
7

Asynchrony and Delay-Sensitive Bounds

COMMON impediments to effective coordination in distributed settings, as
we have seen, include failures and asynchrony that manifest themselves,

e.g., in disparate processor speeds and varying message latency. Fortunately,
the Do-All problem can always be solved as long as at least one processor
continues to make progress. In particular, assuming that initially there n tasks
that need to be performed, and the tasks are known to all p processors, the
problem can be solved by a communication-oblivious algorithm where each
processor performs all tasks. Such a solution has total-work S = O(n · p),
and either it requires no communication, or it cannot rely on communication
because of very long delays. On the other hand, Ω(n) is the obvious lower
bound on work; additionally we show in this chapter that a lower bound
of S = Ω(n + p log p) holds for any asynchronous algorithm for Do-All, no
matter how small is the message delay. Therefore it is reasonable to have
the goal that, given a non-trivial and non-negligible delay d, effective use of
messaging should result in the decrease in work from the trivial upper bound
of S = O(n · p) so that work becomes sub-quadratic in n and p.

Obtaining algorithmic efficiency in asynchronous models of computation
is difficult. For an algorithm to be interesting, it must be better than the
oblivious algorithm, in particular, it must have sub-quadratic work complexity.
However, if messages can be delayed for a “long time”, then the processors
cannot coordinate their activities, leading to an immediate lower bound on
work ofΩ(n·p). In particular, it is sufficient for messages to be delayed byΘ(n)
time for this lower bound to hold. Algorithmic techniques for synchronous
processors assume constant-time message delay. In general it is not clear how
such algorithms can be adapted to deal with asynchrony. Thus it is interesting
to develop algorithms that are correct for any pattern of asynchrony and
failures (with at least one surviving processor), and whose work depends on
the message latency upper bound, such that work increases gracefully as the
latency grows. The quality of the algorithms can be assessed by comparing
their work to the corresponding delay-sensitive lower bounds.

116 7 Asynchrony and Delay-Sensitive Bounds

In this chapter our goal is to obtain complexity bounds for work-efficient
message-passing algorithms for the Do-All problem. We require that the al-
gorithms tolerate any pattern of processor crashes with at least one surviving
processor. More significantly, we are interested in algorithms whose work de-
grades gracefully as a function of the worst case message delay d. Here the
requirement is that work must be subquadratic in n and p as long as d = o(n).
Thus for our algorithms we aim to develop delay-sensitive analysis of work
and message complexity. Noting again that work must be Ω(p · n) for d ≥ n,
we give a comprehensive analysis for d < n, achieving substantially better
work complexity.

Chapter structure.

We define the model of adversity and expand on complexity measures in Sec-
tion 7.1. In Section 7.2 we develop a delay-sensitive lower bounds for Do-All.
In Section 7.3 we deal with permutations and their combinatorial proper-
ties used in the algorithm analysis. In Section 7.4 we present and analyze
a work-efficient asynchronous deterministic Do-All algorithm. In Section 7.5
we present and analyze two randomized and one deterministic algorithm that
satisfy our efficiency criteria. We discuss open problems in Section 7.6.

7.1 Adversarial Model and Complexity

Processors communicate over a fully connected network by sending point-to-
point messages via reliable asynchronous channels. When a processor sends a
message to a group of processors, we call it a multicast message, however in
the analysis we treat a multicast message as multiple point-to-point messages.
Messages are subject to delays, but are not corrupted or lost.

We assume an omniscient (on-line) adversary that introduces delays. We
call this adversary AD. The adversary can introduce arbitrary delays between
local processor steps and cause processor crashes (crashes can be viewed as
infinite delays). The only restriction is that at least one processor is non-faulty.
Adversary AD also causes arbitrary message delays.

We specialize adversary AD by imposing a constraint on message delays.
We assume the existence of a global real-timed clock that is unknown to the
processors. For convenience we measure time in terms of units that represent
the smallest possible time between consecutive clock-ticks of any processor.
We define the delay-constrained adversary as follows. We assume that there
exists an integer parameter d, that is not assumed to be a constant and that is
unknown to the processors, such that messages are delayed by at most d time

units. We call this adversary A(d)
D . It is easy to see that A(d)

D ⊆ A(d+1)
D for

any d ≥ 0, because increasing the maximum delays introduces new adversarial

behaviors. We also note that AD =
⋃

d∈N
A(d)
D .

7.1 Adversarial Model and Complexity 117

In this chapter we are interested in algorithms that are correct against
adversary AD, i.e., for any message delays. For the purpose of analysis of such

algorithms, we are interested in complexity analysis under adversary A(d)
D , for

some specific positive d that is unknown to the algorithm. Note that by the
choice of the time units, a processor can take at most d local steps during any
global time period of duration d.

For an algorithm A, let E = E(A,A(d)
D) be the set of all executions of the

algorithm in our model of computation subject to adversary A(d)
D . For the

purposes of this chapter, we define the weight of an adversarial pattern to be
the maximum delay incurred by any message. Thus, for any execution ξ ∈ E ,
the maximum weight of the adversarial pattern ξ|

A
(d)
D

is d, that is ||ξ|
A

(d)
D

|| ≤ d.

We assess the efficiency of algorithms in terms of total-work (Defini-

tion 2.4) and message complexity (Definition 2.6) under adversary A(d)
D . We

use the notation S(n, p, d) to denote work, and M(n, p, d) to denote message
complexity. Expected work and message complexity are denoted by ES (n, p, d)
and EM (n, p, d) respectively.

When work or messages complexities do not depend d we omit d and
use, for example, S(n, p) and M(n, p) for work and message complexity (and
ES(n, p) and EM(n, p) for expected work and message complexity).

Next we formulate a proposition leading us to not consider algorithms
where a processor may halt voluntarily before learning that all tasks have
been performed.

Proposition 7.1. Let Alg be a Do-All algorithm such that there is some ex-
ecution ξ of Alg in which there is a processor that (voluntarily) halts before
it learns that all tasks have been performed. Then there is an execution ξ′ of
Alg with unbounded work in which some task is never performed.

Proof. For the proof we assume a stronger model of computation where in
one local step any processor can learn the complete state of another proces-
sor, including, in particular, the complete computation history of the other
processor. Assume that, in some execution ξ, the Do-All problem is solved,
but some processor i halts in ξ without learning the a certain task z was per-
formed. First we observe that for any other processor j that i learns about
in ξ, j does not perform task z by the time i learns j’s state. (Otherwise i
would know that z was performed.) We construct another execution ξ′ from
ξ as follows. Any processor j (except for i) proceeds as in ξ until it attempts
to perform task z. Then j is delayed forever. We show that processor i can
proceed exactly as in ξ. We claim that i is not able to distinguish between
ξ and ξ′. Consider the histories of all processors that i learned about in ξ′

(directly or indirectly). None of the histories contain information about task z
being performed. Thus the history of any processor j was recorded in advance
of j’s delay in ξ′. Then by the definition of ξ′ these histories are identical to
those in ξ. This means that in ξ′ processor i halts as in ξ. Since the problem

118 7 Asynchrony and Delay-Sensitive Bounds

remains unsolved, processor i continues to be charged for each local clock tick
(recall that work is charged until the problem is solved). 2

As the result of Proposition 7.1, we will only consider algorithms where a
processor may voluntarily halt only after it knows that all tasks are complete,
i.e., for each task the processor has local knowledge that either it performed
the task or that some other processor did.

Note that for large message delays the work of any Do-All algorithm is
necessarily Ω(n ·p). The following proposition formalizes this lower bound and
motivates our delay-sensitive approach.

Proposition 7.2. Any algorithm that solves the Do-All problem in the pres-

ence of adversary A(c·n)
D , for a constant c > 0, has work S(n, p) = Ω(n · p).

Proof. We choose the adversary that delays each message by c · n time units,
and does not delay any processor. If a processor halts voluntarily before learn-
ing that all tasks are complete, then by Proposition 7.1 work may be un-
bounded. Assume then that no processor halts voluntarily until it learns that
all tasks are done. A processor may learn this either by performing all the
tasks by itself and contributing n to the work of the system, or by receiving
information from other processors by waiting for messages for c ·n time steps.
In either case the contribution is Ω(n) to the work of the algorithm. Since
there are p processors, the work is Ω(n · p). 2

Lastly we note that since in this chapter we are trading communication
for work, we design algorithms with the focus on work.

7.2 Delay-Sensitive Lower Bounds on Work

In this section we develop delay-sensitive lower bounds for asynchronous algo-
rithms for the Do-All problem. for deterministic and randomized algorithms.
We show that any deterministic (randomized) algorithm with p asynchronous
processors and n tasks has worst-case total-work (respectively expected total-

work) of Ω(n+p d logd+1 n) under adversary A(d)
D , where d is the upper bound

on message delay (unknown to the processors). This shows that work grows
with d and becomes Ω(p n) as d approaches n.

We start by showing that the lower bound on work of Ω(n+ p log p) from
Theorem 5.2 for the model with crashes and restarts also applies to the asyn-
chronous model of computation, regardless of the delay. Note that the explicit
construction in the proof below shows that the same bound holds in the asyn-
chronous setting where no processor crashes.

Theorem 7.3. Any asynchronous p-processor algorithm solving the Do-All
problem on inputs of size n has total-work S(n, p) = n+Ω(p log p).

7.2 Delay-Sensitive Lower Bounds on Work 119

Proof. We present a strategy for the adversary that results in the worst case
behavior. Let A be the best possible algorithm that solves the Do-All problem.
The adversary imposes delays on the processor steps (regardless of what the
message delay is) as described below:
Stage 1: Let u > 1 be the number of remaining tasks. Initially u = n. The
adversary induces no delays as long as the number of remaining tasks, u, is
more than p. The work needed to perform n−p tasks when there are no delays
is at least n− p.
Stage 2: As soon as a processor is about to perform some task n−p+1 making
u ≤ p, the adversary uses the following strategy. For the upcoming iteration,
the adversary examines the algorithm to determine how the processors are
assigned to the remaining tasks. The adversary then lists the remaining tasks
with respect to the number of processors assigned to them. The adversary
delays the processors assigned to the first half remaining tasks (bu

2 c) with the
least number of processors assigned to them. By an averaging argument, there
are no more than dp2e processors assigned to these bu2 c tasks. Hence at least
bp2c processors will complete this iteration having performed no more than
half of the remaining tasks.

The adversary continues this strategy which results in performing at most
half of the remaining tasks at each iteration. Since initially u = p in this
stage, the adversary can continue this strategy for at least log p iterations.
Considering these two stages the work performed by the algorithm is:

S(n, p) ≥ n− p
︸ ︷︷ ︸

Stage 1

+ bp/2c log p
︸ ︷︷ ︸

Stage 2

= n+Ω(p log p). 2

The above lower bound holds for arbitrarily small delays. We next develop
a lower bound for the settings where the delay is non-negligible, specifically
we assume d ≥ 1.

7.2.1 Deterministic Delay-Sensitive Lower Bound

First we prove a lower bound on work that shows how the efficiency of work-
performing deterministic algorithms depends on the number of processors p,
the number of tasks n, and the message delay d.

Theorem 7.4. Any deterministic algorithm solving Do-All with n tasks us-

ing p asynchronous message-passing processors against adversary A(d)
D per-

forms work S(n, p, d) = Ω(n+ pmin{d, n} logd+1(d+ n)).

Proof. That the required work is at least n is obvious — each task must be
performed. We present the analysis for n > 5 and n that is divisible by 6 (this
is sufficient to prove the lower bound). We present the following adversarial
strategy. The adversary partitions computation into stages, each containing
min{d, n/6} steps. We assume that the adversary delivers all messages sent
to a processor in stage s at the end of stage s (recall that the receiver can

120 7 Asynchrony and Delay-Sensitive Bounds

process any such message later, according to its own local clock) — this is
allowed since the length of stage s is at most d. For stage s we will define the
set of processors Ps such that the adversary delays all processors not in Ps.
More precisely, each processor in Ps is not delayed during stage s, but any
processor not in Ps is delayed so it does not complete any step during stage s.

Consider stage s. Let us > 0 be the number of tasks that remain unper-
formed at the beginning of stage s, and let Us be the set of such tasks. We
now show how to define the set Ps. Suppose first that each processor is not
delayed during stage s (with respect to the time unit). Let Js(i), for every
processor i, i ∈ P (recall that P is the set of all processors), denote the set of
tasks from Us (we do not consider tasks not in Us in the analysis of stage s
since they were performed before) which are performed by processor i during
stage s (recall that inside stage s processor i does not receive any message
from other processors, by the assumption on consider kind of the adversary).
Note that |Js(i)| is at most min{d, n/6}, which is the length of a stage.

Claim. There are at least us

3 min{d,n/6} tasks z such that each of them is con-

tained in at most 2pmin{d, n/6}/us sets in the family {Js(i) | i ∈ P}.
We prove the claim by the pigeonhole principle. If the claim is not true,

then there would be more than us − us

3min{d,t/6} tasks such that each of

them would be contained in more than 2pmin{d, n/6}/us sets in the family
{Js(i) | i ∈ P}. This yields a contradiction because the following inequality
holds

p min{d, n/6} =
∑

i∈P

|Js(i)|

≥
(

us −
us

3 min{d, n/6}
)

· 2pmin{d, n/6}
us

=
(

2 − 2

3 min{d, n/6}
)

· pmin{d, n/6}

> p min{d, n/6} ,

since d ≥ 1 and n > 4. This proves the claim.
We denote the set of us

3min{d,n/6} tasks from the above claim by Js. We

define Ps to be the set {i : Js ∩ Js(i) = ∅}. By the definition of tasks z ∈ Js
we obtain that

|Ps| ≥ p− us
3 min{d, n/6} · 2pmin{d, n/6}

us
≥ p/3 .

Since all processors, other that those in Ps, are delayed during the whole
stage s, work performed during stage s is at least p

3 · min{d, n/6} , and all
tasks from Js remains unperformed. Hence the number us+1 of undone tasks
after stage s is still at least us

3min{d,n/6} .

If d < n/6 then work during stage s is at least p d/6, and there remain
at least us

3d unperformed tasks. Hence this process may be continued, starting

7.2 Delay-Sensitive Lower Bounds on Work 121

with n tasks, for at least log3d n = Ω(logd+1(d+n)) stages, until all tasks are
performed. The total work is then Ω(p d logd+1(d+ n)).

If d ≥ n/6 then during the first stage work performed is at least p n/18 =
Ω(p n logd+1(d + n)) = Ω(p n), and at the end of stage 1 at least n

3n/6 = 2

tasks remain unperformed. Notice that this asymptotic value does not depend
on whether the minimum is selected among d and n, or among d and n/6.
More precisely, the works is

Ω(pmin{d, n} logd+1(d+ n)) = Ω(pmin{d, n/6} logd+1(d+ n)),

which completes the proof. 2

7.2.2 Delay-sensitive Lower Bound for Randomized Algorithms

In this section we prove a delay-sensitive lower bound for randomized work-
performing algorithms. We first state a technical lemma (without a proof)
that we put to use in the lower bound proof.

Lemma 7.5. For 1 ≤ d ≤ √
u the following holds

1

4
≤
(

u−d
u/(d+1)

)

(
u

u/(d+1)

) ≤ 1

e
.

The idea behind the lower bound proof for randomized algorithms we
present below is similar to the one for deterministic algorithms in the previ-
ous section, except that sets Js(i) are random, hence we have to modify the
construction of set Ps also. We partition the execution of the algorithms into
stages, similarly to the lower bound for deterministic algorithms. Recall that
P is the set of p processors. Let Us denote the remaining tasks at the begin-
ning of stage s. Suppose first that all processors are not delayed during stage
s, and the adversary delivers all messages sent to processor i during stage s at
the end of stage s. The set Js(i), for processor i ∈ P , denotes a certain set of
tasks from Us that i is going to perform during stage s. The size of Js(i) is at
most d, because we consider at most d steps in advance (the adversary may
delay all messages by d time steps, and so the choice of Js(i) does not change
during next d steps, provided |Js(i)| ≤ d). The key point is that the set Js(i)
is random, since we consider randomized algorithms, and so we deal with the
probabilities that Js(i) = Y for the set of tasks Y ⊆ Us of size at most d. We
denote these probabilities by pi(Y). For some given set of processors P , let
Js(P) denote set

⋃

i∈P Js(i).
The goal of the adversary is to prevent the processors from completing

some sufficiently large set Js of tasks during stage s. Here we are interested in
the events where there is a set of processors Ps that is “large enough” (linear
size) so that the processors do not perform any tasks from Js.

In the next lemma we prove that, for some set Js, such set of processors
Ps exists with high probability. This is the main difference compared to the
deterministic lower bound — instead of finding a suitably large set Js and a

122 7 Asynchrony and Delay-Sensitive Bounds

linear-size set Ps, we prove that the set Js exists, and we prove that the set Ps
of processors not performing this set of tasks during stage s exists with high
probability. However in the final proof, the existence with high probability is
sufficient — we can define the set on-line using the rule that if some processor
wants to perform a task from the chosen set Js, then we delay it, and do not
put it in Ps. In the next lemma we assume that s is known, so we skip lower
index s from the notation for clarity of presentation.

Lemma 7.6. There exists set J ⊆ U of size u
d+1 such that

Pr[∃P⊆P : |P | = p/64 ∧ J(P) ∩ J = ∅] ≥ 1 − e−p/512 .

Proof. First observe that

∑

(J: J⊆U, |J|= u
d+1)

∑

(v∈P)

∑

(Y : Y⊆U, Y ∩J=∅, |Y |≤d)

pv(Y) =

=
∑

(v∈P)

∑

(Y : Y⊆U, |Y |≤d)

pv(Y) ·
(
u− |Y |
u/(d+ 1)

)

≥ p ·
(

u− d

u/(d+ 1)

)

.

It follows that there exists set J ⊆ U of size u
d+1 such that

∑

(v∈P)

∑

(Y : Y⊆U, Y ∩J=∅, |Y |≤d)

pv(Y) ≥
p ·
(

u−d
u/(d+1)

)

(
u

u/(d+1)

) ≥ p

4
, (7.1)

where the last inequality follows from Lemma 7.5. Fix such a set J . For every
node v ∈ P , let

Qv =
∑

(Y : Y⊆U, Y ∩J=∅, |Y |≤d)

pv(Y) .

Notice that Qv ≤ 1. Using the pigeonhole principle to Inequality 7.1, there is
a set V ′ ⊆ P of size p/8 such that for every v ∈ V ′

Qv ≥
1

8
.

(Otherwise more than 7p/8 nodes v ∈ P would have Qv < 1/8, and fewer
than p/8 nodes v ∈ P would have Qv ≤ 1. Consequently

∑

v∈P Sv < 7p/64 +
p/8 < p/4, which would contradict (7.1)). For every v ∈ V ′, let Xv be the
random variable equal 1 with probability Qv, and 0 with probability 1 −Qv.
These random variables constitute sequence of independent 0-1 trials. Let
µ = E[

∑

v∈V ′ Xv] =
∑

v∈V ′ Qv. Applying Chernoff bound we obtain

Pr

[
∑

v∈V ′

Xv < µ/2

]

< e−µ/8 ,

7.2 Delay-Sensitive Lower Bounds on Work 123

and consequently, since µ ≥ p
8 · 1

8 = p
64 , we have

Pr

[
∑

v∈V ′

Xv < p/64

]

≤ Pr

[
∑

v∈V ′

Xv < µ/2

]

< e−µ/8 ≤ e−p/512 .

Finally observe that

Pr [∃P⊆P : |P | = p/64 ∧ J(P) ∩ J = ∅]

≥ 1 − Pr

[
∑

v∈V ′

Xv < p/64

]

,

which completes the proof of the lemma. 2

We apply Lemma 7.6 in proving the following lower bound result.

Theorem 7.7. Any randomized algorithm solving Do-All with n tasks using

p asynchronous message-passing processors against adversary A(d)
D performs

expected work ES (n, p, d) = Ω(n+ pmin{d, n} logd+1(d+ n)).

Proof. That the lower bound of Ω(t) holds with probability 1 is obvious. We
consider three cases, depending on how large is d comparing to n: in the first
case d is very small comparing to n (in this case the thesis follows from the
simple calculations), in the second case we assume that d is larger than in the
first, but still no more than

√
n (this is the main case), and in the third case d

is large than
√
n (here the proof is similar to the second case, but is restricted

to one stage). We now give the details.

Case 1 : Inequalities 1 ≤ d ≤ √
n and 1 − e−p/512 · logd+1 n < 1/2 hold.

This case is a simple derivation. It follows that logd+1 n > ep/512/2, and
next 3

√
n > p+ d+ logd+1 n for sufficiently large p and n. More precisely:

3
√
n > 3p for sufficiently large p, since n > logd+1 n > ep/512;

3
√
n > 3d for sufficiently large p, since de

p/512/2 < n;
3
√
n > 3 logd+1 n for sufficiently large n, since d ≥ 1 and by the prop-

erties of the logarithm function.

Consequently, n = (3
√
n)3 > pd logd+1 n for sufficiently large p and n, and the

lower bound

Ω(n) = Ω(p d logd+1 n) = Ω(p d logd+1(d+ n))

holds, with the probability 1, in this case.

Case 2 : Inequalities 1 ≤ d ≤ √
n and 1 − e−p/512 · logd+1 n ≥ 1/2 hold.

Consider any Do-All algorithm. Similarly as in the proof of Theorem 7.4,
the adversary partitions computation into stages, each containing d steps.

124 7 Asynchrony and Delay-Sensitive Bounds

Let us fix an execution of the algorithm through the end of stage s − 1.
Consider stage s. We assume that the adversary delivers to a processor all
messages sent in stage s at the end of stage s, provided the processor is not
delayed at the end of stage s (any such message is processed by the receivers
at a later time). Let Us ⊆ T denote set of tasks that remain unperformed by
the end of stage s−1. Here, by the adversarial strategy (no message is received
and processed during stage s), given that the execution is fixed at the end
of stage s− 1, one can fix a distribution of processor i performing the set of
tasks Y during stage s — this distribution is given by the probabilities pi(Y).
The adversary derives the set Js ⊆ Us, using Lemma 7.6 according to the set
of all processors, the set of the unperformed tasks Us, and the distributions
pi(Y) fixed at the beginning of stage s according to the action of processors
i in stage s. (In applying Lemma 7.6 we use the same notation, except that
the quantities are subscripted according to the stage number s.)

The adversary additionally delays any processor i, not belonging to some
set Ps, that attempts to perform a task from Js before the end of stage
s. The set Ps is defined on-line (this is one of the difference between the
adversarial constructions in the proofs of the lower bounds for deterministic
and randomized Do-All algorithms): at the beginning of stage s set Ps contains
all processors; every processor i that is going to perform some task z ∈ Js
at time τ in stage s, is delayed till the end of stage s and removed from set
Ps. We illustrate the adversarial strategy for five processors and d = 5 in
Figure 7.1.

We now give additional details of the adversarial strategy. Suppose us =
|Us| > 0 tasks remain unperformed at the beginning of stage s. As described
above, we apply Lemma 7.6 to the set Us and probabilities pi(Y) to find, at the
very beginning of stage s, the set Js ⊆ Us such that the probability that there
exists a subset of processors Ps of cardinality p/64 such that none of them
would perform any tasks from Js during stage s is at least 1− e−p/512. Next,
during stage s the adversary delays (to the end of stage s) all processors that
(according to the random choices during stage s) are going to perform some
task from Js. By Lemma 7.6, the set Ps of not-delayed processors contains
at least p − 63p/64 ≥ p/64 processors, and the set of the remaining tasks
Us+1 ⊇ Js contains at least us

d+1 tasks, all with probability at least 1−e−p/512.
If this happens, we call stage s successful .

It follows that the probability, that every stage s < logd+1 n is successful is

at least 1− e−p/512 · logd+1 n. Hence, using the assumption for this case, with

the probability at least 1−e−p/512 · logd+1 n ≥ 1/2, at the beginning of stage s

there will be at least n ·
(

1
d+1

)logd+1 n−1
> 1 unperformed tasks and work will

be at least (logd+1 n− 1) · dp/64, since the work in one successful stage is at
least p/64 (the number of non-delayed processors) times d (the duration of one
stage). It follows that the expected work of this algorithm in the presence of
our adversary is Ω(pd logd+1 n) = Ω(pd logd+1(d+ n)), because 1 ≤ d ≤ √

n.
This completes the proof of Case 2.

7.3 Contention of Permutations 125

Strategy of the adversary during stage s, where p = d = 5. Using the set Js,
which exists by Lemma 7.6, the adversary delays a processor from the moment
where it wants to perform a task from Js. Lemma 7.6 guarantees that at least a
fraction of processors will not be delayed during stage s, with high probability.

Fig. 7.1. Illustration of the adversarial strategy leading to the delay-sensitive lower
bound on total-work for randomized algorithms.

Case 3 : Inequality d >
√
t holds.

Here we follow similar reasoning as in the Case 2, except that we consider
a single stage.

Consider first min{d, n/6} steps. Let T be the set of all tasks, and pi(Y)
denote the probability that processor i ∈ P performs tasks in Y ⊆ T of
cardinality min{d, n/6} during the considered steps. Applying Lemma 7.6 we
obtain, that at least p/64 processors are non-delayed during the considered

steps, and after these steps at least min{d,n/6}
d+1 ≥ 1 tasks remain unperformed,

all with the probability at least 1−e−p/512. Since 1 ≤ logd+1(d+n) < 2, work
is Ω(pmin{d, n/6}) = Ω(pmin{d, n} logd+1(d+n)). This completes the proof
of the third case and of the theorem. 2

7.3 Contention of Permutations

In this section we present and generalize the notion of contention of permuta-
tions, and state several properties of contention (without proofs). Contention
properties turn out to be important in the analysis of algorithms we present
later in this chapter.

We use braces 〈. . .〉 to denote an ordered list. For a list L and an element
a, we use the expression a ∈ L to denote the element’s membership in the list,
and the expression L−K to stand for L with all elements in K removed.

126 7 Asynchrony and Delay-Sensitive Bounds

We next provide a motivation for the material in this section. Consider the
situation where two asynchronous processors, p1 and p2, need to perform n
independent tasks with known unique identifiers from the set [n] = {1, . . . , n}.
Assume that before starting a task, a processor can check whether the task is
complete; however if both processors work on the task concurrently, then the
task is done twice because both find it to be not complete. We are interested
in the number of tasks done redundantly.

Let π1 = 〈a1, . . . , an〉 be the sequence of tasks giving the order in which
p1 intends to perform the tasks. Similarly, let π2 = 〈as1 , . . . , asn〉 be the
sequence of tasks of p2. We can view π2 as π1 permuted according to σ =
〈s1, . . . , st〉 (π1 and π2 are permutations). With this, it is possible to construct
an asynchronous execution for p1 and p2, where p1 performs all t tasks by itself,
and any tasks that p2 finds to be unperformed are performed redundantly by
both processors.

In the current context it is important to understand how does the structure
of π2 affect the number of redundant tasks. Clearly p2 may have to perform
task as1 redundantly. What about as2? If s1 > s2 then by the time p2 gets
to task as2 , it is already done by p1 according to π1. Thus, in order for as2
to be done redundantly, it must be the case that s2 > s1. It is easy to see,
in general, that for task asj to be done redundantly, it must be the case that
sj > max{s1, . . . , sj−1}. Such sj is called the left-to-right maximum of σ.
The total number of tasks done redundantly by p2 is thus the number of
left-to-right maxima of σ. Not surprisingly, this number is minimized when
σ = 〈n, . . . , 1〉, i.e, when π2 is the reverse order of π1, and it is maximized when
σ = 〈1, . . . , n〉, i.e., when π1 = π2. In this section we will define the notion
contention of permutations that captures the relevant left-to-right maxima
properties of permutations that are to be used as processor schedules.

Now we proceed with formal presentation. Consider a list of some idem-
potent computational jobs with identifiers from the set [n] = {1, . . . , n}. (We
make the distinction between tasks and jobs for convenience to simplify algo-
rithm analysis; a job may be composed of one or more tasks.) We refer to a list
of job identifiers as a schedule. When a schedule for n jobs is a permutation of
job identifiers π in Sn, we call it a n-schedule. Here Sn is the symmetric group,
the group of all permutations on the set [n]; we use the symbol ◦ to denote
the composition operator, and en to denote the identity permutation. For a
n-schedule π = 〈π(1), . . . , π(n)〉 a left-to-right maximum is an element π(j) of
π that is larger than all of its predecessors, i.e., π(j) > maxi<j{π(j − i)}.

Given a n-schedule π, we define lrm(π), to be the number of left-to-right
maxima in the n-schedule π. For a list of permutations Ψ = 〈π0, . . . , πn−1〉
from Sn and a permutation δ in Sn, the contention of Ψ with respect to δ
is defined as Cont(Ψ, δ) =

∑n−1
u=0 lrm(δ−1 ◦ πu). The contention of the list of

schedules Ψ is defined as Cont(Ψ) = maxδ∈Sn{Cont(Ψ, δ)}. Note that for any
Ψ , we have n ≤ Cont(Ψ) ≤ n2. It turns out that it is possible to construct a
family of permutations with following low contention (Hn is the nth harmonic
number, Hn =

∑n
j=1

1
j).

7.3 Contention of Permutations 127

Lemma 7.8. For any n > 0 there exists a list of permutations Ψ =
〈π0, . . . , πn−1〉 with Cont(Ψ) ≤ 3nHn = Θ(n log n).

For a constant n, a list Ψ with Cont(Ψ) ≤ 3nHn can be found by exhaustive
search. This costs only a constant number of operations on integers (however,
this cost might be of order (n!)n).

7.3.1 Contention and Oblivious Tasks Scheduling

Assume now that n distinct asynchronous processors perform the n jobs such
that processor i performs the jobs in the order given by πi in Ψ . We call
this oblivious algorithm ObliDo and give the code in Figure 7.2. (Here each
“processor” may be modeling a group of processors, where each processor
follows the same sequence of activities.)

00 const Ψ = {πr | 1 ≤ r ≤ n ∧ πr ∈ Sn} % Fixed set of n permutations of [n]
01 for each processor pid = 1..n begin

02 for r = 1 to n do

03 perform Job(πpid (r))
04 od

05 end.

Fig. 7.2. Algorithm ObliDo.

Since ObliDo does not involve any coordination among the processors
the total of n2 jobs are performed (counting multiplicities). However, it can
be shown that if we count only the job executions such that each job has not
been previously performed by any processor, then the total number of such
job executions is bounded by Cont(Ψ), again counting multiplicities. We call
such job executions primary; we also call all other job executions secondary.
Note that the number of primary executions cannot be smaller than n, since
each job is performed at least once for the first time. In general this number
is going to be between n and n2, because several processors may be executing
the same job concurrently for the first time.

Note that while an algorithm solving the Do-All problem may attempt to
reduce the number of secondary job executions by sharing information about
complete jobs among the processors, it is not possible to eliminate (redundant)
primary job executions in the asynchronous model we consider. The following
lemma formalizes the relationship between the primary job executions and
the contention of permutations used as schedules.

Lemma 7.9. In algorithm ObliDo with n processors, n tasks, and using the
list Ψ of n permutations, the number of primary job executions is at most
Cont(Ψ).

128 7 Asynchrony and Delay-Sensitive Bounds

7.3.2 Generalized Contention

Now we generalize the notion of contention and define d-contention. For a
schedule π = 〈π(1), . . . , π(n)〉, an element π(j) of π is a d-left-to-right max-
imum (or d-lrm for short) if the number the elements in π preceding and
greater than π(j) is less than d, i.e., |{i : i < j ∧ π(i) > π(j)}| < d.

Given a n-schedule π, we define (d)-lrm(π) as the number of d-lrm’s in
the schedule π. For a list Ψ = 〈π0, . . . , πp−1〉 of permutations from Sn and a
permutation δ in Sn, the d-contention of Ψ with respect to δ is defined as

(d)-Cont(Ψ, δ) =

p−1
∑

u=0

(d)-lrm(δ−1 ◦ πu) .

The d-contention of the list of schedules Ψ is defined as

(d)-Cont(Ψ) = max
δ∈Sn

{(d)-Cont(Ψ, δ)} .

We first show a lemma about the d-contention of a set of permutations
with respect to en, the identity permutation.

Lemma 7.10. Let Ψ be a list of p random permutations from Sn. For every
fixed positive integer d, the probability that (d)-Cont(Ψ, en) > n lnn+8pd ln(e+

n/d) is at most e−(n lnn+7pd ln(e+ n
3d)) ln(7/e).

Proof. For d ≥ n/5 the thesis is obvious. In the remainder of the proof we
assume d < n/5.

First we describe a well known method for generating a random schedule
by induction on the number of elements n′ ≤ n to be permuted. For n′ = 1
the schedule consists of a single element chosen uniformly at random. Suppose
we can generate a random schedule of n′− 1 different elements. Now we show
how to schedule n′ elements uniformly and independently at random. First
we choose uniformly and independently at random one element among n′ and
put it as the last element in the schedule. By induction we generate random
schedule from remaining n′ − 1 elements and put them as the first n′ − 1
elements. Simple induction proof shows that every obtained schedule of n′

elements has equal probability (since the above method is a concatenation of
two independent and random events).

A random list of schedules Ψ can be selected by using the above method
p times, independently.

For a schedule π ∈ Ψ , let X(π, i), for i = 1, . . . , n, be a random value such
that X(π, i) = 1 if π(i) is a d-lrm, and X(π, i) = 0 otherwise.

Claim. For any π ∈ Ψ , X(π, i) = 1 with probability min{d/i, 1}, indepen-
dently from other values X(π, j), for j > i. Restated precisely, we claim
that Pr[X(π, i) = 1 |∧j>iX(π, j) = aj] = min{d/i, 1}, for any 0-1 sequence
ai+1, . . . , an.

7.3 Contention of Permutations 129

This is so because π(i) might be a d-lrm if during the (n − i − 1)th step
of generating π, we select uniformly and independently at random one among
the d greatest remaining elements (there are i remaining elements in this step).
This proves the claim.

Note that

1. for every π ∈ Ψ and every i = 1, . . . , d, π(i) is d-lrm, and
2. E

[∑

π∈Ψ

∑n
i=d+1X(π, i)

]
= p d ·∑n

i=d+1
1
i = p d (Hn −Hd).

Applying the well known Chernoff bound of the following form: for 0-1 inde-
pendent random variables Yj and any constant b > 0,

Pr
[
∑

j Yj > E
[
∑

j Yj

]

(1 + b)
]

<
(

eb

(1+b)1+b

)E[
∑

j Yj]
< e−E[

∑

j Yj](1+b) ln 1+b
e ,

and using the fact that 2 +
n lnn

pd(Hn −Hd)
> 0, we obtain

Pr

[
∑

π∈Ψ

n∑

i=d+1

X(π, i) > n lnn+ 3pd(Hn −Hd)

]

= Pr

[
∑

π∈Ψ

n∑

i=d+1

X(π, i) > pd(Hn −Hd)

(

1 +

(

2 +
n lnn

pd(Hn −Hd)

))]

≤ e
−(n lnn+3pd(Hn−Hd)) ln

n ln n+3pd(Hn−Hd)

e·pd(Hn−Hd)

≤ e−[n lnn+3pd(Hn−Hd)] ln(3/e).

Since ln i ≤ Hi ≤ ln i+ 1 and n > 5d, we obtain that

Pr

[
∑

π∈Ψ

n∑

i=1

X(π, i) > n lnn+ 5pd ln
(

e+
n

d

)
]

≤ Pr

[
∑

π∈Ψ

n∑

i=d+1

X(π, i) > n lnn+ 3pd(Hn −Hd) + pd

]

≤ e−[n lnn+3pd(Hn−Hd)] ln(3/e) .

2

Now we generalize the result of Lemma 7.10.

Theorem 7.11. For a random list of schedules Ψ containing p permutations
from Sn, the event:

“for every positive integer d, (d)-Cont(Ψ) > n lnn+ 8pd ln(e+ n/d)”,

holds with probability at most e−n lnn·ln(7/e2)−p.

130 7 Asynchrony and Delay-Sensitive Bounds

Proof. For d ≥ n/5 the result is straightforward, moreover the event holds
with probability 0. In the following we assume that d < n/5.

Note that since Ψ is a random list of schedules, then so is σ−1 ◦ Ψ ,
where σ ∈ Sn is an arbitrary permutation. Consequently, by Lemma 7.10,
(d)-Cont(Ψ, σ) > n lnn + 8pd ln(e + n/d) holds with probability at most

e−[n lnn+7pd ln(e+ n
3d)] ln 7

e .
Hence the probability that a random list of schedules Ψ has d-contention

greater than n lnn+ 8pd ln(e+ n/d) is at most

n! · e−[n lnn+7pd ln(e+ n
3d)] ln 7

e ≤ en lnn−[n lnn+7pd ln(e+ n
3d)] ln 7

e

≤ e−n lnn·ln 7
e2−7pd ln(e+ n

d) .

Then the probability that, for every d, (d)-Cont(Ψ) > n lnn+8pd ln(e+n/d),
is at most

∞∑

d=1

Pr
[
(d)-Cont(Ψ) > n lnn+ 8pd ln(e+ n/d)

]

≤
n/5−1
∑

d=1

e−n lnn·ln(7/e2)−7pd ln(e+n/d) +

∞∑

d=n/5

0

≤ e−n lnn·ln(7/e2) ·
n/5−1
∑

d=1

(e−7p)d

≤ e−n lnn·ln(7/e2) · e−7p

1 − e−7p

≤ e−n lnn·ln(7/e2)−p .

2

Using the probabilistic method we obtain the following.

Corollary 7.12. There is a list of p schedules Ψ from Sn such that
(d)-Cont(Ψ) ≤ n logn+ 8pd ln(e+ n/d), for every positive integer d.

We put to use our generalized notion of contention in the delay-sensitive
analysis of work-performing algorithms in Section 7.5.

7.4 Deterministic Algorithms Family DA

We now present a deterministic solution for the Do-All problem with p pro-
cessors and n tasks. We develop a family of deterministic algorithms DA,
such that for any constant ε > 0 there is an algorithm with total-work
S = O(npε + p ddn/deε) and message complexity M = O(p · S).

7.4 Deterministic Algorithms Family DA 131

More precisely, algorithms from the family DA are parameterized by a
positive integer q and a list Ψ of q permutations on the set [q] = {1, . . . , q},
where 2 ≤ q < p ≤ n. We show that for any constant ε > 0 there is a
constant q and a corresponding set of permutation Ψ , such that the resulting
algorithm has total-work S = O(npε + p ddn/deε) and message complexity
M = O(p · S). The work of these algorithms is within a small polynomial
factor of the corresponding lower bound (see Section 7.2.1).

7.4.1 Construction and Correctness of Algorithm DA(q)

Let q be some constant such that 2 ≤ q ≤ p. We assume that the number
of tasks t is an integer power of q, specifically let t = qh for some h ∈ N.
When the number of tasks is not a power of q we can use a standard padding
technique by adding just enough “dummy” tasks so that the new number of
tasks becomes a power of q; the final results show that this padding does
not affect the asymptotic complexity of the algorithm. We also assume that
logq p is a positive integer. If it is not, we pad the processors with at most qp
“infinitely delayed” processors so this assumption is satisfied; in this case the
upper bound is increased by a (constant) factor of at most q.

The algorithm uses any list of q permutations Ψ = 〈π0, . . . πq−1〉 from Sq
such that Ψ has the minimum contention among all such lists. We define a
family of algorithms, where each algorithm is parameterized by q, and a list Ψ
with the above contention property. We call this algorithm DA(q). In this sec-
tion we first present the algorithm for p ≥ n, then state the parameterization
for p < n.

Algorithm DA(q), utilizes a q-ary boolean progress tree with n leaves,
where the tasks are associated with the leaves. Initially all nodes of the tree
are 0 (false) indicating that no tasks have been performed. Instead of main-
taining a global data structure representing a q-ary tree, in our algorithms
each processor has a replica of the tree.

Whenever a processor learns that all tasks in a subtree rooted at a certain
node have been performed, it sets the node to 1 (true) and shares the good
news with all other processors. This is done by multicasting the processor’s
progress tree; the local replicas at each processor are updated when multicast
messages are received.

Each processor, acting independently, searches for work in the smallest
immediate subtree that has remaining unperformed tasks. It then performs
any tasks it finds, and moves out of that subtree when all work within it is
completed. When exploring the subtrees rooted at an interior node at height
m, a processor visits the subtrees in the order given by one of the permutations
in Ψ . Specifically, the processor uses the permutation πs such that s is the
value of the m-th digit in the q-ary expansion of the processor’s identifier
(pid). We now present this in more detail.

132 7 Asynchrony and Delay-Sensitive Bounds

00 const q % Arity of the progress tree
01 const Ψ = 〈πr | 0 ≤ r < q ∧ πr ∈ Sq〉 % Fixed list of q permutations of [q]
02 const l = (qt−1)/(q−1) % The size of the progress tree
03 const h = logq n % The height of the progress tree
04 type ProgressTree: array [0 .. l − 1] of boolean % Progress tree
05 for each processor pid = 1 to p begin

06 ProgressTree Treepid % The progress tree at processor pid

10 thread % Traverse progress tree in search of work
11 integer ν init = 0 % Current node, begin at the root
12 integer η init = 0 % Current depth in the tree
13 Dowork(ν, η)
14 end

20 thread % Receive broadcast messages
21 set of ProgressTree B % Incoming messages
22 while Treepid [0] 6= 1 do % While not all tasks certified
23 receive B % Deliver the set of received messages
24 Treepid := Treepid ∨ (

∨

b∈B b) % Learn progress
25 od

26 end

27 end.

40 procedure Dowork(ν, η) % Recursive progress tree traversal
41 % ν : current node index ; η : node depth
42 const array x[0 .. h− 1] = pid(base q) % h least significant q-ary digits of pid
43 if Treepid [ν] = 0 then % Node not done – still work left
44 if η = h then % Node ν is a leaf
45 perform Task(n− l + ν + 1) % Do the task
46 else % Node ν is not a leaf
47 or r = 1 to q do % Visit subtrees in the order of πx[η]
48 Dowork(qν + πx[η](r), η + 1)
49 od

50 fi

51 Treepid [ν] := 1 % Record completion of the subtree
52 broadcast Treepid % Share the good news
53 fi

54 end.

Fig. 7.3. The deterministic algorithm DA (p ≥ n).

Data Structures: Given the n tasks, the progress tree is a q-ary ordered
tree of height h, where n = qh. The number of nodes in the progress tree is
l =

∑h−1
i=0 q

i = (qh+1−1)/(q−1) = (qn−1)/(q−1). Each node of the tree is a
boolean, indicating whether the subtree rooted at the node is done (value 1)
or not (value 0).

The progress tree is stored in a boolean array Tree [0 .. l−1], where Tree [0]
is the root, and the q children of the interior node Tree [ν] being the nodes
Tree [qν + 1],Tree [qν + 2], . . . ,Tree [qν + q]. The space occupied by the tree

7.4 Deterministic Algorithms Family DA 133

is O(n). The n tasks are associated with the leaves of the progress tree, such
that the leaf Tree [ν] corresponds to the task Task (ν + n+ 1 − l).

We represent the pid of each of the p processors in terms of its q-ary
expansion. We care only about the h least significant q-ary digits of each
pid (thus when p > n several processors may be indistinguishable in the
algorithm). The q-ary expansions of each pid is stored in the array x[0..h−1].

Control Flow: The code is given in Figure 7.3. Each of the p processors
executes two concurrent threads. One thread (lines 10-14) traverses the lo-
cal progress tree in search work, performs the tasks, and broadcasts the up-
dated progress tree. The second thread (lines 20-26) receives messages from
other processors and updates the local progress tree. (Each processor is asyn-
chronous, but we assume that its two threads run at approximately the same
speed. This is assumed for simplicity only, as it is trivial to explicitly schedule
the threads on a single processor.) Note that the updates of the local progress
tree Tree are always monotone: initially each node contain 0, then once a node
changes its value to 1 it remains 1 forever. Thus no issues of consistency arise.

The progress tree is traversed using the recursive procedure Dowork

(lines 40-54). The order of traversals within the progress tree is determined
by the list of permutations Ψ = 〈π0, π1, . . . , πq−1〉. Each processor uses, at the
node of depth η, the ηth q-ary digit x[η] of its pid to select the permutation
πx[η] from Ψ (recall that we use only the h least significant q-ary digits of
each pid when representing the pid in line 42). The processor traverses the q
subtrees in the order determined by πx[η] (lines 47-49); the processors starts
the traversal of a subtree only if the corresponding bit in the progress tree is
not set (line 43).

In other words, each processor pid traverses its progress tree in a post-
order fashion using the q-ary digits of its pid and the permutations in Ψ to
establish the order of the subtree traversals, except that when the messages
from other processors are received, the progress tree of processor pid can be
pruned based on the progress of other processors.

Parameterization for Large Number of Tasks: When the number of
input tasks n′ exceeds the number of processors p, we divide the tasks into jobs,
where each job consists of at most dn′/pe tasks. The algorithm in Figure 7.3
is then used with the resulting p jobs (p = n), where Task (j) now refers
to the job number j (1 ≤ j ≤ n). Note that in this case the cost of work
corresponding to doing a single job is dn′/pe.

Correctness: We claim that algorithm DA(q) correctly solves the Do-All
problem. This follows from the observation that a processor leaves a subtree
by returning from a recursive call to Dowork if and only if the subtree
contains no unfinished work and its root is marked accordingly. We formalize
this as follows.

134 7 Asynchrony and Delay-Sensitive Bounds

Lemma 7.13. In any execution of algorithm DA(q), whenever a processor
returns from a call to Dowork(ν, η), all tasks associated with the leaves that
are the descendants of node ν have been performed.

Proof. First, by code inspection (Figure 7.3, lines 45, 51, and 52), we note that
processor pid reaching a leaf n at depth η = h broadcasts its Treepid with the
value Treepid [ν] set to 1 if and only if it performs the task corresponding to
the leaf.

We now proceed by induction on η.
Base case, η = h:
In this case, processor pid makes the call to Dowork(ν, η). If Treepid [ν] =
0, as we have already observed, the processor performs the task at the leaf
(line 45), broadcasts its Treepid with the leaf value set to 1 (lines 51-52), and
returns from the call. If Treepid [ν] 6= 0 then the processor must have received a
message from some other processor indicating that the task at the leaf is done.
This can be so if the sender itself performed the task (as observed above), or
the sender learned from some other processor the fact that the task is done.
Inductive step, 0 ≤ η < h:
In this case, processor pid making the call to Dowork(ν, η) executes q calls
to Dowork(ν′, η + 1), one for each child ν′ of node ν (lines 47-49). By in-
ductive hypothesis, each return from Dowork(ν′, η + 1) indicates that all
tasks associated with the leaves that are the descendants of node ν′ have
been performed. The processor then broadcasts its Treepid with the the value
Treepid [ν] set to 1 (lines 51-52), indicating that all tasks associated with the
leaves that are the descendants of node ν have been performed, and returns
from the call. 2

Theorem 7.14. Any execution of algorithm DA(q) terminates in finite time
having performed all tasks.

Proof. The progress tree used by the algorithm has finite number of nodes.
By code inspection, each processor executing the algorithm makes at most
one recursive call per each node of the tree. Thus the algorithm terminates
in finite time. By Lemma 7.13, whenever a processor returns from the call to
Dowork(ν (= 0), η (= 0)), all tasks associated with the leaves that are the
descendants of the node ν = 0 are done, and the value of node is set to 1.
Since this node is the root of the tree, all tasks are done. 2

7.4.2 Complexity Analysis of Algorithm DA(q)

We start by showing a lemma that relates the work of the algorithm, against

adversary A(d)
D to its recursive structure.

We consider the case p ≥ n. Let S(n, p, d) denote total-work of algorithm
DA(q) through the first global step in which some processor completes the last
remaining task and broadcasts the message containing the progress tree where
T [0] = 1. We note that S(1, p, d) = O(p). This is because the progress tree

7.4 Deterministic Algorithms Family DA 135

has only one leaf. Each processor makes a single call to Dowork, performs
the sole task and broadcasts the completed progress tree.

Lemma 7.15. For p-processor, n-task algorithm DA(q) with p ≥ n and n and
p divisible by q:

S(n, p, d) = O(Cont(Ψ) · S(p/q, n/q, d) + p · q · min{d, n/q}) .

Proof. Since the root of the progress tree has q children, each processor makes
the initial call to Dowork(0, 0) (line 13) and then (in the worst case) it makes
q calls to Dowork (line 47-49) corresponding to the children of the root. We
consider the performance of all tasks in the specific subtree rooted at a child
of the progress tree as a job, thus such a job consists of all invocations of
Dowork on that subtree. We now account separately for the primary and
secondary job executions (recall the definitions in Section 7.3).

Observe that the code in lines 47-49 of DA is essentially algorithm ObliDo

(lines 02-04 in Figure 7.2) and we intend to use Lemma 7.9. The only difference
is that instead of q processors we have q groups of p/q processors where in each
group the pids differ in their q-ary digit corresponding to the depth 0 of the
progress tree. From the recursive structure of algorithm DA it follows that the
work of each such group in performing a single job is S(p/q, n/q, d), since each
group has p/q processors and the job includes n/q tasks. Using Lemma 7.9
the primary task executions contribute O(Cont(Ψ) · S(p/q, n/q, d)) work.

If messages were delivered without delay, there would be no need to ac-
count for secondary job executions because the processors would instantly
learn about all primary job completions. Since messages can be delayed by
up to d time units, each processor may spend up to d time steps, but no
more than O(n/q) steps performing a secondary job (this is because it takes a
single processor O(n/q) steps to perform a post-order traversal of a progress
tree with n/q leaves). There are q jobs to consider, so for p processors this
amounts to O(p · q · min{d, n/q}) work.

For each processor there is also a constant overhead due to the fixed-
size code executed per each call to Dowork. The total-work contribution is
O(p · q). Finally, given the assumption about thread scheduling, the work of
message processing thread does not exceed asymptotically the work of the
Dowork thread. Putting all these work contributions together yields the
desired result. 2

We now prove the following theorem about total-work.

Theorem 7.16. Consider algorithm DA(q) with p processors and n tasks
where p ≥ n. Let d be the maximum message delay. For any constant ε > 0
there is a constant q such that the algorithm has total-work S(n, p, d) =
O(pmin{n, d}dn/deε).

Proof. Fix a constant ε > 0; without loss of generality we can assume that
ε ≤ 1. Let a be the sufficiently large positive constant “hidden” in the big-oh

136 7 Asynchrony and Delay-Sensitive Bounds

upper bound for S(n, p, d) in Lemma 7.15. We consider a constant q > 0 such
that logq(4a log q) ≤ ε. Such q exists since limq→∞ logq(4a log q) = 0 (however,

q is a constant of order 2
log(1/ε)

ε).
First suppose that logq n and logq p are positive integers. We prove by

induction on p and n that

S(n, p, d) ≤ q · nlogq(4a log q) · p · d1−logq(4a log q) ,

For the base case of n = 1 the statement is correct since S(1, p, d) = O(p).
For n > 1 we choose the list of permutations Ψ with Cont(Ψ) ≤ 3q log q per
Lemma 7.8. Due to our choice of parameters, logq n is an integer and n ≤ p.
Let β stand for logq(4a log q). Using Lemma 7.15 and inductive hypothesis we
obtain

S(n, p, d) ≤ a ·
(

3q log q · q ·
(n

q

)β

· p
q
· d1−β + p · q · min{d, n/q}

)

≤ a ·
((
q · nβ · p · d1−β

)
· 3 log q · q−β + p · q · min{d, n/q}

)

.

We now consider two cases:

Case 1 : d ≤ n/q. It follows that

p · q · min{d, n/q} = p q d ≤ p q d1−β ·
(n

q

)β

.

Case 2 : d > n/q. It follows that

p · q · min{d, n/q} = p n ≤ p q d1−β ·
(n

q

)β

.

Putting everything together we obtain the desired inequality

S(n, p, d) ≤ a
((
q · nβ · p · d1−β · q−β

)
4 log q

)
≤ q · nβ · p · d1−β .

To complete the proof, consider any n ≤ p. We add n′ − n new “dummy”
tasks, where n′ − n < q n − 1, and p′ − p new “virtual” processors, where
p′− p < q p− 1, such that logq n

′ and logq p
′ are positive integers. We assume

that all “virtual” crash at the start of the computation (else they can be
thought of as delayed to infinity). It follows that

S(n, p, d) ≤ S(n′, p′, d) ≤ q · (n′)βp′ · d1−β ≤ q2+βnβp · d1−β .

Since β ≤ ε, we obtain that total-work of algorithm DA(q) is
O(min{nεp d1−ε, n p}) = O(pmin{n, d}dn/deε) , which completes the proof
of the theorem. 2

Now we consider the case p < n. Recall that in this case we divide the n
tasks into p jobs of size at most dn/pe, and we let the algorithm work with
these jobs. It takes a processor O(n/p) work (instead of a constant) to process
a single job.

7.5 Permutation Algorithms Family PA 137

Theorem 7.17. Consider algorithm DA(q) with p processors and n tasks
where p < n. Let d be the maximum message delay. For any constant
ε > 0 there is a constant q such that DA(q) has total-work S(n, p, d) =
O(npε + pmin{n, d}dn/deε).

Proof. We use Theorem 7.16 with p jobs (instead of n tasks), were a single
job takes O(n/p) units of work. The upper bound on the maximal delay
for receiving messages about the completion of some job is d′ = dpd/ne =
O(1+pd/n) “job units”, where a single job unit takes Θ(n/p) time. We obtain
the following bound on work:

O

(

pmin{p, d′}dp/d′eε · n
p

)

= O

(

min
{
p2, pεp(d′)1−ε

}
· n
p

)

= O
(
min

{
n p, n pε + pnεd1−ε

})

= O
(

n pε + pmin{n, d}
⌈n

d

⌉ε)

.

2

Finally we consider message complexity.

Theorem 7.18. Algorithm DA(q) with p processors and n tasks has message
complexity M(n, p, d) = O(p · S(n, p, d)).

Proof. In each step, a processor broadcasts at most one message to p−1 other
processors. 2

Note again that our focus is on optimizing work on the assumption that
performing a task is substantially more costly that sending a message. It may
also be interesting to optimize communication costs first.

7.5 Permutation Algorithms Family PA

In this section we present and analyze a family of algorithms that are simpler
than algorithms DA and that directly rely on permutation schedules. Two
algorithms are randomized (algorithms PaRan1 and PaRan2), and one is
deterministic (algorithm PaDet).

7.5.1 Algorithm Specification

The common pattern in the three algorithms is that each processor, while it
has not ascertained that all tasks are complete, performs a specific task from
its local list and broadcasts this fact to other processors. The known complete
tasks are removed from the list. The code is given in Figure 7.4. The common
code for the three algorithms is in lines 00-29.

The three algorithms differ in two ways:

138 7 Asynchrony and Delay-Sensitive Bounds

1. The initial ordering of the tasks by each processor, implemented by the
call to procedure Order on line 20.

2. The selection of the next task to perform, implemented by the call to
function Select on line 24.

We now describe the specialization of the code made by each algorithm (the
code for Order+Select in Figure 7.4).

00 use package Order+Select % Algorithm-specific procedures
01 type TaskId : [n]
02 type TaskList : list of TaskId
03 type MsgBuff : set of TaskList

10 for each processor pid = 1 to p begin

11 TaskList Taskspid init [n]
12 MsgBuf B % Incoming messages
13 TaskId tid % Task id; next to done

20 Order(Taskspid)
21 while Taskspid 6= ∅ do

22 receive B % Deliver the set of received messages
23 Taskspid := Taskspid − (

⋃

b∈B b) % Remove tasks
24 tid := Select(Taskspid) % Select next task
25 perform Task(tid)
26 Taskspid := Taskspid − {tid} % Remove done task
27 broadcast Taskspid % Share the news
28 od

29 end.

40 package Order+Select % Used in algorithm PaRan1
41 list Ψ = 〈TaskList πr | 1 ≤ r ≤ p ∧ πr = random list of [n]〉
42 % Ψ is a list of p random permutations
43 procedure Order(T) begin T := πpid end

44 TaskId function Select(T) begin return(T (1)) end

50 package Order+Select % Used in algorithm PaRan2
51 procedure Order(T) begin no-op end

52 TaskId function Select(T) begin return(random(T)) end

60 package Order+Select % Used in algorithm PaDet

61 const list Ψ = 〈TaskList πr | 1 ≤ r ≤ p ∧ πr ∈ Sn〉
62 % Ψ is a fixed list of p permutations
63 procedure Order(T) begin T := πpid end

64 TaskId function Select(T) begin return(T (1)) end

Fig. 7.4. Permutation algorithm and its specializations for PaRan1, PaRan2, and
PaDet (p ≥ n).

7.5 Permutation Algorithms Family PA 139

As with algorithm DA, we initially consider the case of p ≥ n. The case
of p < n is obtained by dividing the n tasks into p jobs, each of size at
most dn/pe. In this case we deal with jobs instead of tasks in the code of
permutation algorithms.

Randomized algorithm PaRan1. The specialized code is in Figure 7.4,
lines 40-44. Each processor pid performs tasks according to a local per-
mutation πpid . These permutations are selected uniformly at random at
the beginning of computation (line 41), independently by each processor.
We refer to the collection of these permutation as Ψ . The drawback of this
approach is that the number of random selections is p · min{n, p}, each
of O(log min{n, p}) random bits (we have min{n, p} above because when
p < n, we use p jobs, each of size dn/pe, instead of n tasks).

Randomized algorithm PaRan2. The specialized code is in Figure 7.4,
lines 50-52. Initially the tasks are left unordered. Each processor se-
lects tasks uniformly and independently at random, one at a time (line
52). Clearly the expected work ES is the same for algorithms PaRan1
and PaRan2, however the (expected) number of random bits needed by
PaRan2 becomes at most ES · log n and, as we will see, this is an im-
provement.

Deterministic algorithm PaDet. The specialized code is in Figure 7.4,
lines 60-64. We assume the existence of the list of permutations Ψ chosen
per Corollary 7.12. Each processor pid permutes its list of tasks according
to the local permutation πpid ∈ Ψ .

7.5.2 Complexity Analysis

In the analysis we use the quantity t defined as t = min{n, p}. When n < p,
t represents the number of tasks to be performed. When n ≥ p, t represents
the number of jobs (of size at most dn/pe) to be performed; in this case, each
task in Figure 7.4 represents a single job. In the sequel we continue referring
to “tasks” only — from the combinatorial perspective there is no distinction
between a task and a job, and the only accounting difference is that a task
costs Θ(1) work, while a job costs Θ(dn/pe) work.

Recall that we measure global time units according to the time steps de-
fined to be the smallest time between any two clock-ticks of any processor
(Section 7.1). Thus during any d global time steps no processor can take more
than d local steps.

For the purpose of the next lemma we introduce the notion of adver-

sary A(d,σ)
D , where σ is a permutation of n tasks. This is a specialization of

adversary A(d)
D that schedules the asynchronous processors so that each of the

n tasks is performed for the first time in the order given by σ. More precisely,
if the execution of the task σi is completed for the first time by some pro-
cessor at the global time τi (unknown to the processor), and the task σj , for

140 7 Asynchrony and Delay-Sensitive Bounds

any 1 ≤ i < j ≤ n, is completed for the first time by some processor at time
τj , then τi ≤ τj . Note that any execution of an algorithm solving the Do-All

problem against adversary A(d)
D corresponds to the execution against some

adversary A(d,σ)
D for the specific σ.

Lemma 7.19. For algorithms PaDet and PaRan1, the respective total-work

and expected total-work is at most (d)-Cont(Ψ) against adversary A(d)
D .

Proof. Suppose processor i starts performing task z at (real) time τ . By the

definition of adversary A(d)
D , no other processor successfully performed task z

and broadcast its message by time (τ − d). Consider adversary A(d,σ)
D , for any

permutation σ ∈ Sn.
For each processor i, let Ji contain all pairs (i, r) such that i performs

task πi(r) during the computation. We construct function L from the pairs in
the set

⋃

i Ji to the set of all d-lrm’s of the list σ−1 ◦ Ψ and show that L is
a bijection. We do the construction independently for each processor i. It is
obvious that (i, 1) ∈ Ji, and we let L(i, 1) = 1. Suppose that (i, r) ∈ Ji and
we defined function L for all elements from Ji less than (i, r) in lexicographic
order. We define L(i, r) as the first s ≤ r such that (σ−1 ◦ πi)(s) is a d-lrm
not assigned by L to any element in Ji.

Claim. For every (i, r) ∈ Ji, L(i, r) is well defined.

For r = 1 we have L(i, 1) = 1. For the (lexicographically) first d elements in
Ji this is also easy to show. Suppose L is well defined for all elements in Ji less
than (i, r), and (i, r) is at least the (d+1)st element in Ji. We show that L(i, r)
is also well defined. Suppose, to the contrary, that there is no position s ≤ r
such that (σ−1 ◦ πi)(s) is a d-lrm and s is not assigned by L before the step
of the construction for (i, r) ∈ Ji. Let (i, s1) < . . . < (i, sd) be the elements
of Ji less than (i, r) such that (σ−1 ◦ πi)(L(i, s1)), . . . , (σ

−1 ◦ πi)(L(i, sd)) are
greater than (σ−1 ◦ πi)(r). They exist from the fact, that (σ−1 ◦ πi)(r) is not
a d-lrm and all “previous” d-lrm’s are assigned by L. Let τr be the global
time when task πi(r) is performed by i. Obviously task πi(L(i, s1)) has been
performed at time that is at least d+1 local steps (and hence also global time

units) before τr. It follows from this and the definition of adversary A(d,σ)
D ,

that task πi(r) has been performed by some other processor in a local step,
which ended also at least (d + 1) time units before τr. This contradicts the
observation made at the beginning of the proof of lemma. This proves the
claim.

That L is a bijection follows directly from the definition of L. It follows
that the number of performances of tasks – equal to the total number of lo-
cal steps until completion of all tasks – is at most (d)-Cont(Ψ, σ), against

any adversary A(d,σ)
D . Hence total work is at most (d)-Cont(Ψ) against adver-

sary A(d)
D . 2

Now we give the result for total-work and message complexities for algo-
rithms PaRan1 and PaRan2.

7.5 Permutation Algorithms Family PA 141

Theorem 7.20. Algorithms PaRan1 and PaRan2, under adversary A(d)
D ,

perform expected total-work

ES (n, p, d) = O(n log t+ pmin{n, d} log(2 + n/d))

and have expected message complexity

EM (n, p, d) = O(n p log t+ p2 min{n, d} log(2 + n/d)) .

Proof. We prove the work bound for algorithm PaRan1 using the random
list of schedules Ψ and Theorem 7.11, together with Lemma 7.19. If p ≥ n we
obtain the formula O(n logn+pmin{n, d} log(2+n/d)) with high probability,
in view of Theorem 7.11, and the obvious upper bound for work is np. If p < n
then we argue that d′ = dp d/ne is the upper bound, in terms of the number of
“job units”, that it takes to deliver a message to recipients, and consequently
we obtain the formula

O(p log p+ p d′ log(2 + p/d′)) ·O(n/p) = O(t log p+ p d log(2 + n/d)),

which, together with the upper bound n p, yields the formula

O(n log p+ pmin{n, d} log(2 + n/d)).

Since the only difference in the above two cases is the factor logn that becomes
log p in the case where p < n, we conclude the final formula for work. All these
derivations hold with the probability at least 1 − e−t ln t·ln(7/e2)−p. Since the
work can be in the worst case n p with probability at most e−t ln t·ln(7/e2)−p,
this contributes at most the summand n to the expected work.

Message complexity follows from the fact that in every local step each
processor sends p − 1 messages. The same result applies to PaRan2 (this is
given as an observation in the description of the the algorithm.) 2

Next is the result for total-work and messages for algorithm PaDet.

Theorem 7.21. There exists a deterministic list of schedules Ψ such that

algorithm PaDet, under adversary A(d)
D , performs total-work

S(n, p, d) = O(n log t+ pmin{n, d} log(2 + n/d))

and has message complexity

M(n, p, d) = O(n p log t+ p2 min{n, d} log(2 + n/d)) .

Proof. The result follows from using the set Ψ from Corollary 7.12 together
with Lemma 7.19, using the same derivation for work formula as in the proof
of Theorem 7.20. Message complexity follows from the fact, that in every local
step each processor sends p− 1 messages. 2

142 7 Asynchrony and Delay-Sensitive Bounds

We now specialize Theorem 7.20 for p ≤ n and d ≤ n and obtain our main
result for algorithms PaRan1 and PaRan2.

Corollary 7.22. Algorithms PaRan1 and PaRan2, under adversary A(d)
D ,

perform expected total-work

ES (n, p, d) = O(n log p+ p d log(2 + n/d))

and have expected message complexity

EM (n, p, d) = O(n p log p+ p2d log(2 + n/d))

for any d < n, when p ≤ n.

Finally we specialize Theorem 7.21 for p ≤ n and d ≤ n and obtain our
main result for algorithm PaDet.

Corollary 7.23. There exists a list of schedules Ψ such that algorithm PaDet

under adversary A(d)
D performs work

S(n, p, d) = O(n log p+ p d log(2 + n/d))

and has message complexity

M(n, p, d) = O(n p log p+ p2d log(2 + n/d)),

for any d ≤ n, when p ≤ n.

7.6 Open Problems

In this chapter we presented the message-delay-sensitive lower and upper
bounds for the Do-All problem for asynchronous processors. One of the two
deterministic algorithms relies on large permutations of tasks with certain
combinatorial properties. Such schedules can be constructed deterministically
in polynomial time, however the efficiency of the algorithms using these con-
structions is slightly detuned (polylogarithmically). This leads to the open
problem of how to construct permutations with better quality and more effi-
ciently.

There also exists a gap between the upper and the lower bounds shown in
this chapter. It will be very interesting to narrow the gap.

The focus of this chapter is on the work complexity. It is also important
to investigate algorithms that simultaneously control work and message com-
plexity.

Lastly, we have used the omniscient adversary definition. The analysis of
complexity of randomized algorithms against an oblivious adversary is also
an interesting open question.

7.7 Chapter Notes 143

7.7 Chapter Notes

In the message-passing settings, the Do-All problem has been substantially
studied for synchronous failure-prone processors under a variety of assump-
tions, e.g., [15, 16, 20, 30, 25, 38, 44]. However there is a dearth of efficient
asynchronous algorithms. The presentation in this paper is based on a paper
by Kowalski and Shvartsman [77]; the proof of Lemma 7.5 appears there.

A lower bound Ω(n + p log p) on work for algorithms in the presence
of processor crashes and restarts was shown by Buss, Kanellakis, Ragde,
and Shvartsman [14]. The strategy in that work is adapted to the message-
passing setting without failures but with delays by Kowalski, Momenzadeh,
and Shvartsman [74], where Theorem 7.3 is proved.

The notion of contention of permutations was proposed and studied by
Anderson and Woll [5]. Lemmas 7.8 and 7.9 appear in that paper [5]. Algo-
rithms in the family DA are inspired by the shared-memory algorithm of the
same authors [5]. The notion of the left-to-right maximum is due to Knuth
[71] (vol. 3, p. 13). Kowalski, Musial, and Shvartsman [75] explore ways of
efficiently constructing permutations with low contention. They show that
such permutations can be constructed deterministically in polynomial time,
however the efficiency of the algorithms using these constructions is slightly
detuned.

For applications of Chernoff bounds see Alon and Spencer [4].

