
9

Deterministic Bottom-Up Parsing

There is a great variety of deterministic bottom-up parsing methods. The first de-
terministic parsers (Wolpe [110], Adams and Schlesinger [109]) were bottom-up
parsers and interest has only increased since. The full bibliography of this book on its
web site contains about 280 entries on deterministic bottom-up parsing against some
85 on deterministic top-down parsing. These figures may not directly reflect the rel-
ative importance of the methods, but they are certainly indicative of the fascination
and complexity of the subject of this chapter.

There are two families of deterministic bottom-up parsers:

• Pure bottom-up parsers. This family comprises the precedence and bounded-
(right)-context techniques, and are treated in Sections 9.1 to 9.3.

• Bottom-up parsers with an additional top-down component. This family, which
is both more powerful and more complicated than the pure bottom-up parsers,
consists of the LR techniques and is treated in Sections 9.4 to 9.10.

There are two main ways in which deterministic bottom-up methods are extended to
allow more grammars to be handled:

• Remaining non-determinism is resolved by breadth-first search. This leads to
Generalized LR parsing, which is covered in Section 11.1.

• The requirement that the bottom-up parser does the reductions in reverse right-
most production order (see below and Section 3.4.3.2) is dropped. This leads to
non-canonical parsing, which is covered in Chapter 10.

The proper setting for the subject at hand can best be obtained by summarizing a
number of relevant facts from previous chapters.

• A rightmost production expands the rightmost non-terminal in a sentential form,
by replacing it by one of its right-hand sides, as explained in Section 2.4.3. A
sentence is then produced by repeated rightmost production until no non-terminal
remains. See Figure 9.1(a), where the sentential forms are right-aligned to show
how the production process creeps to the left, where it terminates. The grammar
used is that of Figure 7.8.

264 9 Deterministic Bottom-Up Parsing

S

E

EQF

EQ a

E +a

EQF +a

EQ a+a

E -a+a

F -a+a

a-a+a

(a)

a-a+a

F -a+a

E -a+a

EQ a+a

EQF +a

E +a

EQ a

EQF

E

S

(b)

Fig. 9.1. Rightmost production (a) and rightmost reduction (b)

• Each step of a bottom-up parser, working on a sentential form, identifies the latest
rightmost production in it and undoes it by reducing a segment of the input to the
non-terminal it derived from. The identified segment and the production rule are
called the “handle” (Section 3.4.3.2).

Since the parser starts with the final sentential form of the production process
(that is, the input) it finds its first reduction somewhere near to the left end, which
is convenient for stream-based input. A bottom-up parser identifies rightmost
productions in reverse order. See Figure 9.1(b) where the handles are left-aligned
to show how the reduction process condenses the input.

• To obtain an efficient parser we need an efficient method to identify handles,
without considering alternative choices. So the handle search must either yield
one handle, in which case it must be the proper one, or no handle, in which case
we have found an error in the input.

Although this chapter is called “Deterministic Bottom-Up Parsing”, it is almost
exclusively concerned with methods for finding handles. Once the handle is found,
parsing is (almost always) trivial. The exceptions will be treated separately.

Unlike top-down parsing, which identifies productions before any of its con-
stituents have been identified, bottom-up parsing identifies a production only at its
very end, when all its constituents have already been identified. A top-down parser
allows semantic actions to be performed at the beginning of a production and these
actions can help in determining the semantics of the constituents. In a bottom-up
parser, semantic actions are only performed during a reduction, which occurs at the
end of a production, and the semantics of the constituents have to be determined
without the benefit of knowing in which production they occur. We see that the in-
creased power of bottom-up parsing compared to top-down parsing comes at a price:
since the decision what production applies is postponed to the last moment, that de-
cision can be based upon the fullest possible information, but it also means that the
actions that depend on this decision come very late.

9.1 Simple Handle-Finding Techniques 265

9.1 Simple Handle-Finding Techniques

There is a situation in daily life in which the average citizen is called upon to identify
a handle. If one sees a formula like

4 + 5 × 6 + 8

one immediately identifies the handle and evaluates it:

4 + 5 × 6 + 8

4 + 30 + 8

The next handle is

4 + 30 + 8

34 + 8

and then

34 + 8

42

If we look closely, we can discern shifts and reduces in this process. People doing
the arithmetic shift symbols until they reach the situation

4 + 5 × 6 + 8

in which the control mechanism in their heads tells them that this is the right moment
to do a reduce. If asked why, they might answer something like: “Ah, well, I was
taught in school that multiplication comes before addition”. Before we formalize
this notion and turn it into a parsing method, we consider an even simpler case.

Meanwhile we note that formulas like the one above are called “arithmetic ex-
pressions” and are produced by the grammar of Figure 9.2. S is the start symbol, E

Ss ---> E
E ---> E + T
E ---> T
T ---> T × F
T ---> F
F ---> n
F ---> (E)

Fig. 9.2. A grammar for simple arithmetic expressions

stands for “expression”, T for “term”, F for “factor” and n for any number. Having
n rather than an explicit number causes no problems, since the exact value is imma-
terial to the parsing process. We have demarcated the beginning and the end of the

266 9 Deterministic Bottom-Up Parsing

expression with # marks; the blank space that normally surrounds a formula is not
good enough for automatic processing. The parser accepts the input as correct and
stops when the input has been reduced to #Ss#.

An arithmetic expression is fully parenthesized if each operator together with its
operands has parentheses around it:

Ss ---> E
E ---> (E + T)
E ---> T
T ---> (T × F)
T ---> F
F ---> n

Our example expression would have the form

((4 + (5 × 6)) + 8)

Now finding the handle is trivial: go to the first closing parenthesis and then back to
the nearest opening parenthesis. The segment between and including the parentheses
is the handle and the operator identifies the production rule. Reduce it and repeat the
process as often as required. Note that after the reduction there is no need to start
all over again, looking for the first closing parenthesis: there cannot be any closing
parenthesis on the left of the reduction spot. So we can start searching right where
we are. In the above example we find the next right parenthesis immediately and do
the next reduction:

((4 + 30) + 8)

9.2 Precedence Parsing

Of course, grammars normally do not have these convenient begin- and end markers
to each compound right-hand side, and the above parsing method has little practical
value (as far as we know it does not even have a name). Yet, suppose we had a method
for inserting the proper parentheses into an expression that was lacking them. At a
first glance this seems trivial to do: when we see +n× we know we can replace this
by +(n× and we can replace ×n+ by ×n)+. There is a slight problem with +n+, but
since the first + has to be performed first, we replace this by +n)+. The #s are easy;
we can replace #n by #(n and n# by n)#. For our example we get:

(4 + (5 × 6) + 8)

This is, however, not quite correct — it should have been #((4+(5×6))+8)# —
and for 4+5×6 we get the obviously incorrect form #(4+(5×6)#.

9.2 Precedence Parsing 267

9.2.1 Parenthesis Generators

The problem is that we do not know how many parentheses to insert in, for ex-
ample, +n×: in 4+5×6 we should replace it by +(n× to obtain #(4+(5×6))#,
but 4+5×6×76×8 would require it to be replaced by +(((n×, etc. We solve this
problem by inserting parenthesis generators rather than parentheses. A generator for
open parentheses is traditionally written as �, one for closing parentheses as �; we
shall also use a “non-parenthesis”,

.
=. These symbols look confusingly like <, > and

=, to which they are only remotely related. Now our tentatively inserted parentheses
become firmly inserted parenthesis generators; see Figure 9.3. We have left out the

+ × ⇒ + � ×
× + ⇒ × � +
+ + ⇒ + � +
· · · ⇒ # � · · ·
· · · # ⇒ ·· · � #

Fig. 9.3. Preliminary table of precedence relations

n since the parenthesis generator is dependent on the left and right operators only.
The table in Figure 9.3 is incomplete: the pattern × × is missing, as are all pat-

terns involving parentheses. In principle there should be a pattern for each combi-
nation of two operators (where we count the genuine parentheses as operators), and
only the generator to be inserted is relevant for each combination. This generator is
called the precedence relation between the two operators. It is convenient to collect
all combinations of operators in a table, the precedence table. The precedence table
for the grammar of Figure 9.2 is given in Figure 9.4; the leftmost column contains
the left-hand symbols and the top-most row the right-hand symbols.

+ × ()
#

.
= � � �

+ � � � � �

× � � � � �

(� � �
.
=

) � � � �

Fig. 9.4. Operator-precedence table to the grammar of Figure 9.2

There are three remarks to be made about this precedence table. First, we have
added a number of � and � tokens not covered above (for example, ×�×). Second,
there is #

.
=# and (

.
=) — but there is no)

.
=(! We shall shortly see what they mean.

And third, there are three empty entries. When we find these combinations in the
input, it contains an error.

Such a table is called a precedence table because for symbols that are normally
regarded as operators it gives their relative precedence. An entry like +�× indicates

268 9 Deterministic Bottom-Up Parsing

that in the combination +×, the × has a higher precedence than the +. We shall first
show how the precedence table is used in parsing and then how such a precedence
table can be constructed systematically for a given grammar, if the grammar allows
it.

The stack in an operator-precedence parser differs from the normal bottom-up
parser stack in that it contains “important” symbols, the operators, between which
relations are defined, and “unimportant” symbols, the numbers, which are only con-
sulted to determine the value of a handle and which do not influence the parsing.
Moreover, we need locations on the stack to hold the parenthesis generators between
the operators (although one could, in principle, do without these locations, by reeval-
uating the parenthesis generators again whenever necessary). Since there is a paren-
thesis generator between each pair of operators and there is also (almost) always a
value between such a pair, we shall indicate both in the same position on the stack,
with the parenthesis generator in line and the value below it; see Figure 9.5.

Stack rest of input

4 + 5 × 6 + 8 #(a)

� + � × � + 8
4 5 6

(b)

� + � + 8
4 ×

5 6

(c)

� + �
+

4 ×

5 6

8
(d)

#
.
= #
+

+

4 ×

5 6

8

(e)

Fig. 9.5. Operator-precedence parsing of 4+5×6+8

To show that, contrary to what is sometimes thought, operator-precedence can
do more than just compute a value (and since we have seen too often now that
4+5×6+8=42), we shall have the parser construct the parse tree rather than the
value. The stack starts with a #. Values and operators are shifted onto it, interspersed
with parenthesis generators, until a � generator is met; the following operator is not

9.2 Precedence Parsing 269

shifted and is left in the input (Figure 9.5(b)). It is now easy to identify the handle
segment, which is demarcated by a dotted rectangle in the figure. The operator ×
identifies the type of node to be created, and the handle is now reduced to a tree; see
(c), in which also the next � has already appeared between the + on the stack and the
+ in the input. We see that the tree and the new generator have come in the position of
the � of the handle. A further reduction brings us to (d) in which the + and the 8 have
already been shifted, and then to the final state of the operator-precedence parser, in
which the stack holds #

.
=# and the parse tree dangles from the value position.

We see that the stack only holds � markers and values, plus a � on the top each
time a handle is found. The meaning of the

.
= becomes clearer when we parse an

input text which includes parentheses, like 4×(5+6); see Figure 9.6. We see that the

Stack rest of input

4 × (5 + 6) #(a)

� × � (� + �)
4 5 6

(b)

� × � (
.
=) � #

4 11
(c)

� × �
4 11

(d)

#
.
= #
44

(e)

Fig. 9.6. An operator-precedence parsing involving
.
=

.
= is used to build handles consisting of more than one operator and two operands;
the handle in (c) has two operators, the (and the) and one operand, the 11. Where
the � generates open parentheses and the � generates close parentheses, both of
which cause level differences in the parse tree, the

.
= generates no parentheses and

allows the operands to exist on the same level in the parse tree.
As already indicated on page 200, the set of stack configurations of a bottom-up

parser can be described by a regular expression. For precedence parsers the expres-
sion is easy to see:

| #�q ([�
.
=]q)*

�
? | #

.
=#

where q is any operator; the first alternative is the start situation and the third al-
ternative is the end situation. (Section 9.12.2 will show more complicated regular
expressions for other bottom-up parsers.)

9.2.2 Constructing the Operator-Precedence Table

The above hinges on the difference between operators, which are terminal symbols
and between which precedence relations are defined, and operands, which are non-

270 9 Deterministic Bottom-Up Parsing

terminals. This distinction is captured in the following definition of an operator gram-
mar:

A CF grammar is an operator grammar if (and only if) each right-hand
side contains at least one terminal or non-terminal and no right-hand side
contains two consecutive non-terminals.

So each pair of non-terminals is separated by at least one terminal; all the terminals
except those carrying values (n in our case) are called operators.

For such grammars, setting up the precedence table is relatively easy. First we
compute for each non-terminal A the set FIRSTOP(A), which is the set of all operators
that can occur as the first operator in sentential forms deriving from A. Note that such
a first operator can be preceded by at most one non-terminal in an operator grammar.
The FIRSTOPs of all non-terminals are constructed simultaneously as follows:

1. For each non-terminal A, find all right-hand sides of all rules for A; now for each
right-hand side R we insert the first operator in R (if any) into FIRSTOP(A). This
gives us the initial values of all FIRSTOPs.

2. For each non-terminal A, find all right-hand sides of all rules for A; now for each
right-hand side R that starts with a non-terminal, say B, we add the elements of
FIRSTOP(B) to FIRSTOP(A). This is reasonable, since a sentential form of A may
start with B, so all operators in FIRSTOP(B) should also be in FIRSTOP(A).

3. Repeat step 2 above until no FIRSTOP changes any more. We have now found
the FIRSTOP of all non-terminals.

We will also need the set LASTOP(A), which is defined similarly, and a similar
algorithm, using the last operator in R in step 1 and a B which ends A in step 2
provides it. The sets for the grammar of Figure 9.2 are shown in Figure 9.7.

FIRSTOP(S) = {#} LASTOP(S) = {#}
FIRSTOP(E) = {+, ×, (} LASTOP(E) = {+, ×,)}
FIRSTOP(T) = {×, (} LASTOP(T) = {×,)}
FIRSTOP(F) = {(} LASTOP(F) = {)}

Fig. 9.7. FIRSTOP and LASTOP sets for the grammar of Figure 9.2

Now we can fill the precedence table using the following rules, in which q, q1

and q2 are operators and A is a non-terminal.

• For each occurrence in a right-hand side of the form q1 q2 or q1 A q2, set q1
.
= q2.

This keeps operators from the same handle together.
• For each occurrence q1 A, set q1 � q2 for each q2 in FIRSTOP(A). This demar-

cates the left end of a handle.
• For each occurrence Aq1, set q2�q1 for each q2 in LASTOP(A). This demarcates

the right end of a handle.

If we obtain a table without conflicts this way, that is, if we never find two differ-
ent relations between two operators, then we call the grammar operator-precedence.

9.2 Precedence Parsing 271

It will now be clear why (
.
=) and not)

.
=(in our grammar of Figure 9.2, and why

+�+: because E+ occurs in E--->E+T and + is in LASTOP(E).
In this way, the table can be derived from the grammar by a program and be

passed on to the operator-precedence parser. A very efficient linear-time parser re-
sults. There is, however, one small problem we have glossed over: Although the
method properly identifies the handle segment, it often does not identify the non-
terminal to which to reduce it. Also, it does not show any unit rule reductions;
nowhere in the examples did we see reductions of the form E--->T or T--->F. In short,
operator-precedence parsing generates only skeleton parse trees.

Operator-precedence parsers are very easy to construct (often even by hand) and
very efficient to use; operator-precedence is the method of choice for all parsing
problems that are simple enough to allow it. That only a skeleton parse tree is ob-
tained, is often not an obstacle, since operator grammars often have the property
that the semantics is attached to the operators rather than to the right-hand sides; the
operators are identified correctly.

It is surprising how many grammars are (almost) operator-precedence. Almost all
formula-like computer input is operator-precedence. Also, large parts of the gram-
mars of many computer languages are operator-precedence. An example is a con-
struction like CONST total = head + tail; from a Pascal-like language,
which is easily rendered as:

Stack rest of input

� CONST � = � + �

total head tail
; #

Ignoring the non-terminals has other bad consequences besides producing a
skeleton parse tree. Since non-terminals are ignored, a missing non-terminal is not
noticed. As a result, the parser will accept incorrect input without warning and will
produce an incomplete parse tree for it. A parser using the table of Figure 9.4 will
blithely accept the empty string, since it immediately leads to the stack configuration
#

.
=#. It produces a parse tree consisting of one empty node.

The theoretical analysis of this phenomenon turns out to be inordinately difficult;
see Levy [125], Williams [128, 129, 131] and many others in (Web)Section 18.1.6.
In practice it is less of a problem than one would expect; it is easy to check for the
presence of required non-terminals, either while the parse tree is being constructed
or afterwards — but such a check would not follow from the parsing technique.

9.2.3 Precedence Functions

Although precedence tables require room for only a modest |VT |2 entries, where
|VT | is the number of terminals in the grammar, they can often be represented much
more frugally by so-called precedence functions, and it is usual to do so. The idea is
the following. Rather than having a table T such that for any two operators q1 and
q2, T [q1,q2] yields the relation between q1 and q2, we have two integer functions
f and g such that f (q1) < g(q2) means that q1�q2, f (q1) = g(q2) means q1

.
=q2

272 9 Deterministic Bottom-Up Parsing

and f (q1) > g(q2) means q1�q2. f (q) is called the left priority of q, g(q) the right
priority; they would probably be better indicated by l and r, but the use of f and g
is traditional. It will be clear that two functions are required: with just one function
one cannot express, for example, +�+. Precedence functions take much less room
than precedence tables: 2|VT | entries versus |VT |2 for the table. Not all tables allow a
representation with two precedence functions, but many do.

Finding the proper f and g for a given table seems simple enough and can indeed
often be done by hand. The fact, however, that there are two functions rather than one,
the size of the tables and the occurrence of the

.
= complicate things. An algorithm

to construct the two functions was given by Bell [120]. There is always a way to
represent a precedence table with more than two functions; Bertsch [127] shows
how to construct such functions.

Finding two precedence functions is equivalent to reordering the rows and
columns of the precedence table so that the latter can be divided into three regions:
a � region on the lower left, a � region on the upper right and a

.
= border between

them; see Figure 9.8. The process is similar but not equivalent to doing a topological

) + × (
#

.
= � � �

(
.
= � � �

+ � � � � �

× � � � � �

) � � � �

Fig. 9.8. The precedence table of Figure 9.4 reordered

sort on fq and gq.
Precedence parsing recognizes that many languages have tokens that define the

structure and tokens that carry the information; the first are the operators, the second
the operands. That raises the question whether that difference can be formalized; see
Gray and Harrison [124] for a partial answer, but usually the question is left to the
user.

Some operators are actually composite; the C and Java programming language
conditional expression, which is formed by two parts: x>0?x:0 yields x if x is
greater than 0; otherwise it yields 0. Such distributed operators are called distfix op-
erators. They can be handled by precedence-like techniques; see, for example Peyton
Jones [132] and Aasa [133].

9.2.4 Further Precedence Methods

Operator precedence structures the input in terms of operators only: it yields skeleton
parse trees — correctly structured trees with the terminals as leaves but with unla-
beled nodes — rather than parse trees. As such it is quite powerful, and serves in
many useful programs to this day. In some sense it is even stronger than the more

9.2 Precedence Parsing 273

famous LR techniques: operator precedence can easily handle ambiguous grammars,
as long as the ambiguity remains restricted to the labeling of the tree. We could add a
rule E--->n to the grammar of Figure 9.2 and it would be ambiguous but still operator-
precedence. It achieves its partial superiority over LR by not fulfilling the complete
task of parsing: getting a completely labeled parse tree.

There is a series of more advanced precedence parsers, which do properly label
the parse tree with non-terminals. They were very useful at the time they were in-
vented, but today their usefulness has been eclipsed by the LALR and LR parsers,
which we will treat further on in this chapter (Sections 9.4 through 9.14). We will
therefore only briefly touch upon them here, and refer the reader to the many publi-
cations in (Web)Section 18.1.6.

The most direct way to bring back the non-terminals in the parse tree is to involve
them like the terminals in the precedence relations. This idea leads to simple prece-
dence parsing (Wirth and Weber [118]). A grammar is simple precedence if and only
if:

• it has a conflict-free precedence table over all its symbols, terminals and non-
terminals alike;

• none of its right-hand sides is ε;
• all of its right-hand sides are different.

For example, we immediately have the precedence relations (
.
=E and E

.
=) from the

rule F--->(E).
The construction of the simple-precedence table is again based upon two sets,

FIRSTALL(A) and LASTALL(A). FIRSTALL(A) is similar to the set FIRST(A) from
Section 8.2.1.1, and differs from it in that it also contains all non-terminals that can
start a sentential form derived from A, whereas FIRST(A) contains terminals only. A
similar definition applies to LASTALL(A).

Unfortunately almost no grammar is simple-precedence, not even the simple
grammar of Figure 9.2, since we have (�E in addition to (

.
=E, due to the occur-

rence of (E in F--->(E), and E being in FIRSTALL(E) from E--->E+T. A few other
conflicts also occur. On the bright side, this kind of conflict can often be solved by
inserting extra levels around the troublesome non-terminals, as done in Figure 9.9,
but this brings us farther away from our goal, producing a correct parse tree.

It turns out that most of the simple-precedence conflicts are �/
.
= conflicts. Now

the difference between � and
.
= is in a sense less important than that between either

of them and �. Both � and
.
= result in a shift and only � asks for a reduce. Only

when a reduce is found will the difference between � and
.
= become significant for

finding the left end of the handle. Now suppose we drop the difference between �

and
.
= and combine them into _�; then we need a different means of identifying the

handle segment. This can be done by requiring not only that all right-hand sides be
different, but also that no right-hand side be equal to the tail of another right-hand
side. A grammar that conforms to this and has a conflict-free _�/� precedence table
is called weak precedence (Ichbiah and Morse [121]).

274 9 Deterministic Bottom-Up Parsing

Ss ---> E’
E’ ---> E
E ---> E + T’
E ---> T’
T’ ---> T
T ---> T × F
T ---> F
F ---> n
F ---> (E)

FIRSTALL(E’) = {E, T’, T, F, n, (} LASTALL(E’) = {T’, T, F, n,)}
FIRSTALL(E) = {E, T’, T, F, n, (} LASTALL(E) = {T, F, n,)}
FIRSTALL(T’) = {T, F, n, (} LASTALL(T’) = {F, n,)}
FIRSTALL(T) = {T, F, n, (} LASTALL(T) = {F, n,)}
FIRSTALL(F) = {n, (} LASTALL(F) = {n,)}

E’ E T’ T F n + × ()
#

.
= � � � � � �

E’
.
=

E �
.
=

.
=

T’ � � �

T � �
.
= �

F � � � �

n � � � �

+
.
= � � � �

×
.
= � �

(
.
= � � � � �

) � � � �

Fig. 9.9. Modifying the grammar from Figure 9.2, to obtain a conflict-free simple-precedence
table

Unfortunately the simple grammar of Figure 9.2 is not weak-precedence either.
The right-hand side of E--->T is the tail of the right-hand side of E--->E+T, and upon
finding the stack

· · · _� E
.
= + _� T �

we do not know whether to reduce with E--->T or with E--->E+T. Several tricks are
possible: taking the longest reduce, looking deeper on the stack, etc.

The above methods determine the precedence relations by looking at 1 symbol
on the stack and 1 token in the input. Once this has been said, the idea suggests itself
to generalize this and to determine the precedence relations from the topmost m
symbols on the stack and the first n tokens in the input. This is called (m,n)-extended
precedence (Wirth and Weber [118]). For many entries in the table checking the full
length on the stack and in the input is overkill, and ways have been found to use just

9.3 Bounded-Right-Context Parsing 275

enough information, thus greatly reducing the table sizes. This technique is called
mixed-strategy precedence (McKeeman [123]).

9.3 Bounded-Right-Context Parsing

There is a different way to solve the annoying problem of the identification of the
right-hand side: let the identity of the rule be part of the precedence relation. This
means that for each combination of, say, m symbols on the stack and n tokens in the
input there should be a unique parsing decision which is either “shift” (_�) or “reduce
using rule X” (�X), as obtained by a variant of the rules for extended precedence.
The parser is then a form of bounded-right-context. Figure 9.10 gives such tables
for m = 2 and n = 1 for the grammar of Figure 9.2; these tables were constructed
by hand. The rows correspond to stack symbol pairs; the entry Accept means that

+ × n ()
#S Accept
#E �S--->E _� Error
#T �E--->T �E--->T _� Error
#F �T--->F �T--->F �T--->F Error
#n �F--->n �F--->n �F--->n Error Error Error
#(Error Error Error _� _� Error
E+ Error Error Error _� _� Error
E) �F--->(E) �F--->(E) �F--->(E) Error Error �F--->(E)

T× Error Error Error _� _� Error
+T �E--->E+T �E--->E+T _� �E--->E+T

+F �T--->F �T--->F �T--->F �T--->F

+n �F--->n �F--->n �F--->n Error Error �F--->n

+(Error Error Error _� _� Error
×F �T--->T×F �T--->T×F �T--->T×F �T--->T×F

×n �F--->n �F--->n �F--->n Error Error �F--->n

×(Error Error Error _� _� Error
(E Error _� _�
(T Error �E--->T _� �E--->T

(F Error �T--->F �T--->F �T--->F

(n Error �F--->n �F--->n Error Error �F--->n

((Error Error Error _� _� Error

Fig. 9.10. BC(2,1) table for the grammar of Figure 9.2

the input has been parsed and Error means that a syntax error has been found. Blank
entries will never be accessed; all-blank rows have been left out. See, for example,
Loeckx [122] for an algorithm for the construction of such tables.

276 9 Deterministic Bottom-Up Parsing

9.3.1 Bounded-Context Techniques

The table of Figure 9.10 represents a variant of bounded-context, or more precisely,
a particular implementation of bounded-right-context. To understand the bounded-
context idea we have to go back to the basic bottom-up parsing algorithm explained
in Section 3.2.2: find a right-hand side anywhere in the sentential form and reduce it.
But we have already seen that often such a reduction creates a node that is not a node
of the final parse tree, and backtracking is needed. For example, when we reduce the
second n in #n×n# to F we have created a node that belongs to the parse tree. We
obtain #n×F#, but if we now reduce the F to T, obtaining #n×T#, we have gone one
step too far, and will no longer get a parsing. So why is the first reduction OK, and
the second is not?

In bounded-context parsing the proposed reductions are restricted by context con-
ditions. A right-hand side α of a rule A → α found in a sentential form can only be
reduced to A if it appears in the right context, β1αβ2. Here β1 is the left context, β2

the right one. Both contexts must be of bounded length, hence “bounded context”;
either or both can be ε.

Using these contexts, it is easy to see from the grammar that n in the context
×· · ·# can be reduced to F, but F in the context ×· · ·# cannot be reduced to T, al-
though in the context +· · ·# it could. Turning this intuition into an algorithm is very
difficult. A grammar is bounded-context if no segment β1αβ2 that results from a
production A → α in a sentential form can result in any other way. If that condition
holds, we can, upon seeing the context pattern β1αβ2, safely reduce to β1Aβ2. If the
maximum length of β1 is m and that of β2 is n, the grammar is BC(m,n).

Finding sufficient and non-conflicting contexts is a difficult affair, which is
sketched by Floyd [117]. Because of this difficulty, bounded-context is of no con-
sequence as a parsing method; but bounded-context grammars are important in er-
ror recovery (Richter [313], Ruckert [324]) and substring parsing (Cormack [211],
Ruckert [217]), since they allow parsing to be resumed in arbitrary positions. This
property is treated in Section 16.5.2.

If all right contexts in a bounded-context grammar contain terminals only, the
grammar and its parser are bounded-right-context, or BRC(m,n). Much more is
known about bounded-right-context than about general bounded-context, and exten-
sive table construction algorithms are given by Eickel et al. [115] and Loeckx [122].
Table construction is marginally easier for BRC than for BC, but it can handle fewer
grammars.

The implementation of BRC parsing as sketched above is awkward: to try a re-
duction A → α in the context β1 · · ·β2 the top of the stack must be tested for the
presence of α, which is of variable length, and then β1 on the stack and β2 in the in-
put must be verified; repeat for all rules and all contexts. It is much more convenient
to represent all triplets (β1αβ2) as pairs (β1α,β2) in a matrix, like the one in Figure
9.10; in this way β1α and β2 are basically the left and right contexts of the parsing
decision at the gap between stack and rest of input:

9.3 Bounded-Right-Context Parsing 277

αβ1 β2

left context of
prospective rhs

right context of
prospective rhs

left context of
parsing decision

right context of
parsing decision

As a final step the left contexts are cut to equal lengths, in such a way that enough
information remains. This is usually easily done; see Figure 9.10. This brings BRC
parsing in line with the other table-driven bottom-up parsing algorithms.

Although some publications do not allow it, BC and BRC parsers can handle
nullable non-terminals. If we add the rule E--->ε to the grammar of Figure 9.2, the
context (,) is strong enough to conclude that reducing with E--->ε is correct.

Bounded-right-context is much more prominent than bounded-context, but since
it is more difficult to pronounce, it is often just called “bounded-context”; this some-
times leads to considerable confusion. BRC(2,1) is quite powerful and was once
very popular, usually under the name “BC(2,1)”, but has been superseded almost
completely by LALR(1) (Section 9.7).

It should be pointed out that bounded-context can identify reductions in non-
canonical order, since a context reduction may be applied anywhere in the sentential
form. Such a reduction can then result in a non-terminal which is part of the right
context of another reduction pattern. So bounded context actually belongs in Chapter
10, but is easier to understand here.

If in bounded-right-context we repeatedly apply the first context reduction we
find in a left-to-right sweep, we identify the reductions in canonical order, since the
right context is free from non-terminals all the time, so no non-canonical reductions
are needed.

If during table construction for a bounded-context parser we find that a segment
β1αβ2 produced from β1Aβ2 can also be produced otherwise, we can do two things:
we can decide that the grammar is not BC and give up, or we can decide not to
include the segment in our table of reduction contexts and continue. In doing so we
now run the risk of losing some parsings, unless we can prove that for any sentential
form there is at least one reduction context left. If that is the case, the grammar is
bounded-context parsable or BCP. Constructing parse tables for BCP(m,n) is even
more difficult than for BC or BRC, but the method can handle substantially more
grammars than either; Williams [193] has the details.

Note that the parsing method is the same for BRC, BC and BCP; just the parse
table construction methods differ.

9.3.2 Floyd Productions

Bounded-context parsing steps can be summarized conveniently by using Floyd pro-
ductions. Floyd productions are rules for rewriting a string that contains a marker, ∆,
on which the rules focus. A Floyd production has the form α∆β => γ∆δ and means

278 9 Deterministic Bottom-Up Parsing

that if the marker in the string is preceded by α and is followed by β, the construction
must be replaced by γ∆δ. The rules are tried in order starting from the top and the
first one to match is applied; processing then resumes on the resulting string, starting
from the top of the list, and the process is repeated until no rule matches.

Although Floyd productions were not primarily designed as a parsing tool but
rather as a general string manipulation language, the identification of the ∆ in the
string with the gap in a bottom-up parser suggests itself and was already made in
Floyd’s original article [113]. Floyd productions for the grammar of Figure 9.2 are
given in Figure 9.11. The parser is started with the ∆ at the left of the input.

∆ n => n ∆
∆ (=> (∆
n ∆ => F ∆
T ∆ × => T× ∆
T×F ∆ => T ∆
F ∆ => T ∆
E+T ∆ => E ∆
T ∆ => E ∆
(E) ∆ => F ∆
∆ + => + ∆
∆) =>) ∆
∆ # => # ∆
#E# ∆ => S ∆

Fig. 9.11. Floyd productions for the grammar of Figure 9.2

The apparent convenience and conciseness of Floyd productions makes it very
tempting to write parsers in them by hand, but Floyd productions are very sensitive
to the order in which the rules are listed and a small inaccuracy in the order can have
a devastating effect.

9.4 LR Methods

The LR methods are based on the combination of two ideas that have already been
touched upon in previous sections. To reiterate, the problem is to find the handle in a
sentential form as efficiently as possible, for as large a class of grammars as possible.
Such a handle is searched for from left to right. Now, from Section 5.10 we recall
that a very efficient way to find a string in a left-to-right search is by constructing a
finite-state automaton. Just doing this is, however, not good enough. It is quite easy
to construct an FS automaton that would recognize any of the right-hand sides in
the grammar efficiently, but it would just find the leftmost reducible substring in the
sentential form. This substring, however, often does not identify the correct handle.

The idea can be made practical by applying the same trick that was used in the
Earley parser to drastically reduce the fan-out of the breadth-first search (see Sec-
tion 7.2): start the automaton with the start rule of the grammar and only consider,

9.4 LR Methods 279

in any position, right-hand sides that could be derived from the start symbol. This
top-down restriction device served in the Earley parser to reduce the cost to O(n3),
here we require the grammar to be such that it reduces the cost to O(n). The result-
ing automaton is started in its initial state at the left end of the sentential form and
allowed to run to the right. It has the property that it stops at the right end of the
handle segment and that its accepting state tells us how to reduce the handle; if it
ends in an error state the sentential form was incorrect. Note that this accepting state
is an accepting state of the handle-finding automaton, not of the LR parser; the latter
accepts the input only when it has been completely reduced to the start symbol.

Once we have found the handle, we follow the standard procedure for bottom-up
parsers: we reduce the handle to its parent non-terminal as described at the beginning
of Chapter 7. This gives us a new “improved” sentential form, which, in principle
should be scanned anew by the automaton from the left, to find the next handle. But
since nothing has changed in the sentential form between its left end and the point of
reduction, the automaton will go through the same movements as before, and we can
save it the trouble by remembering its states and storing them between the tokens
on the stack. This leads us to the standard setup for an LR parser, shown in Figure
9.12 (compare Figure 7.1). Here s1 is the initial state, sg· · ·sb are the states from

s1 tg sg Nf sf te se td sd Nc sc Nb sb ta sa t1 t2 t3 · ·

Cut

Stack Rest of input

states, terminals
and non-terminals

terminals
only

partial parse
trees

Fig. 9.12. The structure of an LR parse

previous scans, and sa is the top, deciding, state.
By far the most important component in an LR parser is the handle-finding au-

tomaton, and there are many methods to construct one. The most basic one is LR(0)
(Section 9.5); the most powerful one is LR(1) (Section 9.6); and the most practical
one is LALR(1) (Section 9.7). In its decision process the LR automaton makes a very
modest use of the rest of the input (none at all for LR(0) and a one-token look-ahead
for LR(1) and LALR(1)); several extensions of LR parsing exist that involve the rest
of the input to a much larger extent (Sections 9.13.2 and 10.2).

Deterministic handle-finding automata can be constructed for any CF grammar,
which sounds promising, but the problem is that an accepting state may allow the
automaton to continue searching in addition to identifying a handle (in which case
we have a shift/reduce conflict), or identify more than one handle (and we have a
reduce/reduce conflict). (Both types of conflicts are explained in Section 9.5.3.) In

280 9 Deterministic Bottom-Up Parsing

other words, the automaton is deterministic; the attached semantics is not. If that
happens the LR method used is not strong enough for the grammar. It is easy to
see that there are grammars for which no LR method will be strong enough; the
grammar of Figure 9.13 produces strings consisting of an odd number of as, the
middle of which is the handle. But finding the middle of a string is not a feature of

Ss ---> a S a | a

Fig. 9.13. An unambiguous non-deterministic grammar

LR parsers, not even of the extended and improved versions.
As with the Earley parser, LR parsers can be improved by using look-ahead, and

almost all of them are. An LR parser with a look-ahead of k tokens is called LR(k).
Just as the Earley parser, it requires k end-of-input markers to be appended to the
input; this implies that an LR(0) parser does not need end-of-input markers.

9.5 LR(0)

Since practical handle-finding FS automata easily get so big that their states cannot
be displayed on a single page of a book, we shall use the grammar of Figure 9.14 for
our examples. It describes very simple arithmetic expressions, terminated with a $.

1. Ss ---> E $
2. E ---> E - T
3. E ---> T
4. T ---> n
5. T ---> (E)

Fig. 9.14. A very simple grammar for differences of numbers

An example of a string in the language is n-(n-n)$; the n stands for any number.
The only arithmetic operator in the grammar is the -; it serves to remind us that the
proper parse tree must be derived, since (n-n)-n$ is not the same as n-(n-n)$.

9.5.1 The LR(0) Automaton

We set out to construct a top-down-restricted handle-recognizing FS automaton for
the grammar of Figure 9.14, and start by constructing a non-deterministic version.
We recall that a non-deterministic automaton can be drawn as a set of states con-
nected by arrows (transitions), each marked with one symbol or with ε. Each state
will contain one item. Like in the Earley parser an item consists of a grammar rule
with a dot • embedded in its right-hand side. An item X → ·· ·Y•Z · · · in a state

9.5 LR(0) 281

means that the NFA bets on X → ·· ·Y Z · · · being the handle and that it has already
recognized · · ·Y . Unlike the Earley parser there are no back-pointers.

To simplify the explanation of the transitions involved, we introduce a second
kind of state, which we call a station. It has only ε-arrows incoming and outgoing,
contains something of the form •X and is drawn in a rectangle rather than in an
ellipse. When the automaton is in such a station at some point in the sentential form,
it assumes that at this point a handle starts which reduces to X . Consequently each
•X station has ε-transitions to items for all rules for X , each with the dot at the
left end, since no part of the rule has yet been recognized; see Figure 9.15. Equally
reasonably, each state holding an item X →·· ·•Z · · · has an ε-transition to the station
•Z, since the bet on an X may be over-optimistic and the automaton may have to
settle for a Z. The third and last source of arrows in the NFA is straightforward. From
each state containing X → ·· ·•P · · · there is a P-transition to the state containing
X → ·· ·P•· · · , for P a terminal or a non-terminal. This corresponds to the move the
automaton makes when it really meets a P. Note that the sentential form may contain
non-terminals, so transitions on non-terminals should also be defined.

With this knowledge we refer to Figure 9.15. The stations for S, E and T are

•S

S--->•E$

E

S--->E•$

$

S--->E$•

ε

•E

E--->•E-T

E

E--->E•-T

-

E--->E-•T

T

E--->E-T•

ε

E--->•T

T

E--->T•

ε

•T

T--->•n

n

T--->n•

ε

T--->•(E)

(

T--->(•E)

E

T--->(E•)

)

T--->(E)•

ε
ε

ε ε

ε

ε

Fig. 9.15. A non-deterministic handle recognizer for the grammar of Figure 9.14

drawn at the top of the picture, to show how they lead to all possible items for S, E
and T, respectively. From each station ε-arrows fan out to all states containing items
with the dot at the left, one for each rule for the non-terminal in that station; from
each such state non-ε-arrows lead down to further states. Now the picture is almost

282 9 Deterministic Bottom-Up Parsing

complete. All that needs to be done is to scan the items for a dot followed by a non-
terminal (readily discernible from the outgoing arrow marked with it) and to connect
each such item to the corresponding station through an ε-arrow. This completes the
picture.

There are three things to be noted about this picture. First, for each grammar
rule with a right-hand side of length l there are l +1 items and they are easily found
in the picture. Moreover, for a grammar with r different non-terminals, there are r
stations. So the number of states is roughly proportional to the size of the grammar,
which assures us that the automaton will have a modest number of states. For the
average grammar of a hundred rules something like 300 states is usual. The second
thing to note is that all states have outgoing arrows except the ones which contain a
reduce item, an item with the dot at the right end. These are accepting states of the
automaton and indicate that a handle has been found; the item in the state tells us
how to reduce the handle. The third thing to note about Figure 9.15 is its similarity
to the recursive transition network representation of Section 2.8.

We shall now run this NFA on the sentential form E-n-n$, to see how it works.
As in the FS case we can do so if we are willing to go through the trouble of re-
solving the non-determinism on the fly. The automaton starts at the station •S and
can immediately make ε-moves to S--->•E$, •E, E--->•E-T, E--->•T, •T, T--->•n and
T--->•(E). Moving over the E reduces the set of items to S--->E•$ and E--->E•-T;
moving over the next - brings us at E--->E-•T from which ε-moves lead to •T,
T--->•n and T--->•(E). Now the move over n leaves only one item: T--->n•. Since
this is a reduce item, we have found a handle segment, n, and we should reduce it
to T using T--->n. See Figure 9.16. This reduction gives us a new sentential form,
E-T-n$, on which we can repeat the process.

•S
S--->•E$
•E

E--->•E-T
E--->•T
•T

T--->•n
T--->•(E)

E
S--->E•$
E--->E•-T

-

E--->E-•T
•T

T--->•n
T--->•(E)

n T--->n• - n $

Fig. 9.16. The sets of NFA states while analysing E-n-n$

We see that there are two ways in which new items are produced: through ε-
moves and through moving over a symbol. The first way yields items of the form
A → •α, and such an item derives from an item of the form X → β•Aγ in the same
state. The second way yields items of the form A → ασ•β where σ is the token we
moved over; such an item derives from an item of the form A → α•σβ in the parent
state.

9.5 LR(0) 283

Just as in the FS case (page 144) we have described an interpreter for the non-
deterministic handle recognizer, and the first thing we need to do is to make the NFA
deterministic, if we are to use this parsing method in earnest. We use the subset con-
struction of Section 5.3.1 to construct a deterministic automaton with the sets of the
items of Figure 9.15 as its states. The result is shown in Figure 9.17, where we have

S--->•E$
E--->•E-T
E--->•T
T--->•n
T--->•(E)

1

T
E--->T•

2
T

T--->(•E)
E--->•E-T
E--->•T
T--->•n

T--->•(E)

6

T--->n•

3
n n

S--->E•$
E--->E•-T

4
-

E--->E-•T
T--->•n

T--->•(E)
7

- T--->(E•)
E--->E•-T

9

S--->E$•

5

$

E--->E-T•

8
T

T--->(E)•

10

)

E

n

(E

(

(

Fig. 9.17. The corresponding deterministic handle recognizer

left out the stations to avoid clutter and because they are evident from the other items.
We see that the deterministic automaton looks a lot less understandable than Figure
9.15; this is the price one has to pay for having determinism. Yet we see that the
subset construction has correctly identified the subsets we had already constructed
by hand in Figure 9.16. This type of automaton is called an LR(0) automaton.

9.5.2 Using the LR(0) Automaton

It is customary to number the states of the deterministic automaton, as has already
been done in Figure 9.17 (the order of the numbers is arbitrary; they serve identifica-
tion purposes only). Now it has become much easier to represent the sentential form
with its state information, both in a program and in a drawing:

① E ④ - ⑦ n ③ - n $

The sequence ① ④ ⑦ ③ can be read from Figure 9.17 using the path E-n. We start
with state ① on the stack and shift in symbols from the sentential form, all the while
assessing the new states. As soon as an accepting state shows up on the top of the
stack (and it cannot show up elsewhere on the stack) the shifting stops and a reduce
is called for; the accepting state indicates how to reduce. Accepting state ③ calls for
a reduction T--->n, so our new sentential form will be E-T-n$.

284 9 Deterministic Bottom-Up Parsing

Repeating the handle-finding process on this new form we obtain the configura-
tion

① E ④ - ⑦ T ⑧ - n $

which shows us two things. First, the automaton has landed in state ⑧ and thus
identified a new reduction, E--->E-T, which is correct. Second, we see here the effect
already hinted at in Figure 9.12: by restarting the automaton at the beginning of the
sentential form we have done superfluous work. Up to state ⑦, that is, up to the left
end of the handle T--->n, nothing had changed, so we could have saved work if we
had remembered the old states ①, ④, and ⑦ between the symbols in the sentential
form.

This leads to the following LR(0) parsing algorithm:

1. Consult the state s on top of the stack; it is either an accepting state specifying a
reduction X → α or it is a non-accepting state.
a) If s is an accepting state, unstack |α| pairs of symbols and states from the

stack, where |α| is the length of the right-hand side α. The unstacked sym-
bols constitute the children in the parse tree for X ; see Figure 9.12. Next we
push X onto the stack. We have now reduced α to X .

b) If s is a non-accepting state, shift the next token from the input onto the
stack.

2. The top of the stack is now a non-terminal (1a.) or terminal (1b.) symbol T , with
a state u under it. Find state u in the LR(0) automaton and follow the path marked
T starting from that state.
a) If this leads to a state v, push v onto the stack.
b) Otherwise the input is erroneous.

Two things are important about this algorithm. The first is that if we start with a
consistent stack configuration (each triple of state, symbol, and state on the stack
corresponds to a transition in the LR(0) automaton) the stack configuration will again
be consistent afterwards. And the second is that it does the proper reductions, and
thus does the parsing we were looking for.

Note that the state u exposed after a reduction can never call for another reduc-
tion: if it did, that reduction would already have been performed earlier.

We see that LR(0) parsing is performed in two steps: 1. the top state indicates
an action, shift or reduce with a given rule, which is then performed; 2. a new top
state is computed by going from one state through a transition to another state. It
is convenient to represent an LR(0) automaton in an ACTION table and a GOTO
table, both indexed by states. The GOTO table has columns indexed by symbols; the
ACTION table has just one column. In step 1 we consult the ACTION table based
on the state; in step 2 we index the GOTO table with a given symbol and a given
state to find the new state. The LR(0) ACTION and GOTO tables for the automaton
of Figure 9.17 are given in Figure 9.18.

Suppose we find state 6 on top of the stack and the next input token is n. The
ACTION table tells us to shift, and then the GOTO table, at the intersection of 6 and
n, tells us to stack the state 3. And the ACTION table for state 3 tells us to reduce

9.5 LR(0) 285

ACTION

1 shift
2 E ---> T
3 T ---> n
4 shift
5 S ---> E $
6 shift
7 shift
8 E ---> E - T
9 shift

10 T ---> (E)

GOTO
n - () $ E T

1 3 e 6 e e 4 2
2
3
4 e 7 e e 5
5
6 3 e 6 e e 9 2
7 3 e 6 e e 8
8
9 e 7 e 10 e

10

Fig. 9.18. LR(0) ACTION and GOTO tables for the grammar of Figure 9.14

using T--->n. An entry “e” means that an error has been found: the corresponding
symbol cannot legally appear in that position. A blank entry will never even be con-
sulted: either the state calls for a reduction or the corresponding symbol will never at
all appear in that position, regardless of the form of the input. In state 4, for example,
we will never meet an E: the E would have originated from a previous reduction, but
no reduction would do that in that position. Since non-terminals are only put on the
stack in legal places no empty entry on a non-terminal will ever be consulted.

In practice the ACTION entries for reductions do not directly refer to the rules to
be used, but to the numbers of these rules. These numbers are then used to index an
array of routines that have built-in knowledge of the rules, that know how many en-
tries to unstack and that perform the semantic actions associated with the recognition
of the rule in question. Parts of these routines will be generated by a parser generator.
Also, the reduce and shift information is combined in one table, the ACTION/GOTO
table, with entries of the forms “sN”, “rN” or “e”. An entry “sN” means “shift the
input symbol onto the stack and go to state N”, which is often abbreviated to “shift
to N”. An entry “rN” means “reduce by rule number N”; the shift over the resulting
non-terminal has to be performed afterwards. And “e” means error, as above. The
ACTION/GOTO table for the automaton of Figure 9.17 is given in Figure 9.19.

Tables like in Figures 9.18 and 9.19 contain much empty space and are also quite
repetitious. As grammars get bigger, the parsing tables get larger and they contain
progressively more empty space and redundancy. Both can be exploited by data com-
pression techniques and it is not uncommon that a table can be reduced to 15% of
its original size by the appropriate compression technique. See, for example, Al-
Hussaini and Stone [67] and Dencker, Dürre and Heuft [338].

The advantages of LR(0) over precedence and bounded-right-context are clear.
Unlike precedence, LR(0) immediately identifies the rule to be used for reduction,
and unlike bounded-right-context, LR(0) bases its conclusions on the entire left con-
text rather than on the last m symbols of it. In fact, LR(0) can be seen as a clever
implementation of BRC(∞,0), i.e., bounded-right-context with unrestricted left con-
text and zero right context.

286 9 Deterministic Bottom-Up Parsing

n - () $ E T
1 s3 e s6 e e s4 s2
2 r3 r3 r3 r3 r3 r3 r3
3 r4 r4 r4 r4 r4 r4 r4
4 e s7 e e s5
5 r1 r1 r1 r1 r1 r1 r1
6 s3 e s6 e e s9 s2
7 s3 e s6 e e s8
8 r2 r2 r2 r2 r2 r2 r2
9 e s7 e s10 e

10 r5 r5 r5 r5 r5 r5 r5

Fig. 9.19. The ACTION/GOTO table for the grammar of Figure 9.14

9.5.3 LR(0) Conflicts

By now the reader may have the vague impression that something is wrong. On
the one hand we claim that there is no known method to make a linear-time parser
for an arbitrary grammar; on the other we have demonstrated above a method that
seems to work for an arbitrary grammar. An NFA as in Figure 9.15 can certainly be
constructed for any grammar, and the subset construction will certainly turn it into
a deterministic one, which will definitely not require more than linear time. Voilà, a
linear-time parser.

The problem lies in the accepting states of the deterministic automaton. An ac-
cepting state may still have an outgoing arrow, say on a symbol +, and if the next
symbol is indeed a +, the state calls for both a reduction and for a shift: the combina-
tion of automaton and interpretation of the accepting states is not really deterministic
after all. Or an accepting state may be an honest accepting state but call for two dif-
ferent reductions. The first problem is called a shift/reduce conflict and the second
a reduce/reduce conflict. Figure 9.20 shows examples (which derive from a slightly
different grammar than in Figure 9.14).

E--->T•+E
E--->T•

+

shift/reduce conflict
(on +)

E--->E-T•
E--->T•

reduce/reduce conflict
(always)

Fig. 9.20. Two types of conflict

Note that there cannot be a shift/shift conflict. A shift/shift conflict would imply
that two different arrows leaving the same state would carry the same symbol. This
is, however, prevented by the subset algorithm (which would have made into one the
two states the arrows point to).

9.5 LR(0) 287

A state that contains a conflict is called an inadequate state. A grammar that
leads to a deterministic LR(0) automaton with no inadequate states is called LR(0).
The absence of inadequate states in Figure 9.17 proves that the grammar of Figure
9.14 is LR(0).

9.5.4 ε-LR(0) Parsing

Many grammars would be LR(0) if they did not have ε-rules. The reason is that a
grammar with a rule A → ε cannot be LR(0): from any station P → ·· ·•A · · · an ε-
arrow leads to a state A→• in the non-deterministic automaton, which causes a DFA
state containing both the shift item P → ···•A · · · and the reduce item A → •. And
this state is inadequate, since it exhibits a shift/reduce conflict. We shall now look at
a partial solution to this obstacle: ε-LR(0) parsing.

The idea is to do the ε-reductions required by the reduce part of the shift/reduce
conflict already while constructing the DFA. Normally reduces cannot be precom-
puted since they require the first few top elements of the parsing stack, but obviously
that problem does not exist for ε-reductions.

The grammar of Figure 9.21, a variant of the one in Figure 7.17, contains an ε-
rule and hence is not LR(0). (The ε-rule is intended to represent multiplication.) The

Ss ---> E $
E ---> E Q F
E ---> F
F ---> a
Q ---> /
Q ---> ε

Fig. 9.21. An ε-LR(0) grammar

start item S--->•E$ leads to E--->•EQF by an ε-move, and from there to E--->E•QF
by a move over E. This item has two ε-moves, to Q--->•/ and to Q--->•; the second
causes a shift/reduce conflict. Following the above plan, we apply the offending rule
to the item E--->E•QF, but the resulting item cannot be E--->EQ•F, for two reasons.
First, the same item would result from finding a / in the input; and second, there is
no corresponding Q on the parsing stack. So we mark the Q in the new item with a
stroke on top: Q̄, to indicate that it does not correspond to a Q on the parse stack, a
kind of non-Q.

We can now remove the item Q--->• since it has played its part; the shift/reduce
conflict is gone, and a deterministic handle recognizer results. This means that the
grammar is ε-LR(0); the deterministic handle recognizer is shown in Figure 9.22.
The endangered state is state 4; the state that would result in “normal” LR(0) parsing
is also shown, marked 4✘. We see that the immediate reduction Q--->ε and the sub-
sequent shift over Q have resulted in an item F--->•a that is not present in the pure
LR(0) state 4✘.

288 9 Deterministic Bottom-Up Parsing

S--->•E$
E--->•EQF
E--->•F
F--->•a

1

E--->F•

2

F

S--->E•$
E--->E•QF
Q--->•/

E--->EQ̄•F
F--->•a

4

E

F--->a•

3

a a

E--->EQ•F
F--->•a

5

Qa

E--->EQ̄F•
E--->EQF•

6

F

F

Q--->/•

7/

S--->E$•

8

$ S--->E•$
E--->E•QF
Q--->•/
Q--->•

4✘

Fig. 9.22. Deterministic ε-LR(0) automaton for the grammar of Figure 9.21

In addition to the ε-reductions during parser table construction, ε-LR(0) parsing
has another feature: when constructing the states of the deterministic handle recog-
nizer, items that differ only in the presence or absence of bars over non-terminals are
considered equal. So while the transition over F from state 4 yields an item E--->EQ̄F•
and that from state 5 yields E--->EQF•, both transitions lead to state 6, which contains
both items.

This feature has two advantages and one problem. The first advantage is that with
this feature more grammars are ε-LR(0) than without it, although this plays no role
in our example. The second is that the semantics of a single rule, the E--->EQF in our
example, is not split up over several items.

The problem is of course that we now have a reduce/reduce conflict. This problem
is solved dynamically — during parsing — by checking the parse stack. If it contains

① E ④ Q ⑤ F ⑥ · · ·

we know the Q was there; we unstack 6 elements, perform the semantics of E--->EQF,
and push an E. If the parse stack contains

① E ④ F ⑥ · · ·

we know the Qwas not there; we unstack 2 elements, create a node for Q--->ε, unstack
2 more elements, perform the semantics of E--->EQF, and push an E. Note that this
modifies the basic behavior of the LR automaton, and it could thus be argued that
ε-LR(0) parsing actually is not an LR technique.

Besides allowing grammars to be handled that would otherwise require much
more complicated methods, ε-LR(0) parsing has the property that the non-terminals
on the stack all correspond to non-empty segments of the input. This is obviously
good for efficiency, but also very important in some more advanced parsing methods,
for example generalized LR parsing (Section 11.1.4).

For more details on ε-LR(0) parsing and the related subject of hidden left recur-
sion see Nederhof [156, Chapter 4], and Nederhof and Sarbo [94]. These also supply
examples of grammars for which combining items with different bar properties is
beneficial.

9.5 LR(0) 289

9.5.5 Practical LR Parse Table Construction

Above we explained the construction of the deterministic LR automaton (for exam-
ple Figure 9.17) as an application of the subset algorithm to the non-deterministic
LR automaton (Figure 9.15), but most LR parser generators (and many textbooks
and papers) follow more closely the process indicated in Figure 9.16. This process
combines the creation of the non-deterministic automaton with the subset algorithm:
each step of the algorithm creates a transition u

t→ v, where u is an existing state
and v is a new or old state. For example, the first step in Figure 9.16 created the

transition ①
E→ ④. In addition the algorithm must do some bookkeeping to catch du-

plicate states. The LR(0) version works as follows; other LR parse table construction
algorithms differ only in details.

The algorithm maintains a data structure representing the deterministic LR han-
dle recognizer. Several implementations are possible, for example a graph like the
one in Figure 9.17. Here we will assume it to consist of a list of pairs of states (item
sets) and numbers, called S, and a set of transitions T . S represents the bubbles in
the graph, with their contents and numbers; T represents the arrows. The algorithm
also maintains a list U of numbers of new, unprocessed LR states. Since there is a
one-to-one correspondence between states and state numbers we will use them inter-
changeably.

The algorithm starts off by creating a station •A, where A is the start symbol of
the grammar. This station is expanded, the resulting items are wrapped into a state
numbered 1, the state is inserted into S, and its number is inserted in U . An item or a
station I is expanded as follows:

1. If the dot is in front of a non-terminal A in I, create items of the form A → •·· ·
for all grammar rules A → ·· · ; then expand these items recursively until no more
new items are created. The result of expanding I is the resulting item set; note
that this is a set, so there are no duplicates. (This implements the ε-transitions in
the non-deterministic LR automaton.)

2. If the dot is not in front of a non-terminal in I, the result of expanding I is just I.

The LR automaton construction algorithm repeatedly removes a state u from the
list U and processes it by performing the following actions on it for all symbols
(terminals and non-terminals) t in the grammar:

1. An empty item set v is created.
2. The algorithm finds items of the form A → α•tβ in u. For each such item a new

item A → αt•β is created, the kernel items. (This implements the vertical tran-
sitions in the non-deterministic LR automaton.) The created items are expanded
as described above and the resulting items are inserted in v.

3. If state v is not already present in S, it is new and the algorithm adds it to U .
Then v is added to S and the transition u

t→ v is added to T . Here u was already
present in S; the transition is certainly new to T ; and v may or may not be new
to S. Note that v may be empty; it is then the error state.

290 9 Deterministic Bottom-Up Parsing

Since the above algorithm constructs all transitions, even those to error states, it
builds a complete automaton (page 152).

The algorithm terminates because the work to be done is extracted from the list
U , but only states not processed before are inserted in U . Since there are only a finite
number of states, there must come a moment that there are no new states any more,
after which the list U will become empty. And since the algorithm only creates states
that are reachable and since only a very small fraction of all states are reachable, that
moment usually arrives very soon.

9.6 LR(1)

Our initial enthusiasm about the clever and efficient LR(0) parsing technique will
soon be damped considerably when we find out that very few grammars are in fact
LR(0). If we drop the $ from rule 1 in the grammar of Figure 9.14 since it does not
really belong in arithmetic expressions, we find that the grammar is no longer LR(0).
The new grammar is given in Figure 9.23, the non-deterministic automaton in Figure
9.24, and the deterministic one in Figure 9.25. State 5 has disappeared, since it was
reached by a transition on $, but we have left the state numbering intact to facilitate
comparison; a parser generator would of course number the states consecutively.

1. S ---> E
2. E ---> E - T
3. E ---> T
4. T ---> n
5. T ---> (E)

Fig. 9.23. A non-LR(0) grammar for differences of numbers

When we inspect the new LR(0) automaton, we observe to our dismay that state 4
(marked ✘) is now inadequate, exhibiting a shift/reduce conflict on -, and the gram-
mar is not LR(0). This is all the more vexing as this is a rather stupid inadequacy:
S--->E• can never occur in front of a - but only in front of a #, the end-of-input
marker, so there is no real problem at all. If we had developed the parser by hand, we
could easily test in state 4 if the symbol ahead was a - or a # and act accordingly (or
else there was an error in the input). Since, however, practical parsers have hundreds
of states, such manual intervention is not acceptable and we have to find algorithmic
ways to look at the symbol ahead.

Taking our cue from the explanation of the Earley parser,1 we attach to each
dotted item a look-ahead symbol. We shall separate the look-ahead symbol from the
item by a space rather than enclose it between []s as we did before, to avoid visual

1 Actually LR parsing was invented (Knuth [52, 1965]) before Earley parsing (Earley [14,
1970]).

9.6 LR(1) 291

•S

S--->•E

E

S--->E•

ε

•E

E--->•E-T

E

E--->E•-T

-

E--->E-•T

T

E--->E-T•

ε

E--->•T

T

E--->T•

ε

•T

T--->•n

n

T--->n•

ε

T--->•(E)

(

T--->(•E)

E

T--->(E•)

)

T--->(E)•

ε
ε

ε ε

ε

ε

Fig. 9.24. NFA for the grammar in Figure 9.23

S--->•E
E--->•E-T
E--->•T
T--->•n
T--->•(E)

1

T
E--->T•

2
T

T--->(•E)
E--->•E-T
E--->•T
T--->•n

T--->•(E)

6

T--->n•

3
n n

S--->E•
E--->E•-T

4✘

-
E--->E-•T
T--->•n

T--->•(E)
7

- T--->(E•)
E--->E•-T

9

E--->E-T•

8
T

T--->(E)•

10

)

E

n

(E

(

(

Fig. 9.25. Inadequate LR(0) automaton for the grammar in Figure 9.23

clutter. The construction of a non-deterministic handle-finding automaton using this
kind of item, and the subsequent subset construction yield an LR(1) parser.

We shall now examine Figure 9.26, the NFA. Like the items, the stations have
to carry a look-ahead symbol too. Actually, a look-ahead symbol in a station is more
natural than that in an item: a station like •E # just means hoping to see an E fol-
lowed by a #. The parser starts at station •S #, which has the end marker # as
its look-ahead. From it we have ε-moves to all production rules for S, of which

292 9 Deterministic Bottom-Up Parsing

•S #

S--->•E #

E

S--->E• #

ε

•E #

E--->•E-T #

E

E--->E•-T #

-

E--->E-•T #

T

E--->E-T• #

ε

E--->•T #

T

E--->T• #

ε

•T #

T--->•n #

n

T--->n• #

ε

T--->•(E) #

(

T--->(•E) #

E

T--->(E•) #

)

T--->(E)• #

ε

•E -

E--->•E-T -

E

E--->E•-T -

-

E--->E-•T -

T

E--->E-T• -

ε

E--->•T -

T

E--->T• -

ε

•T -

T--->•n -

n

T--->n• -

ε

T--->•(E) -

(

T--->(•E) -

E

T--->(E•) -

)

T--->(E)• -

ε

•E)

E--->•E-T)

E

E--->E•-T)

-

E--->E-•T)

T

E--->E-T•)

ε

E--->•T)

T

E--->T•)

ε

•T)

T--->•n)

n

T--->n•)

ε

T--->•(E))

(

T--->(•E))

E

T--->(E•))

)

T--->(E)•)

ε

ε

ε

ε

ε

ε

ε ε

ε

ε

ε

ε

ε

ε

Fig. 9.26. Non-deterministic LR(1) automaton for the grammar in Figure 9.23

there is only one; this yields the item S--->•E #. This item necessitates the sta-
tion •E #; note that we do not automatically construct all possible stations as we
did for the LR(0) automaton, but only those to which there are actual moves from
elsewhere in the automaton. The station •E # produces two items by ε-transitions,
E--->•E-T # and E--->•E #. It is easy to see how the look-ahead propagates. The
item E--->•E-T # in turn necessitates the station •E -, since now the automaton
can be in the state “hoping to find an E followed by a -”. The rest of the automaton
will hold no surprises.

9.6 LR(1) 293

Look-aheads of items are directly copied from the items or stations they derive
from; Figure 9.26 holds many examples. The look-ahead of a station derives either
from the symbol following the originating non-terminal:

the item E--->•E-T leads to station •E -

or from the previous look-ahead if the originating non-terminal is the last symbol in
the item:

the item S--->•E # leads to station •E #

There is a complication which does not occur in our example. When a non-terminal
is followed by another non-terminal:

P →•QR

there will be ε-moves from this item to all stations •Q y, where for y we have to fill in
all terminals in FIRST(R). This is reasonable since all these and only these symbols
can follow Q in this particular item. It will be clear that this is a rich source of
stations. More complications arise when the grammar contains ε-rules, for example
when R can produce ε; these are treated in Section 9.6.1.

The next step is to run the subset algorithm of page 145 on this automaton to
obtain the deterministic automaton; if the automaton has no inadequate states, the
grammar was LR(1) and we have obtained an LR(1) parser. The result is given in
Figure 9.27. As was to be expected, it contains many more states than the LR(0)

S--->•E #
E--->•E-T #
E--->•E-T -
E--->•T -
T--->•n -

T--->•(E) -
E--->•T #
T--->•n #

T--->•(E) #

1

T E--->T• -
E--->T• #

2

T--->(•E) -
T--->(•E) #
E--->•E-T)
E--->•T)
T--->•n)

T--->•(E))
E--->•E-T -
E--->•T -
T--->•n -

T--->•(E) -

6

T--->n• -
T--->n• #

3
n

S--->E• #
E--->E•-T #
E--->E•-T -

4

-

E--->E-•T #
E--->E-•T -
T--->•n #

T--->•(E) #
T--->•n -

T--->•(E) -
7

T--->(E•) -
T--->(E•) #
E--->E•-T)
E--->E•-T -

11

E--->E-T• #
E--->E-T• -

8

T

T--->(E)• -
T--->(E)• #

12

)

E
n

(

(

T E--->T• -
E--->T•)

9

T

T--->(•E) -
T--->(•E))
E--->•E-T)
E--->•T)
T--->•n)

T--->•(E))
E--->•E-T -
E--->•T -
T--->•n -

T--->•(E) -

13

T--->n• -
T--->n•)

10
n n

-

E--->E-•T)
E--->E-•T -
T--->•n)

T--->•(E))
T--->•n -

T--->•(E) -
14

-
T--->(E•) -
T--->(E•))
E--->E•-T)
E--->E•-T -

16

-

E--->E-T•)
E--->E-T• -

15

T

T--->(E)• -
T--->(E)•)

17

)

E
n

(
E

(

(

Fig. 9.27. Deterministic LR(1) automaton for the grammar in Figure 9.23

automaton although the 60% increase is very modest, due to the simplicity of the
grammar. An increase of a factor of 10 or more is more likely in practice. (Although
Figure 9.27 was constructed by hand, LR automata are normally created by a parser
generator exclusively.)

294 9 Deterministic Bottom-Up Parsing

We are glad but not really surprised to see that the problem of state 4 in Figure
9.25 has been resolved in Figure 9.27: on # reduce using S--->E, on - shift to state 7
and on any other symbol give an error message.

It is again useful to represent the LR(1) automaton in an ACTION and a GOTO
table; they are shown in Figure 9.28 (state 5 is missing, as explained on page 290).
The combined ACTION/GOTO table can be obtained by superimposing both tables;
this results in the LR(1) parsing table as it is used in practice.

ACTION
n - () #

1 s e s e e
2 e r3 e e r3
3 e r4 e e r4
4 e s e e r1
6 s e s e e
7 s e s e e
8 e r2 e e r2
9 e r3 e r3 e

10 e r4 e r4 e
11 e s e s e
12 e r5 e e r5
13 s e s e e
14 s e s e e
15 e r2 e r2 e
16 e s e s e
17 e r5 e r5 e

GOTO
n - () # S E T

1 3 6 accept 4 2
2
3
4 7
6 10 13 11 9
7 3 6 8
8
9

10
11 14 12
12
13 10 13 16 9
14 10 13 15
15
16 14 17
17

Fig. 9.28. LR(1) ACTION and GOTO tables for the grammar of Figure 9.23

The sentential form E-n-n# leads to the following configuration:

① E ④ - ⑦ n ③ - n #

and since the look-ahead is -, the correct reduction T--->n is indicated.
All stages of the LR(1) parsing of the string n-n-n are given in Figure 9.29.

Note that state ④ in h causes a shift (look-ahead -) while in l it causes a reduce
(look-ahead #).

When we compare the ACTION and GOTO tables in Figures 9.28 and 9.18, we
find two striking differences. First, the ACTION table now has several columns and
is indexed with the look-ahead token in addition to the state; this is as expected. What
is less expected is that, second, all the error entries have moved to the ACTION table.
The reason is simple. Since the look-ahead was taken into account when constructing
the ACTION table, that table orders a shift only when the shift can indeed be per-
formed, and the GOTO step of the LR parsing algorithm does not need to do checks
any more: the blank entries in the GOTO table will never be accessed.

9.6 LR(1) 295

a ① n-n-n# shift
b ① n ③ -n-n# reduce 4
c ① T ② -n-n# reduce 3
d ① E ④ -n-n# shift
e ① E ④ - ⑦ n-n# shift
f ① E ④ - ⑦ n ③ -n# reduce 4
g ① E ④ - ⑦ T ⑧ -n# reduce 2
h ① E ④ -n# shift
i ① E ④ - ⑦ n# shift
j ① E ④ - ⑦ n ③ # reduce 4
k ① E ④ - ⑦ T ⑧ # reduce 2
l ① E ④ # reduce 1
m ① S # accept

Fig. 9.29. LR(1) parsing of the string n-n-n

It is instructive to see how the LR(0) and LR(1) parsers react to incorrect input,
for example E-nn· · · . The LR(1) parser of Figure 9.28 finds the error as soon as the
second n appears as a look-ahead:

① E ④ - ⑦ n ③ n· · ·
since the pair (3,n) in the ACTION table yields “e”; the GOTO table is not even
consulted. The LR(0) parser of Figure 9.18 behaves differently. After reading E-n it
is in the configuration

① E ④ - ⑦ n ③ n· · ·
where entry 3 in the ACTION table tells it to reduce by T--->n:

① E ④ - ⑦ T ⑧ n· · ·
and now entry 8 in the ACTION table tells it to reduce again, by E--->E-T this time:

① E ④ n· · ·
Only now is the error found, since the pair (4,n) in the GOTO table in Figure 9.18
yields “e”.

Since the LR(0) automaton has fewer states than the LR(1) automaton, it retains
less information about the input to the left of the handle; since it does not use look-
ahead it uses less information about the input to the right of the handle. So it is not
surprising that the LR(0) automaton is less alert than the LR(1) automaton.

9.6.1 LR(1) with ε-Rules

In Section 3.2.2 we have seen that one has to be careful with ε-rules in bottom-up
parsers: they are hard to recognize bottom-up. Fortunately LR(1) parsers are strong
enough to handle them without problems. In the NFA, an ε-rule is nothing special;
it is just an exceptionally short list of moves starting from a station (see station •Bc
in Figure 9.31(a)). In the deterministic automaton, the ε-reduction is possible in all

296 9 Deterministic Bottom-Up Parsing

states of which the ε-rule is a member, but hopefully its look-ahead sets it apart
from all other rules in those states. Otherwise a shift/reduce or reduce/reduce conflict
results, and indeed the presence of ε-rules in a grammar raises the risks of such
conflicts and reduces the likelihood of the grammar being LR(1).

S ---> A B c
A ---> a
B ---> b
B ---> ε

Fig. 9.30. A simple grammar with an ε-rule

•S #

S--->•ABc #

A

S--->A•Bc #

B

S--->AB•c #

c

S--->ABc• #

ε

•A b

A--->•a b

a

A--->a• b

ε

•A c

A--->•a c

a

A--->a• c

ε

•B c

B--->ε• c

ε

B--->•b c

b

B--->b• c

εε

ε

ε

(a)

S--->•ABc #
A--->•a c
A--->•a b

1

A--->a• c
A--->a• b

2

a

S--->A•Bc #
B--->ε• c
B--->•b c

3

A

B
S--->AB•c #

5

c

S--->ABc• #

6

B--->b• c

4

b

(b)

Fig. 9.31. Non-deterministic and deterministic LR(1) automata for Figure 9.30

To avoid page-filling drawings, we demonstrate the effect using the trivial gram-
mar of Figure 9.30. Figure 9.31(a) shows the non-deterministic automaton, Figure
9.31(b) the resulting deterministic one. Note that no special actions were necessary
to handle the rule B--->ε.

9.6 LR(1) 297

The only complication occurs again in determining the look-ahead sets in rules
in which a non-terminal is followed by another non-terminal; here we meet the same
phenomenon as in an LL(1) parser (Section 8.2.2.1). Given an item, for example,
P → •ABC d where d is the look-ahead, we are required to produce the look-ahead
set for the station •A · · · . If B had been a terminal, it would have been the look-ahead.
Now we take the FIRST set of B, and if B produces ε (is nullable) we add the FIRST
set of C since B can be transparent and allow us to see the first token of C. If C is
also nullable, we may even see d, so in that case we also add d to the look-ahead set.
The result of these operations can be written as FIRST(BCd). The new look-ahead
set cannot turn out to be empty: the sequence of symbols from which it is derived
(the BCd above) always ends in the original look-ahead set, and that was not empty.

9.6.2 LR(k > 1) Parsing

Instead of a one-token look-ahead k tokens can be used, with k > 1. Surprisingly, this
is not a straightforward extension of LR(1). The reason is that for k > 1 we also need
to compute look-ahead sets for shift items. That this is so can be seen from the LR(2)
grammar of Figure 9.32. It is clear that the grammar is not LR(1): the input must start

1. Ss ---> Aa | Bb | Cec | Ded
2. A ---> qE
3. B ---> qE
4. C ---> q
5. D ---> q
6. E ---> e

Fig. 9.32. An LR(2) Grammar

with a q but the parser cannot see if it should reduce by C--->q (look-ahead e), reduce
by D--->q (look-ahead e), or shift over e. But each choice has a different two-token
look-ahead set (ec, ed and {ea, eb}, respectively), so LR(2) should work.

The initial state, state 1, in the LR(2) parser for this grammar is

S--->•Aa ##
S--->•Bb ##
S--->•Cec ##
S--->•Ded ##
A--->•qE a#
B--->•qE b#
C--->•q ec
D--->•q ed

which calls for a shift over the q. After this shift the parser reaches a state

298 9 Deterministic Bottom-Up Parsing

A--->q•E a#
B--->q•E b#
C--->q• ec
D--->q• ed
E--->•e a#
E--->•e b#

where we still have the same shift/reduce conflict: there are two reduce items, C--->q•
and D--->q• with look-aheads ec and ed, and one shift item, E--->•e, which shifts
on an e.

The conflict goes away when we realize that for each item I two kinds of look-
aheads are involved: the item look-ahead, the set of strings that can follow the end of
I; and the dot look-ahead, the set of strings that can follow the dot in I. For parsing
decisions it is the dot look-ahead that counts, since the dot position corresponds with
the gap in an LR parser, so the dot look-ahead corresponds to the first k tokens of
the rest of the input. Note that for reductions the item look-ahead seems to be the
deciding factor, but since the dot is at the end in reduce items, the item look-ahead
coincides with the dot look-ahead. In an LR(1) parser the dot look-ahead of a shift
item I coincides with the set of tokens on which there is a shift from the state I resides
in, so there is no need to compute it separately, but as we have seen above, this is not
true for an LR(2) parser.

So we compute the full two-token dot look-aheads for the shift items to obtain
state 2:

item with dot look-
item look-ahead ahead
A--->q•E a# ea
B--->q•E b# eb
C--->q• ec ec
D--->q• ed ed
E--->•e a# ea
E--->•e b# eb

Now the conflict is resolved since the two reduce actions and the shift action all have
different dot look-aheads: shift on ea and eb, reduce to C on ec, and reduce to D on
ed.

More in general, the dot look-ahead of an item A → α•β γ, where γ is the item
look-ahead, can be computed as FIRSTk(βγ).

Parts of the ACTION and GOTO tables for the LR(2) parser for the grammar in
Figure 9.32 are given in Figure 9.33. The ACTION table is now indexed by look-
ahead strings of length 2 rather than by single tokens, but the GOTO table is still
indexed by single symbols, since each entry in a GOTO table represents a transi-
tion in the handle-finding automaton, and transitions consume just one symbol. As
a result, superimposing the two tables into one ACTION/GOTO table is no longer
possible; combined ACTION/GOTO tables are a feature of LR(1) parsing only (and,
with some handwaving, of LR(0)). Again all the error detection is done in the AC-
TION table.

9.6 LR(1) 299

ACTION
qe ea eb ec ed · · ·

1 s e e e e · · ·
2 e s s r4 r5 · · ·
3 · · ·
4 · · ·
...

...

GOTO
q a b c d e E · · ·

1 2 · · ·
2 3 4 · · ·
3 · · ·
4 · · ·
...

...

Fig. 9.33. Partial LR(2) ACTION and GOTO tables for the grammar of Figure 9.32

It is interesting to compare this to LR(0), where there is no look-ahead at all.
There the ACTION table offers no protection against impossible shifts, and the
GOTO table has to contain error entries. So we see that the LR(0), LR(1), and
LR(k > 1) table construction algorithms differ in more than just the value of k: LR(0)
needs a check upon shift; LR(k > 1) needs the computation of dot look-ahead; and
LR(1) needs either but not both. It is of course possible to design a combined algo-
rithm, but for all values of k part of it would not be activated.

However interesting LR(k > 1) parsing may be, its practical value is quite limited:
the required tables can assume gargantuan size (see, e.g., Ukkonen [66]), and it does
not really help much. Although an LR(2) parser is more powerful than an LR(1)
parser, in that it can handle some grammars that the other cannot, the emphasis is on
“some”. If a common-or-garden variety grammar is not LR(1), chances are minimal
that it is LR(2) or higher.

9.6.3 Some Properties of LR(k) Parsing

Some theoretically interesting properties of varying practical significance are briefly
mentioned here. It can be proved that any LR(k) grammar with k > 1 can be trans-
formed into an LR(k−1) grammar (and so to LR(1), but not always to LR(0)), often
at the expense of an enormous increase in size; see for example Mickunas, et al.
[407]. It can be proved that if a language allows parsing with a pushdown automaton
as described in Section 3.3, it has an LR(1) grammar; such languages are called de-
terministic languages. It can be proved that if a grammar can be handled by any of
the deterministic methods of Chapters 8 and 9, it can be handled by an LR(k) parser
(that is, all deterministic methods are weaker than or equally strong as LR(k)). It
can be proved that any LR(k) language can be obtained as a regular expression, the
elements of which are LR(0) languages; see Bertsch and Nederhof [96].

LR(k≥1) parsers have the immediate error detection property: they will stop at
the first incorrect token in the input and not even perform another shift or reduce. This
is important because this early error detection property allows a maximum amount
of context to be preserved for error recovery; see Section 16.2.6. We have seen that
LR(0) parsers do not have this property.

In summary, LR(k) parsers are the strongest deterministic parsers possible and
they are the strongest linear-time parsers known, with the exception of some non-

300 9 Deterministic Bottom-Up Parsing

canonical parsers; see Section 10. They react to errors immediately, are paragons of
virtue and beyond compare, but even after 40 years they are not widely used.

9.7 LALR(1)

The reader will have sensed that our journey has not yet come to an end; the goal of a
practical, powerful, linear-time parser has still not been attained completely. At their
inception by Knuth in 1965 [52], it was realized that LR(1) parsers would be imprac-
tical in that the space required for their deterministic automata would be prohibitive.
A modest grammar might already require hundreds of thousands or even millions of
states, numbers that were totally incompatible with the computer memories of those
days.

In the face of this difficulty, development of this line of parsers came to a stand-
still, partially interrupted by Korenjak’s invention of a method to partition the gram-
mar, build LR(1) parsers for each of the parts and combine these into a single over-all
parser (Korenjak [53]). This helped, but not much, in view of the added complexity.

The problem was finally solved by using an unlikely and discouraging-looking
method. Consider the LR(1) automaton in Figure 9.27 and imagine boldly discarding
all look-ahead information from it. Then we see that each state in the LR(1) automa-
ton reverts to a specific state in the LR(0) automaton; for example, LR(1) states 6
and 13 collapse into LR(0) state 6 and LR(1) states 2 and 9 collapse into LR(0) state
2. We say that LR(1) states 6 and 13 have the same core, the items in the LR(0) state
6, and similarly for LR(1) states 2 and 9.

There is not a single state in the LR(1) automaton that was not already present
in a rudimentary form in the LR(0) automaton. Also, the transitions remain intact
during the collapse: both LR(1) states 6 and 13 have a transition to state 9 on T, but
so has LR(0) state 6 to 2. By striking out the look-ahead information from an LR(1)
automaton, it collapses into an LR(0) automaton for the same grammar, with a great
gain as to memory requirements but also at the expense of the look-ahead power.
This will probably not surprise the reader too much, although a formal proof of this
phenomenon is not trivial.

The idea is now to collapse the automaton but to keep the look-ahead informa-
tion, as follows. The LR(1) state 2 (Figure 9.27) contains the items

E--->T• -
E--->T• #

and LR(1) state 9 contains

E--->T• -
E--->T•)

where the LR(0) core is

E--->T•
E--->T•

9.7 LALR(1) 301

They collapse into an LALR(1) state which corresponds to the LR(0) state 2 in Figure
9.25, but now with look-ahead:

E--->T• #
E--->T• -
E--->T•)

The surprising thing is that this procedure preserves almost all the original look-
ahead power and still saves an enormous amount of memory. The resulting automa-
ton is called an LALR(1) automaton, for “Look Ahead LR(0) with a look-ahead of 1
token.”

The LALR(1) automaton for our grammar of Figure 9.23 is given in Figure 9.34.
The look-aheads are sets now and are shown between [and], so state 2 is repre-

S--->•E[#]
E--->•E-T[#-]
E--->•T[#-]
T--->•n[#-]

T--->•(E)[#-]

1

T
E--->T•[#-)]

2
T

T--->(•E)[#-)]
E--->•E-T[#-)]
E--->•T[#-)]
T--->•n[#-)]

T--->•(E)[#-)]

6

T--->n•[#-)]

3
n n

S--->E•[#]
E--->E•-T[#-]

4
-

E--->E-•T[#-)]
T--->•n[#-)]

T--->•(E)[#-)]
7

- T--->(E•)[#-)]
E--->E•-T[-)]

9

E--->E-T•[#-)]

8
T

T--->(E)•[#-)]

10

)

E

n

(E

(

(

Fig. 9.34. The LALR(1) automaton for the grammar of Figure 9.23

sented as E--->T• [#-)]. We see that the original conflict in state 4 is indeed still
resolved, as it was in the LR(1) automaton, but that its size is equal to that of the
LR(0) automaton. Now that is a very fortunate state of affairs!

We have finally reached our goal. LALR(1) parsers are powerful, almost as
powerful as LR(1) parsers, they have fairly modest memory requirements, only
slightly inferior to (= larger than) those of LR(0) parsers,2 and they are time-efficient.
LALR(1) parsing may very well be the most-used parsing method in the world today.
Probably the most famous LALR(1) parser generators are yacc and its GNU version
bison.

LALR(k) also exists and is LR(0) with an add-on look-ahead of k tokens.
LALR(k) combines LR(0) information about the left context (in the LR(0) automa-

2 Since the LALR(1) tables contain more information than the LR(0) tables (although they
have the same size), they lend themselves slightly less well to data compression. So practi-
cal LALR(1) parsers will be bigger than LR(0) parsers.

302 9 Deterministic Bottom-Up Parsing

ton) with LR(k) information about the right context (in the k look-aheads). Actually
there is a complete family of LA(k)LR(j) parsers out there, which combines LR(j)
information about the left context with LR(k) information about the right context.
Like LALR(1), they can be derived from LR(j + k) parsers in which all states with
identical cores and identical first k tokens of the j + k-token look-ahead have coin-
cided. So LALR(1) is actually LA(1)LR(0), Look-ahead Augmented (1) LR (0). See
Anderson [55].

9.7.1 Constructing the LALR(1) Parsing Tables

When we have sufficiently drunk in the beauty of the vista that spreads before us on
these heights, and start thinking about returning home and actually building such a
parser, it will come to us that there is a small but annoying problem left. We have
understood how the desired parser should look and also seen how to construct it, but
during that construction we used the unacceptably large LR(1) parser as an interme-
diate step.

So the problem is to find a shortcut by which we can produce the LALR(1)
parse table without having to construct the one for LR(1). This particular prob-
lem has fascinated scores of computer scientists for many years (see the references
in (Web)Section 18.1.4), and several good (and some very clever) algorithms are
known. On the other hand, several deficient algorithms have appeared in publica-
tions, as DeRemer and Pennello [63] and Kannapinn [99] have pointed out. (These
algorithms are deficient in the sense that they do not work for some grammars for
which the straightforward LR(1) collapsing algorithm does work, rather than in the
sense that they would lead to incorrect parsers.)

Since LALR(1) is clearly a difficult concept; since we hope that each new LALR
algorithm contributes to its understandability; and since we think some algorithms
are just too interesting to skip, we have allowed ourselves to discuss four LALR(1)
parsing table construction algorithms, in addition to the one above. We present 1. a
very simple algorithm, which shows that constructing an LALR(1) parsing table is
not so difficult after all; 2. the algorithm used in the well-known parser generator
yacc; 3. an algorithm which creates LALR(1) by upgrading LR(0); and 4. one that
does it by converting the grammar to SLR(1). This is also the order in which the
algorithms were discovered.

9.7.1.1 A Simple LALR(1) Algorithm

The easiest way to keep the LALR(1) parse table small is to never let it get big.
We achieve this by collapsing the states the moment they are created, rather than
first creating all states and then collapsing them. We start as if we are making a full
LR(1) parser, propagating look-aheads as described in Section 9.6, and we use the
table building technique of Section 9.5.5. In this technique we create new states by
performing transitions from existing unprocessed states obtained from a list U , and if
the created state v is not already present in the list of processed states S, the algorithm
adds it to U so it can be the source of new transitions.

9.7 LALR(1) 303

For our LALR(1) algorithm we refine this step as follows. We check v to see if
there is already a state w in S with the same core. If so, we merge v into w; if this
modifies w, we put w back in U as an unprocessed state: since it has changed, it may
lead to new and different states. If w was not modified, no new information has come
to light and we can just extract the next unprocessed state from U ; v itself is discarded
in both cases. The state w keeps its number and its transitions; it is important to note
that when w is processed again, its transitions are guaranteed to lead to states whose
cores are already present in S and T .

The merging makes sure that the cores of all states in S are always different, as
they should be in an LALR(1) parser; so never during the process will the table be
larger than the final LALR(1) table. And by putting all modified states back into
the list to be processed we have ensured that all states with their proper LALR(1)
look-aheads will be found eventually. This surprisingly simple algorithm was first
described by Anderson et al. [56] in 1973.

The algorithm is not ideal. Although it solves the main problem of LALR(1)
parse table generation, excessive memory use, it still generates almost all LR(1)
states, of which there are many more than LALR(1) states. The only situation in
which we gain time over LR(1) parse table generation is when merging the created
state v into an existing state w does not modify w. But usually v will bring new look-
aheads, so usually w will change and will then be reprocessed. Computer scientists,
especially compiler writers, felt the need for a faster LALR(1) algorithm, which led
to the techniques described in the following three sections.

9.7.1.2 The Channel Algorithm

The well-known parser generator yacc uses an algorithm that is both intuitively rel-
atively clear and reasonably efficient (Johnson [361]); it is described in more detail
by Aho, Sethi and Ullman in [340]. The algorithm does not seem to have a name; we
shall call it the channel algorithm.

We again use the grammar of Figure 9.23, which we now know is LALR(1) (but
not LR(0)). Since we want to do look-ahead but do not yet know what to look for,
we use LR(0) items extended with a yet unknown look-ahead field, indicated by an
empty square; an example of an item would be A--->bC•De �. Using such items,
we construct the non-deterministic LR(0) automaton in the usual fashion; see Figure
9.35. Now suppose that we were told by some oracle what the look-ahead set of the
item S--->•E � is (first column, second row in Figure 9.35); call this look-ahead set
L. Then we could draw a number of conclusions. The first is that the item S--->E• �

also has L. The next is that the look-ahead set of the station •E� is also L, and from
there L spreads to E--->•E-T, E--->E•-T, E--->E-•T, E--->E-T•, E--->•T and E--->T•.
From E--->E-•T and E--->•T it flows to the station •T and from there it again spreads
on.

The flow possibilities of look-ahead information from item to item once it is
known constitute “channels” which connect items. Each channel connects two items
and is one-directional. There are two kinds of channels. From each station channels
run down to each item that derives from it; these channels propagate input from

304 9 Deterministic Bottom-Up Parsing

•S �

S--->•E �

E

S--->E• �

ε

•E �

E--->•E-T �

E

E--->E•-T �

-

E--->E-•T �

T

E--->E-T• �

ε

E--->•T �

T

E--->T• �

ε

•T �

T--->•n �

n

T--->n• �

ε

T--->•(E) �

(

T--->(•E) �

E

T--->(E•) �

)

T--->(E)• �

ε
ε

ε ε

ε

ε

[#]

[-]

[)]

[)]

Fig. 9.35. Non-deterministic automaton with channels

elsewhere. From each item that has the dot in front of a non-terminal A, a channel
runs parallel to the ε-arrow to the station •A�. If A is the last symbol in the right-
hand side, the channel propagates the look-ahead of the item it starts from. If A is
not the last symbol, but is followed by, for example, CDe (so the entire item would
be something like P → B•ACDe �), the input to the channel is FIRST(CDe); such
input is said to be “generated spontaneously”, as opposed to “propagated” input.

Figure 9.35 shows the full set of channels: those carrying propagated input as
dotted lines, and those carrying spontaneous input as dashed lines, with their sponta-
neous input sets. A channel from outside introduces the spontaneous look-ahead #,
the end-of-input marker, to the station(s) of the start symbol. The channel set can be
represented in a computer as a list of input and output ends of channels:

Input end leads to output end Remarks
[#] ==> •S� spontaneous
•S� ==> S--->•E � propagated
S--->•E � ==> S--->E• � propagated
S--->•E � ==> •E � propagated

· · ·
[-] ==> •E � spontaneous

· · ·
Next we run the subset algorithm on this (channeled) NFA in slow motion and

watch carefully where the channels go. This procedure severely taxes the human

9.7 LALR(1) 305

brain; a more practical way is to just construct the deterministic automaton without
concern for channels and then use the above list (in its complete form) to re-establish
the channels. This is easily done by finding the input and output end items and sta-
tions in the states of the deterministic automaton and constructing the corresponding
channels. Note that a single channel in the NFA can occur many times in the deter-
ministic automaton, since items can (and will) be duplicated by the subset construc-
tion. The result can best be likened to a bowl of mixed spaghetti and tagliatelli (the
channels and the transitions) with occasional chunks of ham (the item sets) and will
not be printed in this book.

Now we are close to home. For each channel we pump its input to the channel’s
end. First this will only have effect for channels that have spontaneous input: a #
will flow in state 1 from item S--->•E[�] to station •E[�], which will then read
•E[#]; a - from E--->•E-T[�] flows to the •E[�], which changes to •E[-];
etc. We go on pumping until all look-ahead sets are stable and nothing changes any
more. We have now obtained the LALR(1) automaton and can discard the channels;
of course we keep the transitions. This is an example of a transitive closure algorithm.

It is interesting to look more closely at state 4 (see Figure 9.34) and to see how
S--->E•[#] gets its look-ahead which excludes the -, although the - is present in
the look-ahead set of E--->E•-T[#-] in state 4. To this end, a magnified view of
the top left corner of the full channeled LALR(1) automaton is presented in Figure
9.36; it comprises the states 1 to 4. Again channels with propagated input are dotted,
those with spontaneous input are dashed and transitions are drawn. We can now see
more clearly that S--->E•[#] derives its look-ahead from S--->•E[#] in 1, while
E--->E•-T[#-] derives its look-ahead (indirectly) from •E[-] in state 1. This item
has a look-ahead - generated spontaneously in E--->•E-T[�] in state 1. The chan-
nel from S--->•E[#] to •E[#-] only works “downstream”, which prevents the -
from flowing back. LALR(1) parsers often give one the feeling that they succeed by
a narrow margin!

If the grammar contains ε-rules, the same complications arise as in Section 9.6.1
in the determination of the FIRST set of the rest of the right-hand side: when a non-
terminal is nullable we have to also include the FIRST set of what comes after it, and
so on. We meet a special complication if the entire rest of the right-hand side can be
empty: then we may see the look-ahead �, which we do not know yet. In fact this
creates a third kind of channel that has to be watched in the subset algorithm. We
shall not be so hypocritical as to suggest the construction of the LALR(1) automaton
for the grammar of Figure 9.30 as an exercise to the reader, but we hope the general
principles are clear. Let a parser generator do the rest.

9.7.1.3 LALR(1) by Upgrading LR(0)

The above techniques basically start from an LR(1) parse table, explicit or implicit,
and then shrink it until the items are LR(0): they downgrade the LR(1) automaton to
LALR(1). It is also possible to start from the LR(0) automaton, find the conflicts in
it, and upgrade from there. This leads to a complicated but very efficient algorithm,

306 9 Deterministic Bottom-Up Parsing

•S [#]

S--->•E [#]

•E [#-]

E--->•E-T [#-]

E--->•T [#-]

•T [#-]

T--->•n [#-]

T--->•(E) [#-]

1

E--->T• [#-)]

2
T

T--->n• [#-)]

3
n

S--->E• [#]

E--->E•-T [#-]

4
E

-

n

S

(

[#]

[-]

Fig. 9.36. Part of the deterministic automaton with channels (magnified cut)

designed by DeRemer and Pennello [63]. Again it has no name; we shall call it the
relations algorithm, for reasons that will become clear.

Upgrading the inadequate LR(0) automaton in Figure 9.25 is not too difficult. We
need to find the look-ahead(s) we are looking at in the input when we are in state 4
and reducing by S--->E is the correct action. That means that the stack must look like

· · · E ④

Looking back through the automaton, we can see that we can have come from one
state only: state 1:

① E ④

Now we do the reduction because we want to see what happens when that is the
correct action:

① S

9.7 LALR(1) 307

and we see that we have reduced to S, which has only one look-ahead, #, the end-
of-input token. So the reduce look-ahead of the item S--->E• in state 4 is #, which
differs from the shift look-ahead - for E--->E•-T, so the conflict is resolved.

This is an example of a more general technique: to find the look-ahead(s) of an
inadequate reduce item in an LR(0) automaton, we take the following steps:

• we assume that the implied reduction R is the proper action and simulate its
effects on an imaginary stack;

• we simulate all possible further movements of the LR(0) automaton until the
automaton is about to shift in the next token, t;

• we add t to the look-ahead set, since it has the property that it will be shifted and
accepted if we do the reduction R when we see it as the next token in the input.

It will be clear that this is a very reasonable method of collecting good look-ahead
sets. It is much less clear that it produces the same LALR look-ahead sets as the
LALR algorithms above, and for a proof of that fact we refer the reader to DeRemer
and Pennello’s paper.

Turning the above ideas into an algorithm requires some serious effort. We will
follow DeRemer and Pennello’s explanation closely, using the same formalism and
terminology as much as is convenient. The explanation uses an unspecified grammar
of which only two rules are important: A → ω and B → βAγ, for some, possibly
empty sequences of non-terminals and terminals ω, β, and γ. Refer to Figure 9.37.

· · ·
· · ·

A → ω•
· · ·
· · ·

q

· · ·
B → β•Aγ

· · ·

p

ω

A
· · ·

B → βA•γ
· · ·

r

only if γ = C1 . . .Cn
*→ε

C1
· · ·

B → βAC1•C2 · · ·Cn

· · ·

rC1

C2 · · ·Cn
· · ·

B → βAγ•
· · ·

rCn

· · ·
· · ·•B · · ·

· · ·

p′

β

B · · ·
· · ·

r′

· · ·
· · ·

p′′
B′

· · ·
r′′

Fig. 9.37. Hunting for LALR(1) look-aheads in an LR(0) automaton —
the lookback and includes relations

Suppose the LR(0) automaton has an inadequate state q with a reduce item A →
ω•, and we want to know the LALR look-ahead of this item. If state q is on the top
of the stack, there must be a path through the LR(0) automaton from the start state
1 to q (or we would not have ended up in q), and the last part of this path spells ω
(or we would not be able to reduce by A → ω). We can follow this path back to the

308 9 Deterministic Bottom-Up Parsing

beginning of ω; this leads us to the state p, where the present item A→ω• originated.
There are two things to note here: there may be several different paths back that spell
ω, leading to several different ps; and ω may be ε, in which case p is equal to q. For
simplicity Figure 9.37 shows one p only.

We have now established that the top segment of the stack is p ω1 · · · ωn q,
where p is one of the ps identified above and ω1 · · ·ωn are the components of ω. We
can now do the simulated reduction, as we did above. This shortens the stack to p A,
and we have to shift over the A, arriving at a state r.

More formally, a reduce item A → ω• in an LR(0) state q identifies a set of

transitions {p1
A→ r1, . . . , pn

A→ rn}, where for all pi we have pi
ω→ q. This defines

the so-called lookback relation between a pair (state, reduce item) and a transition.

One writes (q, A → ω•) lookback (pi
A→ ri) for 1 ≤ i ≤ n. This is step 1 of the

simulation. Note that this is a relation, not an algorithm to compute the transition(s);
it just says that given a pair (state, reduce item) and a transition, we can check if the
“lookback” relation holds between them. (DeRemer and Pennello write a transition

(pi
A→ ri) as (pi,A), since the r follows directly from the LR(0) automaton, which is

deterministic.)
The shift from p over A is guaranteed to succeed, basically because the presence

of an item A → ω• in q combined with the existence of a path ω from q leading back
to p proves that p contains an item that has a dot in front of an A. That •A causes both

the ω path and the transition p
A→ r (except when A is the start symbol, in which case

we are done and the look-ahead is #). The general form of such an item is B → β•Aγ,
as shown in Figure 9.37. Here we have the first opportunity to see some look-ahead
tokens: any terminal in FIRST(γ) will be an LALR look-ahead token for the reduce
item A → ω• in state q. But the simulation is not finished yet, since γ may be or
produce ε, in which case we will also have to look past the item B → βA•γ.

If γ produces ε, it has to consist of a sequence of non-terminals C1 · · ·Cn, each
capable of producing ε. This means that state r contains an item C1 → •, which is
immediately a reduce item; see a similar phenomenon in state 3 in Figure 9.31. Its
presence will certainly make r an inadequate state, but, if the grammar is LALR(1),
that problem will be solved when the algorithm treats the item C1 → • in r. For
the moment we assume the problem is solved; we do the reduction, push C1 on the
simulated stack, and shift over it to state rC1 . We repeat this process until we have
processed all C1 · · ·Cn, and by doing so reach a state rCn which contains a reduce item
B → βAγ•.

Now it is tempting to say that any look-ahead of this item will also figure in the
look-ahead that we are looking for, but that is not true. At this point in our simulation
the stack contains p A r C1 rC1 · · · Cn rCn , so we see only the look-aheads of those
items B → βAγ• in state rCn that have reached that state through p! State rCn may
be reachable through other paths, which may quite well bring in other look-aheads
for the reduce item B → βAγ• which do not belong in the look-ahead set of A → ω.
So to simulate the reduction B → βAγ we walk the path γ back through the LR(0)
automaton to state p, all the while removing Cis (components of γ) from the stack.
Then from state p backwards we can freely find all paths that spell β, to reach all

9.7 LALR(1) 309

states p′i that contain the item B → •βAγ. Each of these states p′ has a transition on
B, for the same reasons p had a transition on A (again except when B is the start
symbol). The transition over B leads to a state r′, which brings us back to a situation
similar to the one at p.

This process defines the so-called includes relation: (p
A→ r) includes (p′ B→ r′)

if and only if the grammar contains a rule B → βAγ, and γ *→ε, and p′
β→ p. Note that

one (p
A→ r) can include several (p′ B→ r′)s, when several paths β are possible.

To simulate all possible movements of the LR(0) automaton and find all the tran-
sitions that lead to states that contribute to the look-ahead of A → ω• in state q, we
have to repeat the step from p to p′ for successive p′′, p′′′, . . . , until we find no new
ones any more or until we are stopped by reaching a reduction of the start symbol.
This is step 2 of the simulation.

Any token t that can be shifted over in any of the states r, r′, . . . thus reached,
belongs in the look-ahead of A → ω• in state q, since we have just shown that after
the reduction A → ω and possibly several other reductions, we arrive at a state in
which a shift over t is possible. And no other tokens belong in the look-ahead set,
since they will not allow a subsequent shift, and would get the parser stuck.

So we are interested in the terminal transitions of the states r, r′, To describe
them in a framework similar to the one used so far, we define a relation directly-

reads as follows; refer to Figure 9.38. A transition (p
A→ r) directly-reads t if r has

· · ·
B → β•Aγ

· · ·

p

ω

A
· · ·•C · · ·

B → βA•γ
· · ·•t · · ·

r

· · ·
· · ·t•· · ·

· · ·

t

· · ·C•· · ·
· · ·•u · · ·

s

C

only if C *→ε
u · · ·u•· · ·

β

Fig. 9.38.
Hunting for LALR(1) look-aheads in an LR(0) automaton —
the directly-reads and reads relations

an outgoing arrow on the terminal symbol t. Actually, neither p nor A is used in this

definition, but we start from the transition p
A→ r rather than from the state r because

the lookback and includes relations use transitions rather than states.
Again nullable non-terminals complicate the situation. If r happens to have an

outgoing arrow marked with a non-terminal C that produces ε, we can reduce ε to C
in our simulation, stack it, shift over it and reach another state, say s. Then anything

we are looking at after the transition r
C→ s must also be added to the look-ahead

set of A → ω•. Note that this C need not be the C1 in Figure 9.38; it can be any

310 9 Deterministic Bottom-Up Parsing

nullable non-terminal marking an outgoing arrow from state r. This defines the reads

relation: (p
A→ r) reads (r

C→ s) if and only if both transitions exist and C *→ε. And

then all tokens u that fulfill (r
C→ s) directly-reads u belong in the look-ahead set

of A → ω• in state q. Of course state s can again have transitions on nullable non-
terminals, which necessitate repeated application of the “reads and directly-reads”
operation. This is step 3 of the simulation.

We are now in a position to formulate the LALR look-ahead construction algo-
rithm in one single formula. It uses the final relation in our explanation, in-LALR-
lookahead, which ties together a reduce item in a state and a token: t in-LALR-
lookahead (q, A → ω•), with the obvious meaning. The relations algorithm can now
be written as:

t in-LALR-lookahead (q, A → ω•) =

(q, A → ω•) lookback (p
A→ r) includes (p′ B→ r′) · · ·

· · · includes (p′′ B′→ r′′) reads (r′′ C→ s) · · ·
· · · reads (r′′′ C′→ s′) directly-reads t

This is not a formula in the arithmetic sense of the word: one cannot put in parenthe-
ses to show the precedences, as one can in a+b× c; it is rather a linked sequence of
relations, comparable to a < b ≤ c < d, in which each pair of values must obey the
relational operator between them. It means that a token t is in the LALR lookahead
set of reduce item A → ω• in state q if and only if we can find values for p, p′, . . . ,
B, B′, . . . , r, r′, . . . , C, C′, . . . , and s, s′, . . . , so that all the relations are obeyed.

In summary, when you do a reduction using a reduce item, the resulting non-
terminal either is at the end of another item, in which case you have to include that
item in your computations, or it has something in front of it, in which case your look-
ahead set contains everything you can read from there, directly or through nullable
non-terminals.

The question remains how to utilize the sequence of relations to actually compute
the LALR look-ahead sets. Two techniques suggest themselves. We can start from
the pair (q, A → ω•), follow the definitions of the relations until we reach a token t,
record it, backtrack and exhaustively search all possibilities: the top-down approach.
We can also make a database of relation triples, insert the initially known triples and
apply the relation definitions until nothing changes any more: the transitive closure
approach. Both have their problems. The top-down method has to be careful to pre-
vent being caught in loops, and will often recompute relations. The transitive closure
sweep will have to be performed an indefinite number of times, and will compute
triples that do not contribute to the solution.

Fortunately there is a better way. It is not immediately evident, but the above
algorithm has a remarkable property: it only uses the grammar and the LR(0) tran-
sitions over non-terminals (except for both ends of the relation sequence); it never
looks inside the LR(0) states. The reasonings that show the validity of the various
definitions use the presence of certain items, but the final definitions do not. This
makes it particularly easy to express the relations as arcs in a directed graph in which
the non-terminal transitions are the nodes.

9.7 LALR(1) 311

The relations graph corresponding to Figures 9.37 and 9.38 is shown in Figure
9.39. We see that it is quite different from the transition graphs in Figures 9.37 and

(q,A → ω•)

p
A→ r

lookback
t

directly-reads

r
C→ s

reads

u

directly-reads
p′ β→ p

includes

p′′ ···→ p′

includes

Fig. 9.39.
Hunting for LALR(1) look-aheads in an LR(0) automaton —
the relations graph

9.38: the transition arcs in those graphs have become nodes in the new graph, and
the relations, not present in the old graphs, are the arcs in the new one. To emphasize
this fact, the transition nodes in Figure 9.39 have been drawn in the same relative
positions as the corresponding arcs in Figures 9.37 and 9.38; this is the cause of the
strange proportions of Figure 9.39.

The LALR look-ahead sets can now be found by doing a transitive closure on this
graph, to find all leaves connected to the (q, A → ω•) node. The point is that there
exists a very efficient algorithm for doing transitive closure on a graph, the “SCCs
algorithm”. This algorithm successively isolates and condenses “strongly connected
components” of the graph; hence its name. The algorithm was invented by Tarjan
[334] in 1972, and is discussed extensively in books on algorithms and on the Inter-
net.

DeRemer and Pennello describe the details required to cast the sequence of re-
lations into a graph suitable for the SCCs algorithm. This leads to one of the most
efficient LALR parse table construction algorithms known. It is linear in the number
of relations involved in the computation, and in practice it is linear in the number of
non-terminal transitions in the LR(0) automaton. It is several times faster than the
channel algorithm used in yacc. Several optimizations can be found (Web)Section
18.1.4. Bermudez and Schimpf [76] extend the algorithm to LALR(k).

When reaching state rCn in Figure 9.37 we properly backtracked over all compo-
nents of γ back to state p, to make sure that all look-aheads found could indeed be
shifted when we perform the reduction A → ω. If we omit this step and just accept
any look-ahead at rCn as look-ahead of A → ω, we obtain an NQLALR(1) parser, for
“Not Quite LALR(1)”. NQLALR(1) grammars are strange in that they do not fit in
the usual hierarchy ((Bermudez and Schimpf [75]); but then, that can be expected
from an incorrect algorithm.

312 9 Deterministic Bottom-Up Parsing

9.7.1.4 LALR(1) by Converting to SLR(1)

When we look at the non-LR(0) automaton in Figure 9.25 with an eye to upgrading it
to LALR(1), we realize that, for example, the E along the arrow from state 1 to state
4 is in fact a different E from that along the arrow from state 6 to state 9, in that it
arises from a different station •E, the one in state 1, and it is the station that gets the
look-ahead. So to distinguish it we can call it ①E④, so now the item S--->•E reads
S--->•①E④, where ①E④ is just a non-terminal name, in spite of its appearance. This
leads to the creation of a station •①E④ (not shown) which produces two items based
on the two rules E--->T and E--->E-T. We can even give the non-terminals in these
rules more specific names:

①E④ ---> ①T②

①E④ ---> ①E④ ④-⑦ ⑦T⑧

where we obtained the other state numbers by following the rules through the LR(0)
automaton.

Continuing this way we can construct an “LR(0)-enhanced” version of the gram-
mar of Figure 9.23; it is shown in Figure 9.40. A grammar rule A → BcD is trans-

①S♦ ---> ①E④

①E④ ---> ①E④ ④-⑦ ⑦T⑧ | ①T②

⑥E⑨ ---> ⑥E⑨ ⑨-⑦ ⑦T⑧ | ⑥T②

①T② ---> ①n③

⑥T② ---> ⑥(⑥ ⑥E⑨ ⑨)⑩ | ⑥n③

⑦T⑧ ---> ⑦(⑥ ⑥E⑨ ⑨)⑩ | ⑦n③

Fig. 9.40. An LR(0)-enhanced version of the grammar of Figure 9.23

formed into a new grammar rule (s1)A(sx) → (s1)B(s2) (s2)c(s3) (s3)D(s4), where
(sx) is the state shifted to by the non-terminal, and (s1) · · ·(s4) is the sequence of
states met when traveling down the right-hand side of the rule in the LR(0) automa-
ton.

We see that the rules for E have been split into two versions, one starting at ①
and the other at ⑥, and likewise the rules for T. It is clear that the look-aheads of
the station •①E④ all end up in the look-ahead set of the item E--->E-T• reached at
the end of the sequence ①E④ ④-⑦ ⑦T⑧, so it is interesting to find out what the
look-ahead set of the •①E④ in state 1 is, or rather just what the look-ahead set of
•①E④ is, since there is only one •①E④ and it is in state 1.

Bermudez and Logothetis [79] have given a surprisingly simple answer to that
question: the look-ahead set of •①E④ is the FOLLOW set of ①E④ in the LR(0)-
enhanced grammar, and likewise for all the other LR(0)-enhanced non-terminals.
Normally FOLLOW sets are not very fine tools, since they combine the tokens that
can follow a non-terminal N from all over the grammar, regardless of the context in
which the production N occurs. But here the LR(0) enhancement takes care of the
context, and makes sure that terminal productions of •E in state 1 are recognized

9.7 LALR(1) 313

only if they really derive from ①E④. That all this leads precisely to an LALR(1)
parser is less clear; for a proof see the above paper.

To resolve the inadequacy of the automaton in Figure 9.25 we want to know the
look-ahead set of the item S--->E• in state 4, which is the FOLLOW set of ①S♦. The
FOLLOW sets of the non-terminals in the LR(0)-enhanced grammar are as follows:

FOLLOW(①S♦) = [#]
FOLLOW(①E④) = [#-]
FOLLOW(⑥E⑨) = [-)]
FOLLOW(①T②) = [#-]
FOLLOW(⑥T②) = [-)]
FOLLOW(⑦T⑧) = [#-)]

so the desired LALR look-ahead set is #, in conformance with the “real” LALR
automaton in Figure 9.34. Since state 4 was the only inadequate state, no more look-
aheads sets need to be computed.

Actually, the reasoning in the previous paragraph is an oversimplification: a re-
duce item in a state may derive from more than one station and import look-aheads
from each of them. To demonstrate this we compute the look-aheads of E--->E-T• in
state 8. The sequence ends in state 8, so we select from the LR(0)-enhanced grammar
those rules of the form E--->E-T that end in state 8:

①E④ ---> ①E④ ④-⑦ ⑦T⑧

⑥E⑨ ---> ⑥E⑨ ⑨-⑦ ⑦T⑧

We see that the look-aheads of both stations •①E④ and •⑥E⑨ end up in state 8, and
so the LALR look-ahead set of E--->E-T• in that state is

FOLLOW(①E④) ∪ FOLLOW(⑥E⑨) = [#-] ∪ [-)] = [#-)]

Since this is the same way as look-aheads are computed in an SLR parser for a normal
— not LR(0)-enhanced — grammar (Section 9.8), the technique is often referred to
as “converting to SLR”.

The LALR-by-SLR technique is algorithmically very simple:

• deriving the LR(0)-enhanced grammar from the original grammar and the LR(0)
automaton is straightforward;

• computing the FOLLOW sets is done by a standard algorithm;
• selecting the appropriate rules from the LR(0)-enhanced grammar is simple;
• uniting the results is trivial.

And, as said before, only the look-ahead sets of reduce items in inadequate states
need to be computed.

9.7.1.5 Discussion

LALR(1) tables can be computed by at least five techniques: collapsing and down-
grading the LR(1) tables; Anderson’s simple algorithm; the channel algorithm; by
upgrading the LR(0) automaton; and by converting to SLR(1). Of these, Ander-
son’s algorithm [56] (Section 9.7.1.1) is probably the easiest to program, and its

314 9 Deterministic Bottom-Up Parsing

non-optimal efficiency should only seldom be a problem on present-day machines.
DeRemer and Pennello [63]’s relations algorithm (Section 9.7.1.3) and its relatives
discussed in (Web)Section 18.1.4 are among the fastest. Much technical and experi-
mental data on several LALR algorithms is given by Charles [88].

Vilares Ferro and Alonso Pardo [372] describe a remarkable implementation of
an LALR parser in Prolog.

9.7.2 Identifying LALR(1) Conflicts

When a grammar is not LR(1), the constructed LR(1) automaton will have conflicts,
and the user of the parser generator will have to be notified. Such notification often
takes such forms as:

Reduce/reduce conflict
in state 213 on look-ahead ‘;’

S--->E versus A--->T+E

This may seem cryptic but the user soon learns to interpret such messages and to
reach the conclusion that indeed “the computer can’t see this”. This is because LR(1)
parsers can handle all deterministic grammars and our idea of “what a computer can
see” coincides reasonably well with what is deterministic.

The situation is worse for those (relatively rare) grammars that are LR(1) but not
LALR(1). The user never really understands what is wrong with the grammar: the
computer should be able to make the right parsing decisions, but it complains that it
cannot. Of course there is nothing wrong with the grammar; the LALR(1) method is
just marginally too weak to handle it.

To alleviate the problem, some research has gone into methods to elicit from the
faulty automaton a possible input string that would bring it into the conflict state.
See DeRemer and Pennello [63, Sect. 7]. The parser generator can then display such
input with its multiple partial parse trees.

9.8 SLR(1)

There is a simpler way to proceed with the NFA of Figure 9.35 than using the chan-
nel algorithm: first pump around the look-ahead sets until they are all known and
then apply the subset algorithm, rather than vice versa. This gives us the so called
SLR(1) automaton (for Simple LR(1)); see DeRemer [54]. The same automaton can
be obtained without using channels at all: construct the LR(0) automaton and then
add to each item A → ·· · a look-ahead set that is equal to FOLLOW(A). Pumping
around the look-ahead sets in the NFA effectively computes the FOLLOW sets of
each non-terminal and spreads these over each item derived from it.

The SLR(1) automaton is shown in Figure 9.41. Since FOLLOW(S)={#},
FOLLOW(E)={#,-,)} and FOLLOW(T)={#,-,)}, only states 1 and 4 differ from
those in the LALR(1) automaton of Figure 9.34. The increased look-ahead sets do
not spoil the adequateness of any states: the grammar is also SLR(1).

9.9 Conflict Resolvers 315

S--->•E[$]
E--->•E-T[$-)]
E--->•T[$-)]
T--->•n[$-)]

T--->•(E)[$-)]

1

T
E--->T•[$-)]

2
T

T--->(•E)[$-)]
E--->•E-T[$-)]
E--->•T[$-)]
T--->•n[$-)]

T--->•(E)[$-)]

6

T--->n•[$-)]

3
n n

S--->E•[$]
E--->E•-T[$-)]

4
-

E--->E-•T[$-)]
T--->•n[$-)]

T--->•(E)[$-)]

7

- T--->(E•)[$-)]
E--->E•-T[$-)]

9

E--->E-T•[$-)]

8
T

T--->(E)•[$-)]

10

)

E

n

(E

(

(

Fig. 9.41. SLR(1) automaton for the grammar of Figure 9.23

SLR(1) parsers are intermediate in power between LR(0) and LALR(1). Since
SLR(1) parsers have the same size as LALR(1) parsers but are considerably less
powerful, LALR(1) parsers are generally preferred.

FOLLOWk sets with k > 1 can also be used, leading to SLR(k > 1) parsers. As
with LA(k)LR(j), an LR(j) parser can be extended with additional FOLLOWk look-
ahead, leading to S(k)LR(j) parsers. So SLR(1) is actually S(1)LR(0), and is just the
most prominent member of the S(k)LR(j) parser family. To top things off, Bermudez
and Schimpf [76] show that there exist NQSLR(k > 1) parsers, thereby proving that
“Simple LR” parsers are not really that simple for k > 1.

9.9 Conflict Resolvers

When states in an automaton have conflicts and no stronger method is available,
the automaton can still be useful, provided we can find other ways to resolve the
conflicts. Most LR parser generators have built-in conflict resolvers that will make
sure that a deterministic automaton results, whatever properties the input grammar
may have. Such a system will just enumerate the problems it has encountered and
indicate how it has solved them.

Two useful and popular rules of thumb to solve LR conflicts are:

• on a shift/reduce conflict, shift (only on those look-aheads for which the conflict
occurs);

• on a reduce/reduce conflict, reduce using the longest rule.

Both rules implement the same idea: take the largest bite possible. If you find that
there is a production of A somewhere, make it as long as possible, including as much
material on both sides as possible. This is very often what the grammar writer wants.

316 9 Deterministic Bottom-Up Parsing

Systems with built-in conflict resolvers are a mixed blessing. On the one hand
they allow very weak or even ambiguous grammars to be used (see for example,
Aho, Johnson and Ullman [335]). This can be a great help in formulating gram-
mars for difficult and complex analysis jobs; see, for example, Kernighan and Cherry
[364], who make profitable use of automatic conflict resolution for the specification
of typesetter input.

On the other hand a system with built-in conflict resolvers may impose a struc-
ture on the input where there is none. Such a system no longer corresponds to any
grammar-like sentence-generating mechanism, and it may be very difficult to specify
exactly what strings will be accepted and with what structure. How severe a draw-
back this is depends on the application and of course on the capabilities of the parser
generator user.

It is to a limited extent possible to have dynamic (parse-time) conflict resolvers,
as in the LL case (Section 8.2.5.3). Such a conflict resolver is called in a context that
is still under construction, which complicates its use, but in simple cases its working
can be understood and predicted. McKenzie [86] describes an extension of yacc that
supports dynamic conflict resolvers, among other things.

Some experiments have been made with interactive conflict resolvers, which con-
sult the user of the parser when a conflict actually arises: a large chunk of text around
the conflict point is displayed and the user is asked to resolve the conflict. This is use-
ful in, for example, document conversion; see Share [365].

9.10 Further Developments of LR Methods

Although the LALR(1) method as explained in Section 9.7 is quite satisfactory for
most applications, a number of extensions to and improvements of the LR methods
have been studied. The most important of these will be briefly explained in this sec-
tion; for details see the literature, (Web)Section 18.1.4 and the original references.

For methods to speed up LR parsing by producing executable parser code see
Section 17.2.2.

9.10.1 Elimination of Unit Rules

Many rules in practical grammars are of the form A → B; examples can be found
in Figures 2.10, 4.6, 5.3, 7.8, 8.7, 9.42 and many others. Such rules are called unit

Metre ---> Iambic | Trochaic | Dactylic | Anapestic

Fig. 9.42. A (multiple) unit rule

rules, single rules, or chain rules. They generally serve naming purposes only and
have no semantics attached to them. Consequently, their reduction is a matter of
stack manipulation and state transition only, to no visible purpose for the user. Such

9.10 Further Developments of LR Methods 317

“administrative reductions” can take a considerable part of the parsing time (50% is
not unusual). Simple methods to short-cut such reductions are easily found (for ex-
ample, removal by systematic substitution) but may result in an exponential increase
in table size. Better methods were found but turned out to be complicated and to im-
pair the error detection properties of the parser. That problem can again be corrected,
at the expense of more complication. See Heilbrunner [64] for a thorough treatment
and Chapman [71] for much practical information.

Note that the term “elimination of unit rules” in this case is actually a misnomer:
the unit rules themselves are not removed from the grammar, but rather their effect
from the parser tables. Compare this to the actual elimination of unit rules in Section
4.2.3.2.

Actually unit rule elimination is a special case of stack activity reduction, which
is discussed in the next section. But it was recognized earlier, and a separate body of
literature exists for it.

9.10.2 Reducing the Stack Activity

Consider the stack of an LR parser, and call the state on top of the stack st . Now we
continue the parser one step with proper input and we suppose this step stacks a token
X and another state su, and we suppose that su
= st , as will normally happen. Now,
rather than being satisfied with the usual top stack segment st X su, we collapse this
into one new state, st +su, which now replaces the original st . This means two things.
First, we have lost the symbol X , and with it the possibility to construct a parse tree,
so we are back to constructing a recognizer. But second, and more importantly, we
have replaced an expensive stacking operation by a cheap state transition.

We can repeat this process of appending new states to the top state until one
of two things happens: a state already in it is appended for the second time, or the
original state st gets popped and we are left with an empty state. Only at that moment
do we resume the normal stacking and unstacking operation of an LR parser.

When doing so for all acceptable inputs, we meet all kinds of compound states, all
with st on the left, and many pairs are connected by transitions on symbols, terminal
and non-terminal ones. Together they form a finite-state automaton. When we are
forced to resume normal LR operation, it is very likely that we will find a state
different from st on top, say sx. We can then repeat the process for sx and obtain
another FSA.

Continuing this way we obtain a set of FSAs connected by stacking and unstack-
ing LR operations. Using these FSAs instead of doing all the stack manipulation
hidden in them greatly reduces the stack activity of the parser. Such a parser is called
reduction-incorporated (RI).

In a traditional LR parser the gain in speed will almost certainly be outweighed
by the disadvantage of not being able to construct a parse tree. Its great advantage
lies in situations in which stack activity is expensive. Examples are the use of an LR
parser as a subparser in a GLR parser (Chapter 11), where stack activity involves
graph manipulation, and in parallel parsing (Chapter 14), where stack activity may
require process communication.

318 9 Deterministic Bottom-Up Parsing

The details of the algorithm are pretty complicated; descriptions are given by
Aycock and Horspool [176] and Scott and Johnstone [100]. The resulting tables can
be very large, even for every-day grammars.

9.10.3 Regular Right Part Grammars

As shown in Section 2.3.2.4, there are two interpretations of a regular right-hand side
of a rule: the recursive and the iterative interpretation. The recursive interpretation
is no problem: for a form like A+ anonymous non-terminals are introduced, the re-
duction of which entails no semantic actions. The burden of constructing a list of the
recognized As lies entirely on the semantic routines attached to the As.

The iterative interpretation causes more problems. When an A+ has been recog-
nized and is about to be reduced, the stack holds an indeterminate number of As:

· · ·A· · ·AAA |

The right end of the handle has been found, but the left end is doubtful. Scooping up
all As from the right may be incorrect since some may belong to another rule; after
all, the top of the stack may derive from a rule P → QAAA+. A possible solution is
to have for each reducing state and look-ahead a FS automaton which scans the stack
backwards while examining states in the stack to determine the left end and the actual
rule to reduce to. The part to be reduced (the handle) can then be shown to a semantic
routine which can, for example, construct a list of As, thereby relieving the As from
a task that is not structurally theirs. The resulting tables can be enormous and clever
algorithms have been designed for their construction and reduction. See for example,
LaLonde [62], Nakata and Sassa [69, 74], Shin and Choe [90], Fortes Gálvez, [91],
and Morimoto and Sassa [97]. Kannapinn [99] has given a critical analysis of many
algorithms for LR and LALR parse table creation for EBNF grammars (in German).

9.10.4 Incremental Parsing

In incremental parsing, the structured input (a program text, a structured document,
etc.) is kept in linear form together with a parse tree. When the input is (incremen-
tally) modified by the user, for example by typing or deleting a character, it is the
task of the incremental parser to update the corresponding parse tree, preferably at
minimum cost. This requires serious measures inside the parser, to quickly determine
the extent of the damage done to the parse tree, localize its effect, and take remedial
steps. Formal requirements for the grammar to make this easier have been found. See
for example, Degano, Mannucci and Mojana [330] and many others in (Web)Section
18.2.8.

9.10.5 Incremental Parser Generation

In incremental parser generation, the parser generator keeps the grammar together
with its parsing table(s) and has to respond quickly to user-made changes in the
grammar, by updating and checking the tables. See Horspool [80], Heering, Klint
and Rekers [83], Horspool [84] and Rekers [347].

9.11 Getting a Parse Tree Grammar from LR Parsing 319

9.10.6 Recursive Ascent

In Sections 8.2.6 and 8.5 we have seen that an LL parser can be implemented con-
veniently using recursive descent. Analogously, an LR parser can be implemented
using recursive ascent, but the required technique is not nearly as obvious as in the
LL case. The key idea is to have the recursion stack mimic the LR parsing stack.
To this end there is a procedure for each state; when a token is to be shifted to the
stack, the procedure corresponding to the resulting state is called instead. This indeed
constructs the correct recursion stack, but causes problems when a reduction has to
take place: a dynamically determined number of procedures has to return in order to
unstack the right-hand side. A simple technique to achieve this is to have two global
variables, one, Nt, holding the non-terminal recognized and the second, l, holding
the length of the right-hand side. All procedures will check l and if it is non-zero,
they will decrease l by one and return immediately. Once l is zero, the procedure that
finds that situation will call the appropriate state procedure based on Nt. For details
see Roberts [78, 81, 87] and Kruseman Aretz [77]. The advantage of recursive ascent
over table-driven is its potential for high-speed parsing.

9.10.7 Regular Expressions of LR Languages

In Section 9.6.3 we mentioned that any LR(k) language can be obtained as a reg-
ular expression, the elements of which are LR(0) languages. The opposite is even
stronger: regular expressions over LR(0) languages can describe more than the LR(k)
languages. An immediate example is the inherently ambiguous language ambncn ∪
apbpcq discussed on page 64. It is produced by the regular expression

L∗
aLbc|LabL∗

c

where the language La is produced by the simplest grammar in this book, S--->a,
Lbc by S--->bSc|ε, and similarly for Lab and Lc. It is easy to see that each of
these grammars is LR(0).

Bertsch and Nederhof [96] show that a linear-time parser can be constructed for
regular expressions over LR(k) languages. Unfortunately the algorithm is based on
descriptions of the languages by pushdown automata rather than CF grammars, and
a transformation back to CF grammars would be very complicated. Some details
are provided in Section 12.3.3.2, where a similar technique is used for linear-time
substring parsing of LR languages.

9.11 Getting a Parse Tree Grammar from LR Parsing

Getting a parse tree grammar from LR parsing is similar to getting one from LL pars-
ing (Section 8.4): each time one makes a “serious” decision (prediction, reduction)
one generates a grammar rule for it. As in the LL case, LR parsing produces a parse
tree grammar rather than a parse forest grammar.

320 9 Deterministic Bottom-Up Parsing

We consider parsing n-n with the table of Figure 9.18. All non-terminals are
numbered using the same increasing counter. After a single shift we have the config-
uration

① n ③ - n $

The moment we reduce n to T, we produce a rule T_1--->n, and push T_1 on the
stack:

① T_1 ② - n $

The next step reduces the T to E; this produces a rule E_2--->T_1 and the configura-
tion

① E_2 ② - n $

Continuing this process we obtain the parse tree grammar

T_1 ---> n
E_2 ---> T_1
T_3 ---> n
E_4 ---> E_2 - T_3
S_5 ---> E_4 $

and the final datum yielded by the parsing process is that S_5 is the start symbol of
the parse tree grammar.

Note that it is possible to number the input tokens with their positions and to
follow where they go in the parse tree grammar:

T_1 ---> n1
E_2 ---> T_1
T_3 ---> n3
E_4 ---> E_2 -2 T_3
S_5 ---> E_4 $4

This is useful when semantics is attached to the input tokens.
Again the grammar is clean. It has no undefined non-terminals: each non-

terminal included in a right-hand side during a reduction comes from the stack, and
was defined in a previous reduction. It has no unreachable non-terminals either: each
left-hand side non-terminal created in a reduction is put on the stack, and will later
be included in some right-hand side during a subsequent reduction, except for the
start symbol, which is reachable by definition.

9.12 Left and Right Contexts of Parsing Decisions

At the beginning of Chapter 7 we indicated that stacks in bottom-up parsing can
be described by regular grammars, and we are now in a position to examine this
phenomenon in more detail, by considering two non-obvious properties of an LR
automaton: the left context of a state and the right context of an item.

9.12 Left and Right Contexts of Parsing Decisions 321

9.12.1 The Left Context of a State

The left context of a state is easy to understand: it is the set of all sequences of
symbols, terminals and non-terminals, that lead to that state. Although this set is
usually infinitely large, it can be represented by a regular expression. It is easy to
see that, for example, the left context of state 4 in the LR automaton in Figure 9.17
is E, but more work is needed to obtain the left context of, say, state 9. To find all
paths that end in state 9 we proceed as follows. We can create the path to state 9 if
we know the path(s) to state 6 and then append an E. This gives us one rule in a left-
regular grammar: P_9--->P_6 E, where P_6 and P_9 are the paths to states 6 and
9, respectively. Now there are three ways to get to state 6: from 1, from 6 and from 7,
all through a (. This gives us three rules: P_6--->P_1(, P_6--->P_6(, P_6--->P_7(.
Continuing in this way we can construct the entire left-context grammar of the LR
automaton in Figure 9.17. It is shown in Figure 9.43, and we see that it is left-regular.

P_1 ---> ε P_4 ---> P_1 E P_7 ---> P_4 -
P_2 ---> P_1 T P_5 ---> P_4 $ P_7 ---> P_9 -
P_2 ---> P_6 T P_6 ---> P_1 (P_8 ---> P_7 T
P_3 ---> P_1 n P_6 ---> P_6 (P_9 ---> P_6 E
P_3 ---> P_6 n P_6 ---> P_7 (P_10 ---> P_9)
P_3 ---> P_7 n

Fig. 9.43. Left-context grammar for the LR(0) automaton in Figure 9.17

We can now apply the transformations shown in Section 5.4.2 and Section 5.6 to
obtain regular expressions for the non-terminals. This way we find that indeed the
left context of state 4 is E and that that of state 9 is [(|E-(][(|E-(]*E. This
expression simplifies to [(|E-(]+E, which makes sense: it describes a sequence of
one or more (or E-(, followed by an E. The first (or E-(brings us to state 6, any
subsequent (s and E-(s bring us back to state 6, and the final E brings us to state 9.

Now the connection with the stack in an LR parser becomes clear. Such a stack
can only consist of a sequence which leads to a state in the LR automaton; for ex-
ample, it could not be (-, since that leads nowhere in Figure 9.17, though it could
be (E- (which leads to state 7). In short, the union of all left contexts of all states
describes the complete set of stack configurations of the LR parser.

All stack configurations in a given P_s end in state s and thus lead to the same
parsing decision. LR(1) automata have more states than LR(0) automata, and thus
more left context sets. For example, the LR(1) automaton in Figure 9.27 remembers
whether it is working on the outermost expression (in which case a # may follow) or
on a nested expression; the LR(0) automaton in Figure 9.17 does not. But the set of
all stack configurations P_∗ is the same for LR(0) and LR(1), because they represent
all open parts in a rightmost production, as explained in Section 5.1.1.

322 9 Deterministic Bottom-Up Parsing

9.12.2 The Right Context of an Item

The right context of a state is less easy to understand: intuitively it is the set of all
strings that are acceptable to an LR parser in that state, but that set differs consider-
ably from the left context sketched above.

First it is a context-free language rather than a regular one. This is easy to see
when we consider an LR parser for a CF language: any string in that language is
acceptable as the right context of the initial state.

Second, it contains terminals only; there are no non-terminals in the rest of the
input, to the right of the gap. Yet it is clear that the right context of an item is not
just an unrestricted set of strings, but follows precisely from the CF grammar C
and the state S, and we would like to capture these restrictions in a grammar. This
is achieved by constructing a regular grammar GS for the right context which still
contains undeveloped non-terminals from C, similar to the left context grammar.
The set of terminal strings acceptable after a state is then obtained by replacing these
non-terminals by their terminal productions in C; this introduces the CF component.
More precisely: each (regular) terminal production TS of the grammar GS is a start
sentential form for grammar C; each combination of TS and C produces a (CF) set of
strings that can figure as rest of input at S.

There is another, perhaps more surprising, difference between left and right con-
texts: although the left contexts of all items in an LR state are the same, their right
contexts can differ. The reason is that the same LR state can be reached by quite
different paths through the grammar. Each such path can result in a different item in
that state and can carry a different prediction of what will happen on the other side
of the item. A trivial example occurs in the grammar

Ss ---> a B c
S ---> a D e
B ---> ε
D ---> ε

The state reached after shifting over an a contains

S--->a•Bc
S--->a•De
B--->•
D--->•

and it is clear that the right context of the item B--->• is c and that of D--->• is e.
This example already alerts us to the relationship between right contexts and look-
ahead symbols. Like the latter (Section 9.6.2) right contexts exist in an item and a dot
variety. The item right context of S--->a•Bc is ε; its dot right context is Bc. Item right
contexts are easier to compute but dot right contexts are more important in parsing.

We shall start by constructing the regular grammar for item right contexts for the
automaton in Figure 9.17, and then derive dot right contexts from it. Since the right
contexts are item-specific we include the names of the items in the names of the non-
terminals that describe them. We use names of the form F_s{I} for the set of strings
that can follow item I in state s in sentential forms during rightmost derivation.

9.13 Exploiting the Left and Right Contexts 323

As we have seen in Section 9.5, items can derive from items in the same state or
from a parent state. An example of the first type is E--->•E-T in state 6. It derives
through the ε-moves T--->(•E)

ε→•E
ε→E--->•E-T and E--->•E-T

ε→•E
ε→E--->•E-T

in the non-deterministic automaton of Figure 9.15 from both T--->(•E) and
E--->•E-T in state 6. An example of the second type is T--->(•E) in state 6, de-
riving in three ways from the T--->•(E) in states 1, 6 and 7, through the transition

T--->•(E)
(→T--->(•E) in Figure 9.15.

If the item E--->•E-T originates from T--->(•E), its right context consists of the
) which follows the E in T--->(•E); this gives one rule for F_6{E--->•E-T}:

F_6{E--->•E-T} --->) F_6{T--->(•E)}

If the item originates from T--->•E-T, its right context consists of the -T which
follows the E in T--->•E-T; this gives the second rule for F_6{E--->•E-T}:

F_6{E--->•E-T} ---> -T F_6{E--->•E-T}

The general rule is: F_s{A →•α} ---> γ F_s{X → β•Aγ} for an ε-transition
{X → β•Aγ} ε→{•A} ε→{A →•α}, for each state s in which the item {X → β•Aγ}
occurs.

A shift over a token does not change the right context of an item: during a shift
over a (from state 1 to state 6, the item T--->•(E) changes into T--->(•E), but its
right context remains unaffected. This is expressed in the rule

F_6{T--->(•E)} ---> F_1{T--->•(E)}

The general rule is: F_r{A → αt•β} ---> F_s{A → α•tβ} for a transition {A →
α•tβ} t→{A → αt•β}.

Repeating this procedure for all ε-moves and shifts in Figure 9.17 gives us the
(right-regular) grammar for the right contexts; it is shown in Figure 9.44. Note that
the two ways of propagating right context correspond with the two ways of propa-
gating the one-token look-ahead in LR(1) parsing, as explained on page 293.

Again applying the transformations from Section 5.4.2 we can obtain regular
expressions for the non-terminals. For example, the item right context of E--->•E-T
in state 6 is [)*[-T|)]]*)*)[-T]*$ which simplifies to [-T|)]*)[-T]*$.
Again this makes sense: the prediction after that item is a sequence of -Ts and)s,
with at least one), since to arrive at state 6, the input had to contain at least one (.

Finding dot right contexts is now simple: the dot right context of E--->•E-T in
state 6, D_6{E--->•E-T}, is of course just E-T F_6{E--->•E-T}. The general rule
is: D_s{A → α•β} ---> β F_s{A → α•β} for all items.

For a thorough and formal analysis of right contexts see Seyfarth and Bermudez
[93].

9.13 Exploiting the Left and Right Contexts

There are many ways to exploit the left and right contexts as determined above. We
will discuss here three techniques. The first, DR(k) parsing, uses knowledge of the

324 9 Deterministic Bottom-Up Parsing

F_1{S--->•E$} ---> ε F_6{E--->•E-T} --->) F_6{T--->(•E)}
F_1{E--->•E-T} ---> -T F_1{E--->•E-T} F_6{E--->•E-T} ---> -T F_6{E--->•E-T}
F_1{E--->•E-T} ---> $ F_1{S--->•E$} F_6{E--->•T} ---> -T F_6{E--->•E-T}
F_1{E--->•T} ---> -T F_1{E--->•E-T} F_6{E--->•T} --->) F_6{T--->(•E)}
F_1{E--->•T} ---> $ F_1{S--->•E$} F_6{T--->(•E)} ---> F_1{T--->•(E)}
F_1{T--->•(E)} ---> F_1{E--->•T} F_6{T--->(•E)} ---> F_6{T--->•(E)}
F_1{T--->•n} ---> F_1{E--->•T} F_6{T--->(•E)} ---> F_7{T--->•(E)}
F_2{E--->T•} ---> F_1{E--->•T} F_6{T--->•(E)} ---> F_6{E--->•T}
F_2{E--->T•} ---> F_6{E--->•T} F_6{T--->•n} ---> F_6{E--->•T}
F_3{T--->n•} ---> F_1{T--->•n} F_7{E--->E-•T} ---> F_4{E--->E•-T}
F_3{T--->n•} ---> F_6{T--->•n} F_7{E--->E-•T} ---> F_9{E--->E•-T}
F_3{T--->n•} ---> F_7{T--->•n} F_7{T--->•(E)} ---> F_7{E--->E-•T}
F_4{S--->E•$} ---> F_1{S--->•E$} F_7{T--->•n} ---> F_7{E--->E-•T}
F_4{E--->E•-T} ---> F_1{E--->•E-T} F_8{E--->E-T•} ---> F_7{E--->E-•T}
F_5{S--->E$•} ---> F_4{S--->E•$} F_9{E--->E•-T} ---> F_6{E--->•E-T}

F_9{T--->(E•)} ---> F_6{T--->(•E)}
F_10{T--->(E)•} ---> F_9{T--->(E•)}

Fig. 9.44. Right-regular right-context grammar for the LR(0) automaton in Figure 9.17

left context to reduce the required table size drastically, while preserving full LR(k)
parsing power. The second, LR-regular, uses the full right context to provide optimal
parsing power, but the technique does not lead to an algorithm, and its implemen-
tation requires heuristics and/or handwaving. The third, LAR(k) parsing, is a tamed
version of LR-regular, which yields good parsers for a large class of unambiguous
grammars. An even more extensive application of the contexts is found in the chapter
on non-canonical parsing, Chapter 10, where the right context is explicitly improved
by doing reductions in it. And there is no reason to assume that this exhausts the
possibilities.

9.13.1 Discriminating-Reverse (DR) Parsing

As Figure 9.12 shows, an LR parser keeps states alternatingly between the stacked
symbols. Actually, this is an optimization; we could omit the states, but that would
force us to rescan the stack after each parse action, to reestablish the top state, which
would be inefficient. Or would it? Consider the sample parser configuration on page
283, which was based on the grammar of Figure 9.14 and the handle recognizer of
Figure 9.17, and which we repeat here without the states:

E - n ❍ - n $

We have also added a bottom-of-stack marker, #, which can be thought of as caused
by stacking the beginning of the input. There can be no confusion with the end-of-
input marker #, since the latter will never be put on the stack.

When we look at the above configuration, we find it quite easy to guess what the
top state, indicated by ❍, must be. The last shift was over an n, and although there
are three arrows marked n in Figure 9.17, they all point to the same state, ③, so we
can be certain we are looking at

9.13 Exploiting the Left and Right Contexts 325

E - n ③ - n $

Since ③ is a reduce state, we can confidently reduce the n to T. So the loss of the left
context did not do any harm here; but, as the reader might expect, that is not going
to last.

After the reduction we have the configuration

E - T ❍ - n $

and now we have a problem. There are again three arrows marked T in Figure 9.17,
but they do not all point to the same state; two point to ② and one points to ⑧, so we
seem none the wiser. But we know how to handle situations in which there are only a
finite number of possibilities: we put them all in a state, and progress with that state
as our knowledge. The state is

①: ②

⑥: ②

⑦: ⑧

and it represents our knowledge between the - and the T in the configuration; it says:
if we are now in LR state ① or ⑥, the top state was ②, and if we are now in state
⑦, the top state was ⑧. Such a state is called a DR state, for Discriminating Reverse
state (Fortes Gálvez [89]).

When we now look backwards on the stack, we see a -; the LR states ① and ⑥
do not have incoming arrows marked -, so we cannot be in one of these, but state ⑦
has, coming from ④ and ⑨. So our DR state between the E and the - is

④: ⑧

⑨: ⑧

which says if we are now in LR state ④, the top state was ⑧, and if we are now in
state ⑨, the top state was ⑧. Here something surprising has happened: even though
we do not know in which LR state we are, we now know that the top of the stack was
⑧, which is the answer we were looking for! This gives us the configuration

E - T ⑧ - n $

in which we reduced the E-T to E. We have now reproduced the parsing example of
page 283 without states on the stack and without rescanning the entire stack for each
parsing action. Whether that is something worth striving for is less than clear for the
moment, but we will see that the technique has other benefits.

More generally, suppose we are in a DR state d

l1: t1
· · ·
lk: tk

where l1 · · · lk are LR states and the t1 · · · tk are the top-of-stack states implied by
them, and suppose we have the stack symbol s on our left. Now we want to compute
the DR state to the left of s, one step back on the stack. To do so we go through all
transitions of the form p1

s→ p2 in the LR handle recognizer, and for each transition

326 9 Deterministic Bottom-Up Parsing

that has an p2 equal to an l j, we insert the form p1: t j in a new DR state e. This is
reasonable because if we were in LR state p1 to the left of the s, then moving over
the s would bring us in LR state p2, and that would imply that the top of the stack is
t j. In this way we obtain a transition in a DR automaton: d

s→ e, or more graphically,

e
s← d. This transition carries our knowledge about the top of the stack in our present

position over the symbol s to the left.

We can compute the complete DR automaton by performing this step for all
possible stack symbols, starting from the initial state of the DR automaton

t1: t1
· · ·
tk: tk

which of course says that if we are in LR state t j on the top of the stack, then the top-
of-stack state is t j. It is always good to see a difficult concept reduced to a triviality.
States in which all t1 · · ·tk are equal are final states, since they unequivocally tell
us the top-of-stack state. The DR automaton generation process is guaranteed to
terminate because there are only a finite number of DR states possible. The DR
automaton for the LR automaton of Figure 9.17 is shown in Figure 9.45.

①: ①

②: ②

③: ③

④: ④

⑤: ⑤

⑥: ⑥

⑦: ⑦

⑧: ⑧

⑨: ⑨

⑩: ⑩

①: ①

$

①: ③

⑥: ③

⑦: ③

n

①: ②

⑥: ②

⑦: ⑧

T

①: ④

⑥: ⑨

E

①: ⑥

⑥: ⑥

⑦: ⑥

(

④: ⑦

⑨: ⑦

-

⑨: ⑩

)

④: ⑤

$

①: ②

$

①: ②

⑥: ②

⑦: ②

(

④: ⑧

⑨: ⑧

-

①: ④

$

①: ⑨

⑥: ⑨

⑦: ⑨

(

Fig. 9.45. DR automaton for the LR automaton of Figure 9.17

9.13 Exploiting the Left and Right Contexts 327

One thing we immediately notice when looking at the graph in Figure 9.45 is that
it has no loops: at most two steps backwards suffice to find out which parsing action
is called for. We have just shown that the grammar of Figure 9.14 is BRC(2,0)!

But there are more important things to notice: now that we have the transition
diagram in Figure 9.45 we can discard the GOTO table of the LR parser (but of
course we have to keep the ACTION table). That looks like a meager advantage: the
DR automaton has 14 states and the LR(0) automaton only 10. But DR automata
have an interesting property, already showing up in Figure 9.45: the first fan-out is
equal to the number of symbols, the second fan-out is usually a modest number, the
third fan-out a very modest number and in many DR tables there is no fourth fan-out.
This is understandable, since each step to the left tends to reduce the uncertainty. Of
course it is possible that some DR parser will occasionally dig unboundedly deep
back in the stack, but such operations are usually controlled by a simple loop in the
DR automaton (see Problem 9.21), involving only a few DR states.

Compared to GOTO tables the DR automata are very compact, and, even better,
that property holds more or less independently of the type of LR table used: going
from LR(0) to LR(1) to LR(2) tables, each one or more orders of magnitude larger
than the previous, the corresponding DR automaton only grows minimally. So we
can afford to use full LR(k) tables and still get a very small replacement for the
GOTO table! We still need to worry a bit about the ACTION table, but almost all of
its entries are “shift” or “error”, and it yields readily to table compression techniques.
DR parsing has been used to create LR(1) parsers that are substantially smaller than
the corresponding LALR(1) tables. The price paid for these smaller tables is an in-
creased parse time caused by the stack scanning, but the increase is very moderate.

The reader may have noticed that we have swept two problems under the rug in
the above explanation: we needed the large LR table to obtain the small DR table, a
problem similar to the construction of LALR(1) parsers without generating the full
LR(1) tables; and we ignored look-aheads. Solving these problems is the mainstay
of DR parser generation; detailed solutions are described by Fortes Gálvez [92, 95].
The author also proves that parse time is linear in the length of the input, even if
the parser sometimes has to scan the entire stack [95, Section 7.5.1], but the proof
is daunting. A generalized version of DR parsing is reported by Fortes Gálvez et al.
[179] and a non-canonical version by Farré and Fortes Gálvez [207, 209].

Kannapinn [99] describes a similar system, which produces even more compact
parsers by first reducing the information contents of the LR(1) parser, using various
techniques. This reduction is, however, at the expense of the expressive power, and
for stronger reductions the technique produces smaller parsers but can handle fewer
grammars, thus defining a number of subclasses of LR(1).

9.13.2 LR-Regular

The right context can be viewed as a kind of super-look-ahead, which suggests that
it could be a great help in resolving inadequate states; but it is not particularly easy
to make this plan work. The basic idea is simple enough: whenever we meet an
inadequate state in the parse table construction process, compute the right contexts of

328 9 Deterministic Bottom-Up Parsing

the offending items as described in the previous section. If the two contexts describe
disjunct sets, they can serve to resolve the conflict at parse time by finding out to
which of the two sets the rest of the input belongs. If the two contexts do not exclude
each other, the plan does not work for the given grammar. (See Figure 9.13 for a
simple unambiguous grammar for which this technique clearly will not work.)

This requires us to solve two problems: deciding whether the two dot right con-
texts are disjunct, and checking the rest of the input against both contexts. Both are
serious problems, since the right contexts are CF languages. It can be proved that it
is undecidable whether two CF languages have a terminal production in common,
so finding out if the two right contexts really are sufficient to distinguish between
the two items seems impossible (but see Problem 9.29). And checking the rest of the
input against a CF language amounts to parsing it, the very problem we are trying to
solve.

Both problems are solved by the same trick: we replace the CF grammars of the
right contexts by regular grammars. As we have seen in Section 5.5 we can check
if two regular languages are disjunct (take the intersection of the automata of both
languages and see if the resulting automaton still accepts some string; if it does, the
automata are not disjunct). And it is simple to test the rest of the input against both
regular languages; below we will show that we can even do that efficiently. But this
solution brings in a new problem: how to replace CF grammars by regular ones.

Of course a regular grammar R cannot be equivalent to a CF grammar C, so
replacing one by the other involves an approximation “from above”: R should at
least produce all strings C produces or it will fail to identify an item as applicable
when it is. But the overproduction should be minimal, or the set of string may no
longer be disjunct from that of the other item, and the parser construction would fail
unnecessarily. So R will have to envelop C as tightly as possible. If mutually disjunct
regular envelopes for all right contexts in inadequate states exist, the grammar G is
LR-regular (Čulik, II and Cohen [57]), but we can make a parser for G only if we
can also actually find the envelopes.

It is actually not necessary to find regular envelopes of the right contexts of each
of the items in an inadequate state. It suffices to find regular envelopes for the non-
terminals of the grammar; these can then be substituted into the regular expressions
for the right contexts.

Finding regular envelopes of non-terminals in a context-free grammar requires
heuristics. It is possible to approximate non-terminals better and better with increas-
ingly more complicated regular grammars, but it is undecidable if there exist regu-
lar envelopes for the right contexts that are good enough for a given grammar. So
when we find that our approximations (regular envelopes) are not disjunct, we can-
not know if better heuristics would help. We shall therefore restrict ourselves to the
simple heuristic demonstrated in Section 9.13.2.3.

9.13.2.1 LR-Regular Parse Tables

Consider the grammar in Figure 9.46(a), which produces d*a and d*b. It could, for
example, represent a language of integer numbers, with the ds standing for digits,

9.13 Exploiting the Left and Right Contexts 329

Ss ---> A a
S ---> B b
A ---> A C
A ---> C
C ---> d
B ---> B D
B ---> D
D ---> d

(a)

S--->•Aa
S--->•Bb
A--->•AC
A--->•C
C--->•d
B--->•BD
B--->•D
D--->•d

(b)

C--->d•
D--->d•

(c)

Fig. 9.46. An LR-regular grammar (a), with initial state 1 (b) and inadequate state 2 (c)

and the a and b for indications of the numeric base; examples could then be 123a
for a decimal number, and 123b for a hexadecimal one. For another motivation of
this grammar see Section 10.2.2 and Figure 10.12.

It is easy to see that the grammar of Figure 9.46(a) is not LR(k): to get past the
first d, it has to be reduced to either C or D, but no fixed amount of look-ahead can
reach the deciding a of b at the end of the input. The figure also shows the initial
state 1 of an LR parser for the grammar, and the state reached by shifting over a d,
the one that has the reduce/reduce conflict. The full LR automaton is shown in Figure
9.49.

To resolve that conflict we construct the right contexts of both items,
F_2{C--->d•} and F_2{D--->d•}. The regular grammar for F_2{C--->d•} is

F_1{S--->•Aa} ---> #
F_1{A--->•AC} ---> a F_1{S--->•Aa}
F_1{A--->•C} ---> a F_1{S--->•Aa}

F_1{A--->•AC} ---> C F_1{A--->•AC}
F_1{A--->•C} ---> C F_1{A--->•AC}
F_1{C--->•d} ---> F_1{A--->•C}
F_2{C--->d•} ---> F_1{C--->•d}

Unsurprisingly this resolves into C*a#. A similar reasoning gives D*b# for
F_2{D--->d•}. Next we have to replace the CF non-terminals C and D by their regu-
lar envelopes. In our example this is trivial, since both are already regular; so the two
LR-regular contexts are d*a# and d*b#. And indeed the two sets are disjunct: the
grammar of Figure 9.46(a) is LR-regular, and the LR-regular contexts can be used as
LR-regular look-aheads. Right contexts always end in a # symbol, since each item
eventually derives from the start symbol, and it has a look-ahead #.

So the entry for a state p in the ACTION table of an LR-regular parser can contain
one of five things: “shift”, “reduce”, “error”, “accept”, or a pointer to an LR-regular
look-ahead automaton; the latter occurs when the LR state corresponding to p was
inadequate. The GOTO table of an LR-regular parser in identical to that of the LR
parser it derives from.

330 9 Deterministic Bottom-Up Parsing

9.13.2.2 Efficient LR-Regular Parsing

We now turn to the actual parsing, where we meet our second problem: how to de-
termine which of the right contexts the rest of the input is in. The naive way is to just
construct an FSA for each LR-regular look-ahead and send it off into the input to see
if it stops in an accepting state. This has two drawbacks: 1. the input is rescanned by
each FSA F , and there can be many of them; 2. the whole process is repeated after
each shift, which may cause the parsing to require O(n2) time.

The second drawback can be removed by replacing the FSA F by a new FSA
←−
F ,

which accepts the reverse of the strings that F accepts; basically such an FSA can be
made by reversing all arrows, swapping the initial and accepting states, and making
the result deterministic again. We start

←−
F at the right of the added end-of input token

#, and run it backwards over the input. It marks each position in which it is in an
accepting state with a marker F1, the start state of the original, forward, automaton
F . This costs O(n) steps. Now, when during parsing we want to know if the rest of
the input conforms to F , we can just check if the present position is marked F1, at
constant cost.

We can of course repeat the backward scan of the input for every reversed look-
ahead FSA, but it is much more efficient to combine all of them in one big FSA

←−
F

by creating a new start state � with ε-transitions to the start states of all reversed
automata for the dot right contexts, as shown in Figure 9.47. The clouds represent

�

· · ·

ε
② D_...

ε

⑤ D_...
ε

⑨ D_...

ε

· · ·

ε

Fig. 9.47. Combined backwards-scanning automaton
←−
F for LR-regular parsing

the various reversed automata, with their accepting states ②, ⑤, ⑨, etc. Using this
combined automaton we need now scan backwards only once:

�tn
②
③
⑧

tn−1③· · ·· · ·· · ·④
⑤

t2⑨t1
③
⑧

9.13 Exploiting the Left and Right Contexts 331

The backwards scan marks each position with the accepting states of all reversed
FSAs in

←−
F that apply at that position. These are the start states of the forward au-

tomata. A left-to-right LR parsing scan can then use these states as summaries of the
look-aheads. This removes the first drawback mentioned above.

We have now achieved a linear-time algorithm: we first read the entire input (at
cost O(n)); then we scan backwards, using one single FSA recording start states of
right contexts (again O(n)); and finally we run the LR-regular parser forward, using
the recorded states rather than the tokens as look-aheads (also O(n)).

9.13.2.3 Finding a Regular Envelope of a Context-Free Grammar

The fundamental difference between regular and context-free is the ability to nest.
This nesting is implemented using a stack, both during production and parsing, for
LL, LR and pushdown automaton alike. This observation immediately leads to a
heuristic for “reducing” a CF language to regular: limit the stack depth. A stack of
fixed depth can assume only a finite number of values, which then correspond to the
states of a finite state automaton. The idea can be applied naturally to an LR parser
with a stack limited to the top state only (but several other variations are possible).

The heuristic can best be explained using a non-deterministic LR automaton, for
example the one in Figure 9.15. Assume the input is n($. Initially we work the
system as an interpreter of the NFA, as in Figure 9.16, so we start in the leftmost
state in that figure. Shifting over the n brings us to a state that contains only T--->n•
(actually state 2 in Figure 9.17), and since we remember only the top of the stack,
we forget the initial state. State 2 orders us to reduce, but since we have lost the n
and the initial state, we know that we have to shift over a T but we have no idea from
what state to shift. We solve this by introducing a state containing all possible items,
thus acknowledging our total ignorance; we then shift over T from that state. The
result is the item set:

E--->E-T•
E--->T•

Note that this item set is not present in the deterministic LR(0) automaton, and cannot
occur as a state in the CF parsing. The item set tells us to reduce to E, but again
without any previous information. We act as above, now obtaining the item set

S--->E•$
E--->E•-T
T--->(E•)

which is again not an LR(0) state. This item set allows shifts on $, - and), but not on
(; so the input n($ is rejected, even by the regular envelope constructed here. Note
that the input n)$ is accepted; indeed it does not contain blatant impossibilities.

A closer look at the above discussion makes it clear what happens when we have
to reduce to a non-terminal A: we continue with all items of the form P → αA•β.
These items can be found in the non-deterministic LR automaton as the items that
have an incoming arrow on A. This gives us a way to convert such an automaton

332 9 Deterministic Bottom-Up Parsing

into an FSA for a regular envelope: we connect by ε-transitions all reduce states for
each non-terminal A to all states with incoming arrows marked A; next we remove
all arrows marked with non-terminals.

This procedure converts the non-deterministic LR(0) automaton of Figure 9.15
into the non-deterministic finite-state automaton of Figure 9.48, in which the un-
marked arrows represent ε-transitions, and the accepting state is again marked with
a ♦. Rather than connecting all reduce items of a non-terminal A to all items of the

•S

S--->•E$

S--->E•$

$

S--->E$•

S•

♦

•E

E--->•E-T

E--->E•-T

-

E--->E-•T

E--->E-T•

E--->•T

E--->T•

E•

•T

T--->•n

n

T--->n•

T--->•(E)

(

T--->(•E)

T--->(E•)

)

T--->(E)•

T•

Fig. 9.48. A possible regular envelope for the grammar of Figure 9.14

form P → αA•β, we first connect the reduce items to a “terminal station”, which
is the dual to the “departure” station shown in Figure 9.15, and connect from there
to the destination states. Although Figure 9.48 could be drawn neater and without
crossing lines, we have kept it as close as possible to Figure 9.15 to show the rela-
tionship.

A specific deterministic finite-state automaton for a given non-terminal P can
be derived from it by marking the station of P as the start state, and making the
automaton deterministic using the subset algorithm. This FSA — or rather the regular
expression it corresponds to — can then be used in the expressions derived for item
and dot right contexts in Section 9.12.2. See Problem 9.27.

If the resulting regular sets are too coarse and do not sufficiently separate the
actions on various items, a better approximation could be obtained by remembering
k states rather than 1, but the algorithm to do so is quite complicated. It is usually
much easier to duplicate part of the grammar, for example as follows:

9.13 Exploiting the Left and Right Contexts 333

S ---> E $
E ---> E - T’ | T
T ---> n | (E)

T’ ---> n | (E)

This trick increases the number of states in the FSA and so the tightness of the fit.
But finding exactly which part to duplicate will always remain an art, since the basic
problem is unsolvable.

The grammar of Figure 9.46(a) shows that LR-regular parsing can handle some
non-deterministic grammars. Čulik, II and Cohen [57] prove that the same is true for
languages: LR-regular can handle some languages for which there are no determin-
istic grammars. For the dismal error detection properties of LR-regular, see Problem
9.28.

The above approximation algorithm is from Nederhof [402]. There are many
other algorithms for approximating the right context, for example Farré and Fortes
Gálvez [98]. See also Yli-Jyrä [403], Pereira and Wright [404], and other papers
from (Web)Section 18.4.2. Nederhof’s paper [401] includes a survey of regular ap-
proximating algorithms.

9.13.3 LAR(m) Parsing

Bermudez and Schimpf [82] show a rather different way of exploring and exploiting
the right context. At first sight their method seems less than promising: when faced
with two possible decisions in an inadequate state, parse ahead with both options and
see which one survives. But it is easy to show that, at least occasionally, the method
works quite well.

We apply the idea to the grammar of Figure 9.46. Its LR(0) automaton is shown
in Figure 9.49; indeed state ② is inadequate, has a reduce/reduce conflict. Suppose
the input is dddb, which almost immediately lands us in the inadequate state. Rather
than first trying the reduction C--->d• and seeing where it gets us, and then D--->d•,
we try both of them simultaneously, one step at a time. In both cases the parser starts
in state ①, a d is stacked, and state ② is stacked on top, as in frame a:

①d②

①d②

C--->d•

D--->d•

①C

①D

GOTO

GOTO

①C③

①D⑦

A--->C•

B--->D•

①A

①B

GOTO

GOTO

①A④

①B⑧

(a) (b) (c) (d) (e)

The top level in the bubble is reduced using C--->d• and the bottom level with D--->d•,
as shown in frame b. GOTOs over the resulting C and D give frame c. The new states
③ and ⑦ are OK and ask for more reductions, leading to frame d. Two more GOTOs
put the states ④ and ⑧ on top; both require shifts, so our simultaneous parser is
now ready for the next input token. The way we have drawn the combined simulated
stacks in transition bubbles already shows that we intend to use them as states in a
look-ahead automaton, the LAR automaton.

When we now process the next d in the input:

334 9 Deterministic Bottom-Up Parsing

S--->•Aa
S--->•Bb
A--->•AC
A--->•C
C--->•d
B--->•BD
B--->•D
D--->•d

1

d C--->d•
D--->d•

2

A--->C•

3C

S--->A•a
A--->A•C
C--->•d

4

A

A--->AC•

6
C

C--->d•

5
d

S--->Aa•

11

a

B--->D•

7
D

S--->B•b
B--->B•D
D--->•d

8

B

B--->BD•

10

D

D--->d•

9d

S--->Bb•

12

b

Fig. 9.49. The LR(0) automaton of the grammar of Figure 9.46

①A④d⑤

①B⑧d⑨

C--->d•

D--->d•

①A④C

①B⑧D

GOTO

GOTO

①A④C⑥

①B⑧D⑩

A--->AC•

B--->BD•

①A

①B

GOTO

GOTO

①A④

①B⑧

(a) (b) (c) (d) (e)

we are pleasantly surprised: the LAR state after the second d is the same as after the
first one! This means that any further number of ds will just bring us back to this
same state; we can skip explaining these and immediately proceed to the final b. We
stack the b and immediately see that one of the GOTOs fails ((b)):

①A④b

①B⑧b

GOTO

GOTO

①A④b✘

①B⑧b 12

(a) (b)

That is all we need to know: as soon as there is only one choice left we can stop our
search since we know which decision to take in the inadequate state.

9.13 Exploiting the Left and Right Contexts 335

It would be inconvenient to repeat this simulation every time the inadequate state
occurs during parsing, so we want to derive from it a finite-state look-ahead automa-
ton that can be computed during parser generation time and can be consulted during
parsing. To this end we perform the simulated look-ahead process during parser gen-
eration, for all input tokens. This results in a complete FS look-ahead automaton for
the given inadequate state. Figure 9.50 shows the LAR automaton for the inadequate
state ②, as derived above. Note that it is exactly the FS automaton a programmer

①A④

①B⑧

d

①A④a

C--->d•

11

a

①B⑧b
D--->d•

12

b

Fig. 9.50. The LAR automaton for the inadequate state ② in Figure 9.49

would have written for the problem: skip ds until you find the answer.

The above example allowed us to demonstrate the basic principles and the power
of LAR parsing, but not its fine points, of which there are three. The inadequate
state can have more than one conflict; we can run into more inadequate states while
constructing the LAR automaton; and one or more simulated stacks may grow in-
definitely, so the FS look-ahead automaton construction process may not terminate,
generating more and more states.

The first two problems are easily solved. If the inadequate LR state has more
than one conflict, we start a separate level in our initial LAR state for each possible
action. Again states in which all levels but one are empty are terminal states (of the
LAR automaton). And if we encounter an inadequate state px in the simulated stack
of level l, we just copy that stack for all actions that px allows, keeping all copies in
level l. Again states in which all levels but one are empty are terminal states; we do
not need to find out which of the stacks in that level is the correct one.

The problem of the unbounded stack growth is more interesting. Consider the
grammar of Figure 9.51; it produces the same language as that of Figure 9.46, but is
right-recursive rather than left. The pertinent part of the LR(0) automaton is shown
in Figure 9.52.

We process the first two ds just as above:

336 9 Deterministic Bottom-Up Parsing

Ss ---> A | B
A ---> C A | a
C ---> d
B ---> D B | b
D ---> d

Fig. 9.51. An LAR(1) grammar

S--->•A
S--->•B
A--->•CA
A--->•a
C--->•d
B--->•DB
B--->•b
D--->•d

1

d

C--->d•
D--->d•

2

C
A--->C•A
A--->•CA
A--->•a
C--->•d

3

C

C--->d•

4

d

A--->a•

5
a

D
B--->D•B
B--->•DB
B--->•b
D--->•d

3

D

D--->d•

4

d

B--->b•

5
b

Fig. 9.52. Part of the LR(0) automaton for the grammar of Figure 9.51

①d②

①d②

C--->d•

D--->d•

①C

①D

GOTO

GOTO

①C③

①D⑥

shift d
GOTO

shift d
GOTO

①C③d④

①D⑥d⑦

C--->d•
GOTO

D--->d•
GOTO

①C③C③

①D⑥D⑥

(a) (b) (c) (d) (e)

but to our dismay we see that the miracle of the identical states does not repeat it-
self. In fact, it is easy to see that for each subsequent d the stacks will grow longer,
creating more and more different LAR states, preventing us from constructing a fi-
nite-state look-ahead automaton at parser generation time. Bermudez and Schimpf’s
solution to this problem is simple: keep the top-most m symbols of the stack only.
This leads to LAR(m) parsing. Note that, although we are constructing look-ahead
automata, the m is not the length of the look-ahead, but rather the amount of left
context maintained while doing the look-ahead. If the resulting LAR automaton has
loops in it, the look-ahead itself is unbounded, unrelated to the value of m.

Using this technique with m = 1 truncates the stacks of frame e above to those in
frame a below:

9.13 Exploiting the Left and Right Contexts 337

③C③

⑥D⑥

shift d
GOTO

shift d
GOTO

③C③d④

⑥D⑥d⑦

C--->d•
GOTO

D--->d•
GOTO

③C③C③

⑥D⑥D⑥

trunc-
ate

③C③

⑥D⑥

(a) (b) (c) (d)

Proceeding as before, we shift in the ds, perform reductions and GOTOs, and finally
truncate again to m = 1, and we are happy to see that this leads us back to the previous
state. Since there are only a finite number of stacks of maximum length m, there are
only a finite number of possible states in our LAR automaton, so the construction
process is guaranteed to terminate. The result for our grammar is shown in Figure
9.53.

①C③

①D⑥

d
③C③

⑥D⑥

d

③a⑤
C--->d•

a a

⑥b⑦
D--->d•

b b

Fig. 9.53. The LAR(1) automaton for the inadequate state 2 in Figure 9.52

This technique seems a sure-fire way to resolve any problems with inadequate
states, but of course it isn’t. The snag is that when reducing a simulated stack we
may have to reduce more symbols than are available on that stack. If that happens, the
grammar is not LAR(m) — so the fact that our above attempt with m = 1 succeeded
proved that the grammar of Figure 9.51 is LAR(1). Making m larger than the length
of the longest right-hand side does not always help since successive reduces may still
shorten the stack too much.

The above procedure can be summarized as follows:

• For each inadequate state px we construct an LAR look-ahead automaton, which
starts in a provisional LAR state, which has as many levels as there are possible
actions in px.

• In each provisional state we continue to perform reduce and GOTO actions until
each stack has an LR state which allows shifting on top, all the while truncating
the stack to m symbols.
– If we run into an inadequate state py in this process, we duplicate the stack

inside the level and continue with all actions py allows.

338 9 Deterministic Bottom-Up Parsing

– If we have to reduce more symbols from a stack than it contains, the grammar
is not LAR(m).

– If we shift over the end marker # in this process, the grammar is ambiguous
and is not LAR(m).

If there is now only one non-empty level left in the LAR state, it is a terminal
LAR state. Otherwise the result is either a new LAR state, which we process, or
a known LAR state.

• For each new LAR state p we create transitions p
t→ pt for all tokens t that p

allows, where the pt are new provisional states.
• We continue the above process until there are no more new LAR states or we find

that the grammar is not LAR(m).

We regret to say that we have again left a couple of complications out of the dis-
cussion. When working with m > 1, the initial LAR state for an inadequate LR state
must contain stacks that derive from the left context of that state. And the number of
LAR automata can be reduced by taking traditional LALR look-ahead into account.
These complications and more are discussed by Bermudez and Schimpf [82], who
also provide advice about obtaining reasonable values for m.

9.14 LR(k) as an Ambiguity Test

It is often important to be sure that a grammar is not ambiguous, but unfortunately
that property is undecidable: it can be proved that there cannot be an algorithm that
can, for every CF grammar, decide whether it is ambiguous or unambiguous. This
is comparable to the situation described in Section 3.4.2, where the fundamental
impossibility of a recognizer for Type 0 grammars was discussed. (See Hopcroft
and Ullman [391, p. 200]). The most effective ambiguity test for a CF grammar
we have at present is the construction of the corresponding LR(k) automaton, but
it is not a perfect test: if the construction succeeds, the grammar is guaranteed to
be unambiguous; if it fails, in principle nothing is known. In practice, however, the
reported conflicts will often point to genuine ambiguities.

The construction of an LR-regular parser (Section 9.13.2) is an even stronger,
but more complicated test; see Heilbrunner [392] for a precise algorithm. Schmitz
and Farré [398] describe a different very strong ambiguity test that can be made
arbitrarily strong at arbitrary expense, but it is experimental.

9.15 Conclusion

The basis of bottom-up parsing is reducing the input, through a series of sentential
forms, to the start symbol, all the while constructing the parse tree(s). The basis of
deterministic bottom-up parsing is finding, with certainty, in each sentential form a
segment α equal to the right-hand side of a rule A → α such that the reduction using
that rule will create a node A that is guaranteed to be part of the parse tree. The basis

9.15 Conclusion 339

of left-to-right deterministic bottom-up parsing is finding, preferably efficiently, the
leftmost segment with that property, the handle.

Many plans have been devised to find the handle. Precedence parsing inserts
three types of marker in the sentential form: � for the left end of a handle;

.
= for

use in the middle of a handle; and � for the right end of the handle. The decision
which marker to place in a given position depends on one or a few tokens on the left
and on the right of the position. Bounded context identifies the handle by a left and
right context, each a few tokens long. LR summarizes the entire left context into a
single state of an FSA, which state then identifies the reduction rule, in combination
with zero, one, or a few tokens of the right context. LR-regular summarizes the entire
right context into a single state of a second FSA, which state in combination with the
left context state then identifies the reduction rule. Many different FSAs have been
proposed for this purpose.

Problems

Problem 9.1: Arguably the simplest deterministic bottom-up parser is one in
which the shortest leftmost substring in the sentential form that matches a right-hand
side in the grammar is the handle. Determine conditions for which this parser works.
See also Problem 10.9.

Problem 9.2: Precedence parsing was explained as “inserting parenthesis gener-
ators”. Sheridan [111] sketches an algorithm that inserts sufficient numbers of paren-
theses. Determine conditions for which this works.

Problem 9.3: There is an easy approach to LR(0) automata with shift/reduce
conflicts only: shift if you can, reduce otherwise. Work out the consequences.

Problem 9.4: Extend the tables in Figure 9.18 for the case that the input consists
of sentential forms containing both terminal and non-terminal symbols rather than
strings of terminals. Same question for Figure 9.28.

Problem 9.5: Complete the LR(2) ACTION and GOTO tables of Figure 9.33.
Problem 9.6: Design the combined LR(k = 0,1,> 1) algorithm hinted at on

page 299.
Problem 9.7: Devise an efficient table structure for an LR(k) parser where k is

fairly large, say between 5 and 20. (Such grammars may arise in grammatical data
compression, Section 17.5.1.)

Problem 9.8: An LR(1) grammar is converted to CNF, as in Section 4.2.3. Is it
still LR(1)?

Problem 9.9: In an LR(1) grammar in CNF all non-terminals that are used only
once in the grammar are substituted out. Is the resulting grammar still LR(1)?

Problem 9.10: Is it possible for two items in the LALR(1) channel algorithm to
be connected both by propagation channels and by spontaneous channels?

Problem 9.11: Apply the algorithm of Section 9.7.1.3 to the grammar of Figure
9.30.

340 9 Deterministic Bottom-Up Parsing

Problem 9.12: The reads and directly-reads relations in Section 9.7.1.3 seem
to compute the FIRST sets of some tails of right-hand sides. Explore the exact rela-
tionship between reads and directly-reads and FIRST sets.

Problem 9.13: Project for Prolog fans: The relations in the algorithm of Section
9.7.1.3 immediately suggest Prolog. Program the algorithm in Prolog, keeping the
single-formula formulation of page 310 as a single Prolog clause, if possible.

Problem 9.14: Although the LALR-by-SLR algorithm as described by
Bermudez and Logothetis [79] can compute look-ahead sets of reduce items only,
a very simple modification allows it to compute the LALR look-aheads of any item.
Use it to compute the LALR look-ahead sets of E--->E•-T in states 4 and 9 of Figure
9.25.

Problem 9.15: Project: The channels in the channel algorithm in Section 9.7.1.2
and the relations in the relations algorithm in Section 9.7.1.3 bear some resemblance.
Work out this resemblance and construct a unified algorithm, if possible.

Problem 9.16: Project: It is not obvious that starting the FSA construction pro-
cess in Section 9.10.2 from state s0 yields the best possible set, either in size or in
amount of stack activity saved. Research the possibility that a different order pro-
duces a better set of FSAs, or even that a different or better set exists that does not
derive from some order.

Problem 9.17: Derive left-context regular expressions for the states in Figure
9.17 as explained in Section 9.12.

Problem 9.18: Write a program to construct the regular grammar for the left
contexts of a given grammar.

Problem 9.19: Write a program to construct the regular grammar for the right
contexts of a given grammar.

Problem 9.20: It seems reasonable to assume that when the dot right contexts in
a given inadequate state have a non-empty intersection even on the regular expression
level, the grammar must be ambiguous: there is at least one continuation that will
satisfy both choices, right up to the end of the input, and thus lead to two successful
parses. The grammar S--->aSa|a, which is unambiguous, proves that this is not true:
D_2S--->•a=aaa*$ and D_2S--->a•=aa*$, and they have any string in aaa*$ in
common. What is wrong with the reasoning?

Problem 9.21: Construct a grammar that has a DR automaton with a loop in it.
Problem 9.22: Since the regular envelope in LR-regular parsing is too wide, it

can happen that the rest of the input is inside the regular envelope but outside the CF
right context grammar it envelopes. What happens in this case?

Problem 9.23: Show that the naive implementation of the LR-regular parser in
Section 9.13.2 indeed has a time requirement of O(n2).

Problem 9.24: Work out the details of building a reverse FSA
←−
F from a given

FSA F , both when F is non-deterministic and when it is already deterministic. (
←−
F

should recognize the reverse of the strings F recognizes.)
Problem 9.25: Derive a deterministic automaton (or a regular expression) for T

from the automaton in Figure 9.48.

9.15 Conclusion 341

Problem 9.26: Devise a way to do the transformation to a regular envelope on
the deterministic LR(0) automaton (for example Figure 9.17) rather than on the non-
deterministic one.

Problem 9.27: 1. Make the NFA in Figure 9.48 deterministic for T. 2. Derive a
regular expression for T and use it in the expression [-T|)]*)[-T]*$ derived for
the item right context of E--->•E-T in state 6 in Section 9.12.2.

Problem 9.28: Project: Design reasonable error reporting for an LR-regular
parser. (Background: If the backward scan of an LR-regular parser is performed on
incorrect input, chances are that the automaton gets stuck somewhere, say at a posi-
tion P, which means that no look-aheads will be attached to any positions left of P,
which in turn means that parsing cannot even start. Giving an error message about
position P is unattractive because 1) it may not be the leftmost error, which is awk-
ward if there is more than one error, and 2) no reasonable error message can be given
since there is finite-state information only.)

Problem 9.29: Project Formal Languages: The argument on page 328 suggest-
ing that it is undecidable whether a grammar is LR-regular or not works the wrong
way: it reduces our problem to an undecidable problem, but it should reduce an un-
decidable problem to ours. Correct.

Problem 9.30: On page 337 we write that the grammar is not LAR(m) if during
reducing a simulated stack we have to reduce more symbols than are available on
that stack. But why is that a problem? We know which reduction to do, so we could
just do it. Or can we?

