
It is a mistake to try to look too
far ahead. The chain of destiny
can only be grasped one link at
a time.

Sir Winston Churchill
British politician

(1874 - 1965)

5
Sample-Path-Based Policy Iteration

In Chapter 3, we showed that potentials and performance gradients can be
estimated with a sample path of a Markov chain, and the estimated poten-
tials and gradients can be used in gradient-based performance optimization of
Markov systems. In this chapter, we show that we can use sample-path-based
potential estimates in policy iteration to find optimal policies. We focus on
the average-reward optimality criterion and ergodic Markov chains. The main
idea is as follows. At each iteration k with policy dk, instead of solving the
Poisson equation for potential gdk , we use its sample-path-based estimate ḡdk

as an approximation in the policy improvement step to determine an improved
policy. This leads to sample-path-based policy iteration algorithms.

This approach has several advantages. For example, it does not re-
quire solving a large number of linear equations and/or knowing the exact
form/value of the transition probability matrix (see Section 5.1). These ad-
vantages make the approach practically useful, because for many real engi-
neering systems such as communication networks or manufacturing systems
the state spaces are too large and the transition probability matrices may not
be entirely known due to unknown parameters and/or to the complexity of
the system’s structure. However, because the estimates may contain errors, a
sample-path-based policy iteration algorithm may not converge, or if it does,
it may not converge to an optimal policy. In this chapter, we propose some
sample-path-based policy iteration algorithms and provide some conditions
that ensure the convergence (either in probability, or with probability 1) of
these algorithms to optimal policies.

Similar to the PA-based optimization in Section 6.3.1, there are two ways
to implement sample-path-based policy iteration. We may first run the system
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long enough under one policy at every iteration to get accurate estimates of the
potentials and then use them to update the policy, or we may run the system
for a short period to get noisy estimates of the potentials, especially at the
beginning of the policy iteration, and then gradually improve the estimates
as we approach an optimal policy. These topics are discussed in Sections 5.2
and 5.3, respectively.

This chapter complements Chapter 3. Sample-path-based perturbation
analysis applies to optimization problems with continuous parameters, while
sample-path-based policy iteration applies to optimization problems in dis-
crete policy spaces. This chapter is mainly based on [54], [88], and [97].

5.1 Motivation

We first use a well-designed example to show the advantages of the sample-
path-based policy iteration approach.
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Fig. 5.1. A Two-Machine Manufacturing System

An Illustrative Example

Example 5.1. A manufacturing system consists of two machines and N
pieces of works, which are circulating between the two machines, as shown
in Figure 5.1. Each work piece has to undertake three consecutive operations
at machine 1; thus, machine 1 is illustrated by three circles in the figure, each
for one operation. The service times at these three operations are exponen-
tially distributed with rates λ1, λ2, and λ3, respectively. Machine 2 has only
one operation with an exponentially distributed service time with rate λ4.
A work piece, after the completion of its service at machine 1, goes to ma-
chine 2 with probability bd(n) and feeds back to machine 1 with probability
1− bd(n). The superscript “d” represents a policy with d ∈ D. For any d ∈ D
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and n = 1, 2, . . . , N , bd(n) ∈ [0, 1]. The system can be modelled as a Markov
process with its state denoted as (n, i), 0 ≤ n ≤ N , where n is the number
of pieces at machine 1 and i = 1, 2, 3 denotes the operation that the piece at
machine 1 is undertaking. When n = 0, we simply denote the state as 0. To
apply the results for discrete-time Markov chains, we study the Markov chain
embedded at the transition epochs. We assume that the cost function f does
not depend on the actions.

The transition probabilities of the embedded Markov chain are

p [(n, 1), (n + 1, 1)] =
λ4

λ1 + λ4
,

p [(n, 1), (n, 2)] =
λ1

λ1 + λ4
,

p [(n, 2), (n + 1, 2)] =
λ4

λ2 + λ4
,

p [(n, 2), (n, 3)] =
λ2

λ2 + λ4
,

p [(n, 3), (n + 1, 3)] =
λ4

λ3 + λ4
,

pd [(n, 3), (n− 1, 1)] =
λ3

λ3 + λ4
bd(n),

pd [(n, 3), (n, 1)] =
λ3

λ3 + λ4

[
1− bd(n)

]
,

for 0 < n < N ; and

p [0, (1, 1)] = 1,
p [(N, 1), (N, 2)] = p [(N, 2), (N, 3)] = 1,

pd [(N, 3), (N, 1)] = 1− bd(N),
pd [(N, 3), (N − 1, 1)] = bd(N).

The other transition probabilities are zeros.
We can see that (4.5) and (4.6) in step 3 of the policy iteration algorithm

in Chapter 4 can be simplified. The transitions from states (n, 1) and (n, 2) do
not depend on actions. The comparison of actions in the policy improvement
step for state (n, 3), 0 < n < N , becomes (recall that the cost function does
not depend on actions):

1
λ3 + λ4

{
λ4g

d(n + 1, 3) + λ3b
d(n)gd(n− 1, 1) + λ3

[
1− bd(n)

]
gd(n, 1)

}

≥ 1
λ3 + λ4

{
λ4g

d(n + 1, 3) + λ3b
d′

(n)gd(n− 1, 1) + λ3

[
1− bd′

(n)
]
gd(n, 1)

}
,

for all d′ ∈ D. This is equivalent to
[
bd(n)− bd′

(n)
]
gd(n− 1, 1)−

[
bd(n)− bd′

(n)
]
gd(n, 1) ≥ 0. (5.1)
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The system parameters, λ1, λ2, λ3, and λ4, do not appear in (5.1). ��

In the above example, the service rates govern the evolution of the sys-
tem, which runs automatically. The control action can affect only some of
the system transitions. The transition probabilities corresponding to the un-
controlled transitions (e.g., the transition from (n, 3) to (n + 1, 3)) are the
same under all policies; they cancel each other in the comparison equation
and hence do not appear in the final form. If we can estimate the (gd)’s on a
sample path, then we can implement policy iteration without knowing these
transition probabilities, or the corresponding service rates.

Many practical systems have the same features as the above example.
Indeed, in many systems, control can be exercised only in a very limited
region (e.g., admission control can be applied only at the access points of
a high-speed communications network); the remaining parts of such systems
simply evolve through their own natures. In Example 5.1, the dashed box
in Figure 5.1 can also be viewed as a machine whose service time has an
Erlangian distribution. In such cases, the transitions between the different
stages are not controllable. This type of service distribution and the more
general forms, such as Coxian distributions and phase-type distributions, are
very common in practical systems.

The Advantages of the Sample-Path-Based Approach

In summary, Example 5.1 and the above discussion illustrate that the sample-
path-based approach has the following advantages.

1. Given a sample path, policy iteration can be implemented without knowing
the whole transition matrix; only those items related to control actions,
bd(n), have to be known (we do not even need to know the related tran-
sition probabilities, e.g., we only need to know bd(n), not λ3

λ3+λ4
bd(n)).

In particular, we do not need to estimate all the system parameters λi,
i = 1, 2, 3, 4. Matrix inversion is not required.

2. The approach saves memory space required for implementing MDP. In
general, only the S potentials, not the S×S transition matrix, have to be
stored. This can be further reduced when there are some states that cannot
be reached by “controllable” states, in which actions can be applied. As
shown in (5.1), in Example 5.1 only gd(n, 1), n = 0, 1, . . . , N , have to be
estimated and stored; gd(n, 2) and gd(n, 3), n = 0, 1, . . . , N , do not even
need to be estimated.

3. In the standard computational approach, all the potentials are obtained
together through a matrix inversion; thus, obtaining the potential of one
state involves the same effort as obtaining the potentials of all the states.
In the sample-path-based approach potentials can be estimated one by one.
This feature makes the policy iteration procedure much more flexible.
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a) The computational efforts and memory space of each iteration may be
further reduced at the cost of the convergence rate. The idea is, if a
state space is too large, at each iteration we may estimate the poten-
tials of only a subset of the state space and update the actions that
control the system moving to the states in this subset. For instance, in
Example 5.1, we may set 0 = n0 < n1 < n2 < · · · < nk−1 < nk = N .
Then, in the ith iteration, i = 1, 2, . . . , k, we may estimate gd(n, 1)
only for ni−1 ≤ n ≤ ni, i = 1, 2, . . . , k. Then, by (5.1), we may update
the actions in bd(n) for n = ni−1 + 1, . . . , ni. Of course, it may need
more iterations to reach the optimal policy; however, at each iteration,
the computation and the memory requirement may be reduced to fit
the capacity of the available computing equipment. This feature may
be important for on-line optimization using specially designed hard-
ware which may have limited capacity (e.g., in sensor networks). In
high speed communications networks, the effect of a slow convergence
rate in terms of iterations may be compensated by the fast speed in
the system evolution.

b) For many practical systems, we may have some a priori knowledge
about which states are more important than others. Then, we can es-
timate only the potentials of the states that are needed for updating
the actions on these important states. This may reduce the computa-
tion and memory at the cost of the best performance achieved.

c) For large systems for which matrix inversion is not feasible (even if the
matrix is completely known), we may simulate the system by using
its particular structure (e.g., the queueing structure) and apply the
above two methods to reach the optimal solution with more iterations
or to obtain a near optimal solution.

d) Distributed optimization may be possible. For example, suppose that
we have a communications network consisting of K nodes, which can
be modelled as a closed queueing network of K single-server stations,
with each server representing one node. Then, the routing decision
can be made at each individual node with only the relevant potentials
being estimated. This approach depends on state aggregation to fur-
ther reduce the number of potentials to be estimated (see Chapters
8 and 9 for more discussion). This is an important research direction
and more work needs to be done.

The convergence property of sample-path-based policy iteration depends
on the errors of the potential estimates, which depend on the length of the
sample paths used in the estimation. The remaining sections in this chapter
are devoted to the study of the convergence issue.
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5.2 Convergence Properties

We can use any algorithm in Section 3.1.2 to estimate potentials. The study
in this section is based on (3.19), which expresses the potentials as the average
of independent samples, each observed in one regenerative period defined in
(3.18). Now let us write it in a slightly different form. First, we choose a
reference state i∗ ∈ S. For convenience, we assume that X0 = i∗. Define

l0(i∗) = 0
lk(i∗) = min {l : Xl = i∗, l > lk−1(i∗)} , k ≥ 1.

The instants l0(i∗), l1(i∗), . . . , lk(i∗), . . . , are regenerative points of the Markov
chain X = {Xl, l = 0, 1, . . .}, and the sample path between lk(i∗) and lk+1(i∗)
is the kth regenerative period. Next, we define lk(j)=min{l : l > lk(i∗),Xl =j},
k = 0, 1, . . . , and χk(j) = 1 if lk(j) < lk+1(i∗), and χk(j) = 0 otherwise. χk(j)
indicates whether the system visits state j in the kth regenerative period. The
definition is notationally different from but essentially the same as (3.18): The
Markov chain may not visit a given state j in a regenerative period.

Consider N regenerative periods. If χk(j) = 1, we define

Vk(i∗, j) :=
lk+1(i

∗)−1∑

l=lk(j)

[f(Xl)− η̄N ] ,

where η̄N is the estimated performance based on N regenerative periods:

η̄N :=

∑N−1
k=0

[∑lk+1(i
∗)−1

l=lk(i∗) f(Xl)
]

∑N−1
k=0 [lk+1(i∗)− lk(i∗)]

=
1

lN (i∗)

lN (i∗)−1∑

l=0

f(Xl). (5.2)

Vk(i∗, j) is undefined if χk(j) = 0. Let

N(j) :=
N−1∑

k=0

χk(j). (5.3)

Because of the ergodicity, we have limN→∞ N(j) =∞.
Now, we set g(i∗) = 0. Then, the estimated potential of state j, j �= i∗,

using N regenerative periods, is

ḡN (j) =
1

N(j)

{
N−1∑

k=0

χk(j)Vk(i∗, j)

}
≈ γ(i∗, j) = g(j), (5.4)

if N(j) > 0. ḡN (j) is undefined if N(j) = 0.
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5.2.1 Convergence of Potential Estimates

By the law of large numbers [26, 28], we have

lim
N→∞

η̄N = η, w.p.1. (5.5)

Lemma 5.1. As the number of regenerative periods N →∞, the sample-path-
based potential estimate ḡN (j) in (5.4) converges to its true value g(j) with
probability 1.

Proof. First, let

Ṽk(i∗, j) :=
lk+1(i

∗)−1∑

l=lk(j)

[f(Xl)− η] (5.6)

= Vk(i∗, j)−
lk+1(i

∗)−1∑

l=lk(j)

(η − η̄N )

= Vk(i∗, j)− {lk+1(i∗)− lk(j)} (η − η̄N ).

Then, we have

ḡN (j) =
1

N(j)

{
N−1∑

k=0

χk(j)Ṽk(i∗, j)

}

+ (η − η̄N )

{
1

N(j)

{ N−1∑

k=0

χk(j) [lk+1(i∗)− lk(j)]
}}

.

By the law of large numbers [26, 28], we have

lim
N→∞

1
N(j)

{
N−1∑

k=0

χk(j)Ṽk(i∗, j)

}
= g(j), w.p.1, (5.7)

and

lim
N→∞

1
N(j)

{
N−1∑

k=0

χk(j) [lk+1(i∗)− lk(j)]

}
= E [lk+1(i∗)− lk(j)] , w.p.1,

(5.8)
which is the average first-passage time from state j to state i∗. Because
E [lk+1(i∗)− lk(j)] <∞ and from (5.5), (5.7), and (5.8), we have

lim
N→∞

ḡN (j) = g(j), j ∈ S, w.p.1. (5.9)

This completes the proof. ��

We note that convergence with probability 1 implies convergence in prob-
ability (see Appendix A.1). Thus, as N →∞, ḡN (j) in (5.4) also converges to
g(j) in probability, i.e., for any δ > 0 and 1 > ε > 0, there is an integer Nδ,ε

such that when N > Nδ,ε we have

P(|ḡN (j)− g(j)| > δ) < ε. (5.10)
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5.2.2 Sample Paths with a Fixed Number of Regenerative Periods

In this subsection, we study the case in which the number of regenerative
periods N used in estimating the potentials in each iteration is fixed. We will
see that because of the estimation error in ḡd

N , instead of using the maximum
value of fd + P dgdk in the policy-improvement step (4.5) in policy iteration
Algorithm 4.1, it is more appropriate to use a small region for the expected
potentials (cf. φ(g) and ψ(g) defined in (5.11) and (5.13)).

First, to simplify the notation, for any S-dimensional vector g, we define

φ(g) := arg
{

max
d∈D

(fd + P dg)
}
⊆ D. (5.11)

Precisely, φ(g) := �
S
i=1φi(g), with

φi(g) =

⎧
⎨

⎩α ∈ A(i) : f(i, α) +
S∑

j=1

pα(j|i)g(j)

= max
α′∈A(i)

⎡

⎣f(i, α′) +
S∑

j=1

pα′
(j|i)g(j)

⎤

⎦

⎫
⎬

⎭ .

With this notation, the optimality equation for ergodic chains (4.7) be-
comes:

d̂ ∈ φ(gd̂).

The set of optimal policies is

D0 :=
{
d ∈ D : d ∈ φ(gd)

}
.

In addition, for any S-dimensional vector g and a small positive number
ν > 0, we set1

Uν(g) :=
[
max
d∈D

(fd + P dg)− νe, max
d∈D

(fd + P dg)
]
. (5.12)

Similar to (5.11), we define

ψ(g) :=
{
d : fd + P dg ∈ Uν(g)

}
(5.13)

as the set of improved policies. Precisely, we have ψ(g) = �
S
i=1ψi(g), with

1 For any two S-dimensional vectors a and b with a < b, we use [a, b] to denote an
S-dimensional array of intervals [a, b] := ([a(1), b(1)], [a(2), b(2)], . . . , [a(S), b(S)]).
An S-dimensional vector c ∈ [a, b] means that c(i) ∈ [a(i), b(i)] for all i =
1, 2, . . . , S.
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ψi(g) =

⎧
⎨

⎩α ∈ A(i) : f(i, α) +
S∑

j=1

pα(j|i)g(j) ∈

[
max

α′∈A(i)

{
f(i, α′)+

S∑

j=1

pα′
(j|i)g(j)

}
−ν, max

α′∈A(i)

{
f(i, α′)+

S∑

j=1

pα′
(j|i)g(j)

}]⎫⎬

⎭,

where the large square bracket denotes an interval. We certainly have

φ(g) ⊆ ψ(g)

for any ν > 0.

The Algorithm

The sample-path-based policy iteration algorithm with a fixed N works as fol-
lows.

Algorithm 5.1. A Sample-Path-Based Policy Iteration Algorithm
With a Fixed N :

1. Choose an integer N > 0, a real number ν > 0, and an initial policy
d0; Set k = 0.

2. Observe the system under policy dk to obtain a sample path with N
regenerative periods. Estimate the potentials using (5.4). Denote the
estimates as ḡdk

N . (Set ḡdk

N (j) = ḡ
dk−1
N (j) if Nk(j) = 0, where Nk(j)

is the N(j) in (5.3) in the kth iteration, with ḡd−1 = 0).
3. Choose any policy

dk+1 ∈ ψ(ḡdk

N ), (5.14)

component-wisely. If at a state i, action dk(i) is in the set (5.14),
then set dk+1(i) = dk(i).

4. If dk+1 = dk, then stop; otherwise, set k := k + 1 and go to step 2.

There may be multiple policies in the set on the right-hand side of (5.14).
If dk(i) ∈ ψi(ḡdk

N ), then we choose dk+1(i) = dk(i); otherwise, we may choose
randomly in ψi(ḡdk

N ). We will see that if we choose dk+1 ∈ φ(ḡdk

N ) in (5.14),
then it will have some problems in setting the stopping criterion in step 4.

The Effect of the Estimation Errors

Because of the errors in estimating potentials, two issues need to be addressed
for sample-path-based policy iteration algorithms. The first one is that, at
each iteration, the “true” performance may not necessarily improve and the
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stopping criterion may not be met; thus, we have to study if the algorithm
ever stops. The second issue is that, if it does stop, whether it stops at a
“true” optimal policy.

The answers to these two questions depend on the following property.

For a set of finite real numbers C := {c1, c2, . . . , cM}, define the distance
of ci and cj as ρcicj

≡ ρij := |ci − cj |, i, j = 1, 2, . . . ,M and set δ :=
min {ρij , ci �= cj , i, j = 1, . . . ,M}. If we know that two numbers, x ∈ C
and y ∈ C, satisfy ρxy = |x − y| < δ, then they must be the same, i.e.,
x = y.

In an MDP with a finite number of policies, the average reward takes only
a finite number of different values. Define

σ =
1
2

min
d,d′∈D

{∣∣ηd − ηd′∣∣ : ηd �= ηd′
}

(5.15)

to be the minimum “distance” between any two policies. We have σ > 0 (if
the average rewards of all policies are not the same). Therefore, if the absolute
value of the difference in the average rewards of two policies in D is less than
σ, then either the average rewards of these two policies are the same, or they
are simply the same policy. Thus, if the estimation error is small enough, this
error can be adjusted and it will not affect the outcome of the policy iteration.
This fact is formally stated in Lemma 5.2 below.

At each iteration, let gd be the true potential vector under the current
policy d (we omitted the subscript k in dk), ḡd be its estimate, and ηd be
the corresponding (true) average reward. Denote the error in the potential
estimate as a vector r := ḡd− gd. Let h ∈ ψ(ḡd) be an (improved) policy that
reaches the neighborhood of the maximum in (5.12) by using the estimate ḡd

as g, and let πh and ηh be the (true) steady-state probability and the average
reward of h, respectively. The policy h depends on the estimate ḡd.

Lemma 5.2. We choose ν = σ/2 in the sample-path-based policy iteration Al-
gorithm 5.1. Suppose that the Markov chain under every policy is ergodic with
a finite state space, and the number of policies is finite. Then, the following
holds.

(a) If the algorithm does not stop at an iteration and |r| < (σ/2)e,2 then
ηh ≥ ηd; i.e., at this iteration, the performance does not decrease.

(b) If the algorithm stops at an iteration and |r| < (σ/2)e, then it stops at a
(true) optimal policy.

2 For an S-dimensional vector r, we define |r| = (|r(1)|, |r(2)|, . . . , |r(S)|)T .
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Proof. (a) From the average-reward difference formula ηh−ηd =πh
[
(Ph−P d)gd

+(fh − fd)
]
, we have

ηh − ηd = πh
[
(Ph − P d)ḡd + (fh − fd) + (P d − Ph)r

]
. (5.16)

Because the iteration procedure does not stop at this iteration, according to
(5.14), we have h ∈ ψ(ḡd) and, therefore,

(Ph − P d)ḡd + (fh − fd) + νe ≥ 0.

Thus, πh
[
(Ph − P d)ḡd + (fh − fd)

]
≥ −ν, then, from (5.16),

ηh − ηd ≥ πh(P d − Ph)r − ν.

However,
∣∣πh(P d − Ph)r − ν

∣∣ ≤
∣∣πhP dr

∣∣ +
∣∣πhPhr

∣∣ +
∣∣ν

∣∣

<
σ

2
+

σ

2
+

σ

2
< min

d,d′∈D

{∣∣ηd − ηd′∣∣ : ηd �= ηd′
}

.

Therefore, ηh−ηd > −mind,d′∈D
{∣∣ηd − ηd′∣∣ : ηd �= ηd′

}
. This is only possible

if ηh ≥ ηd.
(b) Suppose that the algorithm stops at an iteration, and the policy at this

iteration is denoted as d̂. Let ḡd̂ be the estimate of its potential. Then, from
(5.14), for any policy d ∈ D, we have

(P d − P d̂)ḡd̂ + (fd − f d̂) ≤ νe.

Then

ηd − ηd̂ = πd
[
(P d − P d̂)ḡd̂ + (fd − f d̂) + (P d̂ − P d)r

]

≤ πd(P d̂ − P d)r + ν.

Thus, ηd− ηd̂ ≤ (3σ)/2, and hence ηd ≤ ηd̂, for all policies d ∈ D. That is, ηd̂

is the true optimal average reward. ��

The next lemma shows that if the estimation error |r| = |ḡ − g| is small
enough, the policy iteration using the potential estimate ḡ can be viewed as
if the true potential g is used. First, we define

κ =
1
2

min
all d,h,h′∈D

{∣∣(fh + Phgd)(i)− (fh′
+ Ph′

gd)(i)
∣∣ : all i ∈ S,

with
[
(fh + Phgd)(i)− (fh′

+ Ph′
gd)(i)

]
�= 0

}
.

Because there is only a finite number of policies and the state space is finite,
we have κ > 0.



264 5 Sample-Path-Based Policy Iteration

Lemma 5.3. We choose ν = κ/2 in the sample-path-based policy iteration
Algorithm 5.1. Suppose that the Markov chain under every policy is ergodic
with a finite state space, and the number of policies is finite. If |r| = |ḡd−gd| <
(κ/2)e, where gd and ḡd are the potential of policy d ∈ D and its estimate,
then

ψ(ḡd) ⊆ φ(gd).

Proof. Let h ∈ φ(gd) and h′ ∈ ψ(ḡd). By the definition of φ(g) in (5.11), we
have fh + Phgd ≥ fh′

+ Ph′
gd. By the definition of ψ(g) in (5.13), we have

fh′
+ Ph′

ḡd ≥ fh + Phḡd − νe. From this equation, we have

fh′
+ Ph′

gd + (Ph′ − Ph)(ḡd − gd) ≥ fh + Phgd − νe.

Therefore,

(fh + Phgd)− (fh′
+ Ph′

gd) ≤ (Ph′ − Ph)(ḡd − gd) + νe.

This, together with fh + Phgd ≥ fh′
+ Ph′

gd, leads to
∣∣(fh + Phgd)− (fh′

+ Ph′
gd)

∣∣ ≤
∣∣(Ph′ − Ph)(ḡd − gd)

∣∣ + νe. (5.17)

From (5.17), if |r| = |ḡd − gd| < (κ/2)e and ν = κ/2, then |(fh + Phgd)−
(fh′

+ Ph′
gd)| < (2κ)e. By the definition of κ, we must have fh + Phgd =

fh′
+ Ph′

gd. In other words, h′ ∈ φ(gd). Thus, ψ(ḡd) ⊆ φ(gd). ��

Note that ψ(ḡd) may be smaller than φ(gd). The implication of this lemma
is as follows. Suppose that, at every iteration, the estimation error is |r| <
(κ/2)e. If the sample-path-based algorithm does not stop at an iteration, then
the improved policy picked up by using the estimated potentials with (5.14)
is one of the policies that may be chosen by the standard policy iteration with
the exact potentials. If the sample-path-based iteration stops at a policy d̂,
then we have d̂ ∈ ψ(ḡd̂) and by Lemma 5.3, we have d̂ ∈ φ(gd̂); i.e, it will stop
if the true potentials are used.

However, because of the random error in the estimates, we do not know
if d̂ ∈ ψ(ḡd̂), although d̂ ∈ φ(gd̂); i.e., we do not know if the algorithm will
stop even if it reaches an optimal policy. We may determine its probability.
Suppose that dk = d̂ is an optimal policy. Then, according to (5.13), the
probability that the algorithm stops at this iteration is

p0 := P
{
f d̂ + P d̂ḡd̂ ≥ max

d∈D

[
fd + P dḡd̂

]
− νe

}
,

where

max
d∈D

[
fd + P dḡd̂

]

= max
d∈D

{
fd + P dgd̂ + P d

[
ḡd̂ − gd̂

]}
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≤ max
d∈D

{
fd + P dgd̂

}
+ max

d∈D

{
P d

[
ḡd̂ − gd̂

]}

=
[
f d̂ + P d̂gd̂

]
+ max

d∈D

{
P d

[
ḡd̂ − gd̂

]}
.

Thus,

p0 ≥ P
{
P d̂

[
ḡd̂ − gd̂

]
≥ max

d∈D
P d

[
ḡd̂ − gd̂

]
− νe

}
. (5.18)

We wish to find out under what condition this probability is positive. Let r̂ =
ḡd̂− gd̂. Suppose that |r̂| < (ν/2)e. Then, we have maxd∈D

{
P d

[
ḡd̂ − gd̂

]}
<

(ν/2)e and maxd∈D
{
P d

[
ḡd̂ − gd̂

]
− νe

}
< −(ν/2)e. On the other hand, we

have
∣∣∣P d̂

[
ḡd̂ − gd̂

] ∣∣∣ < (ν/2)e. Thus, we have

P d̂
[
ḡd̂ − gd̂

]
> −(ν/2)e > max

d∈D

{
P d

[
ḡd̂ − gd̂

]
− νe

}
.

Therefore, from (5.18) we have

p0 ≥ P [|r̂| < (ν/2)e] . (5.19)

Convergence Property

As shown in (5.9), as the length of a sample path in each iteration N → ∞,
the estimate in each iteration converges with probability 1 to the exact value
of g. Thus, by Lemmas 5.2 and 5.3, we can show that the sample-path-based
policy iteration stops with probability 1 if N is large enough, and it stops at
the optimal policy in probability as N goes to infinity.

Theorem 5.1. Convergence Property with Fixed Lengths

We choose ν = min {σ/2, κ/2} in the sample-path-based policy iteration
Algorithm 5.1. Suppose that the Markov chain under every policy is
ergodic with a finite state space, and the number of policies is finite.
Then, the following holds.

(a) When the length of the sample path N is large enough, the sample-
path-based policy iteration (Algorithm 5.1) stops with probability
1.

(b) Let η∗ be the true optimal average reward and η∗N be the average
reward of the “optimal” policy given by the sample-path-based pol-
icy iteration (Algorithm 5.1) with N regenerative periods in each
iteration. Then,

lim
N→∞

P(η∗N = η∗) = 1.
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Proof. (a) can be proved by Lemma 5.3 and (5.19). Because there are only a
finite number of states and a finite number of policies, from (5.10), for any
1 > ε > 0, there is an N ν

2 ,ε such that if N > N ν
2 ,ε then

P
{∣∣ḡd

N (j)− gd(j)
∣∣ > ν

2

}
< ε

holds for all j ∈ S and all d ∈ D. Thus, for this ν > 0, if N is large enough
(meaning N > N ν

2 ,ε), we have |ḡd
N − gd| < (ν/2)e ≤ (κ/2)e with probability

p > 1−ε > 0 for all d ∈ D. Therefore, from Lemma 5.3, we have ψ(ḡd
N ) ⊆ φ(gd)

with probability p > 0 for all d ∈ D.
Therefore, if N is large enough, then at each iteration with probability

p > 0, the sample-path-based policy iteration Algorithm 5.1 produces a correct
and improved policy dk+1 in its step 3, which may be chosen by the standard
policy iteration algorithm using the true potentials, and the average reward
improves if the algorithm does not stop at the iteration.

Suppose that there are K different values of the average rewards η corre-
sponding to all the policies in D. If we have K consecutive iterations, and,
in each of them, the sample-path-based algorithm produces a correct policy
(i.e.,with a better performance), then the sample-path-based policy iteration
process must reach the set of optimal policies D0. Now, we group every K +1
iterations together in the policy iteration sequence: The first group consists
of the first K + 1 iterations, the second group consists of the second K + 1
iterations, and so on. As discussed above, the probability that the sample-
path-based algorithm produces a correct policy in every iteration in the first
K iterations in the same group is larger than pK > 0. Thus, the probability
that the policy at the (K + 1)th iteration is an optimal policy, denoted as
d̂, is larger than pK > 0. Once the algorithm reaches an optimal policy, we
may apply (5.19). That is, under the condition that the algorithm reaches
an optimal policy, the probability that the algorithm stops at the (K + 1)th
iteration is p0 > 0. Therefore, the policy iteration algorithm does not stop at
any group is less than q = 1 − pKp0 < 1. Thus, the probability that policy
iteration does not stop at the first L groups is less than qL, which goes to zero
as L→∞. That is, the probability that policy iteration never stops is zero if
N is large enough.

For (b), note that η∗N is a random variable depending on the sample path.
We need to prove that for any ε > 0, there is an integer Nε > 0 such that if
N > Nε then

P(η∗N �= η∗) < ε. (5.20)

Recall that, in Lemma 5.2 and (5.15), we have

σ =
1
2

min
d,d′∈D

{∣∣ηd − ηd′∣∣ : ηd �= ηd′
}

.

Because there is only a finite number of policies, from (5.10), there is an Nε

such that if N > Nε then the probability that the potential-estimation error
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|r| > (σ/2)e for all policies is less than ε. Then, (5.20) follows directly from
Lemma 5.2(b). ��

Some comments are in order.

1. Because φ(g) ⊆ ψ(g), we may choose dk+1 ∈ φ(gdk) (i.e., set ν = 0 in
(5.12)) in step 3 of Algorithm 5.1 to replace (5.14). If we do so, the average
reward does not decrease at each iteration if the estimation error is small
enough. However, we will meet a problem for choosing a stopping criterion:
The condition dk ∈ φ(ḡdk) may not hold even if dk = d̂ is an optimal policy.
This can be explained as follows. Suppose that there are two optimal
policies d̂, d′ ∈ D0. Then, we have f d̂ + P d̂gd̂ = fd′

+ P d′
gd̂. Because

of the error in ḡd̂, it is entirely possible that fd′
+ P d′

ḡd̂ � f d̂ + P d̂ḡd̂,
and thus d̂ �∈ φ(ḡd̂). That means that, if we choose dk+1 ∈ φ(ḡdk), the
algorithm may not stop even if it reaches an optimal policy.

2. Because the probability of the estimation error r = ḡd−gd may be widely
distributed, it is clear that for any fixed N , the probability that the error
of a potential estimate is larger than any δ > 0 is positive. Thus, no matter
how large N is, the probability that the fixed-length sample-path-based
policy iteration does not stop at the true optimal policy is positive. This
means that any algorithm with a fixed N cannot converge to the true
optimal with probability 1.

3. If we use a sequence of increasing numbers of regenerative periods, N1,
N2, . . . , Nk+1 > Nk, in the iteration, we may face the problem that, at
some iterations, the algorithm stops at a false optimal policy because the
improved policy is the same as the original one (i.e., dk ∈ ψ(ḡdk

Nk
)). This

probability may be large at the beginning of the iteration procedure when
Nk is small. Therefore, if we use a sequence of increasing integers Nk, we
should let the iteration continue even if we obtain the same policy in some
iterations, i.e., even if dk+1 = dk. In the next subsection, we will prove
that under some conditions for the sequence of Nk, the policy iteration, if
we let it continue even if dk+1 = dk, converges to the true optimal policy
either in probability or with probability 1.

5.2.3 Sample Paths with Increasing Lengths

The Algorithm

As discussed at the end of the last subsection, in order to converge with
probability 1 to an optimal policy, the policy iteration algorithm with an
increasing number of regenerative periods in each iteration should never stop.
Because we do not need to set a stopping criterion, we may use dk+1 ∈ φ(ḡdk

Nk
)

in the policy improvement step.
The algorithm is stated as follows.
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Algorithm 5.2 A Sample-Path-Based Policy Iteration Algorithm
with Increasing Lengths:

1. Choose a sequence of integers, N0, N1, . . . , with Nk+1 ≥ Nk, k =
0, 1, 2, . . ., limk→∞ Nk =∞. Set k = 0. Choose an initial policy d0.

2. Observe the system with dk for Nk regenerative periods. Estimate
the potentials using (5.4). Denote the estimates as ḡdk

Nk
.

3. Choose

dk+1 ∈ φ(ḡdk

Nk
) = arg

{
max
d∈D

[
fd + P dḡdk

Nk

]}
,

component-wisely. (If there is more than one policy in φ(ḡdk

Nk
), we

may randomly choose one of them.)
4. Set k := k + 1; go to step 2.

No stopping criterion is used in the algorithm because it never stops. Thus,
in step 3, there is no requirement to set dk+1(i) = dk(i) whenever possible
(as Algorithm 5.1 does). One implication of this change is that after the
algorithm reaches an optimal policy, it may oscillate among different optimal
policies even if the accurate values of the potentials are used.

The General Conditions for Convergence

The algorithm produces a sequence of policies denoted as d0, d1, . . . , dk, . . . ,
and we now study its convergence property. We first study the probability of
a wrong decision because of the errors in the potential estimates. We define

q(N, d) = P
[
φ(ḡd

N ) ⊆ φ(gd)
]
.

This is the probability that the estimated potential will definitely lead to the
right choice of the improved policy. Indeed, if at the kth iteration φ(ḡdk

Nk
) ⊆

φ(gdk), then the improved policy based on the estimated potential is one
policy that could be chosen if the true potential were used. We denote it as
dk+1 ∈ φ(ḡdk

Nk
) ⊆ φ(gdk). Thus, we have

q(Nk, dk) ≤ P
[
dk+1 ∈ φ(gdk)|dk

]
. (5.21)

We need the following lemma.

Lemma 5.4. Convergence of Products of Infinite Many Numbers:
If

∑∞
k=0(1 − yk) < ∞ and 0 ≤ yk ≤ 1 for all k, then

limn→∞
∏

k≥n yk = 1.
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Proof. Set xk = 1 − yk, k = 0, 1, . . . . Then 0 ≤ xk ≤ 1 and
∑∞

k=0 xk < ∞.
Because xk ≥ 0, then

∑n
k=0 xk is nondecreasing, and it must converge to a

finite number as n→∞. Thus,

lim
n→∞

∑

k≥n

xk = 0. (5.22)

Next, for any 0 ≤ x < 1, we have the MacLaurin series

ln(1− x) = −x(1 +
x

2
+

x2

3
+ · · ·).

If 0 ≤ x < 1
2 , then 1 ≤ 1+ x

2 + x2

3 + · · · ≤ 1+x+x2 + · · · < 1+ 1
2 + 1

22 + · · · = 2,
and

− 2x < ln(1− x) ≤ −x. (5.23)

From (5.22), we can assume that xn < 1
2 if n is large enough. Therefore, it

follows from (5.23) that if n is large enough, we have

−2
∑

k≥n

xk ≤
∑

k≥n

{ln(1− xk)} ≤ −
∑

k≥n

xk.

From (5.22), we get limn→∞
∑

k≥n {ln(1− xk)} = 0. The lemma then follows

from
∏

k≥n yk =
∏

k≥n(1− xk) = exp
{∑

k≥n [ln(1− xk)]
}

. ��

We are now ready to give sufficient conditions for the sample-path-based
policy iteration algorithm to reach the set of optimal policies and remain
there indefinitely with probability 1 (the proof here follows [88] with some
modifications).

Theorem 5.2. Convergence Property with Increasing Lengths

Consider the sample-path-based policy iteration Algorithm 5.2 start-
ing from an initial policy d0. If the sample paths in different iterations
are independently generated and

∞∑

k=0

(1− qk) <∞, (5.24)

where qk := mind∈D q(Nk, d), then there exists an almost surely finite
random integer L such that

P(dk ∈ D0, for all k ≥ L) = 1.

Proof. Denote the underlying probability space as Ω. Any point ω ∈ Ω rep-
resents all the sample paths (with policies d0, d1, . . . , and lengths N0, N1, . . .)
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generated in one run of the policy iteration with the initial policy d0. Every
variable or quantity observed in a policy iteration run depends on ω; e.g., we
may denote the policy used in its kth iteration as dk = dk(ω). Define

L(ω) = min {l : dk ∈ D0 for all k ≥ l} ,

provided that the set of integers {l : dk ∈ D0, for all k ≥ l}, which depends
on ω, is non-null (�= ∅). To simplify the notation, we denote

{(l : dk ∈ D0 for all k ≥ l) �= ∅}
:= {ω ∈ Ω : (l : dk ∈ D0 for all k ≥ l) �= ∅} ⊆ Ω,

and similar expressions will be used. It suffices to prove

P {(l : dk ∈ D0 for all k ≥ l) �= ∅} = 1,

or
P {∃ l : dk ∈ D0 for all k ≥ l} = 1.

For any integer n ≥ 0, define An := {dk ∈ D0, for all k ≥ n} ⊆ Ω. Then,
we have An ⊆ An+1, n ≥ 0, and {∃ l : dk ∈ D0 for all k ≥ l} = ∪n≥0An.
Hence,

P {∃ l : dk ∈ D0 for all k ≥ l} = P(∪n≥0An) = lim
n→∞

P(An).

Let K <∞ be the number of all policies inD. As proved in Section 4.1.1, in
policy iteration with accurate potentials, policies do not repeat in the iteration
procedure before it reaches an optimal policy, and once it reaches D0, it stays
there forever. Thus, if dk+1 ∈ φ(gdk) for consecutive K iterations, then the
policy iteration must reach D0. Therefore, if dk+1 ∈ φ(gdk) for all k ≥ n−K,
n ≥ K, then we have dk ∈ D0 for all k ≥ n. Thus,

{
dk+1 ∈ φ(gdk) for all k ≥ n−K

}
⊆ An.

Therefore,

P(An) ≥ P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K

}
.

Next, given any sequence of policies d0, d1, . . . , the potential estimates at
different iterations are independently generated. Note, however, that dk+1

depends on dk, k = 0, 1, . . . . For any dn−K , we have

P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K|dn−K

}

=
{ ∑

dn−K+1∈φ(gdn−K )

{
P

[
dk+1 ∈ φ(gdk) for all k ≥ n−K + 1|dn−K+1

]

P
[
dn−K+1|dn−K+1 ∈ φ(gdn−K )

]}}
P
[
dn−K+1 ∈ φ(gdn−K )|dn−K

]
, (5.25)
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where P
[
dn−K+1|dn−K+1 ∈ φ(gdn−K )

]
is the conditional probability of

dn−K+1 given that dn−K+1 ∈ φ(gdn−K ). In addition, we have

P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K + 1|dn−K+1

}

=

{
∑

dn−K+2∈φ(gdn−K+1 )

{
P

[
dk+1 ∈ φ(gdk) for all k ≥ n−K + 2|dn−K+2

]

× P
[
dn−K+2|dn−K+2 ∈ φ(gdn−K+1)

] }
}

× P
{
dn−K+2 ∈ φ(gdn−K+1)|dn−K+1

}

Continuing this process, we obtain

P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K|dn−K

}

=

{ ∞∏

k=n−K

P
{
dk+1 ∈ φ(gdk)|dk

}
}

×

⎧
⎨

⎩
∑

dk+1∈φ(gdk ), k≥n−K

∞∏

k=n−K

P
{
dk+1|dk+1 ∈ φ(gdk)

}
⎫
⎬

⎭ . (5.26)

From (5.21), we have P
{
dk+1 ∈ φ(gdk)|dk

}
≥ qk. Also, we have

∑

dk+1∈φ(gdk ), k=n−K,...

{ ∞∏

k=n−K

P
{
dk+1|dk+1 ∈ φ(gdk)

}
}

= 1.

Finally, from (5.25) and (5.26), we get, for any dn−K , that

P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K|dn−K

}
≥

∏

k≥n−K

qk.

Thus, with any initial policy d0, we have

P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K

}
≥

∏

k≥n−K

qk.

By (5.24) and Lemma 5.4, we have limn→∞
∏

k≥n−K qk = 1. Thus, limn→∞
P(An) = 1 and the theorem holds. ��

Theorem 5.2 means that the sample-path-based policy iteration algorithm
converges with probability 1 to the set of optimal policies if condition (5.24)
holds. We will see that, to meet this condition, the length of the sample path
Nk must increase fast enough. However, we have a weaker result under a
weaker condition.
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Theorem 5.3. If the sample paths in different iterations are independently
generated, and limk→∞ qk = 1, where qk := mind∈D q(Nk, d), then

lim
n→∞

P(dn ∈ D0) = 1.

Proof. From the proof of Theorem 5.2, if dk+1 ∈ φ(dk) for k = n−K,n−K +
1, . . . , n− 1, then dn ∈ D0. Thus, we have

P(dn ∈ D0) ≥
n−1∏

k=n−K

qk.

The theorem follows directly from limk→∞ qk = 1. ��

More Specific Conditions

The conditions in Theorems 5.2 and 5.3 are not very easy to verify directly,
so we need some further work. First, we observe that, as discussed in the
last subsection, because the policy space is finite, small errors in potential
estimates can be corrected. This leads to the following lemma. To simplify
the notation, for any S-dimensional vector v, we define ||v|| = maxi∈S |v(i)|.
Lemma 5.5. There exists a δ > 0 such that if

∞∑

k=0

max
d∈D

P(||ḡd
Nk
− gd|| > δ) <∞,

then condition (5.24) holds.

Proof. By Lemma 5.3 and φ(ḡd
N ) ⊆ ψ(ḡd

N ), for any policy d, there is a δd > 0,
such that if ||ḡd

N − gd|| ≤ δd, then φ(ḡd
N ) ⊆ φ(gd). Set δ := mind∈D δd > 0.

q(N, d) = P
[
φ(ḡd

N ) ⊆ φ(gd)
]

≥ P(||ḡd
N − gd|| ≤ δd) ≥ P(||ḡd

N − gd|| ≤ δ).

Thus, 1− q(N, d) ≤ 1− P(||ḡd
N − gd|| ≤ δ) = P(||ḡd

N − gd|| > δ), and

1−min
d∈D

q(N, d) = max
d∈D

{1− q(N, d)}

≤ max
d∈D

P(||ḡd
N − gd|| > δ).

From this, we have

1− qk ≤ max
d∈D

P(||ḡd
Nk
− gd|| > δ).

Condition (5.24) now follows directly. ��

Note that we not only proved the lemma, but also found the δ required in
the lemma. The next lemma follows immediately.
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Lemma 5.6. Suppose that ḡNk
is an unbiased estimate of g. If

E
[
ḡd

Nk
(j)− gd(j)

]2 ≤ cd

Nk
, for all d ∈ D and j ∈ S,

cd > 0, and
∞∑

k=1

1
Nk

<∞,

then condition (5.24) holds.

Proof. By Chebychev’s inequality, for any δ > 0, we have

P(||ḡd
Nk
− gd|| > δ) = P

[
∪j∈S

{
|ḡd

Nk
(j)− gd(j)| > δ

}]

≤
∑

j∈S
P(|ḡd

Nk
(j)− gd(j)| > δ) ≤

∑

j∈S

E
[
ḡd

Nk
(j)− gd(j)

]2

δ2

≤ cdS

Nkδ2
.

Since D is finite, we may set c = maxd∈D cd < ∞. Therefore, for any δ > 0
we have

max
d∈D

P(||ḡd
Nk
− gd|| > δ) <

cS

Nkδ2
.

Now, let us choose δ as the one that satisfies Lemma 5.5. Then, condition
(5.24) holds. ��

Note that the conditions in this lemma can be changed to E
[
ḡd

Nk
(j)

−gd(j)
]2 ≤ cdκ(Nk) for all j ∈ S and d ∈ D, cd > 0, where κ(N) is a

non-negative function of N , and
∑∞

k=1 κ(Nk) <∞.

Convergence of the Algorithm with Estimate (5.4)

We now study the policy iteration algorithms that are based on a particular
estimate (5.4). We first note that for any finite N , ḡN in (5.4) is biased because
E [η̄N ] �= η. To get some insight, we first simplify the problem by using the
unbiased potential estimate

g̃N (j) =
1
N

{
N∑

k=1

Ṽk(i∗, j)

}
, (5.27)

with Ṽk(i∗, j) defined in (5.6). To simplify the discussion, we assume that
χk(j) = 1 for every regenerative period. We want to apply Lemma 5.6. The
first condition can be easily verified as follows. Because all Ṽk, k = 0, 1, . . . , N ,
are independent and E(Ṽk) = gd, we have, for any policy d,
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E
[
g̃d

N (j)− gd(j)
]2

= E

[
1
N

N∑

k=1

Ṽ d
k (i∗, j)− gd(j)

]2

=
1

N2
E

{
N∑

k=1

[
Ṽ d

k (i∗, j)− gd(j)
]}2

=
1
N

{
E
[
Ṽ d

k (i∗, j)
]2

−
[
gd(j)

]2
}

.(5.28)

Next, because
∣∣Ṽ d

k (i∗, j)
∣∣ ≤ max

i∈S
|f(i, d(i))− ηd|

[
ldk(i∗)− ldk−1(i

∗)
]

and
E

[
ldk(i∗)− ldk−1(i

∗)
]2

<∞
for finite ergodic chains, we have

E
[
Ṽ d

k (i∗, j)
]2

<∞.

Thus, the first condition in Lemma 5.6 holds. Therefore, from Theorem 5.2
and Lemma 5.6, the sample-path-based policy iteration Algorithm 5.2 with
potential estimate (5.27) converges with probability 1 to the optimal policy if∑∞

k=1
1

Nk
<∞.

Next, we consider the biased estimate (5.4). Lemma 5.6 cannot be applied,
and we need to use Lemma 5.5. First, we study the bias of the potential esti-
mate. Set ΔN (j) :=

∣∣E
[
ḡd

N (j)
]
− gd(j)

∣∣ and ΔN := maxj∈S ΔN (j). Because
the regenerative periods are independent, we have (from (5.27)):

E
[
ḡd

N (j)
]

=
1
N

N∑

k=1

E

⎧
⎨

⎩

ldk+1(i
∗)−1∑

l=ld
k
(j)

[
f(Xl, d(Xl))− η̄d

N

]
⎫
⎬

⎭

=
1
N

N∑

k=1

⎧
⎨

⎩E

[ ldk+1(i
∗)−1∑

l=ld
k
(j)

[
f(Xl, d(Xl))− ηd

]
]

+E

[ ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
]⎫⎬

⎭

= gd(j) +
1
N

N∑

k=1

E

{ ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
}
.

Thus,

ΔN (j) =
1
N

N∑

k=1

E

{ ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
}

= E

{ ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
}
,
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for any fixed k. Because there are a finite number of states and actions, we
have |f(i, d(i))| < R <∞ for some R > 0, all i ∈ S, and all d ∈ D. Therefore,
from (5.2), we have η̄d

N < R. Thus,
∣∣∣∣∣∣

ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
∣∣∣∣∣∣
< (ηd + R)

[
ldk+1(i

∗)− ldk(i∗)
]
,

with E
[
ldk+1(i

∗)− ldk(i∗)
]
< ∞. Thus, by applying the Lebesgue dominated

convergence theorem [28], we have

lim
N→∞

ΔN (j) = E

{
lim

N→∞

ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
}

= 0,

and limN→∞ ΔN = 0. Therefore, for the δ > 0 specified in Lemma 5.5, there
is an integer N0 > 0 such that 0 < ΔN < δ/2 for all N > N0.

Now, assume that N > N0. We have
∣∣ḡd

N (j)− gd(j)
∣∣

=
∣∣ḡd

N (j)− E
[
ḡd

N (j)
]
+ E

[
ḡd

N (j)
]
− gd(j)

∣∣ ≤
∣∣ḡd

N (j)− E
[
ḡd

N (j)
] ∣∣ + ΔN .

Therefore, if
∣∣ḡd

N (j)−gd(j)
∣∣ > δ, δ > 0, then

∣∣ḡd
N (j)−E

[
ḡd

N (j)
] ∣∣ > δ−ΔN >

δ/2. Thus,

P
{∣∣ḡd

N (j)− gd(j)
∣∣ > δ

}
≤ P

{∣∣ḡd
N (j)− E

[
ḡd

N (j)
] ∣∣ > δ/2

}
.

Then, by Chebychev’s inequality, we get

P
{∣∣ḡd

N (j)−E
[
ḡd

N (j)
] ∣∣ > δ/2

}
≤

E
{
ḡd

N (j)− E
[
ḡd

N (j)
]}2

(δ/2)2
.

Similar to (5.28), we have

E
{
ḡd

N (j)− E
[
ḡd

N (j)
]}2

=
1
N

{
E

[
V d

k (i∗, j)
]2 −

[
E(ḡd

N (j))
]2}

,

where V d
k (i∗, j) =

∑ldk(i∗)−1

l=ld
k
(j)

[
f(Xl, d(Xl))− η̄d

N

]
. It is easy to verify that

E
[
V d

k (i∗, j)
]2

<∞. From the above three equations, we can obtain

P
{∣∣ḡd

N (j)− gd(j)
∣∣ > δ

}
≤ 4cd(j)

Nδ2
,

for some cd(j) > 0, and

P
{
||ḡd

N − gd|| > δ
}
≤ 4cd

Nδ2
,
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for some cd > 0. Therefore,

∞∑

k=0

max
d∈D

P
{
||ḡd

Nk
− gd|| > δ

}

=
N0∑

k=0

max
d∈D

P
{
||ḡd

Nk
− gd|| > δ

}
+

∞∑

k=N0+1

max
d∈D

P
{
||ḡd

Nk
− gd|| > δ

}

≤
N0∑

k=0

max
d∈D

P
{
||ḡd

Nk
− gd|| > δ

}
+

4maxd∈D cd

δ2

∞∑

k=N0+1

1
Nk

,

in which the first term is finite. Thus, Lemma 5.5 holds if
∑∞

k=1
1

Nk
<∞.

In the above analysis, we have assumed that every regenerative period
visits state j. This may not be true for all j ∈ S, especially for those states
that are not visited often at steady state. To make sure that we can apply
Lemmas 5.5 or 5.6, we may need to extend the length of the kth iteration Nk

to a larger number N ′
k such that, in the iteration, the number of regenerative

periods that visit state j is larger than the Nk required by the algorithms,
i.e., Nk(j) =

∑N ′
k

l=1 χk(j) ≥ Nk, for all j ∈ S. N ′
k may be too large if some

states are rarely visited. However, such states are usually not so “important”,
and, furthermore, the results in Lemmas 5.5 or 5.6 for true optimal policies
may be a bit conservative. Further research in this direction is needed.

The results show that for the sample-path-based policy iteration to con-
verge to the optimal policy with probability 1, the lengths of the sample paths
in the iterations have to increase fast enough. In addition, in the algorithms
with increasing lengths, it is difficult to determine the stopping criteria. At
any iteration, it is always possible to have an estimate with a large error that
leads to a wrong policy. We cannot be absolutely sure if the obtained policy
is optimal even if the iteration stays at the same policy for a few (any finite
number of) iterations. On the other hand, if the length is long enough, we may
guarantee that the probability of the iteration stopping at a wrong policy is
less that any given small positive number, by using the stopping criterion
dk+1 = dk.

The algorithm updates the policy (or the actions for all states) at the end of
each iteration. Therefore, the required computation may be overwhelming at
the end of every iteration. This may require a powerful machine for real-time
applications, and the computation power may be wasted in the middle of every
iteration. To overcome this disadvantage, we may determine the action for a
state only when this state is visited during the iteration. More specifically, we
may implement step 2 in Algorithms 5.1 and 5.2 at the end of each iteration
and implement step 3 in these two algorithms for state i when this state is
visited in the next iteration period. In this way, the computation is distributed
to all the state transition instants. See [97] for more discussion.

Figure 5.2 illustrates the difference between the fixed-length and increasing-
length algorithms. In the fixed-length algorithm, for any fixed length Nk, the
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Fig. 5.2. Comparison of the Fixed- and Increasing-Length Policy Iteration Algo-
rithms

algorithm stops at a near-optimal performance η̂Nk
, which converges to the

optimal performance η̂ in probability as the length of the regenerative period
Nk goes to infinity. In the increasing-length algorithm, the policy iteration
goes in the diagonal direction in the figure and converges to the set of optimal
policies with probability 1. However, it is difficulty to design stopping criteria
for the increasing-length policy iteration algorithm.

Most results in this subsection appeared in [88].

5.3 “Fast” Algorithms∗

In the algorithms presented in the above two sections, the potentials are es-
timated and policies are updated every iteration consisting of N regenerative
periods, with N being a relatively large integer. In these algorithms, the po-
tentials are estimated separately in each iteration. The estimates are relatively
accurate with large N ’s. In this section, we explore the possibility of updating
the potential estimates as well as the policies in every regenerative period, or
after a few regenerative periods, in policy-iteration based performance opti-
mization. The length of a regenerative period is not long enough for applying
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the algorithms in Sections 5.2.2 and 5.2.3, and therefore the information in the
previous regenerative periods need to be used together with that in the cur-
rent regenerative period to obtain an estimate, and stochastic approximation
techniques may be employed.

5.3.1 The Algorithm That Stops in a Finite Number of Periods∗

In the “fast” algorithm proposed in this subsection, the potential estimation
is also based on (5.4). However, because the policies are updated whenever
the system visits a reference state i∗ in the algorithm, the different periods
between the consecutive visits to i∗ may be under different policies; therefore
they are not identically distributed and hence are no longer “regenerative”.
We simply call them “periods”. The kth period is denoted as Yk, k = 1, 2, . . . .

In the algorithm, to obtain an accurate estimate of the potentials, we
start with running the system under an initial policy for N periods. Then, we
update the policy in every period. The algorithm stops when the same policy
is used for N consecutive periods.

Algorithm 5.3 Updating Policies in Every Period:

1. Choose an integer N ; set c := 0 and k := 0; choose an initial policy
d0.

2. Observe the system under policy d0 for N periods, and get an esti-
mate ḡd0 by applying (5.4) to these N periods.

3. Determine the next policy dk+1 by applying (5.14) with ḡdk as the
estimated potentials.

4. If dk+1 = dk, set c := c + 1; otherwise, set c := 0. If c = N , then
exit; otherwise, go to the next step.

5. Change the policy to dk+1, set k := k + 1, observe the system for
one period with policy dk, and update ḡdk by applying (5.4) to the
latest N consecutive periods. Go to step 3.

In the Markov chain generated by the above algorithm, the initial policy
d0 is used in the first N periods, Y1, . . . , YN . ḡd0 is estimated using these
N periods and then d1 is determined by ḡd0 . Policy d1 is then used in the
(N +1)th period, YN+1. In general, dk and its corresponding transition matrix
P dk , which is used in the (N + k)th period YN+k, are determined by ḡdk−1 ,
which is estimated using the kth period, Yk, to the (N + k − 1)th period,
YN+k−1, k = 1, 2, . . . . This is illustrated in Figure 5.3.

Strictly speaking, in this algorithm, ḡdk , k ≥ 1, may not be the potential
vector corresponding to policy dk, which is only used in the last period. With
this in mind, we will keep the same notation with superscript dk to denote
the estimated potential, since no confusion will be caused.
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Fig. 5.3. The “Fast” Algorithm 5.3

The rationale behind the algorithm is as follows. If dk+1 is “close” to dk,
then the previous data under dk can be used in obtaining ḡdk+1 . If dk+1 is
not “close” to dk, then the data collected in one period under dk+1 would
not make a big impact on ḡdk+1 , which is estimated on N periods, i.e., we
may have ḡdk+1 ≈ ḡdk . Therefore, most likely we would have dk+2 = dk+1.
Thus, the potential estimates would be more accurate for ḡdk+2 in the next
period, since two periods under the same policy (dk+1 = dk+2) have been used.
The policy gets updated when enough data under this policy dk+1(= dk+2)
is collected. This also roughly explains that the algorithm might be “fast”
because it wastes no periods to collect data that are more than needed to
update the policies.

The Policy Reached When the Algorithm Stops

Lemma 5.7. Suppose that Algorithm 5.3 stops at d̂N ; let η∗N be the corre-
sponding average reward. For any ε > 0, there is an integer Nε > 0 such that
if N > Nε, then P(η∗N �= η∗) < ε, where η∗ is the true optimal average reward.

Proof. When the algorithm stops at the last period, denoted as YK+N , the
policies used in YK to YK+N are the same, i.e., dK = dK+1 = · · · = dK+N :=
d. The potential estimated from the N periods YK to YK+N−1, ḡd

N , are based
on the same policy d. By Algorithm 5.3, ḡd

N leads to the same improved policy
d ∈ ψ(ḡd

N ), which is used in YK+N . The theorem then follows directly from
Theorem 5.1(b). ��

The lemma claims that if the algorithm stops, then it stops at the true
optimal policy with a large probability, if N is large enough. However, it does
not indicate whether the algorithm will stop.
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Does the Algorithm Stops?
Define the kth period as Yk :=

{
Xlk(i∗)+1, . . . , Xlk+1(i∗)

}
, k > 0, and put

N consecutive periods together as an augmented state Zk := (Yk, Yk+1, . . . ,
YN+k−1). Let Z be the space of all possible Zk’s. Then, we can write

dk = ϕ(Zk), (5.29)

where ϕ is a mapping from Z to the policy space. The algorithm stops when
the same policy is used for N consecutive basic periods.

From (5.29), the augmented chain Z = {Z1, Z2, . . .} is a Markov chain
defined on state space Z. However, it may not be irreducible. In fact, if the
algorithm converges to a policy (e.g., an optimal policy), then as time goes
to infinity, Z tends to stay in the states generated by this policy (e.g., the
optimal policy) and the other states may not be reached. Therefore, some
conditions on Z may be required for the algorithm to stop. Let us study the
issue formally. First, we have a lemma.

Lemma 5.8. If ZK+N = ZK , then Algorithm 5.3 stops at the end of ZK+N .

Proof. ZK+N = ZK means that YK+l = YK+N+l, l = 0, . . . , N − 1 (see Figure
5.4). Let the policies used in the (K +N + l)th period be dK+l, l = 0, . . . , N−
1. Note that dK+1 depends on ZK+1 = (YK+1, YK+2, . . . , YK+N−1, YK+N ),
which is the same as ZK = (YK , YK+1, . . . , YK+N−1) (because YK = YK+N ),
regardless of the order. Therefore, dK = ϕ(ZK) = dK+1. In the same way, we
can prove dK+N = dK+N−1 = · · · = dK+N−2 = · · · = dK . That is, the N + 1
consecutive policies are the same. Thus, c = N in the algorithm and hence it
stops. ��

ZK

ZK+1

ZK+N


�


�


�

· · · · · · dK dK+1 · · · dK+N−1 dK+N

YK YK+1 YK+N−1 YK+N YK+N+1 YK+2N−1 YK+2N

i∗ i∗ i∗ i∗ i∗ i∗ i∗ i∗ i∗ i∗
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Fig. 5.4. The Periods in Lemma 5.8

Under many conditions, we may find ZK+N = ZK on a sample path. These
conditions require that the transition probability matrices used in different
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periods have some similarity. For instance, if the transition probability matrix
used in the Kth period is completely different from that in the (K + N)th
period, then a YK that is the same as YK+N may not exist.

To study the structure of a transition probability matrix P , we define a
graph G consisting of S nodes. In the graph, two nodes i and j, i, j ∈ S, are
connected by an arrow from i to j if and only if p(j|i) > 0. A loop in G is
a sequence of arrows starting from one node and ending at the same node.
Let Gd be the graph corresponding to the transition probability matrix P d,
d ∈ D.

The Common Loop Condition:
All the graphs Gd, d ∈ D, have a common loop.

Any state lying on the common loop can be picked up as the refer-
ence state i∗ in generating regenerative periods. Denote the common loop
as i∗, i1, . . . , im, i∗. The common loop condition means that there is a period
consisting of the sequence of states, i∗, i1, . . . , im, i∗, that can be generated
with a positive probability by any policy in D. We call this a common period.

Many policies satisfy this condition. For example, if for each i ∈ S, we have
a state j �= i, such that pα(j|i) > 0 for all α ∈ A(i), then the set of policies in
D satisfies the common loop condition. Let us find one of the common loops
under this condition. We start from any state i. Suppose that j1 is the state
such that pα(j1|i) > 0 for all actions α ∈ A(i), and j2 is the state such that
pα(j2|j1) > 0 for all actions α ∈ A(j1), and so on. In this way, we may obtain
a sequence of states j1, j2, . . . . Since there are only a finite number of states,
there must be two states denoted as jk1 and jk2 , with k1 ≤ k2, such that
jk1 = jk2 . We then have a common loop jk1 → jk1+1 → · · · → jk2 = jk1 .

Here is an example in which the two graphs do not have a common loop:
Gd1 : 1 → 2 → 3 → 4 → 3 and 4 → 1; Gd2 : 1 → 2 → 3 → 1 and 1 → 4 → 1.
In this example, the transition in state 3 is completely different for Gd1 and
Gd2 : the system goes to 4 in Gd1 and to 1 in Gd2 . Therefore, the same path
cannot be generated with P d1 and P d2 after the system reaches state 3.

Lemma 5.9. Under the common loop condition, for any finite integer N > 0,
Algorithm 5.3 stops with probability 1.

Proof. Let us choose any state i∗ in the common loop as the reference state.
Because the number of policies is finite, the probability that any period is a
common period is at least p > 0. Now, we divide the sample path into many
intervals, each consisting of 2N periods. Consider a very special interval in
which all the 2N periods are the same as the common period. The probability
that an interval is such a special interval is larger than p2N > 0. Therefore,
the probability that in the first k intervals there is no such special interval is
less than (1− p2N )k, where 1− p2N < 1. As k →∞, this probability goes to
zero. That is, the probability that on a sample path the special interval never
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appears is zero. Because the special interval is a special case of ZK+N = ZK ,
the lemma follows directly from Lemma 5.8. ��

Remark

It should be noted that although we only proved that under the common
loop condition the algorithm stops with probability 1, it does not mean that
the algorithm only stops when the special situation in the proof of Lemma
5.9 holds. In fact, in most cases, the algorithm stops before Z reaches such a
special situation. To prove “stop with probability 1”, we only need to find any
special case that may stop the algorithm and prove such a case occurs with
probability 1. It is true that, under this special case, the general property,
e.g., Lemma 5.7, may not hold; however, it does hold in general because when
the algorithm stops, the special case usually does not occur. See Problem 5.14
for more understanding.

5.3.2 With Stochastic Approximation∗

In Algorithm 5.3, the potentials are estimated by using a fixed N number of
periods (albeit possibly under different policies). This is similar to what is
discussed in Section 5.2.2. In this subsection, we propose an algorithm (Algo-
rithm 5.4) based on the stochastic approximation technique. In the algorithm,
the potentials are estimated recursively at each period. This subsection par-
allels Section 6.3.1.

Algorithm 5.4 A Sample-Path-Based Algorithm with Stochastic Ap-
proximation:

1. Choose an initial policy d0, and set k = 0 and ḡd−1 = 0. Choose an
ε ∈ (0, 1/2) and a C > 0.

2. Observe the system under policy dk for one period. For all j ∈ S,
calculate

V dk

k (i∗, j) =

⎧
⎨

⎩

∑l
dk
k+1(i

∗)−1

l=l
dk
k

(j)

[
f(Xl, dk(Xl))− η̆dk

k

]
, if χk(j) = 1,

ḡdk−1(j), if χk(j) = 0,

where χk(j) = 1 if the period contains j, and χk(j) = 0 otherwise,
and

η̆dk

k =

∑l
dk
k+1(i

∗)−1

l=l
dk
k

(i∗)
f(Xl, dk(Xl))

ldk

k+1(i∗)− ldk

k (i∗)
.

Update the potential estimates as follows:
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ḡdk(j) = ḡdk−1(j) +
1

k + 1

[
V dk

k (i∗, j)− ḡdk−1(j)
]
. (5.30)

3. For every i ∈ S, set

β(i) ∈ arg

⎧
⎨

⎩ max
α∈A(i)

⎡

⎣
S∑

j=1

pα(j|i)ḡdk(j) + f(i, α)

⎤

⎦

⎫
⎬

⎭ .

If there exists an i′ such that

S∑

j=1

pβ(i′)(j|i′)ḡdk(j) + f(i′, β(i′))

≥
S∑

j=1

pdk(i′)(j|i′)ḡdk(j) + f(i′, dk(i′)) +
C

(k + 1)1/2−ε
, (5.31)

then set dk+1(i) = β(i) for all i; otherwise, let dk+1(i) = dk(i) for all
i.

4. Set k := k + 1 and go to step 2.

In step 2, V dk

k (i∗, j) is the new information obtained in the kth period for
potential gdk(j). This information is used in (5.30) to update the estimate, in
a way similar to stochastic approximation. If j does not appear in the period,
no new information about gdk(j) can be obtained in this period, and ḡdk−1(j)
is used again.

Because the policies are updated often, the potential estimates may not be
so accurate, especially at the beginning of the iteration procedure. This may
cause the algorithm to be unstable. To avoid unnecessary oscillation between
policies due to estimation errors, we add a threshold C

(k+1)1/2−ε in (5.31) in step
3. The policy is not updated unless the difference in the comparison inequality
exceeds a threshold. The value of the threshold gradually goes to zero as the
policy approaches to the optimal one. The rate of the threshold approaching
zero is controlled by ε. With this carefully designed updating scheme with a
threshold, the algorithm converges to the optimal policy with probability 1 (a
slightly different algorithm is proposed in [97], and its convergence is proved
there).

It should be mentioned that there are many ways to propose such “fast”
algorithms. The two proposed in Sections 5.3.1 and 5.3.2 just serve as ex-
amples. For such algorithms, the convergence speed is not known even if the
convergence is proved. That is, we are not sure if they are really “faster”
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than the other sample-path-based algorithms, and in what sense they may be
faster.

PROBLEMS

5.1. Repeat Example 5.1 by using the continuous-time Markov model.

5.2. A machine produces M different products, denoted as 1, 2, . . . ,M . To
process product i, the machine has to perform Ni different operations, de-
noted as (i, 1), (i, 2), . . . , (i,Ni). We use a discrete time model. At each time
l, l = 0, 1, . . ., the machine can only process one product and perform one
operation. If at time instant l the machine is producing product i and is at
operation (i, j), j �= Ni, then at time instant l + 1 the machine will take op-
eration (i, j′) with probability pi(j′|j), i = 1, 2, . . . ,M , j = 1, . . . , Ni − 1, and
j′ = 1, . . . , Ni. If the machine is at operation (i,Ni), then it will pick up a
new product i′ and start to process it at operation (i′, 1) at the next time
instant with probability pα(i′|i), i, i′ = 1, 2, . . . ,M , where α ∈ A(i) represents
an action. The operation (i, 1) is called an entrance operation and (i,Ni) is
called an exit operation. The system can be modelled as a Markov chain with
state space S := {(i, j) : i = 1, 2, . . . ,M, j = 1, . . . , Ni}. Let f be the properly
defined reward function. Derive the policy iteration condition (similar to (5.1)
in Example 5.1) for this problem and show that with the sample-path-based
approach we do not need to estimate the potentials for all the states.

5.3. In Problem 4.1, prove that if we use the sample-path-based approach,
then we do not need to know the value of r.

5.4. As discussed in Section 5.1, to save memory and computation at each
iteration, we may partition the state space S = {1, 2, . . . , S} into N subsets
and at each iteration we may only update the actions for the states in one of
the subsets. In the extreme case, at each iteration, we may update the action
for only one state. That is, at the first iteration, we update d(1); at the second
iteration, we update d(2), . . ., and at the Sth iteration, we update d(S). Then,
at the (S + 1)th iteration, we update d(1) again, and so on in a round robin
manner. In such an iteration procedure, we cannot stop if there is no improve-
ment in the performance at some iteration. We let the iteration algorithm stop
after the performance does not improve in S consecutive iterations.

a. Formally state this policy iteration algorithm.
b. Prove that the algorithm stops after a finite number of iterations.
c. Prove that the algorithm stops at a gain-optimal policy.
d. Extend this algorithm to the general case where S is partitioned into N

subsets.
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5.5. To illustrate the idea behind Lemma 5.2, we consider the following simple
problem. There are N different balls with identical appearance but different
weights, denoted as m1,m2, . . . ,mN , respectively, mi �= mj , i �= j. These
weights are known to us. You have a scale in your hand that is inaccurate with
a maximal absolute error of r > 0. Under what condition will you accurately
identify these balls using this scale?

5.6. Suppose that when the sample-path-based policy iteration algorithm 5.2
stops, the estimation error of the potentials satisfies |r| = |ḡ − g| < δ/2,
where δ > 0 is any positive number. Let η̄ be the optimal average reward thus
obtained. Prove

|η̄ − η∗| < δ,

where η∗ is the true optimal average reward.

5.7. If we use
∑N−L+1

n=0

{
Ii(Xn)

[∑L−1
l=0 f(Xn+l)− η

]}

∑N−L+1
n=0 Ii(Xn)

to estimate the potentials, then the estimates are biased.

a. Convince yourself that the results in Section 5.2 still hold, and
b. Revise the proofs in Section 5.2 for the sample-path-based policy iteration

with the above potential estimates.

5.8. With the sample-path-based policy iteration Algorithm 5.1, suppose that
the Markov chain is ergodic with a finite state space under all policies, and
the number of policies is finite. Let |r| = |ḡd − gd| < (κ/2)e, where gd and ḡd

are the potential of policy d and its estimate. Following the same argument
as that in Lemma 5.3, prove that

φ(ḡd) ⊆ φ(gd).

5.9. In Problem 5.8, we proved that φ(ḡd) ⊆ φ(gd).

a. On the surface, it looks like the same method as that in Lemma 5.3 can
be used to prove φ(gd) ⊆ φ(ḡd). Give it a try.

b. If you cannot prove the result in a), explain why; if you feel that you did
prove it, determine what is wrong in your proof.

c. Suppose that h, h′ ∈ φ(gd), and thus fh + Phgd = fh′
+ Ph′

gd. Because
of the error in ḡd, we may have fh + Phḡd �= fh′

+ Ph′
ḡd. Therefore, one

of them cannot be in φ(ḡd). Give an example to show that no matter how
small the error r = gd − ḡd is, this fact is true.

5.10. Are the following statements true? Please explain the reasons for your
answers:
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a. Suppose that we use dk+1 ∈ φ(ḡdk

N ) to replace (5.14) in step 3 of Algorithm
5.1 (i.e., set ν = 0 in (5.12)). Then, the algorithm may not stop even if
φ(ḡdk

N ) ⊆ φ(gdk) for K ′ > K consecutive iterations k = n, n + 1, . . . , n +
K − 1, where K is the number of policies in D.

b. Algorithm 5.2 may not always stay in D0 even after φ(ḡdk

Nk
) = φ(gdk) for

K consecutive iterations, where K is any large integer.
c. Statement b) above is true even if we add the following sentence to step 3

of Algorithm 5.2: “If at a state i, action dk(i) attains the maximum, then
set dk+1(i) = dk(i).”

5.11. Can you propose any stopping criteria for the sample-path-based al-
gorithms to stop at an optimal policy in a finite number of iterations with
probability 1?

5.12. In Lemma 5.4,
∑∞

k=0(1 − yk) < ∞ implies limk→∞ yk = 1, which,
however, is not enough for limn→∞

∏
k≥n yk = 1. For the latter to hold, yk

has to approach 1 fast enough.

a. For yk = 1 − 1
k , k = 1, 2, . . ., we have limk→∞ yk = 1. What is

limn→∞
∏

k≥n yk?
b. Verify the lemma for yk = 1− 1

k2 , k = 1, 2, . . .. What is limn→∞
∏

k≥n yk?
c. For a sequence yk, 0 ≤ yk ≤ 1, k = 1, 2, . . ., if

∑∞
k=0(1 − yk) < ∞ we

have
∑∞

k=0(1− yc
k) <∞ for any c < 1 and we can apply this lemma. How

about c > 1?

5.13.∗ Write a simulation program for the “fast” Algorithm 5.3. Run it for a
simple example with, say, S = 3, and each A(i), i ∈ S, containing three to five
actions. Record the sequence of dk, k = 0, 1, 2, . . ., and observe its behavior,
e.g., how it changes from one policy to another one. Run it a few times with
different N ’s.

5.14.∗ This problem is designed to help you to understand the remark on the
proofs in Section 5.3.1. Consider an ergodic Markov chain X = {X0,X1, . . . ,
Xl, . . .} with state space S and reward function f(i), i ∈ S. Let i∗ ∈ S be a
special state. We repeat the following game: Every time we run the Markov
chain, we let it stop when Xl = Xl+2 = i∗; and when it stops, we receive a
total reward of f(Xl+1).

a. We may prove that the Markov chain stops with probability 1 under the
special condition p(i∗|i∗) �= 0.

b. Suppose that the Markov chain stops with probability 1. Then, the ex-
pected total reward we receive is r̄ =

∑
k∈S p(k|i∗)f(k).

Obviously, p(i∗|i∗) �= 0 is not a necessary condition, and this special condition
does not change the expected total reward r̄ in part b).

5.15.∗ If we implement Algorithm 5.3 for a few reference states i∗, j∗, k∗, . . .
in parallel on the same sample path, then we can update the policy whenever
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the system reaches one of these states. In the extreme case, if we implement
the algorithm using every state as the reference state separately on the same
sample path, we may update the policy at every state transition on the sample
path.

We need to study the convergence of such algorithms. Consider, for exam-
ple, the case where we have two reference states i∗ and j∗. Whenever we meet
states i∗ or j∗, we will update the policy. Therefore, if in a period starting
from one i∗ to the next i∗, the sample path visits state j∗, then the policy
used in this period before visiting j∗ is different from that used after the visit.
Does this cause a major problem in the convergence of the algorithm? How
about the algorithm in which we use all states as reference states?
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