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5.1 INTRODUCTION

In the first part of this article the review of various theor-

etical models for polymer chains is given. The models of freely

jointed chains, freely rotating chains (including wormlike

chains), and chains with fixed bond angles and independent

rotational potentials and with interdependent potentials, in-

cluding rotational isomeric state approximation, are presented.

In the second part various theories of polymer networks

are presented. The affine network model, phantom network,

and theories of real networks are discussed. Scattering from

polymer chains is also briefly presented.

The third part of this article covers computer simulations

of polymer chains. Methods of simulation of chains on

lattices are presented and the equivalence between lattice

chains and off-lattice chain models is discussed. The simu-

lation of excluded volume effect is examined. The polymer

chain collapse from random coil to dense globular state, and

simulations of dense polymer systems are discussed.

This article describes models for linear chains of

homopolymers and for unimodal, unfilled polymer networks.

Theoretical models for other systems, such as star, branched,

and ring polymers, random and alternating copolymers,

graft and block copolymers are discussed in the book by

Mattice and Suter [1]. Block copolymers are discussed in

Chap. 32 of this Handbook [2]. Theories of branched and ring

polymers are presented in the book by Yamakawa [3].

Liquid–crystalline polymers are discussed in the book by

Grosberg and Khokhlov [4], and liquid crystalline elastomers

in the recent book of Warner and Terentjev [5]. Bimodal

networks are discussed by Mark and Erman [6,7]. Molecular

theories of filled polymer networks are presented by

Kloczkowski, Sharaf and Mark [8] and recently by Sharaf

and Mark [9].

This first part of this article deals only with treatment of

‘‘bonded’’ interactions of polymer chains, appropriate only

for modeling chains under Q-point conditions. Problems

connected with effects of excluded volume are presented

at the end of this chapter. The excluded volume effect for

chains in good solvents are also presented in Chaps. IIB [10]

and IIID [11] of this handbook and in books by Freed [12],

de Gennes [13], des Cloizeaux and Jannink [14], and
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Forsman [15]. More information about computer modeling

of polymers is provided by Binder [16,17], Baumgartner

[18], Kolinski and Skolnick [19], and most recently by

Kotelyanskii and Therodorou [20].

5.2 THE FREELY JOINTED CHAIN

The freely jointed chain model (known also as random

flight model) was proposed for polymers by Kuhn in 1936.

The chain is assumed to consist of n bonds of equal length l,
jointed in linear succession, where the directions (u, f)

of bond vectors may assume all values (0 # u # p;

0 # f # 2p) with equal probability (see Fig. 5.1).

This means that directions of neighboring bonds are com-

pletely uncorrelated. The freely jointed chain model corres-

ponds to a chain with fixed bond lengths and with

unconstrained, free to adjust valence angles and with free

torsional rotations. The mean square end-to-end vector hr2i0
in the unperturbed state (denoted by subscript 0) for the freely

jointed chain is

hr2i0 ¼ h(
Xn

i¼1

lj) � (
Xn

j¼1

lj)i0 ¼ nl 2 (5:1)

because

hli � lji0 ¼ 0 for i 6¼ j: (5:2)

It is convenient to compare real polymer chains with

freely jointed chain by using the concept of the characteris-

tic ratio defined as the ratio of the mean-square end-to-end

vectors of a real chain and freely jointed chain with the same

number of bonds

Cn ¼
hr2i0
nl 2

: (5:3)

The characteristic ratio is a measure of chain flexibility.

Flexible chains have Cn close to unity, while semiflexible and

rigid polymers have usually much larger values of Cn. The

mean-square radius of gyration for freely jointed chain is:

hs2i0 �

P
0 # I< j # n

hr2
iji0

(nþ 1)2
¼ (nþ 2)nl 2

6 (nþ 1):
(5:4)

For longer chains (in the limit n!1) we have

hs2i0
hr2i0

¼ 1

6
: (5:5)

The freely jointed chain model has an exact analytical

solution for the distribution function of the end-to-end vec-

tor. The probability that the chain of n bonds has the end-to-

end vector r is

P(r,n) ¼
Z

dl1dl2 . . . dlnd[(
Xn

i¼1

li)� r]P
j¼1

n

exp
�u(lj)

kT

� �
,

(5:6)

where T is the absolute temperature, k is the Boltzmann

constant, u(lj) is the potential energy of two segments con-

nected by the j-th bond lj, and d denotes Dirac delta func-

tion. For the freely jointed chain model we have

exp
�u(lj)

kT

� �
¼ 1

4pl 2
d(jljj � ‘): (5:7)

By using the Fourier representation of the d function we

obtain

P(r, n) ¼ 1

8p3

Z
dk e�ik�r sin (kl)

kl

� �n

¼ 1

2p2r

Z 1

0

sin (kr)
sin (kl)

kl

� �n

kdk: (5:8)

The solution of Eq. (5.8) is

P(r, n) ¼ 1

2nþ1pl 2r(n� 2)!

Xi#(n�r=l)=2

i¼0

(� 1)i n!

i!(n� i)!
(n� 2i� r=l )n�2: (5:9)
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FIGURE 5.1. Polymer chain composed of n bonds. Angles u are defined as complementary angles.
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In the limit n!1 the distribution function of the end-

to-end vector for freely jointed chain asymptotically

approaches a Gaussian function

P(r, n) ¼ 3

2pnl 2

� �3=2

exp
�3r2

2nl 2

� �
: (5:10)

5.3 THE FREELY ROTATING CHAIN

The freely rotating chain model is a freely-jointed chain

with fixed bond angles. It is assumed that all bond have

equal length l and all bond angles are equal. The angle ui is

defined as a supplementary angle of the skeletal bond angle

at segment i as seen in Fig. 5.1, and therefore

hliþ1 � lji ¼ l 2 cos u: (5:11)

Similarly for two bonds i and iþk we have

hliþk � lii ¼ l 2( cos u)k: (5:12)

This result follows from the fact that the projection of a

given bond on the preceding bond is cos u, while projections

in two transverse directions averaged over free rotations

are zero. This means that the projection of the kþi bond on

the kþi�1 bond is cos u, the projection of this projection

on the kþi�2 bond is (cos u)2, etc., which finally leads to the

Eq. (5.12). The mean square end-to-end vector for freely

rotating chain is

hr2i ¼
Xn

i¼1

hlii2 þ 2
Xn

i¼1

Xn�i

k¼1

hli � ljþki

¼ nl 2 1þ cos u

1� cos u
� 2 cos u[1� ( cos u)n

n(1� cos u)2

� �
: (5:13)

For infinitely long chains the second term in Eq. (5.13)

may be neglected and the characteristic ratio defined by Eq.

(5.3) becomes:

C1 ¼
1þ cos u

1� cos u
: (5:14)

The mean square radius of gyration (defined by Eq. (5.4))

for freely rotating chain is

hs2i0
nl 2
¼ (nþ 2)(1þ cos u)

6(nþ 1)(1� cos u)
� cos u

(nþ 1)(1� cos u)2

þ 2( cos u)2

(nþ 1)2(1� cos u)3

� 2( cos u)3[1� ( cos u)n]

n(nþ 1)2(1� cos u)4
: (5:15)

For very long chains the last three terms in Eq. (5.15)

become negligible and hs2i0 ¼ hr2i0=6.

5.3.1 Worm-like Chain Model

The projection of the end-to-end vector of a chain r on the

direction of the first bond l1=l for the freely rotating chain is

hr � l1

l
i ¼ 1

l

Xn

i¼1

hl1 � lii ¼ l
Xn�1

i¼0

( cos u)i

¼ l
1� ( cos u)n

1� cos u
, (5:16)

where u is the angle between bonds. In the limit n!1 this

converges to

lim
n!1
hr � l

l
i ¼ 1

1� cos u
� a: (5:17)

The quantity a is called the persistence length and is a

measure of chain stiffness. The wormlike chain model

(sometimes called the Porod-Kratky chain) is a special con-

tinuous curvature limit of the freely rotating chain, such that

the bond length l goes to zero and the number of bonds n goes

to infinity, but the contour length of the chain L¼ nl and the

persistance length a are kept constant. In this limit

hr � l1
l
i ¼ a(1� e�L=a) (5:18)

and

hr2i0
L
¼ 2a[1� a

L
(1 � e�L=a)]: (5:19)

When the chain length L is much larger than the persis-

tance length a, the effect of chain stiffness becomes negli-

gible. In the limit L!1 we have hr2i0=L! 2a and the

wormlike chain reduces to a freely-jointed chain.

5.4 CHAINS WITH FIXED BOND ANGLES AND

INDEPENDENT POTENTIALS FOR INTERNAL

BOND ROTATION

The more realistic model than freely rotating chain is a

chain with fixed bond angles and hindered internal rotations.

For simplicity it is assumed that the total configurational

energy of the chain is a sum of configurational energies of

chain bonds, and the energy of a given bond is independent

on the configurational states of other bonds in the chain

including the neighboring bonds. We should note that this

is an approximation and for real polymer chains because of

the steric interactions the energy of a given bond depends on

the energy of its neighbors.

We define a local Cartesian coordinate system for each of

the bonds. We assume that the axis xi is directed along the

bond i, and the yi axis lies in the plane formed by bonds i and

i�1, while the zi axis is directed to make the coordinate

system right-handed. The components of the (iþ1)th bond

liþ1 can be expressed in the coordinate system of the pre-

ceding bond i

l0iþ1 ¼ Tiliþ1, (5:20)
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where Ti is the orthogonal matrix of the rotational trans-

formation

Ti ¼
cos ui sin ui 0

sin ui cos fi � cos ui cos fi sin fi

sin ui sin�i � cos ui sin fi � cos fi

2
4

3
5 (5:21)

Here ui is the supplementary bond angle (see Fig. 5.1) and

fi is a dihedral angle between two planes defined by two

pairs of bonds: bonds i�1 and i, and i and i þ1.

The scalar product of two bonds li � lj written in the matrix

notation is lTi lj where lj is the column vector and lT
i is the

transpose of li (i.e., the row vector)

lj ¼ Ij

1

0

0

2
4
3
5 lT

i ¼ lj[100], (5:22)

where li and lj are lenghts of bonds i and j (li ¼ lj ¼ l in our

model but for polymers with different types of bonds in the

backbone they may differ). Transforming successively over

the intervening bonds the vector representation of the bond j
to the coordinate system of bond i (j > i) we have

hli�lji ¼ hlT
i TiTiþ1 � � �Tj�1Iji ¼ liljhTiTiþ1 � � �Tji11:

(5:23)

Here hTiTiþ1 . . . Tj�1i11 denotes configurational average of

the (1–1) element of the matrix product TiTiþ1 . . . Tj�1. The

configurational average of the product of rotational trans-

formation matrices is generally given by

hTiTiþ1 � � �Tj�1i ¼R
� � �
R

(TiTiþ1 � � �Tj�1) exp �E(l1,l2,���,ln)
kT

� �
dl1dl2 � � � dlnR

� � �
R

exp �E(l1,l2,���,ln)
kT

� �
dl1dl2 � � � dln,

(5:24)

where k is the Boltzmann constant, T is the absolute tempera-

ture and E(l1,l2, . . . ,ln) is the conformational energy of the

whole chain of n bonds. For a chain with fixed bond lenghts

this energy depends only on the orientations of bonds de-

scribed by bond angles ui and rotational angles fi, where 1 # i
# n�1, since the orientation of the last n-th bond is fully

determined by the orientation of preceding bonds. For a chain

with fixed bond angles the conformational energy is only a

function of rotational angles fi, with 2 # i # n�1, because f1

is undefined. For chains with independent potentials for in-

ternal bond rotation the conformational energy of the chain is

a sum of bond energies Ei(fi)

E(f2,f3, � � � ,fn�1) ¼
Xn�1

i¼2

Ei(fi) (5:25)

and

hTiTiþ1 � � �Tj�1i ¼ P
j�1

k¼1
hTki, (5:26)

where for symmetric rotational potentials with ui(fi)

¼ ui(� fi) we have

hTki ¼
cos uk sin uk 0

sin ukhcos fki � cos ukhcos fki 0

0 0 �hcos fki

2
4

3
5:

(5:27)

Here hcos fki is

hcos fki ¼

R 2p

0
cos fk exp

�Ek(fk)

kT

h i
dfk

R 2p

0
exp

�Ek(fk)
kT

h i
dfk

: (5:28)

Using Eqs. (5.23) and (5.27) we may calculate the mean-

square end-to-end vector for fixed bond angles and inde-

pendent potentials for internal bond rotation

hr2i0 ¼ nl 2 þ 2l 2
Xn

i¼1

Xn�i

k¼1

hTik
" #

11

¼ nl 2 Eþ hTi
E� hTi � 2hTi (Eþ hTin)

n(E� hTi)2

� �

11

, (5:29)

where E is the unit matrix, and the subscript 11 denotes the

(1–1) element of the matrix in square parenthesis. Equation

(5.29) resembles Eq. (5.13) for freely rotating chain with

cos u replaced by <T>. Similarly to Eq. (5.15) the mean

square radius of gyration is

hs2i0
nl 2
¼ (nþ 2)(Eþ hTi)

6(nþ 1)(E� hTi)�
hTi

(nþ 1)(E� hTi)2

�

þ 2hTi2

(nþ 1)2(1� hTi)3
� 2hTi3[1� hTin]

n(nþ 1)2(1� hTi)4

#

11

:

(5:30)

The general solution of eqs. (5.27) and (5.28) is possible

by diagonaliziation of the matrix <T> defined by Eq.

(5.27). The eigenvalues of <T> are

l1,2 ¼
1

2
cos u(1� hcos fi)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 u(1� hcos fi)2 þ 4hcos fi

q� �

l3 ¼ �hcos fi
:

(5:31)

For example, the expression for hr2i0 in terms of eigen-

values of <T> is

hr2i0
nl 2
¼ (1þ cos u)(1þ hcos fi)

(1� cos u)(1� hcos fi)

� 2l1( cos uhcos fi þ l1)(1� ln
1)

n(l1 � l2)(1� l1)2

þ 2l2( cos uhcos fi þ l2)(1� ln
2)

n(l1 � l2)(1� l2)2
: (5:32)

For very long chains only first terms in Eqs. (5.29) and

(5.30) are important and we have

C1 ¼ lim
n!1

hr2i0
nl 2
¼ Eþ hTi

E� hTi

� �

11

¼ (1þ cos u)(1þ hcos fi)
(1� cos u)(1� hcos fi)

(5:33)
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and

hs2i0
nl 2
¼ nþ 2

6(nþ 1)
¼ Eþ hTi

E� hTi

� �

11

¼ (nþ 2)(1þ cos u)(1þ hcos fi)
6(nþ 1)(1� cos u)(1� hcos fi) :

(5:34

5.5 CHAINS WITH INTERDEPENDENT

ROTATIONAL POTENTIALS. THE

ROTATIONAL ISOMERIC STATE

APPROXIMATION

In real polymer chains the rotational potentials depend on

the steric interactions between pendant groups of neighbor-

ing bonds, and are generally not mutually independent. In

the simplest case of hydrocarbons the bond rotational po-

tential has three minima as shown in Fig. 5.2. The global

minimum at the torsional angle 08 corresponds to the trans
two other minima with the same energies at torsional angle

aroundþ1208 and�1208 correspond to the gaucheþ and the

gauche� states (gþ and g�). The energy difference between

the trans the gauche� states for n-alkanes is about 500 cal/

(mole). We may use the rotational isomeric state approxi-

mation that each bond in the chain occur in one of these

rotational states. This assumption enables us to replace all

integrals over rotational angles in the partition function and

statistical averages by summations over bonds rotational

states. Additionally steric interactions between pendant

groups of neighboring bonds become important, e.g., the

sequence g�g� becomes energetically very unfavorable.

We may neglect the longer range interactions and assume

that the configurational energy is a sum of energies of

nearest-neighbor pairs

E(f2,f3, � � � ,fn�1) ¼
Xn�1

i¼2

Ei(fi�1,fi): (5:35)

The configurational partition function becomes

Z ¼
Z
� � �
Z

exp � 1

kT
E(f2, � � � ,fn�1)

� �
df2 � � � dfn�1

¼
X

{f}

Yn�1

i¼2

exp � 1

kT
Ei(fi�1,fi)

� �
, (5:36)

where {f} denotes the set of all available states (t,gþ,g�)

for all bonds in the chain. We define the statistical weight

corresponding to bond i being in the h state while bond i� 1

being in the z state (where h and z are sampled from the

t,gþ,g� set)

uzh,i ¼ exp
�Ezh,i

kT

� �
(5:37)

and the statistical weight matrix

Ui ¼
utt,i utgþ,i utg�,i

ugþt,i ugþgþ,i ugþg�,i
ug�t,i ug�gþ,i ug�g�,i

2

4

3

5: (5:38)

It is convenient to express the energy of a given single

bond relative to the energy of the trans state. The energy

of a pair of bonds Ehz,i is defined relative to the state where

the bond i is in the trans state, and all subsequent bonds

j > i are also in the trans states. From this definition follows

Eht ¼ 0 for z ¼ t,gþ,g�. Additionally Etgþ ¼ Etg� ¼
Egþgþ ¼ Eg�g� (� 500 cal/mol for n-alkanes), and

Egþg� ¼ Eg�gþ (� 3,000 cal/mole for n-alkanes). This

means that the statistical weight matrix may be written as

U ¼
1 s s

1 sc sv

1 sv sc

2
4

3
5, (5:39)

where sc and sv denote ugþgþ and ugþg� , respectively.

By using the statistical weight matrices we may express

the configuration partition function as

Z ¼
X

{f}

Yn�1

i¼2

uhz,i ¼ J�
Yn�1

i¼2

Ui

" #
J, (5:40)

where J� and J are row and column vectors, respectively

J� ¼ [ 1 0 0] J ¼
1

1

1

2
4
3
5: (5:41)

For very long chains (in the limit n!1) the partition

function is determined by the largest eigenvalue l1 of the

statistical weight matrix U

Z ffi ln�2
1 : (5:42)

The largest eigenvalue of the matrix U defined by Eq. (5.39) is

l1 ¼
1

2
1þ s(cþ v)þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[1� s(cþ v)]2 þ 8s

q� �
:

(5:43)
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FIGURE. 5.2. The dependence of the conformational energy
on the torsional angle in n-alkanes.
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The probability that bonds i� 1 and i occur in states h and z,

respectively is

phz,i ¼
1

Z
J�
Yi�1

k¼2

Uk

" #
@Ui

@ ln uhz,i

Yn�1

k¼iþ1

Uk

" #
J

ffi @ ln l1

@ ln uhz

: (5:44)

The probability that bond i is in the state z, irrespective of

the state of bond i�1 is

pz,i ¼
X

n¼t,gþ,g�
phz,i ffi

X

h¼t,gþ,g�

@ ln l1

@ ln uhz

: (5:45)

The conditional probability that bond i is in z state, given

that bond i � 1 is in state h is

qhz,i ¼
phz,i

ph,i�1

: (5:46)

In order to calculate the mean square end-to-end vector or

a radius of gyration we have to calculate averages

hTiTiþ1 . . . Tj�1i (Eq. (5.24)). For bonds with independent

rotational potentials this average is a product of averages

hTi for single bonds. For chains with interactions between

neighboring bonds we define for each bond i the superma-

trix k Ti k of the order 9�9

k Ti k¼
T(f1)

T(f2)

T(f3)

2
4

3
5

i

, (5:47)

where T is rotation matrix given by Eq. (5.21), and the

f1 ¼ 0	,f2 ¼ 120	,f3 ¼ �120	, are the torsional angles

corresponding to the trans, gaucheþ and gauche� states.

We define also a direct product Ui 
 E3 of the statistical

weight matrix Ui (defined by Eq. (5.38)) and the unit matrix

of order three E3.

Ui 
 E3 ¼
uttE3 utgþE3 utg�E3

ugþtE3 ugþgþE3 ugþg�E3

ug�tE3 ug�gþE3 ug�gE3

2
4

3
5: (5:48)

The statistical average of the product of rotation matrices

may then be written as

hTiTiþ1 . . . Tj�1i ¼ hT(j�i)
i i ¼ 1

Z
(J�U(i�2)

2 )
 E3

� �
�

[(U
 E3) k T k�(j�i)
i (U

(n�j)
j J)
 E3

h i
]

(5:49)

Then the mean-square end-to-end vector and the mean

square radius of gyration are

hr2i0 ¼ nl 2 þ 2
Xn�1

i¼1

Xn

j¼iþ1

lTi hT
(j�i)
i ilj (5:50)

and

hs2i0 ¼
1

(nþ 1)2

X

0 # h # k # n

Xk

i¼hþ1

Xk

j¼hþ1

lT
i hT(j�i)ilj (5:51)

with hT(j�i)
i i given by Eq. (5.49). Both hr2i0 and hs2i0 may

be written in a more compact form in terms of proper super-

matrices. The details are given in Flory’s monograph [21].

Additional information is given in the Handbook chapter by

Honeycutt [22].

5.6 THEORIES OF POLYMER NETWORKS

5.6.1 The Affine Network

The theory of affine networks was developed by Kuhn

and improved by Treloar, and is based on the assumption

that the network consists of n freely-jointed Gaussian chains

and the mean-square end-to-end vector of network chains in

the undeformed network is the same as of chains in the

uncross-linked state. This assumption is supported by ex-

perimental data. It is also assumed that there is no change in

volume on deformation and the junctions displace affinily

with macroscopic deformation. The intermolecular inter-

actions in the model are neglected, i.e., the system is similar

to the ideal gas.

The elastic free energy of a chain is related to the distri-

bution function of the end-to-end vector P(r)

Ael ¼ c(T)� kT ln P(r) ¼ A�(T)þ 3

2
kT
hr2i
hr2i0

(5:52)

for the Gaussian distribution given by Eq. (5.10). Here c(T)

and A�(T) are constants dependent only on the temperature

T, k is a Boltzmann constant, and hr2i0 is the average of the

mean-square end-to-end vector in the undeformed state.

The elastic free energy of the network DAel relative to the

undeformed state is a sum of free energies of individual

chains

DAel ¼
3kT

2hr2i0

X

v

(r2�hr2i0) ¼ 3

2
vkT

hr2i
hr2i0

� 1

� �

(5:53)

Here hr2i is the end-to-end vector in the deformed state

averaged over the ensemble of chains

hr2i ¼ hx2i þ hy2i þ hz2i: (5:54)

In the affine model of the network it is assumed all

junction points are imbedded in the network, and each

Cartesian component of the chain end-to-end vector trans-

forms linearly with macroscopic deformation

x ¼ lxx0, y ¼ lyy0, z ¼ lzz0 (5:55)

hx2i ¼ l2
xhr2i0, hy2i ¼ l2

yhy2i0, hz2i ¼ l2
z hz2i0 (5:56)

and therefore

DAel ¼
1

2
vkT(l2

x þ l2
y þ l2

z � 3): (5:57)

Here, lx, ly, and lz are the components of the deformation

tensor l, defined as the ratios of the final length of the
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sample Lt to the initial length Lt,0 in t ¼ x, y, and z direction,

respectively. (The more rigorous statistical mechanical

analysis by Flory [23] has shown that Eq. (5.57) should

contain additional logarithmic term –mkT ln (V=V0), where

m is the number of junctions, V is the volume of the

network, and V0 is volume of the network at the state of

formation).

The force f under uniaxial tension in direction z is

obtained from the thermodynamic expression:

f ¼ @DAel

@L

� �

T,V
¼ L�1

0

@DAel

@l

� �

T,V
, (5:58)

where l ¼ lz ¼ Lz=Lz,0. Because the volume of the sample

is constant during deformation the x and y components of

the deformation are lx ¼ ly ¼ l�1=2. Performing the differ-

entiation in Eq. (5.58) leads to the elastic equation of state

f ¼ vkT

L0

� �
(l� 1=l2): (5:59)

5.6.2 The Phantom Network Theory

The theory of phantom network was formulated by James

and Guth [24] in the forties. They assumed that chains are

Gaussian with the distribution P(r) of the end-to-end vector

P(r) ¼ g

p

� 	3=2

exp(� gr2), (5:60)

where

g ¼ 3

2hr2i0
(5:61)

and interact only at junction points. This means that chains

may pass freely through one another, i.e., are ‘‘phantom’’,

the excluded volume effects and chain entanglements are

neglected in the theory. They assumed also that all junc-

tions at the surface of the network are fixed and deform

affinely with macroscopic strain, while all junctions and

chains inside the bulk of the network fluctuate around their

mean positions. The idea of the phantom network is very

similar to the concept of the ideal gas. The theory based on

these simple assumptions leads to significant improve-

ments in the understanding of the properties of networks,

such as microscopic fluctuations and neutron scattering

behavior.

The configurational partition function ZN of the phantom

network is the product of the configurational partition func-

tions of its individual chains. junctions i and j:

ZN ¼ C
Y

i<j

exp(� 3r2
ij=2hr2

iji0)

¼ C
Y

i<j

exp � 1

2

X

i

X

j

g�ijjRi � Rjj2
 !

: (5:62)

Here, Ri and Rj are positions of junctions i and j,
g�ij ¼ 3=2hr2

iji0 if junctions i and j are connected by a

chain, and zero otherwise, and C is a normalization constant.

The position vectors Ri with i ranging from 1 to m, where m

is a number of junctions, may be arranged in column form,

represented as {R}. Equation (5.62) may then be written

ZN ¼ Cexp(� {R}TG{R}), (5:63)

where the superscript T denotes the transpose. The symmet-

ric matrix G known as the Kirchhoff valency-adjacency

matrix in the graph theory describes the connectivity of the

network and its elements gij are

G ¼
gij ¼ �g�ij, i 6¼ j

gii ¼
P

j

g�ij ¼
P

j

g�ij:

(
(5:64)

James and Guth assumed that all m junctions in the

network may be divided into two sets of junctions: (i) ms

fixed junctions at the bounding surface of the polymer and

(ii) mt free junctions fluctuating about their mean positions

{�RRt} inside the polymer. The partition function of the net-

work due to fluctuating junctions is

ZN ¼ Cexp(� {DRt}TGt{DRt}), (5:65)

where {DRt} denotes fluctuations of free junctions

{DRt} ¼ {Rt}� {Rt}: (5:66)

The product of the fluctuations of two junctions i and j
averaged over the network may be obtained from Eq. (5.65)

as

hDRi � DRji ¼
R

DRi � DRj exp [� {DRt}TGt{DRt}]d{DRt}R
exp [� {DRt}TGt{DRt}]d{DRt}

¼ � @ ln Zt

@gij

, (5:67)

where d{DRt} � dDR1tdDR2t . . . dDRmt and

Zt ¼
Z

exp [� {DRt}TGt{DRt]d{DRt} ¼ pmt

detGt

� �3=2

:

(5:68)

This leads to the expression

hDRi
.DRji ¼

3

2

@

@gij

ln jdetGtj ¼
3

2
(G�1

t )ij, (5:69)

where (G�1
t )ij denotes the (i�j)-th element of the inverse

matrix G�1
t . Fluctuations of junctions from their mean

positions in a phantom network depend on the network’s

functionality f and are independent of macroscopic deform-

ation.

For example for the infinitely large network with the

symmetrical tree-like topology (such as shown in Fig. 5.3)

the mean-square fluctuations of junctions h(DR)2i and
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correlations between fluctuations of two junctions i and j
hDRi

.DRji separated by m other junctions are:

h(DRi)
2i hDRi

.Rji
DRj

.DRii h(DRj)
2i

� �
¼ 3

2

(G�1
t )ii (G�1

t )ij

(G�1
t )ji (G�1

t )jj

" #

¼ 3

2g

f�1
f(f�2)

1
f(f�2)(f�1)m

1
f(f�2)(f�1)m

f�1
f(f�2)

" #
: (5:70)

The mean-square fluctuations of the distance rij ¼ jRi � Rjj
between junctions i and j are

h(Drij)
2i ¼ h(DRi � DRi)

2i

¼ 3

2
[(G�1

t )ii þ (G�1
t )jj � 2(G�1

t )ij]

¼ 2[(f� 1)mþ1 � 1]

f(f� 2)(f� 1)m hr2i0: (5:71)

For a special case of mean-square fluctuations of the end-

to-end vector (m ¼ 0) we have

h(Dr)2i ¼ 2

f
hr2i0: (5:72)

Equations (5.70) and (5.71) may be easily generalized

for fluctuations of points along the chains in the network,

since each point along the chain may be considered as

bi-functional junction. As a consequence the valence-

adjacency matrix in this generalized case contains add-

itional elements describing the connectivity of bi-functional

junctions. More details is provided in the review article by

Kloczkowski, Mark, and Erman [25].

The vector rij between junctions i and j is

rij ¼ rij þ Drij, (5:73)

where Drij is the instantaneous fluctuation of rij and rij is the

time average of rij. Squaring both sides of the above equa-

tion and taking the ensemble average leads to

hr2
iji ¼ hr2

iji þ h(Drij)
2i (5:74)

since instantaneous fluctuations and mean values are uncor-

related. From Eqs. (5.72) and (5.74) follows:

h�rr2i ¼ (1� 2

f
)hr2i0: (5:75)

According to the theory the mean positions of junctions

transform affinely with macroscopic strain while the fluctu-

ations are strain independent:

rij ¼ rij þ Drij (5:76)

i.e.,

hr2i ¼ (1� 2

f
)

l2
x þ l2

y þ l2
z

3
þ 2

f

" #
hr2i0: (5:77)

Using Eq. (5.53) for the elastic free energy, we obtain the

following expression for the free energy of the phantom

network

DAel ¼
1

2
(1� 2

f
)nkT(l2

x þ l2
y þ l2

z � 3): (5:78)

Equation (5.78) is very similar to Eq. (5.57) for the affine

network. The only difference is that the so called front factor

(equal n=2 for affine network model) is replaced by j=2 for

the phantom network model where

j ¼ (1� 2

f
)n: (5:79)

The equation for the elastic force is similar to Eq. (5.59) for

the affine network with n replaced by j.

5.7 STATISTICAL THEORIES OF REAL

NETWORKS

In real polymer network the effects of excluded volume

and chain entanglements should be taken into account. In

1977 Flory [26] formulated the constrained junction model

of real networks. According to this theory fluctuations of

junctions are affected by chains interpenetration, and as the

result the elastic free energy is a sum of the elastic free

energy of the phantom network DAph (given by Eq. (5.78))

and the free energy of constraints DAc

DAel ¼ DAph þ DAc (5:80)

with DAc given by the formula

DAc ¼
1

2
mkT

X

t¼x,y,z
Bt þ Dt � ln (1þ Bt)� ln (1þ Dt)½ �,

(5:81)

where

Bt ¼
k2(l2

t � 1)

(l2
t þ k2)2

(5:82)

and

Dt ¼
l2

t Bt

k
: (5:83)
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FIGURE 5.3. First three tiers of a unimodal, symmetrically
grown, tetrafunctional network (f ¼ 4) with tree-like topology.
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Here k is a parameter which measures the strength of the

constraints. For k ¼ 0 we obtain the phantom network limit,

and for infinitely strong constraints (k ¼ 1) the affine limit

is obtained. Erman and Monnerie [27] developed the con-

strained chain model, where constraints effect fluctuations

of the centers of the mass of chains in the network.

Kloczkowski, Mark, and Erman [28] proposed a diffused-

constraint theory with continuous placement of constraints

along the network chains.

A different statistical–mechanical approach based on so

called replica formalism was developed by Edwards and

coworkers [29,30]. They studied the effect of topological

entanglements between chains on the elastic free energy of

the network and formulated the slip-link model. The elastic

energy of constraints in the slip-link theory is

DAc ¼
1

2
NskT

X

t¼x,y,z

(l2
t � 1)

1þ hl2
t

þ ln [
1þ hl2

t

1þ h
]

� �
, (5:84)

where Ns is the number of slip-links and h is the slipage

parameter. Equation (5.84) is very similar to Eq. (5.81) for

the constrained junction model. Vilgis and Erman [31]

showed that for small deformations both equations have

the same form (except minor volume term) with k ¼ 1=h.

5.8 SCATTERING FROM POLYMER CHAINS

The scattering form factor S(q) from a labeled chain in the

network is given by the Fourier transform of the distribution

function V(rij) of the vector rij between two scattering

centers i and j averaged over all pairs of scattering centers

along the chain:

S(q) ¼ 1

N2

XN

i, j¼1

Z
exp (iq � rij)V(rij)drij: (5:85)

Here q is the scattering vector representing the difference

between the incident and scattered wave vectors k0 and k,

respectively, and N is the total number of scattering centers

along the chain.

The distribution function V(rij) of the vector rij between

scattering centers in the undeformed state is assumed to be

Gaussian. The distribution function V(rij) in the deformed

state is

V(rij) ¼ [(2p)3hx2
ijihy2

ijihz2
iji]�1=2 exp (� x2

ij=2hx2
iji

� y2
ij=2hy2

iji � z2
ij=2hz2

iji), (5:86)

where hx2
iji, hy2

iji, and hz2
iji are the mean-square components

of the vector rij in the deformed state. Substituting the ex-

pression for V(rij) given by Eq. (5.86) into Eq. (5.85) leads to

S(q) ¼ 1

N2

XN

i, j¼1

exp (� q2
xhx2

iji=2� q2
yhy2

iji=2� q2
z hz2

iji=2),

(5:87)

where qx, qy, and qz are the components of the scattering

vector q. The vector rij between two scattering centers may

be written for a phantom network as rij ¼ rij þ Drij where

rij is the time average of rij, and Drij is the instantaneous

fluctuation of rij from its mean time-averaged value. As-

suming that mean-square fluctuations are strain independent

and that mean positions transform affinely with macro-

scopic strain and applying Eqs. (5.74)–(5.77) leads to

hx2
iji ¼ l2

x þ (1� l2
x)
hDx2

iji0
hx2

iji0

" #
hx2

iji0, (5:88)

where lx is the x component of the principal deformation

gradient tensor l, with similar expressions for the y and z
components. For a freely jointed chain

hx2
iji0 ¼ hr2

iji0=3 ¼ hhr2i0=3,

where h ¼ ji� jj=N is the fractional distance, and hr2i0 is

the mean-square end-to-end vector for the undeformed

chain. Substituting these results to Eq. (5.87) leads to

S(q) ¼ 1

N2

XN

i,j¼1

exp �y
ji� jj

N
1� (1� l�2)

(f� 2)

f

ji� jj
N

� �� �
:

(5:89)

In this equation

y ¼ q2hr2i0=6 (5:90)

and the vector l� is

l� ¼ lq=q: (5:91)

For scattering parallel to the direction of extension

l� ¼ lk and for scattering perpendicular to the direction of

extension l� ¼ l? ¼ 1=
p

lk. Replacing the double summa-

tion by integration and evaluating one of the integrals leads

to

S(q) ¼ 2

Z 1

0

dh(1� h) exp �yh 1� h(1� l�2)
f� 2

f

� �� �

(5:92)

the result obtained by Pearson [32]. As the strain goes to

zero Eq. (5.92) has the limiting form

lim
l!1

S(q) ¼ 2

y
(e�y þ y � 1) (5:93)

derived by Debye [33], corresponding to the scattering from

an unperturbed Gaussian coil. Readers interested in scatter-

ing from labeled cross-linked paths in unimodal and bi-

modal networks should consult the review article by

Kloczkowski, Mark, and Erman [25].

5.9 SIMULATIONS OF POLYMERS

System composed of polymers or containing polymers

immersed in low molecular media are extremely complex
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for many reasons. First, polymer chains (linear, branched, or

cyclic) have often a huge molecular mass. Large fraction of

single covalent bonds in the main chain imply at least a

limited internal rotational freedom for each such bond, and

consequently lead to an enormous number of available con-

formational isomers. Second, due to the excluded volume

effect polymer chains are non-Markovian, i.e., conforma-

tional space accessible to a selected portion of the chain

depends on the actual conformation of the remaining frag-

ments. Consequently, a rigorous analytical treatment of

polymer conformational statistics and dynamics is essen-

tially impossible; although various aspects of polymer phys-

ics could be quite successfully addressed within framework

of approximate theories (see the previous sections). Third,

the chain connectivity imposes a complex network of topo-

logical obstacles. A moving chain cannot cross its own

contour or the paths of the other chains present in the

system. This has pronounced consequences for polymer

dynamics in solutions and polymeric melts, where motion

of polymers has to be extremely correlated and the correl-

ation distances are several orders of magnitude larger

than it is observed in typical disordered low molecular

systems. The nature of these correlations could be extremely

complex.

For the above reasons computer simulations are very

important components of methodology of theoretical poly-

mer physics. Properly designed computational experiments

expand our understanding of these complex systems, pro-

vide excellent test of the existing theories and stimulate

development of new theoretical approaches. Due to the

large size, time scales involved, and complexity of poly-

meric systems numerous new simulation techniques have

been developed to meet these extreme computational de-

mands. This way theoretical physics of polymers had sig-

nificant influence on progress in computational physics in

general.

Simulations of polymers could be designed on various

levels of molecular details treated in an explicit way [16–

20, 34–36]. Molecular Dynamics (or Brownian Dynamics)

of all-atom systems are limited to short chains or/and to

studies of local and fast relaxation processes. It is rather

impractical, and often nonfeasible, to do MD simulations of

long polymer collapse or a self diffusion of polymer chain

in a melt, to give just a couple of typical examples. Monte

Carlo simulations of the all-atom systems have a bit less

limitations, but still large scale rearrangements are difficult

to study. For these reasons frequently reduced representa-

tions of polymer conformational space are employed.

These range from united atom models, where groups of

atoms are treated as single interaction units, to lattice

models where entire mers (or large united atoms) are

restricted to a lattice, thereby enormously reducing the

number of available states and simplifying energy calcula-

tions. While simple lattice models are of very limited utility

in the physics of low molecular mass system, for polymers

they provided general solutions to very fundamental prob-

lems. This qualitative difference is strictly related to the

difference in the correlation length scales in the two types

of systems. In polymers the local details become usually

irrelevant at large distances. Because of their importance

for general physics of polymers and educational values we

start from a discussion of simple lattice models of polymers

and polymer dynamics.

5.9.1 Ideal Lattice Chains are Equivalent to Off-lattice

Models

Let us consider a chain restricted to a simple cubic lattice,

with the lattice spacing equal to 1. The chain is a string of

vectors with the six allowed orientations belonging to the

following set {j1,0,0j, j � 1,0,0j, j0,1,0j, j0,� 1,0j, 0,0,1,

j0,0,� 1j}. A chain vector could be followed by any of the

vectors from the set. Thus, there is no any average orienta-

tional correlation between the chain vectors, in spite of the

lattice restrictions. Note, that for this ideal model a lattice

site can be occupied by more than one bead of the chain. It

could be immediately seen that the Eqs. (5.1) and (5.2)

written for the freely joined chain are true as well for the

ideal lattice chain. The models are equivalent, and an exact

analytical theory of their conformational statistics exists.

Such analogy goes much further. Let us now consider a

chain restricted to the diamond lattice with a constant tetra-

hedral value of the valence angle and three discrete values of

the torsional angle corresponding to the trans and two

gauche states. Again, it is easy to note that this model is

equivalent (in respect to its global properties) to the ideal,

freely rotating chain with the tetrahedral value of the planar

angle. It is also easy to show that such chain can mimic the

chain with restricted rotations and interdependent rotations,

provided Boltzmann weights are assigned to the trans and

gauche conformations and proper correlations between the

weights are taken into account.

Equivalence of the ideal continuous and the lattice

models extends also on the dynamic properties of a single

chain. The Rouse model [37,38] , (or the bead and spring

model) consists of a string of points (or beads) of equal mass

connected by harmonic springs of equal length and equal

strength of the harmonic potentials, although without any

angular interactions. An exact analytical solution for the

relaxation spectrum of this model is relatively easy to de-

rive. For the ideal (without excluded volume limitations)

lattice chain a simple model of dynamics, simulated by a

long random sequence of small local conformational

changes, could be formalized in a stochastic Master Equa-

tion of motion. It has been shown by Verdier and Stock-

mayer [39], that such model is equivalent to the Rouse

model [37,38] in almost entire relaxation spectrum, except

the fastest local oscillations involving a couple of chain

segments.
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5.9.2 Simulation of the Excluded Volume Effect

in a Single Chain

The ideal models described in the previous sections

ignored a very important fact, that a polymer has its own

volume, i.e., two segments cannot occupy the same place in

space. Using a series of approximations Flory has shown

that the exclude volume leads to a significant increase of the

average random coil dimensions and changes the number of

accessible conformers. Flory, has also shown that in a

thermodynamically ‘‘poor’’ solvent the proper volume of

the chain segments could be balanced by their mutual at-

tractions, leading to a pseudoideal state, very similar to the

Boyle point for the real gases. Typical, however, is the

situation of a ‘‘good’’ solvent, where the effect of excluded

volume is large. Exact analytical solution to the excluded

volume problem does not exist. It is unknown how to cal-

culate partition function of a single chain, since the prob-

ability of a given conformation of the (nþ1)th bond added

to a chain depends on the conformation of the preceding

n bonds. The process of virtual growth of a ‘‘real’’ (with

excluded volume, in contrast to the ideal, lacking volume

chains) chain is non-Markovian. This is exactly a situation

where the data from computer simulations are needed for

estimations of true (in silico) experimental properties of the

model system and for subsequent evaluation of the assump-

tions and predictions of various approximate theories.

In the context of a simple lattice model the problem could

be formulated as follows. Compute the number of non-self-

intersecting random walks on the lattice and the distribution

of the segment density, size, shape, etc., of the resulting

random coils as a function of the chain length. The first

thought is to use computer for an exact enumeration of all

possible conformations of a n-segment chain. Unfortu-

nately, the number of possible random walks grows expo-

nentially with the chain length. Exact enumeration is

possible only for n range of few tens of segments. In this

range the finite length effects are still large and an extrapo-

lation of the obtained (exact) data to higher values of n is

uncertain. Another approach is to employ a stochastic sam-

pling (Monte Carlo method) to get a ‘‘representative’’ en-

semble of non-self-intersecting random walks of the

assumed length n. There the result is not exact, however

avoids any systematic errors. The magnitude of the statis-

tical error could be always reduced by the increase of the

sample size. The algorithm is very simple.

1. Start from the first bond.

2. Add the next bond in a randomly selected direction (the

simple ‘‘back’’ step could be a priori prohibited and the

resulting bias easily removed from the results).

3. Check for non-self-intersection and repeat from (2) if a

double occupancy of a lattice site is not detected, other-

wise erase the chain and start from (1).

4. Stop the chain growth when the requested length n is

reached and add the chain to the statistical ensemble.

5. Repeat the entire process starting from (1) until the

required number of chain in the sample is collected.

6. Perform statistical analysis of the collected ensemble.

The process of the MC chain growth is illustrated in

Fig. 5.4.

Situations, as that schematically depicted in Fig. 5.4B

happen quite frequently. Therefore, the algorithm outlined

above has a huge sample attrition rate; only a small fraction

of the staring chains are finally accepted in the statistical

A B

FIGURE 5.4. Two dimensional illustration of the MC growth of non-self-intersecting walks (see the text for details). On the left side
(A) an example of the successful structure composed of n ¼ 15 segments is shown. On the right side (B) an intersection has been
detected before reaching n ¼ 15, the final chain length, and the chain has to be removed from the statistical ensemble.
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pool. To overcome this problem Rosenbluth and Rosenbluth

[40] proposed a modified approach. The segments are

selected only from the set of orientations which do not

cause the intermediate chain clash. In the case shown in

Fig. 5.4B the segment number 11 would be selected only

from the following two possibilities; to the left, and to the

top of the plane. Obviously, this introduces a bias to the

sample. This bias could be easily removed with a proper

weighting of the particular conformation with a factorials

depending on the number of the allowed continuations at

each step. The R&R method allows for generation of much

longer chains. Their length is limited by the ‘‘cull-the-sack’’

effect, where the growing chain end is surrounded by the

chain segments, blocking all the possibilities for the further

continuation of the growth process. A number of extensions

of the original R&R method have been proposed since then.

In general, these methods look into possibility of a continu-

ation in a larger perspective than just one segment ahead.

There are several qualitatively different ways of sampling

the polymer conformational space. One may start from a

chain of a given length and successively modify its con-

formation. Two examples of such types of algorithms are

illustrated in Fig. 5.5. One of them is the ‘‘pivot’’ algorithm,

where a single step consist of a random selection of a bond

and a rotation (in two dimensional case it is reduced just to a

flip; vertical or horizontal) of the selected end of the chain.

Advantage of this algorithm is that in a single step a large

modification of the chain conformation is attempted. How-

ever the acceptance rate for longer chain could be rather

small. A number of different global rearrangements of the

chain conformations were designed aiming on a more effi-

cient sampling. An example is the ‘‘reptation’’ algorithm,

where a bond (or a small number of bonds) is cut-off from

one end of the chain and added in a random direction on the

opposite end. The acceptance ratio for this type of global

update algorithms could be quite high. Yet another example

is a technique that could be viewed as a complex ‘‘pivot-

like’’ algorithm, where a part of the chain on one end is

erased and then re-grown in a random or semirandom fash-

ion. Of course, the statistical sample is collected in along

series of attempts (sometimes successful) to successive

modifications of subsequently generated conformations. In

the second type of algorithms (Fig. 5.5A) local micromo-

diffications of the chain conformation are randomly selected

at random position of the chain. Marginally, let us note that

the local move algorithm could be interpreted as a simulated

Brownian motion of a polymer chain. This is a ‘‘real’’ chain

version of the before mentioned Verdier–Stockmayer model

[39] of polymer dynamics. Again, it should be stressed out,

that an accurate analytical theory for the real chain dynam-

ics does not exist. The local move algorithms are powerful

tools for study of long-time (and large scale) polymer dy-

namics. There are however several problems with the

models employing a limited set of local moves and low

coordination number lattices. The algorithms could be none-

rgodic, or rather ergodic in a subset of its full conforma-

tional space. This is explained in Fig. 5.6. There is no path

to- and no path from the conformation shown in the draw-

ing. The problem may be cured using a higher coordination

lattices and/or a larger set of ‘‘less-local’’ micromodiffica-

tions. An example of such larger scale move is shown in

Fig. 5.6B. The backfire of such update of the local move

algorithms is a less clear relation with the model of the

Brownian motion. Perhaps, the ‘‘wave-like’’ move, when

attempted rarely could be interpreted as a particular coinci-

dence of a series of local moves, which somehow were able

to pass the local conformational barriers. An additional flaw

of the low coordination lattice models (beside the ergodicity

A B

FIGURE 5.5. The idea of the pivot algorithm (A), and the local moves algorithm (B). The black contours indicate the initial
structures, the lighter bonds show the accepted modifications. The local moves include (from top to the bottom of B): random chain
end modification, a crankshaft move and a corner move.
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problems) of polymer dynamics is the difficulty of control-

ling the effects of the lattice anisotropy on the observed

motion. Obviously, simple models of polymer conforma-

tions and dynamics, very similar to those described above

could be design in the continuous space. Such models could

be sampled using MD, MC, or via various hybrid sampling

techniques based on a combination of genetic algorithms

(GA) and molecular mechanics (usually MC dynamics). The

results from simplified lattice and off-lattice models are

essentially equivalent. For instance, the average chain

dimensions of the real chain models scale as hS2i � ng.

Interestingly, the value of the universal constant for the

3-dimensional chains is close (but not identical) to the

value resulting from the mean-field analytical theory of

Flory. More qualitative differences are observed between

the results of the ‘‘real’’ chain simulation of the polymer

dynamics and the ideal chain theory of Rouse [37].

5.9.3 Simulations of Polymer Chain Collapse

Polymer chains in solution can undergo a collapse transi-

tion from an expanded random coil state to a dense globular

state. The transition could be induced by decrease of tem-

perature or by adding a ‘‘poor’’ solvent to the solution [41].

This process is difficult to describe analytically, but could

be studied in details via computer simulations. Let us again

consider a very simple lattice model. Representation of

protein conformational state could be done using any kind

of simple lattice. In such context it is easy to design a very

simple potential mimicking the balance between the volume

of the chain segments and their mutual attractions in the

solution. The simplest form of such potential is given below:

Eij ¼
1, for rij < 1

«, for rij ¼ 1

0, for rij > 1:

8
<

: (5:94)

In the formula above rij is the distance between two beads

of the chain, 1 is the lattice spacing, and « is a negative

constant. With « ¼ 0 the model reduces to the model of a

‘‘real’’ chain in a good solvent, where mutual attractions of

the chain segments could be ignored. Energy of the entire

chain is a sum of the binary contributions SEij.

With decreasing temperature (or with increasing strength

of the long-range interactions «) the mean dimensions of the

chain decrease (the solid curve in Fig. 5.7). The curves be-

come steeper with increasing chain length; nevertheless the

collapse transition remains continuous. The dashed horizon-

tal line corresponds to the dimensions of an ideal chain of the

same local geometry. The vertical dashed line denotes the

collapse transition temperature. Slightly higher than ideal

dimensions of the real chain at the transition midpoint are

due to a bit higher prefactor – the scaling of the mean dimen-

sion with the chain length is at this point the same as for an

ideal chain i.e., hS2i � n. At very low temperatures, the

globular state is a dense droplet with hS2i � n2=3. Obviously,

at very high temperatures the chain behaves as the thermal

‘‘real’’ chain discussed in the previous section, i.e., hS2i � ng.

Very interesting are the models where on top of the long

range interactions a local stiffness of the model chain is

superimposed. Let us assume that we are dealing now

with a simple chain restricted to the diamond lattice (al-

though any other lattice or off-lattice model can include

the short-range interactions that simulate the polymer lim-

ited flexibility). Then let us assume that the trans conform-

ation is favored energetically in respect to the two gauche
conformations. At some critical ratio of the potential energy

A B

FIGURE 5.6. A trapped conformation for the algorithm with
only local moves for a chain on the simple square lattice (A). A
longer distance move that guarantees the ergodicity of the
algorithm, where a U shaped fragment at one part of the chain
is cut-off and attached somewhere else (B).

T*= –kBT/e

<
S

 2 >
/n

FIGURE 5.7. Collapse transition of a flexible polymer chain
(solid line) and a semiflexible chain (dashed line) of a limited
length (see the text for an explanation).
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of these two types of local geometries the behavior of a

chain of a limited length changes dramatically. In the range

of high temperatures with decreasing temperature the chain

dimensions increase due to increasing effect of the stiffness.

Relatively long expanded segments could be seen at this

range. At a critical temperature, these ‘‘rods’’ of fluctuating

length coalesce due to a huge decrease of the potential

energy of the long-range interactions for a small entropic

expense. The transition is abrupt, highly cooperative (the

average length of the expanded sequences jumps up at the

transition), and has all features of the first-order phase

transition, including easily detected metastable region, an

‘‘almost’’ singularity of the heat capacity and an extremely

low population of the intermediate states. At the transition

midpoint the simulated molecules adopt essentially only two

types of conformations; swollen random coils with a short

sequences of expanded states and a densely packed, highly

ordered globular state, with much longer sequences of the

expanded local conformations. This behavior of the semi-

flexible model has a number of essential properties of

globular proteins. First, the collapse transition is pseudo

first-order (all-or-none in the language of protein biophys-

ics). Second, it is cooperative and the collapse induces a

sudden increase of the length of the regular expanded frag-

ments, very much as the formation of secondary structure

during the protein folding transition. Third, the collapsed

structure is highly ordered with relatively well defined

(however not unique) number of ‘‘secondary structure’’

expanded elements. Note, that these striking similarities

are observed in the homopolymer model where all polymer

units are the same. This leads to the conclusion that one of

the most important general aspects of protein folding is a

competition between the long-range and the short-range

(stiffness) interactions. In this picture, differentiation of

the interactions along the polypeptide chains (sequence of

amino acids) plays a ‘‘fine-tuning’’ role, selecting the struc-

tural detail of the globular state. This analogy to protein

folding extends even further. As the length of the semiflex-

ible chain increases the ordering of the globular state be-

comes modular – domains are formed upon the collapse.

Each domain can form at slightly different temperature,

within the range of the metastable states shown in Fig. 5.7.

When the number of domains becomes large the collapse

transition becomes continuous, as it should be for any infin-

itely long flexible (or semiflexible) polymer chain. Such

detailed insight into the collapse transition of semiflexible

polymers could be gain only from computer simulations,

although a very approximate theories for a single globule

collapse of semiflexible polymers were published in past.

A single polymer simulations could address also the

issues of chain topology, including the effect of polymer

branching and macrocycles on the thermodynamics of the

collapse transition and the dynamics in a diluted media. This

can be addressed on various levels of details, from a large

scale conformational sampling within a framework of re-

duced models to a detailed molecular mechanics study of

local conformational transitions. For instance, a very inter-

esting simulation of DNA collapse has been recently per-

formed using the bead and string model with a short range

bending potential and the Brownian Dynamics as a sampling

technique. These simulations led to a very plausible and

nontrivial picture of the DNA collapse pathway. It is also

possible to employ a multiscale sampling, where the large

scale relaxations are modeled on a low resolution level and

the details are studied with the all-atom representation.

Finally, it is worth to mention a very broad class of

approaches to a specific problem of polymer collapse tran-

sition, the protein folding transition. This field attracts a lot

of researches due to its importance for molecular biology,

and biotechnology, genetics, and molecular medicine (in-

cluding new drugs design in particular). In the case of the

protein folding problem, the details of physics and the

pathway description of the collapse transition are (at least

by now) of a lesser importance. The mean goal is to predict

the unique structure of protein globular state. The task is

nontrivial, since the copolymers of interest are composed of

twenty different mers (amino acids) and the sequence of

these mers dictates a vast variety of three-dimensional

globular structures, with a very specific local conformations

and their well defined mutual packing in the globule. Two

types of algorithms are now the most successful. The first

one uses a large set of ‘‘prefabricated’’ protein fragments,

extracted from a collection of known three-dimensional

structures, and the sampling scheme are based on an itera-

tive shuffling of these fragments within the simulated chain.

Another approach is more in spirit of the classic polymer

algorithms. It employs a local move schemes, however with

a complex representation of the polypeptide conformational

space and elaborated set of mean field potentials, derived

either from the physical properties of the small molecules or

from statistical analysis of the structural regularities seen in

known structures of globular proteins. An amazing progress

was achieved in this field during the last few years. The

second approach is probably somewhat more general; it

opens a possibility of a qualitative study of protein folding

pathways and molecular mechanisms, not only the predic-

tions of the globular structure. The predictive power of the

both type of approaches are similar. Nevertheless, the sec-

ond one seems to be a bit more open for a wider range of

applications. These applications include the bootstrapped

(resolution- and time-vise multiscale) implementations of

the polypeptide representation and dynamics. Coupling of

the various levels of resolution enables for a quite detailed

study of protein dynamics and thermodynamics. The simu-

lation techniques and models developed specifically for

proteins are easily adaptable for more general applications

in polymer computational physics. [43]

5.9.4 Simulations of Dense Polymeric Systems

Dense polymeric systems include polymer solutions,

polymer networks, polymer melts, polymer liquid crystals
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and solids, and many more. There is a vast body of literature

on each of these subjects [42]. The modeling approaches are

also of great variety, from a simple reduced models (lattice

and continuous) to the detailed molecular mechanics and

even a quantum mechanics. It is beyond scope of this chap-

ter to go through the detail of various applications. Let us

just outline some of problems that could be addressed in

computer simulations, increasing our understanding of com-

plex systems and providing important stimuli for theoretical

studies and practical applications in material science and

biotechnology.

Typical dense polymer solutions and melts are globally

disordered; however the level of local ordering could be

relatively high. This is a very complex phenomenon that

involves long-range correlations that are the results of spe-

cific local interactions. A general insight could be gain from

the low resolution models that allow for study of the large

scale conformational rearrangements; although specific de-

tails could be very sensitive to the atomic structure and

require extensive molecular mechanic study of carefully

selected starting conformations. The same could be said

about the phase transitions in bulk polymers.

The rate polymer diffusion in polymer media spans orders

of magnitude. The mechanism of the process is unclear. It is

very difficult to provide even a qualitative mechanistic

picture how a long chain can move throughout a complex

network of entanglements superimposed by the other

macromolecules. The reptation theory of DeGennes [13] is

probably only qualitatively true and only for very specific

conditions. Simulations could be extremely helpful in at lest

qualitative understanding of this process.

Another challenging (however not really macromolecu-

lar) polymeric system are biological membranes. It is known

from various experiments that the spectrum of relaxation

processes in membranes is extremely wide; from local co-

operative motion of phospholipide chain and occasional

jumping of molecules from one side of a membrane to the

other one to a global flexing of the membrane and formation

of vesicles. Simulations are done on various levels of gen-

eralization. There are mesoscopic model which treat the

membrane as a kind of elastic network, but also a very

detailed all-atom study of membrane structure and local

dynamics. Bootstrapped, multiscale simulations could be a

very promising way to attack this problem.
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