
9

Competitive Analysis of Omni-Do in

Partitionable Networks

THE efficiency of an algorithm solving the Omni-Do problem can only be
partially understood through its worst case work analysis, such as we did

for algorithm AX in the previous chapter. This is because the worst case upper
and lower bounds might depend on unusual or extreme patterns of regroup-
ings. In such cases, worst case work may not be the best way to compare
the efficiency of algorithms. Hence, in this chapter, in order to understand
better the practical implications of performing work in partitionable settings,
we treat the Omni-Do problem as an on-line problem and we pursue compet-
itive analysis, that is we compare the efficiency of a given algorithm to the
efficiency of an “off-line” algorithm that has full knowledge of future changes
in the communication medium. We consider asynchronous processors under
arbitrary patterns of regroupings (including, but not limited to, fragmenta-
tion and merges). A processor crash is modeled as the creation of a singleton
group (containing the crashed processor) that remains disconnected for the
entire computation; the processors in such groups are charged for complet-
ing all remaining tasks, in other words, the analysis assumes the worst case
situation where a crashed processor becomes disconnected, but manages to
complete all tasks before the crash.

In this chapter we view algorithms as a rule that, given a group of proces-
sors and a set of tasks known by this group to be completed, determines a task
for the group to complete next. We assume that task executions are atomic
with respect to regroupings (a task considered for execution by a group is
either executed or not prior a subsequent regrouping). Processors in the same
group can share their knowledge of completed tasks and, while they remain
connected, avoid doing redundant work. The challenge is to avoid redundant
work “globally”, in the sense that processors should be performing tasks with
anticipation of future changes in the network topology. An optimal algorithm,
with full knowledge of the future regroupings, can schedule the execution of
the tasks in each group in such a way that the overall task-oriented work is
the smallest possible, given the particular sequence of regroupings.



170 9 Competitive Analysis of Omni-Do in Partitionable Networks

As an example, consider the scenario with 3 processors that, starting from
isolation, are permitted to proceed synchronously until each has completed
n/2 tasks; at this point an adversary chooses a pair of processors to merge
into a group. It is easy to show that if N1, N2, and N3 are subsets of [n] of size
n/2, then there is a pair (Ni, Nj) (where i 6= j) so that |Ni ∩ Nj | ≥ n/6: in
particular, for any scheduling algorithm, there is a pair of processors which,
if merged at this point, will have n/6 duplicated tasks; this pair alone must
then expend n+n/6 task-oriented work to complete all n tasks. The optimal
off-line algorithm that schedules tasks with full knowledge of future merges,
of course, accrues only n task-oriented work for the merged pair, as it can
arrange for zero overlap. Furthermore, if the adversary partitions the two
merged processors immediately after the merge (after allowing the processors
to exchanged information about task executions), then the task-oriented work
performed by the merged and then partitioned pair is n + n/3; the task-
oriented work performed by the optimal algorithm remains unchanged, since
it terminates at the merge.

To focus on scheduling issues, we assume that processors in a single group
work as a single virtual unit; indeed, we treat them as a single asynchronous
processor. To this respect, we assume that communication within groups is
instantaneous and reliable. We note that the above assumptions can be ap-
proximated by group communication services (such as the one considered in
Section 8.2) if the reconfiguration time during which no tasks are performed is
disregarded. However, in large scale wide-area networks the time performance
(which we do not consider here) of Omni-Do algorithms can be negatively
affected, as GCSs can be inefficient in such networks.

Chapter structure.

In Section 9.1 we present the model of adversity considered in this chapter,
we define the notion of competitiveness and we present terminology borrowed
from set theory and graph theory that we use in the rest of the chapter. In
Section 9.2 we formulate a simple randomized algorithm, called algorithm RS,
and we analyze its competitiveness. A result for deterministic algorithms is
also given. In Section 9.3 we present lower bounds on the competitiveness of
(deterministic and randomized) algorithms for Omni-Do, and we claim the
optimality of algorithm RS. We discuss open problems in Section 9.4.

9.1 Model of Adversity, Competitiveness and Definitions

In this section we present Adversary AGR, the adversary assumed in this
chapter, we formalize the notion of competitiveness, and we recall graph and
set theoretic terminology used in the remainder sections.



9.1 Model of Adversity, Competitiveness and Definitions 171

9.1.1 Adversary AGR

We denote by AGR an oblivious (off-line) adversary that can cause arbitrary
regroupings. Consider an algorithm A that solves the Omni-Do problem under
adversary AGR. The adversary determines, prior to the start of an execution
of A, both the sequence of regroupings and the number of tasks completed
by each group before it is involved in another regrouping. Taken together,
this information determines, what we call, a computation template: this is a
directed acyclic graph (DAG), each vertex of which corresponds to a group of
processors that existed during the the computation; a directed edge is placed
from group g1 to group g2 if g2 is created by a regrouping involving g1. We
label each vertex of the DAG with the group of processors associated with
that vertex and the total number of tasks that the adversary allows the group
of processors to perform before the next reconfiguration occurs.

Specifically, if n is the number of Omni-Do tasks and p the number of
participating processors, then such a computation template is a labeled and
weighted DAG, which we call a (p, n)-DAG. More formally,

Definition 9.1. A (p, n)-DAG is a DAG C = (V,E) augmented with a weight
function h : V → [n] ∪ {0} and a labeling γ : V → 2[p] \ {∅} so that:

1. For any maximal path (v1, . . . , vk) in C,
∑
h(vi) ≥ n. (This guarantees

that any algorithm terminates during the computation described by the
DAG.)

2. γ possesses the following “initial conditions”:

[p] =
⋃̇

v: in(v)=0

γ(v).

3. γ respects the following “conservation law”:
there is a function φ : E → 2[p] \ {∅} so that for each v ∈ V with
indegree(v) > 0,

γ(v) =
⋃̇

(u,v)∈E

φ
(
(u, v)

)
,

and for each v ∈ V with out(v) > 0,

γ(v) =
˙⋃

(v,u)∈E

φ
(
(v, u)

)
.

In the above definition, ∪̇ denotes disjoint union, and in(v) and out(v) denote
the in-degree and out-degree of v, respectively. Finally, for two vertices u, v ∈
V , we write u ≤ v if there is a directed path from u to v; we then write u < v
if u ≤ v and u and v are distinct.

Adversary AGR is constrained to establish only the computation templates
as defined above.



172 9 Competitive Analysis of Omni-Do in Partitionable Networks

Example 9.2. Consider the (12, n)-DAG shown in Figure 9.1, where we let the
following groups be represented: g1 = {p1}, g2 = {p2, p3, p4}, g3 = {p5, p6},
g4 = {p7}, g5 = {p8, p9, p10, p11, p12}, g6 = {p1, p2, p3, p4, p6}, g7 = {p8, p10},
g8 = {p9, p11, p12}, g9 = {p1, p2, p3, p4, p6, p8, p10}, g10 = {p5, p11}, and g11 =
{p9, p12}.

��
��

��
��

��
��

��
��
g1, 5 g3, 8 g4, n g5, 2��

��
g2, 3

��
��
g6, 4 ��

��
g7, 5 ��

��
g8, 6

��
��
g10, n ��

��
g11, n��

��
g9, n

R

j?� 	 w

s U+ �

Fig. 9.1. An example of a (12, n)-DAG.

This computation template models all (asynchronous) computations with
the following behavior.

(i) The processors in groups g1 and g2 and processor p6 of group g3 are re-
grouped during some reconfiguration to form group g6. Processor p5 of group
g3 becomes a member of group g10 during the same reconfiguration (see be-
low). Prior to this reconfiguration, processor p1 (the singleton group g1) has
performed exactly 5 tasks, the processors in g2 have cooperatively performed
exactly 3 tasks and the processors in g3 have cooperatively performed exactly
8 tasks (assuming that t > 8).

(ii) Group g5 is partitioned during some reconfiguration into two new
groups, g7 and g8. Prior to this reconfiguration, the processors in g5 have
performed exactly 2 tasks.

(iii) Groups g6 and g7 merge during some reconfiguration and form group
g9. Prior to this merge, the processors in g6 have performed exactly 4 tasks
(counting only the ones performed after the formation of g6 and assuming
that there are at least 4 tasks remaining to be done) and the processors in g7
have performed exactly 5 tasks.

(iv) The processors in group g8 and processor p5 of group g3 are regrouped
during some reconfiguration into groups g10 and g11. Prior to this reconfigura-
tion, the processors in group g8 have performed exactly 6 tasks (assuming that
there are at least 6 tasks remaining, otherwise they would have performed the
remaining tasks).



9.1 Model of Adversity, Competitiveness and Definitions 173

(v) The processors in g9, g10, and g11 run until completion with no further
reconfigurations.

(vi) Processor p7 (the singleton group g4) runs in isolation for the entire
computation.

Given a (p, n)-DAG representing a computation template C, we say that
two vertices (representing groups) are independent if there is no direct path
connecting one to the other. Then, for the computation template C we define
the computation width of C, cw(C), to be the maximum number of inde-
pendent vertices reachable from any vertex in (p, n)-DAG. We give a formal
definition at the conclusion of this section.

Let ξ is the execution of an algorithm solving Omni-Do under the compu-
tation template C represented by a (p, n)-DAG. We let the adversarial pattern
ξ|AGR be represented by the (p, n)-DAG, or its appropriate subgraph1. Fol-
lowing the notation established in Section 2.2.3, we define the weight of ξ|AGR

as the computation width of this graph, that is, ‖ξ|AGR‖ ≤ cw(C). (From the
definition of the computation width it is easy to observe that given a subgraph
H of a DAG G, cw(H) ≤ cw(G).)

9.1.2 Measuring Competitiveness

Before we formally define the notion of competitiveness, we introduce some
terminology.

Let D be a deterministic algorithm for Omni-Do and C a computation
template. We letWD(C) denote the task-oriented work expended by algorithm
D, where regroupings are determined according to the computation template
C. That is, if ξ ∈ E(D,AGR) is an execution of algorithm D under computation
template C, then WD(C) is the task-oriented work of execution ξ. We let
OPT denote the optimal (off-line) algorithm, meaning that for each C we
have WOPT(C) = minDWD(C). We now move to define competitiveness.

Definition 9.3. Let α be a real valued function defined on the set of all (p, n)-
DAGs (for all p and n). A deterministic algorithm D is α-competitive if for
all computation templates C,

WD(C) ≤ α(C)WOPT(C).

In this chapter we treat randomized algorithms as distributions over de-
terministic algorithms; for a set Z and a family of deterministic algorithms
{Dζ | ζ ∈ Z} we let R = R({Dζ | ζ ∈ Z}) denote the randomized algorithm
where ζ is selected uniformly at random from Z and scheduling is done ac-
cording to Dζ . For a real-valued random variable X , we let E[X ] denote its
expected value. Then,

1 The execution might terminate with all tasks performed before all regroupings
specified by the computation template take place; this is possible in the case of
randomized algorithm where the oblivious adversary does not know a priori how
the algorithm would behave under the specific sequence of regroupings.



174 9 Competitive Analysis of Omni-Do in Partitionable Networks

Definition 9.4. Let α be a real valued function defined on the set of all (p, n)-
DAGs (for all p and n). A randomized algorithm R is α-competitive if for
all computation templates C,

E[WDζ
(C)] ≤ α(C)WOPT(C),

this expectation being taken over uniform choice of ζ ∈ Z.

Note that usually α is fixed for all inputs; we shall see in later sections
that this would be meaningless in this setting. Presently, we use a function α
that depends on a certain parameter of the graph structure of C, namely the
computation width cw(C).

9.1.3 Formalizing Computation Width

We conclude this subsection with definitions and terminology that we use in
the remainder of this chapter.

Definition 9.5. A partially ordered set or poset is a pair (P,≤) where P is
a set and ≤ is a binary relation on P for which (i) for all x ∈ P , x ≤ x, (ii) if
x ≤ y and y ≤ x, then x = y, and (iii) if x ≤ y and y ≤ z, then x ≤ z. For a
poset (P,≤) we overload the symbol P , letting it denote both the set and the
poset.

Definition 9.6. Let P be a poset. We say that two elements x and y of P are
comparable if x ≤ y or y ≤ x; otherwise x and y are incomparable. A chain
is a subset of P such that any two elements of this subset are comparable. An
antichain is a subset of P such that any two distinct elements of this subset
are incomparable. The width of P , denoted w(P ), is the size of the largest
antichain of P .

Associated with any DAG C = (V,E) is the natural vertex poset (V,≤)
where u ≤ v if and only if there is a directed path from u to v. Then the width
of C, denoted w(C), is the width of the poset (V,≤).

Definition 9.7. Given a DAG C = (V,E) and a vertex v ∈ V , we define the
predecessor graph at v, denoted PC(v), to be the subgraph of C that is formed
by the union of all paths in C terminating at v. Likewise, the successor graph
at v, denoted SC(v), is the subgraph of C that is formed by the union of all
the paths in C originating at v.

Using the above definitions and terminology we give a formal definition of
the computation width of a given computation template.

Definition 9.8. The computation width of a DAG C = (V,E), denoted
cw(C), is defined as

cw(C) = max
v∈V

w(SC(v)).



9.2 Algorithm RS and its Analysis 175

Note that the processors that comprise a group formed during a compu-
tation template C may be involved in many different groups at later stages of
the computation, but no more than cw(C) of these groups can be computing
in ignorance of each other’s progress.

Example 9.9. In the (12, n)-DAG of Figure 9.1, the maximum width among
all successor graphs is 3: w(S((g5, 2))) = 3. Therefore, the computation
width of this DAG is 3. Note that the width of the DAG is 6 (nodes
(g1, 5), (g2, 3), (g3, 8), (g4, n), (g7, 5) and (g8, 6) form an antichain of maximum
size).

9.2 Algorithm RS and its Analysis

In this section we formulate algorithm RS (Random Select), analyze its com-
petitiveness, and present a result on the competitiveness of deterministic al-
gorithms.

9.2.1 Description of Algorithm RS

We consider the natural randomized algorithm RS where a processor (or
group) with knowledge that the tasks in a set K ⊂ [n] have been completed
selects to next complete a task at random from the set [n] \K. (Recall that we
treat randomized algorithms as distributions over deterministic algorithms.)
More formally, let Π = (π1, . . . , πp) be a p-tuple of permutations, where each
πi is a permutation of [n]. We describe a deterministic algorithm DΠ so that

RS = R
(
{DΠ | Π ∈ (Sn)p}

)
;

here Sn is the collection of permutations on [n]. Let G be a group of processors
and q ∈ G the processor in G with the lowest processor identifier. Then the
deterministic algorithm DΠ specifies that the group G, should it know that
the tasks in K ⊂ [n] have been completed, next completes the first task in
the sequence πq(1), . . . , πq(n) which is not in K.

9.2.2 Analysis of Algorithm RS

We now analyze the competitiveness (in terms of task-oriented work) of al-
gorithm RS. For a computation template C we write WRS(C) = E [WRS(C)],
this expectation taken over the random choices of the algorithm. Where C
can be inferred from context, we simply write WRS and WOPT.

We first recall Dilworth’s Lemma, a duality theorem for posets:

Lemma 9.10. (Dilworth’s Lemma) The width of a poset P is equal to the
minimum number of chains needed to cover P . (A family of nonempty subsets
of a set Q is said to cover Q if their union is Q.)



176 9 Competitive Analysis of Omni-Do in Partitionable Networks

We will also use a generalized degree-counting argument:

Lemma 9.11. Let G = (U, V,E) be an undirected bipartite graph with no
isolated vertices and h : V → R a non-negative weight function on G. For
a vertex v, let Γ (v) denote the vertices adjacent to v. Suppose that for some
B1 > 0 and for each vertex u ∈ U we have

∑

v∈Γ (u) h(v) ≤ B1 and that

for some B2 > 0 and for each vertex v ∈ V we have
∑

u∈Γ (v) h(u) ≥ B2,

then

∑

u∈U h(u)
∑

v∈V h(v)
≥ B2

B1
.

Proof. We compute the quantity
∑

(u,v)∈E h(u)h(v) by expanding according
to each side of the bipartition:

B1

∑

u∈U

h(u) ≥
∑

u∈U

(

h(u) ·
∑

v∈Γ (u)

h(v)
)

=
∑

(u,v)∈E

h(u)h(v)

=
∑

v∈V

(

h(v) ·
∑

u∈Γ (v)

h(u)
)

≥ B2

∑

v∈V

h(v).

As B1 > 0 and
∑

v h(v) ≥ B2 > 0, we conclude that

∑

u∈U h(u)
∑

v∈V h(v)
≥ B2

B1
, as

desired. 2

We now establish an upper bound on the competitiveness of the algorithm
RS.

Theorem 9.12. Algorithm RS is (1 + cw(C)/e)-competitive for any (p, n)-
DAG C = (V,E).

Proof. Let C be a (p, n)-DAG; recall that associated with C are the two
functions h : V → N and γ : V → 2[p] \ {∅}. For a subgraph C′ = (V ′, E′)
of C, we let H(C′) =

∑

v∈V ′ h(v). Recall that PC(v) and SC(v) denote the
predecessor and successor graphs of C at v. Then, we say that a vertex v ∈
V is saturated if H(PC(v)) ≤ n; otherwise, v is unsaturated. Note that if
v is saturated, then the group γ(v) must complete h(v) tasks regardless of
the scheduling algorithm used. Along these same lines, if v is an unsaturated
vertex for which n >

∑

u<v h(u), the group γ(v) must complete at least
max(h(v), n −∑u<v h(u)) tasks under any scheduling algorithm. As these
portions of C which correspond to computation which must be performed by
any algorithm will play a special role in the analysis, it will be convenient for us
to rearrange the DAG so that all such work appears on saturated vertices. To
achieve this, note that if v is an unsaturated vertex for which

∑

u<v h(u) < n,
we may replace v with a pair of vertices, vs and vu, where all edges directed
into v are redirected to vs, all edges directed out of v are changed to originate
at vu, the edge (vs, vu) is added to E, and h is redefined so that

h(vs) = n−
∑

u<v

h(u) and h(vu) = h(v) − h(vs).



9.2 Algorithm RS and its Analysis 177

Note that the graph C′ obtained by altering C in this way corresponds to the
same computation, in the sense that WD(C) = WD(C′) for any algorithm D.
For the remainder of the proof we will assume that this alteration has been
made at every relevant vertex, so that the graph C satisfies the condition

v unsaturated ⇒
∑

u<v

h(u) ≥ n. (9.1)

Finally, for a vertex v, we let Tv be the random variable equal to the number
of tasks that RS completes at vertex v. Note that if v is saturated, then
Tv = h(v). Let S and U denote the sets of saturated and unsaturated vertices,
respectively. Given the above definitions, we immediately have

WOPT ≥
∑

s∈S

h(s)

and, by linearity of expectation,

WRS = E
[∑

v

Tv

]

=
∑

s∈S

h(s) +
∑

u∈U

E[Tu] ≤WOPT +
∑

u∈U

E[Tu]. (9.2)

Our goal is to conclude that for some appropriate β,

E

[
∑

u∈U

Tu

]

≤ β ·
∑

s∈S

h(s) ≤ β ·WOPT

and hence that RS is 1 + β competitive. We will obtain such a bound by
applying Lemma 9.11 to an appropriate bipartite graph, constructed next.

Given C = (V,E) construct the (undirected) bipartite graph G =
(S,U , EG) where EG = {(s, u) | s < u}. As in Lemma 9.11, for a vertex
v, we let Γ (v) denote the set of vertices adjacent to v. Now assign weights
to the vertices of G according to the rule h∗(v) = E[Tv]. Note that for
s ∈ S, h∗(s) = h(s) and hence by condition (9.1) above, we immediately
have the bound

∀u ∈ U ,
∑

s∈Γ (u)

h∗(s) ≥ n. (9.3)

We now show that ∀s ∈ S,
∑

u∈Γ (s)

h∗(u) ≤ cw(C) · n
e
. (9.4)

Before proceeding to establish this bound, note that equations (9.3) and (9.4),
together with Lemma 9.11 imply that

WRS(C) ≤
∑

s∈S

h(s) +
∑

u∈U

h∗(u) ≤
(

1 +
cw(C)

e

)∑

s∈S

h(s)

≤
(

1 +
cw(C)

e

)

WOPT(C),



178 9 Competitive Analysis of Omni-Do in Partitionable Networks

as desired.
Returning now to equation (9.4), let s ∈ S be a saturated vertex and

consider the successor graph (of C) at s, SC(s). By Lemma 9.10 (Dilworth’s
Lemma), there exist w , w(SC(s)) ≤ cw(C) paths in SC(s), P1, P2, . . . Pw so
that their union covers SC(s). Let Xi be the random variable whose value is
the number of tasks performed by RS on the portion of the path Pi consisting
of unsaturated vertices. Note that if u ∈ V is unsaturated and u ≤ v, then v
is unsaturated and hence, for each path Pi, there is a first unsaturated vertex
u0
i after which every vertex of Pi is unsaturated. Note now that for a fixed

individual task τ , conditioned upon the event that τ is not yet complete, the
probability that τ is not chosen by RS for completion at a given selection
point in PC(u0

i ) is no more than (1 − 1/n). Let Li be the random variable
whose value is the set of tasks left incomplete by RS at the formation of the
group γ(u0

i ). As u0
i is unsaturated,

∑

v<u0
i
h(v) ≥ n by condition (9.1) and

hence, for each i,
Pr[τ ∈ Li] ≤ (1 − 1/n)n ≤ 1/e.

As there are a total of n tasks,

E[|Li|] ≤ n/e.

Of course, since RS completes a new task at each step, Xi ≤ |Li| so that
E[Xi] ≤ n/e and by the linearity of expectation

E
[∑

i

Xi

]

≤ w · n/e.

Now every unsaturated vertex in SC(s) appears in some Pi and hence

∑

u∈Γ (s)

h∗(u) ≤ E
[∑

i

Xi

]

≤ wn/e ≤ cw(C) · n/e,

as desired. 2

9.2.3 Deterministic Algorithms

The analysis of algorithm RS can be altered to yield an upper bound result on
the competitiveness of deterministic algorithms. Recall that a deterministic
algorithm D for the Omni-Do problem in this setting is a rule which, given
a processor (or group of processors) and a collection of tasks known to be
completed, determines the next task for this processor (or group) to complete.
Specifically, an algorithm is a function D : 2[p] × 2[n] → [n]; Furthermore, we
assume that D(P, T ) 6∈ T for all P ⊂ [p] and for all T ( [n], which is to say
that the algorithm never chooses to complete a task it already knows to be
completed (thus we restrict our attention to nontrivial algorithms). Then,



9.3 Lower Bounds 179

Theorem 9.13. Any (nontrivial) deterministic algorithm D for Do-
AllAGR(n, p, f) is (1 + cw(C))-competitive for any (p, n)-DAG C = (V,E).

Proof. In the proof of Theorem 9.12, h∗(v) was defined as the expected number
of tasks performed by algorithm RS at node v. For algorithm D, if we define
h∗(v) to be the actual number of tasks performed by the algorithm at node
v, then it is not difficult to see that equation (9.4) becomes

∑

u∈Γ (s) h
∗(u) ≤

cw(C)·t (provided that no processor in D performs a task that already knows
its result). This leads to the thesis of the theorem. 2

9.3 Lower Bounds

We now show that the competitive ratio achieved by algorithm RS is tight. We
begin with a lower bound for deterministic algorithms. This is then applied
to give a lower bound for randomized algorithms in Corollary 9.15.

Theorem 9.14. Let a : N → R and D be a deterministic algorithm for Omni-
Do so that D is a(cw(·))-competitive (that is D is α-competitive, for a function
α = a ◦ cw)). Then a(c) ≥ 1 + c/e.

Proof. Fix k ∈ N. Consider the case when n = p = g � k and n mod k = 0, g
being the number of initial groups. We consider a computation template CG

determined by a tuple G = (G1, . . . , Gn/k) where each Gi ⊂ [n] is a set of size
k and

⋃

iGi = [n]. Initially, the computation template CG has the processors
synchronously proceed until each has completed n/k tasks; at this point, the
processors in Gi are merged and allowed to exchange information about task
executions. Each Gi is then immediately partitioned into c groups. Note that
the off-line optimal algorithm accrues exactly n2/k work for this computation
template (it terminates prior to the partitions of the Gi).

We will show that for any D, there is a selection of the Gi so that

WD(CG) ≥ n2/k

[

1 + c

(

1 − 1

k

)k

− o(1)

]

,

and hence that a(c) ≥ 1 + c/e. Consider the behavior of D when the G is
selected at random, uniformly among all such tuples. Let Pi ⊂ [n] be the
subset of n/k tasks completed by processor i before the merges take place;
these sets are determined by the algorithm D. We begin by bounding

E G

[∣
∣
∣

⋃

i∈G1Pi

∣
∣
∣

]

.

To this end, consider an experiment where we select k sets Q1, . . . , Qk, each
Qi selected independently and uniformly from the set {Pi}. Now, for a specific
task τ , let pτ = PrQ1 [τ 6∈ Q1], so that PrQi [τ 6∈ ⋃iQi] = pkτ . As the Qi are
selected independently,



180 9 Competitive Analysis of Omni-Do in Partitionable Networks

EQi

[∣
∣[n] −

⋃

i

Qi
∣
∣

]

=
∑

τ

pkτ .

Observe now that

∑

τ

(1 − pτ ) =
∑

τ

PrQ1 [τ ∈ Q1] = EQ1 [|Q1|] = n/k

and hence
∑

τ pτ = n(1 − 1/k). As the function x 7→ xk is convex on [0,∞),
∑

τ p
k
τ is minimized when the pτ are equal and we must have

EQi

[∣
∣[n] −

⋃

i

Qi
∣
∣

]

≥ n ·
(

1 − 1

k

)k

.

Now observe that, conditioned on the Qi being distinct, the distribution of
(Q1, . . . , Qk) is identical to that of (Pg11 , . . . , Pg1k) where the random variable

G1 = {g1
1 , . . . , g

1
k}. Considering that Pr[∃i 6= j,Qi = Qj] ≤ k2/n, we have

EQi

[∣
∣[n] −

⋃

i

Qi
∣
∣

]

≤
(

1 − k2

n

)

E G

[

n−
∣
∣
⋃

i∈G1

Pi
∣
∣

]

+ 1 · k
2

n

and hence as n→ ∞ we see that the expected number of tasks remaining for
those processors in group G1 is

E G

[

n−
∣
∣
∣

⋃

i∈G1

Pi

∣
∣
∣

]

≥ n(1 − 1/k)k − o(1).

Of course, the distribution of each Gi is the same, so that

E G





n/k
∑

i=1

(

n−
∣
∣
⋃

j∈Gi

Pj
∣
∣

)



 = [1 − o(1)]
(n

k

)

· n
(

1 − 1

k

)k

.

In particular, there must exist a specific selection of G = (G1, . . . , Gn/k)
which achieves this bound. Recall that every Gi is partitioned into c groups.
Therefore, for such G, the total work is at least

n2

k
·
(

1 + [1 − o(1)] · c ·
(

1 − 1

k

)k
)

.

As limk→∞(1 − 1
k )k = 1

e , this completes the proof. 2

The above lower bound result together with the upper bound result given
in Theorem 9.13 show that there is a gap of a factor of 1/e on the competitive-
ness of deterministic algorithms. Closing this gap remains an open problem.

As the above stochastic computation template CG is independent of the
deterministic algorithm D, this immediately gives rise to a lower bound for
randomized algorithms:



9.5 Chapter Notes 181

Corollary 9.15. Let R
(
{Dζ | ζ ∈ Z}

)
be a randomized algorithm for Omni-

Do that is (a ◦ cw)-competitive, where a : N → R. Then a(c) ≥ 1 + c/e.

Proof. Assume for contradiction that for some c, a(c) < 1 + c/e and let k be
large enough so that (1 − 1

k )k > a(c) − 1. For this k we proceed as in the
proof above, considering a random G and the computation template CG with
n = g = p congruent to 0 mod k, g being the number of initial groups. Then,
as above,

E G

[
E ζ

[
WDζ

(CG)
]]

= E ζ

[
E G

[
WDζ

(CG)
]]

≥ min
ζ

[
E G

[
WDζ

(CG)
]]

≥ n2

k
·
(

1 + [1 − o(1)] · c ·
(

1 − 1

k

)k
)

.

Hence there exists a G so that Eζ
[
WDζ

(CG)
]
≥ n2

k ·
(
1 + [1 − o(1)] ce

)
, which

completes the proof. 2

The above result yields the optimality of algorithm RS. Specifically, RS
achieves the optimal competitive ratio over the set of all computation tem-
plates with a given computation width.

9.4 Open Problems

One outstanding open question is how to derandomize the schedules used by
task-performing algorithms in this chapter. Specifically, we would like to con-
struct deterministic scheduling algorithms that are (1+cw(C)/e)-competitive
for any computation template C, thus closing the gap of factor 1/e identified
in the previous section.

An interesting direction is to study the competitiveness of Omni-Do algo-
rithms with respect to their message complexity. Another promising direction
is to study the task-performing paradigm in the models of computation that
combine network regroupings with processor failures. The goal is to establish
complexity results that show how performance of task-performing algorithms
depends both on the extent of regroupings and on the number of processor
failures.

9.5 Chapter Notes

Dolev, Segala, and Shvartsman [29] performed the first study of the Omni-Do
problem in the partitionable setting. Assuming p = n, they model regroup-
ing patterns for which the termination time of any on-line task-performing
algorithm is greater than the termination time of an off-line task-performing
algorithm by a factor linear in p.



182 9 Competitive Analysis of Omni-Do in Partitionable Networks

Malewicz, Russell, and Shvartsman [83, 86] introduced the notion of k-
waste that measures the worst-case redundant work performed by k groups
(or processors) when started in isolation and merged into a single group at
some later time. They developed several efficient constructions that allow
processors to compute locally, without coordination, while controlling waste.
These results are deterministic, and they adequately describe such computa-
tion to the point of the first regrouping, where the regrouping is assumed to
merge groups. (This is the topic of the next Chapter.)

Georgiou and Shvartsman [48] give upper bounds on work for an algorithm
that performs work in the presence of network fragmentations and merges
using a group communication service where processors initially start in a
single group (this is the topic of Chapter 8). They establish an upper bound
of O(min(n ·p, n+n ·g(C))) onw work, where g(C) is the total number of new
groups formed during the computation pattern C. Note that cw(C) ≤ g(C),
and there can be an arbitrary gap between cw(C) and g(C).

The presentation in this chapter is based on the work of Georgiou, Russell,
and Shvartsman [46]. For a proof of the Dilworth’s lemma see [26].

The notion of competitiveness was introduced by Sleator and Tarjan [105].
See also Bartal, Fiat, and Rabani [11], Awerbuch, Kutten, and Peleg [8], and
Ajtai, Aspnes, Dwork, and Waarts [3].




