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Preface

Performance optimization is very important in the design and operation of
modern engineering systems in many areas, including communications (In-
ternet and wireless), manufacturing, robotics, and logistics. Most engineering
systems are too complicated to be modelled, or the system parameters cannot
be easily identified. Therefore, learning techniques have to be utilized.

A Brief Description of Learning and Optimization

Learning and optimization of stochastic systems is a multi-disciplinary area
that has attracted wide attention from researchers in many disciplines includ-
ing control systems, operations research, and computer science. Areas such
as perturbation analysis (PA) in discrete event dynamic systems (DEDSs),
Markov decision processes (MDPs) in operations research, reinforcement
learning (RL) in computer science, neuro-dynamic programming (NDP), iden-
tification, and adaptive control (I&AC) in control systems, share a common
goal: to make the “best decision” to optimize a system’s performance.

Different areas take different perspectives and have different formulations
for the problems with the same goal. This book provides an overview of these
different areas, PA, MDPs, RL, and I&AC, with a unified framework based
on a sensitivity point of view. It also introduces new approaches and proposes
new research topics and directions with this sensitivity-based framework.

Roughly speaking, with RL, we learn how to make decisions to improve
a system’s performance by observing and analyzing the system’s current be-
havior; the structure and the parameters of the system may not be known
and even may not need to be estimated. PA estimates the derivatives of a
system’s performance with respect to the system’s parameters by observing
and analyzing the system’s behavior. Optimization is achieved by combining
performance derivative estimation and other optimization techniques such as
stochastic approximation. MDPs provide a theoretical foundation for perfor-
mance optimization of systems with a Markov model [21, 216]. In adaptive
control, the system behavior is described by differential or difference equa-
tions; when the system parameters are unknown, they have to be identified
using the observed data. Adaptive control together with identification achieves
the same goal as learning and optimization.

The goal of these research areas is the same: to find a policy that optimizes
a system’s performance, by using the information “learned” by observing or
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analyzing the system’s behavior. Given a system’s status or history, a policy
determines an action to be applied to the system, which controls the system
evolution. In some cases, policies depend on continuous parameters and the
policy space is continuous; in other cases, the policy space is discrete and
usually contains a huge number of policies.

A Sensitivity-Based View

Recent research indicates that the various disciplines in learning and opti-
mization can be explained from a unified point of view based on the per-
formance sensitivities in the policy space [56]. The fundamental elements of
learning and optimization are two types of performance sensitivity formulas,
one for performance derivatives at any policy in the policy space, the other,
for performance differences between any two policies in the policy space. With
these two types of sensitivity formulas, existing results in the various areas
and their relations can be derived or explained in a simple and intuitive way,
new approaches can be introduced, and the average, discounted, and other
performance criteria can be treated in the same way.

The unified framework is based on a few simple and fundamental facts:
Naturally, by observing and analyzing a system’s behavior under one policy,
we cannot know the system’s performance under other policies, if no struc-
tural information about the system is known; and we can only compare the
performance of two policies at a time. The question is, with these fundamen-
tal limitations, how can we achieve our goal of performance optimization by
using as little information about the system structure as possible and with as
little computation effort as possible?

Thinking along this direction, we find that two things can be done: First, if
the policy space is continuous, with some knowledge about the system structure
(e.g., queueing or Markov) and by the PA principles, we may estimate the
performance derivatives at a policy along any direction in the policy space by
observing/analyzing the behavior of the system under this policy [70, 62, 69].
This leads to the performance derivative formula; all the quantities required to
calculate the derivative along a given direction can be obtained by analyzing
the sample paths of the current policy. The performance derivative formula
forms the basis for PA and the “policy gradient” approach that was proposed
recently in the RL research community.

Second, if the policy space is discrete, the performance difference formula
forms the basis for optimization. The difference formula compares the per-
formance of the system under two policies. However, unlike the derivative
formula, the difference formula involves quantities for both policies and it
is not possible to know the performance of another policy, or the difference
in the performance of a system under two policies, by observing or analyz-
ing only the behavior of the system under one policy. Fortunately, by the
particular factorized form of the performance difference formula, under some
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structural conditions, we can always use the information learned from observ-
ing/analyzing the system behavior under a policy to find another policy under
which the performance of the system is better, if such better policies exist. This
leads to policy iteration: learn from a policy to find another better policy, and
learn from this better policy to find an even better policy, and so on. Thus, the
performance difference formula forms the basis for policy-iteration type ap-
proaches to performance optimization. We will show that the results in I&AC
can also be derived using this principle, which also provides a learning-based
perspective to the area.

The fundamental quantity in the two sensitivity formulas (and thus in
the two types of optimization approaches, the gradient-based and the policy-
iteration-based) is the performance potential, which has a clear physical mean-
ing: It measures the “potential” contribution of a state to the system perfor-
mance. The difference of the potentials of two states measures the effect of
changing from one state to the other on the system performance. Such a
change from one state to the other is called a perturbation in PA (or simply
called a “jump” on a sample path). In RL, many efficient algorithms (e.g.,
TD(λ) and Q-learning) have been developed for estimating the potential and
its variant Q-factor and their values for the optimal policies.

The physical interpretation of the potentials leads to the fundamental prin-
ciple in PA: The effect of any change in a system’s structure or parameters can
be decomposed into the effects of many jumps among states (or many pertur-
bations). With this principle, we can use the potentials as building blocks to
construct new sensitivity formulas by first principles for many problems that
do not fit into the standard formulation in the existing literature [59]. Since,
as explained, such sensitivity formulas serve as the basis for learning and op-
timization, the sensitivity construction approach opens up a new direction:
New learning and optimization schemes can be developed based on these new
sensitivity formulas, and special system features can be utilized.

One of the approaches developed based on sensitivity construction is called
the event-based optimization where actions can be taken only when some
events happen. This approach utilizes the special feature of a system cap-
tured by events. Policy depends on events, rather than on states. An event is
defined as a set of state transitions and, therefore, an event occurring in the
present contains some information about the next state, i.e., the future. In
many modern engineering systems in information technology, such informa-
tion is accessible before actions are taken, and the standard Markov model
does not capture this special property. Thus, in some cases, event-based poli-
cies may perform better than state-based ones. Furthermore, the number of
events usually scales to the system size, which is much smaller than that of
the states, which grows exponentially with the size of the system. Thus, un-
der some conditions, this approach may provide a possibility to overcome or
to alleviate a computational difficulty: the curse of dimensionality. In addi-
tion, many existing approaches, such as partially observed MDPs (POMDPs),
state and time aggregation, hierarchical control (hybrid systems), options, and
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singular perturbation, can be treated as special cases of the event-based op-
timization by defining different events to capture the special features of these
different problems.

The Unique Features of This Book

Compared with other books in the area of learning and optimization, this
book is unique in the following aspects.

1. The book covers various disciplines in learning and optimization, including
PA, MDPs, RL, and I&AC, with a unified framework based on a sensitivity
perspective in the policy space. Many results can be explained with the
two types of fundamental sensitivity formulas in a simple way.

2. We emphasize physical interpretations rather than mathematics. With
the intuitive physical explanations, we propose to construct new sensitiv-
ity formulas with performance potentials as building blocks. The physi-
cal intuition may provide insights that complement to other existing ap-
proaches.

3. With the unified framework and the construction approach, we introduce
the recently-developed event-based optimization approach; this approach
opens up a research direction in overcoming/alleviating the curse of di-
mensionality issue by utilizing the system’s special features.

4. The performance difference-based approach is applied to all the MDP
problems, including ergodic and multi-chain systems, average and dis-
counted performance criteria, and even bias optimality and nth-bias op-
timality. It is shown that the nth-bias optimal policies eventually lead
to the Blackwell optimal policies. This approach provides a simple, in-
tuitively clear, and comprehensive presentation of all these problems in
MDPs in a unified way. This presentation of MDPs is unique in existing
books.

The Contents of This Book

Chapter 1 presents an introduction, which consists of an overview of the differ-
ent disciplines in learning and optimization and a discussion of the event-based
approach. This chapter serves as a road map for the book. The rest of the book
consists of three parts. Part I, consisting of Chapters 2 to 7, describes how
the sensitivity point of view in policy spaces leads to the main concepts and
results in PA, MDPs, RL, and I&AC. Part II, consisting of Chapters 8 and
9, presents the recent developments in event-based learning and optimization
with this sensitivity point of view. Part III consists of three appendices that
provide the mathematical background required for this book.

Part I starts with PA in Chapter 2. We derive the performance derivative
formulas, by using performance potentials or realization factors as building
blocks, for Markov systems and queueing systems. The sample-path-based
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sensitivity point of view in PA is the core of the unified approach of this
book. In Chapter 3, we discuss performance potentials and develop sample-
path-based algorithms for estimating potentials and performance derivatives,
as well as for performance optimization with the potentials. In Chapter 4,
we show how policy iteration for both uni-chain and multi-chain MDPs can
be easily derived from the performance difference formulas; this approach
applies in the same way to both average and discounted criteria, as well as
bias optimality, etc. We also define and solve the nth-bias optimality problem
with the same approach. On-line policy iteration algorithms are developed in
Chapter 5 with the potentials estimated from the sample paths. Chapter 6
presents basic results of RL, which is essentially a combination of stochastic
approximation and the sample-path-based estimation of the potentials and
their variants Q-factors. In Chapter 7, we show that the on-line policy iteration
approach can be applied to I&AC problems, including linear systems and some
non-linear systems.

In Part II, Chapter 8 presents the event-based optimization approach. This
approach provides a possible way to address the difficult issue of the curse of
dimensionality by utilizing particular system structures; in some cases event-
based policies may perform better than state-based ones. The construction of
sensitivity formulas with performance potentials as building blocks for general
problems is presented in Chapter 9.

How to Use This Book

This book provides, in a unified way, good introductory materials for graduate
students and engineers who wish to have an overview of learning and optimiza-
tion theory, the related methodologies in different disciplines, including PA,
MDPs, RL, I&AC, and stochastic approximation, and their relations. The new
perspective presented in this book is helpful in finding new research topics.
Thus, the book is useful to researchers in these areas who wish to find some
motivation and to promote inter-disciplinary collaborations. In addition, en-
gineers, in particular those in information technology, may find the ideas and
methodologies introduced in this book useful in their practical applications.

The chapters and sections marked with asterisks “∗” are supplementary
reading material and can be omitted by first-time readers. Each chapter con-
tains a considerable number of problems that may help students to enhance
their understanding of the main contents. Some of the problems are sum-
maries of past research topics and might be difficult. These are also marked
with asterisks. Solutions to the problems are available upon request and can
be found on my website http://www.ee.ust.hk/∼eecao.

An earlier version of this book was used as the textbook for graduate
courses at the Hong Kong University of Science and Technology and Tsinghua
University in Beijing, China. A suggested time table for a course in a fourteen-
week term (three hours per week) is as follows.
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Chapters Sections Hours Weeks
A-C A.1 - C.2 3 1
1 1.1 - 1.4 2 2/3
2 2.1 4 4/3

2.2 1 1/3
2.4 3 1

3 3.1 - 3.3 3 1
Review 1 1/3

4 4.1 3 1
4.2 3 1

5 5.1 - 5.2 3 1
6 6.1 - 6.4 4 4/3
7 7.1 - 7.3 2 2/3
8 8.1 - 8.5 5 5/3
9 9.1 - 9.2 1 1/3

Review 1 1/3
Examination 3 1

Total 42 14

The following are some suggestions and comments about the contents cov-
ered in each chapter:

0. The contents covered in the appendices are the prerequisite of the course.
Three hours are not enough to cover the details in the three appendices.
In a brief review, we may focus more on probability and the theory on
Markov chains, which are closely related to the main concepts presented
in the book. Appendix B is mainly related to Chapter 4, and Appendix C
is mainly related to Section 2.4. Some results can be reviewed when the
main texts are taught.

1. For students with a background in control, Section 1.1 on policies can
be taught fast. Sections 1.2-1.3 are intended to give an overview of the
different disciplines, and they should be revisited after studying Part I to
get a better picture.

2. The main part of Chapter 2 is Sections 2.1 and 2.4.
3. Section 3.2 is relatively new in the literature.
4. Sections 4.1 and 4.2 cover the main ideas and methodologies. If time per-

mits, we may cover the main results in Section 4.3 without going through
the proofs.

5. The proof in Section 5.2.3 is interesting, but it is a bit technical and
requires some careful thinking.

6. In Chapter 6, we emphasize on the intuitions behind the development of
recursive algorithms, with the principles in stochastic approximation, and
we do not intend to provide proofs for these algorithms. The algorithms for
performance derivative estimates are new research topics in recent years.
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7. In Chapter 7, it is easy to convince students that a control system can be
modelled as an MDP. The extension of MDP from a discrete state space
to a continuous state space is of no conceptual difficulty. We may cover
only the LQ problem as an example.

8. Section 8.1 provides a nice overview of the event-based optimization ap-
proach. If we wish to avoid studying the tedious mathematical formu-
lation, we may study the two examples to obtain a clear picture of the
approach.

9. Section 9.2 provides the basic ideas for the construction of the performance
difference formula. Other sections illustrate the flexibility of this approach
and are for additional reading.

The following is a suggested time table for a course in a nine-week term
(three hours per week).

Chapters Sections Hours Weeks
A-C A.1 - C.2 1.5 1/2
1 1.1 - 1.4 1.5 1/2
2 2.1 4 4/3
3 3.1 - 3.3 2 2/3
4 4.1 3 1

4.2.1 2 2/3
5 5.1 - 5.2 2 2/3
6 6.1 - 6.4 3 1
7 7.1 - 7.3 2 2/3
8 8.1 - 8.5 3 1
9 9.1 - 9.2 1 1/3

Examinations 2 2/3
Total 27 9

The additional suggestions are as follows.

1. We do not have time to cover PA of queueing systems in Section 2.4,
PA-based optimization of queueing systems in Section 3.3, etc.

2. In Chapter 4, we may only briefly introduce the concept of the nth bias
and the problem of the nth-bias optimality.

3. Event-based optimization can be introduced via examples.
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G. Barto, D. P. Bertsekas, R. W. Brockett, C. G. Cassandras, H. F. Chen,
A. Ephremides, H. T. Fang, E. A. Feinberg, M. C. Fu, P. Glasserman, W. B.
Gong, X. P. Guo, B. Heidergott, P. V. Kokotovic, F. L. Lewis, L. Ljung, D. J.
Ma, S. I. Marcus, S. P. Meyn, G. Ch. Pflug, L. Qiu, Z. Y. Ren, J. Si, R. Suri,
J. N. Tsitsiklis, B. Van Roy, P. Varaiya, A. F. Veinott, Y. Wardi, Y. W. Wan,
and J. Y. Zhang. I also wish to thank those people who have carefully read
parts of the early draft of this book and provided useful comments regarding
the presentations of the book and corrected typos: F. Cao, H. F. Chen, T. W.
Chen, X. P. Guo, Q. L. Li, Y. J. Li, D. Y. Shi, L. Xia, Y. K. Xu, and J. Y.
Zhang. In addition, I particularly appreciate the tedious work of Y. K. Xu and
J. Y. Zhang in making Latex files for many pictures in the book. I also thank
V. Unkefer for her technical editing of most part of this book and thank J. Q.
Shen for drawing the figure for the book cover. Of course, all errors remain
my responsibility. My sincere thanks also go to Harvard University, Digital
Equipment Corporation, U.S.A., and the Hong Kong University of Science
and Technology for providing me with financial support as well as excellent
research environment during the past years.

Finally, I wish to express my sincere appreciation to my wife, Mindy Wang
Cao, for her continuing support and understanding under all circumstance in
the past years.

Hong Kong Xi-Ren Cao
April 2007 The Hong Kong University

of Science and Technology
eecao@ust.hk



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 An Overview of Learning and Optimization . . . . . . . . . . . . . . . . . 1

1.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Optimal Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Fundamental Limitations of Learning and Optimization 12
1.1.4 A Sensitivity-Based View of Learning and Optimization 17

1.2 Problem Formulations in Different Disciplines . . . . . . . . . . . . . . . 19
1.2.1 Perturbation Analysis (PA) . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2 Markov Decision Processes (MDPs) . . . . . . . . . . . . . . . . . . 26
1.2.3 Reinforcement Learning (RL) . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.4 Identification and Adaptive Control (I&AC) . . . . . . . . . . 34
1.2.5 Event-Based Optimization and Potential Aggregation . . 37

1.3 A Map of the Learning and Optimization World . . . . . . . . . . . . . 41
1.4 Terminology and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Part I Four Disciplines in Learning and Optimization

2 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.1 Perturbation Analysis of Markov Chains . . . . . . . . . . . . . . . . . . . . 52

2.1.1 Constructing a Perturbed Sample Path . . . . . . . . . . . . . . . 53
2.1.2 Perturbation Realization Factors and Performance

Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.1.3 Performance Derivative Formulas . . . . . . . . . . . . . . . . . . . . 64
2.1.4 Gradients with Discounted Reward Criteria . . . . . . . . . . . 68
2.1.5 Higher-Order Derivatives and the MacLaurin Series . . . . 74

2.2 Performance Sensitivities of Markov Processes . . . . . . . . . . . . . . . 83
2.3 Performance Sensitivities of Semi-Markov Processes∗ . . . . . . . . . 90

2.3.1 Fundamentals for Semi-Markov Processes∗ . . . . . . . . . . . . 90
2.3.2 Performance Sensitivity Formulas∗ . . . . . . . . . . . . . . . . . . . 95

2.4 Perturbation Analysis of Queueing Systems . . . . . . . . . . . . . . . . . 102
2.4.1 Constructing a Perturbed Sample Path . . . . . . . . . . . . . . . 105



XVI Contents

2.4.2 Perturbation Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.4.3 Performance Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2.4.4 Remarks on Theoretical Issues∗ . . . . . . . . . . . . . . . . . . . . . 125

2.5 Other Methods∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3 Learning and Optimization with Perturbation Analysis . . . . 147
3.1 The Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.1.1 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.1.2 Learning Potentials from Sample Paths . . . . . . . . . . . . . . 151
3.1.3 Coupling∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

3.2 Performance Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.2.1 Estimating through Potentials . . . . . . . . . . . . . . . . . . . . . . 161
3.2.2 Learning Directly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

3.3 Optimization with PA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
3.3.1 Gradient Methods and Stochastic Approximation . . . . . . 172
3.3.2 Optimization with Long Sample Paths . . . . . . . . . . . . . . . 174
3.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.1 Ergodic Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.1.1 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.1.2 Bias Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.1.3 MDPs with Discounted Rewards . . . . . . . . . . . . . . . . . . . . 201

4.2 Multi-Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.2.1 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.2.2 Bias Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.2.3 MDPs with Discounted Rewards . . . . . . . . . . . . . . . . . . . . 226

4.3 The nth-Bias Optimization∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.3.1 nth-Bias Difference Formulas∗ . . . . . . . . . . . . . . . . . . . . . . 229
4.3.2 Optimality Equations∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
4.3.3 Policy Iteration∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
4.3.4 nth-Bias Optimal Policy Spaces∗ . . . . . . . . . . . . . . . . . . . . 244

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

5 Sample-Path-Based Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . 253
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
5.2 Convergence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

5.2.1 Convergence of Potential Estimates . . . . . . . . . . . . . . . . . . 259
5.2.2 Sample Paths with a Fixed Number of Regenerative

Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
5.2.3 Sample Paths with Increasing Lengths . . . . . . . . . . . . . . . 267

5.3 “Fast” Algorithms∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277



Contents XVII

5.3.1 The Algorithm That Stops in a Finite Number of
Periods∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

5.3.2 With Stochastic Approximation∗ . . . . . . . . . . . . . . . . . . . . 282
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

6 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
6.1 Stochastic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

6.1.1 Finding the Zeros of a Function Recursively . . . . . . . . . . 291
6.1.2 Estimating Mean Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

6.2 Temporal Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
6.2.1 TD Methods for Potentials . . . . . . . . . . . . . . . . . . . . . . . . . 298
6.2.2 Q-Factors and Other Extensions . . . . . . . . . . . . . . . . . . . . . 308
6.2.3 TD Methods for Performance Derivatives . . . . . . . . . . . . . 313

6.3 TD Methods and Performance Optimization . . . . . . . . . . . . . . . . 318
6.3.1 PA-Based Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
6.3.2 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
6.3.3 Optimistic On-Line Policy Iteration . . . . . . . . . . . . . . . . . . 325
6.3.4 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

6.4 Summary of the Learning and Optimization Methods . . . . . . . . 330
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

7 Adaptive Control Problems as MDPs . . . . . . . . . . . . . . . . . . . . . . 341
7.1 Control Problems and MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

7.1.1 Control Systems Modelled as MDPs . . . . . . . . . . . . . . . . . 342
7.1.2 A Comparison of the Two Approaches . . . . . . . . . . . . . . . 345

7.2 MDPs with Continuous State Spaces . . . . . . . . . . . . . . . . . . . . . . . 353
7.2.1 Operators on Continuous Spaces . . . . . . . . . . . . . . . . . . . . 354
7.2.2 Potentials and Policy Iteration . . . . . . . . . . . . . . . . . . . . . . 359

7.3 Linear Control Systems and the Riccati Equation . . . . . . . . . . . . 363
7.3.1 The LQ Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
7.3.2 The JLQ Problem∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

7.4 On-Line Optimization and Adaptive Control . . . . . . . . . . . . . . . . 373
7.4.1 Discretization and Estimation . . . . . . . . . . . . . . . . . . . . . . . 374
7.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Part II The Event-Based Optimization - A New Approach

8 Event-Based Optimization of Markov Systems . . . . . . . . . . . . . 387
8.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

8.1.1 Summary of Previous Chapters . . . . . . . . . . . . . . . . . . . . . 388
8.1.2 An Overview of the Event-Based Approach . . . . . . . . . . . 390

8.2 Events Associated with Markov Chains . . . . . . . . . . . . . . . . . . . . . 398
8.2.1 The Event and Event Space . . . . . . . . . . . . . . . . . . . . . . . . 400



XVIII Contents

8.2.2 The Probabilities of Events . . . . . . . . . . . . . . . . . . . . . . . . . 403
8.2.3 The Basic Ideas Illustrated by Examples . . . . . . . . . . . . . 407
8.2.4 Classification of Three Types of Events . . . . . . . . . . . . . . 410

8.3 Event-Based Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
8.3.1 The Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 414
8.3.2 Performance Difference Formulas . . . . . . . . . . . . . . . . . . . . 417
8.3.3 Performance Derivative Formulas . . . . . . . . . . . . . . . . . . . . 420
8.3.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

8.4 Learning: Estimating Aggregated Potentials . . . . . . . . . . . . . . . . 429
8.4.1 Aggregated Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
8.4.2 Aggregated Potentials in the Event-Based Optimization 432

8.5 Applications and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
8.5.1 Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
8.5.2 Service Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
8.5.3 General Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

9 Constructing Sensitivity Formulas . . . . . . . . . . . . . . . . . . . . . . . . . 455
9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
9.2 Markov Chains on the Same State Space . . . . . . . . . . . . . . . . . . . 456
9.3 Event-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

9.3.1 Sample-Path Construction∗ . . . . . . . . . . . . . . . . . . . . . . . . . 464
9.3.2 Parameterized Systems: An Example . . . . . . . . . . . . . . . . 467

9.4 Markov Chains with Different State Spaces∗ . . . . . . . . . . . . . . . . 470
9.4.1 One Is a Subspace of the Other∗ . . . . . . . . . . . . . . . . . . . . 470
9.4.2 A More General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Part III Appendices: Mathematical Background

A Probability and Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . 491
A.1 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
A.2 Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

B Stochastic Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
B.1 Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
B.2 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
B.3 The Limiting Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516



Contents XIX

C Queueing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
C.1 Single-Server Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
C.2 Queueing Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
C.3 Some Useful Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

Notation and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563



A journey of a thousand miles
begins with a single step.

Lao-tzu, Chinese philosopher
(604 BC - 531 BC)

1
Introduction

1.1 An Overview of Learning and Optimization

Performance optimization plays an important role in the design and opera-
tion of modern engineering systems in many areas, including communications
(Internet and wireless networks), manufacturing, logistics, robotics, and bio-
informatics. Most engineering systems are too complicated to be analyzed, or
the parameters of the system models cannot be easily obtained. Therefore,
learning techniques have to be applied.

The goal of learning and optimization is to make the “best” decisions to
optimize, or to improve, the performance of a system based on the informa-
tion obtained by observing and analyzing the system’s behavior. A system’s
behavior is usually represented by a model, or by the sample paths (also called
trajectories) of the system. A sample path is a record of the operation history
of a system.

1.1.1 Problem Description

In this book, we mainly study stochastic dynamic systems. A dynamic system
evolves as time passes. It is generally easier to explain the ideas with a discrete
time model, in which time takes discrete values denoted as l = 0, 1, 2, . . . .
In addition to its dynamic nature, a stochastic system is always subject to
random influences caused by noise or other uncertainties.
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States, Actions, and Observations

To study the system behavior, we need to describe precisely the system’s
status. A system’s status at any time l = 0, 1, . . . can be represented by a
quantity called the system’s state at time l, denoted as Xl, l = 0, 1, . . . . The
state space (i.e., the set of all states) is denoted as S, which may be either
discrete or continuous. A sample path of a system is a record of state history
denoted as X = {X0,X1, . . .}. In stochastic dynamic systems, Xl, l = 0, 1, . . . ,
are random variables (may be multi-dimensional random vectors). A system’s
dynamic behavior is then represented by its sample paths. We denote a “finite-
length” sample path as Xl := {X0,X1, . . . , Xl}.

In this book, the word “state” is used in a strict sense that a sample
path X is a Markov chain. This means that given the current state Xl, the
system’s future behavior {Xl+1,Xl+2, . . .} is independent of its past history
{X0,X1, . . . , Xl−1}, l = 1, 2, . . . (see Appendix A.2 for more details). This
is called the Markov property. Intuitively, a state completely captures the
system’s current status in regard to its future evolution.

In optimization problems, at any time l, we can apply an action, denoted
as Al ∈ A, l = 0, 1, . . . , where A is an action space. In most cases, A contains a
finite number of actions, but in general it may contain infinitely many actions,
or even be a continuous space.

The actions A0, A1, . . . may affect the evolution of the system. With the
Markov model, the actions control the transition probabilities of the state
process. If action α ∈ A is taken at time l (i.e., Al = α), then the transition
probabilities at time l are denoted as pα(Xl+1|Xl), Xl+1,Xl ∈ S, l = 0, 1, . . . .

Because the actions affect the system behavior, the operation history of a
system should include the actions. Let Al−1 := {A0, A1, . . . , Al−1} denote an
action history with a finite length and A := {A0, A1, . . .} denote an infinitely
long action history. Taking the actions into consideration, we denote a sample
path as H := (X,A), or Hl := (Xl,Al−1).

In many cases, the system’s state cannot be exactly observed, and we
can only observe a random variable Yl at time l that is related to Xl, l =
0, 1, . . . . The observation history is denoted as Y := {Y0, Y1, . . .}, or Yl :=
{Y0, Y1, . . . , Yl}. In such cases, we say that the system is partially observable.
The information history up to time l is Hl := (Yl,Al−1). When Yl = Xl, for
all l = 0, 1, . . . , we say that the system is completely observable. In such cases,
we have Hl = (Xl,Al−1). Note that even for partially observable systems, we
reserve the word “sample path” for Hl = (Xl,Al−1), or H = (X,A).

Here are some examples of the observations Yl: When the observations
of states contain additive noise, we have Yl = Xl + εl, with E(Yl) = Xl if
E(εl) = 0. When the states of the Markov chain X are aggregated, Yl may be
an aggregation state. In the event-based optimization approach (see Chapters
9 and 8), Yl may represent an event at time l, and the event may contains
information about the state transition at the time instant.
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Rewards and Performance Measures

Associated with each sample path HL = (XL,AL−1), there is a reward (or
cost; we use the word “reward” in most cases in this book) denoted as ηL(HL).
Because the states XL and the actions AL−1 are generally random, ηL(HL)
is usually a random variable. For finite-length problems, ηL(HL) represents
the total reward received when the system is going through the sample path
HL. The performance measure η (or simply called the performance) is defined
as the mean of the rewards

η = E[ηL(HL)]. (1.1)

For sample paths with infinitely long lengths, the performance measure η is
defined as the limit of the mean rewards

η = lim
L→∞

E[ηL(HL)], (1.2)

in which we assume that both the expectation and limit exist. In this case,
ηL(HL) usually represents the average reward per step received by the system
during the operation.

The reward ηL and the performance η may take different forms in different
problems. In an optimization problem with the Markov model, there is a
reward function denoted as f(i, α), i ∈ S, α ∈ A. At time l, if the system is
in state i and action α ∈ A is taken, then the system receives a reward of
f(i, α). For a sample path with a finite length L, the total reward received on
this sample path is

ηL =
L−1∑

l=0

f(Xl, Al).

The performance measure is the expected total reward η = E(ηL). For prob-
lems with infinitely long sample paths, we consider the average

ηL =
1
L

L−1∑

l=0

f(Xl, Al),

and the performance measure is (when it exists)

η = lim
L→∞

E(ηL) = lim
L→∞

1
L
E

{
L−1∑

l=0

f(Xl, Al)

}
, (1.3)

which is called the long-run average reward in the literature. Note that in
general the expectations in (1.1), (1.2), and (1.3) depend on the initial states
or the initial state distributions.

For ergodic Markov chains, the long-run average reward is

η := lim
L→∞

1
L

L−1∑

l=0

f(Xl, Al), w.p.1,
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which does not depend on the initial state.
Other performance measures, such as the discounted reward, exist and will

be discussed in other chapters. For simplicity, a performance measure is also
referred to as a performance.

The Problem Description

Input Al

(Actions)

Output Yl

(Observations)

System state Xl

η =
1

L
E
{ L−1∑

l=0

f(Xl, Al)
}

Fig. 1.1. A Model of Learning and Optimization

A general description of the learning and optimization problem is illus-
trated by Figure 1.1. In the figure, the shaded area represents a stochastic
dynamic system. The system is essentially a black box and it can only inter-
act with the outside through its inputs and outputs. The inputs provide a
vehicle to intervene or to control the operation of the system, and/or to affect
the reward of the operation. For example, in a Markov system (whose behav-
ior can be modelled as a Markov chain), the inputs may be the actions Al that
determine the system’s state transition probabilities at time l, l = 0, 1, . . . . In
other cases, an input can also control the system operation modes, or tune the
values of system parameters, etc. In this terminology, setting different values
for system parameters is viewed as taking different actions. It is usually as-
sumed that the available actions are known to us (e.g., we know that we can
accept or reject a packet in a communication system, or we can tune the rate
of a transmission line to θ megabit/second).

The outputs provide a window for observing the system. That is, the out-
puts are the observations. In partially observable Markov systems, the output
at time l is the observation Yl, l = 0, 1, . . . ; and in completely observable
systems, the output at time l is the state Xl, l = 0, 1, . . . .

Associated with every system, there is a performance measure η. In the
figure, as an example, η is taken to be the mean of the average reward for L
steps; L is usually a very large integer or infinity.

The goal of an optimization problem is to answer the following question:
Based on the information we know about the system, i.e., the output history
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learned from observation and the input (action) history, what action should
we take at a particular time so that we can obtain the best possible system
performance?

The information history Hl = {Yl,Al−1}, with Yl = {Y0, Y1, . . . , Yl} be-
ing the observation history and Al−1 = {A0, A1, . . . , Al−1} being the action
history (with A−1 := ∅), represents all the information available at time l
before an action is taken at l, l = 0, 1, . . . . Based on this information, an
action can be chosen by following some rules, called a policy, denoted as
dl : Al = dl(Hl), Al ∈ A. (This is called a deterministic policy.) We wish
to find a policy that maximizes the system performance. (Since we use re-
ward, rather than cost, as the system performance, optimization is equivalent
to maximization here.) Such a policy is called an optimal policy. When the
number of policies is finite, such optimal policies always exist and may not be
unique.

In engineering applications, at the design stage, sample paths can only
be obtained by simulation following a system model; and while a system is
operating, the paths can also be obtained by direct observation. If learning
and optimization is implemented by simulation, then the approach is called
a simulation-based approach. With simulation, we may even let the system
operate under policies that are generally not feasible in a real system. For real
systems, performance optimization (or improvement) decisions can be made
through learning the system behavior by observing its sample paths recorded
while the system is operating without interruption; we call such an approach
an on-line approach.

1.1.2 Optimal Policies

From the above description, the main element in learning and optimization is
the policy. In this subsection, we use some examples to show different types
of policies and some main features in searching for optimal policies.

Open-Loop Policies

Example 1.1. Suppose that we run a system for three time instants l =
0, 1, 2, and at any time instant we can take one of the two actions, denoted
as α0 and α1. In this simple example, there are no observations, and we do
not know how the actions influence the system evolution at all. Thus, at any
time l = 1, 2, we only know the action history {A0, . . . , Al−1}, l = 1, 2. There
are 8 = 23 possible sequences of actions that we can take in the period of
l = 0, 1, 2, denoted as αi, i = 0, 1, . . . , 7. For each action sequence, there
is associated total reward η(αi), i = 0, 1, . . . , 7. We can certainly run the
system eight times, each with a different action sequence αi, and obtain all
possible values of the system performance. Table 1.1 lists the eight possible
action sequences and their corresponding performance. (If the system involves
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Action Sequences Performance

α0 {α0, α0, α0} 3
α1 {α0, α0, α1} 7
α2 {α0, α1, α0} 8
α3 {α0, α1, α1} 4

α4 {α1, α0, α0} 5
α5 {α1, α0, α1} 10
α6 {α1, α1, α0} 9
α7 {α1, α1, α1} 6

Table 1.1. The Action Sequences and the Corresponding Performance in Example
1.1

randomness, we can repeatedly run the system with each action sequence
many times and Table 1.1 lists the averages.)

a) (Open-loop policies) From the table, we can find the action sequence that
yields the maximum performance, which is α5 = {α1, α0, α1}. Thus, to
get the best performance, we need to take action α1 at l = 0, α0 at l = 1,
and then α1 at l = 2. This best action sequence corresponds to the “open-
loop” control in control theory. The action sequence is pre-fixed before the
system starts running. The structure of an open-loop policy is shown in
Figure 1.2. With an open-loop policy, the output-and-action history are
not used in determining the actions; i.e., the function Al = dl(Hl) does
not depend on Hl, l = 0, 1, . . . , at all. The outputs may be random; the
best policy corresponds to the best average performance.

System State Xl

(stochastic)

A0, A1, . . . , Al−1 Y0, Y1, . . . , Yl

Fig. 1.2. The Structure of an Open-loop Policy

b) (Action-history-dependent open-loop policies) In practice, knowing the
best action sequence is not enough. Suppose that α0, instead of α1, is
taken by mistake at l = 0. Then, knowing the best action sequence α5

alone does not indicate what next action should be taken in order to
get the sub-optimal performance under this circumstance. To answer this
question, we need to further examine Table 1.1.

Table 1.1 contains all the information about the optimization problem.
From the table, we can find the best action taken at any time given the
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history of the actions taken up to that time. At l = 0, the action history
A0 = ∅. Because the best performance lies in the lower part of the table,
we need to choose A0 = d0(∅) = α1. At l = 1, we may have two possible
histories, A1 = α1 or α0, by mistake. Note that α2 is the best action
sequence in the upper part of Table 1.1. Therefore, if α0 is taken at l = 0,
then we need to take α1 at l = 1; i.e., the best policy at l = 1 given
A1 = α0 is d1(α0) = α1. Similarly, we have d1(α1) = α0. At l = 2, we
may have four possible action histories {α0, α0}, {α0, α1}, {α1, α0}, and
{α1, α1}. Let us start with {α0, α0}. In this case, if we take α0 at l = 2, we
obtain the sequence α0; and if instead we take α1 at l = 2, we end up with
α1. Because α1 performs better than α0 does, we should take α1 at l = 2.
That is, we should set d2({α0, α0}) = α1. Similarly, from the table, we
must have d2({α0, α1}) = α0, d2({α1, α0}) = α1, and d2({α1, α1}) = α0.
Finally, the optimal policy is d := {d0, d1, d2}.

The decision on d0 is based on the comparison: max{η(αi), i =
4, 5, 6, 7} > max{η(αi), i = 0, 1, 2, 3}; the decision on d1 is based on the
following two comparisons: max{η(αi), i = 2, 3} > max{η(αi), i = 0, 1}
and max{η(αi), i = 4, 5} > max{η(αi), i = 6, 7}; and the decision
on d2 is based on four comparisons: η(α1) > η(α0), η(α2) > η(α3),
η(α5) > η(α4), and η(α6) > η(α7). There are altogether 20 +21 +22 = 7
comparisons among these maximums.

In summary, in the optimal policy thus obtained, the action at time
l, Al, depends on the action history Al−1 = {A0, A1, . . . , Al−1}; i.e., Al =
dl(Al−1). This structure is shown in Figure 1.3. ��

�

�

�

�

�

�

�

�
<<<

<<<

System State Xl

(stochastic)

: Delay Lines

A0, . . . , Al−1 Al Yl
d(A0, .., Al−1)

Fig. 1.3. The Optimal Action Depends on the Action History

The approach used in the example is called an exhaustive search because
to obtain the optimal policy, we need to search through every policy. It is the
simplest but the most time-consuming learning-optimization strategy. The
example also indicates that, principally, by exhaustive search, we can find the
optimal policy for the system performance without any prior knowledge about
the structure or the status of the system.
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In Example 1.1(a), it is shown that if there is no observation or the system
is deterministic, a pre-fixed action sequence α5 is enough for optimization,
and the system may not need to do on-line adjustment if no mistake occurs
in implementation. However, as shown in Example 1.1(b), on any particular
time instant, the best action depends on the action history; this fact leads to
the action-history-dependent open-loop policies, which adjust future actions
when the past action sequence is not the optimal.

Closed-Loop (Feedback) Policies

If the system is involved with randomness and there are observable outputs, a
fixed sequence of actions may not lead to the best performance. In such cases,
in addition to the past history of the actions, the action chosen at time l, Al,
should also depend on the observations up to time l. This corresponds to the
“closed-loop” or “feedback” control in control theory.

Example 1.2. In Example 1.1, we further assume that at each time instant
the system outputs one of the two symbols, denoted as y0 and y1. The sys-
tem’s causality works as follows. At time l, l = 0, 1, 2, an observation Yl

is made first; after that, an action Al is taken; then the system evolves to
time l + 1, at that time an observation Yl+1 is made; and then an action
Al+1 is taken; and so on. Finally, at l = 2 a total reward (performance) is
received after the action A2 is taken. Now, the history of the system (as
far as we can know) at time l is a sequence of observations and actions
denoted as Hl = {Y0, A0, Y1, A1, . . . , Yl−1, Al−1, Yl}, l = 0, 1, 2, A−1 = ∅.
A history {y0, α1, y0, α0, y1, α1} may lead to a different performance from
what {y1, α1, y1, α0, y0, α1} does, although they have the same action sequence
{α1, α0, α1}.

When a system involves randomness, how the observation Yl evolves after
an action is taken is the system’s intrinsic character, which is not controlled
by us. In other words, if we choose action Al, then the nature will determine
Yl+1, and so on. The best thing we can do is to use all the information that is
available to us up to time l to determine the action Al = dl(Hl) such that on
average the system performance is the best. Such a policy depending on the
observation history is called a feedback policy or closed-loop policy in control
theory. Unlike the open-loop policies, actions in a feedback policy cannot be
pre-determined before the system operates.

In this example, H0 = Y0, which may take two values y0 and y1. Thus,
at l = 0 there are 22 sub-policies d0 that map y0 and y1 to α0 and α1. At
l = 1, H1 = {Y0, A0, Y1} may take 23 = 8 different values. Finally, H2 =
{Y0, A0, Y1, A1, Y2} may take 25 = 32 different values. (How many different
policies? see Problem 1.3.)

Table 1.2 gives an example of possible histories of actions and observa-
tions and their corresponding performance. To save space, in the table, we
assume that for some reasons the observations of the system at time l = 0
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and l = 1 are fixed as y0 and y1, respectively. The observation at l = 2, how-
ever, may take either y0 or y1, depending on the randomness involved. We
further assume that the probabilities of Y2 = y0 and Y2 = y1 are both 0.5,
equally. As shown in the table, there are two possible histories corresponding
to each action sequence; e.g., if we take action sequence {α0, α1, α0}, we may
in fact have either h4 := {y0, α0, y1, α1, y0, α0} or h5 := {y0, α0, y1, α1, y1, α0}
with an equal probability of 0.5, respectively. We find that the average perfor-
mance for every action sequence is the same as the performance corresponding
to the same action sequence in Table 1.1 (e.g., the average performance for
{α0, α0, α0} is 3 = 2+4

2 and that for {α0, α0, α1} is 7 = 8+6
2 , etc.).

From the table, it is clear that given the history (up to l = 1) {y0, α1,
y1, α0}, if we observe Y2 = y1 at l = 2, we should take α0 to receive a reward
of 10 (instead of taking α1 to get 8). However, if we observe Y2 = y0, we
definitely should take action α1 at l = 2 to receive a reward of 12 (instead of
taking α0 to get 0!) Therefore, the pre-fixed action sequence {α1, α0, α1} is
no longer optimal. With the feedback policy, the average performance given
the action sequence {α1, α0} is 1

2 (10 + 12) = 11, which is larger than 10, the
best performance for all the open-loop policies. Thus, a feedback policy may
achieve a better performance than all the open-loop policies. ��

Action Sequences Action-Observation Histories Performance

h0 {α0, α0, α0} {y0, α0, y1, α0, y0, α0} 2
h1 {α0, α0, α0} {y0, α0, y1, α0, y1, α0} 4

h2 {α0, α0, α1} {y0, α0, y1, α0, y0, α1} 8
h3 {α0, α0, α1} {y0, α0, y1, α0, y1, α1} 6

h4 {α0, α1, α0} {y0, α0, y1, α1, y0, α0} 12
h5 {α0, α1, α0} {y0, α0, y1, α1, y1, α0} 4

h6 {α0, α1, α1} {y0, α0, y1, α1, y0, α1} 6
h7 {α0, α1, α1} {y0, α0, y1, α1, y1, α1} 2

h8 {α1, α0, α0} {y0, α1, y1, α0, y0, α0} 0
h9 {α1, α0, α0} {y0, α1, y1, α0, y1, α0} 10

h10 {α1, α0, α1} {y0, α1, y1, α0, y0, α1} 12
h11 {α1, α0, α1} {y0, α1, y1, α0, y1, α1} 8

h12 {α1, α1, α0} {y0, α1, y1, α1, y0, α0} 10
h13 {α1, α1, α0} {y0, α1, y1, α1, y1, α0} 8

h14 {α1, α1, α1} {y0, α1, y1, α1, y0, α1} 3
h15 {α1, α1, α1} {y0, α1, y1, α1, y1, α1} 9

Table 1.2. The Action-Observation Histories and Their Rewards in Example 1.2

The structure of a feedback or a closed-loop policy is shown in Figure
1.4. In both examples, we do not know how the actions control the system’s
operation.
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Fig. 1.4. The Optimal Action Depends on the Action-Observation History

Stationary and Randomized Policies

For simplicity, in the above examples, we used very short sample paths to
explain the ideas. Practically, the sample paths can be very, even infinitely,
long.

If the system is completely observable, then the observation history Yl is
the same as the state history Xl and the policy is Al = dl(Xl,Al−1). Because
of the Markov property of a state process, the current state Xl contains all
the information in the system’s history in regard to its future behavior. We
may expect that in many cases a policy depending on only Xl may do as well
as a policy depending on the entire history Hl = (Xl,Al−1) for controlling
the system’s future behavior. Therefore, we may only consider the policies
Al = dl(Xl), l = 0, 1, . . . .

A policy Al = dl(Xl), Xl ∈ S, Al ∈ A, l = 0, 1, . . . , is called a stationary
policy if it does not depend on time l; such a policy is denoted as A = d(X),
X ∈ S, which is a mapping from the state space S to the action space A.

The action d(i), i ∈ S, controls the transition probabilities of state i. With
a stationary policy d, the transition probabilities when the state is i ∈ S are
denoted as pd(i)(j|i), j ∈ S. The system under policy d(X) is Markov, and the
corresponding transition matrix is denoted as P d := [pd(i)(j|i)]. Therefore, a
policy d is also referred to as a policy P d. When performance is involved, the
reward function may also depend on the policy d and is denoted as fd(i), i ∈ S.
We may write it in a vector form fd := (fd(1), . . . , fd(S))T . With the reward
vector, we may refer to (P d, fd) as a policy. In addition, we will simply use
(P, f) as a generic notation for a policy. In many cases, fd(i) depends only on
d(i), i ∈ S, and the reward vector is then fd = (f(1, d(1)), . . . , f(S, d(S)))T ,
where the superscript “T” denotes transpose.
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Finally, it should be noted that when the action depends on the “state”
history, the resulting “state” process is no longer Markov (we put the word
“state” in quotation marks because it is not a state in the strict sense). The
following example shows that there may exist a policy d(X) depending only
on the current state that does as well as a history-dependent policy, in terms
of the long-run average performance.

Example 1.3. Consider a process X̃ = {X̃0, X̃1, . . .}, X̃ l ∈ S, l = 0, 1, . . . .
Suppose that at any time l, l = 1, 2, . . . , the transition probability is deter-
mined by the current state X̃ l and the previous state X̃ l−1 and is denoted
as p[k|(i, j)] := p[X̃ l+1 = k|X̃ l−1 = i, X̃ l = j], i, j, k ∈ S. This process is not
Markovian on the state space S because the state at l + 1, X̃ l+1, depends on
state at l − 1, X̃ l−1.

Define Ỹ l := (X̃ l−1, X̃ l), l = 1, 2 . . . . Then, Ỹ = {Ỹ 1, Ỹ 2, . . . , } is a
Markov chain with transition probabilities

p[(j, k)|(i, j)] = p[k|(i, j)], i, j, k ∈ S;
p[(k′, k)|(i, j)] = 0, if k′ �= j, i, j, k ∈ S.

Let π(i, j), i, j ∈ S, be the steady-state probabilities of the Markov chain Ỹ .
Then, the steady-state probability flow balance equation is

π(k′, k) =
∑

i,j

π(i, j)p[(k′, k)|(i, j)], k, k′ ∈ S. (1.4)

The steady-state probability of X̃ is

π(k) =
∑

k′

π(k′, k).

Summing over k′ ∈ S on both sides of (1.4), we get

π(k) =
∑

i,j

π(i, j)p[k|(i, j)], i, j, k ∈ S. (1.5)

Let π(i|j) be the steady-state conditional probability of X̃ l−1 = i given that
X̃ l = j (i.e., the conditional probability of X̃ l−1 = i given that X̃ l = j

in a stationary process X̃), and let p(k|j) be the steady-state conditional
probability of X̃ l+1 = k given X̃ l = j. We have

π(i|j) =
π(i, j)
π(j)

and
p(k|j) =

∑

i

{π(i|j)p[k|(i, j)]}.
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Thus,
π(j)p(k|j) =

∑

i

{π(i, j)p[k|(i, j)]}.

Summing over j ∈ S on both sides and using (1.5), we get

π(k) =
∑

j

π(j)p(k|j). (1.6)

Let X be a Markov chain with transition probabilities p(k|j), j, k ∈ S.
From (1.6), π(k), the steady-state probability of state k of X̃ equals the
steady-state probability of state k of X, k ∈ S. Therefore, a Markov chain
with a history-independent policy p(k|j), j ∈ S, has the same steady-state
probabilities as a non-Markov chain with a history-dependent policy p[k|(i, j)],
i, j, k ∈ S. Finally, for any reward function f(Xl), l = 0, 1, . . . , from (1.7), the
average performance η =

∑
i π(i)f(i) is the same for both processes.

Furthermore, from the definition of X, we can easily check that the steady-
state probabilities of (Xl = i,Xl+1 = j), π(i, j), i, j ∈ S, are the same for
both X and X̃. Thus, for any reward function f(Xl,Xl+1), l = 0, 1, . . . , the
average performance η =

∑
i,j π(i, j)f(i, j) is the same for both processes.

However, as shown in Problem 1.6, if the reward function depends on
three consecutive states (Xl,Xl+1,Xl+2), there may not exist a history-
independent policy defined on the same state space that is equivalent to a
history-dependent policy. ��

Of course, even if an equivalent history-independent policy on the same
state space does not exist, we can always construct an equivalent Markov chain
by enlarging the state dimension. For example, the process Ỹ in Example 1.3
is Markov.

A (stationary) randomized policy ν = d(X) assigns a distribution ν over
the action space A for every state X = i ∈ S; it is a mapping from the state
space S to the space of the distributions over the action space. For example,
suppose that A = {α1, α2, . . . , αM}. For any state i ∈ S, a randomized policy
assigns a distribution ν = (p1(i), p2(i), . . . , pM (i)) on A. When the system
state is i, we take action αk with probability pk(i), k = 1, 2, . . . ,M , i ∈ S
and

∑M
k=1 pk(i) = 1. A deterministic policy is a special case of a randomized

policy ν where pk(i) = 1 for some k ∈ {1, 2, . . . ,M}, with k depending on i,
i ∈ S.

1.1.3 Fundamental Limitations of Learning and Optimization

Exhaustive Search is Not Feasible

In the last section, we have defined policies. A set of policies constitutes a
policy space. To find an optimal policy in a given policy space is a typi-
cal search problem. As illustrated in Example 1.1, an optimal policy can be
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found by exhaustive search; i.e., by comparing the performance of all the poli-
cies. However, even for a small problem, the policy space is too large for the
exhaustive search approach. For example, for a (small) system with S = 100
states and M = 2 actions available in each state, the number of stationary
policies is MS = 2100 ≈ 1030! That is, the number of policies increases expo-
nentially with respect to the number of states. Therefore, exhaustive search,
which requires computing or comparing the performance of every policy, is
not computationally feasible for most practical problems.

Moreover, if there is no additional information about the system structure
(such as the Markov model), any optimization scheme is no better than blind
searching. This is formulated as the “No Free Lunch Theorem”, see [152]. The
recently developed “Ordinal Optimization” approach deals with the trade-
off between accuracy and efficiency of random search. It proposes a novel
and interesting idea of a “soft goal” and opens up a new perspective for
optimization. This is beyond the scope of this book and the readers are referred
to [80, 93, 123, 139, 140, 149, 150, 151, 152, 175, 181, 184, 266] for details.

Learning and Optimization

To develop efficient algorithms for performance optimization, we need to ex-
plore the special features of a system. This process is called learning. For
dynamic systems, learning may involve observing and analyzing a sample
path of a system to obtain necessary information; this is in the normal sense
of the word “learning”, as it is used in research areas such as reinforcement
learning. Simulation-based and on-line optimization approaches are based on
learning from sample paths. On the other hand, we may also analytically
study the behavior of a system under a policy to learn how to improve the
system performance. In a wide sense, we shall also call this analytical process
“learning”.

So far, we have described the optimization problem. We know that exhaus-
tive search, which requires no information about the system dynamics except
the performance for every policy, is not computationally feasible for most
practical problems. To develop efficient optimization approaches, we need to
explore the special feature of a system by learning. Naturally, our next step
is to determine what information we need to learn, either from sample paths
or analytically, and how we use such information to achieve our goal; i.e., to
find an optimal policy, or to improve the system performance, and how we
can achieve our goal with as little information about the system structure as
possible.

Obviously, the task is complicated and we are facing a vast forest and wish
to find a path in it to reach our destination at the top of a peak. It is wise
to pause for a short while and take an overview of the forest from the outside
to see which directions may possibly lead us to our goal quickly. Indeed, we
are constrained by some philosophical and logical facts that significantly limit
what we can do. These facts are simple and intuitively obvious, yet they
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provide general principles that chart the paths in our journey of developing
optimization theories and methodologies. Because of the importance as well as
the simplicity of these facts, we state them as the “fundamental limitations”:

The Fundamental Limitations of Learning and Optimization

A. A system can be run and/or studied under only one policy at a time.
B. By learning from the behavior of a system under one policy, we

cannot obtain the performance of other policies, if no structural in-
formation of the system is available.

C. We can only compare two policies at a time.

These simple rules describe the boundaries in developing learning and op-
timization approaches. First of all, if there is no structural information for the
system, from the fundamental limitations A and B, we need to observe/analyze
every policy to get or to estimate its performance, and from the fundamental
limitation C, for M policies we need to make M − 1 comparisons. This is the
exhaustive search method.

Exhaustive Search

Given M policies di, i = 1, 2, . . . ,M . Let ηdi be the performance of
policy di, i = 1, 2, . . . ,M .
i. Set d̃ := d1, and η̃ := ηd1 ;
ii. For i := 2 to M , do

if ηdi > η̃ then set d̃ := di and η̃ := ηdi .

The algorithm outputs an optimal policy d̃ = d∗. The main operation in
the algorithm is the comparison of the performance of two policies, ηdi > η̃.
It is important to note that to verify this relationship we may not need to
obtain the exact values of the performance of these two policies. For example,
if the performance of two policies is quite different, then we may need only
run a short simulation for each policy to verify this relationship. This may
save computation significantly, see the references for ordinal optimization [150,
151, 175, 181, 184, 266].

The fundamental limitation B indicates that if we want to do better than
exhaustive search, we need to use the special features of a system. However,
we wish to develop approaches that require as little structural information
and can be applied to as many systems as possible. The question is “HOW”.
These fundamental limitations also provide us with some hints.



1.1 An Overview of Learning and Optimization 15

Performance Gradient

As indicated by the fundamental limitations A and B, if we analyze a sys-
tem’s behavior under one policy, we can hardly know its behavior under other
policies. It is natural to believe that if two policies are “close” to each other,
then the system under these two policies may behave similarly. If this is the
case, when we are analyzing a system under a policy, it might be easier to
“predict” the system behavior under a “close” policy and then to calculate
its performance than to do the same for a policy that is “far away”. In other
words, to predict the performance for a “close” policy may require as little
knowledge about the system structure as possible.

If a policy space can be characterized by a continuous parameter θ, then
two policies are “close” if their corresponding values for θ are close. Such
a policy space is called a continuous policy space. For example, for Markov
systems policies correspond to transition probability matrices. Therefore, two
policies can be viewed as “close” if their transition probability matrices are
close (item-by-item). In modelling manufacturing or communication networks,
policies may be characterized by production rates or transmission rates. Two
policies are close if their corresponding rates are close. In randomized policies,
the distributions (p1, p2, . . . , pM ) over the action space A = {α1, α2, . . . , αM}
are continuous variables. Two randomized policies are close if their corre-
sponding distributions are close.

Therefore, a reasonable step towards developing efficient and generally
applicable approaches is to look at a “neighborhood” of a policy. The neigh-
borhood must be small enough, so that the behavior of the system under
the policies in this neighborhood of the policy can be predicted with as little
knowledge about the system structure as possible. In mathematical terms,
“small enough” is precisely described by the word “infinitesimal”. When the
performance of the policies in an infinitesimal neighborhood of a policy is
known, we can further get the gradient of the performance in the policy space
at this policy.

We may summarize the above discussion by the following Corollary A:

Corollary A:

With some knowledge about the system structure under different
policies, by studying the behavior of a system under one policy, we
can determine the performance of the system under the policies in
a small neighborhood of this policy; i.e., determine the performance
gradient.

The prediction of the performance for other (neighboring) policies while
analyzing the system under one policy can be done analytically, if we know
the structure (usually based on a model) and the values of its parameters.
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However, in many cases, we always start by analyzing a sample path of the
system. This is because

1. A sample path clearly illustrates the system dynamics, and sample-path-
based analysis stimulates intuitive thinking.

2. In many practical problems, the size of the problem is too large for any
analytical solution, or we may have only partial information about the
system; for example, in some cases, we may only know the structure of
the system but do not know values of its parameters, or in some other
cases, we know the values of the parameters, but the system structure is
too complicated to model. Sample-path-based algorithms may be imple-
mented easily even with these constraints.

The results obtained by the sample-path-based approach can also be expressed
in an analytical form. In Chapter 2, we can see that the sample-path-based
approach leads to analytical formulas that may not be easily perceived purely
from an analytical point of view.

Performance Differences

The gradient method does not apply to discrete policy spaces. For discrete
policy spaces, we need to compare the performance of different policies that
may not be close to each other.

The fundamental limitation C implies more than it seems on the surface.
It says that all we can do in terms of optimization is based on a simple
comparison of two policies. In other words, if we cannot compare two policies,
then we have no way to do optimization. Furthermore, we may even emphasize
that the performance difference formula contains all the information about
what we can do in performance optimization. This simple philosophical point
guides the direction of our research in optimization: We should always start
with developing a formula for the difference of the performance measure of any
two policies and then to investigate what we can learn from this performance
difference formula. In many cases, it is not difficult to derive such a difference
formula for a particular problem, yet the insights provided and the results
thus obtained can be remarkable.

The above philosophical point is better illustrated in Chapters 4 and 8. In
Chapter 4, we show that the theory of MDPs is based on the performance dif-
ference formulas and this point of view provides direct, simple, and intuitively
clear proofs for many results. In Chapters 9 and 8, we propose and develop
the event-based optimization approach with this simple point of view; the
approach further utilizes the system structure to overcome the computational
issues and some other difficulties.

How much we can get from the performance difference formula depends
on the system structure. So far, the best result is that with some assumptions
such as the independent-action assumption in Markov decision processes, by
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analyzing the system’s behavior under one policy, we can find another policy
that performs better, if such a policy exists. See Chapters 4 and 8 for details.

We may summarize the above discussion by the following Corollary B:

Corollary B:

With some assumptions on the system structure, by studying the
behavior of a system under one policy, we can find a policy that
performs better, if such a policy exists.

Like many other rules, physical or social, the fundamental limitations of
learning and optimization are summaries of many research and explorations.
In this sense, these limitations and many statements in this section are hind-
sight. In addition, they are philosophical remarks rather than precise and ac-
curate scientific statements. They can only be used as guidelines. In this book,
we will show that if we pursue these philosophical thoughts, we may obtain
many results in learning and optimization. The meaning and significance of
these remarks will become clear after reading the remaining chapters. Readers
may revisit this section after understanding the contents of other chapters in
this book.

1.1.4 A Sensitivity-Based View of Learning and Optimization

In summary, if no information about the system structure is available, we can
only do exhaustive, or blind, searches in the policy space. There are different
types of policies: those depending on the histories of both input actions and
output observations, and those depending only on the current state. If we
know something about the structure and the dynamics of the system, we
may develop efficient optimization techniques (analytic, simulation, on-line,
learning, etc.).

The fundamental limitations of learning and optimization and their corol-
laries sketch out the directions of developing efficient and widely applicable
learning and optimization approaches with as little information about the sys-
tem structure as possible. There are two feasible directions: First, because we
can only learn from one policy at a time, we may at most obtain local (in
the neighborhood of a policy) information in the policy space; this leads to
performance gradients or derivatives. Second, because we can only compare
two policies at a time, we may start with the performance difference formulas
of any two policies in developing learning and optimization methods. In short,
these directions can be characterized by performance derivatives and perfor-
mance differences, respectively. We will refer to this as a sensitivity-based
view [56].

Over the years, different disciplines have been developed from different
perspectives. The main theme of this book is to show how the main concepts
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and results in these different disciplines can be introduced and derived through
a unified framework from the sensitivity-based view explained above in a clear
and intuitive way, and to show how this sensitivity-based view leads to new
results and research directions.

As explained above, the central piece of this unified framework is the two
types of performance sensitivity formulas, one for performance differences, and
the other for performance derivatives. These two types of sensitivity formulas
lead to two types of learning and optimization approaches.

A. Gradient-Based B. Policy Iteration

θ

θ+Δθ

θ∗

d0

d1

d2

d∗

Fig. 1.5. Two Types of Optimization Approaches

The first type of approach is centralized on performance gradients. In this
book, we mainly discuss the technique called perturbation analysis (PA). With
PA, we can predict the effect of small (infinitesimal) changes in system param-
eters (policies) on system performance and obtain the performance derivatives
with respect to the parameters. We can develop gradient-based optimization
approaches using PA (also called the policy-gradient method in reinforcement
learning). This approach applies to problems where policy spaces are param-
eterized. The basic idea is shown in Figure 1.5.A. We first set the parameter
θ to be any value and determine the performance gradient at θ with PA.
Then we change θ slightly along the direction of the gradient and determine
the gradient again at the new θ. We repeat this procedure until reaching a
point θ∗ at which the performance gradient is zero; this is a local optimal
point. The performance gradient can be calculated analytically, or estimated
from a sample path. When the gradient estimates contain noise, stochastic
approximation techniques can be used in the optimization procedure.

The second type of learning and optimization approach is based on the
comparison of the system performance measures of two different policies. The
approach strongly depends on the system structure. A well-known result in
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this direction is: When the actions taken in different states are independent, it
may be possible to use the information learned by observing or analyzing the
system behavior under the current policy to determine a policy under which
the performance of the system is better, if such a policy exists (albeit it is
not possible to determine the exact value of the performance for the “better”
policy). This leads to the policy iteration procedure shown in Figure 1.5.B.
We start with any policy d0, learn from its behavior and find a better policy
d1, then learn from d1 and find a better policy d2, and so on until the best
policy d∗ is reached. This approach is based on the performance difference
formula and depends heavily on its particular form.

However, it is not always possible to find a better policy using the in-
formation obtained only from the current policy. In fact, for many problems
especially when the actions in different states are correlated, such a policy-
iteration type of approach does not work. It is shown in Chapters 8 and 9
that, under these circumstances, the optimization problem can be modelled
by using the event-based policies and we can determine whether policy iter-
ation works for the event-based policies by using the performance difference
formulas.

In summary, the two types of approaches illustrated in Figure 1.5 are
based on two types of performance sensitivity formulas, one for performance
derivatives, and the other for performance differences. In this book, we show
that this sensitivity-based view provides a unified framework for different
formulations and solutions to different optimization problems with different
performance criteria in different research disciplines (Chapters 2 to 6). In
addition, we also show that with the sensitivity-based view, new results and
approaches can be developed, by following the same ideas illustrated in Figure
1.5 (Chapter 8), for many systems that may not fit the standard formulation in
the existing literature. This leads to new research topics including event-based
optimization (Chapters 8 and 9).

1.2 Problem Formulations in Different Disciplines

Different disciplines in learning and optimization, such as Markov decision pro-
cesses (MDPs) in operations research, perturbation analysis (PA) in discrete
event dynamic systems (DEDSs), reinforcement learning (RL) in computer sci-
ence, and identification and adaptive control (I&AC) in control systems, have
different formulations of the system structures. These different disciplines also
differ in the way they utilize the structural information.

Roughly speaking, both MDPs and RL assume a Markov structure for
the systems; PA started with a queueing network-type of structure and was
extended to the Markov structure later; in I&AC, the system evolution is
described by dynamic (differential or difference) equations. By and large, the
MDP literature focuses on analytical solutions, and the parameters are usually
assumed to be known to us. RL emphasizes the learning aspect, and algorithms
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are developed based on sample paths obtained from simulation. PA extracts
information from a sample path to answer the what-if type of questions: What
is the effect on a system performance if the system parameter or structure
changes? This is done by predicting the system behavior after the parameter
or structural changes. I&AC is mainly an analytical approach that utilizes
special features of the system’s dynamic structure described by differential or
difference equations.

In this section, we briefly describe the problem formulations for these dif-
ferent areas and introduce a new area, event-based optimization. We try to
provide an overview with our sensitivity-based view in each of these areas.
The details will be discussed in the remaining chapters of the book.
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Fig. 1.6. A Sample Path of a Markov Chain

The System Model

In many problems, the behavior of the black box in Figure 1.1 is described by
a Markov chain. That is, we assume that under the influence of any possible
input sequence, the system’s evolution possesses the Markov property. In most
problems discussed in this book, we also assume that the state space is finite
and is denoted as S = {1, 2, . . . , S}. A sample path of the Markov chain (see
Figure 1.6) is denoted as X = {X0,X1, . . .}, with Xl ∈ S being the state at
time l = 0, 1, . . . . The evolution (transition) of the system is determined by
the transition probabilities p(j|i), i, j ∈ S, which is the conditional probability
of Xl+1 = j given that Xl = i. The matrix P = [p(j|i)]Si,j=1 is called the
transition probability matrix, which is usually pictorially illustrated by a state-
transition diagram shown in Figure 1.7. In the figure, the number near an
arrow is the transition probability of the state transition indicated by the
arrow.

In most of this book, we study the long-run average performance measure
η of a Markov chain defined as

η(i) = lim
L→∞

1
L

L−1∑

l=0

E [f(Xl)|X0 = i] ,
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Fig. 1.7. The State-Transition Diagram of a Three-State Markov Chain

where f(x), x ∈ S, is a mapping S → R, called a performance (or reward)
function, and “E” denotes the expectation in the probability space on which
the Markov chain is defined. When the system is ergodic, this becomes

η = lim
L→∞

1
L

L−1∑

l=0

f(Xl) =
∑

i∈S
π(i)f(i), w.p.1, (1.7)

which is independent of the initial state X0. For a more comprehensive review
of Markov chains and Markov processes, see Appendix A.

With the Markov model, in Part I of this book (Chapters 2 to 7), we
assume that the observation at time l, Yl, equals Xl, l = 0, 1, . . . ; that is, we
assume that the system is completely observable. When a stationary policy d
is used, we denote the corresponding quantities as P d, fd, and ηd, etc.

In some cases such as for queueing systems, we need the continuous-time
model. Then, P d is replaced by the infinitesimal generator or other system
parameters, and the summation in (1.7) is replaced by an integration over
[0,∞).

1.2.1 Perturbation Analysis (PA)

PA estimates the performance derivatives with respect to system parameters by
analyzing a single sample path of a stochastic dynamic system. This is in line
with Corollary A of the fundamental limitations in Section 1.1.3. The most
significant contribution of PA is that it testifies to the fact that a sample path
of a dynamic system may contain information not only for the performance of
the system under observation, but also for the derivatives of the performance
with respect to system parameters. Because PA emphasizes the dynamic nature
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of a stochastic system, such a system is also called a discrete event dynamic
system (DEDS) [72, 138].

PA was proposed in the late 1970s and early 1980s [72, 107, 112, 142]. The
early work on PA focused on queueing systems. Appendix C contains a survey
of the main results of queueing theory that are related to this book. Later,
the basic principles of PA were extended to Markov systems (both discrete-
and continuous-time models) [62, 70].

PA of Queueing Systems

PA of queueing systems fully explores the dynamic nature of queueing systems.
The dynamic evolution of a queueing system can be clearly illustrated by a
sample path. In PA of queueing systems, a perturbation on a sample path is a
small delay (infinitesimal perturbation) in a customer transition time. A small
change in a system parameter, say the mean service time of a server, induces
a series of perturbations on a sample path. (E.g., if the mean service time of
a server increases by a small amount, then the service time of each customer
at this server will increase by a small amount, and the service completion
time of each customer will be delayed by a small amount.) The average effect
of a perturbation at server i when the system is in state n on a system’s
performance can be measured by a fundamental quantity called a perturbation
realization factor, denoted as c(f)(n, i), which satisfies a set of linear equations
and can be estimated by observing and analyzing a single sample path of
the queueing system with the current parameters. Finally, the effect of a
small (infinitesimal) change in a system parameter on the system performance
equals the sum of the effects of all the perturbations induced by the parameter
change on a sample path. See Section 2.4 for a detailed discussion. These basic
principles are illustrated in Figure 1.8.

With these principles, many results have been developed. In particular, it
has been shown that in a closed Jackson network, the “normalized” derivative
of the system throughput (the number of customers served by all the servers
in the network per unit of time) with respect to a mean service rate equals the
expected value of the perturbation realization factor, which can be estimated
on a single sample path with a very effective algorithm; see Section 2.4.3 and
[46, 49, 51]. The approach fits the general framework of learning and opti-
mization: We learn the information from a sample path using the dynamics
with the queueing structure to predict the performance of the system under a
slightly changed parameter. Optimization can be implemented by stochastic
approximation methods together with the performance derivative estimates;
Refs. [82, 83, 84, 141] contain some examples of PA-based performance opti-
mization.

PA of Markov Systems

The PA principles illustrated in Figure 1.8 were extended to performance sen-
sitivities with respect to the transition probabilities of Markov systems in the
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mid-1990s (see [70] for discrete-time Markov chains and [62] for continuous-
time Markov processes). In this approach, the behavior of the black box in
Figure 1.1 is described by a Markov model with transition probability matrix
P and the performance measure η is defined in (1.7). We assume that the
states Xl are observable, i.e.; Yl = Xl, l = 0, 1, . . . . In this model, a policy
d corresponds to a transition probability matrix denoted as P d. We wish to
get the performance sensitivity around a policy P d in the policy space by
analyzing the system’s behavior under this policy P d.

Let Ph be another policy, and we assume that the performance function f
is the same for both policies P d and Ph, and let ΔP = Ph −P d. (Sometimes
we need to specifically denote it as (ΔP )d,h.) Define Pδ = P d + δ(ΔP ) =
(1 − δ)P d + δPh, 0 ≤ δ ≤ 1. Pδ (sometimes we need to specifically denote
it as P d,h

δ ) is a randomized policy: With policy Pδ, in any state k ∈ S the
system moves according to ph(k)(j|k), j ∈ S, with probability δ, and moves
according to pd(k)(j|k), j ∈ S, with probability 1 − δ. Let πδ and ηδ be the
steady-state probability and the performance measure associated with Pδ.
(Sometimes we need to specifically denote πδ and ηδ as πd,h

δ and ηd,h
δ .) We

have P0 = P d, P1 = Ph and η0 = ηd. The performance derivative at policy P d

along the direction ΔP (from P d to Ph) is dηδ

dδ |δ=0 = limδ→0
ηδ−η

δ . Different
Phs correspond to different directional derivatives in the policy space.

The performance derivatives are obtained by predicting how the system
would behave if we slightly perturb the transition probability matrix from P d

to Pδ, δ << 1. Small changes in P d induce a series of perturbations on a sample
path of P d. A perturbation on a sample path is a “jump” from one state i to
another state j, i, j ∈ S (i.e., at some time l, the Markov chain with P d was
in state i, Xl = i, however, after the transition probabilities change slightly to
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Pδ, the system becomes in state Xl = j). The average effect of such a jump on
the system performance ηd can be measured by the perturbation realization
factor, denoted as γd(i, j). It can be shown that γd(i, j) = gd(j) − gd(i), for
all i, j ∈ S, where gd(i) is called the performance potential (or simply the
potential) of state i [62, 70].

The difference between PA of queueing systems (with respect to the
changes in the mean service times) and PA of Markov systems (with respect
to the changes in the transition probability matrices) is that the former deals
with infinitesimal perturbations in the customer transition times, while in the
latter case, a perturbation is a change (“jump”) in states, which is finite and
has a “big” effect on the system performance. In both cases, the effect of a
perturbation can be measured by perturbation realization factors.

The performance potential is the main concept of performance optimiza-
tion of Markov systems. Intuitively, the performance potential of state i, g(i),
of a policy P measures the “potential” contribution of state i to the long-run
average reward η in (1.7). It is defined on a sample path of P as

g(i) := E

{ ∞∑

l=0

[f(Xl)− η]
∣∣∣X0 = i

}
. (1.8)

From this, we can easily derive

g(i) = contribution of the current state i

+ expected long term “potential” contribution of the next state

= (f(i)− η) +
∑

j∈S
p(j|i)g(j).

This can be written in a matrix form called the Poisson equation:

(I − P )g + ηe = f, (1.9)

where g = (g(1), . . . , g(S))T is the potential vector, and e = (1, 1, . . . , 1)T is a
column vector with all components being ones.

From the definition of g(i) in (1.8), we can see that the effect of a jump
from state i to j on the long-run average reward (1.7) can be measured by
γ(i, j) = g(j) − g(i). Finally, the effect of a small (infinitesimal) change in
a Markov chain’s transition probability matrix (from P d to Pδ) on the long-
run average reward (1.7) can be decomposed into the sum of the effects of
all the single perturbations (jumps on a sample path) induced by the change
on a sample path. These PA principles are the same as those illustrated in
Figure 1.8. With these principles, we can intuitively derive the formulas for the
performance derivative along any direction in the policy space (see Chapter 2):

dηδ

dδ

∣∣∣
δ=0

= πd(ΔP )d,hgd = πd(Ph − P d)gd. (1.10)
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Fig. 1.9. The Directional Derivatives Along Any Direction

(This formula can be also easily derived from the Poisson equation, see Prob-
lem 1.8; however, the PA principles provide a clear and intuitive explanation
that can be easily extended to other non-standard problems.)

From (1.10), knowing the steady-state probability πd and the potential
gd of policy P d, we can obtain the directional derivative dηδ

dδ |δ=0 along any
direction (ΔP )d,h pointing to any given policy Ph from P d. This is illustrated
in Figure 1.9. It is explained in the next subsection that the potentials also
play a key role in policy iteration.

The extension of (1.10) to the case where the transition matrix depends
arbitrarily on any parameter θ (denoted as Pθ with P0 = P ) is straightforward.
Replacing ΔP in (1.10) with (dPθ

dθ )|θ=0, we have

dηθ

dθ

∣∣∣
θ=0

= π
dPθ

dθ

∣∣∣
θ=0

g.

Therefore, without loss of generality, we need only to discuss the linear case
(1.10).

In (1.10), the performance derivatives are expressed in terms of potentials,
which can be estimated (or “learned”) from a sample path of the Markov
chain. Optimization can be carried out using the performance derivatives to-
gether with stochastic approximation. This is illustrated in Figure 1.5.A. The
block diagram of the PA-based optimization is shown in Figure 1.10. The
system (the largest block with the “logo” of a Markov chain) generates a
sample path {X0,X1, . . . , XL}; this sample path is the input to the PA al-
gorithm, which yields an estimate of the performance gradient used in the
stochastic approximation algorithms to determine the value of the parameter
θ with a better performance. θ determines the next policy Pθ, which gives
the transition probabilities pθ(j|k), j, k ∈ S. This process converges to a lo-
cal optimal point θ∗. The length of the sample path {X0,X1, . . . , XL} may
vary in different algorithms; the errors of the gradient estimates are larger if
the length is shorter; stochastic approximation techniques have to be used to
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ensure convergence of the algorithms. This PA-based optimization is based on
the performance derivative formula in (1.10).
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Fig. 1.10. The Block Diagram of PA-Based Optimization

There are a number of advantages of PA: It can estimate performance
derivatives along all directions based on a single sample path of a Markov
chain; the derivatives can be estimated as a whole without estimating each
potential for every state, and thus the “curse of dimensionality” issue dis-
appears (compared with the MDP approach); it can be implemented on line
without disturbing the operation of a system; and, furthermore, the approach
applies to any policy space or subspace with constraints. The disadvantage
of PA-based approaches is common for all gradient-type approaches: It may
reach a local optimal point. See Chapter 2 for details of all these points.

Extensions of PA of queueing systems include finite perturbation analysis
(FPA)[43, 129, 143] and smoothed perturbation analysis (SPA)[119]. Recently,
the fluid model of queueing systems was introduced into PA, which provided
good approximations [74, 75, 210, 211, 231, 252, 262, 263]. In the literature,
there are other gradient-estimation approaches, including the likelihood ratio
(LR) method [44, 115, 116, 117, 118, 130, 176, 177, 178, 179, 205, 217], which
is also called the score function method [221, 222], and the weak derivative
(WD) method [130, 132, 134].

1.2.2 Markov Decision Processes (MDPs)

In MDPs [8, 21, 24, 98, 135, 136, 137, 163, 216], a system’s behavior is modelled
as a Markov chain X = {X0,X1, . . .} with state space S = {1, 2, . . . , S}. In
addition to the state space, there is an action space A consisting of all (finite)
available actions. If the system is in state i, i ∈ S, an action α ∈ A(i) can be
taken and applied to the system, where A(i) ⊆ A is the set of actions that
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are available in state i ∈ S, A = ∪i∈SA(i). The action determines the state
transition probabilities. When action α is taken in state i, the state transition
probabilities are denoted as pα(j|i), j ∈ S. The (instant) reward that the
system receives when it is in state i with action α is f(i, α), i ∈ S, α ∈ A(i).
The function f is called a reward (or performance) function. A stationary and
deterministic policy is a mapping from S to A, denoted as d : α = d(i), that
determines the action taken in state i. Therefore, if policy d is adopted, the
transition probability matrix is P d := [pd(i)(j|i)]i,j∈S ; and the reward function
is f(i, d(i)), i ∈ S, which is a special case of fd(i), i ∈ S. We further assume
that under all policies, the Markov chains that model the system behavior are
ergodic.

The long-run average reward is

ηd = lim
L→∞

{
1
L

L−1∑

l=0

f(Xl, d(Xl))

}
= πdfd, (1.11)

which exists with probability 1 (w.p.1) and is independent of the initial state
for ergodic chains. The goal of MDPs is to find a policy d∗ such that its
performance is the best among all policies.

In a more general setting, the performance function may depend on the
next state; i.e., it may take the form f(Xl,Xl+1, α), α ∈ A(Xl). As shown in
Problem 1.9, this is equivalent to (1.11), with f(i, α) replaced by f̄(i, α) =∑

j∈S [f(i, j, α)pα(j|i)].
The above formulation is called the standard MDPs. In this formulation,

we assume that the state Xl is observable; i.e., Yl = Xl, in Figure 1.1. The
Markov model specifies the structure and dynamics inside the black box in
the figure. Because of the Markov property, if we know Xl, the past state-and-
action histories do not add any information for predicting the future behavior;
therefore, we may let the policy depend only on the current state (cf., Problem
1.6).

In the standard MDPs, we assume that all the functions and parameters,
e.g., the sets S, A(i), i ∈ S, and pα(j|i), f(i, α), i, j ∈ S, α ∈ A(i), etc., are
known. Therefore, analysis can be carried out. However, since the policy space
is too large (there are

∏
i∈S |A(i)| policies, with |A(i)| denoting the numbers

of actions in A(i)), it is not possible to solve for the steady-state probabilities
of all the policies to make comparisons of their performance. That is, except
for very small problems, the exhaustive search is not feasible.

There are two basic approaches to the standard MDPs, value iteration and
policy iteration. Value iteration is basically a numerical approach; the corre-
sponding sample-path-based approach is Q-learning (see the next subsection
for Reinforcement Learning). Policy iteration fits well the framework from a
sensitivity viewpoint. The basic principle of policy iteration is: Under some
assumptions, by analyzing the behavior of the system under one policy, we can
always find another policy under which the system performs better, if such a
policy exists. After a better policy is found, we can analyze this better policy
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to find another even better policy. Repeating this updating procedure until
no better policy exists, we can obtain the best policy (see Figure 1.5.B).

The policy iteration approach can be easily explained from a performance
sensitivity view, as shown in Figure 1.5.B. For simplicity, in this chapter, we
assume that all the policies share the same performance function f(i), i ∈ S.
As will be explained in detail in Chapter 3, the updating procedure is based
on a simple formula for the performance difference:

ηh − ηd = πh(ΔP )gd, (1.12)

where ηh and ηd are the performance measures corresponding to the tran-
sition matrices Ph and P d, respectively, ΔP = Ph − P d, πh is the steady-
state probability corresponding to Ph; and gd is the performance potential
vector associated with P d, which is the same as what appeared in the perfor-
mance derivative formula (1.10). Equation (1.12) can be easily derived from
the Poisson equation (1.9) for P d (see Problem 1.8). It can be also derived
using a sample-path-based argument by first principles, see Chapter 9. The
sample-path-based argument provides a clear intuition that can be extended
to problems where the Poisson equation may not exist.

The only difference between (1.12) and (1.10) is that πd in (1.10) is re-
placed by πh in (1.12). This difference, however, represents a major difficulty
in applying the performance difference formula in learning and optimization.
In the performance derivative formula (1.10), both πd and gd can be ob-
tained from analyzing the system with transition probability matrix P d. Thus,
given P d, we can obtain the directional derivatives along any given direction
ΔP = Ph − P d without analyzing the system under Ph. However, to ob-
tain the performance difference with (1.12), we need to solve for both πh and
gd. This is the same as a comparison in exhaustive search because we need to
analyze both systems in order to compare the performance of the two systems.

Fortunately, all is not lost. The particular factorized form of (1.12) can be
utilized. In fact, the updating procedure in policy iteration is based on (1.12)
and the following simple fact: πh > 0 (i.e., πh(i) > 0 for all i ∈ S) for any Ph.
Thus, for any given P d, if we can find a Ph such that (ΔP )gd = (Ph−P d)gd ≥
0 with at least one positive component, then ηh > ηd. In particular, there is
no need to solve for πh in the procedure. Conventionally, in state i we choose
the action that maximizes the ith component of Phgd as h(i); i.e., we choose
h(i), i ∈ S, such that

S∑

j=1

ph(i)(j|i)gd(j) = max

{
S∑

j=1

pα(j|i)gd(j) : α ∈ A(i)

}
. (1.13)

In words, we choose the action such that after the next transition with this
action the expected potential is maximized. Let h be the policy determined
by (1.13). We have ηh > ηd if P d is not the optimal policy; however, h may
not be optimal even if (1.13) holds.
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The fundamental quantity in (1.12) is the performance potential. From a
learning point of view, we need to analyze the behavior of a system under
one policy to “learn” its potential of each state in order to determine how
to make the system perform better. In fact, potentials can be obtained ei-
ther by solving the Poisson equation, as in the standard MDPs approach, or
by estimation (i.e., learning from sample paths). See Chapter 3 for details.
The block diagram of the standard policy-iteration optimization procedure in
MDPs is shown in Figure 1.11. In this approach, the Poisson equation is solved
analytically to obtain the potentials. The potentials can also be “learned” (es-
timated) from sample paths, which will be the topic of reinforcement learning
discussed in the next subsection.
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Fig. 1.11. The Block Diagram of Policy-Iteration-Based Optimization

Potential is equivalent to the bias or the relative cost in the MDP litera-
ture, up to an additive constant. In this book, we use the word “potential”
because of its physical meaning. As explained in Section 1.2.1, roughly speak-
ing, the performance potential of a state i, i ∈ S, measures the “potential”
contribution of the state i to the system performance; the difference between
the potentials of two states measures the effect of a jump from one state to the
other state on the system performance; and to improve the performance, in
any state we should choose an action that leads to the best expected potential
after the state transition with this action (i.e., the largest Phgd in (1.12)). We
will revisit the meaning of this terminology in Chapter 2.
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As shown above, with the performance difference equation (1.12), the pol-
icy iteration procedure for ergodic chains can be derived clearly, concisely, and
intuitively. This sensitivity-based approach also applies to multi-chain Markov
systems, systems with absorbing states, and problems with other performance
criteria such as discounted performance and even bias and nth-bias optimal-
ity etc., (see Chapter 4 for more). Furthermore, no discounting is needed to
prove the results for average performance problems. In all these cases, the
approach is based on the performance difference formulas, which depend on
the performance potentials defined for these different problems. Therefore, the
sensitivity-based view provides a unified approach to all these MDP-types of
optimization problems; we will see that the approach is surprisingly simple
and clear. In particular, the nth-bias optimality formulation and solution [71]
provide a simple and direct way to derive the results that are equivalent to
the sensitive discount optimality in [216, 248, 249]. We hope that our simple
approach is easy to follow and that it may help to popularize these important
results.

The sensitivity point of view presented in this book brings these results
out naturally and intuitively in a unified way and links them to the rest of the
performance optimization world. The above topics will be addressed in detail
in Chapter 4.

Partially Observable MDPs (POMDPs)

A MDP problem is called a partially observable MDP (POMDP) if we do not
exactly know the system’s current state. The POMDP model fits well the
description in Figures 1.1 and 1.4. In POMDPs, we cannot exactly observe
the state, and instead we can observe a random variable Yl, l = 0, 1, . . . , which
depends on Xl and Al−1. Given a history Hl = {Y0, . . . , Yl;A0, . . . , Al−1}, we
try to determine a policy Al = dl(Hl), l = 0, 1, . . . , to optimize the long-run
average performance defined in (1.11).

The essential idea in POMDPs is that knowing Hl, we may obtain the con-
ditional probability distribution of Xl, denoted as P(•|Hl). If we can exactly
determine the state Xl by Hl, we may do as well as MDPs; otherwise, we do
our best by using this conditional distribution of Xl given Hl, and a policy is
a mapping defined on the space of distributions to the space of actions, i.e.,
Al = dl[P(•|Hl)].

One difference between POMDPs and MDPs is as follows. In MDPs, the
set of actions available in state i are denoted as the set A(i). An action in
A(1) may not be applied to the system in state 2. Thus, for any state i ∈ S
and action α ∈ A(i), we need only to specify the transition probabilities
pα(•|i) for this particular i and α. However, in POMDPs, because we do not
exactly know the state, if we apply an action to the system, it may be in any
state. Therefore, we only have an action space A, which cannot be further
decomposed into subsets A(i), i ∈ S; and for any action α ∈ A, we need to
specify the whole transition probability matrix.



1.2 Problem Formulations in Different Disciplines 31

POMDPs are much more complicated than MDPs, because even for a
simple problem, the space of the conditional probability distributions of Xl

may not be finite. In this book, we will not discuss POMDPs in detail. We,
however, will make comparison with POMDPs when we discuss the event-
based optimization approach.

1.2.3 Reinforcement Learning (RL)

The fundamental model for systems in RL is also the Markov chain. While the
MDP is basically an analytical approach, which assumes that all the parame-
ters are known, RL is a simulation-based (or in some cases, on-line) learning
approach. In RL, most information is learned from the system’s sample paths.
The transition probability matrix may not need to be known, or only the parts
related to actions need to be known. Simulation can be carried out by follow-
ing the system structure (e.g., the queueing structure).

There are different approaches in RL, depending on how much we know
about the system structure and how much we need to learn from the sample
paths. If we know enough information about the transition probabilities to
implement policy iteration with potentials, e.g., we know the parts related to
the actions (see, e.g., Example 5.1 in Section 5.1), we need only to “learn”, or
to estimate, the potentials for all the states from a sample path of the system
under one policy and then update the policies iteratively. In this sense, any
estimation-based or on-line approach for estimating potentials belongs to RL.
In this regard, many efficient RL algorithms, such as TD(λ) (see Chapter 6
and many references such as [25, 159, 223, 226, 229, 230, 236, 237, 238, 239,
244, 254]), and approximate approaches, such as neuro-dynamic programming
[21, 25], have been developed.

If we do not know anything about the transition probabilities, we cannot
implement policy iteration even if we know the potentials. In this case, we
need to learn the system behavior for all state-action pairs. Basically, in state
i, we need to try all the actions in A(i) in order to get enough information for
comparison. Therefore, this type of RL approach (e.g., Q-learning) requires a
sample path to visit all the state-action pairs.

In these approaches, we consider a variant of the potential gd(i), called
the Q-factor of a state-action pair (i, α), denoted as Qd(i, α) for any i ∈ S
and α ∈ A(i). Qd(i, α) is defined as the average potential of state i if action
α ∈ A(i) (not necessarily d(i)) is taken at a particular time and the rest of
the Markov chain is run under a policy d:

Qd(i, α) =
S∑

j=1

pα(j|i)gd(j) + f(i, α)− ηd, α ∈ A(i).

With this definition, (1.13) (in which the reward f(i) is assumed to be the
same for all actions) becomes
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Qd(i, h(i)) = max{Qd(i, α) : α ∈ A(i)}.

Thus, we may implement policy iteration by choosing the action that leads to
the largest Qd(i, α) in state i as the improved policy h.

Sample-path-based algorithms may be developed to estimate Q-factors.
This leads to the Q-factor-based policy iteration, which can be used when
the Markov chain’s transition probability matrix is unknown. However, it is
only possible to estimate the Q-factors for those state-action pairs that appear
on a sample path. The main advantage of this approach is that it estimates
the combined effect of the transition probabilities pα(j|i) and the potentials
gd(j) together without estimating these items separately. But the number
of state-action pairs increases to

∑S
i=1 |A(i)|, compared with the number of

potentials S.
In the approach, we need a sample path that visits all the state-action

pairs. However, with a deterministic policy d, only the state-action pairs
(i, d(i)), i ∈ S, are visited. This issue may be resolved by introducing, with
a small probability, other actions into the system as follows: in any state i,
we apply action d(i) with probability 1 − ε and any other action α ∈ A(i)
randomly with an equal probability ε/(|A(i)| − 1), 0 < ε << 1. We denote
such a policy as dε. However, this may cause undesirable disturbance to a sys-
tem and may not be feasible in real-world systems. Thus, a sample path that
visits all the state-action pairs can only be generated by simulation, and not
by observing the operation of a real-world system. Such an approach is called
simulation-based, whereas an approach that is implementable by observing a
real system without disturbance is called an on-line approach. Simulation-
based approaches are expected to yield more general results than the on-line
approaches, because the latter can also be implemented by simulation. The
two approaches illustrated in Figure 1.5, PA (gradient based) and policy it-
eration, can be implemented on-line. Both simulation-based and on-line ap-
proaches are called sample-path-based approaches.

The block diagram of the reinforcement learning optimization procedure
is shown in Figure 1.12. This is similar to the MDP case (Figure 1.11) except
that the inputs to the RL block are the sample path {X0,X1, . . . , XL} and
the reward observed at each step is f(Xl), l = 0, 1, . . . , L; and the outputs are
either the potentials or the Q-factors. The RL and PI blocks in the diagram
may update their outputs (potentials or Q-factors for RL, and policies for PI)
periodically or even at every transition.

Principally, we can obtain the optimal policy by learning from a sample
path that visits all the state-action pairs. Indeed, such a sample path contains
the information about the system under all possible policies. This can be seen
by the simple “cut-and-paste” method. Let d be any policy and αi = d(i),
i ∈ S. We can construct a sample path Xd of this policy d on X as its “sub”-
sample path as follows. First, on X, we find the first state i such that the
action taken is αi and we denote it as Xd

0 . Suppose that from this pair (i, αi),
X moves to the next state denoted as j. If the action taken at this next state



1.2 Problem Formulations in Different Disciplines 33

��

	


�
���
��

��

	


��

	


��

�
���

�	 RL

PI
d

PI: Policy Iteration RL: Reinforcement Learning

Xl

pα(•|Xl)

d(X)
α = d(Xl)

State Xl

1

2 3
X0, . . . , Xl

f(Xl)

Q(i, α), g(i)

Fig. 1.12. The Block Diagram of Reinforcement Learning

happens to be αj = d(j), we take this state as Xd
1 ; otherwise, we look for the

earliest state j on X that takes action αj and we denote it as Xd
1 . Repeating

this procedure, we can get an “embedded” sample path Xd for policy d on
X. See Figure 1.13.

Therefore, principally we should be able to determine the optimal policy
by analyzing any sample path X that visits all the state-action pairs. The
simplest way to do so is to implement policy iteration on the sample path:
First, we construct a sub-sample path with an initial policy d0, Xd0 on X,
estimate its potentials (or Q-factors, with a sample path for the policy d0,ε),
and find a better policy d1 by policy iteration. Then, we construct a sub-
sample path with d1, Xd1 on X, and so on. If the transition probabilities are
unknown, they can also be estimated from X since it visits all the state-action
pairs.

Of course, this “construction” approach may not be the most efficient.
Improvement can be made by applying stochastic approximation techniques.
Exploring along this direction leads to various RL algorithms including the Q-
learning approach in the literature. These algorithms estimate the Q-factors
or the potentials for the optimal policy, from a sample path that visits all
state-action pairs. They are very aggressive: they update the estimates at
every state transition. For more details, see Chapter 6.

In recent years, performance-gradient-based optimization has attracted
more and more attention from the RL community. It is called policy gradient
in RL [2, 17, 18]. The approach follows the same idea of PA: It is based on
sample-path-based estimates for performance gradients. There is, however, a
distinction between the policy gradient approach and PA: The former focuses
on algorithms for estimating the gradients, and the latter (PA), in addition to
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Fig. 1.13. Constructing a Sample Path for Any Policy by Cut-and-Paste

algorithms, emphasizes the construction of gradient formulas using the idea
of perturbation.

Finally, we observe that there is another difference between the RL and
the MDP formulations: RL assumes that an instant reward f(i, α) can be
observed, and the function f may not be known. That is, in observing a sample
path, at any time l we indeed know the reward received, without knowing the
function f . If the state i is completely observable, as in the standard MDP
case, assuming that the reward is observable is the same as assuming that
the function f is known, because we can calculate the reward according to
f(i, α) if state i is observed and action α is taken. However, in POMDPs,
these two assumptions are different: We do not know the reward even if we
know f because we do not know exactly what the state is.

In summary, the RL approach focuses on algorithms estimating potentials
and its variant Q-factors, or the potentials and Q-factors for optimal poli-
cies; and the policy gradient approach focuses on algorithms for performance
gradients.

1.2.4 Identification and Adaptive Control (I&AC)

Identification and adaptive control are well-developed areas. In adaptive
control theory, system dynamics are modelled by differential or difference
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equations that determine the system structure. With such a mathematical
model, elegant analysis can be carried out, leading to widely deployed adaptive
control algorithms. When the system parameters are unknown and/or time
varying, they need to be estimated from observations (this is also called system
identification), and performance optimization can be achieved by using the
adaptive control algorithms with the parameters estimated from observations.

In this book, we cannot review all the results in I&AC. Instead, we show
that optimization with such a problem formulation can also be achieved by
learning from the performance sensitivity point of view. In particular, we
show that under some assumptions, the problem can be solved by the on-line
policy iteration approach discussed in Section 1.2.2. The fundamental idea is:
A stochastic system under control, although it has its special structure, can
be generally modelled as a Markov process, with the control variables viewed
as actions.

Example 1.4. (Linear Systems) A (discrete-time) linear stochastic system is
modelled as

Xl+1 = AXl + Bul + ξl, l = 0, 1, . . . , (1.14)

where Xl is the system state at time l, which is usually a random vector,
ul is a vector of control variables, ξl is a vector of noise, and A and B are
matrices with appropriate dimensions. Apparently, X = {Xl, l = 0, 1, . . .}
is a Markov chain and ul can be viewed as the actions that determine the
transition probabilities of X, based on the probability distribution function
of ξl. The problem is how to choose ul, l = 0, 1 . . . , such that a performance
measure (e.g., the long-run average of a quadratic cost function of Xl and ul)
is minimized.

The one-dimensional case is illustrated in Figure 1.14. At time l = 0,
the system is in state x0. If there was no noise, at l = 1, the system would
move to Ax0 + Bu0. However, because of the random noise, it moves to x1

instead, which is a random variable centered at Ax0 +Bu0 with a distribution
determined by ξ0. The situation at l = 2 is similar. Thus, the control variable
ul controls the distribution (or precisely, the center of the distribution) of
Xl+1. ��

In Example 1.4, we assume that Xl, l = 0, 1, . . . , are observable. More
generally, we may have an observation equation

Yl = CXl + Dζl, l = 0, 1, . . . , (1.15)

where Yl is an observable vector, ζl is a random noise vector, and C and D are
two matrices with appropriate dimensions. The system in (1.14) and (1.15)
fits well the formulation described by Figure 1.1, in which (1.14) models the
dynamics of the black box and (1.15) specifies the relationship between the
observations and the states.

Principally, such a problem is amenable to either MDPs, RL, or PA. For
example, we can apply policy iteration to find the optimal feedback control
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Fig. 1.14. A Control Problem Viewed as an MDP

policy ul = d(Xl). As discussed in Section 1.2.2, in each iteration when the
system is (or is estimated to be) at a particular state, we let the control
variables take the values that lead to the largest expected potential at the next
state. Under some conditions, such an iteration procedure will converge to an
optimal policy. To illustrate and verify this approach, it is shown in Chapter
7 that for the linear stochastic control problem in (1.14) with a quadratic
performance reward, we can derive, with policy iteration, the famous Riccati
equation for optimal policies.

When the system parameters are unknown, the basic quantities such as
potentials have to be learned from a sample path with various RL algorithms.
When the system parameters vary with a slow time scale, the policies have to
be updated frequently to keep up with the parameter changes. In this sense,
the on-line policy iteration, RL, or PA-based optimization are equivalent to
system identification and adaptive control.

The on-line policy iteration approach is conceptually quite different from
the adaptive control approach. The latter employs dynamic programming,
which essentially works backwards: For finite horizon problems, it first finds
the optimal solution for the system with k time steps remaining, and then
with this optimal solution to the k-step problem, it goes back one step to find
the solution for the system with k + 1 time steps remaining, k = 0, 1, . . . ;
and so on. To solve an infinite horizon problem, we let this procedure go on
until k approaches to infinity. Therefore, in dynamic programming, we iterate
backwards in time, and, at every time step, we find the optimal policy for a
finite-step problem. Of course, a backward procedure can only be implemented
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off-line. On the contrary, policy iteration essentially works forwards: the po-
tentials are estimated along the same direction as time goes forward, and
policies are iterated until an optimal one is reached. Another feature is that
with policy iteration, we estimate the potentials, and the system parameters
may not need to be estimated directly. This corresponds to the direct adaptive
control in the literature, where the parameters for the optimal control law,
instead of the system, are identified. See Chapter 7 for more details.

One advantage of the on-line or sample-path-based approach is that, from
the learning point of view, principally it applies to both linear and non-linear
systems in the same way. The system structure affects the transition proba-
bility matrix. However, determining the transition probability matrix for dif-
ferent control parameters might be a difficult task. Another difficulty one may
encounter is that the theoretical results on convergence, etc., may be limited,
because the state and action spaces in such problems are usually continuous,
as shown in the linear system example. Since one can always approximate a
continuous space with a discrete one by discretization and practical problems
are finite in nature, approximate and heuristic methods can be developed.
This topic will be discussed in Chapter 7.

1.2.5 Event-Based Optimization and Potential Aggregation

We will show in Chapters 2 and 9 that, with the physical interpretation of
potentials, we can use potentials as building blocks to construct the two sen-
sitivity formulas (1.12) and (1.10) by first principles. Furthermore, we can
follow the same idea to construct/derive sensitivity formulas for many special
and/or non-standard problems by first principles. For example, we can derive
sensitivity formulas, similar to (1.12) and (1.10), for two Markov chains that
have two different but overlapping state spaces. We can also derive sensitivity
formulas for policies that depend on “events” rather than states.

Since the two sensitivity formulas form the basis for learning and opti-
mization, we can develop new learning and optimization approaches based on
the sensitivity formulas for these special problems that do not fit the stan-
dard MDP formulation. The special structure of a problem can be used in
constructing the formulas, and thus the computation can be reduced and/or
the policy can meet some special constraints.

One of such approaches is the event-based optimization, which can be ap-
plied to systems where the actions can be taken only when some events hap-
pen. An event is defined as a set of state transitions that share some common
features. The decision of selecting actions depends on the information asso-
ciated with the events. Special features of the system structure and logical
relations of the system behavior can be captured by events. Potentials can be
aggregated using the special features. Many problems can be treated by this
event-based approach with properly defined events.
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The Main Features of the Event-Based Approach

In addition to the structural information captured by events, which helps
to reduce computation by aggregation, compared with MDPs and POMDPs,
the event-based approach has some other nice features. We first give a simple
example to illustrate the ideas.



�

��


�

��


�

��


�

��


�

��


�

��


�

��
 

������

�
��



������

��
�
��

������ �
������������������

1

2

3 4

5 6

σ 1 − σ

σ 1 − σ

(100) (-100)

(-100) (100)

(0)

(0)

qb

qa

pb

pa

r1 r2

Fig. 1.15. The State Transition Diagram for Example 1.5

Example 1.5. Figure 1.15 illustrates a part of a system’s state transition di-
agram. The transition probabilities are shown by the symbols near the arrows
in the figure. First, we assume that when the system is in state 1 or state 2, we
only know that the system is in the set {1, 2}, but do not know exactly which
state it is in. This is a POMDP problem, in which we define an aggregated
state 0 := {1, 2}, and if Xl = 1, or 2, we have Yl = 0, and if Xl = 3, 4, 5, or 6,
we have Yl = Xl. The observation history is Y = {Y0, Y1, . . .}. We can take
an action to control the value of σ ∈ [0, 1]. Figure 1.16 lists the transition
probabilities of states 1 and 2 when a particular σ is chosen. The rewards for
states 3 and 6 are 100, those for states 4 and 5 are −100, and those for states
1 and 2 are 0.

1

2

1 2 3 4 5 6

0 r1 pbσ pb(1 − σ) paσ pa(1 − σ)

r2 0 qbσ qb(1 − σ) qaσ qa(1 − σ)

Fig. 1.16. The Transition Probabilities of States 1 and 2 When Action σ is Taken
in Example 1.5
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In POMDPs, action Al is specified by a policy depending on the conditional
distribution of Xl given Hl = {Y0, A0, . . . , Yl−1, Al−1, Yl}. We wish to find
a policy d(Hl) that optimizes the long-run average performance defined in
(1.11).

The best situation happens when we can exactly determine Xl = 1 or
Xl = 2 by using Hl. In this case, the problem becomes a standard MDP.
With the MDP formulation, we wish to determine a policy that specifies the
actions for states 1 and 2, denoted as d(1) = σ1 and d(2) = σ2. Note that
σ1 and σ2 may be different, and the transition probabilities corresponding to
state 1 (or 2) are listed in the first (or the second) row of Figure 1.16, with σ
replaced by σ1 (or σ2).

Let us analyze the structure of the transition diagram. From Figure 1.15,
if the system moves from state 1 (or 2) to the two top states, 3 and 4, we need
to take the biggest value σ = 1 to reach state 3 with probability 1 and get
a reward of 100; on the contrary, if the system moves from state 1 (or 2) to
the two bottom states, 5 and 6, we need to take the smallest value σ = 0 to
reach state 6 with probability 1 and get a reward of 100. Now, suppose that
the current state is 1. In the next time instant, the system will move to the
top states and to the bottom states with two positive probabilities, pa and
pb, respectively. As shown above, a big σ is good for the top, but bad for the
bottom, and vice versa. When pa = pb = 0.5, for any σ the average reward at
the next step is zero. Therefore, even if we know the states 1 and 2 exactly, the
(MDP) optimal policy may not be very good. The above discussion explains
the limitation with the state-dependent policies: the optimal performance is
not very good even if the history provides the exact information about the
current state.

However, the situation improves significantly if we know a bit of informa-
tion about the state transition. From the structure shown in Figure 1.15, the
top four transitions, or the bottom four transitions, have similar properties.
This structure can be captured by aggregating these transitions together and
defining two events:

a :=
{
〈1, 5〉, 〈1, 6〉, 〈2, 5〉, 〈2, 6〉

}
,

and
b :=

{
〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉

}
,

where 〈i, j〉 denotes a transition from state i to state j, i, j ∈ S. These two
sets of state transitions aggregated into two events are shown as the two ovals,
a and b, in Figure 1.17; they are also illustrated by the two black boxes in
Figure 1.18.

With this formulation, when event a, or b, occurs, the system is in either
state 1 or 2, but we do not know exactly which state the system is in. However,
independent of the state, if event a occurs, the system moves to state 5 with
probability σ and to state 6 with probability 1− σ; and if event b occurs, the
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Fig. 1.17. State Transitions Aggregated into Two Events a and b

system moves to state 3 with probability σ and to state 4 with probability
1− σ.

In the event-based approach, we assume that we can observe the events, not
the states; i.e., at any time instant l, we can observe whether 〈Xl,Xl+1〉 ∈ a,
or 〈Xl,Xl+1〉 ∈ b, occurs. We need to determine an event-based policy that
specifies the probabilities chosen for events a and b: σa = d(a) and σb = d(b).

1

2

1 2 3 4 5 6

0 r1 pbσ pb(1 − σ) paσ pa(1 − σ)

r2 0 qbσ qb(1 − σ) qaσ qa(1 − σ)

�
�
�
��

�
�
�
��

Event b Event a

Fig. 1.18. Events a and b as Sets of State Transitions in Example 1.5

From the reward structure shown in Figure 1.17, we may design a myopic
policy: if a occurs, we choose the smallest value, i.e., σa = 0, which leads
to state 6 and the reward at the next step is 100; and similarly, if b occurs,
we choose the largest value, i.e., σb = 1, and the reward at the next step is
also 100. In this example, this myopic event-based policy is better than the
optimal MDP policy.

Thus, in this example, the optimal event-based policy is better than the
optimal state-based policy; or knowing the event is better than knowing the
state. This is because knowing the event implies knowing something about the
current transition, which, strictly speaking, belongs to the future. In addition,
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we can see that a history-independent event-based policy is good enough in
this example. ��

A real system having the transition probabilities shown in Figure 1.15 is
given in Chapter 9, and events a and b have a natural interpretation in the
system. Many other real-world systems fit the event-based formulation. For
example, in the admission control of a communications system, actions (accept
or reject) are taken only when a customer arrives at a network. A customer
arrival to a network can be modelled as an event, and the state transition at
an arrival instant has the following property: The population of the system
increases by one at this transition (if the customer is accepted), or remains
the same (if the customer is rejected), and it will not decrease.

In these problems, we can define a policy depending on events rather than
on states. We can derive or construct sensitivity formulas similar to (1.12)
and (1.10) for any two event-based policies. With these formulas constructed,
performance gradients can be estimated on line and in some cases policy
iteration can also be developed for performance optimization with event-based
policies. The details will be discussed in Chapters 8 and 9.

Because each event may correspond to many states, the technique involves
aggregation of the potentials of the states that correspond to the same event.
The number of events usually scales to the system size and is much smaller
than that of the states, which grows exponentially with the size of the system.
Thus, computation can be reduced. In addition, the same action is taken at
different states that correspond to the same event; this is not feasible for
the standard MDPs, which require the actions at different states be chosen
independently.

The event-based approach provides a unified view for solutions to many
non-standard problems (some existing and some new), including POMDPs
[159, 161, 188], state and time aggregations [4, 67, 101], hierarchical control
(hybrid systems) [100, 250], options [15], and singular perturbation analysis
[1, 27, 99]. Different events can be defined to capture the special features in
these different problems.

In summary, the structural information of a system’s transition diagram
may not be reflected by the state-dependent policies, and it may be captured
by the events defined as sets of state transitions. Knowing the events at a
time instant implies knowing something about the future and the event-based
policies may perform much better than the state-based ones. The sensitivity-
based view also provides natural solutions to the event-based approach and
therefore opens a new direction for learning and optimization. These topics
will be discussed in detail in Chapters 8 and 9.

1.3 A Map of the Learning and Optimization World

With a sensitivity point of view, the world of learning and optimization
can be illustrated by the map shown Figure 1.19. This map summarizes the
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discussions in this chapter as well as in this book. The central piece of the
map is the performance potential. Various RL methods yield sample-path-
based estimates for potentials g, or their variant Q-factors, or their values for
the optimal policy; the potentials are used as building blocks in constructing
the two performance sensitivity formulas; these two formulas form the basis
for gradient-based (PA-based) and MDP-type optimization approaches; RL
methods can also be developed for directly estimating the performance gra-
dients on sample paths; stochastic approximation techniques can be used to
derive efficient optimization algorithms with the sample-path-based gradient
estimates, and to derive on-line policy iteration algorithms. Both the gradient-
based approaches and policy iteration can be applied to system identification
and adaptive control (I&AC) problems, even with non-linear systems. This
sensitivity point of view of I&AC may lead to sample-path-based methods in
the area.

The map uses the two standard sensitivity formulas as examples. These
two formulas can be replaced by any two sensitivity formulas constructed, or
derived, for other special or nonstandard problems (possibly with potentials
aggregated), and the same logical relationships among different approaches
shown in the map still hold. The PA and MDP methods based on these con-
structed formulas may utilize the special features and thus reduce the compu-
tation in learning and optimization. One such special problem is event-based
optimization. The sensitivity point of view opens up a new and rich research
direction.

This map can be used as a road map for the materials covered in this
book.

1.4 Terminology and Notation

One of the difficulties in introducing a number of different research areas in
the same book is that it is not easy to unify the terminology and to choose
notation that is consistent with those conventionally used in their respective
areas. First, just like the translation of languages, there may not exist exact
one-to-one correspondences between the concepts in these different areas. For
example, both PA in discrete event dynamic system theory and the policy
gradient in RL are based on performance gradients, yet they have different
emphases: The former mainly focuses on the construction of performance gra-
dients; and the latter, on the development of efficient algorithms. Second,
different terminologies represent different perspectives on the same concept
and it is these different perspectives that motivate different thinking, which
is precisely what we wish to encourage. For a daily-life example, John Smith
may be called either Dr. Smith on one occasion, or simply John on others.
In our case, the solution to the Poisson equation is called the potentials in
PA, which represent the potential contributions of the current states to the
performance and have a similar meaning as the potential energy in physics; it
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On-line hill climbing On-line policy iteration On-line algorithms

PA
(Policy gradient)

MDP
(Policy iteration)

I&AC

Perf. Derivatives
(dη/dδ = π(ΔP )g)
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Linear &
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Fig. 1.19. A Map of the Learning and Optimization World (PA: Perturbation
Analysis, MDP: Markov Decision Process, RL: Reinforcement Learning, Q-L: Q-
Learning, I&AC: Identification and Stochastic Control, NDP: Neuro-dynamic Pro-
gramming)

is called the biases in MDPs, which emphasize the transient nature, i.e., the
deviation of the total average reward (starting from a particular state) from
the steady-state value.

In this book, we have successfully unified the terminology and notation,
with only a few exceptions: For example, in most parts of the book, we use
the terminology “potential” due to its physical interpretations emphasized
in the book, but we will use “bias optimality” when discussing the related
optimization problems to make it consistent with the other literature.

We also note that some notation used in this book are different from those
used in the literature in the related research areas. For example, in the PA
literature, a policy is denoted as L and the transition matrices of two policies
are denoted as P and P ′, but in most of this book, they are denoted as d and
P d and Ph, respectively. These are consistent with the notations in the MDP
literature. Also, we use γ(i, j), instead of d(i, j) used in the PA literature, to
denote the realization factors, because d is already used for a policy.
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The notation and abbreviations used in this book are listed at the end of
the book, see Page 543.

PROBLEMS

1.1. Give an example of a real-world problem that fits the general model of
learning and optimization illustrated in Figure 1.1.
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α2,1
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α3,1

α3,2

α3,1

Fig. 1.20. The Travelling Problem

1.2. A person travels from the star point shown in Figure 1.20 to one of
the seven destinations indicated as the circles in the figure. The person may
receive a reward shown as the number in the corresponding circle when she/he
reaches a destination. There are three time steps, l = 0, 1, 2, in this problem.
The letters α1,1, α1,2, α1,3, and α2,1, . . . , near the arrows represent the actions.
Develop an optimal policy for the person to receive the biggest reward. Note
that there is more than one optimal policy.

1.3. In Example 1.2, at l = 0, there are two possible observations y0 and y1.
Thus, the number of possible sub-policies d0 : {y0, y1} → {α0, α1} is 22 = 4.
Next, if we do not follow any policy at l = 0, then at l = 1, there are eight
possible different histories {Y0, A0, Y1}. In this case, at time l = 1 every policy
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d1 needs to specify an action for every one of these eight different action-
observation histories. Thus, there are 223

= 28 = 256 possible sub-policies d1

at l = 1. However, if we follow any sub-policy at l = 0, because A0 = d0(Y0),
we have only four (instead of eight) possible different histories for each d0.
Therefore, if we follow any sub-policy at l = 0, each sub-policy at l = 1 needs
to specify actions for these four different action-observation histories. That
is, for each sub-policy d0, there are only 24 different sub-policies d1 at l = 1.
Thus, there are altogether 22 × 24 = 64 different combined policies {d0, d1}.
Convince yourself that the above argument is valid, and continue to calculate
how many policies there are for d = {d0, d1, d2}.

1.4. Prove that the optimal feedback policy based on observations performs
better than the optimal open-loop policy on average (cf. Example 1.2).

1.5. Consider an MDP with state space S = {1, 2, . . . , S}. Let the action
space be A = {α1, α2, . . . , αS}; suppose that when action αj is taken in any
state i, the system will, with probability 1, move to state j, j = 1, 2, . . . , S.

a. For any i ∈ S, define a distribution onA as νi = {p(1|i), p(2|i), . . . , p(S|i)}.
Let νi = d(i), i ∈ S, be a randomized policy defined as follows: In any
state i, i ∈ S, action αj is taken with probability p(j|i), j ∈ S. What is
the Markov chain under this policy νi = d(i), i ∈ S?

b. Let α(1) and α(2) represent another two actions: if α(k) is taken in state i,
then the system moves according to the probability distribution ν

(k)
i =

{p(k)(1|i), p(k)(2|i), . . . , p(k)(S|i)}, k = 1, 2. Let νi = d(i), i ∈ S, be a
randomized policy defined as follows: In any state i, action α(1) is taken
with probability pi, and action α(2) is taken with probability qi, pi+qi = 1,
i = 1, 2, . . . , S. What is the Markov chain under this policy νi = d(i),
i ∈ S?

1.6. Consider a two-state process X̃ with history-dependent transition prob-
abilities p[1|(1, 1)] = 0, p[0|(1, 1)] = 1; p[1|(0, 0)] = 1, p[0|(0, 0)] = 0;
p[0|(1, 0)] = 1, p[1|(1, 0)] = 0; and p[1|(0, 1)] = 1, p[0|(0, 1)] = 0.

a. Draw a sample path of X̃. What property does it have?
b. Derive the equivalent Markov chain X as shown in Example 1.3.
c. Suppose that the reward function depends on three consecutive states

(Xl,Xl+1,Xl+2) and is defined as f(1, 1, 1) = f(0, 0, 0) = 100 and
f(i, j, k) = 0 otherwise. Explain that the steady-state performance mea-
sures for both X̃ and X defined as η̃ =

∑
i,j,k π̃(i, j, k)f(i, j, k) and

η =
∑

i,j,k π(i, j, k)f(i, j, k), respectively, are different.

1.7. The exhaustive search algorithm presented in Section 1.1.3 is very “ro-
bust”. Suppose that because of the estimation error, the relationship ηdi > η̃
cannot be accurately verified.

a. If dM is an optimal policy, then the algorithm outputs a correct optimal
policy if only the last comparison is correctly made.



46 1 Introduction

b. Explain that the algorithm outputs the optimal policy as long as the
comparisons ηdi > η̃ are correctly made when ηdi or η̃ is the optimal
performance.

c. Suppose that η∗ is the best performance and η∗− is the next to the best
performance, and set δ = η∗−η∗−. Then the algorithm outputs the correct
optimal policy if the estimation error for the performance is always smaller
than δ/2.

1.8. Derive Equation (1.12) by the Poisson equation (1.9), and derive (1.10)
by (1.12).

1.9. In the MDP problem, the reward function may depend on the next
state; i.e., it may take the form f(Xl,Xl+1, α), α ∈ A(Xl). Prove that
this problem is equivalent to the standard MDP with f(i, α) replaced by
f̄(i, α) =

∑
j∈S [f(i, j)pα(j|i)].

1.10. Consider a Markov chain {X0,X1, . . .} defined on a finite state space
S. In any state i ∈ S, an action α ∈ A(i) can be taken, which determines the
transition probability as pα(j|i), j ∈ S. Now, let us assume that the action
chosen at Xl depends on both Xl−1, and Xl. Thus, if Xl−1 = k and Xl = i,
the action is denoted as α = d(k, i) and the transition probabilities at Xl are
pd(k,i)(j|i), j ∈ S, where d(k, i) is the policy.

a. Prove that this problem is equivalent to a standard MDP with an enlarged
state space.

b. Can you find an equivalent standard MDP with state space S?

1.11. Consider the optimization problem of a discrete time M/M/1 queue.
When a customer arrives at the server, the number of customers in the system
increases by one. The server serves one customer at a time. Other customers
have to wait in a queue. When a customer finishes its service, s/he leaves the
server, and the number of customers in the system decreases by one. Let Xl be
the number of customers in the server at time l = 0, 1, . . . . If Xl = n, then the
probability that a customer arrives in the lth period (i.e., Xl+1 = Xl + 1) is
a(n), and the probability that a customer leaves (i.e., Xl+1 = Xl − 1) is b(n),
and Xl stays the same with probability 1−[a(n)+b(n)]. If Xl = 0, then b(0) =
0. The system has a capacity of N ; i.e., an arrival customer will be rejected if
there are N customers in the system, or equivalently, a(N) = 0. Suppose that
a(n), n = 0, 1, . . . , N − 1, can take M different values: a1, a2, . . . , aM ∈ [0, 1].
We wish to maximize

η = κ1η1 − κ2η2,

where η1 is the average number of customers accepted to the system, η2 is the
average of w(Xl), with w being a function of the number of customers in the
system, and κ1, κ2 > 0 are two weighting factors.

Formulate this problem as a standard MDP.
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1.12. For an ergodic Markov chain, we have

η = lim
L→∞

1
L

L−1∑

l=0

f(Xl), w.p.1.

Develop a “learning” algorithm that updates iteratively the estimates of η
at every transition of the Markov chain using the reward observed at the
transition. That is, find an algorithm

η̂l = κlη̂l−1 + (1− κl)f(Xl),

with η̂−1 = 0 and 0 < κl < 1, such that liml→∞ η̂l = η. Determine κl for
l = 0, 1, . . . .

1.13. Consider a Markov chain run under a deterministic policy αi = d(i),
i ∈ S. Drive the equation for Q-factors:

Qd(i, αi)−
∑

j∈S
pαi(j|i)Qd(j, αj) + ηd = f(i, αi).

1.14. Consider a Markov chain with state space S. In each state i ∈ S, there
are two available actions denoted as α1,i and α2,i. Let d be a randomized
policy with d(i) = νi = (p1,i, p2,i), p1,i, p2,i > 0, p1,i + p2.i = 1, representing
the probabilities of taking actions α1,i and α2,i, respectively, i ∈ S. We also
can view νi as an action that determines the transition probabilities of state i
(see Problem 1.5). Therefore, we have three actions for each state: α1,i, α2,i,
and νi, i ∈ S. Observe a sample path of the system under the randomized
policy d. Overall, when the system visits state i, it takes action νi. This is
equivalent to a system that takes action α1,i sometimes when the system visits
state i, and takes action α2,i other times when it visits i, with probabilities
p1,i and p2,i, respectively. Thus, a sample path of the system under policy d
contains the information about Qd(i, α1,i), Qd(i, α2,i), and Qd(i, νi), i ∈ S.

a. Prove Qd(i, νi) = p1,iQ
d(i, α1,i) + p2,iQ

d(i, α2,i).
b. If Qd(i, α1,i) ≥ Qd(i, α2,i), then Qd(i, α1,i) ≥ Qd(i, νi).
c. Prove that for every randomized policy d, there is always a deterministic

policy which is at least as good as d.

1.15. Consider a linear control system defined as

Xl+1 = Xl + ul + ξl, l = 0, 1, . . . .

The state space is the set of integers S := {. . . ,−1, 0, 1, . . .}. The control
variable u can take two values −2 and 2. The random noise ξ takes values from
the integer set {−4,−3,−2,−1, 0, 1, 2, 3, 4} with probabilities p(ξ = 0) = 0.2
and p(ξ = i) = 0.1 if i �= 0. Describe the system with the MDP formulation.
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1.16. Consider an admission control problem of a communications system
consisting of three servers. The system is a Jackson type and hence its state
can be denoted as n = (n1, n2, n3) with ni being the number of customers
in server i, i = 1, 2, 3. Define an event a+4 as a customer arriving at the
network and finding that there are four customers already in the network.
Clearly define this event by a set of state transitions. (Denote the transition
from state n to n′ as 〈n,n′〉.)



Part I

Four Disciplines in Learning and Optimization



To climb steep hills requires
slow pace at first.

William Shakespeare, English
poet and playwright

(1564 - 1818)

Don’t buy the house; buy the
neighborhood.

Russian Proverb 2
Perturbation Analysis

Perturbation analysis (PA) is the core of the gradient-based (or policy gradi-
ent) learning and optimization approach. The basic principle of PA is that the
derivative of a system’s performance with respect to a parameter of the system
can be decomposed into the sum of many small building blocks, each of which
measures the effect of a single perturbation on the system’s performance, and
this effect can be estimated on a sample path of the system. This decomposi-
tion principle applies to the differences in a system’s performance with two
policies as well and is thus fundamental to other learning and optimization
approaches such as the policy iteration approach (see Chapter 4).

Historically, perturbation analysis was first developed for queueing systems
and was later extended to Markov systems. Because PA of Markov systems is
generally applicable and has a strong connection with other learning and op-
timization approaches, such as Markov decision processes and reinforcement
learning, we first introduce the PA principle to Markov systems. PA of queue-
ing systems will be discussed at the end of this chapter as supplementary
material.

There were a number of books published in later 1980’s and 1990’s on PA
of queueing-type systems [51, 72, 107, 112, 142]. The PA principle summarized
above was discussed in detail in [45, 51, 141, 142] and extended to Markov
systems in [62, 70].
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2.1 Perturbation Analysis of Markov Chains

We first discuss PA of discrete-time Markov chains and related topics in this
section. PA of continuous-time Markov processes is covered in the next section.

Consider an ergodic (irreducible and aperiodic) Markov chain X = {Xl :
l ≥ 0} on a finite state space S = {1, 2, . . . , S} with a transition probability
matrix P = [p(j|i)]Si,j=1. Its steady-state probabilities are denoted as a row
vector π = (π(1), . . . , π(S)) and the reward function is denoted as a (column)
vector f = (f(1), f(2), . . . , f(S))T . We have Pe = e, where e = (1, 1, . . . , 1)T ,
and the probability flow balance equation π = πP . We first consider the
long-run average reward (or, simply, the average reward) as the performance
measure, which is defined as follows:

η = Eπ(f) =
S∑

i=1

π(i)f(i) = πf,

where Eπ denotes the expectation corresponding to the steady-state proba-
bility π on S.

Let P ′ be another irreducible and aperiodic transition probability matrix
on the same state space S. Suppose that P changes to

Pδ = P + δΔP = δP ′ + (1− δ)P, (2.1)

with 0 ≤ δ ≤ 1 and ΔP = P ′ − P := [Δp(j|i)]. Since Pe = P ′e = e, we have
(ΔP )e = 0 and Pδe = e.

Pδ represents a randomized policy, which, at every state transition, im-
plements policy P with probability 1 − δ and policy P ′ with probability δ.
When δ varies from 0 to 1, Pδ fills the line from P to P ′ in the policy space
(Figure 2.1). With randomized policies, we can fill all the policies in the con-
vex set spanned by a set of policies in a policy space. For example, we can fill
the triangle with vertices P0, P1, and P2 in the policy space with randomized
policies P (δ0, δ1, δ2) := δ0P0+δ1P1+δ2P2, where δ0+δ1+δ2 = 1; P (δ0, δ1, δ2)
implements policy Pi with probability δi, i = 0, 1, 2, at every state transition
(Figure 2.2).

P

0

P ′

1
∗

P (δ)

δ

P (δ) = δP ′ + (1 − δ)P

P (0) = P, P (1) = P ′

Fig. 2.1. Randomized Policies with Two Base Policies
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P0

P1

P2

P ′

P (δ0, δ1, δ2)

δ

P (δ0, δ1, δ2) = δ0P0 + δ1P1 + δ2P2

P ′ = P (0, 1 − δ, δ)

P0 = P (1, 0, 0), P1 = P (0, 1, 0), P2 = P (0, 0, 1)

Fig. 2.2. Randomized Policies with Three Base Policies

For simplicity, we first assume that the Markov chain with transition prob-
ability matrix Pδ in (2.1) for all 0 ≤ δ ≤ 1 has the same reward function f ,
and we denote it as (Pδ, f). The steady-state probability of transition matrix
Pδ is denoted as πδ and the average reward of the Markov chain (Pδ, f) is
denoted as ηδ = πδf . Then η0 = η = πf and η1 = η′ = π′f . Set Δηδ = ηδ−η.
The derivative of ηδ with respect to δ at δ = 0 is

dηδ

dδ

∣∣∣∣
δ=0

= lim
δ→0

Δηδ

δ
,

which can be viewed as the directional derivative in the policy space along
the direction from policy P to policy P ′ (see Figure 1.9 and Figure 2.1).

The goal of perturbation analysis is to determine the performance deriva-
tive dηδ

dδ by observing and/or analyzing the behavior of the Markov chain with
transition probability matrix P . In particular, we wish to estimate this deriva-
tive by observing and analyzing a single sample path of the Markov chain with
transition probability matrix P .

2.1.1 Constructing a Perturbed Sample Path

The main idea of PA comes from the fact that given a sample path of the
Markov chain with transition probability matrix P , we can construct a sample
path of the Markov chain with transition probability matrix Pδ, when δ is
small; and this does not require that we rerun or resimulate the Markov chain
with Pδ. If δ is small, the additional computation involved is also small. The
performance derivative dηδ

dδ can be obtained by measurement or analysis once
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we have the sample paths of both P and Pδ. The above statement as well
as the construction procedure described below is not very precise, but they
provide a clear intuition and help us to derive the performance derivative
formula, which will be proved rigorously later.

Following the PA terminology, we call the Markov chain with transition
probability matrix P the original Markov chain, and that with Pδ the per-
turbed Markov chain. Their sample paths are called the original sample paths
and the perturbed sample paths, respectively.

Constructing a Sample Path

We first review how to simulate a sample path for a Markov chain with tran-
sition probability matrix P . Suppose that at time l = 0, 1, . . . , the Markov
chain is in state Xl = k. In simulation, the next state after the transition
at any time l is determined as follows. We generate a uniformly distributed
random variable ξl ∈ [0, 1). If

ul+1−1∑

k′=1

p(k′|k) ≤ ξl <

ul+1∑

k′=1

p(k′|k), ul+1 ∈ S, (2.2)

(with the convention
∑0

k′=1 p(k′|k) = 0), then we set Xl+1 = ul+1. In the case
illustrated in Figure 2.3.A, we have p(i|k) = 0.5, p(j|k) = 0.5, and p(k′|k) =
0 for all k′ �= i, j. The current state is k. We generate a [0, 1)-uniformly
distributed random variable ξ. If 0 ≤ ξ < 0.5, then the Markov chain moves
into state i; otherwise, it moves into state j. Following this process, starting
from any initial state X0, we can construct a sample path for the Markov
chain with any transition probability matrix P . Therefore, a sample path of
a Markov chain is determined by an initial state X0 and a sequence of [0, 1)-
uniformly distributed random variables {ξ0, ξ1, . . .}. Figure 2.4 illustrates such
a sample path X := {X0,X1, . . . , Xl, . . .}.

The performance measure η can be estimated from the sample path X. In
fact, if the Markov chain is ergodic, we have

η = lim
L→∞

1
L

L−1∑

l=0

f(Xl), w.p.1,

where “w.p.1” stands for “with probability 1”. Set

FL =
L−1∑

l=0

f(Xl).

Then, we have

η = lim
L→∞

FL

L
. (2.3)
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Fig. 2.4. A Sample Path of a Markov Chain

Constructing a Perturbed Sample Path on a Given Original
Sample Path

Now, suppose that we are given a sample path of a Markov chain with tran-
sition probability matrix P , as shown as X = {X0,X1, . . .} in Figure 2.4.
It starts with initial state X0 and is generated according to (2.2) with a
sequence of [0, 1)-uniformly distributed and independent random numbers
{ξ0, ξ1, . . . , ξl, . . .}. We wish to construct a perturbed sample path for the
Markov chain with Pδ = P + δΔP . We denote it as Xδ = {Xδ,0,Xδ,1, . . .}. To
this end, we may think as follows.

To save computation, we may try to use the same sequence {ξ0, ξ1, . . . ,
ξl, . . .} to generate the perturbed path. However, we need to use (cf. (2.2))

uδ,l+1−1∑

k′=1

[p(k′|k) + δΔp(k′|k)] ≤ ξl <

uδ,l+1∑

k′=1

[p(k′|k) + δΔp(k′|k)] (2.4)

to determine the state at Xδ,l+1; i.e., if (2.4) holds, we set Xδ,l+1 = uδ,l+1.
First, we observe that when δ is very small, in most cases we may have

uδ,l+1 = ul+1, if Xδ,l = Xl, l = 0, 1, . . . . For example, let us assume that the
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transition probabilities of the Markov chain in Figure 2.3 are perturbed to
pδ(i|k) = 0.5−δ, pδ(j|k) = 0.5+δ, and pδ(l|k) = 0, l �= i, j (i.e., Δp(i|k) = −1,
Δp(j|k) = 1, and Δp(l|k) = 0). In this case, if Xδ,l = Xl = k and the same
ξl is used to determine the state transition, then Xδ,l+1 �= Xl+1 if and only
if 0.5 − δ ≤ ξl < 0.5, in which case the original Markov chain X moves to
Xl+1 = i, but the perturbed one Xδ moves to Xδ,l+1 = j. The probability
that this discrepancy occurs is δ, which is very small as assumed, see Figure
2.3.B.
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Fig. 2.5. Constructing a Perturbed Sample Path

Now we start with the same initial state X0 = Xδ,0 to construct the
perturbed path. This procedure is illustrated in Figure 2.5, in which point A
denotes the initial state and path A−B−W−F−C is the given original sample
path X. As we have explained, starting from the same state the transitions
of X and Xδ differ only with a very small probability. In Figure 2.5, it so
happens that with the same random variables ξ0 and ξ1, according to (2.2)
and (2.4), we have X1 = Xδ,1 and X2 = Xδ,2.

Next, we assume that at l = 2, according to (2.2) and (2.4) with the same
random variable ξ2, we determine that X moves to X3 = i (point W ) but
Xδ moves to another state Xδ,3 = j (point G). We say that, because of the
change of P to Pδ, the system has a perturbation (or simply called a “jump”)
from i to j at l = 3. After l = 3, the original sample path follows the path
W −F −C; the perturbed path, however, follows a completely different path
starting from point G. For convenience in understanding, let us generate an
additional sequence of [0, 1)-uniformly and independently distributed random
variables ξδ,3, ξδ,4, . . . , which are also independent of ξ3, ξ4, . . . , to construct
the perturbed path following (2.4) starting from point G at l = 3 until the
perturbed path merges with the original one.

Figure 2.5 shows that the perturbed path Xδ merges with the original one
X at l = L∗

ij = 6. Theoretically, because both sample paths X and Xδ are
ergodic, they will merge in finite steps (i.e., L∗

ij is finite) with probability 1. Let
ξδ,3, ξδ,4, and ξδ,5 be the random variables that determine the transitions at l =
3, 4, and 5 (or equivalently, the states Xδ,4,Xδ,5, and Xδ,6 = X6) on Xδ. Then,
the original path X from X0 to X6 is generated by ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, while the
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perturbed path Xδ from Xδ,0 to Xδ,6 is generated by ξ0, ξ1, ξ2, ξδ,3, ξδ,4, ξδ,5,
with ξδ,3, ξδ,4, ξδ,5 independent of ξ3, ξ4, ξ5.

Starting from the merging point X6 = Xδ,6, the situation is the same
as at the initial point X0 = Xδ,0. Again, we use the same random variables
ξ6, ξ7, . . . , to construct the perturbed path until it differs from the original one.
In Figure 2.5, it so happens that with the same random variables ξ6, ξ7, and
ξ8 according to (2.2) and (2.4) we have X7 = Xδ,7, X8 = Xδ,8 and X9 = Xδ,9.
However, there is a perturbation at l = 10. In other words, according to (2.2)
and (2.4) with the same random variable ξ9, we determine that X and Xδ

move to two different states X10 (point F ) and Xδ,10 (point D), respectively.
After l = 10, the situation is the same as at l = 3. The two sample paths
X and Xδ follow different paths D − C and F − C until they merge again
at l = 13. Xδ,11, Xδ,12, and Xδ,13 are generated by random variables ξδ,10,
ξδ,11, and ξδ,12, which are independent of ξ10, ξ11, and ξ12. Xδ and X merge
again at l = 13. Starting from this merging point Xδ,13 = X13, once again the
situation is the same as at the initial point X0 = Xδ,0.

The above description illustrates how to construct a perturbed sample
path Xδ, given an original sample path X. At any time instant l, if Xδ,l = Xl,
then we use the same random variable ξl to determine the state transitions (or
equivalently Xl+1 and Xδ,l+1) for both X and Xδ by using (2.2) and (2.4);
if it turns out that Xδ,l+1 �= Xl+1, we say there is a perturbation (jump) at
l + 1. After each jump, Xδ is completely different from X until they merge
together. In these segments in which the two sample paths are different, Xδ

is generated independently of X. In Figure 2.5, X and Xδ are generated by
the following sequences of random variables, respectively:

X : ξ0 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 ξ13 ξ14,
Xδ : ξ0 ξ1 ξ2 ξδ,3 ξδ,4 ξδ,5 ξ6 ξ7 ξ8 ξ9 ξδ,10 ξδ,11 ξδ,12 ξ13 ξ14,

where all the random variables ξl, and ξδ,l are independent of each other.
Finally, when δ is very small, perturbations rarely happen (see Figure

2.3.B). In this case, in most time instants, the perturbed sample path Xδ

is the same as the original one X; i.e., in reality, the lengths of the common
segments are much longer than what might be indicated by X0−X2, X6−X9,
and X13 −X14 in Figure 2.5.

2.1.2 Perturbation Realization Factors and Performance Potentials

To calculate performance derivatives, we need to compare the average rewards
of the original and the perturbed Markov chains, η and ηδ, by using the sample
paths X and Xδ constructed above. As shown in Figure 2.5, the difference
between X and Xδ is only reflected in the segments after the perturbations. In
other words, the effect of a change of the transition probability matrix from P
to Pδ on the system performance can be decomposed into the sum of the effects
of the perturbations generated due to the change in P . Therefore, we first need
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to study the effect of a single perturbation on the system performance. We
show that this effect can be measured by a quantity called the perturbation
realization factor.

�
�

�

�

�

�

�

��

�

�

� �

�

�

�����
��	���� 


�
��	�������������

���
�����

���
����

i

j

0 1 2 3
(L∗

ij)
4 5 6

X

X̃

Fig. 2.6. Realization of a Perturbation

Perturbation Realization

Again, we use Figure 2.5 to illustrate the idea. At l = 3, the sample path
is perturbed from state i to state j. This perturbation will certainly affect
the system’s behavior and the system’s performance. As shown in Figure 2.5,
after l = 3, the perturbed Markov chain evolves differently from the original
chain, until, at l = L∗

ij , the perturbed path merges with the original one. The
effect of the perturbation takes place in the period from l = 3 to L∗

ij . In PA
terminology, we say that the perturbation generated at l = 3 is realized by
the system at l = L∗

ij = 6.
Strictly speaking, the perturbed path Xδ follows the perturbed transition

probability matrix Pδ. However, because δ is very small and the length from
the perturbed point l = 3 to the merging point L∗

ij , L∗
ij − 3, is finite (with

probability 1), the probability that there is another perturbation in the period
from l = 3 to L∗

ij (i.e., there are two perturbations in the period from l = 3
to L∗

ij , one at l = 3 the other in the period from l = 4 to L∗
ij) is on the

order δ2. This contributes to the high-order performance derivatives and in
the first-order derivatives we may ignore this high-order term. Therefore, to
calculate the performance derivatives, as δ approaches zero, we may assume
that from l = 3 to L∗

ij the perturbed path Xδ is the same as if it follows the
original transition probability matrix P .

Thus, to quantify the effect of a single perturbation from i to j, we study
two independent Markov chains X = {Xl, l ≥ 0} and X̃ = {X̃l, l ≥ 0} with
X0 = i and X̃0 = j, respectively; both of them follow the same transition
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matrix P (Figure 2.6). Let these two sample paths merge for the first time at
L∗

ij , i.e.,

L∗
ij = min

{
l : l ≥ 0, X̃l = Xl

∣∣∣ X̃0 = j,X0 = i
}

.

Recall that the performance measure is η ≈ FL

L (see (2.3)). Apparently, the
average effect of a single perturbation on η is zero, because L∗

ij is finite with
probability 1. We, therefore, study the effect of a single perturbation on FL

for a large L.
Let E denote the expectation in the probability space spanned by all the

sample paths of both X and X̃. The perturbation realization factor (PRF) is
defined as [62, 70]:

γ(i, j) = E

⎧
⎨

⎩

L∗
ij−1∑

l=0

[
f(X̃l)− f(Xl)

] ∣∣∣∣∣X̃0 = j, X0 = i

⎫
⎬

⎭ , i, j = 1, . . . , S.

(2.5)

Thus, γ(i, j) represents the average effect of a jump from i to j on FL in (2.3).
For convenience, sometimes we may refer to γ(i, j) as the effect of a jump on
the performance η itself, although this effect is on an “infinitesimal” scale.

By the strong Markov property, the two Markov chains X and X̃ behave
similarly statistically after L∗

ij . Thus,

lim
L→∞

E

⎧
⎨

⎩

L−1∑

l=L∗
ij

[
f(X̃l)− f(Xl)

] ∣∣∣∣∣X̃0 = j, X0 = i

⎫
⎬

⎭ = 0.

Therefore, (2.5) becomes

γ(i, j) = lim
L→∞

E

{
L−1∑

l=0

[
f(X̃l)− f(Xl)

] ∣∣∣∣∣ X̃0 = j, X0 = i

}

= lim
L→∞

E
[
F̃L − FL

∣∣∣ X̃0 = j, X0 = i,
]
, i, j = 1, . . . , S. (2.6)

Essentially, the perturbation realization factors use the difference in the sums
of the rewards on the perturbed path and the original one to measure the
effect of a single perturbation.

The matrix Γ := [γ(i, j)]Si,j=1 ∈ RS×S is called a perturbation realization
factor (PRF) matrix. From (2.5), we have
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γ(i, j) = f(j)− f(i) +
S∑

i′=1

S∑

j′=1

E

⎧
⎨

⎩

L∗
i′j′−1∑

l=1

[
f(X̃l)− f(Xl)

]
∣∣∣∣∣∣
X̃1 = j′,X1 = i′

⎫
⎬

⎭

× P
(
X̃1 = j′,X1 = i′

∣∣∣X̃0 = j,X0 = i
)

= f(j)− f(i) +
S∑

i′=1

S∑

j′=1

p(i′|i)p(j′|j)γ(i′, j′).

By writing this in a matrix form, we have the following PRF equation [70]

Γ − PΓPT = F, (2.7)

where F = efT − feT .

If F is a Hermitian matrix, then (2.7) is called the Lyapunov equation in the
literature [13, 14, 162, 174]. (A Hermitian matrix, also called a self-adjoint
matrix, is a square matrix that is equal to its own conjugate transpose. Thus, a
real Hermitian matrix is a symmetric matrix.) The PRF equation differs from
the Lyapunov equation because F is a skew-symmetric matrix, FT = −F .

Performance Potentials

From (2.6), we have γ(i, i) = 0 for any i = 1, . . . , S, and γ(i, j) = −γ(j, i),
or ΓT = −Γ ; i.e., Γ is skew-symmetric. In addition, from (2.6), we can easily
prove

γ(i, j) = γ(i, k) + γ(k, j), i, j, k = 1, . . . , S. (2.8)

This is the same equation as that for the differences of potential energies in
physics. This observation motivates the following analysis: Let us fix any state
denoted as k∗ ∈ S. Then, (2.8) becomes

γ(i, j) = γ(i, k∗) + γ(k∗, j) = γ(k∗, j)− γ(k∗, i), i, j = 1, . . . , S.

Define gk∗(j) = γ(k∗, j). Then,

γ(i, j) = gk∗(j)− gk∗(i), i, j = 1, . . . , S. (2.9)

For any two states k∗
1 and k∗

2 , we have

gk∗
2
(j)− gk∗

1
(j) = γ(k∗

2 , k
∗
1), j = 1, . . . , S,

which does not depend on j. This means that if we choose a different k∗, the
resulting gk∗(j)’s differ by only the same constant for all j ∈ S. With this in
mind, we omit the subscript k∗ and rewrite (2.9) as
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γ(i, j) = g(j)− g(i), i, j = 1, . . . , S. (2.10)

g(i) is called the performance potential (or simply the potential) of state i, and
gk∗(i) denotes a particular version of the potential. (The word “potentials”
have been used in the literature in similar contents, e.g., [154, 168].) Just as
in physics, different versions of the potentials may differ by a constant. Let
g = (g(1), . . . , g(S))T . Then, (2.10) becomes

Γ = egT − geT . (2.11)

If g is a potential (vector), so is g + ce for any real constant c. For simplicity,
we use the same notation g for different versions of the potentials and keep
in mind that potential g in different expressions may differ by a constant.
A physical interpretation of the performance potentials compared with the
potential energy is illustrated in Figure 2.7.

gA gB gD gC

A

B

C

D

γBD

γAD

γAC
g(1)

g(2)

g(3)

g(4)

γ(1,3)
γ(2,3)

γ(2,4)

States1 2 3 4

Potential energy: gA, gB , gC , gD

(may be infinity)
The relative values are finite:

γAC = gC − gA

γBD = gD − gB

Potentials g(1), g(2), g(3), g(4)
(may be infinity)

The realization factors are finite:
γ(1, 3) = g(3) − g(1)
γ(2, 4) = g(4) − g(2)

Fig. 2.7. Physical Interpretation of Potential Energy and Performance Potentials

Substituting (2.11) into (2.7), we obtain

e[(I − P )g − f ]T = [(I − P )g − f ]eT ,

i.e., e[(I−P )g−f ]T is a symmetric matrix. Thus, we must have (I−P )g−f =
ce, where c is a constant. Left-multiplying both sides of this equation by π
and using π = πP , we get c = −πf = −η. Finally, we have
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(I − P )g + ηe = f. (2.12)

This is called the Poisson equation. Its solution is unique only up to an additive
constant; i.e., if g is a solution to (2.12), then for any constant c, g+ ce is also
a solution. To write (2.12) for each component, we have

g(i) = f(i)− η +
∑

j∈S
p(j|i)g(j).

This equation has a clear interpretation: The long-term contribution of state
i to the average performance, g(i), equals its one-step contribution at the
current time, f(i) − η, plus the expected long-term “potential” contribution
of the next state. Equation (2.10) shows that the effect of a perturbation from
state i to j (the perturbation realization factor γ(i, j)) equals the difference
in the long-term contributions of these two states.

One of the ways to specify a solution to (2.12) is to normalize it by setting
πg = η. In this case, (2.12) takes the form

(I − P + eπ)g = f.

It is shown in Appendix B.2 that the eigenvalues of (I − P + eπ) are {1, 1−
λ2, . . . , 1−λS}, where λi with |λi| < 1, i = 2, . . . , S, are the eigenvalues of the
transition probability matrix P [20]. Therefore, (I −P + eπ) is invertible and
the eigenvalues of (I−P+eπ)−1 are {1, 1

1−λ2
, . . . , 1

1−λS
}, |λi| < 1, i = 2, . . . , S.

Therefore, we have
g = (I − P + eπ)−1f. (2.13)

Sample-Path-Based Formulas

The matrix (I − P + eπ)−1 is called the fundamental matrix [202]. Because
the eigenvalues of P − eπ, 0, λ2, . . . , λS , lie in the unit circle (see Appendix
B.2), we can expand the fundamental matrix into a Taylor series:

(I − P + eπ)−1 =
∞∑

k=0

(P − eπ)k = I +
∞∑

k=1

(P k − eπ). (2.14)

Thus, from (2.13), we have

g = f +
∞∑

k=1

(P k − eπ)f.
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Note that from (A.3), the (i, j)th entry of P k is p(k)(j|i) = P(Xk = j|X0 = i).
Then, from (2.14), we have

g(i) = lim
L→∞

{
E

[
L−1∑

l=0

f(Xl)
∣∣∣X0 = i

]
− (L− 1)η

}
.

We may get a more convenient version of the potentials by adding a con-
stant −η to every component of g. Thus, we have another version of g:

g = [(I − P + eπ)−1 − eπ]f, (2.15)

for which πg = 0, and

g(i) = lim
L→∞

E

{
L−1∑

l=0

[f(Xl)− η]
∣∣∣X0 = i

}
. (2.16)

The Poisson equation (2.12) can be easily derived from (2.16); see Problem
2.5.

From (2.16), we can derive another sample-path-based formula for γ(i, j).
On a sample path of X starting with X0 = j, define L(i|j) to be the first
passage time of X reaching state i; i.e., L(i|j) = min{l : l ≥ 0,Xl = i|X0 = j}.
Then, we have

γ(i, j) = E

⎧
⎨

⎩

L(i|j)−1∑

l=0

[f(Xl)− η]
∣∣∣X0 = j

⎫
⎬

⎭ . (2.17)

This can be intuitively explained as follows: from (2.16),

γ(i, j) = g(j)− g(i)

= lim
L→∞

{
E

{ L∑

l=0

[f(Xl)− η]
∣∣∣X0 = j

}
− E

{ L∑

l=0

[
f(X̃l)− η

] ∣∣∣X̃0 = i

}}

= lim
L→∞

⎧
⎨

⎩E

{[
L(i|j)−1∑

l=0

[f(Xl)− η] +
L∑

L(i|j)
[f(Xl)− η]

]∣∣∣X0 = j

}

−E

{[
L−L(i|j)∑

l=0

[
f(X̃l)− η

]
+

L∑

L−L(i|j)+1

[
f(X̃l)− η

] ]∣∣∣X̃0 = i

}⎫
⎬

⎭ , (2.18)

where {Xl, l ≥ 0} and {X̃l, l ≥ 0} are two independent Markov chains with the
same transition probability matrix P . Because of the strong Markov property
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and XL(i|j) = i, the second term equals the third term as long as L > L(i|j).
In addition, since liml→∞ E[f(X̃l)] = η, the last term goes to zero as L→∞.
Thus, (2.18) leads to (2.17). The idea is explained in Figure 2.8: In region
(II), both X and X̃ are statistically identical because X̃0 = XL(i|j) = i; the
mean of f(Xl) − η on X̃ in region (III) goes to zero as L → ∞. Thus, the
only term left in the difference g(j) − g(i) is the summation on X in region
(I). For a detailed proof, see [62].

�

�

X0 = j X4 = i

X̃0 = i

(I) (II) (III)

X

X̃0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

L(i|j) = 4

L = 11

L = 11L − L(i|j) = 7

Fig. 2.8. An Explanation for (2.17)

In summary, the perturbation realization factor γ(i, j), i, j ∈ S, measures
the “infinitesimal” effect of a perturbation from state i to j on the average
reward η (more precisely, it measures the effect on FL for L >> 1). From
the physical meaning, the performance potential g(i), i = 1, . . . , S, measures
the long-term “potential” contribution of state i to η. Similar to the potential
energy in physics, only the differences in the different g(i)’s are important for
performance sensitivities.

Finally, the reward function can be defined as f(i, j), i, j ∈ S; i.e, the
system gains a reward f(i, j) when it is in state Xl = i and moves to state
Xl+1 = j, l = 0, 1, . . . . The average reward is defined as

η = lim
L→∞

1
L

L−1∑

l=0

f(Xl,Xl+1).

In this case, if we use the average

f(i) :=
S∑

j=1

p(j|i)f(i, j)

as the reward function, all the results developed in this and the remaining
sections for PA of Markov chains hold.

2.1.3 Performance Derivative Formulas

To derive the performance derivative dηδ

dδ at policy (P, f) along any direction
ΔP , we consider a sample path X with a transition probability matrix P
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consisting of L, L >> 1, transitions. Among these transitions, on average,
there are Lπ(k) transitions at which the system is in state k. Each time
when X visits state i after visiting state k, because of the change from P to
Pδ = P + δΔP , the perturbed path Xδ may have a jump, denoted as from
state i to state j (i.e., after visiting k, X moves to i and Xδ moves to j), as
shown in Figure 2.5. For convenience, we allow i = j as a special case. A “real
jump” (with i �= j) happens rarely. Denote the probability of a jump from i
to j after visiting state k as p(i, j|k). We have

p(i, j|k) = p(i|k)pδ(k, j|k, i),

where pδ(k, j|k, i) denotes the conditional probability that Xδ moves from
state k to state j given that X moves from state k to i. By definition, we have∑S

j=1 pδ(k, j|k, i) = 1. Therefore,

S∑

j=1

p(i, j|k) = p(i|k). (2.19)

Similarly,
S∑

i=1

p(i, j|k) = pδ(j|k), (2.20)

and
∑S

i,j=1 p(i, j|k) = 1. On average, in the L transitions on the sample path,
there are Lπ(k)p(i, j|k) jumps from i to j following the visit to state k. As
discussed in Section 2.1.2, each such jump has on average an effect of γ(i, j)
on FL.

A real jump happens extremely rarely as δ → 0. As discussed in Section
2.1.2, the probability that the Markov chain jumps at l = 3 and that there
is another jump of Xδ from l = 4 to L∗

ij (or equivalently, Xδ would move
differently if it followed P from l = 3 to L∗

ij) is on the order of δ2; the effect of
such a situation can be ignored for performance derivatives. Therefore, we may
assume that, from l = 3 to L∗

ij and in other periods after each jump before
merging, Xδ, generated according to Pδ, is the same as following P . Thus, on
average, the total effect on FL due to the change in P to Pδ = P + δΔP is

E(Fδ,L − FL)

≈
S∑

k=1

[
S∑

i,j=1

Lπ(k)p(i, j|k)γ(i, j)

]

=
S∑

k=1

{
S∑

i,j=1

Lπ(k)p(i, j|k)[g(j)− g(i)]

}

=
S∑

k=1

Lπ(k)

{
S∑

j=1

[
g(j)

S∑

i=1

p(i, j|k)
]
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−
S∑

i=1

[
g(i)

S∑

j=1

p(i, j|k)
]}

. (2.21)

From (2.19) and (2.20), (2.21) becomes

E(Fδ,L − FL) ≈
S∑

k=1

Lπ(k)

⎧
⎨

⎩

⎡

⎣
S∑

j=1

pδ(j|k)g(j)

⎤

⎦−
[

S∑

i=1

p(i|k)g(i)

]⎫⎬

⎭

=
S∑

k=1

Lπ(k)

⎧
⎨

⎩

S∑

j=1

[pδ(j|k)− p(j|k)]g(j)

⎫
⎬

⎭

= Lπ(Pδ − P )g = Lπ(ΔP )δg.

Thus,

ηδ − η = lim
L→∞

1
L
E(Fδ,L − FL) ≈ π(ΔP )δg. (2.22)

Finally, letting δ → 0, we obtain the performance derivative formula

dηδ

dδ

∣∣∣
δ=0

= π(ΔP )g. (2.23)

Strictly speaking, the approximation in (2.21) is not accurate (the differ-
ence of both sides is on the order of o(L), which may not be small for a large
L). It is accurate only after both sides of (2.21) are divided by L, resulting in
(2.22). Nevertheless, (2.21) provides a good intuition.

From (2.11), we have πΓ = gT − (πg)eT . Thus, from (2.23), we get

dηδ

dδ

∣∣∣
δ=0

= π(ΔP )ΓTπT . (2.24)

Note that g, Γ , and π can be estimated on a single sample path of a
Markov chain with transition matrix P ; thus, given any ΔP , the performance
derivative along the direction ΔP can be obtained by (2.23) or (2.24) using
the sample path-based estimates of π and g or Γ . Algorithms can be developed
for estimating the performance derivative based on a single sample path using
(2.23) without estimating each component of g; see Chapter 3.

Finally, (2.23) can be easily derived by using the Poisson equation (2.12).
Let P ′ be the transition probability matrix of another irreducible Markov
chain defined on the same state space S, and let η′ and π′ be its corresponding
performance measure and steady-state probability, respectively. Multiplying
both sides of (2.12) on the left by π′ and using π′e = 1 and π′ = π′P ′, we
obtain the performance difference formula:
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η′ − η = π′(ΔP )g. (2.25)

Taking P ′ as Pδ = P + δ(ΔP ) and η′ as ηδ in (2.25), we get

ηδ − η = πδδ(ΔP )g.

Letting δ → 0, we obtain (2.23) (it is easy to see limδ→0 πδ = π). Thus, the
performance derivative formula (2.23) follows directly from the Poisson equa-
tion (2.12). However, our PA-based reasoning intuitively explains the physical
meaning of the realization factors and the potentials. It clearly illustrates
the nature of the performance derivatives: They can be constructed by using
the potentials as building blocks. More importantly, this PA-based construc-
tion approach can be used in constructing performance derivative formulas
for other non-standard problems in which the special features of the system
can be utilized. New optimization schemes can be developed for such special
systems. We discuss these problems in Chapters 8 and 9.

So far, we have assumed that f does not change. Suppose that the reward
function associated with P ′ is f ′ and, in addition to the change of P to Pδ,
f also changes to fδ = f + δΔf , Δf = f ′ − f . Then, it is easy to obtain the
performance derivative formula

dηδ

dδ

∣∣∣
δ=0

= π[(ΔP )g + Δf ]. (2.26)

The performance difference formula (2.25) becomes

η′ − η = π′[(ΔP )g + Δf ]. (2.27)

The difference between (2.23) (or (2.26)) and (2.25) (or (2.27)) is that π in
(2.23) is replaced by π′ in (2.25).

With realization factors, we have

dηδ

dδ

∣∣∣
δ=0

= π
[
(ΔP )ΓTπT + Δf

]
(2.28)

and
η′ − η = π′ [(ΔP )ΓTπT + Δf

]
. (2.29)

Finally, sometimes it may be useful to specifically denote the two policies
in performance sensitivity analysis as (Ph, fh) and (P d, fd) (instead of (P ′, f ′)
and (P, f)). With these notations, (2.26) becomes
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dηδ

dδ

∣∣∣∣
δ=0

= πd[(ΔP )gd + Δf ]

= πd[(Ph − P d)gd + (fh − fd)],

where ηδ is the performance of (Pδ, fδ), with Pδ = P d +δΔP , ΔP = Ph−P d,
fδ = fd + δΔf , and Δf = fh − fd.

2.1.4 Gradients with Discounted Reward Criteria

In this subsection, we show that the idea of performance potentials and the
performance derivative formula can be extended to Markov chains with dis-
counted reward criteria.

Consider an ergodic Markov chain X = {Xl, l ≥ 0} with transition prob-
ability matrix P and reward function f . Let β, 0 < β ≤ 1, be a discount
factor. For 0 < β < 1, we define the discounted reward as a column vector
ηβ = (ηβ(1), . . . , ηβ(S))T with

ηβ(i) := (1− β)E

[ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

]
. (2.30)

The factor (1 − β) in (2.30) is used to obtain the continuity of ηβ at β = 1.
We show that the long-run average reward discussed in the last subsection
can be viewed as a special case when β → 1 and therefore we denote η1 := ηe.
Also, the weighting factors in (2.30) are normalized:

∑∞
l=0(1− β)βl = 1. In a

matrix form, Equation (2.30) is

ηβ = (1− β)
∞∑

l=0

βlP lf = (1− β)(I − βP )−1f, 0 < β < 1. (2.31)

The second equality in (2.31) holds because for 0 < β < 1, all the eigenvalues
of βP are within the unit circle [20]. From (2.39) given below, we know that
limβ↑1 ηβ exists and we have

η1 := lim
β↑1

ηβ = ηe, (2.32)

with η = πf being the average reward.

β-Potentials

The discounted Poisson equation is defined as

(I − βP + βeπ)gβ = f, 0 < β ≤ 1. (2.33)
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gβ is called the β-potential. When β = 1, it is the standard Poisson equation
(2.12). Thus, the 1−potential is simply the potential (2.13) and is denoted as
g := g1. From (2.33), we have

gβ = (I − βP + βeπ)−1f

=

[ ∞∑

l=0

βl(P − eπ)l

]
f

=

{
I +

[ ∞∑

l=1

βl(P l − eπ)

]}
f, 0 < β ≤ 1. (2.34)

The above expansion holds because all the eigenvalues of P − eπ are in the
unit circle. In particular, by setting β = 1 we obtain (2.14).

It is easy to verify the following equations:

π(I − βP + βeπ)−1 = π, (2.35)

(I − βP + βeπ)−1e = e,

(I − βP )−1e =
1

1− β
e, (2.36)

and
(I − βP )−1 = (I − βP + βeπ)−1 +

β

1− β
eπ. (2.37)

Equation (2.37) is obtained by using (2.36), (2.35), and the following equation

(I − βP )−1(I − βP + βeπ) = I + (I − βP )−1βeπ.

In addition, we have
lim
β↑1

gβ = g1,

πgβ = πf. (2.38)

From (2.37), we obtain

lim
β↑1

(1− β)(I − βP )−1 = eπ. (2.39)

Performance Sensitivities

Suppose that the transition matrix P and the reward function f change to P ′

and f ′, respectively, with P ′ being another irreducible and aperiodic transition
matrix. From (2.31), we have

η′β − ηβ = (1− β)(f ′ − f) + β(P ′η′β − Pηβ)
= (1− β)(f ′ − f) + β(P ′ − P )ηβ + βP ′(η′β − ηβ).
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This leads to

η′β − ηβ = (1− β)(I − βP ′)−1(f ′ − f) + β(I − βP ′)−1(P ′ − P )ηβ . (2.40)

From (2.31) and (2.37), we obtain

ηβ = (1− β)gβ + βηe. (2.41)

Substituting this into the right-hand side of (2.40) and noting that (P ′ − P )
e = 0, we obtain the performance difference formula for the discounted reward
criterion:

η′β−ηβ = (1−β)(I−βP ′)−1[(βP ′gβ +f ′)− (βPgβ +f)], 0 < β < 1.
(2.42)

Finally, as a special case, letting β → 1 in (2.42) and using (2.39), we
obtain the performance difference formula for the long-run average reward
(2.27):

η′ − η = π′[(P ′g + f ′)− (Pg + f)].

Now, suppose that P changes to Pδ = P + δΔP , ΔP = P ′ − P , and f
changes to fδ = f + δΔf , Δf = f ′ − f , 0 < δ < 1. Taking Pδ as the P ′ in
(2.42), we have

ηβ,δ−ηβ = (1−β)(I−βPδ)−1[(βPδgβ+fδ)−(βPgβ+f)], 0 < β < 1. (2.43)

Letting δ ↓ 0, we obtain the performance derivative formula for the discounted
reward criterion:

dηβ,δ

dδ

∣∣∣
δ=0

= (1− β)(I − βP )−1(βΔPgβ + Δf), 0 < β < 1. (2.44)

When β ↑ 1, this equation reduces to (2.26).
From (2.41) and (2.44), we have

dηβ,δ

dδ

∣∣∣
δ=0

= (I − βP )−1[βΔPηβ + (1− β)Δf ], 0 < β < 1.

Similarly, from (2.41) and (2.43), we have
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ηβ,δ − ηβ = (I − βPδ)−1[βΔPηβ + (1− β)Δf ], 0 < β < 1.

All the applications of the performance potentials gβ in optimization de-
pend only on the differences of the components of gβ . In other words, we can
replace gβ with gβ + ce, where c is any constant. These are different versions
of the β-potential, and for simplicity, we will use the same notation gβ to de-
note them. In particular, the performance difference and derivative formulas
(2.42) and (2.44) hold when gβ is replaced by gβ + ce. Therefore, we may add
a constant vector −ηe to (2.34) and obtain a sample-path-based expression
for the β-potential (cf., (2.16)) as follows:

gβ(i) = lim
L→∞

E

{
L−1∑

l=0

βl[f(Xl)− η]
∣∣∣X0 = i

}

= E

{ ∞∑

l=0

βl[f(Xl)− η]
∣∣∣X0 = i

}
, 0 < β ≤ 1, (2.45)

in which we have exchanged the order of limL→∞ and “E”. Of course, for
0 < β < 1, we can also discard the constant term (

∑∞
l=0 βl)η and obtain

gβ(i) = E

{[ ∞∑

l=0

βlf(Xl)
]∣∣∣X0 = i

}
. (2.46)

In modern Markov theory, (2.46) is called the β-potential of reward func-
tion f with 0 < β < 1. (In [87], it is called the α-potential, since α is used
as the discount factor there; in this book, we reserve α to denote actions
in MDPs.) Therefore, from (2.16), (2.45), and (2.46), the potential for the
long-run average reward, g(i), is a natural extension of the β-potential from
0 < β < 1 to β = 1; a constant η is subtracted from each term in (2.46) to keep
the sum finite when extended to β = 1. This justifies again our terminology
of “potential” for g in the long-run average reward case.

It is clear that the β-potential (2.46) is almost the same as the discounted
reward (2.30). This explains why the concept of the discounted performance
potential is not introduced in many previous works on the optimization
of discounted rewards. Nevertheless, this concept puts the approach to the
discounted-reward optimization problem in the same framework as the ap-
proach to the average-reward problem. This is also true for the policy iteration
approach in MDPs, see Chapter 4.

Similar to the average-reward case, we define the (discounted) PRF matrix
as
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Γβ = egT
β − gβe

T , 0 < β ≤ 1.

From this equation and (2.38), we have

ΓT
β πT = gβ − ηe.

The (discounted) PRF matrix satisfies the (discounted) PRF equations:

− Γβ + βPΓβP
T = −F, (2.47)

where F = efT − feT .

This can be easily verified:

− Γβ + βPΓβP
T = −(egT

β − gβe
T ) + βP (egT

β − gβe
T )PT

= −(egT
β − gβe

T ) + β[e(Pgβ)T − Pgβe
T ]

= −[e(gβ − βPgβ + βeπgβ)T − (gβ − βPgβ + βeπgβ)eT ]
= −F.

Equation (2.47) reduces to the standard PRF equation (2.7) when β = 1.
With the PRF matrix, (2.42) and (2.44) become

η′β − ηβ = (1− β)(I − βP ′)−1[β(ΔP )ΓT
β πT + Δf ], 0 < β < 1,

and

dηβ,δ

dδ
= (1− β)(I − βP )−1[β(ΔP )ΓT

β πT + Δf ], 0 < β < 1.

Again, when β ↑ 1, these two sensitivity formulas reduce to the average-reward
case (2.28) and (2.29).

Figure 2.9 summarizes the results for both the discounted- and average-
reward performance sensitivity analysis with a unified view; all the results of
the average-reward case can be obtained by setting β ↑ 1 from those of the
discounted-reward case.

Intuitions

Finally, we offer an intuitive explanation for the discounted reward derivative
formula (2.44). For simplicity, we assume that Δf = 0. Because the discounted
reward ηβ(i) depends on the initial state i ∈ S, we have to consider the
transient probabilities on the sample path. Consider a sample path X =
{X0,X1, . . .} starting from X0 = i ∈ S. The conditional probability of Xl = k,
l = 1, 2, . . . , given that X0 = i is P(Xl = k|X0 = i) = p(l)(k|i) (cf. (A.3)). Let
pl(u, v|k) be the probability that, given Xl = k, the system has a jump from
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β Discounted
(0,1)

Average
1

Performance

Potentials

Poisson Eq.

Realization
factors

Performance
Difference

Performance
Derivative

ηβ(i)=(1−β)E
[ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

]

ηβ =(ηβ(1), · · · , ηβ(S))T

η= lim
N→∞

1

N
E
[N−1∑

l=0

f(Xl)

∣∣∣X0 = i
]

ηe

gβ(i)=E

∞∑

l=0

{
βl[f(Xl)−η]

∣∣∣X0 = i
}

or gβ(i)=E
[ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

] g(i)=E

∞∑

l=0

{
[f(Xl) −η]

∣∣∣X0 = i
}

(I − βP + βeπ)gβ = f (I − P + eπ)g = f

Γβ = egT
β − gβeT

−Γβ + βPΓβPT = −F
Γ = egT − geT

−Γ + PΓPT = −F

(1 − β)(I − βP )−1

η′
β−ηβ=(1−β)(I−βP )−1

[(βP ′gβ+f ′)−(βPgβ+f)]

dηβ

dδ
=(1−β)(I−βP)−1(βΔPgβ+Δf)

eπ

η′−η=π′[(P ′g+f ′)−(Pg+f)]

dη

dδ
=π(ΔPg+Δf)

Fig. 2.9. A Comparison of Discounted- and Average-Reward Problems

state u to v at time l + 1 (i.e., the original system with transition probability
matrix P moves from Xl = k to Xl+1 = u, but the perturbed system with
Pδ = P + δ(ΔP ) moves from Xl = k to Xl+1 = v). The effect of such a jump,
measured starting from l + 1, is γβ(u, v) = gβ(v) − gβ(u). Since the jump
happens at time l + 1, its effect on the discounted reward ηβ(i) in (2.30) is
βl+1γβ(u, v). Therefore, from the physical meaning, we can decompose Δηβ(i)
into

Δηβ(i) = (1− β)

[ ∞∑

l=0

S∑

k=1

S∑

u=1

S∑

v=1

βl+1P(Xl = k|X0 = i)pl(u, v|k)γβ(u, v)

]

= (1− β)

{ ∞∑

l=0

S∑

k=1

βl+1p(l)(k|i)
S∑

u=1

S∑

v=1

{pl(u, v|k)[gβ(v)− gβ(u)]}
}

.

Similar to (2.19) and (2.20), we have
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S∑

v=1

pl(u, v|k) = p(u|k) and
S∑

u=1

pl(u, v|k) = pδ(u|k).

Thus,

Δηβ(i) = (1− β)

⎧
⎨

⎩

∞∑

l=0

S∑

k=1

βl+1p(l)(k|i)

⎧
⎨

⎩

S∑

j=1

[pδ(j|k)− p(j|k)]gβ(j)

⎫
⎬

⎭

⎫
⎬

⎭ .

In a matrix form, this is

Δηβ = (1− β)

{ ∞∑

l=0

βl+1P l[(ΔP )δgβ ]

}

= (1− β)(I − βP )−1[β(ΔP )δgβ ],

which directly leads to (2.44).

2.1.5 Higher-Order Derivatives and the MacLaurin Series

In this section, we continue our study by exploring the system’s behavior in
the neighborhood of a given policy P in the policy space.

Higher-Order Derivatives

We assume that P changes to Pδ = P + δ(ΔP ), ΔP = P ′ − P , and we
let fδ ≡ f , for simplicity. Denote B = P − I, which can be viewed as an
infinitesimal generator of a Markov process with unit transition rates and a
transition probability matrix P for its embedded chain (see Appendix A.2).
To study the higher-order derivatives with respect to δ, it is convenient to use
short-hand notation defined as

B# = −(−B + eπ)−1 + eπ

= −[(I − P + eπ)−1 − eπ]. (2.48)

B# is called the group inverse of B [202], which satisfies

BB# = B#B = I − eπ, (2.49)

and
B#e = 0, πB# = 0.

The term “group” comes from the following fact. For any probability dis-
tribution π on state space S, define a set of S × S matrices

B := {B : πB = 0, Be = 0}. (2.50)
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It is easy to verify that B is a group (see, e.g., [219] for a definition) with
identity element I − eπ under the operation of matrix multiplication (see
Problem 2.11). Equation (2.49) indicates that B# is indeed the inverse of B
in group B.

With the group inverse, the potential in (2.15) becomes

g = −B#f,

and the performance derivative formula (2.23) takes the form

dηδ

dδ

∣∣∣
δ=0

= π(ΔP )g = π[(ΔP )(−B#)]f.

For the irreducible finite Markov chain with transition matrix Pδ, we have

πδ(I − Pδ) = 0,

and dPδ

dδ = ΔP . By taking derivatives on both sides of this equation with
respect to δ, we have

dπδ

dδ
(I − Pδ) = πδ(ΔP ).

Continuously taking derivatives on both sides of the resulting equations, we
obtain for any n ≥ 1,

dnπδ

dδn
(I − Pδ) = n

dn−1πδ

dδn−1
(ΔP ).

Setting δ = 0 and multiplying both sides of the above equation on the right
by −B# and noting that BB# = I − eπ and πe = 1, we get

dnπδ

dδn

∣∣∣∣
δ=0

= n
dn−1πδ

dδn−1

∣∣∣∣
δ=0

[(ΔP )(−B#)].

Thus,
dnπδ

dδn

∣∣∣∣
δ=0

= n!π[(ΔP )(−B#)]n.

Finally, for any reward function f , we have

dnηδ

dδn

∣∣∣∣
δ=0

= n!π[(ΔP )(−B#)]nf

= n!π[(ΔP )(I − P + eπ)−1]nf, n ≥ 1.
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The MacLaurin Expansion

We note that ηδ is an analytical function of δ. (More precisely, it is a rational
function of δ whose denominator and numerator are both polynomials of δ
with finite degrees. This can be verified by solving πδ(I−Pδ) = 0 and πδe = 1.)
Thus, ηδ has a MacLaurin expansion at δ = 0:

ηδ − η =
∞∑

n=1

1
n!

dnηδ

dδn

∣∣∣∣
δ=0

δn

= π

{ ∞∑

n=1

[(ΔP )(−B#)]nδn

}
f, (2.51)

or equivalently,

ηδ = π

∞∑

n=0

{[(ΔP )(−B#)]nfδn}. (2.52)

Denote the spectrum radius of a matrix W as ρ(W ) (i.e., the largest ab-
solute value of the eigenvalues of W ). Define

r =
1

ρ[(ΔP )(−B#)]
=

1
ρ[(ΔP )(I − P + eπ)−1]

.

Then, for δ < r, the eigenvalues of δ(ΔP )B# are all in the unit circle, and
the summation in (2.52) converges. Therefore, for δ < r, we have

∞∑

n=0

[(ΔP )(−B#)δ]n = [I − δ(ΔP )(−B#)]−1

= [I − δ(ΔP )(I − P + eπ)−1]−1. (2.53)

Next, if we take f = e·i, where e·i is a column vector representing the
ith column of the identity matrix I, then the corresponding performance is
πδe·i = πδ(i), i ∈ S. Thus, from (2.52), we have

πδ(i) = π

∞∑

n=0

{[(ΔP )(−B#)]ne·iδn}.

In matrix form, we have

πδ = π
∞∑

n=0

{[(ΔP )(−B#)]nδn}, δ < r. (2.54)

Thus, from (2.51) we obtain
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ηδ − η = πδδ(ΔP )(−B#)f.

This is consistent with the performance difference formula (2.25). From (2.52),
(2.53), and (2.54), we establish a general form:

ηδ = π

n∑

k=0

[δ(ΔP )(−B#)]kf + π

∞∑

k=n+1

[δ(ΔP )(−B#)]kf

= π

n∑

k=0

[δ(ΔP )(−B#)]kf + πδ[δ(ΔP )(−B#)]n+1f,

δ < r, for any n ≥ 0. (2.55)

The last term in (2.55), πδ[δ(ΔP )(−B#)]n+1f , is the error in taking the
first (n + 1) terms in the MacLaurin series as an estimate of ηδ. Equations
(2.54) and (2.55) hold for δ < r. If r > 1, then we can set δ = 1 in (2.54) and
(2.55) and obtain the performance value for P ′ = P + ΔP as follows

η′ = π

∞∑

k=0

[(ΔP )(−B#)]kf

= π

n∑

k=0

[(ΔP )(−B#)]kf + π′[(ΔP )(−B#)]n+1f, for any n ≥ 0.

The extensions to Markov chains with general state space are in [131, 133].

Numerical Calculations

The saving in computation is significant when we use the MacLaurin series to
calculate the performance for many different (ΔP )’s and δ’s. There is only one
matrix inversion (I − P + eπ)−1 involved. The nth derivative of πδ at δ = 0,
i.e., n!π[(ΔP )(I − P + eπ)−1]n, can be simply obtained by multiplying the
(n− 1)th derivative, i.e., (n− 1)!π[(ΔP )(I − P + eπ)−1]n−1, with the matrix
n(ΔP )(I − P + eπ)−1. For example, πδ in (2.54) can be calculated simply as
follows. First, we set Gδ := δ(ΔP )(I − P + eπ)−1. Then, we

i. solve π = πP and πe = 1 to obtain π, calculate Gδ, and set πδ := π;
ii. recursively calculate πδ := π + πδGδ, until πδ reaches a desired precision.

The matrix (I−P +eπ)−1 can be estimated by analyzing a sample path of
the Markov chain (see, e.g., Problem 3.18 in Chapter 3). Thus, with a sample-
path-based approach, matrix inversion is not even needed. This also implies
that, principally, we can obtain the performance of a Markov system with any
transition probability matrix Pδ by analyzing a sample path of the Markov
system with transition probability matrix P as long as δ < r.
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It is not easy to determine the value of r. However, there exist some upper
bounds (albeit not tight) for ρ[ΔP (−B#)] = 1

r (or lower bounds for r). From
spectrum theory, we have [20]

ρ[ΔP (I − P + eπ)−1] ≤ ||ΔP || × ||(I − P + eπ)−1||,

where || · || denotes the norm of a matrix, which is defined as

||ΔP || = max
all i

∑

j

|Δp(j|i)|.

Thus, if ||ΔP || is not large, then the spectrum radius of (ΔP )(−B#) may be
small. Let s+ = maxall i

∑
j: Δp(i,j)>0[Δp(j|i)]. If s+ ≤ 0.5, then ||ΔP || ≤ 1.

Since ΔP = P ′ − P , at least we have ||ΔP || ≤ 2.
It is, however, not easy to obtain the norm of the fundamental ma-

trix. As shown in Section 2.1.2, the eigenvalues of (I − P + eπ)−1 are
{1, 1

1−λ2
, . . . , 1

1−λS
}, with |λi| < 1, i = 2, . . . , S, and 1 being the eigenval-

ues of P . Thus, we have

ρ(I − P + eπ)−1 =
1

inf{1, |1− λi|, i = 2, . . . , S} .

However, there is no direct link between ρ(I − P + eπ)−1 and ρΔP (I − P +
eπ)−1.

The worst case happens when P has an eigenvalue that is close to 1. If
P ≈ I (I is a reducible matrix and hence cannot be chosen as P ), then
I − P + eπ ≈ eπ, which has an eigenvalue 0. The radius of (I − P + eπ)−1

is thus very large. In this case, the radius of ΔP (I − P + eπ)−1 may be also
very large; i.e., r may be very small.

1 2 3 4 5

1 0.000 0.300 0.200 0.100 0.400
2 0.500 0.000 0.000 0.300 0.200
3 0.200 0.150 0.000 0.150 0.500
4 0.400 0.200 0.150 0.150 0.100
5 0.250 0.250 0.250 0.250 0.000

Table 2.1. The Matrix P

Example 2.1. For illustrative purposes, we study a Markov chain with five
states. The state transition matrix P is listed in Table 2.1; the change of P ,
ΔP , is listed in Table 2.2; and the reward function f is given in Table 2.3. All
the values are arbitrarily chosen with some considerations about generality.
Note that ΔP represents some dramatic changes in P , e.g., p(1|2) changes
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1 2 3 4 5

1 0.100 -0.300 0.100 0.000 0.100
2 -0.500 0.000 0.500 0.000 0.000
3 -0.200 0.100 0.000 0.100 0.000
4 -0.100 0.100 -0.050 0.000 0.050
5 -0.250 0.250 0.000 0.000 0.000

Table 2.2. The Matrix ΔP

1 2 3 4 5

f 10 5 1 15 3
π 0.256 0.192 0.136 0.189 0.228

Table 2.3. f and π

1 2 3 4 5

1 0.803 0.077 0.048 -0.055 0.127
2 0.180 0.858 -0.094 0.079 -0.023
3 -0.048 -0.026 0.900 -0.021 0.196
4 0.112 0.012 0.008 0.949 -0.082
5 0.006 0.039 0.079 0.049 0.827

Table 2.4. The Matrix (I − P + eπ)−1

1 2 3 4 5

1 0.022 -0.249 0.131 -0.026 0.122
2 -0.425 -0.052 0.426 0.017 0.034
3 -0.131 0.072 -0.018 0.114 -0.036
4 -0.059 0.081 -0.055 0.017 0.017
5 -0.156 0.195 -0.036 0.033 -0.038

Table 2.5. The Matrix ΔP (I − P + eπ)−1

from 0.5 to 0, and p(3|2) changes from 0 to 0.5. We calculated the matrices
(I − P + eπ)−1 and ΔP (I − P + eπ)−1, which are listed in Tables 2.4 and
2.5. The eigenvalues of ΔP (I − P + eπ)−1 are 0.3176, -0.3415, 0, -0.0164
+0.0325i, and -0.0164-0.0325i; all of them are inside the unit circle. Thus,
r > 1 and the MacLaurin series converges within δ ≤ 1. (δ > 1 does not make
sense, since for δ > 1, pδ(1|2) < 0). Table 2.6 lists the coefficients of the first
to the tenth terms in the MacLaurin series, i.e., π[ΔP (I − P + eπ)−1]n, for
n = 1, 2, . . . , 10. The coefficients of the terms with orders higher than 10 are
all numerically zeros. Table 2.7 lists the performance values of the Markov
chains with Pδ = P + δΔP , δ = 0.1, 0.2, . . . , 0.9, 1, obtained by using the first
n terms of the MacLaurin series, n = 1, 2, . . . , 10. All these values converge
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1 2 3 4 5

1st -0.14050 -0.00387 0.09417 0.02282 0.02738
2nd -0.01941 0.04907 -0.02399 0.01562 -0.02129
3th -0.01577 -0.00232 0.01869 -0.00184 0.00123
4th -0.00189 0.00547 -0.00334 0.00251 -0.00275
5th -0.00165 -0.00038 0.00210 -0.00029 0.00022
6th -0.00017 0.00060 -0.00041 0.00028 -0.00030
7th -0.00017 -0.00006 0.00024 -0.00004 0.00003
8th -0.00001 0.00007 -0.00005 0.00003 -0.00003
9th -0.00002 -0.00001 0.00003 0.00000 0.00000
10th 0.00000 0.00001 -0.00001 0.00000 0.00000

Table 2.6. The Coefficients of the MacLaurin Series of ηδ

to the actual average reward of the corresponding Markov chains. Note that
after n = 6 the values change very little. The average reward of the original
Markov chain (δ = 0) is 7.1647. ��

n δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 7.0741 6.9836 6.8930 6.8024 6.7118 6.6212 6.5307 6.4401 6.3495 6.2589
2 7.0761 6.9915 6.9108 6.8340 6.7612 6.6924 6.6275 6.5666 6.5096 6.4566
3 7.0759 6.9901 6.9061 6.8229 6.7394 6.6547 6.5677 6.4773 6.3825 6.2822
4 7.0759 6.9901 6.9063 6.8237 6.7416 6.6592 6.5760 6.4914 6.4051 6.3166
5 7.0759 6.9901 6.9063 6.8235 6.7410 6.6576 6.5726 6.4849 6.3933 6.2967
6 7.0759 6.9901 6.9063 6.8236 6.7410 6.6578 6.5731 6.4860 6.3955 6.3009
7 7.0759 6.9901 6.9063 6.8236 6.7410 6.6578 6.5729 6.4855 6.3944 6.2986
8 7.0759 6.9901 6.9063 6.8236 6.7410 6.6578 6.5729 6.4856 6.3946 6.2991
9 7.0759 6.9901 6.9063 6.8236 6.7410 6.6578 6.5729 6.4855 6.3945 6.2988
10 7.0759 6.9901 6.9063 6.8236 6.7410 6.6578 6.5729 6.4855 6.3946 6.2989

Table 2.7. The Performance Calculated by the MacLaurin Series

The next example shows that r may be less than 1.

Example 2.2. Consider

P =
[

0.90 0.10
0.15 0.85

]
,

ΔP =
[
−0.8 0.8
0.8 −0.8

]
,

and f = (1, 5)T . Then we have π = (0.6, 0.4), and

ΔP (I − P + eπ)−1 =
[
−3.2 3.2
3.2 −3.2

]
.
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Its eigenvalues are 0 and -6.4. Therefore, the MacLaurin series converges only
if δ < 1

|−6.4| = 0.156. In fact, as n increases, π[ΔP (I − P + eπ)−1]n goes to
infinity very rapidly. Note that the matrix P in this example is close to I.

The curve in Figure 2.10 shows the performance of the system for δ ∈
[0, 1]. The five points (∗) in the figure show the performance of the system
calculated by the MacLaurin series corresponding to δ = 0.03, 0.06, 0.09, 0.12,
and 0.15. The first four points are the values given by the first 10 terms of
the MacLaurin series, and the fifth point is given by 50 terms. At the first
three points (δ = 0.03, 0.06, 0.09), the MacLaurin series almost reaches the
true value after the first 10 terms (with an error of less than 0.001). The last
point is very close to the convergence range (δ = 0.15 ≈ r = 0.156), and as
shown in the figure, the MacLaurin series does not converge even after 50
terms. In fact, it does converge after 200 terms. ��
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Fig. 2.10. The Performance Compared with MacLaurin Series

Extension to General Function Pθ

Now, let us extend the results to the more general case when the transition
probability matrix is a function of θ denoted as Pθ. We assume that the first
and all the higher-order derivatives of Pθ with respect to θ exist at θ = 0. Set
P0 = P and ΔPθ := Pθ − P . Let the reward function fθ ≡ f for all θ. Let
πθ be the steady-state probability vector of the Markov chain with transition
probability matrix Pθ, and ηθ be its corresponding long-run average reward.
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We may use (2.52) to get an expansion of ηθ. For any fixed θ > 0, we
simply set ΔP = ΔPθ and δ = 1 in (2.52). Assume that θ is small enough so
that ρ[ΔPθ(−B#)] < 1 and therefore expansion (2.52) exists. Then, we have

ηθ = π

∞∑

n=0

{[ΔPθ(−B#)]nf}. (2.56)

Equation (2.55) becomes

ηθ = π

n∑

k=0

[ΔPθ(−B#)]kf + πθ[ΔPθ(−B#)]n+1f, for any n ≥ 0.

Note that this expansion is not a MacLaurin series of ηθ in terms of θ. In
fact, ΔPθ has an expansion

ΔPθ =
dPθ

dθ

∣∣∣
δ=0

θ +
1
2!

d2Pθ

dθ2

∣∣∣
δ=0

θ2 + · · · ,

where the derivatives are taken at θ = 0. Substituting it into (2.56), we obtain
the MacLaurin series of ηθ:

ηθ =π

{
I+

[
dPθ

dθ
(−B#)

]
θ+

{
1
2!

d2Pθ

dθ2
(−B#)+

[
dPθ

dθ
(−B#)

]2
}

θ2+· · ·
}
f.

(2.57)
Therefore, we have

dηθ

dθ
= π

dPθ

dθ
(−B#)f = π

dPθ

dθ
g (2.58)

and
d2ηθ

dθ2
= π

{
d2Pθ

dθ2
(−B#) + 2!

[
dPθ

dθ
(−B#)

]2
}

f.

Other higher-order derivatives can be obtained in a similar way.
Benes [19] presented an interesting result on the MacLaurin series of the

call blocking probability in terms of the input call intensity λ in a telecom-
munication network. The results presented in this section are more general
and concise and can be applied on-line when the system is running. Other
related works are in [29], [120], [153], [158], and [267]. In [120], the MacLaurin
series of the moments of the response times in a GI/G/1 queue is derived;
the results are extended to inventory systems in [29], [153], [158]; and [267]
focuses on the expansion of performance measures in queueing systems.
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2.2 Performance Sensitivities of Markov Processes

In this section, we extend the aforementioned sensitivity analysis results to
(continuous-time) Markov processes. Consider an irreducible and aperiodic
(ergodic) Markov process X = {Xt, t ≥ 0} with a finite state space S =
{1, 2, . . . , S} and an infinitesimal generator B = [b(i, j)], where b(i, j) ≥ 0, i �=
j, b(i, i) < 0. Let π be the steady-state probability (row) vector. We have
πe = 1 and

Be = 0, πB = 0.

We can construct an embedded Markov chain (discrete-time) that has
the same steady-state probability as the Markov process X. This is called
uniformization (see Problem A.8). Thus, the sensitivity analysis of a Markov
process can be converted to that of a Markov chain, and then the results in
Section 2.1 can be translated to Markov processes. In this section, however,
we adopt a direct approach, which provides a clear meaning and intuition.

Perturbation Realization

Let f be a reward function on S and also denote a (column) vector f =
(f(1), . . . , f(S))T . The long-run average performance measure of the Markov
process is:

η = πf = lim
T→∞

1
T

E

[∫ T

0

f(Xt)dt

]
,

which exists for ergodic Markov processes, where E denotes the expectation.
To determine the effect of a perturbation (jump) from state i to state j on

the performance η, we study two independent sample paths X and X̃ with
the same infinitesimal generator B, starting from initial states X0 = i and
X̃0 = j, respectively. Let E denote the expectation in the probability space
spanned by all the sample paths of both X and X̃. By the ergodicity of X

and X̃, they will merge together with probability 1. Define

T ∗
ij = inf

{
t : t ≥ 0,Xt = X̃t

∣∣∣X0 = i, X̃0 = j
}

.

By the strong Markov property, after T ∗
ij , the two processes X and X̃

will behave similarly probabilistically. T ∗
ij is just the coupling time of the

two independent Markov processes with different initial states. Readers are
referred to [203] for a survey of the relevant results about coupling.

Now, we define the perturbation realization factor (PRF) as (cf. (2.5))
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γ(i, j) = E

{∫ T∗
ij

0

[f(X̃t)− f(Xt)]dt

∣∣∣∣∣X0 = i, X̃0 = j

}
, i, j ∈ S.

(2.59)

The PRF matrix is Γ := [γ(i, j)]. From the definition, we have

γ(i, j) = −γ(j, i), i, j ∈ S,

or equivalently, Γ is skew-symmetric:

ΓT = −Γ.

γ(i, j) can be written in a more convenient form as shown below. First, for
any T > T ∗

ij , we have

∫ T

0

[f(X̃t)− f(Xt)]dt

=
∫ T∗

ij

0

[f(X̃t)− f(Xt)]dt +
∫ T

T∗
ij

[f(X̃t)− f(Xt)]dt.

Next, because X̃Tij
= XTij

, by the strong Markov property, we have

lim
T→∞

E

{∫ T

T∗
ij

[f(X̃t)− f(Xt)]dt

∣∣∣∣∣X0 = i, X̃0 = j

}
= 0.

Thus,

lim
T→∞

E

{∫ T

0

[f(X̃t)− f(Xt)]dt

∣∣∣∣∣X0 = i, X̃0 = j

}

= E

{∫ T∗
ij

0

[f(X̃t)− f(Xt)]dt

∣∣∣∣∣X0 = i, X̃0 = j

}
,

and from (2.59), we have (cf. (2.6))

γ(i, j) = lim
T→∞

E

{[∫ T

0

f(X̃t)dt−
∫ T

0

f(Xt)dt

]∣∣∣∣∣X0 = i, X̃0 = j

}
,

i, j ∈ S. (2.60)

A rigorous proof of (2.60) involves proving the exchangeability of the order
of limT→∞ and “E”, which follows from the dominated convergence theorem
and the finiteness of f , see [62]. Equation (2.60) indicates that γ(i, j) measures
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the “infinitesimal” effect of a perturbation (“jump”) from state i to state j
on the long-run average reward.

In addition to (2.59) and (2.60), we have another formula that is similar to
(2.17) for Markov chains. On the sample path of a Markov process X starting
with X0 = j, we define its first passage time to state i as T (i|j) = inf{t : t ≥
0,Xt = i|X0 = j}. Then,

γ(i, j) = E

{∫ T (i|j)

0

[f(Xt)− η]dt

∣∣∣∣∣X0 = j

}
. (2.61)

An intuitive explanation is similar to Figure 2.8 for (2.17).
For ergodic Markov processes, the PRF matrix Γ satisfies the following

PRF equation:

BΓ + ΓBT = −F, (2.62)

where F = efT − feT .

Proof. On a Markov process X with X0 = i, we define pt(k|i) = P(Xt =
k|X0 = i) and Pt = [pt(k|i)]i,k∈S . Then, (A.14) gives us

Pt = exp(Bt) =
∞∑

n=0

1
n!

(Bt)n, B0 = I.

It follows that E[f(Xt)|X0 = i] =
∑

k∈S pt(k|i)f(k) is the ith entry of
[exp(Bt)]f . Let X̃ be another independent Markov process starting from
X̃0 = j and define

γT (i, j) = E

{∫ T

0

[f(X̃t)− f(Xt)]dt

∣∣∣∣∣X0 = i, X̃0 = j

}

=
∫ T

0

{
E[f(X̃t)|X̃0 = j]− E[f(Xt)|X0 = i]

}
dt, (2.63)

and ΓT = [γT (i, j)]Si,j=1. Then, from (2.60),

Γ = lim
T→∞

ΓT .

The integrand on the right-hand side of (2.63) equals the difference between
the jth and ith entries of [exp(Bt)]f . Therefore,

ΓT =
∫ T

0

{
efT [exp(Bt)]T − [exp(Bt)]feT

}
dt.
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Using Be = 0 and [exp(Bt)]B = B[exp(Bt)], we obtain

BΓT + ΓTBT

=
∫ T

0

{
efT [exp(Bt)]TBT −B[exp(Bt)]feT

}
dt

= efT

[∫ T

0

[exp(Bt)]Bdt

]T

−
[∫ T

0

[exp(Bt)]Bdt

]
feT

= efT [exp(BT )− exp(0)]T − [exp(BT )− exp(0)]feT , (2.64)

where the variable 0 in exp(0) denotes a matrix whose elements are all zeros.
Therefore, exp(0) = I. For ergodic Markov processes, we have limT→∞ pT (j|i)
= π(j); thus, limT→∞ exp(BT ) = limT→∞ PT = eπ. Furthermore, efT (eπ)T

= (πf)eeT = eπfeT . Letting T → ∞ in (2.64), we obtain the PRF equation
(2.62). ��

If F is a Hermitian matrix, then (2.62) is the continuous-time version of the
Lyapunov equation [162, 174]. However, the continuous-time PRF equation
(2.62) is different from the Lyapunov equation because F here is a skew-
symmetric matrix, FT = −F .

Next, it is easy to see that the solution to (2.62) with the form of (2.65),
specified below, is unique. Suppose that there are two such solutions to (2.62)
denoted as Γ1 = egT

1 − g1e
T and Γ2 = egT

2 − g2e
T . Let W = Γ1 − Γ2 =

ewT − weT , with w = g1 − g2. Then BW + WBT = 0. Because Be = 0, we
have ewTBT −BweT = 0. Multiplying both sides of this equation on the left
by the group inverse B# and using B#B = I − eπ and B#e = 0, we have
(I − eπ)weT = 0. Therefore,

weT = eπweT = (πw)eeT ,

where πw is a constant. From this, we have W = (weT )T − weT = 0, i.e.,
Γ1 = Γ2.

Performance Potentials

From (2.60), we have

γ(i, j) = γ(i, k) + γ(k, j), i, j, k ∈ S.

Similar to the sensitivity analysis of Markov chains, we can define performance
potentials g(i), i ∈ S, as follows:

γ(i, j) = g(j)− g(i), for all i, j ∈ S,

or, equivalently,
Γ = egT − geT , (2.65)
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where g = (g(1), . . . , g(S))T is called a potential vector.
Substituting (2.65) into (2.62), we get e(Bg + f)T = (Bg + f)eT . Thus,

Bg + f = ce, with c being a constant. Because πB = 0, we get c = πf = η.
Thus, the performance potentials satisfy the following Poisson equation:

Bg = −f + ηe. (2.66)

Again, its solution is only up to an additive constant: if g is a solution to
(2.66), so is g + ce for any constant c.

For ergodic Markov processes, the group inverse of B is defined as B# =
(B − eπ)−1 + eπ [202] (cf. (2.48)). We have

BB# = B#B = I − eπ.

By multiplying both sides of (2.66) on the left by B#, we obtain the general
form of its solution

g = −B#f + ce,

where c = πg, which may be any constant. In particular, we can choose a
solution that satisfies c = πg = η. In this case, the Poisson equation (2.66)
becomes

(B − eπ)g = −f,

and its solution is
g = −B#f + ηe.

We may also choose c = πg = 0. Then,

g = −B#f. (2.67)

If we choose c = πg = −η, then

g = −(B + eπ)−1f = −(B# + eπ)f = −B#f − ηe.

For simplicity, we have used the same notation g to denote different versions
of the potentials, which may differ by a constant. We need to keep this in
mind to avoid possible confusion.

Now, let us develop a sample-path-based explanation for B# and g. First,
we have ∫ ∞

0

B[exp(Bt)]dt =
∫ ∞

0

[exp(Bt)]Bdt = −(I − eπ).

From this, using Be = πB = 0, we get

B

{∫ ∞

0

[exp(Bt)− eπ]dt
}

=
{∫ ∞

0

[exp(Bt)− eπ]dt
}

B = −(I−eπ). (2.68)
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Furthermore, we can easily prove that

π

{∫ ∞

0

[exp(Bt)− eπ]dt
}

=
{∫ ∞

0

[exp(Bt)− eπ]dt
}

e = 0.

By multiplying both sides of (2.68) on the left by B#, we obtain

B# = −
∫ ∞

0

[exp(Bt)− eπ]dt

= − lim
T→∞

[ ∫ T

0

exp(Bt)dt− Teπ

]
. (2.69)

From (2.69) and (2.67), and using Pt = exp(Bt), we get

g(i) = lim
T→∞

E

{∫ T

0

[f(Xt)− η]dt
∣∣∣X0 = i

}
.

This is the sample path explanation of the potential g(i) (cf. (2.16)). This is
also consistent with (2.60).

In modern Markov theory [87], the α-potential of a function f is defined
as

g(f)(i) = E

{∫ ∞

0

[exp(−αt)]f(Xt)dt
∣∣∣∣X0 = i

}
, α > 0.

Thus, our definition of the potential can be viewed as an extension of the
classical α-potential to the case of α = 0. To keep the integral finite at α = 0, a
constant term η is subtracted from the integrand (see (2.46) for the discussion
of the discrete-time version).

Performance Derivatives

With the aforementioned results, the performance derivative formulas can be
easily derived. Let B and B′ be two infinitesimal generators on the same
state space S. Suppose that B changes to another infinitesimal generator
Bδ = [bδ(i, j)] = B + δΔB, with δ > 0 being a small real number, ΔB =
B′ − B = [Δb(i, j)]. We have ΔBe = 0. Let Xδ be the Markov process with
infinitesimal generator Bδ. We assume that Xδ is also irreducible. Let πδ be
the vector of the steady-state probabilities of Xδ. The average reward of Xδ

is ηδ = η + Δηδ. The performance derivative along the direction of ΔB is
dηδ

dδ

∣∣
δ=0

= limδ→0
ηδ−η

δ . With this notation, we have dBδ

dδ = ΔB.
Taking derivatives of both sides of πδBδ = 0 at δ = 0, we get

dπδ

dδ

∣∣∣
δ=0

B = −π
dBδ

dδ
= −π(ΔB).
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By multiplying both sides of this equation on the right by B# and using
BB# = I − eπ and dπδ

dδ e = 0, we obtain

dπδ

dδ

∣∣∣
δ=0

= −π(ΔB)B#.

Therefore,
dηδ

dδ

∣∣∣
δ=0

= −π(ΔB)B#f = π(ΔB)g.

Next, by multiplying both sides of (2.62) on the right by πT and using
πB = 0 and πe = 1, we have

BΓπT = feTπT − efTπT = (I − eπ)f.

That is, BΓπT = BB#f . By multiplying both sides of this equation on the
left by B#, we get (I−eπ)ΓπT = (I−eπ)B#f . Using πB# = 0 and πΓπT =
π(egT − geT )πT = 0, we obtain

B#f = ΓπT .

This leads to the performance derivative formula in terms of Γ :

dηδ

dδ

∣∣∣
δ=0

= −π(ΔB)ΓπT .

If, in addition to the changes in B, the reward function f also changes to
fδ = f + δΔf , we have

dηδ

dδ

∣∣∣
δ=0

= π[(ΔB)g + Δf ].

The higher-order derivatives can be derived in a way similar to the Markov
chains:

dnηδ

dδn

∣∣∣
δ=0

= n!π
{
[(ΔB)(−B#)]n−1[(ΔB)(−B#)f + Δf ]

}
. (2.70)

In addition, we have the following MacLaurin expansion:

ηδ = η + π

n∑

k=1

[δ(ΔB)(−B#)]k−1[(ΔB)(−B#)f + Δf ]δ

+ πδ[δ(ΔB)(−B#)]n[(ΔB)(−B#)f + Δf ]δ.

When Δf = 0, this becomes
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ηδ = π

n∑

k=0

[δ(ΔB)(−B#)]kf + πδ[δ(ΔB)(−B#)]n+1f.

Thus, we can use π
∑n

k=0[δ(ΔB)(−B#)]kf to estimate ηδ, and the error in the
estimation is πδ[δ(ΔB)(−B#)]n+1f . All the items in π and B# can be estimated
on a sample path of the Markov process with infinitesimal generator B, see
Problem 3.18.

2.3 Performance Sensitivities of Semi-Markov
Processes∗

In this section, we extend the above PA results to (continuous-time) semi-
Markov processes (SMPs). The previous results on PA of Markov processes
become special cases. This section is based on [57], and we only study the long-
run average-reward problem (for extensions to the discounted-reward problem,
see [57]).

2.3.1 Fundamentals for Semi-Markov Processes∗

We study a semi-Markov process X = {Xt, t ≥ 0} defined on a finite state
space S = {1, 2, . . . , S}. Let T0, T1, . . . , Tl, . . . , with T0 = 0, be the transition
epoches. The process is right continuous so the state at each transition epoch is
the state after the transition. Let Xl = XTl

, l = 0, 1, 2, . . . . Then, {X0,X1, . . .}
is the embedded Markov chain. The interval [Tl, Tl+1) is called a period and
its length is called the sojourn time in state Xl.

The Embedded Chain and the Sojourn Time

The semi-Markov kernel [87] is defined as

p(j; t|i) := P (Xl+1 = j, Tl+1 − Tl ≤ t|Xl = i) ,

which we assume does not depend on l (time-homogenous). Set

p(t|i) :=
∑

j∈S
p(j; t|i) = P(Tl+1 − Tl ≤ t|Xl = i),

h(t|i) := 1− p(t|i),
p(j|i) := lim

t→∞
p(j; t|i) = P(Xl+1 = j|Xl = i),

and
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p(t|i, j) :=
p(j; t|i)
p(j|i) = P(Tl+1 − Tl ≤ t|Xl = i,Xl+1 = j).

Normally, p(i|i) = 0, for all i ∈ S. But, in general, we may allow the process
to move from a state to itself at the transition epoches; in such a case, p(i|i)
may be nonzero and our results still hold. However, a transition from a state
to the same state cannot be determined by observing only the system states
of a semi-Markov process.

The matrix [p(j|i)] is the transition probability matrix of the embedded
Markov chain. We assume that this matrix is irreducible and aperiodic [20].
Let

m(i) =
∫ ∞

0

sp(ds|i) = E[Tl+1 − Tl|Xl = i]

be the mean of the sojourn time in state i. We also assume that m(i) < ∞
for all i ∈ S. Under these assumptions, the semi-Markov process is irreducible
and aperiodic and hence ergodic. Define the hazard rates as

r(t|i) =
d
dtp(t|i)
h(t|i) ,

and

r(j; t|i) =
d
dtp(j; t|i)
h(t|i) .

The latter is the rate at which the process moves from i to j in [t, t+dt) given
that the process does not move out from state i in [0, t).

The Equivalent Infinitesimal Generator

Let pt(j|i) = P(Xt = j|X0 = i). By the total probability theorem, we can
easily derive

pt+Δt(j|i) =
∑

k∈S
pt(k|i)

∫ ∞

0

p̃t(s|k){Ij(k)[1− r(s|k)Δt] + r(j; s|k)Δt}ds,

(2.71)
where Ij(k) = 1 if k = j, Ij(k) = 0 if k �= j; p̃t(s|k)ds is defined as the
probability that, given that the state at time t is k, the process has been
in state k for a period of s to s + ds. This probability depends on k and
therefore may depend on the initial state. Precisely, let lt be the integer such
that Tlt ≤ t < Tlt+1. Then,

p̃t(s|k)ds = P(s ≤ t− Tlt < s + ds|Xt = k). (2.72)

It is proved at the end of this subsection that

lim
t→∞

p̃t(s|k) =
h(s|k)
m(k)

. (2.73)
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Now, set Δt→ 0 in (2.71) and we obtain

dpt(j|i)
dt

= −
∑

k∈S
pt(k|i)

∫ ∞

0

{p̃t(s|k)[Ij(k)r(s|k)− r(j; s|k)]}ds. (2.74)

Since the semi-Markov process is ergodic, when t→∞, we have pt(j|i)→ π(j)
[87] and dpt(j|i)

dt → 0, where π(j) is the steady-state probability of j. Letting
t→∞ on both sides of (2.74) and using (2.73), we get

0 = −
∑

k∈S
π(k)

∫ ∞

0

1
m(k)

{
Ij(k)

d

ds
[p(s|k)]− d

ds
[p(j; s|k)]

}
ds

= −
∑

k∈S
π(k)

{
1

m(k)
[Ij(k)− p(j|k)]

}

= −
∑

k∈S
π(k){λ(k)[Ij(k)− p(j|k)]},

where we define
λ(k) :=

1
m(k)

.

Finally, we have
∑

k∈S
π(k)b(k, j) = 0, for all j ∈ S,

where we define

b(k, j) = −λ(k)[Ij(k)− p(j|k)]. (2.75)

In matrix form, we can write

πB = 0, (2.76)

where π = (π(1), . . . , π(S)) is the steady-state probability vector and B is a
matrix with elements b(k, j). In addition, we can easily verify that

Be = 0.

Equation (2.76) is exactly the same as the Markov process with B as its
infinitesimal generator. Therefore, B in (2.76) is the equivalent infinitesimal
generator for a semi-Markov process. Note that B depends only on m(i) and
p(j|i), i, j ∈ S. This implies that the steady-state probability is insensitive to
the high-order statistics of the sojourn times in any state, and it is independent
of whether the sojourn time in state i depends on j, the state it moves into
from i.
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The Steady-State Probability

We will study the general case where the reward function depends not only
on the current state but also on the next state that the semi-Markov process
moves into. To this end, for any time t ∈ [Tl, Tl+1), we denote Yt = Xl+1,
and study the process {(Xt, Yt), t ≥ 0}. Because the process {Yt, t ≥ 0} is
completely determined by the process {Xt, t ≥ 0}, for notational simplicity,
we still denote the process {(Xt, Yt), t ≥ 0} as

X = {(Xt, Yt), t ≥ 0}. (2.77)

Let π(i, j) be the steady-state probability of (Xt, Yt) = (i, j) and π(j|i)
be the steady-state conditional probability of Yt = j given that Xt = i, i.e.,
π(j|i) = limt→∞ P (Yt = j|Xt = i). (This is different from liml→∞ P (Xl+1 =
j|Xl = i), which is the steady-state conditional probability of the embedded
Markov chain.)

Define

m(i, j) =
∫ ∞

0

sp(ds|i, j) = E[Tl+1 − Tl|Xl = i,Xl+1 = j].

Then, we have

m(i) =
∑

j∈S
p(j|i)m(i, j) =

∫ ∞

0

sp(ds|i). (2.78)

We can prove (see the end of this subsection)

π(j|i) =

∫ ∞
0

sp(j; ds|i)∫ ∞
0

sp(ds|i)
=

p(j|i)m(i, j)
m(i)

. (2.79)

Therefore,

π(i, j) = π(j|i)π(i) = π(i)
p(j|i)m(i, j)

m(i)
, (2.80)

where π(i), i ∈ S, can be obtained from (2.76).

Proofs

A. The Proof of (2.73).
Consider an interval [0, TL], with L >> 1. Let Ik(x) = 1 if x = k and

Ik(x) = 0 if x �= k; and I(∗) be an indicator function, i.e., I(∗) = 1 if the
expression in the brackets holds, I(∗) = 0 otherwise. Let lt be the integer such
that Tlt ≤ t < Tlt+1. From (2.72), by ergodicity, we have

lim
t→∞

p̃t(s|k)ds = lim
TL→∞

∫ TL

0
I(s ≤ t− Tlt < s + ds)Ik(Xt)dt

∫ TL

0
Ik(Xt)dt

. (2.81)
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Let Nk be the number of periods in [0, TL] in which Xt = k. We have

lim
TL→∞

1
Nk

∫ TL

0

Ik(Xt)dt =
∫ ∞

0

sp(ds|k). (2.82)

Next, we observe that, for a fixed s > 0,
∫ TL

0
I(s ≤ t − Tlt)Ik(Xt)dt is the

total length of the time period in [0, TL] in which s ≤ t − Tlt and Xt = k.
Furthermore, among the Nk periods, roughly Nkp(dτ |k) periods terminate
with a length of τ to τ +dτ . For any s < τ , in each of such periods, the length
of time in which s ≤ t− Tlt is τ − s. Thus,

∫ TL

0

I(s ≤ t− Tlt)Ik(Xt)dt ≈ Nk

∫ ∞

s

(τ − s)p(dτ |k),

or

lim
TL→∞

1
Nk

∫ TL

0

I(s ≤ t− Tlt)Ik(Xt)dt =
∫ ∞

s

(τ − s)p(dτ |k).

Therefore,

lim
TL→∞

1
Nk

∫ TL

0

I(s ≤ t− Tlt < s + ds)Ik(Xt)dt

= − lim
TL→∞

1
Nk

[∫ TL

0

I(s + ds ≤ t− Tlt)Ik(Xt)dt

−
∫ TL

0

I(s ≤ t− Tlt)Ik(Xt)dt

]

= − d

ds

[∫ ∞

s

(τ − s)p(dτ |k)
]
ds = [1− p(s|k)]ds = h(s|k)ds. (2.83)

From (2.81), (2.82), and (2.83), we get

lim
t→∞

p̃t(s|k)ds =
h(s|k)ds∫ ∞

0
sp(ds|k)

.

Therefore, (2.73) holds. ��

B. The Proof of (2.79).
Consider a time interval [0, TL], with L >> 1. Let Ni be the number of

periods in [0, TL] in which Xt = i. Then,

lim
TL→∞

1
Ni

∫ TL

0

Ii(Xt)dt =
∫ ∞

0

sp(ds|i).

Let Ii,j(x, y) = 1 if x = i and y = j, and Ii,j(x, y) = 0 otherwise. We have

lim
TL→∞

1
Ni

∫ TL

0

Ii,j(Xt, Yt)dt =
∫ ∞

0

sp(j; ds|i).
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Thus, we have

π(j|i) = lim
TL→∞

∫ TL

0
Ii,j(Xt, Yt)dt

∫ TL

0
Ii(Xt)dt

=

∫ ∞
0

sp(j; ds|i)∫ ∞
0

sp(ds|i)
=

p(j|i)m(i, j)
m(i)

.

Therefore, (2.79) holds. ��

2.3.2 Performance Sensitivity Formulas∗

Consider a semi-Markov process X = {(Xt, Yt), t ≥ 0} (see (2.77)) starting
from a transition epoch T0 = 0 and an initial state X0 = j. We define the
reward function as f(i, j), i, j ∈ S, where f : S × S → R. The long-run
average reward is

η = lim
T→∞

1
T

E

[∫ T

0

f(Xt, Yt)dt
∣∣∣X0 = j

]
,

which does not depend on j because X is ergodic.

The Perturbation Realization Factor

On X with T0 = 0 and X0 = j, denote the instant at which the process moves
into state i for the first time as

T (i|j) = inf{t : t ≥ 0, Xt = i|X0 = j}.

Following the same approach as for the PA of Markov processes (2.61), we
define the perturbation realization factors as (the only difference is that T0 = 0
must be a transition epoch in the semi-Markov case):

γ(i, j) = E

{∫ T (i|j)

0

[f(Xt, Yt)− η]dt

∣∣∣∣∣X0 = j

}
. (2.84)

Define Γ = [γ(i, j)]Si,j=1.
From (2.80) and by ergodicity, we have

η =
∑

i,j∈S
π(i, j)f(i, j) =

∑

i∈S
π(i)f(i) = πf,

where f = (f(1), f(2), . . . , f(S))T , and (for simplicity, we use “f” for both
f(i) and f(i, j))

f(i) =

∑
j∈S p(j|i)f(i, j)m(i, j)

m(i)
. (2.85)

From (2.84), we have
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γ(i, j) = E

{∫ T1

0

[f(Xt, Yt)− η]dt

∣∣∣∣∣X0 = j

}

+ E

{∫ T (i|j)

T1

[f(Xt, Yt)− η]dt

∣∣∣∣∣X0 = j

}

=
∑

k∈S
p(k|j)

{
E

{∫ T1

0

[f(X0, Y0)− η]dt

∣∣∣∣∣X0 = j,X1 = k

}

+E

{∫ T (i|j)

T1

[f(Xt, Yt)− η]dt

∣∣∣∣∣X0 = j,X1 = k

}}

=
∑

k∈S
p(k|j)

{
[f(j, k)− η]E[T1|X0 = j,X1 = k]

+E

{∫ T (i|k)

T1

[f(Xt, Yt)− η]dt

∣∣∣∣∣X1 = k

}}

=
∑

k∈S
p(k|j)

{
[f(j, k)− η]m(j, k)

+ E

{∫ T (i|k)

T1

[f(Xt, Yt)− η]dt

∣∣∣∣∣X1 = k

}}
.

From (2.78) and (2.85), the aforementioned equation leads to

γ(i, j) = m(j)[f(j)− η] +
∑

k∈S
p(k|j)γ(i, k),

or, equivalently,

− [f(j)− η] =
∑

k∈S
{−λ(j)[Ij(k)− p(k|j)]γ(i, k)}

=
∑

k∈E
[b(j, k)γ(i, k)].

In matrix form, this is

ΓBT = −(efT − ηeeT ). (2.86)

Next, on the process X, with T0 = 0 being a transition epoch and X0 = j,
for any state i ∈ S we define two sequences u0, u1, . . . , and v0, v1, . . . , as
follows:

u0 = T0 = 0, (2.87)

vn = inf{t ≥ un,Xt = i},
and
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un+1 = inf{t ≥ vn,Xt = j}, (2.88)

i.e., vn is the first time when the process reaches i after un, and un+1 is the first
time when the process reaches j after vn, n = 0, 1, . . . . Apparently, u0, u1, . . .
are stopping times and Xt is a regenerative process with {un, n = 0, 1, . . .} as
its associated renewal process. By the theory of regenerative processes [87],
we have

η =
E[

∫ u1

u0
f(Xt, Yt)dt]

E[u1 − u0]
=

E[
∫ v0

0
f(Xt, Yt)dt] + E[

∫ u1

v0
f(Xt, Yt)dt]

E[v0] + E[u1 − v0]
.

Thus,

E

{∫ v0

0

[f(Xt, Yt)− η]dt
}

+ E

{∫ u1

v0

[f(Xt, Yt)− η]dt
}

= 0.

By the definition of u0, v0 and u1, the above equation is

γ(i, j) + γ(j, i) = 0;

therefore, the matrix Γ is skew-symmetric

ΓT = −Γ.

Taking the transpose of (2.86), we get

−BΓ = −(feT − ηeeT ).

From the above equation and (2.86), Γ satisfies the following PRF equation

BΓ + ΓBT = −F,

where F = efT − feT .

Performance Potentials

Similar to Equations (2.87) to (2.88), for any three states i, j, k, we define
three sequences u0, u1, . . . ; v0, v1, . . . ; and w0, w1, . . . as follows. u0 = T0 = 0,
X0 = j, vn = inf{t ≥ un,Xt = i}, wn = inf{t ≥ vn,Xt = k}, and un+1 =
inf{t ≥ wn,Xt = j}. By a similar approach, we can prove that

γ(i, j) + γ(j, k) + γ(k, i) = 0.

In general, we can prove that, for any closed circle i1 → i2 → · · · → in → i1
in the state space, we have

γ(i1, i2) + γ(i2, i3) + · · ·+ γ(in−1, in) + γ(in, i1) = 0.
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This is similar to the conservation law of potential energy in physics. There-
fore, we can define a performance potential g(i) in any state and write
γ(i, j) = g(j)− g(i) and

Γ = egT − geT , (2.89)

where g = (g(1), . . . , g(S))T . By substituting (2.89) into (2.86), we get the
Poisson equation:

Bg = −f + ηe.

Similar to the Markov process case, we have different versions of g, which
differ by a constant vector ce. For example, when πg = η, we have

(B − eπ)g = −f, (2.90)

and when πg = 0, we have
g = −B#f.

Finally, a Markov process with transition rates λ(i) and transition prob-
abilities p(j|i) can be viewed as a semi-Markov process whose kernel is
p(j; t|i) = p(j|i){1− exp[−λ(i)t]}. With this special kernel, we have

m(i, j) = m(i) =
1

λ(i)
,

π(i, j) = π(i)p(j|i),
and

f(i) =
S∑

j=1

p(j|i)f(i, j).

The results in this section become the same as those in Section 2.2 for Markov
processes.

Performance Sensitivity Formulas

We have shown that with properly defined g and B, the Poisson equation
and PRF equation hold for potentials and perturbation realization factor ma-
trices, respectively, for semi-Markov processes. Thus, performance sensitivity
formulas can be derived in a way similar to Markov processes, and the results
are briefly stated here.

First, for two semi-Markov processes with B′, η′, f ′ and B, η, f , by mul-
tiplying both sides of (2.90) on the left by π′ and using π′B′ = 0 and πg = η,
we get

η′ − η = π′[(B′ −B)g + (f ′ − f)]
= π′[(B′g + f ′)− (Bg + f)]. (2.91)
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As we shall see in Chapter 4, this equation serves as a foundation for semi-
Markov decision processes. As shown in Chapter 4, policy iteration for semi-
Markov processes can be derived from (2.91).

Next, suppose that B changes to Bδ = B + δΔB, with ΔB = B′−B, and
f changes to fδ = f + δΔf , with Δf = f ′− f . We have ΔBe = 0. ΔB can be
determined by the changes in the characteristics of the semi-Markov process.
For example, if λ(i) = 1/m(i) changes to λ(i)+(Δλ)δ, i = 1, 2, . . . , S, Δλ > 0,
then, according to (2.75), b(i, j) changes to b(i, j)− δ(Δλ)[Ij(i)− p(j|i)]; i.e.,
ΔB = −Δλ(I −P ), P = [p(j|i)]; on the other hand, if P changes to P +ΔP ,
then Δb(i, j) = λ(i)[ΔP (j|i)], i, j = 1, 2, . . . , S. Denote the average reward of
the semi-Markov system with Bδ and fδ as ηδ. We can easily obtain

dηδ

dδ

∣∣∣
δ=0

= π[−(ΔB)B#f + Δf ]

= π[(ΔB)ΓTπT + Δf ].

Sample-path-based expressions for g and Γ can be derived. From (2.84),
with a similar reasoning as in (2.18), we have

γ(i, j) = lim
T→∞

{
E
{∫ T

0

[f(X̃t, Ỹt)− η]dt
∣∣∣X̃0 = j

}

−E
{ ∫ T

0

[f(Xt, Yt)− η]dt
∣∣∣X0 = i

}}
,

where X̃ and X have the same kernel; they are independent but start from
two different initial states, X̃0 = j and X0 = i, respectively, with T0 = T̃0 = 0
being a transition epoch for both X̃ and X. From this equation, we have

g(j) = lim
T→∞

E
{∫ T

0

[f(Xt, Yt)− η]dt
∣∣∣X0 = j

}
. (2.92)

This is the same as in the Markov process case, except that the integral
starts with a transition epoch. The convergence of the right-hand side of (2.92)
can be easily verified by, e.g., using the embedded Markov chain model.

With the equivalent infinitesimal generator, the high-order derivatives are
the same as those for the Markov chains (2.70). Again, all the items in π and
B# can be estimated on a sample path of the semi-Markov process with B;
see Problem 3.18.

Example 2.3. Consider a communication line (or a switch, a router, etc.)
at which packets arrive in a Poisson process with a rate of λ packets per
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second. The packet length is assumed to have a general probability dis-
tribution function Φ(x); the unit of the length is bit per packet. For each
packet, the system manager can choose a transmission rate of θ bits per sec-
ond. Thus, the transmission time for each packet has a distribution function
Φ̃(τ) = P(t ≤ τ) = P(x ≤ θτ) = Φ(θτ). In a real system, θ takes a discrete
value determined by the number of channels; each channel has a fixed amount
of bandwidth. Thus, we can view θ as an action and denote the action space as
{θ1, θ2, . . . , θK}, with θk = kμ, k = 1, 2, . . . ,K, where μ denotes the transmis-
sion rate of one channel in bits per second. Of course, in a theoretical study,
we can also view θ as a continuous variable.

T0 T1 T2 T3 T4

A

B
X

X̃

�
�

�
�

� �

•
•

•
•

•

T0 T1 T2 T3 T4

�

SMP

M/G/1

Fig. 2.11. An M/G/1 Queue and the Embedded SMP

The system can be modelled as an M/G/1 queue; the (physical) state at
time t is N(t) = i with i being the number of customers (packets) in the queue
at time t. Figure 2.11.A illustrates a sample path X = {N(t), t ≥ 0}. For
stability, we require that Kμ > λx̄, where x̄ is the mean length of the packets.
The decisions for actions are made at the beginning of the transmission of
every packet. Thus, we consider the embedded points consisting of all the
service completion times and the arrival times to all the idle periods, denoted
as T0, T1, . . . . Define X̃t = N(Tn) for Tn ≤ t < Tn+1, n = 0, 1, 2, . . . . Then,
X̃ = {X̃t, t ≥ 0} is a semi-Markov process (SMP). Figure 2.11.B illustrates
the embedded SMP corresponding to the sample path in Figure 2.11.A. It is
clear that the following equations hold for X̃:

p(1; t|0) = 1− exp(−λt),

p(t|i) = Φ(θt), i > 0,

and

p(j; dt|i) = P(Xn+1 = j, t ≤ Tn+1 − Tn < t + dt|Xn = i)
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=
[

(λt)j−i+1

(j − i + 1)!
exp(−λt)

]
Φ(θdt), i > 0, i− 1 ≤ j,

where the term in the braces is the probability that there are j− i+1 arrivals
in the period of [0, t).

In the optimization problem, the reward (cost) function usually consists
of two parts: the holding cost f1(i, j) and the bandwidth cost f2(θ). That is,

fθ(i, j) = f1(i, j) + f2(θ).

It is well known that, if in an interval [0, t], there are k arrivals from a Poisson
process, then these k arrivals uniformly distribute over the period (see, e.g.,
[169]). Thus, it is reasonable to take the average number of customers in [0, t],
(i + j)/2, as the holding cost, and we may set

fθ(i, j) = κ1
i + j

2
+ κ2θ, κ1 + κ2 = 1, 0 < κ1, κ2 < 1,

where the first term represents the cost for the average waiting time. The
problem is now formulated in a semi-Markov framework and the results de-
veloped in this section can be applied. ��

Finally, many results about SMPs can be obtained by using the embed-
ded Markov chain method (see, e.g., [243]). It is natural to expect that the
sensitivity analysis can also be implemented using this approach. However,
compared with the embedded-chain-based approach, the approach presented
in this section is more direct and concise and hence the results have a clear in-
tuitive interpretation. In addition, with the embedded approach, the expected
values (time and cost) on a period Tn+1−Tn are used; the sample-path-based
approach used here is easier to implement on-line (e.g., see the definition in
(2.84)).

The discounted reward with a discount factor β > 0 for semi-Markov
processes is defined as

ηβ(i) = lim
T→∞

E

[∫ T

0

β exp(−βt)f(Xt, Yt)dt
∣∣∣X0 = i

]
, T0 = 0. (2.93)

Similar to the discrete case in (2.31), the weighting factor in (2.93) is also nor-
malized:

∫ ∞
0

β exp(−βt)dt = 1. The performance potential for the discounted
reward criterion is

gβ(i) = lim
T→∞

E

{∫ T

0

exp(−βt)[f(Xt, Yt)− η]dt
∣∣∣X0 = i

}
, i ∈ S.

The sensitivity analysis of the discounted reward for semi-Markov processes
involves an equivalent Markov process. We refer readers to [57] for technical
details.
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2.4 Perturbation Analysis of Queueing Systems

The early works on perturbation analysis (PA) focused on queueing systems.
The idea of PA was first proposed in [144] for the buffer allocation problem
in a serial production line and was first studied for queueing networks in
[141]. The special structure of queueing systems, especially the interactions
among different customers or different servers, makes PA a very efficient tool
for estimating the performance derivatives with respect to the mean service
times based on a single sample path. This section contains an overview of the
main results of PA of queueing systems.

The main difference between PA of Markov chains and PA of queueing
systems is that in the former, a perturbation is a “jump” on a sample path
from one state to another due to parameter changes, while, in the latter, it is
a small (infinitesimal) delay in a customer’s transition time. Some queueing
(such as the Jackson-type) networks can be modelled by Markov processes
and therefore the theory and algorithms developed for Markov processes can
be applied. However, because of the special features of a queueing system, the
performance derivatives with respect to service time changes can be obtained
by a much more efficient and more intuitive approach, which applies to non-
Markov queueing systems as well.

The dynamic nature of a system’s behavior is explored more clearly in PA
of queueing systems. Its basic principle can be described as follows: a small
increase in the mean service time of a server generates a series of small delays,
called perturbations, in the service completion times of the customers served
by that server. Each such perturbation of a customer’s service completion
time will cause delays in the service completion times of other customers (at
the same server or at other servers). In other words, a perturbation will be
propagated through the system due to the interactions among customers and
servers. Thus, a perturbation will affect the system performance through prop-
agation. The average effect of a perturbation on the system performance can
be measured by a quantity called the perturbation realization factor (PRF).
Finally, the effect of a change in the mean service time of a server equals the
sum of the effects of all the perturbations generated on the service completion
times of the server due to this change in its mean service time. The above
description is precisely captured by three fundamental rules of PA:

1. Perturbation generation;
2. Perturbation propagation;
3. Perturbation realization.

These rules will be discussed in subsequent subsections. In PA of Markov
chains, the perturbations (jumps) are generated according to (2.2) and (2.4);
the perturbation realization is illustrated by Figure 2.6 and measured by (2.5).
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However, as we will see, the “propagation” effect in Markov chains is not as
explicit as in queueing networks.

Problem Description

Consider a closed Jackson network (cf. Appendix C.2) with M servers and N
customers. The service times of every server in the network are independently
and exponentially distributed. Let s̄i be the mean service time of server i, i =
1, . . . ,M , and let qi,j , i, j = 1, . . . ,M , be the routing probabilities. Q = [qi,j ]
is the routing probability matrix. The system state can be denoted as n =
(n1, n2, . . . , nM ), where ni is the number of customers in server i. For a closed
network with M servers and N customers, we have

∑M
i=1 ni = N . The state

space is S = {all n :
∑M

i=1 ni = N}. The system state at time t is denoted as
N(t) = (n1(t), . . . , nM (t)). The system can be modelled by a Markov process
X = {N(t), t ≥ 0}. Let Tl, l = 0, 1, . . . , be the lth transition time of X,
counting the customer transitions at all the servers. Figure 2.12 illustrates
a sample path of a three-server five-customer closed queueing network. The
vertical dashed arrows signal the customer transitions among servers, and
each of the three staircase-like curves indicates the evolution of a server in the
network.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14T15

Server 3

Server 2

Server 1

Fig. 2.12. A Sample Path of a Closed Queueing Network with M = 3 and N = 5

Let f : S → R be a reward (or cost) function. The system performance is
defined as the long-run average reward

η(f) = lim
L→∞

1
L

∫ TL

0

f [N(t)]dt, w.p.1, (2.94)

where TL is the Lth transition time of the system. In this section, we use the
superscript “(f)” to explicitly denote the dependency of a quantity on f for
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clarity. For closed Jackson networks in which a customer can reach any server
in the network while circulating in the network (irreducible networks), the
state process N(t) is an ergodic Markov process, and the limit in (2.94) exists
with probability 1 and does not depend on the initial state. Set

FL =
∫ TL

0

f [N(t)]dt.

Then, we have

η(f) = lim
L→∞

FL

L
.

With L being the number of customers’ service completions in the period
of [0, TL], the performance measure defined in (2.94) is the customer average.
These types of performance measures cover a wide range of applications. For
example, if f(n) = I(n) ≡ 1 for all n ∈ S, then FL = TL and

η(I) = lim
L→∞

TL

L
=

1
η
, (2.95)

where η = limL→∞
L
TL

is the system throughput (the number of service com-
pletions per unit of time). If f(n) = ni, then FL is the area underneath the
sample path of server i. Let Li be the number of service completions at server
i in [0, TL]. Then,

η(f) = lim
L→∞

FL

L
=

(
lim

L→∞

Li

L

)(
lim

L→∞

FL

Li

)
= viτ̄i,

where vi is the visit ratio of server i (see (C.5) in Appendix C), satisfying
vi =

∑M
j=1 vjqj,i and normalized to

∑M
k=1 vi = 1, and τ̄i is the mean response

time (waiting time + service time) of a customer at server i. Similarly, we
have

η(f) = lim
L→∞

FL

L
=

(
lim

L→∞

TL

L

)(
lim

L→∞

FL

TL

)
= η(I)n̄i,

where n̄i is the average number of customers at server i.
Another type of performance measure is the long-run time-average reward

defined as

η
(f)
T = lim

L→∞

1
TL

∫ TL

0

f [N(t)]dt,

which can be easily converted to customer averages as follows:

η
(f)
T = ηη(f) =

η(f)

η(I)
.

Now suppose that the mean service time of one of the servers, say server
v, changes from s̄v to s̄v + Δs̄v. We call the closed network with s̄i, i =
1, 2, . . . ,M , the original network, and the network with the changed mean
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service time s̄v +Δs̄v and s̄i, i �= v, the perturbed network. A sample path of
the original network is called an original sample path, and a sample path of
the perturbed network is called a perturbed sample path.

Given a sample path of a network, its average reward η(f) can be easily
estimated by simple calculation. The goal of PA is to obtain an estimate for
the performance derivatives dη(f)

ds̄v
, v = 1, 2, . . . ,M , by observing and analyzing

an original sample path. This is shown in Figure 2.13, in which we use θ to
denote a generic parameter.

Observing
or

Simulating

A Sample Path

with

Parameter θ

Performance η(θ)

Performance

Derivative dη(θ)
dθ

Fig. 2.13. The Goal of Perturbation Analysis

2.4.1 Constructing a Perturbed Sample Path

As in Markov chains, the first step in PA of queueing systems is to construct
a perturbed sample path by using an original one.

Suppose that we are given an original sample path with transition times Tl,
l = 0, 1, . . . . Let T ′

l be the lth transition time on the corresponding perturbed
path, l = 0, 1, . . . . Suppose that the lth transition time is a service completion
time of server i. Then, ΔTl := T ′

l − Tl is called the perturbation of server i at
time Tl; it is also called the perturbation of the customer that completes the
service at server i at Tl.

Perturbation Generation

First, we study how the change in the mean service time of a server affects
every customer’s service time at that server. In general, let s̄ be the mean
service time of a server with an exponentially distributed service time. Then,
the service time of a customer at that server, denoted as s, has the following
distribution:

Φ(s) = 1− exp
(
−s

s̄

)
.

In simulation, we use the inverse-transform method to generate the service
times (shown in Figure A.2 and reproduced in Figure 2.14). First, we generate
a uniformly distributed random number ξ in [0, 1). Then, we set
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s = Φ−1(ξ) = −s̄ ln(1− ξ). (2.96)

It is well known that s in (2.96) is exponentially distributed with mean s̄. As-
sume that the mean service time changes to s̄+Δs̄ (for the sake of discussion,
we may assume that Δs̄ > 0). Then, with the same random variable ξ, the
service time in (2.96) changes to

s + Δs = −(s̄ + Δs̄) ln(1− ξ).

Thus, we have

Δs = −Δs̄ ln(1− ξ) =
Δs̄

s̄
s = κs, κ :=

Δs̄

s̄
. (2.97)

That is, the service time of every customer at the perturbed server will increase
by an amount Δs (> 0) shown in (2.97); in other words, the service completion
time of every customer at the server will be delayed by Δs (> 0). We call (2.97)
the perturbation generation rule [142]:

The Perturbation Generation Rule:

At the perturbed server, because of the change in the mean service time
Δs̄, every customer’s service completion time obtains a perturbation of
Δs, shown in (2.97), on the sample path.

This perturbation obtained during a customer’s service period is in addition
to the perturbation(s) previously obtained by the server before the customer
starts its service.

1.0

0 s s + Δs

ξ

Φ(s, θ)

Φ(s, θ + Δθ)

Δs

s = Φ−1(ξ, θ), s + Δs = Φ−1(ξ, θ + Δθ)

Fig. 2.14. The Perturbation Generation Rule
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The inverse-transform method can be used to derive the perturbation gen-
eration rule for other service distributions. Let Φ(s, θ) be the distribution
function of the service times of the customers at a server, which depends on a
parameter θ. With the inverse-transform method, we determine a customer’s
service time by using the inverse function of the distribution function:

s = Φ−1(ξ, θ) = sup{s : Φ(s, θ) ≤ ξ},
where ξ is a uniformly distributed random variable on [0, 1). Suppose that
the distribution parameter θ changes to θ +Δθ. Then, the service time of the
customer changes to

s + Δs = Φ−1(ξ, θ + Δθ).

We have

Δs = Φ−1(ξ, θ + Δθ)− Φ−1(ξ, θ)

≈ ∂Φ−1(ξ, θ)
∂θ

∣∣∣∣
ξ=Φ(s,θ)

Δθ =
∂s

∂θ

∣∣∣∣
ξ=Φ(s,θ)

Δθ. (2.98)

Δs is the perturbation generated during the service period because of Δθ.
The same random variable ξ is used for both s and s + Δs. Pictorially, the
perturbation generation rule is illustrated in Figure 2.14.

In practice, calculating the partial derivative ∂Φ−1(ξ,θ)
∂θ may require a rela-

tively large amount of computation. However, in most applications, such as in
communication systems, the packet length distribution, length = Φ−1(ξ), is
fixed, and one can only change the transition rate μ. The service (transition)
time is s = length

μ = 1
μΦ−1(ξ). Therefore, for service rate μ, we have

Δs ≈ −Δμ

μ2
Φ−1(ξ) = −Δμ

μ
s

= κs, κ = −Δμ

μ
, (2.99)

which is in the same form as (2.97) for the mean service time of the exponential
distribution.

Perturbation Propagation

A perturbation of one customer, or one server, will affect the transition times
of other customers, or other servers, in the network. Figure 2.15 illustrates the
interaction between two servers. Suppose that the first customer in server 1
obtains a perturbation Δ at time T1; i.e., its service completion time is delayed
by Δ. Apparently, the service starting time of the next customer at the same
server will be delayed by Δ and its service completion time will also be delayed
by the same amount Δ at T2. In addition, at T1, because server 2 was idle and
was waiting for a customer arriving from server 1, the service starting time
of server 2 at T1 and its completion time at T3 will also be delayed by Δ. We
summarize the above discussion in two perturbation propagation rules [142]:
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�

�

T1 T2 T3

Δ

Δ Δ

Δ

Δ Δ

Server 2

Server 1

Fig. 2.15. Perturbation Propagation

The Perturbation Propagation Rules:

i. A server keeps its perturbation until it meets an idle period (or the
perturbation of a customer’s service completion time is propagated
to the next customer in the server until the server meets an idle
period).

ii. The perturbation of one server will be propagated to another server
if a customer at the former moves to the latter and terminates an
idle period of the latter server.

The first rule implies that when a server meets an idle period, the server’s
original perturbation is lost. The second rule implies that after the idle period,
the server will acquire a perturbation propagated from another server. That
is, after an idle period, a server’s perturbation always equals that of the server
that terminates the idle period. A special case is illustrated in Figure 2.16, in
which server 1 has a perturbation Δ1 = Δ at T1, but after the idle period,
at T2, the server acquires the perturbation from server 2, which is Δ2 = 0.
Thus, the perturbation Δ1 of server 1 at T1 is lost after the idle period at T2.
This explains how a non-perturbed server can be viewed as a server having a
perturbation 0 in perturbation propagation.

Note that we assume that the perturbation can be as small as we wish
(infinitesimal perturbation). Thus, we can always assume that the perturba-
tion is smaller than the length of the idle period. See Section 2.4.4 for more
details.

Constructing a Perturbed Path

Now we return to the closed Jackson network with M servers and N cus-
tomers. Suppose that we are given a sample path of the original system with
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�
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Δ1

Δ2 = 0

T1 T2

Server 2

Server 1

Fig. 2.16. Perturbation Propagation for Δ = 0

mean service times s̄i, i = 1, 2, . . . ,M , and one server’s (server v) mean service
time is perturbed from s̄v to s̄v + Δs̄v.

From the perturbation generation and propagation rules, we can efficiently
determine the perturbations of all the servers and therefore construct a per-
turbed sample path on an original one without simulating the perturbed sys-
tem again. We may simply generate a perturbation on the original sample
path according to (2.97) whenever a customer completes its service at server
v, and then propagate it along the original sample path according to the two
propagation rules. Note that we can propagate all the perturbations at a server
altogether. This leads to the following simple algorithm for determining the
perturbations of all servers on the sample path at any time:

Algorithm 2.1. (Constructing a Perturbed Sample Path)

Given an original sample path for a closed Jackson network:

i. Initialization: Set Δi := 0, i = 1, 2, . . . ,M ;
ii. (Perturbation generation) At the kth service completion time of

server v, set Δv := Δv + sv,k, k = 1, 2, . . . , sv,k is the service time of
the customer;

iii. (Perturbation propagation) After a customer from server i termi-
nates an idle period of server j, set Δj := Δi, i, j = 1, 2, . . . ,M .

The perturbation of server i is κΔi, i = 1, 2, . . . ,M .

In the algorithm, Δi denotes the (accumulated) perturbation of server i,
i = 1, 2, . . . ,M . The perturbation of every server is updated whenever it starts
a new busy period, and, in addition, the perturbation of the perturbed server
is also updated whenever it completes its service to a customer. Because all
the perturbations generated and propagated are proportional to κ = Δs̄v

s̄v
, at

any time the perturbation at any server in the network must be proportional
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to κ. Therefore, for simplicity, in the algorithm, we use sv,k instead of κsv,k

as the perturbation generated. Thus, the exact perturbation corresponding to
Δs̄v at any server i should be κΔi, i = 1, . . . ,M . The algorithm determines
the perturbations of all the transition times of all servers (i.e., Tl, l = 1, 2, . . .)
at the perturbed path. The transition times of the perturbed path equal those
of the original path plus the perturbation of the corresponding server.

�

Δs1,1

Δs1,1 Δs1,1Δs1,2

Δs1,2

Δs1,3

Δs1,4

Δs2,1

T1,1 T1,2 T1,3 T1,4 T2,1

Fig. 2.17. A Perturbed Sample Path for an M/G/1 Queue

Example 2.4. To illustrate perturbation propagation within the same server,
we consider a single server queue, in which there is no perturbation propaga-
tion among different servers. In such a system, the third step in Algorithm
2.1 is not implemented, and the perturbation of the server is reset to zero
at the beginning of every new busy period. Actually, a single server queue is
an open network, and the arriving customers can be viewed as from a source
that is never perturbed. A sample path of such a single server queue (may be
viewed as an M/M/1 or an M/G/1 queue) and its corresponding perturbed
path constructed by Algorithm 2.1 are shown in Figure 2.17.

The figure illustrates the first busy period of the sample path, in which
there are four customers served by the server. In the kth busy period, the ith
customer’s service time is denoted as sk,i, and its departure time is denoted as
Tk,i, k, i = 1, 2, . . . . At the first customer’s departure time T1,1, a perturbation
Δs1,1 = κs1,1 is generated according to (2.98) or (2.99). This perturbation is
propagated to the departure times of the subsequent customers in the same
busy period, T1,2, T1,3, and T1,4. At T1,2, another perturbation Δs1,2 = κs1,2

is generated; thus, the total perturbation at T1,2 is Δs1,1 + Δs1,2. This per-
turbation propagates to T1,3 and T1,4; and so on. In general, the perturbation
of the ith departure time in the kth busy period is

ΔTk,i =
i∑

l=1

Δsk,l, (2.100)

where Δsk,l = κsk,l is the perturbation of the lth customer’s service time in
the kth busy period, generated according to (2.98) or (2.99). ��
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Figure 2.17 also illustrates a fundamental fact: The simple rules for per-
turbation propagation hold only if the perturbation accumulated at the end
of a busy period is smaller than the length of the idle period following the
busy period. For the time being, we may think that we can always choose Δs̄
or Δθ small enough such that this condition holds. For a rigorous discussion,
see Section 2.4.4.

Example 2.5. Suppose that we are given an original sample path of a three-
server five-customer closed network shown in Figure 2.12, and server 2’s mean
service time is perturbed from s̄2 to s̄2 +Δs̄2. We may construct a perturbed
sample path by following the perturbation generation and propagation rules,
as shown in Figure 2.18. The top figure shows the original path plus the
perturbations at all transition instants; and the bottom figure shows the per-
turbed path thus constructed, in which T ′

l = Tl + ΔTl, with ΔTl being the
perturbation of the transition instant Tl, l = 0, 1, . . . , 15.

There are five perturbations generated, denoted as perturbations Δs1,
Δs2, Δs3, Δs4, and Δs5 (for simplicity, we omitted the subscript denoting
server 2, e.g., we write Δs2,1 = Δs1, etc.) and differentiated by different grays
shown in the figure. The five perturbations are induced during the first five
customers’ service times at the perturbed server, server 2. They are generated
according to the perturbation generation rule (2.98).

As shown in the figure, Perturbation Δs1 obtained at T4 by server 2 is
propagated to server 1 immediately since the customer at server 2 terminates
an idle period of server 1 at T4. This perturbation is also propagated to the
subsequent service completion times of server 2, T6, T7 and T8. At T6, server 2
obtains another perturbation Δs2 for its second customer, resulting in a total
perturbation of ΔT6 = Δs1 +Δs2. Similarly, we have ΔT7 = Δs1 +Δs2 +Δs3

and ΔT8 = Δs1+Δs2+Δs3+Δs4. As shown in the figure, ΔT7 is propagated
to server 3 through an idle period. The perturbation that is propagated to
server 1 at T4, Δs1, is also propagated to the subsequent customers’ service
completion times, T9, T10, T11, and T13, in the same busy period of server 1.
Likewise, the perturbation propagated to server 3 at T7, Δs1 +Δs2 + Δs3, is
also propagated to the subsequent customers’ service completion times, T12

and T15, in the same busy period of server 3.
The perturbation that server 2 acquired in the first busy period ΔT8 =

Δs1 + Δs2 + Δs3 + Δs4 is lost after the idle period starting from T8. Indeed,
at the beginning of the next busy period T11, server 2 acquires a perturbation
ΔT11 = Δs1 through propagation from server 1. There is another perturba-
tion, Δs5, generated during the service time of the first customer in the second
busy period of server 2, resulting in a total perturbation of ΔT14 = Δs1 +Δs5

for server 2 at T14. Note that although the arrival time to server 1 at T8 is
delayed by Δs1 + Δs2 + Δs3 + Δs4, its effect is temporary: it does not affect
any other service completion time at server 1 at all. The same statement holds
for the delays in other arrival times except for those arrivals that start a new
busy period.
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T ′
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Server 2

Server 1

Perturbed Sample Path

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13T14 T15

Server 3

Server 2

Server 1

Original Sample Path with Perturbations

Perturbations: 1: 2: 3: 4: 5:

Fig. 2.18. A Perturbed Sample Path of the Network in Figure 2.12
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Again, the perturbation propagated to server 1 in the second busy period,
Δs1, is lost after the idle period starting from T13. After that, server 1 acquires
a perturbation Δs1 + Δs2 + Δs3 from server 3 through propagation at T15.

It is interesting to note that starting from T7, every server acquires the
perturbation Δs1. We say that Δs1 is realized at T7 by the network. In con-
trast, starting from T9, no server has the perturbation Δs4. We say that Δs4

is lost by the network at T9 (see Section 2.4.2). ��

Calculating the Performance Derivatives

With the perturbed sample path constructed by Algorithm 2.1, the perfor-
mance of the perturbed system can be calculated. As an example, we consider
the system throughput. Recall that TL is the Lth transition time of a queue-
ing system. Assume that L >> 1. Then, the overall system throughput (the
number of customers served by all the servers in the network per unit of time)
is defined as

η = lim
L→∞

L

TL
≈ L

TL
.

In the perturbed system with s̄v changed to s̄v + Δs̄v, it takes TL + ΔTL to
finish the L transitions, with ΔTL = κΔu, κ = Δs̄v

s̄v
, where u denotes the server

for which TL is the service completion time, and Δu is its perturbation at TL

determined by Algorithm 2.1 (in which κ is set to be one). The throughput
of the perturbed system is

η + Δη ≈ L

TL + ΔTL
≈ L

TL
(1− ΔTL

TL
) = η(1− ΔTL

TL
).

Thus, we have

Δη ≈ −η
ΔTL

TL
,

and
s̄v

η

Δη

Δs̄v
≈ − s̄v

Δs̄v

ΔTL

TL
= −Δu

TL
.

Therefore, the elasticity (or the normalized derivative) of η with respect to s̄v

can be estimated on a sample path with PA as follows.

s̄v

η

∂η

∂s̄v
≈ −Δu

TL
, (2.101)

which does not depend on κ!
To obtain the derivatives of the throughput, in addition to the throughput

itself, the algorithm adds only three clauses to the simulation program, one
for perturbation generation, one for perturbation propagation (see Algorithm
2.1), and one for calculating the normalized derivative according to (2.101);
and it adds only about 5% of computation time [141]. The following example
illustrates the accuracy of this algorithm.
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Example 2.6. Consider a closed Jackson network with M = 6, N = 12; the
mean service times of the servers are 30, 40, 50, 55, 45, and 35, respectively;
and the routing probability matrix is

Q =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.00 0.10 0.20 0.15 0.35 0.20
0.25 0.00 0.15 0.10 0.10 0.40
0.35 0.15 0.00 0.25 0.25 0.00
0.25 0.25 0.10 0.00 0.20 0.20
0.00 0.20 0.25 0.15 0.00 0.40
0.40 0.30 0.00 0.15 0.15 0.00

⎤

⎥⎥⎥⎥⎥⎥⎦
.

We ran a simulation for L = 500, 000 transitions and applied the PA Algorithm
2.1 to the simulation. The resulting elasticities of the system throughput with
respect to each mean service time given by (2.101) and the theoretical values
of these elasticities (calculated by (C.19) and (C.15)) are shown in Table 2.8.

��

− s̄i
η

∂η
∂s̄i

i = 1 2 3 4 5 6

PA estimate 0.0906 0.1374 0.1025 0.2131 0.2736 0.1828

Theoretical 0.0915 0.1403 0.0980 0.2087 0.2812 0.1802

Table 2.8. Elasticities in Example 2.6

Now, we consider the average reward defined with any general reward
function f in (2.94):

η(f) = lim
L→∞

1
L

∫ TL

0

f [N(t)]dt = lim
L→∞

FL

L
, (2.102)

where N(t) denotes the state process and

FL =
∫ TL

0

f [N(t)]dt.

The computation of the performance derivative ∂η(f)

∂s̄i
involves more than

that of the derivative of the system throughput ∂η
∂s̄i

. It depends not only on
the final perturbation Δu, as shown in (2.101), but also on the perturbations
of every transition time. We need to modify Algorithm 2.1 as follows:
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Algorithm 2.2. (Calculating the Performance Derivatives)

Given an original sample path for a closed Jackson network:

i. Initialization: Set Δi := 0, i = 1, 2, . . . ,M , and ΔF := 0;
ii. (Perturbation Generation and Propagation) Same as steps ii and

iii in Algorithm 2.1, which determine the perturbations of Tl, ΔTl,
l = 1, 2, . . . ;

iii. (Update ΔF ) At every transition time Tl, l = 1, 2 . . . , set ΔF :=
ΔF + [f(n) − f(n′)]ΔTl, where n = N(Tl−) and n′ = N(Tl) are
the system states before and after the transition, respectively.

Similar to Algorithm 2.1, κ is also set to be one in Algorithm 2.2. Let
ΔFL be the perturbation obtained by the algorithm at TL. Then, the real
perturbation of FL for the system is κΔFL, with κ = Δs̄v

s̄v
. Thus, when L is

sufficiently large, from (2.102), we have Δη(f) = κΔFL

L . From this, we obtain

s̄v

η(I)

∂η(f)

∂s̄v
≈ s̄v

η(I)

Δη(f)

Δs̄v
=

ΔFL

TL
.

Finally, both Algorithms 2.1 and 2.2 can be implemented on line; i.e.,
there is no need to store the history of the sample path. Ref. [64] contains
some simulation examples for Algorithm 2.2, applied to mean response times.

2.4.2 Perturbation Realization

We derived the PA algorithms for performance derivatives in the previous
subsection. In this subsection, we start a more rigorous study of PA.

We first introduce the fundamental concept in PA: the perturbation real-
ization. We show that, on average, the final effect of a single perturbation on
the system performance (more precisely, on FL, L >> 1 in (2.102)) can be
measured by a quantity called the perturbation realization factor. Therefore,
roughly speaking, the effect of a change in a system’s parameter on the perfor-
mance equals the sum of the realization factors of all the perturbations that
are induced by the parameter change. This general principle is the same as
in PA of Markov chains. The difference is that a perturbation for a queueing
system is a small (infinitesimal) delay in time and that for a Markov chain
is a state “jump”. Historically, however, this principle was first proposed for
PA of queueing systems [45, 49, 50, 51, 113, 141], and was extended later to
Markov systems [62, 70].

Perturbation Realization

Consider the M -server closed Jackson network discussed in Section 2.4.1. The
performance is defined as (2.94). To study the effect of a single perturbation
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Fig. 2.19. A Sample Path and its Perturbed Counterpart

on the performance η(f), we assume that at some time, a perturbation Δ is
generated at a server (e.g., in Figure 2.15 a perturbation Δ is generated at
server 1 at T1). As explained in Section 2.4.1, this perturbation will be prop-
agated along a sample path. To study the effect of this single perturbation,
we assume that there is no other perturbation generated on the sample path.
During propagation, some servers in the network acquire this perturbation
(e.g., in Figure 2.15, server 2 obtains a perturbation at T1); others may lose
the perturbation obtained before (e.g., in Figure 2.16, server 1 loses its per-
turbation at T2). During propagation, every server has either perturbation Δ
or perturbation 0 (no perturbation).

If, through propagation, every server in the network acquires the pertur-
bation Δ, we say that the perturbation is realized by the network. After the
perturbation is realized, the perturbed sample path is the same as the original
one except that the entire sample path is shifted to the right by the amount
of Δ. That is, there is an L∗, such that T ′

l = Tl +Δ for all l ≥ L∗. If, through
propagation, every server in the network loses its perturbation (or acquires a
perturbation of 0), we say that the perturbation is lost by the network. After
the perturbation is lost, the perturbed sample path is exactly the same as
the original one. That is, there is an L∗, such that T ′

l = Tl for all l ≥ L∗.
Apparently, whether a perturbation is realized or lost is random and depends
on the sample path.
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The solid lines in Figure 2.19.A illustrate a sample path N(t) of a two-
server two-customer cyclic queueing network consisting of transition instants
T1 to T5. A perturbation Δ is generated at server 1 at T2, which is propagated
to server 2 at T2, and after T2 all the servers have the same perturbation Δ,
and the perturbation is realized by the network. The perturbed sample path
corresponding to this perturbation is shown in Figure 2.19.B.

A closed queueing network is called irreducible if a customer at any
server may visit any other server in the network, either directly, or by go-
ing through other servers. That is, for any pair of i, j ∈ {1, 2, . . . ,M},
there exists a sequence of integers, k1, k2, . . . , km ∈ {1, 2, . . . ,M}, such that
qi,k1qk1,k2 . . . qkm,j > 0. Such a routing probability matrix Q is also called
irreducible. The following theorem indicates that a closed irreducible network
will eventually “settle down” after being perturbed by a small perturbation.

Theorem 2.1. A perturbation in an irreducible closed Jackson network
will either be realized or lost by the network with probability 1.

Proof. Since the network is irreducible, the state process N(t) will visit any
state. In particular, with probability 1 every sample path will eventually visit
state (N, 0, . . . , 0); i.e, all customers are at server 1. If at that time server 1
has the perturbation, then after that time, all the servers will have the same
perturbation; i.e., the perturbation is realized. On the other hand, if at that
time server 1 has no perturbation, then after it all the servers in the network
will have no perturbation; i.e., the perturbation is lost. ��

The probability that a perturbation is realized is called the perturbation
realization probability. It depends on the system state. The realization prob-
ability of a perturbation of server i when the system is in state n is denoted
as c(n, i), n ∈ S, i = 1, 2, . . . ,M .

Example 2.7. In Figure 2.18, the perturbation generated at T4, Δs1, is real-
ized by the network at T7. The perturbation generated at T8, Δs4, is lost at
T11. The other three perturbations, Δs2, Δs3, and Δs5, have not been either
realized or lost at T15. Whether they will be realized or lost depends on the
future evolution of the sample path. ��

Perturbation Realization Factors

The effect of a perturbation on the long-run average reward η(f) defined in
(2.94) can be studied by using the concept of perturbation realization. We
first define the realization factor of a perturbation Δ of server i in state n for
η(f) as (cf. (2.6) for realization factors for Markov chains):
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c(f)(n, i) = lim
L→∞

E

(
ΔFL

Δ

)
= lim

L→∞
E

(
F ′

L − FL

Δ

)

= lim
L→∞

E

{
1
Δ

{∫ T ′
L

0

f [N ′(t)]dt−
∫ TL

0

f [N(t)]dt

}}
, (2.103)

where F ′
L is measured on the perturbed path generated by the propagation

of this perturbation Δ (see Figure 2.19). It is clear that the realization factor
c(f)(n, i) measures the average effect of a perturbation at (n, i) on FL in (2.94)
as L→∞.

Recall that if a perturbation is realized, then there is an integer L∗, such
that T ′

L = TL + Δ for all L ≥ L∗, and if a perturbation is lost, then there
is an L∗, such that T ′

L = TL for all L ≥ L∗. In both cases, there is an L∗

(depending on the sample path) such that

∫ TL

TL∗
f [N(t)]dt−

∫ T ′
L

T ′
L∗

f [N ′(t)]dt = 0,

for all L ≥ L∗ (in Figure 2.19, L∗ = 2). Therefore, (2.103) becomes

c(f)(n, i) = E

{
1
Δ

{∫ T ′
L∗

0

f [N ′(t)]dt−
∫ TL∗

0

f [N(t)]dt

}}
. (2.104)

Thus, c(f)(n, i) defined in (2.103) is finite with probability 1 (cf. (2.5) for
Markov chains).

Next, we study the effect of two or more perturbations at different servers.
Consider a sample path of a closed network consisting of M servers. Suppose
that at time t = 0, both server 1 and server 2 obtain a perturbation denoted as
Δ1 and Δ2, respectively, with the same size Δ1 = Δ2 = Δ. Let us propagate
Δ1 and Δ2 separately along the sample path. First, we consider the propaga-
tion of Δ1 at server 1. During the propagation, we use a 0-1 row vector w1(t)
to denote which server has the perturbation at time t ∈ [0,∞). Specifically,
we define w1,i(t) = 1 if server i has the perturbation at time t, w1,i(t) = 0
if otherwise, where w1,i(t) is the ith component of w1(t). Thus, initially the
situation is represented by the vector w1(0) = (1, 0, 0, . . . , 0). According to
the propagation rules, when server i terminates an idle period of server j,
server i’s perturbation (either 0 or Δ) will be propagated to server j. This is
equivalent to simply setting w1,j := w1,i after the propagation.

Similarly, the propagation of the perturbation Δ2 starts with the vector
w2(0) = (0, 1, 0, . . . , 0). We combine both vectors w1(0) and w2(0) together as
an array [

1 0 0 0 . . . 0
0 1 0 0 . . . 0

]
. (2.105)
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Now, let us propagate Δ1(= Δ) and Δ2(= Δ) simultaneously along the
same sample path. As explained above, the propagation process is equivalent
to copying the ith column of the above array to its jth column when server
i terminates an idle period of server j. Thus, it is clear that, during prop-
agation, the columns in the array (2.105) can never be (1, 1)T . That is, if
we propagate both perturbations Δ1 and Δ2 together along the same sam-
ple path, any transition time of this sample path can acquire at most one of
the perturbations, never both. In other words, if, at any time, a server has
a perturbation, then this perturbation is propagated from either Δ1 or Δ2.
Eventually, the array may reach one of the following three situations:

[
0 0 . . . 0
0 0 . . . 0

]
,

[
0 0 . . . 0
1 1 . . . 1

]
,

[
1 1 . . . 1
0 0 . . . 0

]
.

That is, either one of them is realized, or both are lost, on the sample path;
but they cannot be both realized. Furthermore, the propagation of one per-
turbation (say Δ1) does not interfere (change) the propagation of the other
(say Δ2). That is, each perturbation is propagated along the sample path in
the same way as if the other did not exist.

Based on this observation, we have the superposition of the propagation of
perturbations on a sample path: If we propagate two perturbations of servers
i and j, with the same size, simultaneously on a sample path N(t) and obtain
a perturbation path N ′(t), then we have

c(f)(n, i) + c(f)(n, j) = E

{
1
Δ

{∫ T ′
L∗

0

f [N ′(t)]dt−
∫ TL∗

0

f [N(t)]dt
}}

.

The same discussion applies to the propagation of more than two perturba-
tions. Let V ⊆ {1, 2, . . . ,M}. Suppose that at time t = 0, all the servers in set
V obtain the same perturbation Δi = Δ, i ∈ V . We propagate all these per-
turbations simultaneously on a sample path N(t) and obtain a perturbation
path N ′(t). Then, we have

∑

i∈V

c(f)(n, i) = E

{
1
Δ

{∫ T ′
L∗

0

f [N ′(t)]dt−
∫ TL∗

0

f [N(t)]dt

}}
. (2.106)

Now we are ready to show that c(f)(n, i) satisfy the following set of linear
equations [43, 51].

1. If ni = 0, then c(f)(n, i) = 0.
2.

∑M
i=1 c(f)(n, i) = f(n).

3. Let n−i,+j = (n1, . . . , ni − 1, . . . , nj + 1, . . . , nM ) be a neighboring
state of n. Then,
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[
M∑

i=1

ε(ni)μi

]
c(f)(n, k) =

M∑

i=1

M∑

j=1

ε(ni)μiqi,jc
(f)(n−i,+j , k)

+
M∑

j=1

μkqk,j

{
[1− ε(nj)]c(f)(n−k,+j , j) + f(n)− f(n−k,+j)

}
,

nk > 0, k = 1, 2, . . . ,M, (2.107)

where ε(nj) = 0, if nj = 0, and ε(nj) = 1, if nj > 0.

The above equations can be easily derived. Property 1 is simply a convention:
When a server is idle, any perturbation will be lost with probability 1 because
after the idle period the server’s perturbation is determined by another server
that does not have the perturbation. Property 2 is a direct consequence of the
superposition of propagation (2.106): Set V = {1, 2, . . . ,M}. By definition,
this means that every server has the same perturbation Δ at T0 = 0, hence
L∗ = 0; i.e., T ′

L = TL + Δ for all L ≥ L∗ = 0. In particular, TL∗ = 0 and
T ′

L∗ = Δ. Therefore,

F ′
L − FL =

∫ T ′
L

0

f [N ′(t)]dt−
∫ TL

0

f [N(t)]dt

=

{∫ T ′
L∗

0

f [N ′(t)]dt−
∫ TL∗

0

f [N(t)]dt

}

+

{∫ T ′
L

T ′
L∗

f [N ′(t)]dt−
∫ TL

TL∗
f [N(t)]dt

}

=
∫ Δ

0

f [N ′(t)]dt = f(n)Δ.

This leads to the second property. Equation (2.107) can be derived by the
theorem of total probability. In (2.107), we assume that server k has a pertur-
bation. ε(ni)μiqi,j∑M

i=1
ε(ni)μi

is the probability that the next transition is from server

i to server j, i, j = 1, 2, . . . ,M . If no idle period is involved in this transition,
there is no perturbation propagation and server k keeps the same perturbation
after the transition except that the system state changes to n−i,+j . This is
reflected by the first term on the right-hand side. If there is an idle period at
server j (i.e., 1− ε(nj) = 1), then, in addition to the perturbation in server k,
the perturbation will be propagated from server k to server j. This is reflected
by the second term on the right-hand side. f(n)− f(n−k,+j) is the effect due
to the delay of the transition from server k to server j. Equation (2.107) im-
plies that the effect of a perturbation before a transition equals the weighted
sum, by transition probabilities, of the effects of the perturbations after the
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transition, plus the effect due to the delay of the transition. It has been proved
that (2.107) and the equations in Properties 1 and 2 have a unique solution
for irreducible closed Jackson networks [51, 113].

From (2.104), if f(n) = I(n) = 1 for all n ∈ S, we have

c(I)(n, i) = E

[
T ′

L∗ − TL∗

Δ

]
.

From the meaning of the realization probability, we have E[T ′
L∗ − TL∗ ] =

c(n, i)Δ. Thus, c(n, i) = c(I)(n, i). Therefore, the realization probabilities
satisfy the following equations:

1. If ni = 0, then c(n, i) = 0 .
2.

∑M
i=1 c(n, i) = 1.

3. If nk > 0, k = 1, 2, . . . ,M , then
[

M∑

i=1

ε(ni)μi

]
c(n, k) =

M∑

i=1

M∑

j=1

ε(ni)μiqi,jc(n−i,+j , k)

+
M∑

j=1

μkqk,j{[1− ε(nj)]c(n−k,+j , j)}.

The following example taken from [51] provides some idea of the numerical
values for the realization probabilities.

Example 2.8. Consider a closed Jackson network with M = 3, N = 5, s̄1 =
10, s̄2 = 8, s̄3 = 5, and routing probability matrix

Q =

⎡

⎣
0 0.5 0.5

0.8 0 0.2
0.3 0.7 0

⎤

⎦ .

The realization probabilities are obtained by solving the set of equations. The
results, together with the steady-state probabilities, are listed in Table 2.9.

��

2.4.3 Performance Derivatives

We have now quantified the effect of a single perturbation on the long-run
average reward. Next, we will determine the effect of a small change in a
mean service time. Suppose that the mean service time of server v changes
from s̄v to s̄v + Δs̄v. Let sv,l, l = 1, 2, . . . , be the service time of the lth
customer served at server v. Following the perturbation generation rule (2.97),
the lth customer’s service completion time at server v will gain a perturbation
Δv,l = sv,l

Δs̄v

s̄v
= κsv,l, l = 1, 2, . . . . All these perturbations will be propagated

along the sample path. To calculate the effect of a small change in the mean
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n π(n) c(n, 1) c(n, 2) c( n, 3)

(5,0,0) 0.19047 1.00000 0.00000 0.00000

(4,0,1) 0.06644 0.90584 0.00000 0.09416

(4,1,0) 0.15061 0.89385 0.10615 0.00000

(3,0,2) 0.02318 0.78826 0.00000 0.21174

(3,1,1) 0.05254 0.77060 0.17336 0.05604

(3,2,0) 0.11908 0.74279 0.25721 0.00000

(2,0,3) 0.00809 0.62556 0.00000 0.37444

(2,1,2) 0.01833 0.60901 0.25029 0.14070

(2,2,1) 0.04154 0.58286 0.37574 0.04141

(2,3,0) 0.09416 0.54528 0.45472 0.00000

(1,0,4) 0.00282 0.38089 0.00000 0.61911

(1,1,3) 0.00639 0.37327 0.34810 0.27863

(1,2,2) 0.01449 0.35728 0.51926 0.12346

(1,3,1) 0.03285 0.33315 0.62079 0.04606

(1,4,0) 0.07445 0.29754 0.70246 0.00000

(0,0,5) 0.00098 0.00000 0.00000 1.00000

(0,1,4) 0.00223 0.00000 0.48951 0.51049

(0,2,3) 0.00505 0.00000 0.71510 0.28490

(0,3,2) 0.01146 0.00000 0.83485 0.16515

(0,4,1) 0.02597 0.00000 0.91819 0.08181

(0,5,0) 0.05887 0.00000 1.00000 0.00000

Table 2.9. A Numerical Example of Realization Probabilities

service time s̄v, we need to add up the effect of all these single perturbations
on the system performance.

Let π(n) be the steady-state probability of state n. Consider a time period
[0, TL] with L >> 1. The length of the total time when the system is in state
n in [0, TL] is TLπ(n). The total perturbation generated in this period at
server v due to the change Δs̄v in the mean service time is TLπ(n)Δs̄v

s̄v
. Since

each perturbation on average has an effect of c(f)(n, v) on FL, the overall
effect on FL of all the perturbations induced when the system state is n
is [TLπ(n)Δs̄v

s̄v
]c(f)(n, v). Finally, the total effect of the mean service time

change, Δs̄v, on FL is

ΔFL ≈
∑

all n

TLπ(n)
Δs̄v

s̄v
c(f)(n, v).

From this, we have
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s̄v

TL/L

ΔFL/L

Δs̄v
≈

∑

all n

π(n)c(f)(n, v).

Letting L → ∞ and then Δs̄v → 0, we obtain the steady-state performance
derivative as follows:

s̄v

η(I)

∂η(f)

∂s̄v
=

∑

all n

π(n)c(f)(n, v), (2.108)

where η(I) = limL→∞
TL

L = 1
η , see (2.95). Thus, the normalized derivative of

the average reward (the left-hand side of (2.108)) equals the steady-state ex-
pectation of the realization factor. The above discussion provides an intuitive
derivation and explanation for (2.108). See (2.116) in the next section for a
formal formulation.

Set f = I in (2.108). With η(I) = 1
η and c(n, v) = c(I)(n, v), we can

express the “elasticity” (normalized derivative) of the system throughput by
using the perturbation realization probabilities:

s̄v

η

∂η

∂s̄v
= −

∑

all n

π(n)c(n, v). (2.109)

Summing up both sides over v = 1, 2, . . . ,M , we have

M∑

v=1

s̄v

η

∂η

∂s̄v
= −1. (2.110)

Example 2.9. In this example [51], we choose M = 3, N = 8, s̄1 = 5, s̄2 = 10,
and s̄3 = 12. The routing probability matrix is

Q =

⎡

⎣
0 0.5 0.5

0.7 0 0.3
0.4 0.6 0

⎤

⎦ .

The realization probability equations are solved numerically. The elasticities
calculated by (2.109) are -0.0365, -0.5133, and -0.4502, which are exactly the
same as those calculated by queueing theory formulas. These values also satisfy
(2.110). ��

As shown in Section 2.4.1, the elasticity of the throughput can be estimated
by a very efficient algorithm, Algorithm 2.1, together with equation (2.101).
A close examination of the algorithm reveals that it, in fact, estimates the
right-hand side of (2.109); i.e., it estimates the total sum as (cf. (2.101)):
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∑

all n

π(n)c(n, v) ≈ Δu

TL
.

Roughly speaking, TLπ(n) is proportional to the perturbation generated when
the system is in state n; we may use TLπ(n) as the perturbation generated,
which corresponds to setting κ = 1 in Algorithm 2.1. At the end of the simu-
lation, Δu ≈

∑
all n TLπ(n)c(n, v) contains all the realized perturbations.

Similarly, with Algorithm 2.2, we, in fact, are estimating the performance
derivative by

∑

all n

π(n)c(f)(n, v) ≈ ΔF

TL
.

Again, TLπ(n) is proportional to the perturbation generated in state n, and
ΔF reflects the differences in performance realized due to all these perturba-
tions.

Example 2.10. Consider the mean response time τ̄ in an M/G/1 queue in
Example 2.4. Let f = n be the number of customers in the server. We have
FL =

∫ TL

0
n(t)dt, and τ̄ = limL→∞

FL

L . (In the definition of τ̄ , L should
be the number of departures. However, since the number of arrivals roughly
equals that of the departures, we may take L be the number of all transi-
tions, including both arrivals and departures, and the normalized derivative
will be the same.) Suppose that the arrival rate does not change but the ser-
vice rate changes. Then, the perturbation generation rule is (2.99), i.e., the
perturbations of the service times are proportional to the service times. At a
service completion time, the system state changes from n to n− 1, n > 0, so
f(n)− f(n′) = 1 in Algorithm 2.2. The perturbations at the service comple-
tion times are calculated in (2.100). Thus, the perturbation of FL calculated
by Algorithm 2.2 is

ΔF =
K∑

k=1

nk∑

i=1

i∑

l=1

sk,l,

where K is the number of busy periods in the L transitions, and nk is the
number of customers served in the kth busy period. (The real change in FL

should be κΔFL.) Finally, we have

μ

η(I)

∂τ̄

∂μ
≈ −ΔF

TL
= − 1

TL

K∑

k=1

nk∑

i=1

i∑

l=1

sk,l. (2.111)

It can be proved that the right-hand side of (2.111) is indeed a strongly con-
sistent estimate of its left-hand side (see the discussions in [103, 104, 146, 234,
235] and Problem 2.32). ��
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Comparison of PA of Queueing Systems and PA of Markov Chains

In PA of queueing systems, a small (“infinitesimal”, the exact meaning of
this word will become clear in the next section) change in a system param-
eter (such as the mean service time of a server) induces a series of small
(infinitesimal) changes of the state transition times on a sample path; each
such change is called a perturbation (perturbation generation). These pertur-
bations will be propagated along the sample path and affect the transition
times of other state transitions (perturbation propagation). For irreducible
networks, the effect of such a small perturbation on a sample path cannot
continue forever; eventually, a perturbation will be either realized or lost on
any sample path (perturbation realization). The average effect of each pertur-
bation on the system performance can be precisely measured by a quantity
called the perturbation realization factor (PRF). The total effect of a small
change in a system parameter on the system performance can then be calcu-
lated by adding together the average effects of all the perturbations induced
by the parameter change. The derivative of the performance with respect to
the parameter can then be determined.

In PA of Markov chains, a small change in a system parameter (such as
the transition probability matrix) induces a series of changes in the state
transitions on a sample path; each such change is a perturbation and is also
called a “jump” to intuitively reflect its discrete and finite nature. Thus, in
PA of queueing systems a perturbation is an “infinitesimal” change on a sam-
ple path; while in PA of Markov chains, it is a finite change on a sample
path. Moreover, perturbation propagation is not so distinct in PA of Markov
chains, although we may view the Markov system as in a propagation period
before the perturbed sample path merges with the original one. The pertur-
bation realization principle and the calculation of performance derivatives for
Markov chains are essentially the same as those for queueing systems: a single
perturbation (jump) can only affect the system in a finite period (until the
perturbed path merges with the original one), and its effect on the system
performance can be measured by PRF, and so on.

In general, given a sample path of any system, we may first examine how
a parameter change induces perturbations on a sample path (perturbation
generation) and then determine how each perturbation affects the system
performance (perturbation realization). During this process, we may explore
how the system dynamics may help in determining the evolution of pertur-
bations and whether there are simple propagation rules. These PA principles
are illustrated in Figure 2.20. Again, this approach is of an intuitive nature
and the results obtained need to be rigorously proved (cf. Section 2.4.4).

2.4.4 Remarks on Theoretical Issues∗

The previous subsections provided an intuitive explanation for PA. The results
have to be theoretically studied in a probability and statistical framework.
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Fig. 2.20. The PA Principles

For example, if we use −Δu

TL
in (2.101) as an estimate for the elasticity of the

throughput with respect to a mean service time, then is this estimate strongly
consistent as L goes to infinity? Furthermore, is an estimate for performance
derivative obtained in a finite sample path an unbiased estimate? These issues
were first formulated and studied in [42], and later they were studied for many
problems by many authors, and [51] provides a detailed summary of the theory.
It is out of the scope of this book to discuss all these issues in detail and we
give only a brief review here.

Sample Functions and Sample Derivatives

First let us mathematically describe a sample path of a closed Jackson net-
work obtained by simulation. With the inverse-transform method (2.96),
the lth service time at server i, si,l, can be obtained by a uniformly dis-
tributed random number ξi,l ∈ [0, 1) with si,l = −s̄i ln(1 − ξi,l). Therefore,
all the service times on a sample path depend on a sequence of random num-
bers {ξ1,1, ξ1,2, . . . ; ξ2,1, ξ2,2, . . . ; . . . ; ξM,1, ξM,2, . . .}; they are independent and
uniformly distributed on [0, 1). After the completion of its service, a cus-
tomer at server i will move to server j, j = 1, 2, . . . ,M , with probability
qi,j . Thus, the next destination of the lth customer at server i can be de-
termined by another uniformly distributed random number ζi,l ∈ [0, 1): if∑j−1

k=1 qi,k ≤ ζi,l <
∑j

k=1 qi,k (with the convention
∑0

k=1 qi,k = 0), then this
customer moves to server j. Therefore, all the destinations depend on another
sequence of independent and uniformly distributed [0, 1) random numbers
{ζ1,1, ζ1,2, . . . ; ζ2,1, ξ2,2, . . . ; . . . ; ζM,1, ζM,2, . . .}. Finally, let ξ = {ξ1,1, ξ1,2, . . . ;
. . . ; ξM,1, ξM,2, . . . ; ζ1,1, ζ1,2, . . . ; . . . ; ζM,1, ζM,2, . . .}. Then, ξ represents all the
randomness involved in the system. Let θ = {s̄i, qi,j , i, j = 1, 2, . . . ,M} rep-
resent all the parameters in the system. With these notations, a sample path
of the system is determined by, and therefore is denoted as, (ξ, θ).

For any fixed integer L, FL in (2.94) and η
(f)
L = FL

L are defined on a
sample path and therefore are functions of (ξ, θ). We denote them as FL(ξ, θ)
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and η
(f)
L (ξ, θ). As we can see from (2.96)-(2.97), in a perturbed sample path,

the same sequence of random numbers ξ is used, but the parameters may
experience a small change. Thus, a perturbed sample path is in fact (ξ, θ+Δθ).
The perturbed performance is FL(ξ, θ + Δθ). Of course, Δθ may be zero for
many of its components. In the Jackson network studied in this section, we
only choose Δs̄v �= 0 for server v. Since we are concerned with the performance
derivatives, for notational simplicity, let us assume that θ is a scalar parameter
that changes to θ + Δθ, Δθ �= 0.

The perturbation generation and propagation rules help us to construct
the perturbed sample path (ξ, θ+Δθ) from the original sample path (ξ, θ) for
a small Δθ (by Algorithm 2.1), and then to obtain the perturbed performance
FL(ξ, θ + Δθ) (by Algorithm 2.2). We have

ΔFL(ξ, θ) = FL(ξ, θ + Δθ)− FL(ξ, θ)

and
Δη

(f)
L (ξ, θ) =

1
L

[FL(ξ, θ + Δθ)− FL(ξ, θ)]. (2.112)

For any fixed ξ, η
(f)
L (ξ, θ) or FL(ξ, θ) is a function of θ. We call it a sample

performance function [46, 51].
When we apply the propagation rules, we require the perturbation of any

server, Δ, to be small enough. In fact, Δ should be smaller than the length of
an idle period in order for the perturbation Δ to be propagated through the
idle period without changing its size. Figure 2.21 shows the situation when a
perturbation is larger than an idle period. Figure 2.21.A illustrates the same
sample path as Figure 2.15, except that the perturbation Δ1 is larger than the
length of the idle period T2 − T1. Figure 2.21.B illustrates the corresponding
perturbed path. Indeed, when Δ1 is larger than T2 − T1, the idle period in
server 1 disappears in the perturbed path and a new idle period appears in
server 2. The order of the transition times of server 1 and server 2 changes:
T2 > T1 in the original path, but T ′

1 > T ′
2 in the perturbed one. Both servers

are delayed by Δ1 − (T2 − T1) after the idle period. All these facts indicate
that the simple propagation rules used in Algorithm 2.1 do not apply.

In fact, Algorithm 2.2 requires a more strict condition: the perturbation of
any server in [0, TL) should be smaller than the shortest sojourn time of the
system in any state in [0, TL). For any finite L and a fixed sample path (ξ, θ),
we can always choose (with probability 1) Δθ to be small enough such that
this requirement is satisfied (this explains the meaning of infinitesimal). Thus,
PA Algorithm 2.2 provides the exact value of Δη

(f)
L (ξ, θ) in (2.112) if Δθ is

small enough. That is, what we obtained from PA is in fact the derivative of
a sample performance function, which is called a sample derivative [46, 51]:

∂η
(f)
L (ξ, θ)
∂θ

= lim
Δθ→0

η
(f)
L (ξ, θ + Δθ)− η

(f)
L (ξ, θ)

Δθ
, for a fixed ξ.
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Fig. 2.21. A Large Perturbation Does Not Satisfy the Propagation Rule

Interchangeability

In general, however, we are interested in the derivative of the mean perfor-

mance E[η(f)
L (ξ, θ)], ∂E[η

(f)
L

(ξ,θ)]

∂θ , or the derivative of the steady-state perfor-

mance η(f)(θ) = limL→∞ η
(f)
L (ξ, θ), ∂η(f)(θ)

∂θ . This raises two questions: Is the
sample derivative obtained by PA on a sample path in a finite period [0, TL)
an unbiased estimate? That is, for any L <∞, does

E

{
∂

∂θ
[η(f)

L (ξ, θ)]
}

=
∂

∂θ

{
E[η(f)

L (ξ, θ)]
}

? (2.113)

Also, is it a strong consistent estimate? That is, does
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lim
L→∞

{
∂

∂θ
[η(f)

L (ξ, θ)]
}

=
∂η(f)

∂θ
=

∂

∂θ

{
lim

L→∞
[η(f)

L (ξ, θ)]
}

? (2.114)

In calculus, (2.113) or (2.114) means that the order of the two operators
“E” and “ ∂

∂θ ”, or “E” and “limL→∞”, is interchangeable. This interchange-
ability requires some conditions on the sample performance function. The
following simple example gives some ideas about why such interchangeability
may not hold for some systems.

1

1

θ

ξ2

η(ξ2, θ)

ξ1

η(ξ1, θ) η(ξ)

η(θ) = E[η(ξ, θ)]

Fig. 2.22. A Sample Function That Does Not Satisfy Interchangeability

Example 2.11. Consider a sample function defined as

η(ξ, θ) =
{

1, if θ > ξ,
0, otherwise, (2.115)

where ξ is a uniformly distributed random variable in [0, 1). η equals 1 if
θ ∈ [ξ, 1) and 0 if θ ∈ [0, ξ). Two such sample paths corresponding to ξ1 and ξ2
are illustrated in Figure 2.22. The mean performance is η(θ) = E[η(ξ, θ)] = θ.
The sample derivative is the slope of the sample function η(ξ, θ), which equals
0 with probability 1. Therefore, we have

E

{
∂

∂θ
[η(ξ, θ)]

}
= 0 �= ∂

∂θ
{E[η(ξ, θ)]} = 1.

That is, the interchangeability does not hold for this sample function. ��

Fortunately, we can prove that for closed Jackson networks with any finite
reward function f(n), n ∈ S, it does hold [46, 51]
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E

{
∂

∂s̄v

[
η
(f)
L (ξ, s̄v)

]∣∣∣∣X0 = n0

}
=

∂

∂s̄v
E

{[
η
(f)
L (ξ, s̄v)

]∣∣∣X0 = n0

}
,

where n0 is any initial state. This equation shows that the sample derivative
provided by PA, ∂

∂s̄v
[η(f)

L (ξ, s̄v)], is unbiased for the derivative of the mean
(transient) average reward in [0, TL). In particular, when f ≡ I, we have [49]

E

{
∂

∂s̄v
[TL(ξ, s̄v)]

∣∣∣∣X0 = n0

}
=

∂

∂s̄v
E
{
[TL(ξ, s̄v)]|X0 = n0

}
.

For long-run average rewards, we also have [51]

lim
L→∞

[
s̄v

η
(I)
L (ξ, s̄v)

∂η
(f)
L (ξ, s̄v)
∂s̄v

]
=

s̄v

η(I)(s̄v)
∂η(f)(s̄v)

∂s̄v

=
∑

all n

π(n)c(f)(n, v), w.p.1, (2.116)

where η(f)(s̄v) = limL→∞ η
(f)
L (ξ, s̄v) and η(I)(s̄v) = limL→∞ η

(I)
L (ξ, s̄v). In

particular, we have

lim
L→∞

[
s̄v

ηL(ξ, s̄v)
∂ηL(ξ, s̄v)

∂s̄v

]
=

s̄v

η(s̄v)
∂η(s̄v)
∂s̄v

= −
∑

all n

π(n)c(n, v), w.p.1, (2.117)

where η(s̄v) = limL→∞ ηL(ξ, s̄v), and ηL(ξ, s̄v) = L
TL(ξ,s̄v) . That is, the nor-

malized sample derivatives provided by PA are strongly consistent estimates
of the normalized derivatives of the steady-state performance.

However, the nice properties of unbiasedness and strong consistency do
not always hold. As illustrated in Example 2.11, the interchangeability may
not hold if the sample functions are discontinuous. Roughly speaking, the
interchangeability in (2.113) requires that the sample performance functions
be “smooth” enough.

The sample derivatives of the performance with respect to the changes
in routing probabilities qi,j , i, j = 1, 2, . . . ,M , have discontinuities similar
to those in Example 2.11. To demonstrate the idea, we consider a closed
network and assume that its service time distributions do not change. A
sample path of such a network is determined by the random variables
ζ := {ζ1,1, ζ1,2, . . . ; ζ2,1, ξ2,2, . . . ; . . . ; ζM,1, ζM,2, . . .}, and therefore we may de-
note a sample path as (ζ, qi,j , i, j = 1, 2, . . . ,M). For the sake of discussion,
we assume that q1,2 and q1,3 change to q′1,2 = q1,2 + δ and q′1,3 = q1,3 − δ,
respectively. As we know, in simulation, the customer transition is determined
as follows: we first divide the interval [0, 1] into M small segments, each with
length q1,i, i = 1, 2, . . . ,M (see Figure 2.23 for M = 3). If ζ1,l falls in the
kth segment, then the lth customer at server 1 moves to server k. When q1,2
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and q1,3 change to q′1,2 and q′1,3, respectively, the only change happens when
ζ1,l falls in the small segment with length δ (in the middle of the period [0, 1]
shown in Figure 2.23). In this case, the customer moves to server 3 in the
original sample path but to server 2 in the perturbed path. It is clear that for
a fixed realization of ζ and a finite L, there is always (with probability 1) a
δ0 that is small enough such that no ζ1,l, l = 1, 2, . . . , L, falls in that small
segment. Therefore, the two sample paths (ζ, qi,j) and (ζ, q′i,j) with δ < δ0 are
exactly the same in [0, TL]. This implies that the sample function FL(ζ, qi,j)
is a piecewise constant function of qi,j . As shown in Example 2.11, the in-
terchangeability in (2.113) does not hold for the derivative of performance
FL(ζ, qi,j) with respect to δ (or the changes in q1,2 and q1,3).

q1,1 q1,2 q1,3

ζ1,L
q1,2 + δ

ζ1,1
q1,3 − δ

δ

Fig. 2.23. Determine the Customer Transitions

The PA of queueing systems introduced in this section is based on sample
derivatives. This approach requires interchangeability, which may not hold if
the sample function is not continuous. The discontinuity of a sample func-
tion can be explained from a sample path point of view. Essentially, if a
small change in a parameter may cause a big change in a sample path, the
sample function may be discontinuous. In the case with the routing probabil-
ities, a small change in q1,2 (or q1,3) may cause a big change in a customer’s
destination (from server 2 to server 3). Such a big change also occurs when
two transitions exchange their order of occurrence, leading to two different
states. This sample-path-based explanation gives us an intuitive feeling about
whether the discontinuity may exist (see [42] and [126] for more details).

Other examples where the interchangeability does not hold include queue-
ing networks with multi-class customers or with blocking due to finite buffer
sizes. They can also be explained by the intuitive explanation described above
(see [43] and [126] for more discussion).

For the same reason, the sample performance functions for Markov sys-
tems with respect to the transition probability matrix are also piecewise linear,
and the sample-derivative is therefore zero and the approach discussed in this
section does not apply. However, as shown in Section 2.1, the basic princi-
ple of perturbation generation and perturbation realization can be extended
to Markov systems. The derivative obtained by using realization factors for
Markov systems is not a sample derivative.

Similar results regarding the sample functions and sample derivatives for
systems with continuous state spaces are presented in [47], and a comparison
of the dynamics of the continuous and discrete event systems is given in [48].
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2.5 Other Methods∗

Much effort was expended in the 1980’s to overcome the difficulty caused
by the discontinuity of the sample functions for some systems. Different ap-
proaches were developed; these approaches work well for some special prob-
lems. Among them are the smoothed perturbation analysis (SPA) [105, 107,
114, 119], the finite perturbation analysis (FPA) [143], the rare perturba-
tion analysis (RPA) [33, 34, 36, 37]. There are also other related works
[73, 94, 102, 106, 108, 128, 147, 156, 185, 214, 232, 241, 245, 247, 251]. These
topics have been widely discussed in previous books [51, 72, 107, 112, 142],
and therefore we will not discuss them in this book.

In this section, we will briefly review some other methods of performance
sensitivity analysis. They are the stochastic fluid model, the weak derivative
method, and the likelihood ratio or score function method.

The Stochastic Fluid Model (SFM)

The stochastic fluid model (SFM) has been recently adopted to model com-
plex, discrete-event dynamic systems such as communication networks, and
perturbation analysis has been proposed in SFM as a means for sensitivity
analysis. The essential idea of this method is to use a continuous flow to
approximately model the packet transmission in a network. Since in commu-
nication a data or voice packet consists of small units called bits, SFM is
particularly suitable for communication systems.

��


�

� ��

�

μ(t)λ(t)

ν(t)

θ

Fig. 2.24. The Stochastic Fluid Model for a Single Queue with Buffer Size θ

Figure 2.24 illustrates a stochastic fluid model for a single queue. The
inflow rate and the processing rate at time t are denoted as λ(t) and μ(t)
(units/second), respectively; and we use θ (units) to denote the size of the
buffer. When the buffer is full, the incoming fluid will overflow, and we denote
its rate at ν(t). Let xθ(t) be the volume of the fluid in the buffer. Apparently,
the system dynamic can be modelled by

dxθ(t)
dt

=

⎧
⎨

⎩

0, if xθ(t) = 0, and λ(t) ≤ μ(t),
0, if xθ(t) = θ and λ(t) > μ(t),
λ(t)− μ(t), otherwise.
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Sample-path-based analysis can be applied to such a SFM to obtain an esti-
mate for the performance derivative. The approach is more suitable (although
approximate) for estimating the gradients of packet loss probability with re-
spect to the buffer size. It can be shown that such estimates are unbiased for
the derivatives of the performance obtained with the SFM model. Such prob-
lems are usually difficult to handle with the standard PA of queueing systems.
For more details and applications, see [74, 75, 189, 210, 211, 231, 252, 262, 263].

The Likelihood Ratio (Score Function) Method

Another performance derivative estimation method is called the likelihood
ratio method, [44, 115, 116, 117, 118, 130, 176, 177, 178, 179, 205, 217], also
called the score function method [221, 222].

To illustrate the main idea, let us consider a D/M/1 queue in which the
inter-arrival time is a fixed number D > 0 and the service times are inde-
pendent and exponentially distributed with mean s̄. Let s1, s2, . . . , sL be the
sequence of customers’ service times. Then, a sample path of the system can
be represented by, and therefore denoted as, a vector s := (s1, s2, . . . , sL) (in-
stead of in the form of (ξ, θ)). The performance defined on this sample path
is denoted as η(s). Let Φ(s, θ) be the distribution function of s, where θ = s̄
denotes the system parameter. (To help our understanding, we may view s
as a scalar variable, otherwise, Φ(s, θ) is the joint distribution of s1, . . . , sL.)
The mean performance is

ηθ = E[η(s)] =
∫ ∞

−∞
η(s)dΦ(s, θ). (2.118)

Our goal is to estimate the derivative dηθ

dθ .
In PA, we set ξ := Φ(s, θ) to be a [0, 1) uniformly distributed random

variable. Then, we have s = Φ−1(ξ, θ), and, for notational convenience, we
denote it as s = Φ−1(ξ, θ) := s(ξ, θ). Thus, we have

ηθ =
∫ 1

0

η[s(ξ, θ)]dξ.

As explained in Section 2.4.4, for any fixed ξ ∈ [0, 1), η[s(ξ, θ)] is called a
sample performance function. In PA, we use the sample derivative d

dθη[s(ξ, θ)]
as an estimate of dηθ

dθ . The issue is whether or not this estimate is unbiased,
i.e., whether or not (cf. (2.113))

dηθ

dt
=

d

dθ

{∫ 1

0

η[s(ξ, θ)]dξ
}

=
∫ 1

0

d

dθ
{η[s(ξ, θ)]}dξ?

In the sample derivative d
dθη[s(ξ, θ)], the same random variable ξ is used for

both η[s(ξ, θ)] and η[s(ξ, θ+Δθ)]. Thus, PA is also called it a common random
number (CRN) method. It is known that using the common random number
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leads to the smallest variance in estimating the difference between two random
variables (See Problem A.4). Therefore, the sample derivative usually has a
small variance.

The rationale of the likelihood ratios method is as follows: Suppose that
the probability density function of Φ(s, θ) exists and denote it as φ(s, θ) =
d
dsΦ(s, θ). Then, (2.118) becomes

η(θ) =
∫ ∞

−∞
η(s)φ(s, θ)ds,

and we have, assuming that the two operators
∫

and d
dθ can change their

order,

dηθ

dθ
=

∫ ∞

−∞
η(s)

dφ(s, θ)
dθ

ds (2.119)

=
∫ ∞

−∞
η(s)

dφ(s, θ)
dθ

ds

=
∫ ∞

−∞
η(s)

d ln[φ(s, θ)]
dθ

dΦ(s, θ)

= E

{
η(s)

d ln[φ(s, θ)]
dθ

}
.

This indicates that we may use

η(s)
d ln[φ(s, θ)]

dθ
(2.120)

as an unbiased estimate of the performance derivative dηθ

dθ . In (2.120), we have

d ln[φ(s, θ)]
dθ

=
1

φ(s, θ)
d[φ(s, θ)]

dθ
.

Observe that

η(s)
d ln[φ(s, θ)]

dθ
= lim

Δθ→0

1
Δθ

{
η[s(ξ, θ)]

φ(s, θ + Δθ)
φ(s, θ)

− η[s(ξ, θ)]
}

. (2.121)

Therefore, in the LR estimate (2.120), we in fact use

η[s(ξ, θ)]
φ(s, θ + Δθ)

φ(s, θ)

in the place of η[s(ξ, θ + Δθ)]. The reason is that if the system parameter
changes from θ to θ + Δθ, the same sample path s, and therefore the same
sample performance value η(s), will still be observed, but with a different
probability that is adjusted by the likelihood ratio
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φ(s, θ + Δθ)
φ(s, θ)

(see [44] for more discussion). Therefore, this approach is called the likelihood
ratio (LR), or the score function (SF) method.

From (2.121), the LR estimate essentially uses the same sample path s as
a possible realization of the system behavior under parameters θ + Δθ and
adjusts the probability of this sample path; hence, the LR method is also
called the common realization (CR) method.

LR only requires the interchangeability of
∫

and d
dθ to hold for the proba-

bility density function, which is usually smoother than the sample performance
function (the s in η(s) in (2.119) is fixed). Thus, an LR estimate is unbiased
more often than a PA estimate is. However, the variance may be too large
to be applicable [44]. Variance reduction techniques based on regenerative
periods have been developed.

The Weak Derivative Method

In the weak derivative method [130, 132, 134], the derivative of the probability
density function is expressed by the difference between two properly chosen
probability density functions, and the performance derivative is then expressed
by the difference between two expected values. For example, in (2.119), if we
have c(θ) > 0 and two density functions φ1(s, θ) and φ2(s, θ) such that

dφ(s, θ)
dθ

= c(θ)[φ1(s, θ)− φ2(s, θ)]. (2.122)

Then,

dη(θ)
dθ

= c(θ)
[∫ ∞

−∞
η(s)φ1(s, θ)dθ −

∫ ∞

−∞
η(s)φ2(s, θ)dθ

]
,

which is the difference between the mean performance of two sample paths,
one with probability density function φ1(s, θ) and the other with φ2(s, θ). The
triple (c(θ), φ1(s, θ), φ2(s, θ)) is called a weak derivative of φ(s, θ). Obviously,
it is not unique.

The same principle applies to the performance derivatives of Markov
chains. Consider two Markov chains defined on the same state space S =
{1, 2, . . . , S} with two ergodic transition probability matrices P and P ′ and
the same reward function f . Let ΔP = P ′−P , Pδ = P + δΔP . We start with
(2.23). From (2.13) and (2.14), the directional derivative along ΔP is

dηδ

dδ
= πΔP

∞∑

l=0

(P l − eπ)f. (2.123)

Corresponding to (2.122), we have
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dPδ

dδ
= ΔP = C(P+ − P−), (2.124)

where P+, P−, and C are defined as follows: C is a diagonal matrix with
nonzero diagonal components c(i), i = 1, 2, . . . , S,

c(i) =
S∑

j=1

max{Δp(j|i), 0},

Δp(j|i) = p′(j|i)− p(j|i), i, j = 1, 2, . . . , S, and

p+(j|i) =
{ 1

c(i) max{Δp(j|i), 0}, if c(i) > 0,
0, if c(i) = 0;

p−(j|i) =
{ 1

c(i) max{−Δp(j|i), 0}, if c(i) > 0,
0, if c(i) = 0.

When c(i) �= 0, the ith rows of P+ and P− are transition probability vectors;
and when c(i) = 0, the ith rows of P+ and P− are zero. The triple (C,P+, P−)
is called a weak derivative of Pδ. The decomposition of (2.124) is not unique,
and there may be other weak derivatives of Pδ.

From (2.124) and (ΔP )e = 0, the derivative (2.123) becomes

dηδ

dδ
= πΔP

∞∑

l=0

P lf

= πC(P+ − P−)
∞∑

l=0

P lf

=
S∑

i=1

π(i)c(i)
∞∑

l=0

(p+
i P lf − p−i P lf), (2.125)

where p+
i and p−i denote the ith rows of P+ and P−, respectively.

There is a sample-path-based interpretation of (2.125). Let X+ = {X+
l , l =

0, 1, . . .} be a Markov chain obtained as follows: Suppose that X+
0 = i is the

initial state, and the first transition from X+
0 to X+

1 follows transition proba-
bility vector p+

i , and the rest of the transitions at l = 1, 2, . . . follow transition
probability matrix P . Let X− be a similar Markov chain except that the first
transition from X−

0 to X−
1 follows p−i , with X−

0 = i. From (2.125), we have

dηδ

dδ
=

S∑

i=1

π(i)c(i)
∞∑

l=0

E{[f(X+
l )− f(X−

l )]|X+
0 = X−

0 = i}. (2.126)

Therefore, the performance derivative can be expressed via the difference be-
tween two expectations on two different Markov chains X+ and X−. Further-
more, by the strong Markov property, the infinite sum

∑∞
l=0 can be replaced
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by a finite one
∑L+,−

l=0 ; at L+,−, the two sample paths X+ and X− merge
together.

The form of (2.126) resembles the performance realization factors. In fact,
from (2.126) we can easily derive (see [130])

dηδ

dδ
=

S∑

i=1

π(i)c(i)

⎡

⎣
S∑

j1,j2=1

γ(j2, j1)p+(j1|i)p−(j2|i)

⎤

⎦ . (2.127)

PROBLEMS

2.1. In Figure 2.2, the three points P0, P1, and P2 represent three policies.
Every point P in the triangle with these three points as vertices represents a
randomized policy denoted as P (δ1, δ1, δ2) = δ0P0+δ1P1+δ2P2, δ0+δ1+δ2 =
1, with P0 = P (1, 0, 0), P1 = P (0, 1, 0), and P2 = P (0, 0, 1).

a. Determine the values of δ0, δ1, and δ2 by the lengths of the segments
shown in the figure.

b. Along the line from P0 to P1, we have the randomized policies Pδ = (1−
δ)P0 +δP1, 0 < δ < 1, and we can obtain the directional derivative in this
direction, denoted as dηδ

dδ |P0−P1 . Similarly, we can obtain the directional
derivative in the direction from P0 to P2, denoted as dηδ

dδ |P0−P2 . What is
the directional derivative from P0 to P? Express it in terms of dηδ

dδ |P0−P1

and dηδ

dδ |P0−P2 . (Hint: Along this direction, δ1/δ2 is fixed.)

2.2. (Random walk) A random walker moves among five positions i =
1, 2, 3, 4, 5. At position i = 2, 3, 4, s/he moves to positions i− 1 and i+1 with
an equal probability p(i − 1|i) = p(i + 1|i) = 0.5; at the boundary positions
i = 1 and i = 5, s/he bounces back with probability 1 p(4|5) = p(2|1) = 1.
We are given a sequence of 20 [0, 1)-uniformly and independently distributed
random variables as follows:

0.740, 0.605, 0.234, 0.342, 0.629, 0.965, 0.364, 0.230, 0.599, 0.079,
0.782, 0.219, 0.475, 0.051, 0.596, 0.850, 0.865, 0.434, 0.617, 0.969.

a. With this sequence, construct a sample path X of the random walk from
X0 to X20 according to (2.2). Set X0 = 3.

b. Suppose that the perturbed transition probabilities are p′(i − 1|i) = 0.3,
p′(i + 1|i) = 0.7, i = 2, 3, 4, and p′(4|5) = p′(2|1) = 1. Set pδ(j|i) =
p(j|i) + δ[p′(j|i) − p(j|i)]. By using the original sample path obtained in
(a), construct a perturbed sample path Xδ, δ = 1, following Figure 2.5.
Use the following [0, 1)-uniformly and independently distributed random
variables when Xδ is different from X (use the lth number to determine
the lth transition of Xδ, if Xδ,l �= Xl):
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0.173, 0.086, 0.393, 0.804, 0.011, 0.233, 0.934, 0.230, 0.786, 0.410,
0.119, 0.634, 0.862, 0.418, 0.601, 0.118, 0.626, 0.835, 0.361, 0.336.

c. Repeat b) for δ = 0.7, 0.5, 0.3, 0.2, 0.1.
d. Observe the trend of the perturbed paths Xδ. In particular, when δ is

small, most likely the perturbed parts from the jumping point to the
merging point are the same as if they follow the original transition prob-
abilities p(j|i), i, j = 1, 2, . . . ,S.

2.3. Let X and X̃ be two independent ergodic Markov chains with the
same transition probability matrix P on the same state space S. Define
Y = (X, X̃).

a. Prove that Y is ergodic.
b. Express L∗

ij in Figure 2.6 in terms of the Markov chain Y .

2.4. Consider a three-state Markov chain with

P =

⎡

⎣
0 0.5 0.5

0.1 0.6 0.3
0.7 0.1 0.2

⎤

⎦ , f =

⎡

⎣
10
5
8

⎤

⎦ .

a. Solve the Poisson equation (2.12) (I − P )g + ηe = f for g and η (by, e.g.,
setting g(0) = 0).

b. Solve π = πP and πe = 1 for π first. Then, solve (I −P + eπ)g = f for g.
c. Compare both methods in a) and b).

2.5. For an ergodic Markov chain X = {Xl, l = 0, 1, . . .}, derive the Poisson
equation using

g(i) = lim
L→∞

L−1∑

l=0

E{[f(Xl)− η]|X0 = i}.

2.6. The Poisson equation for the perturbed Markov chain is

(I − Pδ)gδ + ηδe = fδ,

where Pδ = P + δΔP and fδ = f + δΔf . Derive the performance derivative
formula (2.26) from the above equation.

2.7. Prove the following results:

a. If f = ce with c being a constant, then g = ce is a constant vector.
b. If p(j|i) = pj for all i ∈ S; i.e., every row in the transition probability

matrix is the same, then g = f .
c. If p(j|i) = p(i|j), for all i, j ∈ S; i.e., the transition probability matrix P

is symmetric, then
∑S

i=1 g(i) =
∑S

i=1 f(i).
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2.8. Prove edηδ

dδ = limβ↑1
dηβ,δ

dδ . In other words,

d

dδ

(
lim
β↑1

ηβ,δ

)
= lim

β↑1

dηβ,δ

dδ
.

2.9. Assume that P changes to Pδ = P + δ(ΔP ), ΔPe = 0, and fδ ≡ f .
Derive the second-order derivative of the discounted reward ηβ,δ with respect

to δ, d2ηβ,δ

dδ2 .

2.10. In Example 2.2, we have

G1 := ΔP (I − P + eπ)−1 =
[
−3.2 3.2
3.2 −3.2

]
.

a. Find the eigenvalues and eigenvectors of G1.
b. Verify that

[
−3.2 3.2
3.2 −3.2

]
=

[
1 1
1 −1

] [
0 0
0 −6.4

] [
1 1
1 −1

]−1

.

c. Prove that

Gn
1 =

[
1 1
1 −1

] [
0 0
0 (−6.4)n

] [
1 1
1 −1

]−1

,

and

πδ = π

∞∑

n=0

Gn
δ = π

∞∑

n=0

(δG1)n

= π

[
1 1
1 −1

] [
0 0
0
∑∞

n=0(−6.4δ)n

][
1 1
1 −1

]−1

.

d. Determine the convergence region of πδ. Extend the discussion to more
general case.

2.11. A group is a nonempty set G, together with a binary operation on
G, denoted as juxtaposition ab, a, b ∈ G, and ab ∈ G, with the following
properties: (i) (Associativity) (ab)c = a(bc), for all a, b, c ∈ G; (ii) (Identity)
There exists an element e ∈ G for which ea = ae = a for all a ∈ G; and
(iii) (Inverse) For each a ∈ G, there is an element denoted a−1, for which
aa−1 = a−1a = e, [220].

a. Verify that the set of matrices defined in (2.50) with matrix multiplication
as the juxtaposition satisfies the above properties.

b. In Example 2.2, we have

B = P − I =
[
−0.10 0.10
0.15 −0.15

]
.

What is its group inverse? Is the inverse an infinitesimal generator?
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2.12. Assume that the MacLaurin series of Pδ exists in [0, δ]. Equation (2.57)
can be derived directly by the following procedure: Taking the derivatives of
the both sides of πδ(I−Pδ) = 0 n times, we can obtain dnπ

dδn at δ = 0. Then, we
can construct the MacLaurin series of π. Work out the details of this approach
and derive the MacLaurin series of ηδ at δ = 0.

2.13. Prove the continuous version of the PRF equation (2.62) from its dis-
crete version (2.7) by setting B = P − I, and vice versa.

2.14. Consider a Markov chain X with transition probabilities p(j|i), i, j ∈ S,
and reward function f . For any 0 < p < 1, we define an equivalent Markov
chain X ′ with transition probabilities p′(j|i) = (1 − p)p(j|i), j �= i, and
p′(i|i) = p + (1− p)p(i|i), i ∈ S. Set f ′ = f . Prove that η′ = η and g′ = g

1−p .

2.15. Consider a Markov process X with transition rates λ(i), and transition
probabilities p(j|i), i, j ∈ S, and reward function f . For any λ > λ(i), i ∈ S,
we define an equivalent Markov process X ′ with transition rates λ′(i) ≡ λ,
and transition probabilities p′(j|i) = λ(i)

λ p(j|i), j �= i, and p′(i|i) = [1− λ(i)
λ ]+

λ(i)
λ p(i|i). Set f ′ = f .

a. Prove that η′ = η and g′ = g.
b. Let the discrete-time Markov chain embedded at the transition epoches

of X ′ as X†. Find the steady-state probability π† and the potential g† of
X†.

c. Suppose that 1 = λ > λ(i), i ∈ S, prove that g† = g.
d. For any κ > 0, we define a Markov process X̃ with transition rates λ̃(i) =

κλ(i), i ∈ S, transition probabilities p̃(j|i) = p(j|i), i, j ∈ S, and reward
function f̃ = f . Prove that π̃ = π and g̃ = g

κ .
e. Given any Markov process X, can you find a Markov chain that has the

same steady-state probability π and potential g as X? (Hint: use the
results in b)-d).)

2.16.∗ For semi-Markov processes with the discounted reward defined in
(2.93), set ηβ := (ηβ(1), . . . , ηβ(S))T and gβ := (gβ(1), . . . , gβ(S))T . Prove
that (cf. [57])

lim
β↓0

gβ = g,

lim
β↓0

ηβ = ηe,

and
ηβ = βgβ + ηe.

2.17. Consider a two-server cyclic Jackson queueing network with service
rates μ and λ for servers 1 and 2, respectively. There are N customers in
the network. The system’s state n = n is the number of customers at server
1. The state process is Markov. Let the performance be the average response
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time of the customers at server 1, denoted as τ̄ . Calculate the performance
potentials g(i), i = 1, 2, . . . , S, and the average response time τ̄ , and derive
the derivative of τ̄ with respect to λ and μ.

2.18. The two-server N -customer cyclic Jackson queueing network studied in
Problem 2.17 is equivalent to an M/M/1/N queue with arrival rate λ, service
rate μ, and a finite buffer size N . (When the number of customers in the queue
is n = N , an arriving customer is simply lost.)

a. Suppose that the arrival rate only changes when n = 0; i.e., when n = 0,
λ changes to λ+Δλ, and when n > 0, λ remains unchanged. What is the
derivative of the average response time τ̄ with respect to this change?

b. Suppose that the arrival rate only changes when n = n∗, with 0 < n∗ < N .
What is the derivative of τ̄ with respect to this change?

c. Suppose that the arrival rate only changes when n = N . What is the
derivative of τ̄ with respect to this change? (You may view the M/M/1/N
queue as the two-server cyclic queue again to verify your result.)

2.19. Consider a Markov chain with one closed recurrent state set S1 and one
transient state set S2 (a uni-chain). Let the transition probability matrix be

P =
[

P1 0
P21 P22

]
,

with P1 corresponding to S1 and P21, P22 corresponding to S2, and 0 being a
matrix with all zero components. Denote the potential vector as g = (gT

1 , gT
2 )T

with g1 = (g(1), . . . , g(S1))T and g2 = (g(S1 + 1), . . . , g(S))T , S1 = |S1|,
S2 = |S2|, S1 + S2 = S.

Derive an equation for g1 and express g2 in terms of g1 and P21, P22.

2.20. Consider a Markov chain with transition probability matrix

P =
[
B b
0 1

]
,

where B is an (S − 1) × (S − 1) irreducible matrix, b > 0 is an (S − 1)
dimensional column vector, 0 represents an (S − 1)-dimensional row vector
whose components are all zero. The last state S is an absorbing state. Clearly,
the long-run average reward for this Markov chain is η = f(S), independent of
B, b, and the initial state. Thus, the long-run average reward does not reflect
the transient behavior. Now, we set f(S) = 0. Define

g(i) = E

[ ∞∑

l=0

f(Xl)
∣∣∣X0 = i

]
.

Let Li,S = min{l : l ≥ 0,Xl = S|X0 = i} be the first passage time from i to
S. Then,
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g(i) = E

⎡

⎣
Li,S−1∑

l=0

f(Xl)
∣∣∣X0 = i

⎤

⎦ .

a. Derive an equation for g = (g(1), . . . , g(S))T .
b. Derive an equation for the average first passage times E[Li,S ], i ∈ S.

2.21.∗ (This problem helps in understanding the difference between the
discounted reward criteria for both the discrete-time and continuous-time
models.) Consider a Markov chain X with transition probability matrix
P = [p(j|i)]Si,j=1 and reward function f(i), i = 1, 2, . . . , S. For simplicity,
we assume that p(i|i) = 0 for all i = 1, 2, . . . , S. Let X̃ be a Markov chain
with reward function f̃(i) = f(i), i = 1, 2, . . . , S, and transition probability
matrix P̃ defined as p̃(i|i) = q, 0 < q < 1, and p̃(j|i) = (1 − q)p(j|i), j �= i,
i, j = 1, 2, . . . , S.

a. Prove that X̃ is equivalent to X in the sense that they have the same
steady-state probabilities: π̃(i) = π(i) for all i = 1, 2, . . . , S.

b. The discounted reward of X is defined as (2.30):

ηβ(i) = (1− β)E

[ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

]
,

where 0 < β < 1 is a discount factor. Similarly, the discounted reward of
X̃ is defined with a discount factor 0 < β̃ < 1 as

η̃
β̃
(i) = (1− β̃)E

[ ∞∑

l=0

β̃lf(X̃l)
∣∣∣X̃0 = i

]
.

Find a value for β̃ such that η̃
β̃
(i) = ηβ(i) for all i = 1, 2, . . . , S.

c. Let Δ > 0 be a positive number. Consider a continuous-time (non-
Markov) process X̂ := {X̂t, t ∈ [0,∞)}, where X̂t = Xl if lΔ ≤ t <
(l+1)Δ, l = 0, 1, . . . , with X = {Xl, l = 0, 1, . . .} being the Markov chain
considered in a). The discounted reward of X̂ is defined by an exponential
weighting factor (cf. (2.93)):

ηα(i) = lim
T→∞

E

[∫ T

0

α exp(−αt)f(X̂t)dt
∣∣∣X0 = i

]
, T0 = 0.

What is the equivalent β such that ηβ(i) = ηα(i) for all i = 1, 2, . . . , S?
d. Repeat c) for continuous-time process X̂ := {X̂t, t ∈ [0,∞)}, with X̂t =

X̃l if lΔ ≤ t < (l + 1)Δ, l = 0, 1, . . . .
e. What about in d) when we let Δ→ 0 while keeping 1−q

Δ = λ (where λ is
a constant)?
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(Hint: If X = {X0 = i0,X1 = i1, . . .}, then we have X̃ = {X̃0 = X̃1 =
· · · = X̃n0−1 = i0, X̃n0 = X̃n0+1 = · · · = X̃n0+n1−1 = i1, . . .}, where nl

is the number of consecutive visits to state il, l = 0, 1, . . . . Note that nl is
geometrically distributed with parameter q. Therefore,

η̃
β̃
(i) = (1− β̃)E[(1+ β̃+ · · ·+ β̃n0−1)f(i0)+(β̃n0 + · · ·+ β̃n0+n1−1)f(i1)+ · · ·].

We conclude that η̃
β̃
(i) = ηβ(i) if β = (1−q)β̃

1−qβ̃
.)

2.22. Prove that the random variable s generated according to (2.96) is indeed
exponentially distributed.

2.23. Develop a PA algorithm to determine a perturbed sample path for an
open Jackson network consisting of M servers, with mean service time s̄i,
i = 1, 2, . . . ,M . The customers arrive in a Poisson process with mean inter-
arrival time a = 1

λ . Both a and s̄i, i = 1, 2, . . . ,M , may be perturbed.

2.24. Suppose that at some time the perturbations of the servers in a closed
network are Δ1,Δ2, . . . ,ΔM determined by Algorithm 2.1. What is the per-
turbation that has been realized by the network at that time? As we know,
if a perturbation is realized, then the future perturbed sample path looks the
same as the original one except that it is shifted to the right by an amount
equal to the perturbation. Can we use this fact to simplify the calculation in
Algorithm 2.2?

2.25. Using the 0-1 vector array (2.105), discuss the situation of the prop-
agation of M perturbations with the same size, each at one server, along a
sample path. Prove that

∑M
i=1 c(n, i) = 1.

2.26. We further study the propagations of two equal perturbations Δ1 = Δ
at server 1 and Δ2 = Δ at server 2 simultaneously on the same sample path.
Consider the array in (2.105). Set w(t) = w1(t) + w2(t).

a. What is the meaning of w(t)?
b. What does it mean when w(t) = (1, 1, . . . , 1) or w(t) = (0, 0, . . . , 0)?
c. How does w(t) evolve?

2.27. In addition to (2.94), we may define the system performance as the
long-run time average

η
(f)
T = lim

L→∞

1
TL

∫ TL

0

f [N(t)]dt.

We have η
(f)
T = η(f)

η(I) .

a. Derive the derivative of η
(f)
T with respect to s̄i, i = 1, 2, . . . ,M .
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b. Define the reward function f corresponding to the steady-state probability
π(n), with n being any state, and derive dπ(n)

ds̄i
, i = 1, 2, . . . ,M .

2.28.∗ Prove that, in a closed Jackson network, the sample function TL(ξ, s̄v)
(with ξ fixed) is a piecewise linear function of s̄v, v = 1, 2, . . . ,M (see [46]).

2.29. Consider a closed Jackson network in which μiqi,j = μjqj,i, i, j =
1, 2, . . . ,M . Prove that

c(n, k) =
nk

N
, k = 1, 2, . . . ,M ;

and
s̄k

η

∂η

∂s̄k
= − 1

M
,

where k = 1, 2, . . . ,M , denotes any server in the network.

2.30.∗ (This problem requires a good knowledge of queueing theory) Consider
an M/M/1 queue with arrival rate λ and service rate μ. The system state is
simply the number of customers in the queue; i.e., n = n. The performance
measure is the average response time τ = limL→∞

1
L

∫ TL

0
n(t)dt. Thus, f(n) =

n. For the M/M/1 queue, there is a source sending customers to the queue
with rate λ. Denote the source as server 0, and the server as server 1. Server
0 can be viewed as always having infinitely many customers.

a. Prove that the realization factors c(f)(n, 0) and c(f)(n, 1), n = 0, 1, . . . ,
satisfy the following equations:

c(f)(0, 0) = 0, c(f)(0, 1) = 0,

c(f)(n, 0) + c(f)(n, 1) = n, n ≥ 0,

(λ + μ)c(f)(n, 0) = μc(f)(n− 1, 0) + λc(f)(n + 1, 0)− λ, n > 0,

and

(λ + μ)c(f)(n, 1) = λc(f)(n + 1, 1) + μc(f)(n− 1, 1) + μ, n > 0.

b. To solve for c(f)(n, i), i = 0, 1, we need a boundary condition. Using the
physical meaning of perturbation realization, prove that c(f)(1, 1) equals
the average number of customers served in a busy period of the M/M/1
queue; i.e. (see, e.g., [169]),

c(f)(1, 1) =
μ

μ− λ
=

1
1− ρ

, ρ =
λ

μ
.

c. Prove
c(f)(n, 1) =

n

1− ρ
,

and
c(f)(n, 0) = − nρ

1− ρ
.
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d. By the same argument as in closed networks, explain and derive

μ

η(I)

dτ

dμ
= − λμ

(μ− λ)2
= − ρ

(1− ρ)2
,

and
λ

η(I)

dτ

dλ
=

λ2

(μ− λ)2
=

ρ2

(1− ρ)2
.

2.31. The head-processing time of a packet in a communication system, or
the machine tool set-up time in manufacturing, is usually a fixed amount
of time. Consider a two-server cyclic queueing network in which the service
times of the two servers are exponentially distributed with mean s̄1 and s̄2,
respectively. Suppose that every service time of server 1 increases by a fixed
amount of time Δ. Derive the derivative of performance η(f) with respect to
Δ using performance realization factors c(f)(n, 1).

2.32. Prove that Algorithm 2.2 yields a strongly consistent estimate for the
derivative of the average response time in an M/G/1 queue; i.e., in (2.111) we
have

μ

η(I)

∂τ̄

∂μ
= − lim

K→∞

1
TL

K∑

k=1

nk∑

i=1

i∑

l=1

sk,l, w.p.1.

2.33. Consider a closed Jackson network with M servers and N customers.
The throughput of server i is ηi = η̆vi where η̆ is the “un-normalized system
throughput”:

η̆ =
GM (N − 1)

GM (N)
,

where vi is server i’s visiting ratio: The solution to

vi =
M∑

j=1

qj,ivj , j = 1, 2, . . . ,M,

and (see (C.16) in Appendix C)

Gm(n) =
∑

n1+...+nM=n

m∏

i=1

xni
i ,

where xi = vis̄i, i = 1, 2 . . . ,M . We have

dxi = dvis̄i + vids̄i. (2.128)

Now, we consider the derivative of η̆ with respect to the routing probability
matrix Q = [qi,j ]Mi,j=1. It is clear that η̆ depends on the routing probabilities
only through xi, i = 1, 2, . . . ,M . Suppose that vi changes to vi + dvi, i =
1, 2, . . . ,M . From (2.128), we observe that in terms of the changes in xi, dxi,
i = 1, 2, . . . ,M , this is equivalent to setting dvi = 0 and ds̄i = s̄i

dvi

vi
for all

i = 1, 2, . . . ,M .
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a. Explain that, for closed Jackson networks, the derivative of the average
reward

∑
all n π(n)f(n) with respect to the changes in routing probabil-

ities can be obtained through the derivatives of the average reward with
respect to the mean service times.

b. Derive the performance derivative formula dηi

dQ , by using performance re-
alization factors c(f)(n, i), i = 1, 2, . . . .

2.34.∗ Consider the same two-server cyclic Jackson queueing network studied

in Problem 2.17. Let η
(f)
T = limL→∞

∫ TL

0
f(n(t))dt

TL
denote the time-average

performance, where n(t) is the number of customers at time t at server 1, and
L denotes the number of transitions. The performance function is f(n) = n.
Let us assume that the arrival rate λ, or the service rate μ, changes only when
the state is n.

a. Derive dη
(f)
T

dλ and dη
(f)
T

dμ in terms of the realization factors c(f)(n, 1), c(f)(n, 2)
and realization probability c(n, 1), c(n, 2).

b. Express dη
(f)
T

dλ and dη
(f)
T

dμ in terms of the performance potentials g(n).
c. Compare both results in a) and b) and derive a relation between the

realization factors and the potentials. Give an intuitive explanation for
this relation. (cf. [260])

2.35. In weak derivative expression (2.125), we may choose P+ = P ′ and
P− = P .

a. Derive (2.126) and express its meaning based on sample paths.
b. Derive (2.127).

2.36. Derive (2.23) from (2.127).

2.37. Consider a (continuous-time) Markov process with transition rates λ(i)
and transition probabilities p(j|i), i, j = 1, 2, . . . , S. Suppose that the transi-
tion probability matrix P := [p(j|i]i,j∈S changes to P+δΔP and the transition
rates λ(i), i = 1, 2, . . . , S remain unchanged. Let η be the average reward with
reward function f . Derive the performance derivative formula for dηδ

dδ using
the construction approach illustrated in Section 2.1.3.
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3
Learning and Optimization with

Perturbation Analysis

As shown in Chapter 2, performance derivatives for Markov systems depend
heavily on performance potentials. In this chapter, we first discuss the numer-
ical methods and sample-path-based algorithms for estimating performance
potentials, and we then derive the sample-path-based algorithms for estimat-
ing performance derivatives. In performance optimization, the process of es-
timating the potentials and performance derivatives from a sample path is
called learning.

Policy gradients (PG) in reinforcement learning (RL) is almost a synonym
for perturbation analysis (PA) in discrete event dynamic systems (DEDS).
However, because the terms PG and PA are used by researchers in two dif-
ferent disciplines, there is a different emphasis on different aspects of the
analysis. With PA in DEDS, we construct sensitivity formulas by exploring
the system’s dynamic nature and develop sample-path-based and on-line es-
timation algorithms for performance derivatives; while with PG in RL we
emphasize the algorithmic features of gradient estimation algorithms, such as
their efficiency and recursiveness. Therefore, this chapter is closely related to
Chapter 6 on reinforcement learning. We will introduce performance gradient
algorithms from a sample-path-based perspective and leave the algorithmic
features, especially those related to the stochastic approximation approach,
to Chapter 6 (see Figure 3.1).
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Constructing performance Numerical & sample-path Recursive & efficient
derivative formula based algorithms algorithms

(Stochastic approx.)

Perturbation Analysis

Policy Gradients (RL)

=⇒=⇒

� 


� 


Fig. 3.1. Perturbation Analysis vs. Policy Gradients

3.1 The Potentials

We first study the potentials for ergodic Markov chains (discrete time), and
the results can be extended to ergodic Markov processes (continuous time)
naturally.

3.1.1 Numerical Methods

With πg = η

The first numerical method depends on the equation for performance poten-
tials ((2.13) and (2.14)):

g = (I − P + eπ)−1f

=
∞∑

k=0

[(P − eπ)k]f =
{
I +

∞∑

k=1

(P k − eπ)
}
f.

Thus, g can be calculated iteratively by setting:

g0 = f, gk = f + (P − eπ)gk−1, k ≥ 0, (3.1)

and g = limk→∞ gk. This method requires solving for π first.

With the Realization Factors

Alternatively, we can solve the PRF equation (2.7)

Γ − PΓPT = F, (3.2)
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which does not contain π. Again, its solution is also only up to an additive
constant; i.e, if Γ is a solution to (3.2), so is Γ + ceeT for any constant c. In
addition to (3.2), the PRF matrix Γ = egT − geT also satisfies πΓπT = 0 or
simply eTΓe = 0.

From (3.2), we have

Γ = PΓPT + F

= P (PΓPT + F )PT + F = P 2Γ (P 2)T + PFPT + F

= P kΓ (P k)T + P k−1F (P k−1)T + · · ·+ PFPT + F.

Since
lim

k→∞
P kΓ (P k)T = eπΓπT eT = 0,

we have

Γ =
∞∑

k=0

P kF (P k)T ,

with P 0 = I. Therefore, we have the following iterative algorithm

Γ0 = F, Γk = PΓk−1P
T + F, k ≥ 1, (3.3)

and limk→∞ Γk = Γ . While this algorithm (3.3) does not require solving for
π, it has two matrix multiplications in each iteration.

With g(S) = 0

Note that in the Poisson equation (I−P )g+ηe = f , the same term η appears
in every row. Using this feature, we may develop another numerical algorithm
as follows. First, denote the Sth row of P as pS∗. Define

P− = P − epS∗.

The last row of P− is zero. Let

f− = [f(1)− f(S), . . . , f(S − 1)− f(S), 0]T .

Subtracting the last row of the Poisson equation from all the rows, and by
setting g(S) = 0, we get

g = P−g + f−. (3.4)

From this, we can write

g = lim
L→∞

( L∑

l=0

P l
−

)
f−. (3.5)
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Note that because f−(S) = 0 and the last row of P− is zero, from (3.4)
or (3.5) we indeed have g(S) = 0. This is consistent with the fact that the
potential vector g is unique only up to an additive constant vector, and the g
in (3.5) represents one form of the potential vector.

Let {1, λ1, . . . , λS−1} be the set of the eigenvalues of P (see Lemma B.1 in
Appendix B). First, we assume that all the eigenvalues are simple. For ergodic
chains, we have |λi| < 1 for i = 1, 2, . . . , S−1 [20]. Let x �= 0 be an eigenvector
corresponding to one of the eigenvalues, denoted as λ �= 1; i.e., Px = λx. If
λ = 0, then Px = 0 and it is easy to verify that P−x = 0 and x �= ce, with
c �= 0 being any constant. That is, λ = 0 is also an eigenvalue of P− with
eigenvector x �= ce.

Now, we assume that λ �= 0. Define x′ = x− 1
λ (pS∗x)e. Then, we can verify

that x′ �= 0 and

P−x′ = (P − epS∗)
[
x− 1

λ
(pS∗x)e

]

= λ
[
x− 1

λ
(pS∗x)e

]
= λx′, (3.6)

i.e., λ is an eigenvalue of P− with eigenvector x′. In addition, P−e = 0, i.e.,
0 is an eigenvalue of P−. Therefore, the eigenvalues of P− = P − epS∗ are
{0, λ1, . . . , λS−1}, with all |λi| < 1, i = 1, . . . , S−1, which are the same as the
eigenvalues of P − eπ. One of λi, i = 1, . . . , S − 1 may be zero (note that we
assumed that λi, i = 1, 2, . . . , S−1, are different). Therefore, the limit in (3.5)
converges at the same rate as (or as fast as) the rate of limk→∞(P −eπ)k = 0,
or the rate of limk→∞ P k = eπ.

When there are multiple eigenvalues, we need to examine the multiplicities
of the eigenvalues of both P and P−. First, we assume that λ = 0 is an
eigenvalue of P with m0 ≥ 0 multiplicity. We note that for any x �= 0 if
Px = 0 or Px = e (i.e., x = e), then P−x = 0. This means that the space
spanned by the eigenvectors of P corresponding to both λ = 0 and λ = 1 is
a subspace of the space spanned by the eigenvectors of P− corresponding to
λ = 0.

On the other hand, if x �= 0 and P−x = 0, then either Px = 0 or Px = e.
This can be proved as follows: Because P− = P−epS∗, we have Px = e(pS∗x).
If pS∗x = 0, then we have Px = 0. If pS∗x �= 0, then, without loss of generality,
we may assume that pS∗x = 1. Thus, Px = e. This means that the space
spanned by the eigenvectors of P− corresponding to λ = 0 is a subspace of
the space spanned by the eigenvectors of P corresponding to both λ = 0 and
λ = 1.

Finally, the space spanned by the eigenvectors of P− corresponding to
λ = 0 is the same as the space spanned by the eigenvectors of P corresponding
to both λ = 0 and λ = 1; and the multiplicity of λ = 0 for P− is m0 + 1.

Let λ �= 0, 1 be one of the eigenvalues of P with multiplicity m and xk,
k = 1, . . . ,m, be the corresponding linearly independent eigenvectors. As
shown in (3.6), x′

k = xk − 1
λ (pS∗xk)e, k = 1, . . . ,m, are eigenvectors of P−.
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We wish to prove that x′
k, k = 1, . . . ,m, are linearly independent. Suppose

that the opposite is true, i.e., there is a set of real numbers ck, k = 1, . . . ,m,
not all of them are zeros, such that v =

∑m
k=1 ckx

′
k = 0. Set u =

∑m
k=1 ckxk.

Because P−e = 0, we have P−x′
k = P−xk, k = 1, 2, . . . ,m, and

P−u = P−

(
m∑

k=1

ckxk

)
= 0.

Thus, u �= 0 is an eigenvalue of P− for λ = 0. Note that u, being a vector
spanned by xk, k = 1, . . . ,m, which are eigenvalues of P corresponding to
eigenvalue λ �= 0, 1, is linearly independent of the eigenvectors of P corre-
sponding to λ = 0 and 1. Thus, u adds one to the multiplicity of λ = 0 for
P−. This implies that the multiplicity of λ = 0 for P− is larger than m0 + 1,
which is impossible. Therefore, x′

k, k = 1, . . . ,m, are linearly independent,
and the multiplicity of λ for P− is the same as that for P .

In summary, we conclude that the eigenvalues of P− are {0, λ1, . . . , λS−1},
with all |λi| < 1, i = 1, . . . , S−1, being the same as those of P . The multiplicity
of λi �= 0, i = 1, . . . , S − 1, for P− are the same as that for P , and the
multiplicity of 0 or P− is m0 + 1.

From (3.5), we have the following iterative algorithm:

g0 = f−, gk = f− + P−gk−1, k ≥ 1, (3.7)

and g = limk→∞ gk.
The above three numerical algorithms have about the same convergence

rate (determined by the eigenvalues of P ), which is the same as the rate in com-
puting the steady-state probability π using limk→∞ P k = eπ. The algorithm
in (3.7) does not require solving for π, and only one matrix multiplication is
needed in each iteration.

In queueing systems, the perturbation realization factors satisfy the set
of linear equations (2.107). They can be solved numerically by any standard
method for linear equations, and an example is shown in Table 2.9. Further
results exploring the special features of these linear equations have not yet
been developed in the literature.

3.1.2 Learning Potentials from Sample Paths

The sample-path-based learning algorithms can be derived from (2.16)

g(i) = lim
L→∞

E

{
L−1∑

l=0

[f(Xl)− η]
∣∣∣X0 = i

}
, (3.8)
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and (2.17)

γ(i, j) = E

⎧
⎨

⎩

L(i|j)−1∑

l=0

[f(Xl)− η]
∣∣∣X0 = j

⎫
⎬

⎭ , (3.9)

where L(i|j) = min{l ≥ 0 : Xl = i|X0 = j}; or from (2.5) and (2.6),

γ(i, j) = g(j)− g(i)

= lim
L→∞

E

{
L−1∑

l=0

[
f(X̃l)− f(Xl)

] ∣∣∣X̃0 = j, X0 = i

}
(3.10)

= E

⎧
⎨

⎩

L∗
ij−1∑

l=0

[
f(X̃l)− f(Xl)

] ∣∣∣∣X̃0 = j, X0 = i

⎫
⎬

⎭ , i, j = 1, . . . , S; (3.11)

at L∗
ij , the two sample paths X̃ and X merge together for the first time.

Algorithms for g

From (3.8), we have the following approximation for g(i),

gL(i) = E

[
L−1∑

l=0

f(Xl)
∣∣∣X0 = i

]
− Lη, (3.12)

with limL→∞ gL(i) = g(i). The average reward η can be estimated from a
sample path by

ηL =
1
L

L−1∑

l=0

f(Xl), (3.13)

with η = limL→∞ ηL, with probability 1. However, because potentials are valid
only up to an additive constant, we may ignore the constant Lη in (3.12) and
use its first term as an estimate,

gL(i) = E

{
L−1∑

l=0

f(Xl)
∣∣∣X0 = i

}
. (3.14)

With (3.14), the potential g can be estimated on a sample path in a way
similar to the estimation of η in (3.13). Let Ii(x) = 1 if x = i and Ii(x) = 0 if
x �= i. Define

gL,N (i) =

∑N−L+1
n=0

{
Ii(Xn)

[∑L−1
l=0 f(Xn+l)

]}

∑N−L+1
n=0 Ii(Xn)

, (3.15)
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in which
∑N−L+1

n=0 Ii(Xn) is the number of visits to state i of the Markov
chain in the period of [0, N − L + 1]. After each such visit, we add up f(Xn)
for L transitions, and gL,N is the average of these sums. We have

lim
N→∞

gL,N (i) = gL(i), w.p.1. (3.16)
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Fig. 3.2. Items in (3.15) Are Not Independent

The proof of (3.16) is not straightforward, since the items
∑L−1

l=0 f(Xn+l)
for different n may not be independent. For example, given a particular
sample path, say {1, 2, 5, 1, 4, 3, 2, 3, 1, 6, . . .} as shown in Figure 3.2, with
L = 5, the two periods starting from X0 = 1 and X3 = 1 overlap. Both
items

∑4
l=0 f(X0+l) = f(1) + f(2) + f(5) + f(1) + f(4) and

∑4
l=0 f(X3+l) =

f(1)+f(4)+f(3)+f(2)+f(3) contain the same term f(1)+f(4). Therefore,
the standard law of large numbers does not apply in this case. The proof of
(3.16) is based on a fundamental theorem on ergodicity (see [32]; we state its
version on a finite state space S):

The Fundamental Ergodicity Theorem:

Let X = {Xn, n ≥ 0} be an ergodic Markov chain on state space
S; φ(x1, x2, . . .), xi ∈ S, i = 1, 2 . . . , be a function on S∞. Then the
process Z = {Zn, n ≥ 0} with Zn = φ(Xn,Xn+1, . . .) is an ergodic
Markov chain. In particular, we have

lim
N→∞

1
N

N−1∑

n=0

φ(Xn,Xn+1, . . .) = E[φ(Xn,Xn+1, . . .)], w.p.1,

(3.17)
where “E” denotes the steady-state expectation of the Markov chain
Z, and the right-hand side of (3.17) does not depend on n.
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Since this theorem is very useful in proving the convergence results related
to sample-path-based algorithms, we will refer to it as the Fundamental Er-
godicity Theorem. In our case, we define Zn = Ii(Xn)[

∑L−1
l=0 f(Xn+l)]; then,

{Zn, n ≥ 0} is ergodic. From (3.15), we have

gL,N (i) =
1

N−L+2

∑N−L+1
n=0 Zn

1
N−L+2

∑N−L+1
n=0 Ii(Xn)

.

By the fundamental ergodicity theorem, the numerator converges to E(Zn) =
π(i)gL(i) and the denominator converges to π(i). Thus, (3.16) holds.

One remaining problem is how to choose L. It is clear that the larger L is,
the smaller the bias of (3.15) is. On the other hand, the larger L is, the larger
the variance of the estimate is. Therefore, there is a tradeoff in choosing L.
We first note that the effect of potentials depends only on their differences,
i.e., on the realization factors γ(i, j) = g(j)− g(i). Ideally, to estimate γ(i, j),
the length should be the first passage time from state j to state i (see (3.9)).
Therefore, the length of the period, L, should be comparable to the mean
of the first passage times from one state to the others. On the other hand,
from (3.8), L should be large enough so that E[f(Xl)] is close to η when
l > L. Because the l-step state transition probability P(Xl|X0) converges
exponentially fast to the steady-state probability, we may expect that L can
be chosen as a small number. The following simulation example provides some
empirical evidence.

Example 3.1. We simulated a Markov chain with ten states. The state tran-
sition matrix is arbitrarily chosen as

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.20 0.00 0.05 0.10 0.15 0.15 0.05 0.05 0.05 0.20

0.30 0.00 0.00 0.20 0.10 0.15 0.15 0.05 0.05 0.00

0.00 0.15 0.05 0.30 0.00 0.05 0.20 0.20 0.05 0.00

0.05 0.10 0.25 0.00 0.30 0.00 0.05 0.20 0.05 0.000

0.00 0.20 0.15 0.00 0.15 0.00 0.15 0.25 0.00 0.100

0.00 0.10 0.30 0.00 0.20 0.10 0.10 0.00 0.15 0.050

0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.100

0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.200

0.05 0.15 0.25 0.00 0.15 0.15 0.15 0.00 0.00 0.100

0.15 0.05 0.00 0.20 0.15 0.10 0.20 0.10 0.05 0.000

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the reward function is

f = [10, 5, 1, 15, 3, 0, 7, 20, 2, 18]T .

Table 3.1 lists the theoretical and estimated values of the potentials g, in the
form of (3.15) and normalized to πg = 0, estimated with L = 5 on a sample
path with length N = 100, 000. The means and standard deviations (SD)
are the results of ten simulations. These results indicate that, for a ten-state
Markov chain, L = 5 yields very accurate estimates for g. ��
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i 1 2 3 4 5 6 7 8 9 10

Theoretic 1.865 -4.025 -5.121 6.268 -3.259 -13.553 -1.997 14.098 -10.033 9.614

Mean 1.845 -4.056 -5.132 6.243 -3.266 -13.520 -1.893 14.162 -9.902 9.654

SD 0.098 0.088 0.163 0.140 0.140 0.187 0.116 0.110 0.185 0.160

Table 3.1. The Potentials in Example 3.1 with 100,000 Transitions and L = 5

Algorithms for Γ

Next, we derive a sample-path-based algorithm from (3.9). On a sample path
of X = {Xl, l ≥ 0} with X0 = i, for each pair of states j and i, we define two
sequences of epochs {lk(j)} and {lk(i)} as follows:

l0(i) = 0,
lk(j) = the epoch that {Xl} first visits state j after lk−1(i), k ≥ 1,
lk(i) = the epoch that {Xl} first visits state i after lk(j), k ≥ 1. (3.18)

Note that {lk(j)} and {lk(i)} are well defined on a sample path; see
Figure 3.3.
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Fig. 3.3. Estimating γ(i, j)

Now, define Lk(i|j) = lk(i)− lk(j) and

Rk(i, j) =
lk(i)−1∑

l=lk(j)

f(Xl).



156 3 Learning and Optimization with Perturbation Analysis

The Markov property ensures that the Lk(i|j) and Rk(i, j), k = 0, 1, . . . , are
identically and independently distributed (i.i.d), respectively. By the law of
large numbers, we have

lim
N→∞

1
N

N∑

k=1

Lk(i|j) = E[L(i|j)], w.p.1,

and

lim
N→∞

1
N

N∑

k=1

Rk(i, j) = E

[ L(i|j)−1∑

l=0

f(Xl)
∣∣∣X0 = j

]
, w.p.1.

Therefore,

lim
N→∞

1
N

{
N∑

k=1

[Rk(i, j)− Lk(i|j)η]

}
= γ(i, j), w.p.1, (3.19)

where η can be estimated on the sample path using (3.13). Potentials can be
obtained by using any row of Γ . We may also use g = (πΓ )T , which may lead
to more accurate estimates because it employs all the rows of Γ .

Example 3.2. We consider the same Markov chain as in Example 3.1. We
did ten simulation runs, and each consists of 100,000 state transitions. The
theoretical values as well as the means and the standard deviations of the
estimated realization factors using (3.19) are listed in Tables 3.2, 3.3, and 3.4,
respectively. The estimated matrix Γ is indeed skew-symmetric and standard
deviations of most items are of the order 10−2. The statistics of the poten-
tials based on g = (πΓ )T are listed in Table 3.5, which shows much smaller
standard deviations compared with those in Table 3.1. ��

3.1.3 Coupling∗

The algorithms based on (3.10) require two sample paths X and X̃; they are
independent and follow the same transition probability matrix P but start
from two different states i and j, respectively. However, to estimate γ(i, j),
the two sample paths do not need to be independent of each other. In fact, it
is well known that introducing co-relation between the random samples of two
random variables may reduce the variance in estimating the difference of their
mean values [257] (also see Problem 3.7). For example, we may use the same
sequence of random variables {ξ0, ξ1, . . .} to simulate the two sample paths
X and X̃ to obtain estimates for γ(i, j) in (3.11). Introducing co-relation
between the two sample paths X and X̃ is called the coupling approach in
simulation (see, [212]). In the following, we will study this coupling issue in
greater detail.
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1 2 3 4 5 6 7 8 9 10

1 0.000 -5.890 -6.987 4.403 -5.124 -15.418 -3.863 12.232 -11.899 7.749

2 5.890 0.000 -1.097 10.293 0.766 -9.528 2.028 18.122 -6.009 13.639

3 6.987 1.097 0.000 11.389 1.863 -8.430 3.124 19.219 -4.912 14.735

4 -4.403 -10.293 -11.389 0.000 -9.527 -19.820 -8.265 7.830 -16.302 3.346

5 5.124 -0.766 -1.863 9.527 0.000 -10.294 1.260 17.356 -6.775 12.873

6 15.418 9.528 8.430 19.820 10.294 0.000 11.556 27.650 3.519 23.167

7 3.863 -2.028 -3.124 8.265 -1.261 -11.556 0.000 16.095 -8.036 11.611

8 -12.232 -18.122 -19.219 -7.830 -17.356 -27.650 -16.095 0.000 -24.130 -4.484

9 11.899 6.009 4.912 16.302 6.775 -3.519 8.036 24.130 0.000 19.647

10 -7.749 -13.639 -14.735 -3.346 -12.873 -23.167 -11.610 4.484 -19.647 0.000

Table 3.2. The Theoretical Values of the Realization Factors in Example 3.2

1 2 3 4 5 6 7 8 9 10

1 0.000 -5.801 -6.983 4.336 -5.106 -15.377 -3.827 12.286 -11.727 7.756

2 5.800 0.000 -1.012 10.294 0.780 -9.474 2.097 18.204 -5.898 13.682

3 6.983 1.012 0.000 11.381 1.838 -8.416 3.146 19.217 -4.912 14.769

4 -4.336 -10.294 -11.381 0.000 -9.492 -19.690 -8.143 7.876 -16.217 3.442

5 5.105 -0.782 -1.838 9.491 0.000 -10.223 1.390 17.408 -6.582 12.918

6 15.376 9.472 8.414 19.689 10.221 0.000 11.684 27.629 3.647 23.214

7 3.827 -2.098 -3.147 8.142 -1.391 -11.687 0.000 16.014 -7.999 11.629

8 -12.285 -18.204 -19.218 -7.875 -17.409 -27.630 -16.014 0.000 -24.069 -4.491

9 11.726 5.895 4.910 16.214 6.579 -3.653 7.997 24.067 0.000 19.709

10 -7.755 -13.683 -14.768 -3.440 -12.920 -23..216 -11.629 4.493 -19.713 0.000

Table 3.3. The Mean Realization Factors in Example 3.2

Define a composed Markov chain X̂ := {(Xl, X̃l), l = 0, 1, . . .}; its state
space is

Ŝ = S × S = {(1, 1), (1, 2), . . . , (1, S),
(2, 1), (2, 2), . . . , (2, S), . . . , (S, 1), . . . , (S, S)},

and its transition probabilities are

p̂[(i′, j′)|(i, j)] := P
(
Xl+1 = i′, X̃l+1 = j′

∣∣∣Xl = i, X̃l = j
)
,

i, i′, j, j′ ∈ S,

which equal
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1 2 3 4 5 6 7 8 9 10

1 0.000 0.017 0.060 0.043 0.052 0.017 0.047 0.077 0.144 0.063

2 0.017 0.000 0.020 0.027 0.011 0.025 0.035 0.025 0.109 0.040

3 0.060 0.020 0.000 0.029 0.049 0.054 0.025 0.024 0.065 0.076

4 0.043 0.028 0.029 0.000 0.037 0.028 0.025 0.041 0.116 0.100

5 0.052 0.011 0.050 0.038 0.000 0.021 0.037 0.045 0.041 0.026

6 0.017 0.024 0.054 0.027 0.020 0.000 0.025 0.041 0.037 0.070

7 0.047 0.036 0.025 0.025 0.037 0.025 0.000 0.039 0.059 0.032

8 0.077 0.024 0.024 0.041 0.044 0.041 0.039 0.000 0.128 0.064

9 0.146 0.110 0.065 0.117 0.042 0.039 0.059 0.130 0.000 0.102

10 0.064 0.040 0.076 0.101 0.025 0.068 0.031 0.065 0.097 0.000

Table 3.4. The Standard Deviations of the Realization Factors in Example 3.2

1 2 3 4 5 6 7 8 9 10

Theoretic 1.865 -4.025 -5.121 6.268 -3.259 -13.553 -1.997 14.098 -10.033 9.614

Mean 1.859 -4.039 -5.092 6.237 -3.273 -13.517 -1.912 14.132 -9.932 9.671

SD 0.0122 0.0074 0.0105 0.0127 0.0111 0.0038 0.0148 0.0146 0.0405 0.0206

Table 3.5. The Potentials Based on the Realization Factors in Example 3.2

p̂[(i′, j′)|(i, j)] := P
(
Xl+1 = i′

∣∣∣Xl = i, X̃l = j
)

× P
(
X̃l+1 = j′

∣∣∣Xl = i, X̃l = j,Xl+1 = i′
)
.

The transition probability matrix of X̂ is denoted as

P̂ =
[
p̂[(i′, j′)|(i, j)]

]

(i,j),(i,j′)∈Ŝ
.

To simplify the notation, we denote

pj(i′|i) := P
(
Xl+1 = i′

∣∣∣Xl = i, X̃l = j
)
,

which is the conditional transition probability distribution of X from state
X = i when the Markov chain X̃ is in state X̃ = j; and

p̃i′|i(j′|j) := P
(
X̃l+1 = j′

∣∣∣X̃l = j,Xl = i,Xl+1 = i′
)
,

which is the conditional transition probability of the Markov chain X̃ moving
from state j to state j′, given that the Markov chain X moves from state i
to state i′. Thus,



3.1 The Potentials 159

p̂[(i′, j′)|(i, j)] = pj(i′|i)p̃i′|i(j′|j), i, i′, j, j′ ∈ S. (3.20)

With similar definitions, we have

p̂[(i′, j′)|(i, j)] = p̃i(j′|j)pj′|j(i′|i), i, i′, j, j′ ∈ S. (3.21)

Summing up both sides of (3.20) and (3.21) over i′ ∈ S, we have

p̃i(j′|j) =
∑

i′∈S
pj(i′|i)p̃i′|i(j′|j), j′ ∈ S.

Summing up both sides of (3.20) and (3.21) over j′ ∈ S, we have

pj(i′|i) =
∑

j′∈S
p̃i(j′|j)pj′|j(i′|i), j′ ∈ S.

If X and X̃ are independent, then p̃i′|i(j′|j) = p̃i(j′|j) = p(j′|j) and
pj′|j(i′|i) = pj(i′|i) = p(i′|i), for all i, i′, j, j′ ∈ S.

Now, let the reward function of X̂ be f̂(i, j) = f(j)−f(i), the correspond-
ing performance potentials of X̂ be ĝ(i, j), and the steady-state probability
distribution of X̂ be π̂(i, j), i, j ∈ S. We have the Poisson equation for X̂

(assuming P̂ is irreducible):

(I − P̂ )ĝ + η̂e = f̂ , (3.22)

where η̂ = π̂f̂ is the average reward.
Equation (3.22) holds for X̂ = (X, X̃). In our case, both X and X̃

have the same transition probability matrix P . Thus, their steady-state prob-
abilities are equal; i.e., π(i) = π̃(i), i ∈ S. Thus, we have η̂ = π̂f̂ =∑

i,j∈S π̂(i, j)f̂(i, j) = 0, and (3.22) becomes

(I − P̂ )ĝ = f̂ .

In addition, although the transitions of X and X̃ are coupled, the transition
of each of X and X̃ at any time must follow the transition probability matrix
P . Precisely, we may require that

p̃i(j′|j) = p(j′|j), i ∈ S, (3.23)

and that
pj(i′|i) = p(i′|i), j ∈ S. (3.24)

Under these conditions the coupling is reflected by the conditional transition
probabilities pj′|j(i′|i) and p̃i′|i(j′|j). Next, we show that, under these condi-
tions, ĝ(i, j) = g(j)− g(i), i, j ∈ S is indeed a solution to (3.22).

To facilitate the matrix manipulation, we need to introduce some notation.
Let A = [a(i, j)] be an m× n matrix and B = [b(i′, j′)] be an m′ × n′ matrix.
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The Kronecker product of A and B is defined as the (mm′) × (nn′) matrix
denoted as

A⊗B =

⎡

⎢⎣
a(1, 1)B . . . a(1, n)B

...
. . .

...
a(m, 1)B . . . a(m,n)B

⎤

⎥⎦ .

For clarity, we use em to denote an m-dimensional column vector with all
components being one.

With this notation, we can verify that

f̂ = (eS ⊗ f)− (f ⊗ eS).

Conditions (3.23) and (3.24) are equivalent to

P̂ (I ⊗ eS) = P ⊗ eS , (3.25)

and
P̂ (eS ⊗ I) = eS ⊗ P. (3.26)

We can easily derive that, for any matrix A and vector g, if Ag is well defined,
then (A⊗e)g = (Ag)⊗e and (e⊗A)g = e⊗(Ag), for an e with any dimension.

Finally, from (3.25) and (3.26), we have

(I − P̂ )(eS ⊗ I − I ⊗ eS)g
= (eS ⊗ I − I ⊗ eS)g − [eS ⊗ (Pg)− (Pg)⊗ eS ]
= eS ⊗ [(I − P )g]− [(I − P )g]⊗ eS

= eS ⊗ [(I − P + eSπ)g]− [(I − P + eSπ)g]⊗ eS

= eS ⊗ f − f ⊗ eS

= f̂ .

Thus, under conditions (3.23) and (3.24),

ĝ = eS ⊗ g − g ⊗ eS

is indeed one of the solutions to (3.22). That is, ĝ(i, j) = g(j)− g(i) = γ(i, j),
i, j ∈ S, are the realization factors of X. We have

eT
S2 ĝ = 0, and eT

S2 f̂ = 0.

Equation (3.22) is the perturbation realization factor (PRF) equation with
coupled sample paths.

Now, we discuss the numerical method for solving (3.22). Let ν be any S2

dimensional row vector such that νeS2 = 1, and νĝ = 0. For example, we can
take ν = 1

S2 e
T
S2 . We can write the PRF equation (3.22) as

(I − P̂ + eS2ν)ĝ = f̂ .
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We can prove (see Problem 3.2) that the eigenvalues of P̂ − eS2ν are all in
the unit circle. Thus, we have the following expansion:

ĝ = (I − P̂ + eS2ν)−1f̂

=
∞∑

l=0

(P̂ − eS2ν)lf̂ . (3.27)

Let λ be one of the eigenvalues of P and x be its corresponding eigenvector.
Define x̂ = x ⊗ eS . It is easy to verify that λ is the eigenvalue of P̂ with
eigenvector x̂. Therefore, all the eigenvalues of P are the eigenvalues of P̂
(which may have other eigenvalues). Thus, the convergence rate of (3.27)
cannot be better than (3.1) or (3.3). Therefore, the coupling approach cannot
improve the convergence rate of the numerical algorithms for calculating Γ
(γ(i, j) = ĝ(i, j)).

The coupling method is generally used in simulation to reduce the variance
of the estimates for the difference of the mean of two different random vari-
ables. Relative references include [31, 33, 91, 92, 115, 127, 177, 179, 212, 213].
Applying this approach to estimate γ(i, j) = g(j) − g(i) with two coupled
sample paths still requires further research and we will not discuss the de-
tails in this book. Problems 3.9 and 3.10 provide a brief introduction to this
variance-reduction simulation approach.

3.2 Performance Derivatives

3.2.1 Estimating through Potentials

The performance potentials obtained by numerical methods or by learning
from sample paths can be used to calculate the performance derivatives using
the performance derivative formula (2.23):

dηδ

dδ
= π(ΔP )g. (3.28)

We first give a few numerical examples.

Example 3.3. We consider a Markov chain with the same transition proba-
bility matrix P and reward function f as those in Examples 3.1 and 3.2. To
study the derivatives of the average reward, we arbitrarily choose the direction
of P as

ΔP =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.010 0.000 0.005 0.005 −0.010 0.010 0.010 0.005 0.005 −0.020

−0.010 0.000 0.000 0.015 0.005 0.005 −0.005 −0.005 −0.005 0.000

0.000 0.010 0.010 0.010 0.000 −0.010 0.000 −0.010 −0.010 0.000

0.005 −0.020 0.005 0.000 0.005 0.000 0.010 −0.010 0.005 0.000

0.000 0.010 −0.010 0.000 0.010 0.000 −0.010 0.010 0.000 −0.010

0.000 0.010 −0.010 0.000 −0.020 0.005 0.005 0.000 0.005 0.005

0.010 −0.010 0.010 −0.010 0.010 −0.010 0.010 −0.010 0.010 −0.010

0.000 0.010 0.000 −0.010 0.000 0.010 0.000 −0.005 0.000 −0.005

0.010 −0.010 −0.020 0.000 0.010 0.010 0.010 0.000 0.000 −0.010

0.010 −0.010 0.000 0.010 −0.010 −0.010 0.010 −0.010 0.010 0.000

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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We use the sample-path-based estimates of potentials in the form of (3.15) to
compute the derivatives. To study the effect of L, we choose L = 1, 2, 3, 5, 10,
15, 20. For each value of L, we do two sets of simulation, with each set having
ten runs. Each simulation run contains 100,000 state transitions in the first
set and 1,000,000 transitions in the second set. The theoretical value of the
derivative is -0.1176. The means and standard deviations of the derivatives
calculated by (3.28) using the sample-path-based potential estimates in these
two sets of simulations are listed in Tables 3.6 and 3.7.

L 1 2 3 5 10 15 20 Theoretic

Mean -0.0979 -0.1224 -0.1162 -0.1172 -0.1180 -0.1183 -0.1176 -0.1176

SD 0.00045 0.00059 0.00070 0.00151 0.00186 0.00261 0.00216 -

Table 3.6. The Performance Derivatives in Example 3.3 with 100,000 Transitions

L 1 2 3 5 10 15 20 Theoretic

Mean -0.0989 -0.1229 -0.1167 -0.1176 -0.1178 -0.1176 -0.1174 -0.1176

SD 0.00009 0.00015 0.00016 0.00025 0.00026 0.00047 0.00059 -

Table 3.7. The Performance Derivatives in Example 3.3 with 1,000,000 Transitions

These tables show that the estimate is quite accurate even when L is as
small as 2 or 3. The standard deviation is acceptable even if L is 20. Thus,
the results are not so sensitive to the value of L. It is interesting to note that
even if we choose L = 1 in this case, the error is only about 17%. L = 1
means using the reward function to approximate the potentials, i.e., assuming
that g ≈ f . This corresponds to the “myopic” view in optimization: When
the system jumps to state i, we just use the one step reward f(i) to represent
its effect on the long-run performance. ��

3.2.2 Learning Directly

One disadvantage of the approach in Section 3.2.1 is that it requires us to esti-
mate the potentials for all the states. This is sometimes difficult for a number
of reasons: The number of states may be too large; some states may be visited
very rarely; and for systems with special structures (e.g. queueing networks),
it may not be convenient even to list out all the states. In this subsection, we
show that the performance derivatives can be estimated directly from sample
paths without estimating each individual potential.

An analogue is the estimation of the performance measure itself. There
are two ways to do the estimation: We may estimate all π(i) first and then
use η = πf to calculate the performance, or we may estimate η directly by
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η = lim
L→∞

1
L

L−1∑

l=0

f(Xl), w.p.1. (3.29)

This direct estimation balances the accuracy of π(i) and the frequency of the
visits to i: If i is not visited often, then π(i) may not be accurately estimated;
meanwhile, its effect on η is also small. We wish to develop equations similar
to (3.29) for the derivatives of average rewards.

A Basic Formula and a General Algorithm

We first present a basic formula for the direct estimation of the derivatives
of average rewards. This formula is the foundation of the sample-path-based
algorithms. With this formula, a general algorithm for derivatives can be de-
veloped; many other algorithms can be viewed as special cases of this general
algorithm [61].

Consider a stationary Markov chain X = (X0,X1, . . .). (This implies that
the initial probability distribution is the steady-state distribution π.) Let E
denote the expectation on the probability space generated by X. Because it is
impossible for a sample path with transition matrix P to contain information
about ΔP = P ′−P , we need to use a standard technique in simulation called
importance sampling. First, we make a standard assumption in importance
sampling: For any i, j ∈ S, if Δp(j|i) �= 0, then p(j|i) �= 0. This assumption
allows us to analyze the effect of Δp(j|i) based on the information observed
when the system moves from state i to state j on X. If the assumption does
not hold, we may have p′(j|i) > 0 while p(j|i) = 0 for some i, j ∈ S. In this
case, a sample path of X does not contain any transition from i to j, and we
may need to observe two or more transitions (see Problem 3.11).

First, we have (2.23)

dηδ

dδ
= πΔPg =

∑

i∈S

∑

j∈S
[π(i)Δp(j|i)g(j)]

=
∑

i∈S

∑

j∈S

{
π(i)p(j|i)

[
Δp(j|i)
p(j|i) g(j)

]}
.

For a stationary Markov chain X = {Xl, l = 0, 1, . . .}, this is

dηδ

dδ
= E

{
Δp(Xl+1|Xl)
p(Xl+1|Xl)

g(Xl+1)
}

, (3.30)

which does not depend on l. Next, let ĝ(Xl+1,Xl+2, . . .) be an unbiased esti-
mate of g(Xl+1); i.e., let

g(i) = E {ĝ(Xl+1,Xl+2, . . .)|Xl+1 = i} , i ∈ S. (3.31)

With (3.31), we have
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E

{
Δp(Xl+1|Xl)
p(Xl+1|Xl)

ĝ(Xl+1,Xl+2, . . .)
}

= E

{
E

[
Δp(Xl+1|Xl)
p(Xl+1|Xl)

ĝ(Xl+1,Xl+2, . . .)
∣∣∣Xl,Xl+1

]}

= E

{
Δp(Xl+1|Xl)
p(Xl+1|Xl)

E
[
ĝ(Xl+1,Xl+2, . . .)

∣∣∣Xl,Xl+1

]}

= E

{
Δp(Xl+1|Xl)
p(Xl+1|Xl)

g(Xl+1)
}

.

Therefore, we have the following basic formula:

dηδ

dδ
= E

{
Δp(Xl+1|Xl)
p(Xl+1|Xl)

ĝ(Xl+1,Xl+2, . . .)
}

. (3.32)

With this formula, we can develop a general algorithm for estimating deriva-
tives. In fact, for an ergodic Markov chain X = {X0,X1, . . .}, we have

dηδ

dδ
= lim

N→∞

1
N

N−1∑

n=0

{[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

]
ĝ(Xn+1,Xn+2, . . .)

}
, w.p.1,

(3.33)

where ĝ(Xn+1,Xn+2, . . .) is any function satisfying (3.31).
The proof of (3.33) follows directly from the fundamental ergodicity the-

orem (3.17) by simply defining

φ(Xn,Xn+1, . . .) =
Δp(Xn+1|Xn)
p(Xn+1|Xn)

ĝ(Xn+1,Xn+2, . . .).

Specific Algorithms

With different estimates or approximations of the potentials, (3.33) leads to
a few specific approximate algorithms for the derivatives of average rewards.

Algorithm 3.1. (Approximation by truncation)
With (3.14), we have

g(i) ≈ gL(i) = E

{
L−1∑

l=0

f(Xl)
∣∣∣X0 = i

}
.

Therefore, from (3.31), we may choose
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ĝ(Xn+1,Xn+2, · · ·) ≈
L−1∑

l=0

f(Xn+l+1).

Using this ĝ in (3.32) and (3.33), we get

dηδ

dδ
≈ E

{
Δp(Xn+1|Xn)
p(Xn+1|Xn)

[ L−1∑

l=0

f(Xn+l+1)
]}

= lim
N→∞

1
N

{
N−1∑

n=0

[Δp(Xn+1|Xn)
p(Xn+1|Xn)

][ L−1∑

l=0

f(Xn+l+1)
]}

, w.p.1.

(3.34)

This is equivalent to

dηδ

dδ
≈ lim

N→∞

1
N

N−1∑

n=0

{
f(Xn+L)

L−1∑

l=0

[
Δp(Xn+l+1|Xn+l)
p(Xn+l+1|Xn+l)

]}
, w.p.1.

(3.35)

This algorithm and similar ones for Markov processes and queueing networks
are presented in [69].

Example 3.4. We repeat the simulation for the same Markov chain as in
Example 3.3 and apply (3.35) to estimate the derivative of the average reward.
We perform ten simulation runs for each value of L and the results are listed
in Table 3.8. The table shows that for L = 2 to 15, (3.35) yields very accurate
estimates. When L increases further from 20, the estimate becomes inaccurate
because the variance becomes larger. ��

By the ergodicity of the Markov chain, (3.35) can be written as

dηδ

dδ
≈ E

{
f(Xn+L)

L−1∑

l=0

[
Δp(Xn+l+1|Xn+l)
p(Xn+l+1|Xn+l)

]}
, (3.36)

where “E” denotes the steady-state expectation. Define

ρL(i) = E

{
L−1∑

l=0

[
Δp(Xl+1|Xl)
p(Xl+1|Xl)

]∣∣∣∣XL = i

}
.

Then, (3.36) becomes
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L 1 2 3 5 10 15

Mean -0.0973 -0.1221 -0.1157 -0.1163 -0.1151 -0.1137

SD 0.0033 0.0067 0.0104 0.0162 0.0305 0.00443

L 25 50 75 100 200 Theoretic

Mean -0.1098 -0.1035 -0.0933 -0.0797 -0.0434 -0.1176

SD 0.0760 0.1522 0.2300 0.3086 0.6351 -

Table 3.8. The Performance Derivatives in Example 3.4 with 100,000 Transitions

dηδ

dδ
≈

∑

i∈S
π(i)f(i)ρL(i).

Define
ρ(i) = lim

L→∞
ρL(i), i ∈ S. (3.37)

Then, by the above derivation, we have

dηδ

dδ
=

∑

i∈S
π(i)f(i)ρ(i). (3.38)

Equation (3.38) and the convergence of (3.37) can be rigorously proved; see
Problem 3.15.

Algorithm 3.2. (Approximation by discounting)
Because limβ↑1 gβ = g, potential g can be approximated by the β-potential

gβ in (2.45):

gβ(i) = E

{ ∞∑

l=0

βl[f(Xl)− η]
∣∣∣X0 = i

}
,

with 0 < β < 1 being a discount factor. Ignoring the constant term, we have
the approximation of the potential as follows:

gβ(i) = E

{ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

}
.

Therefore, we can choose

ĝ(Xn+1,Xn+2, . . .) ≈
∞∑

l=0

βlf(Xn+l+1).

Using this as the ĝ in (3.33), we get
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dηδ

dδ
≈ lim

N→∞

1
N

{
N−1∑

n=0

[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

] [ ∞∑

l=0

βlf(Xn+l+1)
]}

, w.p.1

= E

{
Δp(Xn+1|Xn)
p(Xn+1|Xn)

[ ∞∑

l=0

βlf(Xn+l+1)
]}

. (3.39)

The right-hand side of (3.39) equals the sum of the two terms:

lim
N→∞

1
N

N−1∑

n=0

{
Δp(Xn+1|Xn)
p(Xn+1|Xn)

[ N−n−1∑

l=0

βlf(Xn+l+1) +
∞∑

l=N−n

βlf(Xn+l+1)
]}

.

(3.40)
For the second term, we have

∣∣∣∣∣
1
N

N−1∑

n=0

{
Δp(Xn+1|Xn)
p(Xn+1|Xn)

[ ∞∑

l=N−n

βlf(Xn+l+1)
]}∣∣∣∣∣

≤ max
i,j∈S

∣∣∣∣
Δp(j|i)
p(j|i)

∣∣∣∣max
i∈S

|f(i)|
{

1
N

N−1∑

n=0

∞∑

l=N−n

βl

}

→ 0, as N →∞.

Therefore, the second term in (3.40) is zero, and (3.39) becomes

dηδ

dδ
≈ lim

N→∞

1
N

N−1∑

n=0

{
Δp(Xn+1|Xn)
p(Xn+1|Xn)

[ N−n−1∑

l=0

βlf(Xn+l+1)
]}

, w.p.1.

We exchange the order of the above two finite sums and obtain

dηδ

dδ
≈ lim

N→∞

1
N

N∑

n=1

{
f(Xn)

n−1∑

l=0

[
βn−l−1Δp(Xl+1|Xl)

p(Xl+1|Xl)

]}
, w.p.1.

(3.41)

This is the policy-gradient algorithm developed in [17, 18].
We can calculate zn :=

∑n−1
l=0

[
βn−l−1 Δp(Xl+1|Xl)

p(Xl+1|Xl)

]
recursively: set z0 = 0

and

zk+1 = βzk +
Δp(Xk+1|Xk)
p(Xk+1|Xk)

, k ≥ 0.

On the other hand, to calculate
∑L−1

l=0

[
Δp(Xn+l+1|Xn+1)
p(Xn+l+1|Xn+1)

]
in Algorithm 3.1,

we have to store L values.
Finally, the discount factor approximation can also be used to reduce the

variance in estimating the performance gradients [198].
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Example 3.5. We repeat the simulation for the same Markov system as in
Examples 3.3 and 3.4 and apply (3.41) to estimate the performance derivative.
We perform ten simulation runs for each value of the discount factor β, and
the means and standard deviations of the estimates are listed in Table 3.9.
The table shows that for β = 0.8 to 0.9, the algorithm in (3.41) yields very
accurate estimates. Of course, when β increases, gβ increases and goes closer
to g. However, when β increases, the variance of the estimate also increases.
This explains why the estimation error becomes larger for β > 0.9. Thus,
when we choose the value of β, we need to balance both bias and variance.
The table shows that β = 0.8 to 0.9 are the best choices. ��

β 0.80 0.85 0.90 0.95 0.97 Theoretic

Mean -0.113 -0.114 -0.114 -0.111 -0.125 -0.1176

SD 0.016 0.021 0.031 0.061 0.065 -

Table 3.9. The Performance Derivatives in Example 3.5 with 100,000 Transitions

Algorithm 3.3. (Based on perturbation realization factors)
It is sometimes easier and more accurate to estimate the potentials via

perturbation realization factors γ(i, j) = g(j) − g(i), i, j,∈ S. This is based
on (2.17)

γ(i, j) = E

{
L(i|j)−1∑

l=0

[f(Xl)− η]
∣∣∣X0 = j

}
.

To develop a direct algorithm for derivatives of average rewards, we first use
the above equation to obtain ĝ. To this end, we choose any regenerative state
i∗ as a reference point and set g(i∗) = 0. Then, for any state i ∈ S, we have

g(i) = g(i)− g(i∗) = γ(i∗, i).

For convenience, we set X0 = i∗ and define u0 = 0, and we let uk+1 = min{n :
n > uk,Xn = i∗} be the sequence of regenerative points. For any time instant
n ≥ 0, we define an integer m(n) such that um(n) ≤ n < um(n)+1. This implies
that um(n) = n when i = i∗. From (2.17), we have

g(i) = γ(i∗, i) = E

{ um(n)+1−1∑

l=n

[
f(Xl)− η

]∣∣∣Xn = i

}
.

Choosing ĝ(Xn+1, . . .) =
∑um(n+1)+1−1

l=n+1 [f(Xl) − η] in (3.32) and (3.33), we
have
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dηδ

dδ
= E

⎧
⎨

⎩

[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

] um(n+1)+1−1∑

l=n+1

[f(Xl)− η]

⎫
⎬

⎭

= lim
N→∞

1
N

N−1∑

n=0

⎧
⎨

⎩

[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

]um(n+1)+1−1∑

l=n+1

[f(Xl)− η]

⎫
⎬

⎭ , w.p.1(3.42)

= lim
N→∞

1
N

N∑

n=1

⎧
⎨

⎩[f(Xn)− η]
n∑

l=um(n)

Δp(Xl|Xl−1)
p(Xl|Xl−1)

⎫
⎬

⎭ , w.p.1, (3.43)

where um(n+1)+1 is the first time after Xn+1 that the Markov chain reaches
state i∗.

Next, define

ŵn+1 =
um(n+1)+1−1∑

l=n+1

[f(Xl)− η].

By the regenerative property, from (3.42) we have

dηδ

dδ
=

E
{∑um+1−1

k=um

(
Δp(Xk+1|Xk)
p(Xk+1|Xk) ŵk+1

)}

E[um+1 − um]

= E

(
Δp(Xk+1|Xk)
p(Xk+1|Xk)

ŵk+1

)
. (3.44)

Define

r̂n =
n∑

l=um(n)

Δp(Xl|Xl−1)
p(Xl|Xl−1)

.

Therefore, (3.43) takes the following form

dηδ

dδ
=

E
{∑um+1−1

k=um
[f(Xk)− η]r̂k

}

E[um+1 − um]
= E {[f(Xk)− η]r̂k} . (3.45)

The optimization scheme proposed in [197] is essentially a result of com-
bining the above algorithms with stochastic approximation techniques. See
Section 6.3.1 for additional discussion.

Example 3.6. We repeat the simulation for the same Markov system as in
Examples 3.3, 3.4, and 3.5. We perform ten simulation runs and apply (3.43)
to estimate the performance derivatives. The mean is -0.1191 and the standard
deviation is 0.0075. ��
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Algorithm 3.4. (Parameterized policy spaces)
Now, we consider a parameterized space of transition probability matrices

denoted as Pθ = [pθ(j|i)], i, j ∈ S, where θ is a continuous parameter and
d
dθ{pθ(j|i)} exists for all i, j ∈ S. We assume that the Markov chains under
all transition probability matrices are ergodic. The corresponding steady-state
probabilities and average rewards are denoted as πθ and ηθ = πθf . For sim-
plicity, we assume that the reward function f is the same for all Pθ. (The
extension to fθ depending on θ is straightforward.)

Algorithms for the derivatives of average rewards can be developed by
replacing Δp(j|i) in (3.32) and (3.33) with d

dθ{pθ(j|i)}. For example, the basic
formula (3.32) becomes

dηθ

dθ
= E

{
d
dθpθ(Xn+1|Xn)
p(Xn+1|Xn)

ĝ(Xn+1,Xn+2, . . .)

}
,

where ĝ(Xn+1,Xn+2, . . .) is an unbiased estimate of g(i), given Xn+1 = i. The
specific algorithms (3.34) and (3.39) become

dηθ

dθ
= E

{
d
dθpθ(Xn+1|Xn)
p(Xn+1|Xn)

[ L−1∑

l=0

f(Xn+l+1)
]}

, (3.46)

dηθ

dθ
= E

{
d
dθpθ(Xn+1|Xn)
p(Xn+1|Xn)

[ ∞∑

l=0

βlf(Xn+l+1)
]}

. (3.47)

From (3.44), we have

dηθ

dθ
= E

⎧
⎨

⎩

d
dθpθ(Xn+1|Xn)
p(Xn+1|Xn)

[ um(n+1)+1−1∑

l=n+1

[f(Xl)− η]
]
⎫
⎬

⎭

=
E

{∑um+1−1
n=um

[
d

dθ p(Xn+1|Xn)

p(Xn+1|Xn)

(∑um(n+1)+1−1

l=n+1 [f(Xl)− η]
)]}

E[um+1 − um]
. (3.48)

From(3.45), we have

dηθ

dθ
= E

⎧
⎨

⎩[f(Xn)− η]
n∑

l=um(n)

d
dθpθ(Xl|Xl−1)
p(Xl|Xl−1)

⎫
⎬

⎭

=
E

{∑um+1−1
n=um

[
[f(Xn)− η]

∑n
l=um(n)

d
dθ pθ(Xl|Xl−1)

p(Xl|Xl−1)

]}

E[um+1 − um]
. (3.49)

Other equations similar to (3.35) and (3.41) can be developed.
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Example 3.7. The above estimation algorithms are applied to the partially-
observable Markov decision processes (POMDPs) in [17, 18]. (This example
can be better understood after reading the materials in Chapter 4 about the
Markov decision processes.)

In this example, we use the following simple parameterized model. In ad-
dition to the state space S, there is a finite action space denoted as A and
a finite observation space denoted as Y. Each α ∈ A determines a transition
probability matrix Pα = [pα(j|i)]. When the Markov chain is in state i ∈ S,
an observation y ∈ Y is obtained according to a probability distribution νi(y).
For any observation y, we may choose a randomized policy μy(α), which is a
probability distribution over the action space A. It is assumed that the distri-
bution depends on a parameter θ and therefore is denoted as μy(θ, α). When
y ∈ Y is observed, with policy μy(θ, α), we take action α ∈ A with probability
μy(θ, α). Furthermore, we assume that Pα does not depend on θ.

Given an observation distribution νi(y) and a randomized policy μy(θ, α),
the corresponding transition probability is

pθ(j|i) =
∑

α,y

{νi(y)μy(θ, α)pα(j|i)} .

Therefore,
d

dθ
pθ(j|i) =

∑

α,y

[
νi(y)pα(j|i) d

dθ
μy(θ, α)

]
. (3.50)

We further assume that although the state Xn, n = 0, 1, . . ., is not com-
pletely observable, the cost at any time f(Xn) is known (e.g., by observation,
or it depends only on the action). Then, the algorithms in (3.46) and (3.47)
can be used with (3.50). If, in addition, there is a state i∗, which is irreducible
for all policies, then the algorithm in (3.49) can be used. ��

Finally, all the above algorithms are expressed in sample-path-based aver-
ages. Stochastic approximation based recursive algorithms can be developed
based on these average-type algorithms. We will study these topics in Chapter
6.

Performance Derivatives for Queueing Systems

A direct learning algorithm for performance derivatives of queueing networks
has been presented as Algorithm 2.2 in Section 2.4.1. An algorithm for the
derivatives of the mean response time with respect to service rate in an M/G/1
queue is given in Example 2.10 in Section 2.4.3.

As explained in Section 2.4.3, Algorithm 2.2 directly estimates the perfor-
mance derivative via

∑
all n π(n)c(f)(n, v) (see (2.108)) without estimating

every perturbation realization factor c(f)(n, v) and every steady-state prob-
ability π(n) separately. The same explanation applies to the algorithm in
Example 2.10 in Section 2.4.3.
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It is interesting to note the difference in the process of developing the
PA theory for both queueing systems and Markov systems. For queueing sys-
tems, the performance derivative estimation algorithms were developed first,
and the concept of the perturbation realization factor and the performance
derivative formula were developed later to provide a theoretical background
for the algorithms. For Markov systems, the concept of performance potentials
and performance derivatives were developed first, and the sample-path-based
algorithms, both for potentials and for derivatives directly, were proposed
later, by using the formulas.

The algorithms for estimating c(f)(n, v) in queueing systems should be
easy to develop; however, there has not been much effort in this direction,
perhaps because there have not been many applications with c(f)(n, v) alone
so far. On the other hand, as we will see in Chapter 4, the estimated potentials
can also be used in policy iteration optimization of Markov systems. In a recent
study, the relation between the realization factors c(f)(n, v) (with a queueing
model) and the potentials g(n) (with a Markov model) is established, and
policy-iteration-type algorithms are developed for (customer-average) perfor-
mance optimization of queueing systems based on c(f)(n, v); see [260]. In such
algorithms, the realization factors c(f)(n, v) or their aggregations need to be
calculated or estimated on sample paths.

3.3 Optimization with PA

3.3.1 Gradient Methods and Stochastic Approximation

The PA gradient estimates can be used to implement sample-path-based per-
formance optimization. When the sample path is long enough, the estimates
are very accurate and we can simply use them in any gradient-based opti-
mization procedure [22, 23, 85] for deterministic systems. If the sample path
is short, then the gradient estimates contain stochastic errors, and stochastic
approximation techniques have to be used in developing optimization algo-
rithms.

As shown in Figure 3.1, we will leave the stochastic approximation-based
recursive algorithms to Chapter 6, in which we first introduce the related
material in stochastic approximation in some detail. In this section, we dis-
cuss some fundamental methods in performance optimization with accurate
estimates of the performance gradients.

Gradient Methods and the Robbins-Monro Algorithm

In general, we consider the optimization of a performance function η(θ) :
D → R, where R = (−∞,∞) and D ⊆ RM is a convex M -dimensional
parameter subset. Denote the performance gradients at any point θ ∈ D as
dη(θ)

dθ := (∂η(θ)
∂θ(1) , . . . ,

∂η(θ)
∂θ(M) )

T , where θ(i), i = 1, 2, . . . ,M , is the ith component
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of θ. Let θ∗ be a local optimal point of η(θ) in D. We have dη(θ∗)
dθ = 0. We want

to find out a local optimal point. This is a constrained optimization problem.
Suppose that the performance gradients dη(θ)

dθ can be accurately estimated.
We may find θ∗ iteratively by using any gradient-based method (see, e.g.,
Chapter 2 of [23]). We start with an initial point θ0 ∈ D. At the kth iteration,
we run the system with parameter θk, k = 0, 1, . . ., and apply PA on a long
sample path to estimate the performance gradients at θk, dη(θk)

dθ . Set hk :=
dη(θk)

dθ . In the simplest gradient method, the parameter θ is updated according
to

θk+1 = ΠD (θk + κkhk) , (3.51)

where ΠD denotes a projection onto D, and κk > 0 is called a step size.
It can be shown that under some conditions on η(θ), θk converges to a

local optimal point θ∗ as k → ∞, when κk is a small positive constant (e.g.,
in Example 6.1 in Chapter 6, θk → θ∗ if 0 < κk = κ < 1). Under some other
conditions on η(θ), the convergence of θk requires κk → 0 and

∑∞
k=0 κk =∞.

The convergence of the algorithm (3.51) may be slow, and other methods
such as Newton’s method and Armijo’s rule etc. can be used to improve the
convergence rate. The detailed analysis of the gradient algorithms is beyond
the scope of this book and can be found in, e.g., [23].

Because of the stochastic nature of the system, the gradient estimate ob-
tained from any sample path with a finite length contains stochastic errors.
We denote such a noisy (usually unbiased) estimate as

ĥk :=
̂dη(θk)
dθ

.

The problem becomes to find the zeros of a function dη(θ)
dθ , which cannot be

measured accurately. This is a topic in stochastic approximation (SA). With
SA, we may simply replace the accurate value of the gradient in (3.51) with
its estimate (cf. (6.6) and (6.7) in Chapter 6):

θk+1 = ΠD
(
θk + κkĥk

)
. (3.52)

It is well known that with a properly chosen sequence of κk (in general∑∞
k=1 κk = ∞ and

∑∞
k=1 κ2

k < ∞, e.g., κk = 1
k ; these conditions are more

strict than those for the deterministic case (3.51)) and under some conditions
for the noise in the gradient estimates ĥk and for the performance function
η(θ), we are guaranteed to obtain a sequence of θk that converges almost
surely (with probability 1) to a local optimal point θ∗, as k → ∞. Equation
(3.52) corresponds to the Robbins-Monro algorithm in finding a zero point for
the performance gradient; it will be discussed in greater detail in Chapter 6.
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Sample-Path-Based Implementation

In sample-path-based implementation, the gradient estimation error depends
on the length of the sample path. Therefore, the convergence of the optimiza-
tion algorithm relies on the coordination among the lengths of sample paths
in every iteration and the step sizes.

As discussed, there are two ways to implement optimization algorithms
with PA. First, we can run a Markov, or a queueing, system under one set
of parameters for a relatively long period to obtain an accurate gradient es-
timate and then update the parameters according to (3.51). When the esti-
mation error is small, we hope that this standard gradient-based method for
performance optimization of deterministic systems works well.

Second, when the sample paths are short, we need to use the stochastic
approximation based algorithm (3.52). It is well known that the standard step
size sequence (e.g., κk = 1

k ) makes the algorithm very slow, so some ad hoc
methods are usually used in practice to speed up the convergence.

Both (3.51) and (3.52) take the same form and the difference is only on
the choice of step sizes. On the other hand, there are always stochastic errors
even when we run a relatively long sample path. Therefore, ad hoc methods
are also useful even when we apply the deterministic version (3.51).

One of the ad hoc methods works as follows. When the sample path of the
kth iteration is not long enough, we do not use the gradient estimate obtained
when the system is under parameters θk in the kth iteration in (3.51). Instead,
we may use a weighted sum of the current estimate under θk and the previous
estimates under θk−1, θk−2, etc. as the gradient estimate. This may maintain
the accuracy of the estimate since the step size is usually very small, (i.e., θk,
θk−1, θk−2 are very close) and, therefore, it may avoid instability caused by
the large deviation of the gradient estimates due to the short length of each
iteration and therefore it may speed up the convergence process.

There is a trade-off between the lengths of the sample paths and the num-
ber of iterations in reaching the optimal point. When the lengths are longer,
fewer iterations may be required; and when the lengths are shorter, more itera-
tions may be required. There are not much work in stochastic approximation
dealing with the convergence speeds of the algorithms. Therefore, it is not
clear which method, with long lengths or short ones, is faster (in terms of the
number of transitions). Figure 3.4 illustrates the two optimization approaches
with PA-based gradient estimates.

3.3.2 Optimization with Long Sample Paths

To illustrate the optimization approach with long sample paths, we consider
the optimization of the system throughput η (see (2.95)) with respect to the
mean service times, s̄i, i = 1, 2, . . . ,M , in a closed Jackson network (Section
C.2). We assume that the mean service times must meet a constraint: The total
mean service time is a constant, i.e.,

∑M
i=1 s̄i = const, where “const” denotes
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Fig. 3.4. Two Optimization Approaches with PA-Based Gradient Estimates

a constant. This constraint defines the region D in RM . The performance
gradient

dη

ds̄
:=

[
∂η

∂s̄1
, . . . ,

∂η

∂s̄M

]T

can be obtained by PA with a sample path of the queueing system. Let s̄i;k be
server i’s mean service time at the kth iteration. We update the mean service
times as follows:

s̄i;k+1 = s̄i;k + κk

⎧
⎨

⎩
∂η

∂s̄i
− 1

M

M∑

j=1

∂η

∂s̄j

⎫
⎬

⎭
s̄i=s̄i;k, i=1,...,M

. (3.53)

It can be easily verified that
∑M

i=1 s̄i;k = const, k = 1, 2, . . . , as long as the
initial values satisfy

∑M
i=1 s̄i;0 = const .

Next, we provide a numerical example to show how the optimization ap-
proach works in practice. Some ad hoc modifications are added in the example
to speed up the optimization process.

Example 3.8. Consider a closed Jackson network with M = 3 servers and
N = 5 customers; let the routing matrix be

Q =

⎡

⎣
0 0.3 0.7

0.6 0 0.4
0.5 0.5 0

⎤

⎦ .

The mean service times satisfy the constraint
∑3

i=1 s̄i = 100. We wish to
maximize the system throughput.

We start with arbitrarily chosen initial values s̄1;0 = 80, s̄2;0 = 10, and
s̄3;0 = 10. We run the system with these initial values for 1,000 transitions and
apply the PA algorithm to obtain an estimate of the performance gradient.
Then, we follow (3.53) to update the mean service times. The initial length of
1,000 transitions is relatively short in estimating the gradients, because it is
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expected that at the beginning the gradient is relatively large and therefore
is easy to be estimated. The length will be adjusted in the parameter up-
dating process. To speed up the convergence process, we apply the following
modifications to the algorithm (3.53):

1. We choose the step size as

κk = a1 × ar
2 + b,

where 1 > {a1, a2} > 0, and b > 0 are more or less arbitrarily chosen posi-
tive numbers, and r is the number of previous iterations that have resulted
in degradation, rather than improvement, of the system performance. In
this example, we choose a1 = 0.2, a2 = 0.2, and b = 0.01.
To speed up the process, we use an exponential decreasing step size rather
than an inverse-proportional one. In addition, we reduce the step size only
when the performance degrades, indicating that the update in the last
iteration might be too large. Finally, we add a positive constant b to set
up a lower bound for the step size. Theoretically, such a step size may
not guarantee the convergence of the algorithm, but it may reach close
enough to the optimal point.

2. If the performance degrades (or r increases), we quadruple the length of
simulation in the next iteration to obtain a more accurate estimate of the
performance gradient.

3. At each iteration, we update the gradient estimate by a weighted sum of
the current estimate and the previous one as follows.

{
s̄i

η

∂η

∂s̄i

}

k+1

= w1

{
s̄i

η

∂η

∂s̄i

}

k

+ w2

{
s̄i

η

∂η

∂s̄i

}

the (k+1)th run

, (3.54)

where w1 = cLk

Lk+1+cLk
, w2 = Lk+1

Lk+1+cLk
, and c < 1; Lk and Lk+1 are

the lengths of the kth and (k + 1)th iterations, respectively. In (3.54),{
∂η
∂s̄i

}

k+1
is the value used in (3.53) to update the mean service times,

and
{

∂η
∂s̄i

}

the (k + 1)th run
is the estimate obtained in the (k + 1)th run.

After 36 iterations, the algorithm reaches a near-optimal point as

(s̄1, s̄2, s̄3) = (30.61, 39.69, 29.70),

with a throughput of 0.06512, as compared with the optimal value obtained
by analytical formulas

(s̄1, s̄2, s̄3) = (30.58, 39.94, 29.49),

with the optimal throughput of 0.06513. ��

In stochastic approximation based approaches with recursive algorithms,
the system parameters can be updated within a short period or even at every
transition. These topics are discussed in Chapter 6.
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3.3.3 Applications

There have been hundreds of papers in the area of PA and its applications
in the literature, and it is impossible to review all of them in this book. By
and large, the applications cover a wide range of subjects such as capacity
planning, inventory problems, resource allocation, flow control, bandwidth
provisioning, traffic shaping, pricing, and stability and reliability analysis, in
many areas including communications, networking, manufacturing, and logis-
tics. References include [10, 35, 38, 74, 95, 144, 145, 158, 164, 180, 186, 187,
196, 199, 200, 204, 211, 210, 215, 224, 225, 233, 240, 258, 261, 263].

PROBLEMS

3.1. Study the potential with g(S) = 0:

a. Prove that the solution to (3.4) satisfies pS∗g = η − f(S).
b. Derive (3.4) from the Poisson equation (I − P )g + ηe = f with the nor-

malization condition pS∗g = η − f(S).

3.2. Let P be an S × S ergodic stochastic transition matrix and ν be an
S-dimensional (row) vector with νe = 1. Set P−ν = P − eν.

a. Suppose that there is a potential g such that νg = η. Prove that g =
P−νg + f .

b. Prove that the eigenvalues of P − eν are 0 and λi, i = 1, . . . , S − 1, where
λi, with |λi| < 1, i = 1, . . . , S − 1, are the eigenvalues of P .

c. Develop an iterative algorithm similar to (3.7).
d. For any vector ν with νe = 1, we can develop the algorithm in c) without

presetting νg = η. Prove that the potential obtained by the algorithm
indeed satisfies νg = η.

e. Prove that the algorithm (3.4)-(3.7) is a special case of the above algo-
rithm. Verify that pS∗g = η.

3.3. For any vector ν with νe = 1,

a. Prove that g = (I − P + eν)−1f is a potential vector with normalization
condition νg = η.

b. Can you derive a sample-path-based algorithm similar to (2.16) based on
a)?

3.4. Consider

P =

⎡

⎣
0 0.5 0.5

0.7 0 0.3
0.4 0.6 0

⎤

⎦ , f =

⎡

⎣
10
2
7

⎤

⎦ .

a. Calculate the potential vector using algorithm (3.1).
b. Calculate the potential vector using algorithm (3.3).
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c. Calculate the potential vector using algorithm (3.7).
d. Calculate the potential vector using the algorithm proposed in Problem

3.2.

Observe the convergence speeds and compare them with that of limk→∞ P k =
eπ.

3.5. Suppose that a Markov chain starts from state i and that we use the
consecutive visits to the state i as the regenerative points (cf. (3.18)). That
is, we set

l0 = 0, with X0 = i,

lk = the epoch that {Xl} first visits state i after lk−1, k ≥ 1.

Then we denote the first visit epoch to state j in the kth regenerative period
as lj,k; i.e., lj,k = min{lk−1 < l ≤ lk : Xl = j}. We note that in some periods,
such a point may not exist. Can we use the average of the sum

∑lj,k−1
l=lk−1

f(Xl)
as the estimate of γ(j, i)? If not, why not?

3.6. Let p(1|1) = 0.5, p(2|1) = 0.2, and p(3|1) = 0.3; and p(1|2) = 0.3,
p(2|2) = 0.5, and p(3|2) = 0.2. Suppose that X = 1 and X̃ = 2 and that we
use the same uniformly distributed random variable ξ ∈ [0, 1) to determine the
transitions from both X = 1 and X̃ = 2, according to (2.2). In this case, what
are the conditional transition probabilities p̃1|1(∗|2), p̃2|1(∗|2), and p̃3|1(∗|2)?

3.7. Let X and Y be two random variables with probability distributions Φ(x)
and Ψ(y), respectively. Their means are denoted as x̄ = E(X) and ȳ = E(Y ).
We wish to estimate x̄ − ȳ = E(X − Y ) by simulation. We generate random
variables X and Y using the inverse transformation method. Thus, we have
X = Φ−1(ξ1) and Y = Ψ−1(ξ2), where ξ1 and ξ2 are two uniformly distributed
random variables in [0, 1). Prove that if we choose ξ1 = ξ2, then the variance
V ar[X − Y ] is the smallest among all possible pairs of ξ1 and ξ2.

3.8. In the coupling approach, prove the following statements:

a. Let π̂ be the S2 dimensional steady-state probability (row) vector of P̂ ,
i.e., π̂P̂ = π̂, and π be the steady-state probability vector of P , i.e.,
π = πP . Then π̂(eS ⊗ I) = π̂(I ⊗ eS) = π, and π̂ĝ = π̂f̂ = 0.

b. Equation (3.22) can take the form

(I − P̂ + eS2 π̂)ĝ = f̂ ,

with π̂ĝ = 0. Therefore, we have

ĝ =
∞∑

l=0

P̂ lf̂ .
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3.9. To illustrate the coupling approach used in simulation for speeding up
the estimation of γ(i, j), let us consider a simple Markov chain with transition
probability matrix

P =

⎡

⎣
0.2 0.3 0.5
0.2 0.3 0.5
0.2 0.3 0.5

⎤

⎦ .

a. Suppose that we generate two independent Markov chains with initial
states X0 = 1 and X ′

0 = 2, respectively. What is the average length from
l = 0 to L∗

12, E(L∗
12)?

b. If we use the same [0, 1) uniformly distributed random variable ξ to de-
termine the state transitions for both Markov chains, what is E(L∗

12)?
c. Answer the questions in a) and b), if

P =

⎡

⎣
0.2 0.4 0.4
0.4 0.2 0.4
0.4 0.4 0.2

⎤

⎦ .

3.10. The realization factor γ(i, j) can be obtained by simulating two sample
paths initiated with i and j, respectively, up to its merging point Li,j :

γ(i, j) = E

⎧
⎨

⎩

Li,j−1∑

l=0

[f(X ′
l)− f(Xl)]

∣∣∣X0 = i,X ′
0 = j

⎫
⎬

⎭ .

If the two sample paths are independent, as shown in the text, we can obtain
the perturbation realization factor equation. However, in simulation, we may
use coupling to reduce the variance in estimating the difference of the mean
values of two random variables (γ(i, j) = g(j)− g(i)). In our case, we wish to
let the two sample paths, initiated with i and j, merge as early as possible.

To this end, in simulation we can force the two sample paths X and X ′

with two initial states i and j, respectively, to merge as fast as possible. We
may use the same random variable to determine the state transitions in the
two paths. For example, if p(k|i) = 0.3 and p(k|j) = 0.2, instead of using
two independent random numbers in [0, 1) to determine the state transitions
for X0 = i and X ′

0 = j, respectively, we generate one uniformly distributed
random number ξ ∈ [0, 1), and if ξ ∈ [0, 0.2), we let both X1 = X ′

1 = k.
We use an example to show this coupling method: Let p(1|2) = 0.5,

p(2|2) = 0.3, p(3|2) = 0.2, and p(1|3) = 0.2, p(2|3) = 0.7, p(3|3) = 0.1. The
largest probabilities for the two paths starting from X0 = 2 and X ′

0 = 3
to merge at X1 = X ′

1 = 1 is min{p(1|2), p(1|3)} = 0.2, to merge at
X1 = X ′

1 = 2 is min{p(2|2), p(2|3)} = 0.3, and to merge at X1 = X ′
1 = 3

is min{p(3|2), p(3|3)} = 0.1. Thus, the largest probability that the two sam-
ple paths merge at X1 = X ′

1 with the coupling technique is 0.2+0.3+0.1 = 0.6.
We simulate the two sample paths in two steps. In the first step, we gener-
ate a uniformly distributed random variable ξ ∈ [0, 1). If ξ ∈ [0, 0.2), we set
X1 = X ′

1 = 1; if ξ ∈ [0.2, 0.5), we set X1 = X ′
1 = 2; if ξ ∈ [0.5, 0.6), we
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set X1 = X ′
1 = 3. If ξ ∈ [0.6, 1), we go to the second step: using two other

independent random numbers to determine the transitions for the two sample
paths.

Continue with the above reasoning and mathematically formulate it. Work
on γ(i, S) for all states i ∈ S and derive the following equation

g(i)− g(S) = f(i)− f(S) +
S∑

j=1

[p(j|i)− p(j|S)]g(j), i ∈ S.

Prove that this equation is the same as (3.4).

3.11. One of the restrictions of the basic formula (3.32) is that it requires
p(j|i) > 0 if Δp(j|i) > 0 for all i, j ∈ S. This condition can be relaxed. For
example, we may assume that whenever Δp(j|i) > 0, there exists a state,
denoted as ki,j , such that p(ki,j |i)p(j|ki,j) > 0. Under this assumption, we
have

dηδ

dδ
=

∑

i∈S

∑

j∈S

{
π(i)

[
p(ki,j |i)p(j|ki,j)

Δp(j|i)
p(ki,j |i)p(j|ki,j)

g(j)
]}

.

Furthermore, we have

dηδ

dδ
=

∑

i∈S

∑

j∈S

{
π(i)

[∑

k∈S
p(k|i)p(j|k)

] [
Δp(j|i)∑

k∈S p(k|i)p(j|k)
g(j)

]}
.

a. Continue the analysis and develop the direct learning algorithms for the
performance derivatives.

b. Compared with (3.32), what are the disadvantages of this “improved”
approach, if any?

c. Extend this analysis to the more general case of irreducible Markov chains.

3.12. In the gradient estimate (3.34), we have ignored the constant term η in
the expression of g. A more accurate estimate should be

dηδ

dδ
≈ lim

N→∞

1
N

{
N−1∑

n=0

[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

L−1∑

l=0

[f(Xn+l+1)− η]

]}
, w.p.1.

Prove that

dηδ

dδ
≈ lim

N→∞

1
N

{
N−1∑

n=0

[
Δp(Xn+1|Xn)
p(Xn+1|Xn)

L−1∑

l=0

f(Xn+l+1)

]}
, w.p.1,

and discuss the estimation error caused by ignoring the term Lη in the esti-
mate.

3.13. Discuss the error in the gradient estimate (3.41) caused by ignoring the
second term of (3.40) for a finite N . You may set f ≡ 1.
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3.14. Let ηr be the performance of a Markov chain with transition probability
matrix Pr defined as pr(i|i) = r for all i ∈ S and pr(j|i) = (1− r)qi,j , j �= i,
i, j ∈ S, with

∑
j∈S qi,j = 1 for all i ∈ S. Prove dηr

dr = 0 for all 0 < r < 1
using performance derivative formula (3.30).

3.15. In Algorithm 3.1, prove that the following equation holds

lim
L→∞

{
L−1∑

l=0

P l(ΔP )PL−l−1

}
= eπ(ΔP )(I − P + eπ)−1.

In addition, prove that, at the steady state, we have

π(i)ρL(i) = E

{
L−1∑

l=0

Δp(Xl+1|Xl)
p(Xl+1|Xl)

Ii(XL)

}

= π

{
L−1∑

l=0

P l(ΔP )PL−l−1

}
e·i,

where e·i is the ith column vector of the identity matrix I. Equation (3.38)
and the convergence of (3.37) follow directly from these two equations.

3.16. In Problem 3.15, we set GL =
∑L−1

l=0 P l(ΔP )PL−l−1. Prove that

GL+1 = PGL + GLP − PGL−1P,

with G0 = 0, G1 = ΔP . Set G = limL→∞ GL. Explain the meaning of G.
Finally, letting L → ∞ on both sides of the above equation, we obtain G =
PG + GP − PGP . Is this equation useful in any sense?

3.17. Write a computer simulation program

a. to estimate potentials by using (3.15) and (3.19);
b. to estimate the performance derivatives by using (3.35), (3.41), and (3.43).

3.18. The group inverse (2.48) B# = −[(I − P + eπ)−1 − eπ] (for ergodic
chains) plays an important role in performance sensitivity analysis. Let b#(i, j)
be the (i, j)th component of B#. Consider a Markov chain starting from state
i ∈ S. Let N

(L)
ij be the expected number of times that the Markov chain visits

state j ∈ S in the first L stages. Prove (cf. [168]) that

lim
L→∞

(
N

(L)
ji −N

(L)
ki

)
= b#(k, i)− b#(j, i).

3.19. Given a direction defined by ΔP , is it possible to estimate the second-
order derivative d2ηδ

dδ2 using a sample path of the Markov chain with transition
probability matrix P (cf. Section 2.1.5)? How about the second-order perfor-
mance derivatives of any given reward function f(θ)?
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3.20. Consider a continuous-time Markov process with transition rates λ(i)
and transition probabilities p(j|i), i, j = 1, 2, . . . , S. Suppose that the tran-
sition probability matrix P := [p(j|i)]i,j∈S changes to P + δΔP , and the
transition rates λ(i), i = 1, 2, . . . , S, remain unchanged. Let η be the average
reward with reward function f . Develop a direct learning algorithm for dηδ

dδ .

3.21. Consider a closed Jackson network consisting of M servers and N cus-
tomers with mean service times s̄i, i = 1, 2, . . . , S, and routing probabilities
qi,j , i, j = 1, 2 . . . ,M . Let

η
(f)
T = lim

L→∞

1
TL

∫ TL

0

f(N(t))dt

be the time-average performance. Suppose that the routing probabilities
change to qi,j + δΔqi,j , i, j = 1, 2 . . . ,M . Develop a direct learning algorithm
for the derivative of the time-average reward using performance potentials. Use
the intuition explained in Section 2.1.3 to develop the performance derivative
formula.



One of the principal objects of
theoretical research in my de-
partment of knowledge is to
find the point of view from
which the subject appears in its
greatest simplicity.

Josiah Willard Gibbs
American Scientist

(1839 - 1903) 4
Markov Decision Processes

In Chapter 2, we introduced the basic principles of PA and derived the
performance derivative formulas for queueing networks and Markov and
semi-Markov systems with these principles. In Chapter 3, we developed
sample-path-based (on-line learning) algorithms for estimating the perfor-
mance derivatives and sample-path-based optimization schemes. In this chap-
ter, we will show that the performance sensitivity based view leads to a unified
approach to both PA and Markov decision processes (MDPs). In MDPs, since
the policy space is discrete, performance derivatives do not make sense, and
correspondingly we consider the difference in performance measures under two
policies. We show that the policy-iteration type of optimization scheme can
be derived intuitively and straightforwardly with the performance difference
formulas. This approach applies to MDPs with different performance criteria,
including the long-run average reward, the discounted reward, and the bias.
We will also introduce the nth-bias optimization theory, which is a complete
extension of the theory for average reward and bias optimality. We show that
the performance difference formulas provide an easy and intuitive way for
developing the theory.

In general, we use the word “performance” to refer to any performance
criteria, including the long-run average reward, the discounted reward, the
bias, and the nth bias, etc. Therefore, “performance difference formula” may
refer to any among the “average-reward difference formula”, ”bias difference
formula”, etc, which are used when we discuss a specific performance criterion.

In Section 4.1, we discuss the policy iteration approach for optimization of
long-run average reward, bias, and discounted reward of ergodic systems. We
use this simple case to show the basic ideas of the approach. In Section 4.2,
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we extend these results to multi-chain models. In Section 4.3, we introduce
and study the nth-bias optimization problem for multi-chain models, which is
an extension of the bias optimization, and this problem also provides a com-
plete spectrum for the family of MDP optimization problems. Just like with
ergodic systems, the main results in both Sections 4.2 and 4.3 can be derived
almost directly from the performance difference formulas. The main difficulty
involved for the multi-chain case (which explains why this sensitivity-based
approach was proposed only recently) is that the performance difference for-
mulas contain two terms. We give a simple example to illustrate the structural
relations of these two terms in the difference formulas that allow us to over-
come this main difficulty. The presentation in this chapter is based on recent
papers [55, 63, 71].

MDPs and Policies

We first describe the discrete-time MDP model used in this chapter. In an
MDP, at any time l, l = 0, 1, 2, . . . , the system is in a state Xl ∈ S, where
S = {1, 2, . . . , S} is a finite state space. In addition to the state space, there is
an action space A. We assume that the number of available actions is finite.
If the system is in state i, i ∈ S, we can take (independently from the actions
taken in other states) any action α ∈ A(i) ⊆ A and apply it to the system,
where A(i) is the set of actions that are available in state i ∈ S, A = ∪i∈SA(i).
The action determines the transition probabilities of the system as well as the
reward received. If action α is applied to the system when the state is i, the
state transition probabilities are denoted as pα(j|i), j ∈ S, and the reward
that the system receives is denoted as f(i, α).

A (stationary and deterministic) policy is a mapping from S to A, denoted
as d (or h, or other letters specified), with d(i) ∈ A(i), that determines the
action taken in state i, i ∈ S. We use

D = �i∈SA(i)

to denote the space of all possible (stationary and deterministic) policies,
where “�” is called a Cartesian product, which is a direct product of sets.
Specifically, the Cartesian product of two sets X and Y , denoted X �Y , is the
set of all possible ordered pairs (x, y), where x ∈ X and y ∈ Y . The definition
can be generalized to the n-ary Cartesian product over n sets X1, . . . , Xn:
�

n
i=1Xi = {(x1, x2, . . . , xn) : for all x1 ∈ X1, . . . , xn ∈ Xn}.

Sometimes we also write d as a vector d = (d(1), d(2), . . . , d(S)). We use
superscript d to indicate that the quantities are associated with policy d ∈ D.
Therefore, if policy d is adopted, the state transition probability matrix is
P d = [pd(i)(j|i)]Si,j=1, and its ith row is denoted as a vector pd(•|i). The
reward vector is denoted as fd = (f(1, d(1)), f(2, d(2)), . . . , f(S, d(S))T , and
the steady-state probability vector of a Markov chain under policy d is denoted
as πd = (πd(1), πd(2), . . . , πd(S)). For convenience, we also call a quantity
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associated with P d (and fd) a quantity of policy d. For example, we may call
πd the steady-state probability vector of policy d, and gd the potential vector
of d.

Let |A(i)| be the number of actions in A(i), i = 1, 2, . . . , S. Then, the
number of policies in D is

∏S
i=1 |A(i)|. For example, if S = 100 and |A(i)| =

2 for all i, then there are altogether 2100 ≈ 1030 policies! Even for such a
small problem, an exhaustive search in the policy space, which requires us
to solve for the steady-state probabilities for every policy, is not feasible for
performance optimization.1

Because the Markov model is widely applicable to many systems, the MDP
formulation for optimization encompasses a wide range of applications in many
areas, including inventory management, manufacturing, communication net-
works, computer systems, transportation, financial engineering, and control
systems. We refer readers to other textbooks for examples of such applica-
tions (e.g., see [21, 25, 216]). Problems 4.1, 4.2, 4.3, and 4.4 also provide some
examples for applications.

Since a policy corresponds to a state transition probability matrix and a
reward function, we sometimes refer to a pair (P d, fd) as a policy and denote
it as (P d, fd) ∈ D. When the reward function fd does not play a role, e.g., it
is the same for all policies, we simply write a policy as P d ∈ D. To simplify
the notation, when we are discussing only one policy, we sometimes omit the
superscript d and denote it as (P, f) ∈ D.

4.1 Ergodic Chains

We first study the case where the Markov chains under all policies are ergodic
and share the same state space S. In this case, the long-run average reward
(also called the “gain” for short) under policy d is

ηd = lim
L→∞

{
1
L

L−1∑

l=0

f [Xl, d(Xl)]

}
= πdfd,

in which the limit exists with probability 1 and is independent of the initial
state.

A policy d̂ is called a (gain) optimal policy if

ηd̂ ≥ ηd, for all d ∈ D,

1 A recently developed theory, Ordinal Optimization, shows that the search space
can be significantly reduced if we are willing to relax the optimization criterion
from searching for a best policy to searching for a “good enough” policy, whose
performance is within, say, the top 10% of all policies’ performance, see e.g.,
[150, 151, 175, 181, 184, 266]. This creates a new research area that is different
from the subjects discussed in this book, in which we deal only with optimal
policies.
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and its gain ηd̂ is called the optimal gain. We denote the optimal gain as η∗,
i.e., η∗ = maxd∈D ηd, and define

D0 :=
{
d ∈ D : ηd = η∗

}

to be the set of all gain-optimal policies. The goal of optimization is to find
an optimal policy d̂ ∈ D0. Sometimes we also use a shorthand notation “arg”
and denote the set of all optimal policies as follows

D0 = arg
{

max
d∈D

ηd

}
:=

{
d ∈ D : ηd = η∗

}
.

Thus, the goal of optimization is to find a policy

d̂ ∈ arg
{

max
d∈D

ηd

}
.

As we have noted, except for very small systems, an exhaustive search in D
for an optimal policy is not feasible. We need to develop efficient algorithms,
and policy iteration is one such algorithm.

4.1.1 Policy Iteration

As shown in Figure 1.5, the fundamental idea of policy iteration is that, by
observing and/or analyzing the behavior of a system under a policy, we may
find another policy that performs better, if such a policy exists. This fact
can be easily seen from the performance (average-reward) difference formula
(2.27), which we rewrite as follows.

The Average-Reward Difference Formula

Let ηh and ηd be the long-run average rewards corresponding to two policies
h and d, respectively, πh be the steady-state probability vector of h, and gd

be the vector of performance potentials of d. Then, from (2.27), we have

The Average-Reward Difference Formula for Ergodic Chains:

ηh − ηd = πh
[
(fh + Phgd)− (fd + P dgd)

]
. (4.1)

In the equation, gd and ηd are the solution to the Poisson equation (I −
P d)gd + ηde = fd.

For two S-dimensional vectors u and v, we define u = v if u(i) = v(i)
for all i ∈ S; u ≤ v if u(i) ≤ v(i) for all i ∈ S; u < v if u(i) < v(i) for all
i ∈ S; and u � v if u(i) < v(i) for at least one i, and u(j) = v(j) for other
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components. The relation ≤ includes =, �, and <. Similar definitions are used
for the relations >, �, and ≥, and for matrices.

Next, we note that πh > 0 for any h with an ergodic transition probability
matrix. This simple fact plays a fundamental role in the development of the
optimization theory and we emphasize it as follows.

A Fundamental Fact:

πh > 0 for any ergodic Ph.

The average-reward difference formula (4.1) and the fundamental fact lead
immediately to the following result.

Comparison Lemma:
If fh + Phgd � fd + P dgd, then ηh > ηd. (4.2)

If fh + Phgd � (≥,≤)fd + P dgd, then ηh < (≥,≤)ηd. (4.3)

With the Comparison Lemma (4.2) and (4.3), we can easily prove the
following result.

Optimality Condition:
A policy d̂ is gain optimal if and only if

f d̂ + P d̂gd̂ ≥ fd + P dgd̂, for all d ∈ D. (4.4)

Proof of the Optimality Condition: The proof follows almost directly from the
Comparison Lemma (4.2) and (4.3). First, if (4.4) holds, then (fd + P dgd̂) ≤
(f d̂ + P d̂gd̂) for all d ∈ D. Setting P d, fd as Ph and fh, and P d̂ and f d̂ as
P d, fd, respectively, in the Comparison Lemma (4.3), we have ηd ≤ ηd̂, for
all d ∈ D; i.e., d̂ is gain optimal.

Next, we prove the “only if” part: Let d̂ be a gain-optimal policy. We need
to prove that (4.4) holds. Suppose that this is not true. Then, there must exist
one policy, denoted as d′, such that (4.4) does not hold. That is, there must
be at least one state, denoted as i, such that

f(i, d̂(i)) +
S∑

j=1

{
pd̂(i)(j|i)gd̂(j)

}
< f(i, d′(i)) +

S∑

j=1

{
pd′(i)(j|i)gd̂(j)

}
.



188 4 Markov Decision Processes

We create a policy d̃ by setting d̃(i) = d′(i), and d̃(j) = d̂(j) for all j �= i. We
have

f d̃ + P d̃gd̂ � f d̂ + P d̂gd̂.

(“>” holds for the ith component, and “=” holds for all others.) Thus, by the
Comparison Lemma (4.2), we have ηd̃ > ηd̂. This contradicts the fact that d̂
is an optimal policy. ��

In the proof, we construct a policy that violates the optimal-policy assump-
tion. This method will be used again in proving similar necessary conditions
for other general cases.

It is important to note that by the Comparison Lemma (4.2) and (4.3),
only the potentials of one policy are needed to compare the average rewards of
two policies in the particular situation; and by the Optimality Condition (4.4),
only the potentials of the current policy d̂ are needed to check whether this
policy is optimal. Also note that, when we constructed the policy d̃ in the proof
of the lemma, we used (implicitly) the assumption of MDPs: We can choose
actions independently in different states. This is called the independent-action
assumption.

The Policy Iteration (PI) Algorithm

From the Comparison Lemma (4.2), for any given policy d, we can find a
“better” policy h, if such a policy exists, by using the potential gd of d. From
this, it is natural to propose the following policy iteration algorithm.

Algorithm 4.1. A Policy Iteration Algorithm for a Gain-Optimal
Policy:

1. Guess an initial policy d0, set k = 0.
2. (Policy evaluation) Obtain the potential gdk by solving the Poisson

equation (I − P dk)gdk + ηdke = fdk , or by estimation on a sample
path of the system under policy dk (see Chapter 3).

3. (Policy improvement) Choose

dk+1 ∈ arg
{

max
d∈D

[
fd + P dgdk

]}
, (4.5)

component-wisely (i.e., to determine an action for each state). If in
state i, action dk(i) attains the maximum, then set dk+1(i) = dk(i).

4. If dk+1 = dk, stop; otherwise, set k := k + 1 and go to step 2.

Note that the ith component of fd + P dgdk depends only on d(i), i ∈ S,
and therefore (4.5) is equivalent to
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dk+1(i) ∈ arg
{

max
α∈A(i)

[
f(i, α) +

∑

j∈S
pα(j|i)gdk(j)

]}
, for all i ∈ S.

From step 3 of the algorithm, if dk+1 �= dk, then

fdk+1 + P dk+1gdk � fdk + P dkgdk , (4.6)

and by the Comparison Lemma (4.2), we have ηdk+1 > ηdk . That is, the
average reward increases at each iteration before it stops. Because the number
of policies is finite, the iteration procedure has to stop after a finite number
of iterations. When it stops at step k, we set d̂ := dk = dk+1. Equation (4.5)
becomes

d̂ ∈ arg
{

max
d

[
fd + P dgd̂

]}
,

or
f d̂ + P d̂gd̂ ≥ fd + P dgd̂

for all d ∈ D. Thus, by the Optimality Condition (4.4), d̂ is the gain-optimal
policy. The above discussion proves that the policy iteration (PI ) algorithm
stops at a gain-optimal policy after a finite number of iterations.

In step 3, according to (4.5), in every state i the PI algorithm chooses the
action that leads to the largest expected “potential” reward in one transition
(the current reward f(i, α) plus the expected “potential” rewards of the states
after the transition

∑
j∈S pα(j|i)gdk(j)). Figure 4.1 illustrates the situation

in a particular state 3 in an MDP with four states. Such a policy (generated
according to (4.5)) is called a greedy (or myopic) policy since it only looks one
transition ahead.

At each iteration, we first need to solve a Poisson equation for gdk in step
2 (it is not necessary to solve for πdk

, see Section 3.1.1); then, we need to do∑S
i=1 |A(i)| comparisons, according to (4.5), in step 3. When the action space

A is small, the computational complexity of the algorithm depends on the
number of iterations required for the algorithm to stop. In general, the number
of iterations required is very small (for example, we randomly generated many
transition probabilities for a ten-state MDP problem, with 10 actions in each
state. There are 1010 policies in this problem. In most cases, it only takes two
iterations to reach the best policy). But there is no general theory for the
speed of convergence. When the action space is large, the computation of the
policy iteration is still very complicated; to further reduce the computational
complexity is an on-going research topic, see [77, 78, 157].

It is not necessary to choose the greedy policy in step 3. In fact, step 3
can be very flexible. The PI algorithm converges to the optimal policy as long
as at every iteration the average reward increases if the current policy is not
optimal. Therefore, in step 3 we only need to choose a policy dk+1 such that
(4.6) holds. There are many such choices; for example, we may choose a policy
dk+1 such that the “>” sign holds for only one state in (4.6), and the actions
for other states are the same for both dk and dk+1. Moreover, because we do
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not solve for πdk+1 , we really do not know whether the average reward of the
greedy policy is better than any other policy satisfying (4.6) with equalities
for many states. We simply hope that the greedy policy is usually not a bad
choice. (Of course, except for the last iteration, the greedy policy is not the
best choice, since it is not an optimal policy.)

States

Potentials

State 3

Action α

f(3, α)

pα(3|3)

pα(2|3)
pα(1|3) pα(4|3)

g(1)

g(2)

g(3)

g(4)

1
2

3
4

Myopic (greedy) policy:
choose the action α with the largest expected reward

f(i, α) +
∑

j∈S pα(j|i)g(j)

Fig. 4.1. The Expected “Potential” Reward from State i = 3

From the Poisson equation, the Optimality Condition (4.4) is equivalent
to Bellman’s optimality equation in the literature.

Optimality Equation:
A policy d̂ is gain optimal if and only if

ηd̂e + gd̂ = max
d∈D

{
fd + P dgd̂

}
. (4.7)

This is the necessary and sufficient condition for optimal policies.
The aforementioned simple analysis shows that policy iteration follows

directly from the average-reward difference formula. In particular, it employs
the property that one can find a better policy by using only the potentials
of the current policy. This is based on the special form of the average-reward
difference formula and the fundamental fact that πh > 0 for all h ∈ D. In
addition, this requires the independent-action assumption, i.e., the actions
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at different states can be chosen independently. The approach is based on
the comparison of the average rewards of two policies; when no better policy
can be found, the iteration reaches the maximal reward. Bellman’s optimality
condition (4.7) is not directly used in verifying optimality.

Relation to PA

From the performance derivative formula (2.26), the derivative of the average
reward along the direction from dk to any policy d ∈ D is

dηdδ

dδ

∣∣∣∣
δ=0

= πdk
[
(fd + P dgdk)− (fdk + P dkgdk)

]
,

where ηdδ is the average reward of the randomized policy dδ, which implements
policy d with probability δ and implements policy dk with probability 1− δ.
For the Markov chain under policy dδ, we have P dδ = P dk + δ(P d−P dk) and
fdδ = fdk + δ(fd− fdk). From (4.5), the term (fd +P dgdk)− (fdk +P dkgdk)
takes the maximal value (component-wisely) along the direction pointing to
the greedy policy dk+1. Thus, the performance derivative dηdδ

dδ also reaches its
maximum along the direction from dk to dk+1. That is,

PA vs. Policy Iteration:
At each iteration, the policy iteration Algorithm 4.1 in fact chooses
the next policy along the steepest direction in the policy space.

In other words, the greedy policy at each iteration is along the steepest direc-
tion. A policy is optimal if and only if at this policy the performance derivatives
along the directions to all other policies are non-positive. This point is inter-
esting: In the discrete policy space D = �i∈SA(i), a local optimal policy is
also a global optimal policy.

Summary

In summary, the policy-iteration-based optimization theory follows natu-
rally from the average-reward difference formula. With the fundamental fact
that πh > 0, we obtain the Comparison Lemma, which, together with the
independent-action assumption, leads to the optimality equation and the pol-
icy iteration optimization algorithm. This logical structure applies to general
cases, such as bias optimality, multi-chain models, and the more general case
of the nth-bias optimality, as well. We summarize this structure in Figure 4.2.
The policy iteration algorithm stops at a policy that satisfies the optimality
equation and, therefore, the policy iteration approach provides a constructive
proof for the existence of the solution to the optimality equation.
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Average-Reward Difference Formula

ηh − ηd = πh
[
(fh + P hgd) − (fd + P dgd)

]

Comparison Lemma

fh + P hgd � fd + P dgd =⇒ ηh > ηd

Optimality Equation

(4.7)

Policy Iteration

Algorithms

πh > 0
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Fig. 4.2. The Logical Relationships Among the Results

4.1.2 Bias Optimality

While the policy iteration algorithm presented in the last subsection leads to
a policy that maximizes the average (or steady-state) reward, it ignores the
system’s transient behavior. In this subsection, we show that the approach
based on the comparison of any two policies can be applied to obtain policy
iteration algorithms that optimize not only the steady-state performance but
also the transient performance (bias). We first introduce the concept and
formulate the problem (see [182, 183] for discussions and references on the
bias optimality problem.)

The Bias

We discuss any ergodic Markov chain with transition probability matrix P
and reward function f . The transient performance starting from any state
i ∈ S can be measured by a quantity called bias, defined as:

g(i) = lim
L→∞

L−1∑

l=0

{E [f(Xl)− η] |X0 = i} . (4.8)
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The bias has a physical interpretation: It measures the sum of the deviations
of the expected reward at every step from its steady-state mean starting from
an initial state; it is represented by the dashed area in Figure 4.3.

0 1 2 3 4

E[f(x0)|x0 = i]

=eT·if
E[f(x1)|x0 = i]

= eT·iPf
E[f(x2)|x0 = i]

= eT·iP 2f
E[f(x3)|x0 = i]

= eT·iP 3f E[f(x4)|x0 = i]

= eT·iP 4f

η=E[f(x)]

f(x0)

Fig. 4.3. The Meaning of the Bias

Clearly, the bias in (4.8) is a particular version of the potential defined in
(2.16). Thus, it satisfies the Poisson equation (see Problem 2.5)

(I − P )g + ηe = f, (4.9)

and the normalization condition πg = 0. We also have (2.15)

g =
[
(I − P + eπ)−1 − eπ

]
f. (4.10)

Because of its clear physical meaning, we call this particular version of the
potential the “bias” of the Markov chain. It should be kept in mind that we
use the same notation g for both the potential and the bias; when it denotes
the potential, it is only up to an additive constant, and when it denotes the
bias, it is uniquely determined by πg = 0.

Bias-Optimal Policies

The policy iteration algorithm in Section 4.1.1 leads to a gain-optimal policy
in D0. The bias optimality problem is to find a policy in D0, d̂, that has the
largest bias for all states i ∈ S among all the policies in D0:

gd̂ ≥ gd, for all d ∈ D0,

or

d̂ ∈ arg
{

max
d∈D0

gd, all components
}

.
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Such a policy is called a bias-optimal policy. In the definition, d̂ maximizes
all components of gd, d ∈ D0, and we will see that such a bias-optimal policy
indeed exists.

The following example helps us to have an intuition about the bias-
optimality problem.

Example 4.1. Consider a two-state MDP with S = {1, 2}. In each state,
there are two actions: A(1) = {α1, α2} and A(2) = {β1, β2}, with transi-
tion probabilities pα1(•|1) = (0.5, 0.5), pα2(•|1) = (0.75, 0.25), pβ1(•|2) =
(0.5, 0.5), and pβ2(•|2) = (0.75, 0.25), respectively. The corresponding reward
functions are f(1, α1) = 1, f(1, α2) = 0.5, f(2, β1) = −1, and f(2, β2) = −1.5.
Therefore, we have four polices d1 = (α1, β1), d2 = (α1, β2), d3 = (α2, β1),
and d4 = (α2, β2). Denote Pk = P dk and fk = fdk , k = 1, 2, 3, 4. By calculat-
ing the corresponding steady-state probabilities πk, average rewards ηk, and
biases gk, k = 1, 2, 3, 4, we have the results listed in Table 4.1.

k Pk fk πk ηk Bias gk

d1

[
0.5 0.5

0.5, 0.5

] [
1

−1

]
[0.5, 0.5] 0

[
1

−1

]

d2

[
0.5 0.5

0.75 0.25

] [
1

−1.5

]
[0.6, 0.4] 0

[
0.8

−1.2

]

d3

[
0.75 0.25

0.5 0.5

] [
0.5

−1

]
[ 2
3
, 1

3
] 0

[
2
3

− 4
3

]

d4

[
0.75 0.25

0.75 0.25

] [
0.5

−1.5

]
[0.75, 0.25] 0

[
0.5

−1.5

]

Table 4.1. Biases in Example 4.1

From the table, we note that all the policies have the same average reward
ηk = 0, k = 1, 2, 3, 4. Thus, all of them are gain-optimal policies. Their biases
gk, k = 1, 2, 3, 4, are different. We observe that gk = gk′ + ckk′e, with some
constants ckk′ , k, k′ = 1, 2, 3, 4. (For a general formula, see (4.13).) Therefore,
for any particular k, gk satisfies all four Poisson equations for d1, d2, d3, and
d4. In other words, any particular gk can be viewed as the potential of all
four policies. However, each gk is the bias only for policy dk, which satisfies
πkgk = 0.

Policy d1 has the largest biases in both states. Because of the normal-
ization condition πkgk = 0 for all k, πk must satisfy some constraints when
both gk(1) and gk(2) become larger. For example, because g1(1) > g2(1) and
g1(2) > g2(2), we must have π1(1) < π2(1) and π1(2) > π2(2) to maintain the
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condition π1g1 = π2g2 = 0. That is, larger biases are achieved by redistribu-
tion of the steady-state probabilities among the states. As shown in Figure 4.4,
we have g1 > g2 > g3 > g4, component-wisely. State 1 has a larger bias than
state 2 has for all policies. Thus, we must have π1(1) < π2(1) < π3(1) < π4(1).

��

π(1) decreases

π(2) increases

g

πg=00

0.5

2/3
0.8

1

−1

−1.2
−4/3
−1.5

g1(1)

g2(1)
g3(1)

g4(1)

g1(2)

g2(2)
g3(2)

g4(2)

π1(1)=0.5

π2(1)=0.6
π3(1)=2/3

π4(1)=0.75

π1(2)=0.5

π2(2)=0.4
π3(2)=1/3

π4(2)=0.25

d1 d2 d3 d4

Fig. 4.4. The Biases of the Gain-Optimal Policies in Example 4.1

The first step in our approach to finding a bias-optimal policy is to derive
a formula that compares the biases of any two policies in D0. Before doing so,
we need to specify the set D0.

The Set of Gain-Optimal Policies D0

From now on, we will use superscript “∗” to denote the optimal value; e.g.,
η∗ is the optimal gain and g∗ is the optimal bias. We denote a gain-optimal
policy as d̂. Its average reward ηd̂ equals the optimal gain η∗, but its bias gd̂

may or may not equal the optimal bias g∗.
The set of all gain-optimal policies, D0, can be determined by the following

lemma.

Lemma 4.1. Let d̂ be a gain-optimal policy, i.e., ηd̂ = η∗. Any other policy
d ∈ D is gain optimal if and only if

fd + P dgd̂ = f d̂ + P d̂gd̂. (4.11)
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Proof. The “if” part follows directly from the difference formula (4.1); now, we
prove the “only if” part. Suppose that both d and d̂ are gain optimal. We have
ηd = ηd̂. Thus, by (4.1), we have πd

[
(fd + P dgd̂)− (f d̂ + P d̂gd̂)

]
= 0. Sup-

pose that (4.11) does not hold; then, because πd > 0, there must exist a state,
denoted as i, such that

[
f(i, d(i)) + (P dgd̂)(i)

]
−

[
f(i, d̂(i)) + (P d̂gd̂)(i)

]
> 0.

We then construct a policy d̃ by setting d̃(k) = d̂(k), k �= i, and d̃(i) = d(i).
Thus, we have pd̃(k)(j|k) = pd̂(k)(j|k), k �= i, j ∈ S and pd̃(i)(j|i) =
pd(i)(j|i), j ∈ S; and f(k, d̃(k)) = f(k, d̂(k)), k �= i, and f(i, d̃(i)) = f(i, d(i)).
With this construction, we have

ηd̃ − ηd̂ = πd̃
[
(f d̃ + P d̃gd̂)− (f d̂ + P d̂gd̂)

]

= πd̃(i)
{[

(f(i, d̃(i)) + (P d̃gd̂)(i)
]
−

[
f(i, d̂(i)) + (P d̂gd̂)(i)

]}
> 0.

This is impossible because ηd̂ is the maximal reward. ��

The lemma provides a way to determine the gain-optimal set D0: Choose
any gain-optimal policy d̂, calculate its bias (or any potential) gd̂ (which may
not be optimal), then the gain-optimal set D0 can be determined as follows.

The Set of Gain-Optimal Policies D0:
D0 := �i∈SÂ1(i), (4.12)

where

Â1(i) =

{
α ∈ A(i) : f(i, α) +

S∑

j=1

pα(j|i)gd̂(i)

= f(i, d̂(i)) +
S∑

j=1

pd̂(i)(j|i)gd̂(i)

}
.

For any state i ∈ S, we can choose any actions α ∈ Â1(i) to form a
gain-optimal policy. From Lemma 4.1, (4.11) holds for any two gain-optimal
policies. Thus, D0 does not depend on the choice of the initial policy d̂ ∈ D0

(cf. Problem 4.11).
We will see that Lemma 4.1 may not hold for the multi-chain case.

The Bias Difference Formula

Consider any two gain-optimal policies h and d in D0, with biases gh and gd,
respectively. From the Poisson equation, we have gh = (fh +Phgh)−ηhe and
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gd = (fd + P dgd) − ηde. Thus, using Lemma 4.1 and noting ηh = ηd(= η∗),
we have

gh − gd = (fh + Phgh)− (fd + P dgd) = Ph(gh − gd).

Iteratively applying this equation, we have

gh − gd = Ph(gh − gd) = (Ph)2(gh − gd) = · · · = (Ph)k(gh − gd).

Letting k →∞, for ergodic chains, we have (Ph)k → eπh. Because πhgh = 0,
we have the following equation for biases of the gain-optimal policies:

gh − gd = eπh(gh − gd) = −(πhgd)e. (4.13)

Similarly, gd − gh = −(πdgh)e and we have πhgd = −πdgh.

Example 4.2. From Table 4.1, Equation (4.13) holds for all policies. For
example,

g1 − g2 =
[

0.2
0.2

]
= (π2g1)e = −(π1g2)e.

This equation also holds for any other pairs of biases, see Figure 4.4. ��

Equation (4.13) shows that the difference in the biases of any two gain-
optimal policies h, d ∈ D0 in any state is a constant −πhgd. This explains that
a bias-optimal policy maximizing the biases in all the states indeed exists. If
we pick up any policy d ∈ D0, then the bias optimality problem becomes to
find a policy h ∈ D0 that maximizes −πhgd, or equivalently, minimizes πhgd.
This insight is significant: the bias optimization problem is almost the same as
the gain-optimization problem; in the latter, we optimize ηh = πhf (assuming
that f is the same for all policies), and in the former, we optimize −πhgd.
The difference is that f is replaced by −gd, which is the bias of any particular
gain-optimal policy. This motivates our further study.

In the gain-optimization problem, we need the potential associated with
the reward function f . Now, in the bias-optimization problem, we need the
potential associated with (−gd). If we replace f with −gd in the Poisson
equation (4.9), the corresponding average reward η should be πd(−g)d = 0.
Thus, we obtain the following Poisson equation with −gd, the bias of policy
d, as the reward function:

(I − P d)wd = −gd.

This is the Poisson equation for biases. In general, for a policy with transition
probability matrix P and bias g, it takes the form

Poisson Equation for Biases:
(I − P )w = −g. (4.14)
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This equation specifies the vector w, which is the negative value of the
potential of the potential g, or called the bias-potential. The solution to (4.14)
is not unique. Again, if w is a solution, then so is w + ce for any constant c.
Note that to maximize the bias gh, h ∈ D0 , we need to maximize πh(−gd)
for a fixed d ∈ D0. This explains why the “−” sign appears in (4.14).

From (4.13) and (4.14), the bias difference formula for two gain-optimal
policies d, h ∈ D0 is

The Bias Difference Formula for Two Gain-Optimal Policies:

gh − gd =
{
πh(Ph − P d)wd

}
e. (4.15)

In (4.15), wd is the bias-potential of policy d. Comparing this formula with the
average-reward difference formula (4.1), we can obtain the following results
for two gain-optimal policies h and d.

Comparison Lemma:

If Phwd � P dwd, then gh > gd. (4.16)

If Phwd � (≥,≤)P dwd, then gh < (≥,≤) gd. (4.17)

With this Comparison Lemma, we can easily prove the following result.

Bias Optimality Condition:

A gain-optimal policy d̂ ∈ D0 is bias optimal if and only if

P d̂wd̂ ≥ P dwd̂, for all d ∈ D0. (4.18)

The Bias Optimality Condition (4.18) is equivalent to Bellman’s optimality
equation for bias-optimal policies:

Bias Optimality Equation:

A gain-optimal policy d̂ ∈ D0 is bias optimal if and only if

gd̂ + wd̂ = max
d∈D0

{
P dwd̂

}
. (4.19)
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In (4.19), D0 is defined by (4.12). Equation (4.18) together with (4.4), or
equivalently (4.7) and (4.19), are the (necessary and sufficient) bias optimality
conditions.

The Bias Potential

The bias-potential w can be obtained either by solving the Poisson equation
(4.14) or by analyzing a sample path. We may normalize it by setting πw = 0
and (4.14) becomes

(I − P + eπ)w = −g,

where g is a bias with πg = 0. Therefore,

w = −(I − P + eπ)−1g

= −
∞∑

l=0

(P − eπ)lg = −
∞∑

l=0

P lg

= −
∞∑

l=0

{
P l

∞∑

k=0

P k(f − ηe)
}

= −
∞∑

l=0

{
(l + 1)P l(f − ηe)

}
.

Thus, we have

w(i) = −
∞∑

l=0

{(l + 1)E [f(Xl)− η|X0 = i]} . (4.20)

This w(i) can be estimated on a sample path of the Markov chain under (P, f).
The bias-potential (4.20) has a similar form as the bias (4.8), except that a
weighting factor −(l+1) is added to the deviation E[f(Xl)− η] at time l, l =
0, 1, 2, . . . . Again, like the performance potentials, only the difference between
the components of w is important in sensitivity analysis and in comparison of
biases. Thus, we may ignore the constant −(πf)e in (4.10) and obtain

w = −
[
(I − P + eπ)−1

]2
f. (4.21)

The Policy Iteration Algorithm for a Bias-Optimal Policy

From the Comparison Lemma (4.16) and (4.17), we can derive the policy
iteration algorithm for a bias-optimal policy:
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Algorithm 4.2. A Policy Iteration Algorithm for a Bias-Optimal
Policy:

1. Select any gain-optimal policy d0, which may be the one obtained
from the policy iteration algorithm 4.1 for gain-optimal policies; set
k = 0.

2. Determine D0 by (4.12).
3. Obtain the bias gdk , by solving (4.9), and the bias-potential wdk , by

solving (4.14) or by using (4.21). They can also be estimated on a
sample path of the system under policy dk with (4.8) and (4.20),
respectively.

4. Choose

dk+1 ∈ arg
{

max
d∈D0

[
P dwdk

]}
,

component-wisely (i.e., to determine an action for each state). If in a
state i, action dk(i) attains the maximum, then set dk+1(i) = dk(i).

5. If dk+1 = dk, stop; otherwise, set k := k + 1 and go to step 3.

Example 4.3. In Example 4.1, we can easily verify that (I − P1 + eπ1) = I
and, therefore, that w1 = −g1 = (−1, 1)T . Thus, from [pα2(•|1)− pα1(•|1)]w1

= −0.5 < 0 and
[
pβ2(•|2)− pβ1(•|2)

]
w1 = −0.5 < 0, we conclude that d1 =

(α1, β1) is a bias-optimal policy. ��

We can also derive a policy iteration algorithm that starts from any policy
in D and reaches a bias-optimal policy without first determining the policy
subspace D0. This algorithm uses both the average-reward and bias difference
formulas (4.1) and (4.15) at each iteration. This is stated as the second policy
iteration algorithm for a bias-optimal policy:

Algorithm 4.3. A Second Policy Iteration Algorithm for a Bias-
Optimal Policy:

1. Select any policy d0 ∈ D, and set k = 0.
2. Obtain the bias gdk by solving (4.9) and bias-potential wdk by solving

(4.14) or by (4.21), or by estimation.
3. Set (component-wisely)

D̃ := arg
{

max
d∈D

[
fd + P dgd

k

] }
,

and choose
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dk+1 = arg
{

max
d∈D̃

[
P dwdk

] }
.

If in a state i, action dk(i) attains the maximum, then set dk+1(i) =
dk(i).

4. If dk+1 = dk, stop; otherwise, set k := k + 1 and go to step 2.

Although we try to “improve” both the average reward and the bias at
every iteration in this algorithm, we are not sure if this is indeed true. Because
(4.15) holds only when ηh = ηd, we can only assert that the bias increases after
the average reward reaches its maximum. Therefore, we are not sure whether
this algorithm is “faster” than Algorithm 4.2. The algorithm converges be-
cause at least the average reward improves at every iteration before it reaches
the set D0, and after that the bias improves. Of course, the computation at
each iteration increases.

We have shown that a bias-optimal policy can be obtained by policy iter-
ation algorithms derived from the bias difference formula (4.15). The devel-
opment of the results follows the same logic as that for the gain-optimality
problem shown in Figure 4.2.

4.1.3 MDPs with Discounted Rewards

In this section, we show that the same sensitivity-based approach applies
to MDPs with the discounted reward criterion. For any policy (P, f), the
discounted reward is defined as a column vector ηβ = (ηβ(1), . . . , ηβ(S))T

with (cf. (2.30))

ηβ(i) = (1− β)E

{ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

}
, 0 < β < 1, (4.22)

where {Xl, l = 0, 1, . . .} is a sample path of the Markov chain under (P, f).
The factor (1−β) in (4.22) is used to obtain the continuity of ηβ at β = 1; we
have (cf. (2.32)) η1 := limβ↑1 ηβ = ηe with η being the average reward. Thus,
(4.22) covers both the average reward case with β = 1 and the discounted
reward case with 0 < β < 1. For any particular policy d, (4.22) becomes

ηd
β(i) = (1− β)E

{ ∞∑

l=0

βlf(Xl, d(Xl))

∣∣∣∣∣X0 = i

}
, 0 < β < 1.

The optimization problem is to find a policy d̂ ∈ D such that its discounted
reward in all states is the maximum among all the policies in D:

ηd̂
β ≥ ηd

β , for all d ∈ D,
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or

d̂ ∈ arg
{

max
d∈D

ηd
β , all components

}
.

We will see that such an optimal policy maximizing ηβ(i) for all i ∈ S indeed
exists.

The discounted-reward difference formula is (cf. (2.42)) as follows.

The Discounted-Reward Difference Formula:

ηh
β−ηd

β = (1−β)(I−βPh)−1
[(

fh + βPhgd
β

)
−

(
fd + βP dgd

β

)]
, 0 < β < 1.

(4.23)

When β ↑ 1, we have (1− β)(I − βPh)−1 → eπh (cf. (2.39)). Thus, for β = 1,
we replace (1−β)(I−βPh)−1 by eπh (cf. (2.39)), and (4.23) reduces to (4.1).

In (4.23), gβ is the β-potential, a solution to the discounted Poisson equa-
tion

(I − βP + βeπ)gβ = f, 0 < β ≤ 1. (4.24)

When β = 1, (4.24) becomes the standard Poisson equation.

A Fundamental Fact:

(I − βPh)−1 > I, 0 < β < 1, for any ergodic Ph.

This fundamental fact follows from the simple fact that (I − βPh)−1 = I +
βPh + β2(Ph)2 + · · · . The discounted reward difference formula (4.23) and
the fundamental fact lead immediately to the following result.

Comparison Lemma:
If fh + βPhgd

β � fd + βP dgd
β , 0 < β ≤ 1, then ηh

β � ηd
β .

With this Comparison Lemma, we can easily prove the following result.

Optimality Condition:
A policy d̂ is optimal if and only if

f d̂ + βP d̂gd̂
β ≥ fd + βP dgd̂

β , for all d ∈ D.
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When β = 1, this condition becomes the same as that for the average-reward
optimal policies.

With this optimality condition, we can develop the following policy iter-
ation algorithm for a discounted-reward optimal policy with 0 < β ≤ 1. It
covers the average-reward case as a special case with β = 1.

Algorithm 4.4. A Policy Iteration Algorithm for a Discounted-
Reward Optimal Policy:

1. Select an initial policy d0 ∈ D, and set k = 0.
2. Obtain the potential gdk

β by solving the discounted Poisson equation
(I − βP dk + βeπdk)gdk

β = fdk , or by estimation on a sample path of
the system under policy dk (cf. (2.46)).

3. Choose

dk+1 ∈ arg
{

max
d∈D

[
fd + βP dgdk

β

]}
, (4.25)

component-wisely. If in a state i, action dk(i) attains the maximum,
then set dk+1(i) = dk(i).

4. If dk+1 = dk, stop; otherwise, set k := k + 1 and go to step 2.

Again, the development of the above results follows the same logic as shown
in Figure 4.2. The performance difference formula-based approach provides a
unified framework for developing policy iteration algorithms for both average
and discounted reward criteria, as well as for the bias optimality problem. In
particular, with this approach, all the results for the average-reward MDPs
can be derived independently of the discounted-reward case.

4.2 Multi-Chains

In this section, we extend the results in Section 4.1 to multi-chains. (A multi-
chain contains more than one closed subsets of recurrent states, see Appendix
B.1.) We show that, in the multi-chain case, the policy iteration optimization
algorithms can also be derived almost directly from the performance difference
formulas.

The Multi-Chain Markov Model

Consider a multi-chain Markov chain {Xl, l = 0, 1, . . .} defined on a finite
state space S = {1, 2, . . . , S}. Let P = [p(j|i)]Si,j=1 be the transition proba-
bility matrix and f(i), i ∈ S, be the reward function. We have Pe = e, with
e = (1, . . . , 1)T . The long-run average reward is defined as a vector η, with
components
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η(i) = lim
L→∞

1
L
E

{
L−1∑

l=0

f(Xl)
∣∣∣∣X0 = i

}
,

which depend on the initial state i, i ∈ S, where E denotes the expectation
corresponding to the probability space generated by all the sample paths
with transition probability P . For simplicity, we discuss only the aperiodic
case. There is no loss of generality because, as shown in Problem B.4, for
any periodic Markov chain, we can always construct an equivalent aperiodic
Markov chain. Let2 η = (η(1), . . . , η(S))T . In matrix form, we have

η = lim
L→∞

1
L

{ L−1∑

l=0

P lf
}

= P ∗f, (4.26)

where f = (f(1), . . . , f(S))T , and P ∗ is the Cesaro limit

P ∗ = lim
L→∞

1
L

L−1∑

l=0

P l, (4.27)

which exists and represents the steady-state probabilities of the Markov chain,
see (B.11) or (4.31). With (4.27), we can easily prove that P ∗e = e and

PP ∗ = P ∗P = P ∗P ∗ = P ∗. (4.28)

From (4.26) and (4.28), we get

Pη = P ∗η = η. (4.29)

More results on P and P ∗ for multi-chains can be found in Appendix B.
Given a policy d ∈ D, the corresponding average reward is denoted as a

vector ηd =(P d)∗fd, P d =[pd(i)(j|i)]Si,j=1 and fd =(f(1, d(1)), . . .,f(S, d(S)))T ,
with ηd(i) being the long-run average reward starting from initial state i,
i = 1, 2, . . . , S.

A policy d̂ is said to be gain (average-reward) optimal if

ηd̂ ≥ ηd, for all d ∈ D,

and its gain ηd̂ is called the optimal gain. Let η∗ denote the optimal gain,
η∗ = maxd∈D ηd, and define

D0 :=
{
d ∈ D : ηd = η∗

}

as the set of all gain-optimal policies. A gain-optimal policy has the largest
average reward in every state, and we will see that such policies indeed exist.
We wish to develop an efficient algorithm to find a gain-optimal policy d̂ ∈ D0.
2 Please do not be confused with the ergodic case, where η denotes a scaler.
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Recall that in deriving the results for ergodic chains, the fundamental fact
that πh > 0 for any h ∈ D is used. The corresponding simple fact for multi-
chains is stated below, which will be used often in this chapter. Let u be an
S-dimensional vector.

A Fundamental Fact:
If u ≥ 0 (or u ≤ 0) and (Ph)∗u = 0,

then u(i) = 0 for all recurrent states i of Ph. (4.30)

Proof. Following the canonical form of (Ph)∗ in (B.11), we partition the vec-
tor u as u = (uT

1 , . . . , uT
m, uT

m+1)
T , with u1, . . . , um corresponding to the m

different classes of recurrent states of Ph. We have

(Ph)∗u =

⎡

⎢⎢⎢⎢⎣

eπh
1 0 0 · · · · 0

0 eπh
2 0 · · · · 0

· · · · · · · ·
0 0 0 · · · eπh

m 0
w1π

h
1 w2π

h
2 w3π

h
3 · · · wmπh

m 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

u1

u2

· · ·
um

um+1

⎤

⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎣

(πh
1u1)e

(πh
2u2)e
· · ·

(πh
mum)e∑m

i=1(π
h
i ui)wi

⎤

⎥⎥⎥⎥⎦
. (4.31)

Because πh
i > 0 for all i = 1, 2, . . . ,m, we must have

(
uT

1 , . . . , uT
m

)T = 0, if
(Ph)∗u = 0 and u ≥ 0. ��

Note that u(i) may also be zero for transient states. For ergodic chains,
we have (Ph)∗ = eπh. The lemma follows directly from πh > 0.

4.2.1 Policy Iteration

Performance Potentials

The potential g = (g(1), . . . , g(S))T is defined by the Poisson equation

(I − P )g + η = f. (4.32)

If g satisfies (4.32), then so does g+u, for any vector u satisfying (I−P )u = 0.
For example, we can choose u = ce, or u = cη (see (4.29)), with c being any
constant. Therefore, there are different versions of potentials, each may differ
by an additive vector u. We will call all of them potentials and use the same
notation g.
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A potential satisfying P ∗g = 0 is called a bias. For any given potential g′,
if we set g = g′ + u and u = −P ∗g′, then g is a bias. (4.32) becomes

(I − P + P ∗)g = f − η.

From (B.12) (or Theorem A.7 of [216]), the matrix (I−P +P ∗) is nonsingular.
We can easily prove that

(I − P + P ∗)−1P ∗ = P ∗. (4.33)

Thus, for a bias, we have

g = (I − P + P ∗)−1(f − η) =
∞∑

l=0

(P − P ∗)l(f − η)

=
∞∑

l=1

(P l − P ∗)(f − η) + f − η

=
∞∑

l=0

P l(f − η)−
∞∑

l=1

P ∗(f − η)

=
∞∑

l=0

P l(f − η).

That is,

g(i) =
∞∑

l=0

E {[f(Xl)− η(Xl)]|X0 = i} . (4.34)

Because Pη = η, we have P lη = η. That is, E[η(Xl)|X0 = i] = η(i). Thus,

g(i) =
∞∑

l=0

E {[f(Xl)− η(i)]|X0 = i} . (4.35)

From (4.34) and (4.35), sample-path-based learning algorithms can be devel-
oped to estimate g, see Section 3.1.2.

The Average-Reward Difference Formula

The sensitivity-based optimization approach starts with the performance dif-
ference formula. Let ηh and ηd be the average rewards of the two policies
h, d ∈ D, respectively, and (Ph)∗ be the Cesaro limit of Ph. We have

The Average-Reward Difference Formula for Multi-Chains:

ηh − ηd = (Ph)∗
[
(fh + Phgd)− (fd + P dgd)

]
+ [(Ph)∗ − I]ηd. (4.36)
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Proof. By (4.28) and (4.32), we have

ηh − ηd = (Ph)∗fh − ηd

= (Ph)∗fh + (Ph)∗gd − (Ph)∗gd − (Ph)∗ηd + (Ph)∗ηd − ηd

= (Ph)∗
(
fh + Phgd − gd − ηd

)
+ [(Ph)∗ − I]ηd

= (Ph)∗
[
(fh + Phgd)− (fd + P dgd)

]
+ [(Ph)∗ − I]ηd.

This is (4.36). ��

In policy iteration, given the current policy d, we wish to find another
policy h, which has a better average reward ηh > ηd, without evaluating the
system under policy h. We have done so for ergodic chains with the average
reward difference formula (4.1), using the fact that πh > 0. However, in the
multi-chain case, πh becomes (Ph)∗ and there are two terms on the right-hand
side of the average-reward difference formula (4.36). This causes a major dif-
ficulty in extending the results from ergodic chains to the multi-chain case.
Fortunately, as the following example indicates, these two terms can be “de-
coupled”. To simplify the notation, we set v = (fh +Phgd)− (fd +P dgd) and
u = [(Ph)∗ − I]ηd and rewrite (4.36) as

ηh − ηd = (Ph)∗v + u. (4.37)

Example 4.4. Let S = {1, 2, 3, 4, 5}, fd = (5, 2, 1, 3, 1)T , fh = (4, 1, 1, 2, 0)T ,
and

P d =

⎡

⎢⎢⎢⎢⎣

0.5 0.5 0 0 0
0.4 0.6 0 0 0

0 0 0.2 0.8 0
0 0 0.7 0.3 0

0.1 0.2 0.2 0.3 0.2

⎤

⎥⎥⎥⎥⎦
, Ph =

⎡

⎢⎢⎢⎢⎣

0.9 0.1 0 0 0
0.8 0.2 0 0 0
0.2 0.4 0.1 0.2 0.1
0.2 0.1 0.2 0.3 0.2
0.3 0.1 0.2 0.1 0.3

⎤

⎥⎥⎥⎥⎦
.

After some calculations for gd, u, v and (Ph)∗, we can write the performance
difference (4.37) as follows

ηh − ηd = (Ph)∗v + u

=

⎡

⎢⎢⎢⎢⎣

0.8889 0.1111 0.0000 0.0000 0.0000
0.8889 0.1111 0.0000 0.0000 0.0000
0.8889 0.1111 0.0000 0.0000 0.0000
0.8889 0.1111 0.0000 0.0000 0.0000
0.8889 0.1111 0.0000 0.0000 0.0000

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.3333
0.3333
−0.2650
−0.5534
−7.7077

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

0.0000
0.0000
2.0832
2.0832
1.3019

⎤

⎥⎥⎥⎥⎦
.

Observe the following structure: The components in the second term, u(i), for
recurrent states of Ph (i = 1 and 2) are zeros; the components in v(i) in the
first term for recurrent states of Ph are all positive, and the columns of (Ph)∗

for transient states (i = 3, 4, and 5) are all zeros. This “decouples” the effect
of the two terms: Because u(1) = u(2) = 0, the components of ηh − ηd for
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the recurrent states, ηh(1) − ηd(1) and ηh(2) − ηd(2), are determined by the
first term in the average-reward difference formula, (Ph)∗v, and furthermore,
by v(1) and v(2); and the components of ηh − ηd for the transient states,
ηh(3)− ηd(3), ηh(4)− ηd(4), and ηh(5)− ηd(5), take additional contributions
from the second terms, u(3), u(4), and u(5), in the performance difference
formula. The negative values in the components of v for the transient states,
v(3), v(4), and v(5), do not play a role. ��

Comparison of Two Policies

The above example provides an important insight: It is possible to compare the
average rewards of two policies by using the structures illustrated in the above
example. We state this result in a general form as a Comparison Lemma. We
will see that many optimization problems about multi-chains fit this general
form.

Suppose that the performance difference formula takes the form

ηh − ηd = (Ph)∗v + Gu, (4.38)

where u, v are S-dimensional vectors and G is any S × S matrix satisfying
Gu ≥ 0, as specified below.

Comparison Lemma (General Form): (4.39)

If
(a) u ≥ 0, (Ph)∗u = 0, Gu ≥ 0, and
(b) v(i) ≥ 0 when u(i) = 0 for i ∈ S,

=⇒ then ηh ≥ ηd.

The lemma also holds if all the signs “ ≥ ” are changed to “ ≤ ”.

Proof. By the Fundamental Fact (4.30) and (a), u(i) = 0 for all recurrent
states i ∈ S of Ph. Thus, by (b), v(i) ≥ 0 for all recurrent states i ∈ S of
Ph. Then by the canonical form of (Ph)∗ (see (B.11), or (4.31)), we have
(Ph)∗v ≥ 0. Thus, ηh ≥ ηd because Gu ≥ 0. ��

In the lemma, the form Gu on the right-hand side is not crucial. In fact,
the lemma holds if we replace (4.38) with

ηh − ηd = (Ph)∗v + z, (4.40)

and replace the condition Gu ≥ 0 with z ≥ 0.
If v(i) > 0 whenever u(i) = 0, i ∈ S, then ηh > ηd. If v(i) > 0 for at least

one recurrent state of Ph and v(i) = 0 for others, we have ηh � ηd. However,
if u(i) = 0, we do not know whether i is recurrent or transient. Therefore, if
when u(i) = 0, v(i) > 0 for some states and v(i) = 0 for others, we are not
sure if ηh � ηd.
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For ergodic chains, (Ph)∗ = eπh, and Condition (a) in the Comparison
Lemma (General Form (4.39)) implies u = 0. Thus, Condition (b) implies
v ≥ 0. The lemma becomes the Comparison Lemma for ergodic chains (4.2)
and (4.3) in Section 4.1.

We will see that the difference formulas for average rewards, biases, and
nth biases all have the general form of (4.38). Therefore, the Comparison
Lemma (4.39) plays an important role; it allows us to find a policy h that
is “better” (in terms of average reward, bias, or nth biases) than d without
calculating (Ph)∗. This is very crucial to the optimization theory since policy
iteration algorithms are based on it. We use Figure 4.5 to clearly illustrate
the idea.

ηh−ηd =πhv v ≥ 0 ηh ≥ ηd

Equivalent results for ergodic chains:

ηh ≥ ηd

(P h)∗v ≥ 0

v(i) ≥ 0 if u(i) = 0 u(i) = 0

If i is recurrent with P h

(P h)∗u = 0 u ≥ 0

Gu ≥ 0

ηh−ηd =(P h)∗v+Gu

Fig. 4.5. The Fundamental Fact in Optimization with a Difference Formula

We first apply this lemma to the average reward case. Let h and d be two
policies.

Comparison Lemma for the Average Reward of Multi-Chains:
(4.41)

If
(a) Phηd ≥ ηd, and
(b) fh(i) + (Phgd)(i) ≥ fd(i) + (P dgd)(i)

when (Phηd)(i) = ηd(i) for i ∈ S,

=⇒ then ηh ≥ ηd.

The lemma also holds if all the signs “ ≥ ” are changed to “ ≤ ”.
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Proof. In the average reward difference formula (4.36), we set u = Phηd−ηd ≥
0, v = (fh + Phgd) − (fd + P dgd), and G =

[
I − Ph + (Ph)∗

]−1. We have
(Ph)∗u = 0 and thus

Gu =
∞∑

l=0

(Ph)lu = [(Ph)∗ − I]ηd.

Then, the difference formula (4.36) takes the form in (4.38). Furthermore,
from Phηd ≥ ηd we have (Ph)l+1ηd ≥ (Ph)lηd ≥ · · · ≥ ηd, or (Ph)lu ≥ 0.
Thus, Gu ≥ 0. In addition, (b) in this lemma implies (b) in the Comparison
Lemma (General Form (4.39)). Therefore, the lemma follows directly from
the Comparison Lemma (4.39). The case with “≤” can be proved in a similar
way. ��

Compared with the Comparison Lemma for ergodic chains (4.2), we cannot
prove ηh � ηd in this lemma, because u(i) = 0 (therefore v(i) > 0) may also
hold for some transient states (for more discussion, see Problem 4.16).

In the ergodic case, the property we used in making performance com-
parisons is the fact that πh > 0 for any policy. In the multi-chain case, the
corresponding property is the Fundamental Fact (4.30), which is based on the
structure of (Ph)∗. The Comparison Lemma (4.41) deals with the two terms
in the difference formulas. The same technique will be used again in deriving
many results for other performance criteria in multi-chain MDPs.

The Necessary and Sufficient Optimality Conditions

From the Comparison Lemma (4.41), we can easily derive the sufficient opti-
mality conditions.

Sufficient Optimality Conditions:
A policy d̂ is gain optimal if

ηd̂(i) = max
α∈A(i)

{
∑

j∈S
pα(j|i)ηd̂(j)

}
, for all i ∈ S, (4.42)

ηd̂(i) + gd̂(i)= max
α∈Â0(i)

{
f(i, α) +

∑

j∈S
pα(j|i)gd̂(j)

}
, (4.43)

for all i ∈ S,

where Â0(i) :=
{
α ∈ A(i) :

∑
j∈S pα(j|i)ηd̂(j) = ηd̂(i)

}
, i ∈ S.

If the sufficient optimality conditions (4.42) and (4.43) hold, then ηd̂ is the
optimal average reward; i.e., ηd̂ = η∗, but the gd̂ in (4.43) is the performance
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potential, not necessarily the bias; it may not be the optimal bias even after
being normalized by πd̂gd̂ = 0.

Proof. This is a direct consequence of the Comparison Lemma (4.41) with
the “≤ ” sign. Let d ∈ D be any other policy. Then, (4.42) implies that
P dηd̂ ≤ ηd̂; and (4.43) together with the Poisson equation (4.32) means that
f(i, d(i)) + (P dgd̂)(i) ≤ f(i, d̂(i)) + (P d̂gd̂)(i), whenever (P dηd̂)(i) = ηd̂(i).
Now, set d and d̂ to be the h and d, respectively, in the Comparison Lemma
(4.41). Then, it follows directly (by the Comparison Lemma with relation ≤)
that ηd ≤ ηd̂. ��

By P d̂ηd̂ = ηd̂ and the Poisson equation for d̂, the optimality equations
also take the form:

∑

j∈S
pd̂(j|i)ηd̂(j) = max

α∈A(i)

{
∑

j∈S
pα(j|i)ηd̂(j)

}
, for all i ∈ S,

and

f(i, d̂(i)) +
∑

j∈S
pd̂(j|i)gd̂(j) = max

α∈Â0(i)

{
f(i, α) +

∑

j∈S
pα(j|i)gd̂(j)

}
,

for all i ∈ S.

We note that these optimality equations are only the sufficient conditions.
This is different from the ergodic chains, for which Bellman’s optimality equa-
tion is both necessary and sufficient. However, we have

A Necessary Optimality Condition:

If a policy d̂ is gain optimal with ηd̂ = η∗,
then the optimality equation (4.42) holds.

Proof. Suppose that the result does not hold. Then, there exist an action α
and a state k such that

ηd̂(k) <
∑

j∈S
pα(j|k)ηd̂(j).

Based on this, we can construct another policy d̃ by setting d̃(k) = α and
d̃(i) = d̂(i) for all i �= k. Then, we have (P d̃ηd̂)(k) > ηd̂(k) and (P d̃ηd̂)(i) =
ηd̂(i) for i �= k. Thus,

P d̃ηd̂ − ηd̂ � 0. (4.44)
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Therefore, (P d̃)lηd̂ ≥ ηd̂ for any l ≥ 1. Thus, (P d̃)∗ηd̂ ≥ ηd̂. Because
(P d̃)∗(P d̃ηd̂ − ηd̂) = 0, by the Fundamental Fact (4.30), we have P d̃ηd̂(i) =
ηd̂(i) for any recurrent state i under policy d̃. Thus, the particular state k

must be a transient state under policy d̃. By the construction of d̃, we have
(P d̃)∗

[
(f d̃ + P d̃gd̂)− (f d̂ + P d̂gd̂)

]
= 0. (The only non-zero component of

the vector in the bracket corresponds to a transient state.) Finally, from the
average reward difference formula (4.36), we have

ηd̃ − ηd̂ =
[
(P d̃)∗ − I

]
ηd̂ ≥ 0.

If ηd̃ = ηd̂, then P d̃ηd̂ = P d̃ηd̃ = ηd̃ = ηd̂. This conflicts with (4.44). Thus, we
have ηd̃ � ηd̂. This is impossible because ηd̂ is the optimal gain. ��

Example 4.5. This example shows that (4.43) is not a necessary condition
for gain-optimal policies. We consider an MDP with three states S = {1, 2, 3}
and three action sets A(1) = {α1}, A(2) = {α2}, and A(3) = {α31, α32}.
The reward functions are f(1, α1) = 2, f(2, α2) = 4, f(3, α31) = 5, and
f(3, α32) = 8. There are two policies d = (α1, α2, α31) and h = (α1, α2, α32).
Their transition probability matrices are

P d =

⎡

⎣
0.2 0.8 0
0.8 0.2 0
0.2 0.3 0.5

⎤

⎦ , Ph =

⎡

⎣
0.2 0.8 0
0.8 0.2 0
0.1 0.1 0.8

⎤

⎦ .

Thus, we have

(P d)∗ =

⎡

⎣
0.5 0.5 0
0.5 0.5 0
0.5 0.5 0

⎤

⎦ , (Ph)∗ =

⎡

⎣
0.5 0.5 0
0.5 0.5 0
0.5 0.5 0

⎤

⎦ .

From fd = (2, 4, 5)T , we obtain

ηd = [3, 3, 3]T , gd =
[
−5

8
,
5
8
,
33
8

]T

.

From fh = (2, 4, 8)T , we obtain

ηh = [3, 3, 3]T , gh =
[
−5

8
,
5
8
, 25

]T

.

Since ηd = ηh, both policies d and h are optimal, and therefore both satisfy
the first optimality equation (4.42). Furthermore, we have

fd + P dgd = ηd + gd =
[
19
8

,
29
8

,
57
8

]T
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and

fh + Phgd =
[
19
8

,
29
8

,
113
10

]T

.

Thus, we have
fh + Phgd � gd + gd.

Therefore, policy d does not satisfy the second optimality equation (4.43). ��

The Policy Iteration Algorithm

Next, for any non-optimal policy, we can always construct a “better” policy
by using the Comparison Lemma (4.41). This can be formally described as
follows. Given any policy d ∈ D, for any i ∈ S and α ∈ A(i), let (cf. the
Q-factor defined as (6.28) in Section 6.2.2)

Qd(i, α) := f(i, α) +
∑

j∈S
pα(j|i)gd(j) (4.45)

and

A(i, d) :=

⎧
⎨

⎩α ∈ A(i) :

∑
j∈S pα(j|i)ηd(j) > ηd(i);

or Qd(i, α) > Qd(i, d(i))
when

∑
j∈S pα(j|i)ηd(j) = ηd(i)

⎫
⎬

⎭ . (4.46)

We then define an improvement policy d′ ∈ D (depending on d) as follows:

d′(i) ∈ A(i, d) if A(i, d) �= ∅, and d′(i) = d(i) if A(i, d) = ∅. (4.47)

Note that such a policy may not be unique, since there may be more than one
action in A(i, d) for some state i ∈ S. In such cases, we usually choose

d′(i) ∈ arg

{
max

α∈A(i)

[
∑

j∈S
pα(j|i)ηd(j)

]}
, (4.48)

if maxa∈A(i)

[∑
j∈S pα(j|i)ηd(j)

]
> ηd(i); otherwise, we set

Ã(i, d) := arg

{
max

α∈A(i)

[
∑

j∈S
pα(j|i)ηd(j)

]}

and choose

d′(i) ∈ arg

{
max

α∈Ã(i,d)

[
Qd(i, α)

]
}
. (4.49)

Another point to note is that we do not need to choose d′(i) ∈ A(i, d) for
all i such that A(i, d) �= ∅ in (4.47). We may only choose d′(i) ∈ A(i, d) for
at least one state i and set d′(j) = d(j) for all other states. The results in
Lemmas 4.2 and 4.3 and the convergence of the policy iteration algorithm,
etc., still hold (cf. the discussion on page 189 for ergodic chains).

By the construction of d′ and the Comparison Lemma (4.41), we have
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Lemma 4.2. For any policy d ∈ D, let d′ be a policy constructed by (4.45) to
(4.47). We have ηd′ ≥ ηd.

Proof. For any state i ∈ S, if A(i, d) = ∅, then d′(i) = d(i) and we have
pd′(i)(j|i) = pd(i)(j|i) and

∑
j∈S pd′(i)(j|i)ηd(j) =

∑
j∈S pd(i)(j|i)ηd(j) =

ηd(i). Next, if A(i, d) �= ∅, from the construction by (4.46), we have
∑

j∈S
pd′(i)(j|i)ηd(j) ≥ ηd(i). Thus, Condition (a) in the Comparison Lemma (4.41)
holds. In addition, if

∑
j∈S pd′(i)(j|i)ηd(j) = ηd(i), then either Qd(i, α) =

Qd(i, d(i)) when A(i, d) = ∅, or Qd(i, α) > Qd(i, d(i)) when A(i, d) �= ∅. That
is, Condition (b) in (4.41) holds. Thus, ηd′ ≥ ηd. ��

Now, we propose the (standard) policy iteration algorithm for multi-chain
MDPs as follows:

Algorithm 4.5. A Policy Iteration Algorithm for Multi-Chains:

1. Select an arbitrary policy d0 ∈ D, and set k = 0.
2. (Policy evaluation) Obtain (by (4.32) or (4.34)) gdk and ηdk .
3. (Policy improvement) Set d = dk in (4.46) and (4.47); construct a

policy d′ according to (4.46) and (4.47), and set dk+1 = d′.
4. If dk+1 = dk, then stop and dk is optimal (as shown below). Other-

wise, set k := k + 1 and go to step 2.

If there is more than one d′ in step 3, we may choose dk+1 according to (4.48)
and (4.49). If the Markov chain is ergodic, the average reward ηd is a constant
vector and we have

∑
j∈S pα(j|i)ηd(j) = ηd(j) for any policy α ∈ A(i). Thus,

Ã(i, d) = A(i) in (4.49). The PI algorithm becomes the same as that in Section
4.1.1 for the ergodic chains.

The Convergence of the Policy Iteration Algorithm

The convergence of the policy iteration algorithm for ergodic chains in Section
4.1.1 is straightforward because we have the strict relation ηk+1 > ηk at each
iteration before the algorithm stops. However, in the multi-chain case, we only
have ηk+1 ≥ ηk, as shown in Lemma 4.2. Is it possible for the policy iteration
process to go in cycles with ηk+1 = ηk forever without reaching the optimal
value?

To show that this is not possible, we need the following result about the
difference of the biases, which is of its own merits in the study of bias opti-
mality in the next section. First, we define the bias potential (or the potential
of the potential) of a policy (P, f), w, as the vector satisfying

(I − P )w = −g,
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where g is the bias of (P, f) (cf. (4.14) for ergodic Markov chains). The solution
to this equation is only up to an additive vector, i.e., if w is a bias-potential,
then w + u is also a bias-potential for any u satisfying (I − P )u = 0. The
physical meaning of w will be discussed in the next section.

Consider two policies h, d ∈ D. Let gh and gd be their biases, respectively,
wd be the bias-potential of d, and (Ph)∗ be the Cesaro limit of Ph. If ηh = ηd,
we have

gh − gd = (Ph)∗(Ph − P d)wd +
∞∑

n=0

(Ph)n
[
(fh + Phgd)− (fd + P dgd)

]
.

(4.50)
This equation will be proved in the next section. Now, we use this difference
formula (4.50) to prove the following lemma.

Lemma 4.3. For any policy d ∈ D, let d′ be the policy constructed by (4.45)
to (4.47). If ηd′

= ηd and d′ �= d, then gd′ � gd.

Proof. Set u := (fd′
+ P d′

gd) − (fd + P dgd). Then u(i) = Qd(i, d′(i)) −
Qd(i, d(i)), i ∈ S. Since ηd′

= ηd, we have

P d′
ηd = P d′

ηd′
= ηd′

= ηd, (4.51)

and (P d′
)∗ηd = ηd. Using (P d′

)∗P d′
= (P d′

)∗ and (P d′
)∗fd′

= ηd′
, we get

(P d′
)∗u = (P d′

)∗
[
(fd′

+ P d′
gd)− (fd + P dgd)

]

= (P d′
)∗

[
(fd′

+ P d′
gd)− (ηd + gd)

]

= (P d′
)∗

(
fd′ − ηd

)
= 0. (4.52)

From (4.51), for the pair of d′ and d,
∑

j∈S pd′(i)(j|i)ηd(j) = ηd(i) in (4.46)
holds for all states i ∈ S. Because d′ is constructed by (4.46) and d′ �= d,
we must have u � 0. Then, from (4.52) and by the Fundamental Fact (4.30),
u(i) = 0 for all recurrent states i of P d′

. From (4.51) and by the construction
in (4.46), we know that for all recurrent states i of P d′

, A(i, d) are empty; thus,
d′(i) = d(i) for all recurrent states i of P d′

. Therefore, the rows for all recurrent
states of P d′ − P d are all zeros. Because all the columns corresponding to
transient states of P d′∗

are zeros, we have

(P d′
)∗

(
P d′ − P d

)
= 0.

From (4.50), we have

gd′ − gd = (P d′
)∗(P d′ − P d)wd +

∞∑

n=0

(P d′
)n

[
(fd′

+ P d′
gd)− (fd + P dgd)

]

=
∞∑

n=0

[
(P d′

)nu
]
.
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Because P d′ ≥ 0 and u � 0, we have (P d′
)nu ≥ 0 for n > 0. Finally, we have

gd′ − gd ≥ (P d′
)0u = u � 0. ��

From the proof, if ηd′
= ηd, then we must have P d′

ηd = ηd in (4.46). By
Lemma 4.2, at each iteration, the average reward either increases or stays the
same, and by Lemma 4.3, if the average reward stays the same at an iteration,
the bias must increase. These two lemmas guarantee that the policies do not
cycle in the policy iteration procedure.

Anti-Cycling in PI:
At each iteration, the average reward either increases or stays the
same; If the average reward stays the same, the bias increases.

The anti-cycling property guarantees that the policy iteration algorithm stops
in a finite number of iterations. Let d0, d1, . . . , dk . . . be the sequence of policies
generated by the algorithm. By the anti-cycling property, as k increases, ηdk

either increases or stays the same, and when ηdk stays the same, the bias gdk

increases. Thus, any two policies in the sequence of dk, k = 0, 1, . . . , either
have different average rewards or have different biases. Therefore, every policy
in the iteration sequence is different. Since the number of policies is finite, the
iteration must stop after a finite number of iterations.

Suppose that the PI algorithm stops at a policy denoted as d̂. Then d̂
must satisfy the sufficient optimality equations (4.42) and (4.43), because
otherwise for some i the set A(i, d̂) in (4.46) is non-empty and we can find the
next improved policy in the policy iteration. Thus, policy d̂ is gain optimal.
Therefore, the PI Algorithm stops at a gain-optimal policy in a finite number
of iterations. Because the optimal policy satisfies the sufficient optimality
equations, this also proves the existence of the solution to the optimality
equations (4.42) and (4.43).

4.2.2 Bias Optimality

In this section, we discuss the bias optimality problem. The bias gd of a policy
d is the potential (defined by the Poisson equation (I−P d)gd+ηd = fd (4.32))
that satisfies

(P d)∗gd = 0.

In a bias optimality problem, we search for a gain-optimal policy that has the
largest bias.

Recall that D0 ⊆ D is the set of all gain-optimal policies. A policy d̂ ∈ D0

is said to be bias optimal if

gd̂ ≥ gd, for all d ∈ D0,
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and its bias gd̂ is called the optimal bias. Let g∗ denote the optimal bias, i.e.,
g∗ := maxd∈D0 gd. We define

D1 :=
{
d ∈ D0 : gd = g∗

}

to be the set of all bias-optimal policies. We wish to develop an efficient
algorithm to find a bias-optimal policy d̂ ∈ D1.

Just like in the ergodic case, bias represents the transient behavior (see
the sample-path-based expression (4.34)). Because the columns of (P d)∗ cor-
responding to the transient states are all zeros, the condition (P d)∗gd = 0 does
not put any restrictions on the biases of the transient states. As shown in the
following simple example, the bias of a transient state may take almost any
large value, even if the steady-state performance is fixed. An optimal policy
needs to optimize the biases of all states.

1 2

pa1 (1|1) = 0.99
pa2 (1|1) = 0.1

pa1 (2|1) = 0.01
pa2 (2|1) = 0.9

p(2|2) = 1.0

f(1) = 100 f(2) = 0

Fig. 4.6. The Multi-Chain MDP in Example 4.6

Example 4.6. Consider the multi-chain MDP problem shown in Figure 4.6.
We have A(1) = {α1, α2}, and A(2) contains only one action. Thus, there
are two policies corresponding to α1 and α2, respectively; and for simplicity,
these two policies are also denoted as α1 and α2. Their transition probabilities
are shown in the figure. The reward function is the same for the two policies:
f(1, α1) = f(1, α2) = 100 and f(2) = 0. It is clear that both policies have
the same long-run average reward ηα1 = ηα2 = 0. However, the biases in the
transient state 1 are quite different: they are gα1(1) = 10000 and gα2(1) =
1000/9. For both policies, we have gα1(2) = gα2(2) = 0, and

(Pα1)∗ = (Pα2)∗ =
[

0 1
0 1

]
.

Both biases satisfy the condition (Pα1)∗gα1 = (Pα2)∗gα2 = 0.
In the ergodic case discussed in Example 4.1, the bias in one state can be

very large, if the steady-state probability in this state is very small (due to
the normalization condition πg = 0). In the multi-chain case, the steady-state
probabilities for transient states are zero, and the biases of these states may
be arbitrarily large, even when the long-run average reward of the Markov
chain remains the same. ��

By now, we are familiar with the sensitivity-based optimization approach.
To study the bias optimality, we first derive the bias difference formula for
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multi-chains. Recall that in the average-reward difference formula, we need
the performance potentials. Similarly, in the bias difference formula, we need
to define the potentials of the bias, or the potentials of the potentials.

The Bias Difference Formula

The bias-potential, w, of a policy (P, f) is defined as

(I − P )w = −g, (4.53)

where g is the bias satisfying (I − P )g + η = f and P ∗g = 0.
Equation (4.53) is almost the same as the Poisson equation (4.32) except

that f−η is replaced by −g. Because P ∗g = 0, with −g as the reward function,
the steady-state performance (corresponding to η) should be P ∗(−g) = 0.
Therefore, (4.53) can be viewed as the Poisson equation by using −g as the
reward function. Again, the solution to (4.53) is not unique: if w is a solution
to (4.53), then so is w+u for any u satisfying (I−P )u = 0. If a bias-potential
w satisfies P ∗w = 0, then it is called a second order bias (or simply a second
bias). In addition, in the definition (4.53), g must be a bias, not a potential,
because P ∗g = −P ∗(I − P )w = 0.

Consider two policies h, d ∈ D. Let gh and gd be their biases, respectively,
wd be the bias-potential of d, and (Ph)∗ be the Cesaro limit of Ph. We have
the following formula.

The Bias Difference Formula:
If ηh = ηd, then

gh−gd = (Ph)
∗
(Ph−P d)wd+

∞∑

n=0

{
(Ph)n

[
(fh + Phgd)− (fd + P dgd)

]}
.

(4.54)

Proof. From the Poisson equation (4.32) and ηh = ηd, we have

gh − gd = (fh + Phgh − ηh)− (fd + P dgd − ηd)
= (fh + Phgd)− (fd + P dgd) + Ph(gh − gd). (4.55)

For policy d, (4.53) is
(I − P d)wd = −gd.

Left-multiplying (Ph)∗ on both sides of this equation, we get (Ph)∗gd =
−(Ph)∗(Ph − P d)wd. Thus, from (4.55) and (Ph)∗gh = 0, we have

[
I − Ph + (Ph)∗

]
(gh − gd)

= (fh + Phgd)− (fd + P dgd) + (Ph)∗(gh − gd)
= (fh + Phgd)− (fd + P dgd)− (Ph)∗gd

= (fh + Phgd)− (fd + P dgd) + (Ph)∗(Ph − P d)wd.
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From (4.33), we have

gh − gd

= (Ph)∗(Ph−P d)wd+
[
I−Ph+(Ph)∗

]−1 [
(fh+Phgd)−(fd+P dgd)

]

=(Ph)∗(Ph−P d)wd+
∞∑

n=0

{[
Ph−(Ph)∗

]n [
(fh+Phgd)−(fd+P dgd)

]}

= (Ph)∗(Ph−P d)wd

+
∞∑

n=0

{[
(Ph)n−(Ph)∗

] [
(fh+Phgd)−(fd+P dgd)

]}
. (4.56)

Next, from (4.32), (4.28) and (4.26), we have

(Ph)∗
[
(fh + Phgd)− (fd + P dgd)

]

= (Ph)∗
[
(fh + Phgd)− (ηd + gd)

]

= (Ph)∗fh − (Ph)∗ηd = (Ph)∗fh − (Ph)∗ηh = 0.

The lemma then follows directly from (4.56). ��

We note that any solution to (4.53) (called a version of the bias-potential)
for policy d can be used as the bias-potential wd in the bias difference formula
(4.54). The gh and gd on both sides are the biases. We observe that (4.54)
takes the same form as (4.38). Thus, the following Comparison Lemma follows
directly.

Suppose that d̂ ∈ D0 is a gain-optimal policy with average reward ηd̂ = η∗,
bias gd̂, and bias-potential wd̂. Let h ∈ D be any other policy.

Comparison Lemma for Biases of Gain-Optimal Policies:
If
(a) Phηd̂ = ηd̂,
(b) fh + Phgd̂ ≥ f d̂ + P d̂gd̂, and
(c) (Phwd̂)(i) ≥ (P d̂wd̂)(i) when fh(i) + (Phgd̂)(i) = f d̂(i) + (P d̂gd̂)(i)

for some i ∈ S,
=⇒ then ηh = ηd̂ = η∗ and gh ≥ gd̂. (4.57)

In addition, if Condition (a) is replaced by the following Condition (a′)
(a′) policy h is gain optimal,

then gh ≤ gd̂ if we change all the signs “ ≥ ” in (b) and (c) to “ ≤ ”.

Proof. Setting d = d̂ in the average-reward difference formula (4.36) and
using Conditions (a) and (b), we get (Ph)∗ηd̂ = ηd̂ and ηh ≥ ηd̂. Because
ηd̂ is the optimal average reward, we have ηh = ηd̂. Thus, we can use the
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bias difference formula (4.54). Again, we set d = d̂ in (4.54). Next, set u :=
(fh + Phgd̂)− (f d̂ + P d̂gd̂) = (fh + Phgd̂)− (ηd̂ + gd̂) and v = (Ph − P d̂)wd̂.
Then, (4.54) takes the form

gh − gd̂ = (Ph)∗v + z,

which is the same as (4.40). Condition (b) implies u ≥ 0. Given that
(Ph)∗fh = ηh = ηd̂, we can easily verify that (Ph)∗u = 0. We also have
z =

∑∞
n=0

{
(Ph)nu

}
≥ (Ph)0u ≥ u ≥ 0. Thus, Condition (a) in the Com-

parison Lemma (General Form (4.39)) holds. Condition (c) is the same as
Condition (b) in the Comparison Lemma (4.39). Thus, it follows from the
Comparison Lemma (4.39) that gh ≥ gd̂.

When the signs “≥” change to “≤”, we cannot prove that h is a gain-
optimal policy from Conditions (a) and (b). Note that Condition (a′) implies
Condition (a). With Condition (a′), the other half of the lemma can be proved
in a similar way. ��

It is interesting to compare this Comparison Lemma (4.57) with Lemma
4.3, which essentially claims that if h is constructed from d̂ by using (4.46),
(4.47), Phηd̂ = ηd̂ = ηh, and fh + Phgd̂ ≥ f d̂ + P d̂gd̂, then gh ≥ gd̂. If, in
addition, fh + Phgd̂ � f d̂ + P d̂gd̂, then gh � gd̂.

To get a specific solution to the Poisson equation (4.53), we may set

P ∗w = 0 (4.58)

as the normalization condition. Thus, we can rewrite (4.53) as

(I − P + P ∗)w = −g.

Therefore,

w = −(I − P + P ∗)−1g = −
∞∑

l=0

(P − P ∗)lg

= −
∞∑

l=0

P lg = −
∞∑

l=0

P l
∞∑

k=0

P k(f − η)

= −
∞∑

l=0

(l + 1)P l(f − η).

Thus,

w(i) = −
∞∑

l=0

{(l + 1)E[f(Xl)− η(i)|X0 = i]} . (4.59)

This is the same as (4.20). To distinguish, we will refer to the bias-potential
with condition (4.58) as the second order bias, or simply the second bias.
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Any version of the bias-potential differs from the second bias by a vector u
satisfying (I − P )u = 0. With (4.59), the second bias can be estimated on a
single sample path without knowing the transition probability matrix P .

The Sufficient and Necessary Conditions for Bias Optimality

With the Comparison Lemma (4.57), we can easily derive the sufficient bias
optimality conditions. First, we need a lemma.

Lemma 4.4. Let η∗ be the optimal gain.
(a) For any policy d ∈ D, we have P dη∗ ≤ η∗.
(b) For any policy d ∈ D, if P dη∗ � η∗, then ηd � η∗.
(c) For any gain-optimal policy d̂ ∈ D0, we have P d̂η∗ = (P d̂)∗η∗ = η∗.

Proof. (a) This is the necessary optimality equation (4.42) for the optimal
gain.

(b) From (4.29) and ηd ≤ η∗, we have ηd = P dηd ≤ P dη∗ � η∗.

(c) The gain of d̂ is ηd̂ = η∗. Thus, P d̂η∗ = η∗. From this, (P d̂)nη∗ = η∗ for

any integer n. Then, (P d̂)∗η∗=η∗ holds by noting (P d̂)∗= lim
N→∞

1
N

N−1∑

n=0

(P d̂)n.

��

A policy d̂ ∈ D is a bias-optimal policy if the following conditions hold.

Sufficient Optimality Conditions:
A policy d̂ ∈ D is bias optimal if

ηd̂(i) = max
α∈A(i)

{
∑

j∈S
pα(j|i)ηd̂(j)

}
, for all i ∈ S, (4.60)

ηd̂(i) + gd̂(i) = max
α∈Â0(i)

{
f(i, α) +

∑

j∈S
pα(j|i)gd̂(j)

}
,

for all i ∈ S, (4.61)

gd̂(i) + wd̂(i) = max
α∈Â1(i)

{
∑

j∈S
pα(j|i)wd̂(j)

}
, for all i ∈ S, (4.62)

where

Â0(i) :=

{
α ∈ A(i) :

∑

j∈S
pα(j|i)ηd̂(j) = ηd̂(i)

}
, (4.63)

Â1(i) :=

{
α ∈ Â0(i) : ηd̂(i) + gd̂(i) = f(i, α) +

∑

j∈S
pα(j|i)gd̂(j)

}
.

(4.64)
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If these sufficient conditions hold, then ηd̂ is the optimal gain, i.e., ηd̂ = η∗,
and gd̂ is the optimal bias, i.e., gd̂ = g∗. However, wd̂ is the bias-potential,
which is only determined up to an additive vector u satisfying (I −P d̂)u = 0.
It may not be the optimal second order bias even after being normalized by
(P d̂)∗wd̂ = 0.
Proof. First, d̂ is a gain-optimal policy because both ηd̂ and gd̂ satisfy the
gain-optimality equations (4.60) and (4.61) (the same as (4.42) and (4.43)).
Next, we prove that gd̂ ≥ gd for any gain-optimal policy d ∈ D0. We set d and
d̂ to be h and d, respectively, in the Comparison Lemma (4.57). From Lemma
4.4 (c), we have P dηd̂ = ηd̂ = ηd = η∗. From (4.61), we have (fd + P dgd̂) ≤
(f d̂+P d̂gd̂). From (4.62), if (fd+P dgd̂)(i) = (f d̂+P d̂gd̂)(i) then (P dwd̂)(i) ≤
(P d̂wd̂)(i). Thus, the three conditions (a′), (b), and (c) in the Comparison
Lemma (4.57) hold with the “≤” sign. Thus, it follows that gd ≤ gd̂. ��

The three equations (4.60), (4.61), and (4.62) are the sufficient conditions
for bias-optimal policies; they are not necessary. While a gain-optimal policy
satisfies the first optimality equation (4.60) (or (4.42)), we can prove that any
bias-optimal policy must satisfy the first two optimality equations (4.60) and
(4.61).

Necessary Optimality Conditions:

If a policy d̂ is bias optimal with ηd̂ = η∗ and gd̂ = g∗,
then the optimality equations (4.60) and (4.61) hold.

Proof. Since ηd̂ is the optimal gain, it must satisfy the Necessary Optimality
Condition for gain-optimal policies (4.42) in Section 4.2.1, which is the same
as (4.60). Now, we assume that (4.61) does not hold. That is, there exist a
state k ∈ S and an action α ∈ A(k) such that

ηd̂(k) =
∑

j∈S
pα(j|k)ηd̂(j),

and
f(k, α) +

∑

j∈S
pα(j|k)gd̂(j) > f(k, d̂(k)) +

∑

j∈S
pd̂(k)(j|k)gd̂(j).

Based on this, we can construct another policy d̃ by setting d̃(k) = α and
d̃(i) = d̂(i), for all i �= k. By the construction of d̃, we have P d̃ηd̂ = ηd̂ and
therefore, (P d̃)∗ηd̂ = ηd̂. Next, set h = d̃ and d = d̂ in the difference formula
(4.36), and we get ηd̃ ≥ ηd̂. However, ηd̂ is the optimal gain, so ηd̃ = ηd̂.
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Finally, by the construction of d̃ and following the same arguments as in
Lemma 4.3 to d̃ and d̂, we obtain gd̃ � gd̂. This contradicts the fact that gd̂

is the optimal bias. Thus, (4.61) must hold. ��

The Â0(i) in (4.63) depends on ηd̂, and the Â1(i) in (4.64) depends on ηd̂

and gd̂. If they satisfy the sufficient conditions (4.60), (4.61), and (4.62), then
ηd̂ = η∗ and gd̂ = g∗ are the optimal gain and optimal bias, respectively. To
be more specific, we define

A∗
0(i) :=

{
α ∈ A(i) :

∑

j∈S
pα(j|i)η∗(j) = η∗(i)

}
, (4.65)

and

A∗
1(i) :=

{
α ∈ A∗

0(i) : η∗(i) + g∗(i) = f(i, α) +
∑

j∈S
pα(j|i)g∗(j)

}
. (4.66)

We further define
D∗

k = �i∈SA∗
k(i), k = 0, 1, (4.67)

to be the sets of policies whose components are actions in A∗
k(i), k = 1, 2,

respectively. Recall that D1 ⊆ D0 is the set of all bias-optimal policies. Ob-
viously D0 ⊆ D∗

0. By the average-reward difference formula (4.36), we have
D∗

1 ⊆ D0. Now assume that d ∈ D1. Then, for average reward, we have
ηd = η∗, and for bias, we have gd = g∗. Thus, P dη∗ = P dηd = ηd = η∗,
and from the Poisson equation for policy d, we have fd + P dg∗ = g∗ + η∗.
Therefore, d ∈ D∗

1 , which implies D1 ⊆ D∗
1. Therefore, we have (Figure 4.7)

D1 ⊆ D∗
1 ⊆ D0 ⊆ D∗

0 ⊆ D. (4.68)

For ergodic chains, from (4.12), we have D0 = D∗
1.

Policy Iteration for Bias Optimality

Following the same procedure as that for the gain-optimal policy, by the Com-
parison Lemma (4.57), from any gain-optimal policy we can construct another
gain-optimal policy whose bias is larger (or at least equal, see the discus-
sion below on anti-cycling) if such a policy exists. Specifically, given a policy
d ∈ D0, for any state i ∈ S and α ∈ A∗

0(i), let (cf. (4.45) and (4.46))

Qd(i, α) := f(i, α) +
∑

j∈S
pα(j|i)gd(j),

and
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D D∗
0 D0 D∗

1 D1

Fig. 4.7. The Relations Among the Policy Sets

A1(i, d) :=

⎧
⎪⎪⎨

⎪⎪⎩
α ∈ A∗

0(i) :

Qd(i, α) > Qd(i, d(i));
or

∑
j∈S pα(j|i)wd(j)
>

∑
j∈S pd(i)(j|i)wd(j)

when Qd(i, α) = Qd(i, d(i))

⎫
⎪⎪⎬

⎪⎪⎭
. (4.69)

We then define an improvement policy d′ ∈ D (depending on d) as follows:

d′(i)∈A1(i, d) if A1(i, d) �=∅, and d′(i)=d(i) if A1(i, d)=∅. (4.70)

Note that such a policy may not be unique, since there may be more than one
action in A1(i, d) for some state i ∈ S.

Again, there is no need to choose d′(i) ∈ A1(i, d) for all i such that
A1(i, d) �= ∅; we may choose d′(i) ∈ A1(i, d) for at least one state, and set
d′(k) = d(k) for other states (cf. the discussion on page 213 for the average
reward case).

Because there is no easily verifiable condition for D0, when a gain-optimal
policy d ∈ D0 is given, we have to search for the bias-optimal policy in a
slightly larger set D∗

0 (cf. Figure 4.7), which can be determined by (4.65).
This is why we set α ∈ A∗

0(i) in (4.69). Because of this, we need to make sure
that the new policy constructed, d′, stays in D0, see Lemma 4.5 (a) below.

Lemma 4.5. For any given d ∈ D0, let d′ be defined as in (4.70). Then,
(a) ηd′

= ηd.
(b) gd′ ≥ gd.
(c) If gd′

= gd and d′ �= d, then for second bias we have wd′ � wd.

Proof. (a) By construction (4.69), if d′(i) �= d(i), then d′(i) ∈ A∗
0(i), for all

i ∈ S. By definition of A∗
0(i), because ηd = η∗, we have P d′

ηd = ηd. Again by



4.2 Multi-Chains 225

(4.69), we have Qd(i, d′(i)) ≥ Qd(i, d(i)) for all i ∈ S. Thus, from the average-
reward difference formula (4.36), we have ηd′ ≥ ηd. Therefore, we must have
ηd′

= ηd = η∗. That is, d′ ∈ D0. (Note that the policy iteration procedure for
the average reward may or may not stop at the given optimal policy d. If it
does, then because P d′

ηd = ηd, we can conclude that Qd(i, d′(i)) = Qd(i, d(i))
for all i ∈ S.)

(b) We take policy d as policy d̂ and policy d′ as policy h in the Comparison
Lemma (4.57). Then, by the construction in (4.69) and (4.70), Conditions (a),
(b), and (c) in the Comparison Lemma hold. Thus, we have gd′ ≥ gd.

(c) Since gd′
= gd, we must have Qd(i, d′(i)) = Qd(i, d(i)) for all i ∈ S.

Otherwise, according to Lemma 4.3, we would have gd′ � gd. Therefore, by
(4.69) and d′ �= d, we have

P d′
wd � P dwd.

Next, from the bias difference formula (4.54), we have

gd′ − gd = (P d′
)∗(P d′ − P d)wd = 0,

which implies that (P d′
wd)(i) = (P dwd)(i) for all recurrent states i under

policy d′. Therefore, from (4.69) and (4.70), we have A1(i, d) = ∅ and d′(i) =
d(i) for all recurrent states i under policy d′.

Similar to the proof of Lemma 4.3, we need a difference formula for the
second bias to proceed. To this end, for a second bias w (with P ∗w = 0) of
any policy (P, f), we define the potential of the second bias, z, as

(I − P )z = −w.

For any two policies h and d with gh = gd, just the same as (4.54), we can
derive (see (4.84) with n = 1):

wh − wd =
∞∑

n=0

[
(Ph)n(Ph − P d)wd

]
+ (Ph)∗(Ph − P d)zd. (4.71)

In our case, we set h = d′ in the above equation. Because d′(i) = d(i) for
all recurrent states i under policy d′, we get (P d′

)∗(P d′ − P d) = 0. Finally,
from (4.71), we have

wd′ − wd =
∞∑

n=0

[
(P d′

)n(P d′ − P d)wd
]
≥ (P d′ − P d)wd � 0.

This completes the proof. ��

With Lemma 4.5, we can state the (standard) policy iteration algorithm
for bias-optimal policies as follows:
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Algorithm 4.6. A Policy Iteration Algorithm for Bias-Optimal Poli-
cies:

1. Select an arbitrary gain-optimal policy d0 ∈ D0, and set k = 0.
Determine the sets A∗

0(i) for all i ∈ S by (4.65).
2. (Policy evaluation) Obtain bias gdk , by solving (4.32) with

(P dk)∗gdk = 0, and bias-potential wdk , by solving (4.53) (wdk may
not be unique).

3. (Policy improvement) Set d = dk in (4.69) and (4.70), construct a
policy d′ accordingly, and set dk+1 = d′.

4. If dk+1 = dk, stop; otherwise, increase k by 1 and return to step 2.

Similar to the policy iteration algorithm for the gain-optimal policies, there
may be more than one d′ in (4.69) and (4.70) in step 3. In such cases, we
usually choose the action with the largest Qd(i, α) (when it is larger than
Qd(i, d(i))), or with the largest

∑
j∈S pα(j|i)wd(j) (when the largest Qd(i, α)

equals Qd(i, d(i))) (cf. (4.48) and (4.49)). That is, we choose

d′(i) ∈ arg
{

max
α∈A∗

0(i)

[
Qd(i, α)

]}
,

if maxα∈A∗
0(i)

[
Qd(i, α)

]
> Qd(i, d(i)); otherwise, set Ã0(i, d) :=

arg
{

maxα∈A∗
0(i)

[
Qd(i, α)

]}
and choose

d′(i) ∈ arg
{

max
α∈Ã0(i,d)

∑

j∈S
pα(j|i)wd(j)

}
.

Clearly, Lemma 4.5 plays the same role as Lemma 4.3 in the anti-cycling
property of the policy iteration algorithm. By Lemma 4.5, any two policies in
the sequence of dk, k = 0, 1, . . . , either have different biases or have different
second biases. That is, every policy in the iteration sequence is different.
Since the number of policies is finite, the iteration must stop after a finite
number of iterations. Suppose that it stops at a policy denoted as d̂. Then
d̂ must satisfy the sufficient optimality conditions (4.60), (4.61), and (4.62),
because otherwise for some i the set A1(i, d̂) in (4.69) is non-empty and we
can find the next improved policy in the policy iteration. Therefore, policy
d̂ is bias optimal. We conclude that the policy iteration algorithm stops at a
bias-optimal policy in a finite number of iterations.

4.2.3 MDPs with Discounted Rewards

The principles and approaches in MDPs with the discounted reward criterion
are the same as those in the average-reward MDPs. We will only briefly state
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the results. The discounted reward for multi-chains is defined in the same way
as that for ergodic chains in (4.22) and (2.31). Let {Xl, l = 0, 1, . . .} be a
sample path of the Markov chain under policy (P, f). We set

ηβ(i) = (1− β)E

{ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

}
, i ∈ S.

Then we have (cf. (2.31)),

ηβ = (1− β)
∞∑

l=0

βlP lf = (1− β)(I − βP )−1f, 0 < β < 1. (4.72)

The discounted β-potential is the solution to the discounted Poisson equation
(4.24) or (2.33):

(I − βP + βP ∗)gβ = f, 0 < β ≤ 1.

We have (cf. (2.39))

lim
β↑1

(1− β)(I − βP )−1 = P ∗,

and limβ↑1 ηβ = η, with η being the vector of the long-run average reward. For
any two policies h and d, we have the discounted-reward difference formula as
follows.

The Discounted-Reward Difference Formula for Multi-Chains:

ηh
β − ηd

β = (I − βPh)−1
{[

(1− β)fh + βPhηd
β

]
−

[
(1− β)fd + βP dηd

β

]}
,

0 < β < 1. (4.73)

We also have

ηh
β − ηd

β = (1− β)(I − βPh)−1
[
(fh + βPhgd

β)− (fd + βP dgd
β)

]

+β2(I − βPh)−1(Ph − I)ηd, 0 < β < 1. (4.74)

The relation between ηβ , gβ , and η is (similar to (2.41) for ergodic chains):

ηβ = (1− β)gβ + βη.

When the system is ergodic, η is a constant vector; the second term on the
right-hand side of (4.74) is zero, and (4.74) reduces to (4.23).

With the fundamental fact that (I − βPh)−1 � I for 0 < β < 1, we have

Comparison Lemma:
If (1− β)fh + βPhηd

β � (1− β)fd + βP dηd
β , 0 < β < 1, then ηh

β � ηd
β .

(4.75)
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The standard policy iteration algorithm for MDPs with the discounted
reward follows easily from the Comparison Lemma (4.75). Given a policy
d ∈ D, for any state i ∈ S and α ∈ A(i), and 0 < β < 1, we let

Qd
β(i, α) := (1− β)f(i, α) + β

∑

j∈S

pα(j|i)ηd
β(j),

and define

Aβ(i, d) :=
{
α ∈ A(i) : Qd

β(i, α) > Qd
β(i, d(i))

}
. (4.76)

We then define a policy d′ ∈ D (depending on d) as follows:

d′(i)∈Aβ(i, d) if Aβ(i, d) �=∅, and d′(i)=d(i) if Aβ(i, d)=∅. (4.77)

From the Comparison Lemma (4.75), for any given d ∈ D, let d′ be defined
as in (4.77), if d′ �= d, then ηd′

β � ηd
β . We can develop the standard policy

iteration algorithm for MDPs with discounted rewards:

Algorithm 4.7. A Policy Iteration Algorithm for an Optimal Policy
with a Discounted Reward:

1. Select an arbitrary policy d0 ∈ D, and set k = 0.
2. (Policy evaluation) Obtain ηdk

β by using (4.72).
3. (Policy improvement) Set d = dk in (4.76) and construct a policy

d′ according to (4.77), and set dk+1 = d′.
4. If dk+1 = dk, then stop and dk is optimal. Otherwise, increase k by

1 and return to step 2.

4.3 The nth-Bias Optimization∗

Among the policies that optimize the bias g (or equivalently, the potential with
P ∗g = 0), there are policies that optimize the second bias w (the bias of the
bias, with P ∗w = 0). This process can go on; that is, among the policies that
optimize both the bias and second bias, we can find a policy that optimizes the
third bias (the bias of the second bias) and so on. In this section, we propose
the concept of nth bias, or in a general form the nth potential, n = 1, 2, . . . ,
and develop a unified theory for the optimization of the nth biases, which
include the gain optimality and bias optimality as special cases. We also show
that, as n increases, the nth-bias optimal policies eventually reach the set
of Blackwell policies (see Problem 4.30). The approach is again based on
difference formulas for the nth biases and is essentially the same as that for
the gain and bias optimality.
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4.3.1 nth-Bias Difference Formulas∗

nth Potentials and nth Biases

In this formulation, the average reward (gain) is also called the 0th bias. Thus,
for a policy (P, f), the 0th bias is a vector g0 with components

g0(i) := η(i) = lim
L→∞

1
L
E
{ L−1∑

l=0

f(Xl)
∣∣∣X0 = i

}
, i ∈ S,

where {Xl, l = 0, 1, . . .} is a sample path of the Markov chain with P . As we
know,

g0 = P ∗f, P ∗g0 = g0.

The potential g is also called the first potential and is denoted as g1 := g,
which is the solution to the Poisson equation

(I − P )g1 + g0 = f.

The first potential has different versions that may differ with an additive
vector u satisfying (I − P )u = 0. The bias, also called the first bias, is a
special version of the first potential with normalization condition P ∗g1 = 0.
Thus, the bias satisfies

(I − P + P ∗)g1 = f − g0.

The ith component of the bias is

g1(i) := g(i) =
∞∑

l=0

E [f(Xl)− η(i)|X0 = i] .

The nth potential gn, n > 1, of policy (P, f) is defined as the solution to
the Poisson equation of the (n− 1)th bias gn−1:

(I − P )gn = −gn−1, n > 1. (4.78)

This definition implies that P ∗gn−1 = 0. (Thus, the gn−1 in (4.78) must be
a bias, not a potential.) Again, the nth potential is unique up to an additive
vector u. If gn is a solution to (4.78), then for any vector u satisfying (I−P )u =
0, gn +u is also a solution to (4.78). The nth potential can also be defined by
the (n− 1)th potential, see Problem 4.20.

The nth bias gn, n > 1, of policy (P, f) is an nth potential satisfying the
normalization condition

P ∗gn = 0.
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Thus, from (4.78), the nth bias satisfies

(I − P + P ∗)gn = −gn−1, n > 1.

From this and P ∗gn−1 = 0, for the nth bias gn we have

gn = −
[
gn−1 + Pgn−1 + P 2gn−1 + · · ·

]
, n > 1, (4.79)

where gn−1 is the (n− 1)th bias. Therefore, the ith component of gn is

gn(i) = −
∞∑

l=0

E[gn−1(Xl)|X0 = i], n > 1.

Generally, we have

gn = −(I − P + P ∗)−1gn−1

= (−1)n−1(I − P + P ∗)−n(f − η). (4.80)

Furthermore, from (4.79), we get

gn+1 = (−1)n
∞∑

k=0

∏n
m=1(k + m)

n!
(
P kf − η

)

= (−1)n
∞∑

k=0

(
n + k

n

)(
P kf − η

)
, n > 0. (4.81)

Then,

gn+1(i) = (−1)n
∞∑

k=0

∏n
m=1(k + m)

n!
E {[f(Xk)− η(i)]|X0 = i} , n > 0.

This can be used to develop sample-path-based estimates of gn.

Optimal nth Biases

The nth potential, n ≥ 0, associated with a policy d ∈ D (with (P d, fd)) is
denoted as gd

n. Without confusion, we will use the same notation gd
n to denote

the nth bias of policy d ∈ D. Obviously, we can only study optimization of
biases, not potentials, because the latter may differ with an additive vector.

A policy d̂ is said to be gain optimal and its gain gd̂
0 is called the optimal

gain, if
gd̂
0 ≥ gd

0 , for all d ∈ D.

Let g∗0 be the optimal gain, and

D0 :=
{
d ∈ D : gd

0 = g∗0
}
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be the set of all gain-optimal policies. The nth-bias optimal policies for n > 0
are defined recursively. We only care about the nth-bias optimal policies in
the set of (n − 1)th-bias optimal policies. A policy d̂ is said to be nth-bias
optimal, n > 0, if d̂ ∈ Dn−1 and

gd̂
n ≥ gd

n, for all d ∈ Dn−1, n > 0.

Let g∗n be the optimal nth bias, and

Dn :=
{
d ∈ Dn−1 : gd

n = g∗n
}
, n > 0 (4.82)

be the set of all nth-bias optimal policies, n > 0. From the definition, we can
see that if d̂ is an nth-bias optimal policy, then d̂ is also a kth-bias optimal
policy, where 0 ≤ k < n; i.e., gd̂

k = g∗k, for k = 0, 1, . . . , n; but the higher order

biases of d̂ may not be optimal. For example, gd̂
n+1 may not take the optimal

value if d̂ is an nth-bias optimal policy (i.e., gd̂
n+1 �= g∗n+1).

nth-Bias Difference Formulas

To develop an nth-bias optimization theory, we first derive the difference
formulas for the nth biases. Let gh

n and gd
n, n = 0, 1, . . . , be the nth biases of

the two policies h, d ∈ D, respectively.

The nth-Bias Difference Formula:

(a) gh
0−gd

0 = (Ph)∗
[
(fh + Phgd

1)− (fd + P dgd
1)

]
+
[(

Ph
)∗ − I

]
gd
0 ;

(b) if gh
0 = gd

0 , then

gh
1−gd

1 = (Ph)∗(Ph−P d)gd
2+

∞∑

k=0

{
(Ph)k

[
(fh + Phgd

1)− (fd + P dgd
1)

]}
;

(4.83)
(c) if gh

n = gd
n for a particular n ≥ 1, then

gh
n+1 − gd

n+1 = (Ph)∗(Ph − P d)gd
n+2 +

∞∑

k=0

{
(Ph)k(Ph − P d)gd

n+1

}
.

(4.84)

Proof. (a) and (b) are the same as (4.36) and (4.54), respectively. Now, we
prove (c). From (4.78) and gh

n = gd
n, we have

gh
n+1 − gd

n+1 = (−gh
n + Phgh

n+1)− (−gd
n + P dgd

n+1)

= Phgh
n+1 − P dgd

n+1

= (Ph − P d)gd
n+1 + Ph(gh

n+1 − gd
n+1).
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Thus,
(I − Ph)(gh

n+1 − gd
n+1) = (Ph − P d)gd

n+1. (4.85)

From (4.78), we have gd
n+1 = (P d − I)gd

n+2. Left-multiplying (Ph)∗ on
both sides of this equation, we obtain

(Ph)∗gd
n+1 = (Ph)∗(P d − I)gd

n+2 = (Ph)∗(P d − Ph)gd
n+2. (4.86)

Because (Ph)∗gh
n+1 = 0 and from (4.85) and (4.86), we have

[I − Ph + (Ph)∗](gh
n+1 − gd

n+1)

= (I − Ph)(gh
n+1 − gd

n+1)− (Ph)∗gd
n+1

= (I − Ph)(gh
n+1 − gd

n+1) + (Ph)∗(Ph − P d)gd
n+2

= (Ph − P d)gd
n+1 + (Ph)∗(Ph − P d)gd

n+2.

Noting [I − Ph + (Ph)∗]−1(Ph)∗ = (Ph)∗, we have

gh
n+1 − gd

n+1

=
[
I − Ph + (Ph)∗

]−1
(Ph − P d)gd

n+1 + (Ph)∗(Ph − P d)gd
n+2

=
∞∑

k=0

[
Ph − (Ph)∗

]k
(Ph − P d)gd

n+1 + (Ph)∗(Ph − P d)gd
n+2. (4.87)

Again, from (4.78) and gh
n = gd

n, we obtain

(Ph)∗(Ph − P d)gd
n+1

= (Ph)∗(Phgd
n+1 − gd

n+1 − gd
n)

= −(Ph)∗gd
n = −(Ph)∗gh

n = 0.

Then (c) follows directly from (4.87). ��

Finally, we note that (Ph)∗(Ph−P d)gd
n+2 = (Ph)∗(I−P d)gd

n+2. Therefore,
for any u satisfying (I−P d)u = 0, we have (Ph)∗(Ph−P d)gd

n+2 = (Ph)∗(Ph−
P d)(gd

n+2 + cu). Thus, we can use potentials (instead of biases) for the gd
n+2

in (4.84) (for the same reason, we can use potentials for gd
2 and gd

1 on the
right-hand sides of (b) and (a)).

4.3.2 Optimality Equations∗

From the nth bias difference formulas, we can easily derive the following Com-
parison Lemma, which is the basis for the nth-bias optimality equations and
the policy iteration algorithms.

Suppose that d̂ is an nth-bias optimal policy, n ≥ 1, with optimal biases
gd̂

k = g∗k, k = 0, 1, . . . , n. Let h be any (n− 1)th-bias optimal policy.
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Comparison Lemma for (n + 1)th Biases of Two nth-Bias
Optimal Policies:

If

(a) fh + Phgd̂
1 = f d̂ + P d̂gd̂

1 , if n = 1; Phgd̂
n = P d̂gd̂

n, if n > 1,
(b) Phgd̂

n+1 ≥ P d̂gd̂
n+1, and

(c) (Phgd̂
n+2)(i) ≥ (P d̂gd̂

n+2)(i) when (Phgd̂
n+1)(i) = (P d̂gd̂

n+1)(i)
for some i ∈ S,

=⇒ then h is nth-bias optimal, i.e., gh
n = g∗n, and gh

n+1 ≥ gd̂
n+1.

(4.88)
In addition, if Condition (a) is replaced by the following Condition (a′)

(a′) policy h is nth-bias optimal,
then gh

n+1 ≤ gd̂
n+1 if we change all the signs “ ≥ ” in (b) and (c) to “ ≤ ”.

Proof. Because both h and d̂ are (n − 1)th-bias optimal, we have gh
n−1 =

gd̂
n−1 = g∗n−1. Thus, we have the bias difference formulas

gh
1 − gd̂

1 =
∞∑

k=0

(Ph)k
[
(fh + Phgd̂

1)− (f d̂ + P d̂gd̂
1)

]
+ (Ph)∗(Ph − P d̂)gd̂

2 ,

and

gh
n − gd̂

n =
∞∑

k=0

(Ph)k(Ph − P d̂)gd̂
n + (Ph)∗(Ph − P d̂)gd̂

n+1, if n > 1.

From Condition (a), the first sum on the right-hand sides of these two equa-
tions is zero. Then, from Condition (b), we have gh

n ≥ gd̂
n. Because gd̂

n is the
optimal nth bias, we must have gh

n = gd̂
n = g∗n, and, furthermore, from the

aforementioned two equations, we must have

(Ph)∗(Ph − P d̂)gd̂
n+1 = 0, n ≥ 1. (4.89)

The (n + 1)th-bias difference formula is

gh
n+1 − gd̂

n+1 = (Ph)∗(Ph − P d̂)gd̂
n+2 +

∞∑

k=0

[
(Ph)k(Ph − P d̂)gd̂

n+1

]

= (Ph)∗v + z, n ≥ 1,

where u := (Ph − P d̂)gd̂
n+1, v := (Ph − P d̂)gd̂

n+2, and z :=
∑∞

k=0

[
(Ph)ku

]
.

From (4.89), we have (Ph)∗u = 0, n ≥ 1. From Condition (b), we have u ≥ 0
and then z ≥ 0. Thus, Condition (a) in the Comparison Lemma (General
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Form) (4.39) holds. Condition (c) here implies Condition (b) in the Compari-
son Lemma (4.39). Finally, it follows that gh

n+1 ≥ gd̂
n+1, n ≥ 1.

When the signs “≥” change to “≤”, we cannot prove that h is an nth-bias
optimal policy from Conditions (a) and (b). Note that Condition (a′) implies
Condition (a) (cf. (4.61) for n = 1 and (4.78) for n > 1). With Condition (a′),
the other half of the lemma can be proved in a similar way. ��

This Comparison Lemma (4.88) tells us that given an nth-bias optimal
policy, how we can find another policy in the space of the (n − 1)th-bias
optimal policies that is nth-bias optimal and has a larger (or at least equal)
(n + 1)th bias, n > 0. A similar case we have seen in Section 4.2.2 is that if
we are given a gain-optimal policy, we can find another policy in the policy
space that is gain optimal and has a large (or equal) bias, which is based on
the Comparison Lemma for biases (4.57). We can continue this improvement
procedure until it reaches a policy whereby no improvement can be made
in the (n + 1)th bias by following this procedure. This policy satisfies the
following sufficient optimality equations.

Sufficient Optimality Equations

Suppose that the following n+2 optimality equations hold for policy d̂. Then,
d̂ is nth-bias optimal, i.e., gd̂

k = g∗k is the optimal kth bias, for k = 0, 1, . . . , n.

Sufficient Optimality Conditions:
A policy d̂ is nth-bias optimal, n ≥ 0, if, for all i ∈ S, we have

gd̂
0(i) = max

α∈A(i)

{
∑

j∈S
pα(j|i)gd̂

0(j)

}
. (4.90)

gd̂
0(i) + gd̂

1(i) = max
α∈A0(gd̂

0 )(i)

{
f(i, α) +

∑

j∈S
pα(j|i)gd̂

1(j)

}
. (4.91)

gd̂
k(i) + gd̂

k+1(i) = max
α∈Ak(gd̂

0 ,gd̂
1 ,...,gd̂

k
)(i)

{
∑

j∈S
pα(j|i)gd̂

k+1(j)

}
,

k = 1, 2, . . . , n, (4.92)
where, for each i ∈ S,

A0(gd̂
0)(i) := arg max

α∈A(i)

{
∑

j∈S
pα(j|i)gd̂

0(j)

}

=

{
α ∈ A(i) :

∑

j∈S
pα(j|i)gd̂

0(j) = gd̂
0(i)

}
,
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A1(gd̂
0 , g

d̂
1)(i) := arg max

α∈A0(gd̂
0 )(i)

{
f(i, α) +

∑

j∈S
pα(j|i)gd̂

1(j)

}

=

{
α ∈ A0(gd̂

0)(i) : f(i, α) +
∑

j∈S
pα(j|i)gd̂

1(j) = gd̂
0(i) + gd̂

1(i)

}
,

Ak(gd̂
0 , . . . , g

d̂
k)(i) := arg max

α∈Ak−1(gd̂
0 ,...,gd̂

k−1)(i)

{
∑

j∈S
pα(j|i)gd̂

k(j)

}

=

{
α ∈ Ak−1(gd̂

0 , . . . , g
d̂
k−1)(i) :

∑

j∈S
pα(j|i)gd̂

k(j) = gd̂
k−1(i) + gd̂

k(i)

}
,

k = 2, . . . , n.

In these equations, the sets A0(gd̂
0)(i)’s are defined only for these (gd̂

0)’s
that satisfy (4.90); that is, if for a policy d̂, (4.90) does not hold, then the
definition makes no sense. Similarly, the sets A1(gd̂

0 , g
d̂
1)(i) are defined only

for the gd̂
0 and gd̂

1 that satisfy (4.90) and (4.91); and so on, and the sets
An(gd̂

0 , . . . , g
d̂
n)(i) are defined only for those gd̂

0 , . . . , g
d̂
n that satisfy Equations

(4.90), (4.91), and those in (4.92) up to the equation with k = n − 1. We
define the policy set as

Dk(gd̂
0 , . . . , g

d̂
k) := �i∈SAk(gd̂

0 , . . . , g
d̂
k)(i), k = 0, 1, . . . , n.

For simplicity, we may set Âk(i) := Ak(gd̂
0 , . . . , g

d̂
k)(i). This is what used in

(4.61) and (4.62).
We refer to (4.90)-(4.92) as the nth-bias optimality equations and refer to

(4.90) as the first equation, to (4.91) as the second equation, and to (4.92)
with index k, k ≥ 1, as the (k + 2)th equation, etc. We observe that

D0(gd̂
0) =

{
all d ∈ D : P dgd̂

0 = gd̂
0

}
,

D1(gd̂
0 , g

d̂
1) =

{
all d ∈ D : P dgd̂

0 = gd̂
0 , f

d + P dgd̂
1 = gd̂

0 + gd̂
1

}
,

and

Dk(gd̂
0 , g

d̂
1 , . . . , g

d̂
k)

=
{

all d ∈ D : P dgd̂
0 = gd̂

0 , f
d + P dgd̂

1 = gd̂
0 + gd̂

1 ,

P dgd̂
l+1 = gd̂

l + gd̂
l+1, l = 1, 2, . . . , k − 1

}
, k ≥ 2. (4.93)

We have
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Dk(gd̂
0 , g

d̂
1 , . . . , g

d̂
k) ⊆ Dk−1(gd̂

0 , g
d̂
1 , . . . , g

d̂
k−1), k ≥ 1.

Note that Dk(gd̂
0 , g

d̂
1 , . . . , g

d̂
k) is different from the set of kth-bias optimal

policies Dk. By definition, for any policy d, if d(i) ∈ Ak(gd̂
0 , . . . , g

d̂
k)(i) for all

i ∈ S, we say that d ∈ Dk(gd̂
0 , . . . , g

d̂
k). Now, we can rewrite (4.90)-(4.92) in a

matrix form.
max
d∈D

{
(P d − I)gd̂

0

}
= 0,

max
d∈D0(gd̂

0 )

{
fd − gd̂

0 + (P d − I)gd̂
1

}
= 0,

max
d∈Dk(gd̂

0 ,...,gd̂
k
)

{
−gd̂

k + (P d − I)gd̂
k+1

}
= 0, k = 1, 2, . . . , n.

Obviously, if d ∈ Dn(gd̂
0 , g

d̂
1 , . . . , g

d̂
n), then d ∈ Dk(gd̂

0 , g
d̂
1 , . . . , g

d̂
k), for k =

1, 2, . . . , n.
Let us first understand the meanings of these mathematical equations.

The first equation (4.90) says that in every state i ∈ S, we have gd̂
0(i) ≥

∑
j∈S pα(j|i)gd̂

0(j) for all actions α ∈ A(i). If this is the case, then all the

actions that make the equality hold form the set A0(gd̂
0)(i). Furthermore,

A0(gd̂
0)(i) is not empty because P d̂ηd̂ = ηd̂, so d̂(i) ∈ A0(gd̂

0)(i). The second
equation (4.91) says that for all the actions for which the above equality holds
(i.e., α ∈ A0(gd̂

0)(i)), we have gd̂
0(i) + gd̂

1(i) ≥
{
f(i, α) +

∑
j∈S pα(j|i)gd̂

1(j)
}

.

If this is the case, then all the actions in A0(gd̂
0)(i) that make the equal-

ity hold form the set A1(gd̂
0 , g

d̂
1)(i). Furthermore, from the Poisson equation

for d̂, we have d̂(i) ∈ A1(gd̂
0 , g

d̂
1)(i); so the set is non-empty. This statement

goes on until the last (the (n + 2)th) equation. The set Ak(gd̂
0 , g

d̂
1 , . . . , g

d̂
k)(i)

shrinks as k increases. If at some point Ak(gd̂
0 , g

d̂
1 , . . . , g

d̂
k)(i), k ≤ n, con-

tains only one action denoted as α0, then we must have gd̂
k−1(i) + gd̂

k(i) =
∑

j∈S pα0(j|i)gd̂
k(j). Furthermore, we have Al(gd̂

0 , g
d̂
0 , . . . , g

d̂
l )(i) = {α0} and

gd̂
l (i) + gd̂

l+1(i) =
∑

j∈S pα0(j|i)gd̂
l+1(j) for all k ≤ l ≤ n. Obviously, we have

α0 = d̂(i), because d̂(i) ∈ Ak(gd̂
0 , g

d̂
1 , . . . , g

d̂
k)(i), k = 1, 2, . . . , n, if (4.90)-(4.92)

holds.
According to the Sufficient Optimality Conditions, if gd̂

0 , . . . , g
d̂
n, g

d̂
n+1 sat-

isfy (4.90)-(4.92), then gd̂
0 , . . . , g

d̂
n are the optimal kth biases, gd̂

k = g∗k,

k = 0, 1, . . . , n, respectively. However, gd̂
n+1 may take different values that

are not optimal. (cf. the discussion after the Sufficient Conditions for Bias
Optimality in Section 4.2.2.)
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To prove the Sufficient Optimality Conditions, we need a result from the
Necessary Optimality Conditions stated later. Basically, by definition, in or-
der to get an nth-bias optimal policy, we need to determine the space of all
the (n− 1)th-bias optimal policies. The Necessary Optimality Conditions tell
us that the space of all the (n − 1)th-bias optimal policies is contained in
Dn−1(gd̂

0 , . . . , g
d̂
n−1). The following proof may be read after getting familiar

with the Necessary Optimality Conditions.

Proof of the Sufficient Optimality Conditions. We have proved the cases of
n = 0 and n = 1 in Sections 4.2.1 and 4.2.2, respectively. Now we prove
the general case of n > 1 by induction. Assume that the theorem holds for
the case of n; that is, if the vectors gd̂

0 , . . . , g
d̂
n+1, n ≥ 1, satisfy the first

(n + 2) equations, then gd̂
k is the optimal kth bias, k = 0, 1, . . . , n. We wish

to prove that the theorem holds for the case of (n + 1); that is, if the vectors
gd̂
0 , . . . , g

d̂
n+2, n ≥ 1, satisfy the first (n + 3) equations, then gd̂

k is the optimal
kth bias, k = 0, 1, . . . , n + 1.

To achieve this, we need only to prove that gd̂
n+1 ≥ gd

n+1, where gd
n+1

is the (n + 1)th bias of any nth-bias optimal policy d ∈ Dn, n ≥ 1. By the
assumption made through induction, gd̂

n = g∗n is the optimal nth bias. Because
d ∈ Dn, from the Necessary Optimality Conditions stated just after this proof,
we have d ∈ Dn(gd̂

0 , . . . , g
d̂
n). Therefore,

fd + P dgd̂
1 = f d̂ + P d̂gd̂

1 , if n = 1,

or
P dgd̂

n = P d̂gd̂
n, if n > 1.

Now, we set d and d̂ to be h and d̂ in the Comparison Lemma (4.88). Because
d ∈ Dn, Condition (a′) in the lemma holds. In addition, the (n+2)th equation,
together with d ∈ Dn(gd̂

0 , . . . , g
d̂
n), indicates that Condition (b) in the lemma,

with the “≤” sign, holds, and the (n+ 3)th equation implies Condition (c) in
the lemma, with the “≤” sign, holds. Finally, it follows from the lemma that
gd̂

n+1 ≥ gd
n+1. ��

Necessary Optimality Equations

Necessary Optimality Conditions:
If a policy d̂ is nth-bias optimal with biases gd̂

k = g∗k, k = 0, 1, . . . , n,

then gd̂
k, k = 0, 1, . . . , n, satisfy the first (n + 1) optimality equations

(4.90)-(4.92).
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Proof. The two cases with n = 0 and n = 1 are proved in Sections 4.2.1 and
4.2.2, respectively. Now, we prove the general case with n > 1 by induction.
That is, we assume that all the nth-bias optimal policies satisfy the first (n+1)
optimality equations. Then, we prove that any (n + 1)th-bias optimal policy
must satisfy the first (n + 2) optimality equations, n ≥ 1.

Because an (n+1)th-bias optimal policy is also nth-bias optimal, the first
n + 1 equations hold by assumption. We only need to check the (n + 2)th
equation. In other words, we need to show that for an (n + 1)th-bias optimal
policy d̂, n ≥ 1, with kth bias gd̂

k = g∗k, k = 0, 1, . . . , n + 1, we have

P dgd̂
n+1 ≤ gd̂

n + gd̂
n+1, for all d ∈ Dn(gd̂

0 , g
d̂
1 , . . . , g

d̂
n). (4.94)

Assume that (4.94) does not hold. Then, there must exist a policy denoted as
d′ ∈ Dn(gd̂

0 , g
d̂
1 , . . . , g

d̂
n) and a state i ∈ S such that

(P d′
gd̂

n+1)(i) > gd̂
n(i) + gd̂

n+1(i) = (P d̂gd̂
n+1)(i). (4.95)

Based on this, we can construct another policy d̃ by setting d̃(i) =
d′(i) and d̃(j) = d̂(j), for all j �= i. Because d′ ∈ Dn(gd̂

0 , g
d̂
1 , . . . , g

d̂
n),

we have (P d′
gd̂

k)(i) = gd̂
k(i) + gd̂

k−1(i) = (P d̂gd̂
k)(i), for k = 2, . . . , n; and

(fd′
+ P d′

gd̂
1)(i) = gd̂

0(i) + gd̂
1(i) = (f d̂ + P d̂gd̂

1)(i). Therefore, we have
(P d̃gd̂

k)(i) = (P d̂gd̂
k)(i) for k = 2, . . . , n, and (f d̃ + P d̃gd̂

1)(i) = (f d̂ + P d̂gd̂
1)(i).

This means that the ith component of the vector
[
(P d̃ − P d̂)gd̂

k

]
(i) = 0 for

k = 2, . . . , n, and
[
(f d̃ + P d̃gd̂

1)− (f d̂ + P d̂gd̂
1)

]
(i) = 0. In addition, by con-

struction, P d̃ and P d̂, and f d̃ and f d̂, are the same except for their ith rows.
Thus,

(P d̃ − P d̂)gd̂
k = 0, for k = 2, . . . , n, (4.96)

and
(f d̃ + P d̃gd̂

1)− (f d̂ + P d̂gd̂
1) = 0. (4.97)

If n = 1, we only have (4.97).
For n = 1, d′ ∈ D1(gd̂

0 , g
d̂
1), i.e., it satisfies the first two optimization

equations and, by the sufficient conditions for gain-optimal policies, d′ is a
gain-optimal policy and ηd′

= ηd̂ = η∗. Thus, we can apply the bias difference
formula and obtain

gd̃
1 − gd̂

1 = (P d̃)∗(P d̃ − P d̂)gd̂
2 +

∞∑

k=0

(P d̃)k
[
(f d̃ + P d̃gd̂

1)− (f d̂ + P d̂gd̂
1)

]

= (P d̃)∗(P d̃ − P d̂)gd̂
2 . (4.98)

For n > 1, we have (4.96), and from (4.98), we conclude that gd̃
1 = gd̂

1 and
therefore we may use the kth-bias difference formula (4.84) for k > 1
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gd̃
k − gd̂

k = (P d̃)∗(P d̃ − P d̂)gd̂
k+1 +

∞∑

l=0

(P d̃)l(P d̃ − P d̂)gd̂
k, k = 2, . . . , n.

Setting k = 2 and by (4.96), we may get gd̃
2 = gd̂

2 . Repeating this process for
k = 3, . . . , n−1, we may obtain gd̃

k = gd̂
k, k = 2, . . . , n−1, and finally, we have

gd̃
n − gd̂

n = (P d̃)∗(P d̃ − P d̂)gd̂
n+1, n > 1, (4.99)

which has the same form as (4.98). Thus, we need to discuss only (4.99) with
n ≥ 1.

Next, by construction, all the components of (P d̃−P d̂)gd̂
n+1 except its ith

component are zeros for n ≥ 1. Thus,

gd̃
n(j)− gd̂

n(j) =
{[

(P d̃ − P d̂)gd̂
n+1

]
(i)

}
(P d̃)∗(i|j).

From (4.95),
[
(P d̃ − P d̂)gd̂

n+1

]
(i) > 0. Thus, we have (P d̃ − P d̂)gd̂

n+1 � 0.

Also, by (4.99), we must have (P d̃)∗(i|j) = 0 for all j ∈ S, because gd̂
n is nth-

bias optimal. This means that i is a transient state under policy P d̃. Therefore,
from the structure of (P d̃)∗, we conclude that (P d̃)∗(P d̃ − P d̂) = 0. Finally,
from the bias difference equation (4.84), for n ≥ 1, we have

gd̃
n+1 − gd̂

n+1

=
∞∑

l=0

(P d̃)l(P d̃ − P d̂)gd̂
n+1 + (P d̃)∗(P d̃ − P d̂)gd̂

n+2

=
∞∑

l=0

(P d̃)l(P d̃ − P d̂)gd̂
n+1

≥ (P d̃ − P d̂)gd̂
n+1

� 0.

This is impossible because gd̂
n+1 is an (n + 1)th-bias optimal policy. ��

To be more precise, when gd̂
0 , . . . , g

d̂
n are optimal biases, we writeDn(gd̂

0 , . . . ,

gd̂
n) as Dn(g∗0 , . . . , g

∗
n). We may further simplify the notation by setting

D∗
n := Dn(g∗0 , . . . , g

∗
n). That is, we define

D∗
0 = D0(g∗0) =

{
all d ∈ D : P dg∗0 = g∗0

}
, (4.100)

D∗
1 = D1(g∗0 , g

∗
1)

=
{
all d ∈ D : P dg∗0 = g∗0 , f

d + P dg∗1 = g∗0 + g∗1
}
, (4.101)

D∗
n = Dn(g∗0 , . . . , g

∗
n)

=
{
all d ∈ D : P dg∗0 = g∗0 , f

d + P dg∗1 = g∗0 + g∗1 ,

P dg∗l+1 = g∗l + g∗l+1, l = 1, . . . , n− 1
}
, n ≥ 2, (4.102)
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in which (4.100) and (4.101) are the same as (4.65), (4.66), and (4.67).
One obvious corollary is that an nth-bias optimal policy d̂ reaches the

maximum in the first (n + 1) optimality equations. In other words, if d̂ is
nth-bias optimal, then d̂ ∈ D0(g∗0), . . . , d̂ ∈ Dn(g∗0 , . . . , g

∗
n).

One implication of the Necessary Optimality Conditions is as follows.
If we are given an (n − 1)th-bias optimal policy with kth biases g∗k, k =
0, 1, . . . , n − 1, and we need to search for an nth-bias optimal policy among
all the (n− 1)th-bias optimal polices, we can search among the policies in the
set Dn−1(g∗0 , . . . , g

∗
n−1). This set may be a bit larger than the space of all the

(n−1)th-bias optimal policies. For example, in case of the bias optimality, we
need to search in D0(g∗0), see (4.69).

From the nth-bias difference formulas and the Poisson equations, it is easy
to prove (following the same steps as for (4.68) and see Figure 4.7) that

Dn+1(g∗0 , . . . , g
∗
n+1) ⊆ Dn ⊆ Dn(g∗0 , . . . , g

∗
n), n ≥ 0. (4.103)

This formula holds for every individual component i ∈ S.

4.3.3 Policy Iteration∗

We can devise a policy iteration algorithm for the nth-bias optimal policy by
following the same procedure as for the gain and bias optimization problems.
By the Comparison Lemma (4.88), from any (n−1)th-bias optimal policy, we
can construct another (n − 1)th-bias optimal policy that has a larger (or at
least equal) nth bias if such a policy exists. By (4.103), we need to search in
the set Dn−1(g∗0 , . . . , g

∗
n−1).

For a given (n − 1)th-bias optimal policy d ∈ Dn−1 with kth biases gd
k,

k = 0, 1, . . . , n + 1, n > 1, and gd
k = g∗k, k = 0, 1, . . . , n− 1, being the optimal

kth bias, we first define

An(i, d) :=

⎧
⎪⎪⎨

⎪⎪⎩

α ∈ An−1(g∗0 , g
∗
1 , . . . , g

∗
n−1)(i) :∑

j∈S pα(j|i)gd
n(j) >

∑
j∈S pd(i)(j|i)gd

n(j); or∑
j∈S pα(j|i)gd

n+1(j) >
∑

j∈S pd(i)(j|i)gd
n+1(j)

when
∑

j∈S pα(j|i)gd
n(j) =

∑
j∈S pd(i)(j|i)gd

n(j)

⎫
⎪⎪⎬

⎪⎪⎭
.(4.104)

We then define an improvement policy d′ (depending on d) as follows:

d′(i)∈An(i, d) if An(i, d) �=∅, and d′(i)=d(i) if An(i, d)=∅. (4.105)

Note that such a policy may not be unique, since there may be more than one
action in An(i, d) for some state i ∈ S.

Again, there is no need to choose d′(i) ∈ An(i, d) for all i such that
An(i, d) �= ∅; we may choose d′(i) ∈ An(i, d) for at least one state, and
set d′(k) = d(k) for other states (cf. the discussion on page 224 for the bias
optimality case).
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Lemma 4.6. For any given (n − 1)th-bias optimal policy d ∈ Dn−1, n > 1,
let d′ be defined as in (4.105). Then, we have

(a) gd′

n−1 = gd
n−1,

(b) gd′

n ≥ gd
n, and

(c) if gd′

n = gd
n and d′ �= d, then gd′

n+1 � gd
n+1.

Proof. The proof is similar to that of Lemma 4.5 for the case of n = 1.
(a) By construction, if d′ �= d then d′(i) ∈ An−1(gd

0 , g
d
1 , . . . , g

d
n−1)(i) for all

i ∈ S, gd
k = g∗k, k = 0, 1, . . . , n− 1. Thus, from (4.93), we have fd′

+ P d′
gd
1 =

fd + P dgd
1 for n = 2, and P d′

gd
n−1 = gd

n−2 + gd
n−1 = P dgd

n−1 for n > 2. Then,
the second term on the right-hand side of the two bias difference equations in
(4.83) for n− 1 = 1 and in (4.84) for n− 1 ≥ 2 are zeros. Thus, the difference
equations become

gd′

n−1 − gd
n−1 = (P d′

)∗(P d′ − P d)gd
n,

for both n = 2 and n > 2. Again, by construction (4.104), we have (P d′ −
P d)gd

n ≥ 0. Therefore, gd′

n−1 − gd
n−1 ≥ 0. Since d is (n− 1)th-bias optimal, we

conclude that d′ is also an (n− 1)th-bias optimal policy.
(b) We first set d to be the policy d̂ and d′ to be the h in the Comparison

Lemma (4.88). Consider the lemma for the case of d̂ being an (n− 1)th-bias
optimal. By the constructions in (4.104) and (4.105), Conditions (a), (b), and
(c) in the Comparison Lemma hold. Thus, it follows that gd′

n ≥ gd
n.

(c) If gd′

n = gd
n, n ≥ 2, we have

P d′
gd

n = P d′
gd′

n = gd′

n−1 + gd′

n = gd
n−1 + gd

n = P dgd
n.

Then P d′
gd

n+1 � P dgd
n+1 holds by (4.104), (4.105), and d′ �= d. From (4.84),

we have

gd′

n − gd
n =

∞∑

k=0

(P d′
)k(P d′ − P d)gd

n + (P d′
)∗(P d′ − P d)gd

n+1.

From this equation, we must have (P d′
)∗(P d′ − P d)gd

n+1 = gd′

n − gd
n = 0.

From the Fundamental Fact (4.30), we have (P d′
gd

n+1)(i) = (P dgd
n+1)(i) for

all recurrent states i under policy d′. From (4.104) and (4.105),

d′(i) = d(i), for all recurrent states i under policy d′. (4.106)

From (4.84), we have

gd′

n+1 − gd
n+1 = (P d′

)∗(P d′ − P d)gd
n+2 +

∞∑

k=0

(P d′
)k(P d′ − P d)gd

n+1.

By (4.106) and the structure of (P d′
)∗, we know that (P d′

)∗(P d′ − P d) = 0.
Then, gd′

n+1 − gd
n+1 =

∑∞
k=0(P

d′
)k(P d′ − P d)gd

n+1 ≥ (P d′ − P d)gd
n+1 � 0. ��

Lemma 4.6 leads to the following nth-bias optimality policy iteration algo-
rithm, n ≥ 2:
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Algorithm 4.8. A Policy Iteration Algorithm for nth-Bias Optimal
Policies:

1. Set k = 0 and select an arbitrary (n− 1)th-bias optimal policy d0 ∈
Dn−1, which may be obtained from policy iteration for the (n−1)th-
bias optimal policies.

2. (Policy evaluation) Obtain gdk
n and gdk

n+1 by solving

− g∗n−1 + (P dk − I)gn = 0,

−gn + (P dk − I)gn+1 = 0,

subject to (P dk)∗gn = 0.
3. (Policy improvement) Set d = dk in (4.104) and (4.105); construct

a policy d′ accordingly, and set dk+1 = d′. (Determine D∗
n−1 by

(4.102).)
4. If dk+1 = dk, stop and set d̂ = dk and gd̂

n = gdk
n is the optimal nth

bias g∗n; otherwise, increase k by 1 and return to step 2.

There may be more than one d′ in (4.104) and (4.105) in step 3. In such
cases, we usually choose the action with the largest

∑
j∈S pα(j|i)gd

n(j) (when
it is larger than

∑
j∈S pd(i)(j|i)gd

n(j)), or with the largest
∑

j∈S pα(j|i)gd
n+1(j)

(when the largest
∑

j∈S pα(j|i)gd
n(j) equals

∑
j∈S pd(i)(j|i)gd

n(j)). That is, we
choose

d′(i) ∈ arg

{
max

α∈A∗
n−1(i)

[
∑

j∈S
pα(j|i)gd

n(j)

]}
,

where A∗
n−1(i) := An−1(g∗0 , . . . , g

∗
n−1)(i), if

max
α∈A∗

n−1(i)

[
∑

j∈S
pα(j|i)gd

n(j)

]
>

∑

j∈S
pd(i)(j|i)gd

n(j);

otherwise, set

Ãn(i, d) := arg

{
max

α∈A∗
n−1(i)

[
∑

j∈S
pα(j|i)gd

n(j)

]}
,

and choose

d′(i) ∈ arg

{
max

α∈Ãn(i,d)

[
∑

j∈S
pα(j|i)gd

n+1(j)

]}
.

Again, Lemma 4.6 can be used to compare the nth biases of two (n−1)th-
bias optimal policies and to prove the anti-cycling property in the policy
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iteration procedure. By Lemma 4.6 (a), all dk, k = 0, 1, . . . , produced by the
algorithm are (n−1)th-bias optimal. By Lemma 4.6 (b), we have g

dk+1
n ≥ gdk

n .
That is, as k increases, the nth bias gdk

n either increases or stays the same.
Furthermore, by Lemma 4.6 (c), when gdk

n stays the same, gdk
n+1 increases.

Thus, any two policies in the sequence of dk, k = 0, 1, . . . , either have different
nth biases gn, or have different (n + 1)th biases gn+1. That is, every policy
in the iteration sequence is different. Since the number of policies is finite,
the iteration must stop after a finite number of iterations. Suppose that it
stops at a policy denoted as d̂. Then d̂ must satisfy the first (n + 2) bias
optimality equations because, otherwise, for some i the set An(i, d) in (4.104)
is non-empty and we can find the next improved policy in the policy iteration.
Thus, by the Sufficient Optimality Conditions (4.90)-(4.92), policy d̂ is nth-
bias optimal. In summary, the policy iteration algorithm stops at an nth-bias
optimal policy in a finite number of iterations.

The above discussion also shows, by construction through policy iteration,
that the solution to the sufficient bias optimality equations exists.

� � � �

� � � �

� � � �

Based on η

Based on g1

Based on gn

D

D0

Dn−1

D0

D1

Dn

�

�
�

�

�

�

�
�

�

�

Every iteration is
based on η, g1, · · · , gn

Dn

D

Fig. 4.8. Two Types of Policy Iteration for nth-Bias Optimal Policies

The optimization procedure of the nth bias with the policy iteration al-
gorithms discussed above consists of n phases. Each phase is based on two
optimality equations for gm and gm+1 and reaches an optimal mth bias,
m = 0, 1, . . . , n. We first find a gain-optimal policy, then determine the set
D∗

0, then search the set D∗
0 and find a bias-optimal policy, and then determine

the set D∗
1, then search the set D∗

1 and find a second bias-optimal policy, and
so on. This procedure is illustrated on the left-hand side of Figure 4.8. In ad-
dition to this algorithm, we can also develop another algorithm which works
roughly as follows: at each iteration k, we choose an action that maximizes
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(myopically) all the expected mth biases, f(i, α) +
∑

j∈S pα(j|i)gdk
1 (j) for

m = 1 and
∑

j∈S pα(j|i)gdk
m (j), for m = 2, . . . , n. This is illustrated on the

right side of Figure 4.8. We leave the readers to work out the details. Hope-
fully, this algorithm may take fewer iterations to reach an nth-bias optimal
policy, but each iteration involves more computation. (cf. the second policy
iteration algorithm for a bias-optimal policy in Section 4.1.2.)

4.3.4 nth-Bias Optimal Policy Spaces∗

From the definition of the nth-bias optimal policy space (4.82), we have

Dn ⊆ Dn−1, n ≥ 1.

For finite-state and finite-action Markov decision chains, the shrinking of the
optimal policy spaces cannot go forever. In fact, we can prove that for a finite
state space S = {1, 2, . . . , S}, we have

DS = DS+1 = DS+2 = · · · .

This fact is equivalent to the following lemma.

Lemma 4.7. If policy d is an Sth-bias optimal policy, then it is also an nth-
bias optimal policy for all n ≥ 0.

Proof. It suffices to prove that the nth biases gn, n ≥ 0, for all the policies in
DS are the same. Suppose that h is another Sth-bias optimal policy in DS .
We would like to prove that gh

n = gd
n, for all n ≥ 0. Since d and h are both

Sth-bias optimal, we have gh
k = gd

k = g∗k, for all 0 ≤ k ≤ S. From the definition
in (4.78), (I − P d)g∗k = −g∗k−1 = (I − Ph)g∗k, for 1 < k ≤ S. Thus,

(Ph − P d)g∗k = 0, 1 < k ≤ S. (4.107)

For k = 1, by the Poisson equation we have fh +Phg∗1 = η∗+g∗1 = fd +P dg∗1 .
Thus,

fh − fd + (Ph − P d)g∗1 = 0.

For k = 0, we have g∗0 = η∗ and P dg∗0 = P dη∗ = η∗ = Phg∗0 . Thus,

(Ph − P d)g∗0 = 0. (4.108)

From (4.80), we have g∗k = (−1)k−1
[
I − P d + (P d)∗

]−k (fd − g∗0) for 1 ≤ k ≤
S. Combining this expression with (4.107), we obtain

(Ph − P d)
[
I − P d + (P d)∗

]−k
(fd − g∗0) = 0, 1 < k ≤ S. (4.109)

From (4.108) and (4.109), the vectors g∗0 and
[
I − P d + (P d)∗

]−k (fd−g∗0),
1 < k ≤ S, all lie in the null space of Ph −P d. Because Ph �= P d, the rank of
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(Ph−P d) must be at least 1. Hence, the dimension of the null space of Ph−P d

is at most S − 1. Thus, the S vectors g∗0 and
[
I − P d + (P d)∗

]−k (fd − g∗0),
k = 2, . . . , S, are linearly dependent. That is, there is a nonnegative integer
i < S such that

[
I − P d + (P d)∗

]−(i+1) (fd − g∗0) is a linear combination
of g∗0 and

[
I − P d + (P d)∗

]−2 (fd − g∗0),
[
I − P d + (P d)∗

]−3 (fd − g∗0), . . . ,
[
I − P d + (P d)∗

]−i (fd − g∗0).
We now show by induction that for all n ≥ i+1,

[
I − P d + (P d)∗

]−n (fd−
g∗0) is a linear combination of g∗0 and

[
I − P d + (P d)∗

]−2 (fd−g∗0),
[
I − P d+

(P d)∗
]−3 (fd−g∗0), . . . ,

[
I − P d + (P d)∗

]−i (fd−g∗0). Suppose that this state-
ment holds for a particular n ≥ i + 1, i.e.,

[
I − P d + (P d)∗

]−n
(fd − g∗0) = κ1g

∗
0 +

i∑

j=2

κj

[
I − P d + (P d)∗

]−j
(fd − g∗0),

where κj , j = 1, 2, . . . , i, are real numbers. Pre-multiplying this equation by[
I − P d + (P d)∗

]−1, we have

[
I − P d + (P d)∗

]−(n+1)
(fd − g∗0)

= κ1

[
I − P d + (P d)∗

]−1
g∗0 +

i∑

j=2

κj

[
I − P d + (P d)∗

]−(j+1)
(fd − g∗0)

= κ1

[
I − P d + (P d)∗

]−1
(P d)∗fd +

i∑

j=2

κj

[
I − P d + (P d)∗

]−(j+1)
(fd − g∗0)

= κ1g
∗
0 +

i∑

j=2

κj

[
I − P d + (P d)∗

]−(j+1)
(fd − g∗0).

Since
[
I − P d + (P d)∗

]−(i+1) (fd − g∗0) is a linear combination of g∗0 and[
I − P d + (P d)∗

]−2 (fd − g∗0),
[
I − P d + (P d)∗

]−3 (fd − g∗0), . . . ,
[
I − P d+

(P d)∗
]−i (fd−g∗0), so is

[
I − P d + (P d)∗

]−(n+1) (fd−g∗0). Therefore,
[
I−P d+

(P d)∗
]−(n+1) (fd − g∗0), for any n ≥ i + 1, lies in the null space of (Ph − P d),

i.e., (Ph − P d)gd
n = 0 for all n ≥ S .

Finally, from the nth-bias difference equation in (4.84) and by induction
on n, we can prove

gh
n − gd

n = (Ph)∗(Ph − P d)gd
n+1 +

[
I − Ph + (Ph)∗

]−1
(Ph − P d)gd

n = 0,

for all n ≥ S. That is, the nth biases of the policies in DS are all the same for
all n ≥ 0. ��
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Finally, every policy in DS is a Blackwell policy (see Problem 4.30). The
relationship between nth-biases and the n-discount optimality is discussed in
Problem 4.29.

PROBLEMS

4.1. Consider a discrete-time M/M/1 queue. The system state at time l ≥ 0 is
denoted as Xl = n, l = 0, 1, . . . , with n being the number of customers in the
server. The arrival rate is reflected by the transition probabilities p(Xl+1 =
n + 1|Xl = n) = r, 0 < r < 1, n = 0, 1, . . . , and l = 0, 1, . . . . The service
rate depends on the number of customers in the server and is reflected by
p(Xl+1 = n − 1|Xl = n) = μn, 0 < μn < 1 − r, n = 1, 2, . . . . When the
system is in state n and with service rate μn, the cost is αn + βμn, in which
αn represents the cost for waiting time, and βμn represents the cost for the
service. We wish to minimize the average cost by choosing the right service
rates μn, n = 1, 2, . . . , among all the available choices. Model this problem as
a Markov decision process.

4.2. A retailer orders N pieces of a merchandize every evening based on the
stock left on that day. The every day’s demand on the merchandize can be
described by an integer random variable with distribution pn, n = 0, 1, . . . .
The retailer earns c1 dollars for every piece sold, and s/he suffers a penalty of
c2 dollars for each piece left in every evening. The retailer wishes to make the
right order to maximize his/her earnings in a long term. Model the problem
as an MDP.

��
����

� �

1 3

2

5

Fig. 4.9. A Wireless Communication System

4.3. A mobile phone user travels through different regions shown in Figure
4.9; each region is characterized into one of the M classes according to the
transmission condition in the region. In a region with a “bad” condition, the
transmission of signals requires a high power or the bit error rate is high.
Therefore, in a “bad” region, the mobile phone user may prefer to delay the
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transition, by transmitting fewer bits, until s/he reaches a better region. On
the other hand, to ensure a reasonable quality of service, the transmission can
not be postponed for too long. In a class i region, i = 1, 2, . . . ,M , if the mobile
phone has n bits in its buffer, the user may choose different level of powers,
denoted as d(i, n), i = 1, 2, . . . ,M , and n = 0, 1, . . . . Time is discrete and is
denoted as l = 1, 2, . . . . When the mobile phone is in a class i region and there
are n bits in its buffer, if power d(i, n) is used, then the number of the correctly
transmitted bit in the time slot, k, has a distribution q

d(i,n)
k , k = 0, 1, . . . , n,∑n

k=0 q
d(i,n)
k = 1. When the user is in a class i region in one time slot, s/he

will travel to a class j region in the next time slot with probability pi,j ,
i, j = 1, 2, . . . ,M . In each time slot, the user generates r bits with a probability
of pr,

∑∞
r=0 pr = 1. The cost function is f(i, n) = αn + βid(i, n), where βi

is the cost per unit of power in a class i region and α represents a weighting
factor between the cost of power and the queue length. Model the problem as
a discrete MDP.

4.4. Consider a closed network consisting of M single-server stations and N
customers. Let ni be the number of customers in server i, i = 1, 2, . . . ,M , and
n := (n1, n2, . . . , nM ). The service rate of server i, i = 1, 2, . . . ,M , depends
on the system state n and is denoted as μi,n. That is, if at time t ∈ [0,∞)
the system is in state n, then server i completes its service to its customer
in [t, t + Δt) with probability μi,nΔt. After a customer completes its ser-
vice at server i, the customer will move to server j with probability qi,j ,
i, j = 1, 2, . . . ,M . We may control the service rates μi,n, i = 1, 2, . . . ,M ,

n ∈ S :=
{

(n1, . . . , nM ) :
∑M

k=1 nk = N
}

, to optimize a properly defined
average reward η. We assume that the reward function f is independent of
μi,n.

a. Model the problem as a Markov decision process.
b. Suppose that the service rate of server i, i = 1, 2, . . . ,M , depends only

on the number of customers in server i, ni, and is denoted as μi,ni
, and

we may control the load-dependent service rates μi,ni
, ni = 1, 2, . . . , N ,

i = 1, 2, . . . ,M , to optimize an average reward. Can we model this problem
as a standard MDP? Why?

4.5. Derive the average-reward difference formula for continuous-time ergodic
Markov processes with a finite state space and a finite number of actions, and
derive a policy iteration algorithm from it.

4.6. Derive the bias difference formula for continuous-time ergodic Markov
processes with a finite state space and a finite number of actions, and derive
a policy iteration algorithm from it.

4.7. Policy iteration requires the actions in different states be chosen indepen-
dently. Consider the following optimization problem. The state space consists
of 2S states denoted as (i, j), i = 1, 2, . . . , S, j = 1, 2. The same action has to
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be taken when the system is in state (i, 1) or (i, 2) for the same i, i = 1, 2, . . . .
Thus, if action α is taken at both (i, 1) and (i, 2), then the transition proba-
bilities from both state (i, 1) and (i, 2), pα(•|(i, 1)) and pα(•|(i, 2)), are deter-
mined simultaneously.

a. Explain why the standard policy iteration algorithm does not apply to
this problem.

b. Let π(i) := π(i, 1) + π(i, 2) be the steady-state marginal distribution and
π(j|i) = π(i,j)

π(i) be the steady-state conditional probabilities, i = 1, 2, . . . , S,
j = 1, 2. In this problem, a policy determines an action based on the first
component of the state, i. Consider any two policies h = h(i) and d = d(i).
We assume that these conditional probabilities are the same for all policies.
Thus, πd(j|i) = πh(j|i) for all i = 1, 2, . . . , S and j = 1, 2. Now we have
the average-reward difference formula:

ηh − ηd =
S∑

i=1

πh(i)

⎧
⎨

⎩

2∑

j=1

πd(j|i)
{[

fh(i, j)

+
S∑

i′=1

2∑

j′=1

ph[(i′, j′)|(i, j)]gd(i′, j′)

]

−
[
fd(i, j) +

S∑

i′=1

2∑

j′=1

pd[(i′, j′)|(i, j)]gd(i′, j′)

]}⎫
⎬

⎭ .

The πd(j|i) and gd(i, j) in the big bracket do not depend on Ph. Derive
a policy iteration optimization algorithm for the “aggregated” state i.

c. Can we derive a sample-path-based optimization algorithm for the prob-
lem in b)?

4.8. Are the following statements true?

a. When the average-reward policy iteration algorithm stops at a policy d̂,
the directional performance derivative from d̂ to any other policy in D is
non-positive.

b. If d̂ is a gain-optimal policy, then another policy d is gain optimal, if the
directional performance derivative from d̂ to d is zero.

c. If d̂ is a gain-optimal policy, then the directional performance derivative
from d̂ to any other gain-optimal policy d is zero.

d. The bias-optimal policy has the largest bias in the policy space D.
e. The difference in the biases of any two ergodic policies is a constant vector

(i.e., all its components are equal).

4.9. Let d̂ and d be two ergodic gain-optimal policies in Lemma 4.1. We define
a randomized policy dδ by setting P dδ = P d+δ(P d̂−P d), fdδ = fd+δ(f d̂−fd).

a. Let ηdδ be the average reward of dδ. Prove ηdδ = η∗.
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b. Derive a directional bias-derivative equation from d to d̂, denoted as dgdδ

dδ .
c. When the bias policy iteration algorithm stops at a policy ĥ, what are the

directional derivatives of the bias from this policy to other policies in D0?
d. Calculate the bias derivatives between various policies in Example 4.1.

4.10. In Section 4.1.1, we proved that at an optimal policy the average-reward
derivatives along the directions to all other policies are non-positive.

a. Suppose dηdδ

dδ > 0 at a policy d along a direction defined by dδ: P dδ :=
P d + δΔP , fδ := fd + δΔf , with ΔP = Ph − P d, Δf = fh − fd. Can
we claim ηh > ηd? If not, give a counter example. If yes, what would this
imply in terms of policy iteration?

b. Prove that a policy d ∈ D is average-reward optimal if and only if at
this policy the performance derivatives along the directions to all other
policies are non-positive.

4.11. Suppose that d̂ is the gain-optimal policy with potential gd̂ in Lemma
4.1. Then for any policy d ∈ D0, we have fd + P dgd̂ = f d̂ + P d̂gd̂. From this,
prove that for any other policy d′ ∈ D0, we have fd + P dgd′

= fd′
+ P d′

gd′
,

for all d ∈ D0.

4.12. Prove that the second policy iteration algorithm for bias optimality in
Section 4.1.2 converges to a bias-optimal policy in a finite number of iterations.

4.13. Calculate the bias-potential w in Example 4.1 for policy d2 and then
find the bias-optimal policy by policy iteration.

4.14. Consider a two-state Markov chain. There are two actions in state 1,
corresponding to transition probabilities (0.5, 0.5) and (0.25, 0.75) and rewards
1 and 1.5, respectively; and there are three actions in state 2, corresponding
to transition probabilities (0.5, 0.5), (0.25, 0.75), and (0.75, 0.25) and rewards
−1, −0.5, and −1.5, respectively. Apply policy iteration to obtain the set of
gain-optimal policies and a bias-optimal policy.

4.15. For multi-chains, prove

a. There are more than one solution to (I − P )u = 0.
b. The Poisson equation (I − P )g + η = f and the normalization condition

P ∗g = 0 uniquely determine the bias of the Markov chain.

4.16. Suppose that d and h are the two policies satisfying Conditions (a) and
(b) in the Comparison Lemma (4.41). Prove

a. If in addition to (a) and (b), we have v(i) = [fh(i) + (Phgd)(i)]− [fd(i) +
(P dgd)(i)] > 0 for some recurrent state i of Ph, then ηh > ηd.

b. If in addition to (a) and (b), we have Phηd �= ηd, then ηh > ηd.

4.17. Find both the gain- and bias-optimal policies using policy iteration for
the multi-chain MDP in Example 4.6.
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4.18. Consider a Markov chain studied in Problem 2.20 with transition prob-
ability matrix

P =
[
B b
0 1

]
,

where B is an (S− 1)× (S− 1) irreducible matrix, b > 0 is an (S− 1) dimen-
sional column vector, 0 represents an (S − 1) dimensional row vector whose
all components are zeros. The last state S is an absorbing state. Set f(S) = 0.
Clearly, the long-run average reward for this Markov chain is η = 0. The total
reward obtained before reaching the absorbing state, E {

∑∞
l=0 f(Xl)|X0 = i},

can be viewed as the bias for the problem:

g(i) = E

{ ∞∑

l=0

f(Xl)

∣∣∣∣∣X0 = i

}
.

The Poisson equation for g = (g(1), . . . , g(S))T has been derived in Problem
2.20.

a. Derive the bias difference formula for any two policies h and d.
b. Derive a policy iteration algorithm for the bias-optimal policy.

This problem indicates that optimization of the total reward of Markov chains
with absorbing states can be solved by the policy iteration for bias-optimal
policies.

4.19. For the MDPs with discounted-reward criterion,

a. Prove the discounted-reward difference formulas (4.73) and (4.74).
b. Prove that in (4.77), if d′ �= d, then ηd′

β � ηd
β .

c. Prove the convergence of the policy iteration algorithm.

4.20. In (4.53), the bias-potential w is defined as the potential of the bias g
satisfying P ∗g = 0. We can also define a potential of potential by using the
potentials g, which is only up to an additive vector u satisfying (I −P )u = 0,
as follows:

(I − P )w − P ∗g = −g.

a. Prove that the potential of potential defined in this way is the same as
the bias-potential defined in (4.53).

b. Define the nth potential by using the (n− 1)th potential gn−1, and prove
that this definition is the same as (4.78).

4.21. Derive a general bias difference formula for gh − gd, when ηh �= ηd,
for ergodic chains. Discuss whether we can use this equation to derive policy
iteration algorithms.

4.22. This problem helps to understand the bias optimality. First, if d̂ and its
gain and potential (not necessary bias) ηd̂ and gd̂ satisfy (4.60) and (4.61),
then ηd̂ = η∗ is the optimal gain (and gd̂ may not be optimal), and
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Â0(i) = A∗
0(i) :=

{
α ∈ A(i) :

∑

j∈S
pα(j|i)η∗(j) = η∗(i)

}
,

and

Â1(i) :=

{
α ∈ Â0(i) : η∗(i) + gd̂(i) = f(i, α) +

∑

j∈S
pα(j|i)gd̂(j)

}
.

Now let d ∈ �i∈SÂ1(i). Then by definition we have

P dη∗ = η∗,

fd + P dgd̂ = η∗ + gd̂.

a. Let gd be the potential of d. Prove ηd = η∗ and gd = gd̂ + u with (I −
P d)u = 0.

b. Let gd and gd̂ be the biases of d and d̂, respectively. Prove gd − gd̂ =
−(P d)∗gd̂.

c. From b), the bias can be improved by optimizing (P d)∗(−gd̂) (cf. (4.13)
for the ergodic case). Can we develop a policy iteration algorithm for bias
optimality by using this property? What, if any, are the problems with
this approach?

4.23. Prove (I − P )(I − P + P ∗)−nη = 0, and therefore from (4.80) gn =
(−1)−1(I − P + P ∗)−1f is a solution to (4.78) with P ∗gn = (−1)n−1η.

4.24. Derive (4.81) recursively.

4.25. Suppose that a sequence of vectors gd̂
0 , gd̂

1 , . . . , g
d̂
n, and gd̂

n+1 satisfies the

optimality equations (4.90)-(4.92). Find a policy that has gd̂
0 , gd̂

1 , . . . , gd̂
n, and

gd̂
n+1 as its kth biases k = 0, 1, . . . , n + 1, respectively.

By the sufficient optimality equations (4.90)-(4.92), gd̂
k is the optimal kth

biases, k = 0, 1, . . . , n, respectively. Therefore, in the sufficient optimality
conditions (4.90)-(4.92), we may replace the sentence “A policy d̂ is nth-bias
optimal if ...” by “If a sequence of vectors gd̂

0 , gd̂
1 , . . . , gd̂

n, and gd̂
n+1 satisfies

(4.90)-(4.92), then gd̂
k is the optimal kth bias, for k = 0, 1, . . . , n.”

4.26. Develop a policy iteration algorithm that “myopically” maximizes the
expected mth biases, m = 1, . . . , n, of the actions at each iteration, as illus-
trated on the right-hand side of Figure 4.8. Prove its convergence.

4.27. A slightly weak version of Lemma 4.7 can be easily established by the
well-known Cayley-Hamilton theorem [155]: For any n × n matrix A, define
its characteristic polynomial as r(s) = det(sI − A). Then we have r(A) = 0.
Use the Cayley-Hamilton theorem to prove that if policy d is an (S+1)th-bias
optimal policy, then it is also an nth-bias optimal policy for all n ≥ 0. ( Hint:
set A = [I − P d + (P d)∗]−1 in the Cayley-Hamilton theorem.)
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4.28. Let d, h ∈ D be two policies.

a. Prove that the following expansion holds for any N ≥ 1:

ηh − ηd = fh − fd +
N∑

k=1

(Ph − I)k−1(Ph − P d)gd
k + (Ph − I)N (gh

N − gd
N ).

b. Give the conditions under which (Ph − I)N (gh
N − gd

N ) converges to zero
as N →∞.

c. What do a) and b) indicate?

4.29. The results presented in this chapter are strongly related to the sensitive
discount optimality (n-discount optimality and Blackwell optimality), see
[194, 216, 248, 249]. For any Markov chain with transition probability matrix
P and reward function f , the discounted reward is defined as (cf. (4.72)):

vβ(i) := E
{ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

}
, 0 < β < 1.

Denote vβ = (vβ(1), . . . , vβ(S))T . Set β = (1 + ρ)−1, or ρ = (1 − β)/β.
0 < β < 1 implies ρ > 0. Let ρ0 be the non-zero eigenvalue of I − P with the
smallest absolute value. We have the Laurent series expansion:

vβ = (1 + ρ)
∞∑

n=−1

ρnyn, 0 < ρ < ρ0,

where y−1 = P ∗f and yn = (−1)nHn+1
P f , n = 0, 1, . . . , HP = (I − P +

P ∗)−1(I − P ∗).

a. Explain the meaning of ρ. (Hint: inflation rate.)
b. Prove the Laurent series expansion (cf. Theorem 8.2.3 of [216], but there

exists a simpler and direct proof).
c. Prove yn = gn+1 be the (n + 1)th bias of (P, f), n = −1, 0, 1, . . . . Thus,

we have

vβ = (1 + ρ)
∞∑

n=0

ρn−1gn, 0 < ρ < ρ0.

4.30. A policy db ∈ D is called a (stationary and deterministic) Blackwell
policy if there exists a β∗, 0 ≤ β∗ < 1, such that

vdb

β ≥ vd
β , for all d ∈ D and all β ∈ [β∗, 1).

a. Prove that if d ∈ DS , with S being the number of states, then d is a
Blackwell optimal policy.

b. Prove db ∈ Dn for all n ≥ 0.



It is a mistake to try to look too
far ahead. The chain of destiny
can only be grasped one link at
a time.

Sir Winston Churchill
British politician

(1874 - 1965)

5
Sample-Path-Based Policy Iteration

In Chapter 3, we showed that potentials and performance gradients can be
estimated with a sample path of a Markov chain, and the estimated poten-
tials and gradients can be used in gradient-based performance optimization of
Markov systems. In this chapter, we show that we can use sample-path-based
potential estimates in policy iteration to find optimal policies. We focus on
the average-reward optimality criterion and ergodic Markov chains. The main
idea is as follows. At each iteration k with policy dk, instead of solving the
Poisson equation for potential gdk , we use its sample-path-based estimate ḡdk

as an approximation in the policy improvement step to determine an improved
policy. This leads to sample-path-based policy iteration algorithms.

This approach has several advantages. For example, it does not re-
quire solving a large number of linear equations and/or knowing the exact
form/value of the transition probability matrix (see Section 5.1). These ad-
vantages make the approach practically useful, because for many real engi-
neering systems such as communication networks or manufacturing systems
the state spaces are too large and the transition probability matrices may not
be entirely known due to unknown parameters and/or to the complexity of
the system’s structure. However, because the estimates may contain errors, a
sample-path-based policy iteration algorithm may not converge, or if it does,
it may not converge to an optimal policy. In this chapter, we propose some
sample-path-based policy iteration algorithms and provide some conditions
that ensure the convergence (either in probability, or with probability 1) of
these algorithms to optimal policies.

Similar to the PA-based optimization in Section 6.3.1, there are two ways
to implement sample-path-based policy iteration. We may first run the system
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long enough under one policy at every iteration to get accurate estimates of the
potentials and then use them to update the policy, or we may run the system
for a short period to get noisy estimates of the potentials, especially at the
beginning of the policy iteration, and then gradually improve the estimates
as we approach an optimal policy. These topics are discussed in Sections 5.2
and 5.3, respectively.

This chapter complements Chapter 3. Sample-path-based perturbation
analysis applies to optimization problems with continuous parameters, while
sample-path-based policy iteration applies to optimization problems in dis-
crete policy spaces. This chapter is mainly based on [54], [88], and [97].

5.1 Motivation

We first use a well-designed example to show the advantages of the sample-
path-based policy iteration approach.
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bd(n)

1 − bd(n)

λ4

λ1 λ2 λ3

Machine 1

Machine 2

Fig. 5.1. A Two-Machine Manufacturing System

An Illustrative Example

Example 5.1. A manufacturing system consists of two machines and N
pieces of works, which are circulating between the two machines, as shown
in Figure 5.1. Each work piece has to undertake three consecutive operations
at machine 1; thus, machine 1 is illustrated by three circles in the figure, each
for one operation. The service times at these three operations are exponen-
tially distributed with rates λ1, λ2, and λ3, respectively. Machine 2 has only
one operation with an exponentially distributed service time with rate λ4.
A work piece, after the completion of its service at machine 1, goes to ma-
chine 2 with probability bd(n) and feeds back to machine 1 with probability
1− bd(n). The superscript “d” represents a policy with d ∈ D. For any d ∈ D
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and n = 1, 2, . . . , N , bd(n) ∈ [0, 1]. The system can be modelled as a Markov
process with its state denoted as (n, i), 0 ≤ n ≤ N , where n is the number
of pieces at machine 1 and i = 1, 2, 3 denotes the operation that the piece at
machine 1 is undertaking. When n = 0, we simply denote the state as 0. To
apply the results for discrete-time Markov chains, we study the Markov chain
embedded at the transition epochs. We assume that the cost function f does
not depend on the actions.

The transition probabilities of the embedded Markov chain are

p [(n, 1), (n + 1, 1)] =
λ4

λ1 + λ4
,

p [(n, 1), (n, 2)] =
λ1

λ1 + λ4
,

p [(n, 2), (n + 1, 2)] =
λ4

λ2 + λ4
,

p [(n, 2), (n, 3)] =
λ2

λ2 + λ4
,

p [(n, 3), (n + 1, 3)] =
λ4

λ3 + λ4
,

pd [(n, 3), (n− 1, 1)] =
λ3

λ3 + λ4
bd(n),

pd [(n, 3), (n, 1)] =
λ3

λ3 + λ4

[
1− bd(n)

]
,

for 0 < n < N ; and

p [0, (1, 1)] = 1,
p [(N, 1), (N, 2)] = p [(N, 2), (N, 3)] = 1,

pd [(N, 3), (N, 1)] = 1− bd(N),
pd [(N, 3), (N − 1, 1)] = bd(N).

The other transition probabilities are zeros.
We can see that (4.5) and (4.6) in step 3 of the policy iteration algorithm

in Chapter 4 can be simplified. The transitions from states (n, 1) and (n, 2) do
not depend on actions. The comparison of actions in the policy improvement
step for state (n, 3), 0 < n < N , becomes (recall that the cost function does
not depend on actions):

1
λ3 + λ4

{
λ4g

d(n + 1, 3) + λ3b
d(n)gd(n− 1, 1) + λ3

[
1− bd(n)

]
gd(n, 1)

}

≥ 1
λ3 + λ4

{
λ4g

d(n + 1, 3) + λ3b
d′

(n)gd(n− 1, 1) + λ3

[
1− bd′

(n)
]
gd(n, 1)

}
,

for all d′ ∈ D. This is equivalent to
[
bd(n)− bd′

(n)
]
gd(n− 1, 1)−

[
bd(n)− bd′

(n)
]
gd(n, 1) ≥ 0. (5.1)
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The system parameters, λ1, λ2, λ3, and λ4, do not appear in (5.1). ��

In the above example, the service rates govern the evolution of the sys-
tem, which runs automatically. The control action can affect only some of
the system transitions. The transition probabilities corresponding to the un-
controlled transitions (e.g., the transition from (n, 3) to (n + 1, 3)) are the
same under all policies; they cancel each other in the comparison equation
and hence do not appear in the final form. If we can estimate the (gd)’s on a
sample path, then we can implement policy iteration without knowing these
transition probabilities, or the corresponding service rates.

Many practical systems have the same features as the above example.
Indeed, in many systems, control can be exercised only in a very limited
region (e.g., admission control can be applied only at the access points of
a high-speed communications network); the remaining parts of such systems
simply evolve through their own natures. In Example 5.1, the dashed box
in Figure 5.1 can also be viewed as a machine whose service time has an
Erlangian distribution. In such cases, the transitions between the different
stages are not controllable. This type of service distribution and the more
general forms, such as Coxian distributions and phase-type distributions, are
very common in practical systems.

The Advantages of the Sample-Path-Based Approach

In summary, Example 5.1 and the above discussion illustrate that the sample-
path-based approach has the following advantages.

1. Given a sample path, policy iteration can be implemented without knowing
the whole transition matrix; only those items related to control actions,
bd(n), have to be known (we do not even need to know the related tran-
sition probabilities, e.g., we only need to know bd(n), not λ3

λ3+λ4
bd(n)).

In particular, we do not need to estimate all the system parameters λi,
i = 1, 2, 3, 4. Matrix inversion is not required.

2. The approach saves memory space required for implementing MDP. In
general, only the S potentials, not the S×S transition matrix, have to be
stored. This can be further reduced when there are some states that cannot
be reached by “controllable” states, in which actions can be applied. As
shown in (5.1), in Example 5.1 only gd(n, 1), n = 0, 1, . . . , N , have to be
estimated and stored; gd(n, 2) and gd(n, 3), n = 0, 1, . . . , N , do not even
need to be estimated.

3. In the standard computational approach, all the potentials are obtained
together through a matrix inversion; thus, obtaining the potential of one
state involves the same effort as obtaining the potentials of all the states.
In the sample-path-based approach potentials can be estimated one by one.
This feature makes the policy iteration procedure much more flexible.
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a) The computational efforts and memory space of each iteration may be
further reduced at the cost of the convergence rate. The idea is, if a
state space is too large, at each iteration we may estimate the poten-
tials of only a subset of the state space and update the actions that
control the system moving to the states in this subset. For instance, in
Example 5.1, we may set 0 = n0 < n1 < n2 < · · · < nk−1 < nk = N .
Then, in the ith iteration, i = 1, 2, . . . , k, we may estimate gd(n, 1)
only for ni−1 ≤ n ≤ ni, i = 1, 2, . . . , k. Then, by (5.1), we may update
the actions in bd(n) for n = ni−1 + 1, . . . , ni. Of course, it may need
more iterations to reach the optimal policy; however, at each iteration,
the computation and the memory requirement may be reduced to fit
the capacity of the available computing equipment. This feature may
be important for on-line optimization using specially designed hard-
ware which may have limited capacity (e.g., in sensor networks). In
high speed communications networks, the effect of a slow convergence
rate in terms of iterations may be compensated by the fast speed in
the system evolution.

b) For many practical systems, we may have some a priori knowledge
about which states are more important than others. Then, we can es-
timate only the potentials of the states that are needed for updating
the actions on these important states. This may reduce the computa-
tion and memory at the cost of the best performance achieved.

c) For large systems for which matrix inversion is not feasible (even if the
matrix is completely known), we may simulate the system by using
its particular structure (e.g., the queueing structure) and apply the
above two methods to reach the optimal solution with more iterations
or to obtain a near optimal solution.

d) Distributed optimization may be possible. For example, suppose that
we have a communications network consisting of K nodes, which can
be modelled as a closed queueing network of K single-server stations,
with each server representing one node. Then, the routing decision
can be made at each individual node with only the relevant potentials
being estimated. This approach depends on state aggregation to fur-
ther reduce the number of potentials to be estimated (see Chapters
8 and 9 for more discussion). This is an important research direction
and more work needs to be done.

The convergence property of sample-path-based policy iteration depends
on the errors of the potential estimates, which depend on the length of the
sample paths used in the estimation. The remaining sections in this chapter
are devoted to the study of the convergence issue.
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5.2 Convergence Properties

We can use any algorithm in Section 3.1.2 to estimate potentials. The study
in this section is based on (3.19), which expresses the potentials as the average
of independent samples, each observed in one regenerative period defined in
(3.18). Now let us write it in a slightly different form. First, we choose a
reference state i∗ ∈ S. For convenience, we assume that X0 = i∗. Define

l0(i∗) = 0
lk(i∗) = min {l : Xl = i∗, l > lk−1(i∗)} , k ≥ 1.

The instants l0(i∗), l1(i∗), . . . , lk(i∗), . . . , are regenerative points of the Markov
chain X = {Xl, l = 0, 1, . . .}, and the sample path between lk(i∗) and lk+1(i∗)
is the kth regenerative period. Next, we define lk(j)=min{l : l > lk(i∗),Xl =j},
k = 0, 1, . . . , and χk(j) = 1 if lk(j) < lk+1(i∗), and χk(j) = 0 otherwise. χk(j)
indicates whether the system visits state j in the kth regenerative period. The
definition is notationally different from but essentially the same as (3.18): The
Markov chain may not visit a given state j in a regenerative period.

Consider N regenerative periods. If χk(j) = 1, we define

Vk(i∗, j) :=
lk+1(i

∗)−1∑

l=lk(j)

[f(Xl)− η̄N ] ,

where η̄N is the estimated performance based on N regenerative periods:

η̄N :=

∑N−1
k=0

[∑lk+1(i
∗)−1

l=lk(i∗) f(Xl)
]

∑N−1
k=0 [lk+1(i∗)− lk(i∗)]

=
1

lN (i∗)

lN (i∗)−1∑

l=0

f(Xl). (5.2)

Vk(i∗, j) is undefined if χk(j) = 0. Let

N(j) :=
N−1∑

k=0

χk(j). (5.3)

Because of the ergodicity, we have limN→∞ N(j) =∞.
Now, we set g(i∗) = 0. Then, the estimated potential of state j, j �= i∗,

using N regenerative periods, is

ḡN (j) =
1

N(j)

{
N−1∑

k=0

χk(j)Vk(i∗, j)

}
≈ γ(i∗, j) = g(j), (5.4)

if N(j) > 0. ḡN (j) is undefined if N(j) = 0.
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5.2.1 Convergence of Potential Estimates

By the law of large numbers [26, 28], we have

lim
N→∞

η̄N = η, w.p.1. (5.5)

Lemma 5.1. As the number of regenerative periods N →∞, the sample-path-
based potential estimate ḡN (j) in (5.4) converges to its true value g(j) with
probability 1.

Proof. First, let

Ṽk(i∗, j) :=
lk+1(i

∗)−1∑

l=lk(j)

[f(Xl)− η] (5.6)

= Vk(i∗, j)−
lk+1(i

∗)−1∑

l=lk(j)

(η − η̄N )

= Vk(i∗, j)− {lk+1(i∗)− lk(j)} (η − η̄N ).

Then, we have

ḡN (j) =
1

N(j)

{
N−1∑

k=0

χk(j)Ṽk(i∗, j)

}

+ (η − η̄N )

{
1

N(j)

{ N−1∑

k=0

χk(j) [lk+1(i∗)− lk(j)]
}}

.

By the law of large numbers [26, 28], we have

lim
N→∞

1
N(j)

{
N−1∑

k=0

χk(j)Ṽk(i∗, j)

}
= g(j), w.p.1, (5.7)

and

lim
N→∞

1
N(j)

{
N−1∑

k=0

χk(j) [lk+1(i∗)− lk(j)]

}
= E [lk+1(i∗)− lk(j)] , w.p.1,

(5.8)
which is the average first-passage time from state j to state i∗. Because
E [lk+1(i∗)− lk(j)] <∞ and from (5.5), (5.7), and (5.8), we have

lim
N→∞

ḡN (j) = g(j), j ∈ S, w.p.1. (5.9)

This completes the proof. ��

We note that convergence with probability 1 implies convergence in prob-
ability (see Appendix A.1). Thus, as N →∞, ḡN (j) in (5.4) also converges to
g(j) in probability, i.e., for any δ > 0 and 1 > ε > 0, there is an integer Nδ,ε

such that when N > Nδ,ε we have

P(|ḡN (j)− g(j)| > δ) < ε. (5.10)
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5.2.2 Sample Paths with a Fixed Number of Regenerative Periods

In this subsection, we study the case in which the number of regenerative
periods N used in estimating the potentials in each iteration is fixed. We will
see that because of the estimation error in ḡd

N , instead of using the maximum
value of fd + P dgdk in the policy-improvement step (4.5) in policy iteration
Algorithm 4.1, it is more appropriate to use a small region for the expected
potentials (cf. φ(g) and ψ(g) defined in (5.11) and (5.13)).

First, to simplify the notation, for any S-dimensional vector g, we define

φ(g) := arg
{

max
d∈D

(fd + P dg)
}
⊆ D. (5.11)

Precisely, φ(g) := �
S
i=1φi(g), with

φi(g) =

⎧
⎨

⎩α ∈ A(i) : f(i, α) +
S∑

j=1

pα(j|i)g(j)

= max
α′∈A(i)

⎡

⎣f(i, α′) +
S∑

j=1

pα′
(j|i)g(j)

⎤

⎦

⎫
⎬

⎭ .

With this notation, the optimality equation for ergodic chains (4.7) be-
comes:

d̂ ∈ φ(gd̂).

The set of optimal policies is

D0 :=
{
d ∈ D : d ∈ φ(gd)

}
.

In addition, for any S-dimensional vector g and a small positive number
ν > 0, we set1

Uν(g) :=
[
max
d∈D

(fd + P dg)− νe, max
d∈D

(fd + P dg)
]
. (5.12)

Similar to (5.11), we define

ψ(g) :=
{
d : fd + P dg ∈ Uν(g)

}
(5.13)

as the set of improved policies. Precisely, we have ψ(g) = �
S
i=1ψi(g), with

1 For any two S-dimensional vectors a and b with a < b, we use [a, b] to denote an
S-dimensional array of intervals [a, b] := ([a(1), b(1)], [a(2), b(2)], . . . , [a(S), b(S)]).
An S-dimensional vector c ∈ [a, b] means that c(i) ∈ [a(i), b(i)] for all i =
1, 2, . . . , S.
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ψi(g) =

⎧
⎨

⎩α ∈ A(i) : f(i, α) +
S∑

j=1

pα(j|i)g(j) ∈

[
max

α′∈A(i)

{
f(i, α′)+

S∑

j=1

pα′
(j|i)g(j)

}
−ν, max

α′∈A(i)

{
f(i, α′)+

S∑

j=1

pα′
(j|i)g(j)

}]⎫⎬

⎭,

where the large square bracket denotes an interval. We certainly have

φ(g) ⊆ ψ(g)

for any ν > 0.

The Algorithm

The sample-path-based policy iteration algorithm with a fixed N works as fol-
lows.

Algorithm 5.1. A Sample-Path-Based Policy Iteration Algorithm
With a Fixed N :

1. Choose an integer N > 0, a real number ν > 0, and an initial policy
d0; Set k = 0.

2. Observe the system under policy dk to obtain a sample path with N
regenerative periods. Estimate the potentials using (5.4). Denote the
estimates as ḡdk

N . (Set ḡdk

N (j) = ḡ
dk−1
N (j) if Nk(j) = 0, where Nk(j)

is the N(j) in (5.3) in the kth iteration, with ḡd−1 = 0).
3. Choose any policy

dk+1 ∈ ψ(ḡdk

N ), (5.14)

component-wisely. If at a state i, action dk(i) is in the set (5.14),
then set dk+1(i) = dk(i).

4. If dk+1 = dk, then stop; otherwise, set k := k + 1 and go to step 2.

There may be multiple policies in the set on the right-hand side of (5.14).
If dk(i) ∈ ψi(ḡdk

N ), then we choose dk+1(i) = dk(i); otherwise, we may choose
randomly in ψi(ḡdk

N ). We will see that if we choose dk+1 ∈ φ(ḡdk

N ) in (5.14),
then it will have some problems in setting the stopping criterion in step 4.

The Effect of the Estimation Errors

Because of the errors in estimating potentials, two issues need to be addressed
for sample-path-based policy iteration algorithms. The first one is that, at
each iteration, the “true” performance may not necessarily improve and the
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stopping criterion may not be met; thus, we have to study if the algorithm
ever stops. The second issue is that, if it does stop, whether it stops at a
“true” optimal policy.

The answers to these two questions depend on the following property.

For a set of finite real numbers C := {c1, c2, . . . , cM}, define the distance
of ci and cj as ρcicj

≡ ρij := |ci − cj |, i, j = 1, 2, . . . ,M and set δ :=
min {ρij , ci �= cj , i, j = 1, . . . ,M}. If we know that two numbers, x ∈ C
and y ∈ C, satisfy ρxy = |x − y| < δ, then they must be the same, i.e.,
x = y.

In an MDP with a finite number of policies, the average reward takes only
a finite number of different values. Define

σ =
1
2

min
d,d′∈D

{∣∣ηd − ηd′∣∣ : ηd �= ηd′
}

(5.15)

to be the minimum “distance” between any two policies. We have σ > 0 (if
the average rewards of all policies are not the same). Therefore, if the absolute
value of the difference in the average rewards of two policies in D is less than
σ, then either the average rewards of these two policies are the same, or they
are simply the same policy. Thus, if the estimation error is small enough, this
error can be adjusted and it will not affect the outcome of the policy iteration.
This fact is formally stated in Lemma 5.2 below.

At each iteration, let gd be the true potential vector under the current
policy d (we omitted the subscript k in dk), ḡd be its estimate, and ηd be
the corresponding (true) average reward. Denote the error in the potential
estimate as a vector r := ḡd− gd. Let h ∈ ψ(ḡd) be an (improved) policy that
reaches the neighborhood of the maximum in (5.12) by using the estimate ḡd

as g, and let πh and ηh be the (true) steady-state probability and the average
reward of h, respectively. The policy h depends on the estimate ḡd.

Lemma 5.2. We choose ν = σ/2 in the sample-path-based policy iteration Al-
gorithm 5.1. Suppose that the Markov chain under every policy is ergodic with
a finite state space, and the number of policies is finite. Then, the following
holds.

(a) If the algorithm does not stop at an iteration and |r| < (σ/2)e,2 then
ηh ≥ ηd; i.e., at this iteration, the performance does not decrease.

(b) If the algorithm stops at an iteration and |r| < (σ/2)e, then it stops at a
(true) optimal policy.

2 For an S-dimensional vector r, we define |r| = (|r(1)|, |r(2)|, . . . , |r(S)|)T .
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Proof. (a) From the average-reward difference formula ηh−ηd =πh
[
(Ph−P d)gd

+(fh − fd)
]
, we have

ηh − ηd = πh
[
(Ph − P d)ḡd + (fh − fd) + (P d − Ph)r

]
. (5.16)

Because the iteration procedure does not stop at this iteration, according to
(5.14), we have h ∈ ψ(ḡd) and, therefore,

(Ph − P d)ḡd + (fh − fd) + νe ≥ 0.

Thus, πh
[
(Ph − P d)ḡd + (fh − fd)

]
≥ −ν, then, from (5.16),

ηh − ηd ≥ πh(P d − Ph)r − ν.

However,
∣∣πh(P d − Ph)r − ν

∣∣ ≤
∣∣πhP dr

∣∣ +
∣∣πhPhr

∣∣ +
∣∣ν

∣∣

<
σ

2
+

σ

2
+

σ

2
< min

d,d′∈D

{∣∣ηd − ηd′∣∣ : ηd �= ηd′
}

.

Therefore, ηh−ηd > −mind,d′∈D
{∣∣ηd − ηd′∣∣ : ηd �= ηd′

}
. This is only possible

if ηh ≥ ηd.
(b) Suppose that the algorithm stops at an iteration, and the policy at this

iteration is denoted as d̂. Let ḡd̂ be the estimate of its potential. Then, from
(5.14), for any policy d ∈ D, we have

(P d − P d̂)ḡd̂ + (fd − f d̂) ≤ νe.

Then

ηd − ηd̂ = πd
[
(P d − P d̂)ḡd̂ + (fd − f d̂) + (P d̂ − P d)r

]

≤ πd(P d̂ − P d)r + ν.

Thus, ηd− ηd̂ ≤ (3σ)/2, and hence ηd ≤ ηd̂, for all policies d ∈ D. That is, ηd̂

is the true optimal average reward. ��

The next lemma shows that if the estimation error |r| = |ḡ − g| is small
enough, the policy iteration using the potential estimate ḡ can be viewed as
if the true potential g is used. First, we define

κ =
1
2

min
all d,h,h′∈D

{∣∣(fh + Phgd)(i)− (fh′
+ Ph′

gd)(i)
∣∣ : all i ∈ S,

with
[
(fh + Phgd)(i)− (fh′

+ Ph′
gd)(i)

]
�= 0

}
.

Because there is only a finite number of policies and the state space is finite,
we have κ > 0.
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Lemma 5.3. We choose ν = κ/2 in the sample-path-based policy iteration
Algorithm 5.1. Suppose that the Markov chain under every policy is ergodic
with a finite state space, and the number of policies is finite. If |r| = |ḡd−gd| <
(κ/2)e, where gd and ḡd are the potential of policy d ∈ D and its estimate,
then

ψ(ḡd) ⊆ φ(gd).

Proof. Let h ∈ φ(gd) and h′ ∈ ψ(ḡd). By the definition of φ(g) in (5.11), we
have fh + Phgd ≥ fh′

+ Ph′
gd. By the definition of ψ(g) in (5.13), we have

fh′
+ Ph′

ḡd ≥ fh + Phḡd − νe. From this equation, we have

fh′
+ Ph′

gd + (Ph′ − Ph)(ḡd − gd) ≥ fh + Phgd − νe.

Therefore,

(fh + Phgd)− (fh′
+ Ph′

gd) ≤ (Ph′ − Ph)(ḡd − gd) + νe.

This, together with fh + Phgd ≥ fh′
+ Ph′

gd, leads to
∣∣(fh + Phgd)− (fh′

+ Ph′
gd)

∣∣ ≤
∣∣(Ph′ − Ph)(ḡd − gd)

∣∣ + νe. (5.17)

From (5.17), if |r| = |ḡd − gd| < (κ/2)e and ν = κ/2, then |(fh + Phgd)−
(fh′

+ Ph′
gd)| < (2κ)e. By the definition of κ, we must have fh + Phgd =

fh′
+ Ph′

gd. In other words, h′ ∈ φ(gd). Thus, ψ(ḡd) ⊆ φ(gd). ��

Note that ψ(ḡd) may be smaller than φ(gd). The implication of this lemma
is as follows. Suppose that, at every iteration, the estimation error is |r| <
(κ/2)e. If the sample-path-based algorithm does not stop at an iteration, then
the improved policy picked up by using the estimated potentials with (5.14)
is one of the policies that may be chosen by the standard policy iteration with
the exact potentials. If the sample-path-based iteration stops at a policy d̂,
then we have d̂ ∈ ψ(ḡd̂) and by Lemma 5.3, we have d̂ ∈ φ(gd̂); i.e, it will stop
if the true potentials are used.

However, because of the random error in the estimates, we do not know
if d̂ ∈ ψ(ḡd̂), although d̂ ∈ φ(gd̂); i.e., we do not know if the algorithm will
stop even if it reaches an optimal policy. We may determine its probability.
Suppose that dk = d̂ is an optimal policy. Then, according to (5.13), the
probability that the algorithm stops at this iteration is

p0 := P
{
f d̂ + P d̂ḡd̂ ≥ max

d∈D

[
fd + P dḡd̂

]
− νe

}
,

where

max
d∈D

[
fd + P dḡd̂

]

= max
d∈D

{
fd + P dgd̂ + P d

[
ḡd̂ − gd̂

]}
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≤ max
d∈D

{
fd + P dgd̂

}
+ max

d∈D

{
P d

[
ḡd̂ − gd̂

]}

=
[
f d̂ + P d̂gd̂

]
+ max

d∈D

{
P d

[
ḡd̂ − gd̂

]}
.

Thus,

p0 ≥ P
{
P d̂

[
ḡd̂ − gd̂

]
≥ max

d∈D
P d

[
ḡd̂ − gd̂

]
− νe

}
. (5.18)

We wish to find out under what condition this probability is positive. Let r̂ =
ḡd̂− gd̂. Suppose that |r̂| < (ν/2)e. Then, we have maxd∈D

{
P d

[
ḡd̂ − gd̂

]}
<

(ν/2)e and maxd∈D
{
P d

[
ḡd̂ − gd̂

]
− νe

}
< −(ν/2)e. On the other hand, we

have
∣∣∣P d̂

[
ḡd̂ − gd̂

] ∣∣∣ < (ν/2)e. Thus, we have

P d̂
[
ḡd̂ − gd̂

]
> −(ν/2)e > max

d∈D

{
P d

[
ḡd̂ − gd̂

]
− νe

}
.

Therefore, from (5.18) we have

p0 ≥ P [|r̂| < (ν/2)e] . (5.19)

Convergence Property

As shown in (5.9), as the length of a sample path in each iteration N → ∞,
the estimate in each iteration converges with probability 1 to the exact value
of g. Thus, by Lemmas 5.2 and 5.3, we can show that the sample-path-based
policy iteration stops with probability 1 if N is large enough, and it stops at
the optimal policy in probability as N goes to infinity.

Theorem 5.1. Convergence Property with Fixed Lengths

We choose ν = min {σ/2, κ/2} in the sample-path-based policy iteration
Algorithm 5.1. Suppose that the Markov chain under every policy is
ergodic with a finite state space, and the number of policies is finite.
Then, the following holds.

(a) When the length of the sample path N is large enough, the sample-
path-based policy iteration (Algorithm 5.1) stops with probability
1.

(b) Let η∗ be the true optimal average reward and η∗N be the average
reward of the “optimal” policy given by the sample-path-based pol-
icy iteration (Algorithm 5.1) with N regenerative periods in each
iteration. Then,

lim
N→∞

P(η∗N = η∗) = 1.
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Proof. (a) can be proved by Lemma 5.3 and (5.19). Because there are only a
finite number of states and a finite number of policies, from (5.10), for any
1 > ε > 0, there is an N ν

2 ,ε such that if N > N ν
2 ,ε then

P
{∣∣ḡd

N (j)− gd(j)
∣∣ > ν

2

}
< ε

holds for all j ∈ S and all d ∈ D. Thus, for this ν > 0, if N is large enough
(meaning N > N ν

2 ,ε), we have |ḡd
N − gd| < (ν/2)e ≤ (κ/2)e with probability

p > 1−ε > 0 for all d ∈ D. Therefore, from Lemma 5.3, we have ψ(ḡd
N ) ⊆ φ(gd)

with probability p > 0 for all d ∈ D.
Therefore, if N is large enough, then at each iteration with probability

p > 0, the sample-path-based policy iteration Algorithm 5.1 produces a correct
and improved policy dk+1 in its step 3, which may be chosen by the standard
policy iteration algorithm using the true potentials, and the average reward
improves if the algorithm does not stop at the iteration.

Suppose that there are K different values of the average rewards η corre-
sponding to all the policies in D. If we have K consecutive iterations, and,
in each of them, the sample-path-based algorithm produces a correct policy
(i.e.,with a better performance), then the sample-path-based policy iteration
process must reach the set of optimal policies D0. Now, we group every K +1
iterations together in the policy iteration sequence: The first group consists
of the first K + 1 iterations, the second group consists of the second K + 1
iterations, and so on. As discussed above, the probability that the sample-
path-based algorithm produces a correct policy in every iteration in the first
K iterations in the same group is larger than pK > 0. Thus, the probability
that the policy at the (K + 1)th iteration is an optimal policy, denoted as
d̂, is larger than pK > 0. Once the algorithm reaches an optimal policy, we
may apply (5.19). That is, under the condition that the algorithm reaches
an optimal policy, the probability that the algorithm stops at the (K + 1)th
iteration is p0 > 0. Therefore, the policy iteration algorithm does not stop at
any group is less than q = 1 − pKp0 < 1. Thus, the probability that policy
iteration does not stop at the first L groups is less than qL, which goes to zero
as L→∞. That is, the probability that policy iteration never stops is zero if
N is large enough.

For (b), note that η∗N is a random variable depending on the sample path.
We need to prove that for any ε > 0, there is an integer Nε > 0 such that if
N > Nε then

P(η∗N �= η∗) < ε. (5.20)

Recall that, in Lemma 5.2 and (5.15), we have

σ =
1
2

min
d,d′∈D

{∣∣ηd − ηd′∣∣ : ηd �= ηd′
}

.

Because there is only a finite number of policies, from (5.10), there is an Nε

such that if N > Nε then the probability that the potential-estimation error
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|r| > (σ/2)e for all policies is less than ε. Then, (5.20) follows directly from
Lemma 5.2(b). ��

Some comments are in order.

1. Because φ(g) ⊆ ψ(g), we may choose dk+1 ∈ φ(gdk) (i.e., set ν = 0 in
(5.12)) in step 3 of Algorithm 5.1 to replace (5.14). If we do so, the average
reward does not decrease at each iteration if the estimation error is small
enough. However, we will meet a problem for choosing a stopping criterion:
The condition dk ∈ φ(ḡdk) may not hold even if dk = d̂ is an optimal policy.
This can be explained as follows. Suppose that there are two optimal
policies d̂, d′ ∈ D0. Then, we have f d̂ + P d̂gd̂ = fd′

+ P d′
gd̂. Because

of the error in ḡd̂, it is entirely possible that fd′
+ P d′

ḡd̂ � f d̂ + P d̂ḡd̂,
and thus d̂ �∈ φ(ḡd̂). That means that, if we choose dk+1 ∈ φ(ḡdk), the
algorithm may not stop even if it reaches an optimal policy.

2. Because the probability of the estimation error r = ḡd−gd may be widely
distributed, it is clear that for any fixed N , the probability that the error
of a potential estimate is larger than any δ > 0 is positive. Thus, no matter
how large N is, the probability that the fixed-length sample-path-based
policy iteration does not stop at the true optimal policy is positive. This
means that any algorithm with a fixed N cannot converge to the true
optimal with probability 1.

3. If we use a sequence of increasing numbers of regenerative periods, N1,
N2, . . . , Nk+1 > Nk, in the iteration, we may face the problem that, at
some iterations, the algorithm stops at a false optimal policy because the
improved policy is the same as the original one (i.e., dk ∈ ψ(ḡdk

Nk
)). This

probability may be large at the beginning of the iteration procedure when
Nk is small. Therefore, if we use a sequence of increasing integers Nk, we
should let the iteration continue even if we obtain the same policy in some
iterations, i.e., even if dk+1 = dk. In the next subsection, we will prove
that under some conditions for the sequence of Nk, the policy iteration, if
we let it continue even if dk+1 = dk, converges to the true optimal policy
either in probability or with probability 1.

5.2.3 Sample Paths with Increasing Lengths

The Algorithm

As discussed at the end of the last subsection, in order to converge with
probability 1 to an optimal policy, the policy iteration algorithm with an
increasing number of regenerative periods in each iteration should never stop.
Because we do not need to set a stopping criterion, we may use dk+1 ∈ φ(ḡdk

Nk
)

in the policy improvement step.
The algorithm is stated as follows.
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Algorithm 5.2 A Sample-Path-Based Policy Iteration Algorithm
with Increasing Lengths:

1. Choose a sequence of integers, N0, N1, . . . , with Nk+1 ≥ Nk, k =
0, 1, 2, . . ., limk→∞ Nk =∞. Set k = 0. Choose an initial policy d0.

2. Observe the system with dk for Nk regenerative periods. Estimate
the potentials using (5.4). Denote the estimates as ḡdk

Nk
.

3. Choose

dk+1 ∈ φ(ḡdk

Nk
) = arg

{
max
d∈D

[
fd + P dḡdk

Nk

]}
,

component-wisely. (If there is more than one policy in φ(ḡdk

Nk
), we

may randomly choose one of them.)
4. Set k := k + 1; go to step 2.

No stopping criterion is used in the algorithm because it never stops. Thus,
in step 3, there is no requirement to set dk+1(i) = dk(i) whenever possible
(as Algorithm 5.1 does). One implication of this change is that after the
algorithm reaches an optimal policy, it may oscillate among different optimal
policies even if the accurate values of the potentials are used.

The General Conditions for Convergence

The algorithm produces a sequence of policies denoted as d0, d1, . . . , dk, . . . ,
and we now study its convergence property. We first study the probability of
a wrong decision because of the errors in the potential estimates. We define

q(N, d) = P
[
φ(ḡd

N ) ⊆ φ(gd)
]
.

This is the probability that the estimated potential will definitely lead to the
right choice of the improved policy. Indeed, if at the kth iteration φ(ḡdk

Nk
) ⊆

φ(gdk), then the improved policy based on the estimated potential is one
policy that could be chosen if the true potential were used. We denote it as
dk+1 ∈ φ(ḡdk

Nk
) ⊆ φ(gdk). Thus, we have

q(Nk, dk) ≤ P
[
dk+1 ∈ φ(gdk)|dk

]
. (5.21)

We need the following lemma.

Lemma 5.4. Convergence of Products of Infinite Many Numbers:
If

∑∞
k=0(1 − yk) < ∞ and 0 ≤ yk ≤ 1 for all k, then

limn→∞
∏

k≥n yk = 1.
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Proof. Set xk = 1 − yk, k = 0, 1, . . . . Then 0 ≤ xk ≤ 1 and
∑∞

k=0 xk < ∞.
Because xk ≥ 0, then

∑n
k=0 xk is nondecreasing, and it must converge to a

finite number as n→∞. Thus,

lim
n→∞

∑

k≥n

xk = 0. (5.22)

Next, for any 0 ≤ x < 1, we have the MacLaurin series

ln(1− x) = −x(1 +
x

2
+

x2

3
+ · · ·).

If 0 ≤ x < 1
2 , then 1 ≤ 1+ x

2 + x2

3 + · · · ≤ 1+x+x2 + · · · < 1+ 1
2 + 1

22 + · · · = 2,
and

− 2x < ln(1− x) ≤ −x. (5.23)

From (5.22), we can assume that xn < 1
2 if n is large enough. Therefore, it

follows from (5.23) that if n is large enough, we have

−2
∑

k≥n

xk ≤
∑

k≥n

{ln(1− xk)} ≤ −
∑

k≥n

xk.

From (5.22), we get limn→∞
∑

k≥n {ln(1− xk)} = 0. The lemma then follows

from
∏

k≥n yk =
∏

k≥n(1− xk) = exp
{∑

k≥n [ln(1− xk)]
}

. ��

We are now ready to give sufficient conditions for the sample-path-based
policy iteration algorithm to reach the set of optimal policies and remain
there indefinitely with probability 1 (the proof here follows [88] with some
modifications).

Theorem 5.2. Convergence Property with Increasing Lengths

Consider the sample-path-based policy iteration Algorithm 5.2 start-
ing from an initial policy d0. If the sample paths in different iterations
are independently generated and

∞∑

k=0

(1− qk) <∞, (5.24)

where qk := mind∈D q(Nk, d), then there exists an almost surely finite
random integer L such that

P(dk ∈ D0, for all k ≥ L) = 1.

Proof. Denote the underlying probability space as Ω. Any point ω ∈ Ω rep-
resents all the sample paths (with policies d0, d1, . . . , and lengths N0, N1, . . .)
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generated in one run of the policy iteration with the initial policy d0. Every
variable or quantity observed in a policy iteration run depends on ω; e.g., we
may denote the policy used in its kth iteration as dk = dk(ω). Define

L(ω) = min {l : dk ∈ D0 for all k ≥ l} ,

provided that the set of integers {l : dk ∈ D0, for all k ≥ l}, which depends
on ω, is non-null (�= ∅). To simplify the notation, we denote

{(l : dk ∈ D0 for all k ≥ l) �= ∅}
:= {ω ∈ Ω : (l : dk ∈ D0 for all k ≥ l) �= ∅} ⊆ Ω,

and similar expressions will be used. It suffices to prove

P {(l : dk ∈ D0 for all k ≥ l) �= ∅} = 1,

or
P {∃ l : dk ∈ D0 for all k ≥ l} = 1.

For any integer n ≥ 0, define An := {dk ∈ D0, for all k ≥ n} ⊆ Ω. Then,
we have An ⊆ An+1, n ≥ 0, and {∃ l : dk ∈ D0 for all k ≥ l} = ∪n≥0An.
Hence,

P {∃ l : dk ∈ D0 for all k ≥ l} = P(∪n≥0An) = lim
n→∞

P(An).

Let K <∞ be the number of all policies inD. As proved in Section 4.1.1, in
policy iteration with accurate potentials, policies do not repeat in the iteration
procedure before it reaches an optimal policy, and once it reaches D0, it stays
there forever. Thus, if dk+1 ∈ φ(gdk) for consecutive K iterations, then the
policy iteration must reach D0. Therefore, if dk+1 ∈ φ(gdk) for all k ≥ n−K,
n ≥ K, then we have dk ∈ D0 for all k ≥ n. Thus,

{
dk+1 ∈ φ(gdk) for all k ≥ n−K

}
⊆ An.

Therefore,

P(An) ≥ P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K

}
.

Next, given any sequence of policies d0, d1, . . . , the potential estimates at
different iterations are independently generated. Note, however, that dk+1

depends on dk, k = 0, 1, . . . . For any dn−K , we have

P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K|dn−K

}

=
{ ∑

dn−K+1∈φ(gdn−K )

{
P

[
dk+1 ∈ φ(gdk) for all k ≥ n−K + 1|dn−K+1

]

P
[
dn−K+1|dn−K+1 ∈ φ(gdn−K )

]}}
P
[
dn−K+1 ∈ φ(gdn−K )|dn−K

]
, (5.25)
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where P
[
dn−K+1|dn−K+1 ∈ φ(gdn−K )

]
is the conditional probability of

dn−K+1 given that dn−K+1 ∈ φ(gdn−K ). In addition, we have

P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K + 1|dn−K+1

}

=

{
∑

dn−K+2∈φ(gdn−K+1 )

{
P

[
dk+1 ∈ φ(gdk) for all k ≥ n−K + 2|dn−K+2

]

× P
[
dn−K+2|dn−K+2 ∈ φ(gdn−K+1)

] }
}

× P
{
dn−K+2 ∈ φ(gdn−K+1)|dn−K+1

}

Continuing this process, we obtain

P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K|dn−K

}

=

{ ∞∏

k=n−K

P
{
dk+1 ∈ φ(gdk)|dk

}
}

×

⎧
⎨

⎩
∑

dk+1∈φ(gdk ), k≥n−K

∞∏

k=n−K

P
{
dk+1|dk+1 ∈ φ(gdk)

}
⎫
⎬

⎭ . (5.26)

From (5.21), we have P
{
dk+1 ∈ φ(gdk)|dk

}
≥ qk. Also, we have

∑

dk+1∈φ(gdk ), k=n−K,...

{ ∞∏

k=n−K

P
{
dk+1|dk+1 ∈ φ(gdk)

}
}

= 1.

Finally, from (5.25) and (5.26), we get, for any dn−K , that

P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K|dn−K

}
≥

∏

k≥n−K

qk.

Thus, with any initial policy d0, we have

P
{
dk+1 ∈ φ(gdk) for all k ≥ n−K

}
≥

∏

k≥n−K

qk.

By (5.24) and Lemma 5.4, we have limn→∞
∏

k≥n−K qk = 1. Thus, limn→∞
P(An) = 1 and the theorem holds. ��

Theorem 5.2 means that the sample-path-based policy iteration algorithm
converges with probability 1 to the set of optimal policies if condition (5.24)
holds. We will see that, to meet this condition, the length of the sample path
Nk must increase fast enough. However, we have a weaker result under a
weaker condition.
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Theorem 5.3. If the sample paths in different iterations are independently
generated, and limk→∞ qk = 1, where qk := mind∈D q(Nk, d), then

lim
n→∞

P(dn ∈ D0) = 1.

Proof. From the proof of Theorem 5.2, if dk+1 ∈ φ(dk) for k = n−K,n−K +
1, . . . , n− 1, then dn ∈ D0. Thus, we have

P(dn ∈ D0) ≥
n−1∏

k=n−K

qk.

The theorem follows directly from limk→∞ qk = 1. ��

More Specific Conditions

The conditions in Theorems 5.2 and 5.3 are not very easy to verify directly,
so we need some further work. First, we observe that, as discussed in the
last subsection, because the policy space is finite, small errors in potential
estimates can be corrected. This leads to the following lemma. To simplify
the notation, for any S-dimensional vector v, we define ||v|| = maxi∈S |v(i)|.
Lemma 5.5. There exists a δ > 0 such that if

∞∑

k=0

max
d∈D

P(||ḡd
Nk
− gd|| > δ) <∞,

then condition (5.24) holds.

Proof. By Lemma 5.3 and φ(ḡd
N ) ⊆ ψ(ḡd

N ), for any policy d, there is a δd > 0,
such that if ||ḡd

N − gd|| ≤ δd, then φ(ḡd
N ) ⊆ φ(gd). Set δ := mind∈D δd > 0.

q(N, d) = P
[
φ(ḡd

N ) ⊆ φ(gd)
]

≥ P(||ḡd
N − gd|| ≤ δd) ≥ P(||ḡd

N − gd|| ≤ δ).

Thus, 1− q(N, d) ≤ 1− P(||ḡd
N − gd|| ≤ δ) = P(||ḡd

N − gd|| > δ), and

1−min
d∈D

q(N, d) = max
d∈D

{1− q(N, d)}

≤ max
d∈D

P(||ḡd
N − gd|| > δ).

From this, we have

1− qk ≤ max
d∈D

P(||ḡd
Nk
− gd|| > δ).

Condition (5.24) now follows directly. ��

Note that we not only proved the lemma, but also found the δ required in
the lemma. The next lemma follows immediately.
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Lemma 5.6. Suppose that ḡNk
is an unbiased estimate of g. If

E
[
ḡd

Nk
(j)− gd(j)

]2 ≤ cd

Nk
, for all d ∈ D and j ∈ S,

cd > 0, and
∞∑

k=1

1
Nk

<∞,

then condition (5.24) holds.

Proof. By Chebychev’s inequality, for any δ > 0, we have

P(||ḡd
Nk
− gd|| > δ) = P

[
∪j∈S

{
|ḡd

Nk
(j)− gd(j)| > δ

}]

≤
∑

j∈S
P(|ḡd

Nk
(j)− gd(j)| > δ) ≤

∑

j∈S

E
[
ḡd

Nk
(j)− gd(j)

]2

δ2

≤ cdS

Nkδ2
.

Since D is finite, we may set c = maxd∈D cd < ∞. Therefore, for any δ > 0
we have

max
d∈D

P(||ḡd
Nk
− gd|| > δ) <

cS

Nkδ2
.

Now, let us choose δ as the one that satisfies Lemma 5.5. Then, condition
(5.24) holds. ��

Note that the conditions in this lemma can be changed to E
[
ḡd

Nk
(j)

−gd(j)
]2 ≤ cdκ(Nk) for all j ∈ S and d ∈ D, cd > 0, where κ(N) is a

non-negative function of N , and
∑∞

k=1 κ(Nk) <∞.

Convergence of the Algorithm with Estimate (5.4)

We now study the policy iteration algorithms that are based on a particular
estimate (5.4). We first note that for any finite N , ḡN in (5.4) is biased because
E [η̄N ] �= η. To get some insight, we first simplify the problem by using the
unbiased potential estimate

g̃N (j) =
1
N

{
N∑

k=1

Ṽk(i∗, j)

}
, (5.27)

with Ṽk(i∗, j) defined in (5.6). To simplify the discussion, we assume that
χk(j) = 1 for every regenerative period. We want to apply Lemma 5.6. The
first condition can be easily verified as follows. Because all Ṽk, k = 0, 1, . . . , N ,
are independent and E(Ṽk) = gd, we have, for any policy d,
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E
[
g̃d

N (j)− gd(j)
]2

= E

[
1
N

N∑

k=1

Ṽ d
k (i∗, j)− gd(j)

]2

=
1

N2
E

{
N∑

k=1

[
Ṽ d

k (i∗, j)− gd(j)
]}2

=
1
N

{
E
[
Ṽ d

k (i∗, j)
]2

−
[
gd(j)

]2
}

.(5.28)

Next, because
∣∣Ṽ d

k (i∗, j)
∣∣ ≤ max

i∈S
|f(i, d(i))− ηd|

[
ldk(i∗)− ldk−1(i

∗)
]

and
E

[
ldk(i∗)− ldk−1(i

∗)
]2

<∞
for finite ergodic chains, we have

E
[
Ṽ d

k (i∗, j)
]2

<∞.

Thus, the first condition in Lemma 5.6 holds. Therefore, from Theorem 5.2
and Lemma 5.6, the sample-path-based policy iteration Algorithm 5.2 with
potential estimate (5.27) converges with probability 1 to the optimal policy if∑∞

k=1
1

Nk
<∞.

Next, we consider the biased estimate (5.4). Lemma 5.6 cannot be applied,
and we need to use Lemma 5.5. First, we study the bias of the potential esti-
mate. Set ΔN (j) :=

∣∣E
[
ḡd

N (j)
]
− gd(j)

∣∣ and ΔN := maxj∈S ΔN (j). Because
the regenerative periods are independent, we have (from (5.27)):

E
[
ḡd

N (j)
]

=
1
N

N∑

k=1

E

⎧
⎨

⎩

ldk+1(i
∗)−1∑

l=ld
k
(j)

[
f(Xl, d(Xl))− η̄d

N

]
⎫
⎬

⎭

=
1
N

N∑

k=1

⎧
⎨

⎩E

[ ldk+1(i
∗)−1∑

l=ld
k
(j)

[
f(Xl, d(Xl))− ηd

]
]

+E

[ ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
]⎫⎬

⎭

= gd(j) +
1
N

N∑

k=1

E

{ ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
}
.

Thus,

ΔN (j) =
1
N

N∑

k=1

E

{ ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
}

= E

{ ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
}
,
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for any fixed k. Because there are a finite number of states and actions, we
have |f(i, d(i))| < R <∞ for some R > 0, all i ∈ S, and all d ∈ D. Therefore,
from (5.2), we have η̄d

N < R. Thus,
∣∣∣∣∣∣

ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
∣∣∣∣∣∣
< (ηd + R)

[
ldk+1(i

∗)− ldk(i∗)
]
,

with E
[
ldk+1(i

∗)− ldk(i∗)
]
< ∞. Thus, by applying the Lebesgue dominated

convergence theorem [28], we have

lim
N→∞

ΔN (j) = E

{
lim

N→∞

ldk+1(i
∗)−1∑

l=ld
k
(j)

[
ηd − η̄d

N

]
}

= 0,

and limN→∞ ΔN = 0. Therefore, for the δ > 0 specified in Lemma 5.5, there
is an integer N0 > 0 such that 0 < ΔN < δ/2 for all N > N0.

Now, assume that N > N0. We have
∣∣ḡd

N (j)− gd(j)
∣∣

=
∣∣ḡd

N (j)− E
[
ḡd

N (j)
]
+ E

[
ḡd

N (j)
]
− gd(j)

∣∣ ≤
∣∣ḡd

N (j)− E
[
ḡd

N (j)
] ∣∣ + ΔN .

Therefore, if
∣∣ḡd

N (j)−gd(j)
∣∣ > δ, δ > 0, then

∣∣ḡd
N (j)−E

[
ḡd

N (j)
] ∣∣ > δ−ΔN >

δ/2. Thus,

P
{∣∣ḡd

N (j)− gd(j)
∣∣ > δ

}
≤ P

{∣∣ḡd
N (j)− E

[
ḡd

N (j)
] ∣∣ > δ/2

}
.

Then, by Chebychev’s inequality, we get

P
{∣∣ḡd

N (j)−E
[
ḡd

N (j)
] ∣∣ > δ/2

}
≤

E
{
ḡd

N (j)− E
[
ḡd

N (j)
]}2

(δ/2)2
.

Similar to (5.28), we have

E
{
ḡd

N (j)− E
[
ḡd

N (j)
]}2

=
1
N

{
E

[
V d

k (i∗, j)
]2 −

[
E(ḡd

N (j))
]2}

,

where V d
k (i∗, j) =

∑ldk(i∗)−1

l=ld
k
(j)

[
f(Xl, d(Xl))− η̄d

N

]
. It is easy to verify that

E
[
V d

k (i∗, j)
]2

<∞. From the above three equations, we can obtain

P
{∣∣ḡd

N (j)− gd(j)
∣∣ > δ

}
≤ 4cd(j)

Nδ2
,

for some cd(j) > 0, and

P
{
||ḡd

N − gd|| > δ
}
≤ 4cd

Nδ2
,



276 5 Sample-Path-Based Policy Iteration

for some cd > 0. Therefore,

∞∑

k=0

max
d∈D

P
{
||ḡd

Nk
− gd|| > δ

}

=
N0∑

k=0

max
d∈D

P
{
||ḡd

Nk
− gd|| > δ

}
+

∞∑

k=N0+1

max
d∈D

P
{
||ḡd

Nk
− gd|| > δ

}

≤
N0∑

k=0

max
d∈D

P
{
||ḡd

Nk
− gd|| > δ

}
+

4maxd∈D cd

δ2

∞∑

k=N0+1

1
Nk

,

in which the first term is finite. Thus, Lemma 5.5 holds if
∑∞

k=1
1

Nk
<∞.

In the above analysis, we have assumed that every regenerative period
visits state j. This may not be true for all j ∈ S, especially for those states
that are not visited often at steady state. To make sure that we can apply
Lemmas 5.5 or 5.6, we may need to extend the length of the kth iteration Nk

to a larger number N ′
k such that, in the iteration, the number of regenerative

periods that visit state j is larger than the Nk required by the algorithms,
i.e., Nk(j) =

∑N ′
k

l=1 χk(j) ≥ Nk, for all j ∈ S. N ′
k may be too large if some

states are rarely visited. However, such states are usually not so “important”,
and, furthermore, the results in Lemmas 5.5 or 5.6 for true optimal policies
may be a bit conservative. Further research in this direction is needed.

The results show that for the sample-path-based policy iteration to con-
verge to the optimal policy with probability 1, the lengths of the sample paths
in the iterations have to increase fast enough. In addition, in the algorithms
with increasing lengths, it is difficult to determine the stopping criteria. At
any iteration, it is always possible to have an estimate with a large error that
leads to a wrong policy. We cannot be absolutely sure if the obtained policy
is optimal even if the iteration stays at the same policy for a few (any finite
number of) iterations. On the other hand, if the length is long enough, we may
guarantee that the probability of the iteration stopping at a wrong policy is
less that any given small positive number, by using the stopping criterion
dk+1 = dk.

The algorithm updates the policy (or the actions for all states) at the end of
each iteration. Therefore, the required computation may be overwhelming at
the end of every iteration. This may require a powerful machine for real-time
applications, and the computation power may be wasted in the middle of every
iteration. To overcome this disadvantage, we may determine the action for a
state only when this state is visited during the iteration. More specifically, we
may implement step 2 in Algorithms 5.1 and 5.2 at the end of each iteration
and implement step 3 in these two algorithms for state i when this state is
visited in the next iteration period. In this way, the computation is distributed
to all the state transition instants. See [97] for more discussion.

Figure 5.2 illustrates the difference between the fixed-length and increasing-
length algorithms. In the fixed-length algorithm, for any fixed length Nk, the
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Fig. 5.2. Comparison of the Fixed- and Increasing-Length Policy Iteration Algo-
rithms

algorithm stops at a near-optimal performance η̂Nk
, which converges to the

optimal performance η̂ in probability as the length of the regenerative period
Nk goes to infinity. In the increasing-length algorithm, the policy iteration
goes in the diagonal direction in the figure and converges to the set of optimal
policies with probability 1. However, it is difficulty to design stopping criteria
for the increasing-length policy iteration algorithm.

Most results in this subsection appeared in [88].

5.3 “Fast” Algorithms∗

In the algorithms presented in the above two sections, the potentials are es-
timated and policies are updated every iteration consisting of N regenerative
periods, with N being a relatively large integer. In these algorithms, the po-
tentials are estimated separately in each iteration. The estimates are relatively
accurate with large N ’s. In this section, we explore the possibility of updating
the potential estimates as well as the policies in every regenerative period, or
after a few regenerative periods, in policy-iteration based performance opti-
mization. The length of a regenerative period is not long enough for applying
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the algorithms in Sections 5.2.2 and 5.2.3, and therefore the information in the
previous regenerative periods need to be used together with that in the cur-
rent regenerative period to obtain an estimate, and stochastic approximation
techniques may be employed.

5.3.1 The Algorithm That Stops in a Finite Number of Periods∗

In the “fast” algorithm proposed in this subsection, the potential estimation
is also based on (5.4). However, because the policies are updated whenever
the system visits a reference state i∗ in the algorithm, the different periods
between the consecutive visits to i∗ may be under different policies; therefore
they are not identically distributed and hence are no longer “regenerative”.
We simply call them “periods”. The kth period is denoted as Yk, k = 1, 2, . . . .

In the algorithm, to obtain an accurate estimate of the potentials, we
start with running the system under an initial policy for N periods. Then, we
update the policy in every period. The algorithm stops when the same policy
is used for N consecutive periods.

Algorithm 5.3 Updating Policies in Every Period:

1. Choose an integer N ; set c := 0 and k := 0; choose an initial policy
d0.

2. Observe the system under policy d0 for N periods, and get an esti-
mate ḡd0 by applying (5.4) to these N periods.

3. Determine the next policy dk+1 by applying (5.14) with ḡdk as the
estimated potentials.

4. If dk+1 = dk, set c := c + 1; otherwise, set c := 0. If c = N , then
exit; otherwise, go to the next step.

5. Change the policy to dk+1, set k := k + 1, observe the system for
one period with policy dk, and update ḡdk by applying (5.4) to the
latest N consecutive periods. Go to step 3.

In the Markov chain generated by the above algorithm, the initial policy
d0 is used in the first N periods, Y1, . . . , YN . ḡd0 is estimated using these
N periods and then d1 is determined by ḡd0 . Policy d1 is then used in the
(N +1)th period, YN+1. In general, dk and its corresponding transition matrix
P dk , which is used in the (N + k)th period YN+k, are determined by ḡdk−1 ,
which is estimated using the kth period, Yk, to the (N + k − 1)th period,
YN+k−1, k = 1, 2, . . . . This is illustrated in Figure 5.3.

Strictly speaking, in this algorithm, ḡdk , k ≥ 1, may not be the potential
vector corresponding to policy dk, which is only used in the last period. With
this in mind, we will keep the same notation with superscript dk to denote
the estimated potential, since no confusion will be caused.
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Fig. 5.3. The “Fast” Algorithm 5.3

The rationale behind the algorithm is as follows. If dk+1 is “close” to dk,
then the previous data under dk can be used in obtaining ḡdk+1 . If dk+1 is
not “close” to dk, then the data collected in one period under dk+1 would
not make a big impact on ḡdk+1 , which is estimated on N periods, i.e., we
may have ḡdk+1 ≈ ḡdk . Therefore, most likely we would have dk+2 = dk+1.
Thus, the potential estimates would be more accurate for ḡdk+2 in the next
period, since two periods under the same policy (dk+1 = dk+2) have been used.
The policy gets updated when enough data under this policy dk+1(= dk+2)
is collected. This also roughly explains that the algorithm might be “fast”
because it wastes no periods to collect data that are more than needed to
update the policies.

The Policy Reached When the Algorithm Stops

Lemma 5.7. Suppose that Algorithm 5.3 stops at d̂N ; let η∗N be the corre-
sponding average reward. For any ε > 0, there is an integer Nε > 0 such that
if N > Nε, then P(η∗N �= η∗) < ε, where η∗ is the true optimal average reward.

Proof. When the algorithm stops at the last period, denoted as YK+N , the
policies used in YK to YK+N are the same, i.e., dK = dK+1 = · · · = dK+N :=
d. The potential estimated from the N periods YK to YK+N−1, ḡd

N , are based
on the same policy d. By Algorithm 5.3, ḡd

N leads to the same improved policy
d ∈ ψ(ḡd

N ), which is used in YK+N . The theorem then follows directly from
Theorem 5.1(b). ��

The lemma claims that if the algorithm stops, then it stops at the true
optimal policy with a large probability, if N is large enough. However, it does
not indicate whether the algorithm will stop.
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Does the Algorithm Stops?
Define the kth period as Yk :=

{
Xlk(i∗)+1, . . . , Xlk+1(i∗)

}
, k > 0, and put

N consecutive periods together as an augmented state Zk := (Yk, Yk+1, . . . ,
YN+k−1). Let Z be the space of all possible Zk’s. Then, we can write

dk = ϕ(Zk), (5.29)

where ϕ is a mapping from Z to the policy space. The algorithm stops when
the same policy is used for N consecutive basic periods.

From (5.29), the augmented chain Z = {Z1, Z2, . . .} is a Markov chain
defined on state space Z. However, it may not be irreducible. In fact, if the
algorithm converges to a policy (e.g., an optimal policy), then as time goes
to infinity, Z tends to stay in the states generated by this policy (e.g., the
optimal policy) and the other states may not be reached. Therefore, some
conditions on Z may be required for the algorithm to stop. Let us study the
issue formally. First, we have a lemma.

Lemma 5.8. If ZK+N = ZK , then Algorithm 5.3 stops at the end of ZK+N .

Proof. ZK+N = ZK means that YK+l = YK+N+l, l = 0, . . . , N − 1 (see Figure
5.4). Let the policies used in the (K +N + l)th period be dK+l, l = 0, . . . , N−
1. Note that dK+1 depends on ZK+1 = (YK+1, YK+2, . . . , YK+N−1, YK+N ),
which is the same as ZK = (YK , YK+1, . . . , YK+N−1) (because YK = YK+N ),
regardless of the order. Therefore, dK = ϕ(ZK) = dK+1. In the same way, we
can prove dK+N = dK+N−1 = · · · = dK+N−2 = · · · = dK . That is, the N + 1
consecutive policies are the same. Thus, c = N in the algorithm and hence it
stops. ��

ZK

ZK+1

ZK+N


�


�


�

· · · · · · dK dK+1 · · · dK+N−1 dK+N

YK YK+1 YK+N−1 YK+N YK+N+1 YK+2N−1 YK+2N

i∗ i∗ i∗ i∗ i∗ i∗ i∗ i∗ i∗ i∗
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Fig. 5.4. The Periods in Lemma 5.8

Under many conditions, we may find ZK+N = ZK on a sample path. These
conditions require that the transition probability matrices used in different
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periods have some similarity. For instance, if the transition probability matrix
used in the Kth period is completely different from that in the (K + N)th
period, then a YK that is the same as YK+N may not exist.

To study the structure of a transition probability matrix P , we define a
graph G consisting of S nodes. In the graph, two nodes i and j, i, j ∈ S, are
connected by an arrow from i to j if and only if p(j|i) > 0. A loop in G is
a sequence of arrows starting from one node and ending at the same node.
Let Gd be the graph corresponding to the transition probability matrix P d,
d ∈ D.

The Common Loop Condition:
All the graphs Gd, d ∈ D, have a common loop.

Any state lying on the common loop can be picked up as the refer-
ence state i∗ in generating regenerative periods. Denote the common loop
as i∗, i1, . . . , im, i∗. The common loop condition means that there is a period
consisting of the sequence of states, i∗, i1, . . . , im, i∗, that can be generated
with a positive probability by any policy in D. We call this a common period.

Many policies satisfy this condition. For example, if for each i ∈ S, we have
a state j �= i, such that pα(j|i) > 0 for all α ∈ A(i), then the set of policies in
D satisfies the common loop condition. Let us find one of the common loops
under this condition. We start from any state i. Suppose that j1 is the state
such that pα(j1|i) > 0 for all actions α ∈ A(i), and j2 is the state such that
pα(j2|j1) > 0 for all actions α ∈ A(j1), and so on. In this way, we may obtain
a sequence of states j1, j2, . . . . Since there are only a finite number of states,
there must be two states denoted as jk1 and jk2 , with k1 ≤ k2, such that
jk1 = jk2 . We then have a common loop jk1 → jk1+1 → · · · → jk2 = jk1 .

Here is an example in which the two graphs do not have a common loop:
Gd1 : 1 → 2 → 3 → 4 → 3 and 4 → 1; Gd2 : 1 → 2 → 3 → 1 and 1 → 4 → 1.
In this example, the transition in state 3 is completely different for Gd1 and
Gd2 : the system goes to 4 in Gd1 and to 1 in Gd2 . Therefore, the same path
cannot be generated with P d1 and P d2 after the system reaches state 3.

Lemma 5.9. Under the common loop condition, for any finite integer N > 0,
Algorithm 5.3 stops with probability 1.

Proof. Let us choose any state i∗ in the common loop as the reference state.
Because the number of policies is finite, the probability that any period is a
common period is at least p > 0. Now, we divide the sample path into many
intervals, each consisting of 2N periods. Consider a very special interval in
which all the 2N periods are the same as the common period. The probability
that an interval is such a special interval is larger than p2N > 0. Therefore,
the probability that in the first k intervals there is no such special interval is
less than (1− p2N )k, where 1− p2N < 1. As k →∞, this probability goes to
zero. That is, the probability that on a sample path the special interval never
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appears is zero. Because the special interval is a special case of ZK+N = ZK ,
the lemma follows directly from Lemma 5.8. ��

Remark

It should be noted that although we only proved that under the common
loop condition the algorithm stops with probability 1, it does not mean that
the algorithm only stops when the special situation in the proof of Lemma
5.9 holds. In fact, in most cases, the algorithm stops before Z reaches such a
special situation. To prove “stop with probability 1”, we only need to find any
special case that may stop the algorithm and prove such a case occurs with
probability 1. It is true that, under this special case, the general property,
e.g., Lemma 5.7, may not hold; however, it does hold in general because when
the algorithm stops, the special case usually does not occur. See Problem 5.14
for more understanding.

5.3.2 With Stochastic Approximation∗

In Algorithm 5.3, the potentials are estimated by using a fixed N number of
periods (albeit possibly under different policies). This is similar to what is
discussed in Section 5.2.2. In this subsection, we propose an algorithm (Algo-
rithm 5.4) based on the stochastic approximation technique. In the algorithm,
the potentials are estimated recursively at each period. This subsection par-
allels Section 6.3.1.

Algorithm 5.4 A Sample-Path-Based Algorithm with Stochastic Ap-
proximation:

1. Choose an initial policy d0, and set k = 0 and ḡd−1 = 0. Choose an
ε ∈ (0, 1/2) and a C > 0.

2. Observe the system under policy dk for one period. For all j ∈ S,
calculate

V dk

k (i∗, j) =

⎧
⎨

⎩

∑l
dk
k+1(i

∗)−1

l=l
dk
k

(j)

[
f(Xl, dk(Xl))− η̆dk

k

]
, if χk(j) = 1,

ḡdk−1(j), if χk(j) = 0,

where χk(j) = 1 if the period contains j, and χk(j) = 0 otherwise,
and

η̆dk

k =

∑l
dk
k+1(i

∗)−1

l=l
dk
k

(i∗)
f(Xl, dk(Xl))

ldk

k+1(i∗)− ldk

k (i∗)
.

Update the potential estimates as follows:
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ḡdk(j) = ḡdk−1(j) +
1

k + 1

[
V dk

k (i∗, j)− ḡdk−1(j)
]
. (5.30)

3. For every i ∈ S, set

β(i) ∈ arg

⎧
⎨

⎩ max
α∈A(i)

⎡

⎣
S∑

j=1

pα(j|i)ḡdk(j) + f(i, α)

⎤

⎦

⎫
⎬

⎭ .

If there exists an i′ such that

S∑

j=1

pβ(i′)(j|i′)ḡdk(j) + f(i′, β(i′))

≥
S∑

j=1

pdk(i′)(j|i′)ḡdk(j) + f(i′, dk(i′)) +
C

(k + 1)1/2−ε
, (5.31)

then set dk+1(i) = β(i) for all i; otherwise, let dk+1(i) = dk(i) for all
i.

4. Set k := k + 1 and go to step 2.

In step 2, V dk

k (i∗, j) is the new information obtained in the kth period for
potential gdk(j). This information is used in (5.30) to update the estimate, in
a way similar to stochastic approximation. If j does not appear in the period,
no new information about gdk(j) can be obtained in this period, and ḡdk−1(j)
is used again.

Because the policies are updated often, the potential estimates may not be
so accurate, especially at the beginning of the iteration procedure. This may
cause the algorithm to be unstable. To avoid unnecessary oscillation between
policies due to estimation errors, we add a threshold C

(k+1)1/2−ε in (5.31) in step
3. The policy is not updated unless the difference in the comparison inequality
exceeds a threshold. The value of the threshold gradually goes to zero as the
policy approaches to the optimal one. The rate of the threshold approaching
zero is controlled by ε. With this carefully designed updating scheme with a
threshold, the algorithm converges to the optimal policy with probability 1 (a
slightly different algorithm is proposed in [97], and its convergence is proved
there).

It should be mentioned that there are many ways to propose such “fast”
algorithms. The two proposed in Sections 5.3.1 and 5.3.2 just serve as ex-
amples. For such algorithms, the convergence speed is not known even if the
convergence is proved. That is, we are not sure if they are really “faster”
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than the other sample-path-based algorithms, and in what sense they may be
faster.

PROBLEMS

5.1. Repeat Example 5.1 by using the continuous-time Markov model.

5.2. A machine produces M different products, denoted as 1, 2, . . . ,M . To
process product i, the machine has to perform Ni different operations, de-
noted as (i, 1), (i, 2), . . . , (i,Ni). We use a discrete time model. At each time
l, l = 0, 1, . . ., the machine can only process one product and perform one
operation. If at time instant l the machine is producing product i and is at
operation (i, j), j �= Ni, then at time instant l + 1 the machine will take op-
eration (i, j′) with probability pi(j′|j), i = 1, 2, . . . ,M , j = 1, . . . , Ni − 1, and
j′ = 1, . . . , Ni. If the machine is at operation (i,Ni), then it will pick up a
new product i′ and start to process it at operation (i′, 1) at the next time
instant with probability pα(i′|i), i, i′ = 1, 2, . . . ,M , where α ∈ A(i) represents
an action. The operation (i, 1) is called an entrance operation and (i,Ni) is
called an exit operation. The system can be modelled as a Markov chain with
state space S := {(i, j) : i = 1, 2, . . . ,M, j = 1, . . . , Ni}. Let f be the properly
defined reward function. Derive the policy iteration condition (similar to (5.1)
in Example 5.1) for this problem and show that with the sample-path-based
approach we do not need to estimate the potentials for all the states.

5.3. In Problem 4.1, prove that if we use the sample-path-based approach,
then we do not need to know the value of r.

5.4. As discussed in Section 5.1, to save memory and computation at each
iteration, we may partition the state space S = {1, 2, . . . , S} into N subsets
and at each iteration we may only update the actions for the states in one of
the subsets. In the extreme case, at each iteration, we may update the action
for only one state. That is, at the first iteration, we update d(1); at the second
iteration, we update d(2), . . ., and at the Sth iteration, we update d(S). Then,
at the (S + 1)th iteration, we update d(1) again, and so on in a round robin
manner. In such an iteration procedure, we cannot stop if there is no improve-
ment in the performance at some iteration. We let the iteration algorithm stop
after the performance does not improve in S consecutive iterations.

a. Formally state this policy iteration algorithm.
b. Prove that the algorithm stops after a finite number of iterations.
c. Prove that the algorithm stops at a gain-optimal policy.
d. Extend this algorithm to the general case where S is partitioned into N

subsets.
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5.5. To illustrate the idea behind Lemma 5.2, we consider the following simple
problem. There are N different balls with identical appearance but different
weights, denoted as m1,m2, . . . ,mN , respectively, mi �= mj , i �= j. These
weights are known to us. You have a scale in your hand that is inaccurate with
a maximal absolute error of r > 0. Under what condition will you accurately
identify these balls using this scale?

5.6. Suppose that when the sample-path-based policy iteration algorithm 5.2
stops, the estimation error of the potentials satisfies |r| = |ḡ − g| < δ/2,
where δ > 0 is any positive number. Let η̄ be the optimal average reward thus
obtained. Prove

|η̄ − η∗| < δ,

where η∗ is the true optimal average reward.

5.7. If we use
∑N−L+1

n=0

{
Ii(Xn)

[∑L−1
l=0 f(Xn+l)− η

]}

∑N−L+1
n=0 Ii(Xn)

to estimate the potentials, then the estimates are biased.

a. Convince yourself that the results in Section 5.2 still hold, and
b. Revise the proofs in Section 5.2 for the sample-path-based policy iteration

with the above potential estimates.

5.8. With the sample-path-based policy iteration Algorithm 5.1, suppose that
the Markov chain is ergodic with a finite state space under all policies, and
the number of policies is finite. Let |r| = |ḡd − gd| < (κ/2)e, where gd and ḡd

are the potential of policy d and its estimate. Following the same argument
as that in Lemma 5.3, prove that

φ(ḡd) ⊆ φ(gd).

5.9. In Problem 5.8, we proved that φ(ḡd) ⊆ φ(gd).

a. On the surface, it looks like the same method as that in Lemma 5.3 can
be used to prove φ(gd) ⊆ φ(ḡd). Give it a try.

b. If you cannot prove the result in a), explain why; if you feel that you did
prove it, determine what is wrong in your proof.

c. Suppose that h, h′ ∈ φ(gd), and thus fh + Phgd = fh′
+ Ph′

gd. Because
of the error in ḡd, we may have fh + Phḡd �= fh′

+ Ph′
ḡd. Therefore, one

of them cannot be in φ(ḡd). Give an example to show that no matter how
small the error r = gd − ḡd is, this fact is true.

5.10. Are the following statements true? Please explain the reasons for your
answers:



286 5 Sample-Path-Based Policy Iteration

a. Suppose that we use dk+1 ∈ φ(ḡdk

N ) to replace (5.14) in step 3 of Algorithm
5.1 (i.e., set ν = 0 in (5.12)). Then, the algorithm may not stop even if
φ(ḡdk

N ) ⊆ φ(gdk) for K ′ > K consecutive iterations k = n, n + 1, . . . , n +
K − 1, where K is the number of policies in D.

b. Algorithm 5.2 may not always stay in D0 even after φ(ḡdk

Nk
) = φ(gdk) for

K consecutive iterations, where K is any large integer.
c. Statement b) above is true even if we add the following sentence to step 3

of Algorithm 5.2: “If at a state i, action dk(i) attains the maximum, then
set dk+1(i) = dk(i).”

5.11. Can you propose any stopping criteria for the sample-path-based al-
gorithms to stop at an optimal policy in a finite number of iterations with
probability 1?

5.12. In Lemma 5.4,
∑∞

k=0(1 − yk) < ∞ implies limk→∞ yk = 1, which,
however, is not enough for limn→∞

∏
k≥n yk = 1. For the latter to hold, yk

has to approach 1 fast enough.

a. For yk = 1 − 1
k , k = 1, 2, . . ., we have limk→∞ yk = 1. What is

limn→∞
∏

k≥n yk?
b. Verify the lemma for yk = 1− 1

k2 , k = 1, 2, . . .. What is limn→∞
∏

k≥n yk?
c. For a sequence yk, 0 ≤ yk ≤ 1, k = 1, 2, . . ., if

∑∞
k=0(1 − yk) < ∞ we

have
∑∞

k=0(1− yc
k) <∞ for any c < 1 and we can apply this lemma. How

about c > 1?

5.13.∗ Write a simulation program for the “fast” Algorithm 5.3. Run it for a
simple example with, say, S = 3, and each A(i), i ∈ S, containing three to five
actions. Record the sequence of dk, k = 0, 1, 2, . . ., and observe its behavior,
e.g., how it changes from one policy to another one. Run it a few times with
different N ’s.

5.14.∗ This problem is designed to help you to understand the remark on the
proofs in Section 5.3.1. Consider an ergodic Markov chain X = {X0,X1, . . . ,
Xl, . . .} with state space S and reward function f(i), i ∈ S. Let i∗ ∈ S be a
special state. We repeat the following game: Every time we run the Markov
chain, we let it stop when Xl = Xl+2 = i∗; and when it stops, we receive a
total reward of f(Xl+1).

a. We may prove that the Markov chain stops with probability 1 under the
special condition p(i∗|i∗) �= 0.

b. Suppose that the Markov chain stops with probability 1. Then, the ex-
pected total reward we receive is r̄ =

∑
k∈S p(k|i∗)f(k).

Obviously, p(i∗|i∗) �= 0 is not a necessary condition, and this special condition
does not change the expected total reward r̄ in part b).

5.15.∗ If we implement Algorithm 5.3 for a few reference states i∗, j∗, k∗, . . .
in parallel on the same sample path, then we can update the policy whenever
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the system reaches one of these states. In the extreme case, if we implement
the algorithm using every state as the reference state separately on the same
sample path, we may update the policy at every state transition on the sample
path.

We need to study the convergence of such algorithms. Consider, for exam-
ple, the case where we have two reference states i∗ and j∗. Whenever we meet
states i∗ or j∗, we will update the policy. Therefore, if in a period starting
from one i∗ to the next i∗, the sample path visits state j∗, then the policy
used in this period before visiting j∗ is different from that used after the visit.
Does this cause a major problem in the convergence of the algorithm? How
about the algorithm in which we use all states as reference states?



Get your facts first, and then
you can distort them as much
as you please.

Mark Twain, American writer
(1835 - 1910)

6
Reinforcement Learning

Reinforcement learning (RL) is one of the most active research areas in ma-
chine learning and artificial intelligence. The goal of RL, as for many other re-
lated areas, is to determine an optimal policy to obtain the best performance.
However, the word “learning” clearly indicates the focus of this research area
on the computational and exploratory aspects. As defined in [238], “Rein-
forcement learning is defined not by characterizing learning methods, but by
characterizing a learning problem. Any method that is well suited to solving
that problem, we consider to be a reinforcement learning method.” Thus, in a
broad sense, any topics discussed in this book, including perturbation analysis
and Markov decision processes, belong to RL. We, however, will emphasize
the computational and algorithmic aspects of RL in this book. With this view,
the relationship between RL and other optimization approaches is described
in Figure 1.19 in Chapter 1. In this sense, with RL, we mainly develop effi-
cient algorithms for estimating (on line or off line) the performance potentials,
or their variant Q-factors, of a given policy, based on which a better policy
can be identified; we develop algorithms for estimating the potentials and Q-
factors of an optimal policy, based on which an optimal policy can be found;
we develop algorithms for estimating performance gradients, based on which
gradient-based stochastic optimization procedures can be developed; or we
develop efficient algorithms for finding a local optimal point at which the per-
formance gradient is zero. These topics will be discussed in various sections
in this chapter.

There is a large number of books and papers in the literature on RL (e.g.,
[15, 188, 236, 238, 239, 244, 254, 256]). It is not the purpose of this book to
introduce all the aspects of this area. Rather, we will introduce the main ideas
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and principles with a focus on the computational aspect and the algorithmic
nature, by following the relationship between RL and other optimization ap-
proaches, as described in Figure 1.19. Many computational issues have been
discussed in the previous chapters when the various optimization methods
were discussed. The contents in these chapters, in particular those in Chap-
ters 3 and 5, fit within the scope of RL and should certainly be considered
as a part of RL. The algorithms developed in these chapters and sections are
mainly based on Monte Carlo simulations. These algorithms follow almost
directly from the analytical formulas, such as those for potentials, expressed
in a form of a mean value (see e.g., (2.16)).

In this chapter, we will focus on computational algorithms other than the
relatively straightforward Monte Carlo approach. Those include temporal-
difference (TD) learning, Q-learning and their variants, the value-iteration al-
gorithm for MDPs, as well as the TD method for performance gradients and
PA-based optimization. One of the important features of these approaches is
that they are all related to and can be derived from stochastic approximation
techniques. Therefore, stochastic approximation theory is a powerful tool in
RL; it not only provides insights in developing computational learning algo-
rithms, but also provides guidelines to the proof of convergence results. We
will first briefly introduce the main ideas of stochastic approximation, and
then we will use this theory to derive various algorithms. We will focus on ex-
plaining how we can obtain these algorithms from the principles of stochastic
approximation; the rigorous proofs of the convergence of the algorithms are
beyond the scope of this book. (Some proofs do not even exist in the current
literature.)

As in the other chapters of this book, we will mainly discuss the opti-
mization problem in relation to ergodic Markov chains with long-run average
reward as the performance criteria. However, most works in the RL literature
address the relatively easier topics with discounted performance criteria; and
rigorous proofs for some results presented in this chapter (such as R-learning, a
variant of Q-learning for the average reward problems) may still be lacking. In
addition, research on RL algorithms for PA-based performance optimization
started just in recent years. There are many open problems in these areas.

In summary, compared with the other books on RL, this chapter has the
following main features:

1. The algorithms are stated in the framework of stochastic approximation;
2. It focuses on average reward problems; and
3. It contains results on PA-based performance optimization.

6.1 Stochastic Approximation

In this section, we briefly review some very basic concepts of stochastic ap-
proximation [79, 173, 191]. These concepts help the understanding of recursive
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algorithms developed in PA, RL, and other stochastic learning and optimiza-
tion theories.

6.1.1 Finding the Zeros of a Function Recursively

The fundamental idea of stochastic approximation can be explained by the
recursive algorithms for finding the zeros of a function f(x), x ∈ (−∞,∞) (or
the roots of the equation f(x) = 0). In optimization, if we want to find a local
minimum of a performance function η(x), we need to find a point at which
the derivative of η(x), denoted as f(x) := dη(x)

dx , is zero.

f(x) is Known

x∗

x3 x2

f(x2)

x1

f(x1)

x0

f(x0)

f(x)

df
dx

∣∣
x=x0

= f(x0)
(x0−x1)

Fig. 6.1. The Recursive Algorithm in the Gradient Method

As illustrated in Figure 6.1, if the function f(x) is known and is smooth
enough, we can use the gradient method to find a root of f(x), denoted as x∗,
by a recursive algorithm:

xk+1 = xk −
1

(df(x)
dx )x=xk

f(xk), k = 0, 1, 2, . . . , (6.1)

where xk+1 is the crossing point of the tangent line of the function f(x)
at x = xk with the x-axis. It can be proved that under some conditions
on f(x), starting from any x0, we have limk→∞ xk = x∗ and f(x∗) = 0.
For example, if f(x) is a convex and increasing function (i.e., df(x)

dx > 0 and
d2f(x)

dx2 > 0), then such convergence can be easily proved as follows. Suppose
that f(x0) > 0. Since (df(x)

dx )x=x0 > 0, we have x0 > x1. Because f(x) is
increasing, we have f(x0) > f(x1). By the same argument, we have xk > xk+1

and f(xk) > f(xk+1), k = 1, 2, . . . . Suppose that the root x∗ exists. Because
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the function is convex, the curve of f(x) always lies on the same side of the
tangent lines. Therefore, xk > x∗ and f(xk) > f(x∗) = 0. Thus we have two
decreasing sequences

x0 > x1 > · · · > xk > xk+1 > · · · > x∗ and
f(x0) > f(x1) > · · · > f(xk) > f(xk+1) > · · · > f(x∗) = 0. (6.2)

The decreasing sequence x0, x1, . . . , xk, . . . , converges to a point denoted as x̂.
Because ( df

dx )x=x̂ > 0, we must have f(x̂) = 0. Otherwise the sequence cannot
stop at x̂. This can be precisely proved. Suppose that f(x̂) > 0. We define
ε = 1

( df
dx )x=x̂

f(x̂) > 0. Since limk→∞ xk = x̂ and

lim
k→∞

1
( df

dx )x=xk

f(xk) =
1

( df
dx )x=x̂

f(x̂) = ε > 0,

there must be a point denoted as xk̃ such that xk̃− x̂ < ε/2 and 1

( df
dx )x=x

k̃

f(xk̃)

> ε/2. Thus, we must have

xk̃+1 = xk̃ −
1

( df
dx )x=xk̃

f(xk̃) < xk̃ −
ε

2
< x̂.

This is impossible. Thus, f(x̂) = 0 ; i.e., x̂ = x∗.
We have two observations about the proof of the convergence: First, the

convexity of f(x) and the use of tangent lines guarantee that the curve of
f(x) is always on the one side of the tangent lines, and this results in the
two decreasing sequences in (6.2). Second, we also require the function to be
increasing, i.e., df(x)

dx > 0 for x > x∗, which is used in the last part of the proof
(cf. Problem 6.1).

f(x) is Unknown

However, if f(x) is unknown but can be precisely observed or measured, then
we can obtain f(xk) by measurement but ( df

dx )x=xk
is not available. The above

gradient-based algorithm cannot be utilized. All is not lost, however. Let us
observe the nature of the algorithm in (6.1). The convergence of limk→∞ xk =
x∗ depends on the two sequences in (6.2), and it does not depend on the exact
values of the derivatives. Thus, we may hope that the algorithm still works if
we replace 1/(df(x)

dx )x=xk
with some real number κk that has the same sign as

1/(df(x)
dx )x=xk

. That is, we may hope that the following algorithm works under
some conditions for the function f(x) and the sequence κk, k = 0, 1, 2, . . . :

xk+1 = xk − κkf(xk), κk > 0, k = 0, 1, 2, . . . , (6.3)

for increasing functions (with df(x)
dx

∣∣∣
x=xk

> 0), and
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xk+1 = xk + κkf(xk), κk > 0, k = 0, 1, 2, . . . , (6.4)

for decreasing functions (with df(x)
dx

∣∣∣
x=xk

< 0). κk, k = 0, 1, 2, . . . , are called

step sizes.

Example 6.1. To illustrate the idea, we consider a simple example. Let
f(x) = x− b. We have x∗ = b and df(x)

dx = 1 for all x. Starting from any initial
point x0, the algorithm in (6.1) reaches x∗ in one step: x1 = x0− 1× f(x0) =
x0 − 1× (x0 − b) = x∗. Now let us use (6.3) with κk = κ, for all k = 0, 1, . . . ,
with 1 > κ > 0. We have

xk = xk−1 − κ(xk−1 − b)
= (1− κ)xk−1 + κb

= (1− κ)kx0 +
[
1 + (1− κ) + (1− κ)2 + · · ·+ (1− κ)k−1

]
κb

= (1− κ)kx0 +
[
1− (1− κ)k

]
b.

Obviously, we have limk→∞ xk = b = x∗. ��
In this example, when 1 > κ > 0, the two observations made at the end of

the subsection for f(x) being known remain the same: The curve f(x) is on
the same side of the “tangent” line, and the decreasing rate is κ > 0. These
properties may not be necessary, though. As shown in Figure 6.2, Algorithm
(6.3) may be faster than Algorithm (6.1), if we properly choose the step sizes
κk, k = 0, 1, . . . . Note that in the right-hand graph for Algorithm (6.3), at the
beginning of the recursive procedure, the “tangent” lines intersect the curve
f(x).

x∗
x2 x1

f(x1)

x0f(x0)
df(x0)

dx

f(x0)

f(x)

x∗
x2 x1

f(x1)

x0

κ0f(x0)

f(x0)

f(x)

Fig. 6.2. Algorithm (6.3) (Right) May be Faster Than (6.1) (Left)

Observations with Random Noise

In many applications, the observation of the performance f(x) contains ran-
dom noise. Assume that the noise is additive. Then for any xk, k = 0, 1, . . . ,
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we have an error-corrupted observation

yk = f(xk) + εk, (6.5)

where εk denotes the observation error at step k. We naturally hope that
under some conditions, the recursive algorithm (6.3), or (6.4), works (meaning
limk→∞ xk = x∗, w.p.1) with f(xk) replaced with yk, k = 0, 1, . . . . Thus, we
have the following (Robbins-Monro) algorithm:

For increasing functions,

xk+1 = xk − κkyk, κk > 0, k = 0, 1, 2, . . . , (6.6)

and for decreasing functions,

xk+1 = xk + κkyk, κk > 0, k = 0, 1, 2, . . . . (6.7)

First, we note that for problems with noisy observations, conditions have
to be imposed on the function f(x), the step sizes κk, k = 0, 1, . . . , as well
as the statistical properties of the noise. In general, the condition on the
step sizes with noisy observations must be more strict than that with exact
observations.

Example 6.2. We continue the simple problem considered in Example 6.1.
Suppose that the observation contains noise and that we have

yk = f(xk) + εk = (xk − b) + εk, k = 0, 1, . . . .

With a fixed step size κk = κ, we have

xk = xk−1 − κ(xk−1 − b + εk−1)
= (1− κ)xk−1 + κb− κεk−1

= (1− κ)kx0 +
[
1− (1− κ)k

]
b

− κ
{
εk−1 + (1− κ)εk−2 + · · ·+ (1− κ)k−1ε0

}
.

Thus, limk→∞ xk = b, w.p.1, if and only if

lim
k→∞

{
εk−1 + (1− κ)εk−2 + · · ·+ (1− κ)k−1ε0

}
= 0, w.p.1. (6.8)

However, (6.8) may not always hold because if κ is too large then the discount
factor (1−κ) may be too small and hence the earlier random noise (1−κ)εk−2+
· · ·+ (1− κ)k−1ε0 cannot cancel out the effect of the current noise εk−1.

If we take κk = 1
k+1 , k = 0, 1, . . . , then we have
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xk = xk−1 −
1
k

(xk−1 − b + εk−1)

=
k − 1

k
xk−1 +

1
k
b− 1

k
εk−1

=
1
k
x1 +

k − 1
k

b− 1
k

k−1∑

i=1

εi.

From this equation, it is clear that limk→∞ xk = b, w.p.1, if and only if

lim
k→∞

{
1
k

k−1∑

i=1

εi

}
= 0, w.p.1. (6.9)

Equation (6.9) is satisfied if εk, k = 1, 2, . . . , are i.i.d random variables with
E(εk) = 0. ��

Example 6.2 shows that, with random noise, if the step sizes κk, k =
0, 1, . . . , are too large (do not decrease fast enough) then the effect of the ran-
dom noise at subsequent steps cannot be cancelled out. Common conditions
for the step sizes are:

κk > 0,
∞∑

k=0

κk =∞,

∞∑

k=0

κ2
k <∞. (6.10)

The condition may be weakened under some more strict conditions on the
noise:

κk > 0, lim
k→∞

κk = 0,
∞∑

k=0

κk =∞. (6.11)

Note that the condition
∑∞

k=0 κ2
k < ∞ in (6.10) implies limk→∞ κk = 0.

Both
∑∞

k=0 κ2
k < ∞ and limk→∞ κk = 0 means that the step sizes should

not be too large. This can be understood by (6.8) in Example 6.2: If the
discounting (1 − κ) is too small, the noise at subsequent steps cannot be
averaged out.

On the other hand,
∑∞

k=0 κk = ∞ implies that the step sizes should not
decrease too fast. This is true even when there is no noise. Consider the
simplest function f(x) = x − b in Example 6.1. With the variant step sizes
κk > 0, k = 0, 1, . . . , we have xk = xk−1 − κk−1(xk−1 − b). Thus,

xk−1 − xk = κk−1 (xk−1 − b) < κk−1(x0 − b).

Adding up the above inequality for k, k − 1, down to 0, we obtain
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x0 − xk <

(
k−1∑

i=0

κi

)
(x0 − b).

Now, suppose that
∑∞

k=0 κk < 1. Then, letting k →∞ in the above inequality,
we have

x0 − lim
k→∞

xk < x0 − b.

Therefore, limk→∞ xk > b = x∗. That is, with the step sizes
∑∞

k=0 κk < 1 the
algorithm cannot converge to the root of the function. This is shown in Figure
6.3. (As shown in the figure, b < · · · < xk+1 < xk, so limk→∞ xk exists.) In
general, if

∑∞
k=0 κk < ∞, it is not guaranteed that the recursive algorithm

will converge to the root of f(x).

x0

f(x)=x−b
f(x0)

f(x1)

f(x2)

x1x2. . .
x∗=b

Fig. 6.3. xk Does Not Converge to x∗ When κk Are Too Small

Algorithm (6.6) or (6.7) is called the Robbins-Monro (RM) algorithm. It
has been proved that with the step sizes (6.11) or (6.10), and under a set of
conditions (different for (6.11) or (6.10)) on function f(x) and on the statistical
properties of the observation noise, the RM algorithm converges to a zero of
f(x) with probability 1. These conditions and the proof of the convergence
of the algorithm are very technical and are beyond the scope of this book.
Readers may refer to [79, 173, 191] etc. for details.

Finally, it should be mentioned that the RM algorithm applies to multi-
variable functions f(x), �n → �, as well. When the algorithm is applied to
finding a local minimum of a function f(x), or equivalently a zero point of
its gradient, (6.6), or (6.7), simply suggests moving along the direction of the
gradient.
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6.1.2 Estimating Mean Values

Stochastic approximation approaches are often used to develop recursive al-
gorithms in estimating mean values of random variables. Let w be a random
variable and x = E(w) be its mean. Define f(x) = x − E(w). The problem
of estimating E(w) becomes to find the zero of the function f(x). In this
problem, the function is unknown because we do not know E(w), and the
observation of f(x) contains errors because the observation of E(w) does.

We start with any initial guess of x0. At step k, k = 0, 1, . . . , we make an
observation of w, denoted as wk, and use it as an estimate of E(w). (Appar-
ently, wk usually does not equal E(w) and we may write wk = E(w) − εk,
with εk denoting the estimation error.) Therefore, the observation yk at step
k in (6.5) is yk = xk −wk, k = 0, 1, . . . . Applying the RM algorithm (6.6), we
obtain (note that f(x) = x− E(w) is an increasing function of x):

xk+1 = xk − κkyk

= xk − κk(xk − wk)
= (1− κk)xk + κkwk, 0 < κk < 1. (6.12)

When κk = 1
k+1 , the algorithm in (6.12) yields the average of the observation

sequence:

xk+1 =
k

k + 1
xk +

1
k + 1

wk =
1

k + 1
{wk + wk−1 + · · ·+ w0} ,

which, indeed, converges to the mean E(w) with probability 1. The RM al-
gorithm tells us that we may give the observations w0, w1, . . . , wk, . . . weights
that are different from 1

k+1 , and the weighted sum still converges to the mean
value.

Summary of the Chapter

The RL approaches to be introduced in this chapter are closely related to the
stochastic approximation (SA) principles discussed above. The content of the
reminder of the chapter is summarized as follows:

1. Using the SA approach in estimating the mean values, we develop TD
algorithms to estimate the potentials, Q-factors, and performance deriva-
tives.

2. Using the SA approach in finding the zeros, we develop TD algorithms to
find the zeros of the performance derivatives, i.e., the local optimal points.

3. Using the SA approach in finding the zeros, we develop TD algorithms to
find the zeros of the optimality equations, i.e., the global optimal points.

We also make comparisons of the different approaches.
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6.2 Temporal Difference Methods

6.2.1 TD Methods for Potentials

The Algorithm TD(0)

The temporal difference (TD) methods applied to estimating the performance
potentials can be explained clearly by the stochastic approximation approach;
in particular, it can be viewed as a special case of (6.12) for estimating a mean
value. From (2.16), we have

g(i) = E

{ ∞∑

l=0

[f(Xl)− η]
∣∣∣X0 = i

}
. (6.13)

Now, consider the lth transition on a sample path X = {X0, . . . , Xl,Xl+1, . . .}.
Denote Xl = i. We have

g(i) = E

{ ∞∑

k=0

[f(Xl+k)− η]
∣∣∣Xl = i

}

= [f(i)− η] + E

{
E

[ ∞∑

k=1

[f(Xl+k)− η]
∣∣∣Xl+1

] ∣∣∣∣Xl = i

}

= [f(i)− η] + E [g(Xl+1)|Xl = i] . (6.14)

From this, when Xl = i, we have

g(i) = E {[f(Xl)− η] + g(Xl+1) |Xl = i} .

Therefore, when Xl = i, we can use [f(Xl)− η] + g(Xl+1) as an estimate of
g(i). Thus, by the stochastic approximation algorithm (6.12), at time l we can
update g(Xl) as follows:

g(Xl) := g(Xl)− κl {g(Xl)− [f(Xl)− η + g(Xl+1)]}
= g(Xl) + κlδl, (6.15)

in which we have defined the temporal difference (TD) as

δl = [f(Xl)− η + g(Xl+1)− g(Xl)] , l = 0, 1, . . . , (6.16)

which reflects the possible stochastic error observed at time l.
It is easy to develop algorithms for estimating η. For example, we can use

the standard algorithm (6.12):

ηl+1 = ηl − κl+1 [ηl − f(Xl+1)] (6.17)

with κl = 1
l+1 and η0 = f(X0). (Later we will explain that, in fact, η does not

need to be estimated.) Replacing the η in (6.15) with ηl in (6.17), we obtain
an algorithm for estimating the performance potentials:
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{
g(Xl) := g(Xl)− κl {g(Xl)− [f(Xl)− ηl + g(Xl+1)]} ,
ηl+1 := ηl − κl+1 [ηl − f(Xl+1)] ,

l = 0, 1, . . . ,

in which ηl is the estimate of η at time l, and g(Xl) is the estimate of the
potential of state Xl at time l.

This algorithm is called a TD(0) algorithm. The algorithm works for any
initial values of η and g. The procedure of (6.15) and (6.16) is illustrated in
Figure 6.4, in which the sign :=⇒ indicates “replaced with”.
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f(2) − η

X0
X2 = 2

X3 = 4

g(1)

g(2)

g(3)

g(4)

g(5)

g(1)

g(2)

g(3)

g(4)

g(5)

g(2) := (1 − κ)g(2)

+ κ[(f(2) − η) + g(4)]

:=⇒

Fig. 6.4. TD(0) for Potentials g(i)’s

Comparison with the Monte Carlo Method

We are not going to prove the convergence of the TD(0) algorithm, which
requires a deeper knowledge of stochastic approximation. Next, we will discuss
some features of this algorithm and compare it with the Monte Carlo method
(e.g., (3.15)). We do this by considering two examples.

Example 6.3. In this example, we study a modified version of the TD(0)
algorithm in which the potentials are updated every N transitions by using
the temporal difference obtained in these N transitions. The standard TD(0)
algorithm becomes a special case with N = 1.
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The sample path is divided into periods, each consisting of N transitions.
The TD(0) algorithm is modified in two aspects:

1. The step sizes for the time instants in every period [(k − 1)N, kN − 1] are
set to be the same; i.e., set κl ≡ κ′

k, l ∈ [(k − 1)N, kN − 1], k = 1, 2, . . . ,
(e.g., κ′

k = 1
k ).

2. At the beginning of each period [(k − 1)N, kN − 1], we “freeze” the esti-
mates of the potentials g(Xl+1), Xl+1 ∈ S, and use them in the temporal
difference δl in the entire period. In other words, while updating the val-
ues of g(Xl)’s, we use the potential estimates obtained at time instant
(k − 1)N − 1 for the potentials g’s in all the δl’s in the entire period of
l ∈ [(k − 1)N, kN − 1].

Consider the kth period denoted as {X(k−1)N ,X(k−1)N+1, . . . , X(k−1)N+l,
. . . , XkN−1}, l = 0, 1, . . . , N − 1. By the first modification, in this period,
(6.15) takes the form

g(X(k−1)N+l) := g(X(k−1)N+l)

− κ′
k

{
g(X(k−1)N+l)−

[
f(X(k−1)N+l)− η + g(X(k−1)N+l+1)

]}
.

The difference at this time instant is

Δg(X(k−1)N+l)=κ′
k

{
g(X(k−1)N+l)−

[
f(X(k−1)N+l)−η + g(X(k−1)N+l+1)

]}
.

By the second modification, we need to “freeze” the values of the function
g on the right-hand side of the above equation. Let us assume that on the
sample path X(k−1)N+lu = i, with i ∈ S, u = 1, 2, . . . , Ni, and 0 ≤ l1 < l2 <
· · · < lNi

< N − 1; i.e., at time epoches (k− 1)N + lu, the system visits state
i. Then the difference at (k − 1)N + lu is

{Δg(i)}at (k−1)N+lu
= κ′

k

{
g(i)−

[
f(i)− η + g(X(k−1)N+lu+1)

]}
,

u = 1, 2, . . . , Ni.

Now, suppose that among the states X(k−1)N+lu+1, u = 1, 2, . . . , Ni, there
are Ni,j times the system visits state j, j ∈ S, and

∑
j∈S Ni,j = Ni. Adding

the above Ni equations together we obtain the difference in the entire period
of [(k − 1)N, kN − 1]:

Δg(i) =
Ni∑

u=1

{Δg(i)}at (k−1)N+lu

= κ′
kNi

⎧
⎨

⎩g(i)−

⎡

⎣[f(i)− η] +
∑

j∈S

Ni,j

Ni
g(j)

⎤

⎦

⎫
⎬

⎭ .

Denoting κ′
k,i = κ′

kNi and noting that Ni,j

Ni
≈ p(j|i), we can write
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Δg(i) = κ′
k,i

⎧
⎨

⎩g(i)−

⎡

⎣[f(i)− η] +
∑

j∈S
p(j|i)g(j)

⎤

⎦

⎫
⎬

⎭ . (6.18)

This is the temporal difference from the Poisson equation g−[(f − η)− Pg] =
0. Therefore, this modified TD(0) algorithm in fact is a sample-path-based
version of the stochastic approximation algorithm for finding the zeros of the
Poisson equation . ��

When N = 1, the above algorithm becomes the TD(0) method. Thus,
TD(0) can be viewed as an “aggressive” version of the sample-path-based
algorithm for finding the zeros of the Poisson equation. In this aggressive
version, p(j|i) in (6.18) is also estimated together with g(j) in the stochastic
approximation.

Furthermore, as shown in Figure 6.2, TD(0) provides more flexibility be-
cause we are allowed to use different step sizes κl, l = 1, 2, . . . , which may
improve the convergence rate. In addition, as shown in the next example, with
TD(0) we may update the potential of one state, g(i), by using the potential
of another state, g(j), j �= i. This is called “bootstrapping” in [238]. Therefore,
in some cases TD(0) estimates may be more accurate than the Monte-Carlo
estimates.

1 2 3

1.0 0.3

0.7

1.0

Fig. 6.5. The Transition Diagram for Example 6.4

Example 6.4. Consider a three-state Markov chain illustrated in Figure 6.5,
with the numbers on the arcs indicating the state transition probabilities.
Suppose that we get a sample path as listed in Table 6.1. Note that in the
period from l = 1 to l = 6, the Markov chain visits states 1 and 2, but it does
not visit state 3. Let us start from any initial value of g(i), (say g(i) = 0) for
all i = 1, 2, 3. In the period from l = 1 to l = 6, we may update the values of
g(1) and g(2), with the TD(0) method. Therefore, at l = 7, with (6.15) g(3) is
assigned a value of g(3) := κ [f(3)− η + g(1)]. Because g(1) has already been
updated three times at l = 2, 4, and 6, we may get a more accurate estimate
of g(3) at l = 7 than the Monte Carlo method, which collects only one point
for g(3) at l = 7. In this sense, TD(0) may be more accurate than the Monte
Carlo method, especially when the sample path is short. ��
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l 1 2 3 4 5 6 7 8 9

Xl 1 2 1 2 1 2 3 1 2

Table 6.1. A Sample Path for Example 6.4

Finally, we note that the solution to the Poisson equation is only up to
an additive constant. This feature is kept in the TD method. For example,
suppose that starting with any initial guess g0(i), for all i ∈ S, we obtained
a TD(0) estimate g(i), for all i ∈ S, by using (6.15). Then if we start with an
initial guess g0(i)+c, with c being a constant for all i ∈ S, we will get a TD(0)
estimate g(i) + c for all i ∈ S. In this sense, the TD method only estimates
the differences in the potentials. On the other hand, the Monte Carlo estimate
(3.15) tries to estimate a particular solution to the Poisson equation (based
on g =

{
I +

∑∞
k=1(P

k − eπ)
}
f).

More on TD(0)

As explained in Example 6.3, the TD(0) algorithm can be viewed as a stochas-
tic approximation algorithm for finding a solution to the Poisson equation. In
fact, the algorithm can be directly derived (explained) from the Poisson equa-
tion (2.12):

g = Pg + f − ηe. (6.19)

First, we can apply the stochastic approximation algorithm (6.6) to obtain an
iterative numerical algorithm for the solution to (6.19):

g(i) := g(i)− κl

⎧
⎨

⎩g(i)−

⎡

⎣[f(i)− η] +
∑

j∈S
p(j|i)g(j)

⎤

⎦

⎫
⎬

⎭ . (6.20)

This is the same as (6.18). Next, given Xl = i, l = 0, 1, . . . , on a sample path,
we have E [g(Xl+1)|Xl = i] =

∑
j∈S p(j|i)g(j). That is, we can use g(Xl+1) as

a sample path (very noisy) estimate of
∑

j∈S p(j|i)g(j). Replacing this item
in (6.20) by g(Xl+1) yields the TD(0) algorithm (6.15).

As discussed above, the TD(0) algorithm converges to a solution to the
Poisson equation, which is only up to an additive constant. Thus, the constant
η in (6.15) does not really matter. We may therefore try to remove it and
obtain

g(Xl) := g(Xl)− κl {g(Xl)− [f(Xl) + g(Xl+1)]} . (6.21)

However, the problem with (6.21) is that the values of the g(i)’s thus obtained
may go to infinity as l increases. (Just as in physics, the potential energy may
go to infinity if we change the reference point at each iteration.) We have two
ways to fix this problem.
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The first method is very simple; it is of a numerical or algorithmic nature.
We fix a state i∗ ∈ S and choose a large number G > 0 and add the following
step in the algorithm (6.21):

If min
i∈S

|g(i)| > G, set g(i) := g(i)− g(i∗) for all i ∈ S. (6.22)

We call this a G-adjustment step. After this step, the differences between the
potentials of different states remain the same, but the potential of state i∗ is
brought to zero.

Setting up a stopping criterion for this algorithm requires some consider-
ation: Obviously, we cannot stop the algorithm based on the absolute values
of the potentials, and we need to use γ(i∗, i) = g(i)−g(i∗). The potentials are
only comparable at the iterations right after a G-adjustment step, at which
g(i∗) = 0. Therefore, we may stop the algorithm after a G-adjustment step. If,
for example, we observe that after a few such G-adjustment steps, the change
in the norm of the potential vector is smaller than a pre-determined positive
number, we may stop the algorithm.

As shown in Example 6.5, the convergence of the G-adjustment method is
slow. In addition, there is an issue relating to how to choose the value of G.
There is not much work on this method and we present it here simply because
its conceptual simplicity.

In the second method, we choose a state i∗ and set g(i∗) = η. For this
particular potential vector, the Poisson equation becomes

g(i) =
S∑

j=1

p(j|i) [g(j)− g(i∗)] + f(i). (6.23)

With this equation, we can derive the TD(0) algorithm as

g(Xl) := g(Xl)− κl {g(Xl)− [f(Xl) + g(Xl+1)− g(i∗)]} . (6.24)

Compared with (6.15), algorithm (6.24) does not require us to estimate η.
We can expect that under some conditions, g(i∗) produced by this algorithm
indeed converges to η. This can be explained as follows. Under some standard
stochastic approximation conditions, g(i), i ∈ S, converges to the solution to
(6.23), which is

g = P [g − g(i∗)e] + f.

Pre-multiplying both sides of this equation by π, we get g(i∗) = πf = η. A
similar method will be used with Q-factors and Q-learning as discussed later.

Example 6.5. Consider a Markov chain with transition probability matrix
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P =
[

ε 1− ε
1− ε ε

]
,

where 0 < ε << 1. The Markov chain is ergodic for any positive number ε.
We assume that ε is very small, therefore, the Markov chain behaves very
like a periodic chain that visits states 0 and 1 alternately. Thus, a sample
path looks similar to 1, 0, 1, 0, 1, 0, . . . . Let f(1) = 1 and f(0) = 0. We have
π(1) = π(0) = 0.5 and η = πf = 0.5. Solving the Poisson equation, we get
g(1)− g(0) ≈ 0.5.

Now we apply different sample-path-based algorithms to estimate the po-
tentials g(0) and g(1). Consider an approximate sample path 1, 0, 1, 0, 1, 0, . . . .
The rewards received at every transition on this sample path are listed in the
following Table 6.2:

l 0 1 2 3 4 5 6 7 8 9 . . .

f(Xl) 1 0 1 0 1 0 1 0 1 0 . . .

Table 6.2. The Reward Sequence for Example 6.5

Given this sequence of f(Xl), it is easy to estimate η by either taking the
average or using the TD(0) method. Therefore, we assume that η is known.

1. (Monte Carlo) When ε is very small, the convergence of E [f(Xl)|X0 = i]→
η, i = 0, 1 is very slow. Therefore, the convergence of

E

{
L−1∑

l=0

[f(Xl)− η]
∣∣∣X0 = i

}
→ g(i)

is also very slow. Thus, the Monte Carlo algorithm (3.15) is very slow
and requires a large L. On the other hand, the convergence of (2.17)
E

{∑L(i|j)−1
l=0 [f(Xl)− η]

∣∣∣X0 = j
}
→ γ(i, j) is very fast, and thus the

corresponding algorithm (3.19) is also very fast.
2. (TD(0) with (6.15) and (6.16)) First, we rewrite (6.15) and (6.16) as fol-

lows:

g(Xl)− g(Xl+1) := (1− κl) [g(Xl)− g(Xl+1)] + κl [f(Xl)− η] ,
l = 0, 1, . . . . (6.25)

The step sizes are taken as κl = 1
l+1 , l = 0, 1, . . . . With initial values

g(0) = g(1) = 0, we apply (6.25) to the sequence in Table 6.2 and obtain

at l = 0 : g(1)− g(0) = (1− 1)(0− 0) + [f(1)− η]
= [f(1)− η] = 0.5,
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at l = 1 : g(0)− g(1) = (1− 1
2
) {− [f(1)− η]}+

1
2

[f(0)− η]

= −0.5,

and

at l = 2 : g(1)− g(0) = (1− 1
3
)
1
2
{[f(1)− η]− [f(0)− η]}+ 1

3
[f(1)− η]

= 0.5, · · · · · ·

We can see that the estimated value of g(1)− g(0) approaches the correct
value 0.5 very fast. This is the same as the perturbation realization factor
based Monte Carlo estimate (3.19) and is much better than (3.15).

3. (TD(0) with i∗ = 0, g(0) = η) Set the initial values g(1) = g(0) = 0. With
i∗ = 0, (6.24) becomes

If Xl = 1,Xl+1 = 0 : g(1) := (1− κl)g(1) + κlf(1),
If Xl = 0,Xl+1 = 1 : g(0) := (1− κl)g(0) + κl [f(0) + g(1)− g(0)] .

Applying the above equation to the sequence in Table 6.2, we obtain

at l = 0 : g(1) = (1− 1)g(1) + f(1) = 1,

at l = 1 : g(0) = (1− 1
2
)0 +

1
2

[0 + 1− 0] = 0.5,

at l = 2 : g(1) = (1− 1
3
)g(1) +

1
3
f(1) = 1,

at l = 3 : g(0) = (1− 1
4
)g(0) +

1
4

[0 + 1− 0.5] = 0.5.

Indeed, the algorithm converges very fast to g(0) = 0.5 = η and g(1) −
g(0) = 0.5.

4. (TD(0) with G-adjustment) In this problem, (6.21) becomes

If Xl = 1,Xl+1 = 0 : g(1) := (1− κl)g(1) + κl [f(1) + g(0)] ,
If Xl = 0,Xl+1 = 1 : g(0) := (1− κl)g(0) + κl [f(0) + g(1)] .

Applying the above equation to the sequence in Table 6.2 with initial
values g(1) = g(0) = 0, we obtain

at l = 0 : g(1) = (1− 1)g(1) + [f(1) + g(0)] = 1,

at l = 1 : g(0) = (1− 1
2
)0 +

1
2

[f(0) + g(1)] = 0.5,

at l = 2 : g(1) = (1− 1
3
)g(1) +

1
3

[f(1) + g(0)] =
7
6

= 1.167,

at l = 3 : g(0) = (1− 1
4
)g(0) +

1
4

[f(0) + g(1)] =
2
3

= 0.667,

at l = 4 : g(1) = (1− 1
5
)g(1) +

1
5

[f(1) + g(0)] =
19
15

= 1.267,
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at l = 5 : g(0) = (1− 1
6
)g(0) +

1
6

[f(0) + g(1)] =
23
30

= 0.767,

at l = 6 : g(1) = (1− 1
7
)g(1) +

1
7

[f(1) + g(0)] =
281
210

= 1.338,

at l = 7 : g(0) = (1− 1
8
)g(0) +

1
8

[f(0) + g(1)] =
88
105

= 0.838,

at l = 8 : g(1) = (1− 1
9
)g(1) +

1
9

[f(1) + g(0)] = 1.393.

The estimated potentials increase, and the resulting sequence of g(1) −
g(0) = 1, 0.5, 0.667, 0.5, 0.6, 0.5, 0.571, 0.5, 0.555, . . . indeed tends to con-
verge to 0.5. Suppose that we set G = 2

3 , and set i∗ = 1. Then we adjust
the estimates as g(1) = 0 and g(0) = −0.5 at l = 5. Continuing the
process, we get

at l = 6 : g(1) = (1− 1
7
)g(1) +

1
7

[f(1) + g(0)] =
1
14

= 0.0714,

at l = 7 : g(0) = (1− 1
8
)g(0) +

1
8

[f(0) + g(1)] = −0.4286,

at l = 8 : g(1) = (1− 1
9
)g(1) +

1
9

[f(1) + g(0)] = 0.1270.

The estimated values of g(1) − g(0) are 0.5 and 0.556, the same as if
we do not implement the G-adjustment step, which, indeed, prevents the
estimates from going to infinity. However, as we can see, the price we pay
for not estimating η with the G-adjustment is that it converges slowly. ��

K-Step TD and TD(λ)

There are many variants and extensions of the TD method. First, given a
Markov chain X = {X0, . . . , Xl,Xl+1, . . .}, similar to (6.14), at the lth tran-
sition with Xl = i and for any K > 1, we have

g(i) = E

{
K−1∑

k=0

[f(Xl+k)− η] +
∞∑

k=K

[f(Xl+k)− η]
∣∣∣Xl = i

}

= E

{
K−1∑

k=0

[f(Xl+k)− η]
∣∣∣Xl = i

}

+ E

{
E

{ ∞∑

k=K

[f(Xl+k)− η]
∣∣∣Xl+1, . . . , Xl+K

}∣∣∣∣Xl = i

}

= E

{
K−1∑

k=0

[f(Xl+k)− η]
∣∣∣Xl = i

}
+ E {g(Xl+K)|Xl = i}

= E

{
K−1∑

k=0

[f(Xl+k)− η] + g(Xl+K)
∣∣∣Xl = i

}
.
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Therefore, we can use
∑K−1

k=0 [f(Xl+k)− η]+g(Xl+K) as an estimate of g(Xl)
and define the K-step temporal difference as

δl,K =

{
K−1∑

k=0

[f(Xl+k)− η] + g(Xl+K)− g(Xl)

}
, l = 0, 1, . . . .

Then, we obtain the following K-step TD(0) algorithm:

g(Xl) := g(Xl) + κlδl,K , (6.26)

which updates g(Xl) at l + K.
On the other hand, the Monte Carlo estimate of g(i) is based on the

approximation of (6.13)

g(i) ≈ E

{
K−1∑

k=0

[f(Xl+k)− η]
∣∣∣Xl = i

}
, (6.27)

with a large enough integer K. Using (6.12), we can take
∑K−1

k=0 [f(Xl+k)− η]
as an estimate of g(Xl) and update it as

g(Xl) := g(Xl) + κl

{
K−1∑

k=0

[f(Xl+k)− η]− g(Xl)

}
.

The difference between this algorithm and (6.26) is only one term g(Xl+K).
This difference is very small for large K because E [g(Xl+K)|Xl = i]→ πg = 0
as K → ∞. Thus, for a large K, the above K-step TD(0) method is almost
the same as the stochastic approximation approach based on (6.27).

Next, we can get a mixture of the K-step TD algorithms (6.26). First, we
choose a real number 0 < λ < 1 and define

δl,λ := (1− λ)
∞∑

K=1

λK−1δl,K .

Then we have

δl,λ = (1− λ)
∞∑

K=1

{
λK−1

{
K−1∑

k=0

[f(Xl+k)− η] + g(Xl+K)− g(Xl)

}}

=
∞∑

k=0

{
λk {[f(Xl+k)− η] + (1− λ)g(Xl+k+1)}

}
− g(Xl)

=
∞∑

k=0

{
λk {[f(Xl+k)− η] + g(Xl+k+1)}

}
−

∞∑

k=0

λk+1g(Xl+k+1)− g(Xl)

=
∞∑

k=0

λk {[f(Xl+k)− η] + g(Xl+k+1)− g(Xl+k)} .
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Finally, we have the updating algorithm (known as the TD(λ) algorithm) as
follows.

g(Xl) := g(Xl) + κlδl,λ.

TD(0) is a special case of TD (λ) when λ = 0.
The TD (λ) method for problems with the discounted reward criterion is

discussed in [236, 238]. TD (λ) algorithms with linearly parameterized func-
tion approximations are presented in [244].

In a further extension of the K-step TD (λ) approach, we set the number
of steps K to be a random variable. We formulate the idea in a special case
in Problem 6.7, also see the next subsection.

6.2.2 Q-Factors and Other Extensions

TD Methods for Q-factors

When the system structure, i.e., the transition probability matrix P d =[
pd(i)(j|i)

]
, is completely unknown, we cannot apply policy iteration directly

by using the potentials. (As shown in Example 5.1, we need to know at least
the parts in the transition probabilities that are related to the actions, i.e.,
bd(n), to implement policy iteration with the estimated potentials.) In this
case, we may need to estimate the Q-factor defined as [25, 238]

Qd(i, α) =

⎧
⎨

⎩

S∑

j=1

pα(j|i)gd(j)

⎫
⎬

⎭ + f(i, α)− ηd, α ∈ A(i), (6.28)

for every state-action pair (i, α). In (6.28), gd(j), j ∈ S, and ηd are the
potentials and the average reward associated with policy d, and pα(j|i) and
f(i, α) depend on action α, which can be any one in A(i) (may not be d(i)).
Thus, Qd(i, α) is the expected potential if, at the current time, action α is
taken and, at the other times, the system follows policy d. As shown in (6.28),
Q-factors are also only determined up to an additive constant; i.e., if Qd(i, α),
α ∈ A(i), i ∈ S, are Q-factors of policy d, then for any constant c, Qd(i, α)+c,
α ∈ A(i), i ∈ S, are also Q-factors of the same policy. From (4.5), if we can
estimate Qd(i, α) for all α ∈ A(i), with d being the policy used in the current
iteration, then we can choose

α ∈ arg
{

max
α′∈A(i)

[
Qd(i, α′)

]}
, (6.29)

as the action taken in state i in the next iteration. Since a sample path also
contains information on the transition probabilities, it might be a good idea
to estimate Qd(i, α) for all state-action pairs rather than to estimate gd(i)
and pα(j|i)’s separately, when the Pα(j|i)’s are unknown for all α ∈ A(i),
i, j ∈ S.
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Conceptually, (6.28) is well defined. However, one problem arises imme-
diately in sample-path-based implementation: It is impossible to estimate
Qd(i, α′) on a sample path if the pair (i, α′) does not appear on the path
at all. Therefore, if a sample path is under a deterministic policy d = d(i),
d(i) ∈ A(i), i ∈ S, which maps a state to one action, this approach does not
work because the sample path only contains one state-action pair for each
state. That is, this approach applies only to random policies that pick up all
possible actions randomly.

However, we may implement the idea in policy iteration by slightly modi-
fying the deterministic policy to a so-called ε-greedy policy [238]: With prob-
ability 1 − ε, 0 < ε < 1, we choose actions according to (6.29), and with
probability ε we choose randomly (probably with an equal probability) other
actions. When ε is small enough, this policy is close to the deterministic pol-
icy produced by (6.29), yet it visits all the possible state-action pairs. The
deviation from the deterministic policy by a small probability ε is the price to
pay for exploring the behavior of other policies. An ε-greedy policy generated
from a greedy policy d (cf. (4.5)) will be denoted as dε:

dε(i) =
{

d(i), with probability 1− ε,
α, α �= d(i) , α ∈ A(i), with probability ε

|A(i)|−1 ,
(6.30)

where |A(i)| is the number of actions in A(i), and we assume that |A(i)| > 1.
Now, let us consider a sample path that visits all the state-action pairs,

denoted as {X0, A0, . . . , Xl, Al, . . . , }, where Al denotes the action taken at l.
Such a sample path may be generated by an ε-greedy policy. For simplicity,
we will drop the superscript “dε” in Qdε(i, α). From (6.28) and (6.13), we have

Q(i, α) = E

{ ∞∑

l=0

[f(Xl, Al)− η]
∣∣∣X0 = i, A0 = α

}
. (6.31)

The TD(0) approach for Q(i, α) is similar to that for estimating potentials
g(i), i ∈ S, except that the Q-factor has two variables α ∈ A(i) and i ∈ S. At
the lth transition, if Xl = i and Al = α, we have

Q(i, α) = [f(i, α)− η] + E [Q(Xl+1, Al+1)|Xl = i, Al = α] . (6.32)

Upon observing the transition from (Xl, Al) to (Xl+1, Al+1), we can use
[f(Xl, Al)− η]+Q(Xl+1, Al+1) as an estimate of Q(Xl, Al). Thus, from (6.12),
we obtain the following TD(0) algorithm:

Q(Xl, Al) := Q(Xl, Al)− κl {Q(Xl, Al)− [f(Xl, Al)− η + Q(Xl+1, Al+1)]}
= Q(Xl, Al) + κlδl, (6.33)

δl = [f(Xl, Al)− η] + Q(Xl+1, Al+1)−Q(Xl, Al), l = 0, 1, . . . . (6.34)
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where δl is the temporal difference (TD) at time l. Note that the Q-factors
thus obtained are for the ε-greedy policy dε, and they can be used as an
approximation for the Q-factors of policy d if ε is small. In particular, the
actions Al+1, l = 0, 1, . . . , in (6.33) also reflect the randomness of the ε-greedy
policy, as shown in (6.30). The procedure of (6.33) and (6.34) is illustrated in
Figure 6.6.
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:=⇒

Fig. 6.6. TD(0) for Q-factors Q(i, α)’s

A few observations are in order.

1. Because the action taken at each step depends only on the current state,
for the ε-greedy policy, we have

E [Q(Xl+1, Al+1)|Xl+1 = i] = g(i).

Then,

E [Q(Xl+1, Al+1)|Xl = i, Al = α] = E [g(Xl+1)|Xl = i, Al = α] .

Thus, (6.32) becomes

Q(i, α) = [f(i, α)− η] + E [g(Xl+1)|Xl = i, Al = α] . (6.35)

We can replace the Q(Xl+1, Al+1) in (6.33) and (6.34) with g(Xl+1). Be-
cause g(Xl+1) is an average of Q(Xl+1, Al+1), (6.35) may be more accurate
than (6.33). However, we need to estimate, or to calculate, and to store
g(i), i ∈ S, in addition to Q(i, α), i ∈ S and α ∈ A(i).
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2. If we only wish to estimate Q(i, α) for one particular state i, then we
can develop TD(0) algorithms for only Q(i, α), with α ∈ A(i), and g(j),
j �= i (without estimating the other Q-factors Q(j, β), β ∈ A(j), j �= i, or
β �= α, j = i).

3. η does not need to be estimated. If we apply the G-adjustment step (6.22)
in the algorithm, we can delete the item η in (6.33) and set

Q(Xl, Al) := Q(Xl, Al)− κl {Q(Xl, Al)− [f(Xl, Al) + Q(Xl+1, Al+1)]} .

Then, we fix a state i∗ ∈ S and an action α∗ ∈ A(i) and choose a large
number, G > 0, and add the following step to the algorithm:

If min
i∈S,α∈A(i)

|Q(i, α)| > G,

set Q(i, α) := Q(i, α)−Q(i∗, α∗), for all i ∈ S, α ∈ A(i). (6.36)

As shown in Example 6.5, the convergence rate may be slow, however.
4. Also, we may fix a reference state-action pair (i∗, α∗) and replace η by

Q(i∗, α∗) in (6.33) and obtain

δl = f(Xl, Al) + Q(Xl+1, Al+1)−Q(Xl, Al)−Q(i∗, α∗), l = 0, 1, . . . .
(6.37)

We expect that, with this algorithm, Q(i∗, α∗) indeed converges to η.

Extensions

There are a number of possible extensions to the TD method. Suppose that we
only need to estimate the potentials for a subset of the state space, denoted as
S0 ⊂ S. (For example, in Example 5.1, only gα(n, 1)’s need to be estimated.)
We can develop an algorithm that is similar to the K-step TD method, except
that the number of steps between two updates is random. On a sample path
{X0,X1, . . .}, we define K0,K1, . . . to be the sequence of time instants such
that XKl

∈ S0, l = 0, 1, . . . . For any XKl
= i ∈ S0, we have

g(i) = E

{ ∞∑

k=0

[f(XKl+k)− η]
∣∣∣XKl

= i

}
.

Therefore,

g(i) = E

⎧
⎨

⎩

Kl+1−1∑

k=Kl

[f(Xk)− η] + g(XKl+1)
∣∣∣XKl

= i

⎫
⎬

⎭ .

The TD(0) algorithm is then
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g(XKl
) := g(XKl

) + κlδl,Kl
,

δl,Kl
=

⎧
⎨

⎩

Kl+1−1∑

k=Kl

[f(Xk)− η]+g(XKl+1)−g(XKl
)

⎫
⎬

⎭ , l = 0, 1, . . . ,

(6.38)

where δl,Kl
is the temporal difference generated in the random period.

A close examination of δl,Kl
indicates that this approach in fact estimates

the difference of the potentials g(XKl
) − g(XKl+1) by

∑Kl+1−1
k=Kl

[f(Xk)− η].
Therefore, this algorithm can be viewed as estimating the perturbation real-
ization factors γ(XKl+1 ,XKl

) by the stochastic approximation approach.
This TD method does not work if S0 contains only one state i. In this

case, at all the embedded points, the system visits the same state XKl
= i,

l = 0, 1, . . . . The periods between two embedded points Kl and Kl+1 are
regenerative points and therefore the mean of

∑Kl+1−1
k=Kl

[f(Xk)− η] is zero
and we would get g(i) = 0. Indeed, as we already know that TD methods for
the average-reward problem only estimate the differences of the potentials,
one cannot estimate the absolute value of g(i) if S0 = {i}, i ∈ S.

S3

S2

S1

S

l

S3

S2

S1

S

l+1

p(j|i)

p(S3|S2)

Fig. 6.7. The State Aggregation

In the Q-factor approach, the potential in a state i, g(i), is “split” into a
number of Q(i, α)’s. From (6.31) and (6.13), we have
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g(i) =
∑

α∈A(i)

pi(α)Q(i, α),

where pi(α) is the probability that action α is taken in state i.
A dual approach is that we can aggregate a few potentials together. For

example, we may partition the state space S into S0 subsets: S = ∪S0
k=1Sk,

Sk ∩ Sk′ = ∅, k, k′ = 1, 2, . . . , S0. Each subset represents an aggregated state
(see Figure 6.7). Assume that the aggregated states form a Markov chain.
(This is a very strong assumption!) Suppose that the aggregated Markov chain
is in the steady state. We may define the aggregated potentials as

g(Sk) := E

{ ∞∑

l=0

[f(Xl)− η]
∣∣∣X0 ∈ Sk

}
.

Apparently, we have
g(Sk) =

∑

i∈Sk

π(i|Sk)g(i), (6.39)

where π(i|Sk) = π(i)∑
j∈Sk

π(j)
is the conditional steady-state probability of i

given that i ∈ Sk and π(i) is the steady-state probability of state i. For the
special case of Sk = S, we have g(S) =

∑
j∈S π(j)g(j) = 0, which is true

because g(S) = E {
∑∞

l=0 [f(Xl)− η] |X0 ∈ S} = 0 in the steady state.
Consider a Markov chain {X0,X1, . . .}. Set S(i) = Sk if i ∈ Sk. Then, we

have the TD(0) algorithm for the aggregated potentials:

g(S(Xl)) := g(S(Xl)) + κlδl, (6.40)

δl = [f(Xl)− η + g(S(Xl+1))− g(S(Xl))] , l = 0, 1, . . . , (6.41)

where δl is the temporal difference, expressed in the reward function of the
original Markov chain.

Further extensions are possible. For example, we can combine the above
two approaches, i.e., the state aggregation and sub-state-space approaches,
together. That is, we may choose a subset of the aggregated states and combine
(6.38) and (6.41) together. Another possible extension is to the event-based
optimization problem discussed in Chapter 8. An event is defined as a set of
state transitions. We can define the potential associated with an event a in the
steady state, g(a), as g(a) := E {

∑∞
l=0 [f(Xl)− η] |a} . However, developing

the corresponding TD algorithms like (6.40) and (6.41) for g(a) is a challenging
task. See Chapter 8 and Problem 6.17 for more discussion.

6.2.3 TD Methods for Performance Derivatives

As shown in Equations (3.36), (3.39), (3.44), and (3.45), the performance
derivatives of η in the direction of ΔP = P ′ − P can be expressed as the
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mean of some random variables. Therefore, TD algorithms can be developed
for estimating performance derivatives using these formulas. This is a new
research area and few results exist. We only discuss a few cases to introduce
the ideas.

Markov Chains

As an example, we study the performance derivative formula (3.45)

dηδ

dδ
=

E
{∑um+1−1

k=um
[f(Xk)− η] r̂k

}

E [um+1 − um]
(6.42)

= E ([f(Xk)− η] r̂k) , (6.43)

where

r̂k =
k∑

l=um(k)

Δp(Xl|Xl−1)
p(Xl|Xl−1)

,

and um, m = 0, 1, . . . , are a sequence of regenerative points with X0 = i∗ ∈ S,
u0 = 0, and um+1 = min {n : n > um,Xn = i∗}, and for any integer k ≥ 0,
we define an integer m(k) such that um(k) ≤ k < um(k)+1.

Two algorithms can be developed based on (6.42) and (6.43). With
(6.42), we can develop an algorithm that updates at every regenerative pe-
riod. Note that the denominator E [um+1 − um] is easy to estimate with
any standard algorithm. We develop an algorithm for the numerator vδ :=
E

{∑um+1−1
k=um

[f(Xk)− η] r̂k

}
as follows:

vδ := vδ + κlδl, l = 0, 1 . . . ,

δl =
ul+1−1∑

k=ul

[f(Xk)− η] r̂k − vδ. (6.44)

This follows the standard algorithm (6.12) for estimating the mean of a ran-
dom variable.

With (6.43), we can develop an algorithm that updates at every state
transition.

dηδ

dδ
:=

dηδ

dδ
+ κlδl, l = 0, 1, . . . ,

δl = [f(Xl)− η] r̂l −
dηδ

dδ
. (6.45)
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This algorithm differs from (6.12) in that the observations [f(Xl)− η] r̂l are
not independent. The proof of the convergence of this algorithm is yet to be
done.

Other algorithms can be developed based on other performance derivative
formulas, e.g., (3.36), (3.39), and (3.44).

Queueing Systems

To develop TD-based algorithms for performance derivatives of queueing sys-
tems, we need to use performance derivative formulas expressed in the form
of a mean of a random variable. In this subsection, we develop such a formula
for an M/G/1 queue and use it as an example to illustrate the idea. (Prob-
lem 6.21 contains more discussion on the performance derivative formulas of
queueing networks expressed in the form of a mean.)

�r1,1

r1,2

r1,3 r1,4

Δr1,1

Δr1,2 Δr1,3

Δr1,4

Δr2,1

T1,1 T1,2 T1,3 T1,4 T2,1

Fig. 6.8. The Response Times in an M/G/1 Queue

We take the mean response time (the length of the time period between
the arrival and the departure times of a customer) as the system performance,
and a sample path of an M/G/1 queue is shown in Figure 6.8. We apply PA
to the sample path to obtain the desired performance derivative formula.

Let the service time be an i.i.d. random variable, and denote it as s =
F−1(ξ, θ), with ξ being a uniformly distributed random variable in [0, 1) and
θ being a parameter. Figure 6.8 illustrates the first busy period in which there
are four customers served. Let Tk,i, k, i = 1, 2, . . . , be the departure time of
the ith customer in the kth busy period, and sk,i be its service time and rk,i be
its response time. We have sk,i = F−1(ξk,i, θ), where ξk,i, k, i = 1, 2, . . . , are
i.i.d. random variables uniformly distributed in [0, 1). Let nk be the number
of customers served in the kth busy period, and consider a sample path with
K busy periods. The state process {Xt, t ≥ 0} is a regenerative process with
the starting points of each busy period as the regenerative points. Thus, the
mean response time is

r̄(θ) = lim
K→∞

∑K
k=1

∑nk

i=1 rk,i∑K
k=1 nk

=
E [

∑nk

i=1 rk,i]
E [nk]
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= lim
K→∞

1
LK

K∑

k=1

nk∑

i=1

rk,i

= lim
K→∞

rK(θ),

where LK =
∑K

k=1 nk is the number of customers served in the first K busy
periods and

rK(θ) =
1

LK

K∑

k=1

nk∑

i=1

rk,i. (6.46)

The perturbation in sk,i due to the change in θ can be obtained by the inverse
transform method (2.98):

Δsk,i =
∂F−1(ξk,i, θ)

∂θ

∣∣∣∣
ξk,i=F (sk,i,θ)

Δθ.

The perturbed sample path can be constructed by PA (see Example 2.4), and,
as shown in Figure 6.8, the perturbation of the response time rk,i is

Δrk,i = ΔTk,i =
i∑

l=1

Δsk,l.

The partial sample derivative of rk,i (which implicitly depends on ξk,i) with
respect to θ (keeping ξk,i fixed) is

∂rk,i

∂θ
=

i∑

l=1

∂sk,l

∂θ
=

i∑

l=1

{
∂F−1(ξk,l, θ)

∂θ

∣∣∣∣
ξk,l=F (sk,l,θ)

}
.

Thus, from (6.46) we have

drK(θ)
dθ

=
1

LK

K∑

k=1

nk∑

i=1

i∑

l=1

∂sk,l

∂θ
.

This is the PA-based sample derivative of rK(θ) with respect to θ based on K
busy periods. It is proved in [51] (see Problem 2.32) that this sample derivative
is strongly consistent, i.e., we can exchange the order of “lim” and “ d

dθ” in
the following equation:

dr̄(θ)
dθ

=
d

dθ

{
lim

K→∞
rK(θ)

}
= lim

K→∞

drK(θ)
dθ

= lim
K→∞

{
1

LK

K∑

k=1

nk∑

i=1

i∑

l=1

∂sk,l

∂θ

}
(6.47)

=
E

[∑nk

i=1

∑i
l=1

∂sk,l

∂θ

]

E [nk]
.
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Next, we specifically assume that θ is the mean service time. By the stan-
dard queueing theory [169] (cf. Problem C.2), we have E(nk) = 1/(1 − λθ),
with λ being the arrival rate. Thus, we have

dr̄(θ)
dθ

= E

{
(1− λθ)

(
nk∑

i=1

i∑

l=1

∂sk,l

∂θ

)}
. (6.48)

From (6.48), we can use

h
(r)
k := (1− λθ)

(
nk∑

i=1

i∑

l=1

∂sk,l

∂θ

)
(6.49)

obtained in any busy period (any k = 1, 2, . . .) as an unbiased estimate of dr̄(θ)
dθ .

If λ is unknown, it can be easily estimated by the average of the inter-arrival
times. With h

(r)
k , we may develop a TD algorithm estimating the performance

derivative as follows:

dr̄(θ)
dθ

:=
dr̄(θ)
dθ

+ κkδk, k = 1, 2, . . . ,

δk = h
(r)
k − dr̄(θ)

dθ
.

This algorithm updates in every busy period and the observations h
(r)
k s, k =

1, 2, . . . , are independent of each other.
Equation (6.47) shows that the average of

h
(r)
k,i :=

i∑

l=1

∂sk,l

∂θ
(6.50)

calculated at the ith service completion time of the kth busy period, converges
to dr̄(θ)

dθ as the number of the customers served goes to infinity (strong consis-
tency). Therefore, at each service completion time, we can simply use h

(r)
k,i as

an estimate of dr̄(θ)
dθ . With h

(r)
k,i , we may develop a TD algorithm estimating

the performance derivative as follows:

dr̄(θ)
dθ

:=
dr̄(θ)
dθ

+ κk,iδk,i, k = 1, 2, . . . , i = 1, 2, . . . , nk,

δk,i = h
(r)
k,i −

dr̄(θ)
dθ

.

In the algorithm, the transition times are indexed by both k and i, with k
indexing the busy period and i indexing the departures in each busy period.
The algorithm updates at every departure time; however, the observations
h

(r)
k,is in the same busy period k are not independent.
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6.3 TD Methods and Performance Optimization

The TD algorithms introduced in the previous section enable us to estimate
the performance potentials and Q-factors of a policy, as well as the perfor-
mance derivatives. These quantities can be used in performance optimization,
as shown in the previous chapters. We can also apply stochastic approxima-
tion methods to find the optimal policy directly. In PA-based algorithms,
local optimal policies can be obtained by finding the zeros of the performance
derivatives; and for Markov decision processes, optimal policies can be ob-
tained by finding the solutions to the optimality equations.

6.3.1 PA-Based Optimization

PA-based gradient estimates can be used together with stochastic approxima-
tion methods to find the local optimal policies (parameters). Any of the PA
algorithms in Section 3.2.2 and Chapter 2 can be used in optimization. As
shown in Section 3.3.2, if we run the system long enough to get an accurate
estimate of the gradient, the approach is similar to the standard gradient-
based methods for deterministic systems [23]. In this section, we will focus on
the approaches based on short-term estimates and stochastic approximation
techniques.

Markov Chains

We consider the same parameterized space of transition probability matrices
as discussed in Algorithm 3.4 in Section 3.2.2. We recall that the transition
probability matrices are denoted as Pθ = [pθ(j|i)], i, j ∈ S, and their corre-
sponding long-run average rewards are ηθ = πθf . We choose a reference state
i∗, set g(i∗) = 0 and X0 = i∗, and define a sequence of regenerative points by
u0 = 0, and uk+1 = min {n : n > uk,Xn = i∗}. Furthermore, for any integer
n ≥ 0, we define an integer m(n) such that um(n) ≤ n < um(n)+1.

With this setting, (3.49) and (3.48) take the following form

dηθ

dθ
= E

{[
d
dθpθ(Xn+1|Xn)
pθ(Xn+1|Xn)

]
ŵn+1

}
(6.51)

= E {[f(Xn)− ηθ] r̂n} . (6.52)

ŵn+1 =
um(n+1)+1−1∑

l=n+1

[f(Xl)− ηθ] ,

and

r̂n =
n∑

l=um(n)

d
dθpθ(Xl|Xl−1)
pθ(Xl|Xl−1)

.
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From Equations (6.51) and (6.52), at each transition time, we can use
either

[
d

dθ pθ(Xn+1|Xn)

pθ(Xn+1|Xn)

]
ŵn+1 or [f(Xn)− η] r̂n as an unbiased estimate of dηθ

dθ .
Then, we may apply the Robbins-Monro algorithm (6.1) or (6.3) with step
sizes (6.10) to find the zero points of the gradient (as a function of θ), i.e., the
local optimal points of ηθ. For example, from (6.52), we can design a recursive
algorithm that updates θ at every state transition time n as follows

θn+1 = θn + κn [f(Xn)− ηθ] r̂n, (6.53)

where θn is the value of the system parameter θ used at the nth transition.
In (6.53), we need to estimate ηθ too. Because E [f(Xn)] = ηθ, ηθ can be
estimated by the standard stochastic approximation algorithm (see (6.17)).
This leads to the following algorithm [197]:

{
θn+1 = θn + κn [f(Xn)− η̂n] r̂n,
η̂n+1 = η̂n + �κn [f(Xn)− η̂n] , (6.54)

where η̂n is the estimate of ηθ at the nth transition, and � adjusts the step
sizes for estimating ηθ. It is proved in [197] that, under some conditions, this
algorithm converges to a point at which d

dθηθ = 0.
In algorithm (6.54), we update the parameter θ at each transition. With

such an algorithm, the system never runs under the same policy (parameter)
even for a few transitions. We may also develop an algorithm that updates the
parameter in each regenerative period (between two visits to state i∗). This
depends on the second equation of (3.48):

dηθ

dθ
=

E
{∑um+1−1

k=um

(
d

dθ pθ(Xk+1|Xk)

pθ(Xk+1|Xk) ŵk+1

)}

E [um+1 − um]
.

Thus, we can use
∑um+1−1

k=um

(
d

dθ pθ(Xk+1|Xk)

pθ(Xk+1|Xk) ŵk+1

)
as an estimate of

{
E [um+1 − um] dηθ

dθ

}
. Note that E(um+1 − um) is a positive number. There-

fore, the zeros of
{
E [um+1 − um] dηθ

dθ

}
are the same as those of dηθ

dθ . We have
the following algorithm, which updates θ at the end of the mth regenerative
period:

{
θm+1 = θm + κm

∑um+1−1
k=um

(
d

dθ pθ(Xk+1|Xk)

pθ(Xk+1|Xk) ŵk+1

)
,

η̂m+1 = η̂m + �κm

∑um+1−1
k=um

[f(Xk)− η̂m] ,
(6.55)
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where for um ≤ k < um+1,

ŵk+1 =
um+1−1∑

l=k+1

[f(Xl)− η̂m+1] ;

m is the index of the regenerative period; θm is the value of the parameter used
in the mth period; and η̂m is the estimated average reward used in the mth
period, which is, in fact, obtained in the (m−1)th period. The second equation
in (6.55) is a variant of the standard stochastic approximation, because for
the average reward of the Markov chain in the mth period, ηθm

, we have

ηθm
(≈ η̂m) =

E
{∑um+1−1

k=um
f(Xk)

}

E [um+1 − um]
.

Again, it is proved in [197] that, under some conditions, this algorithm also
converges to the point at which d

dθηθ = 0.

Queueing Systems

As discussed in Section 6.2.3, in performance optimization, we need to ex-
press performance derivatives in the form of an expectation. As an example,
we discuss the optimization of an M/G/1 queue with the performance deriva-
tive estimates h

(r)
k in (6.49) and h

(r)
k,i in (6.50). In general, we consider the

performance function
η(θ) = r̄(θ) + C(θ),

with r̄(θ) being the mean response time and C(θ) being a known function
representing the associated cost. The estimate of dη(θ)

dθ obtained in the kth
busy period is

hk = h
(r)
k +

dC(θk)
dθ

,

and the estimate of dη(θ)
dθ obtained at the ith service completion time in the

kth busy period is

hk,i = h
(r)
k,i +

dC(θk,i)
dθ

.

It is not difficult to develop TD algorithms for finding the local optimal
points of η(θ) with hk or hk,i. With hk, θ is updated in every busy period,
and with hk,i, it is updated at every customer completion. This problem was
studied in [82, 83, 84]. It is proved in those papers that, under some conditions,
such algorithms indeed converge to local optimal points with probability 1.
In [84], the same framework is extended to the optimization of other types of
systems with a regenerative structure using PA-based gradient estimates.
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6.3.2 Q-Learning

One of the most important developments in reinforcement learning is the Q-
learning method for finding an optimal policy (see [238, 253] for problems with
discounted-reward criteria and [3, 25] for problems with average-reward crite-
ria.) We will briefly introduce the approach with the average reward problem.

The approach is based on the optimality equation in MDPs (4.7), which is
re-stated as follows. Consider a policy d̂ with average reward ηd̂ and potential
gd̂. Let η∗ be the optimal average reward. Then, d̂ is a gain-optimal policy
(i.e., ηd̂ = η∗) if and only if ηd̂ and gd̂ satisfy the Bellman equation:

ηd̂ + gd̂(i) = max
α∈A(i)

⎧
⎨

⎩

S∑

j=1

pα(j|i)gd̂(j) + f(i, α)

⎫
⎬

⎭ , i ∈ S. (6.56)

From the definition of the Q-factor (6.28), given any policy d ∈ D with
potentials gd(j), j ∈ S, and average reward ηd, for every state-action pair
(i, α) we have

ηd + Qd(i, α) =

⎧
⎨

⎩

S∑

j=1

pα(j|i)gd(j)

⎫
⎬

⎭ + f(i, α), α ∈ A(i), i ∈ S. (6.57)

Taking the maximum on both sides over the action space A(i), we get

ηd + max
α∈A(i)

Qd(i, α) = max
α∈A(i)

⎧
⎨

⎩

S∑

j=1

pα(j|i)gd(j) + f(i, α)

⎫
⎬

⎭ .

Applying this equation to the optimal policy d̂, we have

ηd̂ + max
α∈A(i)

Qd̂(i, α) = max
α∈A(i)

⎧
⎨

⎩

S∑

j=1

pα(j|i)gd̂(j) + f(i, α)

⎫
⎬

⎭ .

Comparing this equation with (6.56), we conclude that, for the optimal policy
d̂, we have

gd̂(i) = max
α∈A(i)

Qd̂(i, α).

Substituting this into (6.57) indicates that a gain-optimal policy d̂ satisfies
the optimality equation for Q-factors:

ηd̂ + Qd̂(i, α) =

⎧
⎨

⎩

S∑

j=1

pα(j|i)
[

max
β∈A(j)

Qd̂(j, β)
]⎫⎬

⎭ + f(i, α),

α ∈ A(i), i ∈ S. (6.58)
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Note that α can be any action in A(i). Equation (6.58) is the optimality
equation for Q-factors. There are

∑S
i=1 |A(i)| equations, each for one state-

action pair.
If pα(j|i), i, j ∈ S and α ∈ A(i), are known to us, then in principle (6.58)

can be solved numerically by iteration. For example, applying the stochastic
approximation algorithm (6.4) to equation (6.58), we may obtain an iterative
algorithm as follows.

Qk+1(i, α) := Qk(i, α) + κkδk, α ∈ A(i),

δk =
S∑

j=1

pα(j|i)
[

max
β∈A(j)

Qk(j, β)
]
−Qk(i, α)+f(i, α)−η̄, (6.59)

where η̄ is an estimate of the optimal average reward. We can estimate it
iteratively using the average reward of the “greedy” policy determined by
the actions with maxα∈A(i) Qk(i, α). Furthermore, we may simply remove η̄
and apply the G-adjustment method to keep Qk(i, α) finite, because only the
relative values of the Q-factors matter. We may also set a particular Qk(i∗, α∗)
to be zero or η̄, as we did for the Q-factors in Section 6.2.2. We expect that the
algorithm in (6.59) with any of these modifications converges to the solution
to the optimality equations of Q-factors (6.58).

When we do not know the pα(j|i)’s exactly, we need to observe the state
transitions on a sample path to get the information about these transition
probabilities. The sample path can be obtained by running a real system,
or by simulation. In simulation, we may use the system structure (e.g., for
queueing systems) to simulate the system, without knowing the exact values of
pα(j|i)’s. The TD approach combines the stochastic approximation approach
(6.59) with sample-path information to find the solution to (6.58).

First, we note that in the optimality equation (6.58) and in the iterative
algorithm (6.59) we need the Q-factors for all the state-action pairs (not only
the action with the maximum Q-factor for a state); thus, we need to follow a
sample path that visits all the state-action pairs to estimate the Q-factors for
the optimal policy.

The basic idea is as follows. Suppose that α is taken at time l with Xl = i.
Then,

E

{[
max

β∈A(Xl+1)
Q(Xl+1, β)

]∣∣∣∣Xl = i, Al = α

}
=

S∑

j=1

pα(j|i)
[

max
β∈A(j)

Q(j, β)
]
.

Therefore, we may use maxβ∈A(Xl+1) Q(Xl+1, β) as a sample-path-based es-
timate of the right-hand side of the above equation. The sample-path-based
version of (6.59) is
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Q(Xl, Al) := Q(Xl, Al) + κlδl,

δl = max
β∈A(Xl+1)

Q(Xl+1, β)−Q(Xl, Al) + f(Xl, Al)− η̄. (6.60)

That is, at time l, we update one Q-factor Q(Xl, Al) according to (6.60); this
is illustrated in Figure 6.9.

The above general discussion leads to a number of TD algorithms discussed
below; they differ in the way of handling the constant term η̄ in (6.60).
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Fig. 6.9. Q-Learning for the Q-factors of the Optimal Policy

R-Learning

The R-learning algorithm proposed in [195] is one of the algorithms based on
(6.60). (The word “R-learning” may be chosen to distinguish it from the Q-
learning method, which is essentially based on the same idea but for discounted
reward problems.) In R-learning, we observe a sample path with any policy
that involves all the state-action pairs. (Such a policy is called a behavior
policy; an example is the ε-greedy policy.) The Q-factors are updated according
to (6.60). The optimal average reward η̄ is also estimated from the sample path
recursively. Because we expect that the algorithm converges to the optimal
policy, we should count only these steps that eventually constitute the optimal
policy. That is, we only update the average reward when the action taken is
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based on the “greedy” policy. Thus, it is proposed in [195] that we should
update η̄ as follows:

when Al = arg
{

max
α∈A(Xl)

Q(Xl, α)
}

set η̄k+1 := η̄k + κ′
kδk,

δk = f(Xl, Al)− η̄k + max
β∈A(Xl+1)

Q(Xl+1, β)−Q(Xl, Al),

where κ′
k, k = 1, 2, . . . , are the step sizes, the subscript k indicates that the

indexes of the iterations in η̄ are different from those of the state transitions.
When the Q-factors approach the solution to the optimality equation, the cor-
responding “greedy” policy approaches the optimal policy, and the estimated
average reward η̄k approaches its optimal value η∗. The temporal difference
δk used in the update can be explained by (6.58).

There has been not much work on this algorithm in the literature. The
convergence of η̄ to η∗ might be slow because it has to wait until a “greedy”
action to make an update. We present the algorithm here because it follows
naturally from (6.60). As we expect, the algorithm can be simplified in the
sense that η∗ does not need to be estimated, which is discussed below.

Q-Learning Based on Relative Values

As we have always emphasized, the potentials, or their variant Q-factors, are
meaningful only up to an additive constant. In particular, the optimal policy
does not change if all the Q-factors Q(i, α) are added by a constant. Therefore,
similar to (6.21) for potentials, we may ignore the η̄ in (6.60) and set

δl = max
β∈A(Xl+1)

Q(Xl+1, β)−Q(Xl, Al) + f(Xl, Al),

and
Q(Xl, Al) := Q(Xl, Al) + κlδl. (6.61)

Note that we need to add the G-adjustment step (6.36) to the numerical
algorithm to avoid the estimates going to infinity.

Another way to keep the Q-factors finite is to use a reference state-action
pair (i∗, α∗) and set Q(i∗, α∗) = η∗. We have (cf. (6.24) for potentials)

δl = max
β∈A(Xl+1)

Q(Xl+1, β)−Q(Xl, Al) + f(Xl, Al)−Q(i∗, α∗). (6.62)

A similar algorithm is suggested in [25]: We only pick up one reference state
i∗ (not action), and at every step we subtract a constant maxα∈A(i∗) Q(i∗, α).
In other words, we set maxα∈A(i∗) Q(i∗, α) = η∗. Thus, the temporal difference
is

δl = max
β∈A(Xl+1)

Q(Xl+1, β)−Q(Xl, Al) + f(Xl, Al)− max
α∈A(i∗)

Q(i∗, α). (6.63)
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The convergence of the algorithm (6.61) and (6.63) to the optimal policy is
given in [3]. (The minimization problem is considered there, but the principles
are the same.)

Discussion

Compared with the numerical iterative algorithm (6.59), the Q-learning al-
gorithms combine numerical methods with simulation (or the sample-path-
based observations). Specifically, the maxβ∈A(i) Q(i, β) part in (6.60) is still
based on numerical calculation, while the effects of the transition probabilities
pα(j|i)’s are estimated on a sample path. Strictly speaking, the Q-learning al-
gorithm is not a “sample-path-based learning” algorithm, or only a “partially
sample-path-based” learning algorithm, because the sample path is only used
in estimating the transition probabilities, and the update of Q-factors (the
“learning” part) is based on the numerical method. In implementing the al-
gorithm, the behavior policy used on the sample path is fixed, and it can be
any one that visits all the state-action pairs. The sample path is only used
to provide the information for transition probabilities associated with all the
actions; it is not used to gather information for performance comparison.

When pα(j|i)’s are known, the optimal Q-factors can be obtained recur-
sively by the numerical method (6.59). However, this numerical algorithm only
serves illustrative purposes, because a more efficient numerical algorithm (the
value iteration) based on performance potentials exists (see Section 6.3.4). In
summary, Q-learning is useful when the system transition probabilities under
different actions are unknown but a sample path of the system visiting all
state-action pairs is available.

In both R-learning and Q-learning with relative values, the sample path
can be under any behavior policy. The convergence property and speed depend
heavily on the sample path. The policy may be even time varying as long as
the sample path visits all the state-action pairs. As we want to concentrate
on important states and actions, we may use the ε-greedy policy. That is, at
the lth step, with probability 1− ε, 0 < ε < 1, we choose the action

αl ∈ arg
{

max
β∈A(Xl)

Q(Xl, β)
}

, (6.64)

where Q(Xl, β) is the estimate of the Q-factor at the lth step, and with prob-
ability ε we choose all the other actions randomly with an equal probability.
In this way, the policies on the sample path vary and converge to an ε-greedy
optimal policy. In this sense, the algorithm is of an “on-line learning” nature
(see the discussion in the next section). The policy used on the sample path
improves as the algorithm is being implemented.

6.3.3 Optimistic On-Line Policy Iteration

In this subsection, we introduce two “on-line” optimization algorithms based
on the TD methods. They are similar to the two Q-learning algorithms
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presented in the last subsection. However, the “on-line” nature implies that
the sample path used in the learning process eventually converges to the opti-
mal policy (in SARSA, this is true except for a small ε probability). In other
words, the performance of the sample path gradually improves towards the
optimal value.

With Q-factors: SARSA

The SARSA (stands for “State-action-reward-state-action”) algorithm for dis-
counted reward problems was proposed in [223, 237], and was further discussed
in, e.g., [238, 25]. Here, we will discuss SARSA for average reward problems.
Few results exist and the discussion is brief and of an exploratory nature.

This approach is based on the idea that if the sample path is generated
according to the (time varying) ε-greedy policies following (6.64), the policies
may converge to the optimal one if the Q-factors are accurately estimated, and
there is no need to implement maxβ∈A(j) Q(j, β) in (6.60). (The Q-learning
method is to find the solution to the optimality equation for Q-factors (6.58).)
The Q-factors of the policies can be estimated by the TD algorithm (6.33)
and (6.34) or (6.37). This approach is similar to the on-line potential-based
policy iteration except that it is based on the estimated Q-factors Q(i, α),
α ∈ A(i), i ∈ S, rather than on the estimated potentials g(i) and the transition
probabilities pα(j|i), i, j ∈ S. Of course, we still need to use a random policy
that visits all the state-action pairs to generate the sample path in order to
estimate the Q(i, α) for all i ∈ S and α ∈ A(i).

SARSA is a very aggressive approach in implementing the above ideas.
This approach may start with any initial values of Q(i, α)’s, i ∈ S and α ∈
A(i). At time l, l = 0, 1 . . . , an action Al is chosen from the ε-greedy policy
based on (6.64). This corresponds to the “policy improvement” step in policy
iteration. This action determines the transition to Xl+1; after the transition,
the Q-factor Q(Xl, Al) is updated according to

Q(Xl, Al) := Q(Xl, Al) + κlδl = Q(Xl, Al)
+κl {Q(Xl+1, Al+1)−Q(Xl, Al) + f(Xl, Al)−Q(i∗, α∗)} , (6.65)

with (i∗, α∗) being a pair of the reference state-action. This corresponds to
the “policy evaluation” step in policy iteration procedures.

What this algorithm essentially does is as follows: At every step, it learns
and updates the values of Q-factors; then, it uses the updated estimation of the
Q-factors immediately in determining the greedy action. That is, it updates
the policy every step on-line. Therefore, it is very “optimistic” in terms of
learning. The convergence of such an aggressive algorithm is not guaranteed.
If it does converge, the sample path reaches the optimal deterministic policy,
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perturbed by a small probability ε. One reason for SARSA to converge is that
the update of the Q-factor at a transition usually changes the Q-factor only
by a very small amount; therefore, this update usually will not change the
greedy policy at the next transition. Thus, we may expect that, with SARSA,
a policy is in fact used for a relatively long period before it changes to another
one, and the Q-factors can be estimated with a reasonable accuracy.

With Potentials

If we know the transition probabilities (or their relative values, as shown in
Example 5.1), then we may only need to estimate the potentials rather than
the Q-factors to implement optimization. This results in an algorithm that is
a combination of the TD(0) for potentials (6.15) and SARSA.

The approach starts with any initial values of g(i)’s, i ∈ S. At time l,
l = 0, 1 . . . , an action Al is chosen from the greedy policy (no need to be ε-
greedy) according to maxα∈A(i)

∑
j∈S pα(j|i)g(j) + f(i, α). After a transition

to Xl+1, the potential is updated according to

g(Xl) := g(Xl) + κl {g(Xl+1)− g(Xl) + f(Xl, Al)− g(i∗)} , (6.66)

where i∗ is a chosen reference state.
Essentially, this optimization algorithm applies the TD(0) algorithm (6.15)

to update the potentials; however, it does not wait until accurate estimates
are obtained before it implements policy improvement; instead, it updates the
policy at every step, immediately after one update is made for one potential.
Thus, this algorithm is also very “optimistic”. Again, the convergence is not
guaranteed. Similar to the situation of SARSA, hopefully, the algorithm is
stable, because at each step only one potential is updated slightly, and in
most cases the “greedy” policy obtained after one step may not change at all.

Obviously, there are a number of variants of this algorithm and SARSA,
which may improve the convergence property. For example, we may use the K-
step TD(0), or we may update the potentials a few steps before implementing
policy iteration.

6.3.4 Value Iteration

As we mentioned, Q-learning algorithms rely on sample paths to obtain infor-
mation about the transition probabilities pα(j|i)’s; these algorithms obtain the
temporal differences and use them in stochastic approximation to approach
the solution to the optimality equation of the Q-factors (6.58). If we know
pα(j|i)’s, then we can develop pure numerical methods for the solution to the
optimality equations. Now, we briefly discuss the ideas without exploring the
convergence nature of the numerical algorithms.
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If we set κk = 1 in (6.59), we get

Q(i, α) :=

⎧
⎨

⎩

S∑

j=1

pα(j|i)
[

max
β∈A(j)

Q(j, β)
]⎫⎬

⎭ + f(i, α)− η̄. (6.67)

Because η̄ is unknown, we need to use the Q-factors in relative values. Thus,
we pick up a particular state-action pair (i∗, α∗) and set Q(i∗, α∗) = η∗. We
have

Q(i, α) :=

⎧
⎨

⎩

S∑

j=1

pα(j|i)
[

max
β∈A(j)

Q(j, β)
]⎫⎬

⎭ + f(i, α)−Q(i∗, α∗). (6.68)

If the algorithm converges, we may expect that it converges to a solution to
the optimality equation (6.58) with Q(i∗, α∗) = η∗.

The algorithm similar to (6.63) is (or equivalently we set maxα∈A(i∗)

Q(i∗, α) = η̄ in (6.67)):

Q(i, α) :=

⎧
⎨

⎩

S∑

j=1

pα(j|i)
[

max
β∈A(j)

Q(j, β)
]⎫⎬

⎭+f(i, α)− max
α∈A(i∗)

Q(i∗, α), (6.69)

in which we only choose a reference state i∗.
However, there are

∑
i∈S |A(i)| Q-factors. In fact, when pα(j|i)’s are

known, we may work directly on the optimality equation for potentials (6.56).
Applying the numerical recursive algorithm (6.3) to (6.56) yields an algorithm
similar to (6.59):

gk+1(i) := gk(i) + κk

⎧
⎨

⎩ max
α∈A(i)

{ S∑

j=1

pα(j|i)gk(j) + f(i, α)
}
− gk(i)− η̄

⎫
⎬

⎭ ,

(6.70)
where η̄ is the average reward of the greedy policy determined with the current
values of g(i)’s by using maxα∈A(i)

{∑S
j=1 pα(j|i)g(j) + f(i, α)

}
, i ∈ S. We

may set κk = 1 for all k and get

g(i) := max
α∈A(i)

⎧
⎨

⎩

S∑

j=1

pα(j|i)g(j) + f(i, α)

⎫
⎬

⎭− η̄,

Again, it is inconvenient to determine η̄, and we need to use the relative values.
Thus, we may pick any state as a reference state i∗ and set g(i∗) = η∗. Then,
we obtain the following algorithm

g(i) := max
α∈A(i)

⎧
⎨

⎩

S∑

j=1

pα(j|i)g(j) + f(i, α)

⎫
⎬

⎭− g(i∗), i ∈ S, (6.71)
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where g(i∗) is updated in the same way:

g(i∗) := max
α∈A(i∗)

⎧
⎨

⎩

S∑

j=1

pα(j|i∗)g(j) + f(i∗, α)

⎫
⎬

⎭− g(i∗).

This is called the value iteration algorithm in the literature. It is the same as
the one discussed in [21], which takes the form

h(i) := max
α∈A(i)

⎧
⎨

⎩

S∑

j=1

pα(j|i)h(j) + f(i, α)

⎫
⎬

⎭

− max
α∈A(i∗)

⎧
⎨

⎩

S∑

j=1

pα(j|i∗)h(j) + f(i∗, α)

⎫
⎬

⎭ ,

h(i) ≡ g(i)− g(i∗), i ∈ S,

with “max” changed to “min”, because performance minimization is discussed
there. The proof of convergence for the algorithm is not difficult and we re-
fer readers to any existing text book on MDPs or dynamic programming.
Different versions of value iteration exist (e.g., [216]).

It is non-traditional to introduce value iteration together with reinforce-
ment learning. We, however, do so because both are methods for finding so-
lutions to the optimality equations. In addition, we can see that the value
iteration algorithm is a special case of the stochastic approximation algo-
rithm (6.70) with step sizes κk = 1. In a sense, Q-learning is half numerical
and half sample path based (for information on transition probabilities).

The algorithm indeed converges although the standard condition (6.11),
or (6.10), does not hold (no random noise in this case, however). Of course, a
more general value iteration algorithm for (6.71) is

gk+1(i) := gk(i) + κk

⎧
⎨

⎩ max
α∈A(i)

{ S∑

j=1

pα(j|i)gk(j) + f(i, α)
}
− gk(i∗)− gk(i)

⎫
⎬

⎭

for all i ∈ S, with the step sizes κk chosen properly, which may affect the
convergence rate of the value iteration algorithm.

The computation complexity of both (6.68) and (6.71) is about the same:
For each state, we need to do one “max” operation and for each state-action
pair, we need to do one summation

∑S
j=1. The difference is that, in (6.68),

the “max” operation is implemented before the summation
∑S

j=1, and in
(6.71) the order is reversed. Both algorithms are equivalent. In fact, if we set
g(i) := maxα∈A(i) Q(i, α), i ∈ S, in (6.69), we get

Q(i, α) :=

⎧
⎨

⎩

S∑

j=1

pα(j|i)g(j)

⎫
⎬

⎭ + f(i, α)− g(i∗).
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Taking maxα∈A(i) on both sides of the above equation, we obtain (6.71).
Therefore, the value iteration algorithm based on potentials is simply a special
version of the value iteration algorithm based on Q-factors with a clever way
of saving memory space in which only maxα∈A(i) Q(i, α) is recorded for each
state i ∈ S.

6.4 Summary of the Learning and Optimization Methods

By and large, there are two approaches to performance optimization, as il-
lustrated in Table 6.3. The first one is to move step by step in the policy
(parameter) space towards an optimal policy (or optimal parameters). This
approach includes the policy iteration method for discrete policy spaces and
the gradient-based methods for policy spaces with continuous parameters. The
second approach is to find a solution to the optimality equations, or to find
a zero point of the performance gradients. These two approaches are closely
related because the first approach can be viewed as a special way of finding a
solution to the optimality equations or finding a zero point of the gradients.
The difference is that in the first approach, at every step we are working on a
real policy in the policy space, while in the second approach, the intermediate
steps may not correspond to any policy.

Discrete Policy Spaces Continuous Policy Spaces

Moving Iteratively D1: Policy Iteration Based C1: Gradient Based

Finding Zeros D2: Opt. Eq. (6.56) and (6.58) C2: dηθ
dθ

= 0

Table 6.3. Different Learning and Optimization Approaches

If we have complete knowledge about the transition probabilities and the
reward functions for all the actions (or parameters), we may implement the
above two approaches analytically and/or numerically. If the transition proba-
bilities and/or the reward functions are not known, then different sample-path-
based or simulation-based learning methods have to be used. Most methods
combine the analytical and learning features together.

Let us first consider the problems with discrete policy spaces. We summa-
rize the methods in the first approach (D1 in Table 6.3):

1. When the transition probabilities and the reward functions are known, we
can use the standard policy iteration method discussed in Chapter 4; the
potentials can be calculated by using the numerical methods discussed in
Section 3.1.1; and the policy iteration algorithms produce a sequence of
policies that moves towards an optimal policy.
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2. Next, suppose that the matrix inversion in solving the Poisson equation is
not feasible, or the transition probability matrix is not completely known
(cf. Example 5.1 in Section 5.1), or the reward function is unknown but
the rewards can be observed.
a) We may first estimate the potentials of a policy accurately on a sample

path and then use them to implement policy iteration.
i. We may use the sample-path-based (Monte Carlo) algorithms dis-

cussed in Chapter 3 to estimate the potentials and then implement
policy iteration.

ii. We may use any of the TD methods discussed in Section 6.2.1 to
estimate the potentials and then implement the policy iteration.

b) We may update the policy while estimating the potentials before an
accurate estimate is obtained. (This is called “generalized policy iter-
ation” in [238].)
i. The sample-path-based (Monte Carlo) optimization algorithms

can be improved by using potential estimates with short sample
paths; because of the random errors in the estimates, stochastic
approximation techniques are used to make sure that the itera-
tions converge to an optimal policy. This leads to the “faster”
algorithms discussed in Section 5.3.2. This algorithm updates po-
tentials and policies in every regenerative period.

ii. A more aggressive algorithm is to apply the optimistic on-line
policy iteration algorithm with potentials (6.66). This algorithm
updates one potential estimate at every transition and uses the
potential estimates to update the action at every transition.

3. Now, suppose that the transition probability matrix is completely un-
known and the reward function is also unknown but the rewards can be
observed. In this case, we need to use the Q-factors (6.28).
a) We may first estimate the Q-factors of a policy accurately on a sample

path and then use them to implement the policy iteration. To do so,
we need to perturb the system a little bit to obtain a sample path
visiting all the state-action pairs (e.g., the ε-greedy policy).
i. We may use (6.31) to develop a Monte Carlo algorithm to estimate

Q(i, α), α ∈ A(i), i ∈ S.
ii. We may use any of the TD methods discussed in Section 6.2.2 to

estimate the Q-factors and then implement the policy iteration.
b) We may update the policy while estimating the Q-factors before an

accurate estimate is obtained. (That is, we may use the generalized
policy iteration.)
i. We may develop “faster” algorithms similar to those in Section

5.3.2 for potential-based policy iterations.
ii. A more aggressive algorithm is the SARSA algorithm, which up-

dates the Q-factors at every transition according to (6.65) and
updates the action according to the ε-greedy policy using these
Q-factor estimates in every transition.
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These policy-iteration-based learning and optimization methods are summa-
rized in Figure 6.10.

Analytical

(P,f known)

Learning g(i) Learning Q(i, α)

Temporal Difference Temporal Difference

Monte Carlo Monte Carlo

Long run

accurate est.

+ PI

Short run

noised est.

+SA +GPI

Long run

accurate est.

+ PI

Short run

noised est.

+SA +GPI

Long run

accurate est.

+ PI

Short run

noised est.

+SA +GPI

Long run

accurate est.

+ PI

Short run

noised est.

+SA +GPI

Policy

Iteration

(Ch.4)

GPI: Generalized Policy Iteration

PI: Policy Iteration

SA: Stochastic Approximation

(No matrix inversion, etc) (P completely unknown)

(Sec. 3.1.2) (Sec. 5.3) (Eq. (6.31)) (to be done)

(Sec. 6.2.1) (Sec. 6.3.3) (Sec. 6.2.2) (SARSA)

Solving

Poisson Eq.
or

by numerical

methods
for g

(Sec. 3.1.1)

Fig. 6.10. Policy-Iteration Based Learning and Optimization Methods

The following methods belong to the second approach (i.e., D2 in Table
6.3):

1. When the transition probabilities and the reward functions are known,
we can use the value iteration method discussed in Section 6.3.4, which is
a numerical method that produces a solution to the optimality equation
(6.56) iteratively.

2. When the transition probabilities are unknown, we can use the Q-learning
algorithms discussed in Section 6.3.2, which provide a solution to the
optimality equations for Q-factors (6.58). This requires a sample path
that visits all the state-action pairs.

These methods are summarized in Table 6.11.
Now, we consider the policy spaces with continuous parameters, denoted

as θ. PA-based optimization algorithms can be used.
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P, f known
(Numerically)

P unknown, f known
(Simulation + numerically)

Value Iteration

(Section 6.3.4)

Q-Learning

(Section 6.3.2)

Fig. 6.11. Finding a Solution to the Optimality Equations

1. When the transition probabilities and the reward functions are known,
we can first use formula (2.26) or (2.58) to calculate the performance
derivatives, and then we use them in the deterministic gradient-based
algorithm (3.51) to obtain a sequence of parameters that converge to the
optimal values.

2. Suppose that the system structure is not completely known. Then, sample-
path-based methods can be used.
a) The potentials can be estimated by the Monte Carlo method or the

TD methods; this is the same as what is discussed above in 2.a.i and
2.a.ii for the discrete state spaces.

b) The performance derivatives can also be estimated directly on a sam-
ple path by using equations (3.46), (3.47), (3.48), and (3.49).

c) The performance derivatives can be estimated by using the TD meth-
ods developed in Section 6.2.3.
Because of the estimation errors, the stochastic approximation-based
Robbins Monro algorithm has to be used in the gradient-based opti-
mization algorithm.

3. In 2.a, 2.b, and 2.c, the parameters θ are updated after an accurate esti-
mate of the performance gradient is obtained on a long sample path. The
method may be improved if we update the parameters based on noisy es-
timates of the gradients obtained from short sample paths, with the help
of stochastic approximation techniques. This leads to the two Robbins
Monro algorithms in Section 6.3.1: (6.55), which updates the parameters
in every regenerative period, and (6.54), which updates the parameters
at every transition. These algorithms can also be viewed as the Robbins
Monro algorithms for finding the zeros of the performance gradient func-
tion.

The PA-gradient-based learning and optimization methods are summarized
in Figure 6.12.
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Analytical

(P,f known)

Learning

g(i)

Learning
dη
dθ

directly

Finding a zero

of dη
dθ

Temporal Difference

Monte Carlo

Long run

accurate est.

+ PDF+GM

Long run

accurate est.

+ GM

Long run

accurate est.

+ PDF+GM

Long run

accurate est.

+ GM

Perf.

Derivative

Formula

(2.26)

+

Gradient

Methods

(3.51)

Updates every

regenerative

period: (6.55)

Updates every

transition

(6.54)

Short run

noisy est.

+ TD

PDF: Performance Difference Formula

GM: Gradient Methods

TD: Temporal Difference

(Sec. 3.1.2) (3.46)-(3.49)

(Sec. 6.2.1) (Sec. 6.2.3)

=⇒

↑

Fig. 6.12. PA-Gradient-Based Learning and Optimization Methods

PROBLEMS

6.1. Let us revisit the stochastic approximation algorithm (6.1) for the case
with the function f(x) known. In the proof of convergence, we have assumed
that the function is convex and df(x)

dx > 0. Consider the convex function f(x) =

x2 with a zero at x = 0 at which d(x2)
dx = 0. Modify the proof in the text to

fit this case.

6.2. Study the convergence property of the sequence xk, k = 0, 1, . . . , in
Example 6.1, for the following cases 1 > κ > 0, 2 > κ > 1, κ = 2, and κ > 2,
respectively, by using the algorithm illustrated in Figure 6.1.

6.3. The algorithm in (6.12) can be used to estimate the mean of a random
variable w. This has been verified for step sizes κk = 1

k+1 , k = 0, 1, . . . , in
Section 6.1.2.

a. Study the case for step sizes κk = 1
2(k+1) , k = 0, 1, . . . .
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b. Choose a few sequences of κk, k = 0, 1, . . . , that satisfy conditions (6.11)
or (6.10) and run a simulation to see if the sequences of xk, k = 0, 1, . . . ,
converge and compare their convergence speeds, if possible.

6.4. Let us revisit Section 6.1.2 “Estimating Mean Values”. Assume that the
step sizes satisfy

∑∞
k=0 κk =∞ and

∑∞
k=0 κ2

k <∞. Working on (6.12) recur-
sively, we may obtain

xk+1 = akx0 + ξk.

a. Derive an expression of ak and ξk in terms of κ0, . . . , κk and w0, . . . , wk.
b. Prove limk→∞ ak = 0, limk→∞ E(ξk) = E(w), and limk→∞ var(ξk) = 0.

6.5. Consider the estimation of the average reward of a continuous time
Markov process. Let {T0, T1, . . . , Tl, . . .} be the sequence of transition times
of the continuous Markov process with T0 = 0. The state in the time period
[Tl, Tl+1) is Xl, l = 0, 1, . . . , and set τl = Tl+1 − Tl, l = 0, 1, . . . . The reward
function is f(Xl) and the average reward is defined as

η = lim
l→∞

ηl, w.p.1, ηl :=
1
Tl

∫ Tl

0

f [X(t)] dt.

We wish to develop a recursive formula for ηl as follows:

ηl+1 = ηl + κl [f(Xl)− ηl] , l = 0, 1, . . . , with η0 = 0.

Please find the value of κl, l = 0, 1 . . . , in terms of Tl, etc.

6.6. Derive the TD(0) algorithm for the discounted performance criterion:

ηβ(i) = E

{ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

}
, 1 > β > 0.

6.7. TD (0) with random steps: For any two states i, j ∈ S, set S0 = {i, j}.
Consider a sample path of a Markov chain {X0, . . . , Xl, . . .}. Denote the time
sequence at which the Markov chain is in S0 as l0, l1, . . . , lk, . . . . We may set
g(i) = 0.

a. Develop a TD(0) algorithm for estimating g(j) by using the temporal
differences obtained in the periods from lk + 1 to lk+1, k = 0, 1, . . . .

b. Explain that the algorithm converges to the correct value, compare it with
the realization factor γ(i, j) = g(j)− g(i).

6.8. Consider a two-state Markov chain with transition probability matrix

P =
[

0.5 0.5
0.5 0.5

]

and reward function f(1) = 1 and f(0) = 0. We have η = 1
2 .
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a. What are the potentials for the two states?
b. Write a computer program applying algorithms (6.15), (6.22), and (6.24),

and observe the trends of the convergence of the sequences generated by
these algorithms. (For Algorithm (6.22), observe the trend of convergence
of g(1)− g(0).)

6.9. The TD(0) algorithm (6.15) and (6.16) can only determine the potentials
up to an additive constant. That is, starting from different initial values,
the algorithm converges to different sets of potentials that have the same
perturbation realization factors γ(i, j), i, j ∈ S.

a. Can we fix a reference state i∗ and set g(i∗) = 0 in the TD(0) algorithm
(6.15) and (6.16)?

b. If so, modify the algorithm.
c. Explain your algorithm using

g(i) = γ(i∗, i) = E

⎧
⎨

⎩

L(i∗|i)−1∑

l=0

[f(Xl)− η]

∣∣∣∣∣∣
X0 = i

⎫
⎬

⎭ .

d. Apply this algorithm to the Markov chain in Example 6.5.

6.10. Consider the modified algorithm (6.21).

a. Can we fix a reference state i∗ and set g(i∗) = 0 in (6.21), as we considered
in Problem 6.9? (To find the answer, apply it to the Markov chain in
Example 6.5.)

b. If not, why?

6.11. Derive an iterative numerical algorithm similar to the algorithm in
(6.20) for potentials by using Equation (3.4).

6.12. Consider a finite state discrete-time birth-death problem: The state
space is S = {0, 1, 2, . . . , S}. The state is the population n ∈ S. The tran-
sition probability from state n to n + 1 (the birth rate) is p(n + 1|n) = a,
n = 1, . . . , S − 1, and the death rate is p(n − 1|n) = b, n = 1, 2, . . . , S − 1,
a + b = 1; and p(1|0) = p(S − 1|S) = 1. Let the reward function be
f(n) = n. The performance is defined as the long-run average of the pop-
ulation η =

∑S
n=0 π(n)f(n), where π(n) denotes the steady-state probability

of state n, n = 0, 1, . . . , S.

a. Derive a formula expressing the performance η as a function of the birth
rate a.

b. Set a = 1
2 . Use the derivative formula (6.43) to derive the performance

derivative dη
da

∣∣∣
a= 1

2

.

c. Develop a TD(0) algorithm for estimating dη
da

∣∣∣
a= 1

2

.
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6.13. Consider a randomized policy dr. Denote A(i) :=
{
αi,1, . . . , αi,|A(i)|

}
,

where |A(i)| is the number of actions inA(i), i ∈ S. In state i, the system takes
action αi,k ∈ A(i) with probability pi,k, k = 1, 2, . . . , |A(i)|, and

∑|A(i)|
k=1 pi,k =

1, i ∈ S. If action α ∈ A(i) is taken in state i, then the transition probabilities
are pα(j|i), j ∈ S, and the performance function is f(i, α), i ∈ S. The Q-
factors are defined in (6.28) as follows

Qdr (i, α) =

⎧
⎨

⎩

S∑

j=1

pα(j|i)gdr (j)

⎫
⎬

⎭ + f(i, α)− ηdr , α ∈ A(i), i ∈ S,

where gdr (i), i ∈ S, are the performance potentials of the system under this
randomized policy dr.

a. Determine the performance function and transition probabilities for the
system under this randomized policy; derive the Poisson equation for it.

b. Prove that gdr (i) =
∑|A(i)|

k=1 pi,kQ
dr (i, αi,k).

c. Given a deterministic policy d(i) = α∗
i ∈ A(i), i ∈ S, we define an ε-

randomized policy: With probability 1 − ε the system takes action α∗
i ,

and with probability ε/(|A(i)| − 1) it takes any other actions in A(i),
i ∈ S. Let g(i) be the potentials of the deterministic policy d, and gε(i),
and Qε(i, α), α ∈ A(i), i ∈ S, be the potentials and Q-factors of the
ε-randomized policy. Prove

lim
ε→0

gε(i) = g(i), i ∈ S,

lim
ε→0

Qε(i, α∗
i ) = g(i), i ∈ S,

and

lim
ε→0

Qε(i, α) =

⎧
⎨

⎩

S∑

j=1

pα(j|i)g(j)

⎫
⎬

⎭ + f(i, α)− η, α �= α∗
i , i ∈ S.

6.14. Suppose that we can only control the actions in the states in a subset of
the state space S0 ⊂ S of a Markov chain, which is under a randomized policy
that visits all the state-action pairs when the state is in S0. Denote the time
sequence at which the Markov chain is in S0 as l0, l1, . . . , lk, . . . ; i.e., Xlk ∈ S0,
k = 0, 1, . . . . Develop a TD(0) algorithm for Q-factors Q(i, α), i ∈ S0, with
random steps K.

6.15. Develop a K-step algorithm for estimating the Q-factors (cf., (6.33) and
(6.34)).

6.16. In (6.33) and (6.34), we may set the Q-factor of a pair of the refer-
ence state-action to be zero; i.e., Q(i∗, α∗) = 0. Develop a TD(0)-learning
algorithm.
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6.17. We partition the state space S into S0 subsets: S = ∪S0
k=1Sk, Sk∩Sk′ =

∅, k, k′ = 1, 2, . . . , S0. Let π(i), i ∈ S, be the steady-state probability, and
π(i|Sk) = π(i)∑

j∈Sk
π(j)

be the conditional steady-state probability of i given

that i ∈ Sk. The potential associated with the aggregation Sk is defined as
(6.39):

g(Sk) =
∑

i∈Sk

π(i|Sk)g(i).

We wish to establish a Poisson equation for the aggregations:

g(Sk) =
S0∑

k′=1

p(Sk′ |Sk)g(Sk′) + f(Sk)− η, k = 1, 2, . . . , S0. (6.72)

a. According to their physical meanings, determine the transition probabil-
ities p(Sk′ |Sk) and the performance function f(Sk), k, k′ = 1, 2, . . . , S0.

b. Prove that the Poisson equation (6.72) holds for the aggregations if, for
any Sk′ , k′ = 1, . . . , S0, and any j ∈ Sk′ , we have

π(j)∑
j′∈Sk′ π(j′)

=

∑
i∈Sk

π(i)p(j|i)
∑

j′∈Sk′

∑
i∈Sk

π(i)p(j′|i) , k = 1, . . . , S0. (6.73)

c. Set

π(j|Sk′ ,Sk) =

∑
i∈Sk

π(i)p(j|i)
∑

j′∈Sk′

∑
i∈Sk

π(i)p(j′|i) .

Then (6.73) becomes π(j|Sk′ ,Sk) = π(j|Sk′). Prove that (6.73) is equiv-
alent to the following condition:

π(j|Sk′ ,Sk) is independent of k. (6.74)

d. Explain the meaning of π(j|Sk′ ,Sk) and condition (6.74).
e. Derive a TD(0) algorithm for g(Sk), k = 1, . . . , S0.
f. Explain that the algorithm developed in e) may not work if the condition

(6.74) does not hold.

6.18. In perturbation analysis of Markov chains, we have two Markov chains
with transition probability matrices P and P ′, respectively. Let ΔP = P ′−P
and Pδ = P +δΔP . Let ηδ be the long-run average reward of the Markov chain
with transition probability matrix Pδ. Assume that the reward function fδ is
the same as f for all 0 ≤ δ ≤ 1. Let π and g be the steady-state probability
and performance potential of the Markov chain with transition probability
matrix P . Then the directional derivative of ηδ is (2.23):

dηδ

dδ
= π(ΔP )g.

a. Write the performance derivative in the form of Q-factors.
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b. Suppose that we do not know the values of P and P ′ and only know
the corresponding actions. Develop a TD(0)-learning algorithm for the
performance derivative.

6.19. Develop two TD(0) algorithms, similar to (6.44) and (6.45), based on
the performance derivative formula (3.44).

6.20. Suppose that algorithms (6.62) and (6.63) converge to optimal Q-
factors. Are the following statements true? If so, please explain

a. With (6.62), when the algorithm converges, we have Q(i∗, α∗) = η∗, the
optimal performance.

b. With (6.63), when the algorithm converges, we have maxα∈A(i∗) Q(i∗, α) =
η∗.

6.21.∗ In this problem, we derive a performance derivative formula for closed
Jackson networks in the form of sample path expectation. Consider a closed
Jackson network consisting of M servers and N customers. The service times
of server i are exponentially distributed with mean s̄i = 1/μi, i = 1, 2, . . . ,M .
The state of the system is n = (n1, . . . , nM ), ni is the number of customers in
server i,

∑M
i=1 ni = N . Suppose that the system is in the steady state, and let

π(n) be the steady-state probability of state n. Denote μ(n) =
∑M

i=1 ε(ni)μi,
with ε(n) = 1 if n > 0 and 0 if n = 0. The system throughput is η =∑

all n π(n)μ(n), its derivative with respect to s̄v, v = 1, 2, . . . , N , is (2.109):

s̄v

η

∂η

∂s̄v
= −

∑

all n

π(n)c(n, v),

where c(n, v) is the realization probability of a perturbation of server v when
the system is in state n.

a. Consider a sample path of the system. Denote the sequence of transi-
tion times as T0, T1, . . . , Tl, . . . . Suppose that the system is in state n in
[Tl, Tl+1); i.e., Xl = n. Assume that, in this period, server v obtains an
(infinitesimal) perturbation. We define a perturbation realization index for
this perturbation as follows:

RI(l,Xl, v) =
{

1, if the perturbation is realized on the sample path,
0, otherwise;

and set ς(t) = RI(l,Xl, v) for t ∈ [Tl, Tl+1). Then, by definition, we have

E [RI(l,Xl, v)|Xl = n] = c(n, v),

where “E” denotes the expectation with respect to the probability space
generated by all the sample paths. Explain the following equation:
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s̄v

η

∂η

∂s̄v
= −E [RI(l,Xl, v)] = −E [ς(t)]

= lim
L→∞

1
TL

∫ TL

0

ς(t)dt, w.p.1. (6.75)

b. Can you determine the function ς(t) based on the sample path in Figure
2.18 of Chapter 2? (Note: ς(t) depends not only on the current state n,
but also on the future behavior of the system.)

c. Derive a sample-path-based estimate of the performance derivative by
using the above result.

d. Apply this equation (6.75) to a two-server closed Jackson network and ver-
ify the results. Can this be extended to networks with non-exponentially
distributed service times?

e. Derive a recursive algorithm (cf. Problem 6.5).
f. Discuss and compare your results with other algorithms.



Never follow the beaten track,
it leads only where others have
been before.

Alexander Graham Bell,
American (Scottish-born)

scientist and inventor,
(1847 - 1922)

7
Adaptive Control Problems as MDPs

Adaptive control and identification theory for stochastic systems was devel-
oped in the last few decades and is now very mature. Many excellent textbooks
exist, see e.g., [9, 165, 192, 193, 206]. There has been a continuing discussion
of what adaptive control is. In general, the problems studied in this area in-
volve systems whose structures and/or parameters are unknown and/or are
time-varying, However, to precisely define adaptive control is not an easy job
[9, 206]. In [9], adaptive control is viewed as a special type of feedback control
in which the states of the process can be separated into two categories that
change at different rates. The slow-changing states are viewed as a part of the
system parameters. Thus, the goal of adaptive control is to design a control
scheme that works well for systems with time-varying parameters.

Adaptive control can be categorized as direct and indirect. With an indi-
rect adaptive control scheme, the system parameters are first estimated and
the controller is then determined using the estimated values as the true ones
for the parameters. On the other hand, with a direct adaptive control scheme,
parameters of the controller are directly identified without knowing and/or
estimating all the system parameters.

We take a slightly wider point of view. We view any control problem with
unknown parameters as an adaptive control problem. Thus, a time-invariant
system is simply a special case of adaptive control. We determine or identify,
directly or indirectly, the optimal control law frequently even if the system
is time-invariant. Indeed, even for time-invariant systems, we always need
to continuously track the system to adjust our estimates for the parameters
or the optimal controllers. Indirect adaptive control is usually equivalent to
system identification plus the standard control problem. If we assume that
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the identification process is much faster than the parameter changes, then the
identification-plus-control approach works well for time-varying systems.

The purpose of this chapter is not to provide an overall review of the
adaptive control theory, but rather to apply one, perhaps non-standard, way
to view the adaptive control problem and explore the possibility of solving
it with this view. The fundamental idea is that a stochastic system can be
viewed as a Markov system and therefore the approaches developed in the
previous chapters, such as perturbation analysis (PA), Markov decision pro-
cesses (MDPs), and reinforcement learning (RL), can be applied to develop
learning and optimization algorithms for stochastic systems. This learning-
and-optimization-based approach is similar to direct adaptive control because
it focuses on the optimal policy and the system structures and parameters may
not be estimated. The approach has been studied previously by many authors,
see, e.g, [5, 30, 89, 124, 255]. We will introduce the possible advantages of this
approach and the difficulties we may encounter with this approach.

We consider only the long-run average reward and, in most cases, we need
to assume that the system under consideration is stable. For simplicity, we
study only discrete-time systems.

In Section 7.1, we explain how a control problem is modelled as an MDP
problem and discuss the basic differences of the two approaches: dynamic
programming, which is widely used in adaptive control, and policy iteration
in MDPs. In Section 7.2, we present the MDP theory for systems with con-
tinuous state spaces [24, 135, 136, 203]; this is necessary because, in most
adaptive control problems, the system states are continuous. In Section 7.3,
we first discuss the linear-quadratic (LQ) problem and show that we can derive
the standard Riccati equation in adaptive control theory via policy iteration.
We further discuss the Markov jump linear-quadratic (JLQ) problem and ob-
tain the coupled Riccati equation. This section serves as a test showing that
the proposed approach with policy iteration based on performance potentials
works well and produces the same results as those in the literature on adaptive
control for the LQ and JLQ problems. In Section 7.4, we study the possible
applications of the sample-path-based policy iteration to the adaptive con-
trol of non-linear systems and discuss the difficulties and advantages of this
approach.

7.1 Control Problems and MDPs

7.1.1 Control Systems Modelled as MDPs

Linear Systems

Consider a linear system with an additive noise:

Xl+1 = AXl + ξl, l = 0, 1, . . . , (7.1)
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where l = 0, 1, . . . denotes the discrete time, Xl ∈ �n, � = (−∞,+∞), is an
n-dimensional vector representing the system state at time l, A is an n × n
square matrix, and ξl is an n-dimensional random vector representing the noise
at l. We assume that the system is stable so that it returns to the vicinity of
the origin infinitely often.

To illustrate the idea, we first study the one-dimensional case with n = 1.
Thus, A = a is a real constant and ξl is a random variable. The system is stable
when |a| < 1. We further assume that the random noise ξl, at l = 0, 1, . . . , is
independent and identically distributed with a distribution function denoted
as Pξ(dx) = ν(x)dx, x ∈ �.

Now, suppose that at some time l, Xl = x ∈ �. Then, we have Xl+1 = ax+
ξl. As shown in Figure 7.1, Xl+1 is distributed around ax, and y := Xl+1−ax
has a distribution function Pξ(dy), y ∈ �. This can be viewed as a state
transition from Xl = x to Xl+1 ∈ � with the transition probability function
(or simply the transition function)

P (dy|x) = ν(y − ax)dy. (7.2)

By (7.2), the linear system behaves as a Markov process with a continuous
state space.

0

P u(dy|x)

axx

dy

ax+bu(x)

ν(y−ax−bu(x))
ξ

ν(ξ)

0

P (dy|x)

axx

dy
ν(y−ax)

ξ

ν(ξ)

Fig. 7.1. The State Transition in a Linear Stochastic System
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Linear Control Systems

Now, we introduce control to the linear system (7.1). Consider

Xl+1 = AXl + Bul + ξl, l = 0, 1, . . . , (7.3)

where ul is an m-dimensional vector representing the control applied to the
system at time l and B is an n×m matrix. The feedback control law is an m-
dimensional function of the state denoted as ul(Xl) : �n → �m, l = 0, 1, . . . .
If it is independent of l, the control low is called stationary and is denoted as
u(x) : �n → �m. With a given u(x), the system becomes

Xl+1 = AXl + Bu(Xl) + ξl, l = 0, 1, . . . .

When n = m = 1, A = a and B = b are two constants. With a given control
law u(x) : � → �, the transition probability function (7.2) at x becomes

Pu(dy|x) = ν(y − ax− bu(x))dy. (7.4)

The superscript u(x) indicates the dependency on the control variable. This
is also shown in Figure 7.1. Clearly, u(x) plays the same role as the actions
do in MDPs, and the control function u is the same as a policy.

In general, a control system is modelled as

Xl+1 = h(Xl, ul, ξl), l = 0, 1, . . . , (7.5)

where h is usually a nonlinear function. Following the same argument as for
the linear systems (7.1), such a control problem of nonlinear systems can also
be viewed as an MDP with ul representing the policy that controls the state
transition probabilities, which may be more complicated than (7.4), but can
be determined by h, ul, and the distribution function of ξl.

In control problems, in addition to the system equation (7.3) or (7.5), there
is a performance measure to be minimized. In many cases, the performance
measure takes a quadratic form:

ηu(x) = lim
L→∞

1
L
E

{
L−1∑

n=0

[
XT

l QXl + uT
l V ul

] ∣∣∣X0 = x

}
, (7.6)

where Q and V are two positive semi-definite matrices. (We only study station-
ary problems; otherwise, Q and V may depend on time l.) This optimal control
problem is called a linear-quadratic (LQ) problem. If we further assume that
the random noise ξl, l = 0, 1, . . . , is independent and has an identical Gaus-
sian distribution, then the optimization problem with system equation (7.3)
and performance criterion (7.6) is called a linear-quadratic-Gaussian (LQG)
problem.

In summary, a linear control system (7.3) with performance measure (7.6)
can be modelled as an MDP problem with transition probability function (7.4)
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and performance measure (7.6). Non-linear control systems can be modelled
in a similar way with the transition probability functions properly determined
by (7.5). The state spaces are usually continuous, and the relevant results will
be discussed in Section 7.2. However, for practical purposes, we can always
discretize a continuous state space to obtain a finite space approximation.

7.1.2 A Comparison of the Two Approaches

The standard approach to control problems (7.3) and (7.6) is based on dy-
namic programming. In this section, we make a comparison between dynamic
programming and the policy iteration in MDPs. To simplify the explanation,
we consider systems with finite state spaces.

The finite-state MDP problem with stationary policies is described in
Chapter 4. For dynamic programming, we need to consider non-stationary
policies for finite-horizon problems; therefore, we need to modify the terminol-
ogy slightly. Basically, we have a state space S = {1, 2, . . . , S}. In every state
i ∈ S, we can choose an action α in a subset A(i) ⊆ A, where A is the action
space, and the action determines the state transition probabilities from state
i, denoted as pα(j|i), j ∈ S, α ∈ A(i). A decision rule is a mapping d : S → A
with d(i) ∈ A(i) for all i ∈ S. The transition probability matrix depends
on d and is denoted as P d. Associated with each decision rule d is a perfor-
mance (reward or cost) function (vector) fd = (f(1, d(1)), . . . , f(S, d(S))T .
Therefore, a decision rule d corresponds to the pair (P d, fd).

Suppose that a decision rule dl is used at time l = 0, 1, 2, . . . . Then the
sequence d := {d0, d1, . . .} is called a policy. The sequence can be either finite
or infinitely long. The quantities associated with a policy d are indicated
with superscript d, e.g., the steady-state probability vector, if it does exist,
is denoted as πd. If dl ≡ d for all l = 0, 1, . . . , i.e., d = {d, d, . . .}, we call d a
stationary policy and simply denote it as d. All the policies studied in Chapter
4 are stationary policies and therefore are denoted in the same notation as
the decision rules.

Assume that the system is ergodic under every stationary policy. The
goal of an MDP problem is to find a stationary policy that maximizes (or
minimizes) the long-run average reward

ηd = lim
L→∞

{
1
L

L−1∑

l=0

f(Xl, d(Xl))

}
, w.p.1.

Because of the ergodicity, the limit exists and equals

ηd = lim
L→∞

{
1
L

L−1∑

l=0

E [f(Xl, d(Xl))|X0 = i]

}
, (7.7)

which is independent of the initial state i.
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Dynamic Programming for Finite-Step Optimization Problems

As discussed in Chapter 4, this problem can be solved by policy iteration. Now
we show that, in addition to the policy iteration approach, the problem can
also be solved by taking the limit of the solutions to finite-step optimization
problems described as follows. For any finite integer L > 0, define the L-step
average reward in the period [0, L− 1] as

ηd
L(i) =

1
L

L−1∑

l=0

E [f(Xl, dl(Xl))|X0 = i] , i ∈ S. (7.8)

The goal of the L-step optimization problem is to maximize this L-step per-
formance by choosing a proper decision rule at every step. It is obvious that
for a finite L the optimal policy may not be a stationary policy; so we denote
the L-step policy in (7.8) as d := {d0, d1, . . . , dL−1}.

If we only wish to optimize ηd
L(i) for a particular state i in S, we only need

to determine the optimal action d0(i), at l = 0. We will see that, because of
the Markov property, the initial state i does not affect the optimal decision
rules at times l = 1, . . . , L− 1; that is, the optimal decision rules, denoted as
d̂1, . . . , d̂L−1, are the same for different initial states i ∈ S.

First, we observe that maximizing the L-step average (7.8) is the same
as maximizing the L-step sum

∑L−1
l=0 E [f(Xl, dl(Xl))|X0 = i]. This simplifies

the notation and therefore we change the performance criterion to

ηd
L(i) =

L−1∑

l=0

E [f(Xl, dl(Xl))|X0 = i] , i ∈ S. (7.9)


�
L L − 1L − 2 � 1 0

0 1 2 l L − 1 L

l + � = L

Forward:

Backward:

� steps to go

Fig. 7.2. Forward and Backward Indexes

This finite step optimization problem is typically solved by dynamic pro-
gramming. We first solve the one-step problem at l = L − 1, then the
two-step problem at l = L − 2, and so on. This iterative process goes
backward in time. (A typical example of an L-step optimal problem (7.9)
is the shortest-path problem illustrated in Problem 1.2.) Therefore, it is
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convenient to use an index to denote the time backwards. As shown in
Figure 7.2, we denote the time epoch l = L as  = 0, l = L − 1 as
 = 1, and so on, with l +  = L. The initial time l = 0 corresponds
to  = L, and  represents the number of steps to go in a finite-step op-
timization problem. With this notation, the state sequence is denoted as
X = {X�,  = L,L− 1, . . . , 1, 0} = {X�=L,X�=L−1, . . . , X�=1,X�=0}, with
X�=l := XL−l, l = 0, 1, . . . , L. The corresponding decision rule sequence
is denoted as d = {d�=L, d�=L−1, . . . , d�=1, d�=0}, with d�=l := dL−l, l =
0, 1, . . . , L. Furthermore, (7.9) becomes

ηd
�=L(i) =

1∑

l=L

E [f(X�=l, d�=l(X�=l))|X�=L = i] , i ∈ S. (7.10)

In the L-step optimization problem, we wish to choose d�=1, d�=2, . . . , d�=L

to maximize ηd
�=L(i). From (7.10), we have

ηd
�=L+1(i) = f(i, d�=L+1(i)) +

S∑

j=1

pd�=L+1(i)(j|i)ηd
�=L(j).

Let η∗�=L(i) be the optimal L-step performance. Then, for L = 1, 2, . . . , we
have

η∗�=L+1(i) = max
α∈A(i)

⎧
⎨

⎩f(i, α) +
S∑

j=1

pα(j|i)η∗�=L(j)

⎫
⎬

⎭ , (7.11)

and the optimal decision rule is

d̂�=L+1(i) ∈ arg

⎡

⎣ max
α∈A(i)

⎧
⎨

⎩f(i, α) +
S∑

j=1

pα(j|i)η∗�=L(j)

⎫
⎬

⎭

⎤

⎦ . (7.12)

The L-step optimization problem can be solved iteratively by using (7.11) and
(7.12) for L = 1, 2, . . . (backwards in time). The initial value for the optimal
performance in this iterative procedure is

η∗�=1(i) = max
α∈A(i)

f(i, α), (7.13)

and

d̂�=1(i) ∈ arg
{

max
α∈A(i)

f(i, α)
}

.

From (7.12) and the backward nature of the optimization procedure,
we can observe that, in the L-step optimization problem, the optimal de-
cision rules at step l, d̂�=l, l = 1, 2, . . . , L − 1, in fact depend only on l
and do not depend on L and the initial state X�=L = i. In other words,
if

{
d̂�=L, . . . , d̂�=1, d̂�=0

}
is the optimal policy for the L-step optimization
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problem, then for any l < L,
{
d̂�=l, . . . , d̂�=1, d̂�=0

}
is the optimal policy for

the l-step optimization problem.
Finally, as L→∞, the L-step average (7.8) becomes the long-run average

(7.7), and the L-step problem becomes the long-run average-reward optimiza-
tion problem. Thus, if as L→∞, d̂�=L(i) converges to a decision rule d̂, then
the stationary policy d̂ must be the optimal policy for the long-run average-
reward problem. That is, the long-run average-reward optimization problem
can be solved by taking the limit of the solutions to the finite step average-
reward problems.

Relation to Policy Iteration

The approach sketched above is different from the policy iteration approach.
In fact, the two approaches can be viewed as two different ways to solve the
optimality equation, and we can prove that they are equivalent. In (7.11), the
optimal L-step performance is

η∗�=L(i) =
1∑

l=L

E
[
f(X�=l, d̂�=l(X�=l))

∣∣∣X�=L = i
]
, (7.14)

where d̂�=l, l = 1, 2, . . . , L, are the optimal decision rules. As L → ∞, this
quantity may not be bounded. However, as we observed many times in the
previous chapters, because

∑S
j=1 pα(j|i) = 1, (7.12) remains the same if we

add a constant to η∗�=L(j) for all j ∈ S, L = 1, 2, . . . . Therefore, we may
choose any state i∗ as a reference state and re-define

g∗�=L(i∗) := 0, L = 1, 2, . . . ,
g∗�=L(i) := η∗�=L(i)− η∗�=L(i∗), i �= i∗, L = 1, 2, . . . . (7.15)

This is the same concept as the perturbation realization factor. Subtracting
η∗�=L(i∗) from both sides of (7.11), we obtain

g∗�=L+1(i)+
{
η∗�=L+1(i

∗)− η∗�=L(i∗)
}

= max
α∈A(i)

⎧
⎨

⎩f(i, α) +
S∑

j=1

pα(j|i)g∗�=L(j)

⎫
⎬

⎭ .

(7.16)
The decision rule (7.12) becomes

d̂�=L+1(i) ∈ arg

⎡

⎣ max
α∈A(i)

⎧
⎨

⎩f(i, α) +
S∑

j=1

pα(j|i)g∗�=L(j)

⎫
⎬

⎭

⎤

⎦ . (7.17)

As L → ∞, g∗�=L(j) converges (see Problem 7.4). Let it converge to g∗(j).
Then from (7.17) the optimal decision rule converges to a stationary rule
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d̂(i) ∈ arg

⎡

⎣ max
α∈A(i)

⎧
⎨

⎩f(i, α) +
S∑

j=1

pα(j|i)g∗(j)

⎫
⎬

⎭

⎤

⎦ .

In other words, limL→∞ d̂�=L = d̂. Furthermore, from (7.10) and by the fact
that as L goes to infinity, the L-step optimal policy converges to a long-run
average optimal policy, we have

lim
L→∞

η∗�=L+1(i
∗)

L + 1
= lim

L→∞

η∗�=L(i∗)
L

= η∗,

where η∗ is the steady-state average reward of the stationary policy d̂. Thus,

lim
L→∞

[
η∗�=L+1(i

∗)− η∗�=L(i∗)
]

= η∗.

Finally, (7.16) becomes

g∗(i) + η∗ = max
α∈A(i)

⎧
⎨

⎩f(i, α) +
S∑

j=1

pα(j|i)g∗(j)

⎫
⎬

⎭ .

This is the optimality equation for the long-run average-reward problem with
η∗ and g∗ being the optimal average reward and the potential of the optimal
policy, respectively. Note that the iteration procedure in (7.16) is equivalent
to the value iteration method shown in (6.71). They differ only by a constant
due to different normalization schemes: in (6.71), we set g(i∗) = η∗ and in
(7.16) we have g�=L(i∗) = 0.

Before further discussion, let us first study an example.

Example 7.1. Consider a system of three states S = {1, 2, 3}. In each state
i, two actions can be taken, denoted as αi,1 and αi,2, i = 1, 2, 3. The corre-
sponding transition probabilities associated with every action and the reward
function are listed in Table 7.1. As it is shown, the reward function does not
depend on the actions.

We first solve the finite-step optimization problem by using (7.12). The
values of η∗�=L(i), d̂�=L(i), and g∗�=L(i) in (7.11), (7.12), and (7.15) for L =
1, 2, 3, 4, are listed in Table 7.2, with i∗ = 3. As shown in the table, the optimal
decision-rule sequence d̂�=L converges to

d̂ =
{
d̂(1) = α1,1, d̂(2) = α2,2, d̂(3) = α3,2

}
.

After only two iterations, i.e., when L = 2, the L-step optimization problem
already yields the same optimal decision rule as the long-run average problem.
η∗�=L increases as L increases; however, g∗�=L converges to finite numbers. The
data in the table also show that the sequence of the optimal decision rules
may reach its limit earlier than the sequence of η∗�=L, L = 1, 2, . . . .
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state Transition prob. pα(j|i)
i action j = 1 2 3 Perf. func.

α1,1 0.5 0.4 0.1

1 α1,2 0.5 0.1 0.4 10

α2,1 0.6 0 0.4

2 α2,2 0.4 0.3 0.3 8

α3,1 0.2 0.2 0.6

3 α3,2 0.3 0.4 0.3 0

Table 7.1. The Actions and Performance Function in Example 7.1

L 1 2

state i η∗
�=1(i) g∗

�=1(i) d̂�=1(i) η∗
�=2(i) g∗

�=2(i) d̂�=2(i)

1 10 10 α1,1, α1,2 18.2 12.0 α1,1

2 8 8 α2,1, α2,2 14.4 8.2 α2,2

3 0 0 α3,1, α3,2 6.2 0 α3,2

L 3 4

state i η∗
�=3(i) g∗

�=3(i) d̂�=3(i) η∗
�=4(i) g∗

�=4(i) d̂�=4(i)

1 25.48 12.40 α1,1 32.632 12.48 α1,1

2 21.46 8.38 α2,2 28.554 8.402 α2,2

3 13.08 0 α3,2 20.152 0 α3,2

Table 7.2. The Results for the L-step Optimization Problems in Example 7.1

Next, let us solve the problem by policy iteration. Following the policy
iteration algorithm in Section 4.1.1, we first choose an initial stationary policy
d0 and then determine the potentials of the Markov system under this policy.
Suppose that we pick up d0 = {α1,1, α2,1, α3,1}. The transition probability
matrix is

P d0 =

⎡

⎣
0.5 0.4 0.1
0.6 0 0.4
0.2 0.2 0.6

⎤

⎦ .

From (3.5), we have the following approximation (we will omit the superscript
d0 in both P and g for simplicity, if there is no confusion)

ḡn ≈
n∑

k=0

P k
−f−,
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where P− = P − epS∗, pS∗ is the Sth row of P , and f−(i) = f(i) − f(S),
i = 1, 2, . . . , S. In this example, we have S = 3. Thus, we have

P d0
− =

⎡

⎣
0.3 0.2 −0.5
0.4 −0.2 −0.2
0 0 0

⎤

⎦ ,

and it happens that f− = f . Thus, its potential g can be calculated iteratively:

ḡ0 = f−, ḡk = P−ḡk−1 + f−, k = 1, 2, . . . . (7.18)

This calculation is similar to that in (7.11), except that in the latter case the
matrix multiplication is carried out for every action, and the maximal value
is picked up by comparison. The values for ḡ0 to ḡ5 are:

i ḡ0(i) ḡ1(i) ḡ2(i) ḡ3(i) ḡ4(i) ḡ5(i)
1 10 14.6 16.46 17.29 17.63 17.78
2 8 10.4 11.76 12.23 12.47 12.57
3 0 0 0 0 0 0.

We can see that ḡk almost reaches the limit at k = 5, i.e., g ≈ ḡ5. Now, we
apply (4.5) and obtain d1 = {α1,1, α2,2, α3,2}. We have

P d1 =

⎡

⎣
0.5 0.4 0.1
0.4 0.3 0.3
0.3 0.4 0.3

⎤

⎦ ,

and therefore

P d1
− =

⎡

⎣
0.2 0 −0.2
0.1 − 0.1 0
0 0 0

⎤

⎦ .

Using (7.18), we have the following results for policy d1:

i ḡ0(i) ḡ1(i) ḡ2(i) ḡ3(i) ḡ4(i) ḡ5(i)
1 10 12 12.4 12.48 12.496 12.499
2 8 8.2 8.38 8.402 8.408 8.409
3 0 0 0 0 0 0

Applying (4.5) again, we obtain the same policy d2 = d1 = {α1,1, α2,2, α3,2}.
Thus, this policy is optimal.

Incidently, it is interesting to note that the values of g∗�=L in Table 7.2
are the same as those of ḡk calculated in the numerical iterations for the
potentials of the optimal policy (e.g., ḡ2(i) = g∗�=3(i), i = 1, 2, 3). This is
because d̂�=2 = d̂�=3 = d̂�=4 is the optimal policy. Therefore, the calculations
for ḡk(i), k = 1, 2, 3, i ∈ S, are exactly the same as that for g∗�=L+1(i),
L = 1, 2, 3, i ∈ S. ��
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Comparison: Backward and Forward in Time

Figures 7.3 and 7.4 illustrate the procedures of the dynamic programming and
the policy iteration approaches, respectively. In Figure 7.3, each rectangle
represents an L-step optimization problem, with the vertical axis denoting
the steps L. Thus, the top rectangle represents a two-step problem from time
 = 2 to  = 1; the one just below the top one represents a three-step problem
from  = 3 to  = 1; and so on. With dynamic programming, we first solve for
an optimal solution to the one-step problem, leading to the initial conditions
(7.13). Then, we solve a two-step problem by (7.11) and (7.12) with L = 1 and
the initial value (7.13). With the two-step optimal policy, we then solve the
three-step problem and obtain the optimal decision rule at  = 3, by (7.11)
and (7.12) with L = 2. This process goes on until it converges to an optimal
decision rule, which is the optimal stationary policy for the long-run average-
reward optimal problem. As is clearly shown in the figure, this procedure goes
backward in time, and an optimal policy is obtained at each iteration for a
finite-step problem. The long-run average-reward problem is treated as the
limit of the finite-step problem when the number of steps, L, goes to infinity.

On the contrary, with the policy iteration approach shown in Figure 7.4, at
each iteration, we deal with a (stationary) policy (not necessarily an optimal
one) with an infinite horizon. First, we work forward in time to obtain the
performance potentials g(i), i ∈ S, of the policy, either by calculation following
(7.18) or by estimation following a sample path. Then, we find a better policy
by using the potentials, and in this way we iterate in the policy space to reach
an optimal policy. Figure 7.4 illustrates the first two iterations from d0 to d1

and to d2.
There is another difference between the two approaches: The dynamic

programming approach requires us to know the transition probabilities for all
the actions. Because working backward is not realistic in practice, it cannot
be implemented on a real system. On the other hand, as discussed in Chapter
5, policy iteration can be implemented on line, the potentials can be learned
on a sample path, and in some cases, the exact transition probabilities may
not need to be known when updating the policies.

7.2 MDPs with Continuous State Spaces

As noted in Section 7.1.1, the first problem in applying policy iteration to con-
trol problems is that the state spaces are generally continuous. Fortunately,
the theory of MDPs and policy iteration has been extended to systems with
continuous state spaces. The transition probability in a continuous state space
can be described by an operator (integration) on a function space (cf. the ma-
trix operator on a vector space for discrete state spaces). A rigorous treatment
of the topic is beyond the scope of this book, and we will present some rele-
vant results, in a self-contained way but with less rigor, to illustrate the main
ideas; the readers are referred to [24, 135, 136, 203] for more details.
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7.2.1 Operators on Continuous Spaces

Transition Probability Functions Operate on Functions

Consider a linear system with an additive noise described in (7.1):

Xl+1 = AXl + ξl, l = 0, 1, . . . ,

The state space S is the n-dimensional real space �n, i.e., S = �n. As illus-
trated in Figure 7.1, given the current state x ∈ �n, the transition probability
function can be denoted as P (dy|x), y ∈ �n (cf. (7.2)). Let B be the collec-
tion of sets in S such that (S,B, P ) forms a probability space as defined in
Appendix A.1. B can be determined by the probability distribution function
of the noise ξl via (7.4). A transition function is a function from �n × B to
[0, 1] such that, for any given x ∈ �n, P (R|x), R ∈ B, is a probability dis-
tribution; and for any R ∈ B, P (R|x) is a function on �n. Given the current
state x ∈ �n, the probability that the next state lies in R ∈ B is P (R|x).

For any transition function P (R|x) and any function h(x) on �n, we define
their product, with P on the left, as a function, denoted as (Ph)(x), defined
as follows:

(Ph)(x) :=
∫


n

h(y)P (dy|x). (7.19)

We can also view (7.19) as the definition of an operator P : h→ Ph. Thus, P
is also called a transition operator. We assume that, for any x ∈ �n, (P |h|)(x)
exists; i.e., |h(y)| is integrable with respect to P (R|x). Although in many cases,
(Ph)(x) is finite for any x ∈ �n; there is no conceptual difficulty if (Ph)(x)
is infinite for some x. From now on, we assume that all the functions h(y)
are integrable in the sense that (7.19) exists. In particular, for a set R ∈ B,
P (R|y) as a function of y is integrable; i.e.,

∫

n P (R|y)P (dy|x) exists.

The meaning of (7.19) is clear: for any initial state x, we have

(Ph)(x0) = E [h(X1)|X0 = x0] . (7.20)

Define e(x) = 1 for all x ∈ �n. This function corresponds to the vector
e = (1, 1, . . . , 1)T for finite-state MDPs. For any transition function P , we
have (Pe)(x) = 1 for all x ∈ �n. That is,

Pe = e.

Next, we define the identity transition function I(R|x): For any R ∈ B, we
define

I(R|x) =
{

1, if x ∈ R,
0, otherwise.

For any function h and x ∈ �n, we have (Ih)(x) = h(x). I corresponds to the
n-dimensional δ-function: for any function h(x), we have

∫

n h(y)I(dy|x) =

h(x).
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For any two operators P1 and P2 corresponding to two transition functions
P1(R|x) and P2(R|x), we define naturally

[(P1 + P2)h] (x) := (P1h)(x) + (P2h)(x)

and
[(P1 − P2)h] (x) := (P1h)(x)− (P2h)(x).

The product of two transition functions P1(R|x) and P2(R|x) is defined as a
transition function (P1P2)(R|x):

(P1P2)(R|x) :=
∫


n

P2(R|y)P1(dy|x), x ∈ S, R ∈ B. (7.21)

In general, P1P2 �= P2P1.
For any transition function P , we define the kth power, k = 0, 1, . . . , as

P 0 = I, P 1 = P , and P k = PP k−1, k = 2, . . . . As an exercise, it can be
verified that for any three operators P1, P2, and P3, we have (P1P2)P3 =
P1(P2P3), and therefore P k = (P k−1)P = P (P k−1) (cf. Problem 7.2) .

Suppose that X := {X0,X1, . . . , Xl, . . .} is a time-homogeneous Markov
chain with transition function P (R|x), x ∈ �n, R ∈ B. The k-step transition
probability functions, denoted as P (k)(R|x), k = 1, 2, . . . , are given by the
1-step transition function defined as P (1)(R|x) = P (R|x) and

P (k)(R|x) =
∫


n

P (dy|x)P (k−1)(R|y), k ≥ 2.

For any function h(x), we have

(P (k)h)(x) =
∫


n

h(y)P (k)(dy|x) =
∫


n

h(y)
∫


n

P (dz|x)P (k−1)(dy|z)

=
∫


n

P (dz|x)
{

(P (k−1)h)(z)
}

= P (P (k−1)h)(x).

That is, as an operator, we have P (k) = P (P (k−1)), Recursively, we can prove
that P (k) = P k. We have

(P kh)(x0) = E [h(Xk)|X0 = x0] .

Transition Probability Functions Operate on Probability
Distributions

For any transition function P (R|x), R ∈ B, x ∈ �n, and probability distri-
bution ν(R) on B, we define their product, with P (R|x) on the right, as a
probability distribution, denoted as νP , defined as follows:

(νP )(R) :=
∫


n

ν(dx)P (R|x), R ∈ B.
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If ν is the initial distribution at time l = 0, then νP is the state probability
distribution at time l = 1.

The product of a probability distribution ν and a function h(x), with ν
on the left, is defined as

νh :=
∫


n

h(x)ν(dx),

which is the mean of h under the probability distribution ν. We have νe = 1.
Furthermore, for any probability distribution ν, transition distribution P , and
real function h, we have

ν(Ph) =
∫


n

{∫


n

h(y)P (dy|x)
}

ν(dx).

We can verify that (see Problem 7.3)

ν(Ph) = (νP )h. (7.22)

A probability distribution ν defines a transition function denoted as
P (R|x) = ν(R) for all x ∈ �n. In fact, with the function e(x) ≡ 1 and
any probability distribution ν, we may define their product, with ν on the
right, as a transition function, denoted as eν and defined as:

(eν)(R|x) = ν(R), for all x ∈ �n. (7.23)

We can easily verify that

(eν)h = e(νh) := (νh)e

and that
(eν)k = eν.

From (7.21), we further have

[P (eν)] (R|x) =
∫


n

{P (dy|x)e(y)ν(R)} = e(x)ν(R).

Thus,

P (eν) = (Pe)ν = eν.

Similarly, we can verify that

(eν)P = e(νP ) = e(x)
∫


n

ν(dy)P (R|y).

Also, for any probability distribution π, we have

[π(eν)] (R) :=
∫


n

π(dx)ν(R)

= ν(R) ≡ (πe)ν(R), R ∈ B. (7.24)



7.2 MDPs with Continuous State Spaces 357

Steady-State Probability Distributions and Steady-State
Performance

Let f(x) be a reward function. The long-run average reward is defined as

η(x) = lim
L→∞

1
L
E

{
L−1∑

l=0

f(Xl)
∣∣∣X0 = x

}
, x ∈ �n,

which is assumed to exist. By (7.19) and (7.20), we have

Pf(x) =
∫


n

f(y)P (dy|x) = E [f(X1)|X0 = x] ,

and because P l(R|x), R ∈ B, l = 1, 2, . . . , is the l-step transition function, we
have

P lf(x) =
∫


n

f(y)P l(dy|x) = E [f(Xl)|X0 = x] , l = 1, 2, . . . .

Thus, it is clear that

η(x) = lim
L→∞

1
L

{
L−1∑

l=0

(P lf)(x)

}
. (7.25)

The steady-state probability distribution of a transition function P (R|x),
R ∈ B and x ∈ �n, is defined as a probability distribution π satisfying

π = πP.

Normally, we hope that as l → ∞, P l will converge, in some sense, to the
transition function eπ. However, with a continuous state space, there are many
ways to define the convergence of P l, l = 1, 2, . . . . The convergence is related
to the topic of ergodicity. For the analysis in this chapter, we only need to
assume that for any reward function f(x), we have

lim
k→∞

(P kf)(x) = [(eπ)f ] (x) = (πf)e(x), ∀x ∈ �n. (7.26)

Therefore, with the assumption (7.26), from (7.25), we have

η(x) = lim
k→∞

P kf(x) = (πf)e(x),

with πf =
∫

n f(x)π(dx). With a slightly abused notation, we also use η := πf

as a constant. Thus, we have η(x) = ηe(x).
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Ergodicity∗

The convergence in (7.26) is closely related to the ergodicity. There are a
number of ways to define the ergodicity of a Markov chain with a continuous
state space. Some definitions of ergodicity impose more restrictive conditions
on the transition probability functions and hence lead to strong convergence
properties with a wider class of reward functions; and others may be less
restrictive on the transition functions, but may require strong conditions on
the reward functions to obtain nice convergence properties for the system
performance and performance potentials.

It goes beyond the scope of this book to discuss the details of the theory
of ergodicity. We, however, describe one definition of ergodicity to help obtain
the flavor of this subject.

w-geometrically ergodic [203]
For a given real-valued function ∞ > w(x) ≥ 1 on �n, any function h(x)

on �n is called w-bounded if its w-norm defined as

‖h‖w := sup
x∈
n

|h(x)|
w(x)

is finite. We will refer to such a w as a weight function, and denote by Bw the
(Banach) space of all w-bounded functions on �n. If w(x) = e(x), then an
e-bounded function is simply a bounded function.

The w-norm of a linear operator P on Bw, ‖P‖w, is defined as

‖P‖w := sup
u∈Bw

{‖Pu‖w : ‖u‖w ≤ 1 (i.e., |u| ≤ w)} .

We assume that P has a finite w−norm.
We can easily verify that ‖Ph‖w ≤ ‖P‖w‖h‖w for all h ∈ Bw. Thus, if

h ∈ Bw, then Ph ∈ Bw. In addition, for any two operators P1 and P2, we have
‖P1P2‖w ≤ ‖P1‖w‖P2‖w, and ‖Pn‖w ≤ ‖P‖n

w, for n = 1, 2, . . . .
Now we consider a Markov chain {Xl, l = 0, 1, . . .} with transition proba-

bility function P . It is said to be w-geometrically ergodic if there is a proba-
bility distribution π and nonnegative constants κ and ρ, with 0 < ρ < 1, such
that

‖Pn − eπ‖w ≤ κρn, n = 0, 1, . . . . (7.27)

If the transition function P is w-geometrically ergodic, then for any w-
bounded continuous reward function f , (7.26) holds.

For a finite-state ergodic Markov chain, P is an ergodic matrix and it is
well known that it is e-geometrically ergodic (see, for example, Corollary 4.1.5
of [167]).



7.2 MDPs with Continuous State Spaces 359

7.2.2 Potentials and Policy Iteration

Performance Potentials

Suppose that a Markov chain {Xl, l = 0, 1, . . .} with (P, f) defined in a contin-
uous state space �n has a steady-state probability distribution π. As discussed
above, the convergence of P k, k = 1, 2, . . . , depends on the definitions of er-
godicity. As we will see, instead of verifying the ergodic condition, it would
be easier to directly assume that

lim
k→∞

(P kf)(x) = [(eπ)f ] (x) = (πf)e(x), x ∈ �n. (7.28)

The performance potential g is a function g(x), x ∈ �n, that satisfies the
Poisson equation

(I − P )g(x) + η(x) = f(x), (7.29)

where I and P are two transition functions and η(x) = (πf)e(x) = ηe(x). The
solution to the Poisson equation is unique up to an additive constant, i.e., if
g is a solution to (7.29), then so is g + ce with any constant c. Therefore, we
will not distinguish these different versions of potentials with only a constant
difference.

With a continuous state space, we have to be careful in exchanging the
order of mathematical operations such as integration and limit. First, we
define

gK :=

{
I +

K∑

k=1

(P k − eπ)

}
f, (7.30)

where eπ is a transition function defined according to (7.23), and set

g(x) := lim
K→∞

gK(x), x ∈ �n,

assuming that the limit exists. Next, we observe that PgK(x) =
∫

n gK(y)P (dy|x).

Therefore, if this integration uniformly converges for all K, we can exchange
the order of the “limK→∞” and the integration “

∫

n” and obtain

lim
K→∞

PgK = Pg.

Lemma 7.1. For any transition function P and performance function f(x),
if

lim
k→∞

P kf = (eπ)f = ηe, lim
K→∞

gK = g, and lim
K→∞

PgK = Pg (7.31)

hold for every x ∈ �n, then
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g =

{
I +

∞∑

k=1

(P k − eπ)

}
f (7.32)

is a solution to the Poisson equation (7.29).

This lemma can be established by directly verifying that the g in (7.32) sat-
isfies (7.29). In addition, if we assume that limK→∞ πgK = πg, then we can
easily verify that

πg = πf = η. (7.33)

This is a normalization condition of the potential g in (7.32). With (7.33), the
Poisson equation (7.29) becomes

(I − P + eπ)g(x) = f(x). (7.34)

Equation (7.33) can also be verified by left-multiplying (7.34) with π and
using (7.22), (7.24) and π = πP , πe = e (also see Problem 7.3). Note that
the g in (7.32) is one of the solutions, and for any constant c, g + ce is also a
solution to (7.29) (but not (7.34)).

As we have explained, the three equations in (7.31) hold under different
ergodicity conditions for different types of reward functions. For example, if
the Markov chain is w-geometrically ergodic and f is w-bounded, then we
can verify that these equations hold and g =

∑∞
n=0(P − eπ)nf is w-bounded

and satisfies the Poisson equation (7.29). However, the ergodicity conditions
are not necessary and therefore in Lemma 7.1 we prefer to use (7.31) as the
general conditions. For a particular problem, sometimes it is more convenient
to verify (7.31) directly than to find the right ergodicity conditions, as we will
see for the LQ and JLQ problems discussed later.

Similar to the finite-state case, the Poisson equation plays a crucial role
in performance optimization. Later in this chapter, when we mention the
potential g, we always assume implicitly that the Poisson equation and (7.31)
hold.

Performance Optimization

Now we can develop the MDP theory for problems with continuous state
spaces by simply translating, with some care of handling the transition func-
tions and probability distributions, the corresponding results from the finite
state MDPs.

First, we modify the definition of the relations =, ≤, <, and � for two
functions in �n. Given a probability distribution ν on �n, for two functions
h(x) and h′(x), x ∈ �n, we define h′ =ν h, h′ ≤ν h, and h′ <ν h, respectively,
if h′(x) = h(x), h′(x) ≤ h(x), and h′(x) < h(x), respectively, for all x ∈ �n

except on a set R with ν(R) = 0. We further define h′(x) �ν h(x) if h′(x) ≤ν

h(x) and h′(x) < h(x) on a set R with ν(R) > 0. Similar definitions are used
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for the relations >ν , �ν , and ≥ν . With these definitions, we have the following
theorem.

Let (P, f) and (P ′, f ′) be the transition functions and reward functions of
two Markov chains with the same state space S = �n. Let η, g, π and η′, g′,
and π′ be their corresponding long-run average reward, performance potential
functions, and steady-state probability distributions, respectively. Then, we
have the following results.

The Average-Reward Difference Formula with Continuous
Spaces:

η′ − η = π′ [(f ′ + P ′g)− (f + Pg)] . (7.35)

Comparison Lemma:
If f ′ + P ′g �π′ f + Pg, then η′ > η. (7.36)

If f ′ + P ′g ≥π′ f + Pg, then η′ ≥ η.

The difficulty in verifying the condition �π′ lies in the fact that we may not
know π′, so we may not know for which set R we have π′(R) > 0. Fortunately,
in many cases we can show that π′(R) > 0 if and only if R is a subset of
S = �n with a positive volume (formally called a Lebesgue measure). See the
LQ and JLQ problems for example.

To develop the optimality equation, we need to further restrict the policy
space. First, we use u(x) to denote a policy. This is consistent with the no-
tation used in control theory. In general, u(x), x ∈ �n, represents an action
that determines the transition function. In control problems, u(x) is a function
�n → �m. The policy u(x) also determines the steady-state probability dis-
tribution through the transition function. We use the superscript u to denote
the dependency on the policy. Thus, the transition function under policy u(x)
is denoted as Pu(R|x), R ∈ B, x ∈ �n; and its corresponding steady-state
probability distribution is denoted as πu(R), R ∈ B, etc.

We say that two probability distributions π and π′ have the same support,
if π(R) > 0 then π′(R) > 0 for any R ∈ B, and vice versa. Two policies u
and u′ have the same support, if their corresponding steady-state probability
distributions have the same support. We assume that all the policies in the
policy space have the same support. In control problems, if, for example, the
noise has a Gaussian distribution, or any distribution that is over the whole
space �n, then all the policies have the same support. However, for prob-
lems where the steady-state probability distribution has discrete masses, the
situation may be different. A special case is discussed in Problem 7.7.
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If all the policies have the same support, we will drop the subscript πu in
the relationship notations such as ≥ and �, etc. Now we assume that, for a
Markov system, all the policies have the same support. Then, we have

Optimality Condition:
A policy û(x) is optimal, if and only if

f û + P ûgû ≥ fu + Pugû, for all policies u. (7.37)

From the Optimality Condition (7.37), the optimality equation is

Optimality Equation:
A policy û(x) is optimal, if and only if

P ûgû + f û = max
u

{
Pugû + fu

}
. (7.38)

This equation holds with probability 1 with respect to the steady-state prob-
ability distribution of any policy. Under some conditions, the maximum in
(7.38) can be reached. It is beyond the scope of this book to present further
formulation in this direction.

With the Comparison Lemma (7.36), policy iteration algorithms can be
designed. Roughly speaking, we may start with any policy u0(x). At the kth
step with policy uk(x), k = 0, 1, . . . , we set

uk+1(x) ∈ arg
{

max
u

[fu + Puguk ]
}

, x ∈ �n, (7.39)

with guk being any solution to the Poisson equation (7.29) for Puk . The iter-
ation stops if uk+1(x) equals uk(x) almost everywhere under uk; and in this
case, ηk+1 = ηk. By the performance difference formula (7.35), the average
reward improves at each step. The Optimality Equation (7.37) indicates that
the maximum is reached when no performance improvement can be further
achieved. If the policy space is finite, the policy iteration will stop in a fi-
nite number of steps. However, in general, the iteration scheme may not stop
at a finite number of steps, although the sequence of the performance ηk is
increasing and hence converges.

All the above results hold if we change the problem to that of minimizing
the performance criterion, by changing ≥ to ≤, max to min, etc.
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7.3 Linear Control Systems and the Riccati Equation

7.3.1 The LQ Problem

In an LQ problem [39], we consider a system with a dynamic behavior de-
scribed by

Xl+1 = AXl + Bul(Xl) + ξl, l = 0, 1, . . . ,

in which ul(x) ∈ �m is a feedback control law at time l, A is an n×n matrix,
and B is an n × m matrix. We assume that the system with A and B is
controllable (in control terminology, this means that, starting from any initial
position X0 ∈ �n, it is possible to control the system to the origin Xl = 0
when no noise is present). For each l, ξl denotes an n-dimensional noise with
mean zero. ξl and ξk, l �= k, are independent. (We do not require them to be
Gaussian distributed.) Let Pξ(y) denote the probability distribution function
of the random noise ξ ∈ �n. Pξ(dy) = pξ(y)dy if the distribution density
function pξ(y) exists.

The goal of optimization is to minimize the performance criterion in a
quadratic form:

ηu(x) = lim
L→∞

1
L
E

{
L−1∑

l=0

[
XT

l QXl + uT
l V ul

] ∣∣∣X0 = x

}
, (7.40)

where Q and V are two n × n and m × m positive semi-definite matrices,
respectively. (An n × n matrix Q is positive semi-definite, if for any x ∈ �n

we have xTQx ≥ 0.) Thus, the performance function is

fu(x) = xTQx + uTV u. (7.41)

We assume that (7.40) exists; in particular, this requires that both integra-
tions

∫

n

[
xTQx

]
Pξ(dx) and

∫

n

[
u(x)TV u(x)

]
Pξ(dx) exist. A linear control

system with this performance criterion (7.40) is called a linear-quadratic (LQ)
problem.

For a stationary control law ul = u(x), we have

Xl+1 = AXl + Bu(Xl) + ξl, l = 0, 1, . . . .

The transition function of this system under policy u(x) is

Pu(dy|x) = pξ {y − [Ax + Bu(x)]} dy. (7.42)

For any quadratic function h(x) = xTW0x, we have

(Puh)(x) =
∫


n

h(y)Pu(dy|x) =
∫


n

(yTW0y)pξ {y − [Ax + Bu(x)]} dy

=
∫


n

{z + [Ax + Bu(x)]}T
W0 {z + [Ax + Bu(x)]} pξ(z)dz.
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For zero-mean noise, we have
∫

n pξ(z)dz = 1 and

∫

n zpξ(z)dz = 0. There-

fore,

(Puh)(x) =
∫


n

zTW0zpξ(z)dz + [Ax + Bu(x)]T W0 [Ax + Bu(x)]

= c1e(x) + [Ax + Bu(x)]T W0 [Ax + Bu(x)] , (7.43)

where c1 :=
∫

n zTW0zpξ(z)dz is a constant.

For stationary linear controllers, we set u(x) = −Dx, where D is an m×n
matrix. With this controller, the system equation becomes

Xl+1 = CXl + ξl, l = 0, 1, . . . , (7.44)

where C = A−BD. The performance measure becomes

ηu(x) = lim
L→∞

1
L
E

{
L−1∑

l=0

XT
l WXl

∣∣∣∣∣X0 = x0

}
, (7.45)

where W = Q + DTV D. Thus, the performance function is f(x) = xTWx.
It is easy to verify that W is also positive semi-definite. We assume that the
system is stable, so the spectral radius of C, ρ(C) < 1.

Finally, if the Markov system (7.44) is stable, it is proved in [135, Example
7.4.4] or [203, Proposition 12.5.1 and Theorem 17.6.2] that this Markov chain
is w-geometrically ergodic, with the weight function w(x) =

√
x2

1 + · · ·+ x2
n+

1 or w(x) =
∑n

i=1 x2
i + 1.

Potentials for Linear Quadratic Systems

The transition function of the linear system (7.44) is P (dy|x) = pξ(y−Cx)dy.
Denote W0 = W . Then, the performance function is f(x) = xTW0x. From
(7.43), the transition operator is (we drop the superscript “u” for this partic-
ular controller u = −Dx)

(Pf)(x) = c1e(x) + xTW1x,

where c1 :=
∫

n zTW0zpξ(z)dz is a constant and W1 := CTW0C. From Pe = e

and P 2f = P (Pf), we have

(P 2f)(x) = c1e(x) +
∫


n

(yTW1y)pξ(y − Cx)dy

= c2e(x) + xTW2x,

where c2 =
∫

n zT (W0 + W1)zpξ(z)dz and W2 = CTW1C. Continuing this

process, we get
(P kf)(x) = cke(x) + xTWkx, (7.46)
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where

ck =
∫


n

zT (W0 + W1 + · · ·+ Wk−1)zpξ(z)dz

=
∫


n

zTSk−1zpξ(z)dz

with

Sk :=
k∑

i=0

Wi,

and
Wk = CTWk−1C = (Ck)TW0C

k,

with W0 = W .
Because ρ(C) < 1, we have

lim
k→∞

Wk = 0,

and Sk converges as k →∞. Set

S := lim
k→∞

Sk =
∞∑

k=0

Wk.

Then,
S −W = CTSC. (7.47)

From (7.46), we have
lim

k→∞
(P kf)(x) = ηe(x),

and η(x) = ηe(x), where

η = lim
k→∞

ck =
∫


n

(zTSz)pξ(z)dz.

Thus, we have proved that, for the LQ problem, the steady-state performance
η(x) exists.

Finally, from (7.30), we have

gK(x) =

[
K∑

k=1

(ck − η)

]
e(x) + xTSKx.

We can prove that limK→∞ gK(x) = g(x) (cf. Problem 7.10), where

g(x) =

[ ∞∑

k=1

(ck − η)

]
e(x) + xTSx. (7.48)

We can ignore the first constant term and simply use
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g(x) = xTSx

as the potential function. Therefore, the potential of a linear quadratic system
is a quadratic function with the positive semi-definite matrix S.

Finally, we have

PgK =
∫


n

gK(y)P (dy|x)

=

[
K∑

k=1

(ck − η)

]
+

∫


n

[
yTSKy

]
pξ(y − Cx)dy.

Because all Wk, k = 0, 1, . . . , are positive semi-definite, we have yTSKy ≤
yTSy for all y ∈ �n. Therefore, if we assume that

∫


n

[
yTSy

]
pξ(y − Cx)dy

exists, then
∫

n

[
yTSKy

]
pξ(y − Cx)dy uniformly converges for all K. Thus,

we have limK→∞ PgK = Pg. From Lemma 7.1, (7.48) is the potential that
satisfies the Poisson equation (7.29).

The Optimal Policy

Before we apply the Optimality Equation (7.38), we need to verify that all
the policies have the same support. To see this, we first assume that the
noise distribution Pξ(dy) is supported on the entire space �n; i.e., Pξ(R) > 0
for all R ∈ B with a positive volume (Lebesgue measure). This is common,
e.g., the Gaussian distribution has this property. Now, for any R ∈ B with a
positive Lebesgue measure, if π is the steady-state probability distribution of
the transition function P , we have

π(R) = (πP )(R) =
∫


n

π(dx)P (R|x).

In the LQ problem, for any x ∈ �n we have P (R|x) = Pξ(R−Cx), 1 where C
depends on the control u. Because Pξ(R−Cx) > 0, from the above equation,
we can easily conclude that π(R) > 0. That is, all the policies have the same
support of �n, except for a set with a zero Lebesgue measure. Of course, the
condition that Pξ(R) > 0 for all set with a positive Lebesgue measure is not
a necessary condition.

Now suppose that we are given a linear policy u(x) = −Dx, and we want
to apply (7.39) to obtain a better policy. We consider any policy ũ(x) (not
necessary a linear one). Setting h = g = xTSx in (7.43), we have

1 For R ⊂ 	n and x ∈ 	n, we define R − Cx := {y : y = x′ − Cx, for all x′ ∈ R}.
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(P ũg)(x) = c1e(x) + [Ax + Bũ(x)]T S [Ax + Bũ(x)] ,

where c1 :=
∫

n zTSzpξ(z)dz. In addition, from (7.41), we have

f ũ(x) = xTQx + ũ(x)T
V ũ(x).

Ignoring the two terms c1e(x) and xTQx, in (P ũg)(x) and f ũ(x), that are
independent of ũ, we have

u′(x) = arg
{

min
ũ

[
(P ũg)(x) + f ũ(x)

]}

= arg
{

min
ũ

{
[Ax + Bũ(x)]T S [Ax + Bũ(x)] + ũ(x)T

V ũ(x)
}}

= −(BTSB + V )−1BTSAx

= −D′x,

With
D′ = (BTSB + V )−1BTSA.

We conclude that if the original policy is a linear policy u(x) = −Dx, then
we can find an improved policy u′(x) = −D′x, which is also linear.

Next, if D′ = D then the policy u(x) = −Dx satisfies the Optimality
Equation (7.38) and thus it is an optimal policy. Denote it as û(x) = −D̂x
and its corresponding quantity as Ŝ, etc. We have

D̂ = (BT ŜB + V )−1BT ŜA. (7.49)

On the other hand, from (7.47) we have (C and W are defined in (7.44) and
(7.45))

Ŝ = ĈT ŜĈ + Ŵ

= (A−BD̂)T Ŝ(A−BD̂) + (D̂)TV D̂ + Q. (7.50)

From (7.49) and (7.50) and after some calculation, we have

Ŝ = AT ŜA−AT ŜB
[
BT ŜB + V

]−1

BT ŜA + Q. (7.51)

This is called the Riccati equation. In summary, we have shown that if Ŝ
satisfies the Riccati equation, then the linear control û(x) = −D̂x, with D̂
determined by (7.49) is an optimal policy.



368 7 Adaptive Control Problems as MDPs

Now, we can easily understand the policy iteration procedure. We start
with a linear policy u0(x) = −D{0}x. Set C{0} = A − BD{0}, W {0} = Q +
D{0}T

V D{0}, and S{0} − W {0} = C{0}T
S{0}C{0}. After one iteration, we

have u1(x) = −D{1}x, with

D{1} = (BTS{0}B + V )−1BTS{0}A.

Continuing the iteration, we have uk(x) = −D{k}x, C{k} = A − BD{k},
W {k} = Q + D{k}T

V D{k}, and S{k} −W {k} = C{k}T
S{k}C{k}, and

D{k} = (BTS{k−1}B + V )−1BTS{k−1}A.

On the other hand, we have

S{k−1} = C{k−1}T
S{k−1}C{k−1} + W {k−1}

=
[
A−BD{k−1}

]T

S{k−1}
[
A−BD{k−1}

]
+ Q + D{k−1}T

V D{k−1}.

We can see that when this iterative procedure continues, the above two equa-
tions converge to (7.49) and (7.50), which lead to the Riccati equation (7.51).

The above policy iteration procedure can be viewed as a numerical ap-
proach to solving the Riccati equation iteratively.

7.3.2 The JLQ Problem∗

In a discrete-time jump linear quadratic (JLQ) problem, we consider a two-
level stochastic control system. The system state at time l, l = 0, 1, . . . , is
denoted as (Ml,Xl), where Ml ∈ M := {1, 2, . . . ,M} represents the mode
(high level) that the system is in, and Xl ∈ �n denote the continuous part
of the state (low level). The system mode changes according to a finite-state
ergodic Markov chain {Ml, l = 0, 1, . . .} with transition probabilities p(j|i),
j, i = 1, 2, . . . ,M . When the system is in mode Ml = i, l = 0, 1, . . . , the
continuous part Xl, evolves as

Xl+1 = AMl
Xl + BMl

ul + ξl, Ml = i ∈M, (7.52)

where ul is a control variable depending on Ml and Xl, and ξl, l = 0, 1, . . . ,
is independent zero-mean noise. The dimensions of the Am’s and Bm’s, m ∈
{1, 2, . . . ,M}, are n×n and n×m, respectively. We assume that the transition
among the modes at any time l is independent of the continuous state Xl.

The performance criterion is defined as

ηu(i, x) = lim
L→∞

1
L
E

{
L−1∑

l=0

[
XT

l QMl
Xl + uT

l VMl
ul

] ∣∣∣X0 = x,M0 = i

}
,

(7.53)
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where Qi and Vi, i = 1, 2, . . . ,M , are n× n and m×m positive semi-definite
matrices, respectively. Our goal is to find a stationary control law u = u(i, x)
that minimizes ηu(i, x). Note that the control does not affect the transition
probabilities among the modes. For a feedback control law ul = u(Ml,Xl),
from (7.53), the reward function for the JLQ problem is

f(i, x) = xTQix + u(i, x)TViu(i, x). (7.54)

The approach used to solve this problem is the same as that for the LQ
problem, and we therefore only briefly present the results.

The Transition Operator

Denoting the transition function of the JLQ problem as P (j, R|i, x), we have

P (j, R|i, x) = p(j|i)Pi(R|x), i, j ∈M, x ∈ �n, R ∈ B.

Pi(R|x) is the transition function in mode i, which can be obtained from
(7.52). For any function h(i, x), i ∈ M and x ∈ �n, we define the transition
operator P as

(Ph)(i, x) :=
∑

j∈M

∫


n

h(j, y)P (j, dy|i, x) =
∑

j∈M

{
p(j|i)

∫


n

h(j, y)Pi(dy|x)
}

.

For any two operators P1 and P2, we define

(P1P2)(j, R|i, x) :=
∑

k∈M

∫


n

P1(k, dy|i, x)P2(j, R|k, y),

i, j ∈M, x ∈ �n, R ∈ B.

Set P k = PP k−1 = P k−1P , k ≥ 2, and P 0 = I, with

I(j, R|i, x) :=
{

1, if i = j, and x ∈ R,
0, otherwise.

And for any function h(i, x), we have

(Ih)(i, x) =
∑

j∈M

∫


n

h(j, y)I(j, dy|i, x) = h(i, x).

The unit function is defined as e(i, x) = 1 for all i ∈ M and x ∈ �n. We
have Pe = e for any P . A probability distribution on M×�n is denoted as
ν(i, R), with

∑
i∈M

∫

n ν(i, dy) = 1. For any function h(i, x), i ∈M, x ∈ �n,

define
νh :=

∑

k∈M

∫


n

h(k, x)ν(k, dx),
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provided it exists. We have νe = 1. The product of ν and P is defined as

(νP )(i, R) =
∑

k∈M

∫


n

ν(k, dy)P (i, R|k, y).

A steady-state probability distribution of P satisfies π = πP . For any ν, we
define a transition function

(eν)(j, R|i, x) := ν(j, R), i ∈M, x ∈ �n.

We have (eν)k = eν.

Performance Potentials

The long-run average reward of the jump linear system is defined as

η(i, x) = lim
L→∞

1
L
E

{
L−1∑

l=0

f(Ml,Xl)

∣∣∣∣∣M0 = i,X0 = x

}
.

We have

η(i, x) = lim
L→∞

1
L

L−1∑

l=0

(P lf)(i, x),

where P (j, R|i, x) is the transition function. Similar to (7.28), with the steady-
state probability distribution of P , π, we have

lim
k→∞

P kf = (πf)e = ηe. (7.55)

Thus, we have
η(i, x) = lim

L→∞
(P kf)(i, x) = ηe(i, x).

The performance potential g satisfies the Poisson equation

(I − P )g + η = f.

Similar to the LQ problem, (7.32) holds if the convergence conditions (7.31)
in Lemma 7.1 hold.

For any set of quadratic functions h(i, x) = xTWix
T , where Wi, i =

1, 2, . . . ,M , are positive semi-definite matrices, and a control law u(i, x), we
have

(Puh)(i, x) =
∑

j∈M

{
p(j|i)

∫


n

h(j, y)Pu
i (dy|x)

}

=
∑

j∈M

{
p(j|i)

∫


n

yTWjypξ {y − [Aix + Biu(i, x)]} dy
}

=
∑

j∈M

{
p(j|i)

∫


n

{z+[Aix + Biu(i, x)]}T
Wj {z +[Aix + Biu(i, x)]} pξ(z)dz

}
.
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Again, for zero-mean distributions, we have
∫

n pξ(z)dz = 1 and∫


n zpξ(z)dz = 0. Therefore,

(Puh)(i, x) = c1(i)e(x) +
∑

j∈M
p(j|i) [Aix + Biu(i, x)]T Wj [Aix + Biu(i, x)] ,

(7.56)
where c1(i) :=

∑
j∈M c0(j)p(j|i) with

c0(j) :=
∫


n

[
zTWjz

]
pξ(z)dz.

For a linear control ul = −DMl
Xl, the system equation (7.52) becomes

Xl+1 = CMl
Xl + ξl,

where
Ci = Ai −BiDi, i = 1, 2, . . . ,M.

The performance function (7.54) becomes f(i, x) = xTWix, with Wi = Qi +
DT

i ViDi.
Now, we set Wi,0 := Wi, i = 1, 2, . . . ,M , in the performance function

f(i, x) and set h(i, x) = f(i, x) in (7.56). Then, for this linear jump system,
from (7.56), we have (we drop the superscript “u” for simplicity)

(Pf)(i, x) = c1,0(i)e(x) +
∑

j∈M
p(j|i)xT (CT

i Wj,0Ci)x

= c1,0(i)e(x) + xTWi,1x,

where
Wi,1 =

∑

j∈M
p(j|i)(CT

i Wj,0Ci),

c1,0(i) :=
∑

j∈M
c0,0(j)p(j|i),

with
c0,0(j) :=

∫


n

[
zTWj,0z

]
pξ(z)dz.

Next, we have

(P 2f)(i, x) = [c2,0(i) + c1,1(i)] e(x) + xTWi,2x,

where
Wi,2 =

∑

j∈M
p(j|i)(CT

i Wj,1Ci),

c2,0(i) :=
∑

j∈M c1,0(j)p(j|i), and c1,1(i) :=
∑

j∈M c0,1(j)p(j|i), and
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c0,1(j) :=
∫


n

zTWj,1zpξ(z)dz.

Continuing this process, we have

(P kf)(i, x) = ck(i)e(x) + xTWi,kx, (7.57)

with
Wi,k =

∑

j∈M
p(j|i)(CT

i Wj,k−1Ci)

and
ck(i) := ck,0(i) + ck−1,1(i) + · · ·+ c1,k−1(i),

with the items ck,0, ck−1,1, ..., and c1,k−1 properly defined. We will not give
the explicit form of these items since they are not relevant to our main results.

For stable systems with ρ(Ci) < 1 for all i ∈ M, we have Wi,k → 0 as
k → ∞. Therefore, from (7.57) and (7.55) we have ck(i) → η, for all i ∈ M.
Furthermore, the following sum exists:

Si :=
∞∑

k=0

Wi,k.

Following the same argument as for the LQ problem, we obtain the perfor-
mance potentials

g(i, x) =

[ ∞∑

k=1

(ck(i)− η)

]
e(x) + xTSix. (7.58)

The first term depends on the mode i and, therefore, is not a constant. In
fact, xTSix corresponds to the potentials of the states in the same mode i,
while

∑∞
k=1(ck(i)− η) reflects the difference in the potentials of the states in

different modes.
Let Hi :=

∑
j∈M Sjp(j|i). We can easily verify that

Si −Wi = CT
i HiCi, i ∈M. (7.59)

Thus, we have

Si = CT
i HiCi + Wi

= (Ai −BiDi)THi(Ai −BiDi) + Qi + DT
i ViDi, i ∈M. (7.60)

The Optimal Policy

We may apply the optimality equation (7.38) to determine an optimal policy.
Again, we assume that Pξ(x) has full support on �n and hence all policies
have the same support �n. We start with a linear policy u(i, x) = −Dix.
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The performance potential is (7.58). From (7.56), for any other policy ũ(i, x),
i ∈M, x ∈ �n, which may not be linear, we have

(P ũg)(i, x) + f ũ(i, x) = c(i)e(x) + xTQix + ũ(i, x)TViũ(i, x)

+
∑

j∈M
p(j|i) [Aix + Biũ(i, x)]T Sj [Aix + Biũ(i, x)]

= c(i)e(x) + xTQix + ũ(i, x)TViũ(i, x)

+ [Aix + Biũ(i, x)]T Hi [Aix + Biũ(i, x)] ,

in which c(i) is some constant and c(i)e(x) + xTQix does not depend on ũ.
The improved policy is the one that minimizes the above quantity shown as
follows

u′(i, x) = −D′
ix,

where
D′

i = (BiHiBi + Vi)−1BT
i HiAi.

When Di = D′
i, i ∈ M, the policy u(i, x) = −Dix is optimal. Denote the

optimal policy as û(i, x) = −D̂ix and the corresponding quantities as Ŝi and
Ĥi. We have

D̂i = (BiĤiBi + Vi)−1BT
i ĤiAi, (7.61)

where
Ĥi =

∑

j∈M
Ŝjp(j|i), (7.62)

and Ŝi satisfies (7.59) and (7.60).
Substituting (7.61) into (7.60), we have

Ŝi = AT
i ĤiAi −AT

i ĤiBi(Vi + BT
i ĤiBi)−1BT

i ĤiAi + Qi. (7.63)

This is the coupled Riccati equation for the optimal policy û(i, x) = −D̂ix,
where D̂i can be determined by (7.61), (7.62), and (7.63).

The results in this section is reported in [265].

7.4 On-Line Optimization and Adaptive Control

In the previous sections, we showed that the MDP policy iteration approach
leads to the same results as those in the literature for standard LQ and JLQ
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problems. The power of this approach lies in its on-line implementation fea-
ture. For complex systems, the system parameters and even the system struc-
tures may not be known, and yet we may be able to estimate the performance
potentials on sample paths and to implement policy iteration to improve the
system performance.

With the on-line MDP approach, a system is modelled by a Markov chain
in general and the specific system structure is usually not identified. The pa-
rameters are the transition probabilities or transition functions, and in many
cases these parameters need not be completely estimated. Instead, we can di-
rectly determine the control law by estimating the performance potentials or
the Q-factors (on-line learning). Thus, the approach is in the spirit of direct
adaptive control.

7.4.1 Discretization and Estimation

Discretization of State Spaces

The first step towards an on-line learning algorithm is the discretization
of the continuous state space. To simplify the discussion, we consider a
one-dimensional state space �. We divide � into S intervals by x1 =
−∞, x2, . . . , xS , xS+1 =∞. Set Δxi := xi+1−xi, i = 1, 2, . . . , S. The values of
Δxi for i = 1 and i = S are both infinity. We call the interval (xi, xi + Δxi],
i = 2, . . . , S − 1, the ith interval and denote it simply as Δi, and the first
interval is denoted as Δ1 = (−∞, x2] and the Sth interval is denoted as
ΔS = (xS ,∞). We assume that the “effects” of the states in each interval
Δi are almost the same, either because the potentials in these states are very
close, or because the steady-state probability of the interval is close to zero
and thus the “effects” of the states in the interval are negligible. The former
is the case when Δxi is very small, and the latter is for Δ1 and ΔS (cf. the
performance difference formulas).

The ith interval represents a discretized state denoted as i, and we ag-
gregate all the continuous states in Δi, i = 1, 2, . . . , S, into a discrete state
i. Thus, we have a finite state space S = {1, 2, . . . , S} to approximate the
continuous state space �.

Potentials of the Approximate Chains

Given a system (P (dy|x), f(x)) with potentials g(x), x ∈ �, we wish to de-
termine the corresponding transition probability matrix P := [p(j|i)] and the
potentials g(i), i, j ∈ S, for the approximately discretized finite-state Markov
chain. For simplicity, we use the same notation of P and g for both continuous
and discretized versions. We distinguish them by the arguments x, y and i, j
in the expressions. First, we consider the steady-state expected value of g. For
the continuous model, we have
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πg = (πP )g =
∫

x∈


∫

y∈

g(y)P (dy|x)π(dx). (7.64)

For the discrete version, we need to determine the π(i)’s, p(j|i)’s, and g(j)’s
such that

πg =
∑

i∈S

∑

j∈S
π(i)p(j|i)g(j). (7.65)

From (7.64), we have

πg =
∑

i∈S

∑

j∈S

{∫

x∈Δi

∫

y∈Δj

g(y)P (dy|x)π(dx)

}

=
∑

i∈S

∑

j∈S

{(∫

y∈Δj

g(y)

∫
x∈Δi

P (dy|x)π(dx)
∫

x∈Δi

∫
y∈Δj

P (dy|x)π(dx)

)

(∫
x∈Δi

∫
y∈Δj

P (dy|x)π(dx)
∫

x∈Δi
π(dx)

)(∫

x∈Δi

π(dx)
)}

.

Comparing this with (7.65), we should have

π(i) =
∫

x∈Δi

π(dx), (7.66)

p(j|i) =

∫
x∈Δi

∫
y∈Δj

P (dy|x)π(dx)
∫

x∈Δi
π(dx)

. (7.67)

These two equations can be explained intuitively, since
∫

x∈Δi

π(dx) = π(Δi) and
∫

x∈Δi

∫

y∈Δj

P (dy|x)π(dx) = π(Δi,Δj),

where π(Δi,Δj) is the steady-state probability of Xl ∈ Δi and Xl+1 ∈ Δj .
The item in the first bracket, however, has a form depending on both i and
j, so we need to denote it as

g(i, j) =
∫

y∈Δj

g(y)

∫
x∈Δi

P (dy|x)π(dx)
∫

x∈Δi

∫
y∈Δj

P (dy|x)π(dx)
=

∫

y∈Δj

g(y)μi(dy),

where

μi(dy) =

∫
x∈Δi

P (dy|x)π(dx)
∫

x∈Δi

∫
y∈Δj

P (dy|x)π(dx)
=

π(Δi, dy)
π(Δi,Δj)

is a conditional probability of dy given that x ∈ Δi and y ∈ Δj . From the
Markov property, g(y) does not depend on i. In addition,

∫
y∈Δj

μi(dy) = 1.
Therefore, if g(y) are very close to each other in y ∈ Δj (e.g., Δj is very
small), then g(i, j) ≈ g(y), y ∈ Δj , are also very close to each other for all i.
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Furthermore, if the g(i, j)’s are almost independent of i, we have the following
approximation

g(i, j) =

∫
y∈Δj

g(y)
∫

x∈Δi
P (dy|x)π(dx)

∫
x∈Δi

∫
y∈Δj

P (dy|x)π(dx)

≈
∑

i∈S

{∫
y∈Δj

g(y)
∫

x∈Δi
P (dy|x)π(dx)

}

∑
i∈S

{∫
x∈Δi

∫
y∈Δj

P (dy|x)π(dx)
}

=

∫
y∈Δj

g(y)
∫

x∈
 P (dy|x)π(dx)
∫

y∈Δj

∫
x∈
 P (dy|x)π(dx)

.

For the steady-state probability distribution π(dx), we have∫
x∈
 P (dy|x)π(dx) = π(dy) and

∫
y∈Δj

∫
x∈
 P (dy|x)π(dx) =

∫
y∈Δj

π(dy) =
π(Δj). Denote

π(dy|Δj) :=
π(dy)
π(Δj)

,

which is a steady-state conditional probability distribution. Then, we have
g(i, j) ≈ g(j) for all i, where

g(j) :=
∫

y∈Δj

g(y)π(dy|Δj) (7.68)

is the mean of the potentials in the interval Δj . The approximation in (7.68)
may not hold if Δj is not small, e.g., for Δ1 = (−∞, x2] and ΔS = [xS ,∞).
However, the probabilities that the system is in these intervals are almost
zero, so the effect is negligible.

Finally, with the π(i), p(j|i), and g(j), i, j ∈ S, defined in (7.66), (7.67),
and (7.68), respectively, the average potentials in (7.64) and (7.65) are approx-
imately the same for both the continuous and the discretized Markov chains.
Therefore, they are the values for the approximate discretized Markov chains.

Estimation of Potentials and Parameters

For any interval Δ ⊂ � and two intervals Δ1,Δ2 ⊂ �, we define IΔ(x) = 1 if
x ∈ Δ, and IΔ(x) = 0 otherwise; and IΔ1,Δ2(x, y) = 1 if x ∈ Δ1 and y ∈ Δ2,
and IΔ1,Δ2(x, y) = 0, otherwise. Given a sample path {X0,X1, . . . , XL−1} of
a Markov chain with state space �, it is clear from (7.66), (7.67), and (7.68)
that

π(i) = lim
L→∞

1
L

L−1∑

l=0

IΔi
(Xl), w.p.1,
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p(j|i) = lim
L→∞

∑L−1
l=0 IΔi,Δj

(Xl,Xl+1)
∑L−1

l=0 IΔi
(Xl)

, w.p.1, (7.69)

and

g(j) = lim
L→∞

∑L−1
l=0 IΔj

(Xl)g(Xl)
∑L−1

l=0 IΔj
(Xl)

, w.p.1.

In practice, to estimate S (say 10, 000) potentials g(j), j ∈ S, is usually
feasible; however, to estimate S2 transition probabilities p(j|i), i, j ∈ S, may
not be desirable. Furthermore, based on observing a sample path of a system
under one policy, it may not be possible to estimate the transition probabilities
of other policies. We have the following alternatives:

1. Reinforcement learning methods may be used to estimate Q-factors with
different actions. This requires us to estimate

∑S
i=1 |A(i)| items, and it

also requires to “perturb” the system with an ε-greedy policy that visits all
the state-action pairs (see Section 6.3.2), and this may not be practically
desirable.

2. The number of the transition probabilities under different actions to be
estimated can be reduced if the system possesses some special structures.

To illustrate the second idea, we assume that all the intervals (except those
with probabilities almost zero) are of an equal size, i.e., Δxi = Δ for all i ∈ S.
For one-dimensional linear systems, with a control policy u(x), the transition
function (7.42) takes the following form:

Pu(dy|x) = pξ [y − (ax + bu)] dy.

If we assume that Δ is very small, from (7.67) we have

pu(j|i) ≈ pξ [y − (ax + bu)]Δ, y ∈ Δj , x ∈ Δi. (7.70)

Thus, if we know the distribution function pξ(y), then we can calculate the
transition probabilities pu(j|i), i, j ∈ S, for any u(x). This means that we can
convert a problem of estimating a two-dimensional matrix P to a problem of
estimating a one-dimensional vector pξ(y), y ∈ S.

We use some simple examples to illustrate the main ideas.

Example 7.2. We consider a one-dimensional control system. Suppose that
the distribution density function pξ(y) concentrates around the origin y = 0.
We may take Δ = 0.1 and divide � with the points −9Δ,−8Δ. . . ,−Δ, 0,
Δ, . . . , 9Δ. We have S = 20 discrete states, 1, 2, . . . , 20, corresponding to
intervals Δ1 = (−∞,−9Δ], Δ2 = (−9Δ,−8Δ], . . . , Δ19 = (8Δ, 9Δ], and
Δ20 = (9Δ,∞). We assume that the probability that the random noise ξ lies
in Δ1 and Δ20 is very small.

Let a = 1.5 and b = 2. If we take action u = 0, then by (7.70) the transition
probabilities are
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p{0}(j|i) ≈ pξ(y − 1.5x)Δ, y ∈ Δj , x ∈ Δi.

As an example, let i = 3 correspond to x = −7Δ. Therefore, p{0}(19|3) =
pξ(9Δ + 1.5 × 7Δ)Δ = pξ(19.5Δ)Δ, p{0}(18|3) = pξ(8Δ + 1.5 × 7Δ)Δ =
pξ(18.5Δ)Δ, . . . , p{0}(2|3) = pξ(−8Δ + 1.5 × 7Δ)Δ = pξ(2.5Δ)Δ. Thus,
p{0}(j|3), j = 2, 3, . . . , 19, which can be estimated by (7.69), correspond
to the probabilities of the random noise ξ in the intervals (2Δ, 3Δ], . . . ,
(18Δ, 19Δ], and (19Δ, 20Δ]. Similarly, p{0}(j|2), j = 2, 3, . . . , 19, correspond
to the probabilities of the random noise ξ in the intervals (3Δ, 4Δ], . . . ,
(17Δ, 18Δ], and (20Δ, 21Δ]; and p{0}(j|19), j = 2, 3, . . . , 19, correspond to
the probabilities of the random noise ξ in the intervals (−23Δ,−22Δ], . . . ,
(−3Δ,−4Δ], and (−4Δ,−5Δ]. Overall, the transition probabilities p{0}(j|i),
i, j = 2, . . . , 19, correspond to the probabilities of the random noise ξ in the
intervals (−23Δ,−22Δ], (−22Δ,−21Δ], . . . , and (20Δ, 21Δ]; there are alto-
gether 44 intervals. That is, we need only to estimate 44, rather than 18× 18,
values. Transition probabilities p{0}(j|1) and p{0}(j|20) have to be dealt with
separately by using (7.69). Hopefully, these transition probabilities are not so
important because the steady-state probabilities πu(1) and πu(20) under any
policy u are very small.

Now, suppose that we apply a feedback control law with u = −x. Then,
the system is

y = ax + bu + ξ = 1.5x + 2(−x) + ξ = −0.5x + ξ,

and we have

p−x(j|i) ≈ pξ(y + 0.5x)Δ, y ∈ Δj , x ∈ Δi.

As an example, consider i = 6 corresponding to x = −4Δ. We have
p−x(19|6) = pξ(9Δ − 0.5 × 4Δ)Δ = pξ(7Δ)Δ, p−x(18|6) = pξ(8Δ − 0.5 ×
4Δ)Δ = pξ(6Δ)Δ, . . . , p−x(2|6) = pξ(−8Δ − 0.5 × 4Δ)Δ = pξ(−10Δ)Δ.
Overall, the transition probabilities p−x(j|i), i, j = 2, . . . , 19, correspond
to the probabilities of the random noise ξ in the intervals (−13Δ,−12Δ],
(−12Δ,−11Δ], . . . , and (12Δ, 13Δ]; there are altogether 26 intervals. All
these intervals are among the previous intervals for determining p{0}(j|i),
i, j = 2, . . . , 19; thus, all p−x(j|i) are known once p{0}(j|i), i, j = 2, . . . , 19,
are known. ��

Example 7.3. Consider a JLQ system. At the high level, there are two modes,
M = {1, 2}, which form a Markov chain with the following transition proba-
bility matrix

P =
[

0.5 0.5
0.5 0.5

]
.

The system parameters are: A1 = 1, B1 = 1, Q1 = 1, V1 = 1; A2 = 2, B2 =
−1, Q2 = 2, V2 = 2. Let the noise ξk be a normally distributed random
variable N(0, 1).
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The coupled Riccati equation (7.63) is
{

Ŝ1 = Ĥ1 − Ĥ1(1 + Ĥ1)−1Ĥ1 + 1,
Ŝ2 = 4Ĥ2 − 4Ĥ2(2 + Ĥ2)−1Ĥ2 + 2,

(7.71)

where Ĥ1 = Ĥ2 = 0.5Ŝ1 + 0.5Ŝ2.
Solving the coupled Riccati equation yields the theoretical values for the

optimal control law as D̂1 = 0.8253 and D̂2 = −1.405.
We simulated the system and applied the learning algorithm to estimate

D̂1 and D̂2. We took Δ = 0.1 and divided � by the points −20Δ,−19Δ, . . . ,
−Δ, 0,Δ, . . . , 20Δ. We ran the system for L = 10, 000 transitions for the first
five iterations, and L = 50, 000 for other iterations. The initial policy was
chosen to be D

{0}
1 = 1 and D

{0}
2 = −1.

We applied the on-line learning algorithm to update control policies. The
performance of each iteration is shown in Figure 7.5. The figure shows that
the performance improves rapidly, and after seven iterations, the performance
is almost the same as the optimal one. We stop the iteration when the differ-
ences between the control values u(x) in two consecutive iterations for all x
are smaller than ε = 0.03. The iterations terminate after 50 iteration steps.
Figures 7.6 and 7.7 illustrate the optimal control laws u = −D̂ix, for modes
i = 1 and i = 2, respectively. The straight lines are theoretical optimal control
laws while the two wavy ones are obtained from the on-line algorithm. In the
on-line learning approach, we estimate the potentials; but we assume that the
parameters are known, and we apply (7.70) to estimate the transition proba-
bilities pu(j|i), i, j ∈ S, and use them to implement policy iteration without
solving the coupled Riccati equation. ��

7.4.2 Discussion

One advantage of the sample-path-based learning and optimization approach
is that principally it applies to both linear and non-linear systems in the
same way. The system structure affects only the transition probability matrix.
However, determining the transition probability matrices for different control
parameters might be a difficult task.

Another difficulty one may encounter is that, because the state and action
spaces in such problems are usually continuous, the theoretical results on
convergence, etc, may be limited.

More research in this direction is certainly needed.
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PROBLEMS

7.1. Repeat Example 7.1 with the data listed in Table 7.3.

state Transition prob. pα(j|i)
i action j = 1 2 3 Perf. func.

α1,1 0.3 0.6 0.1

1 α1,2 0.4 0.2 0.4 10

α1,3 0.2 0.3 0.5

α2,1 0.6 0 0.4

2 α2,2 0.4 0.3 0.3 0

α3,1 0.4 0.2 0.4

3 α3,2 0.3 0.5 0.2 -5

α3,3 0.2 0.1 0.7

Table 7.3. The Actions and Performance Function in Problem 7.1

7.2. For any three operators P1, P2, and P3, prove

a. For any function h(x) on �n, we have (P1P2)h(x) = P1 [P2h(x)] (assuming
the integrations exist); and

b. (P1P2)P3 = P1(P2P3); and
c. P k = PP k−1 = P k−1P .

7.3. For any probability distribution ν, transition function P , and any func-
tion h, prove ν(Ph) = (νP )h. Explain the meaning of both sides.

7.4. With the forward-time index used in (7.9), from (7.14) and (7.15), we
can define the finite-step perturbation realization factor for any policy d =
{d0, d1, . . . , dL−1} as follows:

gd
�=L(i) =

L−1∑

l=0

E { [f(Xl, dl(Xl))− f(X ′
l , dl(X ′

l))]|X0 = i,X ′
0 = i∗} ,

where X = {X0,X1, . . .} and X ′ = {X ′
0,X

′
1, . . .} are two independent sample

paths with initial states X0 = i and X ′
0 = i∗, respectively. Note that the

decision rules dl may be different for different l = 0, 1, . . . . Let Lii∗ be the
time at which the two sample paths merge together, i.e., XLii∗ = X ′

Lii∗
.

a. Prove that if E(Lii∗) <∞, then limL→∞ gd
�=L(i) exists.

b. Find a condition under which E(Lii∗) <∞.
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7.5. Prove Lemma 7.1.

7.6.∗ For any bounded function f(x), x ∈ �, we define the e-norm ‖f(x)‖ =
supx |f(x)|. The e-norm of a linear operation P (R|x) is defined as ‖P‖ :=
sup {‖Pu‖ : ‖u‖ ≤ 1}. A transition function P is called e-ergodic, if

lim
k→∞

‖(P k − eπ)‖ = 0.

Prove: if P is e-ergodic, then

lim
k→∞

gk = g, and lim
k→∞

Pgk = Pg,

where gk :=
{
I +

∑k
l=1(P

l − eπ)
}

f , for any bounded function f .

7.7. Consider the two steady-state probability distributions π and π′ defined
as shown in Figure 7.8. The two distributions have discrete masses as follows:
π(−0.2) = π(−0.4) = π(−0.6) = π(−0.8) = π(−1) = 0.1, and π′(0.2) =
π′(0.4) = π′(0.6) = π′(0.8) = π′(1) = 0.1. The total probabilities on these
discrete points are 1

2 for both distributions. The other 1
2 is evenly distributed

on the interval [−1, 1]. Explain that these two distribution functions have the
same state space, but they do not have the same support.

0

π

-1

0.1

0.25

1 0

π′

-1

0.1

0.25

1

Fig. 7.8. The Two Steady-State Probability Distributions in Problem 7.7

7.8. Consider a non-linear control system

Xl+1 = uXl + ξl, l = 0, 1, . . . ,

where u is a control variable. Let pξ(•) be the distribution density function
of the independent and identically distributed random noise ξl, l = 0, 1, . . . .

a. Derive the transition probability function Pu(dy|x).
b. How do we estimate the discrete approximation p(j|i), i, j = 1, 2, . . . , S?

Can we reduce the number of transition probabilities to be estimated?

7.9. Consider a JLQ problem.
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a. Suppose that the modes change slowly. That is, p(i|i) ≈ 1 and p(j|i) ≈ 0
for j �= i. Show that the coupled Riccati equation is de-coupled into M
Riccati equations corresponding to M LQ problems.

b. We consider another extreme case: the mode changes rapidly. As an exam-
ple, we consider a 2-mode system (M = 2). Suppose p(2|1) = p(1|2) ≈ 1
and p(1|1) = p(2|2) ≈ 0. What is the coupled Riccati equation in this
case? Explain your results.

7.10. Prove that in (7.48),

∞∑

k=1

(ck − η) = −
∫


n

[
zTUz

]
pξ(z)dz,

with U =
∑∞

k=1 kWk. Prove that

U − CTUC = CTSC.

7.11. Consider a linear system

Xl+1 = CXl + ξl, l = 0, 1, . . . ,

with a discounted quadratic performance criterion

η(x) = lim
L→∞

E

{
L∑

l=0

βl(XT
l WXl)

∣∣∣∣∣X0 = x

}
, 0 < β < 1,

with W being a positive semi-definite matrix. Determine the performance
potentials of this LDQ (linear-discounted-quadratic) problem.

7.12. Consider a linear control problem

Xl+1 = AXl + Bu(Xl) + ξl, l = 0, 1, . . . ,

with a discounted quadratic performance criterion

η(x) = lim
L→∞

E

{
L∑

l=0

βl
[
XT

l QXl + uT
l V ul

] ∣∣∣X0 = x

}
, l = 0, 1, . . . .

Apply policy iteration to this LDQ control problem to derive the (discounted)
Riccati equation for the optimal policy.

7.13. Consider the JLQ problem

Xl+1 = AMl
Xl + BMl

ul + ξMl,l,

in which the noise ξMl,l, Ml = 1, 2, . . . ,M , has different probability distribu-
tions Pξi

(y), i = 1, 2, . . . ,M , y ∈ �n. Derive the solution to this problem.
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- A New Approach



Imagination is more important
than knowledge.

Albert Einstein
American (German born)

physicist (1879 - 1955)

8
Event-Based Optimization of Markov

Systems

In the previous chapters, we developed a sensitivity-based approach that pro-
vides a unified framework for learning and optimization. We have shown that
the two performance sensitivity formulas are the bases for learning and op-
timization of stochastic systems. The performance derivative formula leads
to the gradient-based optimization approach, and the performance difference
formula leads to the policy iteration approach to the standard MDP-type of
problems.

However, the standard Markov-model-based formulation suffers from a
number of drawbacks. First and foremost, the state space is usually too large
for practical systems. Thus, the number of potentials to be calculated or esti-
mated is too large for most problems. Second, the generally applicable Markov
model does not reflect any special structure of a particular problem. Thus,
from the Markov model alone, it is not clear whether or not, or how, poten-
tials can be aggregated to save computation by exploiting the special structure
of the system. The third issue is related to policy iteration: It requires the ac-
tions at different states to be chosen independently (the independent-action
assumption, see Chapter 4). In many practical problems, however, these ac-
tions may have to be correlated; the standard policy iteration cannot handle
such problems properly.

A natural question is, can we apply the sensitivity-based approach to over-
come the aforementioned drawbacks? In other words, with the sensitivity-
based approach, can we develop optimization methods to the problems with
special features that may not fit the standard MDP formulation? And can
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we utilize the special features of a problem to save computation, or even to
achieve a better performance than the standard MDP formulation?

To answer these questions, we start with the characterization of the special
features of an optimization problem. In many problems, such special features
can be captured by the concept of “event”. For example, in an admission
control problem (cf. Example 8.4), an event may be a customer arrival. In a
two-level hierarchical control problem, an event may be a transition between
two higher-level modes. In a traffic control problem of a large communication
network, an event may be a packet transmission between two subnetworks. In
these problems, control can only be applied when some events occur.

With the above observation, we propose an event-based optimization ap-
proach. Specifically, we will study what the main features of the event-based
optimization are, how to formally characterize events, how to utilize the spe-
cial features captured by events to derive performance sensitivity formulas,
how to aggregate the performance potentials using the special features, how
to further develop learning and optimization approaches based on these sen-
sitivity formulas and aggregated potentials, and what the advantages and
disadvantages of this event-based optimization approach are.

8.1 An Overview

8.1.1 Summary of Previous Chapters

In the previous chapters, we introduced the different areas in the learning
and optimization of stochastic dynamic systems using a unified framework
based on a sensitivity point of view. Among these areas are perturbation
analysis (PA) [42, 51, 62, 72, 141, 142], Markov decision processes (MDPs)
[6, 21, 25, 202, 216], reinforcement learning (RL) [17, 18, 161, 170, 171, 229,
230, 236, 238, 244], and direct adaptive control [9, 206]. This unified framework
was illustrated by the “map of the learning and optimization world” in Figure
1.19, which is reproduced here as Figure 8.1.

A Map with a Sensitivity-Based View

At the center of the world are the two types of performance sensitivity formu-
las: When the system parameters are continuous variables, the sensitivity is
the gradient (derivatives) of the performance with respect to the parameters;
when the system is characterized by discrete quantities (e.g., policies), the
sensitivity is the difference between the performance of the system with two
different sets of parameters (e.g., under two different policies). The funda-
mental concept for both sensitivities is the performance potential of a Markov
process. Both PA and MDP can be explained from a performance sensitivity
point of view: PA gives the performance gradients (or policy gradients as re-
ferred in the RL literature), and policy iteration can be derived naturally from
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On-line hill climbing On-line policy iteration On-line algorithms
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(Policy gradient)
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(Policy iteration)
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Linear &
non-linear
systems

Fig. 8.1. A Map of the Learning and Optimization World

the performance difference formula [53, 67, 97] by utilizing its special form.
Both of them can be implemented on a single sample path; Q-learning, TD(λ),
neuro-dynamic programming, etc., provide sample-path-based efficient meth-
ods of estimating the performance potentials and/or other related quantities
(e.g., Q-factors). As shown in the figure, performance optimization can be
achieved either by using the performance gradients combined with stochas-
tic approximation methods, see, e.g., [82, 83, 84, 103, 197, 198, 246] (in each
step, performance improves by a small amount), or by applying policy itera-
tion algorithms in MDPs (in each iteration, policy jumps to another one with
a better performance). In recent years, there has been a considerable amount
of effort to bring the researchers in different areas together to develop multi-
disciplinary approaches to this common subject of performance optimization
[58, 207, 208, 228].

Figure 8.1 describes the relations among the different optimization areas
and illustrates how the two sensitivity formulas lead to different optimization
approaches. However, as explained previously, because these two sensitivity
formulas are derived with the standard MDP formulation, the results pre-
sented in the previous chapters do not cover non-standard problems; and it is
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well known that the standard MDP approach suffers from two major draw-
backs: the state space is usually too large, and the actions have to be chosen
independently at different states.

Extensions

Our general goal is to extend the sensitivity-based framework and the ap-
proaches depicted in Figure 8.1 to more general cases. The extension allows
the approaches similar to those discussed in the previous chapters to be ap-
plied to problems that do not fit the standard MDP formulation well; these
problems may possess some special features that can be utilized. The essential
work (as the first step) is to derive the two types of sensitivity formulas for
these problems. As illustrated in Figure 8.1, once the sensitivity formulas are
obtained, optimization approaches such as policy gradient, policy iteration,
and RL, etc., may be derived for these non-standard problems.

8.1.2 An Overview of the Event-Based Approach

In this chapter, we show that, in a class of optimization problems, the special
structures may be captured by the concept of “event”; and we propose to
formulate the optimization problem based on events rather than on states.
The approach is called event-based optimization. We will see that the event-
based approach enjoys some advantages over the state-based approach.

Events and Event-Based Policies

An event is defined as a set of state transitions. In a real world system, a
physical event that happens at a particular time instant can be character-
ized by the state transition at that instant; e.g., if a customer arrives at a
network and is accepted at a particular instant, then the population of the
network increases by one at that instant. Therefore, the event corresponding
to a customer arrival can be defined as a set of state transitions that increase
the network population by one. Furthermore, in many systems, actions can
be taken only when some events occur; e.g., in the admission control problem,
actions (accept or reject) can be taken only when a customer arrives. Thus,
policies can be defined on the event space instead of on the state space. Such
policies are called event-based policies.

We first continue Example 1.5 in Chapter 1 to illustrate the main ideas in
problem formulation.

Example 8.1. (Moving Robot) Let us first give the transition diagram in
Figure 1.15 a “physical” meaning. A robot takes a random walk among six
rooms, denoted as 1, 2, 3, 4, 5, and 6, as shown in Figure 8.2. There are two
special passages, which connect rooms 1, 2, 3, and 4, and rooms 1, 2, 5, and
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Fig. 8.2. A Simple Example for Event-Based Optimization

6, together, respectively, as shown in Figure 8.2. There is one traffic light,
denoted as �, in each passage.

When the robot is in room 3 or 5, in the next step, it moves to room
1. When it is in room 4 or 6, in the next step, it moves to room 2. When
the robot is in room 1, in the next step, it moves to room 2 with probability
r1, or enters the right passage with probability pb, or enters the left passage
with probability pa, where r1 + pa + pb = 1. When the robot is in room 2,
in the next step, it moves to room 1 with probability r2, or enters the right
passage with probability qb, or enters the left passage with probability qa,
where r2 + qa + qb = 1. The robot meets the traffic light after it enters a
passage; if it is green, it moves to the top room (3 on the right or 5 on the
left); if it is red, it moves to the bottom room (4 on the right or 6 on the left).

Suppose that we can only turn on both lights together with the same color
(either both red or both green). Denote the probability of the light being green
and red as σ and 1−σ, respectively. We may choose σ from [0, 1]. We, however,
cannot distinguish room 1 or 2; i.e., we only know that the robot is in either
room 1 or 2, but do not know which one it is exactly in.

When the robot is in room i, it receives a reward f(i), i = 1, 2, 3, 4, 5, 6,
with f(1) = f(2) = 0, f(3) = f(6) = 100, and f(4) = f(5) = −100. Our
goal is to determine the probability σ so that the long-run average reward is
maximal.

We denote the room number i as the system state, i = 1, 2, 3, 4, 5, 6. The
system can be modelled as a Markov chain. The state transition diagram
corresponding a fixed σ is shown in Figure 8.3, and the state transition prob-
abilities are listed in Figure 8.4. The transition diagram 1.15 in Example 1.5
is a part of Figure 8.3.

The problem can be solved by the event-based approach. As discussed in
Example 1.5 of Chapter 1, we can define two events

a = {〈1, 5〉, 〈1, 6〉, 〈2, 5〉, 〈2, 6〉}

and
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b = {〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉} .
They are illustrated by the two small ovals in Figure 8.3. From Figure 8.2, it is
clear that event a represents the “physical” event of the robot moving to the
front of the left light, and event b represents the “physical” event of the robot
moving to the front of the right light. Therefore, we may call a an “arrival
to the left light”, and b an “arrival to the right light”. The event of “not an
arrival” is denoted as a ∪ b. of course, other events can also be defined.

The action space is defined as A = {r, g, ∅}, with r and g denoting “turning
the red and the green lights on”, respectively, and ∅ denoting “doing nothing”.

Let 〈Xl,Xl+1〉 denote the state transition (which is also called a single
event) at time l, l = 0, 1, . . . . In the event-based approach, we assume that we
cannot observe Xl and Xl+1, but we can observe the event happening at time
l; and we denote it as El, with 〈Xl,Xl+1〉 ∈ El, l = 0, 1, . . . . We may have
El = a, El = b, or El = a ∪ b. Let El := (E0, E1, . . . , El−1, El) be the history
of the events. When El = a ∪ b, we do nothing (Al = ∅); when El = a, or b, we
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take an action r, or g (Al = r or g), with probability 1−σl or σl. We may choose
σl according to a randomized policy (see Page 12) denoted as σl = σ(Hl),
with Hl = (El,Al−1). As shown later, in this example, a stationary history-
independent optimal policy σ(El) is good enough. We denote σa = σ(a) and
σb = σ(b), i.e., when event a (or b) occurs, we choose the probability of g to
be σa (or σb). We wish to determine an event-based policy σ(El) to achieve
the best performance.

For convenience, sometimes we also say “take an action σ”, meaning “take
an action g with probability σ”, as we did in Example 1.5 in Chapter 1. ��

Other Approaches Do Not Perform Well

Before further introducing the event-based approach, let us first try to address
this problem with other approaches in the literature. For illustrative purposes,
we further assume that pa > pb but qa < qb.

Example 8.2. (Moving Robot, continued)

A. MDP
This is not an MDP problem because we cannot exactly observe state 1

or state 2.
The problem can be modelled and solved by the MDP approach if we

assume that the state is completely observable. With the MDP model, when
the robot is in room 1 or 2, we may choose a σ from the set [0, 1], denoted
as σ1 or σ2. We may choose σ1 �= σ2. When the robot is in room 1 and σ1

is chosen, the transition probabilities are shown in the first row of Figure 8.4
with σ replaced by σ1; and when the robot is in room 2 and σ2 is chosen,
the transition probabilities are shown in the second row of Figure 8.4 with σ
replaced by σ2.

First, from Figure 8.3, it is easy to see that if a occurs we should take
σ = 0 (the smallest value) so that the robot can move to room 6 and get a
reward of 100 with the largest probability; and similarly, if b occurs we should
take σ = 1 (the largest value). Let σ∗(1) and σ∗(2) be the optimal policy with
the MDP formulation. When the robot is in room 1, the probability of event
a, pa, is larger than that of event b, pb, and thus we should set σ∗(1) = 0.
Similarly, we have σ∗(2) = 1.

It is clear that the optimal performance with the MDP model may not
be very good because for any σ, the two events lead to two opposite values.
When pa = pb = qa = qb, the average reward is zero.

B. POMDP
If we cannot distinguish state 1 and state 2, the problem can be modelled

as POMDP. Set 0 = {1, 2}; i.e., when Xl = 1 or 2, we observe an aggregated
state Yl = 0. The observation history looks like Yl = {0, 5, 0, 4, 0, 0, 6, 0}.
When the state is 1 or 2, σ depends on the conditional distribution ν(1) and
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ν(2) under the given information history. The probabilities of events a and b
are

P(a) = ν(1)pa + ν(2)qa,

and
P(b) = ν(1)pb + ν(2)qb.

If P(a) > P(b), we take σ = 0; otherwise, σ = 1.
A special case of the POMDP is the history-independent POMDP in which

we can only observe the current aggregated state. At steady state, we know

ν(1) = π(1|0) =
π(1)

π(1) + π(2)
,

and

ν(2) = π(2|0) =
π(2)

π(1) + π(2)
,

where π denotes the steady-state probability distribution. The solution is: If
ν(1)pa + ν(2)qa > ν(1)pb + ν(2)qb, then we set σ = 0; otherwise, set σ = 1.
(π, and hence ν, depends on σ, though.)

Note that in this special case, the same σ is applied to both states 1 and
2.

This approach suffers from the same drawback as MDPs: For the same
σ �= 1

2 , the two events lead to two opposite values of the reward. When
pa = pb = qa = qb, the average reward is always zero.

C. POMDP with El as Observation Histories
In addition to Yl, we may also take El, l = 0, 1, . . . , as observations and use

them to estimate the states. Indeed, this may help to improve the estimation
of the conditional probabilities of states 1 and 2. However, as explained above,
the performance of this approach will not be better than the MDP approach.

D. The Equivalent Aggregated Markov Chain (EAMC)
We can aggregate two states 1 and 2 into a big state 0. However, the

resulting chain Y is not Markov. Suppose that the system currently is in
state 0. If the previous state is 5, then the current state must be 1; and if the
previous state is 4, then the current state must be 2. Note that states 1 and
2 have different probabilities for events a and b.

We can form a Markov chain that is equivalent to the aggregated chain.
The problem with this EAMC approach is that, generally, such aggregation
takes average and some structural information is lost. More specifically, let us
reset f(2) = 20 and f(1) = 0. With the POMDP model (even the history-
independent case) if the system moves from state 4 to state 2, we know it
receives a reward of 20; but in the EAMC model, it receives a reward of
weighted average of 20 and 0. This will affect the potential g(4). Thus, with
the EAMC model, the potential of the equivalent chain may be different from
the original one.
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Another difficulty with this approach is that the transition probabilities
of the equivalent chain may depend on σ.

E. MDP with Correlated Actions
In this model, we assume that the states are completely observable, but

we require that the probabilities of the red and green lights in states 1 and
2 must be the same. The problem is to choose a σ in Figure 8.4 so that the
long-run performance is the best.

This problem is the same as the history-independent POMDP.

F. The Event-Based Approach
As explained in Example 1.5 in Chapter 1, and it is clear from the reward

structure shown in Figure 8.3, we may design a myopic policy: If a occurs we
choose σa = 0, which leads to state 6 and the reward at the next step is 100;
and similarly, if b occurs, we choose σb = 1, and the reward at the next step
is also 100. This myopic event-based policy is much better than the optimal
MDP policy. ��

Discussion on Problem Formulation

We have shown that the other approaches discussed above may not provide a
satisfactory optimal solution, and we hope that with the event-based formula-
tion we may utilize the structure better and obtain a better solution. We will
formally define events in Section 8.2 and provide a solution to the event-based
optimization problem in Section 8.3. Now, let us first study more aspects of
the moving robot problem to obtain a better understanding,

Example 8.3. (Moving Robot, Continued) Logically, the process of the
robot passing through a passage consists of three phases: First, the robot
moves to the front of a light, either on the left or the right. (The robot moving
to the front of the left light is called event a, and the robot moving to the front
of the right light is called event b.) Second, an action is taken (turning on the
red or the green light). We can control the probabilities of the actions (red
or green), by using the information obtained in the first phase (i.e., the robot
moves to the front of the left, or the right, light). Third, the robot moves on
to its destination following the instruction of the light.

These three phases can be modelled as three types of events, as shown
in Section 8.2. The three phases (events) have a logical order in timing but
happen simultaneously in the Markov model, and these three events, together,
determine a state transition. ��

In the above example, when an action is taken, the robot already moves
to the front of a light. In other words, when an action is taken, the state
transition already passed its first phase. Therefore, knowing an event implies
knowing something about the future (“half” of the transition).

In optimization, to obtain a better performance, we wish to control a
system’s future behavior by taking proper actions (we can do nothing about
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what happened in the past). In MDPs, we assume that the state is known; in
order to choose the right action, we predict and compare the future behavior
under different actions by using their corresponding transition probabilities. In
POMDP, we do our best to get an estimate of the state by using its conditional
distribution given all the information observed. With this distribution, we
predict and compare the future behavior under different actions.

In the MDP model, nothing beyond Xl is known. At time l, we deter-
mine an action Al based on Xl, then the transition takes place instantly.
In the event-based approach, a time instant l is split into three phases: An
event El happens in the first phase, and we wait until El happened then take
an action. Because El contains some information about the state transition
from Xl to Xl+1, it contains some information about Xl+1. In event-based
approach, we use this information directly in optimization; while in MDP,
future information is predicted indirectly from Xl using the transition prob-
abilities p(Xl+1|Xl). In POMDP, it is even worse: we need to estimate Xl

before predicting Xl+1.
In summary, in the event-based model, we assume that we know something

about the next state. Information about future is more directly related to
optimization than that about the current state. All the information about
the current state is for predicting the future behavior. Therefore, as we see in
Example 8.2, knowing an event might be much better than knowing exactly
the current state.

Sensitivity Formulas and Potential Aggregation

The performance sensitivity formulas can be constructed for event-based poli-
cies, and optimization can be implemented based on these sensitivity formulas
in a way similar to the standard MDPs. The potentials of the states associated
with an event can be aggregated, and computation is reduced. In aggregating
the potentials, we may exploit the special system structure (e.g., the queueing
structure), and may not need the explicit form of the transition probabilities
of the underlying Markov system. With the formulation of event-based poli-
cies, the assumption that the actions can be chosen independently at different
states is not required; for example, in the moving robot example, the same σ is
used for both rooms 1 and 2. In the admission control problem (cf. Example
8.4), we often accept an arriving customer when the network population is
less than a certain number, which may correspond to many different states.

Finally, the performance sensitivity formulas can be derived analytically
from the general formulas (2.26) and (2.27). They can also be constructed by
using the special features and with potentials as building blocks. The con-
struction approach for performance derivatives is similar to that described
in Section 2.1, and the construction approach for performance differences is
introduced in Chapter 9. Compared with the analytical method, the construc-
tion approach is more flexible and intuitive. When we do not know the form of
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the sensitivity formulas, the construction approach is extremely useful because
it helps us “guess” the formulas before we prove it analytically.

Advantages and Limitations

In summary, there are a number of advantages to event-based optimization:

1. In many real world problems, actions are taken only after some events
occur. MDP and POMDP do not model the effect of the events well,
and the important information about the next state, which are available
when the decision is made, may be lost. The event-based approach directly
utilizes this future information as well as the structure properties captured
by the events; therefore, in some cases, this approach may lead to a better
optimal solution than the approaches with policies depending only on the
current state.

2. Using the sensitivity-based approach discussed in this book, we can de-
velop general solution methods to these problems (either policy iteration
when possible, or gradient-based approach).

3. We will see later, the approach aggregates the potentials staring from
the next state after an event. The number of aggregated potentials is the
number of events, which may scale to the system size. This may reduce
the number of potentials to be estimated in the learning process and
significantly save computation.

The limitation of the approach is that in many problems the aggregated
potentials in the performance difference formula may depend on both policies
under comparison; this may prevent the aggregated potentials from being
used in policy iteration. However, gradient-based approach can always be
developed. We will discuss this issue later.

Chapter Organization

We first formally introduce the concept of events, the event space, and the
probability measure on the event space in Section 8.2. We use two examples,
the moving robot and the admission control, to illustrate the basic concepts
and ideas, including three types of events, in Section 8.2.3. We classify these
three types of events in Section 8.2.4.

We then discuss event-based optimization in Section 8.3. We derive two
fundamental performance sensitivity formulas for event-based policies in Sec-
tions 8.3.2 and 8.3.3. These two formulas have a similar structure as those with
the standard MDP, except i) the steady-state probabilities of events (instead
of states) are used, ii) actions depend on events (instead of states), and iii)
the potentials are generally aggregated. With these two formulas, event-based
optimization (gradient-based optimization in general and policy iteration in
some special cases) is introduced in Section 8.3.4.
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In Section 8.4, we show that an aggregated potential can be estimated on
a sample path with the same computation and same accuracy as estimating
a potential of a state.

The two problems, the moving robot and the admission control, are used
as examples in all these sections.

In Sections 8.5.1 and 8.5.2, we give two more examples, one in manufac-
turing and the other in queueing systems, to illustrate the application of the
event-based approach. In Section 8.5.3, we show that the event-based approach
provides a unified framework for many other approaches in performance op-
timization and we provide a summary of the chapter.

8.2 Events Associated with Markov Chains

In many problems, the special feature related to a system’s structural or
parameter’s changes can be characterized by “events”. In a real world system,
the system behavior is usually modelled as a Markov chain, and a physical
event that happens at a particular time instant can be characterized by the
state transition of the Markov chain at that instant; e.g., if a customer arrives
at a network and is accepted at a particular instant, then the population of
the network increases by one at that instant. Therefore, an event is defined as
a set of state transitions that satisfy some common properties. Throughout
this chapter, we will use the moving robot problem and the admission control
problem as examples to illustrate the main ideas.

1
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λ
σ(n)

1 − σ(n)

q0,i

qi,j

qi,0

Fig. 8.5. The Admission Control Problem in Example 8.4

Example 8.4. (Admission Control) Consider the admission control prob-
lem in a communication system modelled as a variant of an open Jackson
network [96] shown in Figure 8.5. The network consists of M servers; the
service time of server i is exponentially distributed with mean 1/μi, and μi

is called the service rate, i = 1, 2, . . . ,M . After being served at server i, a
customer will join the queue at server j with probability qi,j , and will leave
the network with probability qi,0,

∑M
j=0 qi,j = 1, i = 1, 2, . . . ,M . Let ni be
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the number of customers at server i, and n =
∑M

i=1 ni be the number of all
customers in the system; n is also called the population of the network.

The customers arrive at the network in a Poisson process with rate λ.
If an arriving customer finds n customers in the network, the customer will
be admitted to the system with probability σ(n) and will be rejected with
probability 1 − σ(n). The system has a capacity of N ; i.e., σ(N) = 0; thus,
an arriving customer finding N customers in the system will be rejected. An
admitted customer will join queue i with probability q0,i,

∑M
i=1 q0,i = 1. For

simplicity, we assume qi,i = 0 for all i. As explained later, this assumption is
not restrictive.

We model the system with the discrete-time Markov chain embedded at
the transition instants (If necessary, apply the uniformization technique, cf.
Problem A.8)). The system state is n = (n1, n2, . . . , nM ), and the state
space is S :=

{
all n :

∑M
i=1 ni ≤ N

}
. Let Sn :=

{
all n :

∑M
i=1 ni = n

}
,

n = 0, 1, . . . , N , be the set of states with population n. We have S = ∪N
n=0Sn.

In the embedded chain, there is only one customer transition at each time
instant, because the probability of two transitions occurring at the same time
instant is zero. We assume that at each transition instant, the state of the
embedded chain takes the value BEFORE the transition. This convention is
made only for convenience.

Note that in this problem we assume that the admission probability de-
pends only on the population n and not on the state n. This is similar to
the partially observable Markov decision processes (POMDPs) in which only
partial information about the state is observable.
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Fig. 8.6. The Embedded Markov Chain for a Single-Server Admission System

Figure 8.6 illustrates a continuous-time sample path {X(t), t ≥ 0} for a sin-
gle server system, in which T0, T1, . . . , are transition instants, and the embed-
ded chain is X0,X1, . . . , Xl, . . . . Thus, with our convention, the continuous-
time sample is left-continuous. The arrows indicate the embedded points. As
shown in the figure, the transition from state X0 = 0 to state X1 = 1 happens
instantly at T0+ in the continuous-time model, but this transition is reflected
by two discrete points X0 = 0 and X1 = 1 in the discrete-time model. In
general, we have X(Tl) = Xl and X(Tl+) = Xl+1, l = 0, 1, . . . . At T4, an
arriving customer is rejected. ��
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8.2.1 The Event and Event Space

We first formally define the events. Consider an ergodic finite Markov chain
defined on state space S = {1, 2, . . . , S} with transition probability matrix
P = [p(j|i)]Si,j=1.

Definition 8.1. A single event, denoted as 〈i, j〉, is a state transition
from i to j, i, j ∈ S. The space of all the single events is denoted as
E = {∅, 〈i, j〉 : i, j ∈ S}, with ∅ being a null event. A set of single events
is called an event.

Consistent with the convention of Xl being the state before the transition
at Tl, we say that a Markov chain X = {Xl, l ≥ 0} makes a transition at time
l from Xl to Xl+1 (not from Xl−1 to Xl). Thus, a single event 〈i, j〉 happens
at time l if Xl = i and Xl+1 = j. The null event ∅ is defined purely for logical
purposes and is different from any real event. Any event a is a subset of E :
a ⊆ E . Thus, all the set operations apply to events. For any a, b, c ⊆ E , we
can write c = a ∩ b, c = a ∪ b, or c = ā = E − a. Also, we may have a ⊆ b,
which indicates that if event a happens, then so does b.

Although an event is mathematically defined as a set of state transitions, it
usually has a physical interpretation for many real world problems. Therefore,
we will refer to an event by its physical meaning. For example, we may call
an event (a set of state transitions) “a customer arrival”.

Example 8.5. (Moving Robot, Continued) Apparently, the event “the
robot moving to the front of the left light” is a = {〈1, 5〉, 〈1, 6〉, 〈2, 5〉, 〈2, 6〉},
the event “the robot moving to the front of the right light” is b = {〈1, 3〉, 〈1, 4〉,
〈2, 3〉, 〈2, 4〉}, the event of the robot not moving to any light is

c := a ∪ b = {〈2, 1〉, 〈1, 2〉, 〈3, 1〉, 〈4, 2〉, 〈5, 1〉, 〈6, 2〉}

(excluding the transitions with zero probability). Furthermore, the events of
the robot moving to a green, or a red, light on the left, and moving to a green,
or a red, light on the right, are

ag = {〈1, 5〉, 〈2, 5〉} , ar = {〈1, 6〉, 〈2, 6〉} ,

and
bg = {〈1, 3〉, 〈2, 3〉} , and br = {〈1, 4〉, 〈2, 4〉} ,

respectively.
We have a = ag∪ar, b = bg∪br, ag, ar ⊂ a, bg, br ⊂ b and E = a∪b∪c. ��

Example 8.6. (Admission Control, Continued) In the admission control
problem, a state transition is denoted as 〈n,n′〉, n,n′ ∈ S. With the conven-
tion qi,i = 0 for all i = 1, 2, . . . ,M , a transition 〈n,n〉 clearly indicates that an
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arriving customer is rejected by the system. For any state n, denote the state
after a customer joins server i as n+i = (n1, . . . , ni−1, ni + 1, ni+1, . . . , nM ).

Let an,+, n < N , be the event representing that an arriving customer
is accepted AND there are a total of n customers in the network before the
arrival. Then, we have

an,+ := {〈n,n+i〉 : n ∈ Sn, i = 1, . . . ,M} .

Figure 8.6 shows that at l = 0 we have X0 = 0 and event a0,+ happens, thus
we have X1 = 1 and 〈X0,X1〉 ∈ a0,+.

Let an,−, n ≤ N , be the event representing that an arrival customer is
rejected AND there are a total of n customers before the arrival; we have

an,− := {〈n,n〉 : n ∈ Sn} .

Figure 8.6 shows that at l = 4 we have X4 = 2 and event a2,− happens; thus,
we have X5 = 2 and 〈X4,X5〉 ∈ a2,−.

The event representing a customer arrival when there are a total of n
customers before the arrival is

an := an,+ ∪ an,−, n ≤ N,

with aN,+ = ∅. The event representing a customer arrival is

a := ∪N
n=0an.

The event representing that there is no customer arrival (including internal
transitions and customer departures) is

b := E − a. (8.1)

The event representing that an arriving customer is accepted is

a+ = ∪N−1
n=0 an,+.

The event representing that an arriving customer is rejected is

a− = ∪N
n=0an,−.

Furthermore, the event representing an arriving customer joining server i
when there are n customers before the arrival is

an,+i := {〈n,n+i〉, n ∈ Sn} ;

and the event representing an arrival customer joining server i is

a+i = ∪N−1
n=0 an,+i = {〈n,n+i〉, n ∈ S and n < N} .

From the above definitions, if a state transition 〈n,n′〉 ∈ an ∩ a+ ∩
a+i (equivalently 〈n,n′〉 ∈ an ∩ an,+ ∩ an,+i), then 〈n,n′〉 ∈ an,+i =
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Fig. 8.7. The Events in Example 8.4 with M = 3, n = 1

{
〈n,n+i〉 with

∑M
k=1 nk = n

}
, i.e., a customer, arriving when the system

population is n, is accepted and joins server i.
Figure 8.7 illustrates all the events that may happen when n = 1 in the

admission control problem with M = 3. There are three states corresponding
to n = 1: (0, 0, 1), (0, 1, 0), and (1, 0, 0). The top graph in the figure illustrates
the events that may happen when the system is in state (0, 0, 1). The three
dashed arrows represent event b which contains internal transitions to states
(0, 1, 0) and (1, 0, 0), and the customer-departure transition to state (0, 0, 0).
The thick line represents the arrival event a1, which contains both a1,− (rejec-
tion), denoted as the dotted line pointing to the state (0, 0, 1) itself, and a1,+

(accept), denoted as the long-dashed line, which splits into three sub-events
a1,+1, a1,+2, and a1,+3, denoted as the three thin arrows pointing to (0, 0, 2),
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(0, 1, 1), and (1, 0, 1), in the figure, respectively. Event a1,+i represents the
accepted customer joining server i, i = 1, 2, 3.

The middle and bottom graphs illustrate, in a similar way, the events that
may happen in states (0, 1, 0) and (1, 0, 0), respectively. It is shown that event
a1 may happen when the system is in either state (0, 0, 1), or (0, 1, 0), or
(1, 0, 0). Overall, a1 contains all the transitions represented by the three thick
lines in the three graphs in the figure. The situation for other values of n is
similar. Overall, we have a+ = ∪N−1

n=0 an,+ and a− = ∪N
n=0an,−, etc., and event

b may happen for any n > 0.
We have assumed qi,i = 0 for convenience. This is not restrictive. If qi,i �= 0,

then a transition 〈n,n〉 corresponds to two situations: An arriving customer
is rejected, or a customer finishes its service at a server and returns to the
same server (with probability qi,i �= 0). In a real system, one can observe
the difference between these two situations; however, the Markov chain X
does not reflect this difference since the state transition is the same for both
situations. From the learning point of view, we need to introduce an additional
index to distinguish these two situations. This will make the notations more
complicated but will not change the concepts and the results. ��

As shown in Examples 8.5 and 8.6, if we know that an event (other than
a single event, i.e., a state transition) happens, we may not know the exact
state that the system is in, but we know that the system is in a state which
belongs to a particular subset of the state space. In addition to this partial
information about the current state, we also have some knowledge about the
state transition at this moment. In Example 8.5, if we observe an arrival to
the left light, we know that the state can be either 1 or 2, and we also know
that the next state must be either 5 or 6. In the case of Figure 8.7, if we
know that event a1 happens, we do not know whether the state is (0, 0, 1),
or (0, 1, 0), or (0, 0, 1). However, in addition to the partial information about
the state (i.e., the population is 1), we do know some partial information
about the transition: After the event a1, the population of the system either
increases (accept), or remains the same (reject); it cannot decrease. That is,
the next state cannot be (0, 0, 0). If we know that a1,+ happens, then the next
state cannot be (0, 0, 0), (0, 0, 1), (0, 1, 0), or (0, 0, 1). Therefore, an observation
of an event may contain more information than a partial observation of the
system state.

8.2.2 The Probabilities of Events

Observe a sample path of a Markov chain with L consecutive transitions, de-
noted as 〈Xl,Xl+1〉, l = 0, 1, . . . , L − 1. This sample path {X0,X1, . . . , XL}
consists of L + 1 states. The space spanned by all such sample paths is
denoted as SL+1. Each sample path {X0,X1, . . . , XL} is represented by a
point in SL+1, which corresponds to a set of points in Sl+1, l > L. In
other words, SL+2 is “finer” than SL+1, L ≥ 0, etc. The initial distribution
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π0 = (π0(1), . . . , π0(S)) and the transition probability matrix P = [p(j|i)]Si,j=1

determine a probability measure PL on SL+1, L = 1, 2, . . . , and P∞ (hereafter
denoted as P for simplicity) on S∞ in the standard way.

Recall that 〈Xl,Xl+1〉 is the transition at time instant l. Let πl =
(πl(1), . . . , πl(S)) be the probability vector at time instant l, l = 0, 1, . . . .
The probability of event 〈i, j〉 happening at l = 0 is

P(〈Xl,Xl+1〉 = 〈i, j〉) = π0(i)p(j|i).

A feasible sequence of single events must take the form {〈i0, i1〉, 〈i1, i2〉, . . . ,
〈iL−1, iL〉}, and its probability is

P {〈i0, i1〉, 〈i1, i2〉, . . . , 〈iL−1, iL〉} = π0(i0)
L−1∏

l=0

p(il+1|il). (8.2)

If the initial state probability is the steady-state probability, i.e., π0(i) =
π(i) for all i ∈ S, (8.2) becomes the steady-state probability of the sequence
of single events. The steady-state probability of event 〈i, j〉 is

π(〈i, j〉) = π(i)p(j|i), (8.3)

which defines a probability measure on E .
Since events are defined as sets in E , the standard probability laws on sets

apply to them. For example, if c = a ∪ b and a ∩ b = ∅, then

P(〈Xl,Xl+1〉 ∈ c) = P(〈Xl,Xl+1〉 ∈ a) + P(〈Xl,Xl+1〉 ∈ b).

This equation holds for any l = 0, 1, 2, . . . . In such cases, we will simplify the
notation by dropping the subscript l and setting P(a) := P(〈Xl,Xl+1〉 ∈ a),
and thus,

P(c) = P(a) + P(b).

In addition, we can define the conditional probability

P(b|a) := P(〈Xl,Xl+1〉 ∈ b|〈Xl,Xl+1〉 ∈ a) =
P(a ∩ b)
P(a)

.

Furthermore, events a and b are said to be independent if and only if P(a∩b) =
P(a)P(b).

The steady-state probability of an event defined in (8.3) depends on the
steady-state probability π(i), which depends on the transition probability ma-
trix in a complicated way. The conditional probability, however, may depend
only on the transition probabilities directly in a simple way. For example,
define

〈i, •〉 := {〈i, j〉, for all j ∈ S}
be the event of state transitions going out of state i. Then
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P(〈i, j〉|〈i, •〉) = p(j|i).

This property of independence on the steady-state probability is important
in optimization problems. Since we can only directly control the transition
probabilities, not the steady-state probabilities, we can only directly control
the conditional probabilities, not the event probabilities.

Example 8.7. (Moving Robot, Continued) In the example, we have

p(ag|a) = σa, p(bg|b) = σb,

and
p(ar|a) = 1− σa, p(br|b) = 1− σb.

These equations for conditional probabilities can be intuitively derived from
the meaning of the events. ��

Example 8.8. (Admission Control, Continued) In the example, we have

P(an,+|an) = σ(n), (8.4)

and
P(an,−|an) = 1− σ(n).

��

Conditional Probabilities of States Given an Event Sequence

In the event-based approach, we assume that we can only observe the events,
but not the states. Given a sequence of events El = {E0, E1, . . . , El}, we have
El = {El−1, El}. We wish to obtain P(Xl|El−1) and P(Xl|El). Note that
the event sequence is not Markov. This situation is similar to the partially
observable MDPs. We first define

Definition 8.2. An input set of event a is

I(a) := {all i ∈ S : 〈i, j〉 ∈ a for some j} .

An output set of event a is

O(a) := {all j ∈ S : 〈i, j〉 ∈ a for some i} .

An input set of state j in event a is

Ij(a) = {all i ∈ S : 〈i, j〉 ∈ a} .

An output set of state i in event a is
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Oi(a) = {all j ∈ S : 〈i, j〉 ∈ a} .

The states in I(a) are called the input states of event a, and the states
in O(a) are called the output states of event a.

Apparently, if i �∈ I(a), then Oi(a) = ∅, and if j �∈ O(a), then Ij(a) = ∅.
For any two events a, b ⊆ E and i ∈ I(a), i ∈ I(b), we have

Oi(a ∪ b) = Oi(a) ∪Oi(b). (8.5)

Likewise, if j ∈ O(a) and j ∈ O(b), then

Ij(a ∪ b) = Ij(a) ∪ Ij(b).

We consider the event El observed at time instant l. Obviously, we have

P(El|Xl = i) =
∑

j∈Oi(El)

p(j|i),

which is zero if event El cannot happen when Xl = i, i.e., if Oi(El) = ∅.
Suppose that the a priori probability of Xl (before knowing whether El occurs)
is π†(Xl), Xl = 1, 2, . . . , S. Then the conditional probability of Xl given that
El occurs is

P(Xl = i|El) =
P(El|Xl = i)π†(i)∑

k∈S P(El|Xl = k)π†(k)

=

[∑
j∈Oi(El)

p(j|i)
]
π†(i)

∑
k∈S

{[∑
j∈Ok(El)

p(j|k)
]
π†(k)

} . (8.6)

Therefore, if we know P(Xl|El−1), we can obtain P(Xl|El) by setting π†(i)
in (8.6) to be P(Xl = i|El−1). That is,

P(Xl = i|El) =

[∑
j∈Oi(El)

p(j|i)
]
P(Xl = i|El−1)

∑
k∈S

{[∑
j∈Ok(El)

p(j|k)
]
P(Xl = k|El−1)

} .

We also have

P(Xl = i|El−1)

=
∑

k∈Ii(El−1)

[P(Xl−1 = k|El−1)P(Xl = i|Xl−1 = k,El−1)]

=
∑

k∈Ii(El−1)

[P(Xl−1 = k|El−1)P(Xl = i|Xl−1 = k, 〈Xl−1,Xl〉 ∈ El−1)]

=
∑

k∈Ii(El−1)

[
P(Xl−1 = k|El−1)

p(i|k)∑
j∈Ok(El−1)

p(j|k)

]
.
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All the above equations can be obtained by the basic probability theorems.
With these equations, P(Xl = i|El−1) and P(Xl = i|El) can be obtained step
by step recursively, starting from the initial probability π0(i) and

P(X0 = i|E0) =

[∑
j∈Oi(E0)

p(j|i)
]
π0(i)

∑
k∈S

{[∑
j∈Ok(E0)

p(j|k)
]
π0(k)

} ,

which follows from (8.6).

8.2.3 The Basic Ideas Illustrated by Examples

The event-based optimization approach depends on the logical relations
among different types of events. In this subsection, we first illustrate the main
ideas with the moving robot and the admission control examples.

Example 8.9. (Moving Robot, continued) In this problem, we first observe
whether the robot arrives to a light (i.e., whether event a, or b, happens) at
an instant. If not, we do nothing. Now, suppose that the robot arrives at the
left light, i.e., event a occurs, we can either turn on the green or the red light,
with probability σa or 1 − σa. If the green light is given, the event at this
instant belongs to ag; and if the red light is given, the event at this instant
belongs to ar. We can control the conditional probabilities of ag and ar given
the event a occurring. The same discussion can be applied when b occurs.

We call a and b the observable events, because we can observe whether
they occurred, and ar, ag, br, and bg the controllable events, because we can
control the probabilities of their occurrence. After the red or the green light
is turned on, the robot moves to its destination, either room 5 or 6, if event a
occurs, or room 3 or 4, if event b occurs. These are called the natural transition
events. (In this example, after an action is taken, there is only one destination;
there might be more than one destination, as shown in Problem 8.9.)

In summary, the state transition at an arrival instant may belong to three
types of events, the observable, the controllable, and the natural transition
events (which will be discussed further later); the probabilities of the con-
trollable events can be controlled by the action taken after the observation is
made. The three types of events and the action taken at the arrival instant
happen simultaneously in the Markov model, but they have a logical order in
timing, as shown in Figure 8.8. ��

Example 8.10. (Admission Control, continued) In controlling the system,
we first observe whether a customer arrives at an instant. If not, we do nothing.
Assume that when a customer arrives, we also know the network population n.
Thus, suppose that a1 is observed at an instant, which means that a customer
arrives and the system population is 1 at this instant. We can either accept the
arriving customer, or reject it. That is, we can control the probabilities σ(1)
and 1 − σ(1), which are the conditional probabilities of the state transition
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Fig. 8.8. The Timing Logic of the Three Types of Events When a Occurs in Example
8.9

belonging to a+ or a− (equivalently, a1,+ or a1,−). We call an, n = 0, 1, . . . , N ,
the observable events and a+ and a− (or a1,+ or a1,−) the controllable events.
Finally, after a customer is accepted, the nature determines which server it
joins. That is, the nature randomly chooses which sub-event a+i (equivalently,
a1,+i), i = 1, 2, . . .M , the transition at this instant belongs to. These events
a+i (or a1,+i), i = 1, 2, . . . ,M , are called the natural transition events.

In summary, the state transition at a customer arrival instant may belong
to three types of events, the observable, the controllable, and the natural
transition events; the probabilities of the controllable events can be controlled
by the action taken after the customer arrives. The three types of events and
the action taken at the arrival instant happen simultaneously in the Markov
model, but have a logical order in timing, as shown in Figure 8.9.

A state transition representing an arriving customer being accepted and
joining server i when the system state is n can be expressed as the event

〈n,n+i〉 ∈ an ∩ a+ ∩ a+i.

We can also write
〈n,n+i〉 ∈ an ∩ an,+ ∩ an,+i, (8.7)

in which an,+ = an∩a+ ⊂ an is a subset of an, and an,+i = an,+∩a+i ⊂ an,+

is a subset of an,+. Although (8.7) looks mathematically redundant (in the
sense that an ∩ an,+ ∩ an,+i = an,+i), it helps in understanding the logic
among the observable, the controllable, and the natural transition events. For
example, in Figure 8.7, we have
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Fig. 8.9. The Timing Logic of the Three Types of Events in Example 8.10

〈(0, 0, 1), (0, 0, 2)〉 ∈ a1 ∩ a1,+ ∩ a1,+3.

An arriving customer being rejected when the system is in state n can be
expressed as the event

〈n,n〉 ∈ an ∩ a− = an ∩ an,−, an,− = an ∩ a−,

with
∑M

i=1 ni = n. No natural transition event explicitly appears in this ex-
pression; or the nature has only one choice in this case. In Figure 8.7, we
have

〈(0, 0, 1), (0, 0, 1)〉 ∈ a1 ∩ a1,−.

Now, let us decompose the event space E . Note that the event b defined
in (8.1), consisting of all internal customer transitions and departures from
the network, can also be treated as an observable event. Thus, E can be
decomposed into a set of mutually exclusive observable events:

E =
{
∪N

n=0an

}
∪ b,

with ai ∩ aj = ∅, i �= j, ai ∩ b = ∅. Figure 8.7 shows that all the transitions
from the states with n = 1 belong to either a1 or b.

Next, when b is observed, there is only one choice for control: do nothing.
Thus, b can also be viewed as a special controllable event representing only
one action corresponding to “do nothing”. Therefore, we have the mutually
exclusive decomposition of E with the controllable events:
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E = a+ ∪ a− ∪ b,

with a+ ∩ a− = ∅, a+ ∩ b = a− ∩ b = ∅.
Lastly, when a− happens, the nature also has only one choice. Thus, a−

is a special natural transition event. When b happens, the nature may have a
few choices representing the different internal customer transitions; however,
we will not elaborate on these natural transition events under b since they are
not related to the main topic of performance optimization. We have

E =
{
∪M

i=1a+i ∪ a−
}
∪ b,

with a+i ∩ a+j = ∅, i �= j, a+i ∩ a− = ∅, and a+i ∩ b = a− ∩ b = ∅.
In summary, every transition belongs to one of the exclusive observable

(or, controllable, or natural transition) events. Actions are taken only when
some events an, n = 0, 1, . . . , N , occur. These events are observable and con-
tain some partial information about the system, the population. They are
called the observable events. Based on the information contained in the ob-
servable events, we may take actions which control the probabilities of the
sub-events, an,+ or an,−, that the transition belongs to. These sub-events
are called controllable events. Finally, the nature completes the transition by
choosing the destination of the arriving customer. These correspond to the
natural transition events, an,+i.

The three types of events, the observable, the controllable, and the natural
transition events happen at the same time in the Markov model, and together
they determine a transition in the Markov model. These three types of events
have a logical timing order, which is not captured by the standard MDP
formulation. ��

8.2.4 Classification of Three Types of Events

The logical structure demonstrated in the moving robot and the admission
control examples is applicable to many problems. We now provide a general
formulation of this structure in the event space E . In our formulation, the
system evolves according to the Markov rule; however, in the approach, we
mainly deal with events; the system state is only a hidden concept that helps
in the analysis.

Consider a Markov chain with transition probability matrix P and state
space S = {1, 2, . . . , S}. The single-event space is E = S ×S. There are S×S
single events 〈i, j〉, i, j ∈ S, and 2S×S possible events (subsets of E).

Three Types of Events

The first type of event is the observable event.
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An Observable Event Has Two Features:

1. We can tell whether the event occurs at any time instant from the
system behavior.

2. The event contains some information about the system, which can
be used to determine the control actions.

Because the information carried in different observable events is different,
these events are mutually exclusive. In addition, we assume that every tran-
sition belongs to one observable event. (This is not restrictive since we may
group all the “unobservable” transitions and/or the transitions containing no
useful information into one event; this event can be viewed as an observable
event, e.g., the event b in Example 8.6.) Thus we have

E = ∪ko

k=1eo(k), eo(k) ∩ eo(k′) = ∅, k �= k′, k, k′ ∈ {1, 2, . . . , ko} , (8.8)

where eo(k), k = 1, 2, . . . , ko, are the observable events and ko is the number
of observable events.

The second type of event is the controllable event.

A controllable event is an event that we can control the probability of
its occurrence by taking actions based on the information obtained from
an observable event that has just happened (see (8.4) and (8.13)).

We have

E = ∪kc

k=1ec(k), ec(k) ∩ ec(k′) = ∅, k �= k′, k, k′ ∈ {1, 2, . . . , kc} , (8.9)

where ec(k), k = 1, 2, . . . , kc, are the controllable events and kc is the number
of controllable events.

Suppose that eo(k) is the event we observed, then from (8.9) we have

eo(k) = ∪kc

k2=1 {eo(k) ∩ ec(k2)} .

With this form, we can take actions to assign probabilities to those controllable
events ec(k2) for which eo(k) ∩ ec(k2) �= ∅, k2 = 1, 2, . . . , kc. In particular, if
for an observable event eo(k1) there is only one controllable event ec(k2) such
that eo(k1) ∩ ec(k2) is non-null, then at eo(k1) there is only one choice of
controllable event, namely ec(k2). That is, at such an observable event eo(k1),
we can take only one action. In most cases, this unique action corresponds to
“do nothing”, and therefore at such an event the system is customarily said
to be not controllable (e.g., the event b in Example 8.6).

The third type of event is the natural transition event.
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A natural transition event is an event whose corresponding transitions are
governed by nature; thus, the probability of the occurrence of a natural
transition event cannot be controlled.

Generally, we have

E = ∪kt

k=1et(k), et(k) ∩ et(k′) = ∅, k �= k′, k, k′ ∈ {1, 2, . . . , kt} , (8.10)

where et(k), k = 1, 2, . . . , kt, are the natural transition events and kt is
the number of natural transition events. Again, after the event eo(k1) was
observed and the controllable event ec(k2) occurred, only those et(k) with
{eo(k1) ∩ ec(k2)} ∩ et(k) �= ∅ will have non-zero natural transition probabili-
ties.

As explained in Example 8.10, there is a logical timing order among the
different types of events: At any instant, an observable event occurs first,
and when it happens, the exact state transition is not determined. One needs
to take an action to determine the probabilities of the controllable events,
which is followed by a natural transition event. These three types of events
happen in a logical sequence simultaneously; together they determine the
exact transition from a state. Many real systems possess such a property.
This logical and structural property represented by events, however, is lost in
the standard MDP formulation.

The standard MDP can be viewed as a special case if we properly (and
probably artificially) define the observable and controllable events as fol-
lows: For any state i ∈ S, we define an observable event as eo(i) :=
{〈i, k〉 : all k ∈ S}, and for any j ∈ S, we define a controllable event ec(j) =
{〈k, j〉 : all k ∈ S}. We have E = ∪i∈Seo(i) = ∪j∈Sec(j), and 〈i, j〉 =
eo(i) ∩ ec(j), for all i, j ∈ S.

Composition of a Single Event

Because the decompositions of the event space E , (8.8), (8.9), and (8.10), are
mutually exclusive, for any single event (a state transition) 〈i, j〉 ∈ E , there is
a unique set of integers k1, k2, and k3 such that

〈i, j〉 ∈ eo(k1) ∩ ec(k2) ∩ et(k3) =: e(k1, k2, k3), (8.11)

with k1 ∈ {1, . . . , ko} , k2 ∈ {1, . . . , kc} , k3 ∈ {1, . . . , kt}. We can always write
(8.11) as

e(k1, k2, k3) = eo(k1) ∩ ec(k2) ∩ et(k3)
= eo(k1) ∩ {eo(k1) ∩ ec(k2)} ∩ {eo(k1) ∩ ec(k2) ∩ et(k3)}
= eo(k1) ∩ e′c(k2) ∩ e′t(k3) (8.12)



8.2 Events Associated with Markov Chains 413

where e′c(k2) = eo(k1)∩ec(k2) ⊆ eo(k1) and e′t(k3) = eo(k1)∩ec(k2)∩et(k3) =
e′c(k2) ∩ et(k3) ⊆ e′c(k2). That is, the controllable and the natural transition
events can be further partitioned into small events such that the controllable
events are subsets of the observable events and the natural transition events
are subsets of the controllable events. This view helps us to think: When
an observable event is observed, we may control the occurrence of its sub-
events by taking actions; and afterwards, nature finalizes the state transition
by further determining the natural transition sub-event. However, the model
in (8.11) is more general and more concise than (8.12).

The three events eo(k1), ec(k2), and et(k3) in (8.11) may not specify a
single event; i.e., eo(k1) ∩ ec(k2) ∩ et(k3) may not be a singleton. However,
we wish that starting from any state i, if a single event 〈i, j〉 belongs to
eo(k1)∩ec(k2)∩et(k3), then j is uniquely determined. For instance, in Example
8.10, assume that we have eo(1) = an, ec(2) = a+, and et(3) = a+i. Then the
event eo(1)∩ec(2)∩et(3) = an,+i denotes that an arrival customer is accepted
and joins server i; this event corresponds to many state transitions. However,
for any particular n, if we know 〈n,n′〉 ∈ an,+i, then n′ = n+i is uniquely
determined. To be more precise, we make the following definition.

Definition 8.3. An event a is said to be deterministic, if for any i ∈ I(a),
the output set Oi(a) contains only one state. ��

Therefore, if a is deterministic and i ∈ I(a), 〈i, j〉 ∈ a, then j is uniquely
determined. In other words, in a deterministic event a, a state cannot move
to more than one state. In this case, we write j = Oi(a) for convenience.
However, in a deterministic event, two or more input states can move to the
same output state.

Example 8.11. (Moving Robot, Continued) In the moving robot example,
we have I(a) = I(b) = {1, 2}, O(a) = O1(a) = O2(a) = {5, 6}, O(b) =
O1(b) = O2(b) = {3, 4}, O1(ag) = O2(ag) = {5}, O1(ar) = O2(ar) = {6},
O1(bg) = O2(bg) = {3}, and O1(br) = O2(br) = {4}. The events ar, ag, br,
and bg are deterministic.

The decomposition for the observable events is E = a∪b∪c. When c = a ∪ b
occurs, there is only one action: “do nothing”. Therefore, c can be viewed as
a special controllable event. Since in this example, nature has only one choice
after every controllable event, the natural transition events are the same as
the controllable events. ��

In general, we can always make the natural transition event decomposition
“fine” enough to make sure that the transitions starting from any state i in
event e(k1, k2, k3) in (8.11) is uniquely determined by eo(k1)∩ ec(k2)∩ et(k3).
For example, if

Oi[eo(k1) ∩ ec(k2) ∩ et(k3)] = {j1, j2}
contains two states j1 and j2, or equivalently
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〈i, j1〉, 〈i, j2〉 ∈ eo(k1) ∩ ec(k2) ∩ et(k3),

we can always split et(k3) into two sub-events et(k3) = et(k3, 1) ∪ et(k3, 2),
et(k3, 1)∩ et(k3, 2) = ∅, such that 〈i, j1〉 ∈ et(k3, 1) and 〈i, j2〉 ∈ et(k3, 2), and
therefore,

〈i, j1〉 ∈ eo(k1) ∩ ec(k2) ∩ et(k3, 1)

and
〈i, j2〉 ∈ eo(k1) ∩ ec(k2) ∩ et(k3, 2).

Thus, by splitting a natural transition event into a few sub-natural transi-
tion events, we can always assume that the event e(k1, k2, k3) in (8.11) is
deterministic and denote

j = Oi {eo(k1) ∩ ec(k2) ∩ et(k3)} .

In summary, the event-based approach applies to systems in which the
event space can be decomposed into mutually exclusive subsets of observ-
able events eo(k), k = 1, 2, . . . , ko, mutually exclusive subsets of controllable
events ec(k), k = 1, 2, . . . , kc, and mutually exclusive subsets of natural tran-
sition events et(k), k = 1, 2, . . . , kt. Every single event (a state transition)
belongs to one event in each type. In addition, there is a logical timing or-
der among the three types of events: At any time instant, an observable event
happens first, followed by a controllable event whose probability is determined
by the action taken after the observable event is observed, then followed by
a natural transition event. As a special case, which happens often, for some
observable events only one action (usually “do nothing”) is available. When
such an observable state is observed, the system is not controllable at that
time instant. We can also assume that, for any k1, k2, and k3, the composition
event e(k1, k2, k3) = eo(k1) ∩ ec(k2) ∩ et(k3) in (8.11) is deterministic.

8.3 Event-Based Optimization

8.3.1 The Problem Formulation

The mechanism of event-based optimization is different from that of the stan-
dard MDP formulation. With the basic concepts introduced in the last section,
we can now give a mathematical model for the event-based optimization and
describe the system evolution with this model.

We assume that the classification of events described in Section 8.2.4 does
not depend on any policy. In other words, the classification of events is deter-
mined only by the system. This assumption is satisfied by many real systems.

The mechanism of the event-based optimization is as follows. At time l
the system is in state Xl, l = 0, 1, . . . . However, Xl is not observed, and
instead we observe an observable event El = eo(k1) ⊆ E , with a probability
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distribution μ(eo(k1)|Xl), k1 = 1, 2, . . . , ko. We assume that the system is
time homogeneous and therefore μ(eo(k1)|Xl) is independent of time l.

In addition to some knowledge about the current state, the observable
event also contains some information about the next state after the transition
at time l; it, however, does not completely specify the transition.

Based on the information contained in the observable event eo(k1), we take
an action α ∈ A(k1), where A(k1) is the set of actions that are available when
eo(k1) is observed. Once this action is taken, a controllable event ec(k2) will
follow with probability pα [ec(k2)|eo(k1)], k2 = 1, 2, . . . , kc. The superscript
“α” indicates the dependence of the probabilities on the action taken. Af-
ter the controllable event ec(k2) occurs, nature chooses a natural transition
event et(k3), k3 = 1, 2, . . . , kt, which, together with eo(k1) and ec(k2), finally
determines the state transition at time l, 〈Xl,Xl+1〉 ∈ eo(k1)∩ec(k2)∩et(k3).

State Transition Probabilities

More precisely, let us assume that Xl = i and Xl+1 = j and denote the transi-
tion at time l as 〈i, j〉. Because we observe the event eo(k1), k1 = 1, 2, . . . , ko,
we have 〈i, j〉 ∈ eo(k1), but both i and j may not be known. If action α ∈ A(k1)
is taken, then the conditional probability of 〈i, j〉 ∈ ec(k2), k2 = 1, 2, . . . , kc,
given that 〈i, j〉 ∈ eo(k1) is controlled by α and can be denoted as

pα [〈i, j〉 ∈ ec(k2)|〈i, j〉 ∈ eo(k1)] ,
k1 = 1, 2, . . . , ko, k2 = 1, 2, . . . , kc. (8.13)

By convention, pα [〈i, j〉 ∈ ec(k2)|〈i, j〉 ∈ eo(k1)] = 0 for all α ∈ A(k1), if
ec(k2) ∩ eo(k1) = ∅. We make the following assumption.

Assumption 8.1. The conditional probability in (8.13) depends only on
eo(k1) and ec(k2); i.e., it is the same for all i ∈ I [eo(k1)].

Assumption 8.1 is a restriction on the effect of control actions. It is rea-
sonable because we may not be able to observe i. It is not a restriction on the
system structure. Under Assumption 8.1, we may denote (8.13) as

pα [ec(k2)|eo(k1)] := pα [〈i, j〉 ∈ ec(k2)|〈i, j〉 ∈ eo(k1)] .

Then, we have
kc∑

k2=1

pα [ec(k2)|eo(k1)] = 1.

The natural transition probability given the observable event eo(k1) and
controllable event ec(k2) is denoted as

p [et(k3)|ec(k2), eo(k1)] := p [〈i, j〉 ∈ et(k3)|〈i, j〉 ∈ ec(k2) ∩ eo(k1)] ,
k1 = 1, 2, . . . , ko, k2 = 1, 2, . . . , kc, k3 = 1, 2, . . . , kt.



416 8 Event-Based Optimization of Markov Systems

They are determined by nature. As shown later, for our analysis we do not
require this probability to be independent of i. As discussed in the last section,
we may assume that the event eo(k1)∩ ec(k2)∩ et(k3) is deterministic. Hence,
the three events eo(k1), ec(k2), and et(k3) uniquely determine an output state
j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)].

Let us consider the stationary deterministic policies that depend on the
current observable events. Such a policy is a mapping from the set of observ-
able events Eo to the action set A = ∪ko

k1=1A(k1), denoted as d : Eo → A,
which specifies the action d [eo(k1)] ∈ A(k1) taken when the observable event
eo(k1) is observed, where Eo = {eo(k1) : k1 = 1, . . . , ko}. Denote De as the
set of all the stationary policies that depend only on the current observable
events. (The subscript “e” indicates that the policies are event based.)

From Section 8.2.4, for any transition 〈i, j〉, i, j ∈ S, there exists a unique
set of integers, k1, k2, and k3, k1 ∈ {1, 2, . . . , ko} , k2 ∈ {1, 2, . . . , kc} and
k3 ∈ {1, 2, . . . , kt}, such that

〈i, j〉 ∈ eo(k1) ∩ ec(k2) ∩ et(k3), (8.14)

and j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)]. From (8.14) and the mathematical model
of the event-based optimization, the state transition probabilities from state
i under an event-based policy d is

pd(j|i) = μ(eo(k1)|i)pd[eo(k1)] [ec(k2)|eo(k1)] p [et(k3)|ec(k2), eo(k1)] , (8.15)

where j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)]. This holds for all output states of
eo(k1) (cf. (8.5)):

j ∈ Oi [eo(k1)] = ∪kc

k2=1 ∪
kt

k3=1 Oi {eo(k1) ∩ ec(k2) ∩ et(k3)} .

As assumed, the probability distribution μ(eo(k1)|i) is independent of the pol-
icy d. We denote the state transition probability matrix under the event-based
policy d as P d =

[
pd(j|i)

]
i,j∈S . From (8.15), the process {Xl, l = 0, 1, . . .} un-

der any event-based policy d is indeed a time-homogenous Markov chain.
From (8.15), in event-based optimization, we decompose the state tran-

sition probability into the controllable part, pd[eo(k1)] [ec(k2)|eo(k1)], and the
two uncontrollable parts, μ(eo(k1)|i) and p [et(k3)|ec(k2), eo(k1)]; each of them
has a clear physical meaning. The decomposition utilizes the special features
of the problem. With this formulation, actions depend on events and therefore
the same action can be taken at different states. Furthermore, only the con-
trollable part in the transition probabilities contains important parameters,
and as we shall see later, the other parts may be “aggregated”.

Average Reward and Optimization

Let f(i, α), i ∈ S, α ∈ A, be a reward function. Generally, the long-run
average reward of event-based policy d is defined as
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ηd(i, α) := lim
L→∞

1
L

L−1∑

l=0

E [f(Xl, Al)|X0 = i, A0 = α] , (8.16)

where Al is the action taken at time l according to policy d, l = 0, 1, . . . . (8.16)
exists for all stationary event-based policies. The goal is to find an event-based
policy d ∈ De that maximizes the average reward or other performance criteria
(e.g., the discounted reward).

8.3.2 Performance Difference Formulas

For performance optimization, we study only ergodic policies in this chapter.
An event-based policy d [eo(k)], k = 1, . . . , ko, is said to be ergodic, if the
Markov chain with transition probabilities pd(j|i), i, j = 1, 2, . . . , S, as shown
in (8.15), is ergodic. From now on, we assume that all the policies in De are
ergodic.

For any policy d ∈ De, there always exists a steady-state probability, de-
noted as πd = (πd(1), πd(2), . . . , πd(S)). To simplify the analysis, we first
assume that the reward function f does not depend on the actions. Thus,
f(i, α) = f(i) for any i ∈ S. The average reward is ηd = πdf and the perfor-
mance potential gd is determined by the Poisson equation (2.12) with transi-
tion probability matrix P d. The extension to f depending on actions will be
given later.

Let πd(eo(k)) be the steady-event probability of event eo(k), k = 1, 2, . . . ,
ko, under policy d ∈ De. We have

πd(eo(k1)) =
∑

i∈I[eo(k1)]

πd(i)μ(eo(k1)|i), k1 = 1, 2, . . . , ko. (8.17)

In addition, we can write

πd(i) =
ko∑

k1=1

πd(eo(k1))πd(i|eo(k1)), i ∈ S,

where the steady-state conditional probability

πd(i|eo(k1)) =
πd(i)μ(eo(k1)|i)

πd(eo(k1))
=

πd(i)μ(eo(k1)|i)∑
j∈I[eo(k1)]

πd(j)μ(eo(k1)|j)
, (8.18)

and
∑

i∈I[eo(k1)]
πd(i|eo(k1)) = 1.

By the standard MDP average-reward difference formula (4.1), for any two
event-based policies d ∈ De and h ∈ De, by (8.15), (8.17), and (8.18), we have

ηh − ηd

= πh(Ph − P d)gd
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=
S∑

i=1

πh(i)
S∑

j=1

[
ph(j|i)− pd(j|i)

]
gd(j)

=
S∑

i=1

πh(i)
ko∑

k1=1

kc∑

k2=1

kt∑

k3=1

μ(eo(k1)|i)

{
ph[eo(k1)] [ec(k2)|eo(k1)]− pd[eo(k1)] [ec(k2)|eo(k1)]

}

p [et(k3)|ec(k2), eo(k1)] gd(Oi [eo(k1) ∩ ec(k2) ∩ et(k3)])

=
ko∑

k1=1

kc∑

k2=1

kt∑

k3=1

S∑

i=1

πh(i)μ(eo(k1)|i)

{
ph[eo(k1)] [ec(k2)|eo(k1)]− pd[eo(k1)] [ec(k2)|eo(k1)]

}

p [et(k3)|ec(k2), eo(k1)] gd(Oi [eo(k1) ∩ ec(k2) ∩ et(k3)])

=
ko∑

k1=1

kc∑

k2=1

kt∑

k3=1

S∑

i=1

πh(eo(k1))πh(i|eo(k1))

{
ph[eo(k1)] [ec(k2)|eo(k1)]− pd[eo(k1)] [ec(k2)|eo(k1)]

}

p [et(k3)|ec(k2), eo(k1)] gd(Oi [eo(k1) ∩ ec(k2) ∩ et(k3)])

=
ko∑

k1=1

πh(eo(k1))
kc∑

k2=1

{
ph[eo(k1)] [ec(k2)|eo(k1)]−pd[eo(k1)] [ec(k2)|eo(k1)]

}

∑

i∈I[eo(k1)]

kt∑

k3=1

πh(i|eo(k1))p [et(k3)|ec(k2), eo(k1)] gd(j),

with j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)]).

Thus, we have

The Average-Reward Difference Formula with Event-Based
Policies:

ηh − ηd =
ko∑

k1=1

πh(eo(k1))

kc∑

k2=1

{
ph[eo(k1)] [ec(k2)|eo(k1)]−pd[eo(k1)] [ec(k2)|eo(k1)]

}
gd,h(k1, k2), (8.19)

where
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gd,h(k1, k2) =
∑

i∈I[eo(k1)]

kt∑

k3=1

{
πh(i|eo(k1))p [et(k3)|ec(k2), eo(k1)] gd(j)

}
,

(8.20)
with j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)] is the aggregated potential depend-
ing on both policy d and policy h.

Equation (8.19) is the average-reward difference formula for event-based
policies. The aggregated potential (8.20) can be extended further by allow-
ing the natural transition probability depending on state i, which is denoted
as pi [et(k3)|ec(k2), eo(k1)]. In this case, (8.19) remains the same and (8.20)
becomes

gd,h(k1, k2) =
∑

i∈I[eo(k1)]

kt∑

k3=1

{
πh(i|eo(k1))pi [et(k3)|ec(k2), eo(k1)] gd(j)

}
,

(8.21)
with j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)].

Finally, it should be noted that although the derivation of the difference
formula in (8.19) is simple and direct, this formula was first “constructed”
intuitively with performance potentials as building blocks, by following the
method in Chapter 9.

When f Depends on Policy

Now, we assume that the reward functions for the two policies in com-
parison are different and are denoted as fh and fd, respectively, where
fh = (fh(1), . . . , fh(S))T and fd = (fd(1), . . . , fd(S))T , and in (8.16), we
have fh(i) = f(i, h[eo(k1)]), i ∈ S. In this case, we need to add a term
πh(fh − fd) on the right-hand side of (8.19). We have

πhfh =
S∑

i=1

πh(i)fh(i)

=
S∑

i=1

{
ko∑

k1=1

[
πh(i|eo(k1))πh(eo(k1))

]
fh(i)

}

=
ko∑

k1=1

{
πh(eo(k1))

[
S∑

i=1

πh(i|eo(k1))fh(i)

]}

=
ko∑

k1=1

[
πh(eo(k1))fh(k1)

]
,

where
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fh(k1) :=
S∑

i=1

[
πh(i|eo(k1))fh(i)

]
. (8.22)

Similarly, we have

πhfd =
S∑

i=1

πh(i)fd(i)

=
ko∑

k1=1

[
πh(eo(k1))fd,h(k1)

]
,

where

fd,h(k1) :=
S∑

i=1

[
πh(i|eo(k1))fd(i)

]
. (8.23)

Therefore, with different reward functions fd and fh, we have

ηh − ηd

=
ko∑

k1=1

πh(eo(k1))
kc∑

k2=1

{
ph[eo(k1)] [ec(k2)|eo(k1)]

− pd[eo(k1)] [ec(k2)|eo(k1)]
}

gd,h(k1, k2)

+
ko∑

k1=1

{
πh (eo(k1))

[
fh(k1)− fd,h(k1)

]}

=
ko∑

k1=1

πh(eo(k1))

{[
fh(k1) +

kc∑

k2=1

{
ph[eo(k1)] [ec(k2)|eo(k1)] gd,h(k1, k2)

}]

−
[
fd,h(k1) +

kc∑

k2=1

{
pd[eo(k1)] [ec(k2)|eo(k1)] gd,h(k1, k2)

}]}
. (8.24)

This is similar to (4.1).

8.3.3 Performance Derivative Formulas

In the average-reward difference formula (8.19), the “aggregated” potentials
(8.20) depend on the steady-state conditional probability of the perturbed
system πh(i|eo(k1)), and in general, they cannot be estimated on a sample
path of the original system. The average-reward gradient along any direction,
however, can be expressed in aggregated potentials that depend only on the
original systems.

To study the average-reward gradient, we assume that the conditional tran-
sition probabilities of the controllable events and the reward function depend
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on a continuous parameter θ ∈ Θ ⊆ � and are denoted as pθ [ec(k2)|eo(k1)],
k1 = 1, 2, . . . , ko, k2 = 1, 2, . . . , kc, and fθ(i), i ∈ S, respectively. Tak-
ing pθ2 [ec(k2)|eo(k1)] as ph[ec(k2)|eo(k1)] and pθ1 [ec(k2)|eo(k1)] as pd[ec(k2)|
eo(k1)] in (8.24), where θ1, θ2 ∈ Θ, we have

η(θ2)− η(θ1)

=
ko∑

k1=1

πθ2(eo(k1))

{
[fθ2(k1)− fθ2,θ1(k1)]

+
kc∑

k2=1

{pθ2 [ec(k2)|eo(k1)]− pθ1 [ec(k2)|eo(k1)]} gθ1,θ2(k1, k2)

}
,

where

gθ1,θ2(k1, k2) =
∑

i∈I[eo(k1)]

kt∑

k3=1

{πθ2(i|eo(k1))pi [et(k3)|ec(k2), eo(k1)] gθ1(j)} ,

with j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)], and

fθ2(k1) :=
S∑

i=1

πθ2(i|e(k1))fθ2(i),

fθ2,θ1(k1) :=
S∑

i=1

πθ2(i|e(k1))fθ1(i).

Dividing both sides with θ2 − θ1 and letting θ2 → θ1 and assuming that
the derivatives exist, we obtain

dη(θ)
dθ

∣∣∣∣
θ=θ1

=
ko∑

k1=1

πθ1(eo(k1))

{
S∑

i=1

πθ1(i|e(k1))
dfθ(i)
dθ

∣∣∣∣
θ=θ1

+
kc∑

k2=1

{
d

dθ
pθ [ec(k2)|eo(k1)]

}∣∣∣∣
θ=θ1

gθ1(k1, k2)

}

=
S∑

i=1

πθ1(i)
dfθ(i)
dθ

∣∣∣∣
θ=θ1

+
ko∑

k1=1

πθ1(eo(k1))

{
kc∑

k2=1

{
d

dθ
pθ [ec(k2)|eo(k1)]

}∣∣∣∣
θ=θ1

gθ1(k1, k2)

}
, (8.25)

where

gθ1(k1, k2) =
∑

i∈I[eo(k1)]

kt∑

k3=1

{πθ1(i|eo(k1))pi [et(k3)|ec(k2), eo(k1)] gθ1(j)} .

(8.26)
The aggregated potential gθ1(k1, k2) depends only on the original system with
parameter θ1.
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The Examples

In these examples, we discuss both the performance difference and the per-
formance derivative formulas of the event-based policies.

Example 8.12. (Moving Robot, Continued) Now, we derive the perfor-
mance sensitivity formulas for the moving robot problem. Consider two dif-
ferent policies (σa, σb) and (σ′

a, σ
′
b). We assume that the reward functions are

the same for both policies. Let π(i) and π′(i) denote the steady-state prob-
abilities of state i, i = 1, 2, 3, 4, 5, 6, and π(a), π(b), and π′(a), π′(b) be the
steady-state probabilities of events a and b under two policies (σa, σb) and
(σ′

a, σ
′
b), respectively.

We derive the performance difference formula by using (8.19). There are
two observable events a and b, and corresponding to each observable event,
there are two controllable events: ar and ag for a, and br and bg for b. The
conditional probabilities of the controllable events are p(ag|a) = σa for policy
(σa, σb), and p′(ag|a) = σ′

a for policy (σ′
a, σ

′
b). Let η and η′ be the long-run

average performance of these two policies, respectively. By construction, or
by applying (8.19), we have

η′ − η = π′(a) {[p′(ag|a)− p(ag|a)] g′(ag) + [p′(ar|a)− p(ar|a)] g′(ar)}
+π′(b) {[p′(bg|b)− p(bg|b)] g′(bg) + [p′(br|a)− p(br|a)] g′(br)}

= π′(a) {(σ′
a − σa) [g′(ag)− g′(ar)]}

+π′(b) {(σ′
b − σb) [g′(bg)− g′(br)]} ,

where (cf. (8.38))

g′(ag) =
2∑

i=1

[π′(i|a)g(5)] = g(5),

g′(ar) =
2∑

i=1

[π′(i|a)g(6)] = g(6).

g′(bg) =
2∑

i=1

[π′(i|b)g(3)] = g(3),

and

g′(br) =
2∑

i=1

[π′(i|b)g(4)] = g(4).

Therefore, we have

η′ − η = π′(a) {(σ′
a − σa) [g(5)− g(6)]}

+π′(b) {(σ′
b − σb) [g(3)− g(4)]} . (8.27)
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Each term on the right-hand side of the performance difference formula (8.27)
is factorized into three factors. For example, in the first term, the first factor
is π′(a), which only depends on policy (σ′

a, σ
′
b); the second factor is σ′

a − σa,
which is under our control; and the third factor is g(5) − g(6), which only
depends on policy (σa, σb), As we have seen in Chapter 4, this particular form
is the basis for policy iteration.

Suppose that the probabilities depend on a parameter θ: σa = σa,θ and
σb = σb,θ. Then η and π, etc., also depend on θ. We use a subscript “θ” to
denote the dependency of a quantity on θ. From (8.27), we have

dηθ

dθ
= πθ(a)

dσa,θ

dθ
[g(5)− g(6)] + πθ(b)

dσb,θ

dθ
[g(3)− g(4)] . (8.28)

The potentials g(ag), etc., have a clear physical meaning. For example,
g(ag) is the aggregated potential after event a occurs and the robot passes
the green light, which happens to be the same as g(5). (See the extended
example discussed later.) ��

Example 8.13. (Admission Control, Continued) Now, we derive the per-
formance sensitivity formulas for the admission control problem. Consider
two admission policies σd(n) and σh(n) for n = 0, 1, . . . , N . For simplicity,
we assume that the reward functions are the same for both policies. This is
usually the case, since we are most likely concerned about the same physical
quantities such as mean waiting times, etc. Let πh(n) := πh(an) denote the
steady-state probability of event an under policy h, i.e., the probability that
a customer arrives and finds n customers in the system. Let πh(n|n) be the
conditional steady-state probability that the system is in state n when event
an happens. Then

πh(n, n) = πh(n)πh(n|n)

is the probability that an occurs and at the same time the system state is n,
n1 + · · ·+ nM = n.

We derive the performance difference formula by using (8.19). The ob-
servable events are eo(k1) = ak1 , k1 = 0, 1, . . . , N . There are only two con-
trollable events a+ and a−. We have (by changing the index from k1 to n):
σd(N) = σh(N) = 0, and

pd(an,+|an) = σd(n), and ph(an,+|an) = σh(n).

pd(an,−|an) = 1− σd(n), and ph(an,−|an) = 1− σh(n).

The natural transition probabilities are

p (an,+i|an, a+) = q0,i, and p (an,−|an, a−) = 1.

Therefore, from (8.19), we have
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ηh − ηd =
N−1∑

n=0

{
πh(n)

{[
ph(an,+|an)− pd(an,+|an)

]
gd,h(an,+)

+
[
ph(an,−|an)− pd(an,−|an)

]
gd,h(an,−)

}}

=
N−1∑

n=0

{
πh(n)

[
σh(n)− σd(n)

] [
gd,h(an,+)− gd,h(an,−)

]}

=
N−1∑

n=0

{
πh(n)

[
σh(n)− σd(n)

]
γd,h(n)

}
, (8.29)

where (cf. (8.20))

gd,h(an,+) =
∑

n∈Sn

{
πh(n|n)

M∑

i=1

[
q0,ig

d(n+i)
]
}

,

gd,h(an,−) =
∑

n∈Sn

[
πh(n|n)gd(n)

]
,

and

γd,h(n) := gd,h(an,+)− gd,h(an,−)

=
∑

n∈Sn

{
πh(n|n)

M∑

i=1

{
q0,i

[
gd(n+i)− gd(n)

]}
}

, (8.30)

n = 0, 1, . . . , N − 1,

where Sn =
{

n :
∑M

i=1 ni = n
}

.
From the product-form solution of queueing networks [96], we can prove

that for any two policies h and d, we have (Problem 8.6)

πh(n|n) = πd(n|n). (8.31)

Thus, (8.29)-(8.30) become

ηh − ηd =
N−1∑

n=0

{
πh(n)

[
σh(n)− σd(n)

]
γd(n)

}
. (8.32)

gd(an,+) =
∑

n∈Sn

{
πd(n|n)

M∑

i=1

[
q0,ig

d(n+i)
]
}

, (8.33)

gd(an,−) =
∑

n∈Sn

[
πd(n|n)gd(n)

]
, (8.34)

and
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γd(n) := gd(an,+)− gd(an,−)

=
∑

n∈Sn

πd(n|n)

{
M∑

i=1

q0,i

[
gd(n+i)− gd(n)

]
}

, (8.35)

n = 0, 1, . . . , N − 1.

Both gd(an,+) and gd(an,−) have a clear physical meaning. gd(an,+) is the
aggregated potential of a system with population n after an arriving customer
is accepted, and gd(an,−) is the aggregated potential of a system with popula-
tion n after an arriving customer is rejected. Because of the PASTA property,
gd(an,−) equals the aggregated potential of the set of states with the same
population n. γd(n) is the aggregated perturbation realization factors with
γd(n,n+i) = gd(n+i)− gd(n) and

γd(n) =
∑

n∈Sn

{
πd(n|n)

M∑

i=1

[
q0,iγ

d(n,n+i)
]
}

, n = 0, 1, . . . , N − 1.

The form of the difference formula (8.29) and the aggregate potentials
(8.30) depends only on the system parameters q0,i, i = 1, . . . ,M , and does
not depend on the state transition probabilities of the underlying Markov pro-
cess, nor on the customer routing probabilities qi,j , i, j = 1, 2, . . . ,M . Thus,
this approach maintains the structural property of the system and avoids the
tedious effort in finding and storing the large matrix of transition probabilities.

For performance derivatives, we assume that the policy changes from σd(n)
to σd(n) + δn for a fixed n. From (8.32), we can easily derive

∂η(δn)
∂δn

∣∣∣
δn=0

= πd(n)γd(n), n = 0, 1, . . . , N − 1,

where γd(n) is the aggregated potential in (8.35). This is the derivative with
respect to the admission probability at one population. In general, suppose
that the policy σ(n) depends on a parameter θ and is denoted as σθ(n),
n = 0, 1, . . . , N − 1. Then, from (8.32), we have

dη(θ)
dθ

∣∣∣∣
θ=θ1

=
N−1∑

n=0

πθ1(n)
dσθ(n)

dθ

∣∣∣∣
θ=θ1

γθ1(n),

in which γθ1(n) and πθ1(n) depend only on the original policy σθ1(n), n =
0, 1, . . . , N − 1. ��

8.3.4 Optimization

Both the performance difference and the performance derivative formulas
(8.19), (8.24), and (8.25) have a similar form as those for the standard MDPs
(2.27) and (2.26). However, there is a slight but crucial difference between the
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two cases: The aggregated potential gd,h(k1, k2) (8.20) and the aggregated
performance function fd,h(k1) in the performance difference formula (8.24)
depend not only on the original policy d but also on the perturbed one h.
As a result, policy iteration type of algorithms can be only developed under
some conditions, by using the performance difference formula. On the other
hand, the aggregated potential gθ1(k1, k2) (8.26) in the performance derivative
formula (8.25) depends only on the original system with parameter θ1. There-
fore, the gradient-based type of optimization approaches can be developed,
by using the performance derivative formula. In this section, we will provide
a brief discussion on these issues.

Policy Iteration

We first consider the simple case where f does not depend on actions. The
aggregated potential (8.20) (or (8.21)) contains items from both policies,
πh(i|eo(k1)) from the perturbed system and gd(j) from the original one. Such
a quantity depending on both policies cannot be used in policy iteration. How-
ever, under some special situations, gd,h(k1, k2) in (8.20) depends only on the
original system and therefore can be obtained by analyzing only the original
system, or can be estimated from a sample path of the original system.

First, for some systems (e.g., the system in Example 8.4), the following
equation holds for any h, d ∈ De:

πh(i|eo(k1)) = πd(i|eo(k1)), for all i ∈ I [eo(k1)] , k1 = 1, 2, . . . , ko.
(8.36)

In such cases, (8.21) becomes

gd(k1, k2) :=
∑

i∈I[eo(k1)]

kt∑

k3=1

{
πd(i|eo(k1))pi [et(k3)|ec(k2), eo(k1)] gd(j)

}
,

(8.37)
which depends only on the original policy d.

Another situation under which the aggregated potential depends only on
the original policy d is as follows. Suppose that given i ∈ I[eo(k1)], both
pi [et(k3)|ec(k2), eo(k1)] and j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)] do not explicitly
depend on i. In this case, the gd,h(k1, k2) in (8.21) becomes

gd(k1, k2) :=
∑

i∈I[eo(k1)]

kt∑

k3=1

{
πh(i|eo(k1))p [et(k3)|ec(k2), eo(k1)] gd(j)

}

=
kt∑

k3=1

⎧
⎨

⎩

⎡

⎣
∑

all i:〈i,j〉∈eo(k1)

πh(i|eo(k1))

⎤

⎦p [et(k3)|ec(k2), eo(k1)] gd(j)

⎫
⎬

⎭

=
kt∑

k3=1

{
p [et(k3)|ec(k2), eo(k1)] gd(j)

}
, (8.38)
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which also depends only on the original policy d. Note that the statement
“j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)] does not depend on i” means that for any
state i in I [eo(k1)] if ec(k2) occurs (no matter what action is taken) and if
the same natural transition event et(k3) is followed, then the next state will
be the same state j. This essentially resets the system, randomly by nature,
after the action is taken. See the discussion in the manufacturing example in
Section 8.5.1 for an example.

When the aggregated potentials gd(k1, k2) depend only on the original pol-
icy d, they can be estimated on a sample path of the original system. Event-
based policy iteration algorithms can be developed from the performance dif-
ference equation (8.19) following the same idea as the standard MDPs. In
essence, at each iteration, one chooses the action α′ in the available action set
corresponding to the observed event eo(k1) that leads to the largest value of
the average aggregated potential; i.e.,

α′ =arg max
α∈A(k1)

{
kc∑

k2=1

{
pα [ec(k2)|eo(k1)]−pd[eo(k1)] [ec(k2)|eo(k1)]

}
gd(k1, k2)

}

= arg max
α∈A(k1)

{
kc∑

k2=1

pα [ec(k2)|eo(k1)] gd(k1, k2)

}
.

From the same principle as policy iteration in the standard MDPs, we know
that the policy iteration procedure leads to an optimal policy among the
policies in the event-based policy space in a finite number of steps.

In general, there are ko × kc aggregated potentials gd(k1, k2) in (8.37),
compared with S potentials in the standard MDPs. In Example 8.4, ko =
(N + 1) and kc = 2. There are 2(N + 1) aggregated potentials in (8.33) and
(8.34), compared with the number of potentials,

∑N
n=0

(n+M−1)!
n!(M−1)! (0! = 1), in

the standard MDPs.
If in addition to the conditions in (8.38), p [et(k3)|ec(k2), eo(k1)] does not

depend on eo(k1), we have from (8.38)

gd(k1, k2) =
kt∑

k3=1

{
p [et(k3)|ec(k2)] gd(j)

}
=: gd(k2). (8.39)

In such cases, we have only kc potentials to estimate, and (8.19) becomes

ηh − ηd =
ko∑

k1=1

πh(eo(k1))
kc∑

k2=1

{
ph [ec(k2)|eo(k1)]− pd [ec(k2)|eo(k1)]

}
gd(k2).

The situation is more complicated when f depends on actions. In such
cases, the aggregated functions (8.22) and (8.23) also depend on the perturbed
policy d. When condition (8.36) holds, policy iteration with action-dependent
f can be developed.
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Gradient-Based Optimization

The aggregated potential gθ1(k1, k2) in (8.26) can be estimated on a sample
path of the original system with θ1. The fundamental ideas and some algo-
rithms for estimating the aggregated potentials will be discussed in Section
8.4. Other sample path-based algorithms are yet to be developed. As discussed
above, the number of aggregated potentials is usually smaller than the num-
ber of states. Once these aggregated potentials are estimated, the performance
gradients with respect to any parameter can be obtained by (8.25).

Examples

Example 8.14. (Moving Robot, Continued) As shown in Example 8.12,
the aggregated potentials g′(ag) = g(5), g′(ar) = g(6), g′(bg) = g(3), and
g′(br) = g(4) depend only on the original policy. Therefore, a policy iteration
algorithm can be derived from the performance difference formula (8.27). The
algorithm is very simple because the parameter space is only two dimensional.
We first choose any (σa, σb) in the feasible region [0, 1]2 and calculate or
estimate its potentials g(3), g(4), g(5), and g(6). From (8.27), if, for example,
g(5) − g(6) > 0 and g(3) − g(4) < 0, then any policy (σ′

a, σ
′
b) with σ′

a > σa

and σ′
b < σb performs better than (σa, σb). It is interesting to note that one of

the boundary points (with σa = 0 or 1, and σb = 0 or 1) must be an optimal
policy,

Gradient-based optimization algorithms can be developed from the per-
formance derivative formula (8.28). ��

Example 8.15. (Admission Control, Continued) Policy iteration algo-
rithms can be derived from the performance difference formula (8.32). Fol-
lowing the same reasoning as the standard MDPs, because πh(n) > 0 for any
policy σh(n), we have ηh > ηd if

[
σh(n)− σd(n)

]
γd(n) ≥ 0 for all n with[

σh(n)− σd(n)
]
γd(n) > 0 for at least one n, n = 1, 2 . . . , N − 1. Thus, at

each iteration we can improve the policy as follows: If γd(n) > 0 (or < 0),
n = 0, 1, . . . , N−1, for the current policy, then we choose the action α with the
largest (or the smallest) σα(n) for the next iteration; and if γd(n) = 0 for some
n, we keep the same action α at this n for the next iteration. Also, as in the
standard MDPs, using the aggregated potentials γd(n), n = 1, 2, . . . , N − 1,
(either calculated analytically, or estimated on a sample path of the current
system), we can always find a better policy by following the above described
policy improvement rule, if such better policies exist. This means that if the
iteration stops (i.e., we cannot find a better policy), then the current policy
is the best.

In addition, from the form of (8.32), we can conclude that the optimal
policy σ̂(n) can be chosen at the corner of the feasible policy space: Let γ̂(n)
is the aggregated potential under policy σ̂(n), n = 0, 1, . . . , N − 1. If γ̂(n) > 0
(or < 0) then σ̂(n) should have the largest (or the smallest) among all possible
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σ(n)’s, and if γ̂(n) = 0, we can choose any σ(n) including the largest one at
the corner.

From the physical meaning of gd(an,+) and gd(an,−), γd(n) = gd(an,+)−
gd(an,−) > 0 implies that the aggregated potential after accepting a customer
is larger than that after rejecting the customer, or is larger than the original
aggregated potential at population n; in this case, accepting the arriving cus-
tomer makes the performance better. ��

Policies Based on a Sequence of Events

Because the event sequence is not Markov (cf. Section 8.2.2), we may define
policies that depend on a sequence of events instead of on only the current
event; and the policies depending on a sequence of events may perform better
than those depending only on the current event. The policy space expands
but the fundamental principles remain the same. We may define the observable
event sequences, which may contain more information than a single observable
event. For instance, in Example 8.6, the event sequence {an−1, an} is different
from {an+3, an}. The former indicates that there is no departure between the
two arrivals, and the latter indicates that there are three customers departing
from the system between the two arrivals. Thus, the corresponding inter-
arrival time for {an−1, an} is most likely shorter than that for {an+3, an}. In
addition, this sequence may also give us some information about the possible
state of the system, depending on the network topology. For example, if the
network is a series of servers in tandem, after a sequence of events {an+3, an},
there will be more likely fewer customers in the exit server.

Not much work has been done in this direction. The problem is similar
to partially observable MDPs; however, the event sequence approach main-
tains the system structure by defining events properly, and an event at time
l consists of information about the state transition at time l.

8.4 Learning: Estimating Aggregated Potentials

8.4.1 Aggregated Potentials

The aggregated potentials such as gd(an,+) and gd(an,−) in (8.33) and (8.34)
can be estimated on a sample path of the original system. We first give an
intuitive explanation about how an event-based aggregated potential can be
estimated on a sample path with the same amount of computation and with
the same accuracy as estimating the potential of a single state.

Estimating a Potential

Let us first review how the potential of a state i, g(i), can be estimated. The
simplest way is shown in Figure 8.10A. After each visit to state i, we sum
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Fig. 8.10. Estimating the Aggregated Potentials Based on States

up the rewards for N(>> 1) consecutive transitions to obtain estimates g1(i),
g2(i), . . . . For example, in the figure g1(i) =

∑N
l=1 f(Xl), g2(i) =

∑6+N
l=7 f(Xl),

etc. (in the figure, N = 4). In general, we define Ti = {l1, l2, . . . , lk, . . . , lKi
}

as the set of consecutive time instants on the sample path {X0, . . . , XL} such
that at lk, k = 1, 2, . . . ,Ki, the state of the Markov chain is Xlk = i, with Ki

being the number of the visits to state i on the sample path. Let

gk(i) =
N−1∑

l=0

f(Xlk+l). (8.40)

From (3.16), we have

g(i) ≈ 1
Ki

Ki∑

k=1

gk(i)

(
=

1
Ki

∑

k: lk∈Ti

gk(i)

)
. (8.41)

More precisely, we need to define gk(i) as gk(i) =
∑N−1

l=0 [f(Xlk+l)− η], with
η being the long-run average reward. We have omitted the constant term Nη
in (8.40) and (8.41).

If we make a slight change in the above expression, we can obtain an
estimate of a potential weighted by the steady-state probability of the corre-
sponding state. In fact, for a large integer L, we have

1
L

Ki∑

k=1

gk(i) =
Ki

L

1
Ki

Ki∑

k=1

gk(i) ≈ π(i)g(i),

where Ki

L ≈ π(i) is the steady-state probability of i.
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Estimating an Aggregated Potential Based on State Aggregations

With the same principle, we can estimate the potential aggregated at a subset
of states. This is shown in Figure 8.10B. Let I ⊆ S be a subset of the state
space, which we call an aggregated state. Instead of collecting the sums of
the reward functions gk’s starting from a particular state i, we collect the
gk’s starting from any state in I. Let TI := ∪i∈ITi = {l1, l2, . . . , lK} be the
set of consecutive time instants such that Xlk ∈ I, and K :=

∑
i∈I Ki be

the number of visits to the set I on the sample path {X0, . . . , XL}. Denote
gk(Xlk) =

∑N
l=0 f(Xlk+l). Then, we have

1
K

∑

k: lk∈TI

gk(Xlk) =
∑

i∈I

[
1
K

∑

k: lk∈Ti

gk(i)

]

=
∑

i∈I

{
Ki

K

[
1
Ki

∑

k: lk∈Ti

gk(i)

]}
.

Clearly, Ki

K ≈ π(i|I) is the steady-state conditional probability of i given it is
in the aggregated state I. Thus, from (8.41)

1
K

∑

k: lk∈TI

gk(Xlk) ≈
∑

i∈I
π(i|I)g(i) =: g̃(I), (8.42)

where g̃(I) denotes the potential aggregated at the aggregated state I. In the
same spirit, we have

1
L

∑

k: lk∈TI

gk(Xlk) ≈ π(I)
∑

i∈I
π(i|I)g(i) =

∑

i∈I
π(i, I)g(i),

where π(I) is the steady-state probability of the aggregated state I, and
π(i, I) = π(i) is the steady-state joint probability of I and state i.

Estimating an Aggregated Potential Based on Events

Equation (8.42) illustrates how to estimate the potential aggregated on a set of
states. There is, however, one difference for estimating a potential aggregated
on an event: the potential is usually aggregated at the time instant after the
event occurs. Let a be an event (it may not be deterministic) and j ∈ Oi(a)
be an output state of a with i ∈ I(a) being an input state of a. Obviously, j
is the state at the time instant following the instant at which event a occurs.
Let p(j|i, a) be the transition probability from i to j given that the event a
happens. Define an aggregated potential of event a as

g̃(a) =
∑

i∈I(a)

∑

j∈S
π(i|a)p(j|i, a)g(j). (8.43)
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Fig. 8.11. Estimating the Aggregated Potentials Based on Events

Figure 8.11 shows how to estimate g̃(a). In the figure, event a happens at
l = 1 and l = 6, and g̃k(i), i ∈ I(a), denotes the sum of the rewards of N
transitions starting from the next state after the kth occurrence of event a:

g̃k(Xlk) =
N∑

l=1

f(Xlk+l), Xlk ∈ I(a).

Let Ta := {l1, . . . , lk, . . . , lK} be the set of consecutive time instants on the
sample path {X0,X1, . . . , XL} such that Xlk ∈ I(a). We can easily prove that
for a large N , we have

g̃(a) ≈ 1
K

K∑

k=1

g̃k(Xlk). (8.44)

We have demonstrated that the event-based aggregated potentials (8.43)
can be estimated on a sample path, as shown in (8.44). It is important to note
that (8.44) has the same form as the estimate of the potential of a single state
(8.41); thus estimating an aggregated potential requires the same amount of
computation and has the same level of accuracy as estimating a potential of a
state. Because the number of aggregated potentials is usually much less than
that of the states, the event-based method saves considerable computation in
the sample-path based approach for performance optimization.

8.4.2 Aggregated Potentials in the Event-Based Optimization

Many event-based aggregated potentials have the form (8.43). First, we ob-
serve that gd(k1, k2) in (8.37) is in the form of (8.43) with the event a
being eo(k1) ∩ ec(k2). To see this, let us rewrite the transition probability
pi [et(k3)|eo(k1), ec(k2)] in (8.37) in the same form as in (8.43). Because the
event eo(k1)∩ ec(k2)∩ et(k3) is deterministic, j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)]
contains a single state. Next, the set Oi [eo(k1) ∩ ec(k2)] contains the states
j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)] for all k3, i.e.,

Oi [eo(k1) ∩ ec(k2)] = ∪all k3Oi [eo(k1) ∩ ec(k2) ∩ et(k3)] .

Given that the event eo(k1)∩eo(k2) occurs and i ∈ I [eo(k1) ∩ ec(k2) ∩ et(k3)],
the probability of event et(k3) is the same as the probability of the output
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state j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)], Therefore, in the notation of (8.43) we
can write

pi [et(k3)|ec(k2), eo(k1)] = p [j|i; ec(k2), eo(k1)] .

Thus, (8.37) becomes

gd(k1, k2) =
∑

i∈I[eo(k1)]

∑

all j

{
πd(i|eo(k1))p [j|i; ec(k2), eo(k1)] gd(j)

}
,

where j = Oi[eo(k1)∩ec(k2)∩et(k3)]. Because the choice of the control action
does not depend on i, we have πd(i|eo(k1)) = πd(i|eo(k1), ec(k2)). Therefore,
the above equation is exactly the same form as (8.43) with a = eo(k1)∩ec(k2).

In particular, gd(an,+) in (8.33) and gd(an,−) in (8.34) can be written in
the form of (8.43) as g̃(an,+) and g̃(an,−), respectively. As an example, we
now develop the details for the sample-path-based estimation of gd(an,+) in
the admission control problem.

Example 8.16. (Admission Control, Continued) Consider a sample path
{X0,X1, . . . , XL}, with L >> 1. Denote the sequence of the time instants at
which event an,+ happens (i.e., an arriving customer finding n customers in
the system is accepted) on the sample path as Tan,+ :=

{
l1, . . . , lLn,+

}
. Then

at lk + 1, k = 1, 2, . . . , Ln,+, there are n + 1 customers in the system. Choose
a large integer N . Set

g̃lk
=

N∑

l=1

f(Xlk+l).

Next, we decompose the set Tan,+ into sub-groups Tan,+ = ∪n∈Sn
Tan,+ , such

that before the customer arriving at l ∈ Tan,+ is accepted the system state is
n with population n. Let Ln,+ be the number of instants in Tan,+ . We have
Ln,+ =

∑
n∈Sn

Ln,+. We further decompose Tan,+ into Tan,+ = ∪M
i=1Tan+i

;
in Tan+i

, the accepted customer joins server i, i = 1, . . . ,M . Let Ln+i
be the

number of instants in Tan+i
. We have

Ln,+ =
M∑

i=1

Ln+i
, Ln,+ =

∑

n∈Sn

M∑

i=1

Ln+i
.

From the above definitions, we have

1
Ln,+

Ln,+∑

k=1

g̃lk =
1

Ln,+

∑

lk∈Tan,+

g̃lk

=
1

Ln,+

∑

n∈Sn

∑

lk∈Tan,+

g̃lk
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=
1

Ln,+

∑

n∈Sn

M∑

i=1

∑

lk∈Tan+i

g̃lk

=
∑

n∈Sn

⎡

⎣Ln,+

Ln,+

M∑

i=1

Ln+i

Ln,+

⎛

⎝ 1
Ln+i

∑

k∈Tan+i

g̃lk

⎞

⎠

⎤

⎦ . (8.45)

By definitions, when L is large enough, we have

1
Ln+i

∑

k∈Tan+i

g̃lk ≈ g(n+i),

and
Ln+i

Ln,+
≈ q0,i,

Ln,+

Ln,+
≈ π(n|n).

With these equations and (8.45), we obtain

1
Ln,+

Ln,+∑

k=1

glk ≈ gd(an,+). (8.46)

In (8.46), we ignored a constant Nη. More precisely, we need to define

g̃lk =
N∑

l=1

[f(Xlk+l)− η] .

With this definition, we have

lim
N→∞

lim
Ln,+→∞

1
Ln,+

Ln,+∑

k=1

glk = gd(an,+), w.p.1. (8.47)

Sample-path-based algorithms can be developed with (8.46) and (8.47). ��

8.5 Applications and Examples

In this section, we first illustrate the applications of the event-based approach
via two examples, and then discuss other possible applications in general.

8.5.1 Manufacturing

Consider a manufacturing system which produces M types of products. The
system processes one product for a period of time and then switches to
another product. When the system processes a product of type i, it oper-
ates as a Markov chain with different “phases” denoted as {1, 2, . . . , Ni},
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i = 1, 2, . . . ,M . The system state is then denoted as (i, j), i = 1, . . . ,M ,
and j = 1, . . . , Ni. In state (i, j), the system completes the product i with
probability σi(j), and continues with the same product i with probability
1 − σi(j). If the system continues with the same product, it chooses phase
j′ with probability pi(j, j′) for j′ = 1, . . . , Ni. If the system completes pro-
cessing on the product i, it picks up a product i′ with probability p(i, i′),
i, i′ = 1, . . . ,M . Once the system picks up a product i′, the initial phase is
chosen according to the distribution ρi,i′(j′), j′ = 1, . . . , Ni′ . For convenience,
we will assume p(i, i) = 0 . This is not conceptually restrictive. It is the same
as the assumption of qi,i = 0 in the admission control example.

Events

A single event in this system is a state transition 〈(i, j), (i′, j′)〉. The event
representing that the system completes a product i is

a−i := {〈(i, j), (i′, j′)〉, i′ �= i, i′ = 1, . . . ,M, j = 1, . . . , Ni, j
′ = 1, . . . , Ni′} .

The event representing that the system picks up a product i′ is

a+i′ := {〈(i, j), (i′, j′)〉, i �= i′, i = 1, . . . ,M, j = 1, . . . , Ni, j
′ = 1, . . . , Ni′} .

The event representing a shift from product i to i′ is

a−i,+i′ := {〈(i, j), (i′, j′)〉, j = 1, . . . , Ni, j
′ = 1, . . . , Ni′} , i′ �= i.

We have a−i,+i′ = a−i ∩ a+i′ . Finally, the event representing that the system
enters phase j′ of product i′ from product i, i �= i′, is

a−i;+i′,j′ := {〈(i, j), (i′, j′)〉, j = 1, . . . , Ni} , i′ �= i.

When i = i′, we have
ai,j;j′ := {〈(i, j), (i, j′)〉} ,

which is a single event representing that the system continues with the same
product i and enters phase j′ from phase j.

The probabilities of events P(El = a−i,+i′) and P(El = a−i) can be
obtained from the Markov model. But from the meaning of the events we can
easily get the conditional probability

P(a−i,+i′ |a−i) = p(i, i′). (8.48)

Now, suppose that we can control the probabilities p(i, i′), i, i′ = 1, 2,
. . . ,M , by actions. The control process can be described in terms of events:
First, we observe whether an event a−i, i = 1, 2, . . . ,M , occurs; if so, we
apply an action which controls the conditional probabilities of events a−i,+i′

that follow, see (8.48); afterwards, nature determines the event a−i;+i′,j′ with
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probability ρi,i′(j′) (i.e., the initial phase of product i′ is determined by the
nature of the product).

In this formulation, a−i, i = 1, 2, . . . ,M , are the observable events; a−i,+i′ ,
i, i′ = 1, 2, . . . ,M , are the controllable events; and a−i;+i′,j′ are the natural
transition events. The logical relationship between these events are shown in
Figure 8.12. The figure shows that a state transition from (i, j) to (i′, j′) is
composed of three arrows: the solid arrow corresponding to the event a−i,
the dashed arrow corresponding to the event a−i,+i′ , and the dotted arrow
corresponding to the event a−i;+i′,j′ .

(i, j)

Other events

a−i a−i,+i′

a−i,+i′′

a−i;+i′,j′

(i′, 1)

· · ·

(i′, j′)

· · ·

(i′, Ni′)

a−i Observable events

a−i,+i′ Controllable events

a−i;+i′,j′ Natural transition events

Fig. 8.12. The Logical Relation Among Three Types of Events in the Manufacturing
System

The Event Space Decomposition

The space of single events is

E := {〈(i, j), (i′, j′)〉, j = 1, . . . , Ni, j
′ = 1, . . . , Ni′ , i, i

′ = 1, 2, . . . ,M} ,

which can be decomposed. For observable events, the decomposition is

E =
{
∪M

i=1a−i

}
∪ b, (8.49)

where we define
b = ∪M

i=1 ∪Ni
j=1 ∪Ni

j′=1ai,j;j′ , (8.50)

to represent all the transitions among the different phases in the same product.
Event b is observable and when b happens, the system is not controllable (or
we can do nothing). The information contained in a−i is that a product i is
completed. For controllable events, we have

E =
{
∪M

j=1a+j

}
∪ b =

{
∪M

i=1 ∪M
j=1,j 
=i a−i,+j

}
∪ b. (8.51)
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For natural transition events, we have

E =
{
∪M

i=1 ∪M
i′=1 ∪

Ni′
j′=1a−i;+i′,j′ ∪ b

}
. (8.52)

The decomposition of the event space for the manufacturing system with
M = 3 and Ni = 3, i = 1, 2, 3, according to (8.49), (8.51), and (8.52) is shown
in Figure 8.13. The three upper horizontal rectangles represent events a−i,
i = 1, 2, 3, respectively; and the three vertical rectangles represent events a+i,
i = 1, 2, 3. The natural transition events a−∗;+∗,j , j = 1, 2, 3, are illustrated
by different grays; each such event consists of three narrow vertical rectan-
gles. Event b consists of all the transitions among the different phases within
the same product. When b is observed, there is only one control action: “do
nothing”, which is followed by a natural transition event expressed in (8.50).
For clarity, this detailed composition of b is not shown in the figure because
it only has a conceptual meaning and is not related to the control problem.
For observable events, the decomposition is E = ∪3

i=1a−i ∪ b; for controllable
events, we have E = ∪3

i=1a+i ∪ b; and for natural transition events, we have
E = ∪3

j′=1a−∗;+∗,j′ ∪ b, where a−∗;+∗,j′ = ∪3
i=1 ∪3

i′=1,i′ 
=i a−i;+i′,j′ .

b

a−3

a−2

a−1

a+1 a+2 a+3

a−∗;+∗,1 a−∗;+∗,2 a−∗;+∗,3

Fig. 8.13. The Decomposition of the Event Space E into Three Types of Events in
the Manufacturing Example, with M = 3 and Ni = 3, i = 1, 2, 3

Performance Sensitivity Formulas

Denote the steady-state probability of a−i as π(a−i). The controllable events
are a+i′ , i′ = 1, 2, . . . ,M . When a−i occurs, the conditional probability of
a+i′ is P(a+i′ |a−i) = p(i, i′), i, i′ = 1, 2, . . . ,M . Given two policies ph(i, i′)
and pd(i, i′), i, i′ = 1, 2, . . . ,M , (8.19) becomes

ηh − ηd =
M∑

i=1

{
πh(a−i)

M∑

i′=1

[
ph(i, i′)− pd(i, i′)

]
gd,h(i, i′)

}
,
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where

gd,h(i, i′) =
Ni∑

j=1

Ni′∑

j′=1

{
πh [(i, j)|a−i] ρi,i′(j′)gd(i′, j′)

}
. (8.53)

A close examination reveals that the condition for (8.38) does hold in this
problem, and we can rewrite (8.53) as

gd,h(i, i′) := gd(i, i′) =
Ni′∑

j′=1

[
ρi,i′(j′)gd(i′, j′)

]
, (8.54)

which depends only on the original system. Thus

ηh − ηd =
M∑

i=1

{
πh(a−i)

M∑

i′=1

[
ph(i, i′)− pd(i, i′)

]
gd(i, i′)

}
. (8.55)

The performance derivative (8.25), with fθ = f , becomes

dη(θ)
dθ

∣∣∣∣
θ=θ1

=
M∑

i=1

{
πθ1(a−i)

M∑

i′=1

[
d

dθ
pθ(i, i′)

∣∣∣∣
θ=θ1

gθ1(i, i
′)

]}
.

When ρi,i′(j′) = ρi′(j′) is independent of i, we have for all i,

gd(i, i′) = gd(i′) :=
Ni′∑

j′=1

{
ρi′(j′)gd(i′, j′)

}
, (8.56)

and

ηh − ηd =
M∑

i=1

{
πh(a−i)

M∑

i′=1

[
ph(i, i′)− pd(i, i′)

]
gd(i′)

}
. (8.57)

Policy iteration can be developed based on (8.55) and (8.54), or (8.57) and
(8.56).

In this problem, there are ko × kc = M2 aggregated potentials gd(i, i′),
i, i′ = 1, 2, . . . ,M . This is smaller than the number of states

∑M
i=1 Ni, if M <

Ni, i = 1, 2, . . . ,M . If the natural transition probabilities ρi,i′(j′) = ρi′(j′) do
not depend on i, then (8.39) holds and there are only M aggregated potentials
gd(i′), i′ = 1, 2, . . . ,M .

8.5.2 Service Rate Control

Consider a closed Jackson network consisting of N customers circulating
among M servers (single-server stations). Let ni be the number of customers
in server i, i = 1, 2, . . . ,M , with

∑M
i=1 ni = N . We assume that the service

rate at server i may depend on the number of customers in the server ni
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(called a “load-dependent” service rate in the literature). Denote the service
rate of server i with ni customers as μi,ni

, and let τi be a customer’s service
requirement at server i. If ni remains the same in the service period of a
customer, then the service time of the customer is si = τi

μi,ni
. By convention,

μi,0 = 0, i = 1, . . . ,M . We assume that all τi, i = 1, . . . ,M , are exponentially
distributed. Without loss of generality, we may further assume that the means
of all τi, i = 1, 2, . . . ,M , are equal to one. (We may adjust the service time
by changing the service rate.)

After the completion of its service at server i, a customer moves to server
j with probability qi,j ,

∑M
j=1 qi,j = 1. Again, for simplicity, we assume qi,i = 0

for all i = 1, 2, . . . ,M . For performance study, the network can be modelled
as a continuous-time Markov process with state n = (n1, n2, . . . , nM ). Let
n−i,+j = (n1, . . . , ni − 1, . . . , nj + 1, . . . , nM ) be a neighboring state of n,
ni ≥ 1. For example, in a three-server network if n = (2, 1, 3), then n−1,+2 =
(1, 2, 3), or we write (1, 2, 3) = (2, 1, 3)−1,+2. The transition rate from state n
to state n−i,+j in the continuous-time Markov process is μi,ni

qi,j .

The Embedded and Augmented Chain

Suppose that we may control the service rates μi,ni
, ni = 1, 2, . . . , N , i =

1, 2, . . . ,M , to optimize a long-run average performance with some reward
function f . We first transfer the problem into a discrete-time model by the
uniformization technique. We assume that the service rates are finite; thus,
there is a μ > 0 such that 0 < μi,ni

< μ, ni = 1, 2, . . . , N , i = 1, 2, . . . ,M ,
for all possible service rates. It is well known (see Appendix C.3) that in a
network with a single class of customers, a server with rate μi,ni

and routing
probabilities qi,j , qi,i = 0, is equivalent to a server with service rate μ in which
after the completion of its service, a customer will move back to the end of the
queue of the same server (feedback) with probability 1 − pi,ni

and will leave
the server with probability pi,ni

, pi,ni
= μi,ni

μ < 1. If the customer leaves the
server, it will join server j with probability qi,j . If we replace all the servers
in the network with its equivalent server described above, we obtain a closed
network in which all the service rates with any loads are equal to μ, and the
effect of μi,ni

is reflected by the “feedback” probability 1−pi,ni
. This network

is uniformized and we may study its embedded chain, denoted as X, which
describes a discrete closed queueing network. In this discrete-time Markov
chain, a state transition is 〈n,n−i,+j〉, i, j = 1, 2 . . . ,M . With this discrete
version, the problem becomes how to choose pi,ni

, i = 1, 2, . . . ,M , in order
to optimize a given performance measure. We assume that the performance
function f is the same for all policies.

We first note that in this system, with the standard MDP formulation,
a transition 〈n,n〉 may correspond to a few different events. For exam-
ple, if at a time instant the system state is n and there is a customer at
server i, i = 1, 2, . . . ,M , which completes its service and feeds back to the
queue of the same server, then the transition is 〈n,n〉, regardless of which
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server the customer is in. Therefore, we need to modify the notation to
make distinctions among these situations. To this end, we may artificially
denote a load vector as n = n−i,+i, i = 1, 2, . . . ,M . For example, we write
(2, 1, 3) = (2, 1, 3)−1,+1 = (2, 1, 3)−2,+2 = (2, 1, 3)−3,+3. With this notation, a
transition 〈n,n−i,+i〉 clearly represents the event that a customer feeds back
at server i. Therefore, by using n−i,+i to denote the system status if necessary,
we can distinguish all events in the system. This modified notation only helps
us to distinguish events and will not be needed for system states. For example,
the potentials g(n−i,+i) ≡ g(n) are the same for all i, i = 1, 2, . . . ,M .

Events

With the modified notation, the event representing a customer finishing a
service at server i, including the feedback, can be represented by the set

a−i := {〈n,n−i,+j〉 : all n with ni > 0, all j = 1, 2, . . . ,M} .

The event representing a customer joining server j, including the feedback, is

a+j := {〈n,n−i,+j〉 : all n with ni > 0, all i = 1, 2, . . . ,M} .

The event representing a customer moving from server i to server j (i = j
implies a feedback at server i) is

a−i,+j := {〈n,n−i,+j〉 : all n with ni > 0} .

The event representing a customer feeding back to server i is

a−i,+i := {〈n,n−i,+i〉 : all n with ni > 0} .

The event representing a customer departing from server i is

a−i,∗ := ∪j 
=ia−i,+j = {〈n,n−i,+j〉 : all n with ni > 0, j �= i} .

The event representing a customer finishing its service at server i when there
are ni > 0 customers in it is

a−i(ni) := {〈n,n−i,+j〉 : all n with ni, all j = 1, 2, . . . ,M} .

The event representing a customer moving from server i to server j when there
are ni > 0 customers in it before the departure is

a−i,+j(ni) := {〈n,n−i,+j〉 : all n with ni} .

The event representing a customer feeding back to server i when there are ni

customers in it is

a−i,+i(ni) := {〈n,n−i,+i〉 : all n with ni} .
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The event representing a customer departing from server i when there are ni

customers in it is

a−i,∗(ni) := ∪j 
=ia−i,+j(ni) = {〈n,n−i,+j〉 : all n with ni, j �= i} .

In the system, the events a−i(ni), i = 1, 2, . . . ,M and ni = 1, 2, . . . , N ,
are the observable states. The controllable events are a−i,+i(ni) and a−i,∗(ni).
The conditional probabilities that we can control are

P [a−i,∗(ni)|a−i(ni)] = pi,ni
,

and
P [a−i,+i(ni)|a−i(ni)] = 1− pi,ni

.

After the controllable event a−i,∗(ni) occurs, the nature chooses the destina-
tion server, denoted as j, with probability qi,j (i.e., a−i,+j(ni) occurs). After
the feedback event a−i,+i(ni), nature has only one choice: to put the customer
at the end of queue i.

Performance Sensitivity Formulas

Denote the steady-state probabilities of the observable events a−i(ni) as
π [a−i(ni)], ni = 1, 2 . . . , N , i = 1, 2, . . . ,M . At any observable event a−i(ni),
there are two controllable events: departure a−i,∗(ni) and feedback a−i,+i(ni).
Consider two policies denoted as ph

i,ni
and pd

i,ni
, ni = 1, 2, . . . , N , i =

1, 2, . . . ,M . For convenience, instead of using the indexes k1 and k2, we di-
rectly use a−i(ni) to indicate the observable events and use two letters, “fb”
and “dp”, to indicate the two controllable events, “feedback” and “departure”,
respectively. We have

ηh − ηd =
M∑

i=1

N∑

ni=1

{
πh [a−i(ni)]

{(
ph

i,ni
− pd

i,ni

)
gd,h [a−i(ni), fb]

+
[
(1− ph

i,ni
)− (1− pd

i,ni
)
]
gd,h [a−i(ni), dp]

}}

=
M∑

i=1

N∑

ni=1

{
πh [a−i(ni)]

(
ph

i,ni
− pd

i,ni

)

{
gd,h [a−i(ni), fb]− gd,h [a−i(ni), dp]

}}
, (8.58)

where
gd,h [a−i(ni), fb] =

∑

all n

πh [n|a−i(ni)] gd(n),

and

gd,h [a−i(ni), dp] =
∑

all n

M∑

j=1

πh [n|a−i(ni)] qi,jg
d(n−i,+j).
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In general, these two aggregated potentials depend on both the original system
and the perturbed system. However, the performance derivatives depend only
on the original system:

dη

dθ

∣∣∣∣
θ=θ1

=
M∑

i=1

N∑

ni=1{
πθ1 [a−i(ni)]

dpi,ni
(θ)

dθ

∣∣∣∣
θ=θ1

{gθ1 [a−i(ni), fb]−gθ1 [a−i(ni), dp]}
}

,

with
gθ1 [a−i(ni), fb] =

∑

all n

πθ1 [n|a−i(ni)] gθ1(n),

and

gθ1 [a−i(ni), dp] =
∑

all n

M∑

j=1

πθ1 [n|a−i(ni)] qi,jgθ1(n−i,+j).

Gradient-based optimization algorithms can be developed by using this per-
formance derivative formula.

Because the aggregated potentials in (8.58) depend on both the original
and the perturbed policies d and h, policy iteration cannot be developed
based on this performance difference formula. However, all is not lost. Suppose
that we change the service rates μi,ni

(this is equivalent to changing the
feedback probabilities pi,ni

), only for one server, denoted as k. That is, we
set ph

i,ni
= pd

i,ni
for all ni and i �= k, and only change the service rates of

server k to ph
k,nk

�= pd
k,nk

for a particular k and all nk. Then, by the product-
form solution to this queueing network, we can prove

πh [n|a−k(nk)] = πd [n|a−k(nk)] . (8.59)

Thus, we have

ηh−ηd =

N∑

nk=1

{
πh [a−k(nk)]

(
ph
k,nk

−pd
k,nk

){
gd [a−k(nk), fb]−gd [a−k(nk), dp]

}}
,

(8.60)

with
gd [a−k(nk), fb] =

∑

all n

πd [n|a−k(nk)] gd(n), (8.61)

and

gd [a−k(nk), dp] =
∑

all n

M∑

j=1

πd [n|a−k(nk)] qk,jg
d(n−k,+j). (8.62)

Both depend only on the original system.
We may use (8.60)-(8.62) to develop a policy iteration algorithm that

provides a local optimal policy.
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Policy Iteration

Suppose that when event a−i(ni), i = 1, . . . ,M and ni = 1, . . . , N , happens,
we can choose Ki,ni

different feedback probabilities in the set {pi,ni
(1), pi,ni

(2),
. . . , pi,ni

(Ki,ni
)}. We wish to find a policy that has the best performance.

The following policy iteration algorithm can be developed from (8.60), in
which at each iteration the service rates of only one server are updated. At
the kth iteration, the policy is denoted as

dk :=
{
pdk

i,ni
, i = 1, . . . ,M, ni = 1, . . . , N

}
.

Algorithm 8.1. Policy Iteration Algorithm in Which Service Rates
Are Updated One by One:

1. Guess an initial policy d0, set k := 0.
2. (Policy evaluation) Estimate the aggregated potentials gdk [a−i(ni), fb]

and gdk [a−i(ni), dp] for i = 1, . . . ,M and ni = 1, . . . , N defined in
(8.61) and (8.62) on a sample path of the system under policy dk .

3. (Policy improvement) Set i := 1, do
(a) for ni = 1, . . . , N , do

i. if gdk [a−i(ni), fb] ≥ gdk [a−i(ni), dp] then set
p

dk+1
i,ni

= max1≤l≤Ki,ni
pi,ni

(l);
ii. if gdk [a−i(ni), fb] < gdk [a−i(ni), dp] then set

p
dk+1
i,ni

= min1≤l≤Ki,ni
pi,ni

(l); and

(b) if p
dk+1
i,ni

= pdk
i,ni

for all ni = 1, . . . , N ,
then if i < M set i := i + 1 and go to step 3(a);

if i = M , stop;
otherwise go to step 4.

4. Set k := k + 1 and go to step 2.

Suppose that this algorithm stops at a policy d̂, then at this point, no
improvement can be made by changing the service rates of only one server,
and the directional derivative along any direction in the policy space is non-
positive. That is, this point is a local maximal point (see Problem 8.13).

In this problem, ko = M × N and kc = 2. The number of aggregated
potentials is ko× kc = 2MN , which is usually much smaller than the number
of states, (N+M−1)!

N !(M−1)! .
From (8.60), if gd [a−k(nk), fb]−gd [a−k(nk), dp] > 0 (or < 0) for a partic-

ular nk, then ηh > ηd if ph
k,nk

> pd
k,nk

(or ph
k,nk

< pd
k,nk

) and ph
k,n = pd

k,n for
all n �= nk. Also, if gd [a−k(nk), fb] − gd [a−k(nk), dp] = 0, then ηh = ηd for



444 8 Event-Based Optimization of Markov Systems

any ph
k,nk

if we have ph
k,n = pd

k,n for all n �= nk. Therefore, we may conclude
that there must be a local optimal policy that is at a corner of the feasible
region in the policy space. In other words, at this local optimal policy the
feedback rates at any server, denoted as pd̂

i,ni
, i = 1, 2 . . . ,M , are either the

largest (when gd̂ [a−i(ni), fb]− gd̂ [a−i(ni), dp] > 0, with d̂ denoting the opti-
mal policy pd̂

i,ni
) or the smallest (when gd̂ [a−i(ni), fb]− gd̂ [a−i(ni), dp] < 0).

Therefore, if at a local optimal policy gd̂ [a−k(nk), fb] �= gd̂ [a−k(nk), dp] for
any i and ni, this policy d̂ must be at a corner.

8.5.3 General Applications

In the literature, there are a number of topics dealing with special features
and computational issues in performance optimization of stochastic systems.
We found that many of these topics may fit the event-based framework. A
few examples are listed below. Further research is needed to formulate and to
solve these problems with the event-based approach; here we will only briefly
describe the problems.

A. Multilevel control problem. The two-level hierarchical control problem is
similar to the manufacturing problem discussed in 8.5.1. We denote the
high-level state (which changes with a slow time scale) as x and the lower-
level state (which changes with a fast time scale) as y. The overall system
state is (x, y). Any transition out from a high-level state x can be viewed
as an observable event. The rest can be defined according to the specifics
of the problem; a few of such specifics are described in [250].

B. Time aggregation and options. When control actions can only be applied
to a subset of the state space I ∈ S, we can make the observable event as a
transition out from a state in I. As shown in Problem 8.8, the event-based
approach may save computation in some special cases. Furthermore, the
visits to the states in the subset I form an embedded Markov chain, and a
“time aggregation” approach can be developed [67]. The time aggregation
approach was first applied to estimate the performance gradients in [264].
Options [15] can be modelled in a similar way; see Problem 8.15.

C. State aggregation. Partition the state space into subsets S = ∪all l Sl and
group the states in each subset as an aggregated state. The observation
event can be defined as the transitions out from a subset.

D. Singular perturbation. In singular perturbed systems, the state space is
partitioned into a few subsets, and the system stays in the same subset
for a long period before it moves to other subsets. The observable events
represent the transitions among different subsets.

E. Queueing applications. A large queueing network can be decomposed into
a number of small sub-networks connected with each other. The cus-
tomer transitions among different sub-networks can be viewed as observ-
able events. Large communication networks are usually networks of sub-
networks and can therefore be modelled by such queueing networks.
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F. Partially observable MDPs (POMDPs). In POMDPs, the state x is not
observable, but a random variable y, which is stochastically related to x,
can be observed. We may use y, or the “belief state”, or the “internal
state” [159, 161, 188], to define the observable events and then apply the
event-based approach. Problems 8.16 to 8.20 provide some introductory
materials to POMDPs.

Once the above problems are precisely defined in the event-based frame-
work, the performance difference and derivative formulas can be developed for
them. With these formulas, we may aggregate potentials and develop gradient-
based optimization algorithms. Under some conditions, we may also develop
policy iteration algorithms for performance optimization. These are the future
research topics.

Summary

In summary, with a sensitivity point of view of performance optimization, we
proposed an event-based optimization approach. The approach is based on two
formulas: The performance derivative formula for gradient-based optimization
and the performance difference formula for policy iteration. The approach
utilizes the special feature of a system, which is captured by the structure of
events; performance potentials are aggregated according to events using these
special features.

In performance derivative formulas, the aggregated potentials depend only
on the original policy, and sample-path-based algorithms can be developed
for gradient-based approaches. As shown in Section 8.3.4, under some special
conditions, the aggregated potentials in performance difference formulas also
depend only on the original policy, and therefore, policy iteration algorithms
can be developed for these problems. However, the limitation of this approach
is that the aggregated potentials in the performance difference formula may
depend on the two policies under comparison. This prevents the aggregated
potentials from being used in policy iteration. In this regards, the approach
clearly indicates whether policy iteration can be implemented in optimization
for a particular problem, and if not, why. In general, performance gradient-
based optimization (with events) is more applicable than event-based policy
iteration.

As shown in Section 8.4, estimating an aggregated potential on a sample
path requires the same amount of effort as estimating a potential of a state.
The number of aggregated potential depends on that of the events, which may
scale to the system size, while the number of states usually grows exponentially
with the system size. Thus, this approach may save significant computation.

The approach applies to many practical problems that do not fit well with
the standard MDP formulation. It provides a unified view to a number of
subjects including the POMDP problem. Applying the event-based approach
to these different areas is a future research topic.
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The performance difference formula (8.19) is derived in this chapter via
the standard formula ηh − ηd = πh(Ph − P d)gd. The structure of the for-
mula (8.19) clearly reflects the special event-based feature of the system. It
is important to note that the formula can be constructed by intuition using
the potentials as building blocks, in a way similar to what we did in Section
2.1.1 for the performance derivative formula. In fact, (8.19) was first derived
by construction, and was then verified by the standard formula, as we did
on page 417. The construction approach utilizes the special features of the
events; it is intuitive and leads directly to the final form. This construction
approach can help us to quickly “guess” a final form of the difference formula
for a particular problem, by using its special structure. The approach is also
very flexible, and it can be applied, for example, to problems where the sizes
of the state spaces of the two policies are different. We will introduce the
construction method and discuss its advantages in the next chapter.

PROBLEMS

8.1. In a discrete-time birth-death process, the system moves from state n to
n + 1 with a birth probability pn, 0 < pn < 1, n = 0, 1, . . . , and from state n
to n− 1 with a death probability qn, 0 < qn < 1, or stays in the same state n
with probability 1− pn − qn, pn + qn ≤ 1. When n = 0, the death probability
is q0 = 0. Define the events representing: A birth (denoted as event b), a
death (denoted as event a), and no population change (denoted as event c),
respectively.

8.2. In the discrete-time birth-death process considered in Problem 8.1, we
set pn = p for all n ≥ 0 and qn = q for all n > 0.

a. Find the steady-state probability π(n), n = 0, 1, . . . .
b. Suppose that we know a prior that at time l the system is at steady state,

and we observed a birth event b at time l − 1, what is the conditional
distribution P(Xl|El−1 = b)?

c. What is the conditional probability of Xl if we have observed two consec-
utive birth events?

d. What if we observed a death event at steady state; i.e., what is
P(Xl|El−1 = a)?

8.3. Please define the following events in Problem 4.2 (the state of the system
is the stock in every evening before the order):

a. The retailer ordered more than the next day’s demand.
b. The retailer ordered less than or equal to the next day’s demand.
c. The retailer does not or may not have enough merchandise to sell.
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8.4. We modify and restate the retailer’s problem (Problem 4.2 and Problem
8.3) as follows: The system state x is the stock left every evening. We only con-
sider threshold types of policies. That is, the state space {0, 1, 2, . . .} is divided
into N intervals I1 := [0, n1], I2 := [n1 + 1, n2], . . . , IN−1 := [nN−2, nN−1],
IN := [nN−1,∞). The retailer is allowed to order M pieces of merchandise,
or 2M pieces of merchandise, or not to order at all. Assume that we can
only observe that the state is in a particular interval and cannot observe the
state itself. Based on the observation x ∈ Ii, i = 1, 2, . . . , N , the retailer may
choose different probabilities of ordering 0, M , or 2M pieces of merchandise.
Every day’s demand on merchandise can be described by an integer random
variable with distribution pn, n = 0, 1, . . . . Describe the three types of events:
the observable, the controllable, and the natural transition events.

8.5. Suppose that the derivative dfθ(i)
dθ

∣∣∣
θ=0

is known. Derive a sample-path-
based formula for the event-based average

dfθ(k1)
dθ

∣∣∣∣
θ=0

=
S∑

i=1

[
π(i|e(k1))

dfθ(i)
dθ

∣∣∣∣
θ=0

]
.

8.6.∗ Derive equation (8.31), by using the arrival theorem and the steady
state probabilities of the open Jackson networks.

8.7.∗ In Chapter 3, we derived a few sample-path-based direct-learning al-
gorithms for the performance derivatives dηδ

dδ , e.g., (3.30), (3.33), and (3.35).
Derive similar direct-learning algorithms for the aggregated potentials (8.26)
and the event-based performance derivatives by using formula (8.25).

8.8. Suppose that in an MDP problem, we can only apply control actions when
the system is in a subset of state space, denoted as I ⊂ S. The observable
events can be defined as when the system leaves any state i ∈ I or leaves the
non-controllable set S − I.
a. Precisely define the observable events.
b. What are the controllable events?
c. Apply the event-based approach to this problem to derive the performance

difference and derivative formulas for any two policies.

8.9. This problem is designed to further illustrate the ideas of natural transi-
tion events and potential aggregation. Compared with Example 8.1, there are
two additional rooms 7 and 8, as shown in Figure 8.14. As in Example 8.1,
after passing the green light on the right, the robot moves to the top; however,
it will enter room 3 with probability u1 and enter room 7 with probability u2.
Likewise, after passing the red light on the right, the robot will enter room 4
with probability v1 and will enter room 8 with probability v2.

a. Formulate this problem with the event-based approach, and define the
observable, controllable, and natural transition events.
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Fig. 8.14. Extended Moving Robot Problem

b. Derive the performance difference and derivative formulas.

8.10. A robot takes a random walk among four rooms, denoted as 1, 2, 3,
and 4, as shown in Figure 8.15. When the robot is in room 3, in the next
step, it moves to room 1. When it is in room 4, in the next step, it moves to
rooms 2. There is a special passage that connects the four rooms as shown in
the middle of Figure 8.15. When the robot is in room 1, in the next step, it
moves to room 2 with probability 1− p1, or it tries to go through the passage
with probability p1. There is a traffic light, denoted as � in the figure, in the
passage. If it is red, the try fails and the robot moves back to room 1 in the
next step; if the light is green, the robot passes the light and moves to room 3.
The robot behaves in a similar way when it is in room 2: In the next step, it
moves to room 1 with probability 1− p2, or it tries to go through the passage
with probability p2; and the robot moves back to room 2 in the next step if
the light is red, and it passes the light and moves to room 4 in the next step,
if the light is green. Denote the reward function as f .

Denote the probabilities of the light being green and red as σ and 1 − σ,
respectively. We may control σ when we observe that the robot is in front of
the light; we, however, do not know which room does the robot come from.
Our goal is to determine the probability σ so that the long-run average reward
is the maximum.

a. Formulate this problem with the event-based approach.
b. Derive the performance difference and derivative formulas.
c. Derive a policy iteration algorithm.
d. Show that one of the boundary points, σmax or σmin, must be an optimal

policy.

8.11.∗ Derive equation (8.59) by using the arrival theorem and the product-
form solution to the steady-state probabilities of the closed Jackson networks.

8.12. Develop a sample-path-based estimation algorithm for g [a−k(nk), fb]
in (8.61) and g [a−k(nk), dp] in (8.62).
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Fig. 8.15. The Moving Robot System in Problem 8.10

8.13. Consider the policy iteration Algorithm 8.1 in the service rate control
problem in Section 8.5.2.

a. Prove that the algorithm reaches a local optimal policy in a finite number
of iterations. Why is this policy not a “global” optimal policy?

b. If we change the policy improvement step to
3. (Policy improvement) For i = 1, . . . ,M , do for ni = 1, . . . , N , do

i. if gdk [a−i(ni), fb] ≥ gdk [a−i(ni), dp] then set

p
dk+1
i,ni

= max
1≤l≤Ki,ni

pi,ni
(l); ‘

ii. if gdk [a−i(ni), fb] < gdk [a−i(ni), dp] then set

p
dk+1
i,ni

= min
1≤l≤Ki,ni

pi,ni
(l).

If p
dk+1
i,ni

�= pdk
i,ni

for any i = 1, . . . ,M , and ni = 1, . . . , N , then set
k := k + 1 and go to step 2.
If p

dk+1
i,ni

= pdk
i,ni

for all i = 1, . . . ,M , and ni = 1, . . . , N , then stop.

What is the difference that such a change makes to the algorithm? Will this
algorithm stop? Will it reach a local optimal policy?

8.14. In the policy iteration algorithm in the service rate control problem in
Section 8.5.2, at every iteration we always start from server 1, in the order
of server 1, server 2, and so on, to update the service rates of the servers.
We may try to update the service rates of the servers in a round-robin way:
e.g., if server 1’s service rates are updated at an iteration, then in the next
iteration, we start from server 2 to update the service rates, etc. Develop such
an algorithm and discuss its advantages, if any.

8.15.∗(Options [15]) This problem is closely related to the time aggregation
formulation. Consider a Markov process X with state space S, and let I ⊂ S
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be a subset of S. As in Problem 8.8, we may define an observable event as when
the system leaves a state in I. Let us call the period between two consecutive
events (i.e., two consecutive visits to I) as an option period. The control
problem is described as follows. There is a space, denoted as Π, of a finite
number of options. An option corresponds to a state transition probability
matrix in S (i.e., equivalent to a policy); however, it is only applied to an
option period. After the system visits a state i ∈ I, the system may evolve
with any option in the available option set Πi ⊆ Π until it reaches the next
state j ∈ I. We assume that under any option in Π, the set I is reachable.

We consider randomized policies. Thus, in this problem for any given
i ∈ I a policy specifies a probability distribution on Πi. Precisely, let
oi,1, oi,2, . . . , oi,ni

be the options in Πi. A policy d specifies a probability
distribution d(i) := (pi,1, . . . , pi,ni

). With policy d, after the system visits
a state i ∈ I, the system operates under option oi,k with probability pi,k,∑ni

k=1 pi,k = 1, for one option period until it visits another state j ∈ I . Our
goal is to determine the policy that achieves the maximum long-run average
reward. For simplicity, we assume that the reward function f is the same for
all policies.

The standard event-based optimization approach discussed in this chapter
does not directly apply to this problem. However, the basic principles and
concepts can be easily modified and extended to this problem. In the standard
formulation, a control action taken at a time instant only affects the transition
to the next state and therefore the controllable event can be defined. In the
option problem, however, a control action affects the transitions in the entire
option period.

Please formulate this problem in the framework of event-based optimiza-
tion.

a. What are the observable events?
b. What are the aggregated potentials? (Hint: it can be denoted as g(i, oi).)
c. Derive the performance difference and derivative formulas for the two

policies in the problem.
d. Comment on this event-option-based optimization approach.

8.16.∗ Consider a partially observable Markov chain with the structure shown
in Figure 8.16. The fifteen states are grouped into three functionally similar
groups. Group 1 consists of five states denoted as 1, 111, 112, 121, and 122;
Group 2 consists of five states denoted as 2, 211, 212, 221, and 222; and
Group 3 consists of five states denoted as 3, 311, 312, 321, and 322. States
1, 2, and 3 are completely observable. The other twelve states are grouped in
to six super-states, denoted as 11, 12, 21, 22, 31, and 32 (which are denoted
as dashed ovals in Figure 8.16); each consisting of two states as shown in
the figure; e.g, the super-state 11 consists of two states 111 and 112. Only
the super-states are observable; for example, after the system moves out from
state 1, we only know that the system is in super-state 11 or 12 and cannot
exactly know which state the system is in.
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Fig. 8.16. The POMDP in Problem 8.16

The state transition probabilities are indicated in the figure. The transition
probabilities from the observable states 1, 2, and 3, e.g., p1,11, p1,12, p1,21,
and p1,22, are fixed and known. The transition probabilities from the non-
observable states are controllable by actions and are denoted as pα

111;2, p
α
111;3,

pα
121;2, and pα

121;3, etc. The superscript α denotes any feasible action for the
corresponding state. Because we cannot exactly determine the states in a
super-state, we need to assume that the sets of the feasible actions for the two
states in a super-state are the same. For example, if we know that the system
is in super-state 12 and we decide to take action α, then this action must be
feasible to both 121 and 122.

A sample path of the Markov chain may look like:

X = {2, 221, 1, 112, 2, 211, 3, 322, 1, 111, . . .} ,

with an observable state followed by a non-observable state and followed by
another observable state, etc. The corresponding observed random sequence
is

Y = {2, 22, 1, 11, 2, 21, 3, 32, 1, 11, . . .} .
Suppose that when the system is in state x, a random reward is received

with f(x) being its average. In addition, we assume that the function f is
unknown but the reward at any time instant is observable. We consider the
optimization of the long-run average reward. Please formulate this problem
in the event-based formulation.
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a. Explain that in this POMDP problem, a policy is a mapping from the
space {11, 12, 21, 22, 31, 32} to the action space.

b. What are the observable events?
c. What are the aggregated potentials?
d. Derive the performance difference and derivative formulas for the two

policies in the problem.
e. Can we develop a policy iteration algorithm for the performance optimiza-

tion of this problem? If so, please describe the algorithm in detail.

8.17.∗ We consider a POMDP problem with the structure shown in Figure
8.17. The four states 1, 2, 3, and 4 are grouped into two super-states a and
b, with a = {1, 2} and b = {3, 4}. The super-states are observable, but the
states are not. A sample path may look like

X = {1, 2, 4, 2, 3, 4, 1, 2, 4, 1, 4, 1, 2, 3, 2, 3, 4, 1, . . .} ,

and the corresponding observed random sequence is

Y = {a, a, b, a, b, b, a, a, b, a, b, a, a, b, a, b, b, a, . . .} . (8.63)

Unlike in Problem 8.16 where a super-state completely determines the
probability distribution of the system state, here the state distribution may
depend on the history of the observed super-states. For example, if we observe
two a’s in a row, from Figure 8.17 we know that the system must be in state
2. Similarly, two consecutive observations of b lead to state 4. Therefore, after
two consecutive a’s or b’s, denoted as (a, a) or (b, b), the system “regenerates”
from state 2 or 4.

The regenerative property simplifies the analysis as well as the notation.
Let x, or x′, denote any sequence of super-states. Then an observation his-
tory (x′, a, a, x) can be denoted as (a, a, x), and (x′, b, b, x) can be denoted as
(b, b, x), because the past history x′ does not contain any extra information.
Furthermore, if x is non-null, we may further omit the prefix (a, a) or (b, b)
and simply denote them as x (if x starts with a, the prefix cannot be (a, a),
and vise versa). Therefore, the observation histories correspond to the follow-
ing cases: (a, a), (b, b), (a), (b), (a, b), (b, a), (a, b, a), (b, a, b), and (a, b, a, b),
and so on. In general, the sequence alternates between a and b.

If at a time instant the observation history is Y = {x′, a, a, x} or Y =
{x′, b, b, x}, then x (or (a, a) and (b, b) if x is null) completely determines
the probability distribution of the states at that time instant. For example,
x = (a) implies that the system just moves from state 4 to state 1 or 2. Thus,
the state probability distribution is p(3) = p(4) = 0 and

p(1) =
pα
4,1

pα
4,1 + pα

4,2

and p(2) =
pα
4,2

pα
4,1 + pα

4,2

.

Therefore, in terms of the state probability distribution, the history Y in
(8.63) is equivalent to



Problems 453

{•, 2, (b), (b, a), (b, a, b), 4, (a), 2, (b), (b, a),
(b, a, b), (b, a, b, a), 2, (b), (b, a), (b, a, b), 4, (a), . . . , }

where “•” represents the initial probability.
Suppose that when the system is in state i, a random reward is received

with f(i) being its average. In addition, we assume that the function f is
unknown but the reward at any time instant is observable. We consider the
long-run average reward, its existence is guaranteed by the regenerative prop-
erty.

a. Derive the state probability distributions corresponding to (b), (b, a) (a, b)
and so on.

b. What are the observable events?
c. What are the aggregated potentials?
d. Derive the performance difference and derivative formulas for the two

policies in the problem.
e. Can we develop a policy iteration algorithm for the performance optimiza-

tion of this problem? If so, please describe the algorithm in details.

a

b

1 2

4 3

pα
1,2

pα
4,1 pα

2,3

pα
3,4

pα
1,4

pα
2,4

pα
4,2

pα
3,2

Fig. 8.17. The POMDP in Problem 8.17

8.18.∗ Suppose that in Problem 8.17, for simplicity we only take (a, a), (b, b),
(a), (b), (a, b), and (b, a) as the possible events; i.e., we aggregate the histories
according to the latest two super-states. For example, history (a, b, a, b, a) is
aggregated into (b, a) and so on. In this formulation, the action taken at a time
instant depends only on the last two super-states in the observation history.

a. Derive the performance difference formula.
b. Explain that in general, policy iteration cannot be developed from such a

performance difference formula.
c. Do this problem and Problem 8.17 help you understand the POMDP

problems?

8.19.∗ In Problem 8.17, if we can trace back from the observation history, we
can estimate the earlier system state better. For example, as shown in (8.63),
the observations from l = 0 to l = 5 are {a, a, b, a, b, b}. We know that at l = 1,
the system is at X1 = 2, and the state probability distributions at times l = 3,
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l = 4, and l = 5 can be calculated, see Problem 8.17. However, at l = 5 we
have observed (b, b) and therefore we know that the system state is X5 = 4.
Knowing so, from the structure shown in Figure 8.17, we may trace back to
l = 4 and assert that X4 = 3. Similarly, we can know for sure that X3 = 2.

a. Update the state probability distribution at l = 2 after observing {a, a, b,
a, b, b} at l = 5.

b. Does this posterior information help in determining the optimal policy?

8.20.∗ In the analytical approach for MDPs, the reward function f(i) is as-
sumed to be known; and in the reinforcement learning approach, the reward
at every time instant is assumed to be observable. In MDPs, the state i is
assumed to be completely observable, therefore, both assumptions are equiv-
alent. In POMDPs, however, the state is not observable; therefore, knowing
the form of the function f(i) does not allow us to know the actual reward at
every instant. As such, we may have four different situations regarding the
rewards:

i. The function f is known, and the reward at every instant is observable;
ii. The function f is known, but the reward at every instant is not observable;
iii. The function f is not known, but the reward at every instant is observable;

and
vi. The function f is not known, and the reward at every instant is also not

observable, but the final reward at the completion of each sample path is
known.

In Problems 8.16 and 8.17, we take the learning approach and therefore
we were dealing with the third situation. In addition, we assumed that the
reward is random with an unknown mean f(i).

Now, let us further assume that the reward at any state i is a fixed deter-
ministic number f(i), which is an unknown function but the reward received
at every time instant is observable. In this case, we may determine the state
i by the reward received. For instance, in Problem 8.16, when super-state 11
is observed, the system may be in either state 111 or 112 with probabilities
σ111 := p1,11

p1,11+p1,12
or σ112 := p1,12

p1,11+p1,12
, respectively. Thus, the reward re-

ceived is either f(111) or f(112) with probabilities σ111 or σ112, respectively.
To be more precise, suppose σ111 = 0.4 and σ112 = 0.6. Let us observe the
sample path for a while. We may find that when 11 is observed, we have 0.4
chance of obtaining a reward of 0 and 0.6 chance of obtaining a reward of
1. Then we can easily know that f(111) = 0 and f(112) = 1, and later on
when 11 is observed, if we receive 0 we know that the state is 111 and if we
receive 1, we know it is in 112. The following questions are for your further
investigation:

a. Can we develop an algorithm from this reasoning?
b. Can we apply the same reasoning to Problem 8.17?
c. Can we apply the same reasoning to the general POMDPs?



Genius is one per cent inspira-
tion, ninety-nine per cent per-
spiration.

Thomas A. Edison, American
Inventor (1847 - 1931)

9
Constructing Sensitivity Formulas

9.1 Motivation

Although the two sensitivity formulas for Markov chains can be derived easily
from the Poisson equation, this mathematical derivation lacks structural in-
sights needed for deriving similar sensitivity formulas for other non-standard
problems.

In Section 8.3.2, the performance difference formula for event-based poli-
cies is derived from the performance different formula for Markov chains.
However, strictly speaking, the derivation in Section 8.3.2 is only a proof, or
a verification of the formula, because it is “derived” with the particular for-
mula in mind, which, in fact, was obtained first by the construction method
introduced in this chapter.

As shown in Section 2.2, the performance derivative formula for Markov
chains can be constructed using performance potentials by first principles.
In this chapter, we show that the performance difference formulas can also
be constructed, by first principles, using performance potentials as building
blocks. We first develop such a construction approach for the standard MDP
formulation, and then apply the same principles to construct performance
difference formulas for other non-standard special systems.

To achieve our goal, we first study the structure of the performance differ-
ence. We show that we can build a sample path of a Markov chain under one
policy (called a perturbed policy) by a sample path of the Markov chain un-
der another policy (called an original policy) together with the sample paths
that represent the performance potentials of the other policy (the original
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policy). The construction of the performance differences is then based on this
decomposition of the sample path.

The difference in deriving the performance derivatives in Section 2.2 and
the performance difference formulas in this chapter is as follows: In the for-
mer case, we can assume that the perturbations happen rarely because the
parameter changes are infinitesimal; thus the effects of two perturbations on
a sample path can be considered as decoupled. However, in the latter case,
perturbations happen often and their effects are coupled. That is, before the
effect of a perturbation on a sample path ends, another perturbation may
occur. The extension of the construction approach from performance deriva-
tives to performance differences represents a major effort in dealing with the
coupling effect of two jumps that happen closely; in PA, this represents a
change from infinitesimal perturbations to finite perturbations of the system
parameters.

We then show that the construction approach can be applied to more
general systems, including cases where the two systems under comparison have
different state spaces but share a common subspace, systems with event-based
policies, and parameterized systems. The construction approach is flexible and
intuitive, and it utilizes the special features of a system. The performance
potentials can be aggregated using the special features, and with this approach
only the states that are affected by the parameter or structural changes need
to be considered.

The approach clearly illustrates the physical meaning of potentials, or
equivalently, realization factors, and their crucial role in performance opti-
mization of discrete event dynamic systems. Compared with the traditional
MDP solutions where the potentials of all states are treated as a vector (a
solution to the Poisson equation) and considered as a group altogether, the
construction approach offers a novel view to potentials by treating them sep-
arately and flexibly. Using this approach, we can flexibly derive formulas for
performance sensitivities which may not be easy to conceive otherwise.

As shown in Chapter 8, the performance sensitivity formulas constructed
play the central role in learning and optimization; gradient-based or, under
some conditions, policy-iteration-based, optimization methods may be devel-
oped with these formulas.

To simplify notation, we use P and P ′ to denote the two policies and X
and X ′ as their corresponding sample paths.

9.2 Markov Chains on the Same State Space

In this section, we show how we can “construct” performance difference for-
mulas, by applying first principles to the case where the Markov chains under
comparison are ergodic and defined on the same finite state space. Such a per-
formance difference formula for ergodic Markov systems has been developed
in Section 2.1.3 by using the Poisson equation.
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We first give a brief review of terminologies and main concepts in sample-
path-based sensitivity analysis. Following the terminology of PA, we refer to
the two systems under comparison as the original system and the perturbed
one, respectively, and their sample paths as the original path and the per-
turbed path, respectively. With this terminology, a Markov system under two
different policies are referred to as two Markov chains. For performance deriva-
tives with respect to a parameter θ, the original system is the one with θ, and
the perturbed one, with θ + Δθ.

The main idea of perturbation analysis is as follows: Any change in a
system parameter is reflected by “jumps” on the system’s sample path; a
jump here refers to the case where from the same state, the original path
moves to state i, while the perturbed one moves to state j. The effect of such
a single jump from i to j on the system performance can be measured by
the realization factor γ(i, j), which equals the difference of the performance
potentials, g(j)−g(i). Both γ(i, j) and g(i) can be estimated on sample paths.
Finally, the performance derivative with respect to a system parameter can
be decomposed into the sums of the effects of many single jumps, induced
by the parameter change, on the system’s sample path and can therefore be
constructed by using realization factors or potentials as building blocks.

Now, we show how we can use realization factors, or potentials, as building
blocks to construct the difference in the performance of the two Markov chains
with two different transition probability matrixes P and P ′ (2.25).

Consider the simulation of two sample paths, one for the Markov chain
with P and the other for the Markov chain with P ′; both are defined on the
same state space S = {1, 2, . . . , S}. We first assume that the two Markov
chains have the same performance function, i.e., f ′ = f . As we see in Section
2.1.3, for Pδ = P + δ(P ′ − P ) = P + δΔP , ΔP = P ′ − P , with a small δ, if
we use the same sequence of uniformly distributed [0, 1) random variables to
determine the state transitions for both chains, then the two sample paths Xδ

and X are very close, and the jumps happen rarely on Xδ and their effects can
be treated separately. However, when we consider P ′ = P+ΔP (corresponding
to δ = 1), two sample paths X ′ and X are completely different and the effects
of the jumps may be coupled. That is, after a jump of X ′, another jump may
occur before X ′ and X merge together, as we say it in PA.

The Effect of Two Coupled Perturbations

We first show how to determine the effect of two “coupled” jumps. In Figure
9.1, A − B − W − C denotes the original sample path X (with P ), and
A−B −G−E −H −D denotes the perturbed path X ′ (with P ′). Suppose
that the sample path X ′ (not X!) is generated with a sequence of independent
and uniformly distributed [0, 1) random variables ξ1, ξ2, . . . , ξl, . . . , by using
(2.2). We use a similar terminology as for the performance derivative problem:
If with ξl−1 and by (2.2), from X ′

l−1 (which is most likely different from Xl−1)
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Fig. 9.1. The Effect of Two Perturbations

the Markov chain moves to the same state according to both P ′ and P , we
say that the sample path X ′ does not have a jump at l. However, if with ξl−1

and by (2.2), X ′
l−1 moves to state u according to P while it moves to state

X ′
l = v according to P ′, we say that the perturbed chain X ′ has a jump (or a

perturbation) from u to v at time l. Figure 9.1 illustrates two jumps on X ′,
one at l = 4 from u1 to v1, the other at l = 9 from u2 to v2.

We cannot see u2 on either X or X ′. In Figure 9.1, we have added a point
R to illustrate the transition at l = 8 from point E to state u2 if P (instead of
P ′) were followed. Because there are no jumps on G− E, as we assumed, all
the transitions on G−E of X ′ are the same as if they followed the transition
matrix P . Thus, all the transitions on G − E − R are the same as if they
followed the transition matrix P .

Now, after R, we add an auxiliary path that follows P until the auxiliary
path merges with X at l = 14. Let us denote the path A − B −W − C as
path 1, A−B −E −R−C as path 2, and A−B −E −D as path 3. Path 1
follows P (hence it is X), and path 3 follows P ′ (hence it is X ′) on which the
segments A − B, G − E, and H −D are the same as if they were generated
according to P . With the auxiliary path, segment G−E−R−C also follows
P . Now it is clear that the effect of the jump from u1 to v1 can be measured
by the performance on G−E−R−C and W −C, and the effect of the jump
from u2 to v2 can be measured by the performance on H −D and R−C, all
these segments follow the transition matrix P .

Let us make the above observation precise. We use superscripts to indicate
the paths associated with a quantity. For example, the sequences of states
on these three paths in the period from l = 1 to l = 15 are denoted as
X

(1)
1 ,X

(1)
2 , . . . ; X

(2)
1 ,X

(2)
2 , . . . ; and X

(3)
1 ,X

(3)
2 , . . . ; respectively. Of course, at

some times the states may be the same on the three paths, or on any two of
them, e.g., X

(1)
1 = X

(2)
1 = X

(3)
1 , and X

(2)
7 = X

(3)
7 . It is clear from Figure 9.1

that for any L > 9, we have

F
(2)
L − F

(1)
L =

L∑

l=1

f(X(2)
l )−

L∑

l=1

f(X(1)
l )
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=
L∑

l=4

f(X(2)
l )−

L∑

l=4

f(X(1)
l ),

F
(3)
L − F

(2)
L =

L∑

l=9

f(X(3)
l )−

L∑

l=9

f(X(2)
l ).

Therefore, for any L > 9, we have

F
(3)
L − F

(1)
L = (F (3)

L − F
(2)
L ) + (F (2)

L − F
(1)
L )

=

[
L∑

l=4

f(X(2)
l )−

L∑

l=4

f(X(1)
l )

]
+

[
L∑

l=9

f(X(3)
l )−

L∑

l=9

f(X(2)
l )

]
. (9.1)

Because both G − E − C and W − C follow transition probability matrix
P , the expectation of

∑L
l=4 f(X(2)

l ) −
∑L

l=4 f(X(1)
l ) as L → ∞ is γ(u1, v1).

Similarly, H − D also follows transition probability matrix P . Because we
assume that there are only two jumps on X ′, there will be no jumps after
point H. Thus, both H−D onwards and R−C onwards follow P . Path 3 will
eventually merge with path 2 (before or after l = 14), and the expectation of∑L

l=9 f(X(3)
l )−

∑L
l=9 f(X(2)

l ) as L→∞ is γ(u2, v2). Finally, the effect of the
two “coupled” jumps at l = 4 and l = 9 together is on average γ(u1, v1) +
γ(u2, v2).

The Effect of More Coupled Perturbations

The above observation for the two-jump case sheds light on the general case
(Figure 9.2). Let P change to P ′ = P + ΔP , and suppose that there are K
jumps on X ′: A − B − E −D − J (After the Kth jump, X ′ looks the same
as if it followed P ). Let w1, w2, . . . , wK be the instants at which jumps occur,
and denote the jump at wk as from state uk to state vk. Let w0 = 1. In
Figure 9.2, K = 3 and w1 = 4, w2 = 9, and w3 = 13. By assumption, the
segments from X ′

wk
to X ′

wk+1−1, k = 0, 1, 2, . . . ,K, look the same as if they
were generated according to P . (It is possible that wk+1−1 = wk, and in such
cases the segment is null.) Similar to the two-jump case, we add an auxiliary
path starting from each X ′

wk−1 that exactly follows the transition matrix P
(e.g., the paths E−R−C and D−M−C in Figure 9.2). Denote the auxiliary
path starting from X ′

wk−1 as APk. In Figure 9.2, AP1 is B −W − C, which
is the same as the original sample path X, AP2 is E − R − C, and AP3 is
D −M − C. Denote the path from X ′

w0
(= X ′

1) to X ′
w1−1 to AP1 as path 1

and the path from X ′
w0

via X ′
w1−1, X ′

w2−1, ... and X ′
wk−1 and then to APk,

as path k, etc., with path 1 being X (a sample path for P ). We denote X ′ as
path K+1. In Figure 9.2, path 1 is A−B−W−C, path 2 is A−B−E−R−C,
path 3 is A−B − E −D −M − C, and path 4 is A−B − E −D − J .
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Fig. 9.2. The Potential Structure of a Sample Path

Applying the same reasoning as for the two-jump case illustrated in Figure
9.1, we can obtain an equation similar to (9.1) for the K-jump case (assuming
L > wK):

F ′
L − FL =

[
L∑

l=wK

f(X(K+1)
l )−

L∑

l=wK

f(X(K)
l )

]

+

[
L∑

l=wK−1

f(X(K)
l )−

L∑

l=wK−1

f(X(K−1)
l )

]

+ · · ·

+

[
L∑

l=w1

f(X(2)
l )−

L∑

l=w1

f(X(1)
l )

]
(9.2)

in which the expectation of
∑L

l=wk
f(X(k+1)

l )−
∑L

l=wk
f(X(k)

l ) as L→ ∞ is
γ(uk, vk), k = 1, 2, . . . ,K.

Construction of the Perturbed Sample Path

Figure 9.2 illustrates that a sample path of a Markov chain with transition
matrix P ′, X ′, can be decomposed into the sum of a sample path with transi-
tion matrix P , X, and the differences of many segments, such as G−E−R−C
and W − C, H −D −M − C and R − C, etc.; the effect of each such a dif-
ference can be measured on average by the perturbation realization factors of
the Markov chain with P .

Pictorially, the perturbed sample path X ′ in Figure 9.2 starts from point
A, then moves as if it followed the transition matrix P on the original path
X until point B, at which X ′ jumps to point G according to P ′, and then
moves as if it followed P again on another “original path” (with large circles)
to point E, at which it jumps to point H according to P ′, and then moves as
if it followed P again on another “original path” (with small circles) to point
D, and so on.
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The Performance Difference Formula

Now, let us observe a sample path of the perturbed system with transition
probability matrix P ′ = P + ΔP for L transitions, denoted as {X ′

0, . . . , X
′
L},

L >> 1. Among the L states on this sample path, there are Lπ′(i) states
being state i on average. Suppose that after visiting state i, X ′ has a jump
from u to v (we allow u = v). Denote the probability of a jump from u to v

after visiting i as p(u, v|i), with
∑S

u=1

∑S
v=1 p(u, v|i) = 1. Then, on average,

on the sample path there are Lπ′(i)p(u, v|i) jumps from u to v that happen
after visiting i. According to (9.2), each such jump has, on average, an effect
of γ(u, v) on FL. Thus, on average, the total effect on FL due to the change
from P to P ′ is

E(F ′
L − FL) ≈

S∑

i=1

[
S∑

u,v=1

Lπ′(i)p(u, v|i)γ(u, v)

]

=
S∑

i=1

{
S∑

u,v=1

Lπ′(i)p(u, v|i) [g(v)− g(u)]

}
. (9.3)

Similar to (2.20) and (2.19), and by a probabilistic argument, we have∑S
u=1 p(u, v|i) = p′(v|i), and

∑S
v=1 p(u, v|i) = p(u|i). Thus, (9.3) becomes

E(F ′
L − FL) ≈

S∑

i=1

⎧
⎨

⎩Lπ′(i)

[
S∑

j=1

[p′(j|i)− p(j|i)] g(j)
]⎫⎬

⎭

= Lπ′ (P ′ − P ) g = Lπ′ΔPg,

with ΔP = P ′ − P . Finally, we have

η′ − η = lim
L→∞

1
L
E(F ′

L − FL) = π′ΔPg. (9.4)

This is the same as (2.25) derived directly from the Poisson equation.
Now, suppose that f ′ �= f . Setting h = f ′ − f , we can easily obtain

η′ − η = π′f ′ − πf

= (π′f − πf) + π′(f ′ − f)
= π′(ΔPg + h)
= π′ [(f ′ + P ′g)− (f + Pg)] . (9.5)

Example 9.1. Consider a one-dimensional random walk in a lattice consist-
ing of N + 1 positions denoted as 0, 1, . . . , N . At position i = 1, 2, . . . , N − 1,
the walker moves to i + 1 or i − 1 with probabilities σi and 1 − σi, respec-
tively. Positions 0 and N are called walls. When the walker reaches wall 0, it
stays there with probability α and leaves for position 1 with probability 1−α.
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Fig. 9.3. A Sample Path of the Random Walk

When the walker reaches wall N , it stays there with probability β and leaves
for position N − 1 with probability 1− β. The walker receives a reward f(i)
each time it is at position i. The long-run average reward is denoted by η. A
sample path of this random walker is illustrated in Figure 9.3.

Now suppose that the transition probabilities α and β change to α′ and
β′, respectively, and other transition probabilities remain the same. Let η′

be the corresponding average reward and π′(i) be the corresponding steady-
state probability of the random walker being at position i, i = 0, 1, . . . , N .
To construct the performance difference η′ − η, we investigate a perturbed
sample path X ′ with α′ and β′ (without loss of generality, we assume α′ > α,
β′ > β). It is clear that jumps occur only when the state is 0 or N . Let
g(i), i = 0, 1, . . . , N , be the potentials of the original system. To construct a
performance difference formula, we think as follows: Jumps occur on X ′ only
when it visits the two walls 0 or N . In state 0, X ′ may jump from state 1 to
0 with probability α′ − α, and in state N , it may jump from state N − 1 to
N with probability β′ − β. Therefore, by construction, we have

η′ − η = π′(0){(α′ − α)[g(0)− g(1)]}
+π′(N){(β′ − β)[g(N)− g(N − 1)]}. (9.6)

Of course, this can also be derived from the standard formula (9.4) as follows:

η′ − η = π′(0) {(α′ − α) g(0) + [(1− α′)− (1− α)] g(1)}
+π′(N) {(β′ − β) g(N) + [(1− β′)− (1− β)] g(N − 1)} .

However, the construction method (9.6) is more direct and reflects the mean-
ing of the potentials. The potentials g(0), g(1), g(N − 1), and g(N) can be
estimated from a sample path of the original system. ��

Policy Iteration

Next, we show, by an example, that the performance difference formula can
be used to develop policy iteration procedure for performance optimization in
problems that do not fit the standard MDP formulation.
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Suppose that in Example 9.1, a number of actions can be taken in states 0
and N , resulting in different probabilities α1, α2, . . . , αM and β1, β2, . . . , βM ,
respectively. The standard policy iteration procedure for performance opti-
mization in the policy space {(αi, βj), i, j = 1, 2, . . . ,M} can be derived from
the performance difference formula (9.6). Moreover, (9.6) also holds if the ac-
tions taken in state 0 and N are correlated. For example, we may assume that
when the retaining probability in state 0 is αi, then that in state N must be
βi, i = 1, 2, . . . ,M . In the following example, we show that a policy iteration
algorithm can be derived for this special non-standard problem as well.

Example 9.2. In this example, we assume that αi and βj cannot be cho-
sen independently. Rather, they have to be chosen in pairs as (αi, βi),
i = 1, 2, . . . ,M . We need to slightly re-structure the performance difference
formula (9.6). First, we have

π′(0) = π′(0, N)π′ [0|(0, N)] ,

and
π′(N) = π′(0, N)π′ [N |(0, N)] ,

where π′(0, N) = π′(0) + π′(N) is the steady-state probability that the ran-
dom walker is at a wall, and π′ [0|(0, N)] and π′ [N |(0, N)] are the conditional
steady-state probabilities of the random walker being at walls 0 and N , re-
spectively, given that s/he is at a wall. We have

π′ [0|(0, N)] =
π′(0)

π′(0) + π′(N)
,

π′ [N |(0, N)] =
π′(N)

π′(0) + π′(N)
.

These conditional distributions can be determined. We first observe that
when state 0, or state N , is visited, the random walker stays at the wall
for, on average, 1

1−αi
, or 1

1−βi
, steps, respectively, before leaving it. Next, we

construct another random walk which is the same as the random walk in this
example except that when the walker hits one wall s/he is bounced back (to
position 1 or N − 1) immediately. This random walker behaves the same as if
we shrink every period that the walker stays at the walls, 0 or N , in Figure 9.3
into one point. Denote the probabilities of states 0 and N in this constructed
random walk as p0 and pN , respectively. Obviously, we have

π′ [0|(0, N)] : π′ [N |(0, N)] = π′(0) : π′(N) =
p0

1− αi
:

pN

1− βi
.

Therefore, the performance difference formula (9.6) becomes

η′ − η = π′(0, N)κ
{
p0

α′ − α

1− α′ [g(0)− g(1)] + pN
β′ − β

1− β′ [g(N)− g(N − 1)]
}

,

(9.7)
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where κ > 0 being a constant. The quantities p0, pN , g(0), g(1), g(N − 1),
and g(N) can be obtained analytically or by estimation from the original
system. Furthermore, we can develop a policy iteration algorithm by using
the difference formula (9.7):

1. Guess an initial policy (αi0 , βi0), 1 ≤ i0 ≤M , set k = 0.
2. Run the system with (αik

, βik
) and estimate its p0, pN , g(0), g(1), g(N−1),

and g(N) on the sample path.
3. Choose

(αik+1 , βik+1) ∈ arg max
(α′,β′)∈{(αi,βi), i=1,2,...,M}

{
p0

α′ − αik

1− α′ [g(0)− g(1)] + pN
β′ − βik

1− β′ [g(N)− g(N − 1)]
}

.

4. If (αik+1 , βik+1) = (αik
, βik

), then (αik
, βik

) is the optimal policy; other-
wise set k := k + 1 and go to step 2. ��

9.3 Event-Based Systems

9.3.1 Sample-Path Construction∗

Now, we apply the construction approach to derive the difference formula
(8.19). Recall that the conditional probabilities of the controllable events
under the two policies in consideration are denoted as p [ec(k2)|eo(k1)] and
p′ [ec(k2)|eo(k1)], k1 = 1, 2, . . . , ko, k2 = 1, 2, . . . , kc, respectively; the natu-
ral transition probabilities are the same for both policies and are denoted as
p [et(k3)|ec(k2), eo(k1)]. For simplicity, we assume that these natural transition
probabilities do not depend on the input state i, and that the performance
functions for both policies are the same, i.e., f ′(i) = f(i), i = 1, 2, . . . , S.

Now, we consider a sample path of the perturbed system (with transition
probabilities p′ [ec(k2)|eo(k1)]) denoted as X ′ = {X ′

0,X
′
1, . . . , X

′
L}, with L >>

1, shown as path A−C, the top path in Figure 9.4. Assume that the perturbed
sample path has reached its steady state. Let π′(eo(k1)) be the steady-state
probability of the observable event eo(k1) in the perturbed system. Among
the L transitions 〈X ′

l ,X
′
l+1〉, l = 0, 1, . . . , L − 1, on the sample path, there

are approximately Lπ′(eo(k1)) transitions belonging to event eo(k1). In Figure
9.4, the lower-case letters indicate the states the system is in; e.g., at time
instants l = 1 and l = 4, the system is in state i and u, respectively. Let
π′(i|eo(k1)) be the steady-state conditional probability of state i given that
eo(k1) is observed at an instant. Because

∑

all i∈I[eo(k1)]

π′[i|eo(k1)] = 1,

we can write
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π′[eo(k1)] = π′[eo(k1)]
∑

all i∈I[eo(k1)]

π′[i|eo(k1)].
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Fig. 9.4. The Performance Difference of Two Policies

In the perturbed system, from state i, given i ∈ I [eo(k1)], the system will
move to state j′ = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)] with probability

p′k1
(j′|i) := p′ [ec(k2)|eo(k1)] p [et(k3)|ec(k2), eo(k1)] ,

k2 ∈ {1, . . . , kc} , k3 ∈ {1, . . . , kt} . (9.8)

However, in the original system (i.e., with p [ec(k2)|eo(k1)]), from state i, given
i ∈ I [eo(k1)], the system will move to state j = Oi [eo(k1) ∩ ec(k2) ∩ et(k3)]
with a different probability

pk1(j|i) := p [ec(k2)|eo(k1)] p [et(k3)|ec(k2), eo(k1)] ,
k2 ∈ {1, . . . , kc} , k3 ∈ {1, . . . , kt} . (9.9)

According to the construction method discussed in Section 9.2, we follow
a perturbed sample path with transition probabilities p′k1

(j|i), i, j ∈ S, shown
as path A − C in Figure 9.4. At every time instant l = 0, 1, . . . , on the
perturbed path, we determine, by using (2.2) with a uniformly distributed
[0, 1) random variable ξl, whether the state transition would be different if it
followed transition probabilities pk1(j|i), i, j ∈ S, instead of p′k1

(j|i), i, j ∈ S.
The figure illustrates that the transitions in segments A−D, K −E, M −G,
and N − C happen to be the same for both p and p′. In other words, these
segments can be viewed as a part of either an original path (with p) or a
perturbed one (with p′).

However, at Points D, E, and G, the transitions following p and p′ are
different. For example, at Point D, the perturbed system (with p′) moves to
state j′, while the original system (with p) moves to state j. We say that a
“jump” from j to j′ occurs at l = 2. There is a jump from v to v′ at l = 5
and a jump from w to w′ at l = 8 in Figure 9.4.
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Following the construction method, after each jump, we add an auxiliary
path (D−B, E−J , or G−H) that follows the original transition probabilities
p. Based on the construction, paths A−B, K−E−J , M−G−H, and N−C
can be viewed as original sample paths (following p). Let

FL =
L−1∑

l=0

f(Xl), F ′
L =

L−1∑

l=0

f(X ′
l),

where Xl and X ′
l are the states at time l on paths A−B (original) and A−C

(perturbed), respectively. We also denote, for example,

FK−J =
L−1∑

l=0

f(XK−J
l ),

with XK−J
l being the states at time l on path K − J . Similar notations are

used for other paths. We have

ΔFL := F ′
L − FL = FA−C − FA−B

= (FA−C − FA−H) + (FA−H − FA−J) + (FA−J − FA−B)
= (FN−C − FT−H) + (FM−H − FS−J) + (FK−J − FR−B) .

As shown in (2.6), when L→∞, the average of FK−J −FR−B, E(FK−J −
FR−B), goes to γ(j, j′), and the average of FM−H −FS−J , E(FM−H −FS−J),
goes to γ(v, v′), etc. In other words, each jump from j to j′ contributes, on
average, γ(j, j′) to the performance difference.

Let pk1(j, j
′|i) be the probability that after the system visits i, i ∈

I [eo(k1)], a jump from j to j′ occurs. We have

S∑

j′=1

pk1(j, j
′|i) = pk1(j|i),

S∑

j=1

pk1(j, j
′|i) = p′k1

(j′|i). (9.10)

The number of the jumps from j to j′ after visiting i ∈ I[eo(k1)] when eo(k1)
is observed on the perturbed path is roughly

Lπ′[i, eo(k1)]pk1(j, j
′|i),

where π′[i, eo(k1)] = π′[eo(k1)]π′ [i|eo(k1)] and L is the length of the perturbed
path. Thus, adding up the contributions of all these jumps together over all
possible observable events eo(k1), k1 = 1, . . . , ko, all possible input states i in
each observable event, and all possible “jumps” from j to j′ after visiting i,
we have, on average and for a very large L, the following equation

E(ΔFL) = E(F ′
L)−E(FL)

≈
∑

k1

π′[eo(k1)]
∑

i∈I[eo(k1)]

⎧
⎨

⎩
∑

j∈Oi[eo(k1)]
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∑

j′:∈Oi[eo(k1)]

{Lπ′[i|eo(k1)]pk1(j, j
′|i)γ(j, j′)}

⎫
⎬

⎭ .

With η = limL→∞ E(FL)/L, we have

η′ − η =
∑

k1

π′[eo(k1)]
∑

i∈I[eo(k1)]

⎧
⎨

⎩
∑

j∈Oi[eo(k1)]

∑

j′:∈Oi[eo(k1)]

{π′[i|eo(k1)]pk1(j, j
′|i)γ(j, j′)}

⎫
⎬

⎭ . (9.11)

Finally, the difference formula (8.19) can be easily derived from (9.8), (9.9),
(9.10), and (9.11), and γ(j, j′) = g(j′)− g(j).

Remarks

Historically, the performance difference formula for event-based policies (8.19)
was first discovered intuitively by the construction approach [59], and it was
later verified analytically by using the standard performance difference for-
mula with the MDP formulation. Furthermore, the event-based difference for-
mula was first derived for the admission control problem before the general
formulas were developed [60]. That is to say, the event-based approach was
motivated first by practical problems and intuitive thinking. The construction
approach helps us to derive the formulas from structural insights.

9.3.2 Parameterized Systems: An Example

In this section, we show that the construction approach can be applied in a
more flexible way to obtain performance sensitivity formulas for systems that
are parameterized (a special case of the event-based systems). Such a system
has some special features: First, the value of a parameter usually determines
the state transition probabilities of many states; thus the performance opti-
mization problem cannot be viewed as a standard MDP problem. Second, in
such a system, a parameter change usually affects only a part of the transi-
tion probability matrix, and the sample-path construction needs to be applied
only to the parts of the sample path that are affected by the changes of the
values of the parameters. For example, if a parameter change only affects the
transition probabilities p(i|k) and p(j|k), i, j, k ∈ S, then the jumps on the
perturbed path are only from state i to j (or j to i) after visiting state k, and
auxiliary paths need only to be added after such a jump following a visit to
state k, and only the potentials g(i) and g(j) will appear in the performance
sensitivity formulas. With the construction approach, we may obtain perfor-
mance sensitivities by on-line estimation without estimating the potentials
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for all states and without knowing the entire transition probability matrix.
Sample-path-based algorithms can be developed for these non-standard MDP
problems. The ideas are illustrated by an example.
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Fig. 9.5. A Manufacturing System

We consider a manufacturing system consisting of two machines and N
work parts circulating between the two machines, as shown in Figure 9.5.
Machine 1 (M1) performs three operations (1, 2, and 3); their service times
are exponentially distributed with rates λ1, λ2, and λ3, respectively. Some
parts only require operation 1, some others require two operations: 1 followed
by 2, and the rest parts need to go through all three operations in the sequence
of 1, 2, and 3. The probabilities that a part belongs to these three types are
p1, (1− p1)p2, (1− p1)(1− p2), respectively, as shown in Figure 9.5. Machine
2 (M2) has only one operation; its service time is exponential with rate λ4.
Each machine can only perform one operation on one part at a time. Machine
1 can also be viewed as having a Coxian distributed service time [90], see
Figure A.1.

The system can be modelled as a Markov process with states denoted as
(n, i), where n = 0, 1, . . . , N is the number of parts at M1 and i = 1, 2, or
3 denotes the operation that M1 is performing; when n = 0, we may simply
write (0, i) := (0). The state space is S = {(n, i), n = 0, 1, . . . , N, i = 1, 2, 3}.
After the completion of its service at M1, a part goes to M2 with probability
θ(n) ∈ [0, 1] (assumed to be independent of i, the operation that the part
just finished), or immediately returns to M1 with probability 1 − θ(n). Let
f(n, i), n = 1, 2, . . . , N , i = 1, 2, 3, and f(0) be the reward function, and
ηθ be the long-run average reward, which depends on the parameter vector
θ := (θ(1), θ(2), . . . , θ(N)).

We can use uniformization to convert this model to a discrete-time Markov
chain so that we can apply the results for discrete-time Markov chains (A
parallel theory can be developed for continuous time Markov processes, see
[62] for performance derivatives of continuous-time Markov processes). The
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transition probability matrix of this Markov chain can be easily derived by
using λi, i = 1, 2, 3, 4, and θ. We, however, will not do so because its explicit
form is not needed in our approach.

Let us first construct the performance derivative formula. Following the
same procedure as in Section 9.2, we consider a sample path with L >> 1
transitions. Let π(n) be the steady-state probability of an event representing
that a transition is due to a service completion of M1 and meanwhile there
are n customers in it. Now, suppose that θ(n) changes to θ(n) + δn, with
δn > 0 being a very small number, for a particular n, with 0 < n ≤ N . This
change in the system parameter may cause “jumps” of the system state on
the sample path from (n, 1) to (n − 1, 1) (the original sample path moves to
state (n, 1) but the perturbed path moves to state (n−1, 1)). The conditional
probability of such jumps at the service completion of M1 with n customers
in it is δn and the average effect of such a jump can be measured by the
realization factor γ [(n, 1), (n− 1, 1)]. The average number of transitions on
the sample path corresponding to M1’s service completion with n customers
in it is approximately Lπ(n), and the average number of jumps after such
service completions is approximately Lπ(n)δn. Thus, we have

E(Fδn,L − FL) ≈ Lπ(n)δnγ [(n, 1), (n− 1, 1)] .

Therefore, we can obtain

dηθ

dθ(n)
= π(n)γ [(n, 1), (n− 1, 1)]

= π(n) [g(n− 1, 1)− g(n, 1)] . (9.12)

Both π(n) and γ[(n, 1), (n−1, 1)] or g(n−1) and g(n) can be directly estimated
on a sample path without knowing P and π. From (2.17), γ [(n, 1), (n− 1, 1)]
can be estimated simply by averaging the sum of f(Xl)− ηθ over the periods
starting from state (n− 1, 1) and ending in state (n, 1).

From (9.12), to obtain dηθ

dθ(n) for a particular n, we need to estimate only

γ [(n, 1), (n− 1, 1)]. We can obtain dηθ

dθ(n) for all n if we estimate g(n, 1) for all
n = 1, 2, . . . , N . These derivatives can be used in various optimization schemes
(even with constraints). For example, if θ(n) changes to θ(n) + αnδ for all n
with a set of fixed αn, then the performance derivative with respect to δ is

dηθ

dδ
=

N∑

n=1

αnπ(n)γ [(n, 1), (n− 1, 1)]

=
N∑

n=1

αnπ(n) [g(n− 1, 1)− g(n, 1)] .

Now, suppose that we have another system working under parameters
θ′(n), n = 1, 2, . . . , N . Following the same procedure as in Section 9.2, we
may obtain the performance difference formula
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η′ − η =
N∑

n=1

π′(n) [θ′(n)− θ(n)] γ [(n, 1), (n− 1, 1)]

=
N∑

n=1

π′(n) [θ′(n)− θ(n)] [g(n− 1, 1)− g(n, 1)] . (9.13)

Note that π′(n) denotes the steady-state probability of an event, not a par-
ticular state.

This example shows that by the performance sensitivity construction
method, we can obtain the performance sensitivity formulas by analyzing a
sample path. The formulas do not explicitly depend on the transition prob-
ability P and only involve the potentials g(i) for some states (only g(n, 1),
n = 1, 2, . . . , N, are needed). Gradient-based optimization can be developed
from (9.12) and policy iteration can be derived from (9.13). On-line algorithms
can be implemented without knowing P and there is no need to estimate the
potentials for all states. In this problem, the same value of θ(n) (viewed as an
action, in the terminology of MDPs) determines the transition probabilities
for different states (n, 1), (n, 2) and (n, 3); this violates the independent-action
assumption, and the standard MDP formulation does not apply.

9.4 Markov Chains with Different State Spaces∗

The advantage of the construction approach is that it can be applied flexibly
to other general problems that may not fit the standard MDP framework. For
these problems the Poisson equation may not exist. In this section, we apply
this approach to two special problems to illustrate its flexibility.

9.4.1 One Is a Subspace of the Other∗

We now construct the performance difference between two irreducible Markov
chains defined on two different state spaces, with one being a subspace of the
other. Let S = {1, 2, . . . , S} and S ′ = {1, 2, . . . , S′}, S < S′, be two such state
spaces, with S ⊂ S ′. An example is the M/M/1/N and the M/M/1/N+1
queues. The state spaces of these two systems are S = {0, 1, . . . , N} and
S ′ = {0, 1, . . . , N + 1}. Let P (an S × S matrix) and P ′ (an S′ × S′ matrix)
be the (irreducible) transition probability matrices of the two Markov chains,
respectively. We decompose P ′ into

P ′ =
[

P ′
1 P ′

12

P ′
21 P ′

2

]
,

where P ′
1 is an S × S matrix corresponding to the states in S.

Let f =(f(1), . . . , f(S))T and f ′=(f ′(1), . . . , f ′(S), f ′(S+1), . . . , f ′(S′))T

be the two reward vectors, and let f̃ =(f(1), . . . , f(S), f ′(S +1), . . . , f ′(S′))T .
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For simplicity, we first assume f ′(i) = f(i), i = 1, 2, . . . , S. Then we have
f̃ = f ′ and η′ = π′f ′ = π′f̃ . As shown in (9.5), extension to f(i) �= f ′(i),
i = 1, . . . , S, is straightforward.
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Fig. 9.6. Perturbation Between Two Different State Spaces

Construction of the Perturbed Sample Path

Figure 9.6 illustrates the sample paths of the two Markov chains, in which
path 1 (A−B−W −C) is viewed as the original path X with P , and path 3
(A−B−G−E−H − J −M) is the perturbed path X ′ with P ′. We assume
that the initial states of both sample paths are the same (so they must start
with a state in S).

For any segment in which X ′ lies in S, the situation is the same as the
case of two Markov chains with the same state space, discussed in Section 9.2.
For example, at l = 4, X ′ has a jump from state u1 to state v1. If both u1

and v1 are in S, then after the jump, X ′ may follow the transition matrix P
until at l = 9 it has another jump from u2 to v2. By adding an auxiliary path
E −R− J −D that follows P , we have a segment G−E −R− J −D, which
is the same as if it follows transition matrix P . Thus, the jump at l = 4 from
u1 to v1, u1, v1 ∈ S, can be treated in the same way as in Section 9.2.

However, if a jump is from a state in S to a state outside of S (in S ′−S),
then after the jump, X ′ will follow the sub-matrix [P ′

21, P
′
2] until it reaches S

again. For example, in Figure 9.6 there is a jump from u2 ∈ S to v2 ∈ S ′ − S
at l = 9, and after the jump X ′ follows [P ′

21, P
′
2] until at point K it reaches

S again. (More precisely, X ′ follows [P ′
2] until at l = 10 it moves back into

S at K following [P ′
21].) For simplicity, Figure 9.6 illustrates the situation

where there is no jump on X ′ until it merges with path 2 at J . This does not
lose any generality because once X ′ returns back to S at point K, if there is
another jump on X ′ after K before it merges with path 2, we can always add
an auxiliary path and denote it as K−J . In both cases, the effect of the jump
from u2 to v2 can be measured by the difference between the two segments
H − J and R − J ; R − J follows P , while the first part of H − J , H − K,
follows [P ′

21, P
′
2], and the last part, K − J , follows P . (It in fact follows P ′

1,
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but looks like following P if there is no jump, or if it is an auxiliary path.)
That is, H − J starts from a state in S ′ −S and follows the following S′ × S′

transition matrix:

P̃ =
[

P 0
P ′

21 P ′
2

]
. (9.14)

Pictorially, as shown in Figure 9.6, starting from a state in S at point A,
X ′ follows P and behaves similarly to the original path X until point B, at
which it jumps to point G according to P ′ then follows P again on the “large
circles” path to point E, at which it jumps to point H according to P ′ then
follows P̃ on the “small circles” path to point J , and so on. In addition, since
P is a closed sub-matrix of P̃ , following P is the same as following P̃ in a
large state space; thus, we can also say that the segment R− J follows P̃ .

From the above discussion, the effect of a jump from u to v, u ∈ S, v ∈ S ′,
on the average reward can be measured by the difference of the two segments,
both of them following the transition matrix P̃ . When u, v ∈ S, the two paths
(using an auxiliary path if necessary, e.g., W − C and G − E − R − J −D)
follow P , the top sub-matrix of P̃ ; and when u ∈ S and v ∈ S ′ −S, one path
(e.g., R− J) follows P and the other follows P̃ (e.g., H −K follows [P ′

21, P
′
2]

and K −J follows P ). Note that no jump may occur in H −K, which follows
[P ′

21, P
′
2] (no jump may occur after visiting a state in S ′ − S).

Potentials of P̃

Now, we study the potentials of P̃ with reward vector f̃ . Let Γ̃ = [γ̃(i, j)]S
′

i,j=1

(S′ × S′) be its realization matrix, then

Γ̃ − P̃ Γ̃ P̃
T

= F̃ , (9.15)

where F̃ = eS′ f̃T − f̃ eT
S′ . We have Γ̃T = −Γ̃ , Γ̃ = eS′ g̃T − g̃eT

S′ , and g̃ is the
potential satisfying the Poisson equation

(I − P̃ )g̃ + η̃eS′ = f̃ . (9.16)

Later, we will see that the solution to (9.15) or (9.16) exists. In the Markov
chain with transition matrix P̃ , all recurrent states are in S. Thus, its steady-
state probability takes the form

π̃ = [π(1), . . . , π(S), 0, . . . , 0], (9.17)

or in a vector form π̃ = (π, 0), with π = (π(1), . . . , π(S)) being the steady-state
probability corresponding to P . We have π̃eS′ = πeS = 1, η̃ = π̃f̃ = πf = η,
and π̃(I − P̃ ) = 0. Left-multiplying both sides of (9.16) with π̃, we indeed get

η̃ = π̃f̃ = πf = η.
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Recall that in (9.16) g̃ is determined only up to an additive constant. We may
set the normalization condition for g̃ as

π̃g̃ = η̃. (9.18)

Denote
g̃ = [gT , gT

2 ]T , (9.19)

where g is an S-dimensional vector. (9.18) becomes πg = η. Denote Γ̃ as

Γ̃ =
[

Γ Γ12

Γ21 Γ2

]
, (9.20)

with Γ being an S × S matrix. Putting (9.14) and (9.20) into (9.15), we get
the following three equations (9.21), (9.22), and (9.23)

Γ − PΓPT = F, (9.21)

where F = eSfT − feT
S , which shows that the up-left sub-matrix of Γ̃ is the

same as the realization factor matrix for the Markov chain with transition
matrix P ; and

Γ12 − (PΓP
′T
21 + PΓ12P

′T
2 ) = F12, (9.22)

where F12 = eSfT
2 − feT

S′−S is an S × (S′ − S) matrix, with f2 = (f ′(S +
1), . . . , f ′(S′))T being an (S′ − S) dimensional vector, f̃ = (fT , fT

2 )T ; and

Γ2 − P ′
2Γ2P

′T
2 = F2 + (P ′

21Γ + P ′
2Γ21)P

′T
21 + P ′

21Γ12P
′T
2 , (9.23)

where F2 = eS′−SfT
2 − f2e

T
S′−S .

From (9.21), we have Γ = eSgT −geT
S and g is the potential of P satisfying

the Poisson equation (I−P )g+ηeS = f . Furthermore, from (9.19) and (9.20)
we have

Γ12 = eSgT
2 − geT

S′−S .

Substituting the above equation into (9.22) and using PeS = eS , P2eS′−S +
P21eS = eS′−S , we get

eSgT
2 − eSgT

2 P
′T
2 = eSfT

2 − feT
S′−S + geT

S′−S + eSgTP
′T
21 − PgeT

S′−S .

Left-multiplying the above equation with π and using πeS = 1, πP = π, we
obtain

g2 − P ′
2g2 = f2 − ηeS′−S + P ′

21g, (9.24)

or (the inverse (1−P ′
2)

−1 exists for uni-chains in the form of (9.14), see Lemma
B.2 in Appendix B or [216])

g2 = (I − P ′
2)

−1 (f2 − ηeS′−S + P ′
21g) . (9.25)

Thus, the g̃ defined in (9.19) satisfies (9.22). Let Γ2 = eS′−SgT
2 − g2e

T
S′−S .

Substituting it into (9.23), we can verify that (9.24) also satisfies (9.23). We
thus conclude that the solution to (9.15), or equivalently to (9.16), indeed
exists as g̃ = (gT , gT

2 )T , with g being the potential of P and g2 satisfying
(9.25).



474 9 Constructing Sensitivity Formulas

Performance Difference and Derivative Formulas

After determining the realization factors γ̃(i, j), i, j = 1, . . . , S, and the poten-
tials g̃(j), j = 1, . . . , S, which reflect the effect of a single jump on the average
reward, the next step is to determine the total effect of all the jumps caused
by the changes in the transition probability matrix as well as the change in
the state space.

To this end, we observe a perturbed sample path on the state space S ′

following the transition probability matrix P ′ for L transitions {X ′
1, . . . , X

′
L},

L >> 1. Recall that p(u, v|i) is the probability that after visiting state i the
chain jumps from u to v, u = 1, . . . , S and v = 1, . . . , S′. We may follow the
same procedure as described in Section 9.4.1 with only one exception: there
would be jumps only when the system is in S (There is no jump between H
and K in Figure 9.6). Therefore, corresponding to (9.3), we have

E(F ′
L − FL) ≈

S∑

i=1

⎧
⎨

⎩

S∑

u=1

S′∑

v=1

[Lπ′(i)p(u, v|i)γ̃(u, v)]

⎫
⎬

⎭ , (9.26)

where γ̃(u, v) = g̃(v) − g̃(u) is the (u, v)th component of Γ̃ . We have∑S
u=1 p(u, v|i) = p′(v|i) and

∑S′

v=1 p(u, v|i) = p(u|i), for i = 1, . . . , S. Thus,

E(F ′
L − FL) ≈

S∑

i=1

⎧
⎨

⎩Lπ′(i)

{
S′∑

v=1

[p′(v|i)g̃(v)]−
S∑

u=1

[p(u|i)g̃(u)]

}⎫
⎬

⎭ .

Setting p(u|i) = 0 for i = 1, . . . , S, u = S + 1, . . . , S′, we have

E(F ′
L − FL) ≈

S∑

i=1

⎧
⎨

⎩Lπ′(i)

{
S′∑

v=1

[p′(v|i)g̃(v)]−
S′∑

u=1

[p(u|i)g̃(u)]

}⎫
⎬

⎭ .

Note that η = limL→∞
1
LE(FL) = πf , and η′ = limL→∞

1
LE(F ′

L) = π′f̃ .
Finally, we have

The Average-Reward Difference Formula with S ⊂ S ′:

η′ − η = π′
−(ΔP )−g̃, (9.27)

where
π′
− = [π′(1), . . . , π′(S)],

and
(ΔP )− := [P ′

1, P
′
12]− [P, 0] ,

where “0” denotes an S × (S′ − S) matrix in which all components are
zeros.
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In (9.27), we have g̃ = (gT , gT
2 )T , and g is determined by P . From (9.25),

g2 can be determined by g, f2, P ′
2, and P ′

21. Thus, g̃ is determined by P , P ′
2,

and P ′
21 and is independent of P ′

1 and P ′
12.

Now, suppose that f ′(i) �= f(i), i = 1, 2, . . . , S. (No value is assigned to
f(i), i > S.) Recall that f ′ = (f ′(1), . . . , f ′(S), f ′(S + 1), . . . , f ′(S′))T and
f̃ = (f(1), . . . , f(S), f ′(S + 1), . . . , f ′(S′))T . Let f ′

− = (f ′(1), . . . , f ′(S))T and
h− = f ′

− − f . We have

η′ − η = π′f ′ − πf = (π′f̃ − πf) + π′(f ′ − f̃)
= π′

−(ΔP )−g̃ + π′
−h− = π′

−[(ΔP )−g̃ + h−].

Therefore,

η′ − η = π′
−

[
(f ′

− + P ′
−g̃)− (f + Pg)

]
, (9.28)

where P ′
− = [P ′

1, P
′
12].

The intuitively obtained equation (9.27) can be easily verified. Left-
multiplying (9.16) by π′ and using π′eS′ = 1, η̃ = π̃f̃ = η, η′ = π′f̃ , π′P ′ = π′,
we have

η′ − η = π′f̃ − η̃ = π′(I − P̃ )g̃ = π′(P ′ − P̃ )g̃ = π′
−(ΔP )−g̃.

For performance derivatives, we define

Pδ = P̃ + δ
(
P ′ − P̃

)
=

[
P + δ(P ′

1 − P ) δP ′
12

P ′
21 P ′

2

]
, 0 ≤ δ ≤ 1.

Thus, Pδ|δ=1 = P ′ and Pδ|δ=0 = P̃ , which has the same steady-state perfor-
mance as P . Subscript δ is added to the quantities associated with Markov
chain Pδ. We discuss the case with f(i) = f ′(i), i = 1, . . . , S. Applying (9.27)
to Pδ and P , we obtain ηδ−η = πδ−(ΔP )−δg̃, where πδ− = (πδ(1), . . . , πδ(S)).
Letting δ → 0, we get

dηδ

dδ
= π(ΔP )−g̃, (9.29)

where (ΔP )− := [P ′
1, P

′
12]− [P, 0].

Example 9.3. Suppose that in Example 9.1 the number of positions of the
random walker increases from N + 1 to N + 2. The transition probability
matrix of the random walk with N + 1 positions takes the form
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P =

⎡

⎢⎢⎢⎢⎢⎢⎣

α 1− α 0 0 · · · 0 0 0
σ1 0 1− σ1 0 · · · 0 0 0
0 σ2 0 1− σ2 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · σN−1 0 1− σN−1

0 0 0 0 · · · 0 1− β β

⎤

⎥⎥⎥⎥⎥⎥⎦
. (9.30)

The transition probability matrix P ′ for N + 2 has the same form as (9.30)
except that its size is larger by one. Comparing P and P ′, we can construct
P̃ in (9.14). Indeed, we have

P ′
21 = [0, 0, . . . , 1− β],

and P ′
2 = β. Therefore, from (9.25) we have

g2 =
1

1− β
[f(N + 1)− η + (1− β)g(N)] ,

where f(N + 1) is the reward at the added position N + 1 and g(N) is the
potential at position N in the original system with P .

Now, let us determine the performance difference. According to (9.27), we
need to determine (ΔP )−. Comparing P and P ′, we find that [P ′

1, P
′
12] and

[P, 0] differ only on their last rows. Thus, (ΔP )− is zero everywhere expect
its last row, which is

[0, . . . , 0, σN − (1− β),−β, 1− σN ],

in which the last three components are non-zeros. Finally, from (9.27) we have

η′ − η = π′(N) {[σN − (1− β)] g(N − 1)− βg(N) + (1− σN )g2} .

Because π′(N) > 0, the performance improves (i.e., η′ > η) if and only if

[σN − (1− β)] g(N − 1)− βg(N) + (1− σN )g2 > 0.

All the items g2, g(N − 1), and g(N) can be estimated from the original
“smaller” system. Therefore, if the system parameters f(N + 1), β, and σN

are known, we can determine, by analyzing a sample path of the random walk
with N +1 positions, whether the performance improves when the number of
positions increases from N + 1 to N + 2. ��

An Alternative Approach: From Larger to Smaller

In the above analysis, we view the sample path associated with transition
matrix P in the smaller state space S as the original one and that of the
Markov chain with P ′ in the larger state space S ′ as the perturbed one. The
role of the two sample paths can be reversed, i.e., we may view the sample
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path with P ′ as the original one and that with P as the perturbed one. In
this way, we will follow the perturbed path and observe the jumps from states
in S ′ to states in S.

Recall f ′ = (f ′(1), . . . , f ′(S), f ′(S + 1), . . . , f ′(S′))T and we denote f ′
− =

(f ′(1), . . . , f ′(S))T . Again, for simplicity, we first assume f(i) = f ′(i), i =
1, 2, . . . , S. Thus, f = f ′

−. Set η′ = π′f ′ and η = πf = πf ′
−. The realization

factor matrix Γ ′ = [γ′(i, j)] = eS′g′T − g′eT
S′ is an (S′ × S′) matrix satisfying

Γ ′ − P ′Γ ′P ′T = F ′,

with F ′ = eS′f ′T − f ′eT
S′ , and g′ satisfies

(I − P ′)g′ + η′eS′ = f ′. (9.31)

To construct the performance difference, we consider a perturbed sample
path with transition probability matrix P for L >> 1 transitions. Among
them, on average Lπ(i) transitions are from state i, i ∈ S. After each visit to
state i, a jump from u ∈ S ′ to v ∈ S happens with probability p(u, v|i); and
so on. Following the same reasoning as we did above, we eventually obtain

η − η′ = π(ΔP )′−g′, (9.32)

where (ΔP )′− = [P, 0]− [P ′
1, P

′
12] = −(ΔP )−.

Equation (9.32) can be verified simply by left-multiplying both sides of (9.31)
by π̃ = (π(1), π(2), . . . , π(S), 0, . . . , 0) = (π, 0).

Next, suppose that f ′(i) �= f(i), i = 1, 2, . . . , S. Set f = (f(1), . . . , f(S))T

and η = πf . Recall f ′
− = (f ′(1), . . . , f ′(S))T and define h′

− = f − f ′
− = −h−,

we get

η − η′ = πf − π′f ′ = (πf ′
− − π′f ′) + π(f − f ′

−)
= π[(ΔP )′−g′ + h′

−].

Therefore,

The Average-Reward Difference Formula with S ⊂ S ′:

η − η′ = π
[
(f + P+g′)− (f ′

− + P ′
−g′)

]
,

where P+ = [P, 0] and P ′
− = [P ′

1, P
′
12].

To study performance derivatives, we use P̃ defined in (9.14) again. Set

Pδ = P ′ + δ(P̃ − P ′) =
[
P ′

1 + δ(P − P ′
1) (1− δ)P ′

12

P ′
21 P ′

2

]
, 0 ≤ δ ≤ 1,
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with Pδ|δ=1 = P̃ , which has the same long-run average reward η as P , and
Pδ|δ=0 = P ′. In fact, in this case, the perturbed chain Pδ has the same state
space as S ′. We can simply apply (9.32) and obtain ηδ − η′ = πδ−(ΔP )′−δg′.
Therefore, letting δ → 0 we get

dηδ

dδ

∣∣∣∣
at η′

= π′
−(ΔP )′−g′, (9.33)

where π′
− = (π′(1), . . . , π′(S)).

Both g′ and π′
− in (9.33) can be estimated with a single sample path

of the Markov chain P ′. Thus, when the original state space is larger, the
performance derivative from a large state space to a small state space can be
determined based on a sample path of the original Markov chain. However, in
(9.29), g̃ is determined by P̃ in (9.14), which depends on [P ′

21, P
′
2]. Therefore,

for performance derivatives from a small state space to a large state space,
additional information is needed besides a sample path of the original Markov
chain, which is in the small state space.

9.4.2 A More General Case

In this section, we study the case where two state spaces S and S ′ have a
common subspace. For notational convenience, we order the states from the
top downwards. Thus, we denote

S = {S, S − 1, . . . , 2, 1}

and
S ′ = {S0, . . . , 1, 0,−1, . . . ,−S−1 + 1,−S−1}.

The common subspace is S0 = {S0, . . . , 2, 1}, S0 < S. S ′ has S′ = S−1 +
S0 + 1 states. In addition, we denote S1 = {S, S − 1, . . . , S0 + 1} and S−1 =
{0,−1, . . . ,−S−1}. We have S = S1 ∪ S0 and S ′ = S0 ∪ S−1. Let

S̃ = S ∪ S−1 = S1 ∪ S0 ∪ S−1

= {S, . . . , 1, 0,−1, . . . ,−S−1 + 1,−S−1} ,

which has S̃ := S + S−1 + 1 states. The relations among the state spaces are
illustrated in Figure 9.7.

The Augmented Matrix P̃

Consider two Markov chains X and X ′ defined on S and S ′, respectively.
Let P and P ′ be their transition probability matrices, respectively. Let
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S̃

Fig. 9.7. Two Overlapped State Spaces S and S ′

f = (f(S), . . . , f(1))T and f ′ = (f ′(S0), . . . , f ′(1), f ′(0), f ′(−1), . . . ,
f ′(−S−1))T be the two reward vectors. Again, for simplicity we first assume
that f ′(i) = f(i), for all i ∈ S0. Let π, η and π′, η′ be the steady-state proba-
bility vectors and the long-run average rewards of the two chains, respectively.
Assume that both Markov chains are irreducible.

We decompose P and P ′ into

P =
[

P1 P10

P01 P0

]
,

and

P ′ =
[

P ′
0 P ′

0−1

P ′
−10 P ′

−1

]
,

where [P1, P10] in P corresponds to S1, [P01, P0] in P and
[
P ′

0, P
′
0−1

]
in P ′

correspond to subspace S0, and
[
P ′
−10, P

′
−1

]
corresponds to S−1.

Without loss of generality, we assume that both X and X ′ start from
the same state in S0. Following the same argument as in Section 9.4.1, we use
Figure 9.6 to construct the performance difference, with path 1 (A−B−W−C)
as X and path 3 (A − B − G − E − H − J −M) as X ′. We can see that
by using auxiliary paths if necessary, the paths that determine the realization
factors follow the transition matrix on the large state space S̃ defined as (cf.
(9.14)):

P̃ =

⎡

⎣
P1 P10 0
P01 P0 0
0 P ′

−10 P ′
−1

⎤

⎦ . (9.34)

Similar to (9.15), we define

Γ̃ − P̃ Γ̃ P̃
T

= F̃ , (9.35)

where Γ̃ is an S̃ × S̃ realization matrix, F̃ = e
S̃
f̃

T − f̃ eT

S̃
, and

f̃ = [f(S), . . . , f(1), f ′(0), . . . , f ′(−S−1)]T = [fT , fT
−1]

T ,

with f−1 = (f ′(0), f ′(−1), . . . , f ′(−S−1))T .
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We have Γ̃
T

= −Γ̃ , Γ̃ = e
S̃
g̃T−g̃eT

S̃
, and g̃ is the potential vector satisfying

(I − P̃ )g̃ + η̃e
S̃

= f̃ . (9.36)

The Performance Sensitivity Formulas

To construct the performance difference, we follow the sample path X ′, which
has transition probability matrix P ′, for L transitions {X ′

1, . . . , X
′
L}, L >> 1.

Similar to (9.26), we have

E(F ′
L − FL) ≈

∑

i∈S0

{
∑

u∈S

∑

v∈S′

[Lπ′(i)p(u, v|i)γ̃(u, v)]

}
,

where γ̃(u, v) = g̃(v) − g̃(u) is the (u, v)th component of Γ̃ . We have∑
u∈S p(u, v|i) = p′(v|i) and

∑
v∈S′ p(u, v|i) = p(u|i). Thus,

E(F ′
L − FL) ≈

∑

i∈S0

{
Lπ′(i)

{
∑

v∈S′

[p′(v|i)g̃(v)]−
∑

u∈S
[p(u|i)g̃(u)]

}}
.

Setting p(u|i) = 0 for i ∈ S0, u ∈ S−1, and p′(v|i) = 0 for i ∈ S0, v ∈ S1, we
have

E(F ′
L − FL) ≈

∑

i∈S0

⎧
⎨

⎩Lπ′(i)

{
∑

v∈S̃

[p′(v|i)g̃(v)]−
∑

u∈S̃

[p(u|i)g̃(u)]

}⎫
⎬

⎭ .

Finally, because η = limL→∞
1
LE(FL) and η′ = limL→∞

1
LE(F ′

L), we have

The Average-Reward Difference Formula with S ∩ S ′ = S0:

η′ − η = lim
L→∞

1
L
E(F ′

L − FL) = π′
−(ΔP )−g̃, (9.37)

where π′
− = (π′(S0), . . . , π′(1)) and

(ΔP )− :=
[
0, P ′

0, P
′
0−1

]
− [P01, P0, 0] .

Now we consider the performance derivatives. To this end, we define

P̃ δ =

⎡

⎣
P1 P10 0

(1− δ)P01 P0 + δ(P ′
0 − P0) δP ′

0−1

0 P ′
−10 P ′

−1

⎤

⎦ .

Thus, P̃ δ|δ=0 = P̃ , which has the same long-run average reward as P , and
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P̃ δ|δ=1 =

⎡

⎣
P1 P10 0
0 P ′

0 P ′
0−1

0 P ′
−10 P ′

−1

⎤

⎦ =: P̃
′
,

which has the same long-run average reward as P ′. We have P̃ δ = P̃ +
δ(P̃

′ − P̃ ). From (9.37), we have ηδ − η = πδ−(ΔP )−δg̃, where πδ− =
(πδ(S), . . . , πδ(1)). Letting δ → 0, we get

dηδ

dδ
= π−(ΔP )−g̃,

where π− = (π(S0), . . . , π(1)).

We have constructed performance sensitivity formulas with intuitions. The
results need to be rigorously proved. First, we define an S + S−1 + 1 = S̃
dimensional row vector

π̃ = [π(S), . . . , π(1), 0, . . . , 0] = [π, 0].

The non-zero part is π with πP = π. Thus, π̃P̃ = π̃. Left-multiplying both
sides of (9.36) with π̃ and noting π̃e

S̃
= 1, we get

η̃ = π̃f̃ = πf = η.

Let π̃′ = (0, π′) be an S + S−1 + 1 = S̃ dimensional row vector with “0”
denoting an S − S0 = S1 dimensional row vector with all components being
zeros. We have π̃′P̃

′
= π̃′ and π̃′f̃ = π′f ′ = η′. Left-multiplying both sides of

(9.36) with π̃′, we get
η′ − η = π̃′(I − P̃ )g̃.

Because π′P ′ = P ′, we have

π̃′(I − P̃ ) = (0, π′)

⎧
⎨

⎩

⎡

⎣
0 0 0
0 P ′

0 P ′
0−1

0 P ′
−10 P ′

−1

⎤

⎦−

⎡

⎣
P1 P10 0
P01 P0 0
0 P ′

−10 P ′
−1

⎤

⎦

⎫
⎬

⎭ .

It is then clear that π̃′(I − P̃ ) = π′
−(ΔP )−, and (9.37) is proved.

Potentials of P̃

Next, we calculate the potential vector g̃. Equations (9.17) to (9.25) hold
with some minor modifications. For clarity, we repeat these equations with
only notation changes to fit the general case. We rewrite (9.34) as

P̃ =
[

P 0
P ′
−1∗ P ′

−1

]
, (9.38)
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where P ′
−1∗ =

[
0, P ′

−10

]
. Next, we denote

g̃T = (gT , gT
−1)

T = (gT
1 , gT

0 , gT
−1)

T , (9.39)

where g is defined on S, g1, g0, and g−1 are on S1, S0 and S−1, respectively.
Denote Γ̃ as

Γ̃ =
[

Γ Γ∗−1

Γ−1∗ Γ−1

]
, (9.40)

with Γ being an S × S matrix corresponding to S. Putting (9.38) and (9.40)
into (9.35), we get

Γ − PΓPT = F,

where F = eSfT −feT
S . This is the same for the Markov chain with transition

matrix P ; thus g in (9.39) satisfies the Poisson equation

(I − P )g + ηeS = f.

Finally, we can obtain (cf. (9.25))

g−1 = (I − P ′
−1)

−1
(
f−1 − ηeS−1+1 + P ′

−1∗g
)

= (I − P ′
−1)

−1
(
f−1 − ηeS−1+1 + P ′

−10g0

)
.

9.5 Summary

We introduced an intuitive approach for constructing performance sensitivity
formulas for Markov systems, including those that do not fit the standard
MDP formulation. This approach utilizes the special structures of a system.
The sensitivity formulas thus obtained have a clear meaning and may not be
easily conceived otherwise. Only the potentials that are directly related to the
changes in the system structure/parameters are involved in the formulas.

Specifically, we showed that a sample path of a Markov chain with transi-
tion probability matrix P ′ can be built upon a sample path of a Markov chain
with transition probability matrix P on the same state space together with the
segments that can be measured on average by the performance potentials of P
(see Figure 9.2). We refer to this property as the potential structure of a sam-
ple path. We showed that this structure allows us to construct performance
sensitivities, both performance derivatives and performances differences, by
first principles with sample-path-based arguments. Based on this potential
structure of a sample path, performance potentials, or performance realiza-
tion factors, can be used as building blocks in the construction of performance
sensitivities, and they can be estimated on sample paths of the Markov chain
with transition probability matrix P .

The construction approach can be extended and applied flexibly to many
problems with special non-standard features. For example, we can construct
the performance sensitivity formulas for two Markov chains with different (but
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with some overlap) state spaces. When the original system has a larger state
space, which contains the state space of the perturbed system as a subspace,
the potentials used in the sensitivity formulas can be estimated on a single
sample path of the original system. This is in the same spirit as perturbation
analysis: one can obtain the performance sensitivity by analyzing only the
original system. When the two systems have two different state spaces, or the
perturbed system has a larger state space, the potentials can be estimated on
sample paths with an augmented transition probability matrix (see (9.14) and
(9.34)). For these systems, efficient methods in estimating potentials based on
reinforcement learning should be developed. We also gave an example showing
that in general we only need to estimate the potentials of the states that are
related to the system parameter changes.

As shown in Figure 8.1, the performance sensitivity formulas serve as the
bases for learning and optimization. Thus, the sensitivity formulas obtained
by construction can be used to develop learning and optimization approaches
for systems with special features. This is the topic of Chapter 8.

PROBLEMS

9.1. As explained in Section 9.2, in the performance difference construction
approach shown in Figure 9.1, the construction is done in the following way:

i. On the perturbed sample path A−B −E −D, we use the same random
variable ξl to determine whether or not there is a jump at each transition
l; and

ii. when a jump is identified, we use another independent sequence of random
variables to generate an auxiliary path, e.g., W − C.

While the above construction is convenient, it is not necessary. Convince your-
self that we can derive the same results as those in Section 9.2 if we construct
the sample paths in the following way:

i. On the perturbed sample path A − B − E −D, we use two independent
random variable ξl and ξ′l to determine whether or not there is a jump at
each transition l; i.e., a jump from j to j′ occurs if after visiting state i,
the system moves to state j according to ξl and P , but it moves to state
j′ according to ξ′l and P ′; and

ii. we generate the auxiliary paths by using the same sequence of random
variables as the perturbed path, e.g., we generate W − C by using the
same sequence as that used for generating the perturbed path G−D.

9.2. For two ergodic transition probability matrices P and P ′, set P (δ) :=
P + δ(P ′−P ). Assume that δ is very small. Apply the construction approach
described in Section 9.2 by following a sample paths of the Markov chains with
P (δ). Show that this is equivalent to the performance derivative construction
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described in Section 2.1.3. (In Section 9.2, we follow the perturbed sample
path, while in Section 2.1.3, we follow the original path.)

9.3. Suppose that the transition probability matrices of all the policies in an
MDP problem are uni-chains on the same finite state space S. (A uni-chain
is a special case of a multi-chain defined in (B.1) with m = 1.)

a. Apply the construction approach shown in Section 9.2 to any two uni-
chain policies and derive the performance difference formula. Show that it
is a special case of the performance difference formula (4.36) in Chapter
4 for the multi-chain case.

b. Derive the Poisson equation for a uni-chain policy, prove that its solution
exists, and express the potentials of the transient states in terms of those
of the recurrent states.

c. Develop the policy iteration algorithm for uni-chain MDPs, and show that
it is the same as that for ergodic chains.

d. Explain point c) using the policy iteration algorithm for the general case
of multi-chain MDPs.

9.4. Prove that the policy iteration algorithm developed in Example 9.2 con-
verges to an optimal policy.

9.5. In this exercise, we modify the random walk problem studied in Examples
9.1 and 9.2 as follows. First we simplify the problem by assuming that the
random walker can take only N + 1 = 5 positions denoted as 0, 1, 2, 3, and 4.
When the walker hits the wall 0 or 4, s/he stays there with probability α0,
or α4, respectively, and jumps to position 1, or 3, with probability 1− α0, or
1−α4, respectively. Second, we assume that when the walker is at position 1, 2,
or 3, s/he will also stay there with probability α1, α2, and α3, respectively, and
will leave the position with probability 1−α1, 1−α2, and 1−α3, respectively.
If s/he leaves position i, i = 1, 2, 3, s/he will have an equal probability of 0.5
to jump to one of its neighboring position i− 1 or i + 1, i = 1, 2, 3.

Now suppose that at each position i we may choose αi from a finite set
denoted as αi,1, αi,2, . . . , αi,M , i = 0, 1, . . . , 4.

a. Derive the performance difference formula (similar to (9.6)) and the policy
iteration algorithm for this problem.

b. Furthermore, we assume that α0,i and α4,i (with the same i), i =
1, 2, . . . ,M , have to be chosen together, and α1,i, α2,i, and α3,i (with the
same i), i = 1, 2, . . . ,M , have to be chosen together. Derive a performance
difference formula (similar to (9.7)) for this problem.

c. Based on the performance difference formula derived in b), develop a
policy iteration algorithm for the optimization problem in which actions
at different states cannot be chosen independently.

9.6. Study the random walk problem in Example 9.3 by using the system with
N + 2 positions as the original system and the system with N + 1 positions
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as the perturbed one. Derive the performance difference formula similar to
(9.32).

9.7. Extend the performance derivative formulas (9.29) and (9.33) to the case
with f(i) �= f ′(i), i = 1, . . . , S.

9.8. In Section 9.4.2, suppose that f ′(i) �= f(i), for i = 1, . . . ,M . Modify the
performance difference formula (9.37) (i.e., derive the formula similar to (9.5)
and (9.28)).

9.9. Draw a sample-path diagram to illustrate the effect of one jump in the
example of the parameterized system in Section 9.3.2.

9.10. Consider a discrete-time Markov chain consisting of three super states
denoted as 1, 2, and 3, respectively; each of them is further composed of three
phases a, b, and c, as shown in Figure 9.8. Each phase represents a state of
the Markov chain and thus it has altogether nine states denoted as 1a, 1b, 1c;
2a, 2b, 2c; and 3a, 3b, and 3c. The transition probabilities between any two
phases in the same super state are denoted by p(1b|1a), p(3a|3c), etc. When the
system leaves a phase, it does not feed back immediately, i.e., p(1a|1a) = 0,
etc. At each super state, phase a is an input phase, i.e., the system enters
phase a to start its journey in the corresponding super state. Phase c is an
exit phase, i.e, the system leaves a super state from phase c. At super state
1, for example, we have p(1b|1a) + p(1c|1a) = 1 and p(1a|1b) + p(1c|1b) = 1.
At phase 1c, there is a positive probability p(0|1c) to leave the super state 1.
Thus, p(1a|1c) + p(1b|1c) + p(0|1c) = 1. When a system leaves a super state
i, i = 1, 2, 3, it moves to super state j and enters phase ja, j = 1, 2, 3, with
probability p(j|i),

∑3
j=1 p(j|i) = 1. The reward function is denoted as f(1a),

f(1b), etc.
Suppose that the transition probabilities p(j|i) depend on a parameter θ

and are denoted as pθ(j|i), i, j = 1, 2, 3. Construct the performance derivative
and difference formulas for this system, similar to (9.12) and (9.13).

9.11. Consider a discrete-time M/M/1/N queue with capacity N . The system
state is the number of customers in the system (in the queue plus in the
server), denoted as n. The transition probabilities are p(1|0) = p, p(0|0) = q,
p(N − 1|N) = q, p(N |N) = p, and p(n + 1|n) = p, p(n − 1|n) = q, p > 0,
q > 0, p + q = 1. Suppose that

a. the capacity changes to N − 1, or
b. the capacity changes to N + 1.

Construct the difference formula for the mean response time.

9.12. Suppose that we have two independent M/M/1/N queues with param-
eters p1, q1, N1 and p2, q2, N2, respectively, as explained in Problem 9.11. If
we have one more buffer space, to which queue should we allocate this extra
buffer space to maximally reduce the customers’ mean response time? Please
develop an on-line approach.
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1a 1c

1b1

2b 2a

2c2

3c 3b

3a 3

p(1|1)

p(2|3)

p(3|3)p(2|2)

p(1|2) p(3|1)
p(3|2)

p(1|3)
p(2|1)

Fig. 9.8. The Transition Probabilities in Problem 9.10

9.13.∗ Extend the construction approach in Section 9.2 to (continuous-time)
Markov processes. (Hint: This extension is not as straightforward as what it
may appear. To develop a construction approach to the changes in transition
probabilities of the embedded Markov chain p(j|i), i, j = 1, 2, . . . , S, in (A.12)
may be easy; the extension to the changes in transition rate λ(i) may be more
involved.)

9.14.∗ Propose a construction approach for the performance differences and
derivatives for a (continuous-time) closed Jackson (Gordon-Newell) network
(Section C.2) with respect to the changes in routing probabilities. (Hint: Use
the results in Problem 9.13 for the transition probability matrix of the embed-
ded chain.)



Part III

Appendices: Mathematical Background



A carpenter who wishes to make

good work must sharpen his

axes first.

Confucius, Chinese thinker
and social philosopher

(551 BC - 479 BC)

The mathematical background required for this book includes some fun-
damental knowledge about probability theory, stochastic processes, and linear
algebra. In addition, many application examples used in the book are drawn
from communications and manufacturing, and these systems are generally
modelled as queueing networks; and the contents in Section 2.4 on perturba-
tion analysis are directly related to queueing systems. Therefore, some knowl-
edge about queueing theory is also required to understand these parts of the
book.

In this part, we briefly introduce the fundamentals in probability theory,
Markov processes, stochastic matrices, and queueing theory that are related
to the contents of this book, with an emphasis on the concepts and method-
ologies that are important to the subjects studied in the book. Some contents
and problems (marked with asterisks) are designed to advance the readers’
understanding of the main concepts. They may be quite difficult, and first
time readers can ignore them.



The future depends on what we
do in the present.

Mahatma Gandhi
(1869 - 1948)

A
Probability and Markov Processes

A.1 Probability

In this subsection, we review some concepts and results in probability theory
[26, 28, 32] that are important to understanding the contents of this book.

Probability Spaces

A probability space consists of three elements:

1. A set, also called a space, Ω.
2. A collection F of subsets of Ω, called a σ-field, which satisfies the following

properties:
a) Ω ∈ F .
b) If A ∈ F , then Ā = {ω ∈ Ω|ω �∈ A} ∈ F .
c) If Ak ∈ F , k = 1, 2, . . . , then ∪∞

k=1Ak ∈ F .
If a set A ∈ F , A is called an event.

3. A set function P that assigns to each set A ∈ F a real number P(A),
called the probability of the event A; P satisfies:
a) P(A) ≥ 0, for any A ∈ F .
b) P(Ω) = 1 .
c) If Ai ∩Aj = ∅ for all i �= j, then P(∪∞

k=1Ak) =
∑∞

k=1 P(Ak).

The set function P is called a probability measure. Such a probability space is
denoted as (Ω,F ,P).

If A,B ∈ F are two events, the conditional probability of event B given
that event A occurs is defined as
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P(B|A) =
P(A ∩B)
P(A)

.

Random Variables

Let (Ω,F ,P) be a probability space and R = (−∞,∞) be the space of real
numbers. A random variable X is a function, Ω → R, such that for any real
number x ∈ R, the set {ω ∈ Ω,X(ω) ≤ x} ⊆ Ω belongs to F and thus has a
probability with P. The distribution function of X is defined as

Φ(x) := P{ω ∈ Ω : X(ω) ≤ x} := P(X ≤ x).

Φ(x) is nondecreasing; limx→−∞ Φ(x) = 0; and limx→∞ Φ(x) = 1. A distribu-
tion density function of a random variable X is a nonnegative function φ(x)
on R such that

Φ(x) =
∫ x

−∞
φ(y)dy, x ∈ R.

If Φ(x) is differentiable at x, then φ(x) = d
dxΦ(x). We have the normalization

condition: ∫ ∞

−∞
φ(x)dx = Φ(∞) = 1.

If X represents the lifetime of an event, then φ(x) is the rate at which the
event will end in [x, x + Δx) (i.e., φ(x)Δx is the probability that the event
will end in [x, x + Δx)).

The mean (or the expected value) of a random variable X is defined as

E(X) :=
∫ ∞

−∞
xdΦ(x) =

∫ ∞

−∞
xφ(x)dx.

The variance of X is

V ar(X) := E[X − E(X)]2 = E(X2)− [E(X)]2.

The hazard rate function is defined as

r(x) =
φ(x)

1− Φ(x)
.

If Φ(x) is differentiable, then

φ(x) = r(x) exp
(
−

∫ x

−∞
r(y)dy

)
.

If X represents the lifetime of an event, then r(x) is the “conditional” rate
that the event will end in [x, x + Δx) given that the event survives up to x.

If a random variable X is defined on a discrete space as Ω → S, S =
{0, 1, 2, . . .}, X is called a discrete random variable, which is characterized by
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the probabilities pn := P(X = n), n = 0, 1, . . . . {pn, n = 0, 1, . . .} is called the
probability distribution of X.

Let X and Y be two random variables defined on (Ω,F ,P). Their joint
distribution function is defined as

Φ(x, y) := P{ω ∈ Ω : X(ω) ≤ x, Y (ω) ≤ y} := P(X ≤ x, Y ≤ y).

Two random variables X and Y are said to be independent, if and only if

Φ(x, y) = Φ(x)Φ(y).

The Memoryless Property of Exponential Distributions

A random variable X is said to have an exponential distribution if

Φ(x) := P(X ≤ x) =
{

1− exp (−x/x̄) , x ≥ 0,
0, x < 0.

We have E(X) = x̄, V ar(X) = x̄2. The hazard rate is a constant r(x) = λ :=
1
x̄ , which is called the rate of the exponential distribution. The conditional
distribution function of X given X ≥ x0 ≥ 0 is

Φ(x|X ≥ x0) := P(X ≤ x|X ≥ x0)

= 1− exp
(
−x− x0

x̄

)
= Φ(x− x0), x ≥ x0. (A.1)

Imagine X as the lifetime of an event. Equation (A.1) shows that if one
knows that the event survives at x0 > 0, then the residual lifetime of the event
at x0, X − x0, has the same distribution as the lifetime itself, independent of
x0. This is called the memoryless property of the exponential distribution. This
property is fundamental in the Markov property of continuous time processes,
which will be discussed below in Appendix A.2. Basically, because of the
memoryless property, if the event time is exponentially distributed, then at
any time the future event time is independent of the elapsed time since the
start of the event.

It can be shown that the exponential distribution is the only distribution
that has the memoryless property [169]. For discrete random variables, the
geometric distribution pn = qn(1 − q), 0 < q < 1, n = 0, 1, . . . , is the only
distribution that has the memoryless property.

The Coxian Distribution

Cox [90] proved that any distribution function whose Laplace transform is
a rational function can be constructed by a series of stages, each of them
having an exponential distribution. Figure A.1 shows the structure of such a
construction with k stages. The idea can be explained with the example of a
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service station. Suppose that a customer arrives at a station for service. The
customer first enters stage 1, which has a service time with an exponential
distribution with mean s̄1. After the completion of the service at stage 1,
the customer goes to stage 2 with probability p1 and leaves the station with
probability q1 = 1 − p1. The customer stays at stage 2 for an exponentially
distributed service time with mean s̄2; then, the customer either enters stage
3 with probability p2 or leaves the station with probability q2 = 1−p2, and so
on. If the customer enters the last stage k, he or she will leave the station with
probability qk = 1. The customer’s service time at the station has a Coxian
distribution.

If a customer’s total service time has a general distribution, we need to
use the elapsed service time (the amount of service time that the customer
has received) to denote the status of the service: the probability distribution
of the remaining service time depends on the elapsed time. Because of the
memoryless property of exponential distributions, if a customer’s service time
has a Coxian distribution, then the probability distribution of the remaining
service time depends only on the current stage. Thus, with the Coxian distri-
bution, we may change a continuous variable, the elapsed service time, to a
discrete one, the stage the customer is in, to denote the current status of the
service.
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Fig. A.1. The Coxian Distribution

The Inverse Transform Method

This method is used to generate a random variable with any distribution
function Φ(x) from a random variable that is uniformly distributed on [0, 1)
[12]. It also helps to understand the underlying probability space of a Markov
process or a queueing network.

The method is based on the observation that for a random variable X with
any distribution function Φ(x) the random variable ξ = Φ(X) is uniformly
distributed on [0, 1). Thus, to obtain a random variable X with a given dis-
tribution Φ(x), we first generate a random variable ξ, uniformly distributed
on [0, 1), and then set

X = Φ−1(ξ) = sup{x : Φ(x) ≤ ξ}.
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1.0

0 x

ξ

Φ(x)

Fig. A.2. The Inverse Transform Method

This is illustrated in Figure A.2. The random variable is thus a function of ξ
and can be denoted as X(ξ), ξ ∈ [0, 1). Therefore, the underlying probability
space of any random variable X, which represents the randomness of X, is
the same space as ξ, Ω = [0, 1).

Indeed, the random variable thus generated has the distribution Φ(x) as
shown below:

P(X ≤ x) = P[Φ−1(ξ) ≤ x] = P[ξ ≤ Φ(x)] = Φ(x).

The last equality holds because ξ is uniformly distributed on [0, 1) and 0 ≤
Φ(x) < 1.

The inverse transform method will be used in this book to determine the
state transitions in a Markov process, to generate the service times, and to
determine the customer routings in a queueing system.

For exponential distributions Φ(x) = 1− exp (−x/x̄), we have

X = −x̄ ln(1− ξ).

To generate a discrete random variable K with probability distribution
P(K = k) = pk ≥ 0, k = 1, 2, . . . ,

∑∞
k=1 pk = 1, we partition the interval

[0, 1) into small pieces: [0, 1) = [0, p1)∪ [p1, p1 + p2)∪ · · · ∪[
∑k−1

j=1 pj ,
∑k

j=1 pj)

· · · . If ξ ∈ [
∑k−1

j=1 pj ,
∑k

j=1 pj), with
∑0

j=1 pj = 0 and
∑∞

j=1 pj = 1, then we
set K = k.

One important feature of the inverse transform method is that it separates
the randomness involved in a random variable and the deterministic part.
The randomness is represented by the uniformly distributed random variable
ξ, and the deterministic part is described by function Φ(x). In the case of
an exponential distribution, the method clearly separates the randomness ξ
from the parameter x̄. With this formulation, the correlation between different
random variables can be expressed by that of different uniformly distributed
random variables. Problem A.4 provides an example.
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The Markov and Chebyshev Inequalities

For a non-negative random variable X and a constant c > 0, we have

P(X ≥ c) ≤ E(X)
c

.

This is called the Markov inequality and can be easily derived as follows.
Consider a random variable defined as Y = 0 if X < c, and Y = c if X ≥ c.
We have Y ≤ X. Thus, E(Y ) ≤ E(X). On the other hand, E(Y ) = cP(Y =
c) = cP(X ≥ c). Thus, cP(X ≥ c) ≤ E(X).

Next, for any random variable X with mean E(X) and variance V ar(X),
we have the Chebyshev inequality:

P(|X − E(X)| ≥ c) ≤ V ar(X)
c2

, for any c > 0.

This follows directly from the Markov inequality by using [X−E(X)]2 as the
nonnegative random variable and c2 as the positive constant.

Convergence of Random Sequences

Let X1, X2, . . . , Xn, . . . be a sequence of random variables defined on the
same probability space (Ω,F ,P). There are four major concepts regarding
the convergence of a random sequence. (The same definitions apply when the
discrete index “n” is replaced by a continuous one, say “t ∈ [0,∞)”.)

i. Convergence in probability. The sequence of random variables {Xn, n =
1, 2, . . .} converges in probability to a random variable X, if for any ε > 0,

lim
n→∞

P(|Xn −X| ≥ ε) = 0.

ii. Convergence with probability 1 (w.p.1). The sequence of random variables
{Xn, n = 1, 2, . . .} converges with probability 1 to a random variable X,
if

P
(
ω : lim

n→∞
Xn = X

)
= 1,

or equivalently, for any ε > 0,

lim
n→∞

P(|Xk −X| > ε for some k ≥ n) = 0.

iii. Convergence in the mean or in the mean square. The sequence of random
variables {Xn, n = 1, 2, . . .} converges in the mean, or in the mean square,
respectively, to a random variable X, if

lim
n→∞

E(|Xn −X|) = 0,

or
lim

n→∞
E(|Xn −X|2) = 0,

respectively.
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iv. Convergence in the distribution and weak convergence. The sequence of
random variables {Xn, n = 1, 2, . . .} converges in the distribution to a
random variable X, if

lim
n→∞

Φn(x) = Φ(x)

at every continuous point of Φ, where Φn(x) and Φ(x) are the distribu-
tion functions of Xn and X, respectively. The sequence of distribution
functions {Φn(x), n = 1, 2, . . .} is said to converge weakly to Φ(x).

Both convergence with probability 1 and convergence in the mean (or in
the mean square) imply convergence in probability, which, in turn, implies
convergence in the distribution (see, e.g., [28]). Convergence with probability
1 and convergence in the mean do not imply each other. However, if Xn are
dominated by a random variable Y having a finite mean (i.e., |Xn| ≤ Y , w.p.1,
n ≥ 1, and E(|Y |) <∞), then Xn converges to X with probability 1 implies
that Xn converges to X in the mean.

The Law of Large Numbers

Suppose that {Xn, n = 1, 2, . . .} is a sequence of independent random variables
with E(Xn) = 0, n = 1, 2, . . . . If

∑∞
n=1

V ar(Xn)
n2 <∞, then

lim
n→∞

1
n

n∑

k=1

Xk = 0, w.p.1.

The following result is more often used in practice: Suppose that {Xn, n =
1, 2, . . .} is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables and E(Xn) = E(X) exists, then

lim
n→∞

1
n

n∑

k=1

Xk = E(X), w.p.1.

That is, the sample mean 1
n

∑n
k=1 Xk converges to the true mean E(X) with

probability 1. This is the strong law of large numbers. The weak law of large
numbers is as follows: Suppose that {Xn, n = 1, 2, . . .} is a sequence of inde-
pendent random variables with E(Xn) = E(X) <∞ and

∑∞
n=1

V ar(Xn)
n2 <∞.

Then, for any ε > 0, we have

lim
n→∞

P
[∣∣∣∣∣

1
n

n∑

k=1

Xk − E(X)

∣∣∣∣∣ ≥ ε

]
= 0.

That is, the sample mean converges to the true mean in probability.
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A.2 Markov Processes

A stochastic process is defined as a sequence of random variables, defined
on the same probability space (Ω,F ,P) and indexed by discrete times l =
0, 1, . . . , or continuous times t ∈ [0,∞), denoted as X(ω) = {X0(ω),X1(ω),
. . . ,Xl(ω), . . .} or X(ω) = {Xt(ω), t ∈ [0,∞)}, ω ∈ Ω, respectively. For every
fixed point ω ∈ Ω, the sequence X(ω) is called a sample path of X. Thus, a
point ω ∈ Ω represents a sample path of X, and Ω is the probability space
generated by all the sample paths of X. Generally, we will omit the argument
ω if there is no confusion.

The Markov Property and System States

Naturally, the first step in modelling a system is to describe precisely the
system’s “behavior” as a history of the system state. The word “state” is
used with different meanings in the literature. In [87], Xl or Xt in any process
X is called the state of the process at time l or t. With this definition, any
quantity in a system that depends on time can be defined as the state of a
stochastic process; however, such a “state” may not represent the whole status
of the system at any particular time.

To define a state that can completely capture the system status at any
particular time, we need the Markov property. A stochastic process is said to
possess the Markov property, if, given the current state, the process’s future
behavior is independent of its past history. In other words, by knowing the
current state of a process, we can predict the future behavior of the process as
well as if we know the entire history (the current state plus the past history);
the past history of the process does not provide any additional information
that may help with the prediction. In this book, we use the word “state” in
the strict sense, i.e., a state is a random variable (or random vector) indexed
by time that satisfies the Markov property. This is also called a mathematical
state, while the state in the general sense, i.e., any random variable indexed by
time, is called a physical state, which usually has a physical interpretation (e.g.,
the queueing length in queueing theory). A stochastic process that possesses
the Markov property is called a Markov process.

In this book, we follow the terminology used in [87], call discrete-time
Markov processes Markov chains and reserve the phrase “Markov processes”
for continuous-time Markov processes.

Markov Chains

We first discuss Markov chains. Let S be a state space of a Markov chain
X. Although many concepts and results presented and discussed in this book
apply to Markov chains and processes with infinitely many states as well,
in this book we assume that the state space is finite and denote it as S =
{1, 2, . . . , S}, if not otherwise mentioned. A Markov chain with a finite state
space is called a finite Markov chain.
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Definition A.1. [87] A Markov chain X = {X0,X1, . . .} is a sequence of
random variables defined on (Ω,F ,P) with values on S such that

P(Xl+1 = j|X0 = i0, . . . , Xl = il) = P(Xl+1 = j|Xl = il) (A.2)

for all j, i0, . . . , il ∈ S and any l ∈ {0, 1, . . .}.

The property (A.2) is called the Markov property. Define

pl(j|i) := P(Xl+1 = j|Xl = i)

as the transition probabilities of the Markov chain at time l, l = 0, 1, . . . . If
pl(j|i) =: p(j|i) for all l and i, j ∈ S, the Markov chain is said to be time
homogeneous. We shall restrict ourselves to time-homogeneous Markov chains
in most part of this book.

The matrix P = [p(j|i)]i,j∈S is called the transition probability matrix. We
have p(j|i) ≥ 0 and

∑
j∈S p(j|i) = 1 for all i, or

Pe = e,

with e = (1, 1, . . . , 1)T being a column (unit) vector whose all components are
1, where “T” denotes transpose. Sometimes, we use eS to indicate that the
vector e is S-dimensional. Such a matrix P is called a Markov matrix (or a
stochastic matrix).

Let p(k)(j|i) be the (i, j)th element in P k, i.e., P k := [p(k)(j|i)]i,j∈S . Then,
it is easy to verify that

P(Xl+k = j|Xl = i) = p(k)(j|i), for all l; (A.3)

thus, P k is called the k-step transition matrix.
A set of states is said to be closed if no state outside the set can be reached

from any state in the set; i.e., S0 ⊆ S is a closed set if p(j|i) = 0 for all i ∈ S0

and j ∈ S − S0. A closed set containing one state i, (i.e., p(i|i) = 1) is
called an absorbing state. A closed set is irreducible if no proper subset of it is
closed. A Markov chain is said to be irreducible if its only non-empty closed
set is S. Naturally, a Markov chain is irreducible if and only if all its states
can be reached from each other, either directly, or by going through other
states. A Markov chain is reducible, if and only if, by re-labelling the states,
its transition probability matrix can be written as

P =
[
P1 0
R P2

]
,

where “0” represents a matrix whose elements are all zeros; the sub-matrix
P2 may be further reduced, see the canonical form (B.1) in Appendix B.1. A
Markov chain is either irreducible or reducible.

Consider a Markov chain X starting from an initial state X0 = j. Let Lj

be the time of the first visit of X to state j, i.e., Lj = min{l : Xl = j;Xn �=
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j, 0 < n < l}. A state j is said to be recurrent if P(Lj < ∞|X0 = j) = 1;
otherwise, if P(Lj = ∞|X0 = j) > 0, then j is said to be transient. If j is a
transient state, then for any i ∈ S,

lim
k→∞

p(k)(j|i) = 0.

A recurrent state j is said to be periodic with period κ, if there is an integer
κ ≥ 2, such that κ is the largest integer for which

P(Lj = nκ for some integer n ≥ 1) = 1; (A.4)

otherwise, if there is no such κ ≥ 2, j is said to be aperiodic. It is known that if
X is an irreducible and finite-state Markov chain and if one state is periodic,
then all the states are periodic with the same period [87]. Such a Markov chain
is called a periodic Markov chain; otherwise, it is called an aperiodic Markov
chain. The transition probability matrix of a periodic Markov chain is called
a periodic matrix.

A Markov chain is said to be stationary [87], if for any k ≥ 0 and i0, i1, . . . ∈
S, it holds

P(X0 = i0,X1 = i1, . . .) = P(Xk = i0,Xk+1 = i1, . . .). (A.5)

By taking the marginal distribution for Xk, we get P(Xk = i) = P(X0 = i)
for all k > 0 and i ∈ S. That is, the distribution functions of the states
of a stationary Markov chain at any time are the same. This distribution is
called the stationary distribution and is denoted as π(j), j ∈ S. Let π =
(π(1), π(2), . . . , π(S)) be the (row) vector of the stationary probabilities of
a Markov chain with transition probability matrix P . Then, π satisfies the
following probability flow-balance equation:

πP = π, with πe = 1. (A.6)

If the initial state distribution of a Markov chain is the stationary distribu-
tion, then the Markov chain is stationary. The stationary distribution π is a
distribution defined on S; it is also called the steady-state probability vector.

Let f : S → R, R = (−∞,+∞) be a reward function defined on S.
Then, f(Xl), l = 0, 1, . . . , is a random variable defined on Ω. For parsimony,
we also use f to denote the (column) vector f = (f(1), f(2), . . . , f(S))T . For
stationary Markov chains, we have E[f(Xl)] = Eπ[f(X)] = πf , where “E”
denotes the expectation corresponding to the probability measure P on Ω,
and “Eπ” the expectation corresponding to π on S, Xl is the state at time
l, l = 0, 1, . . . , and X denotes a generic random variable with probability
distribution π(i), i ∈ S.

It is well known [87] that if a finite Markov chain (with S < ∞) is irre-
ducible, then (A.6) has a unique solution, and all states are recurrent with
π(i) > 0 for all i ∈ S. If, in addition, it is aperiodic, then the Markov chain is
asymptotically stationary; i.e.,
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lim
k→∞

p(k)(j|i) = π(j), (A.7)

for all i, j ∈ S, which does not depend on i. In a matrix form, this is

lim
k→∞

P k = eπ. (A.8)

Also, the ergodicity holds; i.e., the long-run average reward equals its steady-
state mean,

η := lim
L→∞

[
1
L

L−1∑

l=0

f(Xl)
∣∣∣X0 = i

]
= Eπ[f(X)] = πf, w.p.1, (A.9)

which holds regardless of the initial state. Because of this, an irreducible and
aperiodic finite Markov chain is called an ergodic Markov chain.

However, if P is periodic, the limit (A.7) or (A.8) does not exist. For
example, if

P =
[

0 1
1 0

]
,

then P k = I if k is even and P k = P if k is odd. Thus, for periodic Markov
chains, the asymptotical stationarity (A.7) does not hold. However, for finite
irreducible periodic Markov chains, (A.6) has a unique solution π and the
time average equation (A.9) holds.

Because the concepts and methodologies in learning and optimization can
be clearly and concisely explained with the discrete-time model with a finite
state space, most results in this book are stated in the discrete-time, finite-
state version. In addition, we always assume that the Markov chain is ergodic
to assure that the stationary distribution exists. This assumption can be easily
relaxed by using the time averages expressed in the form of the Cesaro limit
to replace the probabilities (see the discussion for the multi-chain case in
Appendix B.3).

Markov Processes

A Markov process defined on a finite state space S and the continuous time
domain t ∈ [0,∞) is denoted as X = {Xt, t ∈ [0,∞)}, Xt ∈ S. Denote the
underlying probability space as (Ω,F ,P). The Markov property becomes [87]

P (Xs+t = j|Xu;u ≤ s) = P (Xs+t = j|Xs) , for any 0 < t, s <∞.
(A.10)

For a time-homogeneous process, the transition probability function does not
depend on s and is denoted as P(Xs+t = j|Xs = i) = pt(j|i), for all i, j ∈ S
and t ≥ 0. We have pt(j|i) ≥ 0 and

∑
k∈S pt(k|i) = 1, for all i, j ∈ S, t ≥ 0.

We discuss only time-homogeneous Markov processes.
Let T0 = 0, T1, T2, . . . be the state transition instants of the Markov

process X = {Xt} and X0, X1, X2, . . . be the successive states visited by X.
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We assume that the sample paths are right continuous; i.e., Xl = XTl+0.
Because of the Markov property of X, X† := {X0,X1, . . .} is a Markov chain,
called the embedded Markov chain of X. Tl+1 − Tl is called the sojourn time
in state Xl.

Let τ ∈ [Tl−1, Tl) for some l. Because of the Markov property, the remain-
ing sojourn time at τ , Rτ := Tl− τ , depends only on Xl−1 and is independent
of the elapsed time in state Xl−1, τ − Tl−1. Hence, the random variable Rτ

satisfies the “memoryless” property. Thus, Rτ has an exponential distribution
with a mean depending on Xτ = i, denoted as 1/λ(i):

P(Rτ ≤ t|Xτ = i) = 1− exp [−λ(i)t] , t ≥ 0.

λ(i) is called the transition rate of the Markov process in state i. Taking
τ = Tl−1, we obtain P(Tl − Tl−1 ≤ t|Xl−1 = i) = 1 − exp[−λ(i)t], t ≥ 0.
Therefore, for any l, j ∈ S, and t ≥ 0, if Xl = i, then we have

P(Xl+1 = j, Tl+1 − Tl ≤ t|X0, . . . Xl = i;T0, . . . , Tl)
= p(j|i) {1− exp [−λ(i)t]} , (A.11)

where p(j|i), i, j ∈ S, are the transition probabilities of the embedded Markov
chain X†. We have p(j|i) ≥ 0 and

∑
j∈S p(j|i) = 1. By the definition of the

embedded chain, if we cannot observe a transition from one state to itself, we
have p(i|i) = 0. However, in a general setting, we allow the Markov process
X to jump from one state to itself. In this case, we may have p(i|i) > 0.

Let

b(i, j) :=
{
−λ(i)[1− p(i|i)], if i = j,
λ(i)p(j|i), if i �= j.

(A.12)

We have ∑

j∈S
b(i, j) = 0, i ∈ S.

That is, Be = 0, where B := [b(i, j)]i,j∈S . Let Pt := [pt(j|i)]i,j∈S . Then, we
have the following Kolmogorov’s equation [87]:

d

dt
Pt = BPt = PtB, (A.13)

with the initial condition P0 = I being the identity matrix. The matrix B is
called the infinitesimal generator of the Markov process X. The solution to
(A.13) is

Pt = exp (tB) :=
∞∑

n=0

tn

n!
Bn. (A.14)

If the embedded Markov chain is irreducible, then X is asymptotically
stationary; i.e.,

lim
t→∞

P(Xt = i|X0 = j) = π(i),
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independent of j, where π(i), i ∈ S, is the stationary (steady-state) distribu-
tion of the Markov process X. Let π = (π(1), . . . , π(S)). We have

lim
t→∞

Pt = eπ. (A.15)

From (A.13), and limt→∞
d
dtPt = 0, we get

πB = 0.

If the embedded Markov chain is irreducible, we also have

lim
T→∞

[
1
T

∫ T

0

f(Xt)dt

]
= Eπ[f(X)] = πf, w.p.1, (A.16)

for any initial condition, where f : S → R is a reward function and “Eπ” is
the expectation corresponding to the steady-state probability distribution π
on S.

Semi-Markov Processes

A stochastic process X = {Xt, t ∈ [0,∞)} defined on state space S is called
a semi-Markov process (SMP) if

P(Xl+1 =j, Tl+1 − Tl ≤ t|X0, . . . , Xl;T0, . . . , Tl)
= P(Xl+1 =j, Tl+1 − Tl ≤ t|Xl),

for all l = 0, 1, . . . , j ∈ S, and t ≥ 0, where X† := {X0,X1, . . .} is an
embedded chain. We assume that the process is time homogeneous and set
p(j; t|i) := P(Xl+1 = j, Tl+1 − Tl ≤ t|Xl = i), which is called a semi-Markov
kernel on S. A semi-Markov process “partially” enjoys the Markov property:
at any transition instant Tl, with the current state known, the future behavior
is independent of the past history.

Let p(j|i) = limt→∞ p(j; t|i). It is an easy exercise to prove that X† =
{Xl, l = 0, 1, . . .} is a Markov chain with transition matrix P = [p(j|i)]. This
is called the embedded Markov chain of X = {Xt, t ∈ [0,∞)}. If

p(j; t|i) = p(j|i) {1− exp [−λ(i)t]} ,

then a semi-Markov process is a Markov process (cf. (A.11)).
Similar to the case of Markov processes, if s is a transition instant, we

define pt(j|i) = P(Xs+t = j|Xs = i), 0 < t, s < ∞, which does not depend
on s for time-homogeneous semi-Markov processes. Let Pt = [pt(j|i)]i,j∈S .
Finally, if the embedded Markov chain is irreducible, then the steady-state
probabilities π can also be defined by (A.15), in the same way as for Markov
processes, and (A.16) also holds for a semi-Markov process.
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PROBLEMS

A.1. Consider the Coxian distribution shown in Figure A.1.

a. Derive the probability distribution density function for the Coxian distri-
bution.

b. Derive the Laplace transform of the density function.
c. Construct a Coxian distribution such that the Laplace transform of its

density function is the rational function given below:

Φ∗(s) =
2 + 1.08s + 0.2s2

2 + 5s + 4s2 + s3
.

A.2. Consider a sequence of independent random variables Xn with P(Xn =
1) = 1

n and P(Xn = 0) = 1 − 1
n . Does the sequence converge in probability,

with probability 1, in mean, or in mean square?

A.3. Consider a sequence of independent random variables Xn with P(Xn =
1) = 1

n2 and P(Xn = 0) = 1− 1
n2 . Does the sequence converge in probability,

with probability 1, in mean, or in mean square?

A.4. ∗ Let X and Y be two random variables with probability distributions
Φ(x) and Ψ(y), respectively. Their means are denoted as x̄ = E(X) and ȳ =
E(Y ). We wish to estimate x̄ − ȳ = E(X − Y ) by simulation. We generate
random variables X and Y using the inverse transform method. Thus, we have
X = Φ−1(ξ1) and Y = Ψ−1(ξ2), where ξ1 and ξ2 are two uniformly distributed
random variables in [0, 1). Prove that if we choose ξ1 = ξ2, then the variance
of X − Y , V ar[X − Y ], is the smallest among all possible pairs of ξ1 and ξ2.

A.5. Consider a sequence of i.i.d. random variables {Xn, n = 1, 2, . . .} with
mean E(Xn) = E(X). Define another sequence of 0− 1 valued i.i.d. random
variables {χn, n = 1, 2, . . .} where χn = 1 with probability p, 1 > p > 0 and
χn = 0 with probability 1− p. Let

Nn =
n∑

k=1

χk

be the number of 1’s in the first n samples. Define

Mn :=
1

Nn

n∑

k=1

(χkXk).

Prove that Mn converges to E(X) with probability 1 as n→∞, i.e.,

lim
n→∞

Mn = E(X), w.p.1,

and Mn converges to E(X) in probability as n→∞, i.e., for any ε > 0,

lim
n→∞

P[|Mn − E(X)| ≥ ε] = 0.
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A.6. Consider a sequence of independent random variables {Xn, n = 1, 2, . . .}.
The mean value of Xn, E(Xn), converges to a constant X̄, limn→∞ E(Xn) =
X̄, and V ar(Xn) < ∞. Prove that the mean sample Mn = 1

n

∑n
k=1 Xk con-

verges to X̄ both with probability 1 and in probability.

A.7. Let X be an irreducible and periodic Markov chain with transition prob-
ability matrix P . The asymptotic stationarity (A.8) does not hold. However,
we may define π(i) as the time average

π(i) = lim
L→∞

1
L
E

[
L−1∑

l=0

χi(Xl)
∣∣∣X0 = j

]
, i, j ∈ S, (A.17)

with χi(x) = 1, if x = i, and χi(x) = 0, otherwise. Prove the following results:

a. Prove that the π(i) in (A.17) indeed does not depend on j.
b. Let π = (π(1), . . . , π(S)), then

P ∗ := lim
L→∞

1
L

L−1∑

l=0

P l = eπ.

c. πP = π and πe = 1. That is, the time average π plays the same role as
the steady-state probability.

d. limL→∞
1
L

[∑L−1
l=0 χi(Xl)

]
, i ∈ S, converges with probability 1 to π(i).

Therefore, π(i) can also be defined as the limit of the sample-path average
of χi(Xl), l = 0, 1, . . . .

A.8. (Uniformization) Consider a Markov process X with transition rates
λ(i), i ∈ S = {1, 2, . . . , S}. Let P = [p(j|i)] be the transition probability
matrix of the embedded Markov chain, with p(i|i) = 0. Define another Markov
process X ′ as follows: the transition rate in state i changes to λ′(i) = λ(i)

1−ci
,

where ci ∈ (0, 1) is a fixed number, i ∈ S; the transition probabilities change
to p′(i|i) = ci and p′(j|i) = p(j|i)(1− ci), i �= j.

a. Prove that the steady-state probabilities of both processes are equal; i.e.,
π′(i) = π(i), i ∈ S.

b. Explain the relation between the sample paths of both processes.
c. Find the values for ci, i ∈ S, such that the embedded Markov chain of

X ′, X ′†, has the same steady-state probabilities as those of X ′ and X;
i.e., π′†(i) = π′(i) = π(i), i ∈ S.

A.9. Let X† be the embedded Markov chain of Markov process X. Assume
that X† is ergodic. Let λ(i), i ∈ S = {1, 2, . . . , S} be the transition rates of
X; and π†(i), π(i), i ∈ S, be the steady-state probabilities of X† and X,
respectively. Prove

π(i) = c
π†(i)
λ(i)
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where
c =

∑

i∈S
π(i)λ(i) =

1
∑

i∈S
π†(i)
λ(i)

.

A.10. Consider an ergodic Markov chain X = {X0,X1, . . .} with transition
probability matrix P = [p(j|i)] on state space S = {1, . . . , S}. Let π be the
steady-state probability vector. Define a performance function that depends
on two consecutive states: f(i, j), i, j ∈ S. Prove that the following ergodicity
equation holds:

lim
n→∞

[
1
L

L−1∑

l=0

f(Xl,Xl+1)

]
= Eπ,P [f(Xl,Xl+1)]

:=
S∑

i=1

S∑

j=1

[f(i, j)π(i)p(j|i)] =
S∑

i=1

[f̄(i)π(i)], w.p.1,

where f̄(i) =
∑S

j=1[f(i, j)p(j|i)]. Extend these results to function f(Xl,Xl+1,
. . . , Xl+N ) for a finite integer N .

A.11. Prove that the sojourn time that a time-homogenous Markov process
stays in a state i is exponentially distributed, by using the Markov property
(A.10).

A.12. Is the following statement true? (NO!)
If the inter-transition times of a semi-Markov process are exponentially

distributed, i.e., if P(Tl+1 − Tl ≤ t|Xl = i) = 1− exp [−λ(i)t], i ∈ S, then the
semi-Markov process is a Markov process.

If your answer is “yes”, prove it; if the answer is “no”, explain why and
give a counter example.



Life is good for only two things,
discovering mathematics and
teaching mathematics

Simon Poisson, French
Mathematician (1781-1840)

B
Stochastic Matrices

To be consistent with the notation used for the transition probability matrix,
we use p(j|i) to denote the element in the ith row and the jth column of a
matrix P . A matrix P is called a non-negative matrix if p(j|i) ≥ 0 for all
i, j (i.e., P ≥ 0), and it is called a positive matrix if p(j|i) > 0 for all i, j
(i.e., P > 0). A square non-negative matrix P is called a stochastic matrix if
Pe = e. Therefore, a transition probability matrix is a stochastic matrix. Many
properties of Markov processes are related to the theory of stochastic matrices.
In this section, we review some relevant results of stochastic matrices.

B.1 Canonical Form

A stochastic matrix P is said to be reducible, if, by permutation of the rows
and columns in the same order (corresponding to relabelling the states of the
Markov chain with the transition probability matrix P ), it can be written as

P =
[
P1 0
R P2

]
,

where 0 denotes a zero matrix with all the elements being zeros, and R may or
may not be a zero matrix. Otherwise, it is called irreducible. This definition of
irreducibility is consistent with that given in Appendix A.2 for Markov chains,
i.e., a Markov chain is irreducible if and only if its transition probability matrix
is irreducible. In an irreducible Markov chain, every state will be eventually
visited as time goes on. The matrices P1 and P2 may be further reducible.
Finally, a transition probability matrix takes the canonical form:
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P =

⎡

⎢⎢⎢⎢⎣

P1 0 0 · · · · 0
0 P2 0 · · · · 0
· · · · · · · ·
0 0 0 · · · Pm 0
R1 R2 R3 · · · Rm Rm+1

⎤

⎥⎥⎥⎥⎦
, (B.1)

where P1, P2, . . . , Pm−1 and Pm are all irreducible square matrices. This form
indicates that the state space of a Markov chain with the transition proba-
bility matrix P consists of m closed subsets of recurrent states; each subset
corresponds to one of the sub-matrices Pk, k = 1, 2, . . . ,m. The states corre-
sponding to the last row, R1, R2, . . . , Rm+1, are transient; the Markov chain
starting from any transient state will eventually reach one of the closed subsets
of recurrent states.

If m = 1, the Markov chain is called a uni-chain, and if m > 1, it is called
a multi-chain. A uni-chain with no transient states is an ergodic chain.

An irreducible transition probability matrix is called aperiodic if P k > 0,
componentwisely, for some integer k (therefore, for all k that are larger). If
such k does not exist, it is called periodic. (This definition is equivalent to
(A.4).) A periodic transition probability matrix has a period κ such that, by
relabelling the states, P can be written as

P =

⎡

⎢⎢⎢⎢⎣

0 R1 0 · · · 0
0 0 R2 · · · 0
· · · · · · 0
0 0 0 · · · Rκ−1

Rκ 0 0 · · · 0

⎤

⎥⎥⎥⎥⎦
,

where the diagonal blocks are square zero matrices. A stochastic matrix is
called aperiodic if all the irreducible matrices P1, . . . , Pm in the canonical
form are aperiodic.

B.2 Eigenvalues

Let I denote the identity matrix whose diagonal elements are ones and other
elements are zeros. For a given S-dimensional real or complex square matrix
A, the determinant det(λI − A) defines a polynomial of λ with coefficients
determined by A. The equation det(λI−A) = 0 has exactly S real or complex
roots denoted as λ1, λ2, . . . , λS ; they are called eigenvalues of A [20, 109]. If
an eigenvalue λ appears only once in λ1, . . . , λS , it is said to be simple. If
an eigenvalue λ appears in the sequence m ≥ 2 times, it is said to have a
multiplicity of m.

For any eigenvalue λ of A, there exists at least one (nonzero) column vector
v satisfying Av = λv. Such a vector v is called an eigenvector of A correspond-
ing to the eigenvalue λ. If v is an eigenvector, then so is cv for any constant
c �= 0. Up to this multiplication, there is only one eigenvector corresponding
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to a simple eigenvalue. There are at most m linearly independent eigenvectors
corresponding to an eigenvalue with m multiplicity.

The largest absolute value of the eigenvalues of a matrix A is called the
spectrum radius of A and is denoted as ρ(A).

Some results about eigenvalues are important in proving and understand-
ing the main results in our book, and we state them as lemmas.

Eigenvalues of Irreducible Matrices

Lemma B.1. [20, 87]

(a) If P > 0 is a positive square matrix, then ρ(P ) =: λ1 is a simple and
positive eigenvalue, and for any other eigenvalues λ of P we have
|λ| < λ1.

(b) If P ≥ 0 is an irreducible non-negative matrix, then ρ(P ) =: λ1

is a simple and positive eigenvalue. (By definition, for any other
eigenvalues λ of P we have |λ| ≤ λ1.)

i) If, in addition, P is aperiodic, then for any other eigenvalues λ
of P we have |λ| < λ1.

ii) If P is periodic with period κ, then there are exactly κ simple
eigenvalues λ1, . . . , λκ with absolute values exactly equal ρ :=
ρ(P ). These eigenvalues are

λ1 = ρ, λ2 = ρ exp
(2π

κ

√
−1

)
, . . . , λκ = ρ exp

(2(κ− 1)π
κ

√
−1

)
.

(c) If P is stochastic, then λ1 = ρ(P ) = 1.

In the literature, this lemma is known as the Perron-Frobeniu theorem.
The results in Lemma B.1(b.i) for aperiodic matrices follow directly from
that in Lemma B.1(a) for positive matrices. Indeed, if P is irreducible and
aperiodic, there is an integer k such that P k > 0 is positive. The eigenvalues
of P k are λk

i with λi being the eigenvalues of P , i ∈ S. By Lemma B.1(a),
λ1 is a simple eigenvalue and all the other eigenvalues satisfy |λi|k < λk

1 (i.e.,
|λ| < λ1), i �= 1.

Eigenvalues of Reducible Matrices in the Canonical Form

Next, we study reducible matrices that take the canonical form (B.1), in which
P1, . . . , Pm are irreducible. Rm+1 cannot be periodic, because the correspond-
ing states are transient. We have [20, 87]
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Lemma B.2. (a) In the canonical form (B.1), we have ρ(Rm+1) < 1.
(b) For any square matrix A, if ρ(A) < 1, then limk→∞ Ak = 0, (I −A)

is invertible and

(I−A)−1 =
∞∑

k=0

Ak.

Consider an aperiodic stochastic matrix in the canonical form (B.1). De-
note the dimensions of P1, . . . , Pm as S1, . . . , Sm, Sk > 1 , k = 1, 2, . . . ,m (no
absorbing state), and the dimension of Rm+1 as Sm+1. We have

∑m+1
k=1 Sk =

S. Following Lemma B.1(b.i), we may denote the eigenvalues of Pi, i =
1, 2, . . . ,m, as λi,1 = 1, λi,2, . . . , λi,Si

, with λi,k �= 1 and |λi,k| < 1 for
k = 2, . . . , Si. We observe that the Si-dimensional vector eSi

= (1, 1, . . . , 1)T is
an eigenvector of Pi corresponding to eigenvalue λi,1 = 1, because PieSi

= eSi
.

From Lemma B.2(a) and (b), (I −Rm+1)−1 exists. Set

wi = (I −Rm+1)−1RieSi
, i = 1, 2, . . . ,m,

(an Sm+1-dimensional column vector), and define

vi,1 = [0, . . . , 0, eT
Si

, 0, . . . , 0, wT
i ]T , (B.2)

in which eSi
is the ith block, wi is the (m+1)th block, and the other (m− 1)

0’s represent the zero vectors with dimensions S1, . . . , Si−1, Si+1, . . . , Sm, re-
spectively. We can easily verify that Pvi,1 = vi,1. Therefore, 1 is an eigenvalue
of P with (at least) m multiplicity. Corresponding to this eigenvalue, there
are (at least) m linearly independent eigenvectors vi,1, i = 1, 2, . . . ,m.

Denote the eigenvalues of Rm+1 as λm+1,k, k = 1, 2, . . . , Sm+1 (there may
be multiple eigenvalues). Let um+1,k be the corresponding eigenvectors, k =
1, 2, . . . , Sm+1. It is easy to verify that P has the same eigenvalues with the
corresponding eigenvectors

vm+1,k = [0, . . . , 0, uT
m+1,k]T , k = 1, 2, . . . , Sm+1. (B.3)

Now let ui,k be the eigenvector of Pi, i = 1, 2, . . . ,m, corresponding to the
eigenvalue λi,k, k = 2, . . . , Si. We have Piui,k = λi,kui,k, λi,k �= 1, |λi,k| ≤ 1.
In this case, if we choose

vi,k = [0, . . . , 0, uT
i,k, 0, . . . , 0, w

T
i,k]T ,

where the block structure is the same as vi,1 and wi,k satisfies

(λi,kI −Rm+1)wi,k = λi,k

(
I − 1

λi,k
Rm+1

)
wi,k = Riui,k, (B.4)
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then we have Pvi,k = λi,kvi,k. That is, P has the same eigenvalue λi,k, whose
corresponding eigenvector is vi,k. Note that the eigenvalues of (I− 1

λi,k
Rm+1)

are 1− λm+1,l

λi,k
, with λm+1,l, l = 1, 2, . . . , Sm+1 being the eigenvalues of Rm+1.

Thus, if λm+1,l �= λi,k, l = 1, 2, . . . , Sm+1, then
(
I − 1

λi,k
Rm+1

)−1

exists and
(B.4) has a unique solution

wi,k =
1

λi,k

(
I − 1

λi,k
Rm+1

)−1

Riui,k.

On the other hand, if λm+1,l = λi,k for some l = 1, 2, . . . , Sm+1, then (I −
1

λi,k
Rm+1) is not of full rank, and there may be more than one wi,k satisfying

(B.4). Indeed, in this case, if vi,k is an eigenvector of P corresponding to λi,k,
and vm+1,l in (B.3) is an eigenvector corresponding to λm+1,l = λi,k, then for
any constant c,

vi,k + cvm+1,l = [0, . . . , 0, uT
i,k, 0, . . . , 0, w

T
i,k + cuT

m+1,l]
T

is also an eigenvector of P corresponding to λi,k. A similar discussion applies
when there is more than one eigenvalue of Rm+1 equal to λi,k.

In summary, we have the following lemma.

Lemma B.3. Let P be a stochastic matrix in the canonical form
(B.1) in which P1, . . . , Pm are irreducible square matrices with di-
mensions S1, . . . , Sm, respectively, and let Sm+1 be the dimension
of Rm+1. Denote the set of eigenvalues of P1, . . . , Pm as {λi,1 =
1, λi,2, . . . , λi,Si

}, i = 1, 2, . . . ,m, respectively, with λi,k �= 1, |λi,k| ≤ 1,
k = 2, . . . , Si, i = 1, 2, . . . ,m, and the set of eigenvalues of Rm+1 as
{λm+1,1, . . . , λm+1,Sm+1}, with |λm+1,k| < 1, k = 1, 2, . . . , Sm+1. Then
the set of eigenvalues of P is

∪m
i=1{λi,1 = 1, λi,2, . . . , λi,Si

} ∪ {λm+1,1, . . . , λm+1,Sm+1},

with λi,1 = 1, i = 1, . . . ,m, being an eigenvalue of m multiplicity. If, fur-
thermore, P is aperiodic, then the magnitude of all the other eigenvalues
is less than one.

B.3 The Limiting Matrix

Recall that, from (A.8), if P is aperiodic and irreducible, then limk→∞ P k =
eπ, where π is the steady-state probability vector satisfying π = πP . This
asymptotical stationarity does not hold for periodic Markov chains.
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The Limiting Matrix P ∗

In general, for both aperiodic and periodic matrices (with multi-chains) we
may use the Cesaro limit:

P ∗ = lim
N→∞

1
N

N−1∑

n=0

Pn. (B.5)

This limit exists for any transition matrix (see [86, 87]). In component nota-
tion, this is

p∗(j|i) = lim
N→∞

1
N

N−1∑

n=0

p(n)(j|i),

where p(n)(j|i) denotes the component of Pn, and p(0)(j|i) = 1 if i = j, 0
otherwise. Clearly p∗(j|i) is the long-run average of the number of visits to
state j on a sample path starting from state i. When P is ergodic, p∗(j|i) =
π(j), independent of i. Therefore, P ∗ measures the sample average, which is
equivalent to eπ for ergodic chains. If j is a transient state in a multi-chain
matrix P , p∗(j|i) = 0 for all i ∈ S. From this probabilistic meaning, we can
be convinced that the Cesaro limit (B.5) exists.

From (B.5), it is easy to verify the following properties:

P ∗e = e, (B.6)

which corresponds to πe = 1, and

P ∗P = PP ∗ = P ∗P ∗ = P ∗, (B.7)

which corresponds to π = πP . Note that the solutions to both (B.6) and (B.7)
are not unique for a multi-chain stochastic matrix P . For example, if

P =

⎡

⎢⎢⎣

1 0 0

0 1 0
1
3

1
3

1
3

⎤

⎥⎥⎦ ,

then

P ∗ =

⎡

⎢⎢⎣

c 1− c 0

c 1− c 0

c 1− c 0

⎤

⎥⎥⎦ ,

for any 0 ≤ c ≤ 1, satisfies both (B.6) and (B.7). This is different from
the ergodic case where πe = 1 and π = πP uniquely determine π. Indeed,
(B.7) is a property that specifies the steady-state (stationary) distributions
(cf. (A.6)). In the multi-chain case, we may still use (A.5) to define the steady-
state distributions, but they are not unique, and the asymptotical stationarity
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(A.7) do not hold. Furthermore, if πP = π, then eπ is a solution to (B.6)
and (B.7). However, there may be more than one steady-state distribution
π satisfying πP = π for multi-chain stochastic matrices. In the example,
π = (c, 1− c, 0) for any 0 ≤ c ≤ 1. On the other hand, P ∗ in (B.5) reflects the
long-run average starting from a particular initial state. Every row of P ∗ can
be viewed as a steady state distribution of P , satisfying πP = π. In addition,
for any stochastic matrix P , there exists only one matrix P ∗ with the form of
(B.1) that satisfies both (B.6) and (B.7) (see Problem B.2).

When P is aperiodic, limN→∞ PN exists. We have

P ∗ = lim
N→∞

1
N

N−1∑

n=0

Pn = lim
N→∞

PN . (B.8)

This is to say, the sample average equals the steady-state probabilities.
If P is aperiodic, then in the canonical form (B.1), we have [216]

P ∗ =

⎡

⎢⎢⎢⎢⎣

P ∗
1 0 0 · · · · 0
0 P ∗

2 0 · · · · 0
· · · · · · · ·
0 0 0 · · · P ∗

m 0
R∗

1 R∗
2 R∗

3 · · · R∗
m 0

⎤

⎥⎥⎥⎥⎦
, (B.9)

where P ∗
i = limN→∞ P k

i , i = 1, 2, . . . ,m. Let πi, i = 1, 2, . . . ,m, be the
steady-state probability vector of the ith closed irreducible subset of the state
space of the Markov chain. We have πi = πiPi, πieSi

= 1, i = 1, 2, . . . ,m,
and P ∗

i = eSi
πi, i = 1, 2, . . . ,m. From Lemma B.2(a), ρ(Rm+1) < 1. Thus,

from Lemma B.2(b), limk→∞ Rk
m+1 = 0 and I −Rm+1 is invertible, and from

PP ∗ = P ∗, we can verify that [216]

R∗
i = (I −Rm+1)−1RiP

∗
i

= (I −Rm+1)−1RieSi
πi

= wiπi, (B.10)

where wi = (I − Rm+1)−1RieSi
. Denote wi = (wi(1), . . . , wi(Sm+1))T , i =

1, 2, . . . ,m, where Sm+1 is the number of the transient states of P . From
Pe = e, we have

∑m
i=1 RieSi

+ Rm+1eSm+1 = eSm+1 . Therefore,
∑m

i=1 wi =
eSm+1 . Finally, (B.9) takes the form

P ∗ =

⎡

⎢⎢⎢⎢⎣

eπ1 0 0 · · · · 0
0 eπ2 0 · · · · 0
· · · · · · · ·
0 0 0 · · · eπm 0

w1π1 w2π2 w3π3 · · · wmπm 0

⎤

⎥⎥⎥⎥⎦
. (B.11)

This form has a clear probabilistic meaning. First, we have
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(I −Rm+1)−1Ri = Ri + Rm+1Ri + · · ·+ Rk
m+1Ri + · · · .

We note that the first component of the column vector RieSi
is the probability

that, starting from the first transient state, the Markov chain enters the ith
irreducible closed set of the recurrent states after one state transition; the first
component of the column vector Rm+1RieSi

is the probability that, starting
from the first transient state, the Markov chain enters the ith irreducible closed
set of the recurrent states after two state transitions; and so on. Therefore,
the first component of wi = (I−Rm+1)−1RieSi

, wi(1), is the total probability
that starting from the first transient state the Markov chain eventually enters
the ith irreducible closed set of the recurrent states. Once it enters the ith
irreducible closed set, the steady-state probability, or the long-run average,
will be πi. Therefore, starting from the first transient state, the probability
that the system visits the states in the ith irreducible closed set is wi(1)πi,
i = 1, 2, . . .m. The same explanation applies to other components. This also
explains

∑m
i=1 wi = eSm+1 .

The Matrix (I − P + P ∗)−1

In performance analysis of Markov systems, we always encounter equations
such as π = πP , or π(I −P ) = 0. However, (I −P ) is not invertible. In many
problems in performance sensitivity analysis, we need to study the matrix
(I − P + P ∗). We first prove that it is invertible.

Let us examine its eigenvalues. From Lemma B.3, we define {1, 1, . . . , 1,
λm+1 , . . . , λS} to be the set of the eigenvalues of P with “1” appearing
m times (some of the other eigenvalues λk, k = m + 1, . . . , S, may also be
repeated). We have |λi| ≤ 1 for all i = m+1, . . . , S (|λi| < 1 if P is aperiodic).
Now, we show that λi, i = m+1, . . . , S, are also eigenvalues of P −P ∗. To see
this, let vi �= 0 be the eigenvector of P corresponding to λi; i.e., Pvi = λivi,
i = m + 1, . . . , S. If λi �= 0, then

P ∗vi =
1
λi

(P ∗)Pvi =
1
λi

P ∗vi.

Thus P ∗vi = 0 since λi �= 1. We have (P − P ∗)vi = Pvi = λivi. That is, λi is
an eigenvalue of P − P ∗ with the same eigenvector vi. On the other hand, if
λi = 0, then Pvi = 0 and (P − P ∗)vi = (I − P ∗)Pvi = 0. That is, λi = 0 is
also an eigenvalue with the same eigenvector vi. Thus, we have proved that
λm+1, . . . , λS are eigenvalues of P − P ∗ with the same eigenvectors.

Next, we turn our attention to the m-multiple eigenvalues 1. Let vi �= 0,
i = 1, 2, . . . ,m, be the corresponding eigenvectors. We have Pvi = vi. From
this, we get P kvi = vi for any integer k. From (B.5), we have P ∗vi = vi.
Thus, (P −P ∗)vi = 0. That is, vi, i = 1, 2, . . . ,m, are eigenvalues of (P −P ∗)
corresponding to the eigenvalue 0. As shown in the proof of Lemma B.3, the
m vectors vi, i = 1, 2, . . . ,m, (the vi,1’s in (B.2)) are linearly independent.
Therefore, P − P ∗ has an eigenvalue 0 with m multiplicity.
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Therefore, the set of eigenvalues of (P − P ∗) is {0, 0, . . . , 0, λm+1, . . . , λS}
with the same set of corresponding eigenvectors of P . The first m items are
zeros and |λi| ≤ 1, λi �= 1 for all i = m+1, . . . , S. It is also possible that there
are some more zeros among {λm+1, . . . , λS}.

It is easy to see that the set of eigenvalues of I−P +P ∗ is {1, 1, . . . , 1, 1−
λm+1, . . . , 1− λS}; none of them is zero. Therefore, (I −P +P ∗) is invertible
and the eigenvalues of (I − P + P ∗)−1 are 1, . . . , 1, 1

1−λm+1
, . . . , 1

1−λS
, with

|λi| ≤ 1, i = m + 1, . . . , S.
If P is aperiodic, then |λi| < 1, i = m+1, . . . , S, and ρ(P −P ∗) < 1. From

Lemma B.2(b), we have

(I − P + P ∗)−1 = I +
∞∑

k=1

(P − P ∗)k.

It is easy to verify (P − P ∗)k = P k − P ∗. Therefore,

(I − P + P ∗)−1 = I +
∞∑

k=1

(P k − P ∗). (B.12)

The matrix (I − P + P ∗)−1 is called the fundamental matrix.
However, if P is periodic, we have ρ(P−P ∗) = 1, and the expansion (B.12)

does not hold for the fundamental matrix.
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Fig. B.1. The Equivalent Aperiodic Matrix

Equivalent Aperiodic Markov Chains

We can see that the periodicity of a Markov chain causes some technical
difficulties in analyzing its performance: The matrix expansion (B.12) and
the asymptotic stationarity (A.7) do not hold, and the limit, limk→∞ P k, has
to be replaced by the Cesaro limit (B.5). However, for every periodic Markov
chain, we can easily construct an aperiodic Markov chain equivalent to it in
the sense that the steady-state probabilities of the aperiodic Markov chain
equal the long-run average of the periodic one.

First, we note that p(i|i) = 0 for all i ∈ S in any periodic matrix. Now,
suppose that P is irreducible and periodic and let π = πP be its steady-state
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distribution, which represents the long-run average of the periodic Markov
chain. For any 0 < ε < 1, we define a stochastic matrix P ′ = εI + (1 − ε)P ,
i.e., p′(i|i) = ε, p′(j|i) = (1 − ε)p(j|i), j �= i, for all i, j ∈ S (see Figure B.1).
P ′ is irreducible because P is irreducible, P ′ is aperiodic because p′(i|i) �= 0.
Let π′ = π′P ′ be the steady-state probability of P ′. We have

π′ = π′P ′ = π′[εI + (1− ε)P ]
= επ′ + (1− ε)π′P.

From this, we have π′ = π′P , and therefore π′ = π.
The results can be explained intuitively. Denote the two Markov chains

with P and P ′ as X and X ′, respectively. X ′ evolves as follows: Whenever
X ′ visits a state i, it remains visiting the state a few times, then it “jumps”
to another state, following the transition probability matrix P , in the same
way as X. The number of times that X ′ stays in a same state before it jumps
is identically distributed with a geometric distribution with the same mean

1
1−ε . Therefore, the long-run sample average of the number of visits to any
particular state of X and X ′ must be the same. X ′ is aperiodic because the
number of consecutive visits to any state is random.

The above results extend to reducible Markov chains. Suppose that, in a
periodic stochastic matrix P in the canonical form (B.1), some blocks among
P1, . . . , Pm, denoted as Pl1 , . . . , Plk , 1 ≤ l1, . . . , lk ≤ m, are periodic. We
define an equivalent stochastic matrix P ′ by replacing these blocks in P with
P ′

li
= εI + (1 − ε)Pli , i = 1, . . . , k. P ′ is aperiodic because every P ′

k, k =
1, . . . ,m, is aperiodic. Applying the above result for irreducible matrices to
P ′

li
, i = 1, . . . , k, we have π′

k = πk for all k = 1, 2 . . . ,m in the form (B.11).
In addition, because Rk, k = 1, . . . ,m + 1, are the same for both P ′ and P ,
from (B.10) we have P ′∗ = P ∗.

Finally, because for every periodic Markov chain, we have an equivalent
aperiodic one, we conclude that all the results about the steady-state perfor-
mance of aperiodic chains hold for periodic chains as well if we interpret the
steady-state probabilities as the long-run time averages.

PROBLEMS

B.1. In the canonical form (B.1), Rm+1 may be further reducible.

a. Write Rm+1 in a canonical form, and
b. Explain the meaning of this canonical form in terms of the transitions of

the transient states.

B.2. Derive a general form for the solution to (B.6) and (B.7).

B.3. Many results for a series of real numbers have their counterparts in
matrix form. For example, for a real number series, we have 1

1−x = 1 + x +
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x2 + . . . if |x| < 1; and for a matrix series we have (I−P )−1 = I+P +P 2 + . . .
if ρ(P ) < 1. In real analysis we have the following Stolz theorem: For two
series of real numbers xn and yn, n = 1, 2, . . . , if yn+1 > yn, n = 1, 2, . . . ,
limn→∞ yn =∞, and limn→∞

xn+1−xn

yn+1−yn
exists, then

lim
n→∞

xn

yn
= lim

n→∞

xn+1 − xn

yn+1 − yn
.

a. Prove the Stolz theorem.
b. Prove that if limn→∞ xn exists, then limn→∞

1
n

∑n
k=1 xn = limn→∞ xn.

c. Prove the matrix formula (B.8).

B.4. Let P be an irreducible periodic stochastic matrix. We have p(i|i) = 0
for all i ∈ S. To break the periodicity, it is enough to introduce a “feedback
probability” p(i|i) = ε for only one state i (but not for all states). Therefore,
we define an aperiodic matrix by setting p′(i|i) = ε, p′(j|i) = (1 − ε)p(j|i),
j �= i for one particular state i, and p′(k|j) = p(k|j) for k ∈ S, j �= i.

a. Express the steady-state probabilities π′(i) of P ′ in terms of ε and the
steady-state probabilities π(i) of P .

b. Let f denote the reward function and η = πf be the long-run average
reward for the Markov chain with transition probability matrix P . Define
a reward function f ′ so that the long-run average reward of the Markov
chain with transition probability matrix P ′, η′ = π′f ′, equals η.



Do not worry about your
difficulties in mathematics. I
can assure you mine are still
greater.

Albert Einstein
American (German born)

physicist (1879 - 1955)

C
Queueing Theory

In this section, we review some material from the standard queueing theory
[169] that is related to the topics in this book. This section also contains results
about performance sensitivity formulas and their computational algorithms,
which are particularly relevant to performance optimization.

C.1 Single-Server Queues

The Model

A single-station queue is the basic component of queueing systems. Figure C.1
illustrates a model of a single-station queue containing only one server. In the
figure, the circle represents the server and the open box represents a buffer.
Customers arrive at a sequence of random times denoted as 0 ≤ t1 ≤ t2 ≤ . . . .
The server serves one customer at a time, and the other customers have to wait
in the queue held in the buffer. The nth customer, arriving at the server at
tn, requires a certain amount of service that will take the server sn time units
to process. A customer leaves the server once it finishes its service. The nth
customer’s departure time is denoted as t′n, n = 1, 2 . . . . Define τn := tn+1−tn
as the inter-arrival time and t′n+1−t′n, as the inter-departure time. {t1, t2, . . .}
is called an arrival process and {t′1, t′2, . . .} is called a departure process. A
multi-server station contains multiple servers sharing a common queue.

A buffer may have an infinite capacity or a finite capacity accommodating
K customers. A customer arriving at a full buffer will be lost (e.g., in the case
of a single-server queue) or will have to wait elsewhere (e.g., in some other
server in a network of queues).
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Fig. C.1. A Single-Server Queue

It is conventional to adopt the four-part description A/B/m/K to specify
a single-station queue. In this description, m denotes the number of servers
in the station, K defines the buffer size, and A and B specify the types of the
distributions of the inter-arrival times τn and the service times sn.

The most common arrival process is the Poisson process, in which the inter-
arrival times τn = tn+1 − tn, n = 1, 2, . . . , are independent and exponentially
distributed. The rate of the exponential distribution λ is called the rate of the
Poisson process.

The most common single-server queue is the M/M/1 queue, where M/M
indicates that both the inter-arrival times and the service times are indepen-
dent and identically distributed (i.i.d.) with exponential distributions. (Hence
the arrival process is a Poisson process.) The last letter K = ∞ is omitted
for simplicity. Examples of other queues are the M/G/1 queue, where G indi-
cates that the service times are independent and identically distributed with
a general (non-exponential) distribution, and the GI/M/1 queue, where GI
indicates that the arrival times form a renewal process (i.e., the inter-arrival
times are i.i.d. with a general distribution). Other commonly used symbols
for A and B are: D for deterministic distributions, Er for r-stage Erlangian
distributions, HR for R-stage hyper-exponential distributions [169], and PH
for phase-type distributions [209].

Service Disciplines

A service discipline determines which customer is served at any given time. We
first assume that the work-conservative law holds; i.e., a server will provide
service at its full capacity as long as its queue is not empty. Thus, if any
server in the service station is idle, then an arriving customer gets served
immediately.

Some commonly used service disciplines for a server are as follows.

1. First come first served (FCFS): The customer who arrives at the queue
first is served first by the server.

2. The priority scheme: Customers are assigned different priorities and the
customers with the highest priority in the queue get served first. A prior-
ity scheme may be either preemptive or non-preemptive. In a preemptive
scheme, a customer being served is liable to be ejected from service when
a customer with a higher priority enters the queue. In a non-preemptive
scheme, the arriving customer has to wait in the queue until the server
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completes its service to its current customer, even if the arriving customer
has a higher priority. A preemptive scheme may allow service to resume
or not to resume. In a preemptive resume scheme, the service that a pre-
empted customer has received is not lost when the service is resumed. In
a preemptive non-resume scheme, the preempted customer has to start
the whole service again when it restarts service. The customers in the
same priority class may follow the FCFS scheme, or the LCFS scheme
introduced below, or any other possible schemes.

3. Last come first served (LCFS): The customer who arrives at the queue last
receives the service first. This scheme has different versions: preemptive
resume, preemptive non-resume, and non-preemptive.

4. Processor sharing (PS): The service power of the server is shared equally
by all the customers in the queue. Thus, if the service rate of a server is
μ and there are n customers in the queue, then the service rate for each
customer is μ/n. In modelling computer systems, a round-robin scheme
with a small quantum size can be approximated by a PS scheme.

The M/M/1 Queue

In an M/M/1 queue, the arrival process is Poisson and the service time distri-
bution is exponential. Because of the memoryless property of the exponential
distribution, the state of an M/M/1 queue can be simply chosen as the num-
ber of customers in the queue, denoted as n. The state process is a Markov
process.

Let λ and μ(> λ) be the arrival and the service rate, respectively. The
stationary distribution of n, π(n), can be easily obtained by solving the prob-
ability flow-balance equations; we have

π(n) = ρn(1− ρ), ρ =
λ

μ
, n = 0, 1, . . . .

Let n̄ :=
∑∞

n=0 nπ(n) be the average number of customers in the queue (in-
cluding the customer receiving service), n̄b be the average number of customers
in the buffer (excluding the customer receiving service), τ̄ be the average time
that the customers spend in the system (including the service time), and W
be the average waiting time (excluding the service time) of the customers.
Then,

n̄ =
ρ

1− ρ
,

n̄b =
ρ2

1− ρ
,

τ̄ =
1

μ− λ
,

and
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W = τ̄ − 1
μ

=
ρ

μ− λ
=

ρ/μ

1− ρ
.

In this book, we mainly deal with discrete-time model. A discrete M/M/1
queue can be modelled as a Markov chain with p(1|0) = pa, p(0|0) = 1 − pa,
p(n−1|n) = pd, p(n+1|n) = pa, and p(n|n) = 1−pa−pd, with 0 < pa, pd < 1,
pa + pd ≤ 1, n = 1, 2, . . . . In the model, “pa” denotes the arrival probability,
and “pd” denotes the departure probability.

The M/D/1 Queue

The arrival process is a Poisson process with rate λ and the service times are
a constant s̄. Set ρ = λs̄. We have

n̄ =
ρ

1− ρ
− ρ2

2(1− ρ)

and
W =

ρs̄

2(1− ρ)
.

Thus, the average waiting time of a customer in an M/D/1 queue is only half
of that in an M/M/1 queue. (Randomness increases the waiting time!)

The M/M/1/K Queue

An M/M/1/K queue is the same as an M/M/1 queue except its buffer size
is finite, denoted as K. If a customer arrives when the system contains K
customers (including the one being served), the arriving customer is simply
lost. The steady-state probabilities are π(n) = 0 if n > K and

π(n) =
(1− ρ)ρn

1− ρK+1
, 0 ≤ n ≤ K, ρ =

λ

μ
.

The M/G/1 Queue

The arrival process is a Poisson process with rate λ and let b(s) be the prob-
ability density function of the service time. Define the mean and the second
moment of the service time as

s̄ =
∫ ∞

0

sb(s)ds, s̄2 =
∫ ∞

0

s2b(s)ds,

respectively. Set ρ = λs̄. We have

n̄ = ρ +
λ2s̄2

2(1− ρ)
,
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and

W =
ρs̄

2(1− ρ)
(1 + C2

b ) =
ρs̄

2(1− ρ)
s̄2

s̄2
,

where C2
b = s̄2−s̄2

s̄2 . We can see that both n̄ and W are linear in s̄2.
Readers are referred to standard textbooks [110, 169] for formulas for other

single-station queues.

Little’s Law

We observe that for an M/M/1 queue, we have

n̄ = λτ̄ (C.1)

and
n̄b = λW. (C.2)

These two equations are Little’s Law for an M/M/1 queue.
In general, Little’s law applies to any system, including queueing networks

or subnetworks. It says that the average number of customers in any system
(or any subsystem) equals the product of the average time that a customer
stays in the system (or the subsystem) and the average arrival rate of the
customers to the system (or the subsystem). The customer arrival process
may be any point process, not necessarily a renewal process (in which the
inter-arrival times are i.i.d.).

Applying Little’s law to the subsystem consisting of only the buffer in
the M/M/1 queue, we obtain (C.2). Applying it to the system consisting of
both the buffer and the server, we have (C.1). This is shown in Figure C.2. In
general, we may view the dashed box in the figure as a black box that may
be any complex system and (C.1) still holds.

If there are different classes of customers, Little’s law applies to each class
as well as to all classes of customers together. Let λk be the arrival rate of
the class k customers, n̄k be the average number of the class k customers in
a system, and τ̄k be the average time that the class k customers stay in the
system, k = 1, . . . ,K. Furthermore, let λ =

∑K
k=1 λk be the arrival rate of

all classes of customers, n̄ =
∑K

k=1 n̄k be the average number of all classes
of customers in the system, and τ̄ be the average time that all classes of
customers stay in the system. Then, by Little’s law, we have

n̄k = λk τ̄k, k = 1, 2, . . . ,K,

and
n̄ = λτ̄ ,

where

τ̄ =
K∑

k=1

λk(∑K
l=1 λl

) τ̄k;
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Fig. C.2. Little’s Law for an M/M/1 Queue

this, of course, makes sense in terms of probability.

C.2 Queueing Networks

A queueing network is a system consisting of a number of service stations.
Customers in a queueing network move among servers or leave the network
according to certain routing mechanisms. Customers may belong to different
classes, meaning that they may have different routing mechanisms, different
service time distributions, or different service priorities. A queueing network
may belong to one of the three types: open, closed, or mixed. In an open
network, customers arrive at the network from outside and eventually leave
the network; in a closed network, customers circulate among stations and
no customer arrives or leaves the network; a mixed network is open to some
classes of customers and is closed to other classes.

Jackson Networks

We consider an open network consisting of M single-server stations and N
single-class customers. Each server has a buffer with an infinite capacity and
the service discipline is FCFS. Customers arrive at server i in a Poisson process
with a rate λ0,i, i = 1, 2, . . . ,M . After the completion of the service at server
i, a customer enters server j with probability qi,j and leaves the network with
probability qi,0. We have

∑M
j=0 qi,j = 1, i = 1, 2, . . . ,M . The service time of

server i is exponentially distributed with mean s̄i = 1/μi, i = 1, 2, . . . ,M .
Such a network is called an (open) Jackson network [160].

Because of the memoryless property of the exponential distribution, the
system state can be denoted as n = (n1, n2, . . . , nM ), where ni is the number
of customers in server i. Let λi be the overall arrival rate (including both
external and internal arrivals) of the customers to server i. Then,
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λi = λ0,i +
M∑

j=1

λjqj,i, i = 1, 2, . . . ,M.

It is known that in an acyclic open Jackson network (in which a customer
does not visit the same server more than once), the overall arrival process
to each server is a Poisson process. However, if there are feedback loops in
the network, the overall arrival process to a server is generally not a Poisson
process [166]. Thus, each server behaves differently from an M/M/1 queue.
Nevertheless, the steady-state distribution, π(n), of the network looks the
same as if every server is an M/M/1 queue. Indeed, we have

π(n) = π(n1, n2, . . . , nM ) =
M∏

k=1

π(nk), (C.3)

with
π(nk) = (1− ρk)ρnk

k , ρk =
λk

μk
, k = 1, 2, . . . ,M.

This shows that in an open Jackson network, each server behaves as if it
is an independent M/M/1 queue with arrival rate λk and service rate μk,
k = 1, 2, . . . ,M .

Closed Jackson (Gordon-Newell) Networks

In a closed Jackson (or Gordon-Newell) network [122], there are N cus-
tomers circulating among M servers according to the routing probabilities
qi,j ,

∑M
j=1 qi,j = 1, i = 1, 2, . . . ,M ; and no customers are allowed to enter the

network from the outside or to leave the network. We have
∑M

k=1 nk = N . We
assume that the network is irreducible, in the sense that the routing proba-
bility matrix Q := [qi,j ] is irreducible. In such a network, every customer will
visit every server in the network.

We consider a more general model for the servers, called load-dependent
servers. In this model, a customer requires a certain amount of service, r, from
a server. The service time of a customer equals its service requirement divided
by the service rate of the server. We assume that the service requirement r
is exponentially distributed with a mean r̄ equal to one. The service rate of
a server may depend on the number of customers in the server (called the
“load” of the server). Let μi,ni

be the service rate of server i when there are
ni customers in the server, 0 ≤ μi,ni

< ∞, ni = 1, 2, . . . , N , i = 1, 2, . . . ,M .
Note that the assumption of the mean service requirement being one does not
lose generality, since a service requirement with mean r̄ > 0 and service rate
μi,ni

is equivalent to a service requirement with mean one and a service rate
μi,ni

/r̄, in the sense that they have the same service time distribution.
In a network with load-independent servers, μi,ni

≡ μi for ni, i =
1, 2, . . . ,M . The service time at server i is exponentially distributed with
mean s̄i = 1/μi, i = 1, 2, . . . ,M .
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Figure C.3 illustrates a three-server closed Jackson network with mean
service times s̄i, and routing probabilities qi,j , i, j = 1, 2, 3.
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Fig. C.3. A Three-Server Closed Jackson Network

Because the capacity of any real-world system is always finite, open net-
works, even the M/M/1 queue, are always approximate in modelling and per-
formance analysis of real systems. On the other hand, closed networks may
provide exact models. For example, consider a manufacturing system consist-
ing of M machines modelled as servers. Each workpiece has to be loaded on a
pallet in order to be processed by the machines. Each workpiece moves among
machines on a pallet, and when the workpiece finishes its service in the system
it moves to a load-and-unload machine that unloads the workpiece from the
pallet and loads another raw workpiece on it. There are N pallets moving
around in the system. Assume that there are always more than N workpieces
available, including those in the system and those waiting to be loaded at the
load-and-unload station. Such a system clearly can be modelled as a closed
network with M servers and N customers. Closed networks can also be used
to model packet switches in communication [52, 68] (see Problem C.6).

The Product-Form Solution

The state of a closed Jackson network is n = (n1, n2, . . . , nM ). Let S denote
the state space; it contains (N+M−1)!

N !(M−1)! states. Let π(n) be the steady-state
probability of state n. We use n−i,+j = (n1, . . . , ni − 1, . . . , nj + 1, . . . , nM ),
ni > 0, to denote a “neighboring” state of n. Let

ε(nk) =
{

1, if nk > 0,
0, if nk = 0,
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and define

μ(n) =
M∑

k=1

ε(nk)μk,nk
.

Then the flow balance equation for the steady-state probabilities π(n) is

μ(n)π(n) =
M∑

i=1

M∑

j=1

ε(nj)μi,ni+1qi,jπ(n−j,+i). (C.4)

Gordon and Newell [122] derived a solution to the above equations. Let
vi > 0, i = 1, 2, . . . ,M , be the visit ratio to server i, i.e., a solution (within a
multiplicative constant) to the equations

vi =
M∑

j=1

qj,ivj , i = 1, 2, . . . ,M. (C.5)

The solution to these equations is not unique. In fact, if v := (v1, v2, . . . , vM )
is a vector of visit ratios, then for any κ > 0, (κv1, κv2, . . . , κvM ) is also a
set of visit ratios. Equation (C.5) is similar to the probability flow balance
equation of a Markov chain π = πP . Indeed, written in a vector form, (C.5)
is v = vQ.

Let Ai(0) = 1, i = 1, 2, . . . ,M, and

Ai(k) =
k∏

j=1

μi,j , i = 1, 2, . . . ,M.

For every n = 1, 2, . . . , N and m = 1, 2, . . . ,M , let

Gm(n) =
∑

n1+···+nm=n

m∏

i=1

vni
i

Ai(ni)
. (C.6)

Then, the solution to (C.4) satisfying the normalization condition
∑

n∈S π(n)
= 1 is [122]

π(n) =
1

GM (N)

M∏

i=1

vni
i

Ai(ni)
. (C.7)

Equation (C.7) is often called a product-form solution.
For load-independent networks, μi,ni

≡ μi, i = 1, 2, . . . ,M . The product-
form solution becomes
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Gm(n) =
∑

n1+···+nm=n

m∏

i=1

xni
i ,

and

π(n) =
1

GM (N)

M∏

i=1

xni
i ,

where xi = vi/μi = vis̄i, i = 1, 2, . . . ,M .

Marginal Distributions

From (C.7) we can obtain many other steady-state probabilities. For example,
the marginal distribution of the number of customers at server M is

π(nM = k) =
∑

all n: nM=k

π(n)

=
vk

M

AM (k)
GM−1(N − k)

GM (N)
, (C.8)

where GM−1(N − k) is calculated for the first M − 1 servers with the visit
ratios v1, v2, . . . , vM−1.

The Gm(n) in (C.6) is the standard short-hand notation used in the litera-
ture. To make it precise and general, we set Γ = {1, 2, . . . ,M} and let Γ0 ⊆ Γ
be a subset of Γ . Define

GΓ0(n) =
∑

∑
i∈Γ0

ni=n

∏

i∈Γ0

vni
i

Ai(ni)
.

Thus, GM (N) = GΓ (N), and in (C.8) GM−1(N − k) = GΓ−M
(N − k) with

Γ−M := Γ − {M} = {1, 2, . . . ,M − 1}.
With this notation, we can get the expression for the steady-state marginal

distribution for any subnetwork. Let Γ0 := {i1, i2, . . . , iK} ⊂ Γ and nΓ0 =
n{i1,...,iK} = (ni1 , . . . , niK

) be the state of the subnetwork. Then, we have

π
(
n{i1,...,iK}

)
=

GΓ−{i1,...,iK}(N −
∑K

k=1 nik
)

GΓ (N)

∏

i∈{i1,...,iK}

vni
i

Ai(ni)
. (C.9)

The marginal distribution is

π
( K∑

k=1

nik
= n

)
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=
GΓ−{i1,...,iK}(N −

∑K
k=1 nik

)
GΓ (N)

∑

∑K

k=1
nik

=n

∏

i∈{i1,...,iK}

vni
i

Ai(ni)

=
GΓ−{i1,...,iK}(N − n)

GΓ (N)
G{i1,...,iK}(n). (C.10)

Thus, the conditional distribution of n{i1,...,iK} given
∑K

k=1 nik
= n is

π
(
n{i1,...,iK}

∣∣∣
K∑

k=1

nik
= n

)
=

1
G{i1,...,iK}(n)

∏

i∈{i1,...,iK}

vni
i

Ai(ni)
. (C.11)

For networks with load-independent servers, we have

G{i1,...,iK}(n) =
∑

∑
i∈{i1,...,iK}

ni=n

∏

i∈{i1,...,iK}
xni

i ,

and (C.9) becomes

π(n{i1,...,iK}) =
GΓ−{i1,...,iK}(N −

∑K
k=1 nik

)
GΓ (N)

∏

i∈{i1,...,iK}
xni

i .

The marginal distribution keeps the same form as (C.10), and the conditional
distribution (C.11) becomes

π
(
n{i1,...,iK}

∣∣∣
K∑

k=1

nik
= n

)
=

1
G{i1,...,iK}(n)

∏

i∈{i1,...,iK}
xni

i .

It is clear that this conditional distribution remains the same as long as the
relative ratio xi1 : xi2 : · · · : xiK

is the same. In particular, the conditional
distribution does not depend on the service times of the servers outside the
subnetwork consisting of servers i1, . . . , iK .

Buzen’s Algorithm

Buzen [40] developed an efficient algorithm for calculating GM (N). The algo-
rithm is stated below in (C.12) and will be referred to as Buzen’s algorithm.
First, from (C.6) we observe

Gm(n) =
n∑

k=0

vk
m

Am(k)
Gm−1(n− k), (C.12)

with
Gm(0) = 1, m = 1, 2, . . . ,M,

and
G1(n) = vn

1 /A1(n), n = 0, 1, . . . , N.
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Starting from G2(0) = 1 and G1(1) = v1/μ1,1, from (C.12), we can cal-
culate G2(1) = G1(1) + v2

μ2,1
G1(0) = v1

μ1,1
+ v2

μ2,1
, then we can get G2(2) =

G1(2) + v2
μ2,1

G1(1) + v2
2

μ2,1μ2,2
G1(0), and so on, up to G2(N). From G2(n),

n = 0, 1, . . . , N , and G3(0) = 1, we can calculate G3(n), n = 1, . . . , N , and so
on, up to GM (N).

For networks with load-independent servers, Buzen’s algorithm is

Gm(n) = Gm−1(n) + xmGm(n− 1), (C.13)

with
Gm(0) = 1, m = 1, 2, . . . ,M,

and
G1(n) = (x1)n, n = 0, 1, . . . , N.

Starting from G2(0) = 1 and G1(1) = x1, from (C.13), we can calculate
G2(1) = G1(1) + x2G2(0) = x1 + x2, then we can get G2(2) = G1(2) +
x2G2(1) = x2

1 + x2(x1 + x2), and so on, up to G2(N). From G2(n), n =
0, 1, . . . , N , and G3(0) = 1, we can obtain G3(n), n = 1, . . . , N and so on, up
to GM (N).

For networks with load-independent servers, from (C.13), we have in (C.8)
that GM−1(N − k) = GM (N − k)− xMGM (N − k − 1) for 0 ≤ k < N . Note
that, in this expression, GM−1(N − k) implicitly depends on the choice of
server M via xM , and both GM (N − k) and GM (N − k − 1) do not depend
on the order of the servers. Thus, we can choose any server i as the server M
in (C.8) and obtain

π(ni = k) =
xk

i

GM (N)
[GM (N − k)− xiGM (N − k − 1)], 0 ≤ k < N,

and
π(ni = N) =

1
GM (N)

xN
i .

These equations hold for any i = 1, 2, . . . ,M . From this, we obtain

π(ni ≥ k) =
N∑

l=k

π(ni = l) = xk
i

GM (N − k)
GM (N)

. (C.14)

Therefore, the mean queueing length of server i in an N -customer network,
n̄i(N), is

n̄i(N) :=
N∑

k=1

kπ(ni = k) =
N∑

k=1

π(ni ≥ k)
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=
N∑

k=1

xk
i

GM (N − k)
GM (N)

. (C.15)

From (C.14), the steady-state throughput of server i is

ηi = μiπ(ni ≥ 1) = vi
GM (N − 1)

GM (N)
. (C.16)

The Closed Form of the Normalizing Constant

The most important step in calculating the steady-state probability π(n) in
(C.7) and other probabilities such as (C.14) and (C.15) is to calculate the nor-
malizing constant of the form GM (N). Besides the computational algorithms
(C.12) and (C.13), some closed-form expressions for GM (N) have been found
[111, 121, 125]. Here we simply quote one result for single-server closed Jack-
son queueing networks. Recall that xi = vi

μi
, with vi being the visit ratio to

server i, i = 1, 2, . . . ,M . It is shown in [121, 125] that if all xi, i = 1, 2, . . . ,M ,
are distinct, then

GM (N) =
M∑

i=1

xN+M−1
i∏

j 
=i(xi − xj)
.

The form is more complicated if some xi, i = 1, 2, . . . ,M , are equal [121].
For the normalizing constants of other types of networks such as multi-server
and/or multi-class networks, see [111, 121].

Sensitivity Formulas

Now, we present sensitivity formulas for closed Jackson networks. Let f be a
performance function, f : S → R. The steady-state mean performance is

E(f) =
∑

n∈S
f(n)π(n).

The elasticities of E(f) with respect to μi,k, i = 1, 2, . . . ,M , k = 1, 2, . . . , N ,
can be obtained by taking the derivatives of the product-form formula. We
have (see, e.g., [66, 190])

μi,k

E(f)
∂E(f)
∂μi,k

= πN (ni ≥ k)− E[fχ(ni ≥ k)]
E(f)

, (C.17)

where χ(ni ≥ k) = 1 if ni ≥ k, and 0 otherwise; πN (ni ≥ k) is the steady-state
probability of ni ≥ k in a network with N customers; and

E[fχ(ni ≥ k)] =
∑

n∈S: ni≥k

f(n)π(n).
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The system throughput is defined as

η :=
∑

n∈S
μ(n)π(n) =

∑

n∈S

{[
M∑

i=1

μi,ni
ε(ni)

]
π(n)

}

=
M∑

i=1

{
∑

n∈S

[
μi,ni

ε(ni)π(n)
]}

=
M∑

i=1

[
N∑

k=1

μi,k

∑

n: ni=k

π(n)

]

=
M∑

i=1

[
N∑

k=1

μi,kπ(ni = k)

]
=

M∑

i=1

ηi,

where ηi =
∑N

k=1 μi,kπ(ni = k). We have [66]

μi,k

η

∂η

∂μi,k
= πN (ni ≥ k)− πN−1(ni ≥ k). (C.18)

For networks with load-independent servers, from (C.16) we have

η =
GM (N − 1)

GM (N)

(
M∑

i=1

vi

)
.

Because μi,k ≡ μi for all 0 ≤ k ≤ N , it is easy to derive

μi

η

∂η

∂μi
=

N∑

k=1

μi,k

η

∂η

∂μi,k
.

From (C.18), we have [66]

μi

η

∂η

∂μi
= n̄i(N)− n̄i(N − 1), (C.19)

where n̄i(N) is the steady-state mean of the number of customers in server i
in a network with N customers.

Other sensitivity formulas obtained from the product-form solution can be
found in, for example, [65, 66, 190, 234, 242, 258].

Computational Algorithms for E(f)

In general, to calculate E(f), we need to calculate π(n) for every state n. This
is not efficient for large networks. However, for a large class of performance
functions, algorithms based on Buzen’s algorithm can be developed, and the
computational effort can be significantly reduced [66].
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Suppose that the performance function takes the following form:

f(n) = f(n1, . . . , nM ) =
K∑

k=1

fk(n1, . . . , nM ), K ≥ 1,

where

fk(n1, . . . , nM ) =
M∏

i=1

hk,i(ni), k = 1, 2, . . . ,K.

For each i = 1, 2, . . . ,M and k = 1, 2, . . . ,K, hk,i is a function on {0, 1, . . . , N}.
We have

E(f) =
1

GM (N)

K∑

k=1

∑

n1+···+nM=N

[
fk(n1, . . . , nM )

M∏

i=1

vni
i

Ai(ni)

]

=
1

GM (N)

K∑

k=1

∑

n1+···+nM=N

M∏

i=1

hk,i(ni)vni
i

Ai(ni)
. (C.20)

For each k = 1, 2, . . . ,K, m = 1, 2, . . . ,M , and n = 1, 2, . . . , N , define

Gk,m(n) :=
∑

n1+···+nm=n

m∏

i=1

hk,i(ni)vni
i

Ai(ni)
.

Similar to (C.12), for each k, the Gk,m(n)’s can be recursively computed via
the recursion

Gk,m(n) =
n∑

j=0

hk,m(j)vj
m

Am(j)
Gk,m−1(n− j),

with

Gk,1(n) =
hk,1(n)vn

1

A1(n)
, n = 0, 1, . . . , N,

and

Gk,m(0) =
m∏

i=1

hk,i(0), m = 1, 2, . . . ,M.

This is exactly the same as Buzen’s algorithm for Gm(n), except with an
additional weighting factor hk,m(j). Finally, from (C.20) we have

E(f) =
1

GM (N)

K∑

k=1

Gk,M (N). (C.21)

With this algorithm, the computational complexity of calculating E(f)
can be reduced to the same as that of applying Buzen’s algorithm K + 1
times (for GM (N) and Gk,M (N), k = 1, 2, . . . ,K). The algorithm (C.21) can
also be used in (C.17) to calculate the performance sensitivities.
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BCMP Networks

Another important class of networks whose steady-state distribution possesses
a product-form is the BCMP network [16]. In a BCMP network, there are
M service stations and K classes of customers. While moving from station
to station, customers may change their classes. The customers arrive to the
network in Poisson processes. The service discipline may be FCFS, PS, LCFS
preemptive-resume, or IS (a service station that has an infinite number of
servers). The service time distribution for any PS, IS, and LCFS station may
be any Coxian distribution, and that for an FCFS station must be exponential
with the same mean for all classes of customers. It is shown in [16] that the
stationary distribution of a BCMP network has a product form.

The Arrival Theorem

As we know, the steady state probabilities of an embedded chain may not be
equal to those of the original Markov process (see Problem A.9). By the same
token, the probabilities of the states at selected time instants in a queueing
system at the steady state, such as the arrival or departure times at a server in
a queueing network, may not be necessarily equal to the steady-state probabil-
ities of the system states. However, it has been shown, that for a large class of
queueing networks having product-form steady-state probabilities, these two
steady-state probabilities are in fact the same, see, e.g., [81, 201, 227]. This is
called the arrival theorem and we state it below for open and closed Jackson
networks.

Arrival Theorem
(a) In a closed Jackson network with a single class of customers and

single-server stations, the steady-state distribution seen by the ar-
riving customers to a server (after leaving another server), or the
steady-state distribution left behind by the departing customers from
a server (before joining another server), is the same as the steady-
state probability distribution of a network with one less customer in
it.

(b) In an open Jackson network with a single class of customers and
single-server stations, the steady-state distribution seen by the ar-
riving customers, or left behind by the departing customers, of a
server is the same as the steady-state probability distribution of the
network.

The words “seen by” and “left behind by” a customer mean that the customer
itself is not counted as in the network.
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Let us describe the theorem in a precise mathematical term. Consider a
closed Jackson network with N customers. Let tk, k = 1, 2, . . . , be the arrival
(departure) instants of the customers at server i, i = 1, 2, . . . ,M . Let X(t) be
the state of the network at time t. For arrival instants, we set Xtk

:= X(tk+) to
be the state of the network after the transitions, and for departure instants, we
set Xtk

:= X(tk−) to be the state of the network before the transitions. Note
that, by definition, the ith components of Xtk

, k = 1, 2, . . . , is always positive.
Define Xtk,−i := Xtk

− e·i, with e·i being a vector whose components are all
zeros except the ith component being one. Xtk,−i denotes the state “seen
by” the arriving customer, or “left behind by” the departing customer (not
including the customer itself). Then X−i := {Xt1,−i,Xt2,−i, . . . , Xtk,−i, . . .} is
a Markov chain. The arrival theorem claims that the steady-state distribution
of X−i is the same as that of the same network having N − 1 customers.

The same notation can be applied to open Jackson networks. For instance,
we may define tk, k = 1, 2, . . . , to be the overall arrival (or departure) instants
to a server and Xtk

:= X(tk+) to be the state of the network after the arrival
instants. In addition, we can also define tk, k = 1, 2, . . . , only to be the external
arrival instants to a server, or to the network, and Xtk,−i := Xtk

− e·i, with
i being the server where the arriving customer enters at tk+, to be the state
“seen by” the arriving customer. The arrival theorem claims that the steady-
state distribution of X−i := {Xt1,−i,Xt2,−i, . . .} is the same as that of the
network.

PASTA

The arrival theorem for external arrivals in an open network is a special case
of a more general result, Poisson Arrivals See Time Averages (PASTA). In
fact, because the steady-state probability of a state equals the fraction of time
that the network is in that state, the arrival theorem for the external arrivals
in an open network claims that the steady-state probability of a system state
seen by the arriving customers (in a Poisson process) equals the fraction of
time that the network is in that state.

The general form of PASTA is as follows [259]. Consider a Poisson arrival
process to any stochastic system such as a queueing network. The arriving
customers may interact with the system; however, we assume that the future
arrival times are independent of the past history of the system. Then, the
steady-state probability of a system state seen by the arrival customers equals
the fraction of time that the system is in that state.

Note, however, that an internal arrival process (customers arriving from
other servers), or an internal departure process (customers leaving a server to
go to other servers), is usually not a Poisson process, and is not even a renewal
process. That is, the inter-arrival or departure times tk − tk−1, k = 2, 3, . . . ,
may be dependent [166].
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C.3 Some Useful Techniques

In this section, we describe some useful techniques for analyzing the perfor-
mance of queueing systems.

Routing Feedback
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Fig. C.4. Equivalent Servers

Consider a single server in a queueing network, denoted as server i, shown
in Figure C.4.A; the service times of this server are i.i.d. with an exponential
distribution with mean s̄, and the routing probabilities are qi,j , with qi,i = 0,
i, j = 1, 2, . . . ,M .

Suppose that we add a feedback loop to the server; i.e., every time a
customer finishes its service at the server, we let the customer, with probability
qi,i = q > 0, go back to the server immediately to receive another service, and
with probability 1− q, leave the server. In this way, before leaving the server,
a customer will receive service once from the server with probability 1 − q,
twice with probability q(1 − q), and k times with probability qk−1(1 − q),
k = 1, 2, . . . . Next, we change the mean service time of the server to (1− q)s̄.
This is shown in Figure C.4.B. It is easy to show that, with this feedback
setting, the total service time that a customer receives from the server is still
exponentially distributed with mean s̄. Therefore, Figure C.4.B is equivalent
to Figure C.4.A.

Next, if there is only one class of customers in the system, all the customers
are identical. Thus, there is no distinction if we put the feedback customer at
the end of the queue and pick up another customer in the queue, if any, to
serve according to any service discipline. That is, the queue in Figure C.4.B
behaves in the same way as if we put the feedback customer at the end of the
queue, shown in Figure C.4.C.
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In summary, the two queues in Figure C.4.A and Figure C.4.C are equiv-
alent. That is, in a single-class queueing network, a server with exponentially
distributed service time with mean s̄ and routing probabilities qi,j (qi,i = 0) is
equivalent to a server with exponentially distributed service time with mean
(1−q)s̄ and routing probabilities q′i,i = q and q′i,j = (1−q)qi,j , j �= i. The same
argument holds if qi,i > 0; the routing probabilities become q′i,i = q+(1−q)qi,i

and q′i,j = (1− q)qi,j , j �= i.

Aggregation: Norton’s Theorem

For networks having product-form steady-state distributions, there is a result
similar to Norton’s theorem for electrical circuits [11, 76]. That is, under
some conditions, a subset of a network can be replaced by a single server
without affecting the steady-state marginal distribution of the remainder of
the network; the service rate of the single server can be determined by the
throughput of a network obtained by “shorting” (i.e., setting the service time
equal to zero) the complement of the subset in the original network.

A B

�

�

Fig. C.5. A Closed Jackson Network with Two Subsets

We explain the theorem by using Figures C.5-C.7. The network shown
in Figure C.5 consists of two subnetworks, A and B. The customer leaving
subnetwork A goes to subnetwork B, and vice versa. Using Norton’s theo-
rem, we can replace subnetwork A by a load-dependent server, resulting in
the network shown in Figure C.6, in which the steady-state marginal dis-
tribution of subnetwork B is the same as that in the original network. The
load-dependent service rate μk of the equivalent server with k customers in it
equals the throughput on the shorted path in the closed network consisting
of k customers, shown in Figure C.7. The shorted path is obtained by setting
the service times of all the servers in subnetwork B to zero.
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Fig. C.7. The Network with One Subset Shorted

PROBLEMS

C.1. Write the steady-state probability flow-balance equation for an M/M/1
queue.

C.2. Consider an M/G/1 queue with arrival rate λ and mean service time s̄.
Prove that the average of the number of customers served in a busy period is

1
1−λs̄ .

C.3. An M/M/1 queue with arrival rate λ and departure rate μ can be con-
structed as follows. Choose an initial state n0 at time 0 and a rate σ > λ+μ.
Generate a Poisson process with rate σ, denoted as t0, t1, . . . , tl, . . . . An in-
stant tl, l = 0, 1, . . . , is chosen as an arrival point with probability λ

σ and as a
departure point with probability μ

σ . At an arrival point, we increase the pop-
ulation by one: n := n+1, and at a departure point if n > 0 then we decrease
the population by one: n := n − 1, and at other points we keep the popula-
tion unchanged. Prove that the discrete-time Markov chain embedded at tl,
l = 0, 1, . . . , is the discrete M/M/1 queue described on Page 522. Determine
its parameters pa and pd [148].
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C.4. Many results in this book are stated only for discrete-time Markov mod-
els, but queueing systems are usually modelled by continuous-time Markov
models. Therefore, we need to use the embedded Markov chains.

a. Find the transition probabilities of the Markov chain embedded at the
arrival and departure instants of an M/M/1 queue with arrival rate λ
and service rate μ.

b. If we use the reward function f(n) = n, does the long-run average of the
embedded chain equal the mean length of the original M/M/1 queue?

c. If the answer to b) is “No”, what can we do? (cf. Problem C.9)

C.5.∗ Consider the queueing system with an M/M/1 queue and a feedback
loop shown in Figure C.8. This is the simplest non-acyclic open queueing
network. The external arrival process to the system is a Poisson process. After
the completion of its service at the server, a customer leaves the system with
probability 1− q and returns back to the queue with probability q, 0 < q < 1.
The total arrival process to the queue at point A is a composition of both
the external arrival process and the feedback process. Explain that this total
arrival process at point A is not a renewal process. (Hint: When the server is
idle, the inter-arrival time is larger on average. Explain that the consecutive
inter-arrival times at point A are not independent.)
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Fig. C.8. An M/M/1 Queue with Feedback

C.6. A nonblocking cross-bar switch can be modelled as a closed queueing
network. Figure C.9 illustrates the structure of a nonblocking packet switch
consisting of N input links and M output links. Packets arriving at each input
queue are put in a buffer to wait to be transmitted. Suppose that all packets
belong to the same class in terms of the statistics of their destinations: A
packet arriving at any input has probability qi,j of being destined for out-
put j given that the previous packet at that input was destined for output i,
i, j = 1, . . . ,M . Every packet destined to output j requires an exponentially
distributed transmission time with mean s̄j . At a particular time, only the
head of line (HOL) packet (the first packet) in an input queue can be trans-
mitted and the switch can only transmit one packet to every output queue
at a time. The HOL packet of an input queue contends with the HOL pack-
ets of other input queues that have the same destination in a FCFS manner.
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We wish to determine the maximum throughput of this N ×M switch, i.e.,
how many packets can this switch transmit to their destinations per second
if there are always packets at every input waiting for transmission. Develop a
queueing model for this problem [52, 68]. (Hint: The HOL packet of an input
queue makes a request to the switch asking to be transmitted to its destination
at the time when it moves to the head position. All the requests to the same
destination output queue form a logical queue called a request queue. The M
request queues constitute a closed queueing network.)
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Fig. C.9. The Model of a Nonblocking Switch

C.7. A cyclic queueing network of M servers is a closed network that contains
M servers connecting as a circle. A two-server cyclic network is a network of
two servers with routing probabilities q1,2 = q2,1 = 1 and q1,1 = q2,2 =
0. Consider a two-server cyclic network with service rates λ and μ, and a
population K. Show that this closed network is equivalent to an M/M/1/K
queue with arrival rate λ and service rate μ.

C.8. Consider an open Jackson network with M servers. The service times
at server i are exponentially distributed with mean s̄i, i = 1, 2, . . . ,M ; the
routing probabilities are qi,j , i = 1, 2, . . . ,M , j = 0, 1, . . . ,M ,

∑M
j=0 qi,j =

1, with qi,0 being the probability that a customer leaves the network from
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server i after receiving service at the server, i = 1, 2, . . . ,M ; and the external
arrival rate to server i is λ0,i, i = 1, 2, . . . ,M . The state of the network is
n = (n1, . . . , nM ). Let N :=

∑M
k=1 nk.

a. Find the conditional steady-state probability π(n|N).
b. Show that this conditional probability is the same as an equivalent closed

Jackson network with a population N .
c. Find the routing probabilities of this equivalent closed Jackson network

and give an explanation for these routing probabilities.
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Fig. C.10. The Arrival Theorem and PASTA

C.9.∗ Figure C.10 illustrates a sample path N(t) of an M/M/1 queue, in
which the upward arrows indicate the departure instants and the downward
arrows indicate the arrival instants. Let the arrival rate and service rate be λ
and μ, respectively. We simulate the M/M/1 queue with the uniformization
approach (cf. Problem A.8):

i. Generate a Poisson process with rate λ + μ, shown in Figure C.10 as
{t1, t2, t3, . . .}. Set N(0) = n0 to be the initial state (n0 = 0 in Figure
C.10).

ii. At tk, k = 1, 2, . . . , generate an independent and uniformly distributed
random variable ξk ∈ [0, 1),
(1) If ξk < λ

λ+μ , then tk is an arrival instant; set N(tk+) := N(tk) + 1.
(2) If ξk > λ

λ+μ and N(tk) > 0, then tk is a departure instant; set
N(tk+) := N(tk)− 1.

(3) If ξk > λ
λ+μ and N(tk) = 0, do nothing.

The process N(t) thus generated is left-continuous. In Figure C.10, τa
k ,

k = 1, 2, . . . , indicate the arrival instants and τd
k , k = 1, 2, . . . , indicate the

departure instants; at t3 and t4 the server is idle and nothing changes, these
instants are called “dummy instants”.
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a. Explain why the process N(t) generated by the above algorithm is indeed
an M/M/1 queue with arrival rate λ and service rate μ (cf. Problem C.3).

b. Define Xk := N(tk). Prove that the embedded chain X := {X1,X2, . . .}
is a Markov chain and its steady-state distribution is the same as that of
the M/M/1 queue (PASTA).

c. Prove that the average of the number of visits to any particular state n
at the non-dummy instants t1, t2, t5, t6, . . . , equals the steady-state prob-
ability of the state n, n = 0, 1, . . . . Further, prove that the average of
the number of visits to any particular state n at the arrival instants τa

k ,
k = 1, 2, . . . , (or the departure instants τd

k , k = 1, 2, . . .) equals the steady-
state probability of the state n, n = 0, 1, . . . (the arrival theorem).

d. Extend this explanation to (open or closed) Jackson networks.



Notation
a Event
α Action
A Action space
A(i) Set of available actions in state i
Al Action taken at time l
Al = (A0, . . . , Al) Action history up to time l
β Discount factor
B Infinitesimal generator
c(n, i) Realization probability of a perturbation at server i when

the queueing system is in state n
c(f)(n, i) Realization factor of a perturbation at server i when the

queueing system is in state n, for a performance
function f

d, h Policies
D Policy space
D0 Gain-optimal policy space
Dn, n = 1, 2, . . . nth-bias optimal policy space
δ, θ Parameters
e = (1, . . . , 1)T A column vector with all components being one
T DT : transpose of matrix D
e·i A column vector with all components being zero except

its ith component being one
eS S-dimensional unit vector
ec(k2) Controllable events, k2 = 1, . . . , kc

eo(k1) Observable events, k1 = 1, . . . , ko

et(k3) Natural transition events, k3 = 1, . . . , kt

E Set of all single events (state transitions)
E Expectation
El Event at time l
El = (E0, . . . , El) Event history up to time l
η Performance measure (long-run average reward)
ηβ Discounted reward
η∗ Optimal gain
f Performance (reward) function
fd Performance (reward) function of policy d

FL Equal to
∑L−1

l=0 f(Xl) in discrete-time case, or∫ TL

0
f(Xt)dt in continuous-time case

g Performance potential function, vector; and bias
gβ Discounted potential
gd Performance potential function of policy d
gn, n = 0, 1, . . . nth potentials and nth bias
g∗n, n = 0, 1, . . . Optimal nth bias
gd

n, n = 0, 1, . . . nth potentials and nth bias of policy d
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Γ = [γ(i, j)] Performance realization matrix
Hl Information history up to time l, Hl = {Yl,Al−1}
κ Step size
L(i|j) First time a Markov chain reaches state i from initial

state j
L∗

ij Merging point of two Markov chains starting from initial
states i and j, respectively

ni Number of customers in server i
n = (n1, . . . , nM ) State of a queueing network
n−i,+j Neighboring state of n
P = [p(j|i)] Transition probability matrix
P d Transition probability matrix under policy d
ΔP = (ΔP )d,h Equal to Ph − P d: the direction from P d to Ph

Pδ Equal to P + δΔP or P d + δ(ΔP )d,h

P ∗ Cesaro limit of Pn

P Probability measure
π Steady-state probability, row, vector
πd Steady-state probability of policy d
Q = [qi,j ] Routing probability matrix in queueing networks
Q(i, α) Q-factor of state i and action α
� Space of real numbers (−∞,∞)
ρ Traffic intensity, ρ = λ

μ in an M/M/1 queue
ρ(R) Spectrum radius of matrix R
s̄i Mean service time of server i
S Number of states in the state space
S State space
Tl lth transition instant of a continuous-time Markov

process
T (i|j) First time a Markov process reaches state i from initial

state j
T ∗

ij Merging point of two Markov processes starting from
initial states i and j, respectively

Xl State of Markov chain X at time l
Xt State of Markov process X at time t
X A Markov chain or Markov process, a sample path
Xl State history up to time l

Xδ = Xd,h
δ Markov chain, a sample path for P d + δ(ΔP )d,h

Yl Observation at time l
Yl Observation history up to time l
� The Cartesian product
⊗ The Kronecker product
〈i, j〉 Transition from state i to state j
≥ (≤) Two vectors u ≥ (≤) v means u(i) ≥ (≤) v(i) for all i
� (�) Two vectors u � (�) v means u ≥ (≤) v and u �= v
# B#: group inverse of matrix B



Abbreviations
CR Common realization
DEDS Discrete event dynamic system
EAMC Equivalent aggregated Markov chain
FCFS First come first serve
GM Gradient method
GPI Generalized policy iteration
I&AC Identification and adaptive control
i.i.d. Identically and independently distributed
JLQ Jump linear quadratic
LCFS Last come first serve
LDQ Linear discounted quadratic
LQ Linear quadratic
LQG Linear quadratic Gaussian
LR Likelihood ratio
MDPs Markov decision processes
NDP Neuro-dynamic programming
PA Perturbation analysis
PASTA Poisson arrivals see time average
PDF Performance difference formula
PE Poisson equation
PG Policy gradient
PI Policy iteration
POMDPs Partially observable Markov decision processes
PRF Perturbation realization factor
PS Processor sharing
Q-L Q-learning
RL Reinforcement learning
RM Robins-Monro algorithm
SA Stochastic approximation
SARSA State-action-reward-state-action
SD Standard deviation
SFM Stochastic fluid model
SMP Semi-Markov process
TD Temporal difference
WD Weak derivative
w.p.1 With probability 1
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41. E. Campos-Náñez and S. D. Patek, “Dynamically Identifying Regenerative Cy-
cles in Simulation-Based Optimization Algorithms for Markov Chains,” IEEE
Transactions on Automatic Control, Vol. 49, 1022-1025, 2004.

42. X. R. Cao, “Convergence of Parameter Sensitivity Estimates in a Stochas-
tic Experiment,” IEEE Transactions on Automatic Control, Vol. 30, 845-853,
1985.

43. X. R. Cao, “First-Order Perturbation Analysis of a Single Multi-Class Finite
Source Queue,” Performance Evaluation, Vol. 7, 31-41, 1987.

44. X. R. Cao, “Sensitivity Estimates Based on One Realization of a Stochastic
System,” Journal of Statistical Computation and Simulation, Vol. 27, 211-232,
1987.

45. X. R. Cao, “Realization Probability in Closed Jackson Queueing Networks and
Its Application,” Advances in Applied Probability, Vol. 19, 708-738, 1987.

46. X. R. Cao, “A Sample Performance Function of Jackson Queueing Networks,”
Operations Research, Vol. 36, 128-136, 1988.

47. X. R. Cao, “Estimates of Performance Sensitivity of a Stochastic System,”
IEEE Transactions on Information Theory, Vol. 35, 1058-1068, 1989.

48. X. R. Cao, “A Comparison of the Dynamics of Continuous and Discrete Event
Systems,” Proceedings of the IEEE, Vol. 77, 7-13, 1989.

49. X. R. Cao, “Realization Probability and Throughput Sensitivity in a Closed
Jackson Network,” Journal of Applied Probability, Vol. 26, 615-624, 1989.

50. X. R. Cao, “Realization Factors and Sensitivity Analysis of Queueing Networks
with State-Dependent Service Rates,” Advances in Applied Probability, Vol. 22,
178-210, 1990.

51. X. R. Cao, Realization Probabilities: The Dynamics of Queueing Systems,
Springer-Verlag, New York, 1994.

52. X. R. Cao, “The Maximum Throughput of a Nonblocking Space-Division
Packet Switch with Correlated Destinations,” IEEE Transactions on Com-
munications, Vol. 43, 1898-1901, 1995.

53. X. R. Cao, “The Relations Among Potentials, Perturbation Analysis, and
Markov Decision Processes,” Discrete Event Dynamic Systems: Theory and
Applications, Vol. 8, 71-87, 1998.

54. X. R. Cao, “Single Sample Path Based Optimization of Markov Chains,” Jour-
nal of Optimization Theory and Application, Vol. 100, 527-548, 1999.

55. X. R. Cao, “A Unified Approach to Markov Decision Problems and Perfor-
mance Sensitivity Analysis,” Automatica, Vol. 36, 771-774, 2000.

56. X. R. Cao, “From Perturbation Analysis to Markov Decision Processes and
Reinforcement Learning,” Discrete Event Dynamic Systems: Theory and Ap-
plications, Vol. 13, 9-39, 2003.



550 References

57. X. R. Cao, “Semi-Markov Decision Problems and Performance Sensitivity
Analysis,” IEEE Transactions on Automatic Control, Vol. 48, 758-769, 2003.

58. X. R. Cao (eds.), “Introduction to the Special Issue on Learning, Optimization,
and Decision Making in DEDS,” Discrete Event Dynamic Systems: Theory and
Applications, Vol. 13, 7-8, 2003.

59. X. R. Cao, “The Potential Structure of Sample Paths and Performance Sen-
sitivities of Markov Systems,” IEEE Transactions on Automatic Control, Vol.
49, 2129-2142, 2004.

60. X. R. Cao, “Basic Ideas for Event-Based Optimization of Markov Systems,”
Discrete Event Dynamic Systems: Theory and Applications, Vol. 15, 169-197,
2005.

61. X. R. Cao, “A Basic Formula for On-Line Policy-Gradient Algorithms,” IEEE
Transactions on Automatic Control, Vol. 50, 696-699, 2005.

62. X. R. Cao and H. F. Chen, “Perturbation Realization, Potentials and Sensitiv-
ity Analysis of Markov Processes,” IEEE Transactions on Automatic Control,
Vol. 42, 1382-1393, 1997.

63. X. R. Cao and X. P. Guo, “A Unified Approach to Markov Decision Problems
and Sensitivity Analysis with Discounted and Average Criteria: Multichain
Case,” Automatica, Vol. 40, 1749-1759, 2004.

64. X. R. Cao and Y. C. Ho, “Estimating Sojourn Time Sensitivity in Queueing
Networks Using Perturbation Analysis,” Journal of Optimization Theory and
Applications, Vol. 53, 353-375, 1987.

65. X. R. Cao and D. J. Ma, “New Performance Sensitivity Formulae for a Class of
Product-Form Queueing Networks,” Discrete Event Dynamic Systems: Theory
and Applications, Vol. 1, 289-313, 1992.

66. X. R. Cao and D. J. Ma, “Performance Sensitivity Formulas, Algorithms, and
Estimates for Closed Queueing Networks with Exponential Servers,” Perfor-
mance Evaluation, Vol. 26, 181-199, 1996.

67. X. R. Cao, Z. Y. Ren, S. Bhatnagar, M. C. Fu, and S. I. Marcus, “A Time
Aggregation Approach to Markov Decision Processes,” Automatica, Vol. 38,
929-943, 2002.

68. X. R. Cao and D. Towsley, “A Performance Model for ATM Switches with Gen-
eral Packet Length Distributions,” IEEE/ACM Transactions on Networking,
Vol. 3, 299-309, 1995.

69. X. R. Cao and Y. W. Wan, “Algorithms for Sensitivity Analysis of Markov Sys-
tems Through Potentials and Perturbation Realization,” IEEE Transactions
on Control System Technology, Vol. 6, 482-494, 1998.

70. X. R. Cao, X. M. Yuan, and L. Qiu, “A Single Sample Path-Based Performance
Sensitivity Formula for Markov Chains,” IEEE Transactions on Automatic
Control, Vol. 41, 1814-1817, 1996.

71. X. R. Cao and J. Y. Zhang, “The nth-Order Bias Optimality for Multi-chain
Markov Decision Processes,” IEEE Transactions on Automatic Control, sub-
mitted.

72. C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
Kluwer Academic Publishers, Boston, 1999.

73. C. G. Cassandras and S. G. Strickland, “On-Line Sensitivity Analysis of
Markov Chains,” IEEE Transactions on Automatic Control, Vol. 34, 76-86,
1989.



References 551

74. C. G. Cassandras, G. Sun, C. G. Panayiotou, and Y. Wardi, “Perturbation
Analysis and Control of Two-Class Stochastic Fluid Models for Communication
Networks,” IEEE Transactions on Automatic Control, Vol. 48, 770-782, 2003.

75. C. G. Cassandras, Y. Wardi, B. Melamed, G. Sun, and C. G. Panayiotou, “Per-
turbation Analysis for Online Control and Optimization of Stochastic Fluid
Models,” IEEE Transactions on Automatic Control, Vol. 47, 1234-1248, 2002.

76. K. M. Chandy, U. Herzog, and L. Woo, “Parametric Analysis of Queueing
Networks,” IBM Journal on Research and Development, Vol. 19, 36-42, 1975.

77. H. S. Chang, M. C. Fu, J. Hu and S. I. Marcus, Simulation-Based Algorithms
for Markov Decision Processes, Springer, New York, 2007.

78. H. S. Chang, H. G. Lee, M. C. Fu, and S. I. Marcus, “Evolutionary Policy Itera-
tion for Solving Markov Decision Processes,” IEEE Transactions on Automatic
Control, Vol. 50, 1804–1808, 2005.

79. H. F. Chen, Stochastic Approximation and Its Applications, Kluwer Academic
Publishers, Dordrecht, 2002.

80. C. H. Chen, S. D. Wu, and L. Dai, “Ordinal Comparison of Heuristic Algo-
rithms Using Stochastic Optimization,” IEEE Transactions on Robotics and
Automation, Vol. 15, 44-56, 1999.

81. H. Chen and D. D. Yao, Fundamentals of Queuing Networks: Performance,
Asymptotics and Optimization, Springer-Verlag, New York, 2001.

82. E. K. P. Chong and P. J. Ramadge, “Convergence of Recursive Optimiza-
tion Algorithms Using Infinitesimal Perturbation Analysis Estimates,” Discrete
Event Dynamic Systems: Theory and Applications, Vol. 1, 339-372, 1992.

83. E. K. P. Chong and P. J. Ramadge, “Optimization of Queues Using an Infinites-
imal Perturbation Analysis-Based Stochastic Algorithm with General Update
Times,” SIAM Journal on Control and Optimization, Vol. 31, 698-732, 1993.

84. E. K. P. Chong and P. J. Ramadge, “Stochastic Optimization of Regenerative
Systems Using Infinitesimal Perturbation Analysis,” IEEE Transactions on
Automatic Control, Vol. 39, 1400-1410, 1994.

85. E. K. P. Chong and S. H. Zak, An Introduction to Optimization, Second Edi-
tion, John Wiley & Sons, New York, 2001

86. K. L. Chung, Markov Chains with Stationary Transition Probabilities, Springer-
Verlag, Berlin, 1960.
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Discrete event dynamic system (DEDS),

22
Dynamic programming, 346

Eigenvalue, 508
multiplicity, 508
simple, 508

Eigenvector, 508
Ergodic

w-geometrically ergodic, 358
Ergodicity, 501
Event, 37, 39, 390, 398, 400

controllable, 407, 408, 410, 411
deterministic, 413
input set, 406
natural transition, 407, 408, 410, 411
observable, 407, 408, 410
output set, 406
single, 400

Event-based optimization, 37, 390
Exhaustive search, 7, 14

Fundamental ergodicity theorem, 154
Fundamental matrix, 62, 515

G-adjustment, 303
Generalized policy iteration, 331
Group inverse, 74

Hazard rate, 91, 492
Higher-order derivatives, 74

Identification, 19, 34
Importance sampling, 163
Independent-action assumption, 188
Inverse transform method, 107, 494
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Jump
see Perturbation, 56

Jump linear quadratic (JLQ) problem,
368

Laurent series expansion, 252
Law of large numbers, 497
Learning, 13
Likelihood ratio method, 133
Linear-discounted-quadratic (LDQ)

problem, 383
Linear-quadratic (LQ) problem, 344,

363
Linear-quadratic-Gaussian (LQG)

problem, 344
Little’s law, 523

MacLaurin expansion, 76, 89
Markov chain, 20, 498

aperiodic, 500, 508, 515
embedded, 502, 503
ergodic, 501, 508
irreducible, 499
multi-chain, 508
original, 54
periodic, 500, 508, 515
perturbed, 54
stationary, stationary distribution,

500
transition probability matrix, 499
uni-chain, 508

Markov decision process (MDP), 19, 26,
184

action, 184
partially observable (POMDP), 171
partially observable MDP (POMDP),

30
reward, 184

Markov process, 498
infinitesimal generator, 502

Markov property, 2, 498, 499
Matrix

Markov matrix, 499
non-negative, 507
positive, 507
spectrum radius, 509
stochastic, 507

canonical form, 507
Memoryless property, 493

N-discount optimality, 252
Norton’s theorem, 537

Optimal policy
nth order, multi-chain, 231
bias, 193
bias, multi-chain, 216
discounted reward, 201
gain, 185
gain, multi-chain, 204

Optimality condition
average reward, 187
average reward, continuous space, 362
bias, 198
discounted reward, 202

Optimality equation
average reward, 190
average reward, continuous space, 362
bias, 198
Q-factor, 321, 322

Optimality equation (necessary)
nth bias, multi-chain, 237
average reward, multi-chain, 211
bias, multi-chain, 222

Optimality equation (sufficient)
nth bias, multi-chain, 234
average reward, multi-chain, 210
bias, multi-chain, 221

Option, 449
Ordinal optimization, 13, 14, 185

PASTA: Poisson Arrivals See Time
Averages, 535

Performance derivative formula
average reward, 66
discounted reward, 70
Markov process, 89
queueing network, 123
semi-Markov process, 99

Performance difference formula
nth bias, multi-chain, 231
average reward, 67, 186
average reward, continuous space, 361
average reward, different state spaces,

474, 475, 477, 480
average reward, event-based policy,

418
bias, 198
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bias, multi-chain, 218
discounted reward, 70, 202

Performance function, 21
Performance measure, 3

average reward, 52, 185
average reward, multi-chain, 203
discounted, 101
discounted reward, 68, 201
discounted reward, multi-chain, 227
long-run average, 20, 27, 83, 95

Performance potential: see potential, 24
Perron-Frobeniu theorem, 509
Perturbation, 22, 23, 56, 102, 105

generation, 107, 109
generation rule, 106
infinitesimal, 22
lost, 113, 116
propagation, 102, 109
propagation rules, 107
realization, 58, 115
realization factor, 22, 24, 59, 83, 95,

102, 115, 117
realization probability, 117
realized, 113, 116

Perturbation analysis, 18, 19, 21, 51
Perturbation realization index, 339
Poisson equation, 24, 62, 87, 98, 359

average reward, multi-chain, 205
discounted, 68, 202
discounted, multi-chain, 227
for bias, 197

Poisson process, 520
Policy, 5, 184, 345

ε-greedy policy, 309
closed loop, 8
deterministic, 12, 27
event-based, 390
feedback, 8
greedy policy, 189
open loop, 5
optimal, 5
randomized, 12, 23, 52
stationary, 10, 27

Policy gradient, 18, 33, 51, 147
Policy iteration, 19, 27
Policy iteration algorithm

nth bias, multi-chain, 241
average reward, 188
average reward, multi-chain, 214

bias, 199, 200
bias, multi-chain, 225
discouned reward, 203
discouned reward, multi-chain, 228
event-based, 427
sample path based, 253

with a fixed length, 261
with increasing lengths, 267

Potential, 24, 29, 61, 86, 88, 98
β-potential, 69, 71, 101
nth order, multi-chain, 229
aggregated, 419
aggregation, 37
average reward, multi-chain, 205
bias, 199, 214
bias, multi-chain, 218
discounted, multi-chain, 227
potential of potential, 198

Potential structure, 482
PRF (perturbation realization factor)

equation, 60, 85, 97
discounted, 72
with coupled sample paths, 160

Probability measure, 491
Product-form solution, 527

Q-factor, 31, 308
Q-learning, 321
Queueing network, 524

aggregation, 537
BCMP network, 534
closed Jackson network, 103, 525
Gordon-Newell network, 525
irreducible, 117
Jackson network, 524

R-learning, 323
Random variable, 492

distribution function, 492
distribution density function, 492
independent, 493
mean or expected value, 492
variance, 492

Reinforcement learning, 19, 31
Reward function, 21
Riccati equation, 367

coupled, 373
Robbins-Monro (RM) algorithm, 296
Robbins-Monro Algorithm, 173
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Sample derivative, 127, 133
Sample path, 1, 2, 103, 498

construction, 55
original, 54, 105
perturbed, 54, 105

Sample performance function, 127, 133
Sample-path construction, 460, 471
SARSA (State-action-reward-state-

action), 326
Score function method, 133
Semi-Markov process, 90, 503

equivalent infinitesimal generator, 92
kernel, 90, 503

Sensitive discount optimality, 252
Service discipline, 520

first come first served (FCFS), 520
last come first served (LCFS), 521
priority scheme, 520
processor sharing (PS), 521

State, 2, 498
periodic, 500
recurrent, 500
state space, 2
transient, 500

Stationary distribution, 500
Stationary policy, 184
Steady-state probabilities, 500
Stochastic approximation, 290
Stochastic fluid model(SFM), 132
Stochastic process, 498

TD(λ) algorithm, 308
TD(0) algorithm, 299, 309

K-step, 307
agregated potentials, 313
performance derivative, 314
random steps, 311

Temporal difference, 298, 310
K-step, 307
random steps, 312

Temporal difference method, 298
The Performance difference formula

average reward, multi-chain, 206

Value iteration, 27, 328
Visit ratio, 527

Weak derivative method, 135
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