
10

Cooperation in the Absence of Communication

IN the setting where the Omni-Do (and Do-All) problem needs to be solved
by distributed message-passing processors there exists a trade-off between

computation and communication: both resources must be managed to de-
crease redundant computation and to ensure efficient computational progress.
In this chapter we specifically examine the extreme situation of collabora-
tion without communication. That is, we consider the extent to which efficient
collaboration is possible if all resources are directed to computation at the
expense of communication. Of course there are also cases where such an ex-
treme situation is not a matter of choice: the network may fail, the mobile
nodes may have intermittent connectivity, and when communication is un-
available it may take a long time to (re)establish connectivity. The results
summarized in this section precisely characterize the ability of distributed
agents to collaborate on a known collection of independent tasks by means
of local scheduling decisions that require no communication and that achieve
low redundant work in task executions. Such scheduling solutions exhibit an
interesting connection between the distributed collaboration problem and the
mathematical design theory. The lower bounds presented here along with the
randomized and deterministic schedule constructions show the limitations on
such low-redundancy cooperation and show that schedules with near-optimal
redundancy can be efficiently constructed by processors working in isolation.

Let us consider an asynchronous setting, where processors communicate
by means of a rendezvous, i.e., two processors that are able to communicate
can perform state exchange. The processors that are not able to communicate
via rendezvous have no choice but to perform all n tasks. Consider the com-
putation with a single rendezvous. There are p− 2 processors that are unable
to communicate, and they collectively must perform exactly n · (p− 2) work
units to learn all results. Now what about the remaining pair of processors
that are able to rendezvous? In the worst case they rendezvous after perform-
ing all tasks individually. In this case no savings in work are realized. Suppose
they rendezvous having performed n/2 tasks each. In the best case, the two
processors performed mutually-exclusive subsets of tasks and they learn the

184 10 Cooperation in the Absence of Communication

complete set of results as a consequence of the rendezvous. In particular if
these two processors know that they will be able to rendezvous in the future,
they could schedule their work as follows: one processor performs the tasks in
the order 1, 2, . . . , n, the other in the order n, n − 1, . . . , 1. No matter when
they happen to rendezvous, the number of tasks they both perform is mini-
mized. Of course the processors do not know a priori what pair will be able
to rendezvous. Thus it is interesting to produce task execution schedules for
all processors, such that upon the first rendezvous of any two processors the
number of tasks performed redundantly is minimized.

This setting we have just described is interesting for several reasons. If
the communication links are subject to failures, then each processor must be
ready to execute all of the n tasks, whether or not it is able to communicate.
In realistic settings the processors may not initially be aware of the network
configuration, which would require expenditure of computation resources to
establish communication, for example in radio networks. In distributed envi-
ronments involving autonomous agents, processors may choose not to com-
municate either because they need to conserve power or because they must
maintain radio silence. Finally, during the initial configuration of a dynamic
network or a middleware service (such as a group communication service) the
individual processors may start working in isolation pending the completion of
system configuration. Regardless of the reasons, it is important to direct any
available computation resources to performing the required tasks as soon as
possible. In all such scenarios, the n tasks have to be scheduled for execution
by all processors. The goal of such scheduling must be to control redundant
task executions in the absence of communication and during the period of
time when the communication channels are being (re)established.

Chapter structure.

In Section 10.1 we describe the adverse setting, formalize the notions of sched-
ules, waste associated with redundant task execution in schedules, and present
basic design theory. In Section 10.2 we present a lower bound on redundancy
without communication. Section 10.3 explores the behavior of random sched-
ules. Derandomization of schedules is the topic of Section 10.4. Discussion of
open problems is in Section 10.5.

10.1 Adversity, Schedules, Waste, and Designs

The adversarial setting. In our abstract setting there are p asynchronous
processors that need to perform n tasks. The processors have unique identi-
fiers from the set [p] = {1, . . . , p}, and the tasks have unique identifiers from
the set [n] = {1, . . . , n}. Initially each processor knows the tasks that need
to be performed and their identifiers (otherwise no fault-tolerant distributed
solution is possible). For this setting, the adversary initially isolates the pro-
cessors, which forces them to perform tasks without being able to coordinate

10.1 Adversity, Schedules, Waste, and Designs 185

their activity with other processors. The adversary then allows the processors
to rendezvous, but with the goal of maximizing the redundant work performed
by the processors prior to the rendezvous.

For the purposes of this chapter, we define a simplified adversary, called
AR, that starts processors in isolation, and then causes a rendezvous. We

also define a parameterized adversary A(r)
R to be the adversary that causes at

most a r-way rendezvous. Following our established notation, for an algorithm

A, let E = E(A,A(r)
R) be the set of all executions of the algorithm in our

model of computation subject to adversary A(r)
R . For a particular execution

ξ ∈ E , the adversarial pattern ξ|
A

(r)
R

establishes that the processors q1, . . . , qk,

where k ≤ r, rendezvous for the first time when each processor qi performs
a1 tasks prior to the rendezvous. Note that each ai can be very different
due to asynchrony. We define the weight ||ξ|

A
(r)
R

|| of the adversarial pattern

corresponding to this execution to be the vector a = (a1, . . . , ak).
We are interested in studying how the magnitude of the redundant work

depends on the weight of the adversarial pattern.

Schedules and waste. A (p, n)-schedule is a tuple (σ1, . . . , σp) of p permu-
tations of the set [n]. When p = 1 it is elided and we simply write n-schedule.
A (p, n)-schedule immediately gives rise to a strategy for p isolated proces-
sors who must complete n tasks until communication between some pair (or
group) is established: the processor i simply proceeds to complete the tasks
in the order prescribed by σi. Suppose now that an adversarial pattern causes
some k of these processors, say q1, . . . , qk, to rendezvous at a time when the
ith processor in this group, qi, has completed ai tasks (i.e., the weight of the
corresponding adversarial pattern is a = (a1, . . . , ak)). Ideally, the processors
would have completed disjoint sets of tasks, so that the total number of tasks
completed is

∑

i ai. As this is too much to hope for in general, it is natural to
attempt to bound the gap between

∑

i ai and the actual number of distinct
tasks completed. This gap we call waste (here and throughout, if φ : X → Y
is a function and L ⊂ X , we let φ(L) = {φ(x) | x ∈ L}):

Definition 10.1. If L is a (p, n)-schedule and (a1, . . . , ak) ∈ Nk, the waste
function for L is

WL(a1, . . . , ak) = max
(q1,...,qk)

(
k∑

i

ai −
∣
∣
∣
∣
∣

k⋃

i

σqi([ai])

∣
∣
∣
∣
∣

)

,

this maximum taken over all k tuples (q1, . . . , qk) of distinct elements of [p].

For a specific vector a = (a1, . . . , ak) representing the weight of an ad-
versarial pattern, WL(a) captures the worst-case number of redundant tasks
performed by any collection of k processors when the ith process has com-
pleted the first ai tasks of its schedule.

186 10 Cooperation in the Absence of Communication

One immediate observation is that bounds on pairwise waste can be nat-
urally extended to bounds on k-wise waste: specifically, note that if L is a
(p, n)-schedule then

WL(a1, . . . , ak) ≤
∑

i<j

WL(ai, aj)

just by considering the first two terms of the standard inclusion-exclusion
rule. Moreover, it appears that this relationship is fairly tight as it is nearly
attained by randomized schedules (see Section 10.3). With this justification
we shall content ourselves to focus mainly on pairwise waste—the function
WL(a, b).

Designs as schedules. Set systems with prescribed intersection properties
have been the object of intense study by both the design theory community
and the extremal set theory community. Despite this, the study of waste in
distributed cooperative settings is new. We shall, however, make substantial
use of some design-theoretic constructions, which we describe below.

Definition 10.2. A `-(v, k, λ) design is a family of subsets L = (L1, . . . , Lt)
of the set [v] with the property that each |Li| = k and any set of ` elements
of [v] is a subset of precisely λ of the Li. (N.B. The subsets Li are typically
referred to as blocks.)

Observe that if L is a `-(v, k, λ) design, then it is also a (` − 1)-(v, k, λ̂)
design where

λ̂ = λ
(v − `+ 1)

(k − `+ 1)
.

To see this, note that if T is a subset of elements of size ` − 1, then there
are exactly v − (`− 1) sets of size ` which contain T ; let Ui, i ∈ [v − (`− 1)],
denote these sets. By assumption, each Ui appears in exactly λ of the Lj. Of
course, if Ui is a subset of some Lj , then in fact exactly k − (`− 1) if the Ui
are subsets of Lj . Hence T appears in exactly λ(v − `+ 1)/(k − `+ 1) of the
Lj , as desired.

To see the connection between such designs and our problem, let D be a
2-(p, k, λ) design consisting of n sets L1, . . . , Ln. For each i ∈ [p], let Ti = {j |
i ∈ Lj}. Note now that for any i 6= j,

Ti ∩ Tj = {k | {i, j} ⊂ Lk}

and hence that |Ti ∩ Tj | = λ. Based on the observation above, we see also
that ∀i, j, |Ti| = |Tj | and let a denote this common cardinality. Now, let Σ =
(σ1, . . . , σt) be any sequence of permutations of [n] for which σi([a]) = Ti. It
is clear that these form an (p, n)-schedule for which

WΣ(a, a) = λ.

10.2 Redundancy without Communication: a Lower Bound 187

Unfortunately, the above construction offers satisfactory control of 2-waste
only for the specific pair (a, a). Furthermore, considering that the construction
only determines the sets σi([a]) and σi([p] \ [a]), the ordering of these can be
conspiratorially arranged to yield poor bounds on waste for other values. Our
goal is construct schedules with satisfactory control on waste for all pairs
(a, b).

While designs do not appear to immediately induce a solution to this prob-
lem, we will apply the following design-theoretic construction several times in
the sequel. Let GF(q) denote the finite field with q elements, where q is a
prime power. Treating GF(q)3 as a vector space over GF(q), the design will
be given by the lattice of linear subspaces of GF(q)3. It is easy to check that
there are t = q2 + q + 1 distinct one dimensional subspaces of GF(q)3, which
we denote `1, . . . , `t. We say that two subspaces `i and `j are orthogonal if
∀u ∈ `1, ∀v ∈ `2, 〈u, v〉 =

∑
ujvj mod q = 0; in this case we write `i ⊥ `j .

It is a fact that for any one dimensional subspace there are exactly q + 1 one
dimensional subspaces to which it is orthogonal. The design consists of the
n = q2 + q + 1 sets Su = {`i | `i ⊥ `u}. It is easy to show that any pair of
such sets intersect at a single `i, and that this forms a 2-(q2 + q + 1, q + 1, 1)
design.

For concreteness, we fix a specific (arbitrary) ordering of each of these sets
Lu: let Ku denote a canonical sequence 〈k1

u, . . . , k
r
u〉 where Lu = {`ki

u
| 1 ≤ i ≤

q + 1}; i.e., the one dimensional subspaces `ki
u
, i = 1, . . . , q + 1, are precisely

those orthogonal to `u. For convenience, for two sequences A and B, we let
A ∩ B and A ∪ B denote the corresponding union or intersection of the sets
of objects in the sequences. We record the above discussion in the following
proposition.

Proposition 10.3. Let t = q2 + q + 1, where q is a prime power. Then the
sequences Kt = 〈K1, . . . ,Kt〉 possess the following properties: each Ku has
length q + 1, for each u 6= v, |Ku ∩ Kv| = 1, and any element appears in
exactly q + 1 distinct sequences. We note also that if q is prime, the first
element of each sequence can be calculated in O(log t) time; each subsequent
element can be calculated in O(1) time.

In the sequel we will use these designs with t = p, the number of processors.
We assume throughout that addition or multiplication of two log (max{p, n})-
bit numbers can be performed in O(1) time.

10.2 Redundancy without Communication:

a Lower Bound

Controlling global computation redundancy in the absence of communication
is a futile task. This is because no amount of algorithmic sophistication can
compensate for the possibility of individual processors, or groups of processors,

188 10 Cooperation in the Absence of Communication

becoming disconnected during the computation. In general, an adversary that
is able to partition the processors into g groups that cannot communicate with
each other will cause any task-performing algorithm to have work Ω(n · g),
even if each group of processors performs no more than the optimal number
of Θ(n) tasks. In the extreme case where all processors are isolated from the
beginning, the work of any algorithm is Ω(n · p), which is at least the work of
an oblivious algorithm, where each processor performs all tasks.

Of course it is not surprising that substantial redundancy cannot be
avoided in the absence of communication, furthermore, the lower bound on
work of Ω(n · p) is not very interesting. However, as we pointed out earlier,
it is possible to schedule the work of a pair of processors so that each can
perform up to n/2 tasks without a single task performed redundantly. Thus it
is very interesting to consider the intersection properties of pairs of processor
schedules, i.e., 2-waste.

If we insist that among the p total processors, any two processors, having
executed the same number of tasks n′, where n′ < n, perform no redundant
work, then it must be the case that n′ ≤ bn/pc. In particular, if p = n, then
the pairwise waste jumps to one if any processor executes more than one
task. The next natural question is: how many tasks can processors complete
before the lower bound on pairwise redundant work is 2? In general, if any
two processors perform n1 and n2 tasks respectively, what is the lower bound
on pairwise redundant work? In this section we answer these questions. The
answers contain both good and bad news: given a fixed t, the lower bound
on pairwise redundant work starts growing slowly for small n1 and n2, then
grows quadratically in the schedule length as n1 and n2 approach t.

Now we proceed to the lower bound for the case when two processors
execute different number of tasks prior to their rendezvous (this lower bound
generalizes the second Johnson Bound).

Theorem 10.4. Let Π = 〈π1, . . . , πp〉 be a (p, n)-schedule and let 0 ≤ a ≤
b ≤ n. Then

WΠ(a, b) ≥ p a2

(p− 1)(n− b+ a)
− a

p− 1
.

For example, when processors perform the same number of tasks a = b
and p = n, then the worst case number of redundant tasks for any pair is at

least a2−a
n−1 . This means that (for p = n) if a exceeds

√
n+ 1, then the number

of redundant task is at least 2.

Corollary 10.5. For n = p, if a >
√

n− 3/4+ 1
2 then any p-processor sched-

ule of length a for n tasks has worst case pairwise waste at least 2.

10.3 Random Schedules

As one would expect, schedules chosen at random perform quite well. In this
section we explore the behavior of the (p, n)-schedules obtained when each

10.3 Random Schedules 189

permutation is selected uniformly (and independently) at random among all
permutations of [n].

Randomized schedules

When the processors are endowed with a reasonable source of randomness, a
natural candidate scheduling algorithm is one where processors select tasks
by choosing them uniformly among all tasks they have not yet completed.
This amounts to the selection, by each processor i, of a random permutation
πi ∈ S[n] which determines the order in which this processor will complete the
tasks. (S[n] denotes the collection of all permutations of the set [n].) We let
R be the resulting system of schedules.

Our objective now is to show that random schedules R have controlled
waste with high probability. This amounts to bounding, for each pair i, j and
each pair of numbers a, b, the overlap |πi([a]) ∩ πj([b])| . Observe that when
these πi are selected at random, the expected size of this intersection is ab/n.
By showing that the actual waste is very likely to be close to this expected
value, one can conclude the waste if bounded for all long enough prefixes.

Theorem 10.6. Let R be a system of p random schedules for n tasks con-
structed as above. Then with probability at least 1 − 1

pn , ∀a, b such that

7
√
n ln (2pn) ≤ a, b ≤ n, WR(a, b) ≤ ab

n
+ ∆(a, b) , where ∆(a, b) =

11
√

ab
n ln(2pn) .

Observe that Theorem 10.4 shows that (p, n)-schedules must have waste
W(a, a) = Ω(a2/n) (as p→ ∞); hence such randomized schedules offer nearly
optimal waste for this case.

k-Waste for random schedules

For random schedules, one can apply martingale techniques to directly control
k-wise waste. We mention one such result.

Theorem 10.7. Consider the random schedule R as given above. Then with
probability at least 1 − 1/p,

WR(a, . . . , a) ≤
k∑

s=2

(−1)s
(
k

s

)
as

ns−1
+∆a,k,

where ∆a,k = (2k + 1)
√
a ln p .

Note that again this bounds the distance of the k-waste from its expected
value, which can be computed by inclusion-exclusion to be

∑k
s=2(−1)s

(
k
s

)
as

ns−1 .
The proof, which we omit, proceeds by considering the martingale which ex-
poses the ith element of all schedules at step i. The theorem then follows
by noting that the expected value can change by at most k during a single
exposure and applying Azuma’s inequality.

190 10 Cooperation in the Absence of Communication

10.4 Derandomization via Finite Geometries

We now consider a method for derandomizing these schedules using the design
discussed in Section 10.1.

Schedules for p = n

We construct a system of schedules of length p by arranging tasks from the
sequences of Kp in a recursive fashion. (Recall that while the sequences of
Kp have strong intersection properties, they are only roughly

√
p in length.)

In preparation for the recursive construction, we record the following lemma
about the pairwise intersections of the elements in the sequence of Kp indexed
by a specific subspace Ku.

Lemma 10.8. Let Kp = 〈K1, . . . ,Kp〉 be the collection of sequences con-
structed in Proposition 10.3, and let Ku = 〈k1

u, . . . , k
q+1
u 〉, 1 ≤ u ≤ p. Then

for any i 6= j, we have Kki
u
∩Kkj

u
= {u}.

As a result of this lemma, there is only a single repeated element in the
sequences Kk1

u
, Kk2

u
, . . . ,Kkq+1

u
; this element is u. This fact suggests the fol-

lowing construction of a system of schedules Qp. Let Qu, 1 ≤ u ≤ p, be the
sequence whose first element is u, and whose remaining elements are given by
concatenating the q+1 sequences Kk1

u
, . . . ,Kkq+1

u
after removing u from each.

Specifically,
Qu = 〈u〉 ◦ (©i∈Ku(Ki − u)),

where ◦ denotes concatenation and Ki − u denotes the sequence Ki with u
deleted. Note now that since the total length ofQu is evidently (q+1)q+1 = p,
each element of [p] must appear exactly once in each Qu; these Qu thus give
rise to a family of permutations πu, where πu(i) is the ith element of Qu. Let
Qp = (π1, . . . , πp).

We conceptually divide the sequences Qu (associated with the permuta-
tions πu) into q+ 1 segments of elements. The first segment contains the first
q + 1 elements (including the initial element u); the remaining q segments
contain q consecutive elements each.

This recursive construction yields a straightforward bound on pairwise
waste, recorded below.

Theorem 10.9. Let q be a prime power, p = q2 + q + 1. Let a = 1 + iq,
b = 1 + jq, 0 ≤ i, j ≤ q + 1. Then

WQp(a, b) ≤







0, i+ j = 0,

1, i = 0, j ≥ 1 or i ≥ 1, j = 0,

q + ij, i · j ≥ 1.

10.4 Derandomization via Finite Geometries 191

We mention that the construction can be done on-line. For each schedule
the first element can be calculated in O(1) time. For the remaining q(q + 1)
elements, at the beginning of every sequence of q elements we need to invert
at most two elements in GF(q). When q is prime this can be done in O(log p)
using the extended Euclidean algorithm. Other elements of the schedule can
be found in O(1) time.

Note that when n = κp for some κ ∈ N, the above construction can be
trivially applied by placing the n tasks into p chunks of size κ. In this case,
of course, when a single overlap occurred in the original construction, this
penalty is amplified by κ.

Controlling waste for short prefixes

One disadvantage of Qp is that the first segment may repeat, so that (q + 1)
waste may be incurred when a prefix of length â = (q + 1) is executed. To
postpone this increase one would like to rearrange the segments in each Qu
so that the first segment is distinct across the resulting schedules. This can
be accomplished by finding a bijection ρ : [p] → [p] such that the sequence
Ku contains task ρ(u). (In other words `u must be orthogonal to `ρ(u).) This
bijection can then be used to select distinct segments as the first segments of
schedules in Qp.

Consider the bipartite graph Gp = (Up, Vp, Ep) where Up = Vp = [p] and
p = q2 + q + 1; here q is a prime power. Both Up and Vp can be placed in
one-to-one correspondence with the one dimensional subspaces of GF(q)3. An
edge is placed between `u ∈ Up and `v ∈ Vp when they are orthogonal. Based
on the structure of GF(q)3, it is not hard to show that Gp is (q + 1)-regular.
By Hall’s theorem, there is always a perfect matching in a d-regular bipartite
graph and note that such a matching yields a permutation ρ with the desired
properties. In particular if the edge (u, v) appears in the perfect matching,
then we put ρ(u) = v. This matching can be found using the Hopcroft-Karp
algorithm that runs in time O(

√

|U | + |V | · |E|) = O(p2).
We use ρ to construct the system of schedules Gp such that the first

segments are distinct. Specifically, given Kp, the system of schedules Gp =
〈γ1, . . . , γp〉 is defined as follows. For any 1 ≤ u ≤ p, the sequence Gu is given
by

Gu = 〈u〉 ◦ (Kρ(u) − {u}) ◦ (©i∈Ku−ρ(u)(Ki − u)).

Then γu is the permutation associated with Gu.

Theorem 10.10. Let q be a prime power, p = q2 + q + 1. Let a = 1 + iq,
b = 1 + jq, 0 ≤ i, j ≤ q + 1. Then:

WGp(a, b) ≤







0, i+ j = 0,

1, i = 0, j ≥ 1 or i ≥ 1, j = 0,

1, i · j = 1,

q + ij, i · j > 1.

192 10 Cooperation in the Absence of Communication

Observe that this construction is time-optimal as it produces p2 elements
and runs in O(p2) time. However, the algorithm requires O(p2) time to con-
struct even a single permutation.

10.5 Open Problems

We surveyed results that characterize the ability of p isolated processors to
collaborate on a common known set of n tasks. The good news is that the
isolated processors can deterministically construct schedules locally, equipped
only with the knowledge of n, p, and their unique processor identifiers in [p].
Moreover, the cost of constructing such schedules can be largely amortized
over the performance of tasks. It is nevertheless interesting to seek more effi-
cient constructions and deterministic constructions that help control k-waste.
Although the lower bounds on wasted work mandate that waste must grow
quadratically with the number of executed tasks (from 1 to n), such schedules
control wasted work for surprisingly long prefixes of tasks. Another worthwhile
problem is to design deterministic strategies that control waste for arbitrary
patterns of rendezvous, for example, as in the setting of Chapter 9. Finally,
for the settings where communication is deemed expensive or undesirable, it is
interesting to develop algorithmic and scheduling strategies that intentionally
force processors to work in isolation, and to analyze these strategies in terms
of waste, work, and message complexity.

10.6 Chapter Notes

The material in this chapter is based on the work of Malewicz, Russell, and
Shvartsman [83, 84, 85, 86] and follows the presentation in [99]. The proofs
of the theorems and lemmas stated in this Chapter can be found in [86].
Additional results in this area can be found in Malewicz’s thesis [81].

The problem of assessing redundant work for distributed cooperation in
the absence of communication was studied by Dolev, Segala, and Shvartsman
in [29]. The authors showed that for the case of dynamic changes in connec-
tivity, the termination time of any on-line task assignment algorithm can be
greater than the termination time of an off-line task assignment algorithm
by a factor linear in n. This means that an on-line algorithm may not be
able to do better than the trivial solution that incurs linear overhead by hav-
ing each processor perform all the tasks. With this observation [29] develops
an effective strategy for managing the task execution redundancy and proves
that the strategy provides each of the p ≤ n processors with a schedule of
Θ(n1/3) tasks such that at most one task is performed redundantly by any
two processors.

Other approaches to dealing with limited communication have also been
explored. Papadimitriou and Yannakakis [95] study how limited patterns of

10.6 Chapter Notes 193

communication affect load-balancing. They consider a problem where there
are 3 agents, each of which has a job of a size drawn uniformly at random from
[0, 1], and this distribution of job sizes is known to every agent. Any agent A
can learn the sizes of jobs of some other agents as given by a directed graph
of three nodes. Based on this information each agent has to decide to which
of the two servers its job will be sent for processing. Each server has capacity
1, and it may happen that when two or more agents decide to send their
jobs to the same server the server will be overloaded. The goal is to devise
cooperative strategies for agents that will minimize the chances of overloading
any server. The authors present several strategies for agents for this purpose.
They show that adding an edge to a graph can improve load balancing. These
strategies depend on the communication topology. This problem is similar to
our scheduling problem. Sending a job to server number x ∈ {0, 1} resembles
doing task number x in our problem. The goal to avoid overloading servers
resembles avoiding overlaps between tasks. The problem of Papadimitriou and
Yannakakis is different because in our problem we are interested in structuring
job execution where the number of tasks can be arbitrary n ≥ 1.

Georgiades, Mavronicolas, and Spirakis [42] study a similar load-balancing
problem. On the one hand their treatment is more general in the sense that
they consider arbitrary number of agents n, and arbitrary computable decision
algorithms. However it is more restrictive in the sense that they consider
only one type of communication topology where there is no communication
between processors whatsoever. The two servers that process jobs have some
given capacity that is not necessarily 1. They study two families of decision
algorithms: algorithms that cannot see the size of jobs before making a decision
which server to send a job to for processing, and algorithms that can make
decisions based on the size of the job. They completely settle these cases by
showing that their decision protocols minimize the chances of overloading any
server.

For additional information on the design theory and the extremal set the-
ory see the survey of Hughes and Piper [60]. See [64] for information about
the second Johnson Bound. For a discussion of discrete exposure martingales
and Azuma’s inequality see Alon and Spencer [4]. For Hall’s theorem see, e.g.,
Harary [54]. For Hopcroft-Karp algorithm see [58].

