

Do-All Computing in
Distributed Systems

Cooperation in the
Presence of Adversity

Distributed Systems
Cooperation in the

Presence of Adversity

Chryssis Georgiou
University of Cyprus

Cyprus

and

Alexander A. Shvartsman
Massachusetts Institute of Technology (MIT)

USA

Do-All Computing in

by

Chryssis Georgiou
University of Cyprus
Dept. Computer Science
P.O.Box 20537
1678 Nicosia, CYPRUS
chryssis@ucy.ac.cy

Alexander A. Shvartsman
University of Connecticut
Computer Science and Engineering
371 Fairfield Way
Storrs, CT 06268, USA
aas@cse.uconn.edu

Library of Congress Control Number: 2007937388

by Chryssis Georgiou and Alexander A. Shvartsman

ISBN-13: 978-0-387-30918-7

e-ISBN-13: 978-0-387-69045-2

Printed on acid-free paper.

 2008 Springer Science+Business Media, LLC.

All rights reserved. This work may not be translated or copied in whole or

in part without the written permission of the publisher (Springer

Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,

USA), except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and

retrieval, electronic adaptation, computer software, or by similar or

dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and

similar terms, even if the are not identified as such, is not to be taken as an

expression of opinion as to whether or not they are subject to proprietary

rights.

9 8 7 6 5 4 3 2 1

springer.com

Do-All Computing in Distributed Systems: Cooperation in the Presence of Adversity

To my wife Agni, and son Yiorgo
CG

To Sana, my wife and best friend
AAS

Contents

Foreword by Michel Raynal . XV

Authors’ Preface .XIX

1 Introduction . 1
1.1 Do-All Computing . 2
1.2 Do-All and Adversity . 4
1.3 Solving Do-All: Fault-Tolerance with Efficiency 6
1.4 Chapter Notes . 8

2 Distributed Cooperation Problems:
Models and Definitions . 11
2.1 Model of Computation . 11

2.1.1 Distributed Setting . 11
2.1.2 Communication . 11

2.2 Models of Adversity . 12
2.2.1 Processor Failure Types . 12
2.2.2 Network Partitions . 13
2.2.3 Adversaries and their Behavior . 13

2.3 Tasks and Do-All Computing . 14
2.3.1 The Do-All Problem . 15
2.3.2 The Omni-Do Problem . 16

2.4 Measures of Efficiency . 17
2.5 Chapter Notes . 19

List of Figures . XI

List of Symbols .XIII

VIII Contents

3 Synchronous Do-All with Crashes: Using Perfect
Knowledge and Reliable Multicast . 21
3.1 Adversarial Model . 22
3.2 Lower and Upper Bounds for Abstract Models 22

3.2.1 Modeling Knowledge . 22
3.2.2 Lower Bounds . 23
3.2.3 Upper Bounds . 28

3.3 Solving Do-All Using Reliable Multicast . 33
3.3.1 Algorithm AN . 34
3.3.2 Correctness of algorithm AN . 38
3.3.3 Analysis of Algorithm AN . 40
3.3.4 Analysis of Message-Passing Iterative Do-All 44

3.4 Open Problems . 45
3.5 Chapter Notes . 45

4 Synchronous Do-All with Crashes and Point-to-Point
Messaging . 47
4.1 The Gossip Problem . 48
4.2 Combinatorial Tools . 49

4.2.1 Communication Graphs . 49
4.2.2 Sets of Permutations . 50

4.3 The Gossip Algorithm . 51
4.3.1 Description of Algorithm Gossipε 51
4.3.2 Correctness of Algorithm Gossipε 55
4.3.3 Analysis of Algorithm Gossipε . 59

4.4 The Do-All Algorithm . 61
4.4.1 Description of Algorithm Doallε 62
4.4.2 Correctness of Algorithm Doallε 64
4.4.3 Analysis of Algorithm Doallε . 67

4.5 Open Problems . 72
4.6 Chapter Notes . 73

5 Synchronous Do-All with Crashes and Restarts 77
5.1 Adversarial Model . 78
5.2 A Lower Bound on Work for Restartable Processors 79
5.3 Algorithm AR for Restartable Processors 82

5.3.1 Description of Algorithm AR . 82
5.3.2 Correctness of Algorithm AR . 86
5.3.3 Complexity Analysis of Algorithm AR 89

5.4 Open Problems . 92
5.5 Chapter Notes . 93

Contents IX

6 Synchronous Do-All with Byzantine Failures 95
6.1 Adversarial Model . 96
6.2 Task Execution without Verification . 96

6.2.1 Known Maximum Number of Failures 96
6.2.2 Unknown Maximum Number of Failures 98

6.3 Task Execution with Verification . 98
6.3.1 Known Maximum Number of Failures 99
6.3.2 Unknown Maximum Number of Failures 111

6.4 Open Problems . 112
6.5 Chapter Notes . 112

7 Asynchrony and Delay-Sensitive Bounds 115
7.1 Adversarial Model and Complexity . 116
7.2 Delay-Sensitive Lower Bounds on Work . 118

7.2.1 Deterministic Delay-Sensitive Lower Bound 119
7.2.2 Delay-sensitive Lower Bound for Randomized

Algorithms . 121
7.3 Contention of Permutations . 125

7.3.1 Contention and Oblivious Tasks Scheduling 127
7.3.2 Generalized Contention . 128

7.4 Deterministic Algorithms Family DA. 130
7.4.1 Construction and Correctness of Algorithm DA(q) 131
7.4.2 Complexity Analysis of Algorithm DA(q) 134

7.5 Permutation Algorithms Family PA . 137
7.5.1 Algorithm Specification . 137
7.5.2 Complexity Analysis . 139

7.6 Open Problems . 142
7.7 Chapter Notes . 143

8 Analysis of Omni-Do in Asynchronous Partitionable
Networks . 145
8.1 Models of Adversity . 146
8.2 A Group Communication Service and Notation 148
8.3 View-Graphs . 150
8.4 Algorithm AX . 154

8.4.1 Description of the Algorithm . 154
8.4.2 Correctness of the Algorithm . 155

8.5 Analysis of Algorithm AX . 158
8.5.1 Work Complexity . 158
8.5.2 Message Complexity . 162
8.5.3 Analysis Under Adversary AF . 165

8.6 Open Problems . 165
8.7 Chapter Notes . 166

X Contents

9 Competitive Analysis of Omni-Do in Partitionable
Networks . 169
9.1 Model of Adversity, Competitiveness and Definitions 170

9.1.1 Adversary AGR . 171
9.1.2 Measuring Competitiveness . 173
9.1.3 Formalizing Computation Width . 174

9.2 Algorithm RS and its Analysis . 175
9.2.1 Description of Algorithm RS . 175
9.2.2 Analysis of Algorithm RS . 175
9.2.3 Deterministic Algorithms . 178

9.3 Lower Bounds . 179
9.4 Open Problems . 181
9.5 Chapter Notes . 181

10 Cooperation in the Absence of Communication 183
10.1 Adversity, Schedules, Waste, and Designs 184
10.2 Redundancy without Communication: a Lower Bound 187
10.3 Random Schedules . 188
10.4 Derandomization via Finite Geometries . 190
10.5 Open Problems . 192
10.6 Chapter Notes . 192

11 Related Cooperation Problems and Models 195
11.1 Do-All in Shared-Memory . 195
11.2 Do-All with Broadcast Channels . 200
11.3 Consensus and its Connection to Do-All . 202

References . 205

Index . 213

List of Figures

3.1 Oracle-based algorithm. 28
3.2 A local view for phase `+ 2. 35
3.3 Phase ` of algorithm AN . 37
3.4 A phase of algorithm AN. 37

4.1 Algorithm Gossipε, stated for processor v; πv(i) denotes the
ith element of permutation πv. 52

4.2 Algorithm Doallε, stated for processor v; πv(i) denotes the
ith element of permutation πv. 63

4.3 Classification of a phase i of epoch `; execution ξ is implied. . . . 67

5.1 A local view for phase `+ 4. 83
5.2 Phase ` of algorithm AR (text in italics highlights differences

between algorithm AR and algorithm AN). 84
5.3 A phase of algorithm AR. 85

6.1 Algorithm Cover . The code is for processor q. 97
6.2 Algorithm for the case f ≥ p/2. The code is for processor q.

The call to the procedure is made with P = [p], T = [n], and
ψ = f . 101

6.3 Algorithm for the case f < p/2. The code is for processor q.
The call parameters are P = [p], T = [n], and ψ = f 105

6.4 Subroutine Do Work and Verify . Code for processor q 107
6.5 Subroutine Checkpoint . Code for processor q. 108

7.1 Illustration of the adversarial strategy leading to the
delay-sensitive lower bound on total-work for randomized
algorithms. 125

7.2 Algorithm ObliDo. 127
7.3 The deterministic algorithm DA (p ≥ n). 132

XII List of Figures

7.4 Permutation algorithm and its specializations for PaRan1,
PaRan2, and PaDet (p ≥ n). 138

8.1 Example of a view-graph . 151
8.2 Input/Output Automata specification of algorithm AX. 156

9.1 An example of a (12, n)-DAG. 172

List of Symbols

p number of processors . 2
n number of tasks . 2
pid or pid unique processor identifier . 3
log logarithm to the base 2 . 5
P set of processor ids numbered from 1 to p 11
A adversary or adversarial model 14
A an algorithm . 14
E(A,A) set of all executions of algorithm A for adversary A 14
ξ an execution in E(A,A) . 14
ξ|A adversarial pattern of ξ caused by A 14
‖ξ|A‖ the weight of adversarial pattern ξ|A 14
tid or tid unique task identifier . 15
T set of task ids numbered from 1 to n 15
Do-AllA(n, p, f) Do-All problem for n tasks, p processors and

adversary A constrained to adversarial patterns
of weight less or equal to f . 15

r-Do-AllA(n, p, f) iterative Do-All problem for r sets of n tasks,
p processors, and adversary A constrained to
adversarial patterns of weight less or equal to f . . 15

Omni-DoA(n, p, f)Omni-Do problem for n tasks, p processors and
adversary A constrained to adversarial patterns
of weight less or equal to f . 16

S or SA(n, p, f) total-work or available processor steps
complexity required for an algorithm to solve
a problem of size n using p processors under
adversary A restricted to adversarial patterns of
weight no more than f . 17

ESA(n, p, f) Expected total-work complexity 17
W or WA(n, p, f) task-oriented work complexity 17
EWA(n, p, f) Expected task-oriented work complexity 18
M or MA(n, p, f) message complexity . 18

XIV List of Symbols

EMA(n, p, f) Expected message complexity 19
AC adversary causing processor crashes 22
Do-AllOA(n, p, f) Do-AllA(n, p, f) problem where processors are

assisted by oracle O . 23
r-Do-AllOA(n, p, f) r-Do-AllA(n, p, f) problem where processors are

assisted by oracle O . 23
GossipA(p, f) Gossip problem for p processors and adversary

A constrained to adversarial patterns of weight
less or equal to f . 48

St symmetric group . 50
ACR adversary causing processor crashes and restarts . . 78

A(κ)
CR maximal subset of ACR that contains only

κ-restricted adversarial patterns 79
AB adversary causing Byzantine processor failures . . . 96
AD adversary causing arbitrary delays between local

processors steps and arbitrary message delays 116

A(d)
D adversary causing arbitrary delays between local

processors steps and message delays up to d time
units . 116

AF adversary causing group fragmentations 146
AFM adversary causing group fragmentations and

merges . 147
AGR adversary causing arbitrary regroupings 171
AR adversary causing rendezvous 185

A(r)
R adversary causing at most r-way rendezvous 185

Foreword

Distributed computing was born in the late 1970s when researchers and prac-
titioners started taking into account the intrinsic characteristics of physically
distributed systems. The field then emerged as a specialized research area dis-
tinct from networking, operating systems, and parallel computing. Distributed
computing arises when one has to solve a problem in terms of distributed enti-
ties, usually called processors, nodes, agents, sensors, peers, actors, processes,
etc., such that each entity has only a partial knowledge of the many parame-
ters involved in the problem that has to be solved. While parallel computing
and real-time computing can be characterized respectively by the terms effi-
ciency and on time computing, distributed computing can be characterized by
the term uncertainty. This uncertainty is created by asynchrony, failures, un-
stable behaviors, non-monotonicity, system dynamism, mobility, connectivity
instability, etc. Mastering one form or another of uncertainty is pervasive in
all distributed computing problems.

The unprecedented growth of the Internet as a massive distributed network
in the last decade created a platform for new distributed applications that in
turn poses new challenges for distributed computing research. One such class
of distributed applications is comprised of computing-intensive problems that
in the past were relegated to the realm of massively parallel systems. The In-
ternet, with its millions of interconnected computers, presents itself as a natu-
ral platform where the availability of massive distributed computing resources
is seen as a compelling alternative to expensive specialized parallel supercom-
puters. Large networks, used as distributed supercomputers, scale much better
than tightly-coupled parallel machines while providing much higher potential
for parallel processing. However, harnessing the computing power contained
within large networks is challenging because, unlike the applications developed
for the controlled computing environments of purposefully-designed parallel
systems, applications destined for distributed systems must exist in the envi-
ronment fraught with uncertainty and adversity.

XVI Foreword

The field of distributed computing research, as many other areas of infor-
matics, has traditionally encompassed both science and engineering dimen-
sions. Roughly speaking, these can be seen as complementary facets: science
is to understand and engineering is to build. With respect to distributed com-
puting, we are often concerned with a science of abstraction, namely, creating
the right model for a problem and devising the appropriate mechanizable
techniques to solve it. This is particularly true in fault-tolerant, dynamic,
large-scale distributed computing where finding models that are realistic while
remaining abstract enough to be tractable, was, is, and still remains a real
challenge.

The monograph by Chryssis Georgiou and Alex Shvartsman presents a
very comprehensive study of massive cooperative computing in distributed
settings in the presence of adversity. They focus on a problem that meaning-
fully abstracts a network supercomputing paradigm, specifically where dis-
tributed computing agents cooperate on performing a large number of inde-
pendent tasks. Such a computation paradigm forms a cornerstone for solutions
to several computation-intensive problems ranging from distributed search to
distributed simulation and multi-agent collaboration. For the purposes of this
study, the authors define Do-All as the problem of multiple processors in
a network cooperatively performing a collection of independent tasks in the
presence of adversity, such as processor failures, asynchrony, and breakdowns
in communication. Achieving efficiency in such cooperation is difficult due to
the dynamic characteristics of the distributed environments in which com-
puting agents operate, including network failures, and processor failures that
can range from the benign crash failures to the failures where faulty com-
ponents may behave arbitrarily and even maliciously. The Do-All problem
and its iterative version is used to identify the trade-offs between efficiency
and fault-tolerance in distributed cooperative computing, and as a target for
algorithm development. The ultimate goal is to develop algorithms that com-
bine efficiency with fault-tolerance to the maximum extent possible, and that
can serve as building blocks for network supercomputing applications and,
more generally, for applications requiring distributed cooperation in the face
of adversity.

During the last two decades, significant research was dedicated to study-
ing the Do-All problem in various models of computation, including message-
passing, partitionable networks, and shared-memory models under specific as-
sumptions about synchrony/asynchrony and failures. This monograph presents
in a coherent and rigorous manner the lower bound results and the most sig-
nificant algorithmic solutions developed for Do-All in the message-passing
model, including partitionable networks. The topics chosen for presentation
include several relevant models of adversity commonly encountered in dis-
tributed computing and a variety of algorithmics illustrating important and
effective techniques for solving the problem of distributed cooperation. The
monograph also includes detailed complexity analysis of algorithms, assessing
their efficiency in terms of work, communication, and time.

Foreword XVII

As the aim of a theory is to codify knowledge in order for it to be trans-
mitted (to researchers, students, engineers, practitioners, etc), the research
results presented in this monograph are among the fundamental bases in dis-
tributed computing theory. When effective distributed cooperation is possible,
we learn why and how it works, and where there exist inherent limitations in
distributed cooperation, we learn what they are and why they exist.

Rennes, France Michel Raynal
September 2007

Authors’ Preface

With the advent of ubiquitous high bandwidth Internet connections, network
supercomputing is increasingly becoming a popular means for harnessing the
computing power of an enormous number of processes around the world. In-
ternet supercomputing comes at a cost substantially lower than acquiring a
supercomputer or building a cluster of powerful machines. Several Internet su-
percomputers are in existence today, for instance, Internet PrimeNet Server,
a project comprised of about 30,000 servers, PCs, and laptop computers, sup-
ported by Entropia.com, Inc., is a distributed, massively parallel mathematics
research Internet supercomputer. PrimeNet Server has sustained throughput
of over 1 teraflop. Another popular Internet supercomputer, the SETI@home
project, also reported its speed to be in teraflops.

In such distributed supercomputing settings it is often the case that a very
large number of independent tasks must be performed by an equally large
number of computers. Given the massive numbers of participating comput-
ers, it is invariably the case that non-trivial subsets of these machines may be
faulty, disconnected, experiencing delays, or simply off-line at any given point
in time. At such scales of distributed computing, failures are no longer an ex-
ception, but the norm. For example, a visitor to the network control center at
Akamai Technologies, a global Internet content and application delivery com-
pany, will immediately notice that the floor-to-ceiling monitor-paneled walls
of the main control room display a surprisingly large number of server icons
in red, indicating server failures. Yet the services delivered by the company’s
25,000 servers worldwide continue unaffected, and there is little alarm among
the engineers monitoring the displays. Dealing with failures is routine busi-
ness, provided the massively distributed system has built-in redundancy and
is able to combine efficiency with fault-tolerance.

In another example, Internet supercomputing, such as SETI@home, in-
volves large sets of independent tasks performed by distributed worker com-
puters. One of the major concerns involved in such computing environments is
the reliability of the results returned by the workers. While most participating
computers may be reliable, a large number of the workers have been known

XX Authors’ Preface

to return incorrect results for various reasons. Workers may return incorrect
results due to unintended failures caused, for example, by over-clocked pro-
cessors, or they may claim to have performed assigned work so as to obtain
incentives, such as getting higher rank on the SETI@home list of contributed
units of work. This problem already exists in the setting where the task allo-
cation is centralized, and assumed to be reliable. The problem becomes sub-
stantially more difficult when the task allocation also has to be implemented
in a highly-distributed fashion to provide the much needed parallelism for
computation speed-up and redundancy for fault tolerance. In such settings it
is extremely important to develop distributed algorithms that can be used to
ensure dependable and efficient execution of the very large numbers of tasks.

In this monograph we abstract the problem of distributed cooperation in
terms of the Do-All problem, defined as the problem of p processors in the
network, cooperatively performing n independent tasks, in the presence of ad-
versity. In solving this problem, we pursue the goal of combining the reliability
potential that comes with replicated processors in distributed computation,
with the speed-up potential of performing the large number of tasks in paral-
lel. The difficulty associated with combining fault-tolerance with efficiency is
that the two have conflicting means: fault-tolerance is achieved by introducing
redundancy, while efficiency is achieved by removing redundancy. We present
several significant advances in algorithms designed to solve the Do-All prob-
lem in distributed message-passing settings under various models of adversity,
such as processor crashes, asynchrony, message delays, network partitions, and
malicious processor behaviors. The efficiency of algorithms for Do-All is most
commonly assessed in terms of work and communication complexity, depend-
ing on the specific model of computation. Work is defined either as the total
number of computational steps taken by all available processors during the
computation or as the total number of task-oriented computational steps taken
by the processors. A computational step taken by a processor is said to be
task-oriented, if during that step the processor performs a Do-All task. We
refer to the first variation of work as total-work and the second variation of
work as task-oriented work. We develop corresponding complexity analyses
that show to what extent efficiency can be combined with fault-tolerance. We
also present lower bounds that capture theoretical limitations on the possibil-
ity of combining fault-tolerance and efficiency. In this work we ultimately aim
to provide robust, i.e., efficient and fault-tolerant, algorithms that will help
bridge the gap between abstract models of dependable network computing
and realistic distributed systems.

Monograph Roadmap

In Chapter 1 we provide motivation, introduce the distributed cooperation
problem Do-All and discuss several variants of the problem in different models
of computation.

Authors’ Preface XXI

In Chapter 2 we formal the basic message-passing model of computation
used in this monograph, and present several models of adversarial settings
studied in subsequent chapters. We define the nature of the tasks – the input
to the distributed cooperation problem. We define the Do-All problem, and its
counterpart for partitionable networks, the Omni-Do problem. We conclude
the chapter with the definitions of main complexity measures used in the
sequel: total-work, task-oriented work, and message complexity.

In Chapter 3 we study the Do-All problem for distributed settings with
processor crashes. We provide upper and lower bounds on work for solving
Do-All under the assumption of perfect knowledge, e.g., when an algorithm is
aided by an omniscient oracle. We put these result to use by developing an ef-
ficient and fault-tolerant algorithm for Do-All where processors communicate
by means of reliable broadcasts.

In Chapter 4 we develop a solution for the Do-All problem for the setting
with processor crashes, where processors communicate using point-to-point
messaging. This algorithm uses a gossip algorithm as a building block, also
presented in the chapter.

In Chapter 5 we give lower bounds on work for Do-All in the model where
processors are subject to crashes and restarts, and we develop and analyze an
algorithm for this model of adversity.

In Chapter 6 we study the complexity of Do-All in the adversarial model
where processors are subject to Byzantine failures, that is, where faulty pro-
cessors may behave arbitrarily and even maliciously. We provide several algo-
rithms and lower bound results under this model of adversity.

In Chapter 7 we study the upper and lower bounds of solving Do-All in
the setting where an adversary introduces processor asynchrony and message
delays. We present several algorithm for this model and provide their delay-
sensitive analysis.

In Chapter 8 we switch our attention to partitionable networks and the
Omni-Do problem. We give an efficient algorithm that solves Omni-Do in the
presence of network fragmentation and merges.

In Chapter 9 we study the Omni-Do problem in the model where the
network can undergo arbitrary reconfigurations. We assess upper and lower
bounds for the problem using competitive analysis.

In Chapter 10 we study Do-All in the setting where the adversary initially
starts processors in isolated singleton groups, and then allows the processor to
rendezvous. We analyze redundant work performed by the isolated processors
prior to rendezvous, and we present several scheduling strategies designed to
minimize redundant task executions.

Finally, in Chapter 11 we survey related problems and models, including
the problem of distributed cooperation in shared-memory models, algorithms
for the model where processors communicate through broadcast channels, and
we show a connection between Do-All and the distributed consensus problem.

The chapters of this monograph can of course be read in the sequential
order from Chapter 1 to Chapter 11. In the diagram that follows we show

XXII Authors’ Preface

alternative suggested paths through the monograph. Chapters 1 and 2 should
be read in sequence before other chapters. It is also recommended that Chap-
ters 8, 9, and 10 are read in sequence. The only remaining dependency is that
Chapter 3 is read before Chapter 5.

Chapter 1

Chapter 2

Chapter 3

Chapter 5

Chapter 4 Chapter 6

Chapter 7 Chapter 8

Chapter 9

Chapter 10Chapter 11

In presenting our message-passing algorithms, we aim to illustrate the most
interesting algorithmic techniques and paradigms, using a clear high-level level
pseudocode that is best suited to represent the nature of each algorithm.

Each chapter concludes with an overview of open problems relevant to the
topics presented in the chapter, and a section containing chapter notes, includ-
ing detailed bibliographic notes, and selected comparisons with and overviews
of related work.

Bibliographic Notes

At the end of each chapter we provide Chapter Notes that contain biblio-
graphic notes and overview related topics and results. The complete bibliog-
raphy follows the last chapter. Here we give additional pointers to conference
proceedings, archival journals, and books covering the various areas related
to distributed computing and fault-tolerant algorithms. Most results in this
monograph appeared as articles in journals or conference proceedings (see bib-
liography), additionally the main results in Chapters 3, 4, 6, 8, and 9 appear
in the PhD dissertation of the first author [43].

Authors’ Preface XXIII

Work on fault-tolerant distributed computation related to the content of
this monograph appear in the proceedings of conferences, in journals, and
in books. A reader interested in learning more about this ongoing research
as well as research beyond the scope of this volume will be well served by
consulting recent publication on such topics from the venues we list below.

The following conferences are examples of the most relevant fora for results
related to topics in this monograph: ACM symposium on Principles of Dis-
tributed Computing (PODC), ACM symposium on Parallel Algorithms and
Architectures (SPAA), ACM symposium on Theory of Computing (STOC),
ACM-SIAM symposium on Discrete Algorithms (SODA), IEEE symposium
on Foundations of Computer Science (FOCS), IEEE sponsored conference
on Distributed Computing Systems (ICDCS), EATCS sponsored symposium
on Distributed Computing (DISC), the conference on the Principles on Dis-
tributed Systems (OPODIS) and the colloquium on Structural Information
and Communication Complexity (SIROCCO). The most relevant journals in-
clude: Springer Distributed Computing, SIAM Journal on Computing, The-
oretical Computer Science, Information and Computation, Information Pro-
cessing Letters, Parallel Processing Letters, Journal of the ACM, Journal of
Algorithms, Journal of Discrete Algorithms, and Journal of Parallel and Dis-
tributed Computing.

The 1997 book by Kanellakis and Shvartsman [67] presents research results
for fault-tolerant cooperative computing in the parallel model of computation.
In particular, it studies the Do-All problem in the shared-memory model,
where it is referred to as the Write-All problem. The current monograph
deals with the message-passing models of computation and considers broader
adversarial settings inherent to these distributed models. The two monographs
follow similar presentation philosophies and it is reasonable to consider them
as complementary volumes. The current volume includes in Chapter 11 several
recent results on the Write-All problem that appeared since the publication
of the first monograph [67].

The book by Lynch [79] provides a wealth of information on distributed
computing issues, such as computational models, algorithms, fault-tolerance,
lower bounds and impossibility results. This include the consensus problem,
which is related to Do-All, and we discuss this relation in Chapter 11. Addi-
tionally, information on the Input/Output Automata used in our Chapter 8
can be found there. The book by Attiya and Welch [6] is another excellent
source of information on distributed computing issues, including cooperation.
The book of Guerraoui and Rodrigues [52] presents numerous important ab-
stractions for reliable distributed computing and includes detailed examples
of how these abstractions can be implemented and used in practice.

XXIV Authors’ Preface

Acknowledgements

Our research on robust distributed cooperation continues to be inspired by
the earlier work on fault-tolerant parallel computing of the late Paris Christos
Kanellakis (1953-1995). Paris is survived by his parents, General Eleftherios
and Roula Kanellakis, who have enthusiastically encouraged us to continue
his work through the long years following the tragic death of Paris, his wife
Maria-Teresa, and their children Alexandra and Stephanos. We warmly thank
General and Mrs. Kanellakis for their inspiration and support.

The material presented in this monograph includes results obtained by
the authors in collaboration with Bogdan Chlebus, Roberto De Prisco, An-
tonio Fernandez, Dariusz Kowalski, Greg Malewicz and Alexander Russell.
We thank them for the wonderful and fruitful collaborations—without their
contributions this monograph would not exist.

Our work on robust distributed cooperation also benefited from prior col-
laboration with several colleagues, and we gratefully acknowledge the contri-
butions of Jonathan Buss, Shlomi Dolev, Leszek Gasieniec, Dimitrios Michai-
lidis, Prabhakar Ragde, and Roberto Segala.

Special thanks are due to Nancy Lynch for reviewing an earlier version of
this work. Her insight and valuable feedback are greatly appreciated.

In undertaking the research that ultimately resulted in this monograph,
we were motivated by the work of other researchers who have also contributed
to the field of fault-tolerant cooperative computing. We will be remiss without
mentioning the names of Richard Anderson, Richard Cole, Cynthia Dwork,
Zvi Galil, Phillip Gibbons, Joe Halpern, Maurice Herlihy, Zvi Kedem, Andrzej
Lingas, Chip Martel, Keith Marzullo, Alan Mayer, Naomi Nishimura, Krishna
Palem, Arvin Park, Michael Rabin, Arvind Raghunathan, Nir Shavit, Paul
Spirakis, Ramesh Subramonian, Orli Waarts, Heather Woll, Moti Yung, Ofer
Zajicek, and Asaph Zemach.

This work was in part supported by the National Science Foundation
(NSF) Grants 9984778, 9988304, 0121277, 0311368, and by the NSF-NATO
Award 0209588. The work of the first author has also been partially supported
by research funds from the University of Cyprus.

We thank our Springer editor, Susan Lagerstrom-Fife, for her encourage-
ment and support, and Sharon Palleschi, editorial assistant at Springer, for
her valuable assistance during the preparation of this monograph.

Our warmest thanks go to Michel Raynal for writing the foreword of this
monograph; thank you for this honor, Michel.

Finally, we would like to thank our families.
CG: I thank my wife, Agni, for the emotional support she has given me and
the patience she has shown during the endless nights I spent working on this
monograph, while she took care of our angel, 21 months old son Yiorgo. You
both bring joy and meaning to my life and you are my source of strength and
inspiration. Agni, you are the love of my life. Yiorgo, you are my life.

Authors’ Preface XXV

AAS: My wife Sana gave me more affection, care, and happiness, than I could
have dreamed of. She spent many lonely nights being an epitome of patience,
while sustaining herself only by my assurances that I’ll belong to her yet again.
Thank you, my love. I thank my children, Ginger and Ted, for being there for
me when I needed you most. This time around you are grown-ups and I am
proud of you. I thank my step-son Arnold for his encouragement and interest.
I never thought that daily questions from a freshman “Are you done with the
book yet?” would do so much to energize the work of this professor. I am glad
to report: “We are done.”

Nicosia, Cyprus and Storrs, CT, USA Chryssis Georgiou
September 2007 Alexander A. Shvartsman

1

Introduction

THE ability to cooperatively perform a collection of tasks in a distributed
setting is key to solving a broad range of computation problems ranging

from distributed search, such as SETI@home, to distributed simulation, and
multi-agent collaboration. Target distributed platforms for such applications
consist of hundreds or even thousands of processing units, and encompass
multiprocessor machines, clusters of workstations, wide-area networks, and
network supercomputers, all in wide use today. The benefits of solving cooper-
ation problems consisting of large numbers of tasks on multiple processors can
only be realized if one is able to effectively marshal the available computing re-
sources in order to achieve substantial speed-up relative to the time necessary
to solve the problem using a single fast computer or a few of such computers
in a tightly-coupled multiprocessor. In order to achieve high efficiency in using
distributed computing platforms comprised of large numbers of processors it
is necessary to eliminate redundant computation done by the processors. This
is challenging because the availability of distributed computing resources may
fluctuate due to failures and asynchrony of the involved processors, and due
to delays and connectivity failures in the underlying network. Such pertur-
bations in the computing medium may degrade the efficiency of algorithms
designed to solve computational problems on these systems, and even cause
the algorithms to produce incorrect results. Thus a system containing unre-
liable and asynchronous components must dedicate resources both to solving
the computational problem, and to coordinating the fluctuating resources in
the presence of adversity.

Chapter structure.

In Section 1.1 we overview the Do-All computing paradigm and provide exam-
ples of application domains. In Section 1.2 we discuss the Do-All problem in
the context of adversarial settings. In Section 1.3 we discuss the goal of com-
bining fault-tolerance and efficiency in Do-All algorithms and we overview the
complexity measures we use to evaluate the efficiency of algorithmic solutions
and to establish lower bound results.

2 1 Introduction

1.1 Do-All Computing

To study the efficiency of distributed cooperative computing in the presence
of adversity and the trade-offs between efficiency and fault-tolerance, we focus
on the abstract problem of performing a set of tasks in a decentralized setting,
known as the Do-All problem.

Do-All: p processors must cooperatively perform n tasks
in the presence of adversity.

In the Do-All problem we deal with abstract tasks as primitive units of
work performed by the individual processors. The tasks are assumed to be
similar, independent, and idempotent, which means the following in our con-
text.

Similarity: The task executions on any individual processor consume equal
or comparable local resources.

Independence: The completion of any task does not affect any other task,
and any task can be executed concurrently with any other task.

Idempotence: Each task can be executed one or more times to produce the
same final result; in other words, tasks admit at-least-once execution se-
mantics.

We have already mentioned that distributed search and distributed sim-
ulation applications can be naturally abstracted in terms of Do-All. We now
overview several technical areas that give rise to computational problems that
can also be abstracted in terms of the Do-All problem.

• In image processing and computer graphics, a significant amount of data
processing (e.g., operations on large data structures, computing compli-
cated partial and ordinary differential equations) is required, especially
in visualization (achieving graphical visual realism of real world objects).
When the data to be computed can be decomposed into smaller indepen-
dent “chunks”, a usual approach is to load-balance the chunks among the
different processing units of a parallel machine or a cluster of machines.
The data chunks can be abstracted as Do-All tasks and the processing
units can be abstracted as Do-All processors.

• In databases, when querying a large (unsorted) data space, it is often
desirable to use multiple machines to search distinct records or sets of
records in the database in order to decrease the search time.

• In fluid dynamics, researchers study the behavior of fluids in different
settings by running simulations that involve solving numerically compli-
cated differential equations over very large data spaces. Again, when the
data can be decomposed into smaller independent chunks, the chunks are
assigned on different multiprocessing units to achieve faster and reliable
computation.

1.1 Do-All Computing 3

• Airborne radar systems are used to detect and track objects in the pres-
ence of natural and hostile interference. Such radars employ multi-element
antenna arrays and require that large amount of data from each antenna
element is processed in a very short time. Several processing stages in
such settings involve large independent data sets that can be abstracted
in terms of Do-All.

• Another example can be found in Cryptography. In particular, in break-
ing cryptographic schemes. The goal is to search and find a user’s pri-
vate key. A key may be a string of 128 bits, meaning that there are 2128

different strings that a user could choose as his private key. Among the
various techniques available, the most frequently used is exhaustive search
where multiple processing units search simultaneously for the key, each
unit searching different sets of bit permutations. Each set of bit permuta-
tion can be abstracted as a Do-All task and each processing unit can be
abstracted as a Do-All processor.

In general, any problem that involves performing a number of similar inde-
pendent calculations can be abstracted in terms of the Do-All problem.

In the absence of adversity, the problem can be easily solved without any
coordination by load-balancing the n tasks among the p processors (here p ≤ n
is the normal setting where there are at least as many tasks as processors). For
example, if the processors and the tasks are uniquely identified, and the tasks
are initially known to all processors, each processor simply performs dn/pe
tasks, which are assigned based on processor identifiers pid, with padding
used to include “dummy” tasks when p does not divide n. The pseudocode
for such an algorithm is given below.

for each processor pid = 1..p begin

Task[1..n] % Globally known n tasks
for i = 1 to dn/pe do

perform Task[(pid− 1) · dn/pe+ i]
end for

end

In any such algorithm the overall number of tasks performed is pdn/pe =
Θ(n). This is clearly an optimal solution in terms of tasks, since n tasks
must be performed. Given that there is no adversity to interfere with the
computation, we are guaranteed that each task is performed exactly once.
Furthermore, assuming that the processors progress at about the same pace
through the tasks, it takes Θ(n/p) time for the problem to be solved (this is
the number of iterations in the inner loop above).

Even when the tasks are not initially known to all processors, such a
solution can be extended in a way that involves minimal communication and
coordination. For example, if the tasks are initially known to all processors,
then no communication is required to solve Do-All, as shown in the algorithm
above. If the subsets of tasks are initially known only to some processors and

4 1 Introduction

if a single task can be communicated to a processor in a fixed-size message,
then the total number of messages is n + pdn/pe = Θ(n). This can be done
by communicating all tasks to a chosen master process (e.g., based on the
processor ids), which takes n messages. Then the master delivers “chunks” of
tasks of size dn/pe to individual processors in a load-balanced fashion, which
takes pdn/pe messages.

However, when adversity is introduced, developing efficient solutions for
the Do-All problem becomes challenging.

1.2 Do-All and Adversity

Given the scale and complexity of realistic distributed platforms where the
Do-All problem needs to be solved, any algorithm solving Do-All must be able
to deal with adverse conditions inherent in such distributed platforms that are
caused by failures of processors, network disconnections, unpredictable delays,
etc. Adversity may manifest itself in several ways.

• When a processor experiences a benign failure, such as a crash, then some
tasks assigned to the faulty machine may remain unperformed.

• When a processor fails in a malicious way, it can mislead the system into
thinking that the tasks assigned to it have been performed, or it may even
return incorrect results.

• If a processor is able to restart following a failure, it can be completely
unaware of the overall computation progress.

• If processors are subjected unbounded asynchrony, and their relative pro-
cessing speeds become arbitrarily large, the tasks assigned to slow proces-
sors remain undone for a very long time, while the faster processors may
idle.

In all such cases, processors must not only perform their assigned tasks, but
also coordinate their activity with other processors in an attempt to detect
processor failures and to identify remaining tasks that they can perform should
they become idle. In the Do-All computing setting, this is facilitate by means
of communication. However the underlying network can also experience ad-
verse conditions.

• Processors may experience intermittent connectivity, making coordination
difficult or impossible.

• Network may fragment, in which case communication between processors
in different partitions is impossible.

• In general, the network can undergo arbitrary reconfigurations, making it
difficult to share information about the performed tasks.

• Message delays can be unpredictable, causing processors to idle during the
attempts to coordinate their activities.

1.2 Do-All and Adversity 5

All such examples of adversity may cause substantial degradation in the ef-
ficiency of the computation. For example, in Chapter 3 we study the Do-All
problem for distributed settings with processor crashes and we show that any
synchronous message-passing algorithm may need to perform in the worst case
Ω(n logn/ log logn) tasks for p = n, which is a n/ log logn fold degradation
relative to the optimal number of tasks Θ(n).

If the adversity manifests itself in network fragmentations, such as con-
sidered in Chapter 8, and the network is partitioned into g groups (where
g ≤ p), then processors in each group may have to perform all n tasks, the
result being that the overall systems performs Θ(g ·n) tasks, which is a g-fold
degradation relative to the optimal number of tasks Θ(n).

Note that in a partitionable network it may not be sufficient for a processor
to learn that all n tasks have been performed. In particular, it may also be
necessary to learn the results of the computation for each task. In partitionable
settings it may be impossible to obtain the results of the computation if it was
performed in a (currently) disconnected group. Therefore, in these settings,
we require that each processor is performing tasks until it learns the results
of all tasks. We call this specialization of Do-All for partitionable networks
the Omni-Do problem.

Omni-Do: p processors must cooperatively perform n tasks
and each processor must learn the results of all tasks

in the presence of adversity.

Solving the Do-All and Omni-Do problems is always possible for the initial
settings where the tasks to be performed are known to each processor, pro-
vided at least one processor does not fail. Here each processor can obliviously
perform each task locally, without any coordination. This results in Θ(p · n)
tasks being executed, which is quite inefficient and essentially requires only
a sequential algorithm at each processor. Thus the challenge of the Do-All
computing is to develop algorithms for specific models of adversity that can
tolerate adverse conditions, e.g., be fault-tolerant, while achieving efficient
task execution by performing substantial fewer tasks than done by an obliv-
ious solution, e.g., performing o(p · n) tasks. To further assess the efficiency
of algorithms for Do-All, lower bounds need to develop that establish the
inherent costs associated with each adversarial setting.

Do-All algorithms have also been used in developing simulations of failure-
free algorithms on failure-prone processors. This is done by iteratively using a
Do-All algorithm to simulate the steps of ideal virtual processors in adversarial
settings. Thus it is also important to assess the complexity of solving Do-All
when it is used iteratively, especially if it can be shown that the complexity
of r iterations of a particular algorithm is better than the complexity of a
single iteration times r. We abstract the iterative use of Do-All algorithms as
the r-iterative Do-All problem: using p processors, solve r instances of n-task
Do-All with the added restriction that every task of the ith instance must be

6 1 Introduction

completed before any task of the (i + 1)st instance is begun. The r-iterative
Omni-Do problem is defined similarly.

1.3 Solving Do-All: Fault-Tolerance with Efficiency

Solving the Do-All problem in distributed settings is a source of both challenge
and opportunity. It is challenging to develop algorithms that achieve high
efficiency in solving Do-All, while tolerating adversarial conditions. However
the fact that we are solving Do-All using multiple processors provides us
with both the source of parallelism needed to achieve high-performance and
the source of redundancy that is necessary in achieving fault-tolerance. We
elaborate on this below.

Consider a fault-tolerant system with ρ-fold redundancy in processors de-
signed to tolerate up to ρ−1 processor failures. A worthwhile objective for such
system is to achieve ρ-fold increase in performance in the absence of adversity.
When there are indeed ρ − 1 failures, then the system’s performance should
approximate the performance of an efficient computation a uniprocessor.

Similarly, consider a decentralized system consisting of p processors de-
signed to achieve up to p-fold speed-up. Such a system has an inherent redun-
dancy, and there is no reason why we should not expect the system to tolerate
up to p− 1 processor failures with graceful degradation in performance as the
number of faulty processors increases.

(Of course impossibility results for some models and problems may prevent
solutions that tolerate p − 1 failures. In such cases the algorithms should
tolerate the maximum possible number of failures.)

With these observations in mind, our goal in developing algorithmic solu-
tions for the Do-All problem is to combine:

• Fault-tolerance potential that comes with replicated processors, with
• Efficiency (e.g., speed-up) potential of computing with multiple processors.

The benefits of such a combination are of course obvious, yet its feasibility
is far from obvious. In order to achieve this combination, we need to resolve
an inherent conflict present in the means of achieving fault-tolerance and
efficiency:

• Fault-tolerance is achieved by introducing redundancy in the computation
in order to deal with adversity and to reassign resources, whereas

• Efficiency is achieved by removing redundancy from the computation to
fully utilize each processor.

In this monograph we present algorithmic techniques for reconciling this
conflict in the presence of several types of adversity. Formulating suitable
models of cooperative distributed computation and models of adversity goes
hand in hand with the study of algorithms and their efficiency. In the conclu-
sion of Section 1.1 we illustrated a simple solution for the Do-All problem in

1.3 Solving Do-All: Fault-Tolerance with Efficiency 7

the absence of adversity. We reasoned about the efficiency of that solution in
terms of the number of tasks performed by the algorithm and the number of
messages sent by the algorithm. In this monograph we use several different
complexity measures to evaluate the efficiency of the algorithms presented
here, and to establish the corresponding lower bounds that capture inherent
limitations on the efficiency achievable for particular models of computation
and adversity.

We now preview the main complexity measures used in this monograph.

Task-oriented work measures the number of tasks, including multiplicity, per-
formed by p cooperating processors in solving the Do-All or Omni-Do
problem with n tasks. This complexity measure is denoted as W , it is
defined in Chapter 2, and used in the analyses in Chapters 8, 9, and 10.
Task-oriented work measure is useful for establishing lower bounds on the
number of task executions, and is relevant in the settings where the cost
of locally executing a task dominates any local computation spent on co-
ordination, bookkeeping, and waiting, or where the local resources can be
assigned to other (not necessarily related) activities.

Total-work measures the total number of local computation steps, e.g., ma-
chine instructions, executed by p processors during the computation, in
particular in performing n tasks. This includes all local steps, whether
spent performing tasks, doing local bookkeeping, waiting, and idling. This
complexity measure generalizes the notion of time complexity of sequen-
tial computation. This complexity measure is denoted as S, it is defined
in Chapter 2, and used in the analyses in Chapters 3 through 7. Note that
total-work S is always an upper bound for task-oriented work W , because
it includes all step dedicated by the processors to performing the tasks,
and so we have W = O(S).

Message complexity measures the total number of messages sent during a
computation. When processors communicate using multicasts, say to m
recipients, this is accounted for as sending m distinct point-to-point mes-
sages. This complexity measure is denoted asM , it is defined in Chapter 2,
and used in the analyses in Chapters 3 through 8.

Work-competitiveness establishes a bound α on the multiplicative overhead of
task-oriented workWD of a specific algorithm D relative the task-oriented
work WOPT of the optimal algorithm OPT in the presence of particular
adversity. This measure is defined and used formally in Chapter 9. Infor-
mally, algorithm D is α-competitive if we have WD ≤ α ·WOPT , where
each of the three involved quantities may depend on the specific adver-
sarial behavior.

Waste measures the number of tasks executed redundantly by a set of k
isolated processors up to the instant when these processors rendezvous.
This notion of k-wise waste is defined and used in Chapter 10.

Time (local or global) is used to measure the number of steps (e.g., machine
instructions) executed locally by a processor in performing activities of in-

8 1 Introduction

terest, or, for synchronous models, to measure the time in the conventional
sense, for example in establishing the number of synchronous algorithm
iterations. We use time in several analyses. We also define it formally for
the analysis in Chapter 4. Note that time does not play a central role in
the analysis of work-performing algorithms in the presence of adversity as
it does in the analysis of sequential algorithms. This is because time, in the
worst case, can either be the task-oriented work W or the total-work S, if
adversity results in at most one processor executing a local computation
step for each global time step.

Developing upper and lower bounds for specific models of computation
and adversity is the main theme of this monograph. The development fo-
cuses on the work-oriented complexity measures, that is, task-oriented work,
total-work, work-competitiveness, and waste. As we illustrated earlier, the im-
mediate lower bound on work for Do-All is Ω(n), since each task has to be
performed at least once. A trivial solution to Do-All is obtained by having
each processor obliviously perform each of the n tasks. This solution has work
Θ(n · p) and requires no communication. Thus an important overall goal is to
develop Do-All algorithm that are work-efficient, which means they achieve
work substantially better than the oblivious algorithm, to the maximum ex-
tent allowed by the nature of adversity. Optimizing message complexity is of
secondary concern. In the rest of this monograph, we present the models of
computation and adversity, algorithmic solutions for distributed cooperation
problems designed to work in each model and their analysis, and the cor-
responding lower bounds. In presenting our message-passing algorithms, our
goal is to illustrate the most interesting algorithmic techniques and paradigms,
using a clear high-level level pseudocode that is best suited to represent the
nature of each algorithm. Most results we present in this volume are accompa-
nied by detailed proofs that, in addition to proving the result, provide insight
into behaviors of algorithms and adversaries, and serve as illustrations of the
relevant proof techniques.

Each chapter includes detailed bibliographic notes, and selected compar-
isons with and overviews of related work. In chapters following the main def-
initions in Chapter 2, we also include an overview of selected open problems
relevant to the topics presented in each chapter.

1.4 Chapter Notes

The Do-All problem has been studied in a variety of settings, e.g., in shared-
memory models [67, 88, 51, 5], in message-passing models [30, 25, 20, 38] and
in partitionable networks [29, 83]. Dwork, Halpern, and Waarts [30] defined
and studied the Do-All problem for message-passing models; they also defined
the task-oriented work measure. Dolev, Segala, and Shvartsman [29] studied
the problem of distributed cooperation in the setting of processor groups in

1.4 Chapter Notes 9

partitionable networks, and they introduced the Omni-Do problem for that
context. In shared-memory models, the Do-All problem is known as the Write-
All problem: given a zero-valued array of n elements and p processors, write
value 1 into each array location. This problem was introduced by Kanellakis
and Shvartsman [66], who also defined the total-work measure (available pro-
cessor steps).

Do-All algorithms have been used in developing simulations of failure-free
algorithms on failure-prone processors, e.g., as in the works of Kedem, Palem,
and Spirakis [70], Martel, Park, and Subramonian [87], and Kanellakis and
Shvartsman [67, 104]. This is done by iteratively using a Do-All algorithm to
simulate the steps of failure-free processors on failure-prone processors.

Examples of cooperation problems that can be abstracted in terms of
the Do-All computing include distributed search, e.g., SETI@home [73], dis-
tributed simulation, e.g., [24], multi-agent collaboration, e.g., [2, 107], image
processing [109], computer graphics [37], visualization [91, 101, 50], databases
querying [1, 31], fluid dynamics simulations [49, 63], airborne radar applica-
tions [94], and cryptography [106].

2

Distributed Cooperation Problems:

Models and Definitions

FORMULATING suitable models of cooperative computation goes hand
in hand with the study of algorithms and their efficiency. In this chapter

we formalize the modeling framework used in the sequel to study problems
of cooperative task execution in distributed environments under several ad-
versarial settings. The framework includes abstract models of computation,
definitions of adversity, the problem of distributed cooperation, viz. the Do-
All problem, and the complexity measures used to evaluate the efficiency of
algorithms solving the Do-All problems in various settings and to establish
the corresponding lower bounds.

2.1 Model of Computation

2.1.1 Distributed Setting

We consider a distributed system consisting of p processors; each processor
has a unique identifier (pid) from the set P = [p] = {1, 2, . . . , p}. We assume
that p is known to all processors.

Each processor’s activity is governed by a local clock. When the processor
clocks are globally synchronized, the distributed setting is synchronous and
we say that the processors are synchronous. In this case, processor activities
are structured in terms of synchronous steps (constant units of time). When
the processors take local steps at arbitrary relative speeds, the distributed
setting is asynchronous and we say that the processors are asynchronous.

2.1.2 Communication

We consider the message-passing model where processors communicate by
sending messages. We assume that messages are neither lost nor corrupted in
transit. We consider two settings regarding the connectivity of the underlying
communication network:

12 2 Distributed Cooperation Problems: Models and Definitions

• Fully Connected Network: any processor in P can send messages to any
other processor in P .

• Partitionable Network: the processors may be partitioned into groups of
communicating processors. We assume that communication within groups
is reliable but communication across groups is not possible, as there are
no communication paths linking processors in different groups (messages
sent by a processor from one group to a processor to another group are
simply not delivered). Partitions may change over time.

In synchronous message-passing systems we assume that message delivery
has fixed latency known to the processors. Specifically, within a step, a pro-
cessor can send messages to other processors and receive messages from other
processors sent to it in the previous step, if any.

In asynchronous systems, we assume no bounds on the message delivery
latency. To establish specific upper and lower complexity bounds for such
systems we may assume upper bounds on message latency; this is done for
analysis purposes only and the processors are never aware of these latency
bounds, and operate under the assumption of unbounded latency.

2.2 Models of Adversity

We now proceed with the definitions of the adversarial settings that abstract
realistic situations occurring in distributed systems where the Do-All prob-
lem needs to be solved. The adversity manifests itself in terms of processor
and network failures. Additionally, for asynchronous systems the adversity
may manifest itself through unpredictable message delays. We first present
the failure types and then introduce the notion of an adversary and of an
adversarial model.

2.2.1 Processor Failure Types

We consider the following processor failure types.

Processor stop-failures/crashes. We consider crash failures, where a pro-
cessor may crash at any moment during the computation and once crashed it
does not restart, and does not perform any further actions. Messages are not
delivered to crashed processors. We also define the notion of a fail-stop failure
to be a crash failure (whether in synchronous or asynchronous settings) that
can be detected. In synchronous settings, crash failures can be detected (e.g.,
by timeouts) and hence in such settings the two terms have the same meaning.

Processor crashes and restarts. Here, following a crash, a processor may
restart at any point in the computation. For synchronous settings a crashed
processor can restart at most once during a single local step. For example, a

2.2 Models of Adversity 13

processor can restart once in response to a local clock tick. Upon a crash, the
processor loses its state, and upon a restart, its state is reset to some known
initial state. Thus the processor can be made aware of the restart.

Byzantine processor failures. A faulty processor can behave arbitrarily.
In particular, following a Byzantine failure, the processor can do nothing,
do something not directed by its protocol, send arbitrary messages, or be-
have normally. A faulty processor controls only its own messages and its own
actions, and it cannot control other processors’ messages and actions. Specif-
ically, a faulty processor cannot corrupt another processor’s state, modify or
replace another processor’s messages, and cannot impersonate other proces-
sors (i.e., create and send messages that appear to have been sent by another
processor). A faulty processor cannot “undo” a part of the computation (e.g.,
a computation task) that was previously successfully executed.

2.2.2 Network Partitions

In some settings we consider networks that are subject to partitions. Parti-
tionable networks may undergo dynamic changes in the network topology that
partition the processors into non-overlapping groups, where communication is
only possible for processors within a single group. A crashed processor is mod-
eled by the creation of a singleton group that remains forever disconnected
from the rest of the network.

When a network reconfigures from one partition to another, we refer to
this as a regrouping. We also consider special types of regroupings: when a
single group partitions into a collection of new disjoint groups, we call this a
fragmentation. When a collection of groups merge and form a new group that
contains all the processors from the collection of groups, we call this a merge.
We also use the term rendezvous to denote a merge that involves only the
singleton groups, i.e., groups consisting of single processors. Note that some
regroupings are neither fragmentations nor merges, for example, if due to a
regrouping event two initial groups are reconfigured into two different groups,
this cannot be modeled as a single fragmentation or a merge event.

2.2.3 Adversaries and their Behavior

In order to model an adversarial setting we define the concept of the adversary
that allows us to abstract and formalize the interference with a computation
that is not under the control of the computation. An event caused by the
adversary, such as a processor crash and group fragmentation, interferes with
the computation and typically degrades the efficiency of the computation. The
concept of the adversary is used in the analysis of algorithms and for obtain-
ing lower bound results for specific problems. An adversary interferes with a
computation based on its knowledge about the computation. We consider two
adversary types:

14 2 Distributed Cooperation Problems: Models and Definitions

(a) omniscient or on-line: the adversary has complete knowledge of the com-
putation that it is affecting, and it makes instant dynamic decisions on
how to affect the computation.

(b) oblivious or off-line: the adversary determines the sequence of events it will
cause before the start of the computation and without having any a priori
knowledge on how the computation will be affected under this sequence.

The distinction between the two adversary types is only significant for
randomized algorithms, where the knowledge of the random “coin tosses” may
be used by the adversary to its advantage. For deterministic algorithms the
two adversary types are the same, since the adversary knows exactly, before
the beginning of the computation, how a specific deterministic algorithm is
affected by a specific event caused by the adversary.

Consider an adversary A and an algorithm A that solves a specific problem
in the presence of adversary A. We denote by E(A,A) the set of all executions
of algorithm A for adversary A. Let ξ be an execution in E(A,A). We denote
by ξ|A the set (or the sequence) of events caused by A in ξ and we refer to it
as the adversarial pattern of ξ.

We represent an adversarial model as adversary A consisting of the set of
all possible adversarial patterns (for all algorithms). This allows us to consider
inclusion relations among adversaries. If adversary A1 is defined as a certain
set of patterns, and adversary A2 is defined as a larger set of patterns, then
it naturally follows that A1 ⊂ A2, capturing the fact that A2 is a stronger
adversary.

For the adversarial pattern ξ|A of an execution ξ, we denote by ‖ξ|A‖
the weight of ξ|A. The value of ‖ξ|A‖ depends on the specific adversary A
considered, and we will define weights of adversarial patterns where needed
in the sequel. For example, if adversary A causes processor crashes, then we
define ‖ξ|A‖ to be the number of crashes caused by the adversary; if the
adversary causes fragmentations, then ‖ξ|A‖ is the number of new groups
created due to the fragmentations. Unless otherwise stated, the processors
know neither ξ|A nor any bounds on ‖ξ|A‖.

Following the above general definition of adversaries, specific adversaries
are presented in the chapters where they are used.

2.3 Tasks and Do-All Computing

We define a task to be any computation that can be performed by a single
processor in constant time. The tasks are assumed to be similar, indepen-
dent, and idempotent. By the similarity of the tasks we mean that the task
executions consume equal or comparable resources. By the independence of
the tasks we mean that the tasks can be executed in any order, that is, the
execution of a task is independent of the execution of any of the other tasks.
By the idempotence of the tasks we mean that the tasks admit at-least-once

2.3 Tasks and Do-All Computing 15

execution semantics. We define the result of a task to be the outcome of the
task execution.

For a problem requiring that some n tasks, comprising the input, are
performed, we assume that each task has a unique identifier (tid) from the
set T = [n] = {1, 2, . . . , n}, and that n is fixed and known to all processors.

We also consider sequences of task-sets T1, T2, . . . , Tr, where each Ti, for
1 ≤ i ≤ r, is a set of n tasks and the execution of any task in Ti must be delayed
until all tasks in Ti−1 are performed. This models the situation where the
execution of the tasks in Ti depends on the execution of the tasks in Ti−1, for
2 ≤ i ≤ r. Within each Ti the tasks are independent, similar, and idempotent.
We also assume that each task in Ti, 1 ≤ i ≤ r, has a unique tid. For example,
each task in Ti may have a tid from the set {(i−1)n+1, (i−1)n+2, . . . , in}.

We always assume that the tasks are known to the processors.

2.3.1 The Do-All Problem

We now define the abstract problem of having p processors cooperatively
perform n tasks in the presence of adversity.

Definition 2.1. Do-All: Given a set T of n tasks, perform all tasks using p
processors, under adversary A.

We let Do-AllA(n, p, f) stand for the Do-All problem for n tasks, p pro-
cessors and adversary A constrained to adversarial patterns of weight less or
equal to f (the definition of weight is specific to the adversary). We consider
Do-AllA(n, p, f) to be solved when all n tasks are completed and at least one
operational processor knows this.

Algorithms for the Do-All problem, among other applications, have been
used in developing simulations of failure-free algorithms on failure prone pro-
cessors. done by iteratively using a Do-All algorithm to simulate the steps of
the n failure-free “virtual” processors on p failure-prone “physical” processors
(here the usual case is that the number of physical processors does not exceed
the number of virtual processors, i.e., p ≤ n). We abstract this idea as the
iterative Do-All problem:

Definition 2.2. r-Iterative Do-All: Given any sequence T1, . . . , Tr of r sets of
n tasks, perform all r · n tasks using p processors by doing one set at a time,
under adversary A.

We let r-Do-AllA(n, p, f) stand for the iterative Do-All problem for r sets
of n tasks, p processors, and adversary A constrained to adversarial patterns
of weight less or equal to f . We consider r-Do-AllA(n, p, f) to be solved, when
all r ·n tasks are completed and at least one operational processor knows this.

Consider an algorithm A solving the Do-AllA(n, p, f) problem with cost
O(x). It is trivial to observe that algorithm A can solve the r-Do-AllA(n, p, f)
problem with cost r · O(x). We show in the next chapter that at least for

16 2 Distributed Cooperation Problems: Models and Definitions

some models of computation and adversity, e.g., for synchrony and processor
crashes, we can obtain better results. This is done by understanding how the
adversarial behavior is spread over several iterations of Do-All. (It is also
an open question to understand whether complexity improvements can be
obtained in other models.)

2.3.2 The Omni-Do Problem

When solving Do-All in partitionable networks, our goal is to utilize the re-
sources of every group of the system during the entire computation. This is
so for two reasons: (1) A client, at any point of the computation, may request
for a result of a task from a certain group, for example, this might be the only
group that the client can communicate with. Hence, we would like all groups
to be able to provide the results of all tasks. (2) If different groups happen
to perform different tasks and a regrouping merges these two groups, then
more computational progress can be achieved with less computation waste.
Hence, we would like processors in all groups to be computing in anticipation
of regroupings.

Therefore, in partitionable networks, we require that each processor is
performing tasks until it learns the results of all tasks. We call this variation
of the Do-All problem Omni-Do.

Definition 2.3. Omni-Do: Given a set T of n tasks and p message-passing
processors, each processor must learn the results of all tasks, under adver-
sary A.

We let Omni-DoA(n, p, f) stand for the Omni-Do problem for n tasks,
p processors, and adversary A constrained to adversarial patterns of weight
less or equal to f (the definition of the weight of a pattern depends on the
adversary). We consider Omni-DoA(n, p, f) to be solved when all operational
processors know the results of all n tasks.

Finally, unless otherwise stated, we assume that the number of processors p
is no more than the number of tasks n (p ≤ n). Studying Do-All or Omni-
Do in the case of p > n is not as interesting. This is so because the most
interesting challenge is to consider the settings where maximum parallelism
can be extracted for the case when each processor can initially have at least one
distinct task to work on. Additionally the algorithms solving our cooperation
problems can be used for simulation where a fault-free computation for n
processors is simulated in a fault-prone model consisting of p processors; here
the most interesting case is when the number of simulating processors does
not exceed the number of simulated processors.

2.4 Measures of Efficiency 17

2.4 Measures of Efficiency

We now define the complexity measures that are used to evaluate the efficiency
of algorithms and to establish lower bounds for cooperative computation.

Work complexity. We first define the notion of work. We are considering
two definitions. The first, called total-work, accounts for all computation steps
performed by the available processors; this is also called the available proces-
sor steps measure. The second, called task-oriented work, accounts only for
the tasks performed by the available processors, discounting all other compu-
tation steps performed by the available processors. We note that the second
definition is meaningful only for task-performing algorithms, while the total-
work measure is more general. We also make an immediate observation that
total-work is never less than the task-oriented work (this is elaborated on
following the formal definitions of work).

We assume that it takes a unit of time for a processor to perform a unit of
work, according to its local clock. Let A be an algorithm that solves a problem
of size n with p processors under adversary A. For an execution ξ ∈ E(A,A)
denote by Si(ξ) the number of processors completing a unit of work at time
i of the execution, according to some external global clock (not available to
the processors).

Definition 2.4 (total-work or available processor steps). Let A be an
algorithm that solves a problem of size n with p processors under adversary
A. For execution ξ ∈ E(A,A), where ‖ξ|A‖ ≤ f , let time τ(ξ) be the time
(according to the external clock) by which A solves the problem. Then total-
work complexity S of algorithm A is:

S = SA(n, p, f) = max
ξ∈E(A,A), ‖ξ|A‖≤f

τ(ξ)
∑

i=1

Si(ξ)

.

Note that in Definition 2.4 the idling processors consume a unit of work
per idling step even though they do not execute tasks. In the cases where we
deal with randomized algorithms, we assess expected total-work ESA(n, p, f)

computed as the expectation of the sum
∑τ(ξ)

i=1 Si(ξ) from Definition 2.4.
Let A be a task-performing algorithm that solves a problem with n tasks

and p processors under adversary A. For an execution ξ ∈ E(A,A) denote by
Wi(ξ) the number of processors completing a task at time i of the execution,
according to some external global clock (not available to the processors).

Definition 2.5 (task-oriented work). Let A be a task-performing algorithm
that solves a problem with n tasks and p processors under adversary A. For
execution ξ ∈ E(A,A), where ‖ξ|A‖ ≤ f , let time τ(ξ) be the time (according
to the external clock) by which A solves the problem. Then task-oriented work
complexity W of algorithm A is:

18 2 Distributed Cooperation Problems: Models and Definitions

W = WA(n, p, f) = max
ξ∈E(A,A), ‖ξ|A‖≤f

τ(ξ)
∑

i=1

Wi(ξ)

.

Note that in Definition 2.5 the idling processors are not charged for work
(since we count only task-oriented units of work). When dealing with random-
ized algorithms, expected expected task-oriented work EWA(n, p, f) is assessed

as the expectation of the sum
∑τ(ξ)
i=1 Wi(ξ) from Definition 2.5.

Observe from the above definitions that the total-work measure is more
“conservative” than the task-oriented work measure. Given an algorithm A
that solves Do-All under adversaryA thenWA(n, p, f) = O(SA(n, p, f)), since
SA(n, p, f) counts the idle/wait steps, which are not included in WA(n, p, f).
This if an upper bound is established for total-work, it is automatically the
upper bound for task-oriented work. The equality WA(n, p, f) = SA(n, p, f)
can be achieved, for example, by algorithms that perform at least one task
during any fixed time period. It also follows that SA(n, p, f) = Ω(WA(n, p, f)).
This if a lower bound is established for task-oriented work, it is automatically
the lower bound for total-work.

Also note that Definitions 2.4 and 2.5 do not depend on the specifics of the
target model of computation, e.g., whether it is message-passing or shared-
memory. When presenting algorithmic solutions or lower/upper bounds, we
explicitly state which work measure is assumed.

We also use two additional work-oriented complexity measures in latter
chapters. In Chapter 9 we define the notion of work-competitiveness that re-
lates the work of a particular algorithm to that of an optimal algorithm. In
Chapter 10 we define the notion of waste that measures the number of tasks
executed redundantly by a set of isolated processors up to the instant when
these processors rendezvous.

Message complexity. The efficiency of message-passing algorithms is ad-
ditionally characterized in terms of their message complexity. Let A be an
algorithm that solves a problem of size n with p processors under adversary
A. For an execution ξ ∈ E(A,A) denote by Mi(ξ) the number of point-to-
point messages sent at time i of the execution, according to some external
global clock.

Definition 2.6 (message complexity). Let A be an algorithm that solves
a problem of size n with p processors under adversary A. For execution
ξ ∈ E(A,A), where ‖ξ|A‖ ≤ f , let time τ(ξ) be the time (according to the
external clock) by which A solves the problem. Then message complexity M
of algorithm A is:

M = MA(n, p, f) = max
ξ∈E(A,A), ‖ξ|A‖≤f

τ(ξ)
∑

i=1

Mi(ξ)

.

2.5 Chapter Notes 19

Note that when processors communicate using broadcasts or multicasts,
each broadcast / multicast is counted as the number of point-to-point mes-
sages from the sender to each receiver. In the cases where we deal with
randomized algorithms, we assess expected message complexity EMA(n, p, f)

computed as the expectation of the sum
∑τ(ξ)

i=1 Mi(ξ) from Definition 2.6.

Measuring time. In the analysis of work-performing algorithms in the pres-
ence of adversity the time complexity does not play a central role as compared
to the role it plays in the analysis of sequential algorithms. This is because, in
the worst case, time can either be the task-oriented work W or the total-work
S, if adversity results in at most one processor executing a local computation
step for each global time step. We use the conventional notion of time (local or
global) to measure the number of steps (e.g., machine instructions) executed
locally by a processor in performing activities of interest, or, for synchronous
models, to measure the time in the conventional sense, for example in estab-
lishing the number of synchronous algorithm iterations. We use time in several
analyses. We also define it formally for the analysis in Chapter 4.

2.5 Chapter Notes

The distributed cooperation problem that we call Do-All here was first stud-
ied in message-passing systems by Dwork, Halpern, and Waarts in [30], who
defined the task-oriented work measure and who provided several algorithms
solving the problem. De Prisco, Mayer, and Yung were first to study the Do-All
problem under the total-work complexity measure. The distributed coopera-
tion problem was first called “Do-All” by Chlebus, De Prisco, and Shvarts-
man [15], who studied it for the model with processor crashes and restarts.
The Omni-Do problem was first studied by Dolev, Segala and Shvartsman
in [29]. The problem was subsequently called “Omni-Do” by Georgiou and
Shvartsman in [48], who studied it in the settings with network fragmentation
and merges.

The problem of cooperative computing in the presence of adversity in
shared-memory settings was first considered by Kanellakis and Shvarts-
man [66]. They referred to the problem as “Write-All”. Algorithms solving
the Write-All problem have been used in developing simulations of failure-
free algorithms on failure-prone processors, e.g., [70, 104, 87, 67]. This is done
by iteratively using a Write-All algorithm to simulate the steps of failure-free
processors on failure-prone processors. Motivated by such algorithm simula-
tions, Georgiou, Russell and Shvartsman [45] formulated the iterative Do-All
problem and studied it in message-passing and shared-memory models.

Definition 2.4 of total-work, denoted by S, is based on the available pro-
cessor steps measure, introduced by Kanellakis and Shvartsman in [66]. Def-
inition 2.5 of task-oriented work, denoted by W , is based on the number of
tasks performed measure, introduced by Dwork, Halpern and Waarts in [30].

20 2 Distributed Cooperation Problems: Models and Definitions

The definition of the fail-stop model (with or without restarts) is taken
from the work of Schlichting and Schneider [102]. Byzantine processor fail-
ures were introduced by Lamport, Shostak and Pease in [78]. Group-oriented
algorithms for partitionable networks are typically studied in conjunction
with Group Communication Services [97]. The adversarial classifications
oblivious/off-line and omniscient/on-line are taken from [12].

3

Synchronous Do-All with Crashes: Using

Perfect Knowledge and Reliable Multicast

WE start the study of the Do-All problem by considering a synchronous
distributed environment and under the adversary that can cause pro-

cessor crashes, the more benign type of adversity. In order to understand
better the inherent limitations and difficulties of solving the Do-All and iter-
ative Do-All problems in the presence of crashes, we first abstract away any
communication issues by assuming an oracle that provides load-balancing and
computational progress information to the processors. Such and oracle pro-
vides, what we call, perfect knowledge to the algorithms solving the prob-
lem. We present matching upper and lower bounds on total-work for models
with perfect knowledge. These bounds are failure-sensitive, which means we
give bounds that carefully incorporate the (maximum) number of processor
crashes. We then present an algorithm that efficiently solves the Do-All and
iterative Do-All problems assuming a message-passing environment where re-
liable multicast is available. If a processor crashes after starting a multicast
of a message, then this message is either received by all non-faulty targeted
processors or by none. In this setting the availability of reliable multicast
effectively approximates the availability of perfect knowledge, making it pos-
sible to use the complexity results for perfect knowledge in the analysis of the
algorithm.

Chapter structure.

In Section 3.1 we define the adversary considered in this chapter, called AC . In
Section 3.2 the upper and lower bound on total-work for Do-All and iterative
Do-All are presented. In Section 3.3 we present an algorithm, called algorithm
AN, that solves Do-All using reliable multicast. We give its correctness and its
complexity analysis. Also a non-trivial result for iterative Do-All for message-
passing systems is given. We discuss open problems in Section 3.4.

22 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

3.1 Adversarial Model

We denote by AC the omniscient (on-line) adversary that can cause processor
crashes, as defined in Section 2.2.1. Once a processor is crashed, it does not
restart. Consider an algorithm A that performs a computation in the presence
of adversary AC . Let ξ be an execution in E(A,AC). We represent the adver-
sarial pattern ξ|AC as a set of triples (crash, pid, t), where crash is the event
caused by the adversary, pid is the identifier of the processor that crashes,
and t is the time of the execution (according to some external global clock not
available to the processors) when the adversary crashes processor pid. Any
adversarial pattern contains at most one triple (crash, pid, t) for any pid, viz.,
if processor pid crashes, the time t when it crashes is uniquely defined.

For an adversarial pattern ξ|AC we define fc(ξ|AC) = ‖ξ|AC‖ to be the
number of processors that crash. It is only interesting to consider the exe-
cutions ξ where fc(ξ|AC) < p, that is the executions in which at least one
processor remains operational.

3.2 Lower and Upper Bounds for Abstract Models

In this section we consider computations where the processors, instead of
communicating with each other, communicate with some deterministic omni-
scient oracle, call it oracle O, to obtain information regarding the status of
the computation.

The assumption of perfect knowledge (or the oracle assumption) abstracts
away any concerns about communication that normally dominate specific
message-passing and shared-memory models. This allows for the most gen-
eral results to be established and it enables us to use these results in the
context of specific models by understanding how the information provided by
an oracle is simulated in specific algorithms. Also, any lower bound devel-
oped under the assumption of perfect knowledge, applies equally well to other
models where means of communication between processors are specified, for
example, message-passing and shared-memory models.

3.2.1 Modeling Knowledge

Knowledge is modeled via Oracle O that provides termination and load-
balancing information to the processors. In particular, the oracle informs the
processors whether the computation is completed and if not, what task to
perform next. We assume that the oracle performs perfect load-balancing,
that is, the live processors are only allocated to unperformed tasks, and all
such tasks are allocated a balanced number of live processors. We also assume
that a processor can obtain load-balancing and termination information from
the oracle in O(1) time and that it can consult the oracle only once per local
clock-tick.

3.2 Lower and Upper Bounds for Abstract Models 23

Note that from the above assumptions all processor steps are in fact task-
oriented steps, and hence in this setting the work and task-oriented work
complexities measures are equivalent metrics for evaluating Do-All algorithms.
Furthermore, we let Do-AllOAC

(n, p, f) and r-Do-AllOAC
(n, p, f) stand for the

Do-AllAC (n, p, f) and r-Do-AllAC (n, p, f) problems, respectively, when the
processors are assisted by oracle O.

We present matching upper and lower bound results on work for these
problems.

3.2.2 Lower Bounds

We begin by developing lower bounds for Do-AllOAC
(n, p, f) and r-Do-

AllOAC
(n, p, f). Note that the results in this section hold also for the

Do-AllAC (n, p, f) and r-Do-AllAC (n, p, f) problems (without the oracle), as
well as for Do-AllA(n, p, f) and r-Do-AllA(n, p, f), where AC ⊆ A. (e.g.,
processor crashes and restarts).

The following mathematical facts are used in the proofs.

Fact 3.1 If a1, a2, . . . , am (m > 1) is a sorted list of nonnegative integers,
then for all j (1 ≤ j < m) we have

(
1 − j

m

)∑m
i=1 ai ≤

∑m
i=j+1 ai.

Fact 3.2 Given n ∈ N, κ ∈ R, such that n ·κ > 1, κ ≤ 1
2 , and σ ∈ N such that

σ< log n
log(κ−1) −1, then the following inequality holds: b. . . bbn · κc · κc . . . · κc

︸ ︷︷ ︸

σ times

>0.

Proof. To show the result it suffices to show that, after dropping one floor
and strengthening the inequality: (b. . . bbn · κc · κc . . . · κc

︸ ︷︷ ︸

σ−1 times

· κ)−1 > 0, or that

b. . . bbn · κc · κc . . . · κc
︸ ︷︷ ︸

σ−1 times

> 1
κ .

Applying this transformation for σ − 1 more steps, we see that it suf-
fices to show that n > 1

κσ + 1
κσ−1 + . . .+ 1

κ , or, using geometric progression

summation, that n > (κ−1)σ+1−(κ−1)
(κ−1)−1 .

We observe that (κ−1)σ+1 >
(κ−1)σ+1 − (κ−1)

(κ−1) − 1
for κ ≤ 1

2 , thus it

is enough to show that n > (κ−1)σ+1. After taking logarithms of both
sides of the inequality, logn > (σ + 1) log(κ−1), and so it suffices to have
σ < logn

log(κ−1) − 1. 2

We now define a specific adversarial strategy of adversary AC used to
derive our lower bounds. Let A be an iterative algorithm that solves the Do-
All problem. Let pi be the number of processors remaining at the end of the
ith iteration of an execution of A and let ui denote the number of tasks that

24 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

remain to be done at the end of iteration i. Initially, p0 = p and u0 = n.
The adversarial strategy is defined assuming the same initial number of tasks
and processors, that is, p0 = n0. The strategy of the adversary is defined
for each iteration of the algorithm. Based on a variable κ, defined in the
interval (0, 1/2), the adversary determines which processors will be allowed to
work and which will be stopped in a given iteration. We call this adversarial
strategy A.

Adversarial strategy A:

Iteration 1: The adversary chooses u1 = bκu0c tasks with the least number
of processors assigned to them. This can be done since the adversary is
omniscient; it knows all the actions to be performed by A (as well as any
advice provided by the oracle). The adversary then crashes the processors
assigned to these tasks, if any.

Iteration i: Among ui−1 tasks remaining after the iteration i − 1, the ad-
versary chooses ui = bκui−1c tasks with the least number of processors
assigned to them and crashes these processors.

Termination: The adversary continues for as long as ui > 1. As soon as
ui = 1, the adversary allows all remaining processors to perform the single
remaining task, and A terminates.

We now study the adversarial strategy A and derive lower bound results.

Remark 3.3. Relationship between n and κ: If κ is chosen so that κ · n ≤ 1
then by the adversarial strategy A, an algorithm solving Do-All may be able
to solve it in a constant number of iterations (namely two) with work O(p).
This is because u1 = bκu0c ≤ κn ≤ 1. Henceforth we consider κ to be such
that κ · n > 1.

Lemma 3.4. For adversarial strategy A, if at iteration i the number of re-
maining tasks is ui−1 > 1, then

(a) ui = b. . . bbn · κc · κc . . . · κc
︸ ︷︷ ︸

i times

, and

(b) pi ≥ (1 − κ)
i
p0.

Proof. Part (a) is immediate from the definition of A. To express the number
of surviving processors pi for part (b), we use Fact 3.1 with the following
definitions:

Let m = ui−1, and let a1, . . . , am be the quantities of processors assigned
to each task, sorted in ascending order. Let am also include the quantity of
any un-assigned processors, i.e., a1 is the least number of processors assigned
to a task, a2 is the next least quantity of processors, etc. (In other words,

a1 ≤ a2 ≤ . . . ≤ am.) Let j = ui. Thus the adversary stops exactly
∑j

i=1 ai
processors. At the beginning of iteration i, the number of processors pi−1 =
∑m

i=1 ai, therefore, the number of surviving processors pi =
∑m
i=j+1 ai.

3.2 Lower and Upper Bounds for Abstract Models 25

Using Fact 3.1, we have pi ≥ (1 − ui
ui−1

)pi−1, and after substituting for ui =

bκui−1c we have

pi ≥
(

1 − bκui−1c
ui−1

)

pi−1 ≥ (1 − κ) pi−1 ≥ (1 − κ)
i
p0,

as desired. 2

Lemma 3.5. Given any algorithm solving the Do-AllOAC
(p, p, f) problem (p =

n), the adversarial strategy A will cause the algorithm to cycle through at least
log p

log(κ−1) − 1 iterations.

Proof. Let τ be the earliest iteration when the last task is performed. We use
Fact 3.2 with σ the largest integer such that σ < log p/ log(κ−1) − 1. Then
uσ = b. . . bbp · κc · κc . . . · κc

︸ ︷︷ ︸

σ times

> 0, and so τ must be greater than σ because

uτ = 0. Thus, τ ≥ log p

log(κ−1)
− 1 > σ. 2

Lemma 3.6. Given any algorithm A that solves the Do-AllOAC
(p, p, f) problem

(p = n) with f < p, the adversarial strategy A with κ = 1
log p causes work

S = Ω

(

p
log p

log log p

)

.

Proof. We first assume that p > 4 (we aim to establish an asymptotic result,
and this eliminates uninteresting cases). Since κ = 1/ log p, we have that
κ ∈ (0, 1/2) when p > 4. From Lemma 3.4(a) and Lemma 3.5 we see that
A will cause algorithm A to iterate at least τ = (log p/ log log p) − 1 times.
Now observe that the work must be at least pτ · τ , where pτ is the number
of surviving processors after A terminates. From Lemma 3.4(b) we have that
pτ ≥ (1 − κ)τp0 = (1 − 1

log p)
τp. Therefore,

pτ ≥ p
(

1 − 1
log p

) log p
log log p−1

≥ p
(

1 − 1
log p

) log p
log log p

≥ p
(

1 −
(

1
log p

)

·
(

log p
log log p

))

= p− p
log log p .

Let fτ denote the actual number of crashes caused by the adversary. Then,
fτ = p− pτ ≤ p− p+ p

log log p = p
log log p < p. Hence, A when using this specific

κ does not exceed the allowed number of crashes. Now, the work caused by A

is:

S = Ω(pτ · τ) = Ω

((

p− p

log log p

)

·
(

log p

log log p
− 1

))

= Ω

(

p
log p

log log p

)

.

This completes the proof. 2

26 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

Corollary 3.7. Given any algorithm A that solves the Do-AllOAC
(n, p, f) prob-

lem (p ≤ n) there exists an adversarial strategy that causes work S =

Ω

(

n+ p
log p

log log p

)

.

Proof. Note that S = Ω(n) because all tasks must be performed. From
Lemma 3.6 we know that Do-AllOAC

(p, p, f) requires Ω(p log p/ log log p) work.
Given that work is nondecreasing in n (as follows from Definition 2.4) we
obtain the desired result by combining the two bounds. 2

Observe that Lemma 3.6 and Corollary 3.7 do not show how work depends
on f . We now give lower bounds considering moderate number of crashes
(f ≤ p/ log p).

Lemma 3.8. Given any algorithm A that solves the Do-AllOAC
(p, p, f) problem

(p = n), the adversarial strategy A with (κ−1) log(κ−1) = p log p
f and f ≤ p

log p

causes work S = Ω
(

p log p
f
p
)

.

Proof. We assume that p > 4 (we aim to establish an asymptotic result, and
this eliminates uninteresting cases). From (κ−1) log(κ−1) = p log p

f , f ≤ p
log p ,

and p > 4 we see that log(κ−1) > 4κ. This implies that κ ∈ (0, 1/2). Hence,
from Lemma 3.5 we have that A will cause algorithm A to iterate at least
τ = (log p/ log(κ−1)) − 1 times.
Now observe that the work must be at least pτ · τ , where pτ is the number
of surviving processors after A terminates. Recall from Lemma 3.4(b) that
pτ ≥ (1 − κ)τp0. Therefore,

pτ ≥ p (1 − κ)
τ ≥ p (1 − κ)

log p

log(κ−1)
−1

≥ p (1 − κ)
log p

log(κ−1) ≥ p
(

1 − κ · log p
log(κ−1)

)

= p
(

1 −
(

κ
log(κ−1)

)

log p
)

= p
(

1 −
(

f
p log p

)

log p
)

= p− f.

Let fτ denote the actual number of crashes caused by the adversary. Then,
fτ = p− pτ ≤ p− (p− f) = f . Hence, A when using this specific κ does not
exceed the allowed number of crashes (f ≤ p/ log p).

Recall that (κ−1) log(κ−1) = p log p
f , therefore, (κ−1) = Θ

(
p log p

f

log(p log p
f)

)

.

Thus,

log(κ−1) = Θ

(

log

(
p log p

f

)

− log log

(
p log p

f

))

= Θ

(

log

(
p log p

f

))

.

Then, noting that pτ ≥ p − f ≥ p − p/ log p = Θ(p) and that κ · p > 1 (see
Remark 3.3), we assess the work S caused by A as follows:

3.2 Lower and Upper Bounds for Abstract Models 27

S = Ω(pτ · τ) = Ω

(

p · log p

log(κ−1)

)

= Ω

(

p+ p
log p

log(p log p
f)

)

.

Now recall that p/f ≥ log p. Hence, for any p > 4 we have that p/f > 2 and
that log((p log p)/f) = log(p/f) + log log p = Θ(log(p/f)). From the above,

S = Ω

(

p+ p
log p

log(pf)

)

= Ω
(

p log p
f
p
)

.

This completes the proof. 2

Corollary 3.9. Given any algorithm A that solves the Do-AllOAC
(n, p, f) prob-

lem (p ≤ n), there exists an adversarial strategy that causes f ≤ p
log p crashes,

and work S = Ω
(

n+ p log p
f
p
)

.

Proof. Note that S = Ω(n) because all tasks must be performed. From
Lemma 3.8 we know that Do-AllOAC

(p, p, f) requires Ω(p log p
f
p) work, for

f ≤ p/ log p. Given that work is nondecreasing in n we obtain the desired
result by combining the two bounds. 2

We now give the main (failure-sensitive) lower-bound result.

Theorem 3.10. Given any algorithm A that solves the Do-AllOAC
(n, p, f)

problem there exists an adversarial strategy that causes work

S = Ω

(

n+ p
log p

log(p/f)

)

when f ≤ p

log p
, and

S = Ω

(

n+ p
log p

log log p

)

when
p

log p
< f < p.

Proof. For the range of failures f ≤ p/ log p, per Corollary 3.9, the work is
Ω(n+ p logp/f p).

From Corollary 3.9 we also obtain the fact that when f = p/ log p then
work must be Ω (n+ p log p/ log log p). Note that this is the worst case work
for any f (see Corollary 3.7). Therefore, for the range p/ log p < f < p, the
adversary establishes this worst case work using the initial p/ log p failures. 2

The above theorem yields a lower bound result for the r-Do-AllOAC
(n, p, f)

problem.

Theorem 3.11. Given any algorithm that solves the r-Do-AllOAC
(n, p, f) prob-

lem, there exists an adversarial strategy that causes work

S = Ω

(

r ·
(

n+ p
log p

log(pr/f)

))

when f ≤ pr

log p
, and

S = Ω

(

r ·
(

n+ p
log p

log log p

))

when
pr

log p
< f < p.

28 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

Proof. Consider two cases:

Case 1 : f > pr
log p . In this case the adversary may crash p/ log p processors in

every round of r-Do-AllOAC
(n, p, f). Note that for this adversary Ω(p) proces-

sors remain alive during the first dr/2e rounds. Per Theorem 3.10 this results
in dr/2e ·Ω (n+ p log p/ log log p) = Ω (nr + pr log p/ log log p) work.

Case 2 : f ≤ pr
log p . In this case the adversary ideally would crash f/r processors

in every round. It can do that in the case where r divides f . If this is not the
case, then the adversary crashes df/re processors in rA rounds and bf/rc in
rB rounds in such a way that r = rA + rB . Again considering the first half of

the rounds and appealing to Theorem 3.10 results in a Ω
(

nr + pr logpr/f p
)

lower bound for work. Note that we consider only the case where r ≤ f ;
otherwise the work is trivially Ω(rn).

The result then follows by combining the two cases. 2

3.2.3 Upper Bounds

To study the upper bounds for Do-All we give an oracle-based algorithm in
Figure 3.1. The algorithm uses oracle O that performs the termination and
load-balancing computation on behalf of the processors. In particular, during
each synchronous iteration of an execution of the algorithm, the oracle O
makes available to each processor i two values: Oracle-complete, a Boolean
which takes the value true if and only if all tasks are complete at the beginning
of this iteration, and Oracle-task(i), a natural number from [n], whose value
is a task identifier. Oracle-task is a function from processor identifiers to task
identifiers, with the property that processors are only allocated to undone
tasks, and that all such tasks are allocated a balanced number of processors.
For example, if processors i1, . . . , ik ∈ [p] are alive and tasks j1, . . . , j` ∈
[n] are undone at the beginning of a given iteration of the algorithm, then
Oracle-task(is) = jt, where t = (s− 1 mod `) + 1.

for each processor pid = 1..p begin

while not Oracle-complete

perform task with tid = Oracle-task(pid)
end

Fig. 3.1. Oracle-based algorithm.

We begin with the following result:

Lemma 3.12. The Do-AllOAC
(n, p, f) problem can be solved with f < p using

work

S = O

(

n+ p
log p

log log p

)

.

3.2 Lower and Upper Bounds for Abstract Models 29

Note that Lemma 3.12 does not show how, if at all, work depends on
f . We now present an upper bound considering moderate number of crashes
(f ≤ p/ log p).

Lemma 3.13. The Do-AllOAC
(n, p, f) problem can be solved with f ≤ p/ log p

using work

S = O
(

n+ p log p
f
p
)

.

Proof. For an iteration of the algorithm in Figure 3.1, let ∆f denote the
number of processor crashes in this iteration. (∆f can be different for each
iteration, though the sum of these for all iterations cannot exceed f .) We set
b = b(p, f) = p

2f , and we define S(n, p, f) to be the work required to solve Do-

AllOAC
(n, p, f). Our goal is to show that for all u, p and f , the work S(u, p, f)

is no more than 16p+u+p log p
2f

(min(u, p)), where u ≤ n denotes the number

of undone tasks. The proof proceeds by induction on u.

Base Case: Observe that when u ≤ 16, S(u, p, f) ≤ 16p < 16p + u +
p logb(min(u, p)), for all p and f .

Inductive Hypothesis: Assume that we have proved the theorem for all u < û
(û ≤ n) and all p and f .

Inductive Step: Consider u = û. We investigate two cases:

Case 1 : p ≤ û (in particular, min(û, p) = p). In this case each processor is
assigned to a unique task, hence

S(û, p, f) ≤ p+ max
0≤∆f≤f

S(û− p+∆f, p−∆f, f −∆f).

As p−∆f > 0, û− p+∆f < û and, by the induction hypothesis,

S(û, p, f) ≤ p+ max
0≤∆f≤f

[

16(p−∆f) + (û − p+∆f)

+ (p−∆f) logb(p−∆f,f−∆f)(min(û− p+∆f, p−∆f)
]

.

Now, b(p−∆f, f −∆f) ≥ b(p, f), and

logb(p,f)(min(û− p+∆f, p−∆f) ≤ logb(p,f)(p−∆f),

so that

S(û, p, f) ≤ 16p+ û+ p logb(p,f) p = 16p+ û+ p logb(p,f)(min(û, p)),

as desired.

Case 2 : p > û (in particular, min(û, p) = û). In this case, by assumption we
have

S(û, p, f) ≤ p+ max
0≤∆f≤f

S(γû, p−∆f, f −∆f),

30 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

where γ = γ(û, p,∆f) is the ratio of the number of the remaining tasks to û
(0 ≤ γ < 1).

Let φ = ∆f/p ≤ f/p < 1, the fraction of processors which fail during this

iteration; then φ/2 < γ < 2φ.
(

To see this, observe that

φp

dp/ûeû =
φp/dp/ûe

û
≤ γ ≤ φp/bp/ûc

û
=

φp

bp/ûcû .

Let p = cû, c > 1. Then

c

dceφ =
φcû

dceû ≤ γ ≤ φcû

bccû =
c

bccφ.

Now observe that 1 ≤ c
bcc < 2 and 1/2 < c

dce ≤ 1, ∀c > 1, and hence,

φ/2 < γ < 2φ, as desired.
)

Then,

S(û, p, f) ≤ p+ max
φ∈[0,f/p]

S(γû, (1 − φ)p, f − φp).

As γû < û, we may apply the induction hypothesis:

S(û, p, f)≤p+ max
φ∈[0,f/p]

[

16(1 − φ)p+ γû+ (1 − φ)p logb′(min(γû, (1 − φ)p))
]

,

where b′ = b(p−φp, f−φp). As above, b′ ≥ b(p, f) and min(γû, (1−φ)p)) ≤ γû,
so that

S(û, p, f) ≤ p+ max
φ∈[0,f/p]

[

16(1 − φ)p+ γû+ (1 − φ)p logb(p,f)(γû)
]

.

To complete the proof, it suffices to show that for all φ ∈ [0, f/p],

15p+ p logb(p,f) û− (1 − φ)p logb(p,f)(γû) ≥ 16(1 − φ)p− û(1 − γ).

Upper bounding 16(1− φ)p− û(1 − γ) with 16(1 − φ)p and dividing through
by p, it is sufficient to show that

15 + logb(p,f) û− (1 − φ) logb(p,f)(γû) ≥ 16(1 − φ),

or, equivalently,

logb(p,f) û− (1 − φ) logb(p,f)(γû) ≥ 1 − 16φ.

We now focus on the left hand side of the above equation:

logb(p,f) û− (1 − φ)
[

logb(p,f) γ + logb(p,f) û
]

= φ logb(p,f) û+ (1 − φ) logb(p,f) γ
−1.

3.2 Lower and Upper Bounds for Abstract Models 31

Since f ≤ p
log(min(û,p)) = p

log û , for any û > 16 we have that p
2f > 2. Observe

that,
φ logb(p,f) û+ (1 − φ) logb(p,f) γ

−1 ≥ (1 − φ) logb(p,f) γ
−1

since û ≥ p/f > p/2f . (Note that if û < p/f , then all tasks are completed in
this iteration.)
Recall that γ−1 ≥ (2φ)−1 and φ < f/p. Therefore,

(1 − φ) logb(p,f) γ
−1 ≥ (1 − φ) logb(p,f)(2φ)−1 ≥ 1 − 16φ.

Evidently,

S = O
(

n+ p+ p log p
f
(min(n, p)

)

= O
(

n+ p log p
f
p
)

,

as desired. 2

We now give the main (failure-sensitive) upper-bound result.

Theorem 3.14. The Do-AllOAC
(n, p, f) problem can be solved using work

S = O

(

n+ p
log p

log(p/f)

)

when f ≤ p

log p
, and

S = O

(

n+ p
log p

log log p

)

when
p

log p
< f < p.

Proof. This follows from Lemmas 3.12 and 3.13. 2

Remark 3.15. Theorems 3.10 and 3.14 show matching lower and upper on
total-work for the Do-All problem with crash-prone processors under the per-
fect knowledge assumption. In the analyses of both bounds we essentially
account for the tasks performed by the processors. It is not difficult to see
that the same bounds apply also to the task-oriented work in this setting.

Upper bounds for iterative Do-All. We continue to show an upper bound
result for the iterative Do-All problem. In principle r-Do-AllAC (n, p, f) can
be solved by running an algorithm for Do-AllAC (n, p, f) for r iterations. For
example, r-Do-AllOAC

(n, p, f) can be solved by running the oracle-based algo-
rithm in Figure 3.1 for r iterations. If the work of a Do-All solution is S, then
the work of the r-iterative Do-All is at most r · S. However we show that
it is possible to obtain a finer result that takes into account the diminishing
number of failures “available” to the adversary. In particular we obtain the
following (failure-sensitive) upper bound on work.

32 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

Theorem 3.16. The r-Do-AllOAC
(n, p, f) problem can be solved using work

S = O

(

r ·
(

n+ p
log p

log(pr/f)

))

when f ≤ pr

log p
, and

S = O

(

r ·
(

n+ p
log p

log log p

))

when
pr

log p
< f < p.

Proof. Let ri denote the ith round of the iterative Do-All. Let pi be the number
of active processors at the beginning of ri and fi be the number of crashes
during ri. Note that p1 = p, where r1 is the first round of r-Do-AllOAC

(n, p, f)
and that pi ≤ p. We consider two cases:

Case 1 : f > pr
log p . Consider a round ri. From Theorem 3.14 we see that

the work for this round is O
(

n+ pi logpi/fi
pi

)

when fi ≤ pi/ log pi and

O (n+ pi log pi/ log log pi) otherwise. However in this case, we can have fi =
Θ (p/ log p) for all ri without “running out” of processors. Thus,

S1 = O

(

r ·
(

n+ p
log p

log log p

))

.

Case 2 : f ≤ pr
log p . First observe that any reasonable adversarial strategy

would not kill more that pi/ log pi processors in round ri, since it would not
cause more work than O(n+pi log pi/ log log pi) (which is achieved when fi ≥
pi/ log pi). Therefore, we consider fi ≤ pi/ log pi for all rounds ri. Hence, the
work in every round ri (per Theorem 3.14) is O (n+ pi log pi/ log(pi/fi)) =
O (n+ p log p/ log(p/fi)).

Let S(n, p, f) be this one-round upper bound. As f =
∑
fi, an upper

bound on r-Do-AllOAC
(n, p, f) can be given by maximizing

∑

i S(n, pi, fi) over
all such adversarial patterns. As S(·, ·, ·) is monotone in p, we may assume
that pi = p for the purposes of the upper bound. We show that this maximum
is attained at f1 = f2 = . . . = fr. For simplicity, treat fi as a continuous
parameter and consider the factor in the single round work expression (given
above) that depends on fi : c/ log(pfi

), where c is the constant hidden by the

O(·) notation.

The first derivative over fi is
∂

∂fi

(

c/log

(
p

fi

))

= c/fi(log p− log fi)
2,

and its second derivative is
∂2

∂f2
i

(

c/log

(
p

fi

))

= 2c/f2
i (log p − log fi)

3 −
c/f2

i (log p− log fi)
2. Observe that the second derivative is negative in the

domain considered (assuming p > 16). Hence the first derivative is decreasing
(with fi). In this case, given any two fi, fj where fi > fj , the adversarial
pattern obtained by replacing fi with fi − ε and fj by fj + ε (where ε <
(fi − fj)/2) results in increased work. This implies that the sum maximized
when all fis are equal, specifically when fi = f/r.

3.3 Solving Do-All Using Reliable Multicast 33

As the above upper bound on the sum
∑

i S(n, pi, fi) is valid over all fi in
this range, it holds in particular for the choices made by the adversary that
must, of course, cause an integer number of faults in each round. Therefore,

S2 = O

(

r ·
(

n+ p
log p

log(prf)

))

.

The result then follows by combining the two cases. 2

3.3 Solving Do-All Using Reliable Multicast

In this section we present and analyze a synchronous deterministic algorithm
for Do-AllAC (n, p, f) that uses crash-prone message-passing processors. We
also establish complexity results for the iterative Do-All in this message-
passing model.

In the algorithm, called algorithm AN (Algorithm crash-No-restart), we
implement the idea of an oracle (as used in the previous section) by using
coordinators that accumulate the knowledge about the progress of the algo-
rithm thus approximating the perfect knowledge of the oracle. The algorithm
is analyzed with the help of the techniques developed in this chapter. This
is done by separately assessing the cost of tolerating failures and the cost
of achieving perfect knowledge. The first analysis is derived from the results
obtained under the assumption of perfect knowledge (previous section). The
latter is derived from the structure of the algorithm.

Algorithm AN uses a multiple-coordinator approach to solve Do-
AllAC (n, p, f) on crash-prone synchronous message-passing processors (p ≤
n). The model assumes that messages incur a known bounded delay and that
reliable multicast is available: when a processor multicasts a message to a col-
lection of processors, either all messages are delivered to non-faulty processors
or no messages are delivered.

The algorithmic technique uses an aggressive coordination paradigm that
permits multiple processors to act as coordinators concurrently. The number
of coordinators is managed adaptively. When failures of coordinators disrupt
the progress of the computation, the number of coordinators is increased;
when the failures subside, a single coordinator is appointed.

The algorithm is tolerant of f crash-failures (f < p). It has total-work
(available processor steps) complexity1 S = O((n + p log p/ log log p) log f)
and message complexity M = O(n + p log p/ log log p + fp). (Algorithm AN
also forms the basis for another algorithm for crash-prone processors that are
able to restart that we present in Chapter 5.)

The algorithm assumes that the communication is reliable. If a processor
sends a message to another operational processor and when the message ar-
rives at the destination the processor is still operational, then the message is

1 The expression “log f” stands for 1 when f < 2 and log2f otherwise.

34 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

received. Moreover, if an operational processor sends a multicast message and
then fails, then either the message is sent to all destinations or to none at
all. Such multicast is received by all operational processors. There are several
reasons for considering solutions with such reliable multicast. First of all, in a
distributed setting where processors cooperate closely, it becomes increasingly
important to assume the ability to perform efficient and reliable broadcast or
multicast. This assumption might not hold for extant WANs, but broadcast
LANs (e.g., Ethernet and bypass rings) have the property that if the sender
is transmitting a multicast message, then the message is sent to all destina-
tion. Of course this does not guarantee that such multicast will be received,
however when a processor is unable to receive or process a message, e.g., due
to unavailable buffer space or failure of the network interface hardware at the
destination, this can be interpreted as a failure of the receiver.

By separating the concerns between the reliability of processors and the
underlying communication medium, we are able to formulate solutions at a
higher level of modularity so that one can take advantage of efficient reliable
broadcast algorithms overall algorithmic approach.

3.3.1 Algorithm AN

We first overview the algorithmic techniques, then present algorithm AN in
detail.

Algorithm AN proceeds in a loop that is repeated until all the tasks are
executed. A single iteration of the loop is called a phase. A phase consists of
three consecutive stages. Each stage consists of three steps (thus a phase con-
sists of 9 steps). In each stage processors use the first step to receive messages
sent in the previous stage, the second step to perform local computation, and
the third step to send messages. We refer to these three step as the receive
substage, the compute substage and the send substage.

Coordinators and workers. A processor can be a coordinator of a given
phase. All processors (including coordinators) are workers in a given phase.
Coordinators are responsible for recording progress, while workers perform
tasks and report on that to the coordinators. In the first phase one processor
acts as the coordinator. There may be multiple coordinators in subsequent
phases.

The number of processors that assume the coordinator role is determined
by the martingale principle: if none of the expected coordinators survive
through the entire phase, then the number of coordinators for the next phase
is doubled. Whenever at least one coordinator survives a given phase, the
number of coordinators for the next phase is reduced to one.

If at least one processor acts as a coordinator during a phase and it com-
pletes the phase without failing, we say that the phase is attended , the phase
is unattended otherwise.

3.3 Solving Do-All Using Reliable Multicast 35

Local views. Processors assume the role of coordinator based on their local
knowledge. During the computation each processor w maintains a list Lw =
〈q1, q2, ..., qk〉 of supposed live processors. We call such list a local view . The
processors in Lw are partitioned into layers consisting of consecutive sublists
of Lw: Lw = 〈Λ0, Λ1, ..., Λj〉2. The number of processors in layer Λi+1, for
i = 0, 1, ..., j−1, is the double of the number of processors in layer Λi. Layer Λj

may contain less processors. When Λ0 = 〈q1〉 the local view can be visualized
as a binary tree rooted at processor q1, where nodes are placed from left to
right with respect to the linear order given by Lw. Thus, in a tree-like local
view, layer Λ0 consists of processor q1, layer Λi consists of 2i consecutive
processors starting at processor q2i and ending at processor q2i+1−1, with
the exception of the very last layer that may contain a smaller number of
processors.

Example 3.17. Suppose that we have a system of p = 31 processors. As-
sume that for a phase ` all processors are in the local view of a worker w,
in order of processor identifier, and that the view is a tree-like view (e.g.,
at the beginning of the computation, for ` = 0). If in phase ` processors
1, 5, 7, 18, 20, 21, 22, 23, 24, 31 fail (hence phase ` is unattended) and in phase
` + 1, processors 2, 9, 15, 25, 26, 27, 28, 29, 30 fail (phase ` + 1 is attended by
processor 3), then the view of processor w for phase ` + 2 is the one in Fig-
ure 3.2.

3

4 6

10 12 13 14

16 17 18 19 20

Fig. 3.2. A local view for phase `+ 2.

The local view is used to implement the martingale principle of appointing
coordinators as follows. Let L`,w = 〈Λ0, Λ1, ..., Λj〉 be the local view of worker
w at the beginning of phase `. Processor w expects processors in layer Λ0

to coordinate phase `; if no processor in layer Λ0 completes phase `, then
processor w expects processors in layer Λ1 to coordinate phase `+1; in general
processorw expects processors in layer Λi to coordinate phase `+i if processors
in all previous layers Λk, ` ≤ k < ` + i, did not complete phase ` + k. The
local view is updated at the end of each phase.

Phase structure and task allocation. The structure of a phase of the
algorithm is as follows. Each processor w keeps its local information about

2 For sequences L = 〈e1, . . . , en〉 and K = 〈d1, . . . , dm〉 we define 〈L,K〉 to be the
sequence 〈e1, . . . , en, d1, . . . , dm〉.

36 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

the set of tasks already performed, denoted Dw, and the set of live processors,
denoted Pw , as known by processor w. Set Dw is always an underestimate of
the set of tasks actually done and Pw is always an overestimate of the set
of processors that are “available” from the start of the phase We denote by
Uw the set of unaccounted tasks, i.e., whose done status is unknown to w.
Sets Uw and Dw are related by Uw = T \ Dw, where T is the set of all the
tasks. Given a phase ` we use P`,w, U`,w and D`,w to denote the values of the
corresponding sets at the beginning of phase `.

Computation starts with phase 0 and any processor q has all processors
in L0,q and has D0,q empty. At the beginning of phase ` each worker (that
is, each processor) w performs one task according to its local view L`,w and
its knowledge of the set U`,w of unaccounted tasks, using the following load
balancing rule. Worker w executes the task whose rank is (i mod |U`,w|)th
in the set U`,w of unaccounted tasks, where i is the rank of processor w in
the local view L`,w. Then the worker reports the execution of the task to
all the processors that, according to the worker’s local view, are supposed to
be coordinators of phase `. For simplicity we assume that a processor sends
a message to itself when it is both worker and coordinator. Any processor c
that, according to its local view, is supposed to be coordinator, gathers reports
from the workers, updates its information about P`,c and U`,c and broadcasts
this new information causing the local views to be reorganized.

We will see that at the beginning of any phase ` all live processors have
the same local view L` and the same set U` of unaccounted tasks and that
accounted tasks have been actually executed. A new phase starts if U` is not
empty.

Details of algorithm AN

We now present algorithm AN in detail. The algorithm follows the algorithmic
structure described in the previous section. The computation starts with phase
number 0 and proceeds in a loop until all tasks are known to have been
executed. The detailed description of a phase is given in Figure 3.3.

Local view update rule. In phase 0 the local view L0,w of any processor w
is a tree-like view containing all the processors in P ordered by their PIDs.
Let L`,w = 〈Λ0, Λ1, ..., Λj〉 be the local view of processor w for phase `. We
distinguish two possible cases.

Case 1 : Phase ` is unattended. Then the local view of processor w for phase
`+ 1 is L`+1,w = 〈Λ1, ..., Λj〉.
Case 2 : Phase ` is attended. Then processor w receives summary messages
from some coordinator in Λ0. Processor w computes its set Pw as described
in stage 3 (we will see that all processors compute the same set Pw). The
local view L`+1,w of w for phase `+ 1 is a tree-like local view containing the
processors in Pw ordered by their PIDs.

3.3 Solving Do-All Using Reliable Multicast 37

Phase ` of algorithm AN:

Stage 1.

Receive: The receive substage is not used.
Compute: In the compute substage, any processor w performs a spe-

cific task z according to the load balancing rule.
Send: In the send substage processor w sends a report(z) to any co-

ordinator, that is, to any processor in the first layer of the local
view L`,w.

Stage 2.

Receive: : In the receive substage the coordinators gather report mes-
sages. For any coordinator c, let z1

c , . . . , z
kc
c be the set of TIDs

received.
Compute: In the compute substage c sets Dc ← Dc ∪

⋃kc
i=1{z

i
c}, and

Pc to the set of processors from which c received report messages.
Send: In the send substage, coordinator c multicasts the message

summary(Dc, Pc) to processors in Pc.
Stage 3.

Receive: During the receive substage summary messages are
received by live processors. For any processor w, let
(D1

w , P
1
w), . . . , (Dkw

w , P kw
w) be the sets received in summary

messages (we will see in the analysis that these messages are in
fact identical).

Compute: In the compute substage w sets Dw ← Di
w and Pw ← P iw

for an arbitrary i ∈ {1, . . . , kw} and updates its local view Lw (the
update rule is described in detail in the text below).

Send: The send substage is not used.

Fig. 3.3. Phase ` of algorithm AN

Figure 3.4 gives a pictorial description of a single phase of algorithm AN
with its three stages, each consisting of receive, compute, and send substages.

Coordinator

Worker
knows

L,P,U,D

�
R

Stage 2Stage 1 Stage 3

Perform
one task

Perform
one task

receive
report

update
D,P

summary

receive
summary

update
D,P,L

report

update
D,P,L

N

Fig. 3.4. A phase of algorithm AN.

38 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

3.3.2 Correctness of algorithm AN

We now show that algorithm AN solves the Do-All problem under adver-
sary AC . We consider only the executions with at at least one non-crashed
processor (i.e., f < p).

Given an execution of the algorithm, we enumerate the phases. We denote
the attended phases of the execution by α1, α2, . . . , etc. We denote by πi the
sequence of unattended phases between the attended phases αi and αi+1. We
refer to πi as the ith (unattended) period; an unattended period can be empty.
Hence the computation proceeds as follows: unattended period π0, attended
phase α1, unattended period π1, attended phase α2, and so on. We will show
that after a finite number of attended phases the algorithm terminates. If the
algorithm correctly solves the problem, it must be the case that there are no
tasks left unaccounted after a certain phase ατ .

Next we show that at the beginning of each phase every live processor has
consistent knowledge of the ongoing computation. Then we prove safety (accu-
rate processor and task accounting) and progress (task execution) properties,
which imply the correctness of the algorithm.

Lemma 3.18. In any execution of algorithm AN, for any two processors w, v
alive at the beginning of phase `, we have that L`,w = L`,v and that U`,w =
U`,v.

Proof. By induction on the number of phases. For the base case we need
to prove that the lemma is true for the first phase. Initially we have that
L0,w = L0,v = 〈P〉 and Uw = Uv = T . Hence the base case is true.

Assume that the lemma is true for phase `. We need to prove that it is
true for phase `+ 1. Let w and v be two processors alive at the beginning of
phase `+1. Since there are no restarts, processors w and v are alive also at the
beginning of phase `. By the inductive hypothesis we have that L`,w = L`,v
and U`,w = U`,v. We now distinguish two possible cases: phase ` is unattended
and phase ` is attended.

Case 1 : Phase ` is unattended. Then there are no coordinators and no summary
messages are received by w and v during phase `. Thus the sets Uw and Uv
are not modified during phase `. Moreover processors w and v use the same
rule to update the local view (case 1 of the local view update rule). Hence
L`+1,w = L`+1,v and U`+1,w = U`+1,v.

Case 2 : Phase ` is attended. Since L`,w = L`,v all the workers send report

messages to some coordinators c1, ..., ck. Since we have reliable multicast, the
report message of each worker reaches all the coordinators if the worker is
alive, or no one if it failed. Thus summary messages sent by the coordinators
are all equal. Let summary(D,P) be one such a message. Since the phase
is attended and broadcast is reliable both processors w and v receive the
summary(D,P) message from at least one coordinator. Hence in stage 3 of
phase `, workers w and v set D`+1,w = D`+1,v = D and consequently we

3.3 Solving Do-All Using Reliable Multicast 39

have U`+1,w = U`+1,v. They also set P`+1,w = P`+1,v = P and use the same
rule (case 2 of the local view update rule) to update the local view. Hence
L`+1,w = L`+1,v. 2

Because of Lemma 3.18, we can define L` = L`,w for any live processor w
as the view at the beginning of phase `, P` = P`,w as the set of live processors,
D` = D`,w as the set of done tasks and U` = U`,w as the set of unaccounted
tasks at the beginning of phase `.

We denote by p` the cardinality of the set of live processors computed for
phase `, i.e., p` = |P`|, and by u` the cardinality of the set of unaccounted
tasks for phase `, i.e., u` = |U`|. We have p1 = p and u0 = t.

Lemma 3.19. In any execution of algorithm AN, if a processor w is alive
during the first two stages of phase ` then processor w belongs to P`.

Proof. Let w be a processor alive at the beginning of phase `. Processor w
(whether it is a coordinator or not) is taken out of the set P` only if a coor-
dinator does not receive a report message from w in phase ` − 1. If w is a
coordinator and all coordinators are dead, then w would be removed by the
local view update rule. This is possible only if w fails during phase ` − 1.
Since w is alive at the beginning of phase `, processor w does not fail in phase
`− 1. 2

Lemma 3.20. In any execution of algorithm AN, if a task z does not belong
to U` then it has been executed in one of the phases 1, 2, ..., `− 1.

Proof. Task z is taken out of the set U` by a coordinator c when c receives
a report(z) message in a phase prior to `. However a worker sends such a
message only after executing task z. Task z is taken out of the set U` by a
worker w when w receives a summary(Dc, Pc) message from some coordinator
c in phase prior to `, and z ∈ Dc. Again this means that z must have been
reported as done to c. 2

Lemma 3.21. In any execution of algorithm AN, for any phase ` we have
that u`+1 ≤ u`.

Proof. By the code of the algorithm, no task is added to U`. 2

Lemma 3.22. In any execution of algorithm AN, for any attended phase `
we have that u`+1 < u`.

Proof. Since phase ` is attended, there is at least one coordinator c alive in
phase `. By Lemma 3.19 processor c belongs to P` and thus it executes one
task. Hence at least one task is executed and consequently at least one task
is taken out of U`. By Lemma 3.21, no task is added to U` during phase `. 2

Lemma 3.23. In any execution of algorithm AN, any unattended period con-
sists of at most log f phases.

40 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

Proof. Consider the unattended period πi and let ` be its first phase. First
we claim that the first layer of view L` consists of a single processor. This
is so because (a) either i = 0 and ` = 0, in which case L0 is the initial
local view, or (b) i > 0 and πi is preceded by attended phase αi, in which
case L` is constructed by the local update rule to have a single processor
in its first layer. By Lemma 3.19 any processor alive at the beginning of
phase ` belongs to P` and thus to L`. By the local view update rule for
unattended phases, we have that eventually all processors in L` are supposed
to be coordinators. Since f < p, at least one processor is alive and thus
eventually there is an attended phase. The log f upper bound follows from
the the martingale principle governing the sizes of consecutive layers of view.
The number of processors accommodated in the layers of the view doubles for
each successive layer. Hence, denoting by fi the number of failures in πi, we
have that the number of phases in πi is at most log fi. Obviously fi < f . 2

Finally we show the correctness of algorithm AN.

Theorem 3.24. In any execution of algorithm AN, the algorithm terminates
with all tasks performed.

Proof. By Lemma 3.19 no live processor leaves the computation and since
f < p the computation ends only when U` is empty. By Lemma 3.20, when
the computation ends, all tasks are performed. It remains to prove that the
algorithm actually terminates. By Lemma 3.23 for every 1+log f phases there
is at least one attended phase. Hence, by Lemmas 3.21 and 3.22, the number
of unaccounted tasks decreases by at least one in every 1+log f phases. Thus,
the algorithm terminates after at most O(n log f) phases. 2

Since the algorithm terminates after a finite number of attended phases
with all tasks performed, we let τ be such that Uατ+1 = ∅, and consequently
uατ+1 = 0.

3.3.3 Analysis of Algorithm AN

We now analyze the performance of algorithm AN in terms of total-work
(available processor steps) S and the message complexity M (recall that each
multicast costs as much as sending point-to-point messages to each destina-
tion).

To assess work S we consider separately all the attended phases and all the
unattended phases of the execution. Let Sa be the part of S spent during all
the attended phases and Su be the part of S spent during all the unattended
phases. Hence we have S = Sa + Su.

Lemma 3.25. In any execution of algorithm AN with f < p we have Sa =
O(n+ p log p/ log log p).

3.3 Solving Do-All Using Reliable Multicast 41

Proof. We consider all the attended phases α1, α2, ..., ατ by subdividing them
into two cases.

Case 1 : All attended phases αi such that pαi ≤ uαi . The load balancing rule
assures that at most one processor is assigned to a task. Hence the avail-
able processor steps used in this case can be charged to the number of tasks
executed which is at most n+ f ≤ n+ p. Hence S1 = O(n+ p).

Case 2 : All attended phases in which pαi > uαi . We let d(p) stand for
log p/ log log p. We consider the following two subcases.

Subcase 2.1: All attended phases αi after which uαi+1 < uαi/d(p). Since
uαi+1 < uαi < pαi < p and phase ατ is the last phase for which uτ > 0, it
follows that subcase 2.1 occurs O(logd(p) p) times. The quantity O(logd(p) p)

is O(d(p)) because d(p)d(p) = Θ(p). No more than p processors complete such
phases, therefore the part S2.1 of Sa spent in this case is

S2.1 = O

(

p
log p

log log p

)

.

Subcase 2.2: All attended phases αi after which uαi+1 ≥ uαi/d(p). Consider
a particular phase αi. Since in this case pαi > uαi , by the load balancing rule
at least b pαi

uαi
c but no more than d pαi

uαi
e processors are assigned to each of the

uαi unaccounted tasks. Since uαi+1 tasks remain unaccounted after phase αi,
the number of processors that failed during this phase is at least

uαi+1

⌊
pαi

uαi

⌋

≥ uαi

d(p)
· pαi

2uαi

=
pαi

2d(p)
.

Hence, the number of processors that proceed to phase αi+1 is no more than

pαi −
pαi

2d(p)
= pαi(1 − 1

2d(p)
) .

Let αi0 , αi1 , ..., αik be the attended phases in this subcase. Since the number
of processor in phase αi0 is at most p, the number of processors alive in phase
αij for j > 0 is at most p(1 − 1

2d(p))
j . Therefore the part S2.2 of Sa spent in

this case is bounded as follows:

S2.2 ≤
k∑

j=0

p

(

1 − 1

2d(p)

)j

≤ p

1 − (1 − 1
2d(p))

= p · 2d(p)
= O(p · d(p)) .

42 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

Summing up the contributions of all the cases considered we get Sa:

Sa = S1 + S2.1 + S2.2 = O

(

n+ p
log p

log log p

)

,

as desired. 2

Lemma 3.26. In any execution of algorithm AN with f < p we have Su =
O(Sa log f).

Proof. The number of processors alive in a phase of the unattended period πi
is at most pαi , that is the number of processors alive in the attended phase
immediately preceding πi. To cover the case when π0 is not empty, we let
α0 = 0 and pα0 = |P| = p. By Lemma 3.23 the number of phases in period πi
is at most log f . Hence the part of Su spent in period πi is at most pαi log f .
We have

Su ≤
τ∑

i=0

(pαi log f)

= log f ·
τ∑

i=1

pαi

≤ (p+ Sa) log f = O(Sa log f) .

2

We now consider the analysis of algorithm AN for the range of crashes
f ≤ p

log p .

Lemma 3.27. In any execution of algorithm AN with f ≤ p
log p we have Sa =

O
(

n+ p log p
f
p
)

.

Proof. Let α1, α2, . . . ατ , denote all the attended phases of this execution (ατ
is the last phase of the execution). Given a phase α of an execution of algorithm
AN, we define pα to be the number of live processors and uα to be the number
of undone tasks at the beginning of the phase; here pα1 ≤ p (at most p
processor are alive) and uα1 ≤ n (at most n tasks remain).

Observe that for all αi, 1 ≤ i ≤ τ − 1 it holds that (a) uai > uai+1 (by
Lemma 3.22), and (b) pai ≥ pai+1 (the number of processors can only decrease
due to crashes).

In the correctness analysis we have shown that if at the beginning of phase
αi the processors have consistent information on the identities and the number
of surviving processors pαi and the identities and the number of remaining
tasks uαi (Lemma 3.18). Hence, the processors in attended phases can perform
perfect load balancing, as in the case where the processors are assisted by
the oracle O, in the oracle model. Therefore, focusing only on the attended
phases (and assuming that in the worst case no progress is made in unattended
phases), we obtain the desired result by induction on the number of remaining
tasks, as in the proof of Lemma 3.13. 2

3.3 Solving Do-All Using Reliable Multicast 43

We now combine the results of the key lemmas to obtain the work com-
plexity of algorithm AN.

Theorem 3.28. In any execution of algorithm AN its work complexity is

S = O

(

log f

(

n+ p
log p

log(p/f)

))

when f ≤ p

log p
, and

S = O

(

log f

(

n+ p
log p

log log p

))

when
p

log p
< f < p.

Proof. The total work S is given by S = Sa + Su. The theorem follows from
Lemmas 3.25 and 3.26 for f < p, and from Lemma 3.27 for p

log p < f < p. 2

Remark 3.29. We have shown a lower bound of Ω(n+p log p/ log log p) for any
algorithm that performs tasks by balancing loads of surviving processors in
each time step. The work of algorithm AN comes within a factor of log f (and
thus also log p) relative to that lower bound. This suggests that improving
the work result is difficult and that better solutions may have to involve a
trade-off between the work and message complexities.

We now assess the message complexity. First remember that the computa-
tion proceeds as follows: π0, α1, π1, α2, ..., πτ−1, ατ . In order to count the total
number of messages we distinguish between the attended phases preceded by
a nonempty unattended period and the attended phases which are not pre-
ceded by unattended periods. Formally, we let Mu be the number of messages
sent in πi−1αi, for all those i’s such that πi−1 is nonempty and we let Ma

be the number of messages sent in πi−1αi, for all those i’s such that πi−1 is
empty (clearly in these cases we have πi−1αi = αi). Next we estimate Ma and
Mu and thus the message complexity M of algorithm AN.

Lemma 3.30. In any execution of algorithm AN with f < p we have Ma =
O(Sa).

Proof. First notice that in a phase ` where there is a unique coordinator the
number of messages sent is 2p`. By the definition of Ma, messages counted in
Ma are messages sent in a phase αi such that πi−1 is empty. This means that
the phase previous to αi is αi−1 which, by definition, is attended. Hence by
the local view update rule of attended phases we have that αi has a unique
coordinator. Thus phase αi gives a contribution of at most 2pαi messages to
Ma. It is possible that some of the attended phases do not contribute to Ma,
however counting all the attended phases as contributing to Ma we have that
Ma ≤∑τ

i=1 2pαi = 2Sa. 2

Lemma 3.31. In any execution of algorithm AN with f < p we have Mu =
O(fp).

44 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

Proof. First we notice that in any phase the number of messages sent is O(cp)
where c is the number of coordinators for that phase. Hence to estimateMu we
simple count all the supposed coordinators in the phases included in πi−1αi,
where πi−1 is nonempty.

Let i be such that πi−1 is not empty. Since the number of processors
doubles in each consecutive layer of the local view according to the martingale
principle, we have that the total number of supposed coordinators in all the
phases of πi−1αi is 2fi−1 + 1 = O(fi−1), where fi−1 is the number of failures
during πi−1. Hence the total number of supposed coordinators, in all of the
phases contributing to Mu, is

∑τ
i=1O(fi−1) = O(f).

Hence the total number of messages counted in Mu is O(fp). 2

We assess the message complexity of algorithm AN as M = Ma +Mu.

Theorem 3.32. In any execution of algorithm AN we have

M = O

(

n+ p
log p

log(p/f)
+ fp

)

when f ≤ p

log p
, and

M = O

(

n+ p
log p

log log p
+ fp

)

when
p

log p
< f < p.

Proof. The total number of messages sent is M = Ma + Mu. The theorem
follows from Lemmas 3.30 and 3.31, and Lemmas 3.25 and 3.27. 2

3.3.4 Analysis of Message-Passing Iterative Do-All

We now consider the r-Do-AllAC (n, p, f) problem for synchronous message-
passing crash-prone processors under the assumption of reliable multicast. For
this purpose, we use Algorithm AN iteratively.

Theorem 3.33. The r-Do-AllAC (n, p, f) problem can be solved on syn-
chronous message-passing crash-prone processors with

S = O
(

r · log f
r ·
(

n+ p log p
log(pr/f)

))

and M = O
(

r ·
(

n+ p log p
log(pr/f)

)

+ fp
)

when f ≤ pr
log p , and with

S = O
(

r · log f
r ·
(

n+ p log p
log log p

))

and M = O
(

r ·
(

n+ p log p
log log p

)

+ fp
)

when pr
log p < f < p.

Proof. The iterative Do-All can be solved by running algorithm AN on r in-
stances, each of size n, in sequence. We call this algorithm AN*. To analyze the
efficiency of AN* we use the same approach as in the proof of Theorem 3.16.
In the current context we base our work complexity arguments on the result of
Theorem 3.28, and we base our message complexity arguments on the result
of Theorem 3.32. 2

Note that we achieve better complexity results in this case than those that
can be obtained by merely multiplying the complexity results for algorithm
AN times r, the number of task-sets.

3.5 Chapter Notes 45

3.4 Open Problems

The results in this chapter on work with perfect knowledge give matching
upper and lower bounds. However the perfect knowledge oracle is a strong as-
sumption, and the adversary causing crashes is relatively weak. It is very inter-
esting to produce analogous lower (and upper) bounds, where the knowledge
of the oracle is progressively weakened (and the adversary itself is strength-
ened as we do in several other chapters).

As we pointed out in Remark 3.29, the work of algorithm AN comes within
a factor of log f (and thus also log p) relative to the corresponding that lower
bound. Closing the remaining gap, given that it is small, is a difficult open
problem. This is in part due that log f overhead is associated with the cost
of approximating the perfect knowledge oracle. Finally, in algorithm AN we
aim to optimize work first, then assess the message efficiency. For the settings
where communication is very expensive, efficiency considerations may require
that solutions involve a trade-off between the work and message complexities,
and perhaps using a complexity analysis that integrates work and messaging
into a single measure.

3.5 Chapter Notes

Kanellakis and Shvartsman [67] showed that Do-AllOAC
(n, p, f) can be solved

with synchronous crash-prone processors using total-work S = O(n +
p log p/ log log p) for f < p ≤ n. This is the result stated in Lemma 3.12
(its proof appears in [67]). They also showed that this bound is tight, by giv-
ing a matching lower bound; this result is stated in Corollary 3.7 (we recreate
a proof for this result). Note that the bounds in [67] were given for the shared-
memory model under the assumption that processors can read all memory in
constant time (memory snapshots). It is not difficult to see that the mem-
ory snapshot assumption in shared-memory is equivalent to the assumption
of perfect knowledge, where a deterministic omniscient oracle provides load-
balancing and termination information to the processors in constant time.

The presentation in Section 3.2 and the failure-sensitive analysis of algo-
rithm AN is based on a paper by Georgiou, Russell, and Shvartsman [45]. The
presentation of Section 3.3 follows that of Chlebus, De Prisco, and Shvartsman
in [15].

There are several algorithms for implementing reliable multicast, for ex-
ample see the presentation by Hadzilacos and Toueg in [53].

This chapter focuses on the deterministic models of computation and worst
case analysis. Randomization can yield better expected work complexity. A
randomized solution for the synchronous Do-All problem with crashes as-
suming reliable multicast is presented by Chlebus and Kowalski [17]. They
assume a weakly-adaptive linearly bounded adversary: the adversary selects

46 Synchronous Do-All with Crashes: Perfect Knowledge and Multicast

f < c · p (0 < c < 1) crash-prone processors prior to the start of the com-
putation, then any of these processors may crash at any time during the
computation. The randomized algorithm has expected combined total-work
complexity and message complexity S+M = O(n+p(1+log∗ p− log∗(p/n))),
where log∗ is the number of times the log function has to be applied to its
argument to yield the result that is no larger than 1. This is in contrast with
the lower bound Ω(n+ p · logn/ log logn) on total-work required in the worst
case by any deterministic algorithm in the same setting (Lemma 3.7).

In this chapter we have demonstrated that by separating the concerns be-
tween the reliability of processors and the underlying communication medium,
we are able to formulate solutions at a higher level of modularity. One ben-
efit of this is that such algorithms can use other distributed system services,
such as reliable multicast, to implement communication among processors
without altering the overall algorithmic approach. Lastly, the presented multi-
coordinator approach presents a venue for optimizing Do-All solutions and for
beating the Ω(n + (f + 1)p) lower bound of stage-checkpointing algorithms,
such as that presented by De Prisco, Mayer, and Yung [25].

4

Synchronous Do-All with Crashes and

Point-to-Point Messaging

WE now study the Do-All problem assuming that only point-to-point
messaging is available for processors to communicate. This in contrast

with the assumptions in the previous chapter, we considered the Do-All prob-
lem assuming that processors where assisted by an oracle or that reliable
multicast was available. As one would expect, in the point-to-point messag-
ing setting the problem becomes more challenging and different techniques
need to be employed in order to obtain efficient (deterministic) algorithms for
Do-All.

We consider Do-AllAC (n, p, f), that is the Do-All problem for n tasks, p
processors, up to f crashes, as determined by the adversary AC . The key in
developing efficient deterministic algorithms for Do-All in this setting lies in
the ability to share knowledge among processors efficiently. Algorithms that
rely on unique coordinators or checkpointing mechanisms incur a work over-
head penalty of Ω(n+fp) for f crashes; this overhead is particularly large, for

large f , for example, when f = ω(logΘ(1) p). Algorithm AN (from the previ-
ous chapter) beats this lower bound by using multiple coordinators, however
it uses reliable multicast, which can be viewed as a strong assumption in some
distributed settings. Therefore, we are interested in developing algorithms that
do not use checkpointing or reliable multicast and that are efficient, especially
for large f .

In this chapter we present a synchronous, message-passing, determinis-
tic algorithm for Do-AllAC (n, p, f). This algorithm has total-work complexity
O(n + p log3 p) and message complexity M(p1+2ε), for any ε > 0. Thus, the
work complexity of this algorithm beats the above mentioned lower bound (for
f = ω(log3 p)) and it is comparable to that of algorithm AN–however it uses
simple point-to-point messaging. The algorithm does not use coordinator or
checkpointing strategies to implement information sharing among processors.
Instead, it uses an approach where processors share information using an algo-
rithm developed to solve the gossip problem in synchronous message-passing
systems with processor crashes. To achieve messaging efficiency, the point-

48 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

to-point messaging is constrained by means of a communication graph that
represents a certain subset of the edges in a complete communication network.
Processors send messages based on permutations with certain properties.

Chapter structure.

In Section 4.1 we define the gossip problem and relevant measures of efficiency.
In Section 4.2 we present combinatorial tools that are used in the analysis of
the gossip and Do-All algorithms. In Section 4.3 we present a gossip algorithm,
show its correctness, and perform its complexity analysis. In Section 4.4 we
present the Do-All algorithm itself, show its correctness, and give complexity
analysis. We discuss open problems in Section 4.5.

4.1 The Gossip Problem

The Gossip problem is considered one of the fundamental problems in dis-
tributed computing and it is normally stated as follows: each processor has a
distinct piece of information, called a rumor, and the goal is for each proces-
sor to learn all rumors. In our setting, where we consider processor crashes, it
might not always be possible to learn the rumor of a processor that crashed,
since all the processors that have learned the rumor of that processor might
have also crashed in the course of the computation. Hence, we consider a
variation of the traditional gossip problem. We require that every non-faulty
processor learns the following about each processor v: either the rumor of v
or that v has crashed. It is important to note that we do not require for the
non-faulty processors to reach agreement: if a processor crashes then some of
the non-faulty processors may get to learn its rumor while others may only
learn that it has crashed.

Formally, we define the Gossip problem with crash-prone processors, as
follows:

Definition 4.1. The Gossip problem: Given a set of p processors, where ini-
tially each processor has a distinct piece of information, called a rumor, the
goal is for each processor to learn all the rumors in the presence of processor
crashes. The following conditions must be satisfied:

(1) Correctness: (a) All non-faulty processors learn the rumors of all non-
faulty processors, (b) For every failed processor v, non-faulty processor w
either knows that v has failed, or w knows v’s rumor.

(2) Termination: Every non-faulty processor terminates its protocol.

We let GossipAC (p, f) stand for the Gossip problem for p processors (and
p rumors) and adversary AC constrained to adversarial patterns of weight less
or equal to f .

We now define the measures of efficiency we use in studying the complex-
ity of the Gossip problem. We measure the efficiency of a Gossip algorithm

4.2 Combinatorial Tools 49

in terms of its time complexity and message complexity. Time complexity is
measured as the number of parallel steps taken by the processors until the
Gossip problem is solved. The Gossip problem is said to be solved at step τ ,
if τ is the first step where the correctness condition is satisfied and at least
one (non-faulty) processor terminates its protocol. More formally:

Definition 4.2 (time complexity). Let A be an algorithm that solves a
problem with p processors under adversary A. If execution ξ ∈ E(A,A), where
‖ξ|A‖ ≤ f , solves the problem by time τ(ξ), then the time complexity T of
algorithm A is:

T = TA(p, f) = max
ξ∈E(A,A), ‖ξ|A‖≤f

{
τ(ξ)

}
.

The message complexity is defined as in Definition 2.6 where the size of the
problem is p: it is measured as the total number of point-to-point messages
sent by the processors until the problem is solved. As before, when a processor
communicates using a multicast, its cost is the total number of point-to-point
messages.

4.2 Combinatorial Tools

We present tools used to control the message complexity of the gossip algo-
rithm presented in the next section.

4.2.1 Communication Graphs

We first describe communication graphs — conceptual data structures that
constrain communication patterns.

Informally speaking, the computation begins with a communication graph
that contains all nodes, where each node represents a processor. Each pro-
cessor v can send a message to any other processor w that v considers to be
non-faulty and that is a neighbor of v according to the communication graph.
As processors crash, meaning that nodes are “removed” from the graph, the
neighborhood of the non-faulty processors changes dynamically such that the
graph induced by the remaining nodes guarantees “progress in communica-
tion”: progress in communication according to a graph is achieved if there is
at least one “good” connected component, which evolves suitably with time
and satisfies the following properties: (i) the component contains “sufficiently
many” nodes so that collectively they have learned “suitably many” rumors,
(ii) it has “sufficiently small” diameter so that information can be shared
among the nodes of the component without “undue delay”, and (iii) the set
of nodes of each successive good component is a subset of the set of nodes of
the previous good component.

50 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

We use the following terminology and notation. Let G = (V,E) be a
(undirected) graph, with V the set of nodes (representing processors, |V | = p)
and E the set of edges (representing communication links). For a subgraph
GQ of G induced by Q (Q ⊆ V), we define NG(Q) to be the subset of V
consisting of all the nodes in Q and their neighbors in G. The maximum node
degree of graph G is denoted by ∆.

Let GVi be the subgraph of G induced by the sets Vi of nodes. Each set
Vi corresponds to the set of processors that haven’t crashed by step i of a
given execution. Hence Vi+1 ⊆ Vi (since processor do not restart). Also, each
|Vi| ≥ p − f , since no more than f < p processors may crash in a given
execution. Let GQi denote a component of GVi where Qi ⊆ Vi.

To formulate the the notion of a “good” component GQi we define a prop-
erty, called Compact Chain Property (CCP):

Definition 4.3. Graph G = (V,E) has the Compact Chain Property
CCP(p, f, ε), if:

I. The maximum degree of G is at most
(

p
p−f

)1+ε
,

II. For a given sequence V1 ⊇ . . . ⊇ Vk (V = V1), where |Vk| ≥ p− f , there is
a sequence Q1 ⊇ . . . ⊇ Qk such that for every i = 1, . . . , k:

(a) Qi ⊆ Vi,
(b) |Qi| ≥ |Vi|/7, and
(c) the diameter of GQi is at most 31 log p.

The following shows existence of graphs satisfying CCP for some param-
eters.

Lemma 4.4. For p>2, every f<p, and constant ε>0, there is a graph G of
O(p) nodes satisfying property CCP(p, f, ε).

4.2.2 Sets of Permutations

We now deal with sets of permutations that satisfy certain properties. These
permutations are used by the processors in the gossip algorithm to decide to
what subset of processors they send their rumor in each step of a given execu-
tion. Consider the symmetric group St of all permutations on set {1, . . . , t},
with the composition operation ◦, and identity et (t is a positive integer). For
permutation π = 〈π(1), . . . , π(t)〉 in St, we say that π(i) is a d-left-to-right
maximum (d-lrm in short), if there are less than d previous elements in π of
value greater than π(i), i.e., |{π(j) : π(j) > π(i) ∧ j < i}| < d. For a given
permutation π, let (d)-lrm(π) denote the number of d-left-to-right maxima
in π.

Let Υ and Ψ , Υ ⊆ Ψ , be two sets containing permutations from St. For
every σ in St, let σ ◦ Υ denote the set of permutations {σ ◦ π : π ∈ Υ}.
Now we define the notion of surfeit. (We will show that surfeit relates to
the redundant activity in our algorithms, i.e., “overdone” activity, or literally

4.3 The Gossip Algorithm 51

“surfeit”.) For a given Υ and permutation σ ∈ St, let (d, |Υ |)-Surf(Υ, σ) be
equal to

∑

π∈Υ (d)-lrm(σ−1 ◦ π). We then define the (d, q)-surfeit of set Ψ as
(d, q)-Surf(Ψ) = max{(d, q)-Surf(Υ, σ) : Υ ⊆ Ψ ∧ |Υ | = q ∧ σ ∈ St}.

The following results are known for (d, q)-surfeit.

Lemma 4.5. Let Υ be a set of q random permutations on set {1, . . . , t}. For
every fixed positive integer d, the probability that (d, q)-Surf(Υ, et) > t ln t +
10qd ln(t+ p) is at most e−[t ln t+9qdHt+p] ln(9/e).

Theorem 4.6. For a random set of p permutations Ψ from St, the event

holds with probability at most e−t ln t·ln(9/e2).

Using the probabilistic method we obtain the following result.

Corollary 4.7. There is a set of p permutations Ψ from St such that, for
every positive integers d and q ≤ p, (d, q)-Surf(Ψ) ≤ t ln t+ 10qd ln(t+ p).

The efficiency of the gossip algorithm (and hence the efficiency of a Do-All
algorithm that uses such gossip) relies on the existence of the permutations
in the thesis of the corollary (however the algorithm is correct for any permu-
tations). These permutations can be efficiently constructed.

4.3 The Gossip Algorithm

We now present the gossip algorithm, called Gossipε.

4.3.1 Description of Algorithm Gossipε

Suppose constant 0 < ε < 1/3 is given. The algorithm proceeds in a loop
that is repeated until each non-faulty processor v learns either the rumor of
every processor w or that w has failed. A single iteration of the loop is called
an epoch. The algorithm terminates after d1/εe − 1 epochs. Each of the first
d1/εe−2 epochs consists of α log2 p phases, where α is such that α log2 p is the
smallest integer that is larger than 341 log2 p. Each phase is divided into two
stages, the update stage, and the communication stage. In the update stage
processors update their local knowledge regarding other processors’ rumor
(known/unknown) and condition (failed/operational) and in the communica-
tion stage processors exchange their local knowledge (more momentarily). We
say that processor v heard about processor w if either v knows the rumor of
w or it knows that w has failed. Epoch d1/εe − 1 is the terminating epoch
where each processor sends a message to all the processors that it haven’t
heard about, requesting their rumor.

The pseudocode of the algorithm is given in Figure 4.1 (we assume, where
needed, that every if-then has an implicit else clause containing the necessary
number of no-ops to match the length of the code in the then clause; this is
used to ensure the synchrony of the system). The details of the algorithm are
explained in the rest of this section.

“for every positive integers d and q ≤ p, (d, q)-Surf(Ψ) > t ln t+ 10qd ln(t+ p)”

52 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

Initialization

statusv = collector;
activev = 〈1, 2, . . . , p〉;
busyv = 〈πv(1), πv(2), . . . , πv(p)〉;
waitingv = 〈πv(1), πv(2), . . . , πv(p)〉 \ 〈v〉;
rumorsv = 〈(v, rumorv)〉;
neighbv = NG1 (v) \ {v};
callingv = {};
answerv = {};

Iterating epochs

for ` = 1 to d1/εe − 2 do

if busyv is empty then set statusv to idle;
neighbv = {w : w∈activev ∧ w∈ NG` (v) \ {v}};

repeat α log2 p times % iterating phases
update stage;
communication stage;

Terminating epoch (d1/εe − 1)

update stage;
if statusv = collector then

send 〈activev, busyv , rumorsv, call〉 to each processor in waitingv;
receive messages;
send 〈activev, busyv, rumorsv, reply〉 to each processor in answerv;
receive messages;
update rumorsv ;

Fig. 4.1. Algorithm Gossipε, stated for processor v; πv(i) denotes the ith element
of permutation πv.

Local knowledge and messages.

Initially each processor v has its rumorv and permutation πv from a set Ψ of
permutations on [p], such that Ψ satisfies the thesis of Corollary 4.7. Moreover,
each processor v is associated with the variable statusv. Initially statusv =
collector (and we say that v is a collector), meaning that v has not heard
from all processors yet. Once v hears from all other processors, then statusv
is set to informer (and we say that v is an informer), meaning that now v
will inform the other processors of its status and knowledge. When processor
v learns that all non-faulty processors w also have statusw = informer then
at the beginning of the next epoch, statusv becomes idle (and we say that v
idles), meaning that v idles until termination, but it might send responses to
messages (see call-messages below).

Each processor maintains several lists and sets. We now describe the lists
maintained by processor v:

4.3 The Gossip Algorithm 53

• List activev: it contains the pids of the processors that v considers to be
non-faulty. Initially, list activev contains all p pids.

• List busyv: it contains the pids of the processors that v consider as col-
lectors. Initially list busyv contains all pids, permuted according to πv.

• List waitingv: it contains the pids of the processors that v did not hear
from. Initially list waitingv contains all pids except from v, permuted
according to πv.

• List rumorsv: it contains pairs of the form (w, rumorw) or (w,⊥). The
pair (w, rumorw) denotes the fact that processor v knows processor w’s
rumor and the pair (w,⊥) means that v does not know w’s rumor,
but it knows that w has failed. Initially list rumorsv contains the pair
(v, rumorv).

A processor can send a message to any other processor, but to lower the
message complexity, in some cases (see communication stage) we require pro-
cessors to communicate according to a conceptual communication graph G`,
` ≤ d1/εe − 2, that satisfies property CCP(p, p− p1−`ε, ε) (see Definition 4.3
and Lemma 4.4). When processor v sends a message m to another processor
w, m contains lists activev, busyv rumorsv, and the variable type. When
type = call, processor v requires an answer from processor w and we refer to
such message as a call-message. When type = reply, no answer is required—
this message is sent as a response to a call-message.

We now present the sets maintained by processor v.

• Set answerv: it contains the pids of the processors that v received a call-
message. Initially set answerv is empty.

• Set callingv: it contains the pids of the processors that v will send a
call-message. Initially callingv is empty.

• Set neighbv: it contains the pids of the processors that are in activev
and that according to the communication graph G`, for a given epoch `,
are neighbors of v (neighbv = {w : w∈activev ∧w∈NG`

(v)}). Initially,
neighbv contains all neighbors of v (all nodes in NG1(v)).

Communication stage.

In this stage the processors communicate in an attempt to obtain information
from other processors. This stage contains four sub-stages:

• First sub-stage: every processor v that is either a collector or an informer
(i.e., statusv 6= idle) sends message 〈activev , busyv, rumorsv, call〉 to
every processor in callingv. The idle processors do not send any messages
in this sub-stage.

• Second sub-stage: all processors (collectors, informers and idling) collect
the information sent to by the other processors in the previous sub-stage.
Specifically, processor v collects lists activew , busyw and rumorsw of
every processor w that received a call-message from and v inserts w in set
answerv.

54 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

• Third sub-stage: every processor (regardless of its status) responds to each
processor that received a call-message from. Specifically, processor v sends
message 〈activev, busyv, rumorsv, reply〉 to the processors in answerv
and empties answerv.

• Fourth sub-stage: the processors receive the responses to their call-
messages.

Update stage.

In this stage each processor v updates its local knowledge based on the mes-
sages it received in the last communication stage1. If statusv = idle, then v
idles. We now present the six update rules and their processing. Note that
the rules are not disjoint, but we apply them in the order from (r1) to (r6):

(r1) Updating busyv or rumorsv: For every processor w in callingv
(i) if v is an informer, it removes w from busyv, (ii) if v is a
collector and rumorsw was included in one of the messages that
v received, then v adds the pair (w, rumorw) in rumorsv and,
(iii) if v is a collector but rumorsw was not included in one of the
messages that v received, then v adds the pair (w,⊥) in rumorsv.

(r2) Updating rumorsv and waitingv: For every processor w in [p],
(i) if (w, rumorw) is not in rumorsv and v learns the rumor of
w from some other processor that received a message from, then
v adds (w, rumorw) in rumorsv, (ii) if both (w, rumorw) and
(w,⊥) are in rumorsv, then v removes (w,⊥) from rumorsv,
and (iii) if either of (w, rumorw) or (w,⊥) is in rumorsv and w
is in waitingv, then v removes w from waitingv.

(r3) Updating busyv: For every processor w in busyv, if v receives
a message from processor v′ so that w is not in busyv′ , then v
removes w from busyv.

(r4) Updating activev and neighbv: For every processor w in
activev (i) if w is not in neighbv and v received a message from
processor v′ so that w is not in activev′ , then v removes w from
activev, (ii) if w is in neighbv and v did not receive a message
from w, then v removes w from activev and neighbv, and (iii)
if w is in callingv and v did not receive a message from w, then
v removes w from activev.

(r5) Changing status: If the size of rumorsv is equal to p and v is a
collector, then v becomes an informer.

(r6) Updating callingv: Processor v empties callingv and (i) if
v is a collector then it updates set callingv to contain the
first p(`+1)ε pids of list waitingv (or all pids of waitingv if
sizeof(waitingv) < p(`+1)ε) and all pids of set neighbv, and

1 In the first update stage of the first phase of epoch 1, where no communication
has yet to occur, no update of the list or sets takes place.

4.3 The Gossip Algorithm 55

(ii) if v is an informer then it updates set callingv to con-
tain the first p(`+1)ε pids of list busyv (or all pids of busyv if
sizeof(busyv) < p(`+1)ε) and all pids of set neighbv.

Terminating epoch.

Epoch d1/εe−1 is the last epoch of the algorithm. In this epoch, each processor
v updates its local information based on the messages it received in the last
communication stage of epoch d1/εe−2. If after this update processor v is still
a collector, then it sends a call-message to every processor that is in waitingv
(list waitingv contains the pids of the processors that v does not know their
rumor or does not know whether they have crashed). Then every processor
v receives the call-messages sent by the other processors (set answerv is
updated to include the senders) . Next, every processor v that received a call-
message sends its local knowledge to the sender (i.e. to the members of set
answerv). Finally each processor v updates rumorsv based on any received
information. More specifically, if a processor w responded to v’s call-message
(meaning that v now learns the rumor of w), then v adds (w, rumorw) in
rumorsv. If w did not respond to v’s call-message, and (w, rumorw) is not
in rumorsv (it is possible for processor v to learn the rumor of w from some
other processor v′ that learned the rumor of w before processor w crashed),
then v knows that w has crashed and adds (w,⊥) in rumorsv.

4.3.2 Correctness of Algorithm Gossipε

We show that algorithm Gossipε solves the GossipAC (p, f) problem correctly,
meaning that by the end of epoch d1/εe−1 each non-faulty processor has heard
about all other p− 1 processors. First we show that no non-faulty processor
is removed from a processor’s list of active processors.

Lemma 4.8. In any execution of algorithm Gossipε, if processors v and w
are non-faulty by the end of any epoch ` < d1/εe − 1, then w is in activev.

Proof. Consider processors v and w that are non-faulty by the end of epoch
` < d1/εe− 1. We show that w is in activev. The proof of the inverse is done
similarly. The proof proceeds by induction on the number of epochs.

Initially all processors (including w) are in activev. Consider phase s of
epoch 1 (for simplicity assume that s is not the last phase of epoch 1). By the
update rule, a processor w is removed from activev if v is not idle and

(a) during the communication stage of phase s, w is not in neighbv and v
received a message from a processor v′ so that w is not in activev′ ,

(b) during the communication stage of phase s, w is in neighbv and v did not
receive a message from w, or

(c) v sent a call-message to w in the communication stage of phase s of epoch
1 and v did not receive a response from w in the same stage.

56 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

Case (c) is not possible: Since w is non-faulty in all phases s of epoch 1, w
receives the call-message from v in the communication stage of phase s and
adds v in answerw. Then, processor w sends a response to v in the same
stage. Hence v does not remove w from activev.
Case (b) is also not possible: Since w is non-faulty and w is in neighbv ,
by the properties of the communication graph G1, v is in neighbw as well
(and since v is non-faulty). From the description of the first sub-stage of the
communication stage, if statusw 6= idle, w sends a message to its neighbors,
including v. If statusw = idle, then w will not send a message to v in the first
sub-stage, but it will send a reply to v′ call-message in the third sub-stage.
Therefore, by the end of the communication stage, v has received a message
from w and hence it does not remove w from activev.
Neither Case (a) is possible: This follows inductively, using points (b) and (c):
no processor will remove w from its set of active processors in a phase prior
to s and hence v does not receive a message from any processor v′ so that w
is not in activev′ .

Now, assuming that w is in activev by the end of epoch ` − 1, we show
that w is still in activev by the end of epoch `. Since w is in activev by
the end of epoch ` − 1, w is in activev at the beginning of the first phase
of epoch `. Using similar arguments as in the base case of the induction and
from the inductive hypothesis, it follows that w is in activev by the end of
the first phase of epoch `. Inductively it follows that w is in activev by the
end of the last phase of epoch `, as desired. 2

Next we show if a non-faulty processor w has not heard from all processors
yet then no non-faulty processor v removes w from its list of busy processors.

Lemma 4.9. In any execution of algorithm Gossipε and any epoch ` <
d1/εe − 1, if processors v and w are non-faulty by the end of epoch ` and
statusw = collector, then w is in busyv.

Proof. Consider processors v and w that are non-faulty by the end of epoch
` < d1/εe− 1 and statusw = collector. The proof proceeds by induction on
the number of epochs.

Initially all processors w have status collector and w is in busyv
(callingv\ neighbv is empty). Consider phase s of epoch 1. By the update
rule, a processor w is removed from busyv if

(a) at the beginning of the update stage of phase s, v is an informer and w is
in callingv, or

(b) during the communication stage of phase s, v receives a message from a
processor v′ so that w is not in busyv′ .

Case (a) is not possible: Since v is an informer and w is in callingv at the
beginning of the update stage of phase s, this means that in the communi-
cation stage of phase s − 1, processor v was already an informer and it sent
a call-message to w. In this case, w would receive this message and it would

4.3 The Gossip Algorithm 57

become an informer during the update stage of phase s. This violates the
assumption of the lemma.
Case (b) is also not possible: For w not being in busyv′ it means that either
(i) in some phase s′ < s, processor v′ became an informer and sent a call-
message to w, or (ii) during the communication stage of a phase s′′ < s, v′

received a message from a processor v′′ so that w was not in busyv′′ . Case (i)
implies that in phase s′ + 1, processor w becomes an informer which violates
the assumption of the lemma. Using inductively case (i) it follows that case
(ii) is not possible either.

Now, assuming that by the end of epoch `−1, w is in busyv we would like
to show that by the end of epoch `, w is still in busyv. Since w is in busyv
by the end of epoch ` − 1, w is in busyv at the beginning of the first phase
of epoch `. Using similar arguments as in the base case of the induction and
from the inductive hypothesis, it follows that w is in busyv by the end of the
first phase of epoch `. Inductively it follows that w is in busyv by the end of
the last phase of epoch `, as desired. 2

We now show that each processor’s list of rumors is updated correctly.

Lemma 4.10. In any execution of algorithm Gossipε and any epoch ` <
d1/εe−1,
(i) if processors v and w are non-faulty by the end of epoch ` and w is not in
waitingv, then (w, rumorw) is in rumorsv, and
(ii) if processor v is non-faulty by the end of epoch ` and (w,⊥) is in rumorsv,
then w is not in activev.

Proof. We first prove part (i) of the lemma. Consider processors v and w that
are non-faulty by the end of epoch ` and that w is not in waitingv. The proof
proceeds by induction on the number of epochs. The proof for the first epoch
is done similarly as the the proof of the inductive step (that follows), since at
the beginning of the computation each w 6= v is in waitingv and rumorsv
contains only the pair (v, rumorv), for every processor v.

Assume that part (i) of the lemma holds by the end of epoch `−1, we would
like to show that it also holds by the end of epoch `. First note the following
facts: no pair of the form (w, rumorw) is ever removed from rumorsv and no
processor identifier is ever added to waitingv. We use these facts implicitly in
the remainder of the proof (cases (a) and (b)). Suppose, to the contrary, that
at the end of epoch ` there are processors v, w which are non-faulty by the end
of epoch ` and w is not in waitingv and (w,⊥) is in rumorsv. Take v such
that v put the pair (w,⊥) to its rumorsv as the earliest node during epoch `
and this pair has remained in rumorsv by the end of epoch `. It follows that
during epoch ` at least one of the following cases must have happened:
(a) Processor v sent a call-message to processor w in the communication stage
of some phase and v did not receive a response from w (see update rule (r1)).
But since w is not-faulty by the end of epoch ` it replied to v according to
the third sub-stage of communication stage. This is a contradiction.

58 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

(b) During the communication stage of some phase processor v received a
message from processor v′ so that (w,⊥) is in rumorsv′ (see update rule
(r2)). But this contradicts the choice of v.
Hence part (i) is proved.

The proof of part (ii) of the lemma is analogous to the proof of part (i).
The key argument is that the pair (w,⊥) is added in rumorsv if w does not
respond to a call-message sent by v which in this case w is removed from
activev (if w was not removed from activev earlier). 2

Finally we show the correctness of algorithm Gossipε.

Theorem 4.11. By the end of epoch d1/εe− 1 of any execution of algorithm
Gossipε, every non-faulty processor v either knows the rumor of processor w
or it knows that w has crashed.

Proof. Consider a processor v that is non-faulty by the end of epoch d1/εe−1.
Note that the claims of Lemmas 4.8, 4.9, and 4.10 also hold after the end of
the update stage of the terminating epoch. This follows from the fact that the
last communication stage of epoch d1/εe− 2 precedes the update stage of the
terminating epoch and the fact that this last update stage is no different from
the update stage of prior epochs (hence the same reasoning can be applied to
obtain the result).

If after this last update, processor v is still a collector, meaning that v did
not hear from all processors yet, according to the description of the algorithm,
processor v will send a call-message to the processors whose pid is still in
waitingv (by Lemma 4.10 and the update rule, it follows that list waitingv
contains all processors that v did not hear from yet). Then all non-faulty
processors w receive the call-message of v and then they respond to v. Then
v receives these responses. Finally v updates list rumorsv accordingly: if a
processor w responded to v’s call-message (meaning that v now learns the
rumor of w), then v adds (w, rumorw) in rumorsv. If w did not respond
to v’s call-message, and (w, rumorw) is not in rumorsv (it is possible for
processor v to learn the rumor of w from some other processor v′ that learned
the rumor of w before processor w crashed), then v knows that w has crashed
and adds (w,⊥) in rumorsv.

Hence the last update that each non-faulty processor v performs on
rumorsv maintains the validity that the list had from the previous epochs
(guaranteed by the above three lemmas). Moreover, the size of rumorsv be-
comes equal to p and v either knows the rumor of each processor w, or it
knows that v has crashed, as desired. 2

Note from the above that the correctness of algorithm Gossipε does not
depend on whether the set of permutations Ψ satisfy the conditions of Corol-
lary 4.7. The algorithm is correct for any set of permutations of [p].

4.3 The Gossip Algorithm 59

4.3.3 Analysis of Algorithm Gossipε

Consider some set V`, |V`| ≥ p1−`ε, of processors that are not idle at the
beginning of epoch ` and do not fail by the end of epoch `. Let Q` ⊆ V` be
such that |Q`| ≥ |V`|/7 and the diameter of the subgraph induced by Q` is
at most 31 log p. Q` exists because of Lemma 4.4 applied to graph G` and set
V`.

For any processor v, let callv = callingv\ neighbv . Recall that the
size of call is equal to p(`+1)ε (or less if list waiting, or busy, is shorter
than p(`+1)ε) and the size of neighb is at most p(`+1)ε. We refer to the call-
messages sent to the processors whose pids are in call as progress-messages. If
processor v sends a progress-message to processor w, it will remove w from list
waitingv (or busyv) by the end of current stage. Let d = (31 log p+1)p(`+1)ε.
Note that d ≥ (31 log p+ 1) · |call|.

We begin the analysis of the gossip algorithm by proving a bound on the
number of progress-messages sent under certain conditions.

Lemma 4.12. The total number of progress-messages sent by processors in
Q` from the beginning of epoch ` until the first processor in Q` will have its
list waiting (or list busy) empty, is at most (d, |Q`|)-Surf(Ψ).

Proof. Fix Q` and consider some permutation σ ∈ Sp that satisfies the fol-
lowing property: “Consider i < j ≤ p. Let τi (τj) be the time step in epoch
` where some processor in Q` hears about σ(i) (σ(j)) the first time among
the processors in Q`. Then τi ≤ τj .” (We note that it is not difficult to
see that for a given Q` we can always find σ ∈ Sp that satisfies the above
property.) We consider only the subset Υ ⊆ Ψ containing permutations of in-
dexes from set Q`. To show the lemma we prove that the number of messages
sent by processors from Q` is at most (d, |Υ |)-Surf(Υ, σ) ≤ (d, |Q`|)-Surf(Ψ).
Suppose that processor v ∈ Q` sends a progress-message to processor w. It
follows from the diameter of Q` and the size of set call in epoch `, that
none of processor v′ ∈ Q` had sent a progress-message to w before 31 log p
phases, and consequently position of processor w in permutation πv is at most
d− |call| ≤ d− p(`+1)ε greater than position of w in permutation πv′ .

For each processor v ∈ Q`, let Pv contain all pairs (v, i) such that v sends a
progress-message to processor πv(i) by itself during the epoch `. We construct
function h from the set

⋃

v∈Q`
Pv to the set of all d-lrm of set σ−1 ◦ Ψ and

show that h is one-to-one function. We run the construction independently
for each processor v ∈ Q`. If πv(k) is the first processor in the permutation
πv to whom v sends a progress-message at the beginning of epoch `, we set
h(v, k) = 1. Suppose that (v, i) ∈ Pv and we have defined function h for all
elements from Pv less than (v, i) in the lexicographic order. We define h(v, i)
as the first j ≤ i such that (σ−1 ◦ πv)(j) is a d-lrm not assigned yet by h to
any element in Pv.

60 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

Claim. For every (v, i) ∈ Pv, h(v, i) is well defined.

We prove the Claim. For the first element in Pv function h is well defined.
For the first d elements in Pv it is also easy to show that h is well defined, since
the first d elements in permutation πv are d-lrms. Suppose h is well defined for
all elements from Pv less than (v, i) and (v, i) is at least the (d+ 1)st element
in Pv. We show that h(v, i) is also well defined. Suppose to the contrary,
that there is no position j ≤ i such that (σ−1 ◦ πv)(j) is a d-lrm and j
is not assigned by h before step of construction for (v, i) ∈ Pv. Let j1 <
. . . < jd < i be the positions such that (v, j1), . . . , (v, jd) ∈ Pv and (σ−1 ◦
πv)(h(j1)), . . . , (σ

−1◦πv)(h(jd)) are greater than (σ−1◦πv)(i). They exist from
the fact, that (σ−1 ◦ πv)(i) is not d-lrm and every ”previous” d-lrms in πv are
assigned by L. Obviously processor w = πv(h(j1)) received a first progress-
message at least d

|call| = 31 log p + 1 phases before it received a progress-

message from v. From the choice of σ, processor w′ = πv(i) had received a
progress-message from some other processor in Q′` at least 31 log p+ 1 phases
before w′ received a progress-message from v. This contradicts the remark
at the beginning of the proof of the lemma. This completes the proof of the
Claim.

The fact that h is a one-to-one function follows directly from the definition
of h. It follows that the number of progress-messages sent by processors in Q`
until the list waiting (or list busy) of a processor in Q` is empty, is at most
(d, |Υ |)-Surf(Υ, σ) ≤ (d, |Q`|)-Surf(Ψ), as desired. 2

We now define an invariant, that we call I`, for ` = 1, . . . , d1/εe − 2:

I`: There are at most p1−`ε non-faulty processors having status
collector or informer in any step after the end of epoch `.

Using Lemma 4.12 and Corollary 4.7 we show the following:

Lemma 4.13. In any execution of algorithm Gossipε, the invariant I` holds
for any epoch ` = 1, . . . , d1/εe − 2.

Proof. For p = 1 it is obvious. Assume p > 1. We will use Lemma 4.4 and
Corollary 4.7. Consider any epoch ` < d1/εe − 1. Suppose to the contrary,
that there is a subset V` of non-faulty processors after the end of epoch ` such
that each of them has status either collector or informer and |V`| > p1−`ε.
Since G` satisfies CCP(p, p−p1−`ε, ε), there is a set Q` ⊆ V` such that |Q`| ≥
|V`|/7 > p1−`ε/7 and the diameter of the subgraph induced by Q` is at most
31 log p. Applying Lemma 4.12 and Corollary 4.7 to the set Q`, epoch `, t = p,
q = |Q`| and d = 31p(`+1)ε log p, we obtain that the total number of messages
sent until some processor v ∈ Q` has list busyv empty, is at most

2 · (31(log p+ 1)p(`+1)ε, |Q`|)-Surf(Ψ) + 31|Q`|p(`+1)ε log p

≤ 341|Q`|p(`+1)ε log2 p .

4.4 The Do-All Algorithm 61

More precisely, until some processor in Q` has status informer, the pro-
cessors in Q` have sent at most (31(log p+ 1)p(`+1)ε, |Q`|)-Surf(Ψ) messages.
Then, after the processors in Q` send at most 31|Q`|p(`+1)ε log p messages,
every processor in Q` has status informer. Finally, after the processors in Q`
send at most (31(log p+ 1)p(`+1)ε, |Q`|)-Surf(Ψ) messages, some processor in
Q` ⊆ V` has its list busy empty.

Notice that since no processor in Q` has status idle in epoch `, each
of them sends in every phase of epoch ` at most |call| ≤ p(`+1)ε progress-
messages. Consequently the total number of phases in epoch ` until some of
the processors in Q` has its list busy empty, is at most

341|Q`|p(`+1)ε log2 p

|Q`|p(`+1)ε
≤ 341 log2 p .

Recall that α log2 p ≥ 341 log2 p. Hence if we consider the first 341 log2 p
phases of epoch `, the above argument implies that there is at least one pro-
cessor in V` that has status idle, which is a contradiction. Hence, I` holds for
epoch `. 2

We now show the time and message complexity of algorithm Gossipε.

Theorem 4.14. Algorithm Gossipε solves the GossipAC(p, f) problem with
time complexity T = O(log2 p) and message complexity M = O(p1+3ε).

Proof. First we show the bound on time. Observe that each update and com-
munication stage takes O(1) time. Therefore each of the first d1/εe−2 epochs
takes O(log2 p) time. The last epoch takes O(1) time. From this and the fact
that ε is a constant, we have that the time complexity of the algorithm is in
the worse case O(log2 p).

We now show the bound on messages. From Lemma 4.13 we have that for
every 1 ≤ ` < d1/εe−2, during epoch `+1 there are at most p1−`ε processors
sending at most 2p(`+2)ε messages in every communication stage. The remain-
ing processors are either faulty (hence they do not send any messages) or have
status idle — these processors only respond to call-messages and their total
impact on the message complexity in epoch ` + 1 is at most as large as the
others. Consequently the message complexity during epoch ` + 1 is at most
4(α log2 p) · (p1−`εp(`+2)ε) ≤ 4αp1+2ε log2 p ≤ 4αp1+3ε. After epoch d1/εe − 2
there are, per Id1/εe−2, at most p2ε processors having list waiting not empty.
In epoch d1/εe − 1 each of these processors sends a message to at most p
processors twice, hence the message complexity in this epoch is bounded by
2p · p2ε. From the above and the fact that ε is a constant, we have that the
message complexity of the algorithm is O(p1+3ε). 2

4.4 The Do-All Algorithm

We now put the gossip algorithm to use by constructing a robust Do-All
algorithm, called algorithm Doallε.

62 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

4.4.1 Description of Algorithm Doallε

The algorithm proceeds in a loop that is repeated until all the tasks are
executed and all non-faulty processors are aware of this. A single iteration of
the loop is called an epoch. Each epoch consists of β log p+1 phases, where β >
0 is a constant integer. We show that the algorithm is correct for any integer
β > 0, but the complexity analysis of the algorithm depends on specific values
of β that we show to exist. Each phase is divided into two stages, the work
stage and the gossip stage. In the work stage processors perform tasks, and
in the gossip stage processors execute an instance of the Gossipε/3 algorithm
to exchange information regarding completed tasks and non-faulty processors
(more details momentarily). Computation starts with epoch 1. We note that
(unlike in algorithm Gossipε) the non-faulty processors may stop executing
at different steps. Hence we need to argue about the termination decision
that the processors must take. This is done in the paragraph “Termination
decision”.

The pseudocode for a phase of epoch ` of the algorithm is given in Fig-
ure 4.2 (again we assume that every if-then has an implicit else containing
no-ops as needed to ensure the synchrony of the system). The details are
explained in the rest of this section.

Local knowledge. Each processor v maintains a list of tasks taskv it believes
not to be done, and a list of processors procv it believes to be non-faulty.
Initially taskv = 〈1, . . . , n〉 and procv = 〈1, . . . , p〉. The processor also has
a boolean variable donev, that describes the knowledge of v regarding the
completion of the tasks. Initially donev is set to false, and when processor v
is assured that all tasks are completed donev is set to true.

Task allocation. Each processor v is equipped with a permutation πv from a
set Ψ of permutations on [n]. (This is distinct from the set of permutation on
[p] required by the gossip algorithm.) We show that the algorithm is correct
for any set of permutations on [n], but its complexity analysis depends on
specific set of permutations Ψ that we show to exist. These permutations can
be constructed efficiently.

Initially taskv is permuted according to πv and then processor v performs
tasks according to the ordering of the tids in taskv. In the course of the
computation, when processor v learns that task z is performed (either by
performing the task itself or by obtaining this information from some other
processor), it removes z from taskv while preserving the permutation order.

Work stage. For epoch `, each work stage consists of T` =
⌈
n+p log3 p

p

2l log p

⌉

work

sub-stages. In each sub-stage, each processor v performs a task according to
taskv. Hence, in each work stage of a phase of epoch `, processor v must
perform the first T` tasks of taskv. However, if taskv becomes empty at a

4.4 The Do-All Algorithm 63

Initialization

donev = false;
taskv = 〈πv(1), πv(2), . . . , πv(p)〉;
procv = 〈1, 2, . . . , p〉;

Epoch `

repeat β log p+ 1 times % iterating phases of epoch `

repeat T` = dn+p log3 p
p

2l log p
e times % work stage begins

if taskv not empty then

perform task whose id is first in taskv ;
remove task’s id from taskv ;

elseif taskv empty and donev = false then

set donev to true;
if taskv empty and donev = false then

set donev to true;

run Gossipε/3 with rumorv = (taskv ,procv ,donev); % gossip stage begins

if donev = true and donew = true for all w received rumor from then

TERMINATE;
else

update taskv and procv ;

Fig. 4.2. Algorithm Doallε, stated for processor v; πv(i) denotes the ith element
of permutation πv.

sub-stage prior to sub-state T`, then v performs no-ops in the remaining sub-
stages (each no-op operation takes the same time as performing a task). Once
taskv becomes empty, donev is set to true.

Gossip stage. Here processors execute algorithm Gossipε/3 using their lo-
cal knowledge as the rumor, i.e., for processor v, rumorv = (taskv, procv,
donev). At the end of the stage, each processor v updates its local knowledge
based on the rumors it received. The update rule is as follows: (a) If v does
not receive the rumor of processor w, then v learns that w has failed (guaran-
teed by the correctness of Gossipε/3). In this case v removes w from procv.
(b) If v receives the rumor of processor w, then it compare taskv and procv
with taskw and procw respectively and updates its lists accordingly—it re-
moves the tasks that w knows are already completed and the processors that
w knows that have crashed. Note that if taskv becomes empty after this up-
date, variable donev remains false. It will be set to true in the next work
stage. This is needed for the correctness of the algorithm (see Lemma 4.19).

Termination decision. We would like all non-faulty processors to learn that
the tasks are done. Hence, it would not be sufficient for a processor to termi-

64 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

nate once the value of its done variable is set to true. It has to be assured
that all other non-faulty processors’ done variables are set to true as well,
and then terminate. This is achieved as follows: If processor v starts the gos-
sip stage of a phase of epoch ` with donev = true, and all rumors it receives
suggest that all other non-faulty processors know that all tasks are done (their
done variables are set to true), then processor v terminates. If at least one
processor’s done variable is set to false, then v continues to the next phase
of epoch ` (or to the first phase of epoch `+ 1 if the previous phase was the
last of epoch `).

Remark 4.15. In the complexity analysis of the algorithm we first assume that
n ≤ p2 and then we show how to extend the analysis for the case n > p2. In
order to do so, we assume that when n > p2, before the start of algorithm
Doallε, the tasks are partitioned into n′ = p2 chunks, where each chunk
contains at most dn/p2e tasks. In this case it is understood that in the above
description of the algorithm, n is actually n′ and when we refer to a task we
really mean a chunk of tasks.

4.4.2 Correctness of Algorithm Doallε

We show that the algorithm Doallε solves the Do-AllAC (n, p, f) problem
correctly, meaning that the algorithm terminates with all tasks performed
and all non-faulty processors are aware of this. Note that this is a stronger
correctness condition than the one required by the definition of Do-All.

First we show that no non-faulty processor is removed from a processor’s
list of non-faulty processors.

Lemma 4.16. In any execution of algorithm Doallε, if processors v and
w are non-faulty by the end of the gossip stage of phase s of epoch `, then
processor w is in procv.

Proof. Let v be a processor that is non-faulty by the end of the gossip stage
of phase s of epoch `. By the correctness of algorithm Gossipε/3 (called at
the gossip stage), processor v receives the rumor of every non-faulty processor
w and vice-versa. Since there are no restarts, v and w were alive in all prior
phases of epochs 1, 2, . . . , `, and hence, v and w received each other rumors in
all these phases as well. By the update rule it follows that processor v does
not remove processor w from its processor list and vice-versa. Hence w is in
procv and w is in procv by the end of phase s, as desired. 2

Next we show that no undone task is removed from a processor’s list of
undone tasks.

Lemma 4.17. In any execution of algorithm Doallε, if a task z is not in
taskv of any processor v at the beginning of the first phase of epoch `, then z
has been performed in a phase of one of the epochs 1, 2, . . . , `− 1.

4.4 The Do-All Algorithm 65

Proof. From the description of the algorithm we have that initially any task
z is in taskv of a processor v. We proceed by induction on the number of
epochs. At the beginning of the first phase of epoch 1, z is in taskv. If by
the end of the first phase of epoch 1, z is not in taskv then by the update
rule either (i) v performed task z during the work stage, or (ii) during the
gossip stage v received rumorw from processor w in which z was not in taskw.
The latter suggests that processor w performed task z during the work stage.
Continuing in this manner it follows that if z is not in taskv at the beginning
of the first phase of epoch 2, then z was performed in one of the phases of
epoch 1.

Assuming that the thesis of the lemma holds for any epoch `, we show
that it also holds for epoch `+ 1. Consider two cases:

Case 1 : If z is not in taskv at the beginning of the first phase of epoch `,
then since no tid is ever added in taskv, z is not in taskv neither at the
beginning of the first phase of epoch `+1. By the inductive hypothesis, z was
performed in one of the phases of epochs 1, . . . , `− 1.

Case 2 : If z is in taskv at the beginning of the first phase of epoch ` but it
is not in taskv at the beginning of the second phase of epoch `, then by the
update rule it follows that either (i) v performed task z during the work stage
of the second phase of epoch `, or (ii) during the gossip stage of the second
phase of epoch `, v received rumorw from processor w in which z was not
in taskw. The latter suggests that processor w performed task z during the
work stage of the second phase of epoch ` or it learned that z was done in the
gossip stage of the first phase of epoch `. Either case, task z was performed.
Continuing in this manner it follows that if z is not in taskv at the beginning
of the first phase of epoch `+1, then z was performed in one of the phases of
epoch `. 2

Next we show that under certain conditions, local progress is guaranteed.
First we introduce some notation. For processor v we denote by taskv

(`,s)

the list taskv at the beginning of phase s of epoch `. Note that if s is the
last phase – (β log2 p)th phase – of epoch `, then taskv

(`,s+1) =taskv
(`+1,1),

meaning that after phase s processor v enters the first phase of epoch `+ 1.

Lemma 4.18. In any execution of algorithm Doallε, if processor v en-
ters a work stage of a phase s of epoch ` with donew = false, then
sizeof(taskv

(`,s+1)) < sizeof(taskv
(`,s)).

Proof. Let v be a processor that starts the work stage of phase s of epoch `
with donew = false. According to the description of the algorithm, the value
of variable donev is initially false and it is set to true only when taskv
becomes empty. Hence, at the beginning of the work stage of phase s of epoch
` there is at least one task identifier in taskv

(`,s), and therefore v performs at
least one task. From this and the fact that no tid is ever added in a processor’s
task list, we get that sizeof(taskv

(`,s+1)) < sizeof(taskv
(`,s)). 2

66 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

We now show that when during a phase s of an epoch `, a processor learns
that all tasks are completed and it does not crash during this phase, then the
algorithm is guaranteed to terminate by phase s + 1 of epoch `; if s is the
last phase epoch `, then the algorithm is guaranteed to terminate by the first
phase of epoch ` + 1. For simplicity of presentation, in the following lemma
we assume that s is not the last phase of epoch `.

Lemma 4.19. In any execution of algorithm Doallε, for any phase s of
epoch ` and any processor v, if donev is set to true during phase s and v is
non-faulty by the end of phase s, then the algorithm terminates by phase s+1
of epoch `.

Proof. Consider phase s of epoch ` and processor v. According to the code
of the algorithm, the value of variable donew is updated during the work
stage of a phase (the value of the variable is not changed during the gossip
stage). Hence, if the value of variable donew is changed during the phase
s of epoch ` this happens before the start of the gossip stage. This means
that taskv contained in rumorv in the execution of algorithm Gossipε/3
is empty. Since v does not fail during phase s, the correctness of algorithm
Gossipε/3 guarantees that all non-faulty processors learn the rumor of v, and
consequently they learn that all tasks are performed. This means that all
non-faulty processors w start the gossip stage of phase s+ 1 of epoch ` with
donew = true and all rumors they receive contain the variable done set to
true.

The above, in conjunction with the termination guarantees of algorithm
Gossipε/3, leads to the conclusion that all non-faulty processors terminate by
phase s+1 (and hence the algorithm terminates by phase s+1 of epoch `). 2

Finally we show the correctness of algorithm Doallε.

Theorem 4.20. In any execution of algorithm Doallε, the algorithm termi-
nates with all tasks performed and all non-faulty processors being aware of
this.

Proof. By Lemma 4.16, no non-faulty processor leaves the computation, and
by our model at least one processor does not crash (f < p). Also from
Lemma 4.17 we have that no undone task is removed from the computation.
From the code of the algorithm we get that a processor continues performing
tasks until its task list becomes empty and by Lemma 4.18 we have that
local progress is guaranteed. The above in conjunction with the correctness of
algorithm Gossipε/3 lead to the conclusion that there exist a phase s of an
epoch ` and a processor v so that during phase s processor v sets donev to
true, all tasks are indeed performed and v survives phase s. By Lemma 4.19
the algorithm terminates by phase s + 1 of epoch ` (or by the first phase of
epoch `+ 1 if s is the last phase of epoch `). Now, from the definition of T` it
follows that the algorithm terminates after at most O(log p) epochs: consider

4.4 The Do-All Algorithm 67

epoch log p; Tlog p = d(n+ p log3 p)/ log pe = dn/ log p+ p log2 pe. Recall that
each epoch consists of β log p+ 1 phases. Say that β = 1. Then, when a pro-
cessor reaches epoch log p, it can perform all n tasks in this epoch. Hence, all
tasks that are not done until epoch log p− 1 are guaranteed to be performed
by the end of epoch log p and all non-faulty processors will know that all tasks
have been performed. 2

Note from the above that the correctness of algorithm Doallε does not
depend on the set of permutations that processors use to select what tasks to
do next. The algorithm works correctly for any set of permutations on [n]. It
also works for any integer β > 0.

4.4.3 Analysis of Algorithm Doallε

We now derive the work and message complexities for algorithm Doallε.
The analysis is based on the following terminology. For the purpose of the
analysis, we number globally all phases by positive integers starting from 1.
Consider a phase i in epoch ` of an execution ξ ∈ E(Doallε,AC). Let Vi(ξ)
denote the set of processors that are non-faulty at the beginning of phase i.
Let pi(ξ) = |Vi(ξ)|. Let Ui(ξ) denote the set of tasks z such that z is in some
list taskv, for some v ∈ Vi(ξ), at the beginning of phase i. Let ui(ξ) = |Ui(ξ)|.

Now we classify the possibilities for phase i as follows. If at the beginning
of phase i, pi(ξ) > p/2`−1, we say that phase i is a majority phase. Otherwise,
phase i is a minority phase. If phase i is a minority phase and at the end of i
the number of surviving processors is less than pi(ξ)/2, i.e., pi+1(ξ) < pi(ξ)/2,
we say that i is an unreliable minority phase. If pi+1(ξ) ≥ pi(ξ)/2, we say
that i is a reliable minority phase. If phase i is a reliable minority phase
and ui+1(ξ) ≤ ui(ξ) − 1

4pi+1(ξ)T`, then we say that i is an optimal reliable
minority phase (the task allocation is optimal – the same task is performed
only by a constant number of processors on average). If ui+1(ξ) ≤ 3

4ui(ξ),
then i is a fractional reliable minority phase (a fraction of the undone tasks is
performed). Otherwise we say that i is an unproductive reliable minority phase
(not much progress is obtained). The classification possibilities for phase i of
epoch ` are depicted in Figure 4.3.

phase i of
epoch `

“minority”

pi ≤
p

2`−1

pi >
p

2`−1

“majority”

- pi+1 ≥
pi
2

“reliable”

pi+1 <
pi
2

“unreliable”

-

- ui+1 ≤ ui −
pi+1

4
T`

ui+1 ≤
3ui
4

otherwise

“optimal”

“fractional”

“unproductive”

-

-

-

-

Fig. 4.3. Classification of a phase i of epoch `; execution ξ is implied.

68 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

Our goal is to choose a set Ψ of permutations and a constant β > 0 such
that for any execution there will be no unproductive and no majority phases.
To do this we analyze sets of random permutations, prove certain properties
of algorithm Doallε for such sets (in Lemmas 4.21 and 4.22), and finally use
the probabilistic method to obtain an existential deterministic solution.

We now give the intuition why the phases, with high probability, are nei-
ther majority nor minority reliable unproductive. First, in either of such cases,
the number of processors crashed during the phase is at most half of all op-
erational processors during the phase. Consider only those majorities of pro-
cessors that survive the phase and the tasks performed by them. If there are
a lot of processors, then all tasks will be performed if the phase is a majority
phase, or at least min{ui(ξ), |Q|T`}/4 yet unperformed tasks are performed
by the processors if the phase is a minority reliable unproductive phase, all
with high probability. Hence one can derandomize the choice of suitable set
of permutations such that for any execution there are neither majority nor
minority reliable unproductive phases.

Lemma 4.21. Let Q be a fixed nonempty subset of processors in phase i of
epoch ` of algorithm Doallε. Then the probability of event “for every ex-
ecution ξ of algorithm Doallε such that Vi+1(ξ) ⊇ Q and ui(ξ) > 0, the
following inequality holds ui(ξ) − ui+1(ξ) ≥ min{ui(ξ), |Q|T`}/4,” is at least
1 − 1/e−|Q|T`/8.

Proof. Let ξ be an execution of algorithm Doallε such that Vi+1(ξ) ⊇ Q
and ui(ξ) > 0. Let c = min{ui(ξ), |Q|T`}/4. Let Si(ξ) be the set of tasks z
such that z is in every list taskv for v ∈ Q, at the beginning of phase i.
Let si(ξ) = |Si(ξ)|. Note that Si(ξ) ⊆ Ui(ξ), and that Si(ξ) describes some
properties of set Q, while Ui(ξ) describes some properties of set Vi(ξ) ⊇ Q.
Consider the following cases:

Case 1 : si(ξ) ≤ ui(ξ) − c. Then after the gossip stage of phase i we obtain
the required inequality with probability 1.

Case 2 : si(ξ) > ui(ξ) − c. We focus on the work stage of phase i. Consider
a conceptual process in which the processors in Q perform tasks sequentially,
the next processor takes over when the previous one has performed all its
T` steps during the work stage of phase i. This process takes |Q|T` steps

to be completed. Let U
(k)
i (ξ) denote the set of tasks z such that: z is in

some list taskv, for some v ∈ Q, at the beginning of phase i and z has not
been performed during the first k steps of the process, by any processor. Let

u
(k)
i (ξ) = |U (k)

i (ξ)|. Define the random variables Xk, for 1 ≤ k ≤ |Q|T`, as
follows:

Xk =

{

1 if either ui(ξ) − u
(k)
i (ξ) ≥ c or u

(k)
i (ξ) 6= u

(k−1)
i (ξ) ,

0 otherwise .

4.4 The Do-All Algorithm 69

Suppose some processor v ∈ Q is to perform the kth step. If ui(ξ)−u(k)
i (ξ) < c

then we also have the following:

si(ξ) −
(
ui(ξ) − u

(k)
i (ξ)

)
> si(ξ) − c ≥ ui(ξ)/2 ≥ sizeof(taskv)/2,

where taskv is taken at the beginning of phase i, because 3c ≤ 3ui(ξ)/4 ≤
si(ξ). Thus at least a half of the tasks in taskv, taken at the beginning of
phase i, have not been performed yet, and so Pr[Xk = 1] ≥ 1/2.

We need to estimate the probability Pr[
∑
Xk ≥ c], where the summation

is over all |Q|T` steps of all the processors in Q in the considered process.
Consider a sequence 〈Yk〉 of independent Bernoulli trials, with Pr[Yk = 1] =
1/2. Then the sequence 〈Xk〉 statistically dominates the sequence 〈Yk〉, in the

sense that Pr
[∑

Xk ≥ d
]
≥ Pr

[∑

Yk ≥ d
]
, for any d > 0. Note that

E[
∑
Yk] = |Q|T`/2 and c ≤ E[

∑
Yk]/2, hence we can apply Chernoff bound

to obtain

Pr
[∑

Yk ≥ c
]

≥ 1 − Pr

[
∑

Yk <
1

2
E
[∑

Yk

]]

≥ 1 − e−|Q|T`/8 .

Hence the number of tasks in Ui(ξ), for any execution ξ such that Vi+1(ξ) ⊇
Q, performed by processors from Q during work stage of phase i is at least c
with probability 1 − e−|Q|T`/8. 2

Lemma 4.22. Assume n ≤ p2 and p ≥ 28. There exists a constant integer
β > 0 such that for every phase i of some epoch ` > 1 of any execution ξ of
algorithm Doallε, if there is a task unperformed by the beginning of phase i
then:

(a) the probability that phase i is a majority phase is at most e−p log p, and
(b) the probability that phase i is a minority reliable unproductive phase is at

most e−T`/16.

Proof. We first prove clause (a). Assume that phase i belongs to epoch `,
for some ` > 1. First we group executions ξ such that phase i is a majority
phase in ξ, according to the following equivalence relation: executions ξ1 and
ξ2 are in the same class iff Vi+1(ξ1) = Vi+1(ξ2). Every such equivalence class
is represented by some set of processors Q of size greater than p

2`−1 , such that
for every execution ξ in this class we have Vi+1(ξ) = Q. In the following claim
we define conditions for β for satisfying clause (a).

Claim. For constant β = 9 and any execution ξ in the class represented by
Q, where |Q| > p

2`−1 , all tasks were performed by the end of epoch `− 1 with

probability at least 1 − e−p log p−p.

We prove the Claim. Consider an execution ξ from a class represented
by Q. Consider all steps taken by processors in Q during phase j of epoch
` − 1. By Lemma 4.21, since Vj+1(ξ) ⊇ Q, we have that the probability of
event “if uj(ξ) > 0 then uj(ξ)− uj+1(ξ) ≥ min{uj(ξ), |Q|T`−1}/4,” is at least

70 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

1− 1/e|Q|T`−1/8. If the above condition is satisfied we call phase j productive
(for consistency with the names optimal and fractional; the difference is that
these names are used only for minority phases–now we use it according to the
progress made by processors in Q), and this happens with probability at least
1−1/e|Q|T`−1/8. Since the total number of tasks is n, we have that the number
of productive phases during epoch ` − 1 sufficient to perform all tasks using
only processors in Q is either at most

n

|Q|T`−1/4
≤ n

n/(4 log p)
= 4 log p,

or, since n ≤ p2, is at most

log4/3 n = 5 log p.

Therefore there are a total of 9 log p productive phases, which is sufficient
to perform all tasks. Furthermore, every phase in epoch ` − 1 is productive.
Hence, all tasks are performed by processors in Q during β log p phases, for
constant β = 9, of epoch `− 1 with probability at least

1 − 9 log p · e−|Q|T`−1/8 ≥ 1 − eln 9+ln log p−(p log2 p)/4 ≥ 1 − e−p log p−p,

since p ≥ 8. Consequently all processors terminate by the end of phase β log p+
1 with probability 1− e−p log p−p. This follows by the correctness of the gossip
algorithm and the argument of Lemma 4.19, since epoch `−1 lasts β log p+1
phases and processors in Q are non-faulty at the beginning of epoch `. This
completes the proof of the Claim.

There are at most 2p of possible sets Q of processors, hence by the Claim
the probability that phase i is a majority phase is at most

2p · e−p log p−p ≤ e−p log p,

which proves clause (a) for phase i.
Now we prove clause (b) for phase i. Consider executions such that phase

i in epoch ` is a minority reliable phase. Similarly as above, we partitions
executions according to the following equivalence relation: executions ξ1 and
ξ2 are in the same class if there is set Q such that H = Vi+1(ξ1) = Vi+1(ξ2).
Set Q is a representative of a class. By Lemma 4.21 applied to phase i and
set Q we obtain that the probability that phase i is unproductive for every
execution ξ such that Vi+1(ξ) = Q is e−|Q|T`/8. Hence the probability that for
any execution ξ phase i is a minority reliable unproductive phase is at most

p/2`−1

∑

x=1

(
p

x

)

· e−xT`/8 ≤
p/2`−1

∑

x=1

2x log p · e−xT`/8 ≤
p/2`−1

∑

x=1

ex log p−xT`/8

≤ elog p−T`/8 · 1

1 − elog p−T`/8
≤ e−T`/16,

(since p ≥ 28), showing clause (b) for phase i. 2

4.4 The Do-All Algorithm 71

Recall that epoch ` consists of β log p + 1 phases for some β > 0 and

that T` = d n+p log3 p
(p/2`) log pe. Also by the correctness proof of algorithm Doallε

(Theorem 4.20), the algorithm terminates in at most O(log p) epochs, hence,
the algorithm terminates in at most O(log2 p) phases. Let g` be the number
of steps that each gossip stage takes in epoch `, i.e., g` = Θ(log2 p).

We now show the work and message complexity of algorithm Doallε.

Theorem 4.23. There is a set of permutations Ψ and a constant integer β >
0 (e.g., β = 9) such that algorithm Doallε, using permutations from Ψ ,
solves the Do-AllAC (n, p, f) problem with total work S = O(n+ p log3 p) and
message complexity M = O(p1+2ε).

Proof. We show that for any execution ξ ∈ E(Doallε,AC) that solves the
Do-AllAC (n, p, f) problem there exists a set of permutations Ψ and an integer
β > 0 so that the complexity bounds are as desired. Let β be from Lemma 4.22.
We consider two cases:

Case 1 : n ≤ p2. Consider phase i of epoch ` of execution ξ for randomly chosen
set of permutations Ψ . We reason about the probability of phase i belonging
to one of the classes illustrated in Figure 4.3, and about the work that phase
i contributes to the total work incurred in the execution, depending on its
classification. From Lemma 4.22(a) we get that phase i may be a majority
phase with probability at least e−p log p which is a very small probability.
More precisely, the probability that for a set of permutations Ψ , in execution
ξ obtained for Ψ some phase i is a majority phase, is O(log2 p · e−p log p) =
e−Ω(p log p), and consequently using the probabilistic method argument we
obtain that for almost any set of permutations Ψ there is no execution in
which there is a majority phase.

Therefore, we focus on minority phases that occur with high probability
(per Lemma 4.22(a)). We can not say anything about the probability of a
minority phase to be a reliable or unreliable, since this depends on the spe-
cific execution. Note however, that by definition, we cannot have more than
O(log p) unreliable minority phases in any execution ξ (at least one proces-
sor must remain operational). Moreover, the work incurred in an unreliable
minority phase i of an epoch ` in any execution ξ is bounded by

O(pi(ξ)·(T`+g`)) = O

(
p

2`−1
·
(
n+ p log3 p

p
2` log p

+ log2 p

))

= O

(
n

log p
+ p log2 p

)

.

Thus, the total work incurred by all unreliable minority phases in any execu-
tion ξ is O(n+ p log3 p).

From Lemmas 4.21 and 4.22(b) we get that a reliable minority phase may
be fractional or optimal with high probability 1 − e−T`/16, whereas it may
be unproductive with very small probability e−T`/16 ≤ e− log2 p/16. Using a
similar argument as for majority phases, we get that for almost all sets of
permutations Ψ (probability 1 − O(log2 p · e−T`/16) ≥ 1 − e−Ω(T`)) and for

72 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

every execution ξ, there is no minority reliable unproductive phase. The work
incurred by a fractional phase i of an epoch ` in any execution ξ is bounded
by O(pi(ξ) · (T`+ g`)) = O(n

log p + p log2 p). Also note that by definition, there

can be at most O(log3/4 n) (= O(log p) since n ≤ p2) fractional phases in
any execution ξ and hence, the total work incurred by all fractional reliable
minority phases in any execution ξ is O(n + p log3 p). We now consider the
optimal reliable minority phases for any execution ξ. Here we have an optimal
allocation of tasks to processors in Vi(ξ). By definition of optimality, in average
one task in Ui(ξ) \ Ui+1(ξ) is performed by at most four processors from
Vi+1(ξ), and by definition of reliability, by at most eight processors in Vi(ξ).
Therefore, in optimal phases, each unit of work spent on performing a task
results to a unique task completion (within a constant overhead), for any
execution ξ. It therefore follows that the work incurred in all optimal reliable
minority phases is bounded by O(n) in any execution ξ.

Therefore, from the above we conclude that when n ≤ p2, for random
set of permutations Ψ the work complexity of algorithm Doallε executed on
such set Ψ is S = O(n+ p log3 p) with probability 1− e−Ω(p log p) − e−Ω(T`) =
1−e−Ω(T`) (the probability appears only from analysis of majority and unpro-
ductive reliable minority phases). Consequently such set Ψ exists. Also, from
Lemma 4.22 and the above discussion, β > 0 (e.g., β = 9) exists. Finally,
the bound on messages using selected set Ψ and constant β is obtained as
follows: there are O(log2 p) executions of gossip stages. Each gossip stage re-
quires O(p1+ε) messages (message complexity of one instance of Gossipε/3).

Thus, M = O(p1+ε log2 p) = O(p1+2ε).

Case 2 : n > p2. In this case, the tasks are partitioned into n′ = p2 chunks,
where each chunk contains at most dn/p2e tasks (see Remark 4.15). Using
the result of Case 1 and selected set Ψ and constant β, we get that S =
O(n′+p log3 p) ·Θ(n/p2) = O(p2 ·n/p2 +n/p2 ·p log3 p) = O(n). The message
complexity is derived with the same way as in Case 1. 2

4.5 Open Problems

As demonstrated by the gossip-based Do-All algorithm presented in this chap-
ter, efficient algorithms can be designed that do not rely on single coordinators
or reliable multicast to disseminate knowledge between processors. Gossiping
seems to be a very promising alternative. An interesting open problem is to
investigate whether a more efficient gossip algorithm can be developed that
could yield an even more efficient Do-All algorithm.

An interesting problem is to perform a failure-sensitive analysis for the
iterative Do-All problem using point-to-point messaging. Recall that if an
algorithm solves the Do-AllAC (n, p, f) problem with work O(x) then this al-
gorithm can be iteratively used to solve the r-Do-AllAC (n, p, f) problem with
work r ·O(x). However, it should be possible to produce an improved upper

4.6 Chapter Notes 73

bound, for example, as we did in the previous chapter for the model with
crashes and reliable multicast.

4.6 Chapter Notes

Dwork, Halpern, and Waarts [30] introduced and studied the Do-All in the
message-passing model. They developed several deterministic algorithms that
solved the problem for synchronous crash-prone processors. To evaluate the
performance of their algorithms, they used the task-oriented work complexity
W and the message complexity measureM . They also used the effort complex-
ity measure, defined as the sum ofW and M . This measure of efficiency makes
sense for algorithms for which the work and message complexities are similar.
However, this makes it difficult to compare relative efficiency of algorithms
that exhibit varying trade-offs between the work and the communication effi-
ciencies.

The first algorithm presented in [30], called protocol B has effort O(n +
p
√
p), with work contributing the cost O(n + p) and the message complexity

contributing the cost O(p
√
p) toward the effort. The running time of the algo-

rithm is O(n + p). The algorithm uses synchrony to detect processor crashes
by means of timeouts. The algorithm operates as follows. The n tasks are
divided into chunks and each chunk is divided into sub-chunks. Processors
checkpoint their progress by multicasting the completion information to sub-
sets of processors after performing a subchunk, and broadcasting to all proces-
sors after completing chunks of work. Another algorithm, called protocol C has
effort O(n+ p log p). It has optimal work W = O(n+ p), message complexity
M = O(p log p) and time O(p2(n+p)2n+p). This shows that reducing the mes-
sage complexity may cause a significant increase in time. Protocol D is another
Do-All algorithm that obtains work optimality and it is designed for maximum
speed-up, which is achieved with a more aggressive check-pointing strategy,
thus trading-off time for messages. The message complexity is quadratic in
p for the fault-free case, and in the presence of f < p crashes the message
complexity degrades to Θ(fp2).

De Prisco, Mayer, and Yung [25] provided an algorithmic solution for
Do-All considering the same setting as Dwork et al., (synchrony, processor
crashes) but using the total-work (available processor steps) complexity mea-
sure S. They use a “lexicographic” criterion: first evaluate an algorithm ac-
cording to its total-work and then according to its message complexity. This
approach assumes that optimization of work is more important than optimiza-
tion of communication. They present a deterministic algorithm, call it DMY,
that has S = O(n+ (f + 1)p) and M = O((f + 1)p). The algorithm operates
as follows. At each step all the processors have a consistent (over)estimate
of the set of all the available processors (using checkpoints). One processor
is designated to be the coordinator. The coordinator allocates the undone
tasks according to a certain load balancing rule and waits for notifications

74 4 Synchronous Do-All with Crashes and Point-to-Point Messaging

of the tasks which have been performed. The coordinator changes over time.
To avoid a quadratic upper bound for S, substantial processor slackness is
assumed (p� n).

The authors in [25] also formally show a lower bound of S = Ω(n +
(f + 1)p) for any algorithm using the stage-checkpoint strategy, this bound
being quadratic in p for f comparable with p. Moreover, any protocol with at
most one active coordinator (that is, a protocol that uses a single coordinator
paradigm) is bound to have S = Ω(n+(f+1)p). Namely, consider the following
behavior of the adversary: while there is more than one operational processor,
the adversary stops each coordinator immediately after it becomes one and
before it sends any messages. This creates pauses of Ω(1) steps, giving the
Ω((f + 1)p) part. Eventually there remains only one processor which has to
perform all the tasks, because it has never received any messages, this gives the
remaining Ω(n) part. Algorithm AN (presented in Chapter 3) beats this lower
bound by using a multicoordinator approach; however it makes use of reliable
multicast. Algorithm Doallε presented in this chapter beats this lower bound
by neither using checkpointing nor single-coordinators paradigms; instead it
uses a gossip algorithm for the dissemination of information.

Galil, Mayer, and Yung [38], while working in the context of Byzantine
agreement [78] assuming synchronous crash-prone processors, developed an
efficient algorithm, call it GMY, that has the same total-work bound as al-
gorithm DMY (S = O(n + (f + 1)p)) but has better message complexity:
M = O(fpε + min{f + 1, log p}p), for any ε > 0. The improvement on the
message complexity is mainly due to the improvement of the checkpoint strat-
egy used by algorithm DMY by replacing the “rotating coordinator” approach
with what they called the “rotating tree” (diffusion tree) approach.

Chlebus, Gasieniec, Kowalski, and Shvartsman [16] developed a determin-
istic algorithm that solves Do-All for synchronous crash-prone processors with
combined total-work and message complexity S +M = O(n + p1.77). This is
the first algorithm that achieves subquadratic in p combined S and M for
the Do-All problem for synchronous crash-prone processors. They present an-
other deterministic algorithm that has total-work S = O(n+ p log2 p) against
f -bounded adversaries such that p−f = Ω(pα) for a constant 0 < α < 1. They
also show how to achieve S+M = O(n+ p log2 p) against a linearly-bounded
adversary by carrying out communication on an underlying constant-degree
network.

The presentation in this chapter is based on a paper by Georgiou, Kowal-
ski, and Shvartsman [44]. The proofs of Lemmas 4.4, 4.5 and Theorem 4.6
appear there. For the probabilistic method and its applications see the book
of Alon and Spencer [4]. The notion of the left-to-right maximum is due to
Knuth [71] (p. 13).

The complexity results presented in this chapter involve the use of con-
ceptual communication graphs and sets of permutations with specific combi-
natorial properties. Kowalski, Musial, and Shvartsman [75] showed that such
combinatorial structures can be constructed efficiently.

4.6 Chapter Notes 75

Additionally, observe that the complexity bounds do not show how work
and message complexities depend on f , the maximum number of crashes.
In fact it is possible to subject the algorithm to “failure-sensitivity-training”
and obtain better results. Georgiou, Kowalski, and Shvartsman show how this
can be achieved in [44]. The main idea relies on the fact that checkpointing
is rather efficient for a small number of failures. So, the authors use algo-
rithm Doallε in conjunction with the check-pointing algorithm DMY [25],
where the check-pointing and the synchronization procedures are taken from
algorithm GMY [38]; in addition they use a modified version of algorithm
Gossipε, optimized for a small number of failures. The resulting algorithm
achieves total work S = O(n+ p ·min{f + 1, log3 p}) and message complexity
M = O(fpε + pmin{f + 1, log p}), for any ε > 0. More details can be found
in [44].

Chlebus and Kowalski [18] were the first to define and study the Gossip
problem for synchronous message-passing processors under an adaptive adver-
sary that causes processor crashes (this is the version of the Gossip problem
considered in this chapter); they developed an efficient gossip algorithm and
they used it as a building block to obtain an efficient synchronous algorithm
for the consensus problem with crashes. In a later work [19], the same au-
thors developed another algorithm for the synchronous Gossip problem with
crashes and used it to obtain an efficient early-stopping consensus algorithm
for the same setting. More details on work on gossip in fault-prone distributed
message-passing systems can be found in the survey of Pelc [96] and the book
of Hromkovic, Klasing, Pelc, Ruzicka, and Unger [59].

5

Synchronous Do-All with Crashes and Restarts

IN general-purpose distributed computation in dynamic environments, it is
important to be able to deal, and efficiently so, with processors failing, then

restarting and rejoining the system.
Here we consider the Do-All problem of performing n tasks in a message-

passing distributed environment consisting of p processors that are subject to
failures and restarts. Failures are crashes, i.e., a crashed processor stops and
does not perform any further actions until, and if, it restarts. Restarted pro-
cessors resume computation in a predefined initial state, and no stable storage
is assumed. The distributed environment is synchronous and the underlying
network is fully connected, so that any processor can send a message to any
other processor. Messages are not lost in transit or corrupted. Because the
system is synchronous we also assume that there is a known upper bound on
message delivery time. It is convenient to assume that messages sent within
one step of a certain known duration are delivered before the end of the next
such step. The efficiency of algorithms is evaluated in terms of total-work and
message complexities.

Chapter structure.

In Section 5.1 we present the adversary, called ACR, that causes processor
crashes and restarts dynamically during the computation. In Section 5.2 we
present matching upper and lower bounds on the total-work of Do-All un-
der adversary ACR, when the computation is assisted by an oracle providing
load-balancing and computation-progress information to the processors. In
Section 5.3 we present a deterministic algorithm, call AR, that efficiently
solves the Do-AllACR(n, p, f) problem, using reliable multicast; this algorithm
in an extension of algorithm AN presented in Section 3.3.1. We discuss open
problems in Section 5.4.

78 5 Synchronous Do-All with Crashes and Restarts

5.1 Adversarial Model

We denote by ACR an omniscient (on-line) adversary that can cause proces-
sor crashes and subsequent restarts, as defined in Section 2.2.1. Recall that
crashed processors lose their local memory, and if a crashed processor restarts,
it does so in a known state – thus the restarts are detectable.

Consider an algorithm A that performs a computation in the presence
of adversary ACR. Let ξ be an execution in E(A,ACR). We represent the
adversarial pattern ξ|ACR as a set of triples (event, pid, t), where event is
either a crash or a restart caused by the adversary, pid is the identifier of
the processor that crashes or restarts, and t is the time of the execution
(according to some external clock not available to the processors) when the
adversary causes the event.

For an adversarial pattern ξ|ACR , we define fc(ξ|ACR) to be the number of
crashes and fr(ξ|ACR) to be the number of restarts in ξ. We then define fcr =
‖ξ|ACR‖ to be fc(ξ|ACR) + fr(ξ|ACR). We observe that fr(ξ|ACR) ≤ fc(ξ|ACR),
since the number of restarts cannot exceed the number of crashes. Note that
fcr(ξ|ACR) may not be bounded by a function of p, unless the adversary is
restricted in the number of crashes or restarts that it can cause.

When analyzing the worst case asymptotic complexity of a given algorithm
in ACR it is often convenient to express the result as a function of p, the
number of processors, n, the number of tasks, and fc(ξ|ACR), the number of
crashes. This is possible because fr(ξ|ACR) ≤ fc(ξ|ACR) and because fcr =
fc(ξ|ACR) + fr(ξ|ACR) ≤ 2fc(ξ|ACR) = Θ(fc(ξ|ACR)).

Adversary ACR, as defined, can generate adversarial patterns that could
prevent computational progress. For example, if all processors crash and none
of them restart, no computational progress is possible. More interestingly,
even if processors restart, it is possible that progress can be prevented. For
example, consider a scenario in which half of the processors are crashed right
at the beginning of the computation. If the remaining processors, after they
perform some computation, crash and then the initially crashed processors
restart, then these processors may not be aware of the computation performed
by the other processors (this is because no communication may have occurred
between the two groups of processors – messages can be lost when processors
crash). Since the processors lose their local memory upon a failure, this can
be repeated forever without any progress in the computation.

To avoid such uninteresting adversarial patterns, we restrict ACR to caus-
ing crash and restart patterns such that during any consecutive κ steps of the
computation (κ ≥ 0), there is at least one processor that is operational during
all these κ steps. More formally,

Definition 5.1. Let κ be a positive integer. An adversarial pattern of ACR is
said to be “κ-restricted” if during any consecutive κ steps i, i+1, . . . , i+κ−1
there is at least one processor that is operational during all steps i, i+1, . . . , i+
κ− 1.

5.2 A Lower Bound on Work for Restartable Processors 79

We denote the maximal subset of ACR that contains only the κ-restricted

adversarial patterns as A(κ)
CR. We also define A(0)

CR to be the adversary for which

no restrictions are imposed on the adversarial patterns, and thus A(0)
CR = ACR.

Observe that A(κ+1)
CR ⊆ A(κ)

CR ⊆ . . . ⊆ A(1)
CR ⊆ A(0)

CR for any κ ≥ 1. Thus if an

algorithm solves the Do-All problem under adversary A(κ)
CR it is not necessarily

the case that the same algorithm solves Do-All under A(κ−1)
CR . This is because

A(κ−1)
CR may contain additional adversarial patterns as compared to A(κ)

CR

As we have noted above, the Do-All problem is not solvable under adver-

sary A(0)
CR: indeed if all processors fail before executing all the tasks, then the

tasks can never be completed. It is not hard to see that no solution is pos-

sible also for A(1)
CR. Indeed a 1-restricted adversarial pattern requires that at

least one processor be alive during any step. However this is not sufficient to
guarantee progress. Even if there is always one processor alive progress can be
prevented (the scenario given above in which half of the processors fail while
the other half of the processors restart is an example). Hence the best we can

hope for is to find a solution for A(2)
CR, unless additional help is provided to

the processors (e.g., an oracle). We notice that in a κ-restricted execution, for
κ ≥ 2, it is guaranteed that processors’ lifetimes have some overlap and the
bigger is κ the bigger is the overlap. For κ = 2 such overlap can be as small as
a single step. Hence in order to not lose information about the ongoing com-
putation (such loss, in the absence of stable storage, prevents progress), it is
necessary that processors exchange state information during each step. Thus
a solution that works for a small κ tends to have large message complexity.

Note also that there is a qualitative distinction between A(1)
CR and A(2)

CR:
processors’ lifetimes may not overlap in the former while they must overlap in

the latter. The difference between A(κ)
CR and A(κ+1)

CR when κ ≥ 2 is quantitative:
in the latter the overlap of processors’ lifetimes is one step longer than in the
former.

5.2 A Lower Bound on Work for Restartable Processors

As we did for the the Do-All problem with crashes, we provide a lower bound
result assuming that processors are assisted by Oracle O presented in Sec-
tion 3.2.1. Following the notation introduced in the same section we let Do-
AllOACR

(n, p, f) stand for the Do-AllACR(n, p, f) problem when the processors

are assisted by oracle O. Any lower bound developed for Do-AllOACR
(n, p, f)

trivially holds for Do-AllACR(n, p, f) as well as for Do-AllA(n, p, f) where
ACR ⊆ A.

Observe that with the help of the oracle makes it possible for Write-All

to be solved under adversary A(1)
CR, as even if there is no overlap between the

active steps of any two processors the progress can be observed and remem-

bered by the oracle. Solutions under adversary A(0)
CR are still not possible, as

80 5 Synchronous Do-All with Crashes and Restarts

the adversary can crash and restart all processors at every step without al-
lowing any processor to perform a task – and hence no progress is made at
any step.

We now show a lower bound for work on solving the Do-All problem under

adversary A(1)
CR. We show this with the help of the oracle, and thus the result

applies to any analogous model without the oracle.

Theorem 5.2. Given any algorithm A that solves the Do-AllOACR
(n, p, f) prob-

lem (p ≤ n), there exists an adversarial strategy in A(1)
CR that causes the algo-

rithm to perform S = Ω(n+ p log p) total-work.

Proof. The adversary A(1)
CR imposes a schedule that uses the following strategy

at every step of the computation: Let u > 1 be the number of remaining tasks.
For as long as u > p, the adversary induces no crashes. The total-work needed
to perform n− p tasks when there were no failures is at least n− p.

As soon as a processor is about to perform some task n − p + 1 making
u ≤ p, the adversary crashes and then restarts all p processors but that
one. For the upcoming iteration (where u = p), the adversary examines the
algorithm to determine how the processors are assigned to remaining tasks.
The adversary then lists the first bu2 c of the remaining tasks with the least
number of processors assigned to them. Assuming the oracle allows processors
to perform perfect load balancing, the total number of processors assigned
to these tasks does not exceed dp

2e. The adversary crashes these processors,
allowing all others to proceed. Therefore at least bp2c processors will complete
this iteration having together performed no more than half of the remaining
tasks. Once these tasks are done, the adversary restarts all processors.

This strategy of the adversary can be continued for at least log p iterations.
Therefore, the work performed by algorithm A is no less than n−p+bp2c log p =
Ω(n+ p log p), as desired. 2

Observe that the above lower bound does not show how work depends on
f , the number of crashes. It is interesting to develop failure-sensitive lower
bounds in this setting that show how work depends on the number of crashes
and restarts.

For completeness we show that the oracle-based algorithm given in Fig-
ure 3.1 of Section 3 can solve the Do-AllOACR

(n, p, f) problem under adversary

A(1)
CR. This means that the algorithm is optimal with respect to the lower

bound shown in Theorem 5.2.

Theorem 5.3. The Do-AllO
A

(1)
CR

(n, p, f) problem can be solved using total-work

S = O (n+ p log p) .

Proof. Recall that processors can obtain perfect load-balancing and termina-
tion information from the oracle in O(1) time. From the discussion in Sec-
tion 3.2.1 it follows that all processor steps in the presence of the oracle are

5.2 A Lower Bound on Work for Restartable Processors 81

in fact task-oriented steps. Hence, in order to obtain the result we only need
to compute a bound on the number of tasks performed by the processors.

At each step of the execution that a processor is active, it consults the
oracle of what task to perform. Say that at a given step there are u tasks that
have not yet been performed. The oracle assures that no more than dp/ue
processors are assigned to each unperformed task. This strategy continues
until all tasks are done.

We assess the work performed by the algorithm as follows. We list the
Do-All tasks in ascending order according to the time (step) at which each
task is performed (for tasks executed in the same step the order is chosen
arbitrarily). We divide this list into adjacent segments numbered sequentially
starting with 0, such that the segment 0 contains σ0 = n−p tasks, and segment
j ≥ 1 contains σj = b p

j(j+1) c tasks, for j = 1, . . . ,m for some m ≤ √
p.

Let uj be the least possible number of unperformed tasks when processors
were being assigned by the oracle to the tasks of the jth segment; uj can be

computed as uj = n−
j−1
∑

i=0

σi = n− σ0 −
j−1
∑

i=1

σi = p−
j−1
∑

i=1

σi.

Note that u0 if of course n. Then for j ≥ 1 he have that

uj = p−
j−1
∑

i=1

σi ≥ p− (p− p

j
) =

p

j
.

Therefore, no more than d p
uj
e processors were assigned to each task.

Then, then work performed by the oracle-based algorithm is

S ≤
m∑

j=0

σj

⌈
p

uj

⌉

≤ σ0 +
m∑

j=1

⌊
p

j(j + 1)

⌋⌈
p

p/j

⌉

= σ0 +O

p
m∑

j=1

1

j + 1

 = O(n+ p log p),

as desired. 2

Remark 5.4. In the above analysis it is assumed that a processor contacts the
oracle and performs the task in one local step. The accounting is done at
the granularity of such local steps. If the consultation with the oracle takes
place in one local step and the performance of a task in the next local step,
then the result in Theorem 5.3 gives the upper bound for task-oriented work,
not total-work. To assess total-work we note that a processor can crash after
consulting the oracle but before performing a task. A restarted processor
detects its previous crash and consults the oracle again. This incurs additional
local step per each processor restart. If there are fc crashes and fr restarts
(fc ≥ fr), then total work complexity becomes O(n + p log p + f), where
f = fc + fr = Θ(fc). We will see that this additive work overhead f occurs
in the analysis of the algorithm in the next section.

82 5 Synchronous Do-All with Crashes and Restarts

5.3 Algorithm AR for Restartable Processors

In this section we present algorithm AR that solves the Do-All under adversary

A(26)
CR . The constant 26 depends on the structure of the algorithm. (With a

modest effort the constant can be reduced to 17, as we explain later.)
For this algorithm we show that it has total-work (available processor

steps) complexity S = O((n+ p log p+ f) ·min{log p, log f}), and its message
complexity is M = O(n + p log p + fp), where f is the maximum number of
crashes caused by the adversary. The algorithm is an extension of algorithm
AN presented in Section 3.3.1. The difference is that there are added mes-
sages to handle the restart of processors; in the absence of restarts the two
algorithms behave identically.

The algorithms assume that the communication is reliable. If a processor
sends a message to another operational processor and when the message ar-
rives at the destination the processor is still operational, then the message is
received. Moreover, if an operational processor sends a multicast message and
then fails, then either the message is sent to all destinations or to none at all.
Such multicast is received by all operational processors.

5.3.1 Description of Algorithm AR

We first overview the algorithmic techniques, then present algorithm AR in
detail.

As with algorithm AN, algorithm AR proceeds in a loop that is repeated
until all the tasks are executed. A single iteration of the loop is called a phase.
A phase consists of three consecutive stages. Each stage consists of three steps
(thus a phase consists of 9 steps). We refer to these three step as the receive
substage, the compute substage and the send substage.

As before, processors act as either coordinators or workers. If at least one
processor acts as a coordinator during a phase and it completes the phase
without failing, we say that the phase is attended , the phase is unattended
otherwise.

Local views. Processors assume the role of coordinator based on their local
knowledge. During the computation each processor w maintains a list Lw =
〈q1, q2, ..., qk〉 of supposed live processors. We call such list a local view as we
did for algorithm AN, although the structure is managed differently.

The processors in Lw are partitioned into layers consisting of consecutive
sublists of Lw: Lw = 〈Λ0, Λ1, ..., Λj〉. The number of processors in layer Λi+1,
for i = 0, 1, ..., j − 1, is the double of the number of processors in layer Λi.
Layer Λj may contain less processors. So far the local views are exactly as
in algorithm AN. The difference is that processors in a local view do not
necessarily appear in the order of processor identifiers: restarted processors
are appended at the end of the local view in the order of the identifiers of the
restarted processors.

5.3 Algorithm AR for Restartable Processors 83

Example 5.5. Suppose that we have a system of p = 31 processors. Assume
that for a phase ` all processors are in the local view of a worker w, in order of
processor identifier, and that the view is a tree-like view (e.g., at the beginning
of the computation, for ` = 0). We now assume that the processors crash as in
Example 3.17 and that the local view of processor w for phase `+2 is as given
in Figure 3.2. If in phase ` + 2 processor 3 fails and processors 5, 22, 29, 31
restart (phase `+ 2 is unattended) and in phase `+ 3 processors 4, 6 fail and
processors 1, 2, 9 restart (phase `+3 is unattended) then the view of processor
w for phase `+ 4 is the one in Figure 5.1.

10 12 13 14

16 17 19 20 5 22 29 31

1 2 9

Fig. 5.1. A local view for phase `+ 4.

The local view is used to implement the martingale principle of appointing
coordinators as in algorithm AN. The local view is updated at the end of each
phase. As we will explain shortly, the update rule for algorithm AR is different.

Phase structure and task allocation. The structure of each phase of the
algorithm is the same as for algorithm AN. The differences are as follows.

1. If a processor restarts, it informs all other processors of this fact.
2. Any processors that restarted during a phase are not considered available,

since they might not have up to date information about the computation.
3. Following the receipt of messages from any restarted processors, they are

reintegrated in the local views of all processors receiving these messages,
and become available for computation in the subsequent phase.

Details of Algorithm AR

We now present algorithm AR in greater detail, with the focus on handling
restarted processors. After the restart, processor q broadcasts restart(q) mes-
sages in each step until it receives a response. Processors receiving such mes-
sages, ignore them if these messages are not received in the receive substage
of stage 2 of a phase. Thus we can imagine that a restarted processor q broad-
casts a restart(q) in the send substage of stage 1 of a phase ` (however we
will count all the restart messages in the message complexity). This message
is then received by all the live and restarted processors of that phase, and, as
we will see shortly, processor q is re-integrated in the view for phase `+1. Pro-
cessor q needs to be informed about the status of the ongoing computation.
Hence processors that have this information send the info(U`, L`) messages

84 5 Synchronous Do-All with Crashes and Restarts

to processor q with the set U` of unaccounted tasks and the local view L`. In
Figure 5.2 we provide the detailed description for each phase. The parts that
are new or that are different in algorithm AR as compared to algorithm AN
are italicized in the figure.

Phase ` of algorithm AR:

Stage 1.

Receive: The receive substage is not used.
Compute: In the compute substage any processor w performs a specific

task z according to the load balancing rule.
Send: In the send substage w sends a report(z) to any coordinator,

that is, to any processor in the first layer of L`,w. Any restarted
processor q broadcasts the restart(q) message informing all live
processors of its restart.

Stage 2.

Receive: In the receive substage the coordinators gather report mes-
sages and all processors gather restart messages. Let R be the set
of processors that sent a restart message. For any coordinator c,
let z1

c , ..., z
kc
c be the set of TIDs received in report messages.

Compute: In the compute substage c sets Dc ← Dc ∪
⋃kc
i=1{z

i
c} and

Pc to the set of processors from which c received report messages.
Send: In the send substage, coordinator c multicasts the message

summary(Dc, Pc) to the processors in Pc and R. Any processor in
Pc sends the message info(U`, L`) to processors in R.

Stage 3.

Receive: In the receive substage processors in R receive info(U`, L`)
messages and processors in Pc and R receive summary(Dc, Pc) mes-
sages.

Compute: In the compute substage, a restarted processor q sets L`,q ←
L` and U`,q ← U`. Let (D1

w, P
1
w), ..., (Dkw

w , P kw
w) be the sets received

in summary messages by processor w. Processor w sets Dw ← Di
w

and Pw ← P iw for an arbitrary i ∈ 1, ..., kw and updates its local
view L`,w as described below.

Receive: The send substage is not used.

Fig. 5.2. Phase ` of algorithm AR (text in italics highlights differences between
algorithm AR and algorithm AN).

Local view update rule. In phase 0 the local view L0,w of any processor w
contains all the processors in P ordered by their PIDs, and the first layer is a
singleton set. Let L`,w = 〈Λ0, Λ1, ..., Λj〉 be the local view of processor w for
phase `. We distinguish two possible cases.

Case 1 : Phase ` is unattended. Let R` be the set of restarted processors which
send restart messages. Let R′ be the set of processors of R` that are not al-

5.3 Algorithm AR for Restartable Processors 85

ready in the local view L`,w. Let 〈R′〉 be the processors in R′ ordered according
to their PIDs. The local view for the next phase is L`+1,w = 〈Λ1, ..., Λj〉⊕〈R′〉.
The operator ⊕ places processors of R′, in the order 〈R′〉, into the last layer
Λj till this layer contains exactly the double of the processors of layer Λj−1

and possibly adds a new layer Λj+1 to accommodate the remaining processors
of 〈R′〉. That is, newly restarted processors which are not yet in the view, are
appended at the end of the old view. Notice that restarted processors, which
receive info messages, know the old view L`.

Case 2 : Phase ` is attended. Let R` be the set of restarted processors. Since
the phase is attended summary messages are received by all the live processors
(including the restarted ones). Any processor w updates Pw as described in
stage 3. Processor w knows the set R`. The local view L`+1,w for the next
phase is structured according to the martingale principle and contains all the
processors in Pw ∪R` ordered according to their PIDs.

If there are no restarts, algorithm AR behaves exactly as algorithm AN.
Figure 5.3 provides a graphical description of both algorithms. The main
differences deal with the messages involving restarted processors and corre-
sponding updates.

Coordinator

Worker
knows

L,P,U,D

Restarted

�

�
R

R

Stage 2Stage 1 Stage 3

Perform
one task

Perform
one task

receive
report

update
D,P

summary

update
R

receive
summary

update
D,P,L

report

receive
restart

info

restart

receive
restart

update
R

receive
info

summary

update
D,P,L

N

Fig. 5.3. A phase of algorithm AR.

Remark 5.6. Algorithm AR tolerates crash/restart patterns that are 26-
restricted. Recall that a 26-restricted failure pattern is one such that for any
26 consecutive steps of the algorithm there is at least one processor alive in
all the 26 steps. The constant 26 depends on the algorithm. In algorithm AR
some substages are not used (see Figure 5.2). The algorithm can be modi-
fied by “squeezing” the full phase into two stages, instead of the three (the
three stages were used in the presentation for the sake of clarity). With this
modification, 17-restricted failure patterns can be tolerated.

86 5 Synchronous Do-All with Crashes and Restarts

5.3.2 Correctness of Algorithm AR

Here we show that algorithm AR solves the Do-All problem under adversary

A(26)
CR . Given an execution of the algorithm we say that the execution is good if

it is an execution allowed by A(26)
CR . Hence we have to prove that the algorithm

solves the problem for any good execution.
A restarted processor has no information about the ongoing computation,

and thus cannot actively participate in the computation, until it gets a chance
to communicate with other processors. Moreover, if a processors completes two
consecutive phases it is able to acquire information about the computation
in the first of the two phases and to transfer it to other processors in the
second of the two phases. We will show that having, at any point during any
execution, a processor that is operational for 26 consecutive steps is sufficient
for our algorithm. This allows for the largest number of steps, 8, that may
be “wasted” because this is just short of the 9 steps that constitute a phase,
plus two complete phases, i.e., 18 steps, as described above. This intuition is
made formal in the proofs in this section.

Formally we use the following definitions.

Definition 5.7. A live processor is said to be “fully active” at a particular
time t during phase `, if it stays alive from the start of phase ` − 1 through
time t.

Definition 5.8. A live processor is said to be a “witness” for phase ` if it
stays alive for the duration of phases `− 1 and `.

We remark that the difference between a processor fully active in phase `
and a witness of phase ` is that the witness is guaranteed, by definition, to
survive the entire phase `, while the fully active processor may fail before the
end of phase `. Hence a fully active processor cannot guarantee transfer of
state information while the witness can.

Lemma 5.9. In a good execution, there is a witness for any phase.

Proof. A good execution has a 26-restricted adversarial pattern. Thus for any
step i, there is at least one processor that stays alive for the next 26 steps.
Notice that 8 of these step may be spent waiting for the beginning of the next
phase (if the processor has just restarted in step i). However the remaining
18 steps are enough to guarantee that the processor stays alive for the next
two phases, since each phase consists of 9 steps. 2

The witness of phase ` is always a processor fully active in phase `. Next
we show that at the beginning of each phase every fully active processor has
consistent knowledge of the ongoing computation.

Lemma 5.10. In a good execution of algorithm AR, for any two processors
w, v fully active at the beginning of phase `, we have that L`,w = L`,v and that
U`,w = U`,v.

5.3 Algorithm AR for Restartable Processors 87

Proof. By induction on the number of phases. For the base case we need
to prove that the lemma is true for the first phase. Initially we have that
L0,w = L0,v = 〈P〉 and Uw = Uv = T . Hence the base case is true.

Assume that the lemma is true for phase `. We need to prove that it is true
for phase ` + 1. Let w and v be two processors fully active at the beginning
of phase `+ 1.

First we claim that at the beginning of stage 3 of phase `, we have L`,w =
L`,v and U`,w = U`,v. Indeed, if w and v are fully active also at the beginning
of phase `, then the claim follows by the inductive hypothesis. If processor w
(resp. v) has just restarted and is not yet fully active in phase `, then it sends
a restart message in stage 1 of phase `. By Lemma 5.9, there is a witness
for phase `. Hence processor w (resp. v) receives a info message from the
witness and thus at the beginning of stage 3 of phase ` it has U`,w = U` (resp.
U`,v = U`) and L`,w = L` (resp. L`,v = L`).

We now distinguish two cases: phase ` is attended and phase ` is unat-
tended.

Case 1 : Phase ` is not attended. Then no summary messages are received by
w and v and in stage 3 of phase ` they do not modify their sets U`,w and U`,v.
The local view of both processors is modified in the same way (case 1 of the
local view update). Hence we have that U`+1,w = U`+1,v and L`+1,w = L`+1,v.

Case 2 : Phase ` is attended. Then there is at least one coordinator completing
the phase. Let c1, ..., ck be the coordinators for phase `. Since we have reliable
multicast, the report message of each worker reaches all coordinators that
are alive. Thus the summary messages sent by coordinators are all equal. Let
summary(D,P) one such a message. Since we have reliable multicast, both
processors w and v receive summary(D,P) messages from the coordinators.
Hence in stage 3 of phase ` processors w and v set D`+1,w = D`+1,v = D and
thus we have U`+1,w = U`+1,v. Processors w and v also set P`+1,w = P`+1,v =
P and use the same rule (case 2 of the local view update rule) to update the
local view. Hence we have L`+1,w = L`+1,v. 2

Because of the previous lemma we can define the view L` = L`,w, the set of
available processors P` = P`,w, the set of done tasks D` = D`,w and the set of
unaccounted tasks U` = U`,w, all of them referred to the beginning of phase `,
where w is any fully active processor. Notice that restarted (non-fully-active)
processors may have inconsistent knowledge of these quantities.

Remember that we denote by p` the cardinality of the set of live processors
for phase `, i.e., p` = |P`|, and by u` the cardinality of the set of unaccounted
tasks for phase `, i.e., u` = |U`|.

In the following lemmas we prove safety (no live processor or undone task
is forgotten) and progress (tasks execution) properties, which imply the cor-
rectness of the algorithm.

Lemma 5.11. In any execution of algorithm AR, a processor fully active at
the beginning of phase ` belongs to P`.

88 5 Synchronous Do-All with Crashes and Restarts

Proof. If processor w is fully active at the beginning of phase `− 1, then by
the inductive hypothesis it belongs to P`−1. Processor w is taken out of the set
P` only if a coordinator does not receive a report message from w in phase
`−1. Since processor w survives phase `−1 then it sends the report message
in phase `− 1. Hence it belongs to P`.

If processor w is not fully active at the beginning of phase ` − 1, then
it restarted in phase ` − 1. Thus at the end of phase ` − 1 processor w is
re-integrated in the local views of phase `. Hence it belongs to P`. 2

Lemma 5.12. In any execution of algorithm AR, if a task z does not belong
to U` then it has been executed in phases 1, 2, ..., `− 1.

Proof. The proof is the same as the proof of Lemma 3.20. 2

Lemma 5.13. In a good execution of algorithm AR, for any phase ` we have
that u`+1 ≤ u`.

Proof. Consider phase `. If there are no restarts, then, by the code, no task is
added to the set of undone tasks. If there are restarts, a restarted processor
w has U`,w = T . By Lemma 5.9, there is a processor v which is a witness for
phase `. Then processor w receives the info(U`, L`) message from processor
v and hence sets U`,w = U`. Hence also when processors restart no task is
added to the set of undone tasks. 2

Lemma 5.14. In any good execution of algorithm AR, for any attended phase
` we have that u`+1 < u`.

Proof. Since phase ` is attended, there is at least one coordinator c alive in
phase `. A coordinator must be a fully active processor (a restarted processor
needs to complete a phase in order to known the current view and become
coordinator). By Lemma 5.11 processor c belongs to P` and thus it executes
one task. Hence at least one task is executed and consequently at least one task
is taken out of U`. By Lemma 5.13, no task is added to U` during phase `. 2

As for algorithm AN, given a particular execution, we denote by
α1, α2, ..., ατ the attended phases and by πi the unattended period in between
phases αi and αi+1.

Lemma 5.15. In a good execution of algorithm AR any unattended period
consists of at most min{log p, log f} phases.

Proof. Consider the unattended period πi. As argued in Lemma 3.23 the views
at the beginning of πi is a tree-like view.

By Lemma 5.11 and by the local view update rule for unattended phases,
any processor fully active at the beginning of a phase ` of πi belongs to P`
and thus to L`. By the local view update rule for unattended phases, we have
that eventually there is a phase `′ such that all fully active processors are

5.3 Algorithm AR for Restartable Processors 89

supposed to be coordinators of phase `′ (that is, the first layer of L`′ contains
all the processors fully active at the beginning of phase `′). By Lemma 5.9,
phase `′ has a witness. The witness is a fully active processor and by definition
it survives the entire phase. Hence, phase `′ is attended.

The upper bounds on the number of phases follow from the tree-like struc-
ture of the views. With the same argument used in Lemma 3.23 we have that
the number of phases of πi is at most log f . The log p bound follows from the
fact that by doubling the number of expected coordinators for each unattended
phase, after at most log p phases all processors are expected to be coordinators
and thus at least one of them (the witness) survives the phase. 2

Theorem 5.16. In a good execution of algorithm AR the algorithm termi-
nates and all the units of work are performed.

Proof. By Lemma 5.11 fully active processors are always part of the compu-
tation, so the computation never ends if there are fully active processors and
U` is not empty. By Lemma 5.9 any phase has a witness which is a fully ac-
tive processor. The local knowledge about the outstanding tasks is sound, by
Lemma 5.12. For every 1 + log p phases there is at least one attended phase,
by Lemma 5.15. Hence, by Lemmas 5.13 and 5.14, the number of unaccounted
tasks decreases by at least one in every 1 + log p phases. Thus after at most
O(n log p) phases all the tasks have been performed. During the next attended
phase this information is disseminated and the algorithm terminates. 2

5.3.3 Complexity Analysis of Algorithm AR

We next analyze the performance of algorithm AR in terms of total-work
complexity S used message complexity M . To assess S we partition it into Sa
spent during the attended phases and Su spent during the unattended phases.
So S = Sa + Su. In the following lemmas we assess the available processor
steps of algorithm AR.

Recall that good executions are those executions whose adversarial pat-

tern is allowed by A(26)
CR . We also recall that α1, α2, ..., ατ denote the attended

phases, πi denote the unattended period in between phases αi and αi+1 and
that p` and u` denote, respectively, the size of the set P` of fully active pro-
cessors for phase ` and the size of the set U` of undone tasks for phase `.

Lemma 5.17. In a good execution of algorithm AR we have Sa = O(n +
p log p+ f).

Proof. By Theorem 5.16 the algorithm terminates.
We first account for all those steps spent by a processor after a restarts

and before the processor either fails again or becomes fully active, that is,
it is included in the set P` for a phase `, and thus is counted for in p`. The
number of such steps spent for each restart is bounded by a constant. Hence
the available processor steps spent is O(r), which is O(f).

90 5 Synchronous Do-All with Crashes and Restarts

Next we account for all the remaining part of Sa by distinguishing two
possible cases:

Case 1 : All attended phases αk such that pαk
≤ uαk

. The load balancing
rule assures that at most one processor is assigned to a task. Hence the avail-
able processor steps used in this case can be charged to the number of tasks
executed, which is at most n+ f .

Case 2 : All attended phases such that pαk
> uαk

. We arrange the tasks that
were executed and accounted for during such phases in the order by the phase
in which they are performed (for tasks executed in the same phase the order
does not matter). Let 〈b1, b2, . . . , bm〉 be such a list. Notice that m ≤ p because
uαk

< pαk
≤ p, and once the inequality uαk

≤ p starts to hold, it remains true
in phases αi for i ≥ k. We then partition these tasks into disjoint adjacent
segments Zi:

Zi =

{

bk :
p

i+ 1
≤ m− k + 1 <

p

i

}

.

By the load balancing rule, at most

p

m− k + 1
≤ p

i+ 1

p
= i+ 1

processors are assigned to each task in Zi, because when a processor is assigned
for the last time to task bk, there are at least m − k + 1 unaccounted tasks.
The size of Zi can be estimated as follows:

|Zi| ≤
p

i
− p

i+ 1
≤ p

(
1

i
− 1

i+ 1

)

=
p

i(i+ 1)
.

Hence the total-work used is less than
∑

1≤i≤m

p

i(i+ 1)
· (i+ 1) ≤ p

∑

1≤i≤p

1

i
= O(p log p) .

Combining all the cases we obtain Sa = O(n+ p log p+ f). 2

Lemma 5.18. In a good execution of algorithm AR we have Su = O(Sa+f) ·
min{log p, log f}).
Proof. Consider the unattended period πi. At the beginning of this period
there are pi available processors. By Lemma 5.15, for each of these processors
we need to account for min{log p, log f} steps spent in period i. Summing up
over all attended phases, we have that the part of Su for these processors is

min{log p, log f} ·
τ∑

i=1

pαi = Sa · min{log p, log f}.

Each restart can contribute additionally at most min{log p, log f} processor
steps because if the processor stays alive past phase αi+1, its contribution is
already accounted for. Since the number of restarts r is r ≤ f , the bound
follows. 2

5.3 Algorithm AR for Restartable Processors 91

Theorem 5.19. In a good execution of algorithm AR its total-work is S =
O((n + p log p+ f) · min{log p, log f}).

Proof. The total S of algorithm AR is given by S = Sa + Su. The theorem
follows from Lemmas 5.18 and 5.17. 2

Remark 5.20. We recall that a lower bound on work in the setting with pro-
cessor restarts is Ω(t + p log p). This bound holds even for algorithms that
performs tasks by perfectly balancing loads of surviving processors in each
computation step. The work of algorithm AR includes a contribution that
comes within a factor of min{log p, log f} relative to that lower bound. As
we have similarly remarked for algorithm AN, this suggests that improving
the work result is difficult and that better solutions may have to involve a
trade-off between the work and message complexities.

We now assess the message complexity. The analysis is similar to the one
done for algorithm AN. The difference is that we need to account also for
messages sent by restarted processors. However the approach used to analyze
the message complexity of algorithm AN works also for algorithm AR.

We distinguish between the attended phases preceded by a nonempty unat-
tended period and the attended phases not preceded by unattended periods.
We let Mu be the number of messages sent in πi−1αi, for all those i’s such
that πi−1 is nonempty and we let Ma be the number of messages sent in
πi−1αi, for all those i’s such that πi−1 is empty (clearly in these cases we have
πi−1αi = αi). Next we estimate Ma and Mu and thus the message complexity
M of algorithm AR.

Lemma 5.21. In a good execution of algorithm AR we have Ma = O(n +
p log p/ log log p+ f).

Proof. We first account for messages sent by restarted processors and re-
sponses to those messages. For each restart the number of restart messages
sent is bounded by a constant and one info and one summary message are
sent to a restarted processor before it becomes fully active. Hence the total
number of messages sent due to restarts is O(r) = O(f).

The remaining messages can be estimated as in Lemma 3.30. In a phase `
where there is a unique coordinator the number of messages sent is 2p`. By the
definition of Ma, messages counted in Ma are messages sent in a phase αi such
that πi−1 is empty. This means that the phase previous to αi is αi−1 which, by
definition, is attended. Hence by the local view update rule of attended phases
we have that αi has a unique coordinator. Thus phase αi gives a contribution
of at most 2pαi messages to Ma. Hence Ma ≤∑τ

i=1 2pαi = 2Sa. The lemma
follows from Lemma 5.17. 2

Lemma 5.22. In any good execution of algorithm AR we have Mu = O(fp).

92 5 Synchronous Do-All with Crashes and Restarts

Proof. We first account for messages sent by restarted processors and re-
sponses to those messages. The argument is the same as in Lemma 5.21. The
total number of messages sent because of restarts is O(f).

Next we estimate the remaining messages as done in Lemma 3.31. First
we notice that in any phase the number of messages sent is O(cp) where c is
the number of coordinators for that phase. Hence to estimate Mu we simple
count all the supposed coordinators in the phases included in πi−1αi, where
πi−1 is nonempty.

Let i be such that πi−1 is not empty. Because of the structure of the local
view, we have that the total number of supposed coordinators in all the phases
of πi−1αi is 2fi−1 + 1 = O(fi−1) where fi−1 is the number of failures during
πi−1. Hence the total number of supposed coordinators, in all of the phases
contributing to Mu, is

∑τ
i=1O(fi−1) = O(f).

Thus Mu is O(fp). 2

Theorem 5.23. In a good execution of algorithm AR the number of messages
sent is M = O(n+ p log p+ fp).

Proof. The total number of messages sent is M = Ma + Mu. The theorem
follows from Lemmas 5.21 and 5.22. 2

5.4 Open Problems

The algorithm presented in this chapter depends on the availability of reliable
multicast. In algorithm AR it appears not difficult to show that worker-to-
coordinator multicasts need not be reliable. A more difficult problem is to
design algorithms that use the aggressive coordinator paradigm and unreliable
coordinator-to-worker communication.

For the crash/restart models we assume that a processor loses its state
upon a crash and that its state is reset to some known initial state upon
a restart. Algorithm AR cannot take direct advantage of such a possibility,
and it would be interesting to explore the benefits of having stable storage.
This may also help reduce the reliance on broadcasts as the sole means for
information propagation.

Developing stronger lower bounds is another challenging area of research.
In order to reduce the existing gap between the upper and lower bounds,
one needs to exploit the fact that communication is necessary to share the
knowledge among the processors. Additionally trade-offs between work and
communication need to be studied. For example, it is trivial to reduce com-
munication to 0 while increasing work to Θ(n · p) by requiring each processor
to perform all tasks. Exploring meaningful trade-off relations between work
and communication will lead to specialized lower bounds and to algorithms
that can be tuned to specific distributed computing environments depending

5.5 Chapter Notes 93

on the relative costs of computation and communication. Another area of in-
terest is exploring lower bounds that show how the complexity of the problem
depends on the number of crashes and the number of restarts.

Finally, it is also interesting to consider adversaries where κ-restriction
is imposed not on at least one processor as is done here, but on at least q
processors, where q is an adversarial model parameter. Such definition yields

families of adversariesA(κ,q)
CR , and more efficient algorithms could be sought for

these models. This is because the adversaries are more benign, i.e., A(κ,1)
CR ⊇

A(κ,q)
CR for q > 1.

A different algorithmic approach may be necessary to solve the problem for
κ-restricted executions with a smaller κ, for example, κ < 17. However, recall
the problem is not solvable for 1-restricted executions (unless processors are
assisted by an oracle) and there is a qualitative difference between 1-restricted
executions and κ-restricted executions, with κ ≥ 2. It appears that in order to
achieve solutions for κ-restricted executions for small κ it is necessary to use
more messages. For example for 2-restricted executions there must be transfer
of some state information in each step, otherwise any progress information is
lost.

5.5 Chapter Notes

The lower bound and its matching upper bound result on total-work for Do-
AllOACR

(n, p, f) presented in Section 5.2 was first shown by Kanellakis and
Shvartsman [67] while studying the Do-All problem in shared-memory using
unit-time memory snapshots (processors can read all memory in unit-time). As
already discussed in Section 3.5, the memory snapshot assumption in shared-
memory is equivalent to the assumption of perfect knowledge (processors are
assisted by an oracle for load-balancing and termination information). In fact,
the proofs of Theorems 5.2 and 5.3 are slight modifications of the correspond-
ing proofs presented in [67].

The presentation of Sections 5.1 and 5.3 on the Do-All problem under
processor crashes and restarts in message-passing systems is based on the work
by Chlebus, De Prisco, and Shvartsman [15]. The Do-All problem has also
been studied under processor crashes and restarts in shared-memory systems
by Kanellakis and Shvartsman [67].

6

Synchronous Do-All with Byzantine Failures

SO far we have studied the Do-All problem under relatively benign failure
types, where faulty processors may stop working, but do not perform

any actions harmful to the computation. We now move to study the Do-All
problem under an adversary, called AB , that can cause Byzantine processor
failures. A faulty processor may perform arbitrary actions, including those
that interfere with the ongoing computation. The distributed environment is
still assumed to be synchronous and the underlying network is fully connected.
More specifically, for a system with p processors, f of which may be faulty,
and the Do-All problem with n tasks we present upper and lower bounds on
the complexity of Do-AllAB (n, p, f) for several cases: (a) the case where the
maximum number of faulty processors f is known a priori, (b) the case where
f is not known, (c) the case where a task execution can be verified (without
re-executing the task), and (d) the case where task executions cannot be
verified. The efficiency of algorithms is evaluated in terms of total-work and
message complexities. We also consider time of computation, measured in
terms of parallel global steps taken by the processors, and referred to simply
as the number of steps. Interestingly, we show that in some cases obtaining
work Θ(n · p) is the best one can do, that is, each of the p processors must
perform all of the n tasks, and that in certain cases communication cannot
help improve work efficiency.

Chapter structure.

We define adversary AB in Section 6.1. In Section 6.2 we present upper and
lower bound results when the task executions cannot be verified, first for
the case when the maximum number of faulty processors f is known (Sec-
tion 6.2.1) and then for the case when f is unknown (Section 6.2.2). In Sec-
tion 6.3 we present upper and lower bound results when the task executions
can be verified, first when f is known (Section 6.3.1) and then when f is
unknown (Section 6.3.2). We discuss open problems in Section 6.4.

96 6 Synchronous Do-All with Byzantine Failures

6.1 Adversarial Model

We denote by AB an omniscient (on-line) adversary that can cause Byzantine
processor failures, as defined in Section 2.2.1. Consider an algorithm A that
performs a computation in the presence of adversaryAB . Let ξ be an execution
in E(A,AB). Then, the adversarial pattern ξ|AB is a set of triples (event,
pid, t), where event is an arbitrary action (including crash and restart) that
the adversary forces processor pid to perform at time t in the execution,
where t is given according to some external global clock not available to the
processors.

For each processor pid, we are normally interested in only the first time
when the processor behaves differently from what is prescribed by algorithm
A for processor pid. We say that processor pid survives step i of the execution
ξ if ξ|AB does not contain a triple (event, pid, t) such that t ≤ i. We say that
processor pid fails in ξ|AB , if there exists a triple (event, pid, t) ∈ ξ|AB , for
some t. For an adversarial pattern ξ|AB we define fb(ξ|AB) = ‖ξ|AB‖ to be the
number of processors that fail in ξ|AB . As in AC , we consider only executions
ξ where fb(ξ|AB) < p to ensure computational progress. For this adversary
we consider the case where fb(ξ|AB) is known to the algorithms, and the case
where it is unknown.

Observe that when no restrictions on the number of failures are imposed
on the adversaries, then AC ⊂ ACR ⊂ AB.

6.2 Task Execution without Verification

We first consider the setting where a processor cannot verify whether or not
a task was performed. Thus a faulty processor can “lie” about doing a task
without any other processor being able to detect it.

6.2.1 Known Maximum Number of Failures

We assume here that the upper bound f on the number of processors that
can fail is known a priori ; of course the set of processors that may actually
fail in any give execution is not known. We first present lower bounds for this
setting.

Theorem 6.1. Any fault-free execution of an algorithm that solves Do-

AllAB (n, p, f) with f known, takes at least dn(f+1)
p e steps.

Proof. By way of contradiction, assume that there is an algorithm A that
solves the Do-All problem for all adversarial patterns of size at most f , and
that it has some failure-free execution R that solves the problem in s <
d(n(f +1)/p)e steps. Then, in R there is a task z that has been performed by

less than f + 1 processors, since b sp
n c ≤ b (d

n(f+1)
p e−1)p

n c < f + 1.

6.2 Task Execution without Verification 97

Now construct an execution R′ ofA that behaves exactly like R except that
in the first s steps each processor that is supposed to execute task z is in fact
faulty and does not execute z. Since z is executed by less than f+1 processors,
z is not executed. Since verification is not available, no correct processor in
R′ can distinguish R from R′, hence R′ stops after s steps and the problem
is not solved (since at least one task was not performed), a contradiction. 2

Corollary 6.2. Any fault-free execution of an algorithm that solves Do-

AllAB (n, p, f) with f known, has total-work at least S = dn(f+1)
p ep.

We now present algorithm Cover that solves Do-All in the case where f
is known and task execution cannot be verified. The algorithm is simple: each
task is performed by f + 1 processors. Since there can be at most f faulty
processors, this guarantees that each task is performed at least once. This
implies the correctness of the algorithm. The pseudocode of the algorithm is
given in Figure 6.1. We now show that algorithm Cover is optimal.

for each processor q, 1 ≤ q ≤ p do:

1 for k` = 1 to dn(f+1)
p
e do

2 execute task ((dnq
p
e+ k`) mod n) + 1

Fig. 6.1. Algorithm Cover . The code is for processor q.

Theorem 6.3. Algorithm Cover solves Do-AllAB (n, p, f)with f known, in op-

timal number of steps dn(f+1)
p e and total-work S = dn(f+1)

p ep, without any
communication.

Proof. The proof follows from the fact that each task is executed by at least
f + 1 different processors. Since at most f processors are faulty, at least one
correct processor executes the task.

For simplicity we will remove the modular algebra (see Figure 6.1) for both
processor and task indices. We do this by assuming that any task number z,
z < 1, is in fact the task number z + n, any task number z > n is in fact the
task number z−n, and any processor q, with q < 1, is in fact processor q+ p.

Let us consider the tasks between dnqp e+2 and dn(q+1)
p e+1. We show that

these tasks are executed by processors q − f to q. For that, it is enough to
show that the last task executed by processor q − f is at least task number

dn(q+1)
p e + 1. This can be simply observed, since dn(q−f)

p e + dn(f+1)
p e + 1 ≥

dn(q+1)
p e + 1, from the fact that dxe + dye ≥ dx+ ye. 2

It is worth observing that algorithm Cover is work-optimal and time-
optimal even though no communication took place. This shows that in this
setting communication does not help obtaining better performance.

98 6 Synchronous Do-All with Byzantine Failures

6.2.2 Unknown Maximum Number of Failures

Now we consider the case where the upper bound f is not known, i.e., all
that is known is that f < p. In this setting we observe that no algorithm
can do better than having each processor perform each task, as shown in the
following theorem.

Theorem 6.4. Any fault-free execution of an algorithm that solves Do-
AllAB (n, p, p− 1) takes at least n steps and has total-work at least S = n · p.

This is an immediate corollary of the above discussion.
In summary, it is not very interesting to study fault-tolerant computation

in this model:

Corollary 6.5. When f is unknown and the task execution cannot be verified,
the trivial algorithm in which each processor executes all the tasks is optimal.

6.3 Task Execution with Verification

In this section we consider the setting where a task execution can be verified
without re-executing the task. The verification mechanism reinforces the abil-
ity of correct processors to detect faulty processors: if a faulty processor “lies”
about having done a task, a correct processor can detect this by separately
verifying the execution of the task.

We assume that up to v tasks, 1 ≤ v ≤ n, can be verified by a processor
in one step. Thus performing a task or verifying v tasks corresponds to a unit
of work. Furthermore, we do not count as part of the message complexity of
an algorithm the messages used to verify tasks, as this is dependent on the
specific verification method used (which here we leave as an abstraction) and
need not be a function of the number of verifications. Because the setting is
synchronous, we assume that if the same task is verified by several processors
in the same step, then either all processors find the task done or all of them
find the task undone.

Recall from Section 2.2.3 that given an execution ξ of an algorithm
A that performs a computation in the presence of adversary AB we let
fb = fb(ξ|AB) = ‖ξ|AB‖ to be the (exact) number of processors that fail
in adversarial pattern ξ|AB .

For brevity of presentation, in this section we define and use Λp,fb
as

follows:

Λp,fb
=

log(pfb
) when fb ≤ p/ log p,

log logn when p/ log p < fb < p.

6.3 Task Execution with Verification 99

6.3.1 Known Maximum Number of Failures

As before, we first consider the case where the upper bound f on the number of
faulty processors is known. We first show lower bounds on steps and total-work
required by any Do-All algorithm in this case. Then we present an algorithm,
called Minority , designed to efficiently solve Do-AllAB (n, p, f) when f ≥ p/2.
Next we present algorithm Majority that is designed to efficiently solve Do-
AllAB (n, p, f) when f < p/2. Finally, we combine algorithms Minority and
Majority , yielding an algorithm, called Complete , that efficiently solves Do-
AllAB (n, p, f) for the whole range of f . The complexity of algorithm Complete
depends on f and comes close to matching the corresponding lower bound.

Lower Bounds

We now present lower bounds on time steps and total-work for any execution
of an algorithm that solves the Do-All problem with verification and known
f . The first result is a bound on total-work that follows directly from the
analogous result shown in Section 3.2.2 for Do-AllOAC

(n, p, f).

Lemma 6.6. Any execution of an algorithm that solves Do-AllAB (n, p, f)
with f known, in the presence of fb ≤ f Byzantine failures, requires total-
work S = Ω(n+ p log p/Λp,fb

).

Proof. Theorem 3.10 in Section 3.2.2 gives a lower bound on the amount of
total-work any algorithm that solves the Do-All problem requires. Recall that
the mentioned theorem assumes Adversary AC , and the existence of an oracle
that gives information about termination and that balances the undone tasks
among the correct processors. Implicitly, the oracle can verify the execution
of up to n tasks in constant time. The theorem shows that, just in executing
tasks, any execution with f failures of an algorithm that solves Do-All in this
model requires work Ω(n + p logn/Λp,fc). Since crashes are a special case of
Byzantine failures, that is, AC ⊂ AF , the lower bound applies here as well. 2

We now present a lower bound on the steps of any algorithm that solves
the Do-All problem.

Lemma 6.7. Any fault-free execution of an algorithm that solves Do-

AllAB (n, p, f) with f known and with task verification, takes at least dn(f+v)
pv e

steps.

Proof. By way of contradiction, assume that there is an algorithm A that
solves the Do-All problem with verification for all adversarial patterns of
length at most f and it has some failure-free execution R that solves the

problem in s < dn(f+v)
pv e steps (since s is an integer, we can drop the ceiling:

s < n(f+v)
pv). The work in this execution is s · p. Note that in these steps each

task has been executed at least once. Counting just one task execution, n

100 6 Synchronous Do-All with Byzantine Failures

units of work have been spent on executing the tasks. The remaining work is
sp−n, and each work unit can be used to either perform a task or to verify v
of them. Then there is a task z that, in addition to having been executed once,
has been “looked at” (executed or verified) at most f − 1 more times, since

b (sp−n)v
n c < b (n(f+v)

pv p−n)v

n c = b(f+v
v − 1)vc = f (by the pigeonhole principle).

Thus task z has been “looked at” at most f times.
Now construct an execution R′ of A that behaves exactly like R except that

in the first s steps each processor that is supposed to execute task z is in fact
faulty and does not execute it, and every processor that is supposed to verify
z is also faulty and behaves as if z was executed. Then, no correct processor
in R′ can distinguish R from R′, hence R′ stops after s steps and the problem
is not solved (since at least one task was not performed), a contradiction. 2

The above lemma leads to the following result.

Theorem 6.8. Any fault-free execution of an algorithm that solves Do-
AllAB (n, p, f) with f known and with task verification, requires total-work

at least S = dn(f+v)
pv e · p.

Proof. Using Lemma 6.7 and the fact that none of the p processors fail, we

compute the work of any algorithm as dn(f+v)
pv e · p. 2

From the above we obtain the following lower bound result.

Theorem 6.9. Any algorithm that solves Do-AllAB (n, p, f) with f known, in
the presence of fb ≤ f Byzantine failures, and with task verification, takes
total-work S = Ω(n+ nf/v + p log p/Λp,fb

).

Proof. It follows directly from Lemma 6.6 and Theorem 6.8. 2

Algorithm Minority

Now we present algorithm Minority that is designed to solve Do-All in the case
when at most half of the processors are guaranteed not to fail, i.e., f ≥ p/2.
Algorithm Minority is detailed in Figure 6.2. The code is given for a generic
processor q ∈ [p].

As can be seen in Figure 6.2, the main body of the algorithm is formed
by a while loop. Within the loop the variables P , T , and ψ are updated so
they always hold the current set of the processors assumed to be correct,
the tasks whose completion status is unknown, and the number of processors
that can still fail, respectively. The iterations of the while loop are executed
synchronously by every correct processor. An important correctness condition
of the algorithm is that every correct processor has the same value in these
variables at the beginning of each loop iteration (that is why we do not index
the variables with the processor’s id). The exit conditions of the loop are that
there is no remaining work or no remaining processor is faulty. If the latter

6.3 Task Execution with Verification 101

Minority(q, P, T, ψ):
1 while T 6= ∅ and ψ > 0 do

2 execute one task allocated to q as a function of q, P , and T
3 Φ← ∅

4 C ← tasks allocated to the processors in P , as a list of dmin{|P |,|T |}
v

e
sets of at most v tasks each

5 for l = 1 to dmin{|P |,|T |}
v

e do

6 verify the tasks in the lth set C[l]
7 Φ← Φ ∪ {κ : task z ∈ C[l] was allocated to processor κ and

was not done}
8 end for

9 P ← P \ Φ
10 T ← T \ {z : z was allocated to some κ ∈ P}
11 ψ ← ψ − |Φ|
12 end while

13 execute up to d|T |/|P |e tasks allocated to q as a function of q, P , and T

Fig. 6.2. Algorithm for the case f ≥ p/2. The code is for processor q. The call to
the procedure is made with P = [p], T = [n], and ψ = f .

condition holds, then the remaining tasks are evenly distributed among the
remaining processors in P , so that every tasks is assigned to at least one
processor, and the problem is solved.

Consider an execution of algorithm Minority . Let k be the number of
iterations of the while loop in this execution. The iterations are numbered
starting with 1. We denote by Pi, Ti, and ψi the values of the sets P and T ,
and the variable ψ, respectively, at the end of iteration i. We also use P0, T0,
and ψ0 to denote the initial values of P , T , and ψ, respectively. To abbreviate,
we use pi = |Pi| and ni = |Ti|.

For an iteration i of the loop, each processor first chooses one of the tasks
in Ti−1 deterministically with an allocating function of q, Pi−1, and Ti−1.
The allocating function is known to every processor and must ensure that, if
ni−1 ≥ pi−1, different processors in Pi−1 choose different tasks in Ti−1. It must
also ensure that if ni−1 < pi−1, each task is assigned to at least bpi−1/ni−1c
and at most dpi−1/ni−1e processors. One possible allocating function is one
that (once the processors in Pi−1 are indexed from 1 to pi−1 and the tasks
in Ti−1 are indexed from 1 to ni−1) assigns to the qth processor in Pi−1

the (((q − 1) mod ni−1) + 1)st task in Ti−1. After executing this task, the
processor verifies the execution of all the tasks allocated to processors in Pi−1

to identify faulty processors. The identities of the newly discovered faulty
processors are stored in the set Φ. With this information it updates the sets
Ti−1 and Pi−1 and the value ψi−1 and obtains Ti, Pi and ψi, respectively. The
list of sets C is the same for each processor. Then, according to the description
of the algorithm all processors verify the tasks allocated to a subset of correct

102 6 Synchronous Do-All with Byzantine Failures

processors simultaneously, either finding each of them done or undone. This
guarantees that the sets Φ are the same in all correct processors.

The correctness of algorithm Minority can be shown by induction on the
number of iterations of the while loop. The induction claims that at the be-
ginning of iteration i > 0 all correct processors have the same value of the
variables Pi−1, Ti−1, and ψi−1, and that |Ti−1| ≤ n − i + 1. Observe that
initially all processors have the same P0, T0 and ψ0, and that |T0| = n, which
covers the base case. The induction then has to show that if the correct pro-
cessors begin an iteration i with the same Pi−1, Ti−1 and ψi−1, then at the
end of this iteration all correct processors have the same Pi, Ti, and ψi, and
at least one new task has been done in the iteration. The first part follows
from the fact that all correct processes end up with the same set Φ of failed
processes. The second follows from the fact that at least one processor is cor-
rect. Then, termination is guaranteed (with all tasks being completed) by the
fact that at least one processor is correct (f < p), by the fact that after at
most n iterations all correct processors will exit the while loop, by the exit
conditions of the while loop, and by “line 13” of the code of the algorithm.

We now assess the efficiency of algorithm Minority . We denote by Φi the
value of set Φ at the end of iteration i of the loop, and we use φi = |Φi|. Note
that φ1 ≤ φ2 ≤ . . . ≤ φi ≤ . . . ≤ fb, fb being the number of processor failures
in a given execution.

The analysis makes use of the upper bound results obtained for Do-
AllOAC

(n, p, f) in Section 3.2.3 and the oracle-based algorithm, call it Oracle,
as given in Figure 3.1. Recall that in this algorithm, oracle O is queried in
each iteration to determine whether there are still undone tasks. The ora-
cle can detect the processors that crashed during an iteration and whether
a task has been performed or not by the end of the iteration. If there is at
least one undone task by the end of the iteration, then the oracle is queried
to allocate undone tasks to the uncrashed processors. The allocation satisfies
that the undone tasks are evenly distributed among the uncrashed processors.
In fact, we assume here that the function that allocates in each iteration an
undone task t to each processor q in line 2 is the same used in algorithm
Oracle (t = Oracle-task(q)). Hence, the difference between algorithm Oracle
and algorithm Minority is that in algorithm Minority the task execution veri-
fication is performed by the processors to detect faulty processors and undone
tasks, as opposed to algorithm Oracle where the task execution verification
is performed by oracle O. Recall that in Section 3.2.3 was shown (assuming
that the queries to the oracle can be done in O(1) time) that in an execution
with no more than fc crashes algorithm Oracle requires at most total-work
O (n+ p log p/Λp,fc). We will use this result to show Lemma 6.10 for algorithm
Minority .

6.3 Task Execution with Verification 103

Lemma 6.10. Given an execution of algorithm Minority with fb fail-

ures and where the while loop consists of k iterations, then

k∑

i=1

pi =

O (n+ p log p/Λp,fb
).

Proof. Consider an execution of the algorithm Minority with fb failures, and
let k be the number of iterations of the while loop. We want to bound the
sum

∑k
i=1 pi. For that, let us consider the execution of algorithm Oracle in

which after the task allocation and before the task execution in each iteration
i ∈ {1, ..., k} the processors in Φi, and only those, crash. Then, since the same
allocation function is used in the executions of Minority and Oracle, it follows
by induction on i that in the execution of algorithm Oracle, at the beginning
of iteration i the set of correct processors is Pi−1 and the set of undone tasks
is Ti−1, and at the end of the iteration the set of correct processors is Pi and
the set of undone tasks is Ti. Observe that for algorithm Oracle, when the
oracle queries can be done in constant time, we have that the work of iteration
i, denoted si, is a constant multiple of the number of correct processors pi.
Hence, if we denote by Sk the work of the k first iterations of Oracle, we have
that

Sk =

k∑

i=1

si ≥
k∑

i=1

pi. (6.1)

Now, since the number of failures in the execution of Minority is fb, if we
assume that no processor crashes after iteration k in the execution of Oracle
we have that the number of failures in this execution is

∑k
i=1 φi ≤ fb. Hence,

from the upper bound result of Section 3.2.3, mentioned above, we have that

Sk = O (n+ p log p/Λp,fb
) . (6.2)

The thesis of the lemma follows from equations (6.1) and (6.2). 2

We now state and prove the work complexity of algorithm Minority .

Lemma 6.11. Any execution of algorithm Minority has total-work S = O(n+
np/v + p log p/Λp,fb

).

Proof. We begin by computing the work incurred in the while loop. We break
the analysis into two parts. In the first part we consider only the iterations
i of the while loop where initially the number of remaining tasks is at least
as large as the number of remaining processors, i.e., ni−1 ≥ pi−1, and we
compute the work incurred in these iterations. In the second part we consider
only the iterations i where ni−1 < pi−1 and we compute the work incurred in
such iterations.

(1) Iterations i with ni−1 ≥ pi−1. In these iterations no task is done twice by
correct processors. Hence, at most n tasks are done in these iterations. For

104 6 Synchronous Do-All with Byzantine Failures

each task done, no more than dp/ve < p/v + 1 verification steps are taken.
Hence, the total work incurred in these iterations is S1 = O(n+ np/v).

(2) Iterations i with ni−1 < pi−1. Let us assume there are r such iterations
out of a total of k iterations (r ≤ k), with indices `(1) to `(r), and 1 ≤ `(1) <
`(2) < ... < `(r) ≤ k. In iteration `(i), there are initially p`(i)−1 processors and
n`(i)−1 tasks, with n`(i)−1 < p`(i)−1. In this iteration each (correct) processor
performs a task and verifies min{p`(i)−1, n`(i)−1} = n`(i)−1 tasks. Hence, the
total work incurred in all r iterations is

S2 =

r∑

i=1

p`(i)
(

1 +
⌈n`(i)−1

v

⌉)

< 2

r∑

i=1

p`(i) +
1

v

r∑

i=1

p`(i)n`(i)−1.

The first sum is bounded by using Lemma 6.10, since

r∑

i=1

p`(i) ≤
k∑

i=1

pi = O (n+ p log p/Λp,fb
) .

To bound the second sum, we bound first the value of n`(i) using the
fact that, in iteration `(i), each task is assigned to at most dp`(i)−1/n`(i)−1e
processors,

n`(i) ≤ n`(i)−1 −
p`(i)

dp`(i)−1/n`(i)−1e
< n`(i)−1 −

p`(i)n`(i)−1

n`(i)−1 + p`(i)−1

.

Then, since n`(i)−1 < p`(i)−1, we have

p`(i)n`(i)−1 < 2 p`(i)−1

(
n`(i)−1 − n`(i)

)
(6.3)

Then, the second sum can be bounded as follows:

r∑

i=1

p`(i)n`(i)−1 <

r∑

i=1

2 p`(i)−1

(
n`(i)−1 − n`(i)

)

≤ 2
(

p`(1)−1n`(1)−1 +

r∑

i=2

p`(i)−1n`(i)−1 −
r−1∑

i=1

p`(i)−1n`(i)
)

≤ 2
(

p`(1)−1n`(1)−1 +

r−1∑

i=1

n`(i)
(
p`(i+1)−1 − p`(i)−1

))

≤ 2 p`(1)−1n`(1)−1 ≤ 2 np

The first inequality follows from Eq. (6.3), the third inequality follows from
the fact that n`(i)−1 ≤ n`(i−1) , and the fourth inequality follows from the facts

that `(i+1) − 1 > `(i) − 1 and that pi ≤ pj when i > j.
Then, we have that the work incurred in these iterations is S2 = O(n +

np/v + p log p/Λp,fb
).

6.3 Task Execution with Verification 105

We now compute the work incurred after the exit conditions are satisfied,
say at the end of iteration k. If Tk = ∅ then each processor takes at most one
step before halting for the total of O(p) work. Otherwise, at most pdn/pe <
n + p ≤ 2n work is done. Hence this work is S3 = O(n). Therefore, the
total-work is S = S1 + S2 + S3 = O (n+ np/v + p log p/Λp,fb

) . 2

Note that the work complexity of the algorithm is asymptotically optimal
as long as f = Ω(n). It is worth observing that algorithm Minority is asymp-
totically optimal even though it does not use communication. This shows
that for relatively large number of failures communication cannot improve
work complexity (asymptotically).

Algorithm Majority

We now present algorithm Majority that is designed to efficiently solve Do-All
in the case where the majority of the processors does not fail, i.e., f < p/2. At
a high level algorithm Majority proceeds as follows. Each non-faulty processor
is given a set of tasks to be done and a set of processors whose tasks it has
to verify. The processor executes its tasks and verifies the tasks of its set
of processors, detecting faulty processors. Then a check-pointing algorithm
is executed in which all non-faulty processors agree on a set of processors
identified as faulty in this stage, and update their information of completed
tasks and non-faulty processors accordingly. Algorithm Majority is detailed
in Figure 6.3. The code is given for a processor q ∈ [p].

Majority(q, P, T, ψ):
1 while |T | > n/p and ψ > 0 do

2 Do Work and Verify(q, P, T, ψ, Φ)
3 Checkpoint(q, P, ψ, Φ)
4 P ← P \ Φ
5 T ← T \ {z : z was allocated to some κ ∈ P}
6 ψ ← ψ − |Φ|
7 end while

8 if ψ = 0 then

9 execute d|T |/|P |e tasks allocated to q as a function of q, P , and T
10 else

11 execute all the tasks in T
12 end if

Fig. 6.3. Algorithm for the case f < p/2. The code is for processor q. The call
parameters are P = [p], T = [n], and ψ = f .

As in algorithm Minority , the parameters of algorithm Majority are the
identifier q of the invoking processor, the set of processors P that have not

106 6 Synchronous Do-All with Byzantine Failures

been identified as faulty, the set of tasks T that may still need to be completed,
and the maximum number ψ of processors in set P that can be faulty. We
adopt the parameter notations we used for an iteration of the while loop
of algorithm Minority to the parameters of algorithm Majority . Specifically,
for an iteration i, we let Pi, Ti and ψi denote the values of P , T , and ψ,
respectively, at the end of iteration i. Then, pi = |Pi| and ni = |Ti|. Finally,
p0 = p and n0 = n.

The iterations of the while loop of Majority in all the correct processors
work synchronously, i.e., the ith iteration starts at exactly the same step in
each correct processor. An important correctness condition of the algorithm,
which can be checked by induction, is that the values of Pi, Ti, and ψi must
be the same for each iteration i in different correct processors.

Before starting a new iteration i, a processor first checks whether all the
processors in Pi−1 are correct or whether the total number of remaining tasks
is no more than n/p. If either condition holds, it exits the loop. Then, if all
the processors in Pi−1 are correct, it computes a balanced distribution of the
remaining set of tasks so that, overall, all the tasks are done by the processors
in Pi−1. Otherwise the total number of remaining tasks is no more than n/p,
and in that case the processor does all the remaining tasks itself. Overall, in
either case, this implies O(n) work.

If none of the above conditions hold, a new iteration i starts. The pro-
cessor first calls the subroutine Do Work and Verify . In this subroutine each
processor in Pi−1 gets allocated some subset of the tasks in Ti−1 that it must
execute, and a subset of the processors in Pi−1 that it must supervise, that is,
whose tasks it will verify. More formally,

Definition 6.12. For an iteration i of an execution of algorithm Majority,
we say that a processor q ∈ Pi−1 supervises a processor w ∈ Pi−1, if q is
assigned to verify all the tasks from Ti−1 that w was assigned to perform in
iteration i.

If a processor detects in this subroutine that some supervised processor
in that subset is not doing the tasks it was assigned, it includes it in a set
of faulty processors, returned as set Φ. We denote by Φi,q the processors that
processor q suspects to be faulty at the end of subroutine Do Work and Verify
of iteration i. Then the processor calls the subroutine Checkpoint , which uses
a check-pointing algorithm to combine the sets of suspected processors from
all the processors in Pi into a common consistent set Φi; this denotes the
consistent set of faulty processors at the end of iteration i. Finally, knowing
which processors have been identified as faulty in this iteration, it updates the
values of Pi−1, Ti−1, and ψi−1 and obtains Pi, Ti, and ψi, respectively. Note
that since ψ0 = f < p/2 initially, at any point it is satisfied that ψi < |Pi|/2.

We now detail more the subroutines Do Work and Verify and Checkpoint .
We begin the first one. The code of subroutine Do Work and Verify is shown
in Figure 6.4.

6.3 Task Execution with Verification 107

Do Work and Verify(q, P, T, ψ, Φ):
1 W ← Allocate Tasks(q, P, T)
2 S ← Allocate Processors(q, P, T, ψ)
3 Φ← ∅
4 for z = 1 to |W | do

5 perform the zth task in W

6 for κ = 1 to d 2ψ
v
e+ 2 do

7 verify the zth task of each processor in set S[κ]
8 Φ←Φ ∪ {r : l is the zth task allocated to r ∈ S[κ] and was not done}
9 end for

10 end for

Fig. 6.4. Subroutine Do Work and Verify. Code for processor q

In the subroutine, W is an ordered list of tasks. We denote by Wi the value
of W after the end of routine Allocate Tasks of iteration i. Hence, Wi is an
ordered list of tasks, all of them in Ti−1. This is needed to ensure that it is
known the order in which a given processor is supposed to perform the tasks
in its list Wi. That also allows us to ensure that all processors supervising a
processor r verify the zth task allocated to r at the same time (and hence
all find it either done or undone). Note also that to ensure that all correct
processors finish the call to Do Work and Verify at the same time, they all
must be allocated the same number of tasks to perform.

Similarly, S is a sequence of sets S[1], ..., S[d 2ψ
v e + 2], each with at most

v processors. We denote by Si the value of S after the end of the routine
Allocate Processors of iteration i. These sets must also satisfy (in order for
the same task to be verified at the same time by all the processors that do so)
that the same processor r is in the same set Si[k] in all the processors that
supervise r. Then, all the tasks of r will be verified at the same time in the
kth iteration of the inner “for” loop.

Let us now look at the allocation of tasks. For iteration i, we impose that
dni−1/pi−1e different tasks from Ti−1 are allocated to each processor in Pi−1

by subroutine Allocate Tasks, and that the number of processors allocated to
execute two different tasks in Ti−1 differs in at most one. Other than these,
there are no other restrictions. For instance, if we enumerate the tasks in Ti−1

from 1 to ni−1 and the processors in Pi−1 from 1 to pi−1, the qth processor
could be allocated the tasks with numbers ((kpi−1 + q− 1) mod ni−1)+1, for
k = 0, ..., dni−1/pi−1e − 1.

We look now at the allocation of processors done in subroutine
Allocate Processors, for iteration i. We require that at least 2ψi−1 + 1 pro-
cessors supervise any other processor (to be able to use Lemma 6.13, stated
later). A processor implicitly supervises itself. Then, any deterministic func-
tion that assigns at least 2ψi−1 other processors to each processor in Pi−1 so
that each processor is supervised by at least other 2ψi−1 processors is valid.

108 6 Synchronous Do-All with Byzantine Failures

We also need to choose the sets Si−1 appropriately, as described above. All
these could be done as follows. First, define a cyclic order in Pi−1 and allo-
cate to each processor the 2ψi−1 processors that follow it in that order. Then,
group the processors in sets of size v using the cyclic order and starting from
some distinguished processor (e.g., the one with smallest pid). Number these
sets from 1 to dpi−1/ve. Each processor then gets assigned the sets that con-
tain processors it has to supervise. To enforce that the same set is verified
simultaneously, set number k is verified in the (k mod (d 2ψi−1

v e + 2)) + 1st
iteration of the inner loop. Since 2ψi−1 adjacent processors can span at most

d 2ψi−1

v e + 2 sets (out of which at least d 2ψi−1

v e + 1 have v processors each),
there is a way to schedule the verification of all the sets.

Checkpoint(q, P, ψ, Φ):
1 C ← the first 2ψ + 1 processors in P with smallest pid

2 send set Φ to every processor in C
3 if q ∈ C then

4 attempt to receive set Φw from each processor w ∈ P
5 Φ← {b : processor b is in at least ψ + 1 received sets Fw}
6 send Φ to every processor in P
7 else

8 idle for the rest of the step
9 attempt to receive set Φc from each processor c ∈ C
10 Φ← {b : processor b is in at least ψ + 1 received sets Φc}
11 end if

Fig. 6.5. Subroutine Checkpoint . Code for processor q.

We now consider subroutine Checkpoint . Its code is detailed in Figure 6.5.
We denote by Ci the value of C at the end of the assignment at line 1 of
the code, of iteration i. The subroutine uses two communication rounds. At
iteration i, first each processor q sends its set Φi,q (computed in the subrou-
tine Do Work and Verify) to the processors in set Ci. Set Ci contains the
first 2ψi−1 + 1 processors in Pi−1 with the smallest pid. An elementary, but
important, invariant of the algorithm is that set Ci is the same in all correct
processors.

The processors in Ci attempt to receive all sets Φi,q from the processors in
Pi−1. Note that a faulty processor b may not send its corresponding set Φi,b

or send an erroneous set Φi,b. That is allowed and no note is taken of it by
the correct processors. Also, messages received from processors not in Pi−1

are disregarded by the correct processors. Only those processors that are in
at least ψi−1 + 1 received sets from processors in Pi−1 are considered faulty
by the processors in set Ci. Then, the processors c in Ci send their updated
sets Φi,c to the processors in Pi−1. Each processor q in Pi−1 updates its set
Φi,q by considering as faulty only the processors that are in at least ψi−1 + 1

6.3 Task Execution with Verification 109

received sets from processors in Ci and obtains Φi. Since Pi−1 contains at
least 2ψi−1 + 1 processors, we have the following claim.

Lemma 6.13. For an iteration i of an execution of algorithm Majority, if
each processor in Pi−1 is supervised by at least 2ψi−1 + 1 different processors
in Pi−1, then after subroutine Checkpoint has been executed, the set Φi is the
same for every correct processor in Pi−1, it only contains faulty processors,
and all the tasks allocated to processors in Pi \ Φi have been performed.

Proof. Assuming the correct processors do the supervision properly, if some
correct processor q detects a faulty processor w, and includes w in Φi,q in the
subroutine Do Work and Verify , then all correct processors that supervise w
also do so. Then, each correct processor in Ci receives at least ψi−1 + 1 sets
Φi,q containing w, since in any set of 2ψi−1 + 1 processors (including the set
of processors that supervised w) at least ψi−1 +1 processors are correct. This
also implies that the processors in Pi−1 will receive at least ψi−1 + 1 sets Φi,c
containing w (even if the faulty processors b in Ci send erroneous sets Φi,b).
Hence processor w will be in the final set Φi of each correct processor. Note
that if processor w is not faulty and the faulty processors b send erroneous sets
Φi,b that include w, w will not be included in a set Φi of a correct processor
since there will not be more than ψi−1 sets Φi,b containing w. Since this is
true for each processor w ∈ Pi−1, after the subroutine Checkpoint has been
executed the set Φi is the same for every correct processor in Pi−1, and it
only contains faulty processors. This implies that the processors in Pi−1 \ Φi
performed the tasks allocated to them correctly (otherwise they would not be
in Pi−1 \ Φi but in Φi). This completes the proof of the lemma. 2

Lemma 6.15 below shows that algorithm Majority solves the Do-All prob-
lem efficiently when f < p/2. Here fb ≤ f is the exact number of faulty
processors in the execution of interest of the algorithm. This value can be
much smaller, for a particular execution, than the upper bound f .

In the proof of Lemma 6.15 we use the following fact.
///I am not convinced this applies here. Tell me more///

Fact 6.14 If in every stage of a synchronous algorithm α the work to be
performed is evenly divided among the processors, then the total number of
stages executed in algorithm α is bounded by O(log p).

Lemma 6.15. Algorithm Majority , can be used to solve Do-AllAB (n, p, f)
with known f , fb ≤ f actual Byzantine failures, and v task verifications per
processor per step, with total-work S = O

(
n + nf/v + p(1 + f/p) · min{fb +

1, log p}
)

and message complexity M = O
(
p(f + 1) · min{fb + 1, log p}

)
.

Proof. It can be shown by induction that after each iteration i of the while
loop of the algorithm, each correct processor has the same values of Ti, Pi,
and ψi ≤ f and that the tasks not in Ti have been executed. Specifically,
based on Lemma 6.13, if the correct processors begin an iteration i with

110 6 Synchronous Do-All with Byzantine Failures

common values of Pi−1, Ti−1 and ψi−1, it follows that the (remaining) correct
processors conclude this iteration with common values of Pi, Ti and ψi. Of
course, initially all processors have the same P0, T0 and ψ0. If there is at least
one correct processor, then each iteration has a set Ti of smaller size. This
implies that the algorithm terminates with all tasks performed and at least
one correct processor being aware of this.

As algorithm Majority fully divides the work in each iteration, f < p/2,
and only the tasks of failed processors are performed again, it follows from
Fact 6.14 that at most O(log p) iterations are required by algorithm Majority .

We are going to study separately those iterations i of the while loop in
which ni−1 ≥ pi−1 from those in which ni−1 < pi−1. Since we assume p ≤ n,
initially n0 ≥ p0. Furthermore, it is easy to show that once (if ever) ni−1 <
pi−1, this holds until the end of the execution as follows. Since less than
half the processors in Pi−1 can fail, if ni−1 < pi−1/2, clearly at the end
of the iteration i ni < pi. Otherwise, if pi−1 > ni−1 ≥ pi−1/2, then any
task is assigned to at most two processors, and at the end of the iteration
ni has been reduced to less than half. Then, we can consider both kind of
iterations separately. Let us first consider iterations i of the while loop where
ni−1 ≥ pi−1. Note that there is no such iteration in which more than dn/pe
tasks are allocated to any processor. This is so because initially dn/pe tasks
are allocated, and the number of failures required to have more than dn/pe
tasks in any other iteration is more than p/2. Hence, a faulty processor can
force at most dn/pe tasks to be redone. Thus, we have that at most n +
fbdn/pe < 2n + fb = O(n) work spent executing tasks in these iterations.
Similarly, in the iterations i where ni−1 < pi−1, one task is allocated to each
processor. We have from above that the number of iterations is O(log p), and
it can be trivially observed that there can be at most fb+1 iterations. Hence,
at most O(p · min{fb + 1, log p}) work is spent executing tasks in this case.
Hence, in both kinds of iterations the work incurred in executing tasks is
O(n+ p · min{fb + 1, log p}). Since for each task executed there is one call to
the checkpoint subroutine (each such call takes constant time) and at most
d 2f
v e + 2 verifications, the work bound follows. Note that the work incurred

after the exit conditions of the while loop are satisfied is O(n) (see discussion
on the exit conditions in the description of the algorithm).

For the message bound, we use a similar argument. There are O(min{fb+
1, log p}) iterations, with one call to the checkpoint subroutine in each, and
at most 2p(2f + 1) messages required in each checkpoint call. The message
complexity bound follows. Note that no communication takes place after the
exit conditions of the while loop are satisfied. 2

It is worth observing that in this case, communication helps improve work
complexity.

6.3 Task Execution with Verification 111

Algorithm Complete

By combining the two cases considered by algorithms Minority and Majority
for different ranges of f , we obtain an algorithm that efficiently solves the
Do-All problem for the entire range of f . We refer to this algorithm as al-
gorithm Complete. The correctness and the efficiency of algorithm Complete
follows directly from the correctness and efficiency of algorithms Minority and
Majority .

Theorem 6.16. Algorithm Complete solves Do-AllAB (n, p, f) with f known,
fb ≤ f actual Byzantine failures, and v verifications per processor per step,
with work S = O(n + np/v + p log p/Λp,fb

) and no communication when f =
Ω(p), and with work S = O(n + nf/v + p(1 + f/v) · min{fb + 1, log p}) and
message complexity M = O(p(f + 1) · min{fb + 1, log p}) otherwise.

6.3.2 Unknown Maximum Number of Failures

In this section we assume that all we know about the number of faulty pro-
cessors is that f < p. Using Lemma 6.7 and Theorem 6.8 of Section 6.3.1. we
obtain the following lower bound.

Lemma 6.17. Any fault-free execution of an algorithm that solves Do-
AllAB (n, p, f) with f unknown and with task verification, requires Ω(n/p +
n/v) steps and has total-work S = Ω(n+ np/v).

Proof. Since all that is known about the number of failures is that f < p, any
algorithm that solves the problem under these assumptions has to solve it for
f = p− 1. Then, the result follows from Lemma 6.7 and Theorem 6.8. 2

Note that the lower bound of Lemma 6.6 does not depend on the knowledge
of fb or f and is hence applicable to this case as well. Then, we have the
following theorem.

Theorem 6.18. Any algorithm that solves Do-AllAB (n, p, f) with f unknown,
in the presence of fb ≤ f Byzantine failures, and with task verification, has
total-work S = Ω(n+ np/v + p log p/Λp,fb

).

Since f is unknown, a given algorithm must solve Do-All efficiently even
for the case f = p − 1. Hence, if we use algorithm Minority assuming that
p = n − 1, then Lemma 6.11 gives us an asymptotically matching upper
bound on work for the setting that f is unknown. Taken together with the
above lower bound result (Theorem 6.18), we conclude the following.

Corollary 6.19. The total-work complexity of algorithm Minority for solving
Do-AllAB (n, p, f) with f unknown, fb ≤ f actual Byzantine failures, and with
task verification, is S = Θ(n+ np/v + p log p/Λp,fb

).

112 6 Synchronous Do-All with Byzantine Failures

6.4 Open Problems

In most cases we showed asymptotically matching upper and lower bound re-
sults. For the case where f = o(p) and known, and task execution is verifiable,
the upper bound, produced by the analysis of algorithm Majority is not tight.
Obtaining tight bounds for this case is an interesting open question.

A promising research direction is to study the Do-All problem with Byzan-
tine failures in the presence of asynchrony.

6.5 Chapter Notes

The presentation in this Chapter is based on a paper by Fernandez, Geor-
giou, Russell and Shvartsman [35]. This is the first and only paper to date
to consider the Do-All problem under Byzantine processor failures both for
message-passing and shared-memory settings.

Fact 6.14 used in the proof of Lemma 6.15 is an adaptation of Theorem 4
of [25]. Although the theorem is given for the crash failure model, the proof
makes use of the fact that the work previously assigned to a correct processor
is not re-performed (tasks of only crashed processors are executed again). This
is also the case for the model considered in this chapter, as malicious nodes
cannot undo already performed tasks and hence only the tasks not performed
by malicious nodes need to be executed. More details can be obtained in [35].

The model of Byzantine processor failures was introduced by Lamport,
Pease, and Shostak [78] in the context of the consensus problem (a set of
processors must agree on a common value).

Fernandez, Georgiou, Lopez and Santos [34] considered an asynchronous
distributed system formed by a master processor and a collection of p worker
processors that can execute tasks on behalf of the master and that may act
maliciously (i.e., workers are Byzantine) by deliberately returning fallacious
results. The master decides on the correctness of the results by assigning the
same task to several workers. The master is charge one work-unit for each
tasked assigned to a worker. The goal is to have the master accept the correct
value of the task with high probability and with the smallest possible amount
of work. They explore two ways of bounding the number of faulty processors:
(a) they consider a fixed bound f < p/2 on the maximum number of workers
that may fail, and (b) a probability q < 1/2 of any processor to be faulty. They
assume that f or q are known to the master processor. Furthermore, processors
can be slow, and messages can get lost or arrive late; these assumptions are
modeled by considering a probability d (which may depend on p) of the master
receiving the reply from a given worker on time (d is known to the master
processor).

Fernandez et al. demonstrated that it is possible to obtain high probability
of correct acceptance with low work. In particular, by considering both mech-
anisms of bounding the number of malicious workers, they show lower bounds

6.5 Chapter Notes 113

on the minimum amount of (expected) work required, so that any algorithm
accepts the correct value with probability of success 1− ε, where ε� 1 (e.g.,
1/p). They also develop and analyze two algorithms, each using a different
decision strategy, and show that both algorithms obtain the same probability
of success 1 − ε, and in doing so, they require similar upper bounds on the
(expected) work. Furthermore, under certain conditions, these upper bounds
are shown to be asymptotically optimal with respect to the lower bounds.

Konwar, Rajasekaran and Shvartsman [72] have studied an extension of
the problem in which there are p workers and p tasks to be performed. The
computational model considered is somewhat stronger than the one considered
in [34], as they assume a synchronous system in which the result of a task
assigned to a non-faulty worker is always received by the master on time.
This enables them to obtain efficient algorithms even if the failure parameters
f and p are unknown (in fact they efficiently estimate these parameters). More
specifically, they consider a failure model where f -fraction, 0 < f < 1/2, of
the workers provide faulty results with probability 0 < q < 1/2, given that the
master has no a priori knowledge of the values of f and q. For this model they
provide an algorithm that can estimate f and q with (ε, δ)-approximation,
for any 0 < δ < 1 and ε > 0. They also provide a randomized algorithm for
detecting the faulty processors. A lower bound on the total-work complexity
of performing p tasks correctly with high probability is shown. Finally, a
randomized algorithm to perform p tasks with high probability is given with
closely matching upper bound on total-work.

7

Asynchrony and Delay-Sensitive Bounds

COMMON impediments to effective coordination in distributed settings, as
we have seen, include failures and asynchrony that manifest themselves,

e.g., in disparate processor speeds and varying message latency. Fortunately,
the Do-All problem can always be solved as long as at least one processor
continues to make progress. In particular, assuming that initially there n tasks
that need to be performed, and the tasks are known to all p processors, the
problem can be solved by a communication-oblivious algorithm where each
processor performs all tasks. Such a solution has total-work S = O(n · p),
and either it requires no communication, or it cannot rely on communication
because of very long delays. On the other hand, Ω(n) is the obvious lower
bound on work; additionally we show in this chapter that a lower bound
of S = Ω(n + p log p) holds for any asynchronous algorithm for Do-All, no
matter how small is the message delay. Therefore it is reasonable to have
the goal that, given a non-trivial and non-negligible delay d, effective use of
messaging should result in the decrease in work from the trivial upper bound
of S = O(n · p) so that work becomes sub-quadratic in n and p.

Obtaining algorithmic efficiency in asynchronous models of computation
is difficult. For an algorithm to be interesting, it must be better than the
oblivious algorithm, in particular, it must have sub-quadratic work complexity.
However, if messages can be delayed for a “long time”, then the processors
cannot coordinate their activities, leading to an immediate lower bound on
work ofΩ(n·p). In particular, it is sufficient for messages to be delayed byΘ(n)
time for this lower bound to hold. Algorithmic techniques for synchronous
processors assume constant-time message delay. In general it is not clear how
such algorithms can be adapted to deal with asynchrony. Thus it is interesting
to develop algorithms that are correct for any pattern of asynchrony and
failures (with at least one surviving processor), and whose work depends on
the message latency upper bound, such that work increases gracefully as the
latency grows. The quality of the algorithms can be assessed by comparing
their work to the corresponding delay-sensitive lower bounds.

116 7 Asynchrony and Delay-Sensitive Bounds

In this chapter our goal is to obtain complexity bounds for work-efficient
message-passing algorithms for the Do-All problem. We require that the al-
gorithms tolerate any pattern of processor crashes with at least one surviving
processor. More significantly, we are interested in algorithms whose work de-
grades gracefully as a function of the worst case message delay d. Here the
requirement is that work must be subquadratic in n and p as long as d = o(n).
Thus for our algorithms we aim to develop delay-sensitive analysis of work
and message complexity. Noting again that work must be Ω(p · n) for d ≥ n,
we give a comprehensive analysis for d < n, achieving substantially better
work complexity.

Chapter structure.

We define the model of adversity and expand on complexity measures in Sec-
tion 7.1. In Section 7.2 we develop a delay-sensitive lower bounds for Do-All.
In Section 7.3 we deal with permutations and their combinatorial proper-
ties used in the algorithm analysis. In Section 7.4 we present and analyze
a work-efficient asynchronous deterministic Do-All algorithm. In Section 7.5
we present and analyze two randomized and one deterministic algorithm that
satisfy our efficiency criteria. We discuss open problems in Section 7.6.

7.1 Adversarial Model and Complexity

Processors communicate over a fully connected network by sending point-to-
point messages via reliable asynchronous channels. When a processor sends a
message to a group of processors, we call it a multicast message, however in
the analysis we treat a multicast message as multiple point-to-point messages.
Messages are subject to delays, but are not corrupted or lost.

We assume an omniscient (on-line) adversary that introduces delays. We
call this adversary AD. The adversary can introduce arbitrary delays between
local processor steps and cause processor crashes (crashes can be viewed as
infinite delays). The only restriction is that at least one processor is non-faulty.
Adversary AD also causes arbitrary message delays.

We specialize adversary AD by imposing a constraint on message delays.
We assume the existence of a global real-timed clock that is unknown to the
processors. For convenience we measure time in terms of units that represent
the smallest possible time between consecutive clock-ticks of any processor.
We define the delay-constrained adversary as follows. We assume that there
exists an integer parameter d, that is not assumed to be a constant and that is
unknown to the processors, such that messages are delayed by at most d time

units. We call this adversary A(d)
D . It is easy to see that A(d)

D ⊆ A(d+1)
D for

any d ≥ 0, because increasing the maximum delays introduces new adversarial

behaviors. We also note that AD =
⋃

d∈N
A(d)
D .

7.1 Adversarial Model and Complexity 117

In this chapter we are interested in algorithms that are correct against
adversary AD, i.e., for any message delays. For the purpose of analysis of such

algorithms, we are interested in complexity analysis under adversary A(d)
D , for

some specific positive d that is unknown to the algorithm. Note that by the
choice of the time units, a processor can take at most d local steps during any
global time period of duration d.

For an algorithm A, let E = E(A,A(d)
D) be the set of all executions of the

algorithm in our model of computation subject to adversary A(d)
D . For the

purposes of this chapter, we define the weight of an adversarial pattern to be
the maximum delay incurred by any message. Thus, for any execution ξ ∈ E ,
the maximum weight of the adversarial pattern ξ|

A
(d)
D

is d, that is ||ξ|
A

(d)
D

|| ≤ d.

We assess the efficiency of algorithms in terms of total-work (Defini-

tion 2.4) and message complexity (Definition 2.6) under adversary A(d)
D . We

use the notation S(n, p, d) to denote work, and M(n, p, d) to denote message
complexity. Expected work and message complexity are denoted by ES (n, p, d)
and EM (n, p, d) respectively.

When work or messages complexities do not depend d we omit d and
use, for example, S(n, p) and M(n, p) for work and message complexity (and
ES(n, p) and EM(n, p) for expected work and message complexity).

Next we formulate a proposition leading us to not consider algorithms
where a processor may halt voluntarily before learning that all tasks have
been performed.

Proposition 7.1. Let Alg be a Do-All algorithm such that there is some ex-
ecution ξ of Alg in which there is a processor that (voluntarily) halts before
it learns that all tasks have been performed. Then there is an execution ξ′ of
Alg with unbounded work in which some task is never performed.

Proof. For the proof we assume a stronger model of computation where in
one local step any processor can learn the complete state of another proces-
sor, including, in particular, the complete computation history of the other
processor. Assume that, in some execution ξ, the Do-All problem is solved,
but some processor i halts in ξ without learning the a certain task z was per-
formed. First we observe that for any other processor j that i learns about
in ξ, j does not perform task z by the time i learns j’s state. (Otherwise i
would know that z was performed.) We construct another execution ξ′ from
ξ as follows. Any processor j (except for i) proceeds as in ξ until it attempts
to perform task z. Then j is delayed forever. We show that processor i can
proceed exactly as in ξ. We claim that i is not able to distinguish between
ξ and ξ′. Consider the histories of all processors that i learned about in ξ′

(directly or indirectly). None of the histories contain information about task z
being performed. Thus the history of any processor j was recorded in advance
of j’s delay in ξ′. Then by the definition of ξ′ these histories are identical to
those in ξ. This means that in ξ′ processor i halts as in ξ. Since the problem

118 7 Asynchrony and Delay-Sensitive Bounds

remains unsolved, processor i continues to be charged for each local clock tick
(recall that work is charged until the problem is solved). 2

As the result of Proposition 7.1, we will only consider algorithms where a
processor may voluntarily halt only after it knows that all tasks are complete,
i.e., for each task the processor has local knowledge that either it performed
the task or that some other processor did.

Note that for large message delays the work of any Do-All algorithm is
necessarily Ω(n ·p). The following proposition formalizes this lower bound and
motivates our delay-sensitive approach.

Proposition 7.2. Any algorithm that solves the Do-All problem in the pres-

ence of adversary A(c·n)
D , for a constant c > 0, has work S(n, p) = Ω(n · p).

Proof. We choose the adversary that delays each message by c · n time units,
and does not delay any processor. If a processor halts voluntarily before learn-
ing that all tasks are complete, then by Proposition 7.1 work may be un-
bounded. Assume then that no processor halts voluntarily until it learns that
all tasks are done. A processor may learn this either by performing all the
tasks by itself and contributing n to the work of the system, or by receiving
information from other processors by waiting for messages for c ·n time steps.
In either case the contribution is Ω(n) to the work of the algorithm. Since
there are p processors, the work is Ω(n · p). 2

Lastly we note that since in this chapter we are trading communication
for work, we design algorithms with the focus on work.

7.2 Delay-Sensitive Lower Bounds on Work

In this section we develop delay-sensitive lower bounds for asynchronous algo-
rithms for the Do-All problem. for deterministic and randomized algorithms.
We show that any deterministic (randomized) algorithm with p asynchronous
processors and n tasks has worst-case total-work (respectively expected total-

work) of Ω(n+p d logd+1 n) under adversary A(d)
D , where d is the upper bound

on message delay (unknown to the processors). This shows that work grows
with d and becomes Ω(p n) as d approaches n.

We start by showing that the lower bound on work of Ω(n+ p log p) from
Theorem 5.2 for the model with crashes and restarts also applies to the asyn-
chronous model of computation, regardless of the delay. Note that the explicit
construction in the proof below shows that the same bound holds in the asyn-
chronous setting where no processor crashes.

Theorem 7.3. Any asynchronous p-processor algorithm solving the Do-All
problem on inputs of size n has total-work S(n, p) = n+Ω(p log p).

7.2 Delay-Sensitive Lower Bounds on Work 119

Proof. We present a strategy for the adversary that results in the worst case
behavior. Let A be the best possible algorithm that solves the Do-All problem.
The adversary imposes delays on the processor steps (regardless of what the
message delay is) as described below:
Stage 1: Let u > 1 be the number of remaining tasks. Initially u = n. The
adversary induces no delays as long as the number of remaining tasks, u, is
more than p. The work needed to perform n−p tasks when there are no delays
is at least n− p.
Stage 2: As soon as a processor is about to perform some task n−p+1 making
u ≤ p, the adversary uses the following strategy. For the upcoming iteration,
the adversary examines the algorithm to determine how the processors are
assigned to the remaining tasks. The adversary then lists the remaining tasks
with respect to the number of processors assigned to them. The adversary
delays the processors assigned to the first half remaining tasks (bu

2 c) with the
least number of processors assigned to them. By an averaging argument, there
are no more than dp2e processors assigned to these bu2 c tasks. Hence at least
bp2c processors will complete this iteration having performed no more than
half of the remaining tasks.

The adversary continues this strategy which results in performing at most
half of the remaining tasks at each iteration. Since initially u = p in this
stage, the adversary can continue this strategy for at least log p iterations.
Considering these two stages the work performed by the algorithm is:

S(n, p) ≥ n− p
︸ ︷︷ ︸

Stage 1

+ bp/2c log p
︸ ︷︷ ︸

Stage 2

= n+Ω(p log p). 2

The above lower bound holds for arbitrarily small delays. We next develop
a lower bound for the settings where the delay is non-negligible, specifically
we assume d ≥ 1.

7.2.1 Deterministic Delay-Sensitive Lower Bound

First we prove a lower bound on work that shows how the efficiency of work-
performing deterministic algorithms depends on the number of processors p,
the number of tasks n, and the message delay d.

Theorem 7.4. Any deterministic algorithm solving Do-All with n tasks us-

ing p asynchronous message-passing processors against adversary A(d)
D per-

forms work S(n, p, d) = Ω(n+ pmin{d, n} logd+1(d+ n)).

Proof. That the required work is at least n is obvious — each task must be
performed. We present the analysis for n > 5 and n that is divisible by 6 (this
is sufficient to prove the lower bound). We present the following adversarial
strategy. The adversary partitions computation into stages, each containing
min{d, n/6} steps. We assume that the adversary delivers all messages sent
to a processor in stage s at the end of stage s (recall that the receiver can

120 7 Asynchrony and Delay-Sensitive Bounds

process any such message later, according to its own local clock) — this is
allowed since the length of stage s is at most d. For stage s we will define the
set of processors Ps such that the adversary delays all processors not in Ps.
More precisely, each processor in Ps is not delayed during stage s, but any
processor not in Ps is delayed so it does not complete any step during stage s.

Consider stage s. Let us > 0 be the number of tasks that remain unper-
formed at the beginning of stage s, and let Us be the set of such tasks. We
now show how to define the set Ps. Suppose first that each processor is not
delayed during stage s (with respect to the time unit). Let Js(i), for every
processor i, i ∈ P (recall that P is the set of all processors), denote the set of
tasks from Us (we do not consider tasks not in Us in the analysis of stage s
since they were performed before) which are performed by processor i during
stage s (recall that inside stage s processor i does not receive any message
from other processors, by the assumption on consider kind of the adversary).
Note that |Js(i)| is at most min{d, n/6}, which is the length of a stage.

Claim. There are at least us

3 min{d,n/6} tasks z such that each of them is con-

tained in at most 2pmin{d, n/6}/us sets in the family {Js(i) | i ∈ P}.
We prove the claim by the pigeonhole principle. If the claim is not true,

then there would be more than us − us

3min{d,t/6} tasks such that each of

them would be contained in more than 2pmin{d, n/6}/us sets in the family
{Js(i) | i ∈ P}. This yields a contradiction because the following inequality
holds

p min{d, n/6} =
∑

i∈P

|Js(i)|

≥
(

us −
us

3 min{d, n/6}
)

· 2pmin{d, n/6}
us

=
(

2 − 2

3 min{d, n/6}
)

· pmin{d, n/6}

> p min{d, n/6} ,

since d ≥ 1 and n > 4. This proves the claim.
We denote the set of us

3min{d,n/6} tasks from the above claim by Js. We

define Ps to be the set {i : Js ∩ Js(i) = ∅}. By the definition of tasks z ∈ Js
we obtain that

|Ps| ≥ p− us
3 min{d, n/6} · 2pmin{d, n/6}

us
≥ p/3 .

Since all processors, other that those in Ps, are delayed during the whole
stage s, work performed during stage s is at least p

3 · min{d, n/6} , and all
tasks from Js remains unperformed. Hence the number us+1 of undone tasks
after stage s is still at least us

3min{d,n/6} .

If d < n/6 then work during stage s is at least p d/6, and there remain
at least us

3d unperformed tasks. Hence this process may be continued, starting

7.2 Delay-Sensitive Lower Bounds on Work 121

with n tasks, for at least log3d n = Ω(logd+1(d+n)) stages, until all tasks are
performed. The total work is then Ω(p d logd+1(d+ n)).

If d ≥ n/6 then during the first stage work performed is at least p n/18 =
Ω(p n logd+1(d + n)) = Ω(p n), and at the end of stage 1 at least n

3n/6 = 2

tasks remain unperformed. Notice that this asymptotic value does not depend
on whether the minimum is selected among d and n, or among d and n/6.
More precisely, the works is

Ω(pmin{d, n} logd+1(d+ n)) = Ω(pmin{d, n/6} logd+1(d+ n)),

which completes the proof. 2

7.2.2 Delay-sensitive Lower Bound for Randomized Algorithms

In this section we prove a delay-sensitive lower bound for randomized work-
performing algorithms. We first state a technical lemma (without a proof)
that we put to use in the lower bound proof.

Lemma 7.5. For 1 ≤ d ≤ √
u the following holds

1

4
≤
(

u−d
u/(d+1)

)

(
u

u/(d+1)

) ≤ 1

e
.

The idea behind the lower bound proof for randomized algorithms we
present below is similar to the one for deterministic algorithms in the previ-
ous section, except that sets Js(i) are random, hence we have to modify the
construction of set Ps also. We partition the execution of the algorithms into
stages, similarly to the lower bound for deterministic algorithms. Recall that
P is the set of p processors. Let Us denote the remaining tasks at the begin-
ning of stage s. Suppose first that all processors are not delayed during stage
s, and the adversary delivers all messages sent to processor i during stage s at
the end of stage s. The set Js(i), for processor i ∈ P , denotes a certain set of
tasks from Us that i is going to perform during stage s. The size of Js(i) is at
most d, because we consider at most d steps in advance (the adversary may
delay all messages by d time steps, and so the choice of Js(i) does not change
during next d steps, provided |Js(i)| ≤ d). The key point is that the set Js(i)
is random, since we consider randomized algorithms, and so we deal with the
probabilities that Js(i) = Y for the set of tasks Y ⊆ Us of size at most d. We
denote these probabilities by pi(Y). For some given set of processors P , let
Js(P) denote set

⋃

i∈P Js(i).
The goal of the adversary is to prevent the processors from completing

some sufficiently large set Js of tasks during stage s. Here we are interested in
the events where there is a set of processors Ps that is “large enough” (linear
size) so that the processors do not perform any tasks from Js.

In the next lemma we prove that, for some set Js, such set of processors
Ps exists with high probability. This is the main difference compared to the
deterministic lower bound — instead of finding a suitably large set Js and a

122 7 Asynchrony and Delay-Sensitive Bounds

linear-size set Ps, we prove that the set Js exists, and we prove that the set Ps
of processors not performing this set of tasks during stage s exists with high
probability. However in the final proof, the existence with high probability is
sufficient — we can define the set on-line using the rule that if some processor
wants to perform a task from the chosen set Js, then we delay it, and do not
put it in Ps. In the next lemma we assume that s is known, so we skip lower
index s from the notation for clarity of presentation.

Lemma 7.6. There exists set J ⊆ U of size u
d+1 such that

Pr[∃P⊆P : |P | = p/64 ∧ J(P) ∩ J = ∅] ≥ 1 − e−p/512 .

Proof. First observe that

∑

(J: J⊆U, |J|= u
d+1)

∑

(v∈P)

∑

(Y : Y⊆U, Y ∩J=∅, |Y |≤d)

pv(Y) =

=
∑

(v∈P)

∑

(Y : Y⊆U, |Y |≤d)

pv(Y) ·
(
u− |Y |
u/(d+ 1)

)

≥ p ·
(

u− d

u/(d+ 1)

)

.

It follows that there exists set J ⊆ U of size u
d+1 such that

∑

(v∈P)

∑

(Y : Y⊆U, Y ∩J=∅, |Y |≤d)

pv(Y) ≥
p ·
(

u−d
u/(d+1)

)

(
u

u/(d+1)

) ≥ p

4
, (7.1)

where the last inequality follows from Lemma 7.5. Fix such a set J . For every
node v ∈ P , let

Qv =
∑

(Y : Y⊆U, Y ∩J=∅, |Y |≤d)

pv(Y) .

Notice that Qv ≤ 1. Using the pigeonhole principle to Inequality 7.1, there is
a set V ′ ⊆ P of size p/8 such that for every v ∈ V ′

Qv ≥
1

8
.

(Otherwise more than 7p/8 nodes v ∈ P would have Qv < 1/8, and fewer
than p/8 nodes v ∈ P would have Qv ≤ 1. Consequently

∑

v∈P Sv < 7p/64 +
p/8 < p/4, which would contradict (7.1)). For every v ∈ V ′, let Xv be the
random variable equal 1 with probability Qv, and 0 with probability 1 −Qv.
These random variables constitute sequence of independent 0-1 trials. Let
µ = E[

∑

v∈V ′ Xv] =
∑

v∈V ′ Qv. Applying Chernoff bound we obtain

Pr

[
∑

v∈V ′

Xv < µ/2

]

< e−µ/8 ,

7.2 Delay-Sensitive Lower Bounds on Work 123

and consequently, since µ ≥ p
8 · 1

8 = p
64 , we have

Pr

[
∑

v∈V ′

Xv < p/64

]

≤ Pr

[
∑

v∈V ′

Xv < µ/2

]

< e−µ/8 ≤ e−p/512 .

Finally observe that

Pr [∃P⊆P : |P | = p/64 ∧ J(P) ∩ J = ∅]

≥ 1 − Pr

[
∑

v∈V ′

Xv < p/64

]

,

which completes the proof of the lemma. 2

We apply Lemma 7.6 in proving the following lower bound result.

Theorem 7.7. Any randomized algorithm solving Do-All with n tasks using

p asynchronous message-passing processors against adversary A(d)
D performs

expected work ES (n, p, d) = Ω(n+ pmin{d, n} logd+1(d+ n)).

Proof. That the lower bound of Ω(t) holds with probability 1 is obvious. We
consider three cases, depending on how large is d comparing to n: in the first
case d is very small comparing to n (in this case the thesis follows from the
simple calculations), in the second case we assume that d is larger than in the
first, but still no more than

√
n (this is the main case), and in the third case d

is large than
√
n (here the proof is similar to the second case, but is restricted

to one stage). We now give the details.

Case 1 : Inequalities 1 ≤ d ≤ √
n and 1 − e−p/512 · logd+1 n < 1/2 hold.

This case is a simple derivation. It follows that logd+1 n > ep/512/2, and
next 3

√
n > p+ d+ logd+1 n for sufficiently large p and n. More precisely:

3
√
n > 3p for sufficiently large p, since n > logd+1 n > ep/512;

3
√
n > 3d for sufficiently large p, since de

p/512/2 < n;
3
√
n > 3 logd+1 n for sufficiently large n, since d ≥ 1 and by the prop-

erties of the logarithm function.

Consequently, n = (3
√
n)3 > pd logd+1 n for sufficiently large p and n, and the

lower bound

Ω(n) = Ω(p d logd+1 n) = Ω(p d logd+1(d+ n))

holds, with the probability 1, in this case.

Case 2 : Inequalities 1 ≤ d ≤ √
n and 1 − e−p/512 · logd+1 n ≥ 1/2 hold.

Consider any Do-All algorithm. Similarly as in the proof of Theorem 7.4,
the adversary partitions computation into stages, each containing d steps.

124 7 Asynchrony and Delay-Sensitive Bounds

Let us fix an execution of the algorithm through the end of stage s − 1.
Consider stage s. We assume that the adversary delivers to a processor all
messages sent in stage s at the end of stage s, provided the processor is not
delayed at the end of stage s (any such message is processed by the receivers
at a later time). Let Us ⊆ T denote set of tasks that remain unperformed by
the end of stage s−1. Here, by the adversarial strategy (no message is received
and processed during stage s), given that the execution is fixed at the end
of stage s− 1, one can fix a distribution of processor i performing the set of
tasks Y during stage s — this distribution is given by the probabilities pi(Y).
The adversary derives the set Js ⊆ Us, using Lemma 7.6 according to the set
of all processors, the set of the unperformed tasks Us, and the distributions
pi(Y) fixed at the beginning of stage s according to the action of processors
i in stage s. (In applying Lemma 7.6 we use the same notation, except that
the quantities are subscripted according to the stage number s.)

The adversary additionally delays any processor i, not belonging to some
set Ps, that attempts to perform a task from Js before the end of stage
s. The set Ps is defined on-line (this is one of the difference between the
adversarial constructions in the proofs of the lower bounds for deterministic
and randomized Do-All algorithms): at the beginning of stage s set Ps contains
all processors; every processor i that is going to perform some task z ∈ Js
at time τ in stage s, is delayed till the end of stage s and removed from set
Ps. We illustrate the adversarial strategy for five processors and d = 5 in
Figure 7.1.

We now give additional details of the adversarial strategy. Suppose us =
|Us| > 0 tasks remain unperformed at the beginning of stage s. As described
above, we apply Lemma 7.6 to the set Us and probabilities pi(Y) to find, at the
very beginning of stage s, the set Js ⊆ Us such that the probability that there
exists a subset of processors Ps of cardinality p/64 such that none of them
would perform any tasks from Js during stage s is at least 1− e−p/512. Next,
during stage s the adversary delays (to the end of stage s) all processors that
(according to the random choices during stage s) are going to perform some
task from Js. By Lemma 7.6, the set Ps of not-delayed processors contains
at least p − 63p/64 ≥ p/64 processors, and the set of the remaining tasks
Us+1 ⊇ Js contains at least us

d+1 tasks, all with probability at least 1−e−p/512.
If this happens, we call stage s successful .

It follows that the probability, that every stage s < logd+1 n is successful is

at least 1− e−p/512 · logd+1 n. Hence, using the assumption for this case, with

the probability at least 1−e−p/512 · logd+1 n ≥ 1/2, at the beginning of stage s

there will be at least n ·
(

1
d+1

)logd+1 n−1
> 1 unperformed tasks and work will

be at least (logd+1 n− 1) · dp/64, since the work in one successful stage is at
least p/64 (the number of non-delayed processors) times d (the duration of one
stage). It follows that the expected work of this algorithm in the presence of
our adversary is Ω(pd logd+1 n) = Ω(pd logd+1(d+ n)), because 1 ≤ d ≤ √

n.
This completes the proof of Case 2.

7.3 Contention of Permutations 125

Strategy of the adversary during stage s, where p = d = 5. Using the set Js,
which exists by Lemma 7.6, the adversary delays a processor from the moment
where it wants to perform a task from Js. Lemma 7.6 guarantees that at least a
fraction of processors will not be delayed during stage s, with high probability.

Fig. 7.1. Illustration of the adversarial strategy leading to the delay-sensitive lower
bound on total-work for randomized algorithms.

Case 3 : Inequality d >
√
t holds.

Here we follow similar reasoning as in the Case 2, except that we consider
a single stage.

Consider first min{d, n/6} steps. Let T be the set of all tasks, and pi(Y)
denote the probability that processor i ∈ P performs tasks in Y ⊆ T of
cardinality min{d, n/6} during the considered steps. Applying Lemma 7.6 we
obtain, that at least p/64 processors are non-delayed during the considered

steps, and after these steps at least min{d,n/6}
d+1 ≥ 1 tasks remain unperformed,

all with the probability at least 1−e−p/512. Since 1 ≤ logd+1(d+n) < 2, work
is Ω(pmin{d, n/6}) = Ω(pmin{d, n} logd+1(d+n)). This completes the proof
of the third case and of the theorem. 2

7.3 Contention of Permutations

In this section we present and generalize the notion of contention of permuta-
tions, and state several properties of contention (without proofs). Contention
properties turn out to be important in the analysis of algorithms we present
later in this chapter.

We use braces 〈. . .〉 to denote an ordered list. For a list L and an element
a, we use the expression a ∈ L to denote the element’s membership in the list,
and the expression L−K to stand for L with all elements in K removed.

126 7 Asynchrony and Delay-Sensitive Bounds

We next provide a motivation for the material in this section. Consider the
situation where two asynchronous processors, p1 and p2, need to perform n
independent tasks with known unique identifiers from the set [n] = {1, . . . , n}.
Assume that before starting a task, a processor can check whether the task is
complete; however if both processors work on the task concurrently, then the
task is done twice because both find it to be not complete. We are interested
in the number of tasks done redundantly.

Let π1 = 〈a1, . . . , an〉 be the sequence of tasks giving the order in which
p1 intends to perform the tasks. Similarly, let π2 = 〈as1 , . . . , asn〉 be the
sequence of tasks of p2. We can view π2 as π1 permuted according to σ =
〈s1, . . . , st〉 (π1 and π2 are permutations). With this, it is possible to construct
an asynchronous execution for p1 and p2, where p1 performs all t tasks by itself,
and any tasks that p2 finds to be unperformed are performed redundantly by
both processors.

In the current context it is important to understand how does the structure
of π2 affect the number of redundant tasks. Clearly p2 may have to perform
task as1 redundantly. What about as2? If s1 > s2 then by the time p2 gets
to task as2 , it is already done by p1 according to π1. Thus, in order for as2
to be done redundantly, it must be the case that s2 > s1. It is easy to see,
in general, that for task asj to be done redundantly, it must be the case that
sj > max{s1, . . . , sj−1}. Such sj is called the left-to-right maximum of σ.
The total number of tasks done redundantly by p2 is thus the number of
left-to-right maxima of σ. Not surprisingly, this number is minimized when
σ = 〈n, . . . , 1〉, i.e, when π2 is the reverse order of π1, and it is maximized when
σ = 〈1, . . . , n〉, i.e., when π1 = π2. In this section we will define the notion
contention of permutations that captures the relevant left-to-right maxima
properties of permutations that are to be used as processor schedules.

Now we proceed with formal presentation. Consider a list of some idem-
potent computational jobs with identifiers from the set [n] = {1, . . . , n}. (We
make the distinction between tasks and jobs for convenience to simplify algo-
rithm analysis; a job may be composed of one or more tasks.) We refer to a list
of job identifiers as a schedule. When a schedule for n jobs is a permutation of
job identifiers π in Sn, we call it a n-schedule. Here Sn is the symmetric group,
the group of all permutations on the set [n]; we use the symbol ◦ to denote
the composition operator, and en to denote the identity permutation. For a
n-schedule π = 〈π(1), . . . , π(n)〉 a left-to-right maximum is an element π(j) of
π that is larger than all of its predecessors, i.e., π(j) > maxi<j{π(j − i)}.

Given a n-schedule π, we define lrm(π), to be the number of left-to-right
maxima in the n-schedule π. For a list of permutations Ψ = 〈π0, . . . , πn−1〉
from Sn and a permutation δ in Sn, the contention of Ψ with respect to δ
is defined as Cont(Ψ, δ) =

∑n−1
u=0 lrm(δ−1 ◦ πu). The contention of the list of

schedules Ψ is defined as Cont(Ψ) = maxδ∈Sn{Cont(Ψ, δ)}. Note that for any
Ψ , we have n ≤ Cont(Ψ) ≤ n2. It turns out that it is possible to construct a
family of permutations with following low contention (Hn is the nth harmonic
number, Hn =

∑n
j=1

1
j).

7.3 Contention of Permutations 127

Lemma 7.8. For any n > 0 there exists a list of permutations Ψ =
〈π0, . . . , πn−1〉 with Cont(Ψ) ≤ 3nHn = Θ(n log n).

For a constant n, a list Ψ with Cont(Ψ) ≤ 3nHn can be found by exhaustive
search. This costs only a constant number of operations on integers (however,
this cost might be of order (n!)n).

7.3.1 Contention and Oblivious Tasks Scheduling

Assume now that n distinct asynchronous processors perform the n jobs such
that processor i performs the jobs in the order given by πi in Ψ . We call
this oblivious algorithm ObliDo and give the code in Figure 7.2. (Here each
“processor” may be modeling a group of processors, where each processor
follows the same sequence of activities.)

00 const Ψ = {πr | 1 ≤ r ≤ n ∧ πr ∈ Sn} % Fixed set of n permutations of [n]
01 for each processor pid = 1..n begin

02 for r = 1 to n do

03 perform Job(πpid (r))
04 od

05 end.

Fig. 7.2. Algorithm ObliDo.

Since ObliDo does not involve any coordination among the processors
the total of n2 jobs are performed (counting multiplicities). However, it can
be shown that if we count only the job executions such that each job has not
been previously performed by any processor, then the total number of such
job executions is bounded by Cont(Ψ), again counting multiplicities. We call
such job executions primary; we also call all other job executions secondary.
Note that the number of primary executions cannot be smaller than n, since
each job is performed at least once for the first time. In general this number
is going to be between n and n2, because several processors may be executing
the same job concurrently for the first time.

Note that while an algorithm solving the Do-All problem may attempt to
reduce the number of secondary job executions by sharing information about
complete jobs among the processors, it is not possible to eliminate (redundant)
primary job executions in the asynchronous model we consider. The following
lemma formalizes the relationship between the primary job executions and
the contention of permutations used as schedules.

Lemma 7.9. In algorithm ObliDo with n processors, n tasks, and using the
list Ψ of n permutations, the number of primary job executions is at most
Cont(Ψ).

128 7 Asynchrony and Delay-Sensitive Bounds

7.3.2 Generalized Contention

Now we generalize the notion of contention and define d-contention. For a
schedule π = 〈π(1), . . . , π(n)〉, an element π(j) of π is a d-left-to-right max-
imum (or d-lrm for short) if the number the elements in π preceding and
greater than π(j) is less than d, i.e., |{i : i < j ∧ π(i) > π(j)}| < d.

Given a n-schedule π, we define (d)-lrm(π) as the number of d-lrm’s in
the schedule π. For a list Ψ = 〈π0, . . . , πp−1〉 of permutations from Sn and a
permutation δ in Sn, the d-contention of Ψ with respect to δ is defined as

(d)-Cont(Ψ, δ) =

p−1
∑

u=0

(d)-lrm(δ−1 ◦ πu) .

The d-contention of the list of schedules Ψ is defined as

(d)-Cont(Ψ) = max
δ∈Sn

{(d)-Cont(Ψ, δ)} .

We first show a lemma about the d-contention of a set of permutations
with respect to en, the identity permutation.

Lemma 7.10. Let Ψ be a list of p random permutations from Sn. For every
fixed positive integer d, the probability that (d)-Cont(Ψ, en) > n lnn+8pd ln(e+

n/d) is at most e−(n lnn+7pd ln(e+ n
3d)) ln(7/e).

Proof. For d ≥ n/5 the thesis is obvious. In the remainder of the proof we
assume d < n/5.

First we describe a well known method for generating a random schedule
by induction on the number of elements n′ ≤ n to be permuted. For n′ = 1
the schedule consists of a single element chosen uniformly at random. Suppose
we can generate a random schedule of n′− 1 different elements. Now we show
how to schedule n′ elements uniformly and independently at random. First
we choose uniformly and independently at random one element among n′ and
put it as the last element in the schedule. By induction we generate random
schedule from remaining n′ − 1 elements and put them as the first n′ − 1
elements. Simple induction proof shows that every obtained schedule of n′

elements has equal probability (since the above method is a concatenation of
two independent and random events).

A random list of schedules Ψ can be selected by using the above method
p times, independently.

For a schedule π ∈ Ψ , let X(π, i), for i = 1, . . . , n, be a random value such
that X(π, i) = 1 if π(i) is a d-lrm, and X(π, i) = 0 otherwise.

Claim. For any π ∈ Ψ , X(π, i) = 1 with probability min{d/i, 1}, indepen-
dently from other values X(π, j), for j > i. Restated precisely, we claim
that Pr[X(π, i) = 1 |∧j>iX(π, j) = aj] = min{d/i, 1}, for any 0-1 sequence
ai+1, . . . , an.

7.3 Contention of Permutations 129

This is so because π(i) might be a d-lrm if during the (n − i − 1)th step
of generating π, we select uniformly and independently at random one among
the d greatest remaining elements (there are i remaining elements in this step).
This proves the claim.

Note that

1. for every π ∈ Ψ and every i = 1, . . . , d, π(i) is d-lrm, and
2. E

[∑

π∈Ψ

∑n
i=d+1X(π, i)

]
= p d ·∑n

i=d+1
1
i = p d (Hn −Hd).

Applying the well known Chernoff bound of the following form: for 0-1 inde-
pendent random variables Yj and any constant b > 0,

Pr
[
∑

j Yj > E
[
∑

j Yj

]

(1 + b)
]

<
(

eb

(1+b)1+b

)E[
∑

j Yj]
< e−E[

∑

j Yj](1+b) ln 1+b
e ,

and using the fact that 2 +
n lnn

pd(Hn −Hd)
> 0, we obtain

Pr

[
∑

π∈Ψ

n∑

i=d+1

X(π, i) > n lnn+ 3pd(Hn −Hd)

]

= Pr

[
∑

π∈Ψ

n∑

i=d+1

X(π, i) > pd(Hn −Hd)

(

1 +

(

2 +
n lnn

pd(Hn −Hd)

))]

≤ e
−(n lnn+3pd(Hn−Hd)) ln

n ln n+3pd(Hn−Hd)

e·pd(Hn−Hd)

≤ e−[n lnn+3pd(Hn−Hd)] ln(3/e).

Since ln i ≤ Hi ≤ ln i+ 1 and n > 5d, we obtain that

Pr

[
∑

π∈Ψ

n∑

i=1

X(π, i) > n lnn+ 5pd ln
(

e+
n

d

)
]

≤ Pr

[
∑

π∈Ψ

n∑

i=d+1

X(π, i) > n lnn+ 3pd(Hn −Hd) + pd

]

≤ e−[n lnn+3pd(Hn−Hd)] ln(3/e) .

2

Now we generalize the result of Lemma 7.10.

Theorem 7.11. For a random list of schedules Ψ containing p permutations
from Sn, the event:

“for every positive integer d, (d)-Cont(Ψ) > n lnn+ 8pd ln(e+ n/d)”,

holds with probability at most e−n lnn·ln(7/e2)−p.

130 7 Asynchrony and Delay-Sensitive Bounds

Proof. For d ≥ n/5 the result is straightforward, moreover the event holds
with probability 0. In the following we assume that d < n/5.

Note that since Ψ is a random list of schedules, then so is σ−1 ◦ Ψ ,
where σ ∈ Sn is an arbitrary permutation. Consequently, by Lemma 7.10,
(d)-Cont(Ψ, σ) > n lnn + 8pd ln(e + n/d) holds with probability at most

e−[n lnn+7pd ln(e+ n
3d)] ln 7

e .
Hence the probability that a random list of schedules Ψ has d-contention

greater than n lnn+ 8pd ln(e+ n/d) is at most

n! · e−[n lnn+7pd ln(e+ n
3d)] ln 7

e ≤ en lnn−[n lnn+7pd ln(e+ n
3d)] ln 7

e

≤ e−n lnn·ln 7
e2−7pd ln(e+ n

d) .

Then the probability that, for every d, (d)-Cont(Ψ) > n lnn+8pd ln(e+n/d),
is at most

∞∑

d=1

Pr
[
(d)-Cont(Ψ) > n lnn+ 8pd ln(e+ n/d)

]

≤
n/5−1
∑

d=1

e−n lnn·ln(7/e2)−7pd ln(e+n/d) +

∞∑

d=n/5

0

≤ e−n lnn·ln(7/e2) ·
n/5−1
∑

d=1

(e−7p)d

≤ e−n lnn·ln(7/e2) · e−7p

1 − e−7p

≤ e−n lnn·ln(7/e2)−p .

2

Using the probabilistic method we obtain the following.

Corollary 7.12. There is a list of p schedules Ψ from Sn such that
(d)-Cont(Ψ) ≤ n logn+ 8pd ln(e+ n/d), for every positive integer d.

We put to use our generalized notion of contention in the delay-sensitive
analysis of work-performing algorithms in Section 7.5.

7.4 Deterministic Algorithms Family DA

We now present a deterministic solution for the Do-All problem with p pro-
cessors and n tasks. We develop a family of deterministic algorithms DA,
such that for any constant ε > 0 there is an algorithm with total-work
S = O(npε + p ddn/deε) and message complexity M = O(p · S).

7.4 Deterministic Algorithms Family DA 131

More precisely, algorithms from the family DA are parameterized by a
positive integer q and a list Ψ of q permutations on the set [q] = {1, . . . , q},
where 2 ≤ q < p ≤ n. We show that for any constant ε > 0 there is a
constant q and a corresponding set of permutation Ψ , such that the resulting
algorithm has total-work S = O(npε + p ddn/deε) and message complexity
M = O(p · S). The work of these algorithms is within a small polynomial
factor of the corresponding lower bound (see Section 7.2.1).

7.4.1 Construction and Correctness of Algorithm DA(q)

Let q be some constant such that 2 ≤ q ≤ p. We assume that the number
of tasks t is an integer power of q, specifically let t = qh for some h ∈ N.
When the number of tasks is not a power of q we can use a standard padding
technique by adding just enough “dummy” tasks so that the new number of
tasks becomes a power of q; the final results show that this padding does
not affect the asymptotic complexity of the algorithm. We also assume that
logq p is a positive integer. If it is not, we pad the processors with at most qp
“infinitely delayed” processors so this assumption is satisfied; in this case the
upper bound is increased by a (constant) factor of at most q.

The algorithm uses any list of q permutations Ψ = 〈π0, . . . πq−1〉 from Sq
such that Ψ has the minimum contention among all such lists. We define a
family of algorithms, where each algorithm is parameterized by q, and a list Ψ
with the above contention property. We call this algorithm DA(q). In this sec-
tion we first present the algorithm for p ≥ n, then state the parameterization
for p < n.

Algorithm DA(q), utilizes a q-ary boolean progress tree with n leaves,
where the tasks are associated with the leaves. Initially all nodes of the tree
are 0 (false) indicating that no tasks have been performed. Instead of main-
taining a global data structure representing a q-ary tree, in our algorithms
each processor has a replica of the tree.

Whenever a processor learns that all tasks in a subtree rooted at a certain
node have been performed, it sets the node to 1 (true) and shares the good
news with all other processors. This is done by multicasting the processor’s
progress tree; the local replicas at each processor are updated when multicast
messages are received.

Each processor, acting independently, searches for work in the smallest
immediate subtree that has remaining unperformed tasks. It then performs
any tasks it finds, and moves out of that subtree when all work within it is
completed. When exploring the subtrees rooted at an interior node at height
m, a processor visits the subtrees in the order given by one of the permutations
in Ψ . Specifically, the processor uses the permutation πs such that s is the
value of the m-th digit in the q-ary expansion of the processor’s identifier
(pid). We now present this in more detail.

132 7 Asynchrony and Delay-Sensitive Bounds

00 const q % Arity of the progress tree
01 const Ψ = 〈πr | 0 ≤ r < q ∧ πr ∈ Sq〉 % Fixed list of q permutations of [q]
02 const l = (qt−1)/(q−1) % The size of the progress tree
03 const h = logq n % The height of the progress tree
04 type ProgressTree: array [0 .. l − 1] of boolean % Progress tree
05 for each processor pid = 1 to p begin

06 ProgressTree Treepid % The progress tree at processor pid

10 thread % Traverse progress tree in search of work
11 integer ν init = 0 % Current node, begin at the root
12 integer η init = 0 % Current depth in the tree
13 Dowork(ν, η)
14 end

20 thread % Receive broadcast messages
21 set of ProgressTree B % Incoming messages
22 while Treepid [0] 6= 1 do % While not all tasks certified
23 receive B % Deliver the set of received messages
24 Treepid := Treepid ∨ (

∨

b∈B b) % Learn progress
25 od

26 end

27 end.

40 procedure Dowork(ν, η) % Recursive progress tree traversal
41 % ν : current node index ; η : node depth
42 const array x[0 .. h− 1] = pid(base q) % h least significant q-ary digits of pid
43 if Treepid [ν] = 0 then % Node not done – still work left
44 if η = h then % Node ν is a leaf
45 perform Task(n− l + ν + 1) % Do the task
46 else % Node ν is not a leaf
47 or r = 1 to q do % Visit subtrees in the order of πx[η]
48 Dowork(qν + πx[η](r), η + 1)
49 od

50 fi

51 Treepid [ν] := 1 % Record completion of the subtree
52 broadcast Treepid % Share the good news
53 fi

54 end.

Fig. 7.3. The deterministic algorithm DA (p ≥ n).

Data Structures: Given the n tasks, the progress tree is a q-ary ordered
tree of height h, where n = qh. The number of nodes in the progress tree is
l =

∑h−1
i=0 q

i = (qh+1−1)/(q−1) = (qn−1)/(q−1). Each node of the tree is a
boolean, indicating whether the subtree rooted at the node is done (value 1)
or not (value 0).

The progress tree is stored in a boolean array Tree [0 .. l−1], where Tree [0]
is the root, and the q children of the interior node Tree [ν] being the nodes
Tree [qν + 1],Tree [qν + 2], . . . ,Tree [qν + q]. The space occupied by the tree

7.4 Deterministic Algorithms Family DA 133

is O(n). The n tasks are associated with the leaves of the progress tree, such
that the leaf Tree [ν] corresponds to the task Task (ν + n+ 1 − l).

We represent the pid of each of the p processors in terms of its q-ary
expansion. We care only about the h least significant q-ary digits of each
pid (thus when p > n several processors may be indistinguishable in the
algorithm). The q-ary expansions of each pid is stored in the array x[0..h−1].

Control Flow: The code is given in Figure 7.3. Each of the p processors
executes two concurrent threads. One thread (lines 10-14) traverses the lo-
cal progress tree in search work, performs the tasks, and broadcasts the up-
dated progress tree. The second thread (lines 20-26) receives messages from
other processors and updates the local progress tree. (Each processor is asyn-
chronous, but we assume that its two threads run at approximately the same
speed. This is assumed for simplicity only, as it is trivial to explicitly schedule
the threads on a single processor.) Note that the updates of the local progress
tree Tree are always monotone: initially each node contain 0, then once a node
changes its value to 1 it remains 1 forever. Thus no issues of consistency arise.

The progress tree is traversed using the recursive procedure Dowork

(lines 40-54). The order of traversals within the progress tree is determined
by the list of permutations Ψ = 〈π0, π1, . . . , πq−1〉. Each processor uses, at the
node of depth η, the ηth q-ary digit x[η] of its pid to select the permutation
πx[η] from Ψ (recall that we use only the h least significant q-ary digits of
each pid when representing the pid in line 42). The processor traverses the q
subtrees in the order determined by πx[η] (lines 47-49); the processors starts
the traversal of a subtree only if the corresponding bit in the progress tree is
not set (line 43).

In other words, each processor pid traverses its progress tree in a post-
order fashion using the q-ary digits of its pid and the permutations in Ψ to
establish the order of the subtree traversals, except that when the messages
from other processors are received, the progress tree of processor pid can be
pruned based on the progress of other processors.

Parameterization for Large Number of Tasks: When the number of
input tasks n′ exceeds the number of processors p, we divide the tasks into jobs,
where each job consists of at most dn′/pe tasks. The algorithm in Figure 7.3
is then used with the resulting p jobs (p = n), where Task (j) now refers
to the job number j (1 ≤ j ≤ n). Note that in this case the cost of work
corresponding to doing a single job is dn′/pe.

Correctness: We claim that algorithm DA(q) correctly solves the Do-All
problem. This follows from the observation that a processor leaves a subtree
by returning from a recursive call to Dowork if and only if the subtree
contains no unfinished work and its root is marked accordingly. We formalize
this as follows.

134 7 Asynchrony and Delay-Sensitive Bounds

Lemma 7.13. In any execution of algorithm DA(q), whenever a processor
returns from a call to Dowork(ν, η), all tasks associated with the leaves that
are the descendants of node ν have been performed.

Proof. First, by code inspection (Figure 7.3, lines 45, 51, and 52), we note that
processor pid reaching a leaf n at depth η = h broadcasts its Treepid with the
value Treepid [ν] set to 1 if and only if it performs the task corresponding to
the leaf.

We now proceed by induction on η.
Base case, η = h:
In this case, processor pid makes the call to Dowork(ν, η). If Treepid [ν] =
0, as we have already observed, the processor performs the task at the leaf
(line 45), broadcasts its Treepid with the leaf value set to 1 (lines 51-52), and
returns from the call. If Treepid [ν] 6= 0 then the processor must have received a
message from some other processor indicating that the task at the leaf is done.
This can be so if the sender itself performed the task (as observed above), or
the sender learned from some other processor the fact that the task is done.
Inductive step, 0 ≤ η < h:
In this case, processor pid making the call to Dowork(ν, η) executes q calls
to Dowork(ν′, η + 1), one for each child ν′ of node ν (lines 47-49). By in-
ductive hypothesis, each return from Dowork(ν′, η + 1) indicates that all
tasks associated with the leaves that are the descendants of node ν′ have
been performed. The processor then broadcasts its Treepid with the the value
Treepid [ν] set to 1 (lines 51-52), indicating that all tasks associated with the
leaves that are the descendants of node ν have been performed, and returns
from the call. 2

Theorem 7.14. Any execution of algorithm DA(q) terminates in finite time
having performed all tasks.

Proof. The progress tree used by the algorithm has finite number of nodes.
By code inspection, each processor executing the algorithm makes at most
one recursive call per each node of the tree. Thus the algorithm terminates
in finite time. By Lemma 7.13, whenever a processor returns from the call to
Dowork(ν (= 0), η (= 0)), all tasks associated with the leaves that are the
descendants of the node ν = 0 are done, and the value of node is set to 1.
Since this node is the root of the tree, all tasks are done. 2

7.4.2 Complexity Analysis of Algorithm DA(q)

We start by showing a lemma that relates the work of the algorithm, against

adversary A(d)
D to its recursive structure.

We consider the case p ≥ n. Let S(n, p, d) denote total-work of algorithm
DA(q) through the first global step in which some processor completes the last
remaining task and broadcasts the message containing the progress tree where
T [0] = 1. We note that S(1, p, d) = O(p). This is because the progress tree

7.4 Deterministic Algorithms Family DA 135

has only one leaf. Each processor makes a single call to Dowork, performs
the sole task and broadcasts the completed progress tree.

Lemma 7.15. For p-processor, n-task algorithm DA(q) with p ≥ n and n and
p divisible by q:

S(n, p, d) = O(Cont(Ψ) · S(p/q, n/q, d) + p · q · min{d, n/q}) .

Proof. Since the root of the progress tree has q children, each processor makes
the initial call to Dowork(0, 0) (line 13) and then (in the worst case) it makes
q calls to Dowork (line 47-49) corresponding to the children of the root. We
consider the performance of all tasks in the specific subtree rooted at a child
of the progress tree as a job, thus such a job consists of all invocations of
Dowork on that subtree. We now account separately for the primary and
secondary job executions (recall the definitions in Section 7.3).

Observe that the code in lines 47-49 of DA is essentially algorithm ObliDo

(lines 02-04 in Figure 7.2) and we intend to use Lemma 7.9. The only difference
is that instead of q processors we have q groups of p/q processors where in each
group the pids differ in their q-ary digit corresponding to the depth 0 of the
progress tree. From the recursive structure of algorithm DA it follows that the
work of each such group in performing a single job is S(p/q, n/q, d), since each
group has p/q processors and the job includes n/q tasks. Using Lemma 7.9
the primary task executions contribute O(Cont(Ψ) · S(p/q, n/q, d)) work.

If messages were delivered without delay, there would be no need to ac-
count for secondary job executions because the processors would instantly
learn about all primary job completions. Since messages can be delayed by
up to d time units, each processor may spend up to d time steps, but no
more than O(n/q) steps performing a secondary job (this is because it takes a
single processor O(n/q) steps to perform a post-order traversal of a progress
tree with n/q leaves). There are q jobs to consider, so for p processors this
amounts to O(p · q · min{d, n/q}) work.

For each processor there is also a constant overhead due to the fixed-
size code executed per each call to Dowork. The total-work contribution is
O(p · q). Finally, given the assumption about thread scheduling, the work of
message processing thread does not exceed asymptotically the work of the
Dowork thread. Putting all these work contributions together yields the
desired result. 2

We now prove the following theorem about total-work.

Theorem 7.16. Consider algorithm DA(q) with p processors and n tasks
where p ≥ n. Let d be the maximum message delay. For any constant ε > 0
there is a constant q such that the algorithm has total-work S(n, p, d) =
O(pmin{n, d}dn/deε).

Proof. Fix a constant ε > 0; without loss of generality we can assume that
ε ≤ 1. Let a be the sufficiently large positive constant “hidden” in the big-oh

136 7 Asynchrony and Delay-Sensitive Bounds

upper bound for S(n, p, d) in Lemma 7.15. We consider a constant q > 0 such
that logq(4a log q) ≤ ε. Such q exists since limq→∞ logq(4a log q) = 0 (however,

q is a constant of order 2
log(1/ε)

ε).
First suppose that logq n and logq p are positive integers. We prove by

induction on p and n that

S(n, p, d) ≤ q · nlogq(4a log q) · p · d1−logq(4a log q) ,

For the base case of n = 1 the statement is correct since S(1, p, d) = O(p).
For n > 1 we choose the list of permutations Ψ with Cont(Ψ) ≤ 3q log q per
Lemma 7.8. Due to our choice of parameters, logq n is an integer and n ≤ p.
Let β stand for logq(4a log q). Using Lemma 7.15 and inductive hypothesis we
obtain

S(n, p, d) ≤ a ·
(

3q log q · q ·
(n

q

)β

· p
q
· d1−β + p · q · min{d, n/q}

)

≤ a ·
((
q · nβ · p · d1−β

)
· 3 log q · q−β + p · q · min{d, n/q}

)

.

We now consider two cases:

Case 1 : d ≤ n/q. It follows that

p · q · min{d, n/q} = p q d ≤ p q d1−β ·
(n

q

)β

.

Case 2 : d > n/q. It follows that

p · q · min{d, n/q} = p n ≤ p q d1−β ·
(n

q

)β

.

Putting everything together we obtain the desired inequality

S(n, p, d) ≤ a
((
q · nβ · p · d1−β · q−β

)
4 log q

)
≤ q · nβ · p · d1−β .

To complete the proof, consider any n ≤ p. We add n′ − n new “dummy”
tasks, where n′ − n < q n − 1, and p′ − p new “virtual” processors, where
p′− p < q p− 1, such that logq n

′ and logq p
′ are positive integers. We assume

that all “virtual” crash at the start of the computation (else they can be
thought of as delayed to infinity). It follows that

S(n, p, d) ≤ S(n′, p′, d) ≤ q · (n′)βp′ · d1−β ≤ q2+βnβp · d1−β .

Since β ≤ ε, we obtain that total-work of algorithm DA(q) is
O(min{nεp d1−ε, n p}) = O(pmin{n, d}dn/deε) , which completes the proof
of the theorem. 2

Now we consider the case p < n. Recall that in this case we divide the n
tasks into p jobs of size at most dn/pe, and we let the algorithm work with
these jobs. It takes a processor O(n/p) work (instead of a constant) to process
a single job.

7.5 Permutation Algorithms Family PA 137

Theorem 7.17. Consider algorithm DA(q) with p processors and n tasks
where p < n. Let d be the maximum message delay. For any constant
ε > 0 there is a constant q such that DA(q) has total-work S(n, p, d) =
O(npε + pmin{n, d}dn/deε).

Proof. We use Theorem 7.16 with p jobs (instead of n tasks), were a single
job takes O(n/p) units of work. The upper bound on the maximal delay
for receiving messages about the completion of some job is d′ = dpd/ne =
O(1+pd/n) “job units”, where a single job unit takes Θ(n/p) time. We obtain
the following bound on work:

O

(

pmin{p, d′}dp/d′eε · n
p

)

= O

(

min
{
p2, pεp(d′)1−ε

}
· n
p

)

= O
(
min

{
n p, n pε + pnεd1−ε

})

= O
(

n pε + pmin{n, d}
⌈n

d

⌉ε)

.

2

Finally we consider message complexity.

Theorem 7.18. Algorithm DA(q) with p processors and n tasks has message
complexity M(n, p, d) = O(p · S(n, p, d)).

Proof. In each step, a processor broadcasts at most one message to p−1 other
processors. 2

Note again that our focus is on optimizing work on the assumption that
performing a task is substantially more costly that sending a message. It may
also be interesting to optimize communication costs first.

7.5 Permutation Algorithms Family PA

In this section we present and analyze a family of algorithms that are simpler
than algorithms DA and that directly rely on permutation schedules. Two
algorithms are randomized (algorithms PaRan1 and PaRan2), and one is
deterministic (algorithm PaDet).

7.5.1 Algorithm Specification

The common pattern in the three algorithms is that each processor, while it
has not ascertained that all tasks are complete, performs a specific task from
its local list and broadcasts this fact to other processors. The known complete
tasks are removed from the list. The code is given in Figure 7.4. The common
code for the three algorithms is in lines 00-29.

The three algorithms differ in two ways:

138 7 Asynchrony and Delay-Sensitive Bounds

1. The initial ordering of the tasks by each processor, implemented by the
call to procedure Order on line 20.

2. The selection of the next task to perform, implemented by the call to
function Select on line 24.

We now describe the specialization of the code made by each algorithm (the
code for Order+Select in Figure 7.4).

00 use package Order+Select % Algorithm-specific procedures
01 type TaskId : [n]
02 type TaskList : list of TaskId
03 type MsgBuff : set of TaskList

10 for each processor pid = 1 to p begin

11 TaskList Taskspid init [n]
12 MsgBuf B % Incoming messages
13 TaskId tid % Task id; next to done

20 Order(Taskspid)
21 while Taskspid 6= ∅ do

22 receive B % Deliver the set of received messages
23 Taskspid := Taskspid − (

⋃

b∈B b) % Remove tasks
24 tid := Select(Taskspid) % Select next task
25 perform Task(tid)
26 Taskspid := Taskspid − {tid} % Remove done task
27 broadcast Taskspid % Share the news
28 od

29 end.

40 package Order+Select % Used in algorithm PaRan1
41 list Ψ = 〈TaskList πr | 1 ≤ r ≤ p ∧ πr = random list of [n]〉
42 % Ψ is a list of p random permutations
43 procedure Order(T) begin T := πpid end

44 TaskId function Select(T) begin return(T (1)) end

50 package Order+Select % Used in algorithm PaRan2
51 procedure Order(T) begin no-op end

52 TaskId function Select(T) begin return(random(T)) end

60 package Order+Select % Used in algorithm PaDet

61 const list Ψ = 〈TaskList πr | 1 ≤ r ≤ p ∧ πr ∈ Sn〉
62 % Ψ is a fixed list of p permutations
63 procedure Order(T) begin T := πpid end

64 TaskId function Select(T) begin return(T (1)) end

Fig. 7.4. Permutation algorithm and its specializations for PaRan1, PaRan2, and
PaDet (p ≥ n).

7.5 Permutation Algorithms Family PA 139

As with algorithm DA, we initially consider the case of p ≥ n. The case
of p < n is obtained by dividing the n tasks into p jobs, each of size at
most dn/pe. In this case we deal with jobs instead of tasks in the code of
permutation algorithms.

Randomized algorithm PaRan1. The specialized code is in Figure 7.4,
lines 40-44. Each processor pid performs tasks according to a local per-
mutation πpid . These permutations are selected uniformly at random at
the beginning of computation (line 41), independently by each processor.
We refer to the collection of these permutation as Ψ . The drawback of this
approach is that the number of random selections is p · min{n, p}, each
of O(log min{n, p}) random bits (we have min{n, p} above because when
p < n, we use p jobs, each of size dn/pe, instead of n tasks).

Randomized algorithm PaRan2. The specialized code is in Figure 7.4,
lines 50-52. Initially the tasks are left unordered. Each processor se-
lects tasks uniformly and independently at random, one at a time (line
52). Clearly the expected work ES is the same for algorithms PaRan1
and PaRan2, however the (expected) number of random bits needed by
PaRan2 becomes at most ES · log n and, as we will see, this is an im-
provement.

Deterministic algorithm PaDet. The specialized code is in Figure 7.4,
lines 60-64. We assume the existence of the list of permutations Ψ chosen
per Corollary 7.12. Each processor pid permutes its list of tasks according
to the local permutation πpid ∈ Ψ .

7.5.2 Complexity Analysis

In the analysis we use the quantity t defined as t = min{n, p}. When n < p,
t represents the number of tasks to be performed. When n ≥ p, t represents
the number of jobs (of size at most dn/pe) to be performed; in this case, each
task in Figure 7.4 represents a single job. In the sequel we continue referring
to “tasks” only — from the combinatorial perspective there is no distinction
between a task and a job, and the only accounting difference is that a task
costs Θ(1) work, while a job costs Θ(dn/pe) work.

Recall that we measure global time units according to the time steps de-
fined to be the smallest time between any two clock-ticks of any processor
(Section 7.1). Thus during any d global time steps no processor can take more
than d local steps.

For the purpose of the next lemma we introduce the notion of adver-

sary A(d,σ)
D , where σ is a permutation of n tasks. This is a specialization of

adversary A(d)
D that schedules the asynchronous processors so that each of the

n tasks is performed for the first time in the order given by σ. More precisely,
if the execution of the task σi is completed for the first time by some pro-
cessor at the global time τi (unknown to the processor), and the task σj , for

140 7 Asynchrony and Delay-Sensitive Bounds

any 1 ≤ i < j ≤ n, is completed for the first time by some processor at time
τj , then τi ≤ τj . Note that any execution of an algorithm solving the Do-All

problem against adversary A(d)
D corresponds to the execution against some

adversary A(d,σ)
D for the specific σ.

Lemma 7.19. For algorithms PaDet and PaRan1, the respective total-work

and expected total-work is at most (d)-Cont(Ψ) against adversary A(d)
D .

Proof. Suppose processor i starts performing task z at (real) time τ . By the

definition of adversary A(d)
D , no other processor successfully performed task z

and broadcast its message by time (τ − d). Consider adversary A(d,σ)
D , for any

permutation σ ∈ Sn.
For each processor i, let Ji contain all pairs (i, r) such that i performs

task πi(r) during the computation. We construct function L from the pairs in
the set

⋃

i Ji to the set of all d-lrm’s of the list σ−1 ◦ Ψ and show that L is
a bijection. We do the construction independently for each processor i. It is
obvious that (i, 1) ∈ Ji, and we let L(i, 1) = 1. Suppose that (i, r) ∈ Ji and
we defined function L for all elements from Ji less than (i, r) in lexicographic
order. We define L(i, r) as the first s ≤ r such that (σ−1 ◦ πi)(s) is a d-lrm
not assigned by L to any element in Ji.

Claim. For every (i, r) ∈ Ji, L(i, r) is well defined.

For r = 1 we have L(i, 1) = 1. For the (lexicographically) first d elements in
Ji this is also easy to show. Suppose L is well defined for all elements in Ji less
than (i, r), and (i, r) is at least the (d+1)st element in Ji. We show that L(i, r)
is also well defined. Suppose, to the contrary, that there is no position s ≤ r
such that (σ−1 ◦ πi)(s) is a d-lrm and s is not assigned by L before the step
of the construction for (i, r) ∈ Ji. Let (i, s1) < . . . < (i, sd) be the elements
of Ji less than (i, r) such that (σ−1 ◦ πi)(L(i, s1)), . . . , (σ

−1 ◦ πi)(L(i, sd)) are
greater than (σ−1 ◦ πi)(r). They exist from the fact, that (σ−1 ◦ πi)(r) is not
a d-lrm and all “previous” d-lrm’s are assigned by L. Let τr be the global
time when task πi(r) is performed by i. Obviously task πi(L(i, s1)) has been
performed at time that is at least d+1 local steps (and hence also global time

units) before τr. It follows from this and the definition of adversary A(d,σ)
D ,

that task πi(r) has been performed by some other processor in a local step,
which ended also at least (d + 1) time units before τr. This contradicts the
observation made at the beginning of the proof of lemma. This proves the
claim.

That L is a bijection follows directly from the definition of L. It follows
that the number of performances of tasks – equal to the total number of lo-
cal steps until completion of all tasks – is at most (d)-Cont(Ψ, σ), against

any adversary A(d,σ)
D . Hence total work is at most (d)-Cont(Ψ) against adver-

sary A(d)
D . 2

Now we give the result for total-work and message complexities for algo-
rithms PaRan1 and PaRan2.

7.5 Permutation Algorithms Family PA 141

Theorem 7.20. Algorithms PaRan1 and PaRan2, under adversary A(d)
D ,

perform expected total-work

ES (n, p, d) = O(n log t+ pmin{n, d} log(2 + n/d))

and have expected message complexity

EM (n, p, d) = O(n p log t+ p2 min{n, d} log(2 + n/d)) .

Proof. We prove the work bound for algorithm PaRan1 using the random
list of schedules Ψ and Theorem 7.11, together with Lemma 7.19. If p ≥ n we
obtain the formula O(n logn+pmin{n, d} log(2+n/d)) with high probability,
in view of Theorem 7.11, and the obvious upper bound for work is np. If p < n
then we argue that d′ = dp d/ne is the upper bound, in terms of the number of
“job units”, that it takes to deliver a message to recipients, and consequently
we obtain the formula

O(p log p+ p d′ log(2 + p/d′)) ·O(n/p) = O(t log p+ p d log(2 + n/d)),

which, together with the upper bound n p, yields the formula

O(n log p+ pmin{n, d} log(2 + n/d)).

Since the only difference in the above two cases is the factor logn that becomes
log p in the case where p < n, we conclude the final formula for work. All these
derivations hold with the probability at least 1 − e−t ln t·ln(7/e2)−p. Since the
work can be in the worst case n p with probability at most e−t ln t·ln(7/e2)−p,
this contributes at most the summand n to the expected work.

Message complexity follows from the fact that in every local step each
processor sends p − 1 messages. The same result applies to PaRan2 (this is
given as an observation in the description of the the algorithm.) 2

Next is the result for total-work and messages for algorithm PaDet.

Theorem 7.21. There exists a deterministic list of schedules Ψ such that

algorithm PaDet, under adversary A(d)
D , performs total-work

S(n, p, d) = O(n log t+ pmin{n, d} log(2 + n/d))

and has message complexity

M(n, p, d) = O(n p log t+ p2 min{n, d} log(2 + n/d)) .

Proof. The result follows from using the set Ψ from Corollary 7.12 together
with Lemma 7.19, using the same derivation for work formula as in the proof
of Theorem 7.20. Message complexity follows from the fact, that in every local
step each processor sends p− 1 messages. 2

142 7 Asynchrony and Delay-Sensitive Bounds

We now specialize Theorem 7.20 for p ≤ n and d ≤ n and obtain our main
result for algorithms PaRan1 and PaRan2.

Corollary 7.22. Algorithms PaRan1 and PaRan2, under adversary A(d)
D ,

perform expected total-work

ES (n, p, d) = O(n log p+ p d log(2 + n/d))

and have expected message complexity

EM (n, p, d) = O(n p log p+ p2d log(2 + n/d))

for any d < n, when p ≤ n.

Finally we specialize Theorem 7.21 for p ≤ n and d ≤ n and obtain our
main result for algorithm PaDet.

Corollary 7.23. There exists a list of schedules Ψ such that algorithm PaDet

under adversary A(d)
D performs work

S(n, p, d) = O(n log p+ p d log(2 + n/d))

and has message complexity

M(n, p, d) = O(n p log p+ p2d log(2 + n/d)),

for any d ≤ n, when p ≤ n.

7.6 Open Problems

In this chapter we presented the message-delay-sensitive lower and upper
bounds for the Do-All problem for asynchronous processors. One of the two
deterministic algorithms relies on large permutations of tasks with certain
combinatorial properties. Such schedules can be constructed deterministically
in polynomial time, however the efficiency of the algorithms using these con-
structions is slightly detuned (polylogarithmically). This leads to the open
problem of how to construct permutations with better quality and more effi-
ciently.

There also exists a gap between the upper and the lower bounds shown in
this chapter. It will be very interesting to narrow the gap.

The focus of this chapter is on the work complexity. It is also important
to investigate algorithms that simultaneously control work and message com-
plexity.

Lastly, we have used the omniscient adversary definition. The analysis of
complexity of randomized algorithms against an oblivious adversary is also
an interesting open question.

7.7 Chapter Notes 143

7.7 Chapter Notes

In the message-passing settings, the Do-All problem has been substantially
studied for synchronous failure-prone processors under a variety of assump-
tions, e.g., [15, 16, 20, 30, 25, 38, 44]. However there is a dearth of efficient
asynchronous algorithms. The presentation in this paper is based on a paper
by Kowalski and Shvartsman [77]; the proof of Lemma 7.5 appears there.

A lower bound Ω(n + p log p) on work for algorithms in the presence
of processor crashes and restarts was shown by Buss, Kanellakis, Ragde,
and Shvartsman [14]. The strategy in that work is adapted to the message-
passing setting without failures but with delays by Kowalski, Momenzadeh,
and Shvartsman [74], where Theorem 7.3 is proved.

The notion of contention of permutations was proposed and studied by
Anderson and Woll [5]. Lemmas 7.8 and 7.9 appear in that paper [5]. Algo-
rithms in the family DA are inspired by the shared-memory algorithm of the
same authors [5]. The notion of the left-to-right maximum is due to Knuth
[71] (vol. 3, p. 13). Kowalski, Musial, and Shvartsman [75] explore ways of
efficiently constructing permutations with low contention. They show that
such permutations can be constructed deterministically in polynomial time,
however the efficiency of the algorithms using these constructions is slightly
detuned.

For applications of Chernoff bounds see Alon and Spencer [4].

8

Analysis of Omni-Do in Asynchronous

Partitionable Networks

IN the settings where network partitions may interfere with the progress
of computation, the challenge is to maintain efficiency in performing the

tasks and learning the results of the tasks, despite the dynamically chang-
ing group connectivity. However, no amount of algorithmic sophistication can
compensate for the possibility of groups of processors or even individual pro-
cessors becoming disconnected during the computation. In general, an ad-
versary that is able to partition the network into g components will cause
any task-performing algorithm to have work Ω(n · g) even if each group of
processors performs no more than the optimal number of Θ(n) tasks. In the
extreme case where all processors are isolated from the beginning, the work
of any algorithm is Ω(n · p).

When the network can partition into disconnected components, it is not
always sufficient to learn that all tasks are complete (e.g., to solve the Do-
All problem). It may also be necessary for the processors in each network
component to learn the results of the task completion. Thus here we pursue
solutions to the Omni-Do problem (Definition 2.3): Given a set of n tasks
and p message-passing processors, each processor must learn the results of all
tasks.

Even given the pessimistic lower bound of Ω(n · p) on work for parti-
tionable networks, it is desirable to design and analyze efficient algorithmic
approaches that can be shown to be better than the oblivious approach where
each processor or each group performs all tasks. In particular, it is important
to develop complexity bounds that are failure-sensitive, namely that capture
the dependence of work complexity on the nature of network partitions. In this
chapter we present an asynchronous Omni-Do algorithm, called AX, and we
show that it is optimal in terms of worst case task-oriented work, under net-
work fragmentations and merges. The algorithm uses a group communication
service to provide membership and communication services.

146 8 Analysis of Omni-Do in Asynchronous Partitionable Networks

Chapter structure.

We define the model of adversity in Section 8.1. In Section 8.2 we present
the group communication service used for providing membership and commu-
nication services along with the notation we use to describe algorithm AX.
In Section 8.3 we define view-graphs that we use in the algorithm’s analysis.
In Section 8.4 we describe algorithm AX and show its correctness. In Sec-
tion 8.5 we present the complexity analysis of the algorithm. We discuss open
problems in Section 8.6.

8.1 Models of Adversity

In this chapter we consider two adversaries, one causing only fragmentations,
called AF , and one causing fragmentations and merges, called AFM .

We use the term group to denote a completely connected component of
the network. The processors within a given group can communicate, while
processors from two distinct groups can not. At any given point in time the
adversary determines what groups comprise the network. The processors are
asynchronous and no time bounds are assumed on local processor steps or
message delay.

We represent each processor group g as a pair 〈g.id, g.set〉, where g.id is
the unique identifier of group g and g.set is the set of processor identifiers that
constitute the membership of the group. For reasons of notational simplicity
and where it clear from the context, when using set operations on groups, we
mean that the operations are on the membership sets (e.g., g1 ∪ g2 stands
for g1.set ∪ g2.set); when using comparisons on groups, we mean that the
comparisons are on the group identifiers (e.g., g1 < g2 stands for g1.id < g2.id).

Adversary AF : We denote by AF an omniscient (on-line) adversary that
can cause only group fragmentations (Section 2.2.2). Once a group fragments,
it cannot be merged. We assume that initially all processors belong in a single
group.

When adversaryAF forces group g to fragment into k groups g1, g2, . . . , gk,
we require that:

(a)
⋃

i∈[k] gi = g (complete partition), and

(b) for all i and j, s.t. 1 ≤ i < j ≤ k, gi ∩ gj = ∅ (the groups are disjoint).

We call the parameter k the fragmentation-number of such a fragmentation.
Consider an execution ξ of an algorithm A that solves a spe-

cific problem under AF , i.e., ξ ∈ E(A,AF). Syntactically, we repre-
sent an adversarial pattern ξ|AF of an execution ξ as the set of triples
(fragmentation, g, {g1, g2, . . . , gk}).

For an execution ξ, we define the fragmentation-number fr = fr(ξ|AF) =
‖ξ|AF ‖ to be the sum of the fragmentation-numbers of all the fragmentations

8.1 Models of Adversity 147

in ξ|AF . In other words, fr(ξ|AF) is the total number of new groups created
due to the fragmentations in ξ|AF . By convention, when a group is regrouped
in such a way that it forms a new group with the same participants, we view
this as a fragmentation.

Adversary AFM : We denote by AFM an omniscient (on-line) adversary that
can cause fragmentations and merges. As for adversary AF , we assume that
initially all processors belong in a single group.

When adversary AFM forces groups g1, g2, . . . , g` to merge and form a
group g, we require that g =

⋃

i∈[`] gi, and we say that the merge-number of

this single merge is 1 (note that a merge creates only one new group).
Consider an execution ξ of an algorithm A that solves a specific prob-

lem under AFM , i.e., ξ ∈ E(A,AFM). Syntactically, we represent a merge in
the adversarial pattern ξ|AFM as the triple (merge, {g1, g2, . . . , g`}, g). Frag-
mentations are represented as for adversary AF . Therefore, we represent an
adversarial pattern ξ|AFM of an execution ξ as a set of “fragmentation” and
“merge” triples.

We define the merge-number fm = fm(ξ|AFM) to be the number of all
merges in ξ|AFM . We define ‖ξ|AFM ‖ to be fr(ξ|AFM) + fm(ξ|AFM). In other
words, ‖ξ|AFM ‖ is the total number of new groups created due to the frag-
mentations and merges in ξ|AFM .

Observe that adversaryAFM is more powerful than AF , and that E(A,AF)
⊆ E(A,AFM). Since we consider only executions ξ where all processors ini-
tially belong in a single group, and from the definition of AF , it follows that
fr(ξ|AFM) > fm(ξ|AFM).

In this chapter we are interested in assessing complexity bounds in terms
of task-oriented work W (n, p, f) (Definition 2.5) and message complexity
M(n, p, f) (Definition 2.6), where for adversary AF we have f = fr and for
adversary AFM we have f = fr + fm.

We conclude this section with a simple lower bound result.

Theorem 8.1. For any algorithm solving the Omni-Do problem with n tasks
using p processor there exists an adversarial pattern with fragmentation-
number fr such that its task-oriented work is Ω(min{n · fr + n, n · p})

Proof. We will construct an adversarial strategy for fragmentation-number
fr as required. If fr ≤ p, then the adversary partitions the processors into
fr groups at the beginning of the computation, and then lets the fr groups
perform tasks in isolation for the remainder of the computation. This ad-
versarial strategy causes any Omni-Do algorithm to have task-oriented work
Ω(n ·fr +n). (The Ω(n) part follows trivially from the fact that n tasks must
be performed.)

If fr > p (which means there are merges), then the adversary divides its
alloted fragmentation-number fr as follows. First the adversary “uses up”
fr − p group creations due to fragmentations by repeatedly fragmenting and

148 8 Analysis of Omni-Do in Asynchronous Partitionable Networks

merging groups without allowing any tasks to be performed until the remain-
ing fragmentation-number is exactly p. Then the adversary creates p singleton
groups, where processors work in isolation. In this case any Omni-Do algo-
rithm will have task-oriented work Ω(n · p).

Putting the two cases together yields the lower bound. 2

8.2 A Group Communication Service and Notation

Group communication services are effective building blocks for the construc-
tion of fault-tolerant distributed applications. The basis of a group communi-
cation service is a group membership service (GCS). Each processor, at each
time, has a unique view of the membership of the group. The view includes a
list of the processors that are members of the group. Views can change from
time to time, and may become different at different processors.

We assume a group communication service with certain properties. The
assumptions are basic, and they are provided by several group communication
systems and specifications. We will use the service to maintain group mem-
bership information and to communicate information concerning the executed
tasks within each group. The GCS provides the following primitives:

• newview(v)i: informs processor i of a new view v = 〈id, set〉, where id is
the identifier of the view and set is the set of processor identifiers in the
group. When a newview(v)i primitive is invoked, we say that processor
i installs view v.

• gpmsnd(message)i: processor i multicasts a message to the group mem-
bers.

• gpmrcv(message)i: processor i receives multicasts from other processors.
• gp1snd(message,destination)i: processor i unicasts a message to another

member of the current group.
• gp1rcv(message)i: processor i receives unicasts from another processor.

To distinguish between the messages sent in different send events, we as-
sume that each message sent by the application is tagged with a unique mes-
sage identifier.
We assume the following safety properties on any execution ξ of an algorithm
that uses GCSs:

1. A processor is always a member of its view. If newview(v)i occurs in ξ
then i ∈ v.set.

2. The view identifiers of the views that each processor installs are mono-
tonically increasing. If event newview(v1)i occurs in ξ before event
newview(v2)i, then v1.id < v2.id. This property implies that: (a) A pro-
cessor does not install the same view twice, and (b) if two processors install
the same two views, they install these views in the same order.

8.2 A Group Communication Service and Notation 149

3. For every receive event, there exists a preceding send event of the same
message. If gpmrcv(m)i (gp1rcv(m)i) occurs in ξ, then there exists
gpmsnd(m)j (gp1snd(m, i)j) earlier in execution ξ.

4. Messages are not duplicated. If gpmrcv(m1)i (gp1rcv(m1)i) and
gpmrcv(m2)i (gp1rcv(m2)i) occur in ξ, then m1 6= m2.

5. A message is delivered in the same view it was sent in. If processor i
receives message m in view v1 and processor j (it is possible that i = j)
sends m in view v2, then v1 = v2.

6. In the initial state s0, all processors are in the initial view v0, such that
v0.set = P .

We assume the following additional liveness properties on any execution ξ
of an algorithm that uses GCSs:

7. If a processor i sends a message m in the view v, then for each processor j
in v.set, either j delivers m in v, or i installs another view (or i crashes).

8. If a new view event occurs at any processor i in view v (or i crashes), then
a view change will eventually occur at all processors in v.set− {i}.

Notation

In this chapter we use the Input/Output Automata notation to formally de-
scribe our algorithm. Each automaton is a state machine with states and
transitions between states, where actions are associated with sets of state
transitions. Actions are defined using the precondition-effect notation. There
are input, output, and internal actions. A particular action is enabled if the
preconditions of that action are satisfied. Input actions are always enabled.
The statements given as effects are executed as a program started in the
existing state and atomically producing the next state as the result of the
transition.

An execution ξ of an Input/Output automaton Aut is a finite or infinite
sequence of alternating states and actions (events) of Aut starting with the
initial state, i.e., ξ = s0, e1, s1, e2, . . ., where si’s are states (s0 is the initial
state) and ei’s are actions (events).

Considering an algorithm A that is specified in Input/Output automata
that solves a specific problem under an adversary A, the set of all executions
of A can be represented as E(A,A) using the notation from Section 2.2.3.

Input/Output Automata are composable. Our algorithm in this chapter
will be represented as the composition of the automata defining the behavior
of each processor with a suitable GCS automaton that satisfies the properties
1 through 7 given above. For an execution of the composed algorithm, each
invocation of a primitive of the GCS is represented as a unique action (event)
in the execution.

150 8 Analysis of Omni-Do in Asynchronous Partitionable Networks

8.3 View-Graphs

We now describe view-graphs that represent view changes at processors in exe-
cutions and that are used to analyze properties of executions. View-graphs are
directed graphs (digraphs) that are defined by the states and by the newview

events of executions of algorithms that use group communication services.
Representing view changes as digraphs enables us to use common graph anal-
ysis techniques to formally reason about the properties of executions.

Consider the specification of algorithm A that uses a group communication
service (GCS). For each processor i, we augment the algorithm specification
with the history variable cvi that keeps track of the current view at i as
follows: In the initial state, we set cvi to be v0, the distinguished initial view
for all processors i ∈ P . In the effects of the newview(v)i action for processor
i, we include the assignment cvi := v. From this point on we assume that
algorithms are modified to include such history variables. We now formally
define view-graphs by specifying how a view-graph is induced by an execution
of an algorithm.

Definition 8.2. Given an execution ξ of algorithm A, the view-graph Γξ =
〈V,E, L〉 is defined to be the labeled directed graph as follows:

1. Let Vξ be the set of all views v that occur in newview(v)i events in ξ.
The set V of nodes of Γξ is the set Vξ ∪ {v0}. We call v0 the initial node
of Γξ.

2. The set of edges E of Γξ is a subset of V × V determined as follows. For
each newview(v)i event in ξ that occurs in state s, the edge (s.cvi, v) is
in E.

3. The edges in E are labeled by L : E → 2P , such that L(u, v) = {i :
newview(v)i occurs in state s in ξ such that s.cvi = u}.

Observe that the definition ensures that all edges are labeled.

Example 8.3. Consider the following execution ξ (we omit all events other
than newview and any states that do not precede newview events).

ξ = s0, newview(v1)p1 , . . . , s1, newview(v2)p2 , . . . , s2, newview(v3)p4 , . . . ,

s3, newview(v4)p1 , . . . , s4, newview(v1)p3 , . . . , s5, newview(v4)p2 , . . . ,

s6, newview(v4)p3 , . . .

Let v1.set = {p1, p3}, v2.set = {p2}, v3.set = {p4} and v4.set = {p1, p2, p3}.
Additionally, v0.set = P = {p1, p2, p3, p4}.

The view-graph Γξ = 〈V,E, L〉 is given in Figure 8.1. The initial node of
Γξ is v0. The set of nodes of V of Γξ is V = Vξ ∪ {v0} = {v0, v1, v2, v3, v4}.
The set of edges E of Γξ is E = {(v0, v1), (v0, v2), (v0, v3), (v1, v4), (v2, v4)},
since for each of these (vk, v`) the event newview(v`)i occurs in state st where
st.cvi = vk for some certain i (by the definition of the history variable). The

8.3 View-Graphs 151

�

�

�

�
�

�

�

�
�
�

�
�

�
�

�
�

�
�

�
�?

XXXXXXXXXz

�
�

��+

���������9

�
�

�
�

�
�

�
�

HHHHHj

v0

v4

v2v1 v3

v0.set = {p1, p2, p3, p4}

v1.set = {p1, p3} v2.set = {p2} v3.set = {p4}

v4.set = {p1, p2, p3}

L(v0, v1) = {p1, p3}
L(v0, v2) = {p2}

L(v0, v3) = {p4}

L(v1, v4) = {p1, p3}
L(v2, v4) = {p2}

B

A

Fig. 8.1. Example of a view-graph

labels of the edges are L(v0, v1) = {p1, p3}, L(v0, v2) = {p2}, L(v0, v3) = {p4},
L(v1, v4) = {p1, p3} and L(v2, v4) = {p2}, since for each pi ∈ L(vk, v`) the
event newview(v`)pi occurs in state st where st.cvpi = vk.

We now show certain properties of view-graphs. Given a graph H and a
node v of H , we define indegree(v,H) (outdegree(v,H)) to be the indegree
(outdegree) of v in H .

Lemma 8.4. For any execution ξ, indegree(v0, Γξ) = 0.

Proof. In the initial state s0, s0.cv is defined to be v0 for all processors in
P and v0.set = P . Assume that indegree(v0, Γξ) > 0. By the construction of
view-graphs, this implies that some processor i ∈ P installs v0 a second time.
But this contradicts the property 2(a) of GCS. 2

Lemma 8.5. Let ξ be an execution and Γξ|i be the projection of Γξ on the
edges whose label includes i, for some i ∈ P. Γξ|i is an elementary path and
v0 is the path’s source node.

Proof. Let execution ξ be s0, e1, s1, e2, Let ξ(k) be the prefix of ξ up to
the kth state. i.e., ξ(k) = s0, e1, s1, e2, . . . , sk. Let Γ kξ be the view-graph that

is induced by ξ(k). Then define Γ kξ |i to be the projection of Γ kξ on the edges
whose label includes i, for some i ∈ P . For an elementary path π, we define
π.sink to be its sink node.
We prove by induction on k that Γ kξ |i is an elementary path, that Γ kξ |i.sink =
sk.cvi and that v0 is the path’s source node.

Basis: k = 0. Γ 0
ξ |i has only one vertex, v0, and no edges (ξ(0) = s0). Thus,

Γ 0
ξ |i.sink = s0.cvi = v0 and v0 is the source node of this path.

Inductive Hypothesis: Assume that ∀n ≤ k, Γnξ |i is an elementary path, that
Γnξ |i.sink = sn.cvi and that v0 is the path’s source node.

Inductive Step: n = k + 1. For state sk+1 we consider two cases:

152 8 Analysis of Omni-Do in Asynchronous Partitionable Networks

Case 1: If event ek+1 is not a newview event involving processor i, then
Γ k+1
ξ |i = Γ kξ |i. Thus, by inductive hypothesis, Γ k+1

ξ |i is an elementary path
and v0 is its source node. From state sk to state sk+1, processor i did not
witness any new view. By the definition of the history variable, sk+1.cvi =
sk.cvi. Thus, Γ k+1

ξ |i.sink = sk.cvi = sk+1.cvi.

Case 2: If event ek+1 is a newview(v)i event that involves processor i, then
by the construction of the view-graph, (sk.cvi, v) is a new edge from node
sk.cvi to node v. By inductive hypothesis, Γ kξ |i.sink = sk.cvi. Since our GCS
does not allow the same view to be installed twice (property 2(a)), v 6= u
for all u ∈ Γ kξ |i. Thus, Γ k+1

ξ |i is also an elementary path, with v0 its source

node and Γ k+1
ξ |i.sink = v. From state sk to state sk+1, processor i installs

the new view v. By the definition of the history variable, sk+1.cvi = v. Thus,
Γ k+1
ξ |i.sink = sk+1.cvi. This completes the proof. 2

Theorem 8.6. Any view-graph Γξ, induced by any execution ξ of algorithm
A is a connected graph.

Proof. The result follows from Definition 8.2(2), from the observation that all
edges of the view-graph are labeled and from Lemma 8.5 2

We now demonstrate how we can use view-graphs to represent group frag-
mentations and merges. We begin with fragmentations.

Definition 8.7. For a view-graph Γξ = 〈V,E, L〉, a fragmentation subgraph
is a connected labeled subgraph H = 〈VH , EH , LH〉 of Γξ such that:

1. H contains a unique node v such that indegree(v,H) = 0; v is called the
fragmentation node of H.

2. VH = {v} ∪ V ′H , where V ′H is defined to be {w : (v, w) ∈ E}.
3. EH = {(v, w) : w ∈ V ′H}.
4. LH is the restriction of L on EH .
5.
⋃

w∈V ′
H

(w.set) = v.set.

6. ∀u,w ∈ V ′H such that u 6= w, u.set ∩w.set = ∅.
7. ∀w ∈ V ′H , LH(v, w) = w.set.

We refer to all newview events that collectively induce a fragmentation
subgraph for a fragmentation node v as a fragmentation.

Example 8.8. The subgraph contained in the solid box A in Figure 8.1 shows
the fragmentation subgraph H = 〈VH , EH , LH〉 of Γξ from Example 8.3. Here
VH = {v0, v1, v2, v3}, EH = {(v0, v1), (v0, v2), (v0, v3)} and the labels are the
labels of Γξ restricted on EH . We can confirm that H is a fragmentation
subgraph by examining the individual items of Definition 8.7.

We continue with the representation of group merges using view-graphs.

Definition 8.9. For a view-graph Γξ = 〈V,E, L〉, a merge subgraph is a con-
nected labeled subgraph H = 〈VH , EH , LH〉 of Γξ such that:

8.3 View-Graphs 153

1. H contains a unique node v such that outdegree(v,H) = 0 and
indegree(v,H) > 1; v is called the merge node of H.

2. VH = {v} ∪ V ′H , where V ′H is defined to be {w : (w, v) ∈ E}.
3. EH = {(w, v) : w ∈ V ′H}.
4. LH is the restriction of L on EH .
5.
⋃

w∈V ′
H

(w.set) = v.set.

6. ∀u,w ∈ V ′H such that u 6= w, u.set ∩w.set = ∅.
7.
⋃

w∈V ′
H
LH(w, v) = v.set.

We refer to all newview events that collectively induce a merge subgraph
for a merge node v as a merge.

Note that a regrouping of a group g1 to a group g2 with the same member-
ship (g1.set = g2.set) can be represented either as a fragmentation subgraph
(fragmentation) or as a merge subgraph (merge). Following the convention es-
tablished in the definition of adversary AFM (Section 8.1), we represent it as
a fragmentation subgraph by requiring that indegree(v,H) > 1 for any merge
node v.

Example 8.10. The subgraph contained in the dashed box B in Figure 8.1
of Example 8.3 shows the merge subgraph H = 〈VH , EH , LH〉 of Γξ, where
VH = {v1, v2, v3, v4}, EH = {(v1, v4), (v2, v4)} and the labels are the labels
of Γξ restricted on EH . We can verify this by examining all conditions of
Definition 8.9.

We now give some additional definitions and show that any view graph is
a directed acyclic graph (DAG).

Definition 8.11. Given a view-graph Γξ we define:

(a) frag(Γξ) to be the set of all the distinct fragmentation nodes in Γξ,
(b) merg(Γξ) to be the set of all the distinct merge nodes in Γξ.

Definition 8.12. Given a view-graph Γξ:

(a) if all of its non-terminal nodes are in frag(Γξ), then Γξ is called a frag-
mentation view-graph.

(b) if each of its non-terminal nodes is either in frag(Γξ), or it is an immediate
ancestor of a node which is in merg(Γξ), then Γξ is called an fm view-
graph.

For Γξ in the example in Figure 8.1 we have v0 ∈ frag(Γξ) by Defini-
tion 8.11(a). Also, v4 ∈ merg(Γξ) per Definition 8.11(b); additionally, the
nodes v1 and v2 are immediate ancestors of v4 ∈ merg(Γξ). By Defini-
tion 8.12(b), Γξ is an fm view-graph. Observe that Γξ is a DAG. This is
true for all view-graphs:

Theorem 8.13. Any view-graph Γξ = 〈V,E, L〉 is a Directed Acyclic Graph
(DAG).

154 8 Analysis of Omni-Do in Asynchronous Partitionable Networks

Proof. Assume that Γξ is not a DAG. Thus, it contains at least one cycle. Let
((v1, v2)(v2, v3) . . . (vk, v1)) be an elementary cycle of Γξ. By the construction
of view-graphs (Definition 8.2(3)) and by the monotonicity property (property
2) of GCS, vi.id < vi+1.id for 1 ≤ i ≤ k and vk.id < v1.id. But, by the
transitivity of “<”, v1.id < vk.id, a contradiction. 2

Corollary 8.14. Any fm view graph is a DAG and any fragmentation view-
graph is a rooted tree.

In the complexity analysis of algorithm AX, we exploit the fact that view
graphs are DAGs. In particular we use the following fact.

Fact 8.15 In any (non-empty) dag, there is at least one vertex, such that all
of its descendants have outdegree 0.

Remark 8.16. Consider an execution ξ of algorithm A under adversary AFM .
In Section 8.1 we defined the fragmentation-number fr(ξ|AFM) and merge-
number fm(ξ|AFM) of the adversarial pattern ξ|AFM of execution ξ. We can
also use view-graphs to define these quantities. Namely, fr(ξ|AFM) = |{w :
newview(w)i occurs in ξ ∧ (v, w) ∈ E ∧ v ∈ frag(Γξ)}|, and fm(ξ|AFM) =
|{v : newview(v)i occurs in ξ ∧ v ∈ merg(Γξ)}|, where Γξ is the view-graph
of execution ξ.

8.4 Algorithm AX

We present Algorithm AX, that deals with fragmentations and merges and
that relies on the GCS as specified in Section 8.2, and prove its correctness.
We give its complexity analysis in Section 8.5.

8.4.1 Description of the Algorithm

Algorithm AX uses a coordinator approach within each group view. The high
level idea of the algorithm is that each processor performs (remaining) tasks
according to a load balancing rule, and a processor completes its computation
when it learns the results of all the tasks.

Task Allocation. The set T of the initial tasks is known to all processors.
During the execution each processor i maintains a local set D of tasks already
done, a local set R of the corresponding results, and the set G of processors
in the current group. (The set D may be an underestimate of the set of tasks
done globally.) The processors allocate tasks based on the shared knowledge
of the processors in G about the tasks done. For a processor i, let rank(i, G)
be the rank of i in G when processor identifiers are sorted in ascending order.
Let U be the tasks in T −D. For a task u in U , let rank(u, U) be the rank of
u in U when task identifiers are sorted in ascending order. Our load balancing
rule for each processor i in G is that:

8.4 Algorithm AX 155

• if rank(i, G) ≤ |U |, then processor i performs task u such that
rank(u, U) = rank(i, G);

• if rank(i, G) > |U |, then processor i does nothing.

Algorithm Structure. The algorithm code is given in Figure 8.2 using the
Input/Output automata notation. The algorithm uses the group communica-
tion service to structure its computation in terms of rounds numbered sequen-
tially within each group view.

Initially all processors are members of the distinguished initial view v0,
such that v0.set = P . Rounds numbered 1 correspond to the initial round
either in the original group or in a new group upon a regrouping as notified
via the newview event. If a regrouping occurs, the processor receives the new
set of members from the group membership service and starts the first round
of this view (newview action). At the beginning of each round, denoted by
a round number Rnd, processor i knows G, the local set D of tasks already
done, and the set R of the results. Since all processors know G, they “elect”
the group coordinator to be the processor which has the highest processor id
(no communication is required since the coordinator is uniquely identified). In
each round each processor reports D and R to the coordinator of G (gp1snd

action). The coordinator receives and collates these reports (gp1rcv action)
and sends the result to the group members (gpmsnd action). Upon the receipt
of the message from the coordinator, processors update their D and R, and
perform work according to the load balancing rule (gpmrcv action).

For generality, we assume that the messages may be delivered by the GCS
out of order. The set of messages within the current view is saved in the local
variable X . The saved messages are also used to determine when all messages
for a given round have been received. Processing continues until each member
of G knows all results (the processors enter the sleep stage).

The variables cv and msg are history variables that do not affect the
algorithm, but play a role in its analysis.

8.4.2 Correctness of the Algorithm

We now show the safety of algorithm AX. We first show that no processor
stops working as long as it knows of any undone tasks.

Theorem 8.17. (Safety 1) For all states of any execution of Algorithm AX
it holds that

∀i ∈ P : Di 6= T ⇒ Phase 6= sleep.

Proof. The proof follows by examination of the code of the al-
gorithm, and more specifically from the code of the input action
gpmrcv(〈j, Z,Q, round〉)i. 2

156 8 Analysis of Omni-Do in Asynchronous Partitionable Networks

Data types and identifiers:

T : tasks

R : results

Result : T → R

Mes: messages

P : processor ids

G : group ids

views = G× 2P: views, selectors id and set

m ∈ Mes

i, j ∈ P

v ∈ views

Z ∈ 2T

Q ∈ 2R

round ∈ N

results ∈ 2R

States:

T ∈ 2T , the set of n = |T | tasks

D ∈ 2T , the set of done tasks, initially ∅

R ∈ 2R, the set of known results, initially ∅

G ∈ 2P , current members, init. v0.set = P

X ∈ 2Mes, messages since last newview,

initially ∅

Rnd ∈ N, round number, initially 1

Phase ∈

{send, receive,sleep,mcast,mrecv},

initially send

Derived variables:

U = T −D, the set of remaining tasks

Coordinator(i) : Boolean,

if i = maxj∈G{j}

then true else false

Next(U,G), next task u, such that

rank(u, U) = rank(i, G)

History variables:

cvi ∈ views (i ∈ P),

initially ∀i, cvi = v0.

msgi ∈ 2Mes (i ∈ P),

initially ∀i, msgi = ∅.

Transitions at i:

input newview(v)i

Effect:
G← v.set
X ← ∅
Rnd← 1
Phase ← send

cv := v

output gp1snd(m, j)i

Precondition:
Coordinator(j)
Phase = send

m = 〈i,D,R, Rnd〉
Effect:

msg := msg ∪ {m}
Phase ← receive

input gp1rcv(〈j, Z, Q, round〉)i

Effect:
X ← X ∪ {〈j, Z, Q, round〉}
R← R ∪Q
D ← D ∪ Z
if G = {j : 〈j, ∗, ∗, Rnd〉 ∈ X} then

Phase ← mcast

output gpmsnd(m)i

Precondition:
Coordinator(i)
m = 〈i,D,R, Rnd〉
Phase = mcast

Effect:
msg := msg ∪ {m}
Phase ← mrecv

input gpmrcv(〈j, Z, Q, round〉)i

Effect:
D ← D ∪ Z
R← R ∪Q
if D = T then

Phase ← sleep

else
if rank(i, G) < |U| then
R← R ∪ {Result(Next(U,G))}
D ← D ∪ {Next(U,G)}

Rnd← Rnd + 1
Phase ← send

Fig. 8.2. Input/Output Automata specification of algorithm AX.

8.4 Algorithm AX 157

Note that the implication in Theorem 8.17 cannot be replaced by iff (⇔).
This is because if Di = T , we may still have Phase 6= sleep. This is the case
where processor i becomes a member of a group in which the processors do
not know all the results of all the tasks.

Next we show that if some processor does not know the result of some
task, this is because it does not know that this task has been performed
(Theorem 8.19 below). We show this using the history variables msgi (i ∈ P).

We define msgi to be a history variable that keeps on track all the messages
sent by processor i ∈ P in all gp1snd and gpmsnd events of an execution of
algorithm AX . Formally, in the effects of the gp1snd(m, j)i and gpmsnd(m)i
actions we include the assignment msgi := msgi ∪ {m}. Initially, msgi = ∅
for all i. We define Umsg to be

⋃

i∈P msgi.

Lemma 8.18. If m is a message received by processor i ∈ P in a gp1rcv(m)i
or gpmrcv(m)i event of an execution of algorithm AX, then m ∈ Umsg.

Proof. Property 3 of the GCS (Section 8.2) requires that for every receive
event there exists a preceding send event of the same message (the GCS does
not generate messages). Hence, m must have been sent by some processor
j ∈ P (possible j = i) in some earlier event of the execution. Messages can be
sent only in gp1snd(m, i)j or gpmsnd(m)j events. By definition, m ∈ msgj .
Hence, m ∈ Umsg. 2

Theorem 8.19. (Safety 2) For all states of any execution of Algorithm AX:
(a) ∀t ∈ T, ∀i ∈ P : result(t) 6∈ Ri ⇒ t 6∈ Di, and
(b) ∀t ∈ T, ∀〈i,D′, R′, Rnd〉 ∈ Umsg : result(t) 6∈ R′ ⇒ t 6∈ D′.

Proof. Let ξ be an execution of AX and ξk be the prefix of ξ up to the kth

state, i.e., ξk = s0, e1, s1, e2, . . . , sk. The proof is done by induction on k.

Base Case: k = 0. In s0, ∀i ∈ P , Di = ∅, Ri = ∅ and Umsg = ∅.
Inductive Hypothesis: For a state s` such that ` ≤ k, ∀t ∈ T, ∀i ∈ P :
result(t) 6∈ Ri ⇒ t 6∈ Di, and ∀t ∈ T, ∀〈i,D′, R′, Rnd〉 ∈ Umsg : result(t) 6∈
R′ ⇒ t 6∈ D′.

Inductive Step: ` = k+1. Consider the following seven types of actions leading
to the state sk+1:

1. ek+1 = newview(v′)i: The effect of this action does not affect the invari-
ant. By the inductive hypothesis, in state sk+1, the invariant holds.

2. ek+1 = gp1snd(m, j)i: Clearly, the effect of this action does not affect part
(a) of the invariant but it affects part (b). Since m = 〈i,Di, Ri, Rnd〉, by
the inductive hypothesis part (a), the assignmentm ∈ Umsg reestablishes
part (b) of the invariant. Thus, in state sk+1, the invariant is reestablished.

3. ek+1 = gp1rcv(〈j, Z,Q, round〉)i: Processor i updates Ri and Di accord-
ing to Q and Z respectively. The action is atomic, i.e., if Ri is updated,
then Di must be also updated. By Lemma 8.18, 〈j, Z,Q, round〉 ∈ Umsg.
Thus, by the inductive hypothesis part (b), ∀t ∈ T : result(t) 6∈ Z ⇒

158 8 Analysis of Omni-Do in Asynchronous Partitionable Networks

t 6∈ Q. From the fact that Di and Ri are updated according to Z and Q
respectively and by the inductive hypothesis part (a), in state sk+1, the
invariant is reestablished.

4. ek+1 = gpmsnd(m)i: Clearly, the effect of this action does not affect part
(a) of the invariant but it affects part (b). Since m = 〈i,Di, Ri, Rnd〉, by
the inductive hypothesis part (a), the assignmentm ∈ Umsg reestablishes
part (b) of the invariant. Thus, in state sk+1, the invariant is reestablished.

5. ek+1 = gpmrcv(〈j, Z,Q, round〉)i: By Lemma 8.18, 〈j, Z,Q, round〉 ∈
Umsg. By the inductive hypothesis part (b), ∀t ∈ T : result(t) 6∈ Z ⇒
t 6∈ Q. Processor i updates Ri and Di according to Q and Z respectively.
Since Z and Q have the required property, by the inductive hypothesis
part (a), the assignments to Di and Ri reestablish the invariant.
In the case whereDi 6= T , processor i performs a task according to the load
balancing rule. Let u ∈ T be this task. Because of the action atomicity,
when processor i updates Ri with result(u), it must also update Di with
u. Hence, in state sk+1, the invariant is reestablished.

6. ek+1 = requestq,i: The effect of this action does not affect the invariant.
7. ek+1 = report(results)q,i: The effect of this action does not affect the

invariant.

This completes the proof. 2

8.5 Analysis of Algorithm AX

We first assess the efficiency of algorithm AX under adversary AFM in terms
of task-oriented work WAFM (n, p, f) and message complexity MAFM (n, p, f),
where f = fr + fm. Then we examine the efficiency of the algorithm under
adversary AF as a special case.

8.5.1 Work Complexity

We begin the analysis of algorithm AX by first providing definitions and then
proving several lemmas that lead to the work complexity of the algorithm.

Definition 8.20. Let ξµ be any execution of algorithm AX in which all the
processors learn the results of all tasks and that includes a merge of groups
g1, . . . , gk into the group µ, where the processors in µ undergo no further view
changes. We define ξ̄µ to be the execution we derive by removing the merge
from ξµ as follows: (1) We remove all states and events that correspond to
the merge of groups g1, . . . , gk into the group µ and all states and events for
processors within µ. (2) We add the appropriate states and events such that the
processors in groups g1, . . . , gk undergo no further view changes and perform
any remaining tasks.

8.5 Analysis of Algorithm AX 159

Definition 8.21. Let ξϕ be any execution of algorithm AX in which all the
processors learn the results of all tasks and that includes a fragmentation of the
group ϕ to the groups g1, . . . , gk where the processors in these groups undergo
no further view changes. We define ξ̄ϕ to be the execution we derive by remov-
ing the fragmentation from ξϕ as follows: (1) We remove all states and events
that correspond to the fragmentation of the group ϕ to the groups g1, . . . , gk
and all states and events of the processors within the groups g1, . . . , gk. (2)
We add the appropriate states and events such that the processors in the group
ϕ undergo no further view changes and perform any remaining tasks.

Note: In Definitions 8.20 and 8.21, we claim that we can remove states and
events from an execution and add some other states and events to it. This
is possible because if the processors in a single view installed that view and
there are no further view changes, then the algorithm will continue making
computation progress. So, if we remove all states and events corresponding to
a view change, then the algorithm can always proceed as if this view change
never occurred.

Lemma 8.22. In algorithm AX, for any view v, including the initial view, if
the group is not subject to any regroupings, then the work required to complete
all tasks in the view is no more than n − maxi∈v.set{|Di|}, where Di is the
value of the state variable D of processor i at the start of its local round 1 in
view v.

Proof. In the first round, all the processors send messages to the coordinator
containing Di. The coordinator computes ∪i∈v.set{Di} and broadcasts this
result to the group members. Since the group is not subject to any regroupings,
the number of tasks t, that the processors need to perform is: t = n−|∪i∈v.set
{Di}|. In each round of the computation, by the load balancing rule, the
members of the group perform distinct tasks and no task is performed more
than once. Therefore, t is the work performed in this group. On the other
hand, maxi∈v.set{|Di|} ≤ | ∪i∈v.set {Di}|, thus, t ≤ n− maxi∈v.set{|Di|}. 2

In the following lemma, groups µ, g1, . . . , gk are defined as in Defini-
tion 8.20.

Lemma 8.23. Let ξµ be an execution of Algorithm AX as in Definition 8.20.
Let W1 be the work performed by the algorithm in the execution ξµ. Let W2

be the work performed by Algorithm AX in the execution ξ̄µ. Then W1 ≤W2.

Proof. For the execution ξµ, let W ′ be the work performed by the proces-
sors in P −⋃1≤i≤k(gi.set) − µ.set. Observe that the work performed by the

processors in P − ⋃1≤i≤k(gi.set) in the execution ξ̄µ is equal to W ′. The
work that is performed by processor j in gi.set prior to the newview(µ)j
event in ξµ, is the same in both executions. Call this work Wi,j . Define

W ′′ =
∑k

i=1

∑

j∈gi.set
Wi,j . Define Ws = W ′ + W ′′. Thus, Ws is the same

in both executions, ξµ and ξ̄µ. Define Wµ to be the work performed by all

160 8 Analysis of Omni-Do in Asynchronous Partitionable Networks

processors in µ.set in execution ξµ. For each processor j in gi.set, let Dj be
the value of the state variable D just prior to the newview(µ)j event in ξµ.
For each gi, define: di = |⋃j∈gi.set

Dj |. Thus there are at least n − di tasks
that remain to be done in each gi.

In execution ξ̄µ, the processors in each group gi proceed and complete
these remaining tasks. This requires work at least n − di. Define this work
as Wgi . Thus, Wgi ≥ (n − di). In execution ξµ, groups g1, . . . , gk merge into
group µ. The number of tasks that need to be performed by the members
of µ is at most n − dj , where dj = maxi{di} for some j. By Lemma 8.22,
Wµ ≤ n− dj . Observe that

W1 = Ws +Wµ ≤Ws + n− dj ≤Ws +
k∑

i=1

(n− di) ≤Ws +
k∑

i=1

Wgi = W2

as desired. 2

In the following lemma, groups ϕ, g1, . . . , gk are defined as in Defini-
tion 8.21.

Lemma 8.24. Let ξϕ be an execution of Algorithm AX as in Definition 8.21.
Let W1 be the work performed by the algorithm in the execution ξϕ. Let W2

be the worked performed by Algorithm AX in the execution ξ̄ϕ. Then W1 ≤
W2 +W3, where W3 is the work performed by all processors in

⋃

1≤i≤k(gi.set)
in the execution ξϕ.

Proof. LetW ′ be the work performed by all processors in P−⋃1≤i≤k(gi.set)−
ϕ.set in the execution ξϕ. Observe that the work performed by all processors
in P − ϕ.set in the execution ξ̄ϕ is equal to W ′. The work that is performed
by processor j in ϕ.set prior to the newview(gi)j event in ξϕ, is the same
in both executions. Call this work Wϕ,j . Define W ′′ =

∑

j∈ϕ.setWϕ,j. Define

Ws = W ′ +W ′′. Thus, Ws is the same in both executions, ξϕ and ξ̄ϕ. Define
Wϕ to be the work performed by all processors in ϕ.set in execution ξ̄ϕ. Let
W ′′′ = Wϕ −W ′′. Observe that:

W1 = Ws +W3 ≤Ws +W3 +W ′′′ = W2 +W3,

as desired. 2

Lemma 8.25. WAFM (n, p, fr + fm) ≤ n · p.

Proof. By the construction of algorithm AX, when processors are not able to
exchange information about task execution due to regroupings, in the worst
case, each processor has to perform all n tasks by itself. Since we can have at
most p processors doing that the result follows. 2

Lemma 8.26. WAFM (n, p, fr + fm) ≤ n · fr + n.

8.5 Analysis of Algorithm AX 161

Proof. To simplify notation, we let W(fr, fm) stand for WAFM (n, p, fr + fm).
The proof is by induction on the number of views, denoted by `, occurring in

an execution. For a specific execution ξ` with ` views, let fr(ξ`) = f
(`)
r be the

fragmentation-number and fm(ξ`) = f
(`)
m the merge-number.

Base Case: ` = 0. Since f
(`)
r and f

(`)
m must also be 0, the base case follows

from Lemma 8.22.

Inductive Hypothesis: Assume that for all ` ≤ k, W(f
(`)
r , f

(`)
m) ≤ n · f (`)

r + n .

Inductive Step: Need to show that for ` = k + 1,

W(f (k+1)
r , f (k+1)

m) ≤ n · f (k+1)
r + n .

Consider a specific execution ξk+1 with ` = k+1. Let Γξk+1
be the view-graph

induced by this execution. The view-graph has at least one vertex such that
all of its descendants are sinks (Fact 8.15). Let ν be such a vertex. We consider
two cases:

Case 1: Vertex ν has a descendant µ that corresponds to a merge in the
execution. Therefore all ancestors of µ in Γξk+1

have outdegree 1. Since µ is
a sink vertex, the group that corresponds to µ performs all the remaining
(if any) tasks and does not perform any additional work. Let ξk = ξ̄µk+1

(per Definition 8.20) be an execution in which this merge does not occur.

In execution ξk, the number of views is k. Also, f
(k+1)
r = f

(k)
r and f

(k+1)
m =

f
(k)
m +1. By inductive hypothesis, W(f

(k)
r , f

(k)
m) ≤ n ·f (k)

r +n. By Lemma 8.23,
the work performed in execution ξk+1, is no worse than the work performed
in execution ξk. Hence, the total work complexity is:

W(f (k+1)
r , f (k+1)

m) ≤ W(f (k)
r , f (k)

m) ≤ n · f (k)
r + n = n · f (k+1)

r + n.

Case 2: Vertex ν has no descendants that correspond to a merge in the exe-
cution. Therefore, the group that corresponds to ν must fragment, say into q
groups. These groups correspond to sink vertices in Γξk+1

, thus they perform
all the remaining (if any) tasks and do not perform any additional work. Let
ξk+1−q = ξ̄νk+1 (per Definition 8.21) be an execution in which the fragmenta-
tion does not occur. In execution ξk+1−q , the number of views is k+1−q ≤ k.

Also, f
(k+1−q)
r = f

(k+1)
r − q and f

(k+1−q)
m = f

(k+1)
m . By inductive hypothe-

sis, W(f
(k+1−q)
r , f

(k+1−q)
m) ≤ n · f (k+1−q)

r + n. From Lemma 8.22, the work
performed in each new group caused by the fragmentation is no more than
n. Let Wσ be the total work performed in all q groups. Thus, Wσ ≤ qn. By
Lemma 8.24, the work performed in execution ξk+1, is no worse than the work
performed in execution ξk+1−q and the work performed in all q groups. Hence,
the total work complexity is:

162 8 Analysis of Omni-Do in Asynchronous Partitionable Networks

W(f
(k+1)
r , f

(k+1)
m) ≤ W(f

(k+1−q)
r , f

(k+1−q)
m) +Wσ

≤ n · f (k+1−q)
r + n+Wσ

= n ·
(

f
(k+1)
r − q

)

+ n+Wσ

≤ n ·
(

f
(k+1)
r − q

)

+ n+ qn

= nf
(k+1)
r − qn+ n+ qn = n · f (k+1)

r + n.

This completes the inductive proof. 2

We now show the main result for task-oriented work of algorithm AX.

Theorem 8.27. Algorithm AX solves the Omni-DoAFM (n, p, f) problem with
task-oriented work

WAFM (n, p, fr + fm) ≤ min{n · fr + n, n · p} .

Proof. It follows directly from Lemmas 8.25 and 8.26. 2

Note that in light of Theorem 8.1 algorithm AX is work-optimal under
adversary AFM .

Also observe that task-oriented work complexity WAFM (n, p, fr+fm) does
not depend on fm. This of course does not imply that for any given execution,
the work does not depend on merges. However, this observation substantiates
the intuition that merges lead to a more efficient computation.

8.5.2 Message Complexity

We start by showing several lemmas that lead to the message complexity of
the algorithm.

Lemma 8.28. For algorithm AX, in any view v, including the initial view, if
the group is not subject to any regroupings, and for each processor i ∈ v.set,
Di is the value of the state variable D at the start of its local round 1 in view
v, then the number of messages M that are sent until all tasks are completed
is 2(n− d) ≤M < 2(q + n− d) where q = |v.set|, and d = |⋃i∈v.setDi|.

Proof. By the load balancing rule, the algorithm needs dn−dq e rounds to com-
plete all tasks. In each round each processor sends one message to the co-
ordinator and the coordinator responds with a single message to each pro-
cessor. Thus, M = 2q · (dn−d

q e). Using the properties of the ceiling, we get:

2(n− d) ≤M < 2(q + n− d). 2

In the following lemma, groups µ, g1, . . . , gk are defined as in Defini-
tion 8.20.

Lemma 8.29. Let ξµ be an execution of Algorithm AX as in Definition 8.20.
Let M1 be the message cost of the algorithm in the execution ξµ. Let M2 be
the message cost of Algorithm AX in the execution ξ̄µ. Then M1 < M2 + 2p.

8.5 Analysis of Algorithm AX 163

Proof. For the execution ξµ, let M ′ be the number of messages sent by the
processors in P−⋃1≤i≤k(gi.set)−µ.set. Observe that the number of messages

sent by the processors in P −⋃1≤i≤k(gi.set) in the execution ξ̄µ is equal to
M ′.

The number of messages sent by any processor j in gi.set prior to the
newview(µ)j event in ξµ, is the same in both executions. Call this message

cost Mi,j . Define M ′′ =
∑k

i=1

∑

j∈gi.set
Mi,j . Define Ms = M ′ + M ′′. Thus,

Ms is the same in both executions, ξµ and ξ̄µ. Define Mµ to be the number
of messages sent by all processors in µ.set in execution ξµ. For each processor
j in gi.set, let Dj be the value of the state variable D just prior to the
newview(µ)j event in ξµ. For each gi, define di = |⋃j∈gi.set

Dj |. Thus there
are at least n− di tasks that remain to be done in each gi.

In execution ξ̄µ, the processors in each group gi proceed and complete these
remaining tasks. Let Mgi be the number of messages sent by all processors
in gi.set in order to complete the remaining tasks. By Lemma 8.28, Mgi ≥
2(n− di). In execution ξµ, groups g1, . . . , gk merge into group µ. The number
of tasks that need to be performed by the members of µ is at most n − dj ,
where dj = maxi{di} for some j. By Lemma 8.28, Mµ < 2(q+n− dj), where
q = |µ.set|. Observe that

M1 = Ms +Mµ < Ms + 2(q + n− dj)

≤ Ms + 2q + 2
∑k
i=1(n− di) ≤ Ms + 2q +

∑k
i=1Mgi

= M2 + 2q ≤ M2 + 2p,

as desired. 2

In the following lemma, groups ϕ, g1, . . . , gk are defined as in Defini-
tion 8.21.

Lemma 8.30. Let ξϕ be an execution of Algorithm AX as in Definition 8.21.
Let M1 be the message cost of the algorithm in the execution ξϕ. Let M2 be
the message cost of Algorithm AX in the execution ξ̄ϕ. Then M1 ≤M2 +M3,
where M3 is the number of messages sent by all processors in

⋃

1≤i≤k(gi.set)
in the execution ξϕ.

Proof. For the execution ξϕ, let M ′ be the number of messages sent by the
processors in P−⋃1≤i≤k(gi.set)−ϕ.set. Observe that the number of messages

sent by the processors in P − ϕ.set in the execution ξ̄ϕ is equal to M ′. The
number of messages sent by processor j in ϕ.set prior to the newview(gi)j
event in ξϕ, is the same in both executions. Call this message costMϕ,j. Define
M ′′ =

∑

j∈ϕ.setMϕ,j. Define Ms = M ′ +M ′′. Thus, Ms is the same in both

executions, ξϕ and ξ̄ϕ. Define Mϕ to be the number of messages sent by all
processors in ϕ.set in execution ξ̄ϕ. Let M ′′′ = Mϕ −M ′′. Observe that

M1 = Ms +M3 ≤Ms +M3 +M ′′′ = M2 +M3,

as desired. 2

164 8 Analysis of Omni-Do in Asynchronous Partitionable Networks

We now give the message complexity of algorithm AX.

Theorem 8.31. Algorithm AX solves the Omni-DoAFM (n, p, f) problem with
message complexity

MAFM (n, p, fr + fm) < 4 (n · fr + n+ p · fm) .

Proof. To simplify notation, we let M(fr, fm) stand for MAFM (n, p, fr + fm).
The proof is by induction on the number of views, denoted by `, occurring in

any execution. For a specific execution ξ` with ` views, let fr(ξ`) = f
(`)
r be

the fragmentation-number and fm(ξ`) = f
(`)
m be the merge-number.

Base Case: ` = 0. Since f
(`)
r and f

(`)
m must also be 0, the base case follows

from Lemma 8.28.

Inductive Hypothesis: Assume that for all ` ≤ k,

M(f (`)
r , f (`)

m) < 4(n · f (`)
r + n+ p · f (`)

m) .

Inductive Step: Need to show that for ` = k + 1,

M(f (k+1)
r , f (k+1)

m) < 4(n · f (k+1)
r + n+ p · f (k+1)

m) .

Consider a specific execution ξk+1 with ` = k+1. Let Γξk+1
be the view-graph

induced by this execution. The view-graph has at least one vertex such that
all of its descendants are sinks (Fact 8.15). Let ν be such a vertex. We consider
two cases:

Case 1: Vertex ν has a descendant µ that corresponds to a merge in the
execution. Therefore all ancestors of µ in Γξk+1

have outdegree 1. Since µ is a
sink vertex, the group that corresponds to µ performs all the remaining (if any)
tasks and no further messages are sent. Let ξk = ξ̄µk+1 (per Definition 8.20) be
an execution in which this merge does not occur. In execution ξk, the number

of new views is k. Also, f
(k+1)
r = f

(k)
r and f

(k+1)
m = f

(k)
m + 1. By inductive

hypothesis, M(f
(k)
r , f

(k)
m) < 4(n · f (k)

r + n + p · f (k)
m). Hence, the message

complexity, using Lemma 8.29 is:

M(f (k+1)
r , f (k+1)

m) <M(f (k)
r , f (k)

m) + 2p

< 4(n · f (k)
r + n+ p · f (k)

m) + 2p

= 4(n · f (k+1)
r + n+ p · f (k+1)

m − p) + 2p

= 4nf (k+1)
r + 4n+ 4pf (k+1)

m − 4p+ 2p

≤ 4(n · f (k+1)
r + n+ p · f (k+1)

m).

Case 2: Vertex ν has no descendants that correspond to a merge in the exe-
cution. Therefore, the group that corresponds to ν must fragment, say into q
groups. These groups correspond to sink vertices in Γξk+1

, thus they perform
all of the remaining (if any) tasks and do not send any additional messages.

8.6 Open Problems 165

Let ξk+1−q = ξ̄νk+1 (per Definition 8.21) be an execution in which the frag-
mentation does not occur. In the execution ξk+1−q, the number of new views

is k + 1 − q ≤ k. Also, f
(k+1−q)
r = f

(k+1)
r − q and f

(k+1−q)
m = f

(k+1)
m . By

inductive hypothesis, M
f
(k+1−q)
r ,f

(k+1−q)
m

< 4(n · f (k+1−q)
r + n+ p · f (k+1−q)

m).

From Lemma 8.28, the message cost in each new group caused by a frag-
mentation is no more than 4n. Let Mσ be the total number of messages sent
in all q groups. Thus, Mσ ≤ 4qn. By Lemma 8.30, the number of messages
sent in execution ξk+1, is less than the number of messages sent in execution
ξk+1−q and the number of messages sent in all q groups. Hence, the message
complexity is

M(f (k+1)
r , f (k+1)

m) ≤ M(f (k+1−q)
r , f (k+1−q)

m) +Mσ

< 4(n · f (k+1−q)
r + n+ p · f (k+1−q)

m) +Mσ

= 4(n · f (k+1)
r − qn+ n+ p · f (k+1)

m) +Mσ

≤ 4nf (k+1)
r − 4qn+ 4n+ 4pf (k+1)

m + 4qn

= 4(n · f (k+1)
r + n+ p · f (k+1)

m),

and this completes the proof. 2

8.5.3 Analysis Under Adversary AF

Algorithm AX solves the Omni-Do problem also under patterns of only frag-
mentations. Observe that f = fr and fm = 0 for adversary AF . The following
corollary is obtained on the basis of Theorems 8.27 and 8.31.

Corollary 8.32. Algorithm AX solves the Omni-DoAF (n, p, f) problem with
task-oriented work complexity WAF (n, p, f) ≤ min{n·f+n, n·p} and message
complexity MAF (n, p, f) < 4(n · f + n).

Observe that Algorithm AX is asymptotically work-optimal under adver-
sary AF with respect to the lower bound of Theorem 8.1.

8.6 Open Problems

Algorithm AX uses a group communication service (GCS) with certain prop-
erties as a building block. The message analysis of the algorithm does not
consider the cost of implementing the GCS. It would be interesting to inves-
tigate whether an algorithm with an embedded GCS could be developed that
could achieve better message complexity.

Additionally, it is worthwhile to assess the total-work complexity of al-
gorithm AX, but as with message complexity, for this to be meaningful, the
work of a specific GCS implementation must be taken into account.

Finally, in some settings time complexity is another measure that is sig-
nificant in practical applications. It is interesting to develop algorithms for
Omni-Do that trade work efficiency for time efficiency.

166 8 Analysis of Omni-Do in Asynchronous Partitionable Networks

8.7 Chapter Notes

The Omni-Do problem as presented here was introduced and studied by Dolev,
Segala, and Shvartsman in [29]. They present a load balancing algorithm,
called AF that solves the Omni-Do problem with group fragmentations (no
merges), and under the assumption that all processors belong initially to a
single group, with work O(n + f · n), where f < n is the total number of
groups that existed during the computation (this is different from our defini-
tion of fragmentation-number, see the comparison in [48]). The algorithm also
uses a group communication service to handle group memberships and com-
munication within groups, however the authors did not measure the message
complexity of their algorithm. Georgiou and Shvartsman [48] extended the
approach of [29] by considering the adversary that causes fragmentations and
merges, and by evaluating message complexity as well as work complexity.
The presentation in this chapter is based on that work.

Algorithm AX uses a group communication service (GCS) modeled after
the VS service of Fekete, Lynch, and Shvartsman [33]. The safety and liveness
properties of the GCS (Section 8.2). are given in the work of Chockler, Kei-
dar, and Vitenberg [21] (the safety properties from Section 3 and the liveness
properties from Section 10). Group communication services [97] provide mem-
bership and communication services to the group of processors. GCSs enable
the application components at different processors to operate collectively as a
group, using the service to multicast messages. There is a substantial amount
of research dealing with specification and implementation of GCSs. Some GCS
implementations are Isis [13], Transis [27], Totem [93], Newtop [32], Relacs [9],
Horus [108], Consul [90] and Ensemble [55]. Some GCS specifications are pre-
sented in [98, 10, 33, 28, 23, 57, 92]. An extended study of GCS specifications
can be found in [21].

Our exposition in this chapter focuses on work complexity of algorithms.
In particular, we are not concerned about the overall time that it may take
to complete a computation. There is evidence that algorithms that do not
attempt to optimize work may have better time-to-completion. In this re-
gard, a study performed by Jacobsen, Zhang, and Marzullo [62] suggests that
algorithm AX may not be practical when using certain GCSs in wide-area
networks. In particular, they showed via trace analysis, that algorithm AX
performs poorly with respect to the total completion time. The authors argue
that the reason for this is the use of GCSs that do not scale well in large
networks, where communication is less likely to be transitive and symmetric
(as assumed by group communications). However, as the authors point out,
group communications can be used effectively in networks such as LANs, and
hence algorithm AX is expected to perform well in such networks, especially
with respect to its work complexity.

Omni-Do has an analogous counterpart in the shared-memory model of
computation, called the collect problem, introduced by Shavit [103] and stud-
ied by Saks, Shavit, and Woll in [100]. There are p processors each with a

8.7 Chapter Notes 167

shared register. The goal is to have all the processors learn (collect) all the
register values. Computation is asynchronous, with the adversary controlling
timing of the processors. Although the algorithmic techniques when dealing
with the collect problem are different, the goal of having all processors to
learn a set of values is similar to the goal of having all processor to learn the
results of a set of tasks in Omni-Do.

Information on the Input/Output Automata mode, notation, and frame-
work can be found in the work of Lynch and Tuttle, e.g., [80, 79]. A pro-
totype computer-aided framework supporting specification in Input/Output
Automata was developed at MIT [41]. A commercial framework, called Tempo,
supporting specification, modeling, simulation, and verification of distributed
systems using (timed and untimed) Input/Output Automata is available from
VeroModo Inc. [61].

9

Competitive Analysis of Omni-Do in

Partitionable Networks

THE efficiency of an algorithm solving the Omni-Do problem can only be
partially understood through its worst case work analysis, such as we did

for algorithm AX in the previous chapter. This is because the worst case upper
and lower bounds might depend on unusual or extreme patterns of regroup-
ings. In such cases, worst case work may not be the best way to compare
the efficiency of algorithms. Hence, in this chapter, in order to understand
better the practical implications of performing work in partitionable settings,
we treat the Omni-Do problem as an on-line problem and we pursue compet-
itive analysis, that is we compare the efficiency of a given algorithm to the
efficiency of an “off-line” algorithm that has full knowledge of future changes
in the communication medium. We consider asynchronous processors under
arbitrary patterns of regroupings (including, but not limited to, fragmenta-
tion and merges). A processor crash is modeled as the creation of a singleton
group (containing the crashed processor) that remains disconnected for the
entire computation; the processors in such groups are charged for complet-
ing all remaining tasks, in other words, the analysis assumes the worst case
situation where a crashed processor becomes disconnected, but manages to
complete all tasks before the crash.

In this chapter we view algorithms as a rule that, given a group of proces-
sors and a set of tasks known by this group to be completed, determines a task
for the group to complete next. We assume that task executions are atomic
with respect to regroupings (a task considered for execution by a group is
either executed or not prior a subsequent regrouping). Processors in the same
group can share their knowledge of completed tasks and, while they remain
connected, avoid doing redundant work. The challenge is to avoid redundant
work “globally”, in the sense that processors should be performing tasks with
anticipation of future changes in the network topology. An optimal algorithm,
with full knowledge of the future regroupings, can schedule the execution of
the tasks in each group in such a way that the overall task-oriented work is
the smallest possible, given the particular sequence of regroupings.

170 9 Competitive Analysis of Omni-Do in Partitionable Networks

As an example, consider the scenario with 3 processors that, starting from
isolation, are permitted to proceed synchronously until each has completed
n/2 tasks; at this point an adversary chooses a pair of processors to merge
into a group. It is easy to show that if N1, N2, and N3 are subsets of [n] of size
n/2, then there is a pair (Ni, Nj) (where i 6= j) so that |Ni ∩ Nj | ≥ n/6: in
particular, for any scheduling algorithm, there is a pair of processors which,
if merged at this point, will have n/6 duplicated tasks; this pair alone must
then expend n+n/6 task-oriented work to complete all n tasks. The optimal
off-line algorithm that schedules tasks with full knowledge of future merges,
of course, accrues only n task-oriented work for the merged pair, as it can
arrange for zero overlap. Furthermore, if the adversary partitions the two
merged processors immediately after the merge (after allowing the processors
to exchanged information about task executions), then the task-oriented work
performed by the merged and then partitioned pair is n + n/3; the task-
oriented work performed by the optimal algorithm remains unchanged, since
it terminates at the merge.

To focus on scheduling issues, we assume that processors in a single group
work as a single virtual unit; indeed, we treat them as a single asynchronous
processor. To this respect, we assume that communication within groups is
instantaneous and reliable. We note that the above assumptions can be ap-
proximated by group communication services (such as the one considered in
Section 8.2) if the reconfiguration time during which no tasks are performed is
disregarded. However, in large scale wide-area networks the time performance
(which we do not consider here) of Omni-Do algorithms can be negatively
affected, as GCSs can be inefficient in such networks.

Chapter structure.

In Section 9.1 we present the model of adversity considered in this chapter,
we define the notion of competitiveness and we present terminology borrowed
from set theory and graph theory that we use in the rest of the chapter. In
Section 9.2 we formulate a simple randomized algorithm, called algorithm RS,
and we analyze its competitiveness. A result for deterministic algorithms is
also given. In Section 9.3 we present lower bounds on the competitiveness of
(deterministic and randomized) algorithms for Omni-Do, and we claim the
optimality of algorithm RS. We discuss open problems in Section 9.4.

9.1 Model of Adversity, Competitiveness and Definitions

In this section we present Adversary AGR, the adversary assumed in this
chapter, we formalize the notion of competitiveness, and we recall graph and
set theoretic terminology used in the remainder sections.

9.1 Model of Adversity, Competitiveness and Definitions 171

9.1.1 Adversary AGR

We denote by AGR an oblivious (off-line) adversary that can cause arbitrary
regroupings. Consider an algorithm A that solves the Omni-Do problem under
adversary AGR. The adversary determines, prior to the start of an execution
of A, both the sequence of regroupings and the number of tasks completed
by each group before it is involved in another regrouping. Taken together,
this information determines, what we call, a computation template: this is a
directed acyclic graph (DAG), each vertex of which corresponds to a group of
processors that existed during the the computation; a directed edge is placed
from group g1 to group g2 if g2 is created by a regrouping involving g1. We
label each vertex of the DAG with the group of processors associated with
that vertex and the total number of tasks that the adversary allows the group
of processors to perform before the next reconfiguration occurs.

Specifically, if n is the number of Omni-Do tasks and p the number of
participating processors, then such a computation template is a labeled and
weighted DAG, which we call a (p, n)-DAG. More formally,

Definition 9.1. A (p, n)-DAG is a DAG C = (V,E) augmented with a weight
function h : V → [n] ∪ {0} and a labeling γ : V → 2[p] \ {∅} so that:

1. For any maximal path (v1, . . . , vk) in C,
∑
h(vi) ≥ n. (This guarantees

that any algorithm terminates during the computation described by the
DAG.)

2. γ possesses the following “initial conditions”:

[p] =
⋃̇

v: in(v)=0

γ(v).

3. γ respects the following “conservation law”:
there is a function φ : E → 2[p] \ {∅} so that for each v ∈ V with
indegree(v) > 0,

γ(v) =
⋃̇

(u,v)∈E

φ
(
(u, v)

)
,

and for each v ∈ V with out(v) > 0,

γ(v) =
˙⋃

(v,u)∈E

φ
(
(v, u)

)
.

In the above definition, ∪̇ denotes disjoint union, and in(v) and out(v) denote
the in-degree and out-degree of v, respectively. Finally, for two vertices u, v ∈
V , we write u ≤ v if there is a directed path from u to v; we then write u < v
if u ≤ v and u and v are distinct.

Adversary AGR is constrained to establish only the computation templates
as defined above.

172 9 Competitive Analysis of Omni-Do in Partitionable Networks

Example 9.2. Consider the (12, n)-DAG shown in Figure 9.1, where we let the
following groups be represented: g1 = {p1}, g2 = {p2, p3, p4}, g3 = {p5, p6},
g4 = {p7}, g5 = {p8, p9, p10, p11, p12}, g6 = {p1, p2, p3, p4, p6}, g7 = {p8, p10},
g8 = {p9, p11, p12}, g9 = {p1, p2, p3, p4, p6, p8, p10}, g10 = {p5, p11}, and g11 =
{p9, p12}.

��
��

��
��

��
��

��
��
g1, 5 g3, 8 g4, n g5, 2��

��
g2, 3

��
��
g6, 4 ��

��
g7, 5 ��

��
g8, 6

��
��
g10, n ��

��
g11, n��

��
g9, n

R

j?� 	 w

s U+ �

Fig. 9.1. An example of a (12, n)-DAG.

This computation template models all (asynchronous) computations with
the following behavior.

(i) The processors in groups g1 and g2 and processor p6 of group g3 are re-
grouped during some reconfiguration to form group g6. Processor p5 of group
g3 becomes a member of group g10 during the same reconfiguration (see be-
low). Prior to this reconfiguration, processor p1 (the singleton group g1) has
performed exactly 5 tasks, the processors in g2 have cooperatively performed
exactly 3 tasks and the processors in g3 have cooperatively performed exactly
8 tasks (assuming that t > 8).

(ii) Group g5 is partitioned during some reconfiguration into two new
groups, g7 and g8. Prior to this reconfiguration, the processors in g5 have
performed exactly 2 tasks.

(iii) Groups g6 and g7 merge during some reconfiguration and form group
g9. Prior to this merge, the processors in g6 have performed exactly 4 tasks
(counting only the ones performed after the formation of g6 and assuming
that there are at least 4 tasks remaining to be done) and the processors in g7
have performed exactly 5 tasks.

(iv) The processors in group g8 and processor p5 of group g3 are regrouped
during some reconfiguration into groups g10 and g11. Prior to this reconfigura-
tion, the processors in group g8 have performed exactly 6 tasks (assuming that
there are at least 6 tasks remaining, otherwise they would have performed the
remaining tasks).

9.1 Model of Adversity, Competitiveness and Definitions 173

(v) The processors in g9, g10, and g11 run until completion with no further
reconfigurations.

(vi) Processor p7 (the singleton group g4) runs in isolation for the entire
computation.

Given a (p, n)-DAG representing a computation template C, we say that
two vertices (representing groups) are independent if there is no direct path
connecting one to the other. Then, for the computation template C we define
the computation width of C, cw(C), to be the maximum number of inde-
pendent vertices reachable from any vertex in (p, n)-DAG. We give a formal
definition at the conclusion of this section.

Let ξ is the execution of an algorithm solving Omni-Do under the compu-
tation template C represented by a (p, n)-DAG. We let the adversarial pattern
ξ|AGR be represented by the (p, n)-DAG, or its appropriate subgraph1. Fol-
lowing the notation established in Section 2.2.3, we define the weight of ξ|AGR

as the computation width of this graph, that is, ‖ξ|AGR‖ ≤ cw(C). (From the
definition of the computation width it is easy to observe that given a subgraph
H of a DAG G, cw(H) ≤ cw(G).)

9.1.2 Measuring Competitiveness

Before we formally define the notion of competitiveness, we introduce some
terminology.

Let D be a deterministic algorithm for Omni-Do and C a computation
template. We letWD(C) denote the task-oriented work expended by algorithm
D, where regroupings are determined according to the computation template
C. That is, if ξ ∈ E(D,AGR) is an execution of algorithm D under computation
template C, then WD(C) is the task-oriented work of execution ξ. We let
OPT denote the optimal (off-line) algorithm, meaning that for each C we
have WOPT(C) = minDWD(C). We now move to define competitiveness.

Definition 9.3. Let α be a real valued function defined on the set of all (p, n)-
DAGs (for all p and n). A deterministic algorithm D is α-competitive if for
all computation templates C,

WD(C) ≤ α(C)WOPT(C).

In this chapter we treat randomized algorithms as distributions over de-
terministic algorithms; for a set Z and a family of deterministic algorithms
{Dζ | ζ ∈ Z} we let R = R({Dζ | ζ ∈ Z}) denote the randomized algorithm
where ζ is selected uniformly at random from Z and scheduling is done ac-
cording to Dζ . For a real-valued random variable X , we let E[X] denote its
expected value. Then,

1 The execution might terminate with all tasks performed before all regroupings
specified by the computation template take place; this is possible in the case of
randomized algorithm where the oblivious adversary does not know a priori how
the algorithm would behave under the specific sequence of regroupings.

174 9 Competitive Analysis of Omni-Do in Partitionable Networks

Definition 9.4. Let α be a real valued function defined on the set of all (p, n)-
DAGs (for all p and n). A randomized algorithm R is α-competitive if for
all computation templates C,

E[WDζ
(C)] ≤ α(C)WOPT(C),

this expectation being taken over uniform choice of ζ ∈ Z.

Note that usually α is fixed for all inputs; we shall see in later sections
that this would be meaningless in this setting. Presently, we use a function α
that depends on a certain parameter of the graph structure of C, namely the
computation width cw(C).

9.1.3 Formalizing Computation Width

We conclude this subsection with definitions and terminology that we use in
the remainder of this chapter.

Definition 9.5. A partially ordered set or poset is a pair (P,≤) where P is
a set and ≤ is a binary relation on P for which (i) for all x ∈ P , x ≤ x, (ii) if
x ≤ y and y ≤ x, then x = y, and (iii) if x ≤ y and y ≤ z, then x ≤ z. For a
poset (P,≤) we overload the symbol P , letting it denote both the set and the
poset.

Definition 9.6. Let P be a poset. We say that two elements x and y of P are
comparable if x ≤ y or y ≤ x; otherwise x and y are incomparable. A chain
is a subset of P such that any two elements of this subset are comparable. An
antichain is a subset of P such that any two distinct elements of this subset
are incomparable. The width of P , denoted w(P), is the size of the largest
antichain of P .

Associated with any DAG C = (V,E) is the natural vertex poset (V,≤)
where u ≤ v if and only if there is a directed path from u to v. Then the width
of C, denoted w(C), is the width of the poset (V,≤).

Definition 9.7. Given a DAG C = (V,E) and a vertex v ∈ V , we define the
predecessor graph at v, denoted PC(v), to be the subgraph of C that is formed
by the union of all paths in C terminating at v. Likewise, the successor graph
at v, denoted SC(v), is the subgraph of C that is formed by the union of all
the paths in C originating at v.

Using the above definitions and terminology we give a formal definition of
the computation width of a given computation template.

Definition 9.8. The computation width of a DAG C = (V,E), denoted
cw(C), is defined as

cw(C) = max
v∈V

w(SC(v)).

9.2 Algorithm RS and its Analysis 175

Note that the processors that comprise a group formed during a compu-
tation template C may be involved in many different groups at later stages of
the computation, but no more than cw(C) of these groups can be computing
in ignorance of each other’s progress.

Example 9.9. In the (12, n)-DAG of Figure 9.1, the maximum width among
all successor graphs is 3: w(S((g5, 2))) = 3. Therefore, the computation
width of this DAG is 3. Note that the width of the DAG is 6 (nodes
(g1, 5), (g2, 3), (g3, 8), (g4, n), (g7, 5) and (g8, 6) form an antichain of maximum
size).

9.2 Algorithm RS and its Analysis

In this section we formulate algorithm RS (Random Select), analyze its com-
petitiveness, and present a result on the competitiveness of deterministic al-
gorithms.

9.2.1 Description of Algorithm RS

We consider the natural randomized algorithm RS where a processor (or
group) with knowledge that the tasks in a set K ⊂ [n] have been completed
selects to next complete a task at random from the set [n] \K. (Recall that we
treat randomized algorithms as distributions over deterministic algorithms.)
More formally, let Π = (π1, . . . , πp) be a p-tuple of permutations, where each
πi is a permutation of [n]. We describe a deterministic algorithm DΠ so that

RS = R
(
{DΠ | Π ∈ (Sn)p}

)
;

here Sn is the collection of permutations on [n]. Let G be a group of processors
and q ∈ G the processor in G with the lowest processor identifier. Then the
deterministic algorithm DΠ specifies that the group G, should it know that
the tasks in K ⊂ [n] have been completed, next completes the first task in
the sequence πq(1), . . . , πq(n) which is not in K.

9.2.2 Analysis of Algorithm RS

We now analyze the competitiveness (in terms of task-oriented work) of al-
gorithm RS. For a computation template C we write WRS(C) = E [WRS(C)],
this expectation taken over the random choices of the algorithm. Where C
can be inferred from context, we simply write WRS and WOPT.

We first recall Dilworth’s Lemma, a duality theorem for posets:

Lemma 9.10. (Dilworth’s Lemma) The width of a poset P is equal to the
minimum number of chains needed to cover P . (A family of nonempty subsets
of a set Q is said to cover Q if their union is Q.)

176 9 Competitive Analysis of Omni-Do in Partitionable Networks

We will also use a generalized degree-counting argument:

Lemma 9.11. Let G = (U, V,E) be an undirected bipartite graph with no
isolated vertices and h : V → R a non-negative weight function on G. For
a vertex v, let Γ (v) denote the vertices adjacent to v. Suppose that for some
B1 > 0 and for each vertex u ∈ U we have

∑

v∈Γ (u) h(v) ≤ B1 and that

for some B2 > 0 and for each vertex v ∈ V we have
∑

u∈Γ (v) h(u) ≥ B2,

then

∑

u∈U h(u)
∑

v∈V h(v)
≥ B2

B1
.

Proof. We compute the quantity
∑

(u,v)∈E h(u)h(v) by expanding according
to each side of the bipartition:

B1

∑

u∈U

h(u) ≥
∑

u∈U

(

h(u) ·
∑

v∈Γ (u)

h(v)
)

=
∑

(u,v)∈E

h(u)h(v)

=
∑

v∈V

(

h(v) ·
∑

u∈Γ (v)

h(u)
)

≥ B2

∑

v∈V

h(v).

As B1 > 0 and
∑

v h(v) ≥ B2 > 0, we conclude that

∑

u∈U h(u)
∑

v∈V h(v)
≥ B2

B1
, as

desired. 2

We now establish an upper bound on the competitiveness of the algorithm
RS.

Theorem 9.12. Algorithm RS is (1 + cw(C)/e)-competitive for any (p, n)-
DAG C = (V,E).

Proof. Let C be a (p, n)-DAG; recall that associated with C are the two
functions h : V → N and γ : V → 2[p] \ {∅}. For a subgraph C′ = (V ′, E′)
of C, we let H(C′) =

∑

v∈V ′ h(v). Recall that PC(v) and SC(v) denote the
predecessor and successor graphs of C at v. Then, we say that a vertex v ∈
V is saturated if H(PC(v)) ≤ n; otherwise, v is unsaturated. Note that if
v is saturated, then the group γ(v) must complete h(v) tasks regardless of
the scheduling algorithm used. Along these same lines, if v is an unsaturated
vertex for which n >

∑

u<v h(u), the group γ(v) must complete at least
max(h(v), n −∑u<v h(u)) tasks under any scheduling algorithm. As these
portions of C which correspond to computation which must be performed by
any algorithm will play a special role in the analysis, it will be convenient for us
to rearrange the DAG so that all such work appears on saturated vertices. To
achieve this, note that if v is an unsaturated vertex for which

∑

u<v h(u) < n,
we may replace v with a pair of vertices, vs and vu, where all edges directed
into v are redirected to vs, all edges directed out of v are changed to originate
at vu, the edge (vs, vu) is added to E, and h is redefined so that

h(vs) = n−
∑

u<v

h(u) and h(vu) = h(v) − h(vs).

9.2 Algorithm RS and its Analysis 177

Note that the graph C′ obtained by altering C in this way corresponds to the
same computation, in the sense that WD(C) = WD(C′) for any algorithm D.
For the remainder of the proof we will assume that this alteration has been
made at every relevant vertex, so that the graph C satisfies the condition

v unsaturated ⇒
∑

u<v

h(u) ≥ n. (9.1)

Finally, for a vertex v, we let Tv be the random variable equal to the number
of tasks that RS completes at vertex v. Note that if v is saturated, then
Tv = h(v). Let S and U denote the sets of saturated and unsaturated vertices,
respectively. Given the above definitions, we immediately have

WOPT ≥
∑

s∈S

h(s)

and, by linearity of expectation,

WRS = E
[∑

v

Tv

]

=
∑

s∈S

h(s) +
∑

u∈U

E[Tu] ≤WOPT +
∑

u∈U

E[Tu]. (9.2)

Our goal is to conclude that for some appropriate β,

E

[
∑

u∈U

Tu

]

≤ β ·
∑

s∈S

h(s) ≤ β ·WOPT

and hence that RS is 1 + β competitive. We will obtain such a bound by
applying Lemma 9.11 to an appropriate bipartite graph, constructed next.

Given C = (V,E) construct the (undirected) bipartite graph G =
(S,U , EG) where EG = {(s, u) | s < u}. As in Lemma 9.11, for a vertex
v, we let Γ (v) denote the set of vertices adjacent to v. Now assign weights
to the vertices of G according to the rule h∗(v) = E[Tv]. Note that for
s ∈ S, h∗(s) = h(s) and hence by condition (9.1) above, we immediately
have the bound

∀u ∈ U ,
∑

s∈Γ (u)

h∗(s) ≥ n. (9.3)

We now show that ∀s ∈ S,
∑

u∈Γ (s)

h∗(u) ≤ cw(C) · n
e
. (9.4)

Before proceeding to establish this bound, note that equations (9.3) and (9.4),
together with Lemma 9.11 imply that

WRS(C) ≤
∑

s∈S

h(s) +
∑

u∈U

h∗(u) ≤
(

1 +
cw(C)

e

)∑

s∈S

h(s)

≤
(

1 +
cw(C)

e

)

WOPT(C),

178 9 Competitive Analysis of Omni-Do in Partitionable Networks

as desired.
Returning now to equation (9.4), let s ∈ S be a saturated vertex and

consider the successor graph (of C) at s, SC(s). By Lemma 9.10 (Dilworth’s
Lemma), there exist w , w(SC(s)) ≤ cw(C) paths in SC(s), P1, P2, . . . Pw so
that their union covers SC(s). Let Xi be the random variable whose value is
the number of tasks performed by RS on the portion of the path Pi consisting
of unsaturated vertices. Note that if u ∈ V is unsaturated and u ≤ v, then v
is unsaturated and hence, for each path Pi, there is a first unsaturated vertex
u0
i after which every vertex of Pi is unsaturated. Note now that for a fixed

individual task τ , conditioned upon the event that τ is not yet complete, the
probability that τ is not chosen by RS for completion at a given selection
point in PC(u0

i) is no more than (1 − 1/n). Let Li be the random variable
whose value is the set of tasks left incomplete by RS at the formation of the
group γ(u0

i). As u0
i is unsaturated,

∑

v<u0
i
h(v) ≥ n by condition (9.1) and

hence, for each i,
Pr[τ ∈ Li] ≤ (1 − 1/n)n ≤ 1/e.

As there are a total of n tasks,

E[|Li|] ≤ n/e.

Of course, since RS completes a new task at each step, Xi ≤ |Li| so that
E[Xi] ≤ n/e and by the linearity of expectation

E
[∑

i

Xi

]

≤ w · n/e.

Now every unsaturated vertex in SC(s) appears in some Pi and hence

∑

u∈Γ (s)

h∗(u) ≤ E
[∑

i

Xi

]

≤ wn/e ≤ cw(C) · n/e,

as desired. 2

9.2.3 Deterministic Algorithms

The analysis of algorithm RS can be altered to yield an upper bound result on
the competitiveness of deterministic algorithms. Recall that a deterministic
algorithm D for the Omni-Do problem in this setting is a rule which, given
a processor (or group of processors) and a collection of tasks known to be
completed, determines the next task for this processor (or group) to complete.
Specifically, an algorithm is a function D : 2[p] × 2[n] → [n]; Furthermore, we
assume that D(P, T) 6∈ T for all P ⊂ [p] and for all T ([n], which is to say
that the algorithm never chooses to complete a task it already knows to be
completed (thus we restrict our attention to nontrivial algorithms). Then,

9.3 Lower Bounds 179

Theorem 9.13. Any (nontrivial) deterministic algorithm D for Do-
AllAGR(n, p, f) is (1 + cw(C))-competitive for any (p, n)-DAG C = (V,E).

Proof. In the proof of Theorem 9.12, h∗(v) was defined as the expected number
of tasks performed by algorithm RS at node v. For algorithm D, if we define
h∗(v) to be the actual number of tasks performed by the algorithm at node
v, then it is not difficult to see that equation (9.4) becomes

∑

u∈Γ (s) h
∗(u) ≤

cw(C)·t (provided that no processor in D performs a task that already knows
its result). This leads to the thesis of the theorem. 2

9.3 Lower Bounds

We now show that the competitive ratio achieved by algorithm RS is tight. We
begin with a lower bound for deterministic algorithms. This is then applied
to give a lower bound for randomized algorithms in Corollary 9.15.

Theorem 9.14. Let a : N → R and D be a deterministic algorithm for Omni-
Do so that D is a(cw(·))-competitive (that is D is α-competitive, for a function
α = a ◦ cw)). Then a(c) ≥ 1 + c/e.

Proof. Fix k ∈ N. Consider the case when n = p = g � k and n mod k = 0, g
being the number of initial groups. We consider a computation template CG

determined by a tuple G = (G1, . . . , Gn/k) where each Gi ⊂ [n] is a set of size
k and

⋃

iGi = [n]. Initially, the computation template CG has the processors
synchronously proceed until each has completed n/k tasks; at this point, the
processors in Gi are merged and allowed to exchange information about task
executions. Each Gi is then immediately partitioned into c groups. Note that
the off-line optimal algorithm accrues exactly n2/k work for this computation
template (it terminates prior to the partitions of the Gi).

We will show that for any D, there is a selection of the Gi so that

WD(CG) ≥ n2/k

[

1 + c

(

1 − 1

k

)k

− o(1)

]

,

and hence that a(c) ≥ 1 + c/e. Consider the behavior of D when the G is
selected at random, uniformly among all such tuples. Let Pi ⊂ [n] be the
subset of n/k tasks completed by processor i before the merges take place;
these sets are determined by the algorithm D. We begin by bounding

E G

[∣
∣
∣

⋃

i∈G1Pi

∣
∣
∣

]

.

To this end, consider an experiment where we select k sets Q1, . . . , Qk, each
Qi selected independently and uniformly from the set {Pi}. Now, for a specific
task τ , let pτ = PrQ1 [τ 6∈ Q1], so that PrQi [τ 6∈ ⋃iQi] = pkτ . As the Qi are
selected independently,

180 9 Competitive Analysis of Omni-Do in Partitionable Networks

EQi

[∣
∣[n] −

⋃

i

Qi
∣
∣

]

=
∑

τ

pkτ .

Observe now that

∑

τ

(1 − pτ) =
∑

τ

PrQ1 [τ ∈ Q1] = EQ1 [|Q1|] = n/k

and hence
∑

τ pτ = n(1 − 1/k). As the function x 7→ xk is convex on [0,∞),
∑

τ p
k
τ is minimized when the pτ are equal and we must have

EQi

[∣
∣[n] −

⋃

i

Qi
∣
∣

]

≥ n ·
(

1 − 1

k

)k

.

Now observe that, conditioned on the Qi being distinct, the distribution of
(Q1, . . . , Qk) is identical to that of (Pg11 , . . . , Pg1k) where the random variable

G1 = {g1
1 , . . . , g

1
k}. Considering that Pr[∃i 6= j,Qi = Qj] ≤ k2/n, we have

EQi

[∣
∣[n] −

⋃

i

Qi
∣
∣

]

≤
(

1 − k2

n

)

E G

[

n−
∣
∣
⋃

i∈G1

Pi
∣
∣

]

+ 1 · k
2

n

and hence as n→ ∞ we see that the expected number of tasks remaining for
those processors in group G1 is

E G

[

n−
∣
∣
∣

⋃

i∈G1

Pi

∣
∣
∣

]

≥ n(1 − 1/k)k − o(1).

Of course, the distribution of each Gi is the same, so that

E G

n/k
∑

i=1

(

n−
∣
∣
⋃

j∈Gi

Pj
∣
∣

)

 = [1 − o(1)]
(n

k

)

· n
(

1 − 1

k

)k

.

In particular, there must exist a specific selection of G = (G1, . . . , Gn/k)
which achieves this bound. Recall that every Gi is partitioned into c groups.
Therefore, for such G, the total work is at least

n2

k
·
(

1 + [1 − o(1)] · c ·
(

1 − 1

k

)k
)

.

As limk→∞(1 − 1
k)k = 1

e , this completes the proof. 2

The above lower bound result together with the upper bound result given
in Theorem 9.13 show that there is a gap of a factor of 1/e on the competitive-
ness of deterministic algorithms. Closing this gap remains an open problem.

As the above stochastic computation template CG is independent of the
deterministic algorithm D, this immediately gives rise to a lower bound for
randomized algorithms:

9.5 Chapter Notes 181

Corollary 9.15. Let R
(
{Dζ | ζ ∈ Z}

)
be a randomized algorithm for Omni-

Do that is (a ◦ cw)-competitive, where a : N → R. Then a(c) ≥ 1 + c/e.

Proof. Assume for contradiction that for some c, a(c) < 1 + c/e and let k be
large enough so that (1 − 1

k)k > a(c) − 1. For this k we proceed as in the
proof above, considering a random G and the computation template CG with
n = g = p congruent to 0 mod k, g being the number of initial groups. Then,
as above,

E G

[
E ζ

[
WDζ

(CG)
]]

= E ζ

[
E G

[
WDζ

(CG)
]]

≥ min
ζ

[
E G

[
WDζ

(CG)
]]

≥ n2

k
·
(

1 + [1 − o(1)] · c ·
(

1 − 1

k

)k
)

.

Hence there exists a G so that Eζ
[
WDζ

(CG)
]
≥ n2

k ·
(
1 + [1 − o(1)] ce

)
, which

completes the proof. 2

The above result yields the optimality of algorithm RS. Specifically, RS
achieves the optimal competitive ratio over the set of all computation tem-
plates with a given computation width.

9.4 Open Problems

One outstanding open question is how to derandomize the schedules used by
task-performing algorithms in this chapter. Specifically, we would like to con-
struct deterministic scheduling algorithms that are (1+cw(C)/e)-competitive
for any computation template C, thus closing the gap of factor 1/e identified
in the previous section.

An interesting direction is to study the competitiveness of Omni-Do algo-
rithms with respect to their message complexity. Another promising direction
is to study the task-performing paradigm in the models of computation that
combine network regroupings with processor failures. The goal is to establish
complexity results that show how performance of task-performing algorithms
depends both on the extent of regroupings and on the number of processor
failures.

9.5 Chapter Notes

Dolev, Segala, and Shvartsman [29] performed the first study of the Omni-Do
problem in the partitionable setting. Assuming p = n, they model regroup-
ing patterns for which the termination time of any on-line task-performing
algorithm is greater than the termination time of an off-line task-performing
algorithm by a factor linear in p.

182 9 Competitive Analysis of Omni-Do in Partitionable Networks

Malewicz, Russell, and Shvartsman [83, 86] introduced the notion of k-
waste that measures the worst-case redundant work performed by k groups
(or processors) when started in isolation and merged into a single group at
some later time. They developed several efficient constructions that allow
processors to compute locally, without coordination, while controlling waste.
These results are deterministic, and they adequately describe such computa-
tion to the point of the first regrouping, where the regrouping is assumed to
merge groups. (This is the topic of the next Chapter.)

Georgiou and Shvartsman [48] give upper bounds on work for an algorithm
that performs work in the presence of network fragmentations and merges
using a group communication service where processors initially start in a
single group (this is the topic of Chapter 8). They establish an upper bound
of O(min(n ·p, n+n ·g(C))) onw work, where g(C) is the total number of new
groups formed during the computation pattern C. Note that cw(C) ≤ g(C),
and there can be an arbitrary gap between cw(C) and g(C).

The presentation in this chapter is based on the work of Georgiou, Russell,
and Shvartsman [46]. For a proof of the Dilworth’s lemma see [26].

The notion of competitiveness was introduced by Sleator and Tarjan [105].
See also Bartal, Fiat, and Rabani [11], Awerbuch, Kutten, and Peleg [8], and
Ajtai, Aspnes, Dwork, and Waarts [3].

10

Cooperation in the Absence of Communication

IN the setting where the Omni-Do (and Do-All) problem needs to be solved
by distributed message-passing processors there exists a trade-off between

computation and communication: both resources must be managed to de-
crease redundant computation and to ensure efficient computational progress.
In this chapter we specifically examine the extreme situation of collabora-
tion without communication. That is, we consider the extent to which efficient
collaboration is possible if all resources are directed to computation at the
expense of communication. Of course there are also cases where such an ex-
treme situation is not a matter of choice: the network may fail, the mobile
nodes may have intermittent connectivity, and when communication is un-
available it may take a long time to (re)establish connectivity. The results
summarized in this section precisely characterize the ability of distributed
agents to collaborate on a known collection of independent tasks by means
of local scheduling decisions that require no communication and that achieve
low redundant work in task executions. Such scheduling solutions exhibit an
interesting connection between the distributed collaboration problem and the
mathematical design theory. The lower bounds presented here along with the
randomized and deterministic schedule constructions show the limitations on
such low-redundancy cooperation and show that schedules with near-optimal
redundancy can be efficiently constructed by processors working in isolation.

Let us consider an asynchronous setting, where processors communicate
by means of a rendezvous, i.e., two processors that are able to communicate
can perform state exchange. The processors that are not able to communicate
via rendezvous have no choice but to perform all n tasks. Consider the com-
putation with a single rendezvous. There are p− 2 processors that are unable
to communicate, and they collectively must perform exactly n · (p− 2) work
units to learn all results. Now what about the remaining pair of processors
that are able to rendezvous? In the worst case they rendezvous after perform-
ing all tasks individually. In this case no savings in work are realized. Suppose
they rendezvous having performed n/2 tasks each. In the best case, the two
processors performed mutually-exclusive subsets of tasks and they learn the

184 10 Cooperation in the Absence of Communication

complete set of results as a consequence of the rendezvous. In particular if
these two processors know that they will be able to rendezvous in the future,
they could schedule their work as follows: one processor performs the tasks in
the order 1, 2, . . . , n, the other in the order n, n − 1, . . . , 1. No matter when
they happen to rendezvous, the number of tasks they both perform is mini-
mized. Of course the processors do not know a priori what pair will be able
to rendezvous. Thus it is interesting to produce task execution schedules for
all processors, such that upon the first rendezvous of any two processors the
number of tasks performed redundantly is minimized.

This setting we have just described is interesting for several reasons. If
the communication links are subject to failures, then each processor must be
ready to execute all of the n tasks, whether or not it is able to communicate.
In realistic settings the processors may not initially be aware of the network
configuration, which would require expenditure of computation resources to
establish communication, for example in radio networks. In distributed envi-
ronments involving autonomous agents, processors may choose not to com-
municate either because they need to conserve power or because they must
maintain radio silence. Finally, during the initial configuration of a dynamic
network or a middleware service (such as a group communication service) the
individual processors may start working in isolation pending the completion of
system configuration. Regardless of the reasons, it is important to direct any
available computation resources to performing the required tasks as soon as
possible. In all such scenarios, the n tasks have to be scheduled for execution
by all processors. The goal of such scheduling must be to control redundant
task executions in the absence of communication and during the period of
time when the communication channels are being (re)established.

Chapter structure.

In Section 10.1 we describe the adverse setting, formalize the notions of sched-
ules, waste associated with redundant task execution in schedules, and present
basic design theory. In Section 10.2 we present a lower bound on redundancy
without communication. Section 10.3 explores the behavior of random sched-
ules. Derandomization of schedules is the topic of Section 10.4. Discussion of
open problems is in Section 10.5.

10.1 Adversity, Schedules, Waste, and Designs

The adversarial setting. In our abstract setting there are p asynchronous
processors that need to perform n tasks. The processors have unique identi-
fiers from the set [p] = {1, . . . , p}, and the tasks have unique identifiers from
the set [n] = {1, . . . , n}. Initially each processor knows the tasks that need
to be performed and their identifiers (otherwise no fault-tolerant distributed
solution is possible). For this setting, the adversary initially isolates the pro-
cessors, which forces them to perform tasks without being able to coordinate

10.1 Adversity, Schedules, Waste, and Designs 185

their activity with other processors. The adversary then allows the processors
to rendezvous, but with the goal of maximizing the redundant work performed
by the processors prior to the rendezvous.

For the purposes of this chapter, we define a simplified adversary, called
AR, that starts processors in isolation, and then causes a rendezvous. We

also define a parameterized adversary A(r)
R to be the adversary that causes at

most a r-way rendezvous. Following our established notation, for an algorithm

A, let E = E(A,A(r)
R) be the set of all executions of the algorithm in our

model of computation subject to adversary A(r)
R . For a particular execution

ξ ∈ E , the adversarial pattern ξ|
A

(r)
R

establishes that the processors q1, . . . , qk,

where k ≤ r, rendezvous for the first time when each processor qi performs
a1 tasks prior to the rendezvous. Note that each ai can be very different
due to asynchrony. We define the weight ||ξ|

A
(r)
R

|| of the adversarial pattern

corresponding to this execution to be the vector a = (a1, . . . , ak).
We are interested in studying how the magnitude of the redundant work

depends on the weight of the adversarial pattern.

Schedules and waste. A (p, n)-schedule is a tuple (σ1, . . . , σp) of p permu-
tations of the set [n]. When p = 1 it is elided and we simply write n-schedule.
A (p, n)-schedule immediately gives rise to a strategy for p isolated proces-
sors who must complete n tasks until communication between some pair (or
group) is established: the processor i simply proceeds to complete the tasks
in the order prescribed by σi. Suppose now that an adversarial pattern causes
some k of these processors, say q1, . . . , qk, to rendezvous at a time when the
ith processor in this group, qi, has completed ai tasks (i.e., the weight of the
corresponding adversarial pattern is a = (a1, . . . , ak)). Ideally, the processors
would have completed disjoint sets of tasks, so that the total number of tasks
completed is

∑

i ai. As this is too much to hope for in general, it is natural to
attempt to bound the gap between

∑

i ai and the actual number of distinct
tasks completed. This gap we call waste (here and throughout, if φ : X → Y
is a function and L ⊂ X , we let φ(L) = {φ(x) | x ∈ L}):

Definition 10.1. If L is a (p, n)-schedule and (a1, . . . , ak) ∈ Nk, the waste
function for L is

WL(a1, . . . , ak) = max
(q1,...,qk)

(
k∑

i

ai −
∣
∣
∣
∣
∣

k⋃

i

σqi([ai])

∣
∣
∣
∣
∣

)

,

this maximum taken over all k tuples (q1, . . . , qk) of distinct elements of [p].

For a specific vector a = (a1, . . . , ak) representing the weight of an ad-
versarial pattern, WL(a) captures the worst-case number of redundant tasks
performed by any collection of k processors when the ith process has com-
pleted the first ai tasks of its schedule.

186 10 Cooperation in the Absence of Communication

One immediate observation is that bounds on pairwise waste can be nat-
urally extended to bounds on k-wise waste: specifically, note that if L is a
(p, n)-schedule then

WL(a1, . . . , ak) ≤
∑

i<j

WL(ai, aj)

just by considering the first two terms of the standard inclusion-exclusion
rule. Moreover, it appears that this relationship is fairly tight as it is nearly
attained by randomized schedules (see Section 10.3). With this justification
we shall content ourselves to focus mainly on pairwise waste—the function
WL(a, b).

Designs as schedules. Set systems with prescribed intersection properties
have been the object of intense study by both the design theory community
and the extremal set theory community. Despite this, the study of waste in
distributed cooperative settings is new. We shall, however, make substantial
use of some design-theoretic constructions, which we describe below.

Definition 10.2. A `-(v, k, λ) design is a family of subsets L = (L1, . . . , Lt)
of the set [v] with the property that each |Li| = k and any set of ` elements
of [v] is a subset of precisely λ of the Li. (N.B. The subsets Li are typically
referred to as blocks.)

Observe that if L is a `-(v, k, λ) design, then it is also a (` − 1)-(v, k, λ̂)
design where

λ̂ = λ
(v − `+ 1)

(k − `+ 1)
.

To see this, note that if T is a subset of elements of size ` − 1, then there
are exactly v − (`− 1) sets of size ` which contain T ; let Ui, i ∈ [v − (`− 1)],
denote these sets. By assumption, each Ui appears in exactly λ of the Lj. Of
course, if Ui is a subset of some Lj , then in fact exactly k − (`− 1) if the Ui
are subsets of Lj . Hence T appears in exactly λ(v − `+ 1)/(k − `+ 1) of the
Lj , as desired.

To see the connection between such designs and our problem, let D be a
2-(p, k, λ) design consisting of n sets L1, . . . , Ln. For each i ∈ [p], let Ti = {j |
i ∈ Lj}. Note now that for any i 6= j,

Ti ∩ Tj = {k | {i, j} ⊂ Lk}

and hence that |Ti ∩ Tj | = λ. Based on the observation above, we see also
that ∀i, j, |Ti| = |Tj | and let a denote this common cardinality. Now, let Σ =
(σ1, . . . , σt) be any sequence of permutations of [n] for which σi([a]) = Ti. It
is clear that these form an (p, n)-schedule for which

WΣ(a, a) = λ.

10.2 Redundancy without Communication: a Lower Bound 187

Unfortunately, the above construction offers satisfactory control of 2-waste
only for the specific pair (a, a). Furthermore, considering that the construction
only determines the sets σi([a]) and σi([p] \ [a]), the ordering of these can be
conspiratorially arranged to yield poor bounds on waste for other values. Our
goal is construct schedules with satisfactory control on waste for all pairs
(a, b).

While designs do not appear to immediately induce a solution to this prob-
lem, we will apply the following design-theoretic construction several times in
the sequel. Let GF(q) denote the finite field with q elements, where q is a
prime power. Treating GF(q)3 as a vector space over GF(q), the design will
be given by the lattice of linear subspaces of GF(q)3. It is easy to check that
there are t = q2 + q + 1 distinct one dimensional subspaces of GF(q)3, which
we denote `1, . . . , `t. We say that two subspaces `i and `j are orthogonal if
∀u ∈ `1, ∀v ∈ `2, 〈u, v〉 =

∑
ujvj mod q = 0; in this case we write `i ⊥ `j .

It is a fact that for any one dimensional subspace there are exactly q + 1 one
dimensional subspaces to which it is orthogonal. The design consists of the
n = q2 + q + 1 sets Su = {`i | `i ⊥ `u}. It is easy to show that any pair of
such sets intersect at a single `i, and that this forms a 2-(q2 + q + 1, q + 1, 1)
design.

For concreteness, we fix a specific (arbitrary) ordering of each of these sets
Lu: let Ku denote a canonical sequence 〈k1

u, . . . , k
r
u〉 where Lu = {`ki

u
| 1 ≤ i ≤

q + 1}; i.e., the one dimensional subspaces `ki
u
, i = 1, . . . , q + 1, are precisely

those orthogonal to `u. For convenience, for two sequences A and B, we let
A ∩ B and A ∪ B denote the corresponding union or intersection of the sets
of objects in the sequences. We record the above discussion in the following
proposition.

Proposition 10.3. Let t = q2 + q + 1, where q is a prime power. Then the
sequences Kt = 〈K1, . . . ,Kt〉 possess the following properties: each Ku has
length q + 1, for each u 6= v, |Ku ∩ Kv| = 1, and any element appears in
exactly q + 1 distinct sequences. We note also that if q is prime, the first
element of each sequence can be calculated in O(log t) time; each subsequent
element can be calculated in O(1) time.

In the sequel we will use these designs with t = p, the number of processors.
We assume throughout that addition or multiplication of two log (max{p, n})-
bit numbers can be performed in O(1) time.

10.2 Redundancy without Communication:

a Lower Bound

Controlling global computation redundancy in the absence of communication
is a futile task. This is because no amount of algorithmic sophistication can
compensate for the possibility of individual processors, or groups of processors,

188 10 Cooperation in the Absence of Communication

becoming disconnected during the computation. In general, an adversary that
is able to partition the processors into g groups that cannot communicate with
each other will cause any task-performing algorithm to have work Ω(n · g),
even if each group of processors performs no more than the optimal number
of Θ(n) tasks. In the extreme case where all processors are isolated from the
beginning, the work of any algorithm is Ω(n · p), which is at least the work of
an oblivious algorithm, where each processor performs all tasks.

Of course it is not surprising that substantial redundancy cannot be
avoided in the absence of communication, furthermore, the lower bound on
work of Ω(n · p) is not very interesting. However, as we pointed out earlier,
it is possible to schedule the work of a pair of processors so that each can
perform up to n/2 tasks without a single task performed redundantly. Thus it
is very interesting to consider the intersection properties of pairs of processor
schedules, i.e., 2-waste.

If we insist that among the p total processors, any two processors, having
executed the same number of tasks n′, where n′ < n, perform no redundant
work, then it must be the case that n′ ≤ bn/pc. In particular, if p = n, then
the pairwise waste jumps to one if any processor executes more than one
task. The next natural question is: how many tasks can processors complete
before the lower bound on pairwise redundant work is 2? In general, if any
two processors perform n1 and n2 tasks respectively, what is the lower bound
on pairwise redundant work? In this section we answer these questions. The
answers contain both good and bad news: given a fixed t, the lower bound
on pairwise redundant work starts growing slowly for small n1 and n2, then
grows quadratically in the schedule length as n1 and n2 approach t.

Now we proceed to the lower bound for the case when two processors
execute different number of tasks prior to their rendezvous (this lower bound
generalizes the second Johnson Bound).

Theorem 10.4. Let Π = 〈π1, . . . , πp〉 be a (p, n)-schedule and let 0 ≤ a ≤
b ≤ n. Then

WΠ(a, b) ≥ p a2

(p− 1)(n− b+ a)
− a

p− 1
.

For example, when processors perform the same number of tasks a = b
and p = n, then the worst case number of redundant tasks for any pair is at

least a2−a
n−1 . This means that (for p = n) if a exceeds

√
n+ 1, then the number

of redundant task is at least 2.

Corollary 10.5. For n = p, if a >
√

n− 3/4+ 1
2 then any p-processor sched-

ule of length a for n tasks has worst case pairwise waste at least 2.

10.3 Random Schedules

As one would expect, schedules chosen at random perform quite well. In this
section we explore the behavior of the (p, n)-schedules obtained when each

10.3 Random Schedules 189

permutation is selected uniformly (and independently) at random among all
permutations of [n].

Randomized schedules

When the processors are endowed with a reasonable source of randomness, a
natural candidate scheduling algorithm is one where processors select tasks
by choosing them uniformly among all tasks they have not yet completed.
This amounts to the selection, by each processor i, of a random permutation
πi ∈ S[n] which determines the order in which this processor will complete the
tasks. (S[n] denotes the collection of all permutations of the set [n].) We let
R be the resulting system of schedules.

Our objective now is to show that random schedules R have controlled
waste with high probability. This amounts to bounding, for each pair i, j and
each pair of numbers a, b, the overlap |πi([a]) ∩ πj([b])| . Observe that when
these πi are selected at random, the expected size of this intersection is ab/n.
By showing that the actual waste is very likely to be close to this expected
value, one can conclude the waste if bounded for all long enough prefixes.

Theorem 10.6. Let R be a system of p random schedules for n tasks con-
structed as above. Then with probability at least 1 − 1

pn , ∀a, b such that

7
√
n ln (2pn) ≤ a, b ≤ n, WR(a, b) ≤ ab

n
+ ∆(a, b) , where ∆(a, b) =

11
√

ab
n ln(2pn) .

Observe that Theorem 10.4 shows that (p, n)-schedules must have waste
W(a, a) = Ω(a2/n) (as p→ ∞); hence such randomized schedules offer nearly
optimal waste for this case.

k-Waste for random schedules

For random schedules, one can apply martingale techniques to directly control
k-wise waste. We mention one such result.

Theorem 10.7. Consider the random schedule R as given above. Then with
probability at least 1 − 1/p,

WR(a, . . . , a) ≤
k∑

s=2

(−1)s
(
k

s

)
as

ns−1
+∆a,k,

where ∆a,k = (2k + 1)
√
a ln p .

Note that again this bounds the distance of the k-waste from its expected
value, which can be computed by inclusion-exclusion to be

∑k
s=2(−1)s

(
k
s

)
as

ns−1 .
The proof, which we omit, proceeds by considering the martingale which ex-
poses the ith element of all schedules at step i. The theorem then follows
by noting that the expected value can change by at most k during a single
exposure and applying Azuma’s inequality.

190 10 Cooperation in the Absence of Communication

10.4 Derandomization via Finite Geometries

We now consider a method for derandomizing these schedules using the design
discussed in Section 10.1.

Schedules for p = n

We construct a system of schedules of length p by arranging tasks from the
sequences of Kp in a recursive fashion. (Recall that while the sequences of
Kp have strong intersection properties, they are only roughly

√
p in length.)

In preparation for the recursive construction, we record the following lemma
about the pairwise intersections of the elements in the sequence of Kp indexed
by a specific subspace Ku.

Lemma 10.8. Let Kp = 〈K1, . . . ,Kp〉 be the collection of sequences con-
structed in Proposition 10.3, and let Ku = 〈k1

u, . . . , k
q+1
u 〉, 1 ≤ u ≤ p. Then

for any i 6= j, we have Kki
u
∩Kkj

u
= {u}.

As a result of this lemma, there is only a single repeated element in the
sequences Kk1

u
, Kk2

u
, . . . ,Kkq+1

u
; this element is u. This fact suggests the fol-

lowing construction of a system of schedules Qp. Let Qu, 1 ≤ u ≤ p, be the
sequence whose first element is u, and whose remaining elements are given by
concatenating the q+1 sequences Kk1

u
, . . . ,Kkq+1

u
after removing u from each.

Specifically,
Qu = 〈u〉 ◦ (©i∈Ku(Ki − u)),

where ◦ denotes concatenation and Ki − u denotes the sequence Ki with u
deleted. Note now that since the total length ofQu is evidently (q+1)q+1 = p,
each element of [p] must appear exactly once in each Qu; these Qu thus give
rise to a family of permutations πu, where πu(i) is the ith element of Qu. Let
Qp = (π1, . . . , πp).

We conceptually divide the sequences Qu (associated with the permuta-
tions πu) into q+ 1 segments of elements. The first segment contains the first
q + 1 elements (including the initial element u); the remaining q segments
contain q consecutive elements each.

This recursive construction yields a straightforward bound on pairwise
waste, recorded below.

Theorem 10.9. Let q be a prime power, p = q2 + q + 1. Let a = 1 + iq,
b = 1 + jq, 0 ≤ i, j ≤ q + 1. Then

WQp(a, b) ≤

0, i+ j = 0,

1, i = 0, j ≥ 1 or i ≥ 1, j = 0,

q + ij, i · j ≥ 1.

10.4 Derandomization via Finite Geometries 191

We mention that the construction can be done on-line. For each schedule
the first element can be calculated in O(1) time. For the remaining q(q + 1)
elements, at the beginning of every sequence of q elements we need to invert
at most two elements in GF(q). When q is prime this can be done in O(log p)
using the extended Euclidean algorithm. Other elements of the schedule can
be found in O(1) time.

Note that when n = κp for some κ ∈ N, the above construction can be
trivially applied by placing the n tasks into p chunks of size κ. In this case,
of course, when a single overlap occurred in the original construction, this
penalty is amplified by κ.

Controlling waste for short prefixes

One disadvantage of Qp is that the first segment may repeat, so that (q + 1)
waste may be incurred when a prefix of length â = (q + 1) is executed. To
postpone this increase one would like to rearrange the segments in each Qu
so that the first segment is distinct across the resulting schedules. This can
be accomplished by finding a bijection ρ : [p] → [p] such that the sequence
Ku contains task ρ(u). (In other words `u must be orthogonal to `ρ(u).) This
bijection can then be used to select distinct segments as the first segments of
schedules in Qp.

Consider the bipartite graph Gp = (Up, Vp, Ep) where Up = Vp = [p] and
p = q2 + q + 1; here q is a prime power. Both Up and Vp can be placed in
one-to-one correspondence with the one dimensional subspaces of GF(q)3. An
edge is placed between `u ∈ Up and `v ∈ Vp when they are orthogonal. Based
on the structure of GF(q)3, it is not hard to show that Gp is (q + 1)-regular.
By Hall’s theorem, there is always a perfect matching in a d-regular bipartite
graph and note that such a matching yields a permutation ρ with the desired
properties. In particular if the edge (u, v) appears in the perfect matching,
then we put ρ(u) = v. This matching can be found using the Hopcroft-Karp
algorithm that runs in time O(

√

|U | + |V | · |E|) = O(p2).
We use ρ to construct the system of schedules Gp such that the first

segments are distinct. Specifically, given Kp, the system of schedules Gp =
〈γ1, . . . , γp〉 is defined as follows. For any 1 ≤ u ≤ p, the sequence Gu is given
by

Gu = 〈u〉 ◦ (Kρ(u) − {u}) ◦ (©i∈Ku−ρ(u)(Ki − u)).

Then γu is the permutation associated with Gu.

Theorem 10.10. Let q be a prime power, p = q2 + q + 1. Let a = 1 + iq,
b = 1 + jq, 0 ≤ i, j ≤ q + 1. Then:

WGp(a, b) ≤

0, i+ j = 0,

1, i = 0, j ≥ 1 or i ≥ 1, j = 0,

1, i · j = 1,

q + ij, i · j > 1.

192 10 Cooperation in the Absence of Communication

Observe that this construction is time-optimal as it produces p2 elements
and runs in O(p2) time. However, the algorithm requires O(p2) time to con-
struct even a single permutation.

10.5 Open Problems

We surveyed results that characterize the ability of p isolated processors to
collaborate on a common known set of n tasks. The good news is that the
isolated processors can deterministically construct schedules locally, equipped
only with the knowledge of n, p, and their unique processor identifiers in [p].
Moreover, the cost of constructing such schedules can be largely amortized
over the performance of tasks. It is nevertheless interesting to seek more effi-
cient constructions and deterministic constructions that help control k-waste.
Although the lower bounds on wasted work mandate that waste must grow
quadratically with the number of executed tasks (from 1 to n), such schedules
control wasted work for surprisingly long prefixes of tasks. Another worthwhile
problem is to design deterministic strategies that control waste for arbitrary
patterns of rendezvous, for example, as in the setting of Chapter 9. Finally,
for the settings where communication is deemed expensive or undesirable, it is
interesting to develop algorithmic and scheduling strategies that intentionally
force processors to work in isolation, and to analyze these strategies in terms
of waste, work, and message complexity.

10.6 Chapter Notes

The material in this chapter is based on the work of Malewicz, Russell, and
Shvartsman [83, 84, 85, 86] and follows the presentation in [99]. The proofs
of the theorems and lemmas stated in this Chapter can be found in [86].
Additional results in this area can be found in Malewicz’s thesis [81].

The problem of assessing redundant work for distributed cooperation in
the absence of communication was studied by Dolev, Segala, and Shvartsman
in [29]. The authors showed that for the case of dynamic changes in connec-
tivity, the termination time of any on-line task assignment algorithm can be
greater than the termination time of an off-line task assignment algorithm
by a factor linear in n. This means that an on-line algorithm may not be
able to do better than the trivial solution that incurs linear overhead by hav-
ing each processor perform all the tasks. With this observation [29] develops
an effective strategy for managing the task execution redundancy and proves
that the strategy provides each of the p ≤ n processors with a schedule of
Θ(n1/3) tasks such that at most one task is performed redundantly by any
two processors.

Other approaches to dealing with limited communication have also been
explored. Papadimitriou and Yannakakis [95] study how limited patterns of

10.6 Chapter Notes 193

communication affect load-balancing. They consider a problem where there
are 3 agents, each of which has a job of a size drawn uniformly at random from
[0, 1], and this distribution of job sizes is known to every agent. Any agent A
can learn the sizes of jobs of some other agents as given by a directed graph
of three nodes. Based on this information each agent has to decide to which
of the two servers its job will be sent for processing. Each server has capacity
1, and it may happen that when two or more agents decide to send their
jobs to the same server the server will be overloaded. The goal is to devise
cooperative strategies for agents that will minimize the chances of overloading
any server. The authors present several strategies for agents for this purpose.
They show that adding an edge to a graph can improve load balancing. These
strategies depend on the communication topology. This problem is similar to
our scheduling problem. Sending a job to server number x ∈ {0, 1} resembles
doing task number x in our problem. The goal to avoid overloading servers
resembles avoiding overlaps between tasks. The problem of Papadimitriou and
Yannakakis is different because in our problem we are interested in structuring
job execution where the number of tasks can be arbitrary n ≥ 1.

Georgiades, Mavronicolas, and Spirakis [42] study a similar load-balancing
problem. On the one hand their treatment is more general in the sense that
they consider arbitrary number of agents n, and arbitrary computable decision
algorithms. However it is more restrictive in the sense that they consider
only one type of communication topology where there is no communication
between processors whatsoever. The two servers that process jobs have some
given capacity that is not necessarily 1. They study two families of decision
algorithms: algorithms that cannot see the size of jobs before making a decision
which server to send a job to for processing, and algorithms that can make
decisions based on the size of the job. They completely settle these cases by
showing that their decision protocols minimize the chances of overloading any
server.

For additional information on the design theory and the extremal set the-
ory see the survey of Hughes and Piper [60]. See [64] for information about
the second Johnson Bound. For a discussion of discrete exposure martingales
and Azuma’s inequality see Alon and Spencer [4]. For Hall’s theorem see, e.g.,
Harary [54]. For Hopcroft-Karp algorithm see [58].

11

Related Cooperation Problems and Models

IN this last chapter we survey selected additional problems involving dis-
tributed cooperation in a variety of settings, including shared-memory mod-

els and message-passing model using broadcast channels, and we discuss the
connection between the Do-All problem and the Consensus problem for dis-
tributed systems.

Chapter structure.

We survey the results for Do-All in shared-memory models in Section 11.1.
There we include the main algorithmic results, lower bounds, and selected
open problems. In Section 11.2 we present several results for the Do-All prob-
lem obtained for the distributed setting where the message passing is imple-
mented using broadcasts. Finally, in Section 11.3, we overview the Consensus
Problem for distributed systems and we discuss how, for certain models, Do-
All algorithms can be used to solve consensus.

11.1 Do-All in Shared-Memory

In shared-memory models, the Do-All problem is known as the Write-All
problem, introduced and studied by Kanellakis and Shvartsman [66].

Write-All: Given a zero-valued array of n elements and p processors,
write value 1 into each array location in the presence of adversity.

The Write-All problem captures and abstracts the computational progress
that can be achieved in unit time by n correct synchronous processors. Despite
its simplicity, solutions for Write-All can be used in constructing more com-
plex robust algorithms and for simulations of synchronous parallel algorithms
on asynchronous or undependable parallel processors, e.g., [24, 70, 89, 104].
Following the initial work [66], the Write-All problem was studied in a vari-
ety of shared-memory settings e.g., [5, 7, 14, 51, 65, 68, 69, 82, 87, 88, 89].

196 11 Related Cooperation Problems and Models

A monograph by Kanellakis and Shvartsman [67] presents many of the early
results for the Write-All problem.

In the design of practical parallel programs one needs to ensure good per-
formance and dependability on multiprocessors with unpredictable load pat-
terns. Here a common challenge is to efficiently perform n independent tasks
on p processors, e.g., [56]. Such tasks could be copying a large array, searching
a collection of data, or applying a function to all elements of a matrix [40, 51].
In such cases a Write-All algorithm can be used with the only change being
that the assignment to a particular array element is preceded by a performance
of distinct task, where the recording of 1 in the Write-All array signifies the
completion of the task. The main difference between the Do-All problem in
message-passing models and the Write-All problem in shared-memory mod-
els is that in Do-All the tasks may be supplied to the processors from some
external source, while in Write-All the tasks are stored in shared-memory
accessible to all processors.

Algorithmics and Lower Bounds. The first algorithm for Write-All, and
still the most efficient deterministic algorithm as of this writing for syn-
chronous crash-prone processors is due to Kanellakis and Shvartsman [66].
This deterministic algorithm, called algorithm W, solves Write-All under pro-
cessor crashes with total-work S = O(n + p logn log p/ log log p). The algo-
rithm uses binary trees for estimating the number of operational processors,
the number of completed tasks (elements of the input array that have value
1) and for balancing the loads of the operational processors. In particular, the
elements of the input array are associated with the leaves of a binary tree of
depth O(log min{n, p}), called the progress tree. The processors are initially
distributed to the leaves of the progress tree where each of them performs
a task and writes 1 to the corresponding tree location. Then the processors
traverse the tree bottom-up recording the progress that it made. This gives
an (under)estimate of the number of done tasks. The processors also traverse,
bottom-up, a tree of depth O(log p), called the processor enumeration tree
to estimate the number of operational processors. Using the two estimated
values, the processors traverse the progress tree top-down until they reach
to a leaf of the tree. This evenly distributes the operational processors onto
undone tasks. The processors perform the task associated with the leaf they
reached, and then traverse the progress tree up to the root to record the new
progress. This is repeated until all tasks are performed.

Observe that the bound on work for algorithm W as given above does not
include f , the number of processor crashes. Georgiou, Russell and Shvarts-
man [45] presented a failure-sensitive analysis of algorithm W using the
techniques we presented in Chapter 3. They showed that algorithm W has
total-work S = O(n + logn log p/ log(p/f)) when f ≤ p log p, and work
S = O(n + logn log p/ log log p) when f > p log p.

Kedem, Palem, and Spirakis [70] performed an average case analysis of
algorithm W [66] considering random processor crashes (each processor may

11.1 Do-All in Shared-Memory 197

crash with a fixed probability). They showed that algorithm W can solve
the Write-All problem with expected time O(log p logn) and expected total-
work O((p+n) log n). This shows that algorithm W performs well under ran-
dom failures. In the same paper, Kedem et al. developed a simple algorithm,
called algorithm PS, which is a trivial modification of the straightforward
pointer-doubling algorithm (PS is short for pointer shortcutting). The algo-
rithm improves on the expected time of algorithm W, while obtaining the
same expected work complexity. Specifically, algorithm PS solves the Write-
All problem under random failures with expected time O(log n) and expected
work O(n log n).

Kanellakis, Michailidis and Shvartsman [65] developed a deterministic syn-
chronous algorithm, called algorithm Wopt

CR/W, that solves Write-All under

processor crashes while controlling the read and write memory access con-
currency. The algorithm uses the same data structures as algorithm W to
record the progress of the computation and to perform load balancing, and it
uses two additional data structures to control the memory access concurrency:
(a) processor priority trees are used to determine which processors are allowed
to read or write each shared location that has to be accessed concurrently by
more than one processor, and (b) broadcast arrays are used to disseminate
values among readers and writers. The write concurrency, denoted ω, mea-
sures the redundant write memory accesses as follows: Consider a step of a
synchronous parallel computation, where a particular location is written by
x ≤ p processors. Then x− 1 of these writes are “redundant”, because a sin-
gle write should suffice. Hence, the write concurrency for this step is x − 1.
The read concurrency, denoted ρ, is measured in a similar manner. Algorithm
Wopt

CR/W was shown to have total-work S = O(n + p log2 n log2 p/ log logn),

write concurrency ω ≤ f and read concurrency ρ ≤ f logn, f being the num-
ber of crashes.

Observe from above that although the bounds on the read and write con-
currencies are given as a function of f , the bound on work is not given
as a function of f . Georgiou, Russell, and Shvartsman [47] presented a
failure-sensitive analysis on the work of algorithm Wopt

CR/W. They showed that

the algorithm achieves total-work S = O(n + p log2 n log2 p/ log(p/f)) when
f ≤ p/ log p, and work S = O(n+ p log2 n log2 p/ log log p) when f > p/ log p.
This is due to the model of failures, where a crashed processor loses its local
memory.

Algorithm V [14] is a variation of algorithm W that solves Write-All with
synchronous restartable crash-prone processors. As in algorithm W, the pro-
cessors use binary trees of depth O(log n) to perform load balancing. Restarted
processors join the computation at a pre-defined phase. Algorithm V requires
work S = O(n+p log2 n+f logn), where f is the number of processor crashes
and restarts. Observe that since f can be arbitrarily large, the work of algo-
rithm V might not be bounded by a function of n and p.

198 11 Related Cooperation Problems and Models

Anderson and Woll [5] developed the best deterministic asynchronous al-
gorithm for Write-All. We call this algorithm AWT. Algorithm AWT has work
S = O(npε), for arbitrary 0 < ε < 1. The algorithm uses a q-ary tree, called
progress tree to load balance processors to tasks (array elements) and a list of
q ≤ p permutations of [q], used in conjunction with processor identifiers to let
the processors know in what order to traverse each of the q subtrees of each
interior node in the progress tree. The work complexity does not account for
the time required for these permutations to be computed; it is assumed that
they are known before the execution of the algorithm. The authors of [5] pro-
vide a construction (exponential in q processing time) of permutations needed
by their algorithm.

Groote, Hesselink, Mauw, and Vermeulen [51] introduced a different ap-
proach that does not use permutation lists and hence no pre-processing is

needed. They present an algorithm that has work S = O(nplog(x+1
x)) where

x = n
1

log p . The authors argue that their algorithm performs better than AWT

under practical circumstances where p� n, e.g., when n = p2.
Another practical algorithm, that does not require a precomputed set of

permutations is algorithm X of Buss, Kanellakis, Ragde, and Shvartsman [14].
Algorithm X is a special case of algorithm AWT, where q = 2 and it has work
S = O(np0.59).

Kedem, Palem, Raghunathan, and Spirakis [69] showed that any execution
of an algorithm designed to solve Write-All deterministically for n = p with
crash-prone processors requires time Ω(log n) and workΩ(n logn). Martel and
Subramonian [88] extended these lower bounds for randomized algorithms.
Specifically they showed that the lower bound on expected time and expected
work on randomized algorithms for Write-All is Ω(logn) and Ω(n logn), for
n = p, respectively (these lower bounds apply to both synchronous crash-
prone and asynchronous processors). Martel, Park, and Subramonian [87] de-
veloped a randomized asynchronous algorithm for Write-All that matches the
above lower bound on the expected work for randomized algorithms. Their
algorithm proceeds as follows: the locations of the input array are viewed as
n leaves of a binary tree that is Θ(log n) deep (this is similar to the progress
tree of algorithm X [14]). Initially all tree nodes are unmarked. Each processor
selects a tree node at random. If the node v is a leaf node or if its children are
marked, then node v is also marked. This is repeated until the root is marked.

Complexity of Write-All and Open Problems. Algorithm W [66] has
optimal work of O(n) when p ≤ n log logn/ log2 n. However, the Ω(n logn)
lower bound of Kedem et al. [69] shows that no optimal algorithm for Write-
All exists for the full range of processors (p = n). Although a small gap of
logn/ log logn remains between the upper and lower bounds, the problem can
be considered substantially solved for synchronous processors.

Solutions for the Write-All problem are significantly more challenging
when asynchrony is introduced. As we pointed out, the most efficient deter-
ministic asynchronous Write-All algorithm is the elegant algorithm of Ander-

11.1 Do-All in Shared-Memory 199

son and Woll [5] that has workO(n·pε) for p ≤ n and any ξ > 0. The strongest
corresponding lower bound, due to Buss, Kanellakis, Ragde, and Shvarts-
man [14], is Ω(n + p log p), and it holds even if no processor crashes. Note
that in complexity-theoretic terms, the relative gap between these bounds on
work is very large (i.e., polynomial in p, being pε for p = n), since the lower
bound is only a logarithm away from linear work. Given that this gap is now
over 15 years old, and that this problem continues to be of interest, it appears
that narrowing this gap is extremely challenging.

Thus we formulate a two-pronged, open problem as follows: (a) can a
stronger than Ω(n log n) lower bound on work be shown for asynchronous
Write-All problem, and/or (b) is there an algorithm for asynchronous pro-
cessors that solves the problem with work asymptotically lower than O(n1+ε)
for p = n?

Next observe that an optimal algorithm for Write-All must have work
Θ(n), however the lower bounds on work of Ω(n + p log p) make optimality
out of reach when p = Ω(n). Also note that the asynchronous algorithm [5] has
work complexity ω(n) for all but a trivial number p of processors. The quest
then is to obtain work-optimal solutions for this problem using the largest
possible, and non-trivial compared to n, number of processors p in order to
maximize the parallelism of the solution.

Malewicz [82] presented the first qualitative advancement in the search
for optimal work complexity by exhibiting a deterministic asynchronous al-
gorithm for the Write-All problem that has work S = O(n + p4 logn). This
is the first asynchronous Write-All algorithm that obtains optimal work for
a non-trivial number g of processors, where g = 4

√

n/ logn. This compares
very favorably to all previously known deterministic algorithms that require
as much as ω(n) work when p = n1/c, for any fixed c > 1. The algorithm
operates on collision detection: each processor has a collection of intervals of
the input array and iteratively selects an interval to work on. The proces-
sor proceeds from one edge of the interval toward the other edge, executing
the tasks associated with the cells in the interval. When processors “collide”,
meaning that they are allocated to the same input element, they exchange
appropriate information and schedule their future work accordingly. The al-
gorithm uses Test-And-Set instructions to detect collisions, as opposed to the
previous algorithms that used only atomic Read/Write instructions.

Using different techniques, Kowalski and Shvartsman [76] exhibited an
algorithm that has work complexity of O(n+ p2+ε), achieving optimality for
a substantially larger range of processors, specifically for p = O(n1/(2+ε)),
essentially squaring the number of processors g [82] for which optimality was
previously shown to be possible.

Consequently, we formulate another important open problem as follows:
Is it possible to solve the asynchronous Write-All problem with optimal work
O(n) using the number of processors p = nδ for δ > 1/2?

200 11 Related Cooperation Problems and Models

Simulations. Write-All algorithms can be used iteratively to simulate par-
allel algorithms formulated for synchronous failure-free processors (see the
works of Kedem, Palem, and Spirakis [70], Kedem, Palem, Raghunathan, and
Spirakis [69], Martel, Park, and Subramonian [87], Martel, Subramonian, and
Park [89], and Shvartsman [104]). It was shown that the execution of a single
n-processor step on p failure-prone processors does not exceed the complexity
of solving a n-size instance of Write-All using p failure-prone processors. This
commonly requires that (i) the individual processor steps are made idem-
potent (since they may have to be performed multiple times due to failures
or asynchrony), and that (ii) a linear in the number of processors auxiliary
memory is made available (to be used as a “scratchpad” and to store interme-
diate results). While the former can be solved with the help of an automated
tool, e.g., a compiler, the latter requires sophisticated solutions because of
the difficulty of (re)using the auxiliary memory due to “late writers” (i.e.,
processors that are slow and that unknowingly write stale values to mem-
ory). Examples of randomized solutions addressing these problems include
the works of Aumann and Rabin [7], and Kedem, Palem, Rabin, and Raghu-
nathan [68]. Another important aspect of algorithm simulations is the use
of an optimistic approach, where the computation may proceed for several
steps assuming that all tasks assigned to active processors are successfully
completed. Such approach was used by Kedem, Palem, Raghunathan, and
Spirakis [69]. In some deterministic models optimal simulations are possible,
e.g., as presented by Shvartsman [104]), however randomized solutions are
able to achieve (expected) optimality for broader ranges of models and algo-
rithms. An example of a practical implementation is discussed by Dasgupta,
Kedem and Rabin [24].

11.2 Do-All with Broadcast Channels

Chlebus, Kowalski, and Lingas [20] studied the Do-All problem in the setting
of broadcast networks where crash-prone processors (or stations as they call
them) communicate over a multiple access channel [39], synchronized by a
global clock. In such networks, if exactly one processor broadcasts at a time,
then the message is delivered to all processors. If more than one processor
broadcasts then collision occurs and no message is delivered.

The authors provide randomized and deterministic solutions with and
without collision detection, and for various size-bounded adversaries causing
crashes. An adversary is f -bounded if it may crash at most f < p processors.
If f is a constant fraction of p, then the adversary is called linearly bounded.
An f -bounded adversary is weakly adaptive if it pre-selects (prior to a start
of the computation) a subset of processors that might crash later in the com-
putation (at any time). An f -bounded adversary is strongly adaptive if the
upper bound f on the number of crashes is the only restriction on failure
occurrences in a computation.

11.2 Do-All with Broadcast Channels 201

First, the authors prove that Ω(n + p
√
n) total-work is required for any

(deterministic or randomized) Do-All algorithm even when no crashes occur.
For the channel where collision detection is available, they develop an opti-

mal deterministic Do-All algorithm, called Groups-Together, that achieves
total-work O(n + p

√
n) against the f -bounded adversary. The authors also

show that randomization does not help to improve efficiency of deterministic
algorithms under any adversary.

For the channel where collision detection is not available, Chlebus et al.
develop a deterministic Do-All algorithm, called Two-Lists, that achieves
total-work O(n + p

√
n + pmin{f, n}) against the f -bounded adversary. The

algorithm is shown to be optimal by providing a matching lower bound re-
sult for the strongly-adaptive f -bounded adversary. Futhermore, the authors
show that randomization does not help to improve efficiency of deterministic
algorithms under the strongly-adaptive f -bounded adversary. However, they
develop a randomized algorithm, called Mix-Rand, and show that it achieves
expected total-workO(n+p

√
n) against certain weakly-adaptive size-bounded

adversaries. This demonstrates that randomization can help if collision detec-
tion is not available and the adversary is sufficiently weak.

Finally, Chlebus et al. show that if f = p(1−o(1/√n)) and n = o(p2), then
a weakly-adaptive f -bounded adversary can force any Do-All algorithm for
the channel where collision detection is to available to perform asymptotically
more than Ω(n+ p

√
n) total-work.

Following the work of Chlebus et al., Clementi, Monti, and Silvestri [22]
considered the Do-All problem in broadcast networks without collision detec-
tion under an omniscient f -bounded crash-causing adversary, while assuming
that f , the maximum number of crashes, is a priori known to the proces-
sors. More specifically, they introduced the notion of f -reliability: a Do-All
algorithm is f -reliable if it solves the problem against any f -bounded adver-
sary, for a known f . Note that the work of Chlebus et al. [20] considered
(p − 1)-reliable algorithms, as f was not known a priori and the algorithms
were designed to work even in the case that up to p − 1 processors crashed
(the f appearing in the complexity analyses of those algorithms is the actual
number of processor crashes in a given execution).

Clementi et al., produced tight bounds on the completion time (total time
for the Do-All problem to be solved) and total-work of f -reliable algorithms.
In particular, they showed that the completion time of f -reliable algorithms in
broadcast networks without collision detection is Θ(n

p−f + min{nfp , f +
√
n})

and the total-work is Θ(n+ f ·min{n, f}). The algorithm yielding the upper
bound result for total work is based on a version of algorithm Two-Lists of
Chlebus et al. [20] modified to exploit the knowledge of f . It is noted that the
two lower bounds on completion time and total-work hold even when crashes
take place at the very beginning of the algorithm execution.

202 11 Related Cooperation Problems and Models

11.3 Consensus and its Connection to Do-All

Consensus is the abstract problem of having p processors to agree on a com-
mon value. This problem is one of the fundamental problems of distributed
computing, and solutions to this problem are used as building blocks in various
distributed applications [79].

The Consensus problem is defined as follows.

Consensus: For a collection of processors, where each starts with
some initial input value, each processor must decide upon an output
value, subject to the following constraints:
(Agreement) All non-faulty processors must agree on the output.
(Validity) If all non-faulty processors begin with the same input value,

that value must be the output value of all non-faulty processors.
(Termination) All non-faulty processors eventually decide.

Processors are subject to failures, e.g., crashes, but communication is as-
sumed to be reliable. Consensus is also referred to as the Byzantine agreement
problem. When the processors are subject to Byzantine failures, consensus is
also known as Byzantine generals problem. This problem was introduced by
Lamport, Shostak, and Pease [78]. Here p processors, a subset of which may
be faulty, must eventually agree (termination) on a value broadcast by a dis-
tinguished processor, called the sender or the general, in such a way that all
non-faulty processors decide the same value (agreement), and when the gen-
eral is non-faulty, they decide on the value the general sent (validity). The
number of faulty processors is bounded in advance, by a fixed number f . It is
also shown that it is impossible to reach agreement when p = 3f .

Dwork, Halpern, and Waarts [30] developed an algorithm that can use
a Do-All algorithm as a building block to solve the Byzantine agreement
problem for synchronous crash-prone processors. Their algorithm proceeds
in two stages: first the general broadcasts its value to processors with pid

= 1, . . . , f + 1. Then these f + 1 processors use one of the Do-All algorithms
(Protocols B, C or D) to perform the “work” of informing processors 1, . . . p
about the general’s value. Hence, performing a Do-All task here means send-
ing a message containing the general’s value. Initially all processors have the
initial value 0 as the general’s value (the general of course has it own value
as initial value). When a processor receives a message about a value for the
general different from its current value, it adopts the new value. Finally, at a
predetermined time by which the underlying Do-All algorithm is guaranteed
to have terminated, each processor decides on its current value for the gen-
eral. Using protocol C as the Do-All algorithm the authors solve the Byzantine
agreement problem for synchronous crash-prone processors in O(2p) time and
with O(p + f log f) message complexity. When they use protocol B they ob-
tain a Byzantine agreement solution of O(p) time and O(p + f

√
f) message

complexity. When p and f are comparable, the second solution has the same
asymptotic time complexity as the algorithms presented in [79] (best known

11.3 Consensus and its Connection to Do-All 203

for this problem) and substantially better message complexity. This demon-
strates that Do-All solutions can yield efficient solutions to the Byzantine
agreement problem (and to the consensus problem in general).

Galil, Mayer and Yung [38] developed an algorithm that solves Byzantine
agreement for synchronous crash-prone processors that uses a linear number
of messages (O(p)) and super-linear time (O(p1+ε)). They also improved the
message complexity of the Do-All algorithm of De Prisco et al. [25]. This al-
gorithm relies on two agreement-like protocols: (a) the check-point protocol
that processors use to agree on the set of operational processors, and (b) the
synchronization protocol that processors use to agree on the time that the
next check-point protocol will begin. Given the full details of the protocols, it
is not difficult to observe that these protocols solve multiple instances of the
Byzantine agreement problem. Also, as we have seen in Section 6.3.1, algo-
rithm Majority makes use of check-pointing, agreement-like protocols to solve
the Do-All problem under synchronous processors prone to Byzantine fail-
ures. Therefore, efficient solutions to consensus can lead to efficient solutions
to Do-All.

We conclude with a noteworthy observation. The impossibility result
shown by Fischer, Lynch and Paterson [36] states that consensus cannot
be solved in asynchronous models, even if there is only one processor crash.
More precisely, no asynchronous deterministic algorithm with only one possi-
ble crash can guarantee agreement, that is, if such an algorithm terminates, it
may violate agreement. This reveals a fundamental (although not surprising)
difference between the Consensus and Do-All problems: although it is possible
for consensus not to have a solution in certain models, the Do-All problem is
always solvable, as long as one processor remains correct for the entire course
of the computation. For example, Do-All is trivially solved by having each
processor perform all tasks.

References

1. M. Abdelguerfi and S. Lavington. Emerging Trends in Database and
Knowledge-Base Machines: The Application of Parallel Architectures to Smart
Information Systems. IEEE Press, 1995.

2. C. Aguirre, J. Martinez-Munoz, F. Corbacho, and R. Huerta. Small-world
topology for multi-agent collaboration. In Proceedings of the 11th International
Workshop on Database and Expert Systems Applications, pages 231–235, 2000.

3. M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A theory of competitive analysis
for distributed algorithms. In Proceedings of the 35th Symposium on Founda-
tions of Computer Science (FOCS 1994), pages 401–411, 1994.

4. N. Alon and J.H. Spencer. The Probabilistic Method. J. Wiley and Sons, Inc.,
second edition, 2000.

5. R.J. Anderson and H. Woll. Algorithms for the certified Write-All problem.
SIAM Journal of Computing, 26(5):1277–1283, 1997.

6. H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations
and Advanced Topics. Wiley-Interscience, second edition, 2004.

7. Y. Aumann and M.O. Rabin. Clock construction in fully asynchronous parallel
systems and PRAM simulation. In Proceedings of the 33rd IEEE Symposium
on Foundations of Computer Science (FOCS 1992), pages 147–156, 1992.

8. B. Awerbuch, S. Kutten, and D. Peleg. Competitive distributed job scheduling.
In Proceedings of the 24th ACM Symposium on Theory of Computing (STOC
1992), pages 571–580, 1992.

9. O. Babaoglu, R. Davoli, L. Giachini, and M. Baker. Relacs: A communication
infrastructure for constructing reliable applications in large-scale distributed
systems. In Proceedings of the 28th Hawaii International Conference on System
Science (HICSS 1995), pages 612–621, 1995.

10. O. Babaoglu, R. Davoli, and A. Montresor. Group communication in partition-
able systems: Specification and algorithms. Software Engineering, 27(4):308–
336, 2001.

11. Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed
data management. In Proceedings of the 24th ACM Symposium on Theory of
Computing (STOC 1992), pages 39–50, 1992.

12. S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the
power of randomization in on-line algorithms. Algorithmica, 11(1):2–14, 1994.

206 References

13. K.P. Birman and R. van Renesse. Reliable Distributed Computing with the Isis
Toolkit. IEEE Computer Society Press, 1994.

14. J. Buss, P.C. Kanellakis, P. Ragde, and A.A. Shvartsman. Parallel algorithms
with processor failures and delays. Journal of Algorithms, 20(1):45–86, 1996.

15. B. Chlebus, R. De-Prisco, and A.A. Shvartsman. Performing tasks on
restartable message-passing processors. Distributed Computing, 14(1):49–64,
2001. A preliminary version has appeared in WDAG 1997.

16. B.S. Chlebus, L. Gasieniec, D.R. Kowalski, and A.A. Shvartsman. Bounding
work and communication in robust cooperative computation. In Proceedings
of the 16th International Symposium on Distributed Computing (DISC 2002),
pages 295–310, 2002.

17. B.S. Chlebus and D.R. Kowalski. Randomization helps to perform indepen-
dent tasks reliably. Random Structures and Algorithms, 24(1):11–41, 2004. A
preliminary version appeared as “Randomization helps to perform tasks on
processors prone to failures” in DISC 1999.

18. B.S. Chlebus and D.R. Kowalski. Robust gossiping with an application to
consensus. Journal of Computer and System Sciences, 72(8):1262–1281, 2006.
A preliminary version appeared as “Gossiping to reach consensus” in SPAA
2002.

19. B.S. Chlebus and D.R. Kowalski. Time and communication efficient consen-
sus for crash failures. In Proceedings of the 20th International Symposium on
Distributed Computing (DISC 2006), pages 314–328, 2006.

20. B.S. Chlebus, D.R. Kowalski, and A. Lingas. The Do-All problem in broadcast
networks. Distributed Computing, 18(6):435–451, 2006. A preliminary version
appeared in PODC 2001.

21. G.V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifica-
tions: A comprehensive study. ACM Computing Surveys, 33(4):1–43, 2001.

22. A.E.F. Clementi, A. Monti, and R. Silvestri. Optimal F-reliable protocols
for the Do-All problem on single-hop wireless networks. In Proceedings of the
13th International Symposium on Algorithms and Computation (ISAAC 2002),
pages 320–331, 2002.

23. F. Cristian. Group, majority and strict agreement in timed asynchronous
distributed systems. In Proceedings of the 26th Conference on Fault-Tolerant
Computer Systems (FTCS 1996), pages 178–187, 1996.

24. P. Dasgupta, Z. Kedem, and M. Rabin. Parallel processing on networks of
workstation: A fault-tolerant, high performance approach. In Proceedings of the
15th IEEE International Conference on Distributed Computer Systems (ICDCS
1995), pages 467–474, 1995.

25. R. De-Prisco, A. Mayer, and M. Yung. Time-optimal message-efficient work
performance in the presence of faults. In Proceedings of the 13th ACM Sym-
posium on Principles of Distributed Computing (PODC 1994), pages 161–172,
1994.

26. R.P. Dilworth. A decomposition theorem for partially ordered sets. Annals of
Mathematics, 51:161–166, 1950.

27. D. Dolev and D. Malki. The transis approach to high availability cluster com-
munications. Communications of the ACM, 39(4):64–70, 1996.

28. D. Dolev, D. Malki, and R. Strong. A framework for partitionable membership
service. Technical Report TR 95-4, Institute of Computer Science, The Hebrew
University of Jerusalem, 1995.

References 207

29. S. Dolev, R. Segala, and A.A. Shvartsman. Dynamic load balancing with
group communication. Theoretical Computer Science, 369(1–3):348–360, 2006.
A preliminary version appeared in SIROCCO 1999.

30. C. Dwork, J. Halpern, and O. Waarts. Performing work efficiently in the
presence of faults. SIAM Journal on Computing, 27(5):1457–1491, 1998. A
preliminary version appears in the Proceedings of the 11th ACM Symposium
on Principles of Distributed Computing (PODC 1992), pages 91–102, 1992.

31. R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Addison-
Wesley publishing company, second edition, 1994.

32. P. Ezhilchelvan, R. Macedo, and S. Shrivastava. Newtop: A fault-tolerant
group communication protocol. In Proceedings of the 15th IEEE International
Conference on Distributed Computing Systems (ICDCS 1995), pages 296–306,
1995.

33. A. Fekete, N. Lynch, and A.A. Shvartsman. Specifying and using a partition-
able group communication service. ACM Transactions on Computer Systems,
19(2):171–216, 2001. A preliminary version appeared in PODC 1997.

34. A. Fernández, Ch. Georgiou, L. Lopez, and A. Santos. Reliably executing
tasks in the presence of untrusted entities. In Proceedings of the 25th IEEE
Symposium on Reliable Distributed Systems (SRDS 2006), pages 39–50, 2006.

35. A. Fernández, Ch. Georgiou, A. Russell, and A.A. Shvartsman. The Do-
All problem with byzantine processor failures. Theoretical Computer Science,
333(3):433–454, 2005. A preliminary version appeared in SIROCCO 2003.

36. M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

37. J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics:
Principle and Practice. Addison-Wesley publishing company, second edition,
1996.

38. Z. Galil, A. Mayer, and M. Yung. Resolving message complexity of byzan-
tine agreement and beyond. In Proceedings of the 36th IEEE Symposium on
Foundations of Computer Science (FOCS 1995), pages 724–733, 1995.

39. G.R. Gallager. A perspective on multi-access channels. IEEE Transactions on
Information Theory, 31(2):124–142, 1985.

40. Hui Gao, Jan Friso Groote, and Wim H. Hesselink. Lock-free dynamic hash
tables with open addressing. Distributed Computing, 18(1):21–42, 2005.

41. S. Garland and N. Lynch. The IOA language and toolset: Support for designing,
analyzing, and building distributed systems. Technical Report MIT/LCS/TR-
762, Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, 1998.

42. S. Georgiades, M. Mavronicolas, and P. Spirakis. Optimal, distributed decision-
making: The case of no communication. In Proceedings of the 12th International
Symposium on Foundamentals of Computation Theory (FCT 1999), pages 293–
303, 1999.

43. Ch. Georgiou. Robust Distributed Cooperation in the Presence of Quantified
Adversity. PhD thesis, The University of Connecticut, Storrs, CT, 2003.

44. Ch. Georgiou, D.R. Kowalski, and A.A. Shvartsman. Efficient gossip and robust
distributed computation. Theoretical Computer Science, 347(1):130–166, 2005.
A preliminary version appeared in DISC 2003.

45. Ch. Georgiou, A. Russell, and A.A. Shvartsman. The complexity of syn-
chronous iterative Do-All with crashes. Distributed Computing, 17:47–63, 2004.
A preliminary version appeared in DISC 2001.

208 References

46. Ch. Georgiou, A. Russell, and A.A. Shvartsman. Work-competitive scheduling
for cooperative computing with dynamic groups. SIAM Journal on Computing,
34(4):848–862, 2005. A preliminary version appeared in STOC 2003.

47. Ch. Georgiou, A. Russell, and A.A. Shvartsman. Failure-sensitive analysis
of parallel algorithms with controlled memory access concurrency. Parallel
Processing Letters, 17(2):153–168, 2007. A preliminary version appeared in
OPODIS 2002.

48. Ch. Georgiou and A.A. Shvartsman. Cooperative computing with fragmentable
and mergeable groups. Journal of Discrete Algorithms, 1(2):211–235, 2003. A
preliminary version appeared in SIROCCO 2000.

49. A. Gharakhani and A.F. Ghoniem. Massively parallel implementation of a 3D
vortex-boundary element method. In Proceedings of the European Series in
Applied and Industrial Mathematics, volume 1, pages 213–223, 1996.

50. S.A. Green. Parallel Processing for Computer Graphics. MIT Press/Pitman
Publishing, 1991.

51. J.F. Groote, W.H. Hesselink, S. Mauw, and R. Vermeulen. An algorithm for
the asynchronous Write-All problem based on process collision. Distributed
Computing, 14(2):75–81, 2001.

52. R. Guerraoui and Luis Rodrigues. Introduction to Reliable Distributed Pro-
gramming. Springer, 2006.

53. V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems.
In Distributed Systems, chapter 5, pages 97–145. ACM Press/Addison-Wesley,
1993.

54. F. Harary. Graph Theory. Addison-Wesley, 1994.
55. M. Hayden. The Ensemble System. PhD thesis, Cornell University, 1998.
56. W.H. Hesselink and J.F. Groote. Waitfree distributed memory management by

Create and Read until Deletion (CaRuD). Distributed Computing, 14(1):31–39,
2001.

57. M. Hiltunen and R. Schlichting. Properties of membership services. In Pro-
ceedings of the 2nd International Symposium on Autonomous Decentralized Sys-
tems, pages 200–207, 1995.

58. J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matching in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

59. J. Hromkovic, R. Klasing, A. Pelc, P. Ruzicka, and W. Unger. Dissemination
of Information in Communication Networks: Broadcasting, Gossiping, Leader
Election, and Fault-Tolerance. Springer, 2005.

60. D.R. Hughes and F.C. Piper. Design Theory. Cambridge University Press,
1985.

61. Veromodo Inc. Tempo toolkit. http://www.veromodo.com.
62. K. Jacobsen, X. Zhang, and K. Marzullo. Group membership and wide-area

master-worker computations. In Proceedings of the 23rd IEEE International
Conference on Distributed Computing Systems (ICDCS 2003), pages 570–581,
2003.

63. C.B. Jenssen. Parallel Computational Fluid Dynamics 2000: Trends and Ap-
plications. Elsevier Science Ltd., first edition, 2001.

64. S.M. Johnson. A new upper bound for error-correcting codes. IEEE Transac-
tions on Information Theory, 8(3):203–207, 1962.

65. P.C. Kanellakis, D. Michailidis, and A.A. Shvartsman. Controlling memory ac-
cess concurrency in efficient fault-tolerant parallel algorithms. Nordic Journal
of Computing, 2(2):146–180, 1995.

References 209

66. P.C. Kanellakis and A.A. Shvartsman. Efficient parallel algorithms can be
made robust. Distributed Computing, 5(4):201–217, 1992. A preliminary ver-
sion appears in the Proceedings of the 8th ACM Symposium on Principles of
Distributed Computing (PODC 1989), pages 211–222, 1989.

67. P.C. Kanellakis and A.A. Shvartsman. Fault-Tolerant Parallel Computation.
Kluwer Academic Publishers, 1997.

68. Z.M. Kedem, K.V. Palem, M.O. Rabin, and A. Raghunathan. Efficient pro-
gram transformations for resilient parallel computation via randomization. In
Proceedings of the 24th ACM Symposium on Theory of Computing (STOC
1992), pages 306–318, 1992.

69. Z.M. Kedem, K.V. Palem, A. Raghunathan, and P. Spirakis. Combining tenta-
tive and definite executions for dependable parallel computing. In Proceedings
of the 23rd ACM Symposium on Theory of Computing (STOC 1991), pages
381–390, 1991.

70. Z.M. Kedem, K.V. Palem, and P. Spirakis. Efficient robust parallel computa-
tions. In Proceedings of the 22nd ACM Symposium on Theory of Computing
(STOC 1990), pages 138–148, 1990.

71. D.E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley
Publishers, third edition, 1998.

72. K. M. Konwar, S. Rajasekaran, and A.A. Shvartsman. Robust network super-
computing with malicious processes. In Proceedings of the 20th International
Symposium on Distributed Computing (DISC 2006), pages 474–488, 2006.

73. E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky.
SETI@home: Massively distributed computing for SETI. Computing in Science
and Engineering, 3(1):78–83, 2001.

74. D.R. Kowalski, M. Momenzadeh, and A.A. Shvartsman. Emulating shared-
memory Do-All algorithms in asynchronous message-passing systems. In Pro-
ceedings of the 7th International Conference on Principles of Distributed Sys-
tems (OPODIS 2003), pages 210–222, 2003.

75. D.R. Kowalski, P. Musial, and A.A. Shvartsman. Explicit combinatorial struc-
tures for cooperative distributed algorithms. In Proceedings of the 25th Inter-
national Conference on Distributed Computing Systems (ICDCS 2005), pages
48–58, 2005.

76. D.R. Kowalski and A.A. Shvartsman. Writing-all deterministically and opti-
mally using a non-trivial number of asynchronous processors. In Proceedings
of the 16th ACM Symposium on Parallel Algorithms and Architectures (SPAA
2004), pages 311–320, 2004.

77. D.R. Kowalski and A.A. Shvartsman. Performing work with asynchronous
processors: message-delay-sensitive bounds. Information and Computation,
203(2):181–210, 2005. A preliminary version appeared in PODC 2003.

78. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

79. N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
80. N.A. Lynch and M.R. Tuttle. An introduction to Input/Output automata.

CWI Quarterly, 2(3):219–246, 1989.
81. G. Malewicz. Distributed Scheduling for Disconnected Cooperation. PhD thesis,

The University of Connecticut, Storrs, CT, 2003.
82. G. Malewicz. A work-optimal deterministic algorithm for the certified Write-

All problem with a nontrivial number of asynchronous processors. SIAM Jour-

210 References

nal on Computing, 34(4):993–1024, 2005. A preliminary version appeared in
PODC 2003.

83. G. Malewicz, A. Russell, and A.A. Shvartsman. Distributed cooperation dur-
ing the absence of communication. In Proceedings of the 14th International
Symposium on Distributed Computing (DISC 2000), pages 119–133, 2000.

84. G. Malewicz, A. Russell, and A.A. Shvartsman. Local scheduling for distributed
cooperation. In Proceedings of the IEEE International Symposium on Network
Computing and Applications (NCA 2001), 2001.

85. G. Malewicz, A. Russell, and A.A. Shvartsman. Optimal scheduling for dis-
connected cooperation. In Proceedings of the 8th International Colloquium
on Structural Information and Communication Complexity (SIROCCO 2001),
pages 259–274, 2001.

86. G. Malewicz, A. Russell, and A.A. Shvartsman. Distributed scheduling for
disconnected cooperation. Distributed Computing, 18(6):409–420, 2006.

87. C. Martel, A. Park, and R. Subramonian. Work-optimal asynchronous algo-
rithms for shared memory parallel computers. SIAM Journal on Computing,
21(6):1070–1099, 1992.

88. C. Martel and R. Subramonian. On the complexity of certified Write-All al-
gorithms. Journal of Algorithms, 16(3):361–387, 1994.

89. C. Martel, R. Subramonian, and A. Park. Asynchronous PRAMs are (almost)
as good as synchronous PRAMs. In Proceedings of the 31st IEEE Symposium
on Foundations of Computer Science (FOCS 1990), pages 590–599, 1990.

90. S. Mishra, L.L. Peterson, and R.D. Schlichting. Consul: A communication sub-
strate for fault-tolerant distributed programs. Distributed Systems Engineering
Journal, 1(2):87–103, 1993.

91. S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-speed rendering using
image composition. Computer Graphics, 26(2):231–240, 1992.

92. L.E. Moser, Y. Amir, P.M. Melliar-Smith, and D.A. Agarwal. Extended vir-
tual synchrony. In Proceedings of the 14th IEEE International Conference on
Distributed Computing Systems (ICDCS 1994), pages 56–65, 1994.

93. L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Budhia, and C.A.
Lingley-Papadopolous. Totem: A fault-tolerant multicast group communica-
tion system. Communications of the ACM, 39(4):54–63, 1996.

94. P.M. Musial. Computational requirements of the beam-space post-doppler
space time adaptive processing algorithm. Master’s thesis, University of Con-
necticut, 2001.

95. C.H. Papadimitriou and M. Yannakakis. On the value of information in dis-
tributed decision-making. In Proceedings of the 10th ACM Symposium on Prin-
ciples of Distributed Computing (PODC 1991), pages 61–64, 1991.

96. A. Pelc. Fault-tolerant broadcasting and gossiping in communication networks.
Networks, 28(3):143–156, 1996.

97. D. Powell, editor. Special Issue on Group Communication Services, volume
39(4) of Communications of the ACM. ACM Press, 1996.

98. A. Ricciardi, A. Schiper, and K. Birman. Understanding partitions and the “no
partition” assumption. In Proceedings of the 4th Workshop on Future Trends
of Distributed Computing Systems, pages 354–360, 1993.

99. A. Russell and A.A. Shvartsman. Distributed computation meets design the-
ory: Local scheduling for disconnected cooperation. Bulletin of the European
Association for Theoretical Computer Science, 77:120–131, 2002.

References 211

100. M. Saks, N. Shavit, and H. Woll. Optimal time randomized consensus – making
resilient algorithms fast in practice. In Proceedings of the 2nd ACM-SIAM
Symposium on Discrete Algorithms (SODA 1991), pages 351–362, 1991.

101. R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J.P. Singh. Load balancing
for multi-projector rendering systems. In SIGGRAPH/Eurographics Workshop
on Graphics Hardware, pages 107–116, 1999.

102. R.D. Schlichting and F.B. Schneider. Fail-stop processors: An approach to
designing fault-tolerant computing systems. ACM Transactions on Computing
Systems, 1(3):222–238, 1983.

103. N. Shavit. Concurrent Time Stamping. PhD thesis, The Hebrew University of
Jerusalem, Israel, 1989.

104. A.A. Shvartsman. Achieving optimal CRCW PRAM fault-tolerance. Informa-
tion Processing Letters, 39(2):59–66, 1991.

105. D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

106. D.R. Stinson. Cryptography: Theory and practice. CRC PRess, 1995.
107. M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G.A. Kaminka, S. Marsella,

and I. Muslea. Building agent teams using an explicit teamwork model and
learning. Artificial Intelligence, 110(2):215–239, 1999.

108. R. van Renesse, K.P. Birman, and S. Maffeis. Horus: A flexible group commu-
nication system. Communications of the ACM, 39(4):76–83, 1996.

109. S.G. Ziavras and P. Meer. Adaptive multiresolution structures for image pro-
cessing on parallel computers. Journal of Parallel and Distributed Computing,
23(3):475–483, 1994.

Index

A

Adversary 12–14, 17
AB 95, 96
AC 22, 47
ACR 78

A
(κ)
CR 79
AD 116
A(d)
D 116

A(d,σ)
D 139

AF 146
AFM 147
AGR 171
AR 185
A(r)
R 185

adversarial model 14

adversarial pattern 14, 22, 78, 96
κ-restricted 78, 93

adversarial strategy 24, 80, 124
adversarial weight 14
inclusion 14
oblivious 14, 20, 171

off-line 14
omniscient 14, 20, 22, 78, 96, 116,

146
on-line 14
size-bounded 200

f -bounded 200
linearly bounded 200

strongly adaptive 200
type 13
weakly adaptive 45, 200

Adversity XVIII, 1, 3, 4, 6, 12

model of XVIII, 5
presence of 2

Ajtai, M. 182

Algorithm
AF 166

AN 36, 33–37, 40, 47, 74, 82
AN* 44
AR 84, 82–86, 89

asynchrnonous 115
asynchronous 145

AX 145, 155, 154–155, 158, 162, 165
checkpointing 47, 105
Complete 111

Cover 97
DA(q) 132, 131–134

deterministic 14, 118, 173, 178
DMY 73
Doallε 63, 62–64, 67

efficiency 1, 11
efficient XVIII

execution 14
family

DA 130

PA 137
fault-tolerant XVIII

GMY 74
Gossipε 52, 51–62
Groups-Together 201

Hopcroft-Karp 191, 193
Majority 105, 105–110

Minority 101, 100–105, 111
Mix-Rand 201
ObliDo 127

214 Index

oblivious 115
OPT 7, 173
Oracle-based 28, 80, 102
PaDet 138, 139, 142
PaRan1 138, 139, 142
PaRan2 138, 139, 142
RS 175, 175–178
randomized 14, 17, 46, 118, 175
robust XVIII, 61
sequential 5, 8, 19
simulation 5, 9, 15, 19, 200
synchronous 5
Two-Lists 201
Write-All 200

AWT 198
PS 197
V 197
W 196–198
Wopt

CR/W 197
X 198

Algorithms
Write-All 195

Alon, N. 143, 193
Anderson, R. 143, 198, 199
Aspnes, J. 182
Asynchrony 115
Attiya, H. XXI
Aumann, Y. 200
Available processor steps see Work,

total-work
Awerbuch, B. 182
Azuma’s inequality 189, 193

B

Bartal, Y. 182
Buss, J. 143, 198, 199
Byzantine agreement see Consensus

C

Channel
asynchronous 116
broadcast 200
multiple access 200
reliable 116

Chernoff bound 122, 129, 143
Chlebus, B.S. 19, 45, 74, 75, 93, 200,

201

Chockler, G.V. 166
Clementi, A.E.F. 201
Clock

external 17, 18
global 17, 116
local 11

Collaboration
multi-agent 1

Collision 199, 200
Combinatorial tool 48, 49
Communication XVIII, 4

absence of 183
instantaneous 170
medium 34
reliable 12, 33, 82, 170
round 108

Compact chain property 50
Competitive analysis 169, 182
α-competitive 7, 173

Complexity
effort 73
measures 7, 11, 17–19
message 18, also see Message,

complexity
time 7, 49
work 17, also see Work

Computation template 171
(p, n)-DAG 171
computation width 173, 174
directed acyclic graph 171

Consensus 112, 202, 203
Byzantine agreement 202
Byzantine generals problem 202
impossibility of 203

Cooperation
distributed XVIII, 11, 192
problem 1

Coordinator 33, 34, 82, 154
failure of 33
group 155
multiple 33
rotating 74
single 33, 72
unique 47

Cryptography 3

D
Dasgupta, P. 200

Index 215

Databases 2
De Prisco, R. 19, 45, 46, 73, 93, 203
Design theory 186, 193
Dilworth’s lemma 175, 182
Distributed

algorithm see Algorithm
computation 6
computing 1
search 1, 2
simulation 1, 2
system see System, distributed

Do-All XVIII, 2, 11, 15, 19
algorithms see Algorithm
iterative Do-All 5, 15, 19, 31, 44, 73
lower bounds see Lower bound

Dolev, Sh. 8, 19, 166, 181, 192
Dwork, C. 8, 19, 73, 182, 202

E

Efficiency XVIII, 1, 2, 6, 11
Epoch 51, 62

terminating 51
Execution

fault-free 96
good 86

F
Failure 1

benign 4
Byzantine 13, 20, 95, 96, 112

number of Byzantine failures 96
crash 4, 12, 21, 22, 77

number of crashes 22, 78
fail-stop 12
fragmentation 13, 146

fragmentation-number 146
malicious 4
merge 13, 147

merge-number 147
regrouping 13, 16, 169, 171
restart 4, 12, 77, 197

detectable 78
number of restarts 78

type 12–13
Failure-sensitive analysis 196, 197
Fault-tolerance XVIII, 2, 6
Fekete, A. 166

Fernandez, A. 112
Fiat, A. 182
Fischer, M. 203
Fluid dynamics 2

G

Galil, Z. 74, 203
Gasieniec, L. 74
Georgiades, S. 193
Georgiou, Ch. 19, 45, 74, 75, 112, 166,

182, 196, 197
Gossip 47, 51, 75

problem 48
Graph 50

(p, n)-DAG 171
bipartite 177, 191
communication 48, 49, 74
diameter 50, 59
directed 150

digraph 150
directed acyclic graph 153, 171
edge 50
node 50

degree 50
predecessor 174
successor 174
view-graph 150, 150–154

directed acyclic graph 153
fm view-graph 153
fragmentation 152
fragmentation view-graph 153
merge 152

Groote, J.F. 198
Group 5, 12, 13, 146

coordinator 155
fragmentation see Failure, fragmen-

tation
group communication service 20,

145, 148, 155, 166, 170
identifier 146
membership 146, 148

view of 148
merge see Failure, merge
non-overlapping 13
of processors 12
partitions 12
regrouping see Failure, regrouping
singleton 13

216 Index

symmetric 50, 126
Guerraoui, R. XXI

H

Hadzilacos, V. 45
Hall’s theorem 191, 193
Halpern, J. 8, 19, 73, 202
Harary, F. 193
Hesselink, W.H. 198
History variable 150
Hopcroft, J. 193
Hromkovic, J. 75
Hughes, D.R. 193

I
Image processing 2
Input/Output Automata 149, 167

action 149
input 149
internal 149
output 149

composition 149
execution 149
Tempo 167

J

Jacobsen, K. 166
Job 126, 139

execution 127
primary 127
secondary 127

identifier 126
schedule 126

Johnson bound 188, 193

K

Kanellakis, P.C. XXI, 9, 19, 45, 93,
143, 195–199

Karp, R. 193
Kedem, Z. 9, 196, 198, 200
Keidar, I. 166
Klasing, R. 75
Knowledge

local 52, 62
perfect 21, also see Oracle, 22

shared 154
Knuth, D.E. 74, 143
Konwar, K. 113
Kowalski, D.R. 45, 74, 75, 143, 199,

200
Kutten, Sh. 182

L
Lamport, L. 20, 112, 202
Lingas, A. 200
Liveness property 149, 166
Load

balancing 3, 21, 22, 80, 193
Lopez, L. 112
Lower Bound

Write-All 198
Lower bound XVIII, 5, 11, 46, 47, 74,

99, 115, 147, 179, 188
delay-sensitive 115, 118
failure-sensitive 27
oracle 23, 79, 93
pessimistic 145

Lynch, N. XXI, 166, 167, 203

M

Malewicz, G. 182, 192, 199
Martel, C. 9, 198, 200
Martingale principle 34
Marzullo, K. 166
Mauw, S. 198
Mavronicolas, M. 193
Mayer, A. 19, 46, 73, 74, 203
Message 11

broadcast 19
complexity 7, 18, 40, 49, 117, 142

expected 19
delay 4, 12, 115, 116, 146

maximum 117
identifier 148
latency 12
multicast 7, 19

reliable see Reliable multicast
point-to-point 116
point-to-point messaging 7, 47

Michailidis, D. 197
Model

abstract 11, 22

Index 217

adversarial 12, also see Adversary
asynchronous 115
deterministic 45
fail-stop 20
message-passing 11, 18, 22, 73
shared-memory 18, 19, 22, 195

memory snapshot 45, 93
synchronous 8

Momenzadeh, M. 143
Monti, A. 201
Multicast also see Message, 116

reliable 47
Musial, P.M. 74, 143

N
Network

broadcast 200
communication 11
failure 12
fully connected 12
partition 4, 13, 145
partitionable 5, 12, 13, 16, 20, 145,

169

O
Omni-Do 5, 16, 19, 145, 169
Oracle 21, 22, 28, 79, 102

knowledge 22
memory snapshot 45, 93

P
Palem, K. 9, 196, 198, 200
Papadimitriou, Ch. 192
Park, A. 9, 198, 200
Partially ordered set 174

antichain 174
chain 174
poset 174

vertex 174
width 174

Paterson, M. 203
Pease, M. 20, 112, 202
Pelc, A. 75
Peleg, D. 182
Permutation 48, 50, 62, 125, 137, 139,

175, 198
(p, n)-schedule 185

algorithm 137, 139
contention of 125, 143
left-to-right maxima 126, 143
random 51
set of 50, 74
surfeit of 50

Phase 34, 51, 82
attended 34, 82
majority 67
minority 67

reliable 67
unreliable 67

unattended 34, 82
Pigeonhole principle 120, 122
Piper, F.C. 193
Probabilistic method 51, 74
Problem

Collect 166
Consensus 202, also see Consensus
cooperation 1
Do-All 15, also see Do-All
Gossip 47, 48, 75
iterative Do-All 15, also see Do-All
Omni-Do 16, also see Omni-Do
Write-All 195, also see Write-All

Processor 2
asynchronous 11, 118, 184
crash see Failure, crash
failure 6, 12, also see Failure
identifier 3, 11, 184
master 112
multiprocessor 1
parallel 195
rank 36, 154
rendezvous see Rendezvous
restart see Failure, restart
synchronous 11
worker 112

Progress tree 131, 196, 198
local 133

R

Rabani, Y. 182
Rabin, M.O. 200
Ragde, P. 143, 198, 199
Raghunathan, A. 198, 200
Rajasekaran, S. 113
Redundancy XVIII, 6, 187, 188, 192

218 Index

Reliable multicast 21, 33, 45, 72
Rendezvous 7, 13, 18, 183
r-way 185

Restart see Failure, restart
Rodrigues, L. XXI
Rumor 48
Russell, A.C. 45, 112, 182, 192, 196,

197
Ruzicka, P. 75

S

Safety property 148, 166
Saks, M. 166
Santos, A. 112
Schlichting, R.D. 20
Schneider, F.B. 20
Segala, R. 8, 19, 166, 181, 192
Shavit, N. 166
Shostak, R. 20, 112, 202
Shvartsman, A.A. XXI, 8, 9, 19, 45, 74,

75, 93, 112, 113, 143, 166, 181, 182,
192, 195–200

Silvestri, R. 201
Sleator, D. 182
Speed-up 6
Spencer, J.H. 143, 193
Spirakis, P. 9, 193, 196, 198, 200
Stage 34, 51, 82

communication 51
gossip 62
update 51
work 62

Step 7, 11, 12, 34
computation 7
global 8, 19
idling 17
local 7, 8, 19
parallel 49
processor 17
synchronous 11
task-oriented 23

Subramonian, R. 9, 198, 200
System

airborne radar 3
asynchronous 11, 12
distributed XVIII, 11
fault-tolerant 6
message-passing 12

synchronous 11, 12

T
Tarjan, R. 182
Task 2, 14, 139

allocation 35, 62, 83, 154
idempotent 2, 15
identifier 15, 184
independent 2, 14
rank 36, 154
result of 15
similar 2, 14
verification 98, 111

Thread 133
Time 7, 19

complexity 7, 49, 165
unit of 17

Time-out 12
Toueg, S. 45
Tuttle, M. 167

U
Unger, W. 75

V

Vermeulen, R. 198
View 148

change 150
initial 150
local 35, 82
view-graph 150, also see Graph,

view-graph
Vitenberg, R. 166

W
Waarts, O. 8, 19, 73, 182, 202
Waste 7, 18, 182, 185
k-waste 7, 182, 189
2-waste 187, 188
pairwise 186, 190

Welch, J.L. XXI
Woll, H. 143, 166, 198, 199
Work XVIII, 17

competitiveness 7, 18, 173, 175
redundant 185, 192

Index 219

task-oriented work 7, 17, 19, 145,
173

expected 18

total-work 7, 17, 17, 19, 40, 117, 118,
142

expected 17

unit of 2, 17

waste 7, 18

Worker 34, 82

Write-All 9, 19, 195

lower bound 198
simulation 200

Y
Yannakakis, M. 192
Yung, M. 19, 46, 73, 74, 203

Z
Zhang, X. 166

Chryssis Georgiou is on the faculty of the Department of Computer Science at the
University of Cyprus, Cyprus, since 2004. He earned his B.Sc. degree in Mathematics

Engineering at the University of Connecticut, U.S.A. His research interests span
theory and practice of distributed computing, in particular, design, analysis,
verification, and implementation of algorithms; fault-tolerance and dependability;
communication protocols; cooperative distributed computing; and dynamic
computing environments.

Alexander Allister Shvartsman is a Professor of Computer Science and Engineering at
the University of Connecticut and a Co-Founder of VeroModo Inc. He earned his B.S.
degree from Stevens Institute of Technology, M.S. degree from Cornell University,
and Ph.D. from Brown University, all in Computer Science. The author is a winner of
the NSF Career Award in principles and practices of dependable distributed
computing, and he is an established authority in this area. He is an author of over 100
technical publications. The author served on program committees of numerous
technical conferences, and he chaired several conference committees in distributed
computing.

at the University of Cyprus, and M.S. and Ph.D. degrees in Computer Science and

