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Preface

Performance optimization is very important in the design and operation of
modern engineering systems in many areas, including communications (In-
ternet and wireless), manufacturing, robotics, and logistics. Most engineering
systems are too complicated to be modelled, or the system parameters cannot
be easily identified. Therefore, learning techniques have to be utilized.

A Brief Description of Learning and Optimization

Learning and optimization of stochastic systems is a multi-disciplinary area
that has attracted wide attention from researchers in many disciplines includ-
ing control systems, operations research, and computer science. Areas such
as perturbation analysis (PA) in discrete event dynamic systems (DEDSs),
Markov decision processes (MDPs) in operations research, reinforcement
learning (RL) in computer science, neuro-dynamic programming (NDP), iden-
tification, and adaptive control (I&AC) in control systems, share a common
goal: to make the “best decision” to optimize a system’s performance.

Different areas take different perspectives and have different formulations
for the problems with the same goal. This book provides an overview of these
different areas, PA, MDPs, RL, and I&AC, with a unified framework based
on a sensitivity point of view. It also introduces new approaches and proposes
new research topics and directions with this sensitivity-based framework.

Roughly speaking, with RL, we learn how to make decisions to improve
a system’s performance by observing and analyzing the system’s current be-
havior; the structure and the parameters of the system may not be known
and even may not need to be estimated. PA estimates the derivatives of a
system’s performance with respect to the system’s parameters by observing
and analyzing the system’s behavior. Optimization is achieved by combining
performance derivative estimation and other optimization techniques such as
stochastic approximation. MDPs provide a theoretical foundation for perfor-
mance optimization of systems with a Markov model [21, 216]. In adaptive
control, the system behavior is described by differential or difference equa-
tions; when the system parameters are unknown, they have to be identified
using the observed data. Adaptive control together with identification achieves
the same goal as learning and optimization.

The goal of these research areas is the same: to find a policy that optimizes
a system’s performance, by using the information “learned” by observing or
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analyzing the system’s behavior. Given a system’s status or history, a policy
determines an action to be applied to the system, which controls the system
evolution. In some cases, policies depend on continuous parameters and the
policy space is continuous; in other cases, the policy space is discrete and
usually contains a huge number of policies.

A Sensitivity-Based View

Recent research indicates that the various disciplines in learning and opti-
mization can be explained from a unified point of view based on the per-
formance sensitivities in the policy space [56]. The fundamental elements of
learning and optimization are two types of performance sensitivity formulas,
one for performance derivatives at any policy in the policy space, the other,
for performance differences between any two policies in the policy space. With
these two types of sensitivity formulas, existing results in the various areas
and their relations can be derived or explained in a simple and intuitive way,
new approaches can be introduced, and the average, discounted, and other
performance criteria can be treated in the same way.

The unified framework is based on a few simple and fundamental facts:
Naturally, by observing and analyzing a system’s behavior under one policy,
we cannot know the system’s performance under other policies, if no struc-
tural information about the system is known; and we can only compare the
performance of two policies at a time. The question is, with these fundamen-
tal limitations, how can we achieve our goal of performance optimization by
using as little information about the system structure as possible and with as
little computation effort as possible?

Thinking along this direction, we find that two things can be done: First, if
the policy space is continuous, with some knowledge about the system structure
(e.g., queueing or Markov) and by the PA principles, we may estimate the
performance derivatives at a policy along any direction in the policy space by
observing/analyzing the behavior of the system under this policy [70, 62, 69].
This leads to the performance derivative formula; all the quantities required to
calculate the derivative along a given direction can be obtained by analyzing
the sample paths of the current policy. The performance derivative formula
forms the basis for PA and the “policy gradient” approach that was proposed
recently in the RL research community.

Second, if the policy space is discrete, the performance difference formula
forms the basis for optimization. The difference formula compares the per-
formance of the system under two policies. However, unlike the derivative
formula, the difference formula involves quantities for both policies and it
is not possible to know the performance of another policy, or the difference
in the performance of a system under two policies, by observing or analyz-
ing only the behavior of the system under one policy. Fortunately, by the
particular factorized form of the performance difference formula, under some



Preface IX

structural conditions, we can always use the information learned from observ-
ing/analyzing the system behavior under a policy to find another policy under
which the performance of the system is better, if such better policies exist. This
leads to policy iteration: learn from a policy to find another better policy, and
learn from this better policy to find an even better policy, and so on. Thus, the
performance difference formula forms the basis for policy-iteration type ap-
proaches to performance optimization. We will show that the results in I&AC
can also be derived using this principle, which also provides a learning-based
perspective to the area.

The fundamental quantity in the two sensitivity formulas (and thus in
the two types of optimization approaches, the gradient-based and the policy-
iteration-based) is the performance potential, which has a clear physical mean-
ing: It measures the “potential” contribution of a state to the system perfor-
mance. The difference of the potentials of two states measures the effect of
changing from one state to the other on the system performance. Such a
change from one state to the other is called a perturbation in PA (or simply
called a “jump” on a sample path). In RL, many efficient algorithms (e.g.,
TD(A) and Q-learning) have been developed for estimating the potential and
its variant Q-factor and their values for the optimal policies.

The physical interpretation of the potentials leads to the fundamental prin-
ciple in PA: The effect of any change in a system’s structure or parameters can
be decomposed into the effects of many jumps among states (or many pertur-
bations). With this principle, we can use the potentials as building blocks to
construct new sensitivity formulas by first principles for many problems that
do not fit into the standard formulation in the existing literature [59]. Since,
as explained, such sensitivity formulas serve as the basis for learning and op-
timization, the sensitivity construction approach opens up a new direction:
New learning and optimization schemes can be developed based on these new
sensitivity formulas, and special system features can be utilized.

One of the approaches developed based on sensitivity construction is called
the event-based optimization where actions can be taken only when some
events happen. This approach utilizes the special feature of a system cap-
tured by events. Policy depends on events, rather than on states. An event is
defined as a set of state transitions and, therefore, an event occurring in the
present contains some information about the next state, i.e., the future. In
many modern engineering systems in information technology, such informa-
tion is accessible before actions are taken, and the standard Markov model
does not capture this special property. Thus, in some cases, event-based poli-
cies may perform better than state-based ones. Furthermore, the number of
events usually scales to the system size, which is much smaller than that of
the states, which grows exponentially with the size of the system. Thus, un-
der some conditions, this approach may provide a possibility to overcome or
to alleviate a computational difficulty: the curse of dimensionality. In addi-
tion, many existing approaches, such as partially observed MDPs (POMDPs),
state and time aggregation, hierarchical control (hybrid systems), options, and
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singular perturbation, can be treated as special cases of the event-based op-
timization by defining different events to capture the special features of these
different problems.

The Unique Features of This Book

Compared with other books in the area of learning and optimization, this
book is unique in the following aspects.

1. The book covers various disciplines in learning and optimization, including
PA, MDPs, RL, and I&AC, with a unified framework based on a sensitivity
perspective in the policy space. Many results can be explained with the
two types of fundamental sensitivity formulas in a simple way.

2. We emphasize physical interpretations rather than mathematics. With
the intuitive physical explanations, we propose to construct new sensitiv-
ity formulas with performance potentials as building blocks. The physi-
cal intuition may provide insights that complement to other existing ap-
proaches.

3. With the unified framework and the construction approach, we introduce
the recently-developed event-based optimization approach; this approach
opens up a research direction in overcoming/alleviating the curse of di-
mensionality issue by utilizing the system’s special features.

4. The performance difference-based approach is applied to all the MDP
problems, including ergodic and multi-chain systems, average and dis-
counted performance criteria, and even bias optimality and nth-bias op-
timality. It is shown that the nth-bias optimal policies eventually lead
to the Blackwell optimal policies. This approach provides a simple, in-
tuitively clear, and comprehensive presentation of all these problems in
MDPs in a unified way. This presentation of MDPs is unique in existing
books.

The Contents of This Book

Chapter 1 presents an introduction, which consists of an overview of the differ-
ent disciplines in learning and optimization and a discussion of the event-based
approach. This chapter serves as a road map for the book. The rest of the book
consists of three parts. Part I, consisting of Chapters 2 to 7, describes how
the sensitivity point of view in policy spaces leads to the main concepts and
results in PA, MDPs, RL, and I&AC. Part II, consisting of Chapters 8 and
9, presents the recent developments in event-based learning and optimization
with this sensitivity point of view. Part III consists of three appendices that
provide the mathematical background required for this book.

Part I starts with PA in Chapter 2. We derive the performance derivative
formulas, by using performance potentials or realization factors as building
blocks, for Markov systems and queueing systems. The sample-path-based
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sensitivity point of view in PA is the core of the unified approach of this
book. In Chapter 3, we discuss performance potentials and develop sample-
path-based algorithms for estimating potentials and performance derivatives,
as well as for performance optimization with the potentials. In Chapter 4,
we show how policy iteration for both uni-chain and multi-chain MDPs can
be easily derived from the performance difference formulas; this approach
applies in the same way to both average and discounted criteria, as well as
bias optimality, etc. We also define and solve the nth-bias optimality problem
with the same approach. On-line policy iteration algorithms are developed in
Chapter 5 with the potentials estimated from the sample paths. Chapter 6
presents basic results of RL, which is essentially a combination of stochastic
approximation and the sample-path-based estimation of the potentials and
their variants Q-factors. In Chapter 7, we show that the on-line policy iteration
approach can be applied to I&AC problems, including linear systems and some
non-linear systems.

In Part IT, Chapter 8 presents the event-based optimization approach. This
approach provides a possible way to address the difficult issue of the curse of
dimensionality by utilizing particular system structures; in some cases event-
based policies may perform better than state-based ones. The construction of
sensitivity formulas with performance potentials as building blocks for general
problems is presented in Chapter 9.

How to Use This Book

This book provides, in a unified way, good introductory materials for graduate
students and engineers who wish to have an overview of learning and optimiza-
tion theory, the related methodologies in different disciplines, including PA,
MDPs, RL, I&AC, and stochastic approximation, and their relations. The new
perspective presented in this book is helpful in finding new research topics.
Thus, the book is useful to researchers in these areas who wish to find some
motivation and to promote inter-disciplinary collaborations. In addition, en-
gineers, in particular those in information technology, may find the ideas and
methodologies introduced in this book useful in their practical applications.

The chapters and sections marked with asterisks “x” are supplementary
reading material and can be omitted by first-time readers. Each chapter con-
tains a considerable number of problems that may help students to enhance
their understanding of the main contents. Some of the problems are sum-
maries of past research topics and might be difficult. These are also marked
with asterisks. Solutions to the problems are available upon request and can
be found on my website http://www.ee.ust.hk/~eecao.

An earlier version of this book was used as the textbook for graduate
courses at the Hong Kong University of Science and Technology and Tsinghua
University in Beijing, China. A suggested time table for a course in a fourteen-
week term (three hours per week) is as follows.
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Chapters Sections Hours Weeks
A-C Al-C2 3 1
1 1.1-14 2 2/3
2 2.1 4 4/3
2.2 1 1/3
2.4 3 1
3 3.1-33 3 1
Review 1 1/3
4 4.1 3 1
4.2 3 1
5 5.1-5.2 3 1
6 6.1-6.4 4 4/3
7 71-73 2 2/3
8 8.1-85 5 5/3
9 9.1-9.2 1 1/3
Review 1 1/3
Examination 3 1
Total 42 14

The following are some suggestions and comments about the contents cov-

ered in each chapter:

0.

®

The contents covered in the appendices are the prerequisite of the course.
Three hours are not enough to cover the details in the three appendices.
In a brief review, we may focus more on probability and the theory on
Markov chains, which are closely related to the main concepts presented
in the book. Appendix B is mainly related to Chapter 4, and Appendix C
is mainly related to Section 2.4. Some results can be reviewed when the
main texts are taught.

. For students with a background in control, Section 1.1 on policies can

be taught fast. Sections 1.2-1.3 are intended to give an overview of the
different disciplines, and they should be revisited after studying Part I to
get a better picture.

The main part of Chapter 2 is Sections 2.1 and 2.4.

Section 3.2 is relatively new in the literature.

Sections 4.1 and 4.2 cover the main ideas and methodologies. If time per-
mits, we may cover the main results in Section 4.3 without going through
the proofs.

The proof in Section 5.2.3 is interesting, but it is a bit technical and
requires some careful thinking.

In Chapter 6, we emphasize on the intuitions behind the development of
recursive algorithms, with the principles in stochastic approximation, and
we do not intend to provide proofs for these algorithms. The algorithms for
performance derivative estimates are new research topics in recent years.



Preface XIIT

7. In Chapter 7, it is easy to convince students that a control system can be
modelled as an MDP. The extension of MDP from a discrete state space
to a continuous state space is of no conceptual difficulty. We may cover
only the LQ problem as an example.

8. Section 8.1 provides a nice overview of the event-based optimization ap-
proach. If we wish to avoid studying the tedious mathematical formu-
lation, we may study the two examples to obtain a clear picture of the
approach.

9. Section 9.2 provides the basic ideas for the construction of the performance
difference formula. Other sections illustrate the flexibility of this approach
and are for additional reading.

The following is a suggested time table for a course in a nine-week term
(three hours per week).

Chapters Sections Hours Weeks
A-C Al1-C2 15 1/2
1 11-14 1.5 1/2
2 2.1 4 4/3
3 3.1-33 2 2/3
4 4.1 3 1
4.2.1 2 2/3

5 5.1-5.2 2 2/3
6 6.1-6.4 3 1
7 71-73 2 2/3
8 8.1-85 3 1
9 9.1-9.2 1 1/3
Examinations 2 2/3
Total 27 9

The additional suggestions are as follows.

1. We do not have time to cover PA of queueing systems in Section 2.4,
PA-based optimization of queueing systems in Section 3.3, etc.

2. In Chapter 4, we may only briefly introduce the concept of the nth bias
and the problem of the nth-bias optimality.

3. Event-based optimization can be introduced via examples.
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A journey of a thousand miles
begins with a single step.

Lao-tzu, Chinese philosopher
(604 BC - 531 BC)

Introduction

1.1 An Overview of Learning and Optimization

Performance optimization plays an important role in the design and opera-
tion of modern engineering systems in many areas, including communications
(Internet and wireless networks), manufacturing, logistics, robotics, and bio-
informatics. Most engineering systems are too complicated to be analyzed, or
the parameters of the system models cannot be easily obtained. Therefore,
learning techniques have to be applied.

The goal of learning and optimization is to make the “best” decisions to
optimize, or to improve, the performance of a system based on the informa-
tion obtained by observing and analyzing the system’s behavior. A system’s
behavior is usually represented by a model, or by the sample paths (also called
trajectories) of the system. A sample path is a record of the operation history
of a system.

1.1.1 Problem Description

In this book, we mainly study stochastic dynamic systems. A dynamic system
evolves as time passes. It is generally easier to explain the ideas with a discrete
time model, in which time takes discrete values denoted as [ = 0,1,2,....
In addition to its dynamic nature, a stochastic system is always subject to
random influences caused by noise or other uncertainties.



2 1 Introduction
States, Actions, and Observations

To study the system behavior, we need to describe precisely the system’s
status. A system’s status at any time [ = 0,1,... can be represented by a
quantity called the system’s state at time [, denoted as X;, I = 0,1,.... The
state space (i.e., the set of all states) is denoted as S, which may be either
discrete or continuous. A sample path of a system is a record of state history
denoted as X = { Xy, X1, ...}. In stochastic dynamic systems, X;, 1 =0,1,...,
are random variables (may be multi-dimensional random vectors). A system’s
dynamic behavior is then represented by its sample paths. We denote a “finite-
length” sample path as X, := {Xo, X1,..., X}

In this book, the word “state” is used in a strict sense that a sample
path X is a Markov chain. This means that given the current state X, the
system’s future behavior {X;11, Xi42,...} is independent of its past history
{Xo,X1,...,Xi-1}, L = 1,2,... (see Appendix A.2 for more details). This
is called the Markov property. Intuitively, a state completely captures the
system’s current status in regard to its future evolution.

In optimization problems, at any time [, we can apply an action, denoted
as Aj € A, 1=0,1,..., where A is an action space. In most cases, A contains a
finite number of actions, but in general it may contain infinitely many actions,
or even be a continuous space.

The actions Ag, Ay, ... may affect the evolution of the system. With the
Markov model, the actions control the transition probabilities of the state
process. If action o € A is taken at time [ (i.e., A; = «), then the transition
probabilities at time [ are denoted as p®(X;41|X;), X141, X; € S,1=0,1,....

Because the actions affect the system behavior, the operation history of a
system should include the actions. Let A;_1 := {Ag, A1,..., 4;_1} denote an
action history with a finite length and A := {Ag, A1, ...} denote an infinitely
long action history. Taking the actions into consideration, we denote a sample
path as H := (X, A), or H; := (X, A;_1).

In many cases, the system’s state cannot be exactly observed, and we
can only observe a random variable Y; at time [ that is related to X;, [ =
0,1,.... The observation history is denoted as Y := {Y;,Y7,...}, or Y] :=
{Yy,Y1,...,Y;}. In such cases, we say that the system is partially observable.
The information history up to time [ is H; := (Y}, A;—1). When Y; = X, for
alll =0,1,..., wesay that the system is completely observable. In such cases,
we have H; = (X, A;_1). Note that even for partially observable systems, we
reserve the word “sample path” for H; = (X, A;—1), or H = (X, A).

Here are some examples of the observations Y;: When the observations
of states contain additive noise, we have Y; = X; + ¢, with E(Y}) = X if
E(€;) = 0. When the states of the Markov chain X are aggregated, Y; may be
an aggregation state. In the event-based optimization approach (see Chapters
9 and 8), Y; may represent an event at time [/, and the event may contains
information about the state transition at the time instant.
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Rewards and Performance Measures

Associated with each sample path H;, = (X, Ar_1), there is a reward (or
cost; we use the word “reward” in most cases in this book) denoted as ny,(Hp,).
Because the states X, and the actions A;_; are generally random, n.(Hp,)
is usually a random variable. For finite-length problems, 7 (Hp,) represents
the total reward received when the system is going through the sample path
H . The performance measure n) (or simply called the performance) is defined
as the mean of the rewards

n = EnL(Hr)). (1.1)

For sample paths with infinitely long lengths, the performance measure n is
defined as the limit of the mean rewards

n=lim Eln(Hr), (1.2)

in which we assume that both the expectation and limit exist. In this case,
nr(Hp) usually represents the average reward per step received by the system
during the operation.

The reward 5y, and the performance n may take different forms in different
problems. In an optimization problem with the Markov model, there is a
reward function denoted as f(i,a), i € S, @ € A. At time [, if the system is
in state ¢ and action o € A is taken, then the system receives a reward of
f(i,a). For a sample path with a finite length L, the total reward received on

this sample path is
L—1

N = Zf(Xl,Al)-

=0

The performance measure is the expected total reward n = E(nz). For prob-
lems with infinitely long sample paths, we consider the average

1 L—-1
=7 > (XL A,
=0

and the performance measure is (when it exists)

n= hm E(ng) = hm - {Z (X1, A }, (1.3)
1=0

which is called the long-run average reward in the literature. Note that in
general the expectations in (1.1), (1.2), and (1.3) depend on the initial states
or the initial state distributions.

For ergodic Markov chains, the long-run average reward is

L—

1
1
0= lim — Z; (X, A, wpl,
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which does not depend on the initial state.

Other performance measures, such as the discounted reward, exist and will
be discussed in other chapters. For simplicity, a performance measure is also
referred to as a performance.

The Problem Description

Input A;
(Actions)

System state X q

Output Y}
(Observations)

Fig. 1.1. A Model of Learning and Optimization

A general description of the learning and optimization problem is illus-
trated by Figure 1.1. In the figure, the shaded area represents a stochastic
dynamic system. The system is essentially a black box and it can only inter-
act with the outside through its inputs and outputs. The inputs provide a
vehicle to intervene or to control the operation of the system, and/or to affect
the reward of the operation. For example, in a Markov system (whose behav-
ior can be modelled as a Markov chain), the inputs may be the actions A; that
determine the system’s state transition probabilities at time [, [ = 0,1,.... In
other cases, an input can also control the system operation modes, or tune the
values of system parameters, etc. In this terminology, setting different values
for system parameters is viewed as taking different actions. It is usually as-
sumed that the available actions are known to us (e.g., we know that we can
accept or reject a packet in a communication system, or we can tune the rate
of a transmission line to § megabit/second).

The outputs provide a window for observing the system. That is, the out-
puts are the observations. In partially observable Markov systems, the output
at time [ is the observation Y;, [ = 0,1,...; and in completely observable
systems, the output at time [ is the state X;, [ =0,1,....

Associated with every system, there is a performance measure 7. In the
figure, as an example, 7 is taken to be the mean of the average reward for L
steps; L is usually a very large integer or infinity.

The goal of an optimization problem is to answer the following question:
Based on the information we know about the system, i.e., the output history
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learned from observation and the input (action) history, what action should
we take at a particular time so that we can obtain the best possible system
performance?

The information history H; = {Y;, A;_1}, with Y; = {Y¥;,Y1,...,Y;} be-
ing the observation history and A;_; = {Ag, A1,...,A;_1} being the action
history (with A_; := ()), represents all the information available at time !
before an action is taken at I, [ = 0,1,.... Based on this information, an
action can be chosen by following some rules, called a policy, denoted as
d; - Ay = d;(H;),A; € A. (This is called a deterministic policy.) We wish
to find a policy that maximizes the system performance. (Since we use re-
ward, rather than cost, as the system performance, optimization is equivalent
to maximization here.) Such a policy is called an optimal policy. When the
number of policies is finite, such optimal policies always exist and may not be
unique.

In engineering applications, at the design stage, sample paths can only
be obtained by simulation following a system model; and while a system is
operating, the paths can also be obtained by direct observation. If learning
and optimization is implemented by simulation, then the approach is called
a simulation-based approach. With simulation, we may even let the system
operate under policies that are generally not feasible in a real system. For real
systems, performance optimization (or improvement) decisions can be made
through learning the system behavior by observing its sample paths recorded
while the system is operating without interruption; we call such an approach
an on-line approach.

1.1.2 Optimal Policies

From the above description, the main element in learning and optimization is
the policy. In this subsection, we use some examples to show different types
of policies and some main features in searching for optimal policies.

Open-Loop Policies

Example 1.1. Suppose that we run a system for three time instants | =
0,1,2, and at any time instant we can take one of the two actions, denoted
as g and . In this simple example, there are no observations, and we do
not know how the actions influence the system evolution at all. Thus, at any
time [ = 1,2, we only know the action history {Ao,..., A;_1}, I =1,2. There
are 8 = 23 possible sequences of actions that we can take in the period of
[ = 0,1,2, denoted as «;, i = 0,1,...,7. For each action sequence, there
is associated total reward n(e;), i = 0,1,...,7. We can certainly run the
system eight times, each with a different action sequence «;, and obtain all
possible values of the system performance. Table 1.1 lists the eight possible
action sequences and their corresponding performance. (If the system involves
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[Action Sequences[Performance

« {ao,ao,ao} 3
aq {0[0,0&0,0&1} 7
a2 {ao,al,ao} 8
a3 {010,011,041} 4
o {a1, ao, a0} 5
Qs {Oél,Olo,Oél} 10
(8 7 {05170417040} 9
a7 {a1,a1,01} 6

Table 1.1. The Action Sequences and the Corresponding Performance in Example
1.1

randomness, we can repeatedly run the system with each action sequence
many times and Table 1.1 lists the averages.)

a) (Open-loop policies) From the table, we can find the action sequence that
yields the maximum performance, which is a5 = {a, g, o1 }. Thus, to
get the best performance, we need to take action oy at | =0, g at [ =1,
and then ay at [ = 2. This best action sequence corresponds to the “open-
loop” control in control theory. The action sequence is pre-fixed before the
system starts running. The structure of an open-loop policy is shown in
Figure 1.2. With an open-loop policy, the output-and-action history are
not used in determining the actions; i.e., the function 4; = d;(H)) does
not depend on H;, I = 0,1,..., at all. The outputs may be random; the
best policy corresponds to the best average performance.

Ao, Avy o A System State X Yo, Y1,.... Y1

(stochastic)

Fig. 1.2. The Structure of an Open-loop Policy

b) (Action-history-dependent open-loop policies) In practice, knowing the
best action sequence is not enough. Suppose that «g, instead of ay, is
taken by mistake at [ = 0. Then, knowing the best action sequence as
alone does not indicate what next action should be taken in order to
get the sub-optimal performance under this circumstance. To answer this
question, we need to further examine Table 1.1.

Table 1.1 contains all the information about the optimization problem.
From the table, we can find the best action taken at any time given the
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history of the actions taken up to that time. At [ = 0, the action history
Ag = (). Because the best performance lies in the lower part of the table,
we need to choose Ag = do(0) = ay. At I = 1, we may have two possible
histories, A; = 1 or g, by mistake. Note that as is the best action
sequence in the upper part of Table 1.1. Therefore, if oy is taken at [ = 0,
then we need to take a; at [ = 1; i.e., the best policy at [ = 1 given
Ay = ap is di(ap) = ay. Similarly, we have di(a1) = ag. At I = 2, we
may have four possible action histories {ag, g}, {ao, a1}, {a1, a0}, and
{a1,aq}. Let us start with {ag, ap}. In this case, if we take ag at I = 2, we
obtain the sequence a; and if instead we take oy at I = 2, we end up with
a1. Because a; performs better than oy does, we should take o at [ = 2.
That is, we should set do({cp,@}) = ;. Similarly, from the table, we
must have day({ag,a1}) = ag, d2({a1, a}) = a1, and da({a1, a1}) = ap.
Finally, the optimal policy is d := {dy,d1,d2}.

The decision on dy is based on the comparison: max{n(ca;),i =
4,5,6,7} > max{n(a;),i = 0,1,2,3}; the decision on d; is based on the
following two comparisons: max{n(e;),7 = 2,3} > max{n(a;),i = 0,1}
and max{n(e;),s = 4,5} > max{n(a;),i = 6,7}; and the decision
on dy is based on four comparisons: n(a;) > n(ay), n(az) > nlag),
n(as) > n(ay), and n(ag) > n(ar). There are altogether 20 + 21 +22 =7
comparisons among these maximums.

In summary, in the optimal policy thus obtained, the action at time
1, A;, depends on the action history A;_; = {Ag, A1,..., Aj_1};ie, A =
di(A;—1). This structure is shown in Figure 1.3. O

System State X ‘_)Yl

(stochastic)

(<< :Delay Lines

Fig. 1.3. The Optimal Action Depends on the Action History

The approach used in the example is called an exhaustive search because
to obtain the optimal policy, we need to search through every policy. It is the
simplest but the most time-consuming learning-optimization strategy. The
example also indicates that, principally, by exhaustive search, we can find the
optimal policy for the system performance without any prior knowledge about
the structure or the status of the system.
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In Example 1.1(a), it is shown that if there is no observation or the system
is deterministic, a pre-fixed action sequence «y is enough for optimization,
and the system may not need to do on-line adjustment if no mistake occurs
in implementation. However, as shown in Example 1.1(b), on any particular
time instant, the best action depends on the action history; this fact leads to
the action-history-dependent open-loop policies, which adjust future actions
when the past action sequence is not the optimal.

Closed-Loop (Feedback) Policies

If the system is involved with randomness and there are observable outputs, a
fixed sequence of actions may not lead to the best performance. In such cases,
in addition to the past history of the actions, the action chosen at time [, A;,
should also depend on the observations up to time [. This corresponds to the
“closed-loop” or “feedback” control in control theory.

Example 1.2. In Example 1.1, we further assume that at each time instant
the system outputs one of the two symbols, denoted as yy and y;. The sys-
tem’s causality works as follows. At time [, [ = 0,1,2, an observation Y;
is made first; after that, an action A; is taken; then the system evolves to
time [ 4+ 1, at that time an observation Y;;; is made; and then an action
Aj41 is taken; and so on. Finally, at [ = 2 a total reward (performance) is
received after the action Ay is taken. Now, the history of the system (as
far as we can know) at time [ is a sequence of observations and actions
denoted as Hl = {YE), Ao, Y17A17 PN ,)/1_1, Al—la Yl}, [ = 0, 1, 27 A_l = @
A history {yo, a1, Y0, @0, Y1, 1} may lead to a different performance from
what {y1, a1, y1, @0, Yo, a1} does, although they have the same action sequence
{a1,ap, a1}

When a system involves randomness, how the observation Y; evolves after
an action is taken is the system’s intrinsic character, which is not controlled
by us. In other words, if we choose action A;, then the nature will determine
Y;+1, and so on. The best thing we can do is to use all the information that is
available to us up to time [ to determine the action 4; = d;(H;) such that on
average the system performance is the best. Such a policy depending on the
observation history is called a feedback policy or closed-loop policy in control
theory. Unlike the open-loop policies, actions in a feedback policy cannot be
pre-determined before the system operates.

In this example, Hy = Y, which may take two values yy and y;. Thus,
at | = 0 there are 22 sub-policies dy that map yo and y; to ag and aq. At
| =1, H = {Yy, Ap, Y1} may take 23 = 8 different values. Finally, Hy =
{Yy, Ao, Y1, A1, Y} may take 2° = 32 different values. (How many different
policies? see Problem 1.3.)

Table 1.2 gives an example of possible histories of actions and observa-
tions and their corresponding performance. To save space, in the table, we
assume that for some reasons the observations of the system at time [ = 0
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and [ = 1 are fixed as yg and y1, respectively. The observation at [ = 2, how-
ever, may take either yo or y;, depending on the randomness involved. We
further assume that the probabilities of Yo = yy and Y5 = y; are both 0.5,
equally. As shown in the table, there are two possible histories corresponding
to each action sequence; e.g., if we take action sequence {ag, a1, ap}, we may
in fact have either hy := {yo, 2o, y1, 01, Yo, @0 } or hs := {yo, a0, y1, 1, Y1, Q0 }
with an equal probability of 0.5, respectively. We find that the average perfor-
mance for every action sequence is the same as the performance corresponding
to the same action sequence in Table 1.1 (e.g., the average performance for
{ao, a0, a0} is 3 = 22 and that for {ag, ag, a1} is 7= 28, etc.).

From the table, it is clear that given the history (up to [ = 1) {yo, a1,
Y1, a0}, if we observe Yo = y; at [ = 2, we should take « to receive a reward
of 10 (instead of taking «; to get 8). However, if we observe Yo = yo, we
definitely should take action o at I = 2 to receive a reward of 12 (instead of
taking g to get 0!) Therefore, the pre-fixed action sequence {ay, g, a1} is
no longer optimal. With the feedback policy, the average performance given
the action sequence {aq, a0} is 2(10 + 12) = 11, which is larger than 10, the
best performance for all the open-loop policies. Thus, a feedback policy may
achieve a better performance than all the open-loop policies. 0

‘ Action Sequences ‘ Action-Observation Histories ‘ Performance

ho {0, a0, 0} {yo, @0, y1, @0, Yo, 0} 2
hy {awo, a0, a0} {y0, @0, y1, 20, y1, 00} 4
ha {ao, o, 1} {yo, @0, Y1, @0, Yo, 1} 8
hs| {ao,a0,00} {yo, @0, y1, 20, y1, 1} 6
hy {ao, 1,0} {yo, @0, Y1, 1, yo, 0 } 12
hs| {ao, 00,00} {yo0, 20, y1,00,y1, 00} 4
hs {ao, 1,1} {yo, @0, Y1, 1, Yo, 1 } 6
hr {ap, 1,1} {yo, @0, y1, 1, y1, 1} 2
hs {a1, a0, a0} {yo, @1, 91,20, Yo, 0 } 0
ho| {o1,a0,a0} {yo0, a1, 91,00, 91,00} 10
hio| {a1, a0, a1} {yo, @1,y1, 20, yo, 1} 12
hi| {a1,a0,01} {yo0, 1,41, 00, y1, 01} 8
hi2| {a1, 01, a0} {yo, a1,y1, 1, Y0, 0 } 10
his| {ai,a1,a0} {yo, 1, y1,00,y1, 00} 8
his {alvalval} {ymal,yhahyo,m} 3
his| {ai, 01,01} {yo, a1, y1, 1, y1, 1} 9

Table 1.2. The Action-Observation Histories and Their Rewards in Example 1.2

The structure of a feedback or a closed-loop policy is shown in Figure
1.4. In both examples, we do not know how the actions control the system’s
operation.
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Y, = (Yo,..., V)

—
& H, d(H) A System State X Y
(stochastic)
T e
A= (Ao,..., A1)
H, = (Y,Ai—1) _<=—) : Delay Lines

Fig. 1.4. The Optimal Action Depends on the Action-Observation History

Stationary and Randomized Policies

For simplicity, in the above examples, we used very short sample paths to
explain the ideas. Practically, the sample paths can be very, even infinitely,
long.

If the system is completely observable, then the observation history Y; is
the same as the state history X; and the policy is A; = d;(X;, A;—1). Because
of the Markov property of a state process, the current state X; contains all
the information in the system’s history in regard to its future behavior. We
may expect that in many cases a policy depending on only X; may do as well
as a policy depending on the entire history H; = (X;, A;—1) for controlling
the system’s future behavior. Therefore, we may only consider the policies
A =di(X;),1=0,1,....

A policy 4; =di(X)), X1 €8, 4, € A, 1=0,1,...,1s called a stationary
policy if it does not depend on time I; such a policy is denoted as A = d(X),
X € S, which is a mapping from the state space S to the action space A.

The action d(7), i € S, controls the transition probabilities of state i. With
a stationary policy d, the transition probabilities when the state is i € S are
denoted as p?® (j|i), j € S. The system under policy d(X) is Markov, and the
corresponding transition matrix is denoted as P% := [p(?)(j|i)]. Therefore, a
policy d is also referred to as a policy P¢. When performance is involved, the
reward function may also depend on the policy d and is denoted as f¢(i), i € S.
We may write it in a vector form f¢ := (f4(1),..., f4(S))*. With the reward
vector, we may refer to (Pd, f%) as a policy. In addition, we will simply use
(P, f) as a generic notation for a policy. In many cases, f¢(i) depends only on
d(i), i € S, and the reward vector is then f¢ = (f(1,d(1)),..., f(S,d(S)))7,
where the superscript “T” denotes transpose.
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Finally, it should be noted that when the action depends on the “state”
history, the resulting “state” process is no longer Markov (we put the word
“state” in quotation marks because it is not a state in the strict sense). The
following example shows that there may exist a policy d(X) depending only
on the current state that does as well as a history-dependent policy, in terms
of the long-run average performance.

Example 1.3. Consider a process X = {5(0,)?1, S X, € S,1=0,1,....
Suppose that at any time [, [ = 1,2,..., the transition probability is deter-
mined by the current state X 1 and the prev1ous state X;_1 and is denoted
as plk|(i,7)] := p[ X141 = k| X,_1 = i, X, = j], i,j,k € S. This process is not
Markovian on the state space S because the state at [ + 1, X 1+1, depends on
state at [ — 1, X1

Define Y, := (Xl,1721)7 [ = 1,2.... Then, Y = {}71,)72,...,} is a
Markov chain with transition probabilities

pl(4, k)|, 5)] = plkl(, 5)], 4,5,k €S;
pl(K,K)|G, )] =0, ifk #j, i,jkeS.

Let w(4,j), i,j € S, be the steady-state probabilities of the Markov chain Y.
Then, the steady-state probability flow balance equation is

(k' k) = Zw(@j)p{(kﬂ k@5, kK eS. (1.4)

The steady-state probability of X is

m(k) = m(k k).

k:/
Summing over k' € S on both sides of (1.4), we get
n(k) = w0, j)plkl(i, )],  i.jkES. (1.5)
2

Let m(i]j) be the steady-state conditional probablhty of X;_1 =i given that
Xl = j (i.e., the conditional probability of Xl 1 = % given that Xl =3
in a statlonary process X) and let p(k|j) be the steady-state conditional
probability of X 1+1 = k given X, = j. We have

1 _ 7d)
wGli) = "

and

p(klj) = Z{ﬂ ilj)plk| (i, )]}
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Thus,
p(klj) = Z{ﬂ i, §)plk| (i, §)]}-

Summing over j € S on both sides and using (1.5), we get

n(k) = w(j)p(klj). (1.6)

J

Let X be a Markov chain with transition probabilities p(k|j), 7,k € S.
From (1.6), w(k), the steady-state probability of state k of X equals the
steady-state probability of state k of X, k € S. Therefore, a Markov chain
with a history-independent policy p(k|j), j € S, has the same steady-state
probabilities as a non-Markov chain with a history-dependent policy p[k|(4, 7)],
1,7,k € S. Finally, for any reward function f(X;),1=0,1,..., from (1.7), the
average performance n =, 7(7) (i) is the same for both processes.

Furthermore, from the definition of X, we can easily check that the steady-
state probabilities of (X; = i, X;41 = j), 7(i,7), 1,7 € S, are the same for
both X and X. Thus, for any reward function f(X;, X;11), 1 =0,1,..., the
average performance n = Z” m(i,7)f(i,7) is the same for both processes.

However, as shown in Problem 1.6, if the reward function depends on
three consecutive states (X, X;41,X;42), there may not exist a history-
independent policy defined on the same state space that is equivalent to a
histor