
You can observe a lot just by
watching.

Berra’s Law - Yogi Berra,
US baseball player, coach,

and manager (1925 -)

3
Learning and Optimization with

Perturbation Analysis

As shown in Chapter 2, performance derivatives for Markov systems depend
heavily on performance potentials. In this chapter, we first discuss the numer-
ical methods and sample-path-based algorithms for estimating performance
potentials, and we then derive the sample-path-based algorithms for estimat-
ing performance derivatives. In performance optimization, the process of es-
timating the potentials and performance derivatives from a sample path is
called learning.

Policy gradients (PG) in reinforcement learning (RL) is almost a synonym
for perturbation analysis (PA) in discrete event dynamic systems (DEDS).
However, because the terms PG and PA are used by researchers in two dif-
ferent disciplines, there is a different emphasis on different aspects of the
analysis. With PA in DEDS, we construct sensitivity formulas by exploring
the system’s dynamic nature and develop sample-path-based and on-line es-
timation algorithms for performance derivatives; while with PG in RL we
emphasize the algorithmic features of gradient estimation algorithms, such as
their efficiency and recursiveness. Therefore, this chapter is closely related to
Chapter 6 on reinforcement learning. We will introduce performance gradient
algorithms from a sample-path-based perspective and leave the algorithmic
features, especially those related to the stochastic approximation approach,
to Chapter 6 (see Figure 3.1).

148 3 Learning and Optimization with Perturbation Analysis

Constructing performance Numerical & sample-path Recursive & efficient
derivative formula based algorithms algorithms

(Stochastic approx.)

Perturbation Analysis

Policy Gradients (RL)

=⇒=⇒

�

�

Fig. 3.1. Perturbation Analysis vs. Policy Gradients

3.1 The Potentials

We first study the potentials for ergodic Markov chains (discrete time), and
the results can be extended to ergodic Markov processes (continuous time)
naturally.

3.1.1 Numerical Methods

With πg = η

The first numerical method depends on the equation for performance poten-
tials ((2.13) and (2.14)):

g = (I − P + eπ)−1f

=
∞∑

k=0

[(P − eπ)k]f =
{
I +

∞∑

k=1

(P k − eπ)
}
f.

Thus, g can be calculated iteratively by setting:

g0 = f, gk = f + (P − eπ)gk−1, k ≥ 0, (3.1)

and g = limk→∞ gk. This method requires solving for π first.

With the Realization Factors

Alternatively, we can solve the PRF equation (2.7)

Γ − PΓPT = F, (3.2)

3.1 The Potentials 149

which does not contain π. Again, its solution is also only up to an additive
constant; i.e, if Γ is a solution to (3.2), so is Γ + ceeT for any constant c. In
addition to (3.2), the PRF matrix Γ = egT − geT also satisfies πΓπT = 0 or
simply eTΓe = 0.

From (3.2), we have

Γ = PΓPT + F

= P (PΓPT + F)PT + F = P 2Γ (P 2)T + PFPT + F

= P kΓ (P k)T + P k−1F (P k−1)T + · · ·+ PFPT + F.

Since
lim

k→∞
P kΓ (P k)T = eπΓπT eT = 0,

we have

Γ =
∞∑

k=0

P kF (P k)T ,

with P 0 = I. Therefore, we have the following iterative algorithm

Γ0 = F, Γk = PΓk−1P
T + F, k ≥ 1, (3.3)

and limk→∞ Γk = Γ . While this algorithm (3.3) does not require solving for
π, it has two matrix multiplications in each iteration.

With g(S) = 0

Note that in the Poisson equation (I−P)g+ηe = f , the same term η appears
in every row. Using this feature, we may develop another numerical algorithm
as follows. First, denote the Sth row of P as pS∗. Define

P− = P − epS∗.

The last row of P− is zero. Let

f− = [f(1)− f(S), . . . , f(S − 1)− f(S), 0]T .

Subtracting the last row of the Poisson equation from all the rows, and by
setting g(S) = 0, we get

g = P−g + f−. (3.4)

From this, we can write

g = lim
L→∞

(L∑

l=0

P l
−

)
f−. (3.5)

150 3 Learning and Optimization with Perturbation Analysis

Note that because f−(S) = 0 and the last row of P− is zero, from (3.4)
or (3.5) we indeed have g(S) = 0. This is consistent with the fact that the
potential vector g is unique only up to an additive constant vector, and the g
in (3.5) represents one form of the potential vector.

Let {1, λ1, . . . , λS−1} be the set of the eigenvalues of P (see Lemma B.1 in
Appendix B). First, we assume that all the eigenvalues are simple. For ergodic
chains, we have |λi| < 1 for i = 1, 2, . . . , S−1 [20]. Let x �= 0 be an eigenvector
corresponding to one of the eigenvalues, denoted as λ �= 1; i.e., Px = λx. If
λ = 0, then Px = 0 and it is easy to verify that P−x = 0 and x �= ce, with
c �= 0 being any constant. That is, λ = 0 is also an eigenvalue of P− with
eigenvector x �= ce.

Now, we assume that λ �= 0. Define x′ = x− 1
λ (pS∗x)e. Then, we can verify

that x′ �= 0 and

P−x′ = (P − epS∗)
[
x− 1

λ
(pS∗x)e

]

= λ
[
x− 1

λ
(pS∗x)e

]
= λx′, (3.6)

i.e., λ is an eigenvalue of P− with eigenvector x′. In addition, P−e = 0, i.e.,
0 is an eigenvalue of P−. Therefore, the eigenvalues of P− = P − epS∗ are
{0, λ1, . . . , λS−1}, with all |λi| < 1, i = 1, . . . , S−1, which are the same as the
eigenvalues of P − eπ. One of λi, i = 1, . . . , S − 1 may be zero (note that we
assumed that λi, i = 1, 2, . . . , S−1, are different). Therefore, the limit in (3.5)
converges at the same rate as (or as fast as) the rate of limk→∞(P −eπ)k = 0,
or the rate of limk→∞ P k = eπ.

When there are multiple eigenvalues, we need to examine the multiplicities
of the eigenvalues of both P and P−. First, we assume that λ = 0 is an
eigenvalue of P with m0 ≥ 0 multiplicity. We note that for any x �= 0 if
Px = 0 or Px = e (i.e., x = e), then P−x = 0. This means that the space
spanned by the eigenvectors of P corresponding to both λ = 0 and λ = 1 is
a subspace of the space spanned by the eigenvectors of P− corresponding to
λ = 0.

On the other hand, if x �= 0 and P−x = 0, then either Px = 0 or Px = e.
This can be proved as follows: Because P− = P−epS∗, we have Px = e(pS∗x).
If pS∗x = 0, then we have Px = 0. If pS∗x �= 0, then, without loss of generality,
we may assume that pS∗x = 1. Thus, Px = e. This means that the space
spanned by the eigenvectors of P− corresponding to λ = 0 is a subspace of
the space spanned by the eigenvectors of P corresponding to both λ = 0 and
λ = 1.

Finally, the space spanned by the eigenvectors of P− corresponding to
λ = 0 is the same as the space spanned by the eigenvectors of P corresponding
to both λ = 0 and λ = 1; and the multiplicity of λ = 0 for P− is m0 + 1.

Let λ �= 0, 1 be one of the eigenvalues of P with multiplicity m and xk,
k = 1, . . . ,m, be the corresponding linearly independent eigenvectors. As
shown in (3.6), x′

k = xk − 1
λ (pS∗xk)e, k = 1, . . . ,m, are eigenvectors of P−.

3.1 The Potentials 151

We wish to prove that x′
k, k = 1, . . . ,m, are linearly independent. Suppose

that the opposite is true, i.e., there is a set of real numbers ck, k = 1, . . . ,m,
not all of them are zeros, such that v =

∑m
k=1 ckx

′
k = 0. Set u =

∑m
k=1 ckxk.

Because P−e = 0, we have P−x′
k = P−xk, k = 1, 2, . . . ,m, and

P−u = P−

(
m∑

k=1

ckxk

)
= 0.

Thus, u �= 0 is an eigenvalue of P− for λ = 0. Note that u, being a vector
spanned by xk, k = 1, . . . ,m, which are eigenvalues of P corresponding to
eigenvalue λ �= 0, 1, is linearly independent of the eigenvectors of P corre-
sponding to λ = 0 and 1. Thus, u adds one to the multiplicity of λ = 0 for
P−. This implies that the multiplicity of λ = 0 for P− is larger than m0 + 1,
which is impossible. Therefore, x′

k, k = 1, . . . ,m, are linearly independent,
and the multiplicity of λ for P− is the same as that for P .

In summary, we conclude that the eigenvalues of P− are {0, λ1, . . . , λS−1},
with all |λi| < 1, i = 1, . . . , S−1, being the same as those of P . The multiplicity
of λi �= 0, i = 1, . . . , S − 1, for P− are the same as that for P , and the
multiplicity of 0 or P− is m0 + 1.

From (3.5), we have the following iterative algorithm:

g0 = f−, gk = f− + P−gk−1, k ≥ 1, (3.7)

and g = limk→∞ gk.
The above three numerical algorithms have about the same convergence

rate (determined by the eigenvalues of P), which is the same as the rate in com-
puting the steady-state probability π using limk→∞ P k = eπ. The algorithm
in (3.7) does not require solving for π, and only one matrix multiplication is
needed in each iteration.

In queueing systems, the perturbation realization factors satisfy the set
of linear equations (2.107). They can be solved numerically by any standard
method for linear equations, and an example is shown in Table 2.9. Further
results exploring the special features of these linear equations have not yet
been developed in the literature.

3.1.2 Learning Potentials from Sample Paths

The sample-path-based learning algorithms can be derived from (2.16)

g(i) = lim
L→∞

E

{
L−1∑

l=0

[f(Xl)− η]
∣∣∣X0 = i

}
, (3.8)

152 3 Learning and Optimization with Perturbation Analysis

and (2.17)

γ(i, j) = E

⎧
⎨

⎩

L(i|j)−1∑

l=0

[f(Xl)− η]
∣∣∣X0 = j

⎫
⎬

⎭ , (3.9)

where L(i|j) = min{l ≥ 0 : Xl = i|X0 = j}; or from (2.5) and (2.6),

γ(i, j) = g(j)− g(i)

= lim
L→∞

E

{
L−1∑

l=0

[
f(X̃l)− f(Xl)

] ∣∣∣X̃0 = j, X0 = i

}
(3.10)

= E

⎧
⎨

⎩

L∗
ij−1∑

l=0

[
f(X̃l)− f(Xl)

] ∣∣∣∣X̃0 = j, X0 = i

⎫
⎬

⎭ , i, j = 1, . . . , S; (3.11)

at L∗
ij , the two sample paths X̃ and X merge together for the first time.

Algorithms for g

From (3.8), we have the following approximation for g(i),

gL(i) = E

[
L−1∑

l=0

f(Xl)
∣∣∣X0 = i

]
− Lη, (3.12)

with limL→∞ gL(i) = g(i). The average reward η can be estimated from a
sample path by

ηL =
1
L

L−1∑

l=0

f(Xl), (3.13)

with η = limL→∞ ηL, with probability 1. However, because potentials are valid
only up to an additive constant, we may ignore the constant Lη in (3.12) and
use its first term as an estimate,

gL(i) = E

{
L−1∑

l=0

f(Xl)
∣∣∣X0 = i

}
. (3.14)

With (3.14), the potential g can be estimated on a sample path in a way
similar to the estimation of η in (3.13). Let Ii(x) = 1 if x = i and Ii(x) = 0 if
x �= i. Define

gL,N (i) =

∑N−L+1
n=0

{
Ii(Xn)

[∑L−1
l=0 f(Xn+l)

]}

∑N−L+1
n=0 Ii(Xn)

, (3.15)

3.1 The Potentials 153

in which
∑N−L+1

n=0 Ii(Xn) is the number of visits to state i of the Markov
chain in the period of [0, N − L + 1]. After each such visit, we add up f(Xn)
for L transitions, and gL,N is the average of these sums. We have

lim
N→∞

gL,N (i) = gL(i), w.p.1. (3.16)

0 1 2 3 4 5 6 7 8 9
n

1

2

3

4

5

6

S

X0

X1

X4

∑4

l=0
f(X0+l)

∑4

l=0
f(X3+l)

�

�

�

�

�

�

�

�

�

�

����

��

�
�
�
���

��������������

��	

�

�

�

Fig. 3.2. Items in (3.15) Are Not Independent

The proof of (3.16) is not straightforward, since the items
∑L−1

l=0 f(Xn+l)
for different n may not be independent. For example, given a particular
sample path, say {1, 2, 5, 1, 4, 3, 2, 3, 1, 6, . . .} as shown in Figure 3.2, with
L = 5, the two periods starting from X0 = 1 and X3 = 1 overlap. Both
items

∑4
l=0 f(X0+l) = f(1) + f(2) + f(5) + f(1) + f(4) and

∑4
l=0 f(X3+l) =

f(1)+f(4)+f(3)+f(2)+f(3) contain the same term f(1)+f(4). Therefore,
the standard law of large numbers does not apply in this case. The proof of
(3.16) is based on a fundamental theorem on ergodicity (see [32]; we state its
version on a finite state space S):

The Fundamental Ergodicity Theorem:

Let X = {Xn, n ≥ 0} be an ergodic Markov chain on state space
S; φ(x1, x2, . . .), xi ∈ S, i = 1, 2 . . . , be a function on S∞. Then the
process Z = {Zn, n ≥ 0} with Zn = φ(Xn,Xn+1, . . .) is an ergodic
Markov chain. In particular, we have

lim
N→∞

1
N

N−1∑

n=0

φ(Xn,Xn+1, . . .) = E[φ(Xn,Xn+1, . . .)], w.p.1,

(3.17)
where “E” denotes the steady-state expectation of the Markov chain
Z, and the right-hand side of (3.17) does not depend on n.

154 3 Learning and Optimization with Perturbation Analysis

Since this theorem is very useful in proving the convergence results related
to sample-path-based algorithms, we will refer to it as the Fundamental Er-
godicity Theorem. In our case, we define Zn = Ii(Xn)[

∑L−1
l=0 f(Xn+l)]; then,

{Zn, n ≥ 0} is ergodic. From (3.15), we have

gL,N (i) =
1

N−L+2

∑N−L+1
n=0 Zn

1
N−L+2

∑N−L+1
n=0 Ii(Xn)

.

By the fundamental ergodicity theorem, the numerator converges to E(Zn) =
π(i)gL(i) and the denominator converges to π(i). Thus, (3.16) holds.

One remaining problem is how to choose L. It is clear that the larger L is,
the smaller the bias of (3.15) is. On the other hand, the larger L is, the larger
the variance of the estimate is. Therefore, there is a tradeoff in choosing L.
We first note that the effect of potentials depends only on their differences,
i.e., on the realization factors γ(i, j) = g(j)− g(i). Ideally, to estimate γ(i, j),
the length should be the first passage time from state j to state i (see (3.9)).
Therefore, the length of the period, L, should be comparable to the mean
of the first passage times from one state to the others. On the other hand,
from (3.8), L should be large enough so that E[f(Xl)] is close to η when
l > L. Because the l-step state transition probability P(Xl|X0) converges
exponentially fast to the steady-state probability, we may expect that L can
be chosen as a small number. The following simulation example provides some
empirical evidence.

Example 3.1. We simulated a Markov chain with ten states. The state tran-
sition matrix is arbitrarily chosen as

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.20 0.00 0.05 0.10 0.15 0.15 0.05 0.05 0.05 0.20

0.30 0.00 0.00 0.20 0.10 0.15 0.15 0.05 0.05 0.00

0.00 0.15 0.05 0.30 0.00 0.05 0.20 0.20 0.05 0.00

0.05 0.10 0.25 0.00 0.30 0.00 0.05 0.20 0.05 0.000

0.00 0.20 0.15 0.00 0.15 0.00 0.15 0.25 0.00 0.100

0.00 0.10 0.30 0.00 0.20 0.10 0.10 0.00 0.15 0.050

0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.100

0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.200

0.05 0.15 0.25 0.00 0.15 0.15 0.15 0.00 0.00 0.100

0.15 0.05 0.00 0.20 0.15 0.10 0.20 0.10 0.05 0.000

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the reward function is

f = [10, 5, 1, 15, 3, 0, 7, 20, 2, 18]T .

Table 3.1 lists the theoretical and estimated values of the potentials g, in the
form of (3.15) and normalized to πg = 0, estimated with L = 5 on a sample
path with length N = 100, 000. The means and standard deviations (SD)
are the results of ten simulations. These results indicate that, for a ten-state
Markov chain, L = 5 yields very accurate estimates for g. ��

3.1 The Potentials 155

i 1 2 3 4 5 6 7 8 9 10

Theoretic 1.865 -4.025 -5.121 6.268 -3.259 -13.553 -1.997 14.098 -10.033 9.614

Mean 1.845 -4.056 -5.132 6.243 -3.266 -13.520 -1.893 14.162 -9.902 9.654

SD 0.098 0.088 0.163 0.140 0.140 0.187 0.116 0.110 0.185 0.160

Table 3.1. The Potentials in Example 3.1 with 100,000 Transitions and L = 5

Algorithms for Γ

Next, we derive a sample-path-based algorithm from (3.9). On a sample path
of X = {Xl, l ≥ 0} with X0 = i, for each pair of states j and i, we define two
sequences of epochs {lk(j)} and {lk(i)} as follows:

l0(i) = 0,
lk(j) = the epoch that {Xl} first visits state j after lk−1(i), k ≥ 1,
lk(i) = the epoch that {Xl} first visits state i after lk(j), k ≥ 1. (3.18)

Note that {lk(j)} and {lk(i)} are well defined on a sample path; see
Figure 3.3.

l0(i) l1(j) l1(i) l2(j) l2(i)
l

j

i

S

X3

L1(i|j) = l1(i) − l1(j)

R1(i, j) =
∑

f(Xl)

�

�

�

�

�

�

�

�

�

�

��
����

�
�
�
���

��

��	�������������
��	�

�
�
�
����

��	

�

�

Fig. 3.3. Estimating γ(i, j)

Now, define Lk(i|j) = lk(i)− lk(j) and

Rk(i, j) =
lk(i)−1∑

l=lk(j)

f(Xl).

156 3 Learning and Optimization with Perturbation Analysis

The Markov property ensures that the Lk(i|j) and Rk(i, j), k = 0, 1, . . . , are
identically and independently distributed (i.i.d), respectively. By the law of
large numbers, we have

lim
N→∞

1
N

N∑

k=1

Lk(i|j) = E[L(i|j)], w.p.1,

and

lim
N→∞

1
N

N∑

k=1

Rk(i, j) = E

[L(i|j)−1∑

l=0

f(Xl)
∣∣∣X0 = j

]
, w.p.1.

Therefore,

lim
N→∞

1
N

{
N∑

k=1

[Rk(i, j)− Lk(i|j)η]

}
= γ(i, j), w.p.1, (3.19)

where η can be estimated on the sample path using (3.13). Potentials can be
obtained by using any row of Γ . We may also use g = (πΓ)T , which may lead
to more accurate estimates because it employs all the rows of Γ .

Example 3.2. We consider the same Markov chain as in Example 3.1. We
did ten simulation runs, and each consists of 100,000 state transitions. The
theoretical values as well as the means and the standard deviations of the
estimated realization factors using (3.19) are listed in Tables 3.2, 3.3, and 3.4,
respectively. The estimated matrix Γ is indeed skew-symmetric and standard
deviations of most items are of the order 10−2. The statistics of the poten-
tials based on g = (πΓ)T are listed in Table 3.5, which shows much smaller
standard deviations compared with those in Table 3.1. ��

3.1.3 Coupling∗

The algorithms based on (3.10) require two sample paths X and X̃; they are
independent and follow the same transition probability matrix P but start
from two different states i and j, respectively. However, to estimate γ(i, j),
the two sample paths do not need to be independent of each other. In fact, it
is well known that introducing co-relation between the random samples of two
random variables may reduce the variance in estimating the difference of their
mean values [257] (also see Problem 3.7). For example, we may use the same
sequence of random variables {ξ0, ξ1, . . .} to simulate the two sample paths
X and X̃ to obtain estimates for γ(i, j) in (3.11). Introducing co-relation
between the two sample paths X and X̃ is called the coupling approach in
simulation (see, [212]). In the following, we will study this coupling issue in
greater detail.

3.1 The Potentials 157

1 2 3 4 5 6 7 8 9 10

1 0.000 -5.890 -6.987 4.403 -5.124 -15.418 -3.863 12.232 -11.899 7.749

2 5.890 0.000 -1.097 10.293 0.766 -9.528 2.028 18.122 -6.009 13.639

3 6.987 1.097 0.000 11.389 1.863 -8.430 3.124 19.219 -4.912 14.735

4 -4.403 -10.293 -11.389 0.000 -9.527 -19.820 -8.265 7.830 -16.302 3.346

5 5.124 -0.766 -1.863 9.527 0.000 -10.294 1.260 17.356 -6.775 12.873

6 15.418 9.528 8.430 19.820 10.294 0.000 11.556 27.650 3.519 23.167

7 3.863 -2.028 -3.124 8.265 -1.261 -11.556 0.000 16.095 -8.036 11.611

8 -12.232 -18.122 -19.219 -7.830 -17.356 -27.650 -16.095 0.000 -24.130 -4.484

9 11.899 6.009 4.912 16.302 6.775 -3.519 8.036 24.130 0.000 19.647

10 -7.749 -13.639 -14.735 -3.346 -12.873 -23.167 -11.610 4.484 -19.647 0.000

Table 3.2. The Theoretical Values of the Realization Factors in Example 3.2

1 2 3 4 5 6 7 8 9 10

1 0.000 -5.801 -6.983 4.336 -5.106 -15.377 -3.827 12.286 -11.727 7.756

2 5.800 0.000 -1.012 10.294 0.780 -9.474 2.097 18.204 -5.898 13.682

3 6.983 1.012 0.000 11.381 1.838 -8.416 3.146 19.217 -4.912 14.769

4 -4.336 -10.294 -11.381 0.000 -9.492 -19.690 -8.143 7.876 -16.217 3.442

5 5.105 -0.782 -1.838 9.491 0.000 -10.223 1.390 17.408 -6.582 12.918

6 15.376 9.472 8.414 19.689 10.221 0.000 11.684 27.629 3.647 23.214

7 3.827 -2.098 -3.147 8.142 -1.391 -11.687 0.000 16.014 -7.999 11.629

8 -12.285 -18.204 -19.218 -7.875 -17.409 -27.630 -16.014 0.000 -24.069 -4.491

9 11.726 5.895 4.910 16.214 6.579 -3.653 7.997 24.067 0.000 19.709

10 -7.755 -13.683 -14.768 -3.440 -12.920 -23..216 -11.629 4.493 -19.713 0.000

Table 3.3. The Mean Realization Factors in Example 3.2

Define a composed Markov chain X̂ := {(Xl, X̃l), l = 0, 1, . . .}; its state
space is

Ŝ = S × S = {(1, 1), (1, 2), . . . , (1, S),
(2, 1), (2, 2), . . . , (2, S), . . . , (S, 1), . . . , (S, S)},

and its transition probabilities are

p̂[(i′, j′)|(i, j)] := P
(
Xl+1 = i′, X̃l+1 = j′

∣∣∣Xl = i, X̃l = j
)
,

i, i′, j, j′ ∈ S,

which equal

158 3 Learning and Optimization with Perturbation Analysis

1 2 3 4 5 6 7 8 9 10

1 0.000 0.017 0.060 0.043 0.052 0.017 0.047 0.077 0.144 0.063

2 0.017 0.000 0.020 0.027 0.011 0.025 0.035 0.025 0.109 0.040

3 0.060 0.020 0.000 0.029 0.049 0.054 0.025 0.024 0.065 0.076

4 0.043 0.028 0.029 0.000 0.037 0.028 0.025 0.041 0.116 0.100

5 0.052 0.011 0.050 0.038 0.000 0.021 0.037 0.045 0.041 0.026

6 0.017 0.024 0.054 0.027 0.020 0.000 0.025 0.041 0.037 0.070

7 0.047 0.036 0.025 0.025 0.037 0.025 0.000 0.039 0.059 0.032

8 0.077 0.024 0.024 0.041 0.044 0.041 0.039 0.000 0.128 0.064

9 0.146 0.110 0.065 0.117 0.042 0.039 0.059 0.130 0.000 0.102

10 0.064 0.040 0.076 0.101 0.025 0.068 0.031 0.065 0.097 0.000

Table 3.4. The Standard Deviations of the Realization Factors in Example 3.2

1 2 3 4 5 6 7 8 9 10

Theoretic 1.865 -4.025 -5.121 6.268 -3.259 -13.553 -1.997 14.098 -10.033 9.614

Mean 1.859 -4.039 -5.092 6.237 -3.273 -13.517 -1.912 14.132 -9.932 9.671

SD 0.0122 0.0074 0.0105 0.0127 0.0111 0.0038 0.0148 0.0146 0.0405 0.0206

Table 3.5. The Potentials Based on the Realization Factors in Example 3.2

p̂[(i′, j′)|(i, j)] := P
(
Xl+1 = i′

∣∣∣Xl = i, X̃l = j
)

× P
(
X̃l+1 = j′

∣∣∣Xl = i, X̃l = j,Xl+1 = i′
)
.

The transition probability matrix of X̂ is denoted as

P̂ =
[
p̂[(i′, j′)|(i, j)]

]

(i,j),(i,j′)∈Ŝ
.

To simplify the notation, we denote

pj(i′|i) := P
(
Xl+1 = i′

∣∣∣Xl = i, X̃l = j
)
,

which is the conditional transition probability distribution of X from state
X = i when the Markov chain X̃ is in state X̃ = j; and

p̃i′|i(j′|j) := P
(
X̃l+1 = j′

∣∣∣X̃l = j,Xl = i,Xl+1 = i′
)
,

which is the conditional transition probability of the Markov chain X̃ moving
from state j to state j′, given that the Markov chain X moves from state i
to state i′. Thus,

3.1 The Potentials 159

p̂[(i′, j′)|(i, j)] = pj(i′|i)p̃i′|i(j′|j), i, i′, j, j′ ∈ S. (3.20)

With similar definitions, we have

p̂[(i′, j′)|(i, j)] = p̃i(j′|j)pj′|j(i′|i), i, i′, j, j′ ∈ S. (3.21)

Summing up both sides of (3.20) and (3.21) over i′ ∈ S, we have

p̃i(j′|j) =
∑

i′∈S
pj(i′|i)p̃i′|i(j′|j), j′ ∈ S.

Summing up both sides of (3.20) and (3.21) over j′ ∈ S, we have

pj(i′|i) =
∑

j′∈S
p̃i(j′|j)pj′|j(i′|i), j′ ∈ S.

If X and X̃ are independent, then p̃i′|i(j′|j) = p̃i(j′|j) = p(j′|j) and
pj′|j(i′|i) = pj(i′|i) = p(i′|i), for all i, i′, j, j′ ∈ S.

Now, let the reward function of X̂ be f̂(i, j) = f(j)−f(i), the correspond-
ing performance potentials of X̂ be ĝ(i, j), and the steady-state probability
distribution of X̂ be π̂(i, j), i, j ∈ S. We have the Poisson equation for X̂

(assuming P̂ is irreducible):

(I − P̂)ĝ + η̂e = f̂ , (3.22)

where η̂ = π̂f̂ is the average reward.
Equation (3.22) holds for X̂ = (X, X̃). In our case, both X and X̃

have the same transition probability matrix P . Thus, their steady-state prob-
abilities are equal; i.e., π(i) = π̃(i), i ∈ S. Thus, we have η̂ = π̂f̂ =∑

i,j∈S π̂(i, j)f̂(i, j) = 0, and (3.22) becomes

(I − P̂)ĝ = f̂ .

In addition, although the transitions of X and X̃ are coupled, the transition
of each of X and X̃ at any time must follow the transition probability matrix
P . Precisely, we may require that

p̃i(j′|j) = p(j′|j), i ∈ S, (3.23)

and that
pj(i′|i) = p(i′|i), j ∈ S. (3.24)

Under these conditions the coupling is reflected by the conditional transition
probabilities pj′|j(i′|i) and p̃i′|i(j′|j). Next, we show that, under these condi-
tions, ĝ(i, j) = g(j)− g(i), i, j ∈ S is indeed a solution to (3.22).

To facilitate the matrix manipulation, we need to introduce some notation.
Let A = [a(i, j)] be an m× n matrix and B = [b(i′, j′)] be an m′ × n′ matrix.

160 3 Learning and Optimization with Perturbation Analysis

The Kronecker product of A and B is defined as the (mm′) × (nn′) matrix
denoted as

A⊗B =

⎡

⎢⎣
a(1, 1)B . . . a(1, n)B

...
. . .

...
a(m, 1)B . . . a(m,n)B

⎤

⎥⎦ .

For clarity, we use em to denote an m-dimensional column vector with all
components being one.

With this notation, we can verify that

f̂ = (eS ⊗ f)− (f ⊗ eS).

Conditions (3.23) and (3.24) are equivalent to

P̂ (I ⊗ eS) = P ⊗ eS , (3.25)

and
P̂ (eS ⊗ I) = eS ⊗ P. (3.26)

We can easily derive that, for any matrix A and vector g, if Ag is well defined,
then (A⊗e)g = (Ag)⊗e and (e⊗A)g = e⊗(Ag), for an e with any dimension.

Finally, from (3.25) and (3.26), we have

(I − P̂)(eS ⊗ I − I ⊗ eS)g
= (eS ⊗ I − I ⊗ eS)g − [eS ⊗ (Pg)− (Pg)⊗ eS]
= eS ⊗ [(I − P)g]− [(I − P)g]⊗ eS

= eS ⊗ [(I − P + eSπ)g]− [(I − P + eSπ)g]⊗ eS

= eS ⊗ f − f ⊗ eS

= f̂ .

Thus, under conditions (3.23) and (3.24),

ĝ = eS ⊗ g − g ⊗ eS

is indeed one of the solutions to (3.22). That is, ĝ(i, j) = g(j)− g(i) = γ(i, j),
i, j ∈ S, are the realization factors of X. We have

eT
S2 ĝ = 0, and eT

S2 f̂ = 0.

Equation (3.22) is the perturbation realization factor (PRF) equation with
coupled sample paths.

Now, we discuss the numerical method for solving (3.22). Let ν be any S2

dimensional row vector such that νeS2 = 1, and νĝ = 0. For example, we can
take ν = 1

S2 e
T
S2 . We can write the PRF equation (3.22) as

(I − P̂ + eS2ν)ĝ = f̂ .

3.2 Performance Derivatives 161

We can prove (see Problem 3.2) that the eigenvalues of P̂ − eS2ν are all in
the unit circle. Thus, we have the following expansion:

ĝ = (I − P̂ + eS2ν)−1f̂

=
∞∑

l=0

(P̂ − eS2ν)lf̂ . (3.27)

Let λ be one of the eigenvalues of P and x be its corresponding eigenvector.
Define x̂ = x ⊗ eS . It is easy to verify that λ is the eigenvalue of P̂ with
eigenvector x̂. Therefore, all the eigenvalues of P are the eigenvalues of P̂
(which may have other eigenvalues). Thus, the convergence rate of (3.27)
cannot be better than (3.1) or (3.3). Therefore, the coupling approach cannot
improve the convergence rate of the numerical algorithms for calculating Γ
(γ(i, j) = ĝ(i, j)).

The coupling method is generally used in simulation to reduce the variance
of the estimates for the difference of the mean of two different random vari-
ables. Relative references include [31, 33, 91, 92, 115, 127, 177, 179, 212, 213].
Applying this approach to estimate γ(i, j) = g(j) − g(i) with two coupled
sample paths still requires further research and we will not discuss the de-
tails in this book. Problems 3.9 and 3.10 provide a brief introduction to this
variance-reduction simulation approach.

3.2 Performance Derivatives

3.2.1 Estimating through Potentials

The performance potentials obtained by numerical methods or by learning
from sample paths can be used to calculate the performance derivatives using
the performance derivative formula (2.23):

dηδ

dδ
= π(ΔP)g. (3.28)

We first give a few numerical examples.

Example 3.3. We consider a Markov chain with the same transition proba-
bility matrix P and reward function f as those in Examples 3.1 and 3.2. To
study the derivatives of the average reward, we arbitrarily choose the direction
of P as

ΔP =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.010 0.000 0.005 0.005 −0.010 0.010 0.010 0.005 0.005 −0.020

−0.010 0.000 0.000 0.015 0.005 0.005 −0.005 −0.005 −0.005 0.000

0.000 0.010 0.010 0.010 0.000 −0.010 0.000 −0.010 −0.010 0.000

0.005 −0.020 0.005 0.000 0.005 0.000 0.010 −0.010 0.005 0.000

0.000 0.010 −0.010 0.000 0.010 0.000 −0.010 0.010 0.000 −0.010

0.000 0.010 −0.010 0.000 −0.020 0.005 0.005 0.000 0.005 0.005

0.010 −0.010 0.010 −0.010 0.010 −0.010 0.010 −0.010 0.010 −0.010

0.000 0.010 0.000 −0.010 0.000 0.010 0.000 −0.005 0.000 −0.005

0.010 −0.010 −0.020 0.000 0.010 0.010 0.010 0.000 0.000 −0.010

0.010 −0.010 0.000 0.010 −0.010 −0.010 0.010 −0.010 0.010 0.000

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

162 3 Learning and Optimization with Perturbation Analysis

We use the sample-path-based estimates of potentials in the form of (3.15) to
compute the derivatives. To study the effect of L, we choose L = 1, 2, 3, 5, 10,
15, 20. For each value of L, we do two sets of simulation, with each set having
ten runs. Each simulation run contains 100,000 state transitions in the first
set and 1,000,000 transitions in the second set. The theoretical value of the
derivative is -0.1176. The means and standard deviations of the derivatives
calculated by (3.28) using the sample-path-based potential estimates in these
two sets of simulations are listed in Tables 3.6 and 3.7.

L 1 2 3 5 10 15 20 Theoretic

Mean -0.0979 -0.1224 -0.1162 -0.1172 -0.1180 -0.1183 -0.1176 -0.1176

SD 0.00045 0.00059 0.00070 0.00151 0.00186 0.00261 0.00216 -

Table 3.6. The Performance Derivatives in Example 3.3 with 100,000 Transitions

L 1 2 3 5 10 15 20 Theoretic

Mean -0.0989 -0.1229 -0.1167 -0.1176 -0.1178 -0.1176 -0.1174 -0.1176

SD 0.00009 0.00015 0.00016 0.00025 0.00026 0.00047 0.00059 -

Table 3.7. The Performance Derivatives in Example 3.3 with 1,000,000 Transitions

These tables show that the estimate is quite accurate even when L is as
small as 2 or 3. The standard deviation is acceptable even if L is 20. Thus,
the results are not so sensitive to the value of L. It is interesting to note that
even if we choose L = 1 in this case, the error is only about 17%. L = 1
means using the reward function to approximate the potentials, i.e., assuming
that g ≈ f . This corresponds to the “myopic” view in optimization: When
the system jumps to state i, we just use the one step reward f(i) to represent
its effect on the long-run performance. ��

3.2.2 Learning Directly

One disadvantage of the approach in Section 3.2.1 is that it requires us to esti-
mate the potentials for all the states. This is sometimes difficult for a number
of reasons: The number of states may be too large; some states may be visited
very rarely; and for systems with special structures (e.g. queueing networks),
it may not be convenient even to list out all the states. In this subsection, we
show that the performance derivatives can be estimated directly from sample
paths without estimating each individual potential.

An analogue is the estimation of the performance measure itself. There
are two ways to do the estimation: We may estimate all π(i) first and then
use η = πf to calculate the performance, or we may estimate η directly by

3.2 Performance Derivatives 163

η = lim
L→∞

1
L

L−1∑

l=0

f(Xl), w.p.1. (3.29)

This direct estimation balances the accuracy of π(i) and the frequency of the
visits to i: If i is not visited often, then π(i) may not be accurately estimated;
meanwhile, its effect on η is also small. We wish to develop equations similar
to (3.29) for the derivatives of average rewards.

A Basic Formula and a General Algorithm

We first present a basic formula for the direct estimation of the derivatives
of average rewards. This formula is the foundation of the sample-path-based
algorithms. With this formula, a general algorithm for derivatives can be de-
veloped; many other algorithms can be viewed as special cases of this general
algorithm [61].

Consider a stationary Markov chain X = (X0,X1, . . .). (This implies that
the initial probability distribution is the steady-state distribution π.) Let E
denote the expectation on the probability space generated by X. Because it is
impossible for a sample path with transition matrix P to contain information
about ΔP = P ′−P , we need to use a standard technique in simulation called
importance sampling. First, we make a standard assumption in importance
sampling: For any i, j ∈ S, if Δp(j|i) �= 0, then p(j|i) �= 0. This assumption
allows us to analyze the effect of Δp(j|i) based on the information observed
when the system moves from state i to state j on X. If the assumption does
not hold, we may have p′(j|i) > 0 while p(j|i) = 0 for some i, j ∈ S. In this
case, a sample path of X does not contain any transition from i to j, and we
may need to observe two or more transitions (see Problem 3.11).

First, we have (2.23)

dηδ

dδ
= πΔPg =

∑

i∈S

∑

j∈S
[π(i)Δp(j|i)g(j)]

=
∑

i∈S

∑

j∈S

{
π(i)p(j|i)

[
Δp(j|i)
p(j|i) g(j)

]}
.

For a stationary Markov chain X = {Xl, l = 0, 1, . . .}, this is

dηδ

dδ
= E

{
Δp(Xl+1|Xl)
p(Xl+1|Xl)

g(Xl+1)
}

, (3.30)

which does not depend on l. Next, let ĝ(Xl+1,Xl+2, . . .) be an unbiased esti-
mate of g(Xl+1); i.e., let

g(i) = E {ĝ(Xl+1,Xl+2, . . .)|Xl+1 = i} , i ∈ S. (3.31)

With (3.31), we have

164 3 Learning and Optimization with Perturbation Analysis

E

{
Δp(Xl+1|Xl)
p(Xl+1|Xl)

ĝ(Xl+1,Xl+2, . . .)
}

= E

{
E

[
Δp(Xl+1|Xl)
p(Xl+1|Xl)

ĝ(Xl+1,Xl+2, . . .)
∣∣∣Xl,Xl+1

]}

= E

{
Δp(Xl+1|Xl)
p(Xl+1|Xl)

E
[
ĝ(Xl+1,Xl+2, . . .)

∣∣∣Xl,Xl+1

]}

= E

{
Δp(Xl+1|Xl)
p(Xl+1|Xl)

g(Xl+1)
}

.

Therefore, we have the following basic formula:

dηδ

dδ
= E

{
Δp(Xl+1|Xl)
p(Xl+1|Xl)

ĝ(Xl+1,Xl+2, . . .)
}

. (3.32)

With this formula, we can develop a general algorithm for estimating deriva-
tives. In fact, for an ergodic Markov chain X = {X0,X1, . . .}, we have

dηδ

dδ
= lim

N→∞

1
N

N−1∑

n=0

{[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

]
ĝ(Xn+1,Xn+2, . . .)

}
, w.p.1,

(3.33)

where ĝ(Xn+1,Xn+2, . . .) is any function satisfying (3.31).
The proof of (3.33) follows directly from the fundamental ergodicity the-

orem (3.17) by simply defining

φ(Xn,Xn+1, . . .) =
Δp(Xn+1|Xn)
p(Xn+1|Xn)

ĝ(Xn+1,Xn+2, . . .).

Specific Algorithms

With different estimates or approximations of the potentials, (3.33) leads to
a few specific approximate algorithms for the derivatives of average rewards.

Algorithm 3.1. (Approximation by truncation)
With (3.14), we have

g(i) ≈ gL(i) = E

{
L−1∑

l=0

f(Xl)
∣∣∣X0 = i

}
.

Therefore, from (3.31), we may choose

3.2 Performance Derivatives 165

ĝ(Xn+1,Xn+2, · · ·) ≈
L−1∑

l=0

f(Xn+l+1).

Using this ĝ in (3.32) and (3.33), we get

dηδ

dδ
≈ E

{
Δp(Xn+1|Xn)
p(Xn+1|Xn)

[L−1∑

l=0

f(Xn+l+1)
]}

= lim
N→∞

1
N

{
N−1∑

n=0

[Δp(Xn+1|Xn)
p(Xn+1|Xn)

][L−1∑

l=0

f(Xn+l+1)
]}

, w.p.1.

(3.34)

This is equivalent to

dηδ

dδ
≈ lim

N→∞

1
N

N−1∑

n=0

{
f(Xn+L)

L−1∑

l=0

[
Δp(Xn+l+1|Xn+l)
p(Xn+l+1|Xn+l)

]}
, w.p.1.

(3.35)

This algorithm and similar ones for Markov processes and queueing networks
are presented in [69].

Example 3.4. We repeat the simulation for the same Markov chain as in
Example 3.3 and apply (3.35) to estimate the derivative of the average reward.
We perform ten simulation runs for each value of L and the results are listed
in Table 3.8. The table shows that for L = 2 to 15, (3.35) yields very accurate
estimates. When L increases further from 20, the estimate becomes inaccurate
because the variance becomes larger. ��

By the ergodicity of the Markov chain, (3.35) can be written as

dηδ

dδ
≈ E

{
f(Xn+L)

L−1∑

l=0

[
Δp(Xn+l+1|Xn+l)
p(Xn+l+1|Xn+l)

]}
, (3.36)

where “E” denotes the steady-state expectation. Define

ρL(i) = E

{
L−1∑

l=0

[
Δp(Xl+1|Xl)
p(Xl+1|Xl)

]∣∣∣∣XL = i

}
.

Then, (3.36) becomes

166 3 Learning and Optimization with Perturbation Analysis

L 1 2 3 5 10 15

Mean -0.0973 -0.1221 -0.1157 -0.1163 -0.1151 -0.1137

SD 0.0033 0.0067 0.0104 0.0162 0.0305 0.00443

L 25 50 75 100 200 Theoretic

Mean -0.1098 -0.1035 -0.0933 -0.0797 -0.0434 -0.1176

SD 0.0760 0.1522 0.2300 0.3086 0.6351 -

Table 3.8. The Performance Derivatives in Example 3.4 with 100,000 Transitions

dηδ

dδ
≈

∑

i∈S
π(i)f(i)ρL(i).

Define
ρ(i) = lim

L→∞
ρL(i), i ∈ S. (3.37)

Then, by the above derivation, we have

dηδ

dδ
=

∑

i∈S
π(i)f(i)ρ(i). (3.38)

Equation (3.38) and the convergence of (3.37) can be rigorously proved; see
Problem 3.15.

Algorithm 3.2. (Approximation by discounting)
Because limβ↑1 gβ = g, potential g can be approximated by the β-potential

gβ in (2.45):

gβ(i) = E

{ ∞∑

l=0

βl[f(Xl)− η]
∣∣∣X0 = i

}
,

with 0 < β < 1 being a discount factor. Ignoring the constant term, we have
the approximation of the potential as follows:

gβ(i) = E

{ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

}
.

Therefore, we can choose

ĝ(Xn+1,Xn+2, . . .) ≈
∞∑

l=0

βlf(Xn+l+1).

Using this as the ĝ in (3.33), we get

3.2 Performance Derivatives 167

dηδ

dδ
≈ lim

N→∞

1
N

{
N−1∑

n=0

[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

] [∞∑

l=0

βlf(Xn+l+1)
]}

, w.p.1

= E

{
Δp(Xn+1|Xn)
p(Xn+1|Xn)

[∞∑

l=0

βlf(Xn+l+1)
]}

. (3.39)

The right-hand side of (3.39) equals the sum of the two terms:

lim
N→∞

1
N

N−1∑

n=0

{
Δp(Xn+1|Xn)
p(Xn+1|Xn)

[N−n−1∑

l=0

βlf(Xn+l+1) +
∞∑

l=N−n

βlf(Xn+l+1)
]}

.

(3.40)
For the second term, we have

∣∣∣∣∣
1
N

N−1∑

n=0

{
Δp(Xn+1|Xn)
p(Xn+1|Xn)

[∞∑

l=N−n

βlf(Xn+l+1)
]}∣∣∣∣∣

≤ max
i,j∈S

∣∣∣∣
Δp(j|i)
p(j|i)

∣∣∣∣max
i∈S

|f(i)|
{

1
N

N−1∑

n=0

∞∑

l=N−n

βl

}

→ 0, as N →∞.

Therefore, the second term in (3.40) is zero, and (3.39) becomes

dηδ

dδ
≈ lim

N→∞

1
N

N−1∑

n=0

{
Δp(Xn+1|Xn)
p(Xn+1|Xn)

[N−n−1∑

l=0

βlf(Xn+l+1)
]}

, w.p.1.

We exchange the order of the above two finite sums and obtain

dηδ

dδ
≈ lim

N→∞

1
N

N∑

n=1

{
f(Xn)

n−1∑

l=0

[
βn−l−1Δp(Xl+1|Xl)

p(Xl+1|Xl)

]}
, w.p.1.

(3.41)

This is the policy-gradient algorithm developed in [17, 18].
We can calculate zn :=

∑n−1
l=0

[
βn−l−1 Δp(Xl+1|Xl)

p(Xl+1|Xl)

]
recursively: set z0 = 0

and

zk+1 = βzk +
Δp(Xk+1|Xk)
p(Xk+1|Xk)

, k ≥ 0.

On the other hand, to calculate
∑L−1

l=0

[
Δp(Xn+l+1|Xn+1)
p(Xn+l+1|Xn+1)

]
in Algorithm 3.1,

we have to store L values.
Finally, the discount factor approximation can also be used to reduce the

variance in estimating the performance gradients [198].

168 3 Learning and Optimization with Perturbation Analysis

Example 3.5. We repeat the simulation for the same Markov system as in
Examples 3.3 and 3.4 and apply (3.41) to estimate the performance derivative.
We perform ten simulation runs for each value of the discount factor β, and
the means and standard deviations of the estimates are listed in Table 3.9.
The table shows that for β = 0.8 to 0.9, the algorithm in (3.41) yields very
accurate estimates. Of course, when β increases, gβ increases and goes closer
to g. However, when β increases, the variance of the estimate also increases.
This explains why the estimation error becomes larger for β > 0.9. Thus,
when we choose the value of β, we need to balance both bias and variance.
The table shows that β = 0.8 to 0.9 are the best choices. ��

β 0.80 0.85 0.90 0.95 0.97 Theoretic

Mean -0.113 -0.114 -0.114 -0.111 -0.125 -0.1176

SD 0.016 0.021 0.031 0.061 0.065 -

Table 3.9. The Performance Derivatives in Example 3.5 with 100,000 Transitions

Algorithm 3.3. (Based on perturbation realization factors)
It is sometimes easier and more accurate to estimate the potentials via

perturbation realization factors γ(i, j) = g(j) − g(i), i, j,∈ S. This is based
on (2.17)

γ(i, j) = E

{
L(i|j)−1∑

l=0

[f(Xl)− η]
∣∣∣X0 = j

}
.

To develop a direct algorithm for derivatives of average rewards, we first use
the above equation to obtain ĝ. To this end, we choose any regenerative state
i∗ as a reference point and set g(i∗) = 0. Then, for any state i ∈ S, we have

g(i) = g(i)− g(i∗) = γ(i∗, i).

For convenience, we set X0 = i∗ and define u0 = 0, and we let uk+1 = min{n :
n > uk,Xn = i∗} be the sequence of regenerative points. For any time instant
n ≥ 0, we define an integer m(n) such that um(n) ≤ n < um(n)+1. This implies
that um(n) = n when i = i∗. From (2.17), we have

g(i) = γ(i∗, i) = E

{ um(n)+1−1∑

l=n

[
f(Xl)− η

]∣∣∣Xn = i

}
.

Choosing ĝ(Xn+1, . . .) =
∑um(n+1)+1−1

l=n+1 [f(Xl) − η] in (3.32) and (3.33), we
have

3.2 Performance Derivatives 169

dηδ

dδ
= E

⎧
⎨

⎩

[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

] um(n+1)+1−1∑

l=n+1

[f(Xl)− η]

⎫
⎬

⎭

= lim
N→∞

1
N

N−1∑

n=0

⎧
⎨

⎩

[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

]um(n+1)+1−1∑

l=n+1

[f(Xl)− η]

⎫
⎬

⎭ , w.p.1(3.42)

= lim
N→∞

1
N

N∑

n=1

⎧
⎨

⎩[f(Xn)− η]
n∑

l=um(n)

Δp(Xl|Xl−1)
p(Xl|Xl−1)

⎫
⎬

⎭ , w.p.1, (3.43)

where um(n+1)+1 is the first time after Xn+1 that the Markov chain reaches
state i∗.

Next, define

ŵn+1 =
um(n+1)+1−1∑

l=n+1

[f(Xl)− η].

By the regenerative property, from (3.42) we have

dηδ

dδ
=

E
{∑um+1−1

k=um

(
Δp(Xk+1|Xk)
p(Xk+1|Xk) ŵk+1

)}

E[um+1 − um]

= E

(
Δp(Xk+1|Xk)
p(Xk+1|Xk)

ŵk+1

)
. (3.44)

Define

r̂n =
n∑

l=um(n)

Δp(Xl|Xl−1)
p(Xl|Xl−1)

.

Therefore, (3.43) takes the following form

dηδ

dδ
=

E
{∑um+1−1

k=um
[f(Xk)− η]r̂k

}

E[um+1 − um]
= E {[f(Xk)− η]r̂k} . (3.45)

The optimization scheme proposed in [197] is essentially a result of com-
bining the above algorithms with stochastic approximation techniques. See
Section 6.3.1 for additional discussion.

Example 3.6. We repeat the simulation for the same Markov system as in
Examples 3.3, 3.4, and 3.5. We perform ten simulation runs and apply (3.43)
to estimate the performance derivatives. The mean is -0.1191 and the standard
deviation is 0.0075. ��

170 3 Learning and Optimization with Perturbation Analysis

Algorithm 3.4. (Parameterized policy spaces)
Now, we consider a parameterized space of transition probability matrices

denoted as Pθ = [pθ(j|i)], i, j ∈ S, where θ is a continuous parameter and
d
dθ{pθ(j|i)} exists for all i, j ∈ S. We assume that the Markov chains under
all transition probability matrices are ergodic. The corresponding steady-state
probabilities and average rewards are denoted as πθ and ηθ = πθf . For sim-
plicity, we assume that the reward function f is the same for all Pθ. (The
extension to fθ depending on θ is straightforward.)

Algorithms for the derivatives of average rewards can be developed by
replacing Δp(j|i) in (3.32) and (3.33) with d

dθ{pθ(j|i)}. For example, the basic
formula (3.32) becomes

dηθ

dθ
= E

{
d
dθpθ(Xn+1|Xn)
p(Xn+1|Xn)

ĝ(Xn+1,Xn+2, . . .)

}
,

where ĝ(Xn+1,Xn+2, . . .) is an unbiased estimate of g(i), given Xn+1 = i. The
specific algorithms (3.34) and (3.39) become

dηθ

dθ
= E

{
d
dθpθ(Xn+1|Xn)
p(Xn+1|Xn)

[L−1∑

l=0

f(Xn+l+1)
]}

, (3.46)

dηθ

dθ
= E

{
d
dθpθ(Xn+1|Xn)
p(Xn+1|Xn)

[∞∑

l=0

βlf(Xn+l+1)
]}

. (3.47)

From (3.44), we have

dηθ

dθ
= E

⎧
⎨

⎩

d
dθpθ(Xn+1|Xn)
p(Xn+1|Xn)

[um(n+1)+1−1∑

l=n+1

[f(Xl)− η]
]
⎫
⎬

⎭

=
E

{∑um+1−1
n=um

[
d

dθ p(Xn+1|Xn)

p(Xn+1|Xn)

(∑um(n+1)+1−1

l=n+1 [f(Xl)− η]
)]}

E[um+1 − um]
. (3.48)

From(3.45), we have

dηθ

dθ
= E

⎧
⎨

⎩[f(Xn)− η]
n∑

l=um(n)

d
dθpθ(Xl|Xl−1)
p(Xl|Xl−1)

⎫
⎬

⎭

=
E

{∑um+1−1
n=um

[
[f(Xn)− η]

∑n
l=um(n)

d
dθ pθ(Xl|Xl−1)

p(Xl|Xl−1)

]}

E[um+1 − um]
. (3.49)

Other equations similar to (3.35) and (3.41) can be developed.

3.2 Performance Derivatives 171

Example 3.7. The above estimation algorithms are applied to the partially-
observable Markov decision processes (POMDPs) in [17, 18]. (This example
can be better understood after reading the materials in Chapter 4 about the
Markov decision processes.)

In this example, we use the following simple parameterized model. In ad-
dition to the state space S, there is a finite action space denoted as A and
a finite observation space denoted as Y. Each α ∈ A determines a transition
probability matrix Pα = [pα(j|i)]. When the Markov chain is in state i ∈ S,
an observation y ∈ Y is obtained according to a probability distribution νi(y).
For any observation y, we may choose a randomized policy μy(α), which is a
probability distribution over the action space A. It is assumed that the distri-
bution depends on a parameter θ and therefore is denoted as μy(θ, α). When
y ∈ Y is observed, with policy μy(θ, α), we take action α ∈ A with probability
μy(θ, α). Furthermore, we assume that Pα does not depend on θ.

Given an observation distribution νi(y) and a randomized policy μy(θ, α),
the corresponding transition probability is

pθ(j|i) =
∑

α,y

{νi(y)μy(θ, α)pα(j|i)} .

Therefore,
d

dθ
pθ(j|i) =

∑

α,y

[
νi(y)pα(j|i) d

dθ
μy(θ, α)

]
. (3.50)

We further assume that although the state Xn, n = 0, 1, . . ., is not com-
pletely observable, the cost at any time f(Xn) is known (e.g., by observation,
or it depends only on the action). Then, the algorithms in (3.46) and (3.47)
can be used with (3.50). If, in addition, there is a state i∗, which is irreducible
for all policies, then the algorithm in (3.49) can be used. ��

Finally, all the above algorithms are expressed in sample-path-based aver-
ages. Stochastic approximation based recursive algorithms can be developed
based on these average-type algorithms. We will study these topics in Chapter
6.

Performance Derivatives for Queueing Systems

A direct learning algorithm for performance derivatives of queueing networks
has been presented as Algorithm 2.2 in Section 2.4.1. An algorithm for the
derivatives of the mean response time with respect to service rate in an M/G/1
queue is given in Example 2.10 in Section 2.4.3.

As explained in Section 2.4.3, Algorithm 2.2 directly estimates the perfor-
mance derivative via

∑
all n π(n)c(f)(n, v) (see (2.108)) without estimating

every perturbation realization factor c(f)(n, v) and every steady-state prob-
ability π(n) separately. The same explanation applies to the algorithm in
Example 2.10 in Section 2.4.3.

172 3 Learning and Optimization with Perturbation Analysis

It is interesting to note the difference in the process of developing the
PA theory for both queueing systems and Markov systems. For queueing sys-
tems, the performance derivative estimation algorithms were developed first,
and the concept of the perturbation realization factor and the performance
derivative formula were developed later to provide a theoretical background
for the algorithms. For Markov systems, the concept of performance potentials
and performance derivatives were developed first, and the sample-path-based
algorithms, both for potentials and for derivatives directly, were proposed
later, by using the formulas.

The algorithms for estimating c(f)(n, v) in queueing systems should be
easy to develop; however, there has not been much effort in this direction,
perhaps because there have not been many applications with c(f)(n, v) alone
so far. On the other hand, as we will see in Chapter 4, the estimated potentials
can also be used in policy iteration optimization of Markov systems. In a recent
study, the relation between the realization factors c(f)(n, v) (with a queueing
model) and the potentials g(n) (with a Markov model) is established, and
policy-iteration-type algorithms are developed for (customer-average) perfor-
mance optimization of queueing systems based on c(f)(n, v); see [260]. In such
algorithms, the realization factors c(f)(n, v) or their aggregations need to be
calculated or estimated on sample paths.

3.3 Optimization with PA

3.3.1 Gradient Methods and Stochastic Approximation

The PA gradient estimates can be used to implement sample-path-based per-
formance optimization. When the sample path is long enough, the estimates
are very accurate and we can simply use them in any gradient-based opti-
mization procedure [22, 23, 85] for deterministic systems. If the sample path
is short, then the gradient estimates contain stochastic errors, and stochastic
approximation techniques have to be used in developing optimization algo-
rithms.

As shown in Figure 3.1, we will leave the stochastic approximation-based
recursive algorithms to Chapter 6, in which we first introduce the related
material in stochastic approximation in some detail. In this section, we dis-
cuss some fundamental methods in performance optimization with accurate
estimates of the performance gradients.

Gradient Methods and the Robbins-Monro Algorithm

In general, we consider the optimization of a performance function η(θ) :
D → R, where R = (−∞,∞) and D ⊆ RM is a convex M -dimensional
parameter subset. Denote the performance gradients at any point θ ∈ D as
dη(θ)

dθ := (∂η(θ)
∂θ(1) , . . . ,

∂η(θ)
∂θ(M))

T , where θ(i), i = 1, 2, . . . ,M , is the ith component

3.3 Optimization with PA 173

of θ. Let θ∗ be a local optimal point of η(θ) in D. We have dη(θ∗)
dθ = 0. We want

to find out a local optimal point. This is a constrained optimization problem.
Suppose that the performance gradients dη(θ)

dθ can be accurately estimated.
We may find θ∗ iteratively by using any gradient-based method (see, e.g.,
Chapter 2 of [23]). We start with an initial point θ0 ∈ D. At the kth iteration,
we run the system with parameter θk, k = 0, 1, . . ., and apply PA on a long
sample path to estimate the performance gradients at θk, dη(θk)

dθ . Set hk :=
dη(θk)

dθ . In the simplest gradient method, the parameter θ is updated according
to

θk+1 = ΠD (θk + κkhk) , (3.51)

where ΠD denotes a projection onto D, and κk > 0 is called a step size.
It can be shown that under some conditions on η(θ), θk converges to a

local optimal point θ∗ as k → ∞, when κk is a small positive constant (e.g.,
in Example 6.1 in Chapter 6, θk → θ∗ if 0 < κk = κ < 1). Under some other
conditions on η(θ), the convergence of θk requires κk → 0 and

∑∞
k=0 κk =∞.

The convergence of the algorithm (3.51) may be slow, and other methods
such as Newton’s method and Armijo’s rule etc. can be used to improve the
convergence rate. The detailed analysis of the gradient algorithms is beyond
the scope of this book and can be found in, e.g., [23].

Because of the stochastic nature of the system, the gradient estimate ob-
tained from any sample path with a finite length contains stochastic errors.
We denote such a noisy (usually unbiased) estimate as

ĥk :=
̂dη(θk)
dθ

.

The problem becomes to find the zeros of a function dη(θ)
dθ , which cannot be

measured accurately. This is a topic in stochastic approximation (SA). With
SA, we may simply replace the accurate value of the gradient in (3.51) with
its estimate (cf. (6.6) and (6.7) in Chapter 6):

θk+1 = ΠD
(
θk + κkĥk

)
. (3.52)

It is well known that with a properly chosen sequence of κk (in general∑∞
k=1 κk = ∞ and

∑∞
k=1 κ2

k < ∞, e.g., κk = 1
k ; these conditions are more

strict than those for the deterministic case (3.51)) and under some conditions
for the noise in the gradient estimates ĥk and for the performance function
η(θ), we are guaranteed to obtain a sequence of θk that converges almost
surely (with probability 1) to a local optimal point θ∗, as k → ∞. Equation
(3.52) corresponds to the Robbins-Monro algorithm in finding a zero point for
the performance gradient; it will be discussed in greater detail in Chapter 6.

174 3 Learning and Optimization with Perturbation Analysis

Sample-Path-Based Implementation

In sample-path-based implementation, the gradient estimation error depends
on the length of the sample path. Therefore, the convergence of the optimiza-
tion algorithm relies on the coordination among the lengths of sample paths
in every iteration and the step sizes.

As discussed, there are two ways to implement optimization algorithms
with PA. First, we can run a Markov, or a queueing, system under one set
of parameters for a relatively long period to obtain an accurate gradient es-
timate and then update the parameters according to (3.51). When the esti-
mation error is small, we hope that this standard gradient-based method for
performance optimization of deterministic systems works well.

Second, when the sample paths are short, we need to use the stochastic
approximation based algorithm (3.52). It is well known that the standard step
size sequence (e.g., κk = 1

k) makes the algorithm very slow, so some ad hoc
methods are usually used in practice to speed up the convergence.

Both (3.51) and (3.52) take the same form and the difference is only on
the choice of step sizes. On the other hand, there are always stochastic errors
even when we run a relatively long sample path. Therefore, ad hoc methods
are also useful even when we apply the deterministic version (3.51).

One of the ad hoc methods works as follows. When the sample path of the
kth iteration is not long enough, we do not use the gradient estimate obtained
when the system is under parameters θk in the kth iteration in (3.51). Instead,
we may use a weighted sum of the current estimate under θk and the previous
estimates under θk−1, θk−2, etc. as the gradient estimate. This may maintain
the accuracy of the estimate since the step size is usually very small, (i.e., θk,
θk−1, θk−2 are very close) and, therefore, it may avoid instability caused by
the large deviation of the gradient estimates due to the short length of each
iteration and therefore it may speed up the convergence process.

There is a trade-off between the lengths of the sample paths and the num-
ber of iterations in reaching the optimal point. When the lengths are longer,
fewer iterations may be required; and when the lengths are shorter, more itera-
tions may be required. There are not much work in stochastic approximation
dealing with the convergence speeds of the algorithms. Therefore, it is not
clear which method, with long lengths or short ones, is faster (in terms of the
number of transitions). Figure 3.4 illustrates the two optimization approaches
with PA-based gradient estimates.

3.3.2 Optimization with Long Sample Paths

To illustrate the optimization approach with long sample paths, we consider
the optimization of the system throughput η (see (2.95)) with respect to the
mean service times, s̄i, i = 1, 2, . . . ,M , in a closed Jackson network (Section
C.2). We assume that the mean service times must meet a constraint: The total
mean service time is a constant, i.e.,

∑M
i=1 s̄i = const, where “const” denotes

3.3 Optimization with PA 175

Short

Sample Paths

Long

Sample Paths

Stochastic

Approximation

Gradient

Methods

Local

Optimal

Points

PA

dη
dθ

d̂η
dθ

Fig. 3.4. Two Optimization Approaches with PA-Based Gradient Estimates

a constant. This constraint defines the region D in RM . The performance
gradient

dη

ds̄
:=

[
∂η

∂s̄1
, . . . ,

∂η

∂s̄M

]T

can be obtained by PA with a sample path of the queueing system. Let s̄i;k be
server i’s mean service time at the kth iteration. We update the mean service
times as follows:

s̄i;k+1 = s̄i;k + κk

⎧
⎨

⎩
∂η

∂s̄i
− 1

M

M∑

j=1

∂η

∂s̄j

⎫
⎬

⎭
s̄i=s̄i;k, i=1,...,M

. (3.53)

It can be easily verified that
∑M

i=1 s̄i;k = const, k = 1, 2, . . . , as long as the
initial values satisfy

∑M
i=1 s̄i;0 = const .

Next, we provide a numerical example to show how the optimization ap-
proach works in practice. Some ad hoc modifications are added in the example
to speed up the optimization process.

Example 3.8. Consider a closed Jackson network with M = 3 servers and
N = 5 customers; let the routing matrix be

Q =

⎡

⎣
0 0.3 0.7

0.6 0 0.4
0.5 0.5 0

⎤

⎦ .

The mean service times satisfy the constraint
∑3

i=1 s̄i = 100. We wish to
maximize the system throughput.

We start with arbitrarily chosen initial values s̄1;0 = 80, s̄2;0 = 10, and
s̄3;0 = 10. We run the system with these initial values for 1,000 transitions and
apply the PA algorithm to obtain an estimate of the performance gradient.
Then, we follow (3.53) to update the mean service times. The initial length of
1,000 transitions is relatively short in estimating the gradients, because it is

176 3 Learning and Optimization with Perturbation Analysis

expected that at the beginning the gradient is relatively large and therefore
is easy to be estimated. The length will be adjusted in the parameter up-
dating process. To speed up the convergence process, we apply the following
modifications to the algorithm (3.53):

1. We choose the step size as

κk = a1 × ar
2 + b,

where 1 > {a1, a2} > 0, and b > 0 are more or less arbitrarily chosen posi-
tive numbers, and r is the number of previous iterations that have resulted
in degradation, rather than improvement, of the system performance. In
this example, we choose a1 = 0.2, a2 = 0.2, and b = 0.01.
To speed up the process, we use an exponential decreasing step size rather
than an inverse-proportional one. In addition, we reduce the step size only
when the performance degrades, indicating that the update in the last
iteration might be too large. Finally, we add a positive constant b to set
up a lower bound for the step size. Theoretically, such a step size may
not guarantee the convergence of the algorithm, but it may reach close
enough to the optimal point.

2. If the performance degrades (or r increases), we quadruple the length of
simulation in the next iteration to obtain a more accurate estimate of the
performance gradient.

3. At each iteration, we update the gradient estimate by a weighted sum of
the current estimate and the previous one as follows.

{
s̄i

η

∂η

∂s̄i

}

k+1

= w1

{
s̄i

η

∂η

∂s̄i

}

k

+ w2

{
s̄i

η

∂η

∂s̄i

}

the (k+1)th run

, (3.54)

where w1 = cLk

Lk+1+cLk
, w2 = Lk+1

Lk+1+cLk
, and c < 1; Lk and Lk+1 are

the lengths of the kth and (k + 1)th iterations, respectively. In (3.54),{
∂η
∂s̄i

}

k+1
is the value used in (3.53) to update the mean service times,

and
{

∂η
∂s̄i

}

the (k + 1)th run
is the estimate obtained in the (k + 1)th run.

After 36 iterations, the algorithm reaches a near-optimal point as

(s̄1, s̄2, s̄3) = (30.61, 39.69, 29.70),

with a throughput of 0.06512, as compared with the optimal value obtained
by analytical formulas

(s̄1, s̄2, s̄3) = (30.58, 39.94, 29.49),

with the optimal throughput of 0.06513. ��

In stochastic approximation based approaches with recursive algorithms,
the system parameters can be updated within a short period or even at every
transition. These topics are discussed in Chapter 6.

Problems 177

3.3.3 Applications

There have been hundreds of papers in the area of PA and its applications
in the literature, and it is impossible to review all of them in this book. By
and large, the applications cover a wide range of subjects such as capacity
planning, inventory problems, resource allocation, flow control, bandwidth
provisioning, traffic shaping, pricing, and stability and reliability analysis, in
many areas including communications, networking, manufacturing, and logis-
tics. References include [10, 35, 38, 74, 95, 144, 145, 158, 164, 180, 186, 187,
196, 199, 200, 204, 211, 210, 215, 224, 225, 233, 240, 258, 261, 263].

PROBLEMS

3.1. Study the potential with g(S) = 0:

a. Prove that the solution to (3.4) satisfies pS∗g = η − f(S).
b. Derive (3.4) from the Poisson equation (I − P)g + ηe = f with the nor-

malization condition pS∗g = η − f(S).

3.2. Let P be an S × S ergodic stochastic transition matrix and ν be an
S-dimensional (row) vector with νe = 1. Set P−ν = P − eν.

a. Suppose that there is a potential g such that νg = η. Prove that g =
P−νg + f .

b. Prove that the eigenvalues of P − eν are 0 and λi, i = 1, . . . , S − 1, where
λi, with |λi| < 1, i = 1, . . . , S − 1, are the eigenvalues of P .

c. Develop an iterative algorithm similar to (3.7).
d. For any vector ν with νe = 1, we can develop the algorithm in c) without

presetting νg = η. Prove that the potential obtained by the algorithm
indeed satisfies νg = η.

e. Prove that the algorithm (3.4)-(3.7) is a special case of the above algo-
rithm. Verify that pS∗g = η.

3.3. For any vector ν with νe = 1,

a. Prove that g = (I − P + eν)−1f is a potential vector with normalization
condition νg = η.

b. Can you derive a sample-path-based algorithm similar to (2.16) based on
a)?

3.4. Consider

P =

⎡

⎣
0 0.5 0.5

0.7 0 0.3
0.4 0.6 0

⎤

⎦ , f =

⎡

⎣
10
2
7

⎤

⎦ .

a. Calculate the potential vector using algorithm (3.1).
b. Calculate the potential vector using algorithm (3.3).

178 3 Learning and Optimization with Perturbation Analysis

c. Calculate the potential vector using algorithm (3.7).
d. Calculate the potential vector using the algorithm proposed in Problem

3.2.

Observe the convergence speeds and compare them with that of limk→∞ P k =
eπ.

3.5. Suppose that a Markov chain starts from state i and that we use the
consecutive visits to the state i as the regenerative points (cf. (3.18)). That
is, we set

l0 = 0, with X0 = i,

lk = the epoch that {Xl} first visits state i after lk−1, k ≥ 1.

Then we denote the first visit epoch to state j in the kth regenerative period
as lj,k; i.e., lj,k = min{lk−1 < l ≤ lk : Xl = j}. We note that in some periods,
such a point may not exist. Can we use the average of the sum

∑lj,k−1
l=lk−1

f(Xl)
as the estimate of γ(j, i)? If not, why not?

3.6. Let p(1|1) = 0.5, p(2|1) = 0.2, and p(3|1) = 0.3; and p(1|2) = 0.3,
p(2|2) = 0.5, and p(3|2) = 0.2. Suppose that X = 1 and X̃ = 2 and that we
use the same uniformly distributed random variable ξ ∈ [0, 1) to determine the
transitions from both X = 1 and X̃ = 2, according to (2.2). In this case, what
are the conditional transition probabilities p̃1|1(∗|2), p̃2|1(∗|2), and p̃3|1(∗|2)?

3.7. Let X and Y be two random variables with probability distributions Φ(x)
and Ψ(y), respectively. Their means are denoted as x̄ = E(X) and ȳ = E(Y).
We wish to estimate x̄ − ȳ = E(X − Y) by simulation. We generate random
variables X and Y using the inverse transformation method. Thus, we have
X = Φ−1(ξ1) and Y = Ψ−1(ξ2), where ξ1 and ξ2 are two uniformly distributed
random variables in [0, 1). Prove that if we choose ξ1 = ξ2, then the variance
V ar[X − Y] is the smallest among all possible pairs of ξ1 and ξ2.

3.8. In the coupling approach, prove the following statements:

a. Let π̂ be the S2 dimensional steady-state probability (row) vector of P̂ ,
i.e., π̂P̂ = π̂, and π be the steady-state probability vector of P , i.e.,
π = πP . Then π̂(eS ⊗ I) = π̂(I ⊗ eS) = π, and π̂ĝ = π̂f̂ = 0.

b. Equation (3.22) can take the form

(I − P̂ + eS2 π̂)ĝ = f̂ ,

with π̂ĝ = 0. Therefore, we have

ĝ =
∞∑

l=0

P̂ lf̂ .

Problems 179

3.9. To illustrate the coupling approach used in simulation for speeding up
the estimation of γ(i, j), let us consider a simple Markov chain with transition
probability matrix

P =

⎡

⎣
0.2 0.3 0.5
0.2 0.3 0.5
0.2 0.3 0.5

⎤

⎦ .

a. Suppose that we generate two independent Markov chains with initial
states X0 = 1 and X ′

0 = 2, respectively. What is the average length from
l = 0 to L∗

12, E(L∗
12)?

b. If we use the same [0, 1) uniformly distributed random variable ξ to de-
termine the state transitions for both Markov chains, what is E(L∗

12)?
c. Answer the questions in a) and b), if

P =

⎡

⎣
0.2 0.4 0.4
0.4 0.2 0.4
0.4 0.4 0.2

⎤

⎦ .

3.10. The realization factor γ(i, j) can be obtained by simulating two sample
paths initiated with i and j, respectively, up to its merging point Li,j :

γ(i, j) = E

⎧
⎨

⎩

Li,j−1∑

l=0

[f(X ′
l)− f(Xl)]

∣∣∣X0 = i,X ′
0 = j

⎫
⎬

⎭ .

If the two sample paths are independent, as shown in the text, we can obtain
the perturbation realization factor equation. However, in simulation, we may
use coupling to reduce the variance in estimating the difference of the mean
values of two random variables (γ(i, j) = g(j)− g(i)). In our case, we wish to
let the two sample paths, initiated with i and j, merge as early as possible.

To this end, in simulation we can force the two sample paths X and X ′

with two initial states i and j, respectively, to merge as fast as possible. We
may use the same random variable to determine the state transitions in the
two paths. For example, if p(k|i) = 0.3 and p(k|j) = 0.2, instead of using
two independent random numbers in [0, 1) to determine the state transitions
for X0 = i and X ′

0 = j, respectively, we generate one uniformly distributed
random number ξ ∈ [0, 1), and if ξ ∈ [0, 0.2), we let both X1 = X ′

1 = k.
We use an example to show this coupling method: Let p(1|2) = 0.5,

p(2|2) = 0.3, p(3|2) = 0.2, and p(1|3) = 0.2, p(2|3) = 0.7, p(3|3) = 0.1. The
largest probabilities for the two paths starting from X0 = 2 and X ′

0 = 3
to merge at X1 = X ′

1 = 1 is min{p(1|2), p(1|3)} = 0.2, to merge at
X1 = X ′

1 = 2 is min{p(2|2), p(2|3)} = 0.3, and to merge at X1 = X ′
1 = 3

is min{p(3|2), p(3|3)} = 0.1. Thus, the largest probability that the two sam-
ple paths merge at X1 = X ′

1 with the coupling technique is 0.2+0.3+0.1 = 0.6.
We simulate the two sample paths in two steps. In the first step, we gener-
ate a uniformly distributed random variable ξ ∈ [0, 1). If ξ ∈ [0, 0.2), we set
X1 = X ′

1 = 1; if ξ ∈ [0.2, 0.5), we set X1 = X ′
1 = 2; if ξ ∈ [0.5, 0.6), we

180 3 Learning and Optimization with Perturbation Analysis

set X1 = X ′
1 = 3. If ξ ∈ [0.6, 1), we go to the second step: using two other

independent random numbers to determine the transitions for the two sample
paths.

Continue with the above reasoning and mathematically formulate it. Work
on γ(i, S) for all states i ∈ S and derive the following equation

g(i)− g(S) = f(i)− f(S) +
S∑

j=1

[p(j|i)− p(j|S)]g(j), i ∈ S.

Prove that this equation is the same as (3.4).

3.11. One of the restrictions of the basic formula (3.32) is that it requires
p(j|i) > 0 if Δp(j|i) > 0 for all i, j ∈ S. This condition can be relaxed. For
example, we may assume that whenever Δp(j|i) > 0, there exists a state,
denoted as ki,j , such that p(ki,j |i)p(j|ki,j) > 0. Under this assumption, we
have

dηδ

dδ
=

∑

i∈S

∑

j∈S

{
π(i)

[
p(ki,j |i)p(j|ki,j)

Δp(j|i)
p(ki,j |i)p(j|ki,j)

g(j)
]}

.

Furthermore, we have

dηδ

dδ
=

∑

i∈S

∑

j∈S

{
π(i)

[∑

k∈S
p(k|i)p(j|k)

] [
Δp(j|i)∑

k∈S p(k|i)p(j|k)
g(j)

]}
.

a. Continue the analysis and develop the direct learning algorithms for the
performance derivatives.

b. Compared with (3.32), what are the disadvantages of this “improved”
approach, if any?

c. Extend this analysis to the more general case of irreducible Markov chains.

3.12. In the gradient estimate (3.34), we have ignored the constant term η in
the expression of g. A more accurate estimate should be

dηδ

dδ
≈ lim

N→∞

1
N

{
N−1∑

n=0

[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

L−1∑

l=0

[f(Xn+l+1)− η]

]}
, w.p.1.

Prove that

dηδ

dδ
≈ lim

N→∞

1
N

{
N−1∑

n=0

[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

L−1∑

l=0

f(Xn+l+1)

]}
, w.p.1,

and discuss the estimation error caused by ignoring the term Lη in the esti-
mate.

3.13. Discuss the error in the gradient estimate (3.41) caused by ignoring the
second term of (3.40) for a finite N . You may set f ≡ 1.

Problems 181

3.14. Let ηr be the performance of a Markov chain with transition probability
matrix Pr defined as pr(i|i) = r for all i ∈ S and pr(j|i) = (1− r)qi,j , j �= i,
i, j ∈ S, with

∑
j∈S qi,j = 1 for all i ∈ S. Prove dηr

dr = 0 for all 0 < r < 1
using performance derivative formula (3.30).

3.15. In Algorithm 3.1, prove that the following equation holds

lim
L→∞

{
L−1∑

l=0

P l(ΔP)PL−l−1

}
= eπ(ΔP)(I − P + eπ)−1.

In addition, prove that, at the steady state, we have

π(i)ρL(i) = E

{
L−1∑

l=0

Δp(Xl+1|Xl)
p(Xl+1|Xl)

Ii(XL)

}

= π

{
L−1∑

l=0

P l(ΔP)PL−l−1

}
e·i,

where e·i is the ith column vector of the identity matrix I. Equation (3.38)
and the convergence of (3.37) follow directly from these two equations.

3.16. In Problem 3.15, we set GL =
∑L−1

l=0 P l(ΔP)PL−l−1. Prove that

GL+1 = PGL + GLP − PGL−1P,

with G0 = 0, G1 = ΔP . Set G = limL→∞ GL. Explain the meaning of G.
Finally, letting L → ∞ on both sides of the above equation, we obtain G =
PG + GP − PGP . Is this equation useful in any sense?

3.17. Write a computer simulation program

a. to estimate potentials by using (3.15) and (3.19);
b. to estimate the performance derivatives by using (3.35), (3.41), and (3.43).

3.18. The group inverse (2.48) B# = −[(I − P + eπ)−1 − eπ] (for ergodic
chains) plays an important role in performance sensitivity analysis. Let b#(i, j)
be the (i, j)th component of B#. Consider a Markov chain starting from state
i ∈ S. Let N

(L)
ij be the expected number of times that the Markov chain visits

state j ∈ S in the first L stages. Prove (cf. [168]) that

lim
L→∞

(
N

(L)
ji −N

(L)
ki

)
= b#(k, i)− b#(j, i).

3.19. Given a direction defined by ΔP , is it possible to estimate the second-
order derivative d2ηδ

dδ2 using a sample path of the Markov chain with transition
probability matrix P (cf. Section 2.1.5)? How about the second-order perfor-
mance derivatives of any given reward function f(θ)?

182 3 Learning and Optimization with Perturbation Analysis

3.20. Consider a continuous-time Markov process with transition rates λ(i)
and transition probabilities p(j|i), i, j = 1, 2, . . . , S. Suppose that the tran-
sition probability matrix P := [p(j|i)]i,j∈S changes to P + δΔP , and the
transition rates λ(i), i = 1, 2, . . . , S, remain unchanged. Let η be the average
reward with reward function f . Develop a direct learning algorithm for dηδ

dδ .

3.21. Consider a closed Jackson network consisting of M servers and N cus-
tomers with mean service times s̄i, i = 1, 2, . . . , S, and routing probabilities
qi,j , i, j = 1, 2 . . . ,M . Let

η
(f)
T = lim

L→∞

1
TL

∫ TL

0

f(N(t))dt

be the time-average performance. Suppose that the routing probabilities
change to qi,j + δΔqi,j , i, j = 1, 2 . . . ,M . Develop a direct learning algorithm
for the derivative of the time-average reward using performance potentials. Use
the intuition explained in Section 2.1.3 to develop the performance derivative
formula.

	Learning and Optimization with Perturbation Analysis
	The Potentials
	Numerical Methods
	Learning Potentials from Sample Paths
	Coupling*

	Performance Derivatives
	Estimating through Potentials
	Learning Directly

	Optimization with PA
	Gradient Methods and Stochastic Approximation
	Optimization with Long Sample Paths
	Applications

	Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

