
To climb steep hills requires
slow pace at first.

William Shakespeare, English
poet and playwright

(1564 - 1818)

Don’t buy the house; buy the
neighborhood.

Russian Proverb 2
Perturbation Analysis

Perturbation analysis (PA) is the core of the gradient-based (or policy gradi-
ent) learning and optimization approach. The basic principle of PA is that the
derivative of a system’s performance with respect to a parameter of the system
can be decomposed into the sum of many small building blocks, each of which
measures the effect of a single perturbation on the system’s performance, and
this effect can be estimated on a sample path of the system. This decomposi-
tion principle applies to the differences in a system’s performance with two
policies as well and is thus fundamental to other learning and optimization
approaches such as the policy iteration approach (see Chapter 4).

Historically, perturbation analysis was first developed for queueing systems
and was later extended to Markov systems. Because PA of Markov systems is
generally applicable and has a strong connection with other learning and op-
timization approaches, such as Markov decision processes and reinforcement
learning, we first introduce the PA principle to Markov systems. PA of queue-
ing systems will be discussed at the end of this chapter as supplementary
material.

There were a number of books published in later 1980’s and 1990’s on PA
of queueing-type systems [51, 72, 107, 112, 142]. The PA principle summarized
above was discussed in detail in [45, 51, 141, 142] and extended to Markov
systems in [62, 70].
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2.1 Perturbation Analysis of Markov Chains

We first discuss PA of discrete-time Markov chains and related topics in this
section. PA of continuous-time Markov processes is covered in the next section.

Consider an ergodic (irreducible and aperiodic) Markov chain X = {Xl :
l ≥ 0} on a finite state space S = {1, 2, . . . , S} with a transition probability
matrix P = [p(j|i)]Si,j=1. Its steady-state probabilities are denoted as a row
vector π = (π(1), . . . , π(S)) and the reward function is denoted as a (column)
vector f = (f(1), f(2), . . . , f(S))T . We have Pe = e, where e = (1, 1, . . . , 1)T ,
and the probability flow balance equation π = πP . We first consider the
long-run average reward (or, simply, the average reward) as the performance
measure, which is defined as follows:

η = Eπ(f) =
S∑

i=1

π(i)f(i) = πf,

where Eπ denotes the expectation corresponding to the steady-state proba-
bility π on S.

Let P ′ be another irreducible and aperiodic transition probability matrix
on the same state space S. Suppose that P changes to

Pδ = P + δΔP = δP ′ + (1− δ)P, (2.1)

with 0 ≤ δ ≤ 1 and ΔP = P ′ − P := [Δp(j|i)]. Since Pe = P ′e = e, we have
(ΔP )e = 0 and Pδe = e.

Pδ represents a randomized policy, which, at every state transition, im-
plements policy P with probability 1 − δ and policy P ′ with probability δ.
When δ varies from 0 to 1, Pδ fills the line from P to P ′ in the policy space
(Figure 2.1). With randomized policies, we can fill all the policies in the con-
vex set spanned by a set of policies in a policy space. For example, we can fill
the triangle with vertices P0, P1, and P2 in the policy space with randomized
policies P (δ0, δ1, δ2) := δ0P0+δ1P1+δ2P2, where δ0+δ1+δ2 = 1; P (δ0, δ1, δ2)
implements policy Pi with probability δi, i = 0, 1, 2, at every state transition
(Figure 2.2).

P

0

P ′

1
∗

P (δ)

δ

P (δ) = δP ′ + (1 − δ)P

P (0) = P, P (1) = P ′

Fig. 2.1. Randomized Policies with Two Base Policies
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P0

P1

P2

P ′

P (δ0, δ1, δ2)

δ

P (δ0, δ1, δ2) = δ0P0 + δ1P1 + δ2P2

P ′ = P (0, 1 − δ, δ)

P0 = P (1, 0, 0), P1 = P (0, 1, 0), P2 = P (0, 0, 1)

Fig. 2.2. Randomized Policies with Three Base Policies

For simplicity, we first assume that the Markov chain with transition prob-
ability matrix Pδ in (2.1) for all 0 ≤ δ ≤ 1 has the same reward function f ,
and we denote it as (Pδ, f). The steady-state probability of transition matrix
Pδ is denoted as πδ and the average reward of the Markov chain (Pδ, f) is
denoted as ηδ = πδf . Then η0 = η = πf and η1 = η′ = π′f . Set Δηδ = ηδ−η.
The derivative of ηδ with respect to δ at δ = 0 is

dηδ

dδ

∣∣∣∣
δ=0

= lim
δ→0

Δηδ

δ
,

which can be viewed as the directional derivative in the policy space along
the direction from policy P to policy P ′ (see Figure 1.9 and Figure 2.1).

The goal of perturbation analysis is to determine the performance deriva-
tive dηδ

dδ by observing and/or analyzing the behavior of the Markov chain with
transition probability matrix P . In particular, we wish to estimate this deriva-
tive by observing and analyzing a single sample path of the Markov chain with
transition probability matrix P .

2.1.1 Constructing a Perturbed Sample Path

The main idea of PA comes from the fact that given a sample path of the
Markov chain with transition probability matrix P , we can construct a sample
path of the Markov chain with transition probability matrix Pδ, when δ is
small; and this does not require that we rerun or resimulate the Markov chain
with Pδ. If δ is small, the additional computation involved is also small. The
performance derivative dηδ

dδ can be obtained by measurement or analysis once
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we have the sample paths of both P and Pδ. The above statement as well
as the construction procedure described below is not very precise, but they
provide a clear intuition and help us to derive the performance derivative
formula, which will be proved rigorously later.

Following the PA terminology, we call the Markov chain with transition
probability matrix P the original Markov chain, and that with Pδ the per-
turbed Markov chain. Their sample paths are called the original sample paths
and the perturbed sample paths, respectively.

Constructing a Sample Path

We first review how to simulate a sample path for a Markov chain with tran-
sition probability matrix P . Suppose that at time l = 0, 1, . . . , the Markov
chain is in state Xl = k. In simulation, the next state after the transition
at any time l is determined as follows. We generate a uniformly distributed
random variable ξl ∈ [0, 1). If

ul+1−1∑

k′=1

p(k′|k) ≤ ξl <

ul+1∑

k′=1

p(k′|k), ul+1 ∈ S, (2.2)

(with the convention
∑0

k′=1 p(k′|k) = 0), then we set Xl+1 = ul+1. In the case
illustrated in Figure 2.3.A, we have p(i|k) = 0.5, p(j|k) = 0.5, and p(k′|k) =
0 for all k′ �= i, j. The current state is k. We generate a [0, 1)-uniformly
distributed random variable ξ. If 0 ≤ ξ < 0.5, then the Markov chain moves
into state i; otherwise, it moves into state j. Following this process, starting
from any initial state X0, we can construct a sample path for the Markov
chain with any transition probability matrix P . Therefore, a sample path of
a Markov chain is determined by an initial state X0 and a sequence of [0, 1)-
uniformly distributed random variables {ξ0, ξ1, . . .}. Figure 2.4 illustrates such
a sample path X := {X0,X1, . . . , Xl, . . .}.

The performance measure η can be estimated from the sample path X. In
fact, if the Markov chain is ergodic, we have

η = lim
L→∞

1
L

L−1∑

l=0

f(Xl), w.p.1,

where “w.p.1” stands for “with probability 1”. Set

FL =
L−1∑

l=0

f(Xl).

Then, we have

η = lim
L→∞

FL

L
. (2.3)
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Fig. 2.3. Determining the State Transitions

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

��
�����

�
���������

������
�����������

����
A

�
�����

X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

�

C

Fig. 2.4. A Sample Path of a Markov Chain

Constructing a Perturbed Sample Path on a Given Original
Sample Path

Now, suppose that we are given a sample path of a Markov chain with tran-
sition probability matrix P , as shown as X = {X0,X1, . . .} in Figure 2.4.
It starts with initial state X0 and is generated according to (2.2) with a
sequence of [0, 1)-uniformly distributed and independent random numbers
{ξ0, ξ1, . . . , ξl, . . .}. We wish to construct a perturbed sample path for the
Markov chain with Pδ = P + δΔP . We denote it as Xδ = {Xδ,0,Xδ,1, . . .}. To
this end, we may think as follows.

To save computation, we may try to use the same sequence {ξ0, ξ1, . . . ,
ξl, . . .} to generate the perturbed path. However, we need to use (cf. (2.2))

uδ,l+1−1∑

k′=1

[p(k′|k) + δΔp(k′|k)] ≤ ξl <

uδ,l+1∑

k′=1

[p(k′|k) + δΔp(k′|k)] (2.4)

to determine the state at Xδ,l+1; i.e., if (2.4) holds, we set Xδ,l+1 = uδ,l+1.
First, we observe that when δ is very small, in most cases we may have

uδ,l+1 = ul+1, if Xδ,l = Xl, l = 0, 1, . . . . For example, let us assume that the
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transition probabilities of the Markov chain in Figure 2.3 are perturbed to
pδ(i|k) = 0.5−δ, pδ(j|k) = 0.5+δ, and pδ(l|k) = 0, l �= i, j (i.e., Δp(i|k) = −1,
Δp(j|k) = 1, and Δp(l|k) = 0). In this case, if Xδ,l = Xl = k and the same
ξl is used to determine the state transition, then Xδ,l+1 �= Xl+1 if and only
if 0.5 − δ ≤ ξl < 0.5, in which case the original Markov chain X moves to
Xl+1 = i, but the perturbed one Xδ moves to Xδ,l+1 = j. The probability
that this discrepancy occurs is δ, which is very small as assumed, see Figure
2.3.B.
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Fig. 2.5. Constructing a Perturbed Sample Path

Now we start with the same initial state X0 = Xδ,0 to construct the
perturbed path. This procedure is illustrated in Figure 2.5, in which point A
denotes the initial state and path A−B−W−F−C is the given original sample
path X. As we have explained, starting from the same state the transitions
of X and Xδ differ only with a very small probability. In Figure 2.5, it so
happens that with the same random variables ξ0 and ξ1, according to (2.2)
and (2.4), we have X1 = Xδ,1 and X2 = Xδ,2.

Next, we assume that at l = 2, according to (2.2) and (2.4) with the same
random variable ξ2, we determine that X moves to X3 = i (point W ) but
Xδ moves to another state Xδ,3 = j (point G). We say that, because of the
change of P to Pδ, the system has a perturbation (or simply called a “jump”)
from i to j at l = 3. After l = 3, the original sample path follows the path
W −F −C; the perturbed path, however, follows a completely different path
starting from point G. For convenience in understanding, let us generate an
additional sequence of [0, 1)-uniformly and independently distributed random
variables ξδ,3, ξδ,4, . . . , which are also independent of ξ3, ξ4, . . . , to construct
the perturbed path following (2.4) starting from point G at l = 3 until the
perturbed path merges with the original one.

Figure 2.5 shows that the perturbed path Xδ merges with the original one
X at l = L∗

ij = 6. Theoretically, because both sample paths X and Xδ are
ergodic, they will merge in finite steps (i.e., L∗

ij is finite) with probability 1. Let
ξδ,3, ξδ,4, and ξδ,5 be the random variables that determine the transitions at l =
3, 4, and 5 (or equivalently, the states Xδ,4,Xδ,5, and Xδ,6 = X6) on Xδ. Then,
the original path X from X0 to X6 is generated by ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, while the
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perturbed path Xδ from Xδ,0 to Xδ,6 is generated by ξ0, ξ1, ξ2, ξδ,3, ξδ,4, ξδ,5,
with ξδ,3, ξδ,4, ξδ,5 independent of ξ3, ξ4, ξ5.

Starting from the merging point X6 = Xδ,6, the situation is the same
as at the initial point X0 = Xδ,0. Again, we use the same random variables
ξ6, ξ7, . . . , to construct the perturbed path until it differs from the original one.
In Figure 2.5, it so happens that with the same random variables ξ6, ξ7, and
ξ8 according to (2.2) and (2.4) we have X7 = Xδ,7, X8 = Xδ,8 and X9 = Xδ,9.
However, there is a perturbation at l = 10. In other words, according to (2.2)
and (2.4) with the same random variable ξ9, we determine that X and Xδ

move to two different states X10 (point F ) and Xδ,10 (point D), respectively.
After l = 10, the situation is the same as at l = 3. The two sample paths
X and Xδ follow different paths D − C and F − C until they merge again
at l = 13. Xδ,11, Xδ,12, and Xδ,13 are generated by random variables ξδ,10,
ξδ,11, and ξδ,12, which are independent of ξ10, ξ11, and ξ12. Xδ and X merge
again at l = 13. Starting from this merging point Xδ,13 = X13, once again the
situation is the same as at the initial point X0 = Xδ,0.

The above description illustrates how to construct a perturbed sample
path Xδ, given an original sample path X. At any time instant l, if Xδ,l = Xl,
then we use the same random variable ξl to determine the state transitions (or
equivalently Xl+1 and Xδ,l+1) for both X and Xδ by using (2.2) and (2.4);
if it turns out that Xδ,l+1 �= Xl+1, we say there is a perturbation (jump) at
l + 1. After each jump, Xδ is completely different from X until they merge
together. In these segments in which the two sample paths are different, Xδ

is generated independently of X. In Figure 2.5, X and Xδ are generated by
the following sequences of random variables, respectively:

X : ξ0 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 ξ13 ξ14,
Xδ : ξ0 ξ1 ξ2 ξδ,3 ξδ,4 ξδ,5 ξ6 ξ7 ξ8 ξ9 ξδ,10 ξδ,11 ξδ,12 ξ13 ξ14,

where all the random variables ξl, and ξδ,l are independent of each other.
Finally, when δ is very small, perturbations rarely happen (see Figure

2.3.B). In this case, in most time instants, the perturbed sample path Xδ

is the same as the original one X; i.e., in reality, the lengths of the common
segments are much longer than what might be indicated by X0−X2, X6−X9,
and X13 −X14 in Figure 2.5.

2.1.2 Perturbation Realization Factors and Performance Potentials

To calculate performance derivatives, we need to compare the average rewards
of the original and the perturbed Markov chains, η and ηδ, by using the sample
paths X and Xδ constructed above. As shown in Figure 2.5, the difference
between X and Xδ is only reflected in the segments after the perturbations. In
other words, the effect of a change of the transition probability matrix from P
to Pδ on the system performance can be decomposed into the sum of the effects
of the perturbations generated due to the change in P . Therefore, we first need
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to study the effect of a single perturbation on the system performance. We
show that this effect can be measured by a quantity called the perturbation
realization factor.
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Fig. 2.6. Realization of a Perturbation

Perturbation Realization

Again, we use Figure 2.5 to illustrate the idea. At l = 3, the sample path
is perturbed from state i to state j. This perturbation will certainly affect
the system’s behavior and the system’s performance. As shown in Figure 2.5,
after l = 3, the perturbed Markov chain evolves differently from the original
chain, until, at l = L∗

ij , the perturbed path merges with the original one. The
effect of the perturbation takes place in the period from l = 3 to L∗

ij . In PA
terminology, we say that the perturbation generated at l = 3 is realized by
the system at l = L∗

ij = 6.
Strictly speaking, the perturbed path Xδ follows the perturbed transition

probability matrix Pδ. However, because δ is very small and the length from
the perturbed point l = 3 to the merging point L∗

ij , L∗
ij − 3, is finite (with

probability 1), the probability that there is another perturbation in the period
from l = 3 to L∗

ij (i.e., there are two perturbations in the period from l = 3
to L∗

ij , one at l = 3 the other in the period from l = 4 to L∗
ij) is on the

order δ2. This contributes to the high-order performance derivatives and in
the first-order derivatives we may ignore this high-order term. Therefore, to
calculate the performance derivatives, as δ approaches zero, we may assume
that from l = 3 to L∗

ij the perturbed path Xδ is the same as if it follows the
original transition probability matrix P .

Thus, to quantify the effect of a single perturbation from i to j, we study
two independent Markov chains X = {Xl, l ≥ 0} and X̃ = {X̃l, l ≥ 0} with
X0 = i and X̃0 = j, respectively; both of them follow the same transition
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matrix P (Figure 2.6). Let these two sample paths merge for the first time at
L∗

ij , i.e.,

L∗
ij = min

{
l : l ≥ 0, X̃l = Xl

∣∣∣ X̃0 = j,X0 = i
}

.

Recall that the performance measure is η ≈ FL

L (see (2.3)). Apparently, the
average effect of a single perturbation on η is zero, because L∗

ij is finite with
probability 1. We, therefore, study the effect of a single perturbation on FL

for a large L.
Let E denote the expectation in the probability space spanned by all the

sample paths of both X and X̃. The perturbation realization factor (PRF) is
defined as [62, 70]:

γ(i, j) = E

⎧
⎨

⎩

L∗
ij−1∑

l=0

[
f(X̃l)− f(Xl)

] ∣∣∣∣∣X̃0 = j, X0 = i

⎫
⎬

⎭ , i, j = 1, . . . , S.

(2.5)

Thus, γ(i, j) represents the average effect of a jump from i to j on FL in (2.3).
For convenience, sometimes we may refer to γ(i, j) as the effect of a jump on
the performance η itself, although this effect is on an “infinitesimal” scale.

By the strong Markov property, the two Markov chains X and X̃ behave
similarly statistically after L∗

ij . Thus,

lim
L→∞

E

⎧
⎨

⎩

L−1∑

l=L∗
ij

[
f(X̃l)− f(Xl)

] ∣∣∣∣∣X̃0 = j, X0 = i

⎫
⎬

⎭ = 0.

Therefore, (2.5) becomes

γ(i, j) = lim
L→∞

E

{
L−1∑

l=0

[
f(X̃l)− f(Xl)

] ∣∣∣∣∣ X̃0 = j, X0 = i

}

= lim
L→∞

E
[
F̃L − FL

∣∣∣ X̃0 = j, X0 = i,
]
, i, j = 1, . . . , S. (2.6)

Essentially, the perturbation realization factors use the difference in the sums
of the rewards on the perturbed path and the original one to measure the
effect of a single perturbation.

The matrix Γ := [γ(i, j)]Si,j=1 ∈ RS×S is called a perturbation realization
factor (PRF) matrix. From (2.5), we have
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γ(i, j) = f(j)− f(i) +
S∑

i′=1

S∑

j′=1

E

⎧
⎨

⎩

L∗
i′j′−1∑

l=1

[
f(X̃l)− f(Xl)

]
∣∣∣∣∣∣
X̃1 = j′,X1 = i′

⎫
⎬

⎭

× P
(
X̃1 = j′,X1 = i′

∣∣∣X̃0 = j,X0 = i
)

= f(j)− f(i) +
S∑

i′=1

S∑

j′=1

p(i′|i)p(j′|j)γ(i′, j′).

By writing this in a matrix form, we have the following PRF equation [70]

Γ − PΓPT = F, (2.7)

where F = efT − feT .

If F is a Hermitian matrix, then (2.7) is called the Lyapunov equation in the
literature [13, 14, 162, 174]. (A Hermitian matrix, also called a self-adjoint
matrix, is a square matrix that is equal to its own conjugate transpose. Thus, a
real Hermitian matrix is a symmetric matrix.) The PRF equation differs from
the Lyapunov equation because F is a skew-symmetric matrix, FT = −F .

Performance Potentials

From (2.6), we have γ(i, i) = 0 for any i = 1, . . . , S, and γ(i, j) = −γ(j, i),
or ΓT = −Γ ; i.e., Γ is skew-symmetric. In addition, from (2.6), we can easily
prove

γ(i, j) = γ(i, k) + γ(k, j), i, j, k = 1, . . . , S. (2.8)

This is the same equation as that for the differences of potential energies in
physics. This observation motivates the following analysis: Let us fix any state
denoted as k∗ ∈ S. Then, (2.8) becomes

γ(i, j) = γ(i, k∗) + γ(k∗, j) = γ(k∗, j)− γ(k∗, i), i, j = 1, . . . , S.

Define gk∗(j) = γ(k∗, j). Then,

γ(i, j) = gk∗(j)− gk∗(i), i, j = 1, . . . , S. (2.9)

For any two states k∗
1 and k∗

2 , we have

gk∗
2
(j)− gk∗

1
(j) = γ(k∗

2 , k
∗
1), j = 1, . . . , S,

which does not depend on j. This means that if we choose a different k∗, the
resulting gk∗(j)’s differ by only the same constant for all j ∈ S. With this in
mind, we omit the subscript k∗ and rewrite (2.9) as
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γ(i, j) = g(j)− g(i), i, j = 1, . . . , S. (2.10)

g(i) is called the performance potential (or simply the potential) of state i, and
gk∗(i) denotes a particular version of the potential. (The word “potentials”
have been used in the literature in similar contents, e.g., [154, 168].) Just as
in physics, different versions of the potentials may differ by a constant. Let
g = (g(1), . . . , g(S))T . Then, (2.10) becomes

Γ = egT − geT . (2.11)

If g is a potential (vector), so is g + ce for any real constant c. For simplicity,
we use the same notation g for different versions of the potentials and keep
in mind that potential g in different expressions may differ by a constant.
A physical interpretation of the performance potentials compared with the
potential energy is illustrated in Figure 2.7.

gA gB gD gC

A

B

C

D

γBD

γAD

γAC
g(1)

g(2)

g(3)

g(4)

γ(1,3)
γ(2,3)

γ(2,4)

States1 2 3 4

Potential energy: gA, gB , gC , gD

(may be infinity)
The relative values are finite:

γAC = gC − gA

γBD = gD − gB

Potentials g(1), g(2), g(3), g(4)
(may be infinity)

The realization factors are finite:
γ(1, 3) = g(3) − g(1)
γ(2, 4) = g(4) − g(2)

Fig. 2.7. Physical Interpretation of Potential Energy and Performance Potentials

Substituting (2.11) into (2.7), we obtain

e[(I − P )g − f ]T = [(I − P )g − f ]eT ,

i.e., e[(I−P )g−f ]T is a symmetric matrix. Thus, we must have (I−P )g−f =
ce, where c is a constant. Left-multiplying both sides of this equation by π
and using π = πP , we get c = −πf = −η. Finally, we have
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(I − P )g + ηe = f. (2.12)

This is called the Poisson equation. Its solution is unique only up to an additive
constant; i.e., if g is a solution to (2.12), then for any constant c, g+ ce is also
a solution. To write (2.12) for each component, we have

g(i) = f(i)− η +
∑

j∈S
p(j|i)g(j).

This equation has a clear interpretation: The long-term contribution of state
i to the average performance, g(i), equals its one-step contribution at the
current time, f(i) − η, plus the expected long-term “potential” contribution
of the next state. Equation (2.10) shows that the effect of a perturbation from
state i to j (the perturbation realization factor γ(i, j)) equals the difference
in the long-term contributions of these two states.

One of the ways to specify a solution to (2.12) is to normalize it by setting
πg = η. In this case, (2.12) takes the form

(I − P + eπ)g = f.

It is shown in Appendix B.2 that the eigenvalues of (I − P + eπ) are {1, 1−
λ2, . . . , 1−λS}, where λi with |λi| < 1, i = 2, . . . , S, are the eigenvalues of the
transition probability matrix P [20]. Therefore, (I −P + eπ) is invertible and
the eigenvalues of (I−P+eπ)−1 are {1, 1

1−λ2
, . . . , 1

1−λS
}, |λi| < 1, i = 2, . . . , S.

Therefore, we have
g = (I − P + eπ)−1f. (2.13)

Sample-Path-Based Formulas

The matrix (I − P + eπ)−1 is called the fundamental matrix [202]. Because
the eigenvalues of P − eπ, 0, λ2, . . . , λS , lie in the unit circle (see Appendix
B.2), we can expand the fundamental matrix into a Taylor series:

(I − P + eπ)−1 =
∞∑

k=0

(P − eπ)k = I +
∞∑

k=1

(P k − eπ). (2.14)

Thus, from (2.13), we have

g = f +
∞∑

k=1

(P k − eπ)f.
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Note that from (A.3), the (i, j)th entry of P k is p(k)(j|i) = P(Xk = j|X0 = i).
Then, from (2.14), we have

g(i) = lim
L→∞

{
E

[
L−1∑

l=0

f(Xl)
∣∣∣X0 = i

]
− (L− 1)η

}
.

We may get a more convenient version of the potentials by adding a con-
stant −η to every component of g. Thus, we have another version of g:

g = [(I − P + eπ)−1 − eπ]f, (2.15)

for which πg = 0, and

g(i) = lim
L→∞

E

{
L−1∑

l=0

[f(Xl)− η]
∣∣∣X0 = i

}
. (2.16)

The Poisson equation (2.12) can be easily derived from (2.16); see Problem
2.5.

From (2.16), we can derive another sample-path-based formula for γ(i, j).
On a sample path of X starting with X0 = j, define L(i|j) to be the first
passage time of X reaching state i; i.e., L(i|j) = min{l : l ≥ 0,Xl = i|X0 = j}.
Then, we have

γ(i, j) = E

⎧
⎨

⎩

L(i|j)−1∑

l=0

[f(Xl)− η]
∣∣∣X0 = j

⎫
⎬

⎭ . (2.17)

This can be intuitively explained as follows: from (2.16),

γ(i, j) = g(j)− g(i)

= lim
L→∞

{
E

{ L∑

l=0

[f(Xl)− η]
∣∣∣X0 = j

}
− E

{ L∑

l=0

[
f(X̃l)− η

] ∣∣∣X̃0 = i

}}

= lim
L→∞

⎧
⎨

⎩E

{[
L(i|j)−1∑

l=0

[f(Xl)− η] +
L∑

L(i|j)
[f(Xl)− η]

]∣∣∣X0 = j

}

−E

{[
L−L(i|j)∑

l=0

[
f(X̃l)− η

]
+

L∑

L−L(i|j)+1

[
f(X̃l)− η

] ]∣∣∣X̃0 = i

}⎫
⎬

⎭ , (2.18)

where {Xl, l ≥ 0} and {X̃l, l ≥ 0} are two independent Markov chains with the
same transition probability matrix P . Because of the strong Markov property
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and XL(i|j) = i, the second term equals the third term as long as L > L(i|j).
In addition, since liml→∞ E[f(X̃l)] = η, the last term goes to zero as L→∞.
Thus, (2.18) leads to (2.17). The idea is explained in Figure 2.8: In region
(II), both X and X̃ are statistically identical because X̃0 = XL(i|j) = i; the
mean of f(Xl) − η on X̃ in region (III) goes to zero as L → ∞. Thus, the
only term left in the difference g(j) − g(i) is the summation on X in region
(I). For a detailed proof, see [62].

�

�

X0 = j X4 = i

X̃0 = i

(I) (II) (III)

X

X̃0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

L(i|j) = 4

L = 11

L = 11L − L(i|j) = 7

Fig. 2.8. An Explanation for (2.17)

In summary, the perturbation realization factor γ(i, j), i, j ∈ S, measures
the “infinitesimal” effect of a perturbation from state i to j on the average
reward η (more precisely, it measures the effect on FL for L >> 1). From
the physical meaning, the performance potential g(i), i = 1, . . . , S, measures
the long-term “potential” contribution of state i to η. Similar to the potential
energy in physics, only the differences in the different g(i)’s are important for
performance sensitivities.

Finally, the reward function can be defined as f(i, j), i, j ∈ S; i.e, the
system gains a reward f(i, j) when it is in state Xl = i and moves to state
Xl+1 = j, l = 0, 1, . . . . The average reward is defined as

η = lim
L→∞

1
L

L−1∑

l=0

f(Xl,Xl+1).

In this case, if we use the average

f(i) :=
S∑

j=1

p(j|i)f(i, j)

as the reward function, all the results developed in this and the remaining
sections for PA of Markov chains hold.

2.1.3 Performance Derivative Formulas

To derive the performance derivative dηδ

dδ at policy (P, f) along any direction
ΔP , we consider a sample path X with a transition probability matrix P
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consisting of L, L >> 1, transitions. Among these transitions, on average,
there are Lπ(k) transitions at which the system is in state k. Each time
when X visits state i after visiting state k, because of the change from P to
Pδ = P + δΔP , the perturbed path Xδ may have a jump, denoted as from
state i to state j (i.e., after visiting k, X moves to i and Xδ moves to j), as
shown in Figure 2.5. For convenience, we allow i = j as a special case. A “real
jump” (with i �= j) happens rarely. Denote the probability of a jump from i
to j after visiting state k as p(i, j|k). We have

p(i, j|k) = p(i|k)pδ(k, j|k, i),

where pδ(k, j|k, i) denotes the conditional probability that Xδ moves from
state k to state j given that X moves from state k to i. By definition, we have∑S

j=1 pδ(k, j|k, i) = 1. Therefore,

S∑

j=1

p(i, j|k) = p(i|k). (2.19)

Similarly,
S∑

i=1

p(i, j|k) = pδ(j|k), (2.20)

and
∑S

i,j=1 p(i, j|k) = 1. On average, in the L transitions on the sample path,
there are Lπ(k)p(i, j|k) jumps from i to j following the visit to state k. As
discussed in Section 2.1.2, each such jump has on average an effect of γ(i, j)
on FL.

A real jump happens extremely rarely as δ → 0. As discussed in Section
2.1.2, the probability that the Markov chain jumps at l = 3 and that there
is another jump of Xδ from l = 4 to L∗

ij (or equivalently, Xδ would move
differently if it followed P from l = 3 to L∗

ij) is on the order of δ2; the effect of
such a situation can be ignored for performance derivatives. Therefore, we may
assume that, from l = 3 to L∗

ij and in other periods after each jump before
merging, Xδ, generated according to Pδ, is the same as following P . Thus, on
average, the total effect on FL due to the change in P to Pδ = P + δΔP is

E(Fδ,L − FL)

≈
S∑

k=1

[
S∑

i,j=1

Lπ(k)p(i, j|k)γ(i, j)

]

=
S∑

k=1

{
S∑

i,j=1

Lπ(k)p(i, j|k)[g(j)− g(i)]

}

=
S∑

k=1

Lπ(k)

{
S∑

j=1

[
g(j)

S∑

i=1

p(i, j|k)
]
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−
S∑

i=1

[
g(i)

S∑

j=1

p(i, j|k)
]}

. (2.21)

From (2.19) and (2.20), (2.21) becomes

E(Fδ,L − FL) ≈
S∑

k=1

Lπ(k)

⎧
⎨

⎩

⎡

⎣
S∑

j=1

pδ(j|k)g(j)

⎤

⎦−
[

S∑

i=1

p(i|k)g(i)

]⎫⎬

⎭

=
S∑

k=1

Lπ(k)

⎧
⎨

⎩

S∑

j=1

[pδ(j|k)− p(j|k)]g(j)

⎫
⎬

⎭

= Lπ(Pδ − P )g = Lπ(ΔP )δg.

Thus,

ηδ − η = lim
L→∞

1
L
E(Fδ,L − FL) ≈ π(ΔP )δg. (2.22)

Finally, letting δ → 0, we obtain the performance derivative formula

dηδ

dδ

∣∣∣
δ=0

= π(ΔP )g. (2.23)

Strictly speaking, the approximation in (2.21) is not accurate (the differ-
ence of both sides is on the order of o(L), which may not be small for a large
L). It is accurate only after both sides of (2.21) are divided by L, resulting in
(2.22). Nevertheless, (2.21) provides a good intuition.

From (2.11), we have πΓ = gT − (πg)eT . Thus, from (2.23), we get

dηδ

dδ

∣∣∣
δ=0

= π(ΔP )ΓTπT . (2.24)

Note that g, Γ , and π can be estimated on a single sample path of a
Markov chain with transition matrix P ; thus, given any ΔP , the performance
derivative along the direction ΔP can be obtained by (2.23) or (2.24) using
the sample path-based estimates of π and g or Γ . Algorithms can be developed
for estimating the performance derivative based on a single sample path using
(2.23) without estimating each component of g; see Chapter 3.

Finally, (2.23) can be easily derived by using the Poisson equation (2.12).
Let P ′ be the transition probability matrix of another irreducible Markov
chain defined on the same state space S, and let η′ and π′ be its corresponding
performance measure and steady-state probability, respectively. Multiplying
both sides of (2.12) on the left by π′ and using π′e = 1 and π′ = π′P ′, we
obtain the performance difference formula:
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η′ − η = π′(ΔP )g. (2.25)

Taking P ′ as Pδ = P + δ(ΔP ) and η′ as ηδ in (2.25), we get

ηδ − η = πδδ(ΔP )g.

Letting δ → 0, we obtain (2.23) (it is easy to see limδ→0 πδ = π). Thus, the
performance derivative formula (2.23) follows directly from the Poisson equa-
tion (2.12). However, our PA-based reasoning intuitively explains the physical
meaning of the realization factors and the potentials. It clearly illustrates
the nature of the performance derivatives: They can be constructed by using
the potentials as building blocks. More importantly, this PA-based construc-
tion approach can be used in constructing performance derivative formulas
for other non-standard problems in which the special features of the system
can be utilized. New optimization schemes can be developed for such special
systems. We discuss these problems in Chapters 8 and 9.

So far, we have assumed that f does not change. Suppose that the reward
function associated with P ′ is f ′ and, in addition to the change of P to Pδ,
f also changes to fδ = f + δΔf , Δf = f ′ − f . Then, it is easy to obtain the
performance derivative formula

dηδ

dδ

∣∣∣
δ=0

= π[(ΔP )g + Δf ]. (2.26)

The performance difference formula (2.25) becomes

η′ − η = π′[(ΔP )g + Δf ]. (2.27)

The difference between (2.23) (or (2.26)) and (2.25) (or (2.27)) is that π in
(2.23) is replaced by π′ in (2.25).

With realization factors, we have

dηδ

dδ

∣∣∣
δ=0

= π
[
(ΔP )ΓTπT + Δf

]
(2.28)

and
η′ − η = π′ [(ΔP )ΓTπT + Δf

]
. (2.29)

Finally, sometimes it may be useful to specifically denote the two policies
in performance sensitivity analysis as (Ph, fh) and (P d, fd) (instead of (P ′, f ′)
and (P, f)). With these notations, (2.26) becomes
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dηδ

dδ

∣∣∣∣
δ=0

= πd[(ΔP )gd + Δf ]

= πd[(Ph − P d)gd + (fh − fd)],

where ηδ is the performance of (Pδ, fδ), with Pδ = P d +δΔP , ΔP = Ph−P d,
fδ = fd + δΔf , and Δf = fh − fd.

2.1.4 Gradients with Discounted Reward Criteria

In this subsection, we show that the idea of performance potentials and the
performance derivative formula can be extended to Markov chains with dis-
counted reward criteria.

Consider an ergodic Markov chain X = {Xl, l ≥ 0} with transition prob-
ability matrix P and reward function f . Let β, 0 < β ≤ 1, be a discount
factor. For 0 < β < 1, we define the discounted reward as a column vector
ηβ = (ηβ(1), . . . , ηβ(S))T with

ηβ(i) := (1− β)E

[ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

]
. (2.30)

The factor (1 − β) in (2.30) is used to obtain the continuity of ηβ at β = 1.
We show that the long-run average reward discussed in the last subsection
can be viewed as a special case when β → 1 and therefore we denote η1 := ηe.
Also, the weighting factors in (2.30) are normalized:

∑∞
l=0(1− β)βl = 1. In a

matrix form, Equation (2.30) is

ηβ = (1− β)
∞∑

l=0

βlP lf = (1− β)(I − βP )−1f, 0 < β < 1. (2.31)

The second equality in (2.31) holds because for 0 < β < 1, all the eigenvalues
of βP are within the unit circle [20]. From (2.39) given below, we know that
limβ↑1 ηβ exists and we have

η1 := lim
β↑1

ηβ = ηe, (2.32)

with η = πf being the average reward.

β-Potentials

The discounted Poisson equation is defined as

(I − βP + βeπ)gβ = f, 0 < β ≤ 1. (2.33)
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gβ is called the β-potential. When β = 1, it is the standard Poisson equation
(2.12). Thus, the 1−potential is simply the potential (2.13) and is denoted as
g := g1. From (2.33), we have

gβ = (I − βP + βeπ)−1f

=

[ ∞∑

l=0

βl(P − eπ)l

]
f

=

{
I +

[ ∞∑

l=1

βl(P l − eπ)

]}
f, 0 < β ≤ 1. (2.34)

The above expansion holds because all the eigenvalues of P − eπ are in the
unit circle. In particular, by setting β = 1 we obtain (2.14).

It is easy to verify the following equations:

π(I − βP + βeπ)−1 = π, (2.35)

(I − βP + βeπ)−1e = e,

(I − βP )−1e =
1

1− β
e, (2.36)

and
(I − βP )−1 = (I − βP + βeπ)−1 +

β

1− β
eπ. (2.37)

Equation (2.37) is obtained by using (2.36), (2.35), and the following equation

(I − βP )−1(I − βP + βeπ) = I + (I − βP )−1βeπ.

In addition, we have
lim
β↑1

gβ = g1,

πgβ = πf. (2.38)

From (2.37), we obtain

lim
β↑1

(1− β)(I − βP )−1 = eπ. (2.39)

Performance Sensitivities

Suppose that the transition matrix P and the reward function f change to P ′

and f ′, respectively, with P ′ being another irreducible and aperiodic transition
matrix. From (2.31), we have

η′β − ηβ = (1− β)(f ′ − f) + β(P ′η′β − Pηβ)
= (1− β)(f ′ − f) + β(P ′ − P )ηβ + βP ′(η′β − ηβ).
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This leads to

η′β − ηβ = (1− β)(I − βP ′)−1(f ′ − f) + β(I − βP ′)−1(P ′ − P )ηβ . (2.40)

From (2.31) and (2.37), we obtain

ηβ = (1− β)gβ + βηe. (2.41)

Substituting this into the right-hand side of (2.40) and noting that (P ′ − P )
e = 0, we obtain the performance difference formula for the discounted reward
criterion:

η′β−ηβ = (1−β)(I−βP ′)−1[(βP ′gβ +f ′)− (βPgβ +f)], 0 < β < 1.
(2.42)

Finally, as a special case, letting β → 1 in (2.42) and using (2.39), we
obtain the performance difference formula for the long-run average reward
(2.27):

η′ − η = π′[(P ′g + f ′)− (Pg + f)].

Now, suppose that P changes to Pδ = P + δΔP , ΔP = P ′ − P , and f
changes to fδ = f + δΔf , Δf = f ′ − f , 0 < δ < 1. Taking Pδ as the P ′ in
(2.42), we have

ηβ,δ−ηβ = (1−β)(I−βPδ)−1[(βPδgβ+fδ)−(βPgβ+f)], 0 < β < 1. (2.43)

Letting δ ↓ 0, we obtain the performance derivative formula for the discounted
reward criterion:

dηβ,δ

dδ

∣∣∣
δ=0

= (1− β)(I − βP )−1(βΔPgβ + Δf), 0 < β < 1. (2.44)

When β ↑ 1, this equation reduces to (2.26).
From (2.41) and (2.44), we have

dηβ,δ

dδ

∣∣∣
δ=0

= (I − βP )−1[βΔPηβ + (1− β)Δf ], 0 < β < 1.

Similarly, from (2.41) and (2.43), we have
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ηβ,δ − ηβ = (I − βPδ)−1[βΔPηβ + (1− β)Δf ], 0 < β < 1.

All the applications of the performance potentials gβ in optimization de-
pend only on the differences of the components of gβ . In other words, we can
replace gβ with gβ + ce, where c is any constant. These are different versions
of the β-potential, and for simplicity, we will use the same notation gβ to de-
note them. In particular, the performance difference and derivative formulas
(2.42) and (2.44) hold when gβ is replaced by gβ + ce. Therefore, we may add
a constant vector −ηe to (2.34) and obtain a sample-path-based expression
for the β-potential (cf., (2.16)) as follows:

gβ(i) = lim
L→∞

E

{
L−1∑

l=0

βl[f(Xl)− η]
∣∣∣X0 = i

}

= E

{ ∞∑

l=0

βl[f(Xl)− η]
∣∣∣X0 = i

}
, 0 < β ≤ 1, (2.45)

in which we have exchanged the order of limL→∞ and “E”. Of course, for
0 < β < 1, we can also discard the constant term (

∑∞
l=0 βl)η and obtain

gβ(i) = E

{[ ∞∑

l=0

βlf(Xl)
]∣∣∣X0 = i

}
. (2.46)

In modern Markov theory, (2.46) is called the β-potential of reward func-
tion f with 0 < β < 1. (In [87], it is called the α-potential, since α is used
as the discount factor there; in this book, we reserve α to denote actions
in MDPs.) Therefore, from (2.16), (2.45), and (2.46), the potential for the
long-run average reward, g(i), is a natural extension of the β-potential from
0 < β < 1 to β = 1; a constant η is subtracted from each term in (2.46) to keep
the sum finite when extended to β = 1. This justifies again our terminology
of “potential” for g in the long-run average reward case.

It is clear that the β-potential (2.46) is almost the same as the discounted
reward (2.30). This explains why the concept of the discounted performance
potential is not introduced in many previous works on the optimization
of discounted rewards. Nevertheless, this concept puts the approach to the
discounted-reward optimization problem in the same framework as the ap-
proach to the average-reward problem. This is also true for the policy iteration
approach in MDPs, see Chapter 4.

Similar to the average-reward case, we define the (discounted) PRF matrix
as
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Γβ = egT
β − gβe

T , 0 < β ≤ 1.

From this equation and (2.38), we have

ΓT
β πT = gβ − ηe.

The (discounted) PRF matrix satisfies the (discounted) PRF equations:

− Γβ + βPΓβP
T = −F, (2.47)

where F = efT − feT .

This can be easily verified:

− Γβ + βPΓβP
T = −(egT

β − gβe
T ) + βP (egT

β − gβe
T )PT

= −(egT
β − gβe

T ) + β[e(Pgβ)T − Pgβe
T ]

= −[e(gβ − βPgβ + βeπgβ)T − (gβ − βPgβ + βeπgβ)eT ]
= −F.

Equation (2.47) reduces to the standard PRF equation (2.7) when β = 1.
With the PRF matrix, (2.42) and (2.44) become

η′β − ηβ = (1− β)(I − βP ′)−1[β(ΔP )ΓT
β πT + Δf ], 0 < β < 1,

and

dηβ,δ

dδ
= (1− β)(I − βP )−1[β(ΔP )ΓT

β πT + Δf ], 0 < β < 1.

Again, when β ↑ 1, these two sensitivity formulas reduce to the average-reward
case (2.28) and (2.29).

Figure 2.9 summarizes the results for both the discounted- and average-
reward performance sensitivity analysis with a unified view; all the results of
the average-reward case can be obtained by setting β ↑ 1 from those of the
discounted-reward case.

Intuitions

Finally, we offer an intuitive explanation for the discounted reward derivative
formula (2.44). For simplicity, we assume that Δf = 0. Because the discounted
reward ηβ(i) depends on the initial state i ∈ S, we have to consider the
transient probabilities on the sample path. Consider a sample path X =
{X0,X1, . . .} starting from X0 = i ∈ S. The conditional probability of Xl = k,
l = 1, 2, . . . , given that X0 = i is P(Xl = k|X0 = i) = p(l)(k|i) (cf. (A.3)). Let
pl(u, v|k) be the probability that, given Xl = k, the system has a jump from
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(0,1)
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Performance
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ηβ(i)=(1−β)E
[ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

]

ηβ =(ηβ(1), · · · , ηβ(S))T

η= lim
N→∞

1

N
E
[N−1∑

l=0

f(Xl)

∣∣∣X0 = i
]

ηe

gβ(i)=E

∞∑

l=0

{
βl[f(Xl)−η]

∣∣∣X0 = i
}

or gβ(i)=E
[ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

] g(i)=E

∞∑

l=0

{
[f(Xl) −η]

∣∣∣X0 = i
}

(I − βP + βeπ)gβ = f (I − P + eπ)g = f

Γβ = egT
β − gβeT

−Γβ + βPΓβPT = −F
Γ = egT − geT

−Γ + PΓPT = −F

(1 − β)(I − βP )−1

η′
β−ηβ=(1−β)(I−βP )−1

[(βP ′gβ+f ′)−(βPgβ+f)]

dηβ

dδ
=(1−β)(I−βP)−1(βΔPgβ+Δf)

eπ

η′−η=π′[(P ′g+f ′)−(Pg+f)]

dη

dδ
=π(ΔPg+Δf)

Fig. 2.9. A Comparison of Discounted- and Average-Reward Problems

state u to v at time l + 1 (i.e., the original system with transition probability
matrix P moves from Xl = k to Xl+1 = u, but the perturbed system with
Pδ = P + δ(ΔP ) moves from Xl = k to Xl+1 = v). The effect of such a jump,
measured starting from l + 1, is γβ(u, v) = gβ(v) − gβ(u). Since the jump
happens at time l + 1, its effect on the discounted reward ηβ(i) in (2.30) is
βl+1γβ(u, v). Therefore, from the physical meaning, we can decompose Δηβ(i)
into

Δηβ(i) = (1− β)

[ ∞∑

l=0

S∑

k=1

S∑

u=1

S∑

v=1

βl+1P(Xl = k|X0 = i)pl(u, v|k)γβ(u, v)

]

= (1− β)

{ ∞∑

l=0

S∑

k=1

βl+1p(l)(k|i)
S∑

u=1

S∑

v=1

{pl(u, v|k)[gβ(v)− gβ(u)]}
}

.

Similar to (2.19) and (2.20), we have
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S∑

v=1

pl(u, v|k) = p(u|k) and
S∑

u=1

pl(u, v|k) = pδ(u|k).

Thus,

Δηβ(i) = (1− β)

⎧
⎨

⎩

∞∑

l=0

S∑

k=1

βl+1p(l)(k|i)

⎧
⎨

⎩

S∑

j=1

[pδ(j|k)− p(j|k)]gβ(j)

⎫
⎬

⎭

⎫
⎬

⎭ .

In a matrix form, this is

Δηβ = (1− β)

{ ∞∑

l=0

βl+1P l[(ΔP )δgβ ]

}

= (1− β)(I − βP )−1[β(ΔP )δgβ ],

which directly leads to (2.44).

2.1.5 Higher-Order Derivatives and the MacLaurin Series

In this section, we continue our study by exploring the system’s behavior in
the neighborhood of a given policy P in the policy space.

Higher-Order Derivatives

We assume that P changes to Pδ = P + δ(ΔP ), ΔP = P ′ − P , and we
let fδ ≡ f , for simplicity. Denote B = P − I, which can be viewed as an
infinitesimal generator of a Markov process with unit transition rates and a
transition probability matrix P for its embedded chain (see Appendix A.2).
To study the higher-order derivatives with respect to δ, it is convenient to use
short-hand notation defined as

B# = −(−B + eπ)−1 + eπ

= −[(I − P + eπ)−1 − eπ]. (2.48)

B# is called the group inverse of B [202], which satisfies

BB# = B#B = I − eπ, (2.49)

and
B#e = 0, πB# = 0.

The term “group” comes from the following fact. For any probability dis-
tribution π on state space S, define a set of S × S matrices

B := {B : πB = 0, Be = 0}. (2.50)
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It is easy to verify that B is a group (see, e.g., [219] for a definition) with
identity element I − eπ under the operation of matrix multiplication (see
Problem 2.11). Equation (2.49) indicates that B# is indeed the inverse of B
in group B.

With the group inverse, the potential in (2.15) becomes

g = −B#f,

and the performance derivative formula (2.23) takes the form

dηδ

dδ

∣∣∣
δ=0

= π(ΔP )g = π[(ΔP )(−B#)]f.

For the irreducible finite Markov chain with transition matrix Pδ, we have

πδ(I − Pδ) = 0,

and dPδ

dδ = ΔP . By taking derivatives on both sides of this equation with
respect to δ, we have

dπδ

dδ
(I − Pδ) = πδ(ΔP ).

Continuously taking derivatives on both sides of the resulting equations, we
obtain for any n ≥ 1,

dnπδ

dδn
(I − Pδ) = n

dn−1πδ

dδn−1
(ΔP ).

Setting δ = 0 and multiplying both sides of the above equation on the right
by −B# and noting that BB# = I − eπ and πe = 1, we get

dnπδ

dδn

∣∣∣∣
δ=0

= n
dn−1πδ

dδn−1

∣∣∣∣
δ=0

[(ΔP )(−B#)].

Thus,
dnπδ

dδn

∣∣∣∣
δ=0

= n!π[(ΔP )(−B#)]n.

Finally, for any reward function f , we have

dnηδ

dδn

∣∣∣∣
δ=0

= n!π[(ΔP )(−B#)]nf

= n!π[(ΔP )(I − P + eπ)−1]nf, n ≥ 1.
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The MacLaurin Expansion

We note that ηδ is an analytical function of δ. (More precisely, it is a rational
function of δ whose denominator and numerator are both polynomials of δ
with finite degrees. This can be verified by solving πδ(I−Pδ) = 0 and πδe = 1.)
Thus, ηδ has a MacLaurin expansion at δ = 0:

ηδ − η =
∞∑

n=1

1
n!

dnηδ

dδn

∣∣∣∣
δ=0

δn

= π

{ ∞∑

n=1

[(ΔP )(−B#)]nδn

}
f, (2.51)

or equivalently,

ηδ = π

∞∑

n=0

{[(ΔP )(−B#)]nfδn}. (2.52)

Denote the spectrum radius of a matrix W as ρ(W ) (i.e., the largest ab-
solute value of the eigenvalues of W ). Define

r =
1

ρ[(ΔP )(−B#)]
=

1
ρ[(ΔP )(I − P + eπ)−1]

.

Then, for δ < r, the eigenvalues of δ(ΔP )B# are all in the unit circle, and
the summation in (2.52) converges. Therefore, for δ < r, we have

∞∑

n=0

[(ΔP )(−B#)δ]n = [I − δ(ΔP )(−B#)]−1

= [I − δ(ΔP )(I − P + eπ)−1]−1. (2.53)

Next, if we take f = e·i, where e·i is a column vector representing the
ith column of the identity matrix I, then the corresponding performance is
πδe·i = πδ(i), i ∈ S. Thus, from (2.52), we have

πδ(i) = π

∞∑

n=0

{[(ΔP )(−B#)]ne·iδn}.

In matrix form, we have

πδ = π
∞∑

n=0

{[(ΔP )(−B#)]nδn}, δ < r. (2.54)

Thus, from (2.51) we obtain
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ηδ − η = πδδ(ΔP )(−B#)f.

This is consistent with the performance difference formula (2.25). From (2.52),
(2.53), and (2.54), we establish a general form:

ηδ = π

n∑

k=0

[δ(ΔP )(−B#)]kf + π

∞∑

k=n+1

[δ(ΔP )(−B#)]kf

= π

n∑

k=0

[δ(ΔP )(−B#)]kf + πδ[δ(ΔP )(−B#)]n+1f,

δ < r, for any n ≥ 0. (2.55)

The last term in (2.55), πδ[δ(ΔP )(−B#)]n+1f , is the error in taking the
first (n + 1) terms in the MacLaurin series as an estimate of ηδ. Equations
(2.54) and (2.55) hold for δ < r. If r > 1, then we can set δ = 1 in (2.54) and
(2.55) and obtain the performance value for P ′ = P + ΔP as follows

η′ = π

∞∑

k=0

[(ΔP )(−B#)]kf

= π

n∑

k=0

[(ΔP )(−B#)]kf + π′[(ΔP )(−B#)]n+1f, for any n ≥ 0.

The extensions to Markov chains with general state space are in [131, 133].

Numerical Calculations

The saving in computation is significant when we use the MacLaurin series to
calculate the performance for many different (ΔP )’s and δ’s. There is only one
matrix inversion (I − P + eπ)−1 involved. The nth derivative of πδ at δ = 0,
i.e., n!π[(ΔP )(I − P + eπ)−1]n, can be simply obtained by multiplying the
(n− 1)th derivative, i.e., (n− 1)!π[(ΔP )(I − P + eπ)−1]n−1, with the matrix
n(ΔP )(I − P + eπ)−1. For example, πδ in (2.54) can be calculated simply as
follows. First, we set Gδ := δ(ΔP )(I − P + eπ)−1. Then, we

i. solve π = πP and πe = 1 to obtain π, calculate Gδ, and set πδ := π;
ii. recursively calculate πδ := π + πδGδ, until πδ reaches a desired precision.

The matrix (I−P +eπ)−1 can be estimated by analyzing a sample path of
the Markov chain (see, e.g., Problem 3.18 in Chapter 3). Thus, with a sample-
path-based approach, matrix inversion is not even needed. This also implies
that, principally, we can obtain the performance of a Markov system with any
transition probability matrix Pδ by analyzing a sample path of the Markov
system with transition probability matrix P as long as δ < r.
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It is not easy to determine the value of r. However, there exist some upper
bounds (albeit not tight) for ρ[ΔP (−B#)] = 1

r (or lower bounds for r). From
spectrum theory, we have [20]

ρ[ΔP (I − P + eπ)−1] ≤ ||ΔP || × ||(I − P + eπ)−1||,

where || · || denotes the norm of a matrix, which is defined as

||ΔP || = max
all i

∑

j

|Δp(j|i)|.

Thus, if ||ΔP || is not large, then the spectrum radius of (ΔP )(−B#) may be
small. Let s+ = maxall i

∑
j: Δp(i,j)>0[Δp(j|i)]. If s+ ≤ 0.5, then ||ΔP || ≤ 1.

Since ΔP = P ′ − P , at least we have ||ΔP || ≤ 2.
It is, however, not easy to obtain the norm of the fundamental ma-

trix. As shown in Section 2.1.2, the eigenvalues of (I − P + eπ)−1 are
{1, 1

1−λ2
, . . . , 1

1−λS
}, with |λi| < 1, i = 2, . . . , S, and 1 being the eigenval-

ues of P . Thus, we have

ρ(I − P + eπ)−1 =
1

inf{1, |1− λi|, i = 2, . . . , S} .

However, there is no direct link between ρ(I − P + eπ)−1 and ρΔP (I − P +
eπ)−1.

The worst case happens when P has an eigenvalue that is close to 1. If
P ≈ I (I is a reducible matrix and hence cannot be chosen as P ), then
I − P + eπ ≈ eπ, which has an eigenvalue 0. The radius of (I − P + eπ)−1

is thus very large. In this case, the radius of ΔP (I − P + eπ)−1 may be also
very large; i.e., r may be very small.

1 2 3 4 5

1 0.000 0.300 0.200 0.100 0.400
2 0.500 0.000 0.000 0.300 0.200
3 0.200 0.150 0.000 0.150 0.500
4 0.400 0.200 0.150 0.150 0.100
5 0.250 0.250 0.250 0.250 0.000

Table 2.1. The Matrix P

Example 2.1. For illustrative purposes, we study a Markov chain with five
states. The state transition matrix P is listed in Table 2.1; the change of P ,
ΔP , is listed in Table 2.2; and the reward function f is given in Table 2.3. All
the values are arbitrarily chosen with some considerations about generality.
Note that ΔP represents some dramatic changes in P , e.g., p(1|2) changes



2.1 Perturbation Analysis of Markov Chains 79

1 2 3 4 5

1 0.100 -0.300 0.100 0.000 0.100
2 -0.500 0.000 0.500 0.000 0.000
3 -0.200 0.100 0.000 0.100 0.000
4 -0.100 0.100 -0.050 0.000 0.050
5 -0.250 0.250 0.000 0.000 0.000

Table 2.2. The Matrix ΔP

1 2 3 4 5

f 10 5 1 15 3
π 0.256 0.192 0.136 0.189 0.228

Table 2.3. f and π

1 2 3 4 5

1 0.803 0.077 0.048 -0.055 0.127
2 0.180 0.858 -0.094 0.079 -0.023
3 -0.048 -0.026 0.900 -0.021 0.196
4 0.112 0.012 0.008 0.949 -0.082
5 0.006 0.039 0.079 0.049 0.827

Table 2.4. The Matrix (I − P + eπ)−1

1 2 3 4 5

1 0.022 -0.249 0.131 -0.026 0.122
2 -0.425 -0.052 0.426 0.017 0.034
3 -0.131 0.072 -0.018 0.114 -0.036
4 -0.059 0.081 -0.055 0.017 0.017
5 -0.156 0.195 -0.036 0.033 -0.038

Table 2.5. The Matrix ΔP (I − P + eπ)−1

from 0.5 to 0, and p(3|2) changes from 0 to 0.5. We calculated the matrices
(I − P + eπ)−1 and ΔP (I − P + eπ)−1, which are listed in Tables 2.4 and
2.5. The eigenvalues of ΔP (I − P + eπ)−1 are 0.3176, -0.3415, 0, -0.0164
+0.0325i, and -0.0164-0.0325i; all of them are inside the unit circle. Thus,
r > 1 and the MacLaurin series converges within δ ≤ 1. (δ > 1 does not make
sense, since for δ > 1, pδ(1|2) < 0). Table 2.6 lists the coefficients of the first
to the tenth terms in the MacLaurin series, i.e., π[ΔP (I − P + eπ)−1]n, for
n = 1, 2, . . . , 10. The coefficients of the terms with orders higher than 10 are
all numerically zeros. Table 2.7 lists the performance values of the Markov
chains with Pδ = P + δΔP , δ = 0.1, 0.2, . . . , 0.9, 1, obtained by using the first
n terms of the MacLaurin series, n = 1, 2, . . . , 10. All these values converge
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1 2 3 4 5

1st -0.14050 -0.00387 0.09417 0.02282 0.02738
2nd -0.01941 0.04907 -0.02399 0.01562 -0.02129
3th -0.01577 -0.00232 0.01869 -0.00184 0.00123
4th -0.00189 0.00547 -0.00334 0.00251 -0.00275
5th -0.00165 -0.00038 0.00210 -0.00029 0.00022
6th -0.00017 0.00060 -0.00041 0.00028 -0.00030
7th -0.00017 -0.00006 0.00024 -0.00004 0.00003
8th -0.00001 0.00007 -0.00005 0.00003 -0.00003
9th -0.00002 -0.00001 0.00003 0.00000 0.00000
10th 0.00000 0.00001 -0.00001 0.00000 0.00000

Table 2.6. The Coefficients of the MacLaurin Series of ηδ

to the actual average reward of the corresponding Markov chains. Note that
after n = 6 the values change very little. The average reward of the original
Markov chain (δ = 0) is 7.1647. ��

n δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 7.0741 6.9836 6.8930 6.8024 6.7118 6.6212 6.5307 6.4401 6.3495 6.2589
2 7.0761 6.9915 6.9108 6.8340 6.7612 6.6924 6.6275 6.5666 6.5096 6.4566
3 7.0759 6.9901 6.9061 6.8229 6.7394 6.6547 6.5677 6.4773 6.3825 6.2822
4 7.0759 6.9901 6.9063 6.8237 6.7416 6.6592 6.5760 6.4914 6.4051 6.3166
5 7.0759 6.9901 6.9063 6.8235 6.7410 6.6576 6.5726 6.4849 6.3933 6.2967
6 7.0759 6.9901 6.9063 6.8236 6.7410 6.6578 6.5731 6.4860 6.3955 6.3009
7 7.0759 6.9901 6.9063 6.8236 6.7410 6.6578 6.5729 6.4855 6.3944 6.2986
8 7.0759 6.9901 6.9063 6.8236 6.7410 6.6578 6.5729 6.4856 6.3946 6.2991
9 7.0759 6.9901 6.9063 6.8236 6.7410 6.6578 6.5729 6.4855 6.3945 6.2988
10 7.0759 6.9901 6.9063 6.8236 6.7410 6.6578 6.5729 6.4855 6.3946 6.2989

Table 2.7. The Performance Calculated by the MacLaurin Series

The next example shows that r may be less than 1.

Example 2.2. Consider

P =
[

0.90 0.10
0.15 0.85

]
,

ΔP =
[
−0.8 0.8
0.8 −0.8

]
,

and f = (1, 5)T . Then we have π = (0.6, 0.4), and

ΔP (I − P + eπ)−1 =
[
−3.2 3.2
3.2 −3.2

]
.
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Its eigenvalues are 0 and -6.4. Therefore, the MacLaurin series converges only
if δ < 1

|−6.4| = 0.156. In fact, as n increases, π[ΔP (I − P + eπ)−1]n goes to
infinity very rapidly. Note that the matrix P in this example is close to I.

The curve in Figure 2.10 shows the performance of the system for δ ∈
[0, 1]. The five points (∗) in the figure show the performance of the system
calculated by the MacLaurin series corresponding to δ = 0.03, 0.06, 0.09, 0.12,
and 0.15. The first four points are the values given by the first 10 terms of
the MacLaurin series, and the fifth point is given by 50 terms. At the first
three points (δ = 0.03, 0.06, 0.09), the MacLaurin series almost reaches the
true value after the first 10 terms (with an error of less than 0.001). The last
point is very close to the convergence range (δ = 0.15 ≈ r = 0.156), and as
shown in the figure, the MacLaurin series does not converge even after 50
terms. In fact, it does converge after 200 terms. ��
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Fig. 2.10. The Performance Compared with MacLaurin Series

Extension to General Function Pθ

Now, let us extend the results to the more general case when the transition
probability matrix is a function of θ denoted as Pθ. We assume that the first
and all the higher-order derivatives of Pθ with respect to θ exist at θ = 0. Set
P0 = P and ΔPθ := Pθ − P . Let the reward function fθ ≡ f for all θ. Let
πθ be the steady-state probability vector of the Markov chain with transition
probability matrix Pθ, and ηθ be its corresponding long-run average reward.
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We may use (2.52) to get an expansion of ηθ. For any fixed θ > 0, we
simply set ΔP = ΔPθ and δ = 1 in (2.52). Assume that θ is small enough so
that ρ[ΔPθ(−B#)] < 1 and therefore expansion (2.52) exists. Then, we have

ηθ = π

∞∑

n=0

{[ΔPθ(−B#)]nf}. (2.56)

Equation (2.55) becomes

ηθ = π

n∑

k=0

[ΔPθ(−B#)]kf + πθ[ΔPθ(−B#)]n+1f, for any n ≥ 0.

Note that this expansion is not a MacLaurin series of ηθ in terms of θ. In
fact, ΔPθ has an expansion

ΔPθ =
dPθ

dθ

∣∣∣
δ=0

θ +
1
2!

d2Pθ

dθ2

∣∣∣
δ=0

θ2 + · · · ,

where the derivatives are taken at θ = 0. Substituting it into (2.56), we obtain
the MacLaurin series of ηθ:

ηθ =π

{
I+

[
dPθ

dθ
(−B#)

]
θ+

{
1
2!

d2Pθ

dθ2
(−B#)+

[
dPθ

dθ
(−B#)

]2
}

θ2+· · ·
}
f.

(2.57)
Therefore, we have

dηθ

dθ
= π

dPθ

dθ
(−B#)f = π

dPθ

dθ
g (2.58)

and
d2ηθ

dθ2
= π

{
d2Pθ

dθ2
(−B#) + 2!

[
dPθ

dθ
(−B#)

]2
}

f.

Other higher-order derivatives can be obtained in a similar way.
Benes [19] presented an interesting result on the MacLaurin series of the

call blocking probability in terms of the input call intensity λ in a telecom-
munication network. The results presented in this section are more general
and concise and can be applied on-line when the system is running. Other
related works are in [29], [120], [153], [158], and [267]. In [120], the MacLaurin
series of the moments of the response times in a GI/G/1 queue is derived;
the results are extended to inventory systems in [29], [153], [158]; and [267]
focuses on the expansion of performance measures in queueing systems.
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2.2 Performance Sensitivities of Markov Processes

In this section, we extend the aforementioned sensitivity analysis results to
(continuous-time) Markov processes. Consider an irreducible and aperiodic
(ergodic) Markov process X = {Xt, t ≥ 0} with a finite state space S =
{1, 2, . . . , S} and an infinitesimal generator B = [b(i, j)], where b(i, j) ≥ 0, i �=
j, b(i, i) < 0. Let π be the steady-state probability (row) vector. We have
πe = 1 and

Be = 0, πB = 0.

We can construct an embedded Markov chain (discrete-time) that has
the same steady-state probability as the Markov process X. This is called
uniformization (see Problem A.8). Thus, the sensitivity analysis of a Markov
process can be converted to that of a Markov chain, and then the results in
Section 2.1 can be translated to Markov processes. In this section, however,
we adopt a direct approach, which provides a clear meaning and intuition.

Perturbation Realization

Let f be a reward function on S and also denote a (column) vector f =
(f(1), . . . , f(S))T . The long-run average performance measure of the Markov
process is:

η = πf = lim
T→∞

1
T

E

[∫ T

0

f(Xt)dt

]
,

which exists for ergodic Markov processes, where E denotes the expectation.
To determine the effect of a perturbation (jump) from state i to state j on

the performance η, we study two independent sample paths X and X̃ with
the same infinitesimal generator B, starting from initial states X0 = i and
X̃0 = j, respectively. Let E denote the expectation in the probability space
spanned by all the sample paths of both X and X̃. By the ergodicity of X

and X̃, they will merge together with probability 1. Define

T ∗
ij = inf

{
t : t ≥ 0,Xt = X̃t

∣∣∣X0 = i, X̃0 = j
}

.

By the strong Markov property, after T ∗
ij , the two processes X and X̃

will behave similarly probabilistically. T ∗
ij is just the coupling time of the

two independent Markov processes with different initial states. Readers are
referred to [203] for a survey of the relevant results about coupling.

Now, we define the perturbation realization factor (PRF) as (cf. (2.5))
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γ(i, j) = E

{∫ T∗
ij

0

[f(X̃t)− f(Xt)]dt

∣∣∣∣∣X0 = i, X̃0 = j

}
, i, j ∈ S.

(2.59)

The PRF matrix is Γ := [γ(i, j)]. From the definition, we have

γ(i, j) = −γ(j, i), i, j ∈ S,

or equivalently, Γ is skew-symmetric:

ΓT = −Γ.

γ(i, j) can be written in a more convenient form as shown below. First, for
any T > T ∗

ij , we have

∫ T

0

[f(X̃t)− f(Xt)]dt

=
∫ T∗

ij

0

[f(X̃t)− f(Xt)]dt +
∫ T

T∗
ij

[f(X̃t)− f(Xt)]dt.

Next, because X̃Tij
= XTij

, by the strong Markov property, we have

lim
T→∞

E

{∫ T

T∗
ij

[f(X̃t)− f(Xt)]dt

∣∣∣∣∣X0 = i, X̃0 = j

}
= 0.

Thus,

lim
T→∞

E

{∫ T

0

[f(X̃t)− f(Xt)]dt

∣∣∣∣∣X0 = i, X̃0 = j

}

= E

{∫ T∗
ij

0

[f(X̃t)− f(Xt)]dt

∣∣∣∣∣X0 = i, X̃0 = j

}
,

and from (2.59), we have (cf. (2.6))

γ(i, j) = lim
T→∞

E

{[∫ T

0

f(X̃t)dt−
∫ T

0

f(Xt)dt

]∣∣∣∣∣X0 = i, X̃0 = j

}
,

i, j ∈ S. (2.60)

A rigorous proof of (2.60) involves proving the exchangeability of the order
of limT→∞ and “E”, which follows from the dominated convergence theorem
and the finiteness of f , see [62]. Equation (2.60) indicates that γ(i, j) measures
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the “infinitesimal” effect of a perturbation (“jump”) from state i to state j
on the long-run average reward.

In addition to (2.59) and (2.60), we have another formula that is similar to
(2.17) for Markov chains. On the sample path of a Markov process X starting
with X0 = j, we define its first passage time to state i as T (i|j) = inf{t : t ≥
0,Xt = i|X0 = j}. Then,

γ(i, j) = E

{∫ T (i|j)

0

[f(Xt)− η]dt

∣∣∣∣∣X0 = j

}
. (2.61)

An intuitive explanation is similar to Figure 2.8 for (2.17).
For ergodic Markov processes, the PRF matrix Γ satisfies the following

PRF equation:

BΓ + ΓBT = −F, (2.62)

where F = efT − feT .

Proof. On a Markov process X with X0 = i, we define pt(k|i) = P(Xt =
k|X0 = i) and Pt = [pt(k|i)]i,k∈S . Then, (A.14) gives us

Pt = exp(Bt) =
∞∑

n=0

1
n!

(Bt)n, B0 = I.

It follows that E[f(Xt)|X0 = i] =
∑

k∈S pt(k|i)f(k) is the ith entry of
[exp(Bt)]f . Let X̃ be another independent Markov process starting from
X̃0 = j and define

γT (i, j) = E

{∫ T

0

[f(X̃t)− f(Xt)]dt

∣∣∣∣∣X0 = i, X̃0 = j

}

=
∫ T

0

{
E[f(X̃t)|X̃0 = j]− E[f(Xt)|X0 = i]

}
dt, (2.63)

and ΓT = [γT (i, j)]Si,j=1. Then, from (2.60),

Γ = lim
T→∞

ΓT .

The integrand on the right-hand side of (2.63) equals the difference between
the jth and ith entries of [exp(Bt)]f . Therefore,

ΓT =
∫ T

0

{
efT [exp(Bt)]T − [exp(Bt)]feT

}
dt.
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Using Be = 0 and [exp(Bt)]B = B[exp(Bt)], we obtain

BΓT + ΓTBT

=
∫ T

0

{
efT [exp(Bt)]TBT −B[exp(Bt)]feT

}
dt

= efT

[∫ T

0

[exp(Bt)]Bdt

]T

−
[∫ T

0

[exp(Bt)]Bdt

]
feT

= efT [exp(BT )− exp(0)]T − [exp(BT )− exp(0)]feT , (2.64)

where the variable 0 in exp(0) denotes a matrix whose elements are all zeros.
Therefore, exp(0) = I. For ergodic Markov processes, we have limT→∞ pT (j|i)
= π(j); thus, limT→∞ exp(BT ) = limT→∞ PT = eπ. Furthermore, efT (eπ)T

= (πf)eeT = eπfeT . Letting T → ∞ in (2.64), we obtain the PRF equation
(2.62). ��

If F is a Hermitian matrix, then (2.62) is the continuous-time version of the
Lyapunov equation [162, 174]. However, the continuous-time PRF equation
(2.62) is different from the Lyapunov equation because F here is a skew-
symmetric matrix, FT = −F .

Next, it is easy to see that the solution to (2.62) with the form of (2.65),
specified below, is unique. Suppose that there are two such solutions to (2.62)
denoted as Γ1 = egT

1 − g1e
T and Γ2 = egT

2 − g2e
T . Let W = Γ1 − Γ2 =

ewT − weT , with w = g1 − g2. Then BW + WBT = 0. Because Be = 0, we
have ewTBT −BweT = 0. Multiplying both sides of this equation on the left
by the group inverse B# and using B#B = I − eπ and B#e = 0, we have
(I − eπ)weT = 0. Therefore,

weT = eπweT = (πw)eeT ,

where πw is a constant. From this, we have W = (weT )T − weT = 0, i.e.,
Γ1 = Γ2.

Performance Potentials

From (2.60), we have

γ(i, j) = γ(i, k) + γ(k, j), i, j, k ∈ S.

Similar to the sensitivity analysis of Markov chains, we can define performance
potentials g(i), i ∈ S, as follows:

γ(i, j) = g(j)− g(i), for all i, j ∈ S,

or, equivalently,
Γ = egT − geT , (2.65)
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where g = (g(1), . . . , g(S))T is called a potential vector.
Substituting (2.65) into (2.62), we get e(Bg + f)T = (Bg + f)eT . Thus,

Bg + f = ce, with c being a constant. Because πB = 0, we get c = πf = η.
Thus, the performance potentials satisfy the following Poisson equation:

Bg = −f + ηe. (2.66)

Again, its solution is only up to an additive constant: if g is a solution to
(2.66), so is g + ce for any constant c.

For ergodic Markov processes, the group inverse of B is defined as B# =
(B − eπ)−1 + eπ [202] (cf. (2.48)). We have

BB# = B#B = I − eπ.

By multiplying both sides of (2.66) on the left by B#, we obtain the general
form of its solution

g = −B#f + ce,

where c = πg, which may be any constant. In particular, we can choose a
solution that satisfies c = πg = η. In this case, the Poisson equation (2.66)
becomes

(B − eπ)g = −f,

and its solution is
g = −B#f + ηe.

We may also choose c = πg = 0. Then,

g = −B#f. (2.67)

If we choose c = πg = −η, then

g = −(B + eπ)−1f = −(B# + eπ)f = −B#f − ηe.

For simplicity, we have used the same notation g to denote different versions
of the potentials, which may differ by a constant. We need to keep this in
mind to avoid possible confusion.

Now, let us develop a sample-path-based explanation for B# and g. First,
we have ∫ ∞

0

B[exp(Bt)]dt =
∫ ∞

0

[exp(Bt)]Bdt = −(I − eπ).

From this, using Be = πB = 0, we get

B

{∫ ∞

0

[exp(Bt)− eπ]dt
}

=
{∫ ∞

0

[exp(Bt)− eπ]dt
}

B = −(I−eπ). (2.68)
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Furthermore, we can easily prove that

π

{∫ ∞

0

[exp(Bt)− eπ]dt
}

=
{∫ ∞

0

[exp(Bt)− eπ]dt
}

e = 0.

By multiplying both sides of (2.68) on the left by B#, we obtain

B# = −
∫ ∞

0

[exp(Bt)− eπ]dt

= − lim
T→∞

[ ∫ T

0

exp(Bt)dt− Teπ

]
. (2.69)

From (2.69) and (2.67), and using Pt = exp(Bt), we get

g(i) = lim
T→∞

E

{∫ T

0

[f(Xt)− η]dt
∣∣∣X0 = i

}
.

This is the sample path explanation of the potential g(i) (cf. (2.16)). This is
also consistent with (2.60).

In modern Markov theory [87], the α-potential of a function f is defined
as

g(f)(i) = E

{∫ ∞

0

[exp(−αt)]f(Xt)dt
∣∣∣∣X0 = i

}
, α > 0.

Thus, our definition of the potential can be viewed as an extension of the
classical α-potential to the case of α = 0. To keep the integral finite at α = 0, a
constant term η is subtracted from the integrand (see (2.46) for the discussion
of the discrete-time version).

Performance Derivatives

With the aforementioned results, the performance derivative formulas can be
easily derived. Let B and B′ be two infinitesimal generators on the same
state space S. Suppose that B changes to another infinitesimal generator
Bδ = [bδ(i, j)] = B + δΔB, with δ > 0 being a small real number, ΔB =
B′ − B = [Δb(i, j)]. We have ΔBe = 0. Let Xδ be the Markov process with
infinitesimal generator Bδ. We assume that Xδ is also irreducible. Let πδ be
the vector of the steady-state probabilities of Xδ. The average reward of Xδ

is ηδ = η + Δηδ. The performance derivative along the direction of ΔB is
dηδ

dδ

∣∣
δ=0

= limδ→0
ηδ−η

δ . With this notation, we have dBδ

dδ = ΔB.
Taking derivatives of both sides of πδBδ = 0 at δ = 0, we get

dπδ

dδ

∣∣∣
δ=0

B = −π
dBδ

dδ
= −π(ΔB).
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By multiplying both sides of this equation on the right by B# and using
BB# = I − eπ and dπδ

dδ e = 0, we obtain

dπδ

dδ

∣∣∣
δ=0

= −π(ΔB)B#.

Therefore,
dηδ

dδ

∣∣∣
δ=0

= −π(ΔB)B#f = π(ΔB)g.

Next, by multiplying both sides of (2.62) on the right by πT and using
πB = 0 and πe = 1, we have

BΓπT = feTπT − efTπT = (I − eπ)f.

That is, BΓπT = BB#f . By multiplying both sides of this equation on the
left by B#, we get (I−eπ)ΓπT = (I−eπ)B#f . Using πB# = 0 and πΓπT =
π(egT − geT )πT = 0, we obtain

B#f = ΓπT .

This leads to the performance derivative formula in terms of Γ :

dηδ

dδ

∣∣∣
δ=0

= −π(ΔB)ΓπT .

If, in addition to the changes in B, the reward function f also changes to
fδ = f + δΔf , we have

dηδ

dδ

∣∣∣
δ=0

= π[(ΔB)g + Δf ].

The higher-order derivatives can be derived in a way similar to the Markov
chains:

dnηδ

dδn

∣∣∣
δ=0

= n!π
{
[(ΔB)(−B#)]n−1[(ΔB)(−B#)f + Δf ]

}
. (2.70)

In addition, we have the following MacLaurin expansion:

ηδ = η + π

n∑

k=1

[δ(ΔB)(−B#)]k−1[(ΔB)(−B#)f + Δf ]δ

+ πδ[δ(ΔB)(−B#)]n[(ΔB)(−B#)f + Δf ]δ.

When Δf = 0, this becomes
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ηδ = π

n∑

k=0

[δ(ΔB)(−B#)]kf + πδ[δ(ΔB)(−B#)]n+1f.

Thus, we can use π
∑n

k=0[δ(ΔB)(−B#)]kf to estimate ηδ, and the error in the
estimation is πδ[δ(ΔB)(−B#)]n+1f . All the items in π and B# can be estimated
on a sample path of the Markov process with infinitesimal generator B, see
Problem 3.18.

2.3 Performance Sensitivities of Semi-Markov
Processes∗

In this section, we extend the above PA results to (continuous-time) semi-
Markov processes (SMPs). The previous results on PA of Markov processes
become special cases. This section is based on [57], and we only study the long-
run average-reward problem (for extensions to the discounted-reward problem,
see [57]).

2.3.1 Fundamentals for Semi-Markov Processes∗

We study a semi-Markov process X = {Xt, t ≥ 0} defined on a finite state
space S = {1, 2, . . . , S}. Let T0, T1, . . . , Tl, . . . , with T0 = 0, be the transition
epoches. The process is right continuous so the state at each transition epoch is
the state after the transition. Let Xl = XTl

, l = 0, 1, 2, . . . . Then, {X0,X1, . . .}
is the embedded Markov chain. The interval [Tl, Tl+1) is called a period and
its length is called the sojourn time in state Xl.

The Embedded Chain and the Sojourn Time

The semi-Markov kernel [87] is defined as

p(j; t|i) := P (Xl+1 = j, Tl+1 − Tl ≤ t|Xl = i) ,

which we assume does not depend on l (time-homogenous). Set

p(t|i) :=
∑

j∈S
p(j; t|i) = P(Tl+1 − Tl ≤ t|Xl = i),

h(t|i) := 1− p(t|i),
p(j|i) := lim

t→∞
p(j; t|i) = P(Xl+1 = j|Xl = i),

and
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p(t|i, j) :=
p(j; t|i)
p(j|i) = P(Tl+1 − Tl ≤ t|Xl = i,Xl+1 = j).

Normally, p(i|i) = 0, for all i ∈ S. But, in general, we may allow the process
to move from a state to itself at the transition epoches; in such a case, p(i|i)
may be nonzero and our results still hold. However, a transition from a state
to the same state cannot be determined by observing only the system states
of a semi-Markov process.

The matrix [p(j|i)] is the transition probability matrix of the embedded
Markov chain. We assume that this matrix is irreducible and aperiodic [20].
Let

m(i) =
∫ ∞

0

sp(ds|i) = E[Tl+1 − Tl|Xl = i]

be the mean of the sojourn time in state i. We also assume that m(i) < ∞
for all i ∈ S. Under these assumptions, the semi-Markov process is irreducible
and aperiodic and hence ergodic. Define the hazard rates as

r(t|i) =
d
dtp(t|i)
h(t|i) ,

and

r(j; t|i) =
d
dtp(j; t|i)
h(t|i) .

The latter is the rate at which the process moves from i to j in [t, t+dt) given
that the process does not move out from state i in [0, t).

The Equivalent Infinitesimal Generator

Let pt(j|i) = P(Xt = j|X0 = i). By the total probability theorem, we can
easily derive

pt+Δt(j|i) =
∑

k∈S
pt(k|i)

∫ ∞

0

p̃t(s|k){Ij(k)[1− r(s|k)Δt] + r(j; s|k)Δt}ds,

(2.71)
where Ij(k) = 1 if k = j, Ij(k) = 0 if k �= j; p̃t(s|k)ds is defined as the
probability that, given that the state at time t is k, the process has been
in state k for a period of s to s + ds. This probability depends on k and
therefore may depend on the initial state. Precisely, let lt be the integer such
that Tlt ≤ t < Tlt+1. Then,

p̃t(s|k)ds = P(s ≤ t− Tlt < s + ds|Xt = k). (2.72)

It is proved at the end of this subsection that

lim
t→∞

p̃t(s|k) =
h(s|k)
m(k)

. (2.73)
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Now, set Δt→ 0 in (2.71) and we obtain

dpt(j|i)
dt

= −
∑

k∈S
pt(k|i)

∫ ∞

0

{p̃t(s|k)[Ij(k)r(s|k)− r(j; s|k)]}ds. (2.74)

Since the semi-Markov process is ergodic, when t→∞, we have pt(j|i)→ π(j)
[87] and dpt(j|i)

dt → 0, where π(j) is the steady-state probability of j. Letting
t→∞ on both sides of (2.74) and using (2.73), we get

0 = −
∑

k∈S
π(k)

∫ ∞

0

1
m(k)

{
Ij(k)

d

ds
[p(s|k)]− d

ds
[p(j; s|k)]

}
ds

= −
∑

k∈S
π(k)

{
1

m(k)
[Ij(k)− p(j|k)]

}

= −
∑

k∈S
π(k){λ(k)[Ij(k)− p(j|k)]},

where we define
λ(k) :=

1
m(k)

.

Finally, we have
∑

k∈S
π(k)b(k, j) = 0, for all j ∈ S,

where we define

b(k, j) = −λ(k)[Ij(k)− p(j|k)]. (2.75)

In matrix form, we can write

πB = 0, (2.76)

where π = (π(1), . . . , π(S)) is the steady-state probability vector and B is a
matrix with elements b(k, j). In addition, we can easily verify that

Be = 0.

Equation (2.76) is exactly the same as the Markov process with B as its
infinitesimal generator. Therefore, B in (2.76) is the equivalent infinitesimal
generator for a semi-Markov process. Note that B depends only on m(i) and
p(j|i), i, j ∈ S. This implies that the steady-state probability is insensitive to
the high-order statistics of the sojourn times in any state, and it is independent
of whether the sojourn time in state i depends on j, the state it moves into
from i.
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The Steady-State Probability

We will study the general case where the reward function depends not only
on the current state but also on the next state that the semi-Markov process
moves into. To this end, for any time t ∈ [Tl, Tl+1), we denote Yt = Xl+1,
and study the process {(Xt, Yt), t ≥ 0}. Because the process {Yt, t ≥ 0} is
completely determined by the process {Xt, t ≥ 0}, for notational simplicity,
we still denote the process {(Xt, Yt), t ≥ 0} as

X = {(Xt, Yt), t ≥ 0}. (2.77)

Let π(i, j) be the steady-state probability of (Xt, Yt) = (i, j) and π(j|i)
be the steady-state conditional probability of Yt = j given that Xt = i, i.e.,
π(j|i) = limt→∞ P (Yt = j|Xt = i). (This is different from liml→∞ P (Xl+1 =
j|Xl = i), which is the steady-state conditional probability of the embedded
Markov chain.)

Define

m(i, j) =
∫ ∞

0

sp(ds|i, j) = E[Tl+1 − Tl|Xl = i,Xl+1 = j].

Then, we have

m(i) =
∑

j∈S
p(j|i)m(i, j) =

∫ ∞

0

sp(ds|i). (2.78)

We can prove (see the end of this subsection)

π(j|i) =

∫ ∞
0

sp(j; ds|i)∫ ∞
0

sp(ds|i)
=

p(j|i)m(i, j)
m(i)

. (2.79)

Therefore,

π(i, j) = π(j|i)π(i) = π(i)
p(j|i)m(i, j)

m(i)
, (2.80)

where π(i), i ∈ S, can be obtained from (2.76).

Proofs

A. The Proof of (2.73).
Consider an interval [0, TL], with L >> 1. Let Ik(x) = 1 if x = k and

Ik(x) = 0 if x �= k; and I(∗) be an indicator function, i.e., I(∗) = 1 if the
expression in the brackets holds, I(∗) = 0 otherwise. Let lt be the integer such
that Tlt ≤ t < Tlt+1. From (2.72), by ergodicity, we have

lim
t→∞

p̃t(s|k)ds = lim
TL→∞

∫ TL

0
I(s ≤ t− Tlt < s + ds)Ik(Xt)dt

∫ TL

0
Ik(Xt)dt

. (2.81)
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Let Nk be the number of periods in [0, TL] in which Xt = k. We have

lim
TL→∞

1
Nk

∫ TL

0

Ik(Xt)dt =
∫ ∞

0

sp(ds|k). (2.82)

Next, we observe that, for a fixed s > 0,
∫ TL

0
I(s ≤ t − Tlt)Ik(Xt)dt is the

total length of the time period in [0, TL] in which s ≤ t − Tlt and Xt = k.
Furthermore, among the Nk periods, roughly Nkp(dτ |k) periods terminate
with a length of τ to τ +dτ . For any s < τ , in each of such periods, the length
of time in which s ≤ t− Tlt is τ − s. Thus,

∫ TL

0

I(s ≤ t− Tlt)Ik(Xt)dt ≈ Nk

∫ ∞

s

(τ − s)p(dτ |k),

or

lim
TL→∞

1
Nk

∫ TL

0

I(s ≤ t− Tlt)Ik(Xt)dt =
∫ ∞

s

(τ − s)p(dτ |k).

Therefore,

lim
TL→∞

1
Nk

∫ TL

0

I(s ≤ t− Tlt < s + ds)Ik(Xt)dt

= − lim
TL→∞

1
Nk

[∫ TL

0

I(s + ds ≤ t− Tlt)Ik(Xt)dt

−
∫ TL

0

I(s ≤ t− Tlt)Ik(Xt)dt

]

= − d

ds

[∫ ∞

s

(τ − s)p(dτ |k)
]
ds = [1− p(s|k)]ds = h(s|k)ds. (2.83)

From (2.81), (2.82), and (2.83), we get

lim
t→∞

p̃t(s|k)ds =
h(s|k)ds∫ ∞

0
sp(ds|k)

.

Therefore, (2.73) holds. ��

B. The Proof of (2.79).
Consider a time interval [0, TL], with L >> 1. Let Ni be the number of

periods in [0, TL] in which Xt = i. Then,

lim
TL→∞

1
Ni

∫ TL

0

Ii(Xt)dt =
∫ ∞

0

sp(ds|i).

Let Ii,j(x, y) = 1 if x = i and y = j, and Ii,j(x, y) = 0 otherwise. We have

lim
TL→∞

1
Ni

∫ TL

0

Ii,j(Xt, Yt)dt =
∫ ∞

0

sp(j; ds|i).
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Thus, we have

π(j|i) = lim
TL→∞

∫ TL

0
Ii,j(Xt, Yt)dt

∫ TL

0
Ii(Xt)dt

=

∫ ∞
0

sp(j; ds|i)∫ ∞
0

sp(ds|i)
=

p(j|i)m(i, j)
m(i)

.

Therefore, (2.79) holds. ��

2.3.2 Performance Sensitivity Formulas∗

Consider a semi-Markov process X = {(Xt, Yt), t ≥ 0} (see (2.77)) starting
from a transition epoch T0 = 0 and an initial state X0 = j. We define the
reward function as f(i, j), i, j ∈ S, where f : S × S → R. The long-run
average reward is

η = lim
T→∞

1
T

E

[∫ T

0

f(Xt, Yt)dt
∣∣∣X0 = j

]
,

which does not depend on j because X is ergodic.

The Perturbation Realization Factor

On X with T0 = 0 and X0 = j, denote the instant at which the process moves
into state i for the first time as

T (i|j) = inf{t : t ≥ 0, Xt = i|X0 = j}.

Following the same approach as for the PA of Markov processes (2.61), we
define the perturbation realization factors as (the only difference is that T0 = 0
must be a transition epoch in the semi-Markov case):

γ(i, j) = E

{∫ T (i|j)

0

[f(Xt, Yt)− η]dt

∣∣∣∣∣X0 = j

}
. (2.84)

Define Γ = [γ(i, j)]Si,j=1.
From (2.80) and by ergodicity, we have

η =
∑

i,j∈S
π(i, j)f(i, j) =

∑

i∈S
π(i)f(i) = πf,

where f = (f(1), f(2), . . . , f(S))T , and (for simplicity, we use “f” for both
f(i) and f(i, j))

f(i) =

∑
j∈S p(j|i)f(i, j)m(i, j)

m(i)
. (2.85)

From (2.84), we have
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γ(i, j) = E

{∫ T1

0

[f(Xt, Yt)− η]dt

∣∣∣∣∣X0 = j

}

+ E

{∫ T (i|j)

T1

[f(Xt, Yt)− η]dt

∣∣∣∣∣X0 = j

}

=
∑

k∈S
p(k|j)

{
E

{∫ T1

0

[f(X0, Y0)− η]dt

∣∣∣∣∣X0 = j,X1 = k

}

+E

{∫ T (i|j)

T1

[f(Xt, Yt)− η]dt

∣∣∣∣∣X0 = j,X1 = k

}}

=
∑

k∈S
p(k|j)

{
[f(j, k)− η]E[T1|X0 = j,X1 = k]

+E

{∫ T (i|k)

T1

[f(Xt, Yt)− η]dt

∣∣∣∣∣X1 = k

}}

=
∑

k∈S
p(k|j)

{
[f(j, k)− η]m(j, k)

+ E

{∫ T (i|k)

T1

[f(Xt, Yt)− η]dt

∣∣∣∣∣X1 = k

}}
.

From (2.78) and (2.85), the aforementioned equation leads to

γ(i, j) = m(j)[f(j)− η] +
∑

k∈S
p(k|j)γ(i, k),

or, equivalently,

− [f(j)− η] =
∑

k∈S
{−λ(j)[Ij(k)− p(k|j)]γ(i, k)}

=
∑

k∈E
[b(j, k)γ(i, k)].

In matrix form, this is

ΓBT = −(efT − ηeeT ). (2.86)

Next, on the process X, with T0 = 0 being a transition epoch and X0 = j,
for any state i ∈ S we define two sequences u0, u1, . . . , and v0, v1, . . . , as
follows:

u0 = T0 = 0, (2.87)

vn = inf{t ≥ un,Xt = i},
and
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un+1 = inf{t ≥ vn,Xt = j}, (2.88)

i.e., vn is the first time when the process reaches i after un, and un+1 is the first
time when the process reaches j after vn, n = 0, 1, . . . . Apparently, u0, u1, . . .
are stopping times and Xt is a regenerative process with {un, n = 0, 1, . . .} as
its associated renewal process. By the theory of regenerative processes [87],
we have

η =
E[

∫ u1

u0
f(Xt, Yt)dt]

E[u1 − u0]
=

E[
∫ v0

0
f(Xt, Yt)dt] + E[

∫ u1

v0
f(Xt, Yt)dt]

E[v0] + E[u1 − v0]
.

Thus,

E

{∫ v0

0

[f(Xt, Yt)− η]dt
}

+ E

{∫ u1

v0

[f(Xt, Yt)− η]dt
}

= 0.

By the definition of u0, v0 and u1, the above equation is

γ(i, j) + γ(j, i) = 0;

therefore, the matrix Γ is skew-symmetric

ΓT = −Γ.

Taking the transpose of (2.86), we get

−BΓ = −(feT − ηeeT ).

From the above equation and (2.86), Γ satisfies the following PRF equation

BΓ + ΓBT = −F,

where F = efT − feT .

Performance Potentials

Similar to Equations (2.87) to (2.88), for any three states i, j, k, we define
three sequences u0, u1, . . . ; v0, v1, . . . ; and w0, w1, . . . as follows. u0 = T0 = 0,
X0 = j, vn = inf{t ≥ un,Xt = i}, wn = inf{t ≥ vn,Xt = k}, and un+1 =
inf{t ≥ wn,Xt = j}. By a similar approach, we can prove that

γ(i, j) + γ(j, k) + γ(k, i) = 0.

In general, we can prove that, for any closed circle i1 → i2 → · · · → in → i1
in the state space, we have

γ(i1, i2) + γ(i2, i3) + · · ·+ γ(in−1, in) + γ(in, i1) = 0.
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This is similar to the conservation law of potential energy in physics. There-
fore, we can define a performance potential g(i) in any state and write
γ(i, j) = g(j)− g(i) and

Γ = egT − geT , (2.89)

where g = (g(1), . . . , g(S))T . By substituting (2.89) into (2.86), we get the
Poisson equation:

Bg = −f + ηe.

Similar to the Markov process case, we have different versions of g, which
differ by a constant vector ce. For example, when πg = η, we have

(B − eπ)g = −f, (2.90)

and when πg = 0, we have
g = −B#f.

Finally, a Markov process with transition rates λ(i) and transition prob-
abilities p(j|i) can be viewed as a semi-Markov process whose kernel is
p(j; t|i) = p(j|i){1− exp[−λ(i)t]}. With this special kernel, we have

m(i, j) = m(i) =
1

λ(i)
,

π(i, j) = π(i)p(j|i),
and

f(i) =
S∑

j=1

p(j|i)f(i, j).

The results in this section become the same as those in Section 2.2 for Markov
processes.

Performance Sensitivity Formulas

We have shown that with properly defined g and B, the Poisson equation
and PRF equation hold for potentials and perturbation realization factor ma-
trices, respectively, for semi-Markov processes. Thus, performance sensitivity
formulas can be derived in a way similar to Markov processes, and the results
are briefly stated here.

First, for two semi-Markov processes with B′, η′, f ′ and B, η, f , by mul-
tiplying both sides of (2.90) on the left by π′ and using π′B′ = 0 and πg = η,
we get

η′ − η = π′[(B′ −B)g + (f ′ − f)]
= π′[(B′g + f ′)− (Bg + f)]. (2.91)
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As we shall see in Chapter 4, this equation serves as a foundation for semi-
Markov decision processes. As shown in Chapter 4, policy iteration for semi-
Markov processes can be derived from (2.91).

Next, suppose that B changes to Bδ = B + δΔB, with ΔB = B′−B, and
f changes to fδ = f + δΔf , with Δf = f ′− f . We have ΔBe = 0. ΔB can be
determined by the changes in the characteristics of the semi-Markov process.
For example, if λ(i) = 1/m(i) changes to λ(i)+(Δλ)δ, i = 1, 2, . . . , S, Δλ > 0,
then, according to (2.75), b(i, j) changes to b(i, j)− δ(Δλ)[Ij(i)− p(j|i)]; i.e.,
ΔB = −Δλ(I −P ), P = [p(j|i)]; on the other hand, if P changes to P +ΔP ,
then Δb(i, j) = λ(i)[ΔP (j|i)], i, j = 1, 2, . . . , S. Denote the average reward of
the semi-Markov system with Bδ and fδ as ηδ. We can easily obtain

dηδ

dδ

∣∣∣
δ=0

= π[−(ΔB)B#f + Δf ]

= π[(ΔB)ΓTπT + Δf ].

Sample-path-based expressions for g and Γ can be derived. From (2.84),
with a similar reasoning as in (2.18), we have

γ(i, j) = lim
T→∞

{
E
{∫ T

0

[f(X̃t, Ỹt)− η]dt
∣∣∣X̃0 = j

}

−E
{ ∫ T

0

[f(Xt, Yt)− η]dt
∣∣∣X0 = i

}}
,

where X̃ and X have the same kernel; they are independent but start from
two different initial states, X̃0 = j and X0 = i, respectively, with T0 = T̃0 = 0
being a transition epoch for both X̃ and X. From this equation, we have

g(j) = lim
T→∞

E
{∫ T

0

[f(Xt, Yt)− η]dt
∣∣∣X0 = j

}
. (2.92)

This is the same as in the Markov process case, except that the integral
starts with a transition epoch. The convergence of the right-hand side of (2.92)
can be easily verified by, e.g., using the embedded Markov chain model.

With the equivalent infinitesimal generator, the high-order derivatives are
the same as those for the Markov chains (2.70). Again, all the items in π and
B# can be estimated on a sample path of the semi-Markov process with B;
see Problem 3.18.

Example 2.3. Consider a communication line (or a switch, a router, etc.)
at which packets arrive in a Poisson process with a rate of λ packets per



100 2 Perturbation Analysis

second. The packet length is assumed to have a general probability dis-
tribution function Φ(x); the unit of the length is bit per packet. For each
packet, the system manager can choose a transmission rate of θ bits per sec-
ond. Thus, the transmission time for each packet has a distribution function
Φ̃(τ) = P(t ≤ τ) = P(x ≤ θτ) = Φ(θτ). In a real system, θ takes a discrete
value determined by the number of channels; each channel has a fixed amount
of bandwidth. Thus, we can view θ as an action and denote the action space as
{θ1, θ2, . . . , θK}, with θk = kμ, k = 1, 2, . . . ,K, where μ denotes the transmis-
sion rate of one channel in bits per second. Of course, in a theoretical study,
we can also view θ as a continuous variable.

T0 T1 T2 T3 T4

A

B
X

X̃

�
�

�
�

� �

•
•

•
•

•

T0 T1 T2 T3 T4

�

SMP

M/G/1

Fig. 2.11. An M/G/1 Queue and the Embedded SMP

The system can be modelled as an M/G/1 queue; the (physical) state at
time t is N(t) = i with i being the number of customers (packets) in the queue
at time t. Figure 2.11.A illustrates a sample path X = {N(t), t ≥ 0}. For
stability, we require that Kμ > λx̄, where x̄ is the mean length of the packets.
The decisions for actions are made at the beginning of the transmission of
every packet. Thus, we consider the embedded points consisting of all the
service completion times and the arrival times to all the idle periods, denoted
as T0, T1, . . . . Define X̃t = N(Tn) for Tn ≤ t < Tn+1, n = 0, 1, 2, . . . . Then,
X̃ = {X̃t, t ≥ 0} is a semi-Markov process (SMP). Figure 2.11.B illustrates
the embedded SMP corresponding to the sample path in Figure 2.11.A. It is
clear that the following equations hold for X̃:

p(1; t|0) = 1− exp(−λt),

p(t|i) = Φ(θt), i > 0,

and

p(j; dt|i) = P(Xn+1 = j, t ≤ Tn+1 − Tn < t + dt|Xn = i)
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=
[

(λt)j−i+1

(j − i + 1)!
exp(−λt)

]
Φ(θdt), i > 0, i− 1 ≤ j,

where the term in the braces is the probability that there are j− i+1 arrivals
in the period of [0, t).

In the optimization problem, the reward (cost) function usually consists
of two parts: the holding cost f1(i, j) and the bandwidth cost f2(θ). That is,

fθ(i, j) = f1(i, j) + f2(θ).

It is well known that, if in an interval [0, t], there are k arrivals from a Poisson
process, then these k arrivals uniformly distribute over the period (see, e.g.,
[169]). Thus, it is reasonable to take the average number of customers in [0, t],
(i + j)/2, as the holding cost, and we may set

fθ(i, j) = κ1
i + j

2
+ κ2θ, κ1 + κ2 = 1, 0 < κ1, κ2 < 1,

where the first term represents the cost for the average waiting time. The
problem is now formulated in a semi-Markov framework and the results de-
veloped in this section can be applied. ��

Finally, many results about SMPs can be obtained by using the embed-
ded Markov chain method (see, e.g., [243]). It is natural to expect that the
sensitivity analysis can also be implemented using this approach. However,
compared with the embedded-chain-based approach, the approach presented
in this section is more direct and concise and hence the results have a clear in-
tuitive interpretation. In addition, with the embedded approach, the expected
values (time and cost) on a period Tn+1−Tn are used; the sample-path-based
approach used here is easier to implement on-line (e.g., see the definition in
(2.84)).

The discounted reward with a discount factor β > 0 for semi-Markov
processes is defined as

ηβ(i) = lim
T→∞

E

[∫ T

0

β exp(−βt)f(Xt, Yt)dt
∣∣∣X0 = i

]
, T0 = 0. (2.93)

Similar to the discrete case in (2.31), the weighting factor in (2.93) is also nor-
malized:

∫ ∞
0

β exp(−βt)dt = 1. The performance potential for the discounted
reward criterion is

gβ(i) = lim
T→∞

E

{∫ T

0

exp(−βt)[f(Xt, Yt)− η]dt
∣∣∣X0 = i

}
, i ∈ S.

The sensitivity analysis of the discounted reward for semi-Markov processes
involves an equivalent Markov process. We refer readers to [57] for technical
details.
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2.4 Perturbation Analysis of Queueing Systems

The early works on perturbation analysis (PA) focused on queueing systems.
The idea of PA was first proposed in [144] for the buffer allocation problem
in a serial production line and was first studied for queueing networks in
[141]. The special structure of queueing systems, especially the interactions
among different customers or different servers, makes PA a very efficient tool
for estimating the performance derivatives with respect to the mean service
times based on a single sample path. This section contains an overview of the
main results of PA of queueing systems.

The main difference between PA of Markov chains and PA of queueing
systems is that in the former, a perturbation is a “jump” on a sample path
from one state to another due to parameter changes, while, in the latter, it is
a small (infinitesimal) delay in a customer’s transition time. Some queueing
(such as the Jackson-type) networks can be modelled by Markov processes
and therefore the theory and algorithms developed for Markov processes can
be applied. However, because of the special features of a queueing system, the
performance derivatives with respect to service time changes can be obtained
by a much more efficient and more intuitive approach, which applies to non-
Markov queueing systems as well.

The dynamic nature of a system’s behavior is explored more clearly in PA
of queueing systems. Its basic principle can be described as follows: a small
increase in the mean service time of a server generates a series of small delays,
called perturbations, in the service completion times of the customers served
by that server. Each such perturbation of a customer’s service completion
time will cause delays in the service completion times of other customers (at
the same server or at other servers). In other words, a perturbation will be
propagated through the system due to the interactions among customers and
servers. Thus, a perturbation will affect the system performance through prop-
agation. The average effect of a perturbation on the system performance can
be measured by a quantity called the perturbation realization factor (PRF).
Finally, the effect of a change in the mean service time of a server equals the
sum of the effects of all the perturbations generated on the service completion
times of the server due to this change in its mean service time. The above
description is precisely captured by three fundamental rules of PA:

1. Perturbation generation;
2. Perturbation propagation;
3. Perturbation realization.

These rules will be discussed in subsequent subsections. In PA of Markov
chains, the perturbations (jumps) are generated according to (2.2) and (2.4);
the perturbation realization is illustrated by Figure 2.6 and measured by (2.5).
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However, as we will see, the “propagation” effect in Markov chains is not as
explicit as in queueing networks.

Problem Description

Consider a closed Jackson network (cf. Appendix C.2) with M servers and N
customers. The service times of every server in the network are independently
and exponentially distributed. Let s̄i be the mean service time of server i, i =
1, . . . ,M , and let qi,j , i, j = 1, . . . ,M , be the routing probabilities. Q = [qi,j ]
is the routing probability matrix. The system state can be denoted as n =
(n1, n2, . . . , nM ), where ni is the number of customers in server i. For a closed
network with M servers and N customers, we have

∑M
i=1 ni = N . The state

space is S = {all n :
∑M

i=1 ni = N}. The system state at time t is denoted as
N(t) = (n1(t), . . . , nM (t)). The system can be modelled by a Markov process
X = {N(t), t ≥ 0}. Let Tl, l = 0, 1, . . . , be the lth transition time of X,
counting the customer transitions at all the servers. Figure 2.12 illustrates
a sample path of a three-server five-customer closed queueing network. The
vertical dashed arrows signal the customer transitions among servers, and
each of the three staircase-like curves indicates the evolution of a server in the
network.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14T15

Server 3

Server 2

Server 1

Fig. 2.12. A Sample Path of a Closed Queueing Network with M = 3 and N = 5

Let f : S → R be a reward (or cost) function. The system performance is
defined as the long-run average reward

η(f) = lim
L→∞

1
L

∫ TL

0

f [N(t)]dt, w.p.1, (2.94)

where TL is the Lth transition time of the system. In this section, we use the
superscript “(f)” to explicitly denote the dependency of a quantity on f for
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clarity. For closed Jackson networks in which a customer can reach any server
in the network while circulating in the network (irreducible networks), the
state process N(t) is an ergodic Markov process, and the limit in (2.94) exists
with probability 1 and does not depend on the initial state. Set

FL =
∫ TL

0

f [N(t)]dt.

Then, we have

η(f) = lim
L→∞

FL

L
.

With L being the number of customers’ service completions in the period
of [0, TL], the performance measure defined in (2.94) is the customer average.
These types of performance measures cover a wide range of applications. For
example, if f(n) = I(n) ≡ 1 for all n ∈ S, then FL = TL and

η(I) = lim
L→∞

TL

L
=

1
η
, (2.95)

where η = limL→∞
L
TL

is the system throughput (the number of service com-
pletions per unit of time). If f(n) = ni, then FL is the area underneath the
sample path of server i. Let Li be the number of service completions at server
i in [0, TL]. Then,

η(f) = lim
L→∞

FL

L
=

(
lim

L→∞

Li

L

)(
lim

L→∞

FL

Li

)
= viτ̄i,

where vi is the visit ratio of server i (see (C.5) in Appendix C), satisfying
vi =

∑M
j=1 vjqj,i and normalized to

∑M
k=1 vi = 1, and τ̄i is the mean response

time (waiting time + service time) of a customer at server i. Similarly, we
have

η(f) = lim
L→∞

FL

L
=

(
lim

L→∞

TL

L

)(
lim

L→∞

FL

TL

)
= η(I)n̄i,

where n̄i is the average number of customers at server i.
Another type of performance measure is the long-run time-average reward

defined as

η
(f)
T = lim

L→∞

1
TL

∫ TL

0

f [N(t)]dt,

which can be easily converted to customer averages as follows:

η
(f)
T = ηη(f) =

η(f)

η(I)
.

Now suppose that the mean service time of one of the servers, say server
v, changes from s̄v to s̄v + Δs̄v. We call the closed network with s̄i, i =
1, 2, . . . ,M , the original network, and the network with the changed mean
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service time s̄v +Δs̄v and s̄i, i �= v, the perturbed network. A sample path of
the original network is called an original sample path, and a sample path of
the perturbed network is called a perturbed sample path.

Given a sample path of a network, its average reward η(f) can be easily
estimated by simple calculation. The goal of PA is to obtain an estimate for
the performance derivatives dη(f)

ds̄v
, v = 1, 2, . . . ,M , by observing and analyzing

an original sample path. This is shown in Figure 2.13, in which we use θ to
denote a generic parameter.

Observing
or

Simulating

A Sample Path

with

Parameter θ

Performance η(θ)

Performance

Derivative dη(θ)
dθ

Fig. 2.13. The Goal of Perturbation Analysis

2.4.1 Constructing a Perturbed Sample Path

As in Markov chains, the first step in PA of queueing systems is to construct
a perturbed sample path by using an original one.

Suppose that we are given an original sample path with transition times Tl,
l = 0, 1, . . . . Let T ′

l be the lth transition time on the corresponding perturbed
path, l = 0, 1, . . . . Suppose that the lth transition time is a service completion
time of server i. Then, ΔTl := T ′

l − Tl is called the perturbation of server i at
time Tl; it is also called the perturbation of the customer that completes the
service at server i at Tl.

Perturbation Generation

First, we study how the change in the mean service time of a server affects
every customer’s service time at that server. In general, let s̄ be the mean
service time of a server with an exponentially distributed service time. Then,
the service time of a customer at that server, denoted as s, has the following
distribution:

Φ(s) = 1− exp
(
−s

s̄

)
.

In simulation, we use the inverse-transform method to generate the service
times (shown in Figure A.2 and reproduced in Figure 2.14). First, we generate
a uniformly distributed random number ξ in [0, 1). Then, we set
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s = Φ−1(ξ) = −s̄ ln(1− ξ). (2.96)

It is well known that s in (2.96) is exponentially distributed with mean s̄. As-
sume that the mean service time changes to s̄+Δs̄ (for the sake of discussion,
we may assume that Δs̄ > 0). Then, with the same random variable ξ, the
service time in (2.96) changes to

s + Δs = −(s̄ + Δs̄) ln(1− ξ).

Thus, we have

Δs = −Δs̄ ln(1− ξ) =
Δs̄

s̄
s = κs, κ :=

Δs̄

s̄
. (2.97)

That is, the service time of every customer at the perturbed server will increase
by an amount Δs (> 0) shown in (2.97); in other words, the service completion
time of every customer at the server will be delayed by Δs (> 0). We call (2.97)
the perturbation generation rule [142]:

The Perturbation Generation Rule:

At the perturbed server, because of the change in the mean service time
Δs̄, every customer’s service completion time obtains a perturbation of
Δs, shown in (2.97), on the sample path.

This perturbation obtained during a customer’s service period is in addition
to the perturbation(s) previously obtained by the server before the customer
starts its service.

1.0

0 s s + Δs

ξ

Φ(s, θ)

Φ(s, θ + Δθ)

Δs

s = Φ−1(ξ, θ), s + Δs = Φ−1(ξ, θ + Δθ)

Fig. 2.14. The Perturbation Generation Rule
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The inverse-transform method can be used to derive the perturbation gen-
eration rule for other service distributions. Let Φ(s, θ) be the distribution
function of the service times of the customers at a server, which depends on a
parameter θ. With the inverse-transform method, we determine a customer’s
service time by using the inverse function of the distribution function:

s = Φ−1(ξ, θ) = sup{s : Φ(s, θ) ≤ ξ},
where ξ is a uniformly distributed random variable on [0, 1). Suppose that
the distribution parameter θ changes to θ +Δθ. Then, the service time of the
customer changes to

s + Δs = Φ−1(ξ, θ + Δθ).

We have

Δs = Φ−1(ξ, θ + Δθ)− Φ−1(ξ, θ)

≈ ∂Φ−1(ξ, θ)
∂θ

∣∣∣∣
ξ=Φ(s,θ)

Δθ =
∂s

∂θ

∣∣∣∣
ξ=Φ(s,θ)

Δθ. (2.98)

Δs is the perturbation generated during the service period because of Δθ.
The same random variable ξ is used for both s and s + Δs. Pictorially, the
perturbation generation rule is illustrated in Figure 2.14.

In practice, calculating the partial derivative ∂Φ−1(ξ,θ)
∂θ may require a rela-

tively large amount of computation. However, in most applications, such as in
communication systems, the packet length distribution, length = Φ−1(ξ), is
fixed, and one can only change the transition rate μ. The service (transition)
time is s = length

μ = 1
μΦ−1(ξ). Therefore, for service rate μ, we have

Δs ≈ −Δμ

μ2
Φ−1(ξ) = −Δμ

μ
s

= κs, κ = −Δμ

μ
, (2.99)

which is in the same form as (2.97) for the mean service time of the exponential
distribution.

Perturbation Propagation

A perturbation of one customer, or one server, will affect the transition times
of other customers, or other servers, in the network. Figure 2.15 illustrates the
interaction between two servers. Suppose that the first customer in server 1
obtains a perturbation Δ at time T1; i.e., its service completion time is delayed
by Δ. Apparently, the service starting time of the next customer at the same
server will be delayed by Δ and its service completion time will also be delayed
by the same amount Δ at T2. In addition, at T1, because server 2 was idle and
was waiting for a customer arriving from server 1, the service starting time
of server 2 at T1 and its completion time at T3 will also be delayed by Δ. We
summarize the above discussion in two perturbation propagation rules [142]:
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T1 T2 T3
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Δ Δ
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Δ Δ

Server 2

Server 1

Fig. 2.15. Perturbation Propagation

The Perturbation Propagation Rules:

i. A server keeps its perturbation until it meets an idle period (or the
perturbation of a customer’s service completion time is propagated
to the next customer in the server until the server meets an idle
period).

ii. The perturbation of one server will be propagated to another server
if a customer at the former moves to the latter and terminates an
idle period of the latter server.

The first rule implies that when a server meets an idle period, the server’s
original perturbation is lost. The second rule implies that after the idle period,
the server will acquire a perturbation propagated from another server. That
is, after an idle period, a server’s perturbation always equals that of the server
that terminates the idle period. A special case is illustrated in Figure 2.16, in
which server 1 has a perturbation Δ1 = Δ at T1, but after the idle period,
at T2, the server acquires the perturbation from server 2, which is Δ2 = 0.
Thus, the perturbation Δ1 of server 1 at T1 is lost after the idle period at T2.
This explains how a non-perturbed server can be viewed as a server having a
perturbation 0 in perturbation propagation.

Note that we assume that the perturbation can be as small as we wish
(infinitesimal perturbation). Thus, we can always assume that the perturba-
tion is smaller than the length of the idle period. See Section 2.4.4 for more
details.

Constructing a Perturbed Path

Now we return to the closed Jackson network with M servers and N cus-
tomers. Suppose that we are given a sample path of the original system with
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Δ2 = 0

T1 T2

Server 2

Server 1

Fig. 2.16. Perturbation Propagation for Δ = 0

mean service times s̄i, i = 1, 2, . . . ,M , and one server’s (server v) mean service
time is perturbed from s̄v to s̄v + Δs̄v.

From the perturbation generation and propagation rules, we can efficiently
determine the perturbations of all the servers and therefore construct a per-
turbed sample path on an original one without simulating the perturbed sys-
tem again. We may simply generate a perturbation on the original sample
path according to (2.97) whenever a customer completes its service at server
v, and then propagate it along the original sample path according to the two
propagation rules. Note that we can propagate all the perturbations at a server
altogether. This leads to the following simple algorithm for determining the
perturbations of all servers on the sample path at any time:

Algorithm 2.1. (Constructing a Perturbed Sample Path)

Given an original sample path for a closed Jackson network:

i. Initialization: Set Δi := 0, i = 1, 2, . . . ,M ;
ii. (Perturbation generation) At the kth service completion time of

server v, set Δv := Δv + sv,k, k = 1, 2, . . . , sv,k is the service time of
the customer;

iii. (Perturbation propagation) After a customer from server i termi-
nates an idle period of server j, set Δj := Δi, i, j = 1, 2, . . . ,M .

The perturbation of server i is κΔi, i = 1, 2, . . . ,M .

In the algorithm, Δi denotes the (accumulated) perturbation of server i,
i = 1, 2, . . . ,M . The perturbation of every server is updated whenever it starts
a new busy period, and, in addition, the perturbation of the perturbed server
is also updated whenever it completes its service to a customer. Because all
the perturbations generated and propagated are proportional to κ = Δs̄v

s̄v
, at

any time the perturbation at any server in the network must be proportional



110 2 Perturbation Analysis

to κ. Therefore, for simplicity, in the algorithm, we use sv,k instead of κsv,k

as the perturbation generated. Thus, the exact perturbation corresponding to
Δs̄v at any server i should be κΔi, i = 1, . . . ,M . The algorithm determines
the perturbations of all the transition times of all servers (i.e., Tl, l = 1, 2, . . .)
at the perturbed path. The transition times of the perturbed path equal those
of the original path plus the perturbation of the corresponding server.

�

Δs1,1

Δs1,1 Δs1,1Δs1,2

Δs1,2

Δs1,3

Δs1,4

Δs2,1

T1,1 T1,2 T1,3 T1,4 T2,1

Fig. 2.17. A Perturbed Sample Path for an M/G/1 Queue

Example 2.4. To illustrate perturbation propagation within the same server,
we consider a single server queue, in which there is no perturbation propaga-
tion among different servers. In such a system, the third step in Algorithm
2.1 is not implemented, and the perturbation of the server is reset to zero
at the beginning of every new busy period. Actually, a single server queue is
an open network, and the arriving customers can be viewed as from a source
that is never perturbed. A sample path of such a single server queue (may be
viewed as an M/M/1 or an M/G/1 queue) and its corresponding perturbed
path constructed by Algorithm 2.1 are shown in Figure 2.17.

The figure illustrates the first busy period of the sample path, in which
there are four customers served by the server. In the kth busy period, the ith
customer’s service time is denoted as sk,i, and its departure time is denoted as
Tk,i, k, i = 1, 2, . . . . At the first customer’s departure time T1,1, a perturbation
Δs1,1 = κs1,1 is generated according to (2.98) or (2.99). This perturbation is
propagated to the departure times of the subsequent customers in the same
busy period, T1,2, T1,3, and T1,4. At T1,2, another perturbation Δs1,2 = κs1,2

is generated; thus, the total perturbation at T1,2 is Δs1,1 + Δs1,2. This per-
turbation propagates to T1,3 and T1,4; and so on. In general, the perturbation
of the ith departure time in the kth busy period is

ΔTk,i =
i∑

l=1

Δsk,l, (2.100)

where Δsk,l = κsk,l is the perturbation of the lth customer’s service time in
the kth busy period, generated according to (2.98) or (2.99). ��
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Figure 2.17 also illustrates a fundamental fact: The simple rules for per-
turbation propagation hold only if the perturbation accumulated at the end
of a busy period is smaller than the length of the idle period following the
busy period. For the time being, we may think that we can always choose Δs̄
or Δθ small enough such that this condition holds. For a rigorous discussion,
see Section 2.4.4.

Example 2.5. Suppose that we are given an original sample path of a three-
server five-customer closed network shown in Figure 2.12, and server 2’s mean
service time is perturbed from s̄2 to s̄2 +Δs̄2. We may construct a perturbed
sample path by following the perturbation generation and propagation rules,
as shown in Figure 2.18. The top figure shows the original path plus the
perturbations at all transition instants; and the bottom figure shows the per-
turbed path thus constructed, in which T ′

l = Tl + ΔTl, with ΔTl being the
perturbation of the transition instant Tl, l = 0, 1, . . . , 15.

There are five perturbations generated, denoted as perturbations Δs1,
Δs2, Δs3, Δs4, and Δs5 (for simplicity, we omitted the subscript denoting
server 2, e.g., we write Δs2,1 = Δs1, etc.) and differentiated by different grays
shown in the figure. The five perturbations are induced during the first five
customers’ service times at the perturbed server, server 2. They are generated
according to the perturbation generation rule (2.98).

As shown in the figure, Perturbation Δs1 obtained at T4 by server 2 is
propagated to server 1 immediately since the customer at server 2 terminates
an idle period of server 1 at T4. This perturbation is also propagated to the
subsequent service completion times of server 2, T6, T7 and T8. At T6, server 2
obtains another perturbation Δs2 for its second customer, resulting in a total
perturbation of ΔT6 = Δs1 +Δs2. Similarly, we have ΔT7 = Δs1 +Δs2 +Δs3

and ΔT8 = Δs1+Δs2+Δs3+Δs4. As shown in the figure, ΔT7 is propagated
to server 3 through an idle period. The perturbation that is propagated to
server 1 at T4, Δs1, is also propagated to the subsequent customers’ service
completion times, T9, T10, T11, and T13, in the same busy period of server 1.
Likewise, the perturbation propagated to server 3 at T7, Δs1 +Δs2 + Δs3, is
also propagated to the subsequent customers’ service completion times, T12

and T15, in the same busy period of server 3.
The perturbation that server 2 acquired in the first busy period ΔT8 =

Δs1 + Δs2 + Δs3 + Δs4 is lost after the idle period starting from T8. Indeed,
at the beginning of the next busy period T11, server 2 acquires a perturbation
ΔT11 = Δs1 through propagation from server 1. There is another perturba-
tion, Δs5, generated during the service time of the first customer in the second
busy period of server 2, resulting in a total perturbation of ΔT14 = Δs1 +Δs5

for server 2 at T14. Note that although the arrival time to server 1 at T8 is
delayed by Δs1 + Δs2 + Δs3 + Δs4, its effect is temporary: it does not affect
any other service completion time at server 1 at all. The same statement holds
for the delays in other arrival times except for those arrivals that start a new
busy period.
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Fig. 2.18. A Perturbed Sample Path of the Network in Figure 2.12
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Again, the perturbation propagated to server 1 in the second busy period,
Δs1, is lost after the idle period starting from T13. After that, server 1 acquires
a perturbation Δs1 + Δs2 + Δs3 from server 3 through propagation at T15.

It is interesting to note that starting from T7, every server acquires the
perturbation Δs1. We say that Δs1 is realized at T7 by the network. In con-
trast, starting from T9, no server has the perturbation Δs4. We say that Δs4

is lost by the network at T9 (see Section 2.4.2). ��

Calculating the Performance Derivatives

With the perturbed sample path constructed by Algorithm 2.1, the perfor-
mance of the perturbed system can be calculated. As an example, we consider
the system throughput. Recall that TL is the Lth transition time of a queue-
ing system. Assume that L >> 1. Then, the overall system throughput (the
number of customers served by all the servers in the network per unit of time)
is defined as

η = lim
L→∞

L

TL
≈ L

TL
.

In the perturbed system with s̄v changed to s̄v + Δs̄v, it takes TL + ΔTL to
finish the L transitions, with ΔTL = κΔu, κ = Δs̄v

s̄v
, where u denotes the server

for which TL is the service completion time, and Δu is its perturbation at TL

determined by Algorithm 2.1 (in which κ is set to be one). The throughput
of the perturbed system is

η + Δη ≈ L

TL + ΔTL
≈ L

TL
(1− ΔTL

TL
) = η(1− ΔTL

TL
).

Thus, we have

Δη ≈ −η
ΔTL

TL
,

and
s̄v

η

Δη

Δs̄v
≈ − s̄v

Δs̄v

ΔTL

TL
= −Δu

TL
.

Therefore, the elasticity (or the normalized derivative) of η with respect to s̄v

can be estimated on a sample path with PA as follows.

s̄v

η

∂η

∂s̄v
≈ −Δu

TL
, (2.101)

which does not depend on κ!
To obtain the derivatives of the throughput, in addition to the throughput

itself, the algorithm adds only three clauses to the simulation program, one
for perturbation generation, one for perturbation propagation (see Algorithm
2.1), and one for calculating the normalized derivative according to (2.101);
and it adds only about 5% of computation time [141]. The following example
illustrates the accuracy of this algorithm.
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Example 2.6. Consider a closed Jackson network with M = 6, N = 12; the
mean service times of the servers are 30, 40, 50, 55, 45, and 35, respectively;
and the routing probability matrix is

Q =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.00 0.10 0.20 0.15 0.35 0.20
0.25 0.00 0.15 0.10 0.10 0.40
0.35 0.15 0.00 0.25 0.25 0.00
0.25 0.25 0.10 0.00 0.20 0.20
0.00 0.20 0.25 0.15 0.00 0.40
0.40 0.30 0.00 0.15 0.15 0.00

⎤

⎥⎥⎥⎥⎥⎥⎦
.

We ran a simulation for L = 500, 000 transitions and applied the PA Algorithm
2.1 to the simulation. The resulting elasticities of the system throughput with
respect to each mean service time given by (2.101) and the theoretical values
of these elasticities (calculated by (C.19) and (C.15)) are shown in Table 2.8.

��

− s̄i
η

∂η
∂s̄i

i = 1 2 3 4 5 6

PA estimate 0.0906 0.1374 0.1025 0.2131 0.2736 0.1828

Theoretical 0.0915 0.1403 0.0980 0.2087 0.2812 0.1802

Table 2.8. Elasticities in Example 2.6

Now, we consider the average reward defined with any general reward
function f in (2.94):

η(f) = lim
L→∞

1
L

∫ TL

0

f [N(t)]dt = lim
L→∞

FL

L
, (2.102)

where N(t) denotes the state process and

FL =
∫ TL

0

f [N(t)]dt.

The computation of the performance derivative ∂η(f)

∂s̄i
involves more than

that of the derivative of the system throughput ∂η
∂s̄i

. It depends not only on
the final perturbation Δu, as shown in (2.101), but also on the perturbations
of every transition time. We need to modify Algorithm 2.1 as follows:
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Algorithm 2.2. (Calculating the Performance Derivatives)

Given an original sample path for a closed Jackson network:

i. Initialization: Set Δi := 0, i = 1, 2, . . . ,M , and ΔF := 0;
ii. (Perturbation Generation and Propagation) Same as steps ii and

iii in Algorithm 2.1, which determine the perturbations of Tl, ΔTl,
l = 1, 2, . . . ;

iii. (Update ΔF ) At every transition time Tl, l = 1, 2 . . . , set ΔF :=
ΔF + [f(n) − f(n′)]ΔTl, where n = N(Tl−) and n′ = N(Tl) are
the system states before and after the transition, respectively.

Similar to Algorithm 2.1, κ is also set to be one in Algorithm 2.2. Let
ΔFL be the perturbation obtained by the algorithm at TL. Then, the real
perturbation of FL for the system is κΔFL, with κ = Δs̄v

s̄v
. Thus, when L is

sufficiently large, from (2.102), we have Δη(f) = κΔFL

L . From this, we obtain

s̄v

η(I)

∂η(f)

∂s̄v
≈ s̄v

η(I)

Δη(f)

Δs̄v
=

ΔFL

TL
.

Finally, both Algorithms 2.1 and 2.2 can be implemented on line; i.e.,
there is no need to store the history of the sample path. Ref. [64] contains
some simulation examples for Algorithm 2.2, applied to mean response times.

2.4.2 Perturbation Realization

We derived the PA algorithms for performance derivatives in the previous
subsection. In this subsection, we start a more rigorous study of PA.

We first introduce the fundamental concept in PA: the perturbation real-
ization. We show that, on average, the final effect of a single perturbation on
the system performance (more precisely, on FL, L >> 1 in (2.102)) can be
measured by a quantity called the perturbation realization factor. Therefore,
roughly speaking, the effect of a change in a system’s parameter on the perfor-
mance equals the sum of the realization factors of all the perturbations that
are induced by the parameter change. This general principle is the same as
in PA of Markov chains. The difference is that a perturbation for a queueing
system is a small (infinitesimal) delay in time and that for a Markov chain
is a state “jump”. Historically, however, this principle was first proposed for
PA of queueing systems [45, 49, 50, 51, 113, 141], and was extended later to
Markov systems [62, 70].

Perturbation Realization

Consider the M -server closed Jackson network discussed in Section 2.4.1. The
performance is defined as (2.94). To study the effect of a single perturbation
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Fig. 2.19. A Sample Path and its Perturbed Counterpart

on the performance η(f), we assume that at some time, a perturbation Δ is
generated at a server (e.g., in Figure 2.15 a perturbation Δ is generated at
server 1 at T1). As explained in Section 2.4.1, this perturbation will be prop-
agated along a sample path. To study the effect of this single perturbation,
we assume that there is no other perturbation generated on the sample path.
During propagation, some servers in the network acquire this perturbation
(e.g., in Figure 2.15, server 2 obtains a perturbation at T1); others may lose
the perturbation obtained before (e.g., in Figure 2.16, server 1 loses its per-
turbation at T2). During propagation, every server has either perturbation Δ
or perturbation 0 (no perturbation).

If, through propagation, every server in the network acquires the pertur-
bation Δ, we say that the perturbation is realized by the network. After the
perturbation is realized, the perturbed sample path is the same as the original
one except that the entire sample path is shifted to the right by the amount
of Δ. That is, there is an L∗, such that T ′

l = Tl +Δ for all l ≥ L∗. If, through
propagation, every server in the network loses its perturbation (or acquires a
perturbation of 0), we say that the perturbation is lost by the network. After
the perturbation is lost, the perturbed sample path is exactly the same as
the original one. That is, there is an L∗, such that T ′

l = Tl for all l ≥ L∗.
Apparently, whether a perturbation is realized or lost is random and depends
on the sample path.
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The solid lines in Figure 2.19.A illustrate a sample path N(t) of a two-
server two-customer cyclic queueing network consisting of transition instants
T1 to T5. A perturbation Δ is generated at server 1 at T2, which is propagated
to server 2 at T2, and after T2 all the servers have the same perturbation Δ,
and the perturbation is realized by the network. The perturbed sample path
corresponding to this perturbation is shown in Figure 2.19.B.

A closed queueing network is called irreducible if a customer at any
server may visit any other server in the network, either directly, or by go-
ing through other servers. That is, for any pair of i, j ∈ {1, 2, . . . ,M},
there exists a sequence of integers, k1, k2, . . . , km ∈ {1, 2, . . . ,M}, such that
qi,k1qk1,k2 . . . qkm,j > 0. Such a routing probability matrix Q is also called
irreducible. The following theorem indicates that a closed irreducible network
will eventually “settle down” after being perturbed by a small perturbation.

Theorem 2.1. A perturbation in an irreducible closed Jackson network
will either be realized or lost by the network with probability 1.

Proof. Since the network is irreducible, the state process N(t) will visit any
state. In particular, with probability 1 every sample path will eventually visit
state (N, 0, . . . , 0); i.e, all customers are at server 1. If at that time server 1
has the perturbation, then after that time, all the servers will have the same
perturbation; i.e., the perturbation is realized. On the other hand, if at that
time server 1 has no perturbation, then after it all the servers in the network
will have no perturbation; i.e., the perturbation is lost. ��

The probability that a perturbation is realized is called the perturbation
realization probability. It depends on the system state. The realization prob-
ability of a perturbation of server i when the system is in state n is denoted
as c(n, i), n ∈ S, i = 1, 2, . . . ,M .

Example 2.7. In Figure 2.18, the perturbation generated at T4, Δs1, is real-
ized by the network at T7. The perturbation generated at T8, Δs4, is lost at
T11. The other three perturbations, Δs2, Δs3, and Δs5, have not been either
realized or lost at T15. Whether they will be realized or lost depends on the
future evolution of the sample path. ��

Perturbation Realization Factors

The effect of a perturbation on the long-run average reward η(f) defined in
(2.94) can be studied by using the concept of perturbation realization. We
first define the realization factor of a perturbation Δ of server i in state n for
η(f) as (cf. (2.6) for realization factors for Markov chains):
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c(f)(n, i) = lim
L→∞

E

(
ΔFL

Δ

)
= lim

L→∞
E

(
F ′

L − FL

Δ

)

= lim
L→∞

E

{
1
Δ

{∫ T ′
L

0

f [N ′(t)]dt−
∫ TL

0

f [N(t)]dt

}}
, (2.103)

where F ′
L is measured on the perturbed path generated by the propagation

of this perturbation Δ (see Figure 2.19). It is clear that the realization factor
c(f)(n, i) measures the average effect of a perturbation at (n, i) on FL in (2.94)
as L→∞.

Recall that if a perturbation is realized, then there is an integer L∗, such
that T ′

L = TL + Δ for all L ≥ L∗, and if a perturbation is lost, then there
is an L∗, such that T ′

L = TL for all L ≥ L∗. In both cases, there is an L∗

(depending on the sample path) such that

∫ TL

TL∗
f [N(t)]dt−

∫ T ′
L

T ′
L∗

f [N ′(t)]dt = 0,

for all L ≥ L∗ (in Figure 2.19, L∗ = 2). Therefore, (2.103) becomes

c(f)(n, i) = E

{
1
Δ

{∫ T ′
L∗

0

f [N ′(t)]dt−
∫ TL∗

0

f [N(t)]dt

}}
. (2.104)

Thus, c(f)(n, i) defined in (2.103) is finite with probability 1 (cf. (2.5) for
Markov chains).

Next, we study the effect of two or more perturbations at different servers.
Consider a sample path of a closed network consisting of M servers. Suppose
that at time t = 0, both server 1 and server 2 obtain a perturbation denoted as
Δ1 and Δ2, respectively, with the same size Δ1 = Δ2 = Δ. Let us propagate
Δ1 and Δ2 separately along the sample path. First, we consider the propaga-
tion of Δ1 at server 1. During the propagation, we use a 0-1 row vector w1(t)
to denote which server has the perturbation at time t ∈ [0,∞). Specifically,
we define w1,i(t) = 1 if server i has the perturbation at time t, w1,i(t) = 0
if otherwise, where w1,i(t) is the ith component of w1(t). Thus, initially the
situation is represented by the vector w1(0) = (1, 0, 0, . . . , 0). According to
the propagation rules, when server i terminates an idle period of server j,
server i’s perturbation (either 0 or Δ) will be propagated to server j. This is
equivalent to simply setting w1,j := w1,i after the propagation.

Similarly, the propagation of the perturbation Δ2 starts with the vector
w2(0) = (0, 1, 0, . . . , 0). We combine both vectors w1(0) and w2(0) together as
an array [

1 0 0 0 . . . 0
0 1 0 0 . . . 0

]
. (2.105)
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Now, let us propagate Δ1(= Δ) and Δ2(= Δ) simultaneously along the
same sample path. As explained above, the propagation process is equivalent
to copying the ith column of the above array to its jth column when server
i terminates an idle period of server j. Thus, it is clear that, during prop-
agation, the columns in the array (2.105) can never be (1, 1)T . That is, if
we propagate both perturbations Δ1 and Δ2 together along the same sam-
ple path, any transition time of this sample path can acquire at most one of
the perturbations, never both. In other words, if, at any time, a server has
a perturbation, then this perturbation is propagated from either Δ1 or Δ2.
Eventually, the array may reach one of the following three situations:

[
0 0 . . . 0
0 0 . . . 0

]
,

[
0 0 . . . 0
1 1 . . . 1

]
,

[
1 1 . . . 1
0 0 . . . 0

]
.

That is, either one of them is realized, or both are lost, on the sample path;
but they cannot be both realized. Furthermore, the propagation of one per-
turbation (say Δ1) does not interfere (change) the propagation of the other
(say Δ2). That is, each perturbation is propagated along the sample path in
the same way as if the other did not exist.

Based on this observation, we have the superposition of the propagation of
perturbations on a sample path: If we propagate two perturbations of servers
i and j, with the same size, simultaneously on a sample path N(t) and obtain
a perturbation path N ′(t), then we have

c(f)(n, i) + c(f)(n, j) = E

{
1
Δ

{∫ T ′
L∗

0

f [N ′(t)]dt−
∫ TL∗

0

f [N(t)]dt
}}

.

The same discussion applies to the propagation of more than two perturba-
tions. Let V ⊆ {1, 2, . . . ,M}. Suppose that at time t = 0, all the servers in set
V obtain the same perturbation Δi = Δ, i ∈ V . We propagate all these per-
turbations simultaneously on a sample path N(t) and obtain a perturbation
path N ′(t). Then, we have

∑

i∈V

c(f)(n, i) = E

{
1
Δ

{∫ T ′
L∗

0

f [N ′(t)]dt−
∫ TL∗

0

f [N(t)]dt

}}
. (2.106)

Now we are ready to show that c(f)(n, i) satisfy the following set of linear
equations [43, 51].

1. If ni = 0, then c(f)(n, i) = 0.
2.

∑M
i=1 c(f)(n, i) = f(n).

3. Let n−i,+j = (n1, . . . , ni − 1, . . . , nj + 1, . . . , nM ) be a neighboring
state of n. Then,
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[
M∑

i=1

ε(ni)μi

]
c(f)(n, k) =

M∑

i=1

M∑

j=1

ε(ni)μiqi,jc
(f)(n−i,+j , k)

+
M∑

j=1

μkqk,j

{
[1− ε(nj)]c(f)(n−k,+j , j) + f(n)− f(n−k,+j)

}
,

nk > 0, k = 1, 2, . . . ,M, (2.107)

where ε(nj) = 0, if nj = 0, and ε(nj) = 1, if nj > 0.

The above equations can be easily derived. Property 1 is simply a convention:
When a server is idle, any perturbation will be lost with probability 1 because
after the idle period the server’s perturbation is determined by another server
that does not have the perturbation. Property 2 is a direct consequence of the
superposition of propagation (2.106): Set V = {1, 2, . . . ,M}. By definition,
this means that every server has the same perturbation Δ at T0 = 0, hence
L∗ = 0; i.e., T ′

L = TL + Δ for all L ≥ L∗ = 0. In particular, TL∗ = 0 and
T ′

L∗ = Δ. Therefore,

F ′
L − FL =

∫ T ′
L

0

f [N ′(t)]dt−
∫ TL

0

f [N(t)]dt

=

{∫ T ′
L∗

0

f [N ′(t)]dt−
∫ TL∗

0

f [N(t)]dt

}

+

{∫ T ′
L

T ′
L∗

f [N ′(t)]dt−
∫ TL

TL∗
f [N(t)]dt

}

=
∫ Δ

0

f [N ′(t)]dt = f(n)Δ.

This leads to the second property. Equation (2.107) can be derived by the
theorem of total probability. In (2.107), we assume that server k has a pertur-
bation. ε(ni)μiqi,j∑M

i=1
ε(ni)μi

is the probability that the next transition is from server

i to server j, i, j = 1, 2, . . . ,M . If no idle period is involved in this transition,
there is no perturbation propagation and server k keeps the same perturbation
after the transition except that the system state changes to n−i,+j . This is
reflected by the first term on the right-hand side. If there is an idle period at
server j (i.e., 1− ε(nj) = 1), then, in addition to the perturbation in server k,
the perturbation will be propagated from server k to server j. This is reflected
by the second term on the right-hand side. f(n)− f(n−k,+j) is the effect due
to the delay of the transition from server k to server j. Equation (2.107) im-
plies that the effect of a perturbation before a transition equals the weighted
sum, by transition probabilities, of the effects of the perturbations after the
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transition, plus the effect due to the delay of the transition. It has been proved
that (2.107) and the equations in Properties 1 and 2 have a unique solution
for irreducible closed Jackson networks [51, 113].

From (2.104), if f(n) = I(n) = 1 for all n ∈ S, we have

c(I)(n, i) = E

[
T ′

L∗ − TL∗

Δ

]
.

From the meaning of the realization probability, we have E[T ′
L∗ − TL∗ ] =

c(n, i)Δ. Thus, c(n, i) = c(I)(n, i). Therefore, the realization probabilities
satisfy the following equations:

1. If ni = 0, then c(n, i) = 0 .
2.

∑M
i=1 c(n, i) = 1.

3. If nk > 0, k = 1, 2, . . . ,M , then
[

M∑

i=1

ε(ni)μi

]
c(n, k) =

M∑

i=1

M∑

j=1

ε(ni)μiqi,jc(n−i,+j , k)

+
M∑

j=1

μkqk,j{[1− ε(nj)]c(n−k,+j , j)}.

The following example taken from [51] provides some idea of the numerical
values for the realization probabilities.

Example 2.8. Consider a closed Jackson network with M = 3, N = 5, s̄1 =
10, s̄2 = 8, s̄3 = 5, and routing probability matrix

Q =

⎡

⎣
0 0.5 0.5

0.8 0 0.2
0.3 0.7 0

⎤

⎦ .

The realization probabilities are obtained by solving the set of equations. The
results, together with the steady-state probabilities, are listed in Table 2.9.

��

2.4.3 Performance Derivatives

We have now quantified the effect of a single perturbation on the long-run
average reward. Next, we will determine the effect of a small change in a
mean service time. Suppose that the mean service time of server v changes
from s̄v to s̄v + Δs̄v. Let sv,l, l = 1, 2, . . . , be the service time of the lth
customer served at server v. Following the perturbation generation rule (2.97),
the lth customer’s service completion time at server v will gain a perturbation
Δv,l = sv,l

Δs̄v

s̄v
= κsv,l, l = 1, 2, . . . . All these perturbations will be propagated

along the sample path. To calculate the effect of a small change in the mean
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n π(n) c(n, 1) c(n, 2) c( n, 3)

(5,0,0) 0.19047 1.00000 0.00000 0.00000

(4,0,1) 0.06644 0.90584 0.00000 0.09416

(4,1,0) 0.15061 0.89385 0.10615 0.00000

(3,0,2) 0.02318 0.78826 0.00000 0.21174

(3,1,1) 0.05254 0.77060 0.17336 0.05604

(3,2,0) 0.11908 0.74279 0.25721 0.00000

(2,0,3) 0.00809 0.62556 0.00000 0.37444

(2,1,2) 0.01833 0.60901 0.25029 0.14070

(2,2,1) 0.04154 0.58286 0.37574 0.04141

(2,3,0) 0.09416 0.54528 0.45472 0.00000

(1,0,4) 0.00282 0.38089 0.00000 0.61911

(1,1,3) 0.00639 0.37327 0.34810 0.27863

(1,2,2) 0.01449 0.35728 0.51926 0.12346

(1,3,1) 0.03285 0.33315 0.62079 0.04606

(1,4,0) 0.07445 0.29754 0.70246 0.00000

(0,0,5) 0.00098 0.00000 0.00000 1.00000

(0,1,4) 0.00223 0.00000 0.48951 0.51049

(0,2,3) 0.00505 0.00000 0.71510 0.28490

(0,3,2) 0.01146 0.00000 0.83485 0.16515

(0,4,1) 0.02597 0.00000 0.91819 0.08181

(0,5,0) 0.05887 0.00000 1.00000 0.00000

Table 2.9. A Numerical Example of Realization Probabilities

service time s̄v, we need to add up the effect of all these single perturbations
on the system performance.

Let π(n) be the steady-state probability of state n. Consider a time period
[0, TL] with L >> 1. The length of the total time when the system is in state
n in [0, TL] is TLπ(n). The total perturbation generated in this period at
server v due to the change Δs̄v in the mean service time is TLπ(n)Δs̄v

s̄v
. Since

each perturbation on average has an effect of c(f)(n, v) on FL, the overall
effect on FL of all the perturbations induced when the system state is n
is [TLπ(n)Δs̄v

s̄v
]c(f)(n, v). Finally, the total effect of the mean service time

change, Δs̄v, on FL is

ΔFL ≈
∑

all n

TLπ(n)
Δs̄v

s̄v
c(f)(n, v).

From this, we have
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s̄v

TL/L

ΔFL/L

Δs̄v
≈

∑

all n

π(n)c(f)(n, v).

Letting L → ∞ and then Δs̄v → 0, we obtain the steady-state performance
derivative as follows:

s̄v

η(I)

∂η(f)

∂s̄v
=

∑

all n

π(n)c(f)(n, v), (2.108)

where η(I) = limL→∞
TL

L = 1
η , see (2.95). Thus, the normalized derivative of

the average reward (the left-hand side of (2.108)) equals the steady-state ex-
pectation of the realization factor. The above discussion provides an intuitive
derivation and explanation for (2.108). See (2.116) in the next section for a
formal formulation.

Set f = I in (2.108). With η(I) = 1
η and c(n, v) = c(I)(n, v), we can

express the “elasticity” (normalized derivative) of the system throughput by
using the perturbation realization probabilities:

s̄v

η

∂η

∂s̄v
= −

∑

all n

π(n)c(n, v). (2.109)

Summing up both sides over v = 1, 2, . . . ,M , we have

M∑

v=1

s̄v

η

∂η

∂s̄v
= −1. (2.110)

Example 2.9. In this example [51], we choose M = 3, N = 8, s̄1 = 5, s̄2 = 10,
and s̄3 = 12. The routing probability matrix is

Q =

⎡

⎣
0 0.5 0.5

0.7 0 0.3
0.4 0.6 0

⎤

⎦ .

The realization probability equations are solved numerically. The elasticities
calculated by (2.109) are -0.0365, -0.5133, and -0.4502, which are exactly the
same as those calculated by queueing theory formulas. These values also satisfy
(2.110). ��

As shown in Section 2.4.1, the elasticity of the throughput can be estimated
by a very efficient algorithm, Algorithm 2.1, together with equation (2.101).
A close examination of the algorithm reveals that it, in fact, estimates the
right-hand side of (2.109); i.e., it estimates the total sum as (cf. (2.101)):
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∑

all n

π(n)c(n, v) ≈ Δu

TL
.

Roughly speaking, TLπ(n) is proportional to the perturbation generated when
the system is in state n; we may use TLπ(n) as the perturbation generated,
which corresponds to setting κ = 1 in Algorithm 2.1. At the end of the simu-
lation, Δu ≈

∑
all n TLπ(n)c(n, v) contains all the realized perturbations.

Similarly, with Algorithm 2.2, we, in fact, are estimating the performance
derivative by

∑

all n

π(n)c(f)(n, v) ≈ ΔF

TL
.

Again, TLπ(n) is proportional to the perturbation generated in state n, and
ΔF reflects the differences in performance realized due to all these perturba-
tions.

Example 2.10. Consider the mean response time τ̄ in an M/G/1 queue in
Example 2.4. Let f = n be the number of customers in the server. We have
FL =

∫ TL

0
n(t)dt, and τ̄ = limL→∞

FL

L . (In the definition of τ̄ , L should
be the number of departures. However, since the number of arrivals roughly
equals that of the departures, we may take L be the number of all transi-
tions, including both arrivals and departures, and the normalized derivative
will be the same.) Suppose that the arrival rate does not change but the ser-
vice rate changes. Then, the perturbation generation rule is (2.99), i.e., the
perturbations of the service times are proportional to the service times. At a
service completion time, the system state changes from n to n− 1, n > 0, so
f(n)− f(n′) = 1 in Algorithm 2.2. The perturbations at the service comple-
tion times are calculated in (2.100). Thus, the perturbation of FL calculated
by Algorithm 2.2 is

ΔF =
K∑

k=1

nk∑

i=1

i∑

l=1

sk,l,

where K is the number of busy periods in the L transitions, and nk is the
number of customers served in the kth busy period. (The real change in FL

should be κΔFL.) Finally, we have

μ

η(I)

∂τ̄

∂μ
≈ −ΔF

TL
= − 1

TL

K∑

k=1

nk∑

i=1

i∑

l=1

sk,l. (2.111)

It can be proved that the right-hand side of (2.111) is indeed a strongly con-
sistent estimate of its left-hand side (see the discussions in [103, 104, 146, 234,
235] and Problem 2.32). ��
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Comparison of PA of Queueing Systems and PA of Markov Chains

In PA of queueing systems, a small (“infinitesimal”, the exact meaning of
this word will become clear in the next section) change in a system param-
eter (such as the mean service time of a server) induces a series of small
(infinitesimal) changes of the state transition times on a sample path; each
such change is called a perturbation (perturbation generation). These pertur-
bations will be propagated along the sample path and affect the transition
times of other state transitions (perturbation propagation). For irreducible
networks, the effect of such a small perturbation on a sample path cannot
continue forever; eventually, a perturbation will be either realized or lost on
any sample path (perturbation realization). The average effect of each pertur-
bation on the system performance can be precisely measured by a quantity
called the perturbation realization factor (PRF). The total effect of a small
change in a system parameter on the system performance can then be calcu-
lated by adding together the average effects of all the perturbations induced
by the parameter change. The derivative of the performance with respect to
the parameter can then be determined.

In PA of Markov chains, a small change in a system parameter (such as
the transition probability matrix) induces a series of changes in the state
transitions on a sample path; each such change is a perturbation and is also
called a “jump” to intuitively reflect its discrete and finite nature. Thus, in
PA of queueing systems a perturbation is an “infinitesimal” change on a sam-
ple path; while in PA of Markov chains, it is a finite change on a sample
path. Moreover, perturbation propagation is not so distinct in PA of Markov
chains, although we may view the Markov system as in a propagation period
before the perturbed sample path merges with the original one. The pertur-
bation realization principle and the calculation of performance derivatives for
Markov chains are essentially the same as those for queueing systems: a single
perturbation (jump) can only affect the system in a finite period (until the
perturbed path merges with the original one), and its effect on the system
performance can be measured by PRF, and so on.

In general, given a sample path of any system, we may first examine how
a parameter change induces perturbations on a sample path (perturbation
generation) and then determine how each perturbation affects the system
performance (perturbation realization). During this process, we may explore
how the system dynamics may help in determining the evolution of pertur-
bations and whether there are simple propagation rules. These PA principles
are illustrated in Figure 2.20. Again, this approach is of an intuitive nature
and the results obtained need to be rigorously proved (cf. Section 2.4.4).

2.4.4 Remarks on Theoretical Issues∗

The previous subsections provided an intuitive explanation for PA. The results
have to be theoretically studied in a probability and statistical framework.
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Fig. 2.20. The PA Principles

For example, if we use −Δu

TL
in (2.101) as an estimate for the elasticity of the

throughput with respect to a mean service time, then is this estimate strongly
consistent as L goes to infinity? Furthermore, is an estimate for performance
derivative obtained in a finite sample path an unbiased estimate? These issues
were first formulated and studied in [42], and later they were studied for many
problems by many authors, and [51] provides a detailed summary of the theory.
It is out of the scope of this book to discuss all these issues in detail and we
give only a brief review here.

Sample Functions and Sample Derivatives

First let us mathematically describe a sample path of a closed Jackson net-
work obtained by simulation. With the inverse-transform method (2.96),
the lth service time at server i, si,l, can be obtained by a uniformly dis-
tributed random number ξi,l ∈ [0, 1) with si,l = −s̄i ln(1 − ξi,l). Therefore,
all the service times on a sample path depend on a sequence of random num-
bers {ξ1,1, ξ1,2, . . . ; ξ2,1, ξ2,2, . . . ; . . . ; ξM,1, ξM,2, . . .}; they are independent and
uniformly distributed on [0, 1). After the completion of its service, a cus-
tomer at server i will move to server j, j = 1, 2, . . . ,M , with probability
qi,j . Thus, the next destination of the lth customer at server i can be de-
termined by another uniformly distributed random number ζi,l ∈ [0, 1): if∑j−1

k=1 qi,k ≤ ζi,l <
∑j

k=1 qi,k (with the convention
∑0

k=1 qi,k = 0), then this
customer moves to server j. Therefore, all the destinations depend on another
sequence of independent and uniformly distributed [0, 1) random numbers
{ζ1,1, ζ1,2, . . . ; ζ2,1, ξ2,2, . . . ; . . . ; ζM,1, ζM,2, . . .}. Finally, let ξ = {ξ1,1, ξ1,2, . . . ;
. . . ; ξM,1, ξM,2, . . . ; ζ1,1, ζ1,2, . . . ; . . . ; ζM,1, ζM,2, . . .}. Then, ξ represents all the
randomness involved in the system. Let θ = {s̄i, qi,j , i, j = 1, 2, . . . ,M} rep-
resent all the parameters in the system. With these notations, a sample path
of the system is determined by, and therefore is denoted as, (ξ, θ).

For any fixed integer L, FL in (2.94) and η
(f)
L = FL

L are defined on a
sample path and therefore are functions of (ξ, θ). We denote them as FL(ξ, θ)
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and η
(f)
L (ξ, θ). As we can see from (2.96)-(2.97), in a perturbed sample path,

the same sequence of random numbers ξ is used, but the parameters may
experience a small change. Thus, a perturbed sample path is in fact (ξ, θ+Δθ).
The perturbed performance is FL(ξ, θ + Δθ). Of course, Δθ may be zero for
many of its components. In the Jackson network studied in this section, we
only choose Δs̄v �= 0 for server v. Since we are concerned with the performance
derivatives, for notational simplicity, let us assume that θ is a scalar parameter
that changes to θ + Δθ, Δθ �= 0.

The perturbation generation and propagation rules help us to construct
the perturbed sample path (ξ, θ+Δθ) from the original sample path (ξ, θ) for
a small Δθ (by Algorithm 2.1), and then to obtain the perturbed performance
FL(ξ, θ + Δθ) (by Algorithm 2.2). We have

ΔFL(ξ, θ) = FL(ξ, θ + Δθ)− FL(ξ, θ)

and
Δη

(f)
L (ξ, θ) =

1
L

[FL(ξ, θ + Δθ)− FL(ξ, θ)]. (2.112)

For any fixed ξ, η
(f)
L (ξ, θ) or FL(ξ, θ) is a function of θ. We call it a sample

performance function [46, 51].
When we apply the propagation rules, we require the perturbation of any

server, Δ, to be small enough. In fact, Δ should be smaller than the length of
an idle period in order for the perturbation Δ to be propagated through the
idle period without changing its size. Figure 2.21 shows the situation when a
perturbation is larger than an idle period. Figure 2.21.A illustrates the same
sample path as Figure 2.15, except that the perturbation Δ1 is larger than the
length of the idle period T2 − T1. Figure 2.21.B illustrates the corresponding
perturbed path. Indeed, when Δ1 is larger than T2 − T1, the idle period in
server 1 disappears in the perturbed path and a new idle period appears in
server 2. The order of the transition times of server 1 and server 2 changes:
T2 > T1 in the original path, but T ′

1 > T ′
2 in the perturbed one. Both servers

are delayed by Δ1 − (T2 − T1) after the idle period. All these facts indicate
that the simple propagation rules used in Algorithm 2.1 do not apply.

In fact, Algorithm 2.2 requires a more strict condition: the perturbation of
any server in [0, TL) should be smaller than the shortest sojourn time of the
system in any state in [0, TL). For any finite L and a fixed sample path (ξ, θ),
we can always choose (with probability 1) Δθ to be small enough such that
this requirement is satisfied (this explains the meaning of infinitesimal). Thus,
PA Algorithm 2.2 provides the exact value of Δη

(f)
L (ξ, θ) in (2.112) if Δθ is

small enough. That is, what we obtained from PA is in fact the derivative of
a sample performance function, which is called a sample derivative [46, 51]:

∂η
(f)
L (ξ, θ)
∂θ

= lim
Δθ→0

η
(f)
L (ξ, θ + Δθ)− η

(f)
L (ξ, θ)

Δθ
, for a fixed ξ.
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Fig. 2.21. A Large Perturbation Does Not Satisfy the Propagation Rule

Interchangeability

In general, however, we are interested in the derivative of the mean perfor-

mance E[η(f)
L (ξ, θ)], ∂E[η

(f)
L

(ξ,θ)]

∂θ , or the derivative of the steady-state perfor-

mance η(f)(θ) = limL→∞ η
(f)
L (ξ, θ), ∂η(f)(θ)

∂θ . This raises two questions: Is the
sample derivative obtained by PA on a sample path in a finite period [0, TL)
an unbiased estimate? That is, for any L <∞, does

E

{
∂

∂θ
[η(f)

L (ξ, θ)]
}

=
∂

∂θ

{
E[η(f)

L (ξ, θ)]
}

? (2.113)

Also, is it a strong consistent estimate? That is, does
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lim
L→∞

{
∂

∂θ
[η(f)

L (ξ, θ)]
}

=
∂η(f)

∂θ
=

∂

∂θ

{
lim

L→∞
[η(f)

L (ξ, θ)]
}

? (2.114)

In calculus, (2.113) or (2.114) means that the order of the two operators
“E” and “ ∂

∂θ ”, or “E” and “limL→∞”, is interchangeable. This interchange-
ability requires some conditions on the sample performance function. The
following simple example gives some ideas about why such interchangeability
may not hold for some systems.

1

1

θ

ξ2

η(ξ2, θ)

ξ1

η(ξ1, θ) η(ξ)

η(θ) = E[η(ξ, θ)]

Fig. 2.22. A Sample Function That Does Not Satisfy Interchangeability

Example 2.11. Consider a sample function defined as

η(ξ, θ) =
{

1, if θ > ξ,
0, otherwise, (2.115)

where ξ is a uniformly distributed random variable in [0, 1). η equals 1 if
θ ∈ [ξ, 1) and 0 if θ ∈ [0, ξ). Two such sample paths corresponding to ξ1 and ξ2
are illustrated in Figure 2.22. The mean performance is η(θ) = E[η(ξ, θ)] = θ.
The sample derivative is the slope of the sample function η(ξ, θ), which equals
0 with probability 1. Therefore, we have

E

{
∂

∂θ
[η(ξ, θ)]

}
= 0 �= ∂

∂θ
{E[η(ξ, θ)]} = 1.

That is, the interchangeability does not hold for this sample function. ��

Fortunately, we can prove that for closed Jackson networks with any finite
reward function f(n), n ∈ S, it does hold [46, 51]
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E

{
∂

∂s̄v

[
η
(f)
L (ξ, s̄v)

]∣∣∣∣X0 = n0

}
=

∂

∂s̄v
E

{[
η
(f)
L (ξ, s̄v)

]∣∣∣X0 = n0

}
,

where n0 is any initial state. This equation shows that the sample derivative
provided by PA, ∂

∂s̄v
[η(f)

L (ξ, s̄v)], is unbiased for the derivative of the mean
(transient) average reward in [0, TL). In particular, when f ≡ I, we have [49]

E

{
∂

∂s̄v
[TL(ξ, s̄v)]

∣∣∣∣X0 = n0

}
=

∂

∂s̄v
E
{
[TL(ξ, s̄v)]|X0 = n0

}
.

For long-run average rewards, we also have [51]

lim
L→∞

[
s̄v

η
(I)
L (ξ, s̄v)

∂η
(f)
L (ξ, s̄v)
∂s̄v

]
=

s̄v

η(I)(s̄v)
∂η(f)(s̄v)

∂s̄v

=
∑

all n

π(n)c(f)(n, v), w.p.1, (2.116)

where η(f)(s̄v) = limL→∞ η
(f)
L (ξ, s̄v) and η(I)(s̄v) = limL→∞ η

(I)
L (ξ, s̄v). In

particular, we have

lim
L→∞

[
s̄v

ηL(ξ, s̄v)
∂ηL(ξ, s̄v)

∂s̄v

]
=

s̄v

η(s̄v)
∂η(s̄v)
∂s̄v

= −
∑

all n

π(n)c(n, v), w.p.1, (2.117)

where η(s̄v) = limL→∞ ηL(ξ, s̄v), and ηL(ξ, s̄v) = L
TL(ξ,s̄v) . That is, the nor-

malized sample derivatives provided by PA are strongly consistent estimates
of the normalized derivatives of the steady-state performance.

However, the nice properties of unbiasedness and strong consistency do
not always hold. As illustrated in Example 2.11, the interchangeability may
not hold if the sample functions are discontinuous. Roughly speaking, the
interchangeability in (2.113) requires that the sample performance functions
be “smooth” enough.

The sample derivatives of the performance with respect to the changes
in routing probabilities qi,j , i, j = 1, 2, . . . ,M , have discontinuities similar
to those in Example 2.11. To demonstrate the idea, we consider a closed
network and assume that its service time distributions do not change. A
sample path of such a network is determined by the random variables
ζ := {ζ1,1, ζ1,2, . . . ; ζ2,1, ξ2,2, . . . ; . . . ; ζM,1, ζM,2, . . .}, and therefore we may de-
note a sample path as (ζ, qi,j , i, j = 1, 2, . . . ,M). For the sake of discussion,
we assume that q1,2 and q1,3 change to q′1,2 = q1,2 + δ and q′1,3 = q1,3 − δ,
respectively. As we know, in simulation, the customer transition is determined
as follows: we first divide the interval [0, 1] into M small segments, each with
length q1,i, i = 1, 2, . . . ,M (see Figure 2.23 for M = 3). If ζ1,l falls in the
kth segment, then the lth customer at server 1 moves to server k. When q1,2
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and q1,3 change to q′1,2 and q′1,3, respectively, the only change happens when
ζ1,l falls in the small segment with length δ (in the middle of the period [0, 1]
shown in Figure 2.23). In this case, the customer moves to server 3 in the
original sample path but to server 2 in the perturbed path. It is clear that for
a fixed realization of ζ and a finite L, there is always (with probability 1) a
δ0 that is small enough such that no ζ1,l, l = 1, 2, . . . , L, falls in that small
segment. Therefore, the two sample paths (ζ, qi,j) and (ζ, q′i,j) with δ < δ0 are
exactly the same in [0, TL]. This implies that the sample function FL(ζ, qi,j)
is a piecewise constant function of qi,j . As shown in Example 2.11, the in-
terchangeability in (2.113) does not hold for the derivative of performance
FL(ζ, qi,j) with respect to δ (or the changes in q1,2 and q1,3).

q1,1 q1,2 q1,3

ζ1,L
q1,2 + δ

ζ1,1
q1,3 − δ

δ

Fig. 2.23. Determine the Customer Transitions

The PA of queueing systems introduced in this section is based on sample
derivatives. This approach requires interchangeability, which may not hold if
the sample function is not continuous. The discontinuity of a sample func-
tion can be explained from a sample path point of view. Essentially, if a
small change in a parameter may cause a big change in a sample path, the
sample function may be discontinuous. In the case with the routing probabil-
ities, a small change in q1,2 (or q1,3) may cause a big change in a customer’s
destination (from server 2 to server 3). Such a big change also occurs when
two transitions exchange their order of occurrence, leading to two different
states. This sample-path-based explanation gives us an intuitive feeling about
whether the discontinuity may exist (see [42] and [126] for more details).

Other examples where the interchangeability does not hold include queue-
ing networks with multi-class customers or with blocking due to finite buffer
sizes. They can also be explained by the intuitive explanation described above
(see [43] and [126] for more discussion).

For the same reason, the sample performance functions for Markov sys-
tems with respect to the transition probability matrix are also piecewise linear,
and the sample-derivative is therefore zero and the approach discussed in this
section does not apply. However, as shown in Section 2.1, the basic princi-
ple of perturbation generation and perturbation realization can be extended
to Markov systems. The derivative obtained by using realization factors for
Markov systems is not a sample derivative.

Similar results regarding the sample functions and sample derivatives for
systems with continuous state spaces are presented in [47], and a comparison
of the dynamics of the continuous and discrete event systems is given in [48].
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2.5 Other Methods∗

Much effort was expended in the 1980’s to overcome the difficulty caused
by the discontinuity of the sample functions for some systems. Different ap-
proaches were developed; these approaches work well for some special prob-
lems. Among them are the smoothed perturbation analysis (SPA) [105, 107,
114, 119], the finite perturbation analysis (FPA) [143], the rare perturba-
tion analysis (RPA) [33, 34, 36, 37]. There are also other related works
[73, 94, 102, 106, 108, 128, 147, 156, 185, 214, 232, 241, 245, 247, 251]. These
topics have been widely discussed in previous books [51, 72, 107, 112, 142],
and therefore we will not discuss them in this book.

In this section, we will briefly review some other methods of performance
sensitivity analysis. They are the stochastic fluid model, the weak derivative
method, and the likelihood ratio or score function method.

The Stochastic Fluid Model (SFM)

The stochastic fluid model (SFM) has been recently adopted to model com-
plex, discrete-event dynamic systems such as communication networks, and
perturbation analysis has been proposed in SFM as a means for sensitivity
analysis. The essential idea of this method is to use a continuous flow to
approximately model the packet transmission in a network. Since in commu-
nication a data or voice packet consists of small units called bits, SFM is
particularly suitable for communication systems.

��

�

� ��

�

μ(t)λ(t)

ν(t)

θ

Fig. 2.24. The Stochastic Fluid Model for a Single Queue with Buffer Size θ

Figure 2.24 illustrates a stochastic fluid model for a single queue. The
inflow rate and the processing rate at time t are denoted as λ(t) and μ(t)
(units/second), respectively; and we use θ (units) to denote the size of the
buffer. When the buffer is full, the incoming fluid will overflow, and we denote
its rate at ν(t). Let xθ(t) be the volume of the fluid in the buffer. Apparently,
the system dynamic can be modelled by

dxθ(t)
dt

=

⎧
⎨

⎩

0, if xθ(t) = 0, and λ(t) ≤ μ(t),
0, if xθ(t) = θ and λ(t) > μ(t),
λ(t)− μ(t), otherwise.
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Sample-path-based analysis can be applied to such a SFM to obtain an esti-
mate for the performance derivative. The approach is more suitable (although
approximate) for estimating the gradients of packet loss probability with re-
spect to the buffer size. It can be shown that such estimates are unbiased for
the derivatives of the performance obtained with the SFM model. Such prob-
lems are usually difficult to handle with the standard PA of queueing systems.
For more details and applications, see [74, 75, 189, 210, 211, 231, 252, 262, 263].

The Likelihood Ratio (Score Function) Method

Another performance derivative estimation method is called the likelihood
ratio method, [44, 115, 116, 117, 118, 130, 176, 177, 178, 179, 205, 217], also
called the score function method [221, 222].

To illustrate the main idea, let us consider a D/M/1 queue in which the
inter-arrival time is a fixed number D > 0 and the service times are inde-
pendent and exponentially distributed with mean s̄. Let s1, s2, . . . , sL be the
sequence of customers’ service times. Then, a sample path of the system can
be represented by, and therefore denoted as, a vector s := (s1, s2, . . . , sL) (in-
stead of in the form of (ξ, θ)). The performance defined on this sample path
is denoted as η(s). Let Φ(s, θ) be the distribution function of s, where θ = s̄
denotes the system parameter. (To help our understanding, we may view s
as a scalar variable, otherwise, Φ(s, θ) is the joint distribution of s1, . . . , sL.)
The mean performance is

ηθ = E[η(s)] =
∫ ∞

−∞
η(s)dΦ(s, θ). (2.118)

Our goal is to estimate the derivative dηθ

dθ .
In PA, we set ξ := Φ(s, θ) to be a [0, 1) uniformly distributed random

variable. Then, we have s = Φ−1(ξ, θ), and, for notational convenience, we
denote it as s = Φ−1(ξ, θ) := s(ξ, θ). Thus, we have

ηθ =
∫ 1

0

η[s(ξ, θ)]dξ.

As explained in Section 2.4.4, for any fixed ξ ∈ [0, 1), η[s(ξ, θ)] is called a
sample performance function. In PA, we use the sample derivative d

dθη[s(ξ, θ)]
as an estimate of dηθ

dθ . The issue is whether or not this estimate is unbiased,
i.e., whether or not (cf. (2.113))

dηθ

dt
=

d

dθ

{∫ 1

0

η[s(ξ, θ)]dξ
}

=
∫ 1

0

d

dθ
{η[s(ξ, θ)]}dξ?

In the sample derivative d
dθη[s(ξ, θ)], the same random variable ξ is used for

both η[s(ξ, θ)] and η[s(ξ, θ+Δθ)]. Thus, PA is also called it a common random
number (CRN) method. It is known that using the common random number
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leads to the smallest variance in estimating the difference between two random
variables (See Problem A.4). Therefore, the sample derivative usually has a
small variance.

The rationale of the likelihood ratios method is as follows: Suppose that
the probability density function of Φ(s, θ) exists and denote it as φ(s, θ) =
d
dsΦ(s, θ). Then, (2.118) becomes

η(θ) =
∫ ∞

−∞
η(s)φ(s, θ)ds,

and we have, assuming that the two operators
∫

and d
dθ can change their

order,

dηθ

dθ
=

∫ ∞

−∞
η(s)

dφ(s, θ)
dθ

ds (2.119)

=
∫ ∞

−∞
η(s)

dφ(s, θ)
dθ

ds

=
∫ ∞

−∞
η(s)

d ln[φ(s, θ)]
dθ

dΦ(s, θ)

= E

{
η(s)

d ln[φ(s, θ)]
dθ

}
.

This indicates that we may use

η(s)
d ln[φ(s, θ)]

dθ
(2.120)

as an unbiased estimate of the performance derivative dηθ

dθ . In (2.120), we have

d ln[φ(s, θ)]
dθ

=
1

φ(s, θ)
d[φ(s, θ)]

dθ
.

Observe that

η(s)
d ln[φ(s, θ)]

dθ
= lim

Δθ→0

1
Δθ

{
η[s(ξ, θ)]

φ(s, θ + Δθ)
φ(s, θ)

− η[s(ξ, θ)]
}

. (2.121)

Therefore, in the LR estimate (2.120), we in fact use

η[s(ξ, θ)]
φ(s, θ + Δθ)

φ(s, θ)

in the place of η[s(ξ, θ + Δθ)]. The reason is that if the system parameter
changes from θ to θ + Δθ, the same sample path s, and therefore the same
sample performance value η(s), will still be observed, but with a different
probability that is adjusted by the likelihood ratio
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φ(s, θ + Δθ)
φ(s, θ)

(see [44] for more discussion). Therefore, this approach is called the likelihood
ratio (LR), or the score function (SF) method.

From (2.121), the LR estimate essentially uses the same sample path s as
a possible realization of the system behavior under parameters θ + Δθ and
adjusts the probability of this sample path; hence, the LR method is also
called the common realization (CR) method.

LR only requires the interchangeability of
∫

and d
dθ to hold for the proba-

bility density function, which is usually smoother than the sample performance
function (the s in η(s) in (2.119) is fixed). Thus, an LR estimate is unbiased
more often than a PA estimate is. However, the variance may be too large
to be applicable [44]. Variance reduction techniques based on regenerative
periods have been developed.

The Weak Derivative Method

In the weak derivative method [130, 132, 134], the derivative of the probability
density function is expressed by the difference between two properly chosen
probability density functions, and the performance derivative is then expressed
by the difference between two expected values. For example, in (2.119), if we
have c(θ) > 0 and two density functions φ1(s, θ) and φ2(s, θ) such that

dφ(s, θ)
dθ

= c(θ)[φ1(s, θ)− φ2(s, θ)]. (2.122)

Then,

dη(θ)
dθ

= c(θ)
[∫ ∞

−∞
η(s)φ1(s, θ)dθ −

∫ ∞

−∞
η(s)φ2(s, θ)dθ

]
,

which is the difference between the mean performance of two sample paths,
one with probability density function φ1(s, θ) and the other with φ2(s, θ). The
triple (c(θ), φ1(s, θ), φ2(s, θ)) is called a weak derivative of φ(s, θ). Obviously,
it is not unique.

The same principle applies to the performance derivatives of Markov
chains. Consider two Markov chains defined on the same state space S =
{1, 2, . . . , S} with two ergodic transition probability matrices P and P ′ and
the same reward function f . Let ΔP = P ′−P , Pδ = P + δΔP . We start with
(2.23). From (2.13) and (2.14), the directional derivative along ΔP is

dηδ

dδ
= πΔP

∞∑

l=0

(P l − eπ)f. (2.123)

Corresponding to (2.122), we have



136 2 Perturbation Analysis

dPδ

dδ
= ΔP = C(P+ − P−), (2.124)

where P+, P−, and C are defined as follows: C is a diagonal matrix with
nonzero diagonal components c(i), i = 1, 2, . . . , S,

c(i) =
S∑

j=1

max{Δp(j|i), 0},

Δp(j|i) = p′(j|i)− p(j|i), i, j = 1, 2, . . . , S, and

p+(j|i) =
{ 1

c(i) max{Δp(j|i), 0}, if c(i) > 0,
0, if c(i) = 0;

p−(j|i) =
{ 1

c(i) max{−Δp(j|i), 0}, if c(i) > 0,
0, if c(i) = 0.

When c(i) �= 0, the ith rows of P+ and P− are transition probability vectors;
and when c(i) = 0, the ith rows of P+ and P− are zero. The triple (C,P+, P−)
is called a weak derivative of Pδ. The decomposition of (2.124) is not unique,
and there may be other weak derivatives of Pδ.

From (2.124) and (ΔP )e = 0, the derivative (2.123) becomes

dηδ

dδ
= πΔP

∞∑

l=0

P lf

= πC(P+ − P−)
∞∑

l=0

P lf

=
S∑

i=1

π(i)c(i)
∞∑

l=0

(p+
i P lf − p−i P lf), (2.125)

where p+
i and p−i denote the ith rows of P+ and P−, respectively.

There is a sample-path-based interpretation of (2.125). Let X+ = {X+
l , l =

0, 1, . . .} be a Markov chain obtained as follows: Suppose that X+
0 = i is the

initial state, and the first transition from X+
0 to X+

1 follows transition proba-
bility vector p+

i , and the rest of the transitions at l = 1, 2, . . . follow transition
probability matrix P . Let X− be a similar Markov chain except that the first
transition from X−

0 to X−
1 follows p−i , with X−

0 = i. From (2.125), we have

dηδ

dδ
=

S∑

i=1

π(i)c(i)
∞∑

l=0

E{[f(X+
l )− f(X−

l )]|X+
0 = X−

0 = i}. (2.126)

Therefore, the performance derivative can be expressed via the difference be-
tween two expectations on two different Markov chains X+ and X−. Further-
more, by the strong Markov property, the infinite sum

∑∞
l=0 can be replaced
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by a finite one
∑L+,−

l=0 ; at L+,−, the two sample paths X+ and X− merge
together.

The form of (2.126) resembles the performance realization factors. In fact,
from (2.126) we can easily derive (see [130])

dηδ

dδ
=

S∑

i=1

π(i)c(i)

⎡

⎣
S∑

j1,j2=1

γ(j2, j1)p+(j1|i)p−(j2|i)

⎤

⎦ . (2.127)

PROBLEMS

2.1. In Figure 2.2, the three points P0, P1, and P2 represent three policies.
Every point P in the triangle with these three points as vertices represents a
randomized policy denoted as P (δ1, δ1, δ2) = δ0P0+δ1P1+δ2P2, δ0+δ1+δ2 =
1, with P0 = P (1, 0, 0), P1 = P (0, 1, 0), and P2 = P (0, 0, 1).

a. Determine the values of δ0, δ1, and δ2 by the lengths of the segments
shown in the figure.

b. Along the line from P0 to P1, we have the randomized policies Pδ = (1−
δ)P0 +δP1, 0 < δ < 1, and we can obtain the directional derivative in this
direction, denoted as dηδ

dδ |P0−P1 . Similarly, we can obtain the directional
derivative in the direction from P0 to P2, denoted as dηδ

dδ |P0−P2 . What is
the directional derivative from P0 to P? Express it in terms of dηδ

dδ |P0−P1

and dηδ

dδ |P0−P2 . (Hint: Along this direction, δ1/δ2 is fixed.)

2.2. (Random walk) A random walker moves among five positions i =
1, 2, 3, 4, 5. At position i = 2, 3, 4, s/he moves to positions i− 1 and i+1 with
an equal probability p(i − 1|i) = p(i + 1|i) = 0.5; at the boundary positions
i = 1 and i = 5, s/he bounces back with probability 1 p(4|5) = p(2|1) = 1.
We are given a sequence of 20 [0, 1)-uniformly and independently distributed
random variables as follows:

0.740, 0.605, 0.234, 0.342, 0.629, 0.965, 0.364, 0.230, 0.599, 0.079,
0.782, 0.219, 0.475, 0.051, 0.596, 0.850, 0.865, 0.434, 0.617, 0.969.

a. With this sequence, construct a sample path X of the random walk from
X0 to X20 according to (2.2). Set X0 = 3.

b. Suppose that the perturbed transition probabilities are p′(i − 1|i) = 0.3,
p′(i + 1|i) = 0.7, i = 2, 3, 4, and p′(4|5) = p′(2|1) = 1. Set pδ(j|i) =
p(j|i) + δ[p′(j|i) − p(j|i)]. By using the original sample path obtained in
(a), construct a perturbed sample path Xδ, δ = 1, following Figure 2.5.
Use the following [0, 1)-uniformly and independently distributed random
variables when Xδ is different from X (use the lth number to determine
the lth transition of Xδ, if Xδ,l �= Xl):
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0.173, 0.086, 0.393, 0.804, 0.011, 0.233, 0.934, 0.230, 0.786, 0.410,
0.119, 0.634, 0.862, 0.418, 0.601, 0.118, 0.626, 0.835, 0.361, 0.336.

c. Repeat b) for δ = 0.7, 0.5, 0.3, 0.2, 0.1.
d. Observe the trend of the perturbed paths Xδ. In particular, when δ is

small, most likely the perturbed parts from the jumping point to the
merging point are the same as if they follow the original transition prob-
abilities p(j|i), i, j = 1, 2, . . . ,S.

2.3. Let X and X̃ be two independent ergodic Markov chains with the
same transition probability matrix P on the same state space S. Define
Y = (X, X̃).

a. Prove that Y is ergodic.
b. Express L∗

ij in Figure 2.6 in terms of the Markov chain Y .

2.4. Consider a three-state Markov chain with

P =

⎡

⎣
0 0.5 0.5

0.1 0.6 0.3
0.7 0.1 0.2

⎤

⎦ , f =

⎡

⎣
10
5
8

⎤

⎦ .

a. Solve the Poisson equation (2.12) (I − P )g + ηe = f for g and η (by, e.g.,
setting g(0) = 0).

b. Solve π = πP and πe = 1 for π first. Then, solve (I −P + eπ)g = f for g.
c. Compare both methods in a) and b).

2.5. For an ergodic Markov chain X = {Xl, l = 0, 1, . . .}, derive the Poisson
equation using

g(i) = lim
L→∞

L−1∑

l=0

E{[f(Xl)− η]|X0 = i}.

2.6. The Poisson equation for the perturbed Markov chain is

(I − Pδ)gδ + ηδe = fδ,

where Pδ = P + δΔP and fδ = f + δΔf . Derive the performance derivative
formula (2.26) from the above equation.

2.7. Prove the following results:

a. If f = ce with c being a constant, then g = ce is a constant vector.
b. If p(j|i) = pj for all i ∈ S; i.e., every row in the transition probability

matrix is the same, then g = f .
c. If p(j|i) = p(i|j), for all i, j ∈ S; i.e., the transition probability matrix P

is symmetric, then
∑S

i=1 g(i) =
∑S

i=1 f(i).
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2.8. Prove edηδ

dδ = limβ↑1
dηβ,δ

dδ . In other words,

d

dδ

(
lim
β↑1

ηβ,δ

)
= lim

β↑1

dηβ,δ

dδ
.

2.9. Assume that P changes to Pδ = P + δ(ΔP ), ΔPe = 0, and fδ ≡ f .
Derive the second-order derivative of the discounted reward ηβ,δ with respect

to δ, d2ηβ,δ

dδ2 .

2.10. In Example 2.2, we have

G1 := ΔP (I − P + eπ)−1 =
[
−3.2 3.2
3.2 −3.2

]
.

a. Find the eigenvalues and eigenvectors of G1.
b. Verify that

[
−3.2 3.2
3.2 −3.2

]
=

[
1 1
1 −1

] [
0 0
0 −6.4

] [
1 1
1 −1

]−1

.

c. Prove that

Gn
1 =

[
1 1
1 −1

] [
0 0
0 (−6.4)n

] [
1 1
1 −1

]−1

,

and

πδ = π

∞∑

n=0

Gn
δ = π

∞∑

n=0

(δG1)n

= π

[
1 1
1 −1

] [
0 0
0
∑∞

n=0(−6.4δ)n

][
1 1
1 −1

]−1

.

d. Determine the convergence region of πδ. Extend the discussion to more
general case.

2.11. A group is a nonempty set G, together with a binary operation on
G, denoted as juxtaposition ab, a, b ∈ G, and ab ∈ G, with the following
properties: (i) (Associativity) (ab)c = a(bc), for all a, b, c ∈ G; (ii) (Identity)
There exists an element e ∈ G for which ea = ae = a for all a ∈ G; and
(iii) (Inverse) For each a ∈ G, there is an element denoted a−1, for which
aa−1 = a−1a = e, [220].

a. Verify that the set of matrices defined in (2.50) with matrix multiplication
as the juxtaposition satisfies the above properties.

b. In Example 2.2, we have

B = P − I =
[
−0.10 0.10
0.15 −0.15

]
.

What is its group inverse? Is the inverse an infinitesimal generator?
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2.12. Assume that the MacLaurin series of Pδ exists in [0, δ]. Equation (2.57)
can be derived directly by the following procedure: Taking the derivatives of
the both sides of πδ(I−Pδ) = 0 n times, we can obtain dnπ

dδn at δ = 0. Then, we
can construct the MacLaurin series of π. Work out the details of this approach
and derive the MacLaurin series of ηδ at δ = 0.

2.13. Prove the continuous version of the PRF equation (2.62) from its dis-
crete version (2.7) by setting B = P − I, and vice versa.

2.14. Consider a Markov chain X with transition probabilities p(j|i), i, j ∈ S,
and reward function f . For any 0 < p < 1, we define an equivalent Markov
chain X ′ with transition probabilities p′(j|i) = (1 − p)p(j|i), j �= i, and
p′(i|i) = p + (1− p)p(i|i), i ∈ S. Set f ′ = f . Prove that η′ = η and g′ = g

1−p .

2.15. Consider a Markov process X with transition rates λ(i), and transition
probabilities p(j|i), i, j ∈ S, and reward function f . For any λ > λ(i), i ∈ S,
we define an equivalent Markov process X ′ with transition rates λ′(i) ≡ λ,
and transition probabilities p′(j|i) = λ(i)

λ p(j|i), j �= i, and p′(i|i) = [1− λ(i)
λ ]+

λ(i)
λ p(i|i). Set f ′ = f .

a. Prove that η′ = η and g′ = g.
b. Let the discrete-time Markov chain embedded at the transition epoches

of X ′ as X†. Find the steady-state probability π† and the potential g† of
X†.

c. Suppose that 1 = λ > λ(i), i ∈ S, prove that g† = g.
d. For any κ > 0, we define a Markov process X̃ with transition rates λ̃(i) =

κλ(i), i ∈ S, transition probabilities p̃(j|i) = p(j|i), i, j ∈ S, and reward
function f̃ = f . Prove that π̃ = π and g̃ = g

κ .
e. Given any Markov process X, can you find a Markov chain that has the

same steady-state probability π and potential g as X? (Hint: use the
results in b)-d).)

2.16.∗ For semi-Markov processes with the discounted reward defined in
(2.93), set ηβ := (ηβ(1), . . . , ηβ(S))T and gβ := (gβ(1), . . . , gβ(S))T . Prove
that (cf. [57])

lim
β↓0

gβ = g,

lim
β↓0

ηβ = ηe,

and
ηβ = βgβ + ηe.

2.17. Consider a two-server cyclic Jackson queueing network with service
rates μ and λ for servers 1 and 2, respectively. There are N customers in
the network. The system’s state n = n is the number of customers at server
1. The state process is Markov. Let the performance be the average response
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time of the customers at server 1, denoted as τ̄ . Calculate the performance
potentials g(i), i = 1, 2, . . . , S, and the average response time τ̄ , and derive
the derivative of τ̄ with respect to λ and μ.

2.18. The two-server N -customer cyclic Jackson queueing network studied in
Problem 2.17 is equivalent to an M/M/1/N queue with arrival rate λ, service
rate μ, and a finite buffer size N . (When the number of customers in the queue
is n = N , an arriving customer is simply lost.)

a. Suppose that the arrival rate only changes when n = 0; i.e., when n = 0,
λ changes to λ+Δλ, and when n > 0, λ remains unchanged. What is the
derivative of the average response time τ̄ with respect to this change?

b. Suppose that the arrival rate only changes when n = n∗, with 0 < n∗ < N .
What is the derivative of τ̄ with respect to this change?

c. Suppose that the arrival rate only changes when n = N . What is the
derivative of τ̄ with respect to this change? (You may view the M/M/1/N
queue as the two-server cyclic queue again to verify your result.)

2.19. Consider a Markov chain with one closed recurrent state set S1 and one
transient state set S2 (a uni-chain). Let the transition probability matrix be

P =
[

P1 0
P21 P22

]
,

with P1 corresponding to S1 and P21, P22 corresponding to S2, and 0 being a
matrix with all zero components. Denote the potential vector as g = (gT

1 , gT
2 )T

with g1 = (g(1), . . . , g(S1))T and g2 = (g(S1 + 1), . . . , g(S))T , S1 = |S1|,
S2 = |S2|, S1 + S2 = S.

Derive an equation for g1 and express g2 in terms of g1 and P21, P22.

2.20. Consider a Markov chain with transition probability matrix

P =
[
B b
0 1

]
,

where B is an (S − 1) × (S − 1) irreducible matrix, b > 0 is an (S − 1)
dimensional column vector, 0 represents an (S − 1)-dimensional row vector
whose components are all zero. The last state S is an absorbing state. Clearly,
the long-run average reward for this Markov chain is η = f(S), independent of
B, b, and the initial state. Thus, the long-run average reward does not reflect
the transient behavior. Now, we set f(S) = 0. Define

g(i) = E

[ ∞∑

l=0

f(Xl)
∣∣∣X0 = i

]
.

Let Li,S = min{l : l ≥ 0,Xl = S|X0 = i} be the first passage time from i to
S. Then,
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g(i) = E

⎡

⎣
Li,S−1∑

l=0

f(Xl)
∣∣∣X0 = i

⎤

⎦ .

a. Derive an equation for g = (g(1), . . . , g(S))T .
b. Derive an equation for the average first passage times E[Li,S ], i ∈ S.

2.21.∗ (This problem helps in understanding the difference between the
discounted reward criteria for both the discrete-time and continuous-time
models.) Consider a Markov chain X with transition probability matrix
P = [p(j|i)]Si,j=1 and reward function f(i), i = 1, 2, . . . , S. For simplicity,
we assume that p(i|i) = 0 for all i = 1, 2, . . . , S. Let X̃ be a Markov chain
with reward function f̃(i) = f(i), i = 1, 2, . . . , S, and transition probability
matrix P̃ defined as p̃(i|i) = q, 0 < q < 1, and p̃(j|i) = (1 − q)p(j|i), j �= i,
i, j = 1, 2, . . . , S.

a. Prove that X̃ is equivalent to X in the sense that they have the same
steady-state probabilities: π̃(i) = π(i) for all i = 1, 2, . . . , S.

b. The discounted reward of X is defined as (2.30):

ηβ(i) = (1− β)E

[ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

]
,

where 0 < β < 1 is a discount factor. Similarly, the discounted reward of
X̃ is defined with a discount factor 0 < β̃ < 1 as

η̃
β̃
(i) = (1− β̃)E

[ ∞∑

l=0

β̃lf(X̃l)
∣∣∣X̃0 = i

]
.

Find a value for β̃ such that η̃
β̃
(i) = ηβ(i) for all i = 1, 2, . . . , S.

c. Let Δ > 0 be a positive number. Consider a continuous-time (non-
Markov) process X̂ := {X̂t, t ∈ [0,∞)}, where X̂t = Xl if lΔ ≤ t <
(l+1)Δ, l = 0, 1, . . . , with X = {Xl, l = 0, 1, . . .} being the Markov chain
considered in a). The discounted reward of X̂ is defined by an exponential
weighting factor (cf. (2.93)):

ηα(i) = lim
T→∞

E

[∫ T

0

α exp(−αt)f(X̂t)dt
∣∣∣X0 = i

]
, T0 = 0.

What is the equivalent β such that ηβ(i) = ηα(i) for all i = 1, 2, . . . , S?
d. Repeat c) for continuous-time process X̂ := {X̂t, t ∈ [0,∞)}, with X̂t =

X̃l if lΔ ≤ t < (l + 1)Δ, l = 0, 1, . . . .
e. What about in d) when we let Δ→ 0 while keeping 1−q

Δ = λ (where λ is
a constant)?
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(Hint: If X = {X0 = i0,X1 = i1, . . .}, then we have X̃ = {X̃0 = X̃1 =
· · · = X̃n0−1 = i0, X̃n0 = X̃n0+1 = · · · = X̃n0+n1−1 = i1, . . .}, where nl

is the number of consecutive visits to state il, l = 0, 1, . . . . Note that nl is
geometrically distributed with parameter q. Therefore,

η̃
β̃
(i) = (1− β̃)E[(1+ β̃+ · · ·+ β̃n0−1)f(i0)+(β̃n0 + · · ·+ β̃n0+n1−1)f(i1)+ · · ·].

We conclude that η̃
β̃
(i) = ηβ(i) if β = (1−q)β̃

1−qβ̃
.)

2.22. Prove that the random variable s generated according to (2.96) is indeed
exponentially distributed.

2.23. Develop a PA algorithm to determine a perturbed sample path for an
open Jackson network consisting of M servers, with mean service time s̄i,
i = 1, 2, . . . ,M . The customers arrive in a Poisson process with mean inter-
arrival time a = 1

λ . Both a and s̄i, i = 1, 2, . . . ,M , may be perturbed.

2.24. Suppose that at some time the perturbations of the servers in a closed
network are Δ1,Δ2, . . . ,ΔM determined by Algorithm 2.1. What is the per-
turbation that has been realized by the network at that time? As we know,
if a perturbation is realized, then the future perturbed sample path looks the
same as the original one except that it is shifted to the right by an amount
equal to the perturbation. Can we use this fact to simplify the calculation in
Algorithm 2.2?

2.25. Using the 0-1 vector array (2.105), discuss the situation of the prop-
agation of M perturbations with the same size, each at one server, along a
sample path. Prove that

∑M
i=1 c(n, i) = 1.

2.26. We further study the propagations of two equal perturbations Δ1 = Δ
at server 1 and Δ2 = Δ at server 2 simultaneously on the same sample path.
Consider the array in (2.105). Set w(t) = w1(t) + w2(t).

a. What is the meaning of w(t)?
b. What does it mean when w(t) = (1, 1, . . . , 1) or w(t) = (0, 0, . . . , 0)?
c. How does w(t) evolve?

2.27. In addition to (2.94), we may define the system performance as the
long-run time average

η
(f)
T = lim

L→∞

1
TL

∫ TL

0

f [N(t)]dt.

We have η
(f)
T = η(f)

η(I) .

a. Derive the derivative of η
(f)
T with respect to s̄i, i = 1, 2, . . . ,M .
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b. Define the reward function f corresponding to the steady-state probability
π(n), with n being any state, and derive dπ(n)

ds̄i
, i = 1, 2, . . . ,M .

2.28.∗ Prove that, in a closed Jackson network, the sample function TL(ξ, s̄v)
(with ξ fixed) is a piecewise linear function of s̄v, v = 1, 2, . . . ,M (see [46]).

2.29. Consider a closed Jackson network in which μiqi,j = μjqj,i, i, j =
1, 2, . . . ,M . Prove that

c(n, k) =
nk

N
, k = 1, 2, . . . ,M ;

and
s̄k

η

∂η

∂s̄k
= − 1

M
,

where k = 1, 2, . . . ,M , denotes any server in the network.

2.30.∗ (This problem requires a good knowledge of queueing theory) Consider
an M/M/1 queue with arrival rate λ and service rate μ. The system state is
simply the number of customers in the queue; i.e., n = n. The performance
measure is the average response time τ = limL→∞

1
L

∫ TL

0
n(t)dt. Thus, f(n) =

n. For the M/M/1 queue, there is a source sending customers to the queue
with rate λ. Denote the source as server 0, and the server as server 1. Server
0 can be viewed as always having infinitely many customers.

a. Prove that the realization factors c(f)(n, 0) and c(f)(n, 1), n = 0, 1, . . . ,
satisfy the following equations:

c(f)(0, 0) = 0, c(f)(0, 1) = 0,

c(f)(n, 0) + c(f)(n, 1) = n, n ≥ 0,

(λ + μ)c(f)(n, 0) = μc(f)(n− 1, 0) + λc(f)(n + 1, 0)− λ, n > 0,

and

(λ + μ)c(f)(n, 1) = λc(f)(n + 1, 1) + μc(f)(n− 1, 1) + μ, n > 0.

b. To solve for c(f)(n, i), i = 0, 1, we need a boundary condition. Using the
physical meaning of perturbation realization, prove that c(f)(1, 1) equals
the average number of customers served in a busy period of the M/M/1
queue; i.e. (see, e.g., [169]),

c(f)(1, 1) =
μ

μ− λ
=

1
1− ρ

, ρ =
λ

μ
.

c. Prove
c(f)(n, 1) =

n

1− ρ
,

and
c(f)(n, 0) = − nρ

1− ρ
.
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d. By the same argument as in closed networks, explain and derive

μ

η(I)

dτ

dμ
= − λμ

(μ− λ)2
= − ρ

(1− ρ)2
,

and
λ

η(I)

dτ

dλ
=

λ2

(μ− λ)2
=

ρ2

(1− ρ)2
.

2.31. The head-processing time of a packet in a communication system, or
the machine tool set-up time in manufacturing, is usually a fixed amount
of time. Consider a two-server cyclic queueing network in which the service
times of the two servers are exponentially distributed with mean s̄1 and s̄2,
respectively. Suppose that every service time of server 1 increases by a fixed
amount of time Δ. Derive the derivative of performance η(f) with respect to
Δ using performance realization factors c(f)(n, 1).

2.32. Prove that Algorithm 2.2 yields a strongly consistent estimate for the
derivative of the average response time in an M/G/1 queue; i.e., in (2.111) we
have

μ

η(I)

∂τ̄

∂μ
= − lim

K→∞

1
TL

K∑

k=1

nk∑

i=1

i∑

l=1

sk,l, w.p.1.

2.33. Consider a closed Jackson network with M servers and N customers.
The throughput of server i is ηi = η̆vi where η̆ is the “un-normalized system
throughput”:

η̆ =
GM (N − 1)

GM (N)
,

where vi is server i’s visiting ratio: The solution to

vi =
M∑

j=1

qj,ivj , j = 1, 2, . . . ,M,

and (see (C.16) in Appendix C)

Gm(n) =
∑

n1+...+nM=n

m∏

i=1

xni
i ,

where xi = vis̄i, i = 1, 2 . . . ,M . We have

dxi = dvis̄i + vids̄i. (2.128)

Now, we consider the derivative of η̆ with respect to the routing probability
matrix Q = [qi,j ]Mi,j=1. It is clear that η̆ depends on the routing probabilities
only through xi, i = 1, 2, . . . ,M . Suppose that vi changes to vi + dvi, i =
1, 2, . . . ,M . From (2.128), we observe that in terms of the changes in xi, dxi,
i = 1, 2, . . . ,M , this is equivalent to setting dvi = 0 and ds̄i = s̄i

dvi

vi
for all

i = 1, 2, . . . ,M .
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a. Explain that, for closed Jackson networks, the derivative of the average
reward

∑
all n π(n)f(n) with respect to the changes in routing probabil-

ities can be obtained through the derivatives of the average reward with
respect to the mean service times.

b. Derive the performance derivative formula dηi

dQ , by using performance re-
alization factors c(f)(n, i), i = 1, 2, . . . .

2.34.∗ Consider the same two-server cyclic Jackson queueing network studied

in Problem 2.17. Let η
(f)
T = limL→∞

∫ TL

0
f(n(t))dt

TL
denote the time-average

performance, where n(t) is the number of customers at time t at server 1, and
L denotes the number of transitions. The performance function is f(n) = n.
Let us assume that the arrival rate λ, or the service rate μ, changes only when
the state is n.

a. Derive dη
(f)
T

dλ and dη
(f)
T

dμ in terms of the realization factors c(f)(n, 1), c(f)(n, 2)
and realization probability c(n, 1), c(n, 2).

b. Express dη
(f)
T

dλ and dη
(f)
T

dμ in terms of the performance potentials g(n).
c. Compare both results in a) and b) and derive a relation between the

realization factors and the potentials. Give an intuitive explanation for
this relation. (cf. [260])

2.35. In weak derivative expression (2.125), we may choose P+ = P ′ and
P− = P .

a. Derive (2.126) and express its meaning based on sample paths.
b. Derive (2.127).

2.36. Derive (2.23) from (2.127).

2.37. Consider a (continuous-time) Markov process with transition rates λ(i)
and transition probabilities p(j|i), i, j = 1, 2, . . . , S. Suppose that the transi-
tion probability matrix P := [p(j|i]i,j∈S changes to P+δΔP and the transition
rates λ(i), i = 1, 2, . . . , S remain unchanged. Let η be the average reward with
reward function f . Derive the performance derivative formula for dηδ

dδ using
the construction approach illustrated in Section 2.1.3.
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