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Synchronous Do-All with Crashes and

Point-to-Point Messaging

WE now study the Do-All problem assuming that only point-to-point
messaging is available for processors to communicate. This in contrast

with the assumptions in the previous chapter, we considered the Do-All prob-
lem assuming that processors where assisted by an oracle or that reliable
multicast was available. As one would expect, in the point-to-point messag-
ing setting the problem becomes more challenging and different techniques
need to be employed in order to obtain efficient (deterministic) algorithms for
Do-All.

We consider Do-AllAC (n, p, f), that is the Do-All problem for n tasks, p
processors, up to f crashes, as determined by the adversary AC . The key in
developing efficient deterministic algorithms for Do-All in this setting lies in
the ability to share knowledge among processors efficiently. Algorithms that
rely on unique coordinators or checkpointing mechanisms incur a work over-
head penalty of Ω(n+fp) for f crashes; this overhead is particularly large, for

large f , for example, when f = ω(logΘ(1) p). Algorithm AN (from the previ-
ous chapter) beats this lower bound by using multiple coordinators, however
it uses reliable multicast, which can be viewed as a strong assumption in some
distributed settings. Therefore, we are interested in developing algorithms that
do not use checkpointing or reliable multicast and that are efficient, especially
for large f .

In this chapter we present a synchronous, message-passing, determinis-
tic algorithm for Do-AllAC (n, p, f). This algorithm has total-work complexity
O(n + p log3 p) and message complexity M(p1+2ε), for any ε > 0. Thus, the
work complexity of this algorithm beats the above mentioned lower bound (for
f = ω(log3 p)) and it is comparable to that of algorithm AN–however it uses
simple point-to-point messaging. The algorithm does not use coordinator or
checkpointing strategies to implement information sharing among processors.
Instead, it uses an approach where processors share information using an algo-
rithm developed to solve the gossip problem in synchronous message-passing
systems with processor crashes. To achieve messaging efficiency, the point-
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to-point messaging is constrained by means of a communication graph that
represents a certain subset of the edges in a complete communication network.
Processors send messages based on permutations with certain properties.

Chapter structure.

In Section 4.1 we define the gossip problem and relevant measures of efficiency.
In Section 4.2 we present combinatorial tools that are used in the analysis of
the gossip and Do-All algorithms. In Section 4.3 we present a gossip algorithm,
show its correctness, and perform its complexity analysis. In Section 4.4 we
present the Do-All algorithm itself, show its correctness, and give complexity
analysis. We discuss open problems in Section 4.5.

4.1 The Gossip Problem

The Gossip problem is considered one of the fundamental problems in dis-
tributed computing and it is normally stated as follows: each processor has a
distinct piece of information, called a rumor, and the goal is for each proces-
sor to learn all rumors. In our setting, where we consider processor crashes, it
might not always be possible to learn the rumor of a processor that crashed,
since all the processors that have learned the rumor of that processor might
have also crashed in the course of the computation. Hence, we consider a
variation of the traditional gossip problem. We require that every non-faulty
processor learns the following about each processor v: either the rumor of v
or that v has crashed. It is important to note that we do not require for the
non-faulty processors to reach agreement: if a processor crashes then some of
the non-faulty processors may get to learn its rumor while others may only
learn that it has crashed.

Formally, we define the Gossip problem with crash-prone processors, as
follows:

Definition 4.1. The Gossip problem: Given a set of p processors, where ini-
tially each processor has a distinct piece of information, called a rumor, the
goal is for each processor to learn all the rumors in the presence of processor
crashes. The following conditions must be satisfied:

(1) Correctness: (a) All non-faulty processors learn the rumors of all non-
faulty processors, (b) For every failed processor v, non-faulty processor w
either knows that v has failed, or w knows v’s rumor.

(2) Termination: Every non-faulty processor terminates its protocol.

We let GossipAC (p, f) stand for the Gossip problem for p processors (and
p rumors) and adversary AC constrained to adversarial patterns of weight less
or equal to f .

We now define the measures of efficiency we use in studying the complex-
ity of the Gossip problem. We measure the efficiency of a Gossip algorithm
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in terms of its time complexity and message complexity. Time complexity is
measured as the number of parallel steps taken by the processors until the
Gossip problem is solved. The Gossip problem is said to be solved at step τ ,
if τ is the first step where the correctness condition is satisfied and at least
one (non-faulty) processor terminates its protocol. More formally:

Definition 4.2 (time complexity). Let A be an algorithm that solves a
problem with p processors under adversary A. If execution ξ ∈ E(A,A), where
‖ξ|A‖ ≤ f , solves the problem by time τ(ξ), then the time complexity T of
algorithm A is:

T = TA(p, f) = max
ξ∈E(A,A), ‖ξ|A‖≤f

{
τ(ξ)

}
.

The message complexity is defined as in Definition 2.6 where the size of the
problem is p: it is measured as the total number of point-to-point messages
sent by the processors until the problem is solved. As before, when a processor
communicates using a multicast, its cost is the total number of point-to-point
messages.

4.2 Combinatorial Tools

We present tools used to control the message complexity of the gossip algo-
rithm presented in the next section.

4.2.1 Communication Graphs

We first describe communication graphs — conceptual data structures that
constrain communication patterns.

Informally speaking, the computation begins with a communication graph
that contains all nodes, where each node represents a processor. Each pro-
cessor v can send a message to any other processor w that v considers to be
non-faulty and that is a neighbor of v according to the communication graph.
As processors crash, meaning that nodes are “removed” from the graph, the
neighborhood of the non-faulty processors changes dynamically such that the
graph induced by the remaining nodes guarantees “progress in communica-
tion”: progress in communication according to a graph is achieved if there is
at least one “good” connected component, which evolves suitably with time
and satisfies the following properties: (i) the component contains “sufficiently
many” nodes so that collectively they have learned “suitably many” rumors,
(ii) it has “sufficiently small” diameter so that information can be shared
among the nodes of the component without “undue delay”, and (iii) the set
of nodes of each successive good component is a subset of the set of nodes of
the previous good component.
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We use the following terminology and notation. Let G = (V,E) be a
(undirected) graph, with V the set of nodes (representing processors, |V | = p)
and E the set of edges (representing communication links). For a subgraph
GQ of G induced by Q (Q ⊆ V ), we define NG(Q) to be the subset of V
consisting of all the nodes in Q and their neighbors in G. The maximum node
degree of graph G is denoted by ∆.

Let GVi be the subgraph of G induced by the sets Vi of nodes. Each set
Vi corresponds to the set of processors that haven’t crashed by step i of a
given execution. Hence Vi+1 ⊆ Vi (since processor do not restart). Also, each
|Vi| ≥ p − f , since no more than f < p processors may crash in a given
execution. Let GQi denote a component of GVi where Qi ⊆ Vi.

To formulate the the notion of a “good” component GQi we define a prop-
erty, called Compact Chain Property (CCP):

Definition 4.3. Graph G = (V,E) has the Compact Chain Property
CCP(p, f, ε), if:

I. The maximum degree of G is at most
(

p
p−f

)1+ε
,

II. For a given sequence V1 ⊇ . . . ⊇ Vk (V = V1), where |Vk| ≥ p− f , there is
a sequence Q1 ⊇ . . . ⊇ Qk such that for every i = 1, . . . , k:

(a) Qi ⊆ Vi,
(b) |Qi| ≥ |Vi|/7, and
(c) the diameter of GQi is at most 31 log p.

The following shows existence of graphs satisfying CCP for some param-
eters.

Lemma 4.4. For p>2, every f<p, and constant ε>0, there is a graph G of
O(p) nodes satisfying property CCP(p, f, ε).

4.2.2 Sets of Permutations

We now deal with sets of permutations that satisfy certain properties. These
permutations are used by the processors in the gossip algorithm to decide to
what subset of processors they send their rumor in each step of a given execu-
tion. Consider the symmetric group St of all permutations on set {1, . . . , t},
with the composition operation ◦, and identity et (t is a positive integer). For
permutation π = 〈π(1), . . . , π(t)〉 in St, we say that π(i) is a d-left-to-right
maximum (d-lrm in short), if there are less than d previous elements in π of
value greater than π(i), i.e., |{π(j) : π(j) > π(i) ∧ j < i}| < d. For a given
permutation π, let (d)-lrm(π) denote the number of d-left-to-right maxima
in π.

Let Υ and Ψ , Υ ⊆ Ψ , be two sets containing permutations from St. For
every σ in St, let σ ◦ Υ denote the set of permutations {σ ◦ π : π ∈ Υ}.
Now we define the notion of surfeit. (We will show that surfeit relates to
the redundant activity in our algorithms, i.e., “overdone” activity, or literally
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“surfeit”.) For a given Υ and permutation σ ∈ St, let (d, |Υ |)-Surf(Υ, σ) be
equal to

∑

π∈Υ (d)-lrm(σ−1 ◦ π). We then define the (d, q)-surfeit of set Ψ as
(d, q)-Surf(Ψ) = max{(d, q)-Surf(Υ, σ) : Υ ⊆ Ψ ∧ |Υ | = q ∧ σ ∈ St}.

The following results are known for (d, q)-surfeit.

Lemma 4.5. Let Υ be a set of q random permutations on set {1, . . . , t}. For
every fixed positive integer d, the probability that (d, q)-Surf(Υ, et) > t ln t +
10qd ln(t+ p) is at most e−[t ln t+9qdHt+p] ln(9/e).

Theorem 4.6. For a random set of p permutations Ψ from St, the event

holds with probability at most e−t ln t·ln(9/e2).

Using the probabilistic method we obtain the following result.

Corollary 4.7. There is a set of p permutations Ψ from St such that, for
every positive integers d and q ≤ p, (d, q)-Surf(Ψ) ≤ t ln t+ 10qd ln(t+ p).

The efficiency of the gossip algorithm (and hence the efficiency of a Do-All
algorithm that uses such gossip) relies on the existence of the permutations
in the thesis of the corollary (however the algorithm is correct for any permu-
tations). These permutations can be efficiently constructed.

4.3 The Gossip Algorithm

We now present the gossip algorithm, called Gossipε.

4.3.1 Description of Algorithm Gossipε

Suppose constant 0 < ε < 1/3 is given. The algorithm proceeds in a loop
that is repeated until each non-faulty processor v learns either the rumor of
every processor w or that w has failed. A single iteration of the loop is called
an epoch. The algorithm terminates after d1/εe − 1 epochs. Each of the first
d1/εe−2 epochs consists of α log2 p phases, where α is such that α log2 p is the
smallest integer that is larger than 341 log2 p. Each phase is divided into two
stages, the update stage, and the communication stage. In the update stage
processors update their local knowledge regarding other processors’ rumor
(known/unknown) and condition (failed/operational) and in the communica-
tion stage processors exchange their local knowledge (more momentarily). We
say that processor v heard about processor w if either v knows the rumor of
w or it knows that w has failed. Epoch d1/εe − 1 is the terminating epoch
where each processor sends a message to all the processors that it haven’t
heard about, requesting their rumor.

The pseudocode of the algorithm is given in Figure 4.1 (we assume, where
needed, that every if-then has an implicit else clause containing the necessary
number of no-ops to match the length of the code in the then clause; this is
used to ensure the synchrony of the system). The details of the algorithm are
explained in the rest of this section.

“for every positive integers d and q ≤ p, (d, q)-Surf(Ψ) > t ln t+ 10qd ln(t+ p)”
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Initialization

statusv = collector;
activev = 〈1, 2, . . . , p〉;
busyv = 〈πv(1), πv(2), . . . , πv(p)〉;
waitingv = 〈πv(1), πv(2), . . . , πv(p)〉 \ 〈v〉;
rumorsv = 〈(v, rumorv)〉;
neighbv = NG1 (v) \ {v};
callingv = {};
answerv = {};

Iterating epochs

for ` = 1 to d1/εe − 2 do

if busyv is empty then set statusv to idle;
neighbv = {w : w∈activev ∧ w∈ NG` (v) \ {v}};

repeat α log2 p times % iterating phases
update stage;
communication stage;

Terminating epoch (d1/εe − 1)

update stage;
if statusv = collector then

send 〈activev, busyv , rumorsv, call〉 to each processor in waitingv;
receive messages;
send 〈activev, busyv, rumorsv, reply〉 to each processor in answerv;
receive messages;
update rumorsv ;

Fig. 4.1. Algorithm Gossipε, stated for processor v; πv(i) denotes the ith element
of permutation πv.

Local knowledge and messages.

Initially each processor v has its rumorv and permutation πv from a set Ψ of
permutations on [p], such that Ψ satisfies the thesis of Corollary 4.7. Moreover,
each processor v is associated with the variable statusv. Initially statusv =
collector (and we say that v is a collector), meaning that v has not heard
from all processors yet. Once v hears from all other processors, then statusv
is set to informer (and we say that v is an informer), meaning that now v
will inform the other processors of its status and knowledge. When processor
v learns that all non-faulty processors w also have statusw = informer then
at the beginning of the next epoch, statusv becomes idle (and we say that v
idles), meaning that v idles until termination, but it might send responses to
messages (see call-messages below).

Each processor maintains several lists and sets. We now describe the lists
maintained by processor v:
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• List activev: it contains the pids of the processors that v considers to be
non-faulty. Initially, list activev contains all p pids.

• List busyv: it contains the pids of the processors that v consider as col-
lectors. Initially list busyv contains all pids, permuted according to πv.

• List waitingv: it contains the pids of the processors that v did not hear
from. Initially list waitingv contains all pids except from v, permuted
according to πv.

• List rumorsv: it contains pairs of the form (w, rumorw) or (w,⊥). The
pair (w, rumorw) denotes the fact that processor v knows processor w’s
rumor and the pair (w,⊥) means that v does not know w’s rumor,
but it knows that w has failed. Initially list rumorsv contains the pair
(v, rumorv).

A processor can send a message to any other processor, but to lower the
message complexity, in some cases (see communication stage) we require pro-
cessors to communicate according to a conceptual communication graph G`,
` ≤ d1/εe − 2, that satisfies property CCP(p, p− p1−`ε, ε) (see Definition 4.3
and Lemma 4.4). When processor v sends a message m to another processor
w, m contains lists activev, busyv rumorsv, and the variable type. When
type = call, processor v requires an answer from processor w and we refer to
such message as a call-message. When type = reply, no answer is required—
this message is sent as a response to a call-message.

We now present the sets maintained by processor v.

• Set answerv: it contains the pids of the processors that v received a call-
message. Initially set answerv is empty.

• Set callingv: it contains the pids of the processors that v will send a
call-message. Initially callingv is empty.

• Set neighbv: it contains the pids of the processors that are in activev
and that according to the communication graph G`, for a given epoch `,
are neighbors of v (neighbv = {w : w∈activev ∧w∈NG`

(v)}). Initially,
neighbv contains all neighbors of v (all nodes in NG1(v)).

Communication stage.

In this stage the processors communicate in an attempt to obtain information
from other processors. This stage contains four sub-stages:

• First sub-stage: every processor v that is either a collector or an informer
(i.e., statusv 6= idle) sends message 〈activev , busyv, rumorsv, call〉 to
every processor in callingv. The idle processors do not send any messages
in this sub-stage.

• Second sub-stage: all processors (collectors, informers and idling) collect
the information sent to by the other processors in the previous sub-stage.
Specifically, processor v collects lists activew , busyw and rumorsw of
every processor w that received a call-message from and v inserts w in set
answerv.
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• Third sub-stage: every processor (regardless of its status) responds to each
processor that received a call-message from. Specifically, processor v sends
message 〈activev, busyv, rumorsv, reply〉 to the processors in answerv
and empties answerv.

• Fourth sub-stage: the processors receive the responses to their call-
messages.

Update stage.

In this stage each processor v updates its local knowledge based on the mes-
sages it received in the last communication stage1. If statusv = idle, then v
idles. We now present the six update rules and their processing. Note that
the rules are not disjoint, but we apply them in the order from (r1) to (r6):

(r1) Updating busyv or rumorsv: For every processor w in callingv
(i) if v is an informer, it removes w from busyv, (ii) if v is a
collector and rumorsw was included in one of the messages that
v received, then v adds the pair (w, rumorw) in rumorsv and,
(iii) if v is a collector but rumorsw was not included in one of the
messages that v received, then v adds the pair (w,⊥) in rumorsv.

(r2) Updating rumorsv and waitingv: For every processor w in [p],
(i) if (w, rumorw) is not in rumorsv and v learns the rumor of
w from some other processor that received a message from, then
v adds (w, rumorw) in rumorsv, (ii) if both (w, rumorw) and
(w,⊥) are in rumorsv, then v removes (w,⊥) from rumorsv,
and (iii) if either of (w, rumorw) or (w,⊥) is in rumorsv and w
is in waitingv, then v removes w from waitingv.

(r3) Updating busyv: For every processor w in busyv, if v receives
a message from processor v′ so that w is not in busyv′ , then v
removes w from busyv.

(r4) Updating activev and neighbv: For every processor w in
activev (i) if w is not in neighbv and v received a message from
processor v′ so that w is not in activev′ , then v removes w from
activev, (ii) if w is in neighbv and v did not receive a message
from w, then v removes w from activev and neighbv, and (iii)
if w is in callingv and v did not receive a message from w, then
v removes w from activev.

(r5) Changing status: If the size of rumorsv is equal to p and v is a
collector, then v becomes an informer.

(r6) Updating callingv: Processor v empties callingv and (i) if
v is a collector then it updates set callingv to contain the
first p(`+1)ε pids of list waitingv (or all pids of waitingv if
sizeof(waitingv) < p(`+1)ε) and all pids of set neighbv, and

1 In the first update stage of the first phase of epoch 1, where no communication
has yet to occur, no update of the list or sets takes place.
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(ii) if v is an informer then it updates set callingv to con-
tain the first p(`+1)ε pids of list busyv (or all pids of busyv if
sizeof(busyv) < p(`+1)ε) and all pids of set neighbv.

Terminating epoch.

Epoch d1/εe−1 is the last epoch of the algorithm. In this epoch, each processor
v updates its local information based on the messages it received in the last
communication stage of epoch d1/εe−2. If after this update processor v is still
a collector, then it sends a call-message to every processor that is in waitingv
(list waitingv contains the pids of the processors that v does not know their
rumor or does not know whether they have crashed). Then every processor
v receives the call-messages sent by the other processors (set answerv is
updated to include the senders) . Next, every processor v that received a call-
message sends its local knowledge to the sender (i.e. to the members of set
answerv). Finally each processor v updates rumorsv based on any received
information. More specifically, if a processor w responded to v’s call-message
(meaning that v now learns the rumor of w), then v adds (w, rumorw) in
rumorsv. If w did not respond to v’s call-message, and (w, rumorw) is not
in rumorsv (it is possible for processor v to learn the rumor of w from some
other processor v′ that learned the rumor of w before processor w crashed),
then v knows that w has crashed and adds (w,⊥) in rumorsv.

4.3.2 Correctness of Algorithm Gossipε

We show that algorithm Gossipε solves the GossipAC (p, f) problem correctly,
meaning that by the end of epoch d1/εe−1 each non-faulty processor has heard
about all other p− 1 processors. First we show that no non-faulty processor
is removed from a processor’s list of active processors.

Lemma 4.8. In any execution of algorithm Gossipε, if processors v and w
are non-faulty by the end of any epoch ` < d1/εe − 1, then w is in activev.

Proof. Consider processors v and w that are non-faulty by the end of epoch
` < d1/εe− 1. We show that w is in activev. The proof of the inverse is done
similarly. The proof proceeds by induction on the number of epochs.

Initially all processors (including w) are in activev. Consider phase s of
epoch 1 (for simplicity assume that s is not the last phase of epoch 1). By the
update rule, a processor w is removed from activev if v is not idle and

(a) during the communication stage of phase s, w is not in neighbv and v
received a message from a processor v′ so that w is not in activev′ ,

(b) during the communication stage of phase s, w is in neighbv and v did not
receive a message from w, or

(c) v sent a call-message to w in the communication stage of phase s of epoch
1 and v did not receive a response from w in the same stage.
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Case (c) is not possible: Since w is non-faulty in all phases s of epoch 1, w
receives the call-message from v in the communication stage of phase s and
adds v in answerw. Then, processor w sends a response to v in the same
stage. Hence v does not remove w from activev.
Case (b) is also not possible: Since w is non-faulty and w is in neighbv ,
by the properties of the communication graph G1, v is in neighbw as well
(and since v is non-faulty). From the description of the first sub-stage of the
communication stage, if statusw 6= idle, w sends a message to its neighbors,
including v. If statusw = idle, then w will not send a message to v in the first
sub-stage, but it will send a reply to v′ call-message in the third sub-stage.
Therefore, by the end of the communication stage, v has received a message
from w and hence it does not remove w from activev.
Neither Case (a) is possible: This follows inductively, using points (b) and (c):
no processor will remove w from its set of active processors in a phase prior
to s and hence v does not receive a message from any processor v′ so that w
is not in activev′ .

Now, assuming that w is in activev by the end of epoch ` − 1, we show
that w is still in activev by the end of epoch `. Since w is in activev by
the end of epoch ` − 1, w is in activev at the beginning of the first phase
of epoch `. Using similar arguments as in the base case of the induction and
from the inductive hypothesis, it follows that w is in activev by the end of
the first phase of epoch `. Inductively it follows that w is in activev by the
end of the last phase of epoch `, as desired. 2

Next we show if a non-faulty processor w has not heard from all processors
yet then no non-faulty processor v removes w from its list of busy processors.

Lemma 4.9. In any execution of algorithm Gossipε and any epoch ` <
d1/εe − 1, if processors v and w are non-faulty by the end of epoch ` and
statusw = collector, then w is in busyv.

Proof. Consider processors v and w that are non-faulty by the end of epoch
` < d1/εe− 1 and statusw = collector. The proof proceeds by induction on
the number of epochs.

Initially all processors w have status collector and w is in busyv
(callingv\ neighbv is empty). Consider phase s of epoch 1. By the update
rule, a processor w is removed from busyv if

(a) at the beginning of the update stage of phase s, v is an informer and w is
in callingv, or

(b) during the communication stage of phase s, v receives a message from a
processor v′ so that w is not in busyv′ .

Case (a) is not possible: Since v is an informer and w is in callingv at the
beginning of the update stage of phase s, this means that in the communi-
cation stage of phase s − 1, processor v was already an informer and it sent
a call-message to w. In this case, w would receive this message and it would
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become an informer during the update stage of phase s. This violates the
assumption of the lemma.
Case (b) is also not possible: For w not being in busyv′ it means that either
(i) in some phase s′ < s, processor v′ became an informer and sent a call-
message to w, or (ii) during the communication stage of a phase s′′ < s, v′

received a message from a processor v′′ so that w was not in busyv′′ . Case (i)
implies that in phase s′ + 1, processor w becomes an informer which violates
the assumption of the lemma. Using inductively case (i) it follows that case
(ii) is not possible either.

Now, assuming that by the end of epoch `−1, w is in busyv we would like
to show that by the end of epoch `, w is still in busyv. Since w is in busyv
by the end of epoch ` − 1, w is in busyv at the beginning of the first phase
of epoch `. Using similar arguments as in the base case of the induction and
from the inductive hypothesis, it follows that w is in busyv by the end of the
first phase of epoch `. Inductively it follows that w is in busyv by the end of
the last phase of epoch `, as desired. 2

We now show that each processor’s list of rumors is updated correctly.

Lemma 4.10. In any execution of algorithm Gossipε and any epoch ` <
d1/εe−1,
(i) if processors v and w are non-faulty by the end of epoch ` and w is not in
waitingv, then (w, rumorw) is in rumorsv, and
(ii) if processor v is non-faulty by the end of epoch ` and (w,⊥) is in rumorsv,
then w is not in activev.

Proof. We first prove part (i) of the lemma. Consider processors v and w that
are non-faulty by the end of epoch ` and that w is not in waitingv. The proof
proceeds by induction on the number of epochs. The proof for the first epoch
is done similarly as the the proof of the inductive step (that follows), since at
the beginning of the computation each w 6= v is in waitingv and rumorsv
contains only the pair (v, rumorv), for every processor v.

Assume that part (i) of the lemma holds by the end of epoch `−1, we would
like to show that it also holds by the end of epoch `. First note the following
facts: no pair of the form (w, rumorw) is ever removed from rumorsv and no
processor identifier is ever added to waitingv. We use these facts implicitly in
the remainder of the proof (cases (a) and (b)). Suppose, to the contrary, that
at the end of epoch ` there are processors v, w which are non-faulty by the end
of epoch ` and w is not in waitingv and (w,⊥) is in rumorsv. Take v such
that v put the pair (w,⊥) to its rumorsv as the earliest node during epoch `
and this pair has remained in rumorsv by the end of epoch `. It follows that
during epoch ` at least one of the following cases must have happened:
(a) Processor v sent a call-message to processor w in the communication stage
of some phase and v did not receive a response from w (see update rule (r1)).
But since w is not-faulty by the end of epoch ` it replied to v according to
the third sub-stage of communication stage. This is a contradiction.
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(b) During the communication stage of some phase processor v received a
message from processor v′ so that (w,⊥) is in rumorsv′ (see update rule
(r2)). But this contradicts the choice of v.
Hence part (i) is proved.

The proof of part (ii) of the lemma is analogous to the proof of part (i).
The key argument is that the pair (w,⊥) is added in rumorsv if w does not
respond to a call-message sent by v which in this case w is removed from
activev (if w was not removed from activev earlier). 2

Finally we show the correctness of algorithm Gossipε.

Theorem 4.11. By the end of epoch d1/εe− 1 of any execution of algorithm
Gossipε, every non-faulty processor v either knows the rumor of processor w
or it knows that w has crashed.

Proof. Consider a processor v that is non-faulty by the end of epoch d1/εe−1.
Note that the claims of Lemmas 4.8, 4.9, and 4.10 also hold after the end of
the update stage of the terminating epoch. This follows from the fact that the
last communication stage of epoch d1/εe− 2 precedes the update stage of the
terminating epoch and the fact that this last update stage is no different from
the update stage of prior epochs (hence the same reasoning can be applied to
obtain the result).

If after this last update, processor v is still a collector, meaning that v did
not hear from all processors yet, according to the description of the algorithm,
processor v will send a call-message to the processors whose pid is still in
waitingv (by Lemma 4.10 and the update rule, it follows that list waitingv
contains all processors that v did not hear from yet). Then all non-faulty
processors w receive the call-message of v and then they respond to v. Then
v receives these responses. Finally v updates list rumorsv accordingly: if a
processor w responded to v’s call-message (meaning that v now learns the
rumor of w), then v adds (w, rumorw) in rumorsv. If w did not respond
to v’s call-message, and (w, rumorw) is not in rumorsv (it is possible for
processor v to learn the rumor of w from some other processor v′ that learned
the rumor of w before processor w crashed), then v knows that w has crashed
and adds (w,⊥) in rumorsv.

Hence the last update that each non-faulty processor v performs on
rumorsv maintains the validity that the list had from the previous epochs
(guaranteed by the above three lemmas). Moreover, the size of rumorsv be-
comes equal to p and v either knows the rumor of each processor w, or it
knows that v has crashed, as desired. 2

Note from the above that the correctness of algorithm Gossipε does not
depend on whether the set of permutations Ψ satisfy the conditions of Corol-
lary 4.7. The algorithm is correct for any set of permutations of [p].
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4.3.3 Analysis of Algorithm Gossipε

Consider some set V`, |V`| ≥ p1−`ε, of processors that are not idle at the
beginning of epoch ` and do not fail by the end of epoch `. Let Q` ⊆ V` be
such that |Q`| ≥ |V`|/7 and the diameter of the subgraph induced by Q` is
at most 31 log p. Q` exists because of Lemma 4.4 applied to graph G` and set
V`.

For any processor v, let callv = callingv\ neighbv . Recall that the
size of call is equal to p(`+1)ε (or less if list waiting, or busy, is shorter
than p(`+1)ε) and the size of neighb is at most p(`+1)ε. We refer to the call-
messages sent to the processors whose pids are in call as progress-messages. If
processor v sends a progress-message to processor w, it will remove w from list
waitingv (or busyv) by the end of current stage. Let d = (31 log p+1)p(`+1)ε.
Note that d ≥ (31 log p+ 1) · |call|.

We begin the analysis of the gossip algorithm by proving a bound on the
number of progress-messages sent under certain conditions.

Lemma 4.12. The total number of progress-messages sent by processors in
Q` from the beginning of epoch ` until the first processor in Q` will have its
list waiting (or list busy) empty, is at most (d, |Q`|)-Surf(Ψ).

Proof. Fix Q` and consider some permutation σ ∈ Sp that satisfies the fol-
lowing property: “Consider i < j ≤ p. Let τi (τj) be the time step in epoch
` where some processor in Q` hears about σ(i) (σ(j)) the first time among
the processors in Q`. Then τi ≤ τj .” (We note that it is not difficult to
see that for a given Q` we can always find σ ∈ Sp that satisfies the above
property.) We consider only the subset Υ ⊆ Ψ containing permutations of in-
dexes from set Q`. To show the lemma we prove that the number of messages
sent by processors from Q` is at most (d, |Υ |)-Surf(Υ, σ) ≤ (d, |Q`|)-Surf(Ψ).
Suppose that processor v ∈ Q` sends a progress-message to processor w. It
follows from the diameter of Q` and the size of set call in epoch `, that
none of processor v′ ∈ Q` had sent a progress-message to w before 31 log p
phases, and consequently position of processor w in permutation πv is at most
d− |call| ≤ d− p(`+1)ε greater than position of w in permutation πv′ .

For each processor v ∈ Q`, let Pv contain all pairs (v, i) such that v sends a
progress-message to processor πv(i) by itself during the epoch `. We construct
function h from the set

⋃

v∈Q`
Pv to the set of all d-lrm of set σ−1 ◦ Ψ and

show that h is one-to-one function. We run the construction independently
for each processor v ∈ Q`. If πv(k) is the first processor in the permutation
πv to whom v sends a progress-message at the beginning of epoch `, we set
h(v, k) = 1. Suppose that (v, i) ∈ Pv and we have defined function h for all
elements from Pv less than (v, i) in the lexicographic order. We define h(v, i)
as the first j ≤ i such that (σ−1 ◦ πv)(j) is a d-lrm not assigned yet by h to
any element in Pv.
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Claim. For every (v, i) ∈ Pv, h(v, i) is well defined.

We prove the Claim. For the first element in Pv function h is well defined.
For the first d elements in Pv it is also easy to show that h is well defined, since
the first d elements in permutation πv are d-lrms. Suppose h is well defined for
all elements from Pv less than (v, i) and (v, i) is at least the (d+ 1)st element
in Pv. We show that h(v, i) is also well defined. Suppose to the contrary,
that there is no position j ≤ i such that (σ−1 ◦ πv)(j) is a d-lrm and j
is not assigned by h before step of construction for (v, i) ∈ Pv. Let j1 <
. . . < jd < i be the positions such that (v, j1), . . . , (v, jd) ∈ Pv and (σ−1 ◦
πv)(h(j1)), . . . , (σ

−1◦πv)(h(jd)) are greater than (σ−1◦πv)(i). They exist from
the fact, that (σ−1 ◦ πv)(i) is not d-lrm and every ”previous” d-lrms in πv are
assigned by L. Obviously processor w = πv(h(j1)) received a first progress-
message at least d

|call| = 31 log p + 1 phases before it received a progress-

message from v. From the choice of σ, processor w′ = πv(i) had received a
progress-message from some other processor in Q′` at least 31 log p+ 1 phases
before w′ received a progress-message from v. This contradicts the remark
at the beginning of the proof of the lemma. This completes the proof of the
Claim.

The fact that h is a one-to-one function follows directly from the definition
of h. It follows that the number of progress-messages sent by processors in Q`
until the list waiting (or list busy) of a processor in Q` is empty, is at most
(d, |Υ |)-Surf(Υ, σ) ≤ (d, |Q`|)-Surf(Ψ), as desired. 2

We now define an invariant, that we call I`, for ` = 1, . . . , d1/εe − 2:

I`: There are at most p1−`ε non-faulty processors having status
collector or informer in any step after the end of epoch `.

Using Lemma 4.12 and Corollary 4.7 we show the following:

Lemma 4.13. In any execution of algorithm Gossipε, the invariant I` holds
for any epoch ` = 1, . . . , d1/εe − 2.

Proof. For p = 1 it is obvious. Assume p > 1. We will use Lemma 4.4 and
Corollary 4.7. Consider any epoch ` < d1/εe − 1. Suppose to the contrary,
that there is a subset V` of non-faulty processors after the end of epoch ` such
that each of them has status either collector or informer and |V`| > p1−`ε.
Since G` satisfies CCP(p, p−p1−`ε, ε), there is a set Q` ⊆ V` such that |Q`| ≥
|V`|/7 > p1−`ε/7 and the diameter of the subgraph induced by Q` is at most
31 log p. Applying Lemma 4.12 and Corollary 4.7 to the set Q`, epoch `, t = p,
q = |Q`| and d = 31p(`+1)ε log p, we obtain that the total number of messages
sent until some processor v ∈ Q` has list busyv empty, is at most

2 · (31(log p+ 1)p(`+1)ε, |Q`|)-Surf(Ψ) + 31|Q`|p(`+1)ε log p

≤ 341|Q`|p(`+1)ε log2 p .



4.4 The Do-All Algorithm 61

More precisely, until some processor in Q` has status informer, the pro-
cessors in Q` have sent at most (31(log p+ 1)p(`+1)ε, |Q`|)-Surf(Ψ) messages.
Then, after the processors in Q` send at most 31|Q`|p(`+1)ε log p messages,
every processor in Q` has status informer. Finally, after the processors in Q`
send at most (31(log p+ 1)p(`+1)ε, |Q`|)-Surf(Ψ) messages, some processor in
Q` ⊆ V` has its list busy empty.

Notice that since no processor in Q` has status idle in epoch `, each
of them sends in every phase of epoch ` at most |call| ≤ p(`+1)ε progress-
messages. Consequently the total number of phases in epoch ` until some of
the processors in Q` has its list busy empty, is at most

341|Q`|p(`+1)ε log2 p

|Q`|p(`+1)ε
≤ 341 log2 p .

Recall that α log2 p ≥ 341 log2 p. Hence if we consider the first 341 log2 p
phases of epoch `, the above argument implies that there is at least one pro-
cessor in V` that has status idle, which is a contradiction. Hence, I` holds for
epoch `. 2

We now show the time and message complexity of algorithm Gossipε.

Theorem 4.14. Algorithm Gossipε solves the GossipAC(p, f) problem with
time complexity T = O(log2 p) and message complexity M = O(p1+3ε).

Proof. First we show the bound on time. Observe that each update and com-
munication stage takes O(1) time. Therefore each of the first d1/εe−2 epochs
takes O(log2 p) time. The last epoch takes O(1) time. From this and the fact
that ε is a constant, we have that the time complexity of the algorithm is in
the worse case O(log2 p).

We now show the bound on messages. From Lemma 4.13 we have that for
every 1 ≤ ` < d1/εe−2, during epoch `+1 there are at most p1−`ε processors
sending at most 2p(`+2)ε messages in every communication stage. The remain-
ing processors are either faulty (hence they do not send any messages) or have
status idle — these processors only respond to call-messages and their total
impact on the message complexity in epoch ` + 1 is at most as large as the
others. Consequently the message complexity during epoch ` + 1 is at most
4(α log2 p) · (p1−`εp(`+2)ε) ≤ 4αp1+2ε log2 p ≤ 4αp1+3ε. After epoch d1/εe − 2
there are, per Id1/εe−2, at most p2ε processors having list waiting not empty.
In epoch d1/εe − 1 each of these processors sends a message to at most p
processors twice, hence the message complexity in this epoch is bounded by
2p · p2ε. From the above and the fact that ε is a constant, we have that the
message complexity of the algorithm is O(p1+3ε). 2

4.4 The Do-All Algorithm

We now put the gossip algorithm to use by constructing a robust Do-All
algorithm, called algorithm Doallε.
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4.4.1 Description of Algorithm Doallε

The algorithm proceeds in a loop that is repeated until all the tasks are
executed and all non-faulty processors are aware of this. A single iteration of
the loop is called an epoch. Each epoch consists of β log p+1 phases, where β >
0 is a constant integer. We show that the algorithm is correct for any integer
β > 0, but the complexity analysis of the algorithm depends on specific values
of β that we show to exist. Each phase is divided into two stages, the work
stage and the gossip stage. In the work stage processors perform tasks, and
in the gossip stage processors execute an instance of the Gossipε/3 algorithm
to exchange information regarding completed tasks and non-faulty processors
(more details momentarily). Computation starts with epoch 1. We note that
(unlike in algorithm Gossipε) the non-faulty processors may stop executing
at different steps. Hence we need to argue about the termination decision
that the processors must take. This is done in the paragraph “Termination
decision”.

The pseudocode for a phase of epoch ` of the algorithm is given in Fig-
ure 4.2 (again we assume that every if-then has an implicit else containing
no-ops as needed to ensure the synchrony of the system). The details are
explained in the rest of this section.

Local knowledge. Each processor v maintains a list of tasks taskv it believes
not to be done, and a list of processors procv it believes to be non-faulty.
Initially taskv = 〈1, . . . , n〉 and procv = 〈1, . . . , p〉. The processor also has
a boolean variable donev, that describes the knowledge of v regarding the
completion of the tasks. Initially donev is set to false, and when processor v
is assured that all tasks are completed donev is set to true.

Task allocation. Each processor v is equipped with a permutation πv from a
set Ψ of permutations on [n]. (This is distinct from the set of permutation on
[p] required by the gossip algorithm.) We show that the algorithm is correct
for any set of permutations on [n], but its complexity analysis depends on
specific set of permutations Ψ that we show to exist. These permutations can
be constructed efficiently.

Initially taskv is permuted according to πv and then processor v performs
tasks according to the ordering of the tids in taskv. In the course of the
computation, when processor v learns that task z is performed (either by
performing the task itself or by obtaining this information from some other
processor), it removes z from taskv while preserving the permutation order.

Work stage. For epoch `, each work stage consists of T` =
⌈
n+p log3 p

p

2l log p

⌉

work

sub-stages. In each sub-stage, each processor v performs a task according to
taskv. Hence, in each work stage of a phase of epoch `, processor v must
perform the first T` tasks of taskv. However, if taskv becomes empty at a
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Initialization

donev = false;
taskv = 〈πv(1), πv(2), . . . , πv(p)〉;
procv = 〈1, 2, . . . , p〉;

Epoch `

repeat β log p+ 1 times % iterating phases of epoch `

repeat T` = dn+p log3 p
p

2l log p
e times % work stage begins

if taskv not empty then

perform task whose id is first in taskv ;
remove task’s id from taskv ;

elseif taskv empty and donev = false then

set donev to true;
if taskv empty and donev = false then

set donev to true;

run Gossipε/3 with rumorv = (taskv ,procv ,donev); % gossip stage begins

if donev = true and donew = true for all w received rumor from then

TERMINATE;
else

update taskv and procv ;

Fig. 4.2. Algorithm Doallε, stated for processor v; πv(i) denotes the ith element
of permutation πv.

sub-stage prior to sub-state T`, then v performs no-ops in the remaining sub-
stages (each no-op operation takes the same time as performing a task). Once
taskv becomes empty, donev is set to true.

Gossip stage. Here processors execute algorithm Gossipε/3 using their lo-
cal knowledge as the rumor, i.e., for processor v, rumorv = (taskv, procv,
donev). At the end of the stage, each processor v updates its local knowledge
based on the rumors it received. The update rule is as follows: (a) If v does
not receive the rumor of processor w, then v learns that w has failed (guaran-
teed by the correctness of Gossipε/3). In this case v removes w from procv.
(b) If v receives the rumor of processor w, then it compare taskv and procv
with taskw and procw respectively and updates its lists accordingly—it re-
moves the tasks that w knows are already completed and the processors that
w knows that have crashed. Note that if taskv becomes empty after this up-
date, variable donev remains false. It will be set to true in the next work
stage. This is needed for the correctness of the algorithm (see Lemma 4.19).

Termination decision. We would like all non-faulty processors to learn that
the tasks are done. Hence, it would not be sufficient for a processor to termi-
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nate once the value of its done variable is set to true. It has to be assured
that all other non-faulty processors’ done variables are set to true as well,
and then terminate. This is achieved as follows: If processor v starts the gos-
sip stage of a phase of epoch ` with donev = true, and all rumors it receives
suggest that all other non-faulty processors know that all tasks are done (their
done variables are set to true), then processor v terminates. If at least one
processor’s done variable is set to false, then v continues to the next phase
of epoch ` (or to the first phase of epoch `+ 1 if the previous phase was the
last of epoch `).

Remark 4.15. In the complexity analysis of the algorithm we first assume that
n ≤ p2 and then we show how to extend the analysis for the case n > p2. In
order to do so, we assume that when n > p2, before the start of algorithm
Doallε, the tasks are partitioned into n′ = p2 chunks, where each chunk
contains at most dn/p2e tasks. In this case it is understood that in the above
description of the algorithm, n is actually n′ and when we refer to a task we
really mean a chunk of tasks.

4.4.2 Correctness of Algorithm Doallε

We show that the algorithm Doallε solves the Do-AllAC (n, p, f) problem
correctly, meaning that the algorithm terminates with all tasks performed
and all non-faulty processors are aware of this. Note that this is a stronger
correctness condition than the one required by the definition of Do-All.

First we show that no non-faulty processor is removed from a processor’s
list of non-faulty processors.

Lemma 4.16. In any execution of algorithm Doallε, if processors v and
w are non-faulty by the end of the gossip stage of phase s of epoch `, then
processor w is in procv.

Proof. Let v be a processor that is non-faulty by the end of the gossip stage
of phase s of epoch `. By the correctness of algorithm Gossipε/3 (called at
the gossip stage), processor v receives the rumor of every non-faulty processor
w and vice-versa. Since there are no restarts, v and w were alive in all prior
phases of epochs 1, 2, . . . , `, and hence, v and w received each other rumors in
all these phases as well. By the update rule it follows that processor v does
not remove processor w from its processor list and vice-versa. Hence w is in
procv and w is in procv by the end of phase s, as desired. 2

Next we show that no undone task is removed from a processor’s list of
undone tasks.

Lemma 4.17. In any execution of algorithm Doallε, if a task z is not in
taskv of any processor v at the beginning of the first phase of epoch `, then z
has been performed in a phase of one of the epochs 1, 2, . . . , `− 1.
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Proof. From the description of the algorithm we have that initially any task
z is in taskv of a processor v. We proceed by induction on the number of
epochs. At the beginning of the first phase of epoch 1, z is in taskv. If by
the end of the first phase of epoch 1, z is not in taskv then by the update
rule either (i) v performed task z during the work stage, or (ii) during the
gossip stage v received rumorw from processor w in which z was not in taskw.
The latter suggests that processor w performed task z during the work stage.
Continuing in this manner it follows that if z is not in taskv at the beginning
of the first phase of epoch 2, then z was performed in one of the phases of
epoch 1.

Assuming that the thesis of the lemma holds for any epoch `, we show
that it also holds for epoch `+ 1. Consider two cases:

Case 1 : If z is not in taskv at the beginning of the first phase of epoch `,
then since no tid is ever added in taskv, z is not in taskv neither at the
beginning of the first phase of epoch `+1. By the inductive hypothesis, z was
performed in one of the phases of epochs 1, . . . , `− 1.

Case 2 : If z is in taskv at the beginning of the first phase of epoch ` but it
is not in taskv at the beginning of the second phase of epoch `, then by the
update rule it follows that either (i) v performed task z during the work stage
of the second phase of epoch `, or (ii) during the gossip stage of the second
phase of epoch `, v received rumorw from processor w in which z was not
in taskw. The latter suggests that processor w performed task z during the
work stage of the second phase of epoch ` or it learned that z was done in the
gossip stage of the first phase of epoch `. Either case, task z was performed.
Continuing in this manner it follows that if z is not in taskv at the beginning
of the first phase of epoch `+1, then z was performed in one of the phases of
epoch `. 2

Next we show that under certain conditions, local progress is guaranteed.
First we introduce some notation. For processor v we denote by taskv

(`,s)

the list taskv at the beginning of phase s of epoch `. Note that if s is the
last phase – (β log2 p)th phase – of epoch `, then taskv

(`,s+1) =taskv
(`+1,1),

meaning that after phase s processor v enters the first phase of epoch `+ 1.

Lemma 4.18. In any execution of algorithm Doallε, if processor v en-
ters a work stage of a phase s of epoch ` with donew = false, then
sizeof(taskv

(`,s+1)) < sizeof(taskv
(`,s)).

Proof. Let v be a processor that starts the work stage of phase s of epoch `
with donew = false. According to the description of the algorithm, the value
of variable donev is initially false and it is set to true only when taskv
becomes empty. Hence, at the beginning of the work stage of phase s of epoch
` there is at least one task identifier in taskv

(`,s), and therefore v performs at
least one task. From this and the fact that no tid is ever added in a processor’s
task list, we get that sizeof(taskv

(`,s+1)) < sizeof(taskv
(`,s)). 2
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We now show that when during a phase s of an epoch `, a processor learns
that all tasks are completed and it does not crash during this phase, then the
algorithm is guaranteed to terminate by phase s + 1 of epoch `; if s is the
last phase epoch `, then the algorithm is guaranteed to terminate by the first
phase of epoch ` + 1. For simplicity of presentation, in the following lemma
we assume that s is not the last phase of epoch `.

Lemma 4.19. In any execution of algorithm Doallε, for any phase s of
epoch ` and any processor v, if donev is set to true during phase s and v is
non-faulty by the end of phase s, then the algorithm terminates by phase s+1
of epoch `.

Proof. Consider phase s of epoch ` and processor v. According to the code
of the algorithm, the value of variable donew is updated during the work
stage of a phase (the value of the variable is not changed during the gossip
stage). Hence, if the value of variable donew is changed during the phase
s of epoch ` this happens before the start of the gossip stage. This means
that taskv contained in rumorv in the execution of algorithm Gossipε/3
is empty. Since v does not fail during phase s, the correctness of algorithm
Gossipε/3 guarantees that all non-faulty processors learn the rumor of v, and
consequently they learn that all tasks are performed. This means that all
non-faulty processors w start the gossip stage of phase s+ 1 of epoch ` with
donew = true and all rumors they receive contain the variable done set to
true.

The above, in conjunction with the termination guarantees of algorithm
Gossipε/3, leads to the conclusion that all non-faulty processors terminate by
phase s+1 (and hence the algorithm terminates by phase s+1 of epoch `). 2

Finally we show the correctness of algorithm Doallε.

Theorem 4.20. In any execution of algorithm Doallε, the algorithm termi-
nates with all tasks performed and all non-faulty processors being aware of
this.

Proof. By Lemma 4.16, no non-faulty processor leaves the computation, and
by our model at least one processor does not crash (f < p). Also from
Lemma 4.17 we have that no undone task is removed from the computation.
From the code of the algorithm we get that a processor continues performing
tasks until its task list becomes empty and by Lemma 4.18 we have that
local progress is guaranteed. The above in conjunction with the correctness of
algorithm Gossipε/3 lead to the conclusion that there exist a phase s of an
epoch ` and a processor v so that during phase s processor v sets donev to
true, all tasks are indeed performed and v survives phase s. By Lemma 4.19
the algorithm terminates by phase s + 1 of epoch ` (or by the first phase of
epoch `+ 1 if s is the last phase of epoch `). Now, from the definition of T` it
follows that the algorithm terminates after at most O(log p) epochs: consider
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epoch log p; Tlog p = d(n+ p log3 p)/ log pe = dn/ log p+ p log2 pe. Recall that
each epoch consists of β log p+ 1 phases. Say that β = 1. Then, when a pro-
cessor reaches epoch log p, it can perform all n tasks in this epoch. Hence, all
tasks that are not done until epoch log p− 1 are guaranteed to be performed
by the end of epoch log p and all non-faulty processors will know that all tasks
have been performed. 2

Note from the above that the correctness of algorithm Doallε does not
depend on the set of permutations that processors use to select what tasks to
do next. The algorithm works correctly for any set of permutations on [n]. It
also works for any integer β > 0.

4.4.3 Analysis of Algorithm Doallε

We now derive the work and message complexities for algorithm Doallε.
The analysis is based on the following terminology. For the purpose of the
analysis, we number globally all phases by positive integers starting from 1.
Consider a phase i in epoch ` of an execution ξ ∈ E(Doallε,AC). Let Vi(ξ)
denote the set of processors that are non-faulty at the beginning of phase i.
Let pi(ξ) = |Vi(ξ)|. Let Ui(ξ) denote the set of tasks z such that z is in some
list taskv, for some v ∈ Vi(ξ), at the beginning of phase i. Let ui(ξ) = |Ui(ξ)|.

Now we classify the possibilities for phase i as follows. If at the beginning
of phase i, pi(ξ) > p/2`−1, we say that phase i is a majority phase. Otherwise,
phase i is a minority phase. If phase i is a minority phase and at the end of i
the number of surviving processors is less than pi(ξ)/2, i.e., pi+1(ξ) < pi(ξ)/2,
we say that i is an unreliable minority phase. If pi+1(ξ) ≥ pi(ξ)/2, we say
that i is a reliable minority phase. If phase i is a reliable minority phase
and ui+1(ξ) ≤ ui(ξ) − 1

4pi+1(ξ)T`, then we say that i is an optimal reliable
minority phase (the task allocation is optimal – the same task is performed
only by a constant number of processors on average). If ui+1(ξ) ≤ 3

4ui(ξ),
then i is a fractional reliable minority phase (a fraction of the undone tasks is
performed). Otherwise we say that i is an unproductive reliable minority phase
(not much progress is obtained). The classification possibilities for phase i of
epoch ` are depicted in Figure 4.3.

phase i of
epoch `

“minority”

pi ≤
p

2`−1

pi >
p

2`−1

“majority”

- pi+1 ≥
pi
2

“reliable”

pi+1 <
pi
2

“unreliable”

-

- ui+1 ≤ ui −
pi+1

4
T`

ui+1 ≤
3ui
4

otherwise

“optimal”

“fractional”

“unproductive”

-

-

-

-

Fig. 4.3. Classification of a phase i of epoch `; execution ξ is implied.
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Our goal is to choose a set Ψ of permutations and a constant β > 0 such
that for any execution there will be no unproductive and no majority phases.
To do this we analyze sets of random permutations, prove certain properties
of algorithm Doallε for such sets (in Lemmas 4.21 and 4.22), and finally use
the probabilistic method to obtain an existential deterministic solution.

We now give the intuition why the phases, with high probability, are nei-
ther majority nor minority reliable unproductive. First, in either of such cases,
the number of processors crashed during the phase is at most half of all op-
erational processors during the phase. Consider only those majorities of pro-
cessors that survive the phase and the tasks performed by them. If there are
a lot of processors, then all tasks will be performed if the phase is a majority
phase, or at least min{ui(ξ), |Q|T`}/4 yet unperformed tasks are performed
by the processors if the phase is a minority reliable unproductive phase, all
with high probability. Hence one can derandomize the choice of suitable set
of permutations such that for any execution there are neither majority nor
minority reliable unproductive phases.

Lemma 4.21. Let Q be a fixed nonempty subset of processors in phase i of
epoch ` of algorithm Doallε. Then the probability of event “for every ex-
ecution ξ of algorithm Doallε such that Vi+1(ξ) ⊇ Q and ui(ξ) > 0, the
following inequality holds ui(ξ) − ui+1(ξ) ≥ min{ui(ξ), |Q|T`}/4,” is at least
1 − 1/e−|Q|T`/8.

Proof. Let ξ be an execution of algorithm Doallε such that Vi+1(ξ) ⊇ Q
and ui(ξ) > 0. Let c = min{ui(ξ), |Q|T`}/4. Let Si(ξ) be the set of tasks z
such that z is in every list taskv for v ∈ Q, at the beginning of phase i.
Let si(ξ) = |Si(ξ)|. Note that Si(ξ) ⊆ Ui(ξ), and that Si(ξ) describes some
properties of set Q, while Ui(ξ) describes some properties of set Vi(ξ) ⊇ Q.
Consider the following cases:

Case 1 : si(ξ) ≤ ui(ξ) − c. Then after the gossip stage of phase i we obtain
the required inequality with probability 1.

Case 2 : si(ξ) > ui(ξ) − c. We focus on the work stage of phase i. Consider
a conceptual process in which the processors in Q perform tasks sequentially,
the next processor takes over when the previous one has performed all its
T` steps during the work stage of phase i. This process takes |Q|T` steps

to be completed. Let U
(k)
i (ξ) denote the set of tasks z such that: z is in

some list taskv, for some v ∈ Q, at the beginning of phase i and z has not
been performed during the first k steps of the process, by any processor. Let

u
(k)
i (ξ) = |U (k)

i (ξ)|. Define the random variables Xk, for 1 ≤ k ≤ |Q|T`, as
follows:

Xk =

{

1 if either ui(ξ) − u
(k)
i (ξ) ≥ c or u

(k)
i (ξ) 6= u

(k−1)
i (ξ) ,

0 otherwise .
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Suppose some processor v ∈ Q is to perform the kth step. If ui(ξ)−u(k)
i (ξ) < c

then we also have the following:

si(ξ) −
(
ui(ξ) − u

(k)
i (ξ)

)
> si(ξ) − c ≥ ui(ξ)/2 ≥ sizeof(taskv)/2,

where taskv is taken at the beginning of phase i, because 3c ≤ 3ui(ξ)/4 ≤
si(ξ). Thus at least a half of the tasks in taskv, taken at the beginning of
phase i, have not been performed yet, and so Pr[Xk = 1] ≥ 1/2.

We need to estimate the probability Pr[
∑
Xk ≥ c], where the summation

is over all |Q|T` steps of all the processors in Q in the considered process.
Consider a sequence 〈Yk〉 of independent Bernoulli trials, with Pr[Yk = 1] =
1/2. Then the sequence 〈Xk〉 statistically dominates the sequence 〈Yk〉, in the

sense that Pr
[∑

Xk ≥ d
]
≥ Pr

[∑

Yk ≥ d
]
, for any d > 0. Note that

E[
∑
Yk] = |Q|T`/2 and c ≤ E[

∑
Yk]/2, hence we can apply Chernoff bound

to obtain

Pr
[∑

Yk ≥ c
]

≥ 1 − Pr

[
∑

Yk <
1

2
E
[∑

Yk

] ]

≥ 1 − e−|Q|T`/8 .

Hence the number of tasks in Ui(ξ), for any execution ξ such that Vi+1(ξ) ⊇
Q, performed by processors from Q during work stage of phase i is at least c
with probability 1 − e−|Q|T`/8. 2

Lemma 4.22. Assume n ≤ p2 and p ≥ 28. There exists a constant integer
β > 0 such that for every phase i of some epoch ` > 1 of any execution ξ of
algorithm Doallε, if there is a task unperformed by the beginning of phase i
then:

(a) the probability that phase i is a majority phase is at most e−p log p, and
(b) the probability that phase i is a minority reliable unproductive phase is at

most e−T`/16.

Proof. We first prove clause (a). Assume that phase i belongs to epoch `,
for some ` > 1. First we group executions ξ such that phase i is a majority
phase in ξ, according to the following equivalence relation: executions ξ1 and
ξ2 are in the same class iff Vi+1(ξ1) = Vi+1(ξ2). Every such equivalence class
is represented by some set of processors Q of size greater than p

2`−1 , such that
for every execution ξ in this class we have Vi+1(ξ) = Q. In the following claim
we define conditions for β for satisfying clause (a).

Claim. For constant β = 9 and any execution ξ in the class represented by
Q, where |Q| > p

2`−1 , all tasks were performed by the end of epoch `− 1 with

probability at least 1 − e−p log p−p.

We prove the Claim. Consider an execution ξ from a class represented
by Q. Consider all steps taken by processors in Q during phase j of epoch
` − 1. By Lemma 4.21, since Vj+1(ξ) ⊇ Q, we have that the probability of
event “if uj(ξ) > 0 then uj(ξ)− uj+1(ξ) ≥ min{uj(ξ), |Q|T`−1}/4,” is at least
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1− 1/e|Q|T`−1/8. If the above condition is satisfied we call phase j productive
(for consistency with the names optimal and fractional; the difference is that
these names are used only for minority phases–now we use it according to the
progress made by processors in Q), and this happens with probability at least
1−1/e|Q|T`−1/8. Since the total number of tasks is n, we have that the number
of productive phases during epoch ` − 1 sufficient to perform all tasks using
only processors in Q is either at most

n

|Q|T`−1/4
≤ n

n/(4 log p)
= 4 log p,

or, since n ≤ p2, is at most

log4/3 n = 5 log p.

Therefore there are a total of 9 log p productive phases, which is sufficient
to perform all tasks. Furthermore, every phase in epoch ` − 1 is productive.
Hence, all tasks are performed by processors in Q during β log p phases, for
constant β = 9, of epoch `− 1 with probability at least

1 − 9 log p · e−|Q|T`−1/8 ≥ 1 − eln 9+ln log p−(p log2 p)/4 ≥ 1 − e−p log p−p,

since p ≥ 8. Consequently all processors terminate by the end of phase β log p+
1 with probability 1− e−p log p−p. This follows by the correctness of the gossip
algorithm and the argument of Lemma 4.19, since epoch `−1 lasts β log p+1
phases and processors in Q are non-faulty at the beginning of epoch `. This
completes the proof of the Claim.

There are at most 2p of possible sets Q of processors, hence by the Claim
the probability that phase i is a majority phase is at most

2p · e−p log p−p ≤ e−p log p,

which proves clause (a) for phase i.
Now we prove clause (b) for phase i. Consider executions such that phase

i in epoch ` is a minority reliable phase. Similarly as above, we partitions
executions according to the following equivalence relation: executions ξ1 and
ξ2 are in the same class if there is set Q such that H = Vi+1(ξ1) = Vi+1(ξ2).
Set Q is a representative of a class. By Lemma 4.21 applied to phase i and
set Q we obtain that the probability that phase i is unproductive for every
execution ξ such that Vi+1(ξ) = Q is e−|Q|T`/8. Hence the probability that for
any execution ξ phase i is a minority reliable unproductive phase is at most

p/2`−1

∑

x=1

(
p

x

)

· e−xT`/8 ≤
p/2`−1

∑

x=1

2x log p · e−xT`/8 ≤
p/2`−1

∑

x=1

ex log p−xT`/8

≤ elog p−T`/8 · 1

1 − elog p−T`/8
≤ e−T`/16,

(since p ≥ 28), showing clause (b) for phase i. 2
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Recall that epoch ` consists of β log p + 1 phases for some β > 0 and

that T` = d n+p log3 p
(p/2`) log pe. Also by the correctness proof of algorithm Doallε

(Theorem 4.20), the algorithm terminates in at most O(log p) epochs, hence,
the algorithm terminates in at most O(log2 p) phases. Let g` be the number
of steps that each gossip stage takes in epoch `, i.e., g` = Θ(log2 p).

We now show the work and message complexity of algorithm Doallε.

Theorem 4.23. There is a set of permutations Ψ and a constant integer β >
0 (e.g., β = 9) such that algorithm Doallε, using permutations from Ψ ,
solves the Do-AllAC (n, p, f) problem with total work S = O(n+ p log3 p) and
message complexity M = O(p1+2ε).

Proof. We show that for any execution ξ ∈ E(Doallε,AC) that solves the
Do-AllAC (n, p, f) problem there exists a set of permutations Ψ and an integer
β > 0 so that the complexity bounds are as desired. Let β be from Lemma 4.22.
We consider two cases:

Case 1 : n ≤ p2. Consider phase i of epoch ` of execution ξ for randomly chosen
set of permutations Ψ . We reason about the probability of phase i belonging
to one of the classes illustrated in Figure 4.3, and about the work that phase
i contributes to the total work incurred in the execution, depending on its
classification. From Lemma 4.22(a) we get that phase i may be a majority
phase with probability at least e−p log p which is a very small probability.
More precisely, the probability that for a set of permutations Ψ , in execution
ξ obtained for Ψ some phase i is a majority phase, is O(log2 p · e−p log p) =
e−Ω(p log p), and consequently using the probabilistic method argument we
obtain that for almost any set of permutations Ψ there is no execution in
which there is a majority phase.

Therefore, we focus on minority phases that occur with high probability
(per Lemma 4.22(a)). We can not say anything about the probability of a
minority phase to be a reliable or unreliable, since this depends on the spe-
cific execution. Note however, that by definition, we cannot have more than
O(log p) unreliable minority phases in any execution ξ (at least one proces-
sor must remain operational). Moreover, the work incurred in an unreliable
minority phase i of an epoch ` in any execution ξ is bounded by

O(pi(ξ)·(T`+g`)) = O

(
p

2`−1
·
(
n+ p log3 p

p
2` log p

+ log2 p

))

= O

(
n

log p
+ p log2 p

)

.

Thus, the total work incurred by all unreliable minority phases in any execu-
tion ξ is O(n+ p log3 p).

From Lemmas 4.21 and 4.22(b) we get that a reliable minority phase may
be fractional or optimal with high probability 1 − e−T`/16, whereas it may
be unproductive with very small probability e−T`/16 ≤ e− log2 p/16. Using a
similar argument as for majority phases, we get that for almost all sets of
permutations Ψ (probability 1 − O(log2 p · e−T`/16) ≥ 1 − e−Ω(T`)) and for
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every execution ξ, there is no minority reliable unproductive phase. The work
incurred by a fractional phase i of an epoch ` in any execution ξ is bounded
by O(pi(ξ) · (T`+ g`)) = O( n

log p + p log2 p). Also note that by definition, there

can be at most O(log3/4 n) (= O(log p) since n ≤ p2) fractional phases in
any execution ξ and hence, the total work incurred by all fractional reliable
minority phases in any execution ξ is O(n + p log3 p). We now consider the
optimal reliable minority phases for any execution ξ. Here we have an optimal
allocation of tasks to processors in Vi(ξ). By definition of optimality, in average
one task in Ui(ξ) \ Ui+1(ξ) is performed by at most four processors from
Vi+1(ξ), and by definition of reliability, by at most eight processors in Vi(ξ).
Therefore, in optimal phases, each unit of work spent on performing a task
results to a unique task completion (within a constant overhead), for any
execution ξ. It therefore follows that the work incurred in all optimal reliable
minority phases is bounded by O(n) in any execution ξ.

Therefore, from the above we conclude that when n ≤ p2, for random
set of permutations Ψ the work complexity of algorithm Doallε executed on
such set Ψ is S = O(n+ p log3 p) with probability 1− e−Ω(p log p) − e−Ω(T`) =
1−e−Ω(T`) (the probability appears only from analysis of majority and unpro-
ductive reliable minority phases). Consequently such set Ψ exists. Also, from
Lemma 4.22 and the above discussion, β > 0 (e.g., β = 9) exists. Finally,
the bound on messages using selected set Ψ and constant β is obtained as
follows: there are O(log2 p) executions of gossip stages. Each gossip stage re-
quires O(p1+ε) messages (message complexity of one instance of Gossipε/3).

Thus, M = O(p1+ε log2 p) = O(p1+2ε).

Case 2 : n > p2. In this case, the tasks are partitioned into n′ = p2 chunks,
where each chunk contains at most dn/p2e tasks (see Remark 4.15). Using
the result of Case 1 and selected set Ψ and constant β, we get that S =
O(n′+p log3 p) ·Θ(n/p2) = O(p2 ·n/p2 +n/p2 ·p log3 p) = O(n). The message
complexity is derived with the same way as in Case 1. 2

4.5 Open Problems

As demonstrated by the gossip-based Do-All algorithm presented in this chap-
ter, efficient algorithms can be designed that do not rely on single coordinators
or reliable multicast to disseminate knowledge between processors. Gossiping
seems to be a very promising alternative. An interesting open problem is to
investigate whether a more efficient gossip algorithm can be developed that
could yield an even more efficient Do-All algorithm.

An interesting problem is to perform a failure-sensitive analysis for the
iterative Do-All problem using point-to-point messaging. Recall that if an
algorithm solves the Do-AllAC (n, p, f) problem with work O(x) then this al-
gorithm can be iteratively used to solve the r-Do-AllAC (n, p, f) problem with
work r ·O(x). However, it should be possible to produce an improved upper
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bound, for example, as we did in the previous chapter for the model with
crashes and reliable multicast.

4.6 Chapter Notes

Dwork, Halpern, and Waarts [30] introduced and studied the Do-All in the
message-passing model. They developed several deterministic algorithms that
solved the problem for synchronous crash-prone processors. To evaluate the
performance of their algorithms, they used the task-oriented work complexity
W and the message complexity measureM . They also used the effort complex-
ity measure, defined as the sum ofW and M . This measure of efficiency makes
sense for algorithms for which the work and message complexities are similar.
However, this makes it difficult to compare relative efficiency of algorithms
that exhibit varying trade-offs between the work and the communication effi-
ciencies.

The first algorithm presented in [30], called protocol B has effort O(n +
p
√
p), with work contributing the cost O(n + p) and the message complexity

contributing the cost O(p
√
p) toward the effort. The running time of the algo-

rithm is O(n + p). The algorithm uses synchrony to detect processor crashes
by means of timeouts. The algorithm operates as follows. The n tasks are
divided into chunks and each chunk is divided into sub-chunks. Processors
checkpoint their progress by multicasting the completion information to sub-
sets of processors after performing a subchunk, and broadcasting to all proces-
sors after completing chunks of work. Another algorithm, called protocol C has
effort O(n+ p log p). It has optimal work W = O(n+ p), message complexity
M = O(p log p) and time O(p2(n+p)2n+p). This shows that reducing the mes-
sage complexity may cause a significant increase in time. Protocol D is another
Do-All algorithm that obtains work optimality and it is designed for maximum
speed-up, which is achieved with a more aggressive check-pointing strategy,
thus trading-off time for messages. The message complexity is quadratic in
p for the fault-free case, and in the presence of f < p crashes the message
complexity degrades to Θ(fp2).

De Prisco, Mayer, and Yung [25] provided an algorithmic solution for
Do-All considering the same setting as Dwork et al., (synchrony, processor
crashes) but using the total-work (available processor steps) complexity mea-
sure S. They use a “lexicographic” criterion: first evaluate an algorithm ac-
cording to its total-work and then according to its message complexity. This
approach assumes that optimization of work is more important than optimiza-
tion of communication. They present a deterministic algorithm, call it DMY,
that has S = O(n+ (f + 1)p) and M = O((f + 1)p). The algorithm operates
as follows. At each step all the processors have a consistent (over)estimate
of the set of all the available processors (using checkpoints). One processor
is designated to be the coordinator. The coordinator allocates the undone
tasks according to a certain load balancing rule and waits for notifications
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of the tasks which have been performed. The coordinator changes over time.
To avoid a quadratic upper bound for S, substantial processor slackness is
assumed (p� n).

The authors in [25] also formally show a lower bound of S = Ω(n +
(f + 1)p) for any algorithm using the stage-checkpoint strategy, this bound
being quadratic in p for f comparable with p. Moreover, any protocol with at
most one active coordinator (that is, a protocol that uses a single coordinator
paradigm) is bound to have S = Ω(n+(f+1)p). Namely, consider the following
behavior of the adversary: while there is more than one operational processor,
the adversary stops each coordinator immediately after it becomes one and
before it sends any messages. This creates pauses of Ω(1) steps, giving the
Ω((f + 1)p) part. Eventually there remains only one processor which has to
perform all the tasks, because it has never received any messages, this gives the
remaining Ω(n) part. Algorithm AN (presented in Chapter 3) beats this lower
bound by using a multicoordinator approach; however it makes use of reliable
multicast. Algorithm Doallε presented in this chapter beats this lower bound
by neither using checkpointing nor single-coordinators paradigms; instead it
uses a gossip algorithm for the dissemination of information.

Galil, Mayer, and Yung [38], while working in the context of Byzantine
agreement [78] assuming synchronous crash-prone processors, developed an
efficient algorithm, call it GMY, that has the same total-work bound as al-
gorithm DMY (S = O(n + (f + 1)p)) but has better message complexity:
M = O(fpε + min{f + 1, log p}p), for any ε > 0. The improvement on the
message complexity is mainly due to the improvement of the checkpoint strat-
egy used by algorithm DMY by replacing the “rotating coordinator” approach
with what they called the “rotating tree” (diffusion tree) approach.

Chlebus, Gasieniec, Kowalski, and Shvartsman [16] developed a determin-
istic algorithm that solves Do-All for synchronous crash-prone processors with
combined total-work and message complexity S +M = O(n + p1.77). This is
the first algorithm that achieves subquadratic in p combined S and M for
the Do-All problem for synchronous crash-prone processors. They present an-
other deterministic algorithm that has total-work S = O(n+ p log2 p) against
f -bounded adversaries such that p−f = Ω(pα) for a constant 0 < α < 1. They
also show how to achieve S+M = O(n+ p log2 p) against a linearly-bounded
adversary by carrying out communication on an underlying constant-degree
network.

The presentation in this chapter is based on a paper by Georgiou, Kowal-
ski, and Shvartsman [44]. The proofs of Lemmas 4.4, 4.5 and Theorem 4.6
appear there. For the probabilistic method and its applications see the book
of Alon and Spencer [4]. The notion of the left-to-right maximum is due to
Knuth [71] (p. 13).

The complexity results presented in this chapter involve the use of con-
ceptual communication graphs and sets of permutations with specific combi-
natorial properties. Kowalski, Musial, and Shvartsman [75] showed that such
combinatorial structures can be constructed efficiently.
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Additionally, observe that the complexity bounds do not show how work
and message complexities depend on f , the maximum number of crashes.
In fact it is possible to subject the algorithm to “failure-sensitivity-training”
and obtain better results. Georgiou, Kowalski, and Shvartsman show how this
can be achieved in [44]. The main idea relies on the fact that checkpointing
is rather efficient for a small number of failures. So, the authors use algo-
rithm Doallε in conjunction with the check-pointing algorithm DMY [25],
where the check-pointing and the synchronization procedures are taken from
algorithm GMY [38]; in addition they use a modified version of algorithm
Gossipε, optimized for a small number of failures. The resulting algorithm
achieves total work S = O(n+ p ·min{f + 1, log3 p}) and message complexity
M = O(fpε + pmin{f + 1, log p}), for any ε > 0. More details can be found
in [44].

Chlebus and Kowalski [18] were the first to define and study the Gossip
problem for synchronous message-passing processors under an adaptive adver-
sary that causes processor crashes (this is the version of the Gossip problem
considered in this chapter); they developed an efficient gossip algorithm and
they used it as a building block to obtain an efficient synchronous algorithm
for the consensus problem with crashes. In a later work [19], the same au-
thors developed another algorithm for the synchronous Gossip problem with
crashes and used it to obtain an efficient early-stopping consensus algorithm
for the same setting. More details on work on gossip in fault-prone distributed
message-passing systems can be found in the survey of Pelc [96] and the book
of Hromkovic, Klasing, Pelc, Ruzicka, and Unger [59].




