the class Σe is not modally definable. �

Similarly, it is possible to prove that the first-order condition
of transitivity alone is not modally definable.

Lemmas 3.2.1 and 3.2.5 show that RPMLS and the classical
modal language are essentially different from the point of view of
the modal definability.
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3.3. Axiomatizations and completeness theorems

Axiomatization

We first introduce the axiomatic system L
precont
min for the minimal

logic of all precontact algebras. It is a Hilbert-type axiomatic
system consisting of axioms and inference rules.

Axioms of L
precont
min

I. The complete set of axiom schemes of classical propositional
logic (or all formulas which are substitution instances of tau-
tologies of classical propositional logic),

II. The set of axiom schemes for Boolean algebra in terms of the
part-of � (a, b, and c are arbitrary Boolean terms):

a � a, (a � b) ∧ (b � c)⇒ (a � c), 0 � a, a � 1,

(c � a.b) ⇔ (c � a)∧ (c � b), (a+ b � c)⇔ (a � c)∧ (b � c),

(a.(b + c)) � (a.b) + (a.c),

(c.a � 0)⇔ (c � a∗), a∗∗ � a.

III. The set of axiom schemes for the precontact C:

(C1) (aCb) ⇒ (a �= 0) ∧ (b �= 0),

(C2) (aC(b+c)) ⇔ (aCb)∨(aCc), ((b+c)Ca) ⇔ (bCa)∨(cCa).

Inference rule of L
precont
min . Modus ponens: A and A ⇒ B

imply B.

The notion of a proof in L
precont
min is standard. All provable

formulas are called theorems of L
precont
min . It is easy to see that the

set of theorems of L
precont
min is closed under the substitution rule:

if α(p1 . . . , pn) is a theorem of L
precont
min and p1, . . . , pn is a

sequence of different Boolean variables, then for any Boolean
terms b1, . . . , bn, the formula α(b1, . . . , bn) is a theorem of
L

precont
min .
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We consider extensions of L
precont
min by new axioms, for ex-

ample, by some of the formulas from Lemma 3.2.1 considered as
modal schemes (the variables p and q are arbitrary modal terms).
The minimal logic of all contact algebras Lcont

min is an extension of
L

precont
min by the axiom schemes

(C3) aCb⇒ bCa,

(C4) a.b �= 0⇒ aCb.

Let L be an extension of L
precont
min by a set of arbitrary axiom

schemes Ax. Denote it by L
precont
min + Ax and call the axiomatic

extension of L
precont
min . Similar notions are introduced for extensions

of Lcont
min .
We also consider extensions L

precont
min + R of L

precont
min by an

additional inference rule R. In this paper, we are interested only
in some special rules, so a general definition of an inference rule
is omitted. On the other hand, we assume that any set of rules
determines proofs and theorems in the standard sense. We identify
L with the set of its theorems and call it also a logic. Hereinafter,
L is an arbitrary logic considered as an extension of L

precont
min .

Canonical models

Let L be an arbitrary extension of L
precont
min . A set Γ of formulas is

called an L-theory or a theory if it contains all theorems of L and
is closed under the rule

(MP) if A and A⇒ B are in Γ, then B in Γ.

For example, the set of all theorems of L is a theory; more-
over, it is the smallest theory. A theory Γ is said to be consistent
if ⊥ �∈ Γ and maximal if it is consistent and Γ ⊆ ∆ implies Γ = ∆
for any consistent theory ∆. Maximal theories are also referred to
as maximal consistent sets.

Some well-known properties of theories are listed in the fol-
lowing assertion.

Lemma 3.3.1. The following assertions hold.
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(1) Let Γ be a theory, and let α be a formula. Then the set
Γ + α = {β : α ⇒ β ∈ Γ} is the smallest theory containing Γ
and α. The set Γ + α is inconsistent if and only if ¬α ∈ Γ.

(2) The following conditions are equivalent for any theory Γ :
(a) Γ is maximal,
(b) for any formula α, ¬α ∈ Γ if and only if α �∈ Γ,
(c) for any formulas α and β, α∨β ∈ Γ if and only if α ∈ Γ

or β ∈ Γ.
(3) Any consistent theory can be extended to a maximal theory

(the Lindenbaum lemma).

The following assertion presents a semantical construction of
maximal theories in L

precont
min .

Lemma 3.3.2. Let M be a model. Then the set of formulas
Γ = {α : M |= α} is a maximal L

precont
min -theory. If M is a model

over contact algebra, then Γ is a maximal Lcont
min -theory.

A set of formulas A is consistent in L if A is contained in an
L-consistent theory and, consequently, A is contained in a maximal
L-theory in view of the Lindenbaum lemma.

Let S be a maximal theory in L. Based on the Lindenbaum-
algebra construction, we construct in a canonical way a precontact
algebra associated with S. In the set of Boolean terms B, we
introduce the equivalence relation: a ≡ b if and only if a = b ∈ S.
Since ≡ is a congruence relation depending on S, it is possible to
consider equivalence classes of Boolean terms |a| = {b : a ≡ b} and
to define the canonical precontact algebra BS over S by setting
|a|.|b| = |a.b|, |a|+ |b| = |a + b|, |a|∗ = |a∗|, |a| � |b| if and only if
a � b ∈ S, and |a|C|b| if and only if aCb ∈ S.

Using the axioms of logic, we can prove that BS is a precon-
tact algebra and, if L is an extension of Lcont

min , B(S) is a contact
algebra.

We define a canonical valuation for Boolean variables putting
vS(p) = |p|. Then the pair MS = (BS, vS) is called a canonical
model over S. We have vS(a) = |a| for any Boolean term a.
With S we can canonically associate the canonical frame FS =



320 Dimiter Vakarelov

(WS, RS) of S by taking for FS the canonical adjacency space
of the canonical precontact algebra BS (cf. Section 2.8). If L

is an extension of Lcont
min , with S we can associate the canonical

topological space XS by taking for XS the canonical topological
space corresponding to the contact algebra BS (cf. Section 2.3).

The following assertion is proved in a standard way.

Lemma 3.3.3. Let L be a logic. Then the following two
conditions are satisfied by any formula α :

(1) α is a theorem of L,
(2) α is true in all canonical models MS of L.

Now, we can state a completeness theorem for the minimal
logics L

precont
min and Lcont

min .

Theorem 3.3.4 (completeness of L
precont
min , [3]). The following

conditions are equivalent for any formula α:

(1) α is a theorem of L
precont
min ,

(2) α is true in all precontact algebras,
(3) α is true in all Kripke frames.

Proof. The implications (1) → (2) → (3) are obvious.
(2) → (1) Let α be true in all precontact algebras. Then α

is true in all canonical models of L
precont
min and α is a theorem of

L
precont
min in view of Lemma 3.3.3.

(3) → (1) Suppose that α is not a theorem of L
precont
min . Then

there is a canonical model MS = (BS, vS) such that MS �|= α. By
the representation theorem for precontact algebras in adjacency
spaces (cf. Theorem 2.8.2), there exists a frame (X, R) and an
embedding h of the canonical precontact algebra BS in the pre-
contact algebra B(X) over the frame (X, R). Define the valuation
v(p) = vS(h(|p|)). Then (X, R, v) �|= α, which means that α is not
true in the Kripke frame (X, R). The proof is complete. �

Theorem 3.3.5 (completeness of Lcont
min , [3]). The following

conditions are equivalent for any formula α :

(1) α is a theorem of Lcont
min ,
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(2) α is true in all contact algebras,
(3) α is true in all reflexive symmetric Kripke frames,
(4) α is true in all topological spaces,
(5) α is true in all compact and semiregular T0-spaces.

Proof. The implications (1)→ (2)→ (3) and (2)→ (4)→ (5)
are obvious. The implications (2) → (1) and (3) → (1) are proved
in the same way as in Theorem 3.3.4 with the help of Theorem
2.8.2. The implication (5) → (1) is proved in the same way as the
implication (3) → (1) in Theorem 3.3.4 with the help of Theorem
2.3.9. �

Theorem 3.3.6 (completeness of Lcont
min + (Con), [3]). The

following conditions are equivalent for any formula α :

(1) α is a theorem of Lcont
min + (Con),

(2) α is true in all connected contact algebras,
(3) α is true in all connected topological spaces.

Note that Theorem 3.3.6 does not assert the completeness
with respect to Kripke semantics. This fact will be proved by
another method in the following section.

Theorems 3.3.5 and 3.3.6 present weak completeness state-
ments. The strong statements are also valid (cf. [3]). For the logic
Lcont

min if can be formulated as follows.

Theorem 3.3.7 (strong completeness of Lcont
min ). The follow-

ing conditions are equivalent for any set A of formulas:

(1) A is consistent in Lcont
min ,

(2) A has an algebraic model,
(3) A has a Kripke model,
(4) A has a topological model.

Theorem 3.3.5 asserts that the logic Lcont
min is complete with

respect to both topological and discrete semantics (semantics with
respect to Kripke frames).
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3.4. Filtration with respect to Kripke semantics
and small canonical models

Filtration

Let Φ be a finite set of formulas closed under subformulas. Denote
by ΓΦ the smallest set of Boolean terms satisfying the following
conditions:

• if aCb ∈ Φ, then a, b ∈ ΓΦ,
• if a � b ∈ Φ, then a, b ∈ ΓΦ,
• ΓΦ is closed under subterms of its members,
• ΓΦ contains 0, 1 and is closed under Boolean combinations of

its members.

Note that ΓΦ is infinite, but it is logically finite in the sense
that there is a finite subset Γ0

Φ of ΓΦ such that any term in ΓΦ

is Boolean equivalent to an element of Γ0
Φ. If n is the number

of Boolean variables occurring in the formulas from Φ, then the
cardinality of Γ0

Φ is equal to 22n

. Denote by Φ′ the set of all
formulas containing only Boolean terms in ΓΦ. It is obvious that
Φ ⊆ Φ′ and Φ′ is infinite, but logically finite.

Let M = (W,R, v) be a model. We define the equivalence
relation ≡ in W (depending on M and Φ) in the same way as in
the definition of a filtration in modal logic:

• x ≡ y if and only if (∀a ∈ ΓΦ)(x ∈ v(a)↔ y ∈ v(a)),
• for x ∈ W define |x| = {y ∈ W : x ≡ y} and set W ′ = {|x| :

x ∈W},
• for |x|, |y| ∈W ′ define: |x|R′|y| if and only if (∃x′ ≡ x)(∃y′ ≡

y)(x′Ry′),
• for any Boolean variable p ∈ ΓΦ define v′(p) = {|x| : x ∈

v(p)}.
The modelM′ = (W ′, R′, v′) is called a filtration of the model

M through Φ. Similarly, the frame (W ′, R′) is called a filtration
of the frame (W, R). The valuation v′ is called the canonical val-
uation of the filtration.
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Note that the above defined filtration coincides with the so-
called minimal filtration in the classical modal language.

Lemma 3.4.1 (filtration, [3]).

(1) The set W ′ is finite and the cardinality of W ′ is less than or
equal to n, where n is the cardinality of Γ0

Φ.
(2) For any x, y ∈W , xRy implies |x|R′|y|.
(3) For any Boolean term a ∈ ΓΦ and x ∈ W , x ∈ v(a) if and

only if |x| ∈ v′(a).
(4) For every formula ψ ∈ Φ′, M |= ψ if and only if M′ |= ψ.

Now, we describe a construction which is also used in fil-
tration theory in modal logic. Let (W ′, R′, v′) be a filtration of
(W,R, v) through Φ, and let w be the new valuation in the fil-
trated frame (W ′, R′). Then for each Boolean variable p in ΓΦ we
define a Boolean term bw(p) obtained as a Boolean combination of
terms in ΓΦ as follows. For every y ∈ W we set b|y| =

∧
{b : b ∈

Γ0
Φ and |y| ∈ v′(b)}. Then define bw(p) =

∨
{b|y| : |y| ∈ w(p)}.

Using bw(p), we define a new valuation w′ in (W, R) for vari-
ables from ΓΦ as follows: w′(p) = {x ∈W : x ∈ v(bw(p))}.

The valuation w defines also the substitution Sub w for vari-
ables from ΓΦ as follows: Sub w(p) = bw(p) and then extended
inductively for Boolean terms from ΓΦ and formulas from Φ.

Then the following stronger version of the filtration lemma
holds. There are no analog of this lemma in the classical modal
logic.

Lemma 3.4.2 (strong filtration, [3]). Let w be a valuation in
F ′ = (W ′, R′), and let w′ be the corresponding valuation in (W, R)
defined by bw(p). Then for a term a ∈ ΓΦ and a formula ψ ∈ Φ′

the following assertions hold for any x ∈W :

(1) x ∈ v(Sub w(a)) if and only if x ∈ w′(a) if and only if |x| ∈
w(a),

(2) F, v |= Sub w(ψ) if and only if F,w′ |= ψ if and only if
F ′, w |= ψ.
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If w coincides with the canonical valuation v′, then w′ acts as v,
i.e., for all a ∈ ΓΦ and ψ ∈ Φ′

(3) x ∈ w′(a) if and only if x ∈ v(a),
(4) F,w′ |= Sub v′(ψ) if and only if F, v |= ψ.

Let Σ be a class of frames. We say that Σ (or the logic
L(Σ)) admits a filtration if for any formula ϕ there is a finite set
of formulas Φ, closed under subformulas and containing ϕ, such
that the filtrated frame F ′ through Φ of any frame F in Σ belongs
to Σ.

Remark 3.4.3. Suppose that Σ admits a filtration and Σfin

is the class of all finite frames in Σ. Then the logics L(Σ) and
L(Σfin) coincide. Thus, L(Σ) possesses the finite model property.

We say that a class of frames Σ is determined if there exists a
set of formulas A such that Σ coincides with the class of all frames
in which the formulas from A are true. In this case, Σ will denoted
by ΣA.

Theorem 3.4.4 ([3]). Every determined class of frames ad-
mits a filtration.

Proof. Let ΣA be a class of frames determined by a set of
formulas A. Suppose that F = (W, R) ∈ ΣA, ϕ is a formula, Φ is
the set of all subformulas of ϕ, and F ′ = (W ′, R′, v′) is a filtration
of the model (F, v) through Φ. We show that F ′ belongs to ΣA,
i.e., all formulas in A are true in F ′. Assume the opposite, i.e.
there exist a formula ψ ∈ A and a valuation w in F ′ such that
F ′, w �|= ψ. Let w′ be the valuation determined by w in (W, R).
By Lemma 3.4.2, F, w′ �|= ψ. Consequently ψ is not true in F and,
consequently, ψ is not true in ΣA. We arrive at a contradiction. �

Small canonical models

Let L be a consistent extension of L
precont
min , and let S be a maximal

theory in L. Consider the canonical frame FS and the canonical
model MS = (FS, vS) for S. Let M

′
S = (F

′
S, v′

S) be any filtration
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of M . Then M
′
S is called a small canonical model of L and F

′
S is

called a small canonical frame of L.

Lemma 3.4.5 (small canonical frame, [3]). Let L be a consis-
tent extension of L

precont
min , let A = Th(L) be the set of all theorems

of L, and let ΣL = ΣA be the set of frames determined by A. Then
ΣL contains all small canonical frames of L.

Proof. Let M
′
S = (W

′
S, R

′
S, v

′
S) be a small canonical model

related to the maximal consistent theory S. It suffices to prove
that all formulas in A are true in the small canonical frame F

′
S =

(W
′
S, R

′
S). Assume the opposite, i.e., for some ψ ∈ A and val-

uation w in (W
′
S, R

′
S) we have (W

′
S, R

′
S, w) �|= ψ. By Lemma

3.4.2, (WS, RS, vS) �|= Sub w(ψ). Hence Sub w(ψ) �∈ S. How-
ever, Sub w(ψ) is a substitution instance of a theorem ψ of L.
Therefore, it belongs to the maximal theory S. We arrive at a
contradiction. �

Weak completeness theorems
for extensions of L

precont
min

Theorem 3.4.6 (weak completeness and the finite model
property of all consistent extensions of L

precont
min , [3]). Let L be a

consistent extension of Lmin, and let ΣL be the class of frames de-
termined by the set Th(L) of all theorems of L. Then the following
conditions are equivalent for any formula ϕ :

(1) ϕ is a theorem of L,
(2) ϕ is true in ΣL,
(3) ϕ is true in Σfin

L
.

The proof is based on Lemmas 3.4.1 and 3.4.5.
Although Theorem 3.4.6 is not too informative concerning

the frames of L, but it asserts that there are no incomplete log-
ics for the relational semantics under consideration and that all
consistent logics are characterized by their finite frames. These
facts have no analogs in the classical modal logic. The following
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assertion gives more information about axiomatic extensions of
L

precont
min .

Theorem 3.4.7 (weak completeness and the finite model
property of all axiomatic extensions of Lmin, [3]). Suppose that
A is a set of formulas, ΣA is the class of all frames determined
by A, and Σfin

A is the class of all finite frames in ΣA. Let L be
an extension of Lmin with formulas from A for additional axiom
schemes. Then for any formula ϕ the following conditions are
equivalent:

(1) ϕ is a theorem of L,
(2) ϕ is true in Σfin

A ,
(3) ϕ is true ΣA.

Hence L possesses the finite model property and is decidable if A
is finite.

Corollary 3.4.8 ([3]). The logics Lcont
min and Lcont

min +(Con) are
complete in the class of their finite frames and. consequently, are
decidable.

3.5. Logics related to RCC

According to Stell’s formulation, the RCC system is equivalent to
the contact algebras satisfying axioms (Ext) and (Con). In a sense,
all extensions of the notion of contact algebras with axioms (Ext),
(Con), and (Nor) are related to RCC as follows: RCC+(Nor) is
an extension with good properties, whereas any other extension is
a subsystem of RCC+(Nor). Considering all these eight types of
contact algebras as first-order region-based theories of space, we
introduce the following abbreviations:

WRCC – weak RCC based on axioms (C1)–(C4),

WRCCCon – weak connected RCC=WRCC+(Con),

WRCCExt – weak extensional RCC=WRCC+(Ext),

WRCCNor – weak normal RCC=WRCC+(Nor),
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WRCCCon,Nor – weak connected normal
RCC=WRCC+(Con)+(Nor),

WRCCExt,Nor – weak extensional normal
RCC=WRCC+(Ext)+(Nor),

RCC – WRCC+(Ext)+(Con),

RCCNor – normal RCC=RCC+(Nor).

The goal of this section is to introduce propositional logics
based on the language L(�,C) corresponding to each of these first-
order systems. For propositional systems we put the letter “P”
before the abbreviation of the corresponding first-order system.
Two propositional systems were already introduced: PWRCC –
Lcont

min and PWRCCCon – Lcont
min + (Con). It is obvious that these

systems are propositional (quantifier-free) analogs of WRCC and
WRCCCon because all the axioms of the first-order systems WRCC
and WRCCCon are universal formulas of the same form as quantifier-
free axioms in PWRCC and PWRCCCon. However, there are no
analogs of axioms (Ext) and (Nor) in our language because they
are not universal sentences. We imitate them by some inference
rules analogous to the quantifier rules in the first-order logic. The
rules have the same impact on the canonical contact algebras as
the corresponding first-order axioms and will be used in the proof
of the strong completeness theorem of the required logic with
respect to the topological semantics which are suggested by the
topological representation theorems for the corresponding contact
algebras.

For an analog of axiom (Nor) we introduce the following rule
of normality :

NOR
α ⇒ (aCp ∨ p∗Cb)

α ⇒ aCb
, where p is a Boolean variable that

does not occur in a, b, and α.

For an analog of the first-order axiom (Ext) we introduce the
rule of extensionality
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EXT
α ⇒ (p = 0 ∨ aCp)

α ⇒ (a = 1)
, where p is a Boolean variable that

does not occur in a and α.

These rules are similar to the irreflexivity rule introduced by
Gabbay [27] in the context of the classical modal logic. In the
language under consideration, these rules were introduced in [3].

Taking into account the correspondences between the first-
order RCC-like systems and the propositional systems, we present
the diagram of extensions of Lcont

min , where the logics are identified
with the sets of additional axioms and rules.

Figure 2

Consider the logics in this diagram. All logics satisfy the as-
sumptions of Theorem 3.4.6 and, consequently, they are complete
in certain classes of finite frames and possess the finite model prop-
erty. Moreover, they are decidable because each of them has a
finite set of axioms. The logics are strongly complete with respect
to their intended topological semantics (cf. the following section).
Concerning the weak completeness theorem, we see that the ad-
ditional rules can be eliminated and thereby these rules do not
affect the sets of the theorems. Thus, these eight logics collapse
to the following two logics: PWRCC and PWRCCCon. Below we
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give some information about these two logics and their relation-
ships with other systems in the literature. Then we discuss the
admissibility of the introduced rules to PWRCC and PWRCCcon.

PWRCC

As was already mentioned, PWRCC, propositional weak RCC,
is Lcont

min . By Theorems 3.3.5 and 3.3.7, PWRCC is weakly and
strongly complete in the class of all topological spaces (and in the
smaller class of all semiregular and compact T0-spaces) and in the
class of all reflexive symmetric Kripke frames considered as adja-
cency spaces. Thus, PWRCC, is complete with respect to both
topological and discrete semantics. By Corollary 3.4.8, PWRCC
has the finite model property and, consequently, is decidable. As
was noted in Section 2.1, all the RCC-8 relations are definable in
our language by means of quantifier-free definitions. Therefore,
we can use the same definitions in the language of propositional
logics. This fact, together with the topological part of the com-
pleteness theorem, shows that the system PWRCC is equivalent
to the system BRCC-8 (RCC-8 with Boolean terms), introduced
by Wolter and Zakharyaschev [65], which can be interpreted in all
topological spaces. Thus, PWRCC can be considered as an axiom-
atization of BRCC-8 with several completeness theorems. Wolter
and Zakharyaschev [65] proved that the satisfiability problem for
BRCC-8 is NP-complete. Respectively, the same assertion holds
for PWRCC.

PWRCCCon

PWRCCCon, propositional weak connected RCC, is an extension
of PWRCC by the connectedness axiom

(Con) a �= 0 ∧ a �= 1⇒ aCa∗

which defines the second-order connectedness property in frames.
By Theorem 3.3.6, PWRCCCon is weakly and strongly complete
in the class of all connected spaces and in the smaller class of
all connected semiregular compact T0-spaces. By Corollary 3.4.8,
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PWRCCCon is weakly complete in the class of all finite connected
reflexive symmetric frames and, consequently, has the finite model
property and is decidable. Thus, PWRCCCon is weakly complete
with respect to both topological and discrete semantics.

As in the case of PWRCC, we can conclude that PWRCCCon

is equivalent to the logic BRCC-8 introduced by Wolter and Za-
kharyaschev [65] who studied this logic in the class of all connected
topological spaces. They proved that the satisfiability problem is
PSPACE-complete. Their result implies a similar assertion for
PWRCCCon.

The completeness of PWRCCCon with respect to the class
of connected reflexive symmetric adjacency spaces shows that the
logic is equivalent to the logic GRCC (generalized region connec-
tion calculus) introduced semantically by Li and Ying [39] as a
discrete version of RCC. Thus, PWRCCCon can be also under-
stood as a complete axiomatization of GRCC.

BRCC-8-like systems were studied only with respect to their
intended topological semantics. Since the modal logic S4 corre-
sponds to the topological interpretation of the classical modal
language, systems like BRCC-8 were also treated by means of a
translation into the modal logic S4 + universal modality. Taking
into account that PWRCC is complete in the class of all reflexive
symmetric frames, we can conclude that the exact translation of
these systems is in KTB + universal modality, which shows that
the weaker modal logic KTB also has a spatial meaning. This
translation is not used in this paper because for our purpose it is
easier to exploit directly the relational semantics of the language
of RPMLS.

Admissibility of EXT and NOR

Lemma 3.5.1 (admissibility of EXT in the logics PWRCC
and PWRCCCon, [3]). The set of theorems of the logics PWRCC
and PWRCCCon are closed with respect to the rule EXT and, con-
sequently, EXT is an admissible rule in PWRCC and PWRCCCon.
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Proof. We use the completeness of the logics PWRCC and
PWRCCCon with respect to the Kripke semantics and the p-morphism
techniques in Section 3.2.

Denote by L the logic PWRCC. We use the completeness of
L in the class Σref,sym of all reflexive symmetric frames. We prove
that if L � ϕ⇒ (p = 0∨aCp), where p does not occur in a and in
ϕ, then L � ϕ⇒ (a = 1). Assume the contrary: L � ϕ ⇒ (a = 1).
By the completeness theorem, we can choose a reflexive symmetric
frame F = (W,R) and a valuation V over F such that M � ϕ and
M � a = 1, where M = (F , V ). Thus, W \ V (a) �= ∅. Consider
two cases.

Case (a). W \ 〈R〉(V (a)) �= ∅.

Case (b). W \ 〈R〉(V (a)) = ∅.

Here, 〈R〉(V (a)) = {x ∈W : (∃y ∈ V (a))(xRy)}.
In case (a), we choose a Boolean variable p that does not

occur in a and ϕ and a valuation V ′ coinciding with V for Boolean
variables different from p: V ′(p) = W \ 〈R〉(V (a)). It is clear that
M′ � ϕ and M′ � ¬(p = 0 ∨ aCp), where M′ = (F , V ′). Hence
L � ϕ ⇒ (p = 0 ∨ aCp).

In case (b), we choose w1 ∈ 〈R〉(V (a)) and w0 �∈ W . We set
W1 = W ∪{w0}, R1 = R∪{(w0, w0), (w0, w1), (w1, w0)}, f(w) = w
if w �= w0, f(w0) = w1, and V1(q) = f−1(V (q)). It is easy to verify
that M is the p-morphic image of M1 = ((W1, R1), V1) under f ,
(W1, R1) is a reflexive symmetric frame (consequently, it verifies
the theorems of L). Thus, we can apply case (a) to M1, which
completes the proof for PWRCC.

For PWRCCCon we proceed in the same way. The only
difference is that we start with a connected reflexive symmetric
frame (W, R). It is easy to see that the above construction of the
p-morphic pre-image (W ′, R′) preserves the connectedness prop-
erty. �

Lemma 3.5.2 (admissibility of NOR in the logics PWRCC
and PWRCCCon, [3]). The set of theorems in the logics PWRCC
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and PWRCCCon are closed under the rule NOR and, consequently,
NOR is an admissible rule in PWRCC and PWRCCCon.

The proof is similar to that of Lemma 3.5.1.

Corollary 3.5.3 ([3]). The following assertions hold.

(1) PWRCC, PWRCCEXT, PWRCCNOR, and PWRCCEXT,NOR

have the same set of theorems.

(2) PWRCCCon, PRCC, PWRCCCON,NOR, and PRCCNOR have
the same set of theorems.

(3) All the eight logics are weakly complete in the corresponding
class of frames determined by their axioms, have the finite
model property, and, consequently, are decidable. The satis-
fiability problem for the logics in (1) is NP-complete and for
the logics in (2) is PSPACE-complete.

3.6. Strong completeness theorems
for RCC-like logics

The purpose of this section is to illustrate how to work with ad-
ditional rules of type NOR and EXT and how to modify the
canonical-model construction in the presence of such rules. For
an example we consider the logic PWRCCNOR which is an exten-
sion of the logic PWRCC with the rule NOR. The material of this
section mainly follows [3]. Some important results are supplied
with sketches of proofs.

PWRCCNOR

We establish the strong completeness of topological semantics of
PWRCCNOR. The proof is a modification of the Henkin construc-
tion for the first-order logic.

For the canonical construction we must modify the notion
of a theory in order to reflect the role of the rule NOR in the
deduction. In this rule, the Boolean variable p plays a special
role like bounded variables in quantifier logics, and this will be
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incorporated in the new notion of a theory. First of all, we need
some preparations.

If A is a formula or a set of formulas, then Var (A) denotes
the set of Boolean variables occurring in the members of A. By
Th (Var) we denote the set of all theorems of PWRCCNOR con-
structed form the set of all Boolean variables Var of our language.
Sometimes, we need to extend the set of Boolean variables to a
set Var′. In this case, Th (Var′) will denote the set of theorems
constructed from Var′. Note that Th (Var) and Th (Var′) are not
too different because theorems in Th (Var′) are versions of theo-
rems in Th (Var). However, it is more convenient to consider them
separately.

A pair T = (V, Γ) is called a NOR-theory if V is a set of
Boolean variables and Γ is a set of formulas satisfying the following
conditions:

(1) all theorems of PWRCCNOR belong to Γ,

(2) if α, α ⇒ β ∈ Γ, then β ∈ Γ,

(3) if α ⇒ aCp ∨ p∗Cb ∈ Γ for some Boolean variable p �∈ V ∪
Var (α ⇒ aCb), then α ⇒ aCb ∈ Γ.

The variables in V are called the free variables of T and the
members of Γ are called formulas of T . We will also write T =
(T1, T2), where T1 is the set of free variables of T and T2 is the set
of formulas of T . We say that a formula α belongs to T and write
α ∈ T if α ∈ T2. By (1) and (2), T2 is a theory. We say that T is
consistent if ⊥�∈ T2 or, equivalently, if T2 is a consistent theory.

A set A of formulas is said to be NOR-consistent if there is
a consistent NOR-theory T such that A ⊆ T2.

A theory T is called a good NOR-theory if out of T1 there are
infinitely many Boolean variables.

For example, (∅,Th (Var)) is a good NOR-theory. If Γ is a
consistent theory, then the pair T = (Var, Γ) is a consistent NOR-
theory because T is trivially closed under the rule NOR (out of
Var there are no variables). But T is not a good theory.



334 Dimiter Vakarelov

We say that T is included in T ′ and write T ⊆ T ′ if Ti ⊆ T ′
i ,

i = 1, 2. A theory T is a complete NOR-theory if it is a consistent
NOR-theory and for any formula α we have either α ∈ T2 or
¬α ∈ T2. A theory T is called a rich NOR-theory if for any
formula β of the form α ⇒ aCb

if β �∈ T2, then α ⇒ aCp ∨ p∗Cb �∈ T2 for some Boolean
variable p.

Our next goal is to show that every consistent good NOR-
theory can be extended to a complete rich NOR-theory. For this
purpose, we formulate and prove several lemmas.

Let Γ be a set of formulas, and let α be a formula. Denote
Γ + α = {β : α ⇒ β ∈ Γ}. Let T be an NOR-theory, and let α be
a formula. Denote T ⊕ α = (T1 ∪Var (α), T2 + α).

The following preliminary assertion is used in the proof of
the Lindenbaum lemma (Lemma 3.6.2 below).

Lemma 3.6.1. Let T be a good NOR-theory, and let α be a
formula. Then

(1) T ⊕ α is a good NOR-theory containing T , and α ∈ T2,
(2) T ⊕ α is inconsistent if and only if ¬α ∈ T2,
(3) if for some β of the form ¬(α ⇒ aCb) the theory T ⊕ β is

consistent, then there is a Boolean variable p �∈ T1 ∪ Var (β)
such that (T ⊕ β)⊕ ¬(α ⇒ aCp ∨ p∗Cb) is consistent.

Lemma 3.6.2 (Lindenbaum lemma for NOR-theories). Every
good consistent NOR-theory T = (V, Γ) can be extended to a com-
plete rich NOR-theory T ′ = (V ′, Γ′).

Proof. Let T = (V, Γ) be a consistent good NOR-theory, and
let α1, α2 . . . be an enumeration of all formulas. Introduce an in-
creasing sequence of consistent good NOR-theories Tn = (Vn, Γn),
n = 1, 2, . . ., by induction. Let T1 = T . Assume that T1, . . . , Tn

are already defined. To define Tn+1, we consider several cases.

Case 1. Tn = (Vn, Γn) is consistent.
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(a) αn is not of the form ¬(α ⇒ aCb)). In this case, we put
Tn+1 = Tn ⊕ αn. By Lemma 3.6.1, it is a good NOR-theory.

(b) αn is of the form ¬(α ⇒ aCb)). By Lemma 3.6.1(3), there
exists a Boolean variable p �∈ Vn ∪ Var (αn) such that (Tn ⊕
αn)⊕ ¬(α ⇒ aCp ∨ p∗Cb) is a consistent good NOR-theory.
Let p be the first NOR-theory possessing this property. In
this case, we put Tn+1 = (Tn + αn)⊕ ¬(A⇒ aCp ∨ p∗Cb).

Case 2. Tn + αn is not consistent. Then we put Tn+1 = Tn.
In this case, ¬αn ∈ Γn. Define Γ′ =

⋃∞
n=1 Γn and V ′ =

⋃∞
n=1 Vn.

Then T ′ = (V ′, Γ′) is the required NOR-theory. �

Note that Lindenbaum lemma can be applied only to good
NOR-theories, whereas the “goodness”’ property is not essential
for consistency because it depends on the amount of Boolean vari-
ables in our language. However, this fact is not too important,
because the language can be extended. The following assertion
clarifies this case.

Lemma 3.6.3 (conservativeness). Let T = (V,Γ) be a con-
sistent NOR-theory in the language based on the set Var of Boolean
variables, and let Var′ be an extension of Var by a denumerable
set of Boolean variables. Then there exists a consistent good NOR-
theory U = (W, ∆) in the language with Var′ such that Γ ⊆ ∆.

Idea of the proof. Let ∆ = {γ : (∃β ∈ Γ)(β ⇒ δ ∈
Th (Var′))}, and let U = (V, ∆). Then U is a consistent good
theory in the language with Var′ such that Γ ⊆ ∆. �

Corollary 3.6.4. The following assertions hold.

(1) A set of formulas is NOR-consistent if it is contained in a
good consistent NOR-theory in an extension of the language
by a countable infinite set of new Boolean variables.

(2) A set of formulas is NOR-consistent if it is contained in a
complete rich NOR-theory in an extension of the language by
a countable infinite set of new Boolean variables.
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The canonical construction uses complete rich theories T =
(V, S). For canonical models we use the second component S. All
other constructions are the same as in Section 3.3.

The following assertion shows the influence of the rule NOR
on the canonical contact algebras: all of them are normal.

Lemma 3.6.5. Let T = (V, S) be a complete rich NOR-
theory, and let (BS, vS) be the canonical model corresponding to
S. Then BS satisfies axiom (Nor).

Proof. Let T = (V, S) be a complete rich theory, and let
(BS, vS) be the corresponding canonical model. Suppose that
|a|C|b|. aCb �∈ S. Since S is rich, there exists a Boolean vari-
able p such that aCp ∨ p∗Cb �∈ S and, consequently, aCp �∈ S and
p∗Cb �∈ S. Then |a|C|p| and |p|∗C|b|, which proves that BS is a
normal contact algebra. �

We are ready to prove the main result of this section.

Theorem 3.6.6 (strong completeness of PWRCCNOR, [3]).
Let A be a set of formulas. Then the following conditions are
equivalent:

(1) A is NOR-consistent,
(2) A has an algebraic model in the class of normal contact al-

gebras,
(3) A has a model in the class of all κ-normal semiregular spaces,
(4) A has a model in the class of compact semiregular T0 κ-

normal spaces.

Proof. The implications (4) → (3) → (2) are obvious. To
prove the implication (2)→ (1), we assume that A has an algebraic
model M = (B, v) in the class of normal contact algebras. Let
Γ = {α :M |= α}. It is easy to show that Γ is a consistent theory
containing A. Thus, T = (V AR, Γ) is a consistent (but not good)
NOR-theory containing A. Hence A is NOR-consistent.

(1) → (2) Assume that A is NOR-consistent. By Corollary
3.6.4, A is contained in some complete rich NOR-theory T = (V, S)
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in a possible extension of the language by a countable set of new
Boolean variables. By Lemma 3.6.5, the canonical contact algebra
BS is normal. Hence the canonical model (BS, vS) is a model of A.

(2) → (4) This implication holds in view of the topological
representation theorem (Theorem 2.3.9). �

Corollary 3.6.7 (weak completeness of PWRCCNOR and
PWRCC). Let L be any of the logics PWRCCNOR and PWRCC.
Then the following conditions are equivalent for any formula α :

(1) α is a theorem of L,
(2) α is true in all normal contact algebras,
(3) α is true in all semiregular κ-normal spaces,
(4) α is true in all compact semiregular κ-normal T0-spaces.

Proof. The required assertion is valid for PWRCCNOR by
Theorem 3.6.6 and for PWRCC by the fact that NOR is an ad-
missible rule in PWRCC. �

Strong completeness theorem
for PRCC-like logics

The proof of the completeness of PRCCNOR can be repeated for
any logic in Fig. 2. The canonical construction depends on the
choice of a rule, NOR or EXT. For example, if both rules are
assumed, then the theories are closed under these rules. If these
rules are not assumed either, the notion of a theory becomes stan-
dard. We formulate a completeness theorem in a uniform way for
all the logics in Fig. 2. For the sake of simplicity, we consider only
the algebraic semantics. Using representation theorems for con-
tact algebras, the completeness theorem can be further generalized
to some topological spaces.

Theorem 3.6.8 (strong completeness of PWRCC-like log-
ics). Let L be any of the logics in Fig. 2, and let A be a set of
formulas. Then the following conditions are equivalent:

(1) A is consistent in L,
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(2) A has an algebraic model in the class of contact algebras cor-
responding to L.

We formulate the strongest topological completeness theorem
only for PWRCCNOR,EXT and PRCCNOR.

Theorem 3.6.9 (strong topological completeness of the log-
ics PWRCCNOR,EXT and PRCCNOR).

I. The following conditions are equivalent for any set of formu-
las A :
(1) A is consistent in PWRCCNOR,EXT,
(2) A has a model in the class of all compact Hausdorff

spaces,
II. If, in addition, axiom (Con) is satisfied, then the correspond-

ing spaces are connected.

Corollary 3.6.10 (weak topological completeness theorem
for PWRCC and PWRCCNOR,EXT). Let L be any of the systems
PWRCC or PWRCCNOR,EXT. Then the following conditions are
equivalent for any formula α :

(1) α is a theorem of L,
(2) α is true in all compact Hausdorff spaces.

Note that Corollary 3.6.10 yields a stronger completeness re-
sult for PWRCC than Corollary 3.6.7. The following assertion
states a similar result for PWRCCCon.

Corollary 3.6.11 (weak topological completeness theorem
for PWRCC and PWRCCNOR,EXT). Let L be any of the systems
PWRCC or PWRCCNOR,EXT. Then the following conditions are
equivalent for any formula α :

(1) α is a theorem of L,
(2) α is true in all compact connected Hausdorff spaces.
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3.7. Extending the language with new primitives

We consider some extensions of the language L(�, C) by new prim-
itives: boundedness and connectedness of regions.

The Boundedness is a primitive one-place predicate in bounded
contact algebras. Some of the boundedness axioms are not uni-
versal sentences, but, fortunately, they can be replaced with addi-
tional inference rules for the corresponding axiomatic system.

The connectedness is a definable one-place predicate in con-
tact algebras with quantifiers. Thus, such a predicate must be
taken for the connectedness predicate in a quantifier-free language;
moreover, both sides of the equivalence in the definition must be
imitated by suitable inference rules.

These examples show that some additional rules are very use-
ful in the axiomatic characterizations of the predicates under con-
sideration. Further we discuss the complete axiomatization of the
predicates of connectedness and boundedness.

Connectedness

The predicate of connectedness Con(a) was introduced in Section
2.1 as follows:

(#) Con(a) if and only if (∀b, c)(b �= 0 and c �= 0 and
b + c = a→ bCc).

We extend the language L(�, C) by the predicate Con. We
can also extend the notion of an atomic formula by setting that
Con(a) is an atomic formula for any Boolean term a. The de-
sired topological semantics for Con(a) is as follows. If (X, v) is a
topological model, then

(X, v) |= Con(a) if and only if v(a) is a connected regular
closed set of RC(X).

We can also define the relational semantics in Kripke struc-
tures. We give a complete axiomatization of Con with respect to
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the topological semantics. The implication “⇒” in (#) suggests
the following axiom:

(Connect) Con(a) ∧ p �= 0 ∧ q �= 0 ∧ a = p + q ⇒ pCq.

The implication “⇐” in (#) suggests the following inference
rule:

CONNECT
α ∧ p �= 0 ∧ q �= 0 ∧ p + q = a ⇒ pCq

α ⇒ Con(a)
,

where p and q are Boolean variables not occurring in a and α.
The axiomatic system PWRCC-Connect, for Con(a) is an

extension of the axiomatic system for PWRCC extended by axiom
(Connect) and the inference rule CONNECT.

The following formula is an example of a nontrivial theorem
of PWRCC-Connect:

Con(a) ∧ Con(b) ∧ aCb⇒ Con(a + b).

The canonical-model-construction for PWRCC-Connect can
be done in the same way as for PWRCCNOR. The following lemma
shows how axiom (Connect) and the inference rule CONNECT
affect the canonical contact algebra.

Lemma 3.7.1. Let (BS, vS) be a canonical model of PWRCC-
Connect. Then for any |a| ∈ BS

Con(|a|) if and only if (∀|p|, |q| ∈ BS)(|p| �= |0| and |q| �= |0|
and |a| = |p|+ |q| → |p|C|q|).

Lemma 3.7.1 and the topological representation theorems for
contact algebras lead to the following completeness result.

Theorem 3.7.2 (topological strong completeness of PWR-
CC-Connect). The following conditions are equivalent for any set
of formulas A of PWRCC-Connect:

(1) A is a consistent set in PWRCC-Connect,
(2) A has an algebraic model in the class of all contact algebras

with the definable predicate Con(a),
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(3) A has a model in the class of all topological spaces,
(4) A has a model in the class of all semiregular compact T0-

spaces.

A similar completeness result can be established for the ex-
tensions of PWRCC-Connect by axiom (Con) and the rules EXT
and NOR. However, the question about the completeness with
respect to Kripke models and decidability is still open. It is of
interest to clarify relationships between the contact C and con-
nectedness in special classes of contact algebras. Pratt-Hartmann
[43] shows that in some natural contact algebras C is definable by
Con in some special sense. A natural candidate for C in terms of
Con can be contact algebras satisfying the condition

(C-connect) if aCb, then (∃a′, b′)(a′ � a and b′ � b and Con(a′)
and Con(b′) and a′Cb′).

This condition asserts that a contact between two regions is real-
ized between their connected parts. If (C-connect) is satisfied, we
obtain the following equivalence defining C in terms of Con:

aCb if and only if (∃a′ �= 0, b′ �= 0)(a′ � a and b′ � b and
Con(a′) and Con(b′) and Con(a + b)).

Boundedness

To define the quantifier-free logic of boundedness, we extend the
language L(�, C) by a one-place predicate B with the obvious
extension of the notion of a formula. The algebraic semantics in
local contact algebras (with the boundedness predicate B) was
introduced in Section 2.6. We recall the boundedness axioms:

(B1) 0 ∈ B,

(B2) if b ∈ B and a � b, then a ∈ B,

(B3) if a, b ∈ B, then a + b ∈ B,

(B4) if aCb, then ∃c ∈ B such that c � b and aCc,
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(B5) if a ∈ B, then ∃b ∈ B such that a # b, (a# b ⇔ aCb∗).

Axioms (B1)–(B3) are universal sentences and have direct
translation in the language L(�, C, B) by the following formulas
(denoted by the same symbols):

(B1) B(0),

(B2) B(b) ∧ a � b ⇒ B(a),

(B3) B(a) ∧B(b)⇒ B(a + b).

Axioms (B4) and (B5) are not universal sentences and should
be replaced with the following inference rules:

BOUND-1
α ⇒ (B(p) ∧ p � b ⇒ aCp)

α ⇒ aCb
,

where p is a Boolean variable not occurring in a, b, α,

BOUND-2
α ⇒ a # p

α ⇒ ¬B(a)
,

where p is a Boolean variable not occurring in a and α.

Denote by PWRCC-Bound the extension of PWRCC in the
language L(�, C,B) by axioms (B1)–(B3) and the inference rules
BOUND-1 and BOUND-2. Then we can introduce canonical mod-
els for PWRCC-Bound.

Lemma 3.7.3. Assume that (BS, vS) is a canonical model
with B(|a|) if and only if B(a) ∈ S. Then BS is a local contact
algebra.

Lemma 3.7.3 and the corresponding topological representa-
tion theorems for local contact algebras lead to the following com-
pleteness result.

Theorem 3.7.4 (strong topological completeness of PWR-
CC-Bound). The following assertions hold.

(1) A is a consistent set in PWRCC-Bound,
(2) A has an algebraic model in the class of all local contact al-

gebras,
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(3) A has a model in the class of all locally compact topological
spaces,

(4) A has a model in the class of all locally compact semiregular
T0-spaces.

Similar completeness theorems can be obtained for exten-
sions of PWRCC-Bound by axioms (Con), (Ext), and (Nor). The
question about the decidability of such systems is still open.
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