
5

Regular Grammars and Finite-State Automata

Regular grammars, Type 3 grammars, are the simplest form of grammars that still
have generative power. They can describe concatenation (joining two strings to-
gether) and repetition, and can specify alternatives, but they cannot express nesting.
Regular grammars are probably the best-understood part of formal linguistics and
almost all questions about them can be answered.

5.1 Applications of Regular Grammars

In spite of their simplicity there are many applications of regular grammars, of which
we will briefly mention the most important ones.

5.1.1 Regular Languages in CF Parsing

In some parsers for CF grammars, a subparser can be discerned which handles a
regular grammar. Such a subparser is based implicitly or explicitly on the follow-
ing surprising phenomenon. Consider the sentential forms in leftmost or rightmost
derivations. Such sentential forms consist of a closed (finished) part, which contains
terminal symbols only and an open (unfinished) part which contains non-terminals
as well. In leftmost derivations the open part starts at the leftmost non-terminal and
extends to the right; in rightmost derivations the open part starts at the rightmost non-
terminal and extends to the left. See Figure 5.1 which uses sample sentential forms
from Section 2.4.3.

d , N & N N , N & h

Fig. 5.1. Open parts in leftmost and rightmost productions

It can easily be shown that these open parts of the sentential form, which play an
important role in some CF parsing methods, can be described by a regular grammar,
and that that grammar follows from the CF grammar.

138 5 Regular Grammars and Finite-State Automata

To explain this clearly we first have to solve a notational problem. It is conven-
tional to use upper case letters for non-terminals and lower case for terminals, but
here we will be writing grammars that produce parts of sentential forms, and since
these sentential forms can contain non-terminals, our grammars will have to produce
non-terminals. To distinguish these “dead” non-terminals from the “live” ones which
do the production, we shall print them barred: X̄.

With that out of the way we can construct a regular grammar G with start symbol
R for the open parts in leftmost productions of the grammar C used in Section 2.4.3,
which we repeat here:

Ss ---> L & N
S ---> N
L ---> N , L
L ---> N
N ---> t | d | h

The first possibility for the start symbol R of G is to produce the start symbol of C;
so we have R--->S̄, where S̄ is just a token. The next step is that this token, being
the leftmost non-terminal in the sentential form, is turned into a “live” non-terminal,
from which we are going to produce more of the sentential form: R--->S. Here S is
a non-terminal in G, and describes open parts of sentential forms deriving from S
in C. The first possibility for S in G is to produce the right-hand side of S in C as
tokens: S--->L̄&N̄. But it is also possible that L̄, being the leftmost non-terminal in the
sentential form, is already alive: S--->L&N̄, and it may even have finished producing,
so that all its tokens have already become part of the closed part of the sentential
form; this leaves &N̄ for the open part: S--->&N̄. Next we can move the & from the
open part to the closed part: S--->N̄. Again this N̄ can become productive: S--->N, and,
like the L above, can eventually disappear entirely: S--->ε. We see how the original
S--->L̄&N̄ gets gradually worked down to S--->ε. The second alternative of S in C,
S--->N, yields the rules S--->N̄, S--->N, and S--->ε, but we had obtained these already.

The above procedure introduces the non-terminals L and N of G. Rules for them
can be derived in the same way as for S; and so on. The result is the left-regular
grammar G, shown in Figure 5.2. We have already seen that the process can create

R ---> S̄ L ---> N̄ , L̄
R ---> S L ---> N , L̄
S ---> L̄ & N̄ L ---> , L̄
S ---> L & N̄ L ---> L̄
S ---> & N̄ L ---> L ✘

S ---> N̄ L ---> ε
S ---> N L ---> N̄
S ---> ε L ---> N
N ---> t | d | h
N ---> ε

Fig. 5.2. A (left-)regular grammar for the open parts in leftmost derivations

5.1 Applications of Regular Grammars 139

duplicate copies of the same rule; we now see that it can also produce loops, for
example the rule L--->L, marked ✘ in the figure. Since such rules contribute nothing,
they can be ignored.

In a similar way a right-regular grammar can be constructed for open parts of
sentential forms in a rightmost derivation. These grammars are useful for a better
understanding of top-down and bottom-up parsing (Chapters 6 and 7) and are essen-
tial to the functioning of some parsers (Sections 9.13.2 and 10.2.3).

5.1.2 Systems with Finite Memory

CF (or stronger) grammars allow nesting. Since nesting can, in principle, be arbitrar-
ily deep, the generation of correct CF (or stronger) sentences can require an arbitrary
amount of memory to temporarily hold the unprocessed nesting information. Me-
chanical systems do not possess an arbitrary amount of memory and consequently
cannot exhibit CF behavior and are restricted to regular behavior. This is immedi-
ately clear for simple mechanical systems like vending machines, traffic lights and
DVD recorders: they all behave according to a regular grammar. It is also in princi-
ple true for more complicated mechanical systems, like a country’s train system or a
computer. However, here the argument gets rather vacuous since nesting information
can be represented very efficiently and a little memory can take care of a lot of nest-
ing. Consequently, although these systems in principle exhibit regular behavior, it is
often easier to describe them with CF or stronger means, even though that incorrectly
ascribes infinite memory to them.

Conversely, the global behavior of many systems that do have a lot of memory
can still be described by a regular grammar, and many CF grammars are already for
a large part regular. This is because regular grammars already take adequate care of
concatenation, repetition and choice; context-freeness is only required for nesting. If
we call a rule that produces a regular (sub)language (and which consequently could
be replaced by a regular rule) “quasi-regular”, we can observe the following. If all
alternatives of a rule contain terminals only, that rule is quasi-regular (choice). If
all alternatives of a rule contain only terminals and non-terminals with quasi-regular
and non-recursive rules, then that rule is quasi-regular (concatenation). And if a rule
is recursive but recursion occurs only at the end of an alternative and involves only
quasi-regular rules, then that rule is again quasi-regular (repetition). This often covers
large parts of a CF grammar. See Krzemień and Łukasiewicz [142] for an algorithm
to identify all quasi-regular rules in a grammar.

Natural languages are a case in point. Although CF or stronger grammars seem
necessary to delineate the set of correct sentences (and they may very well be, to
catch many subtleties), quite a good rough description can be obtained through reg-
ular languages. Consider the stylized grammar for the main clause in a Subject-
Verb-Object (SVO) language in Figure 5.3. This grammar is quasi-regular: Verb,
Adjective and Noun are regular by themselves, Subject and Object are con-
catenations of repetitions of regular forms (regular non-terminals and choices) and
are therefore quasi-regular, and so is MainClause. It takes some work to bring
this grammar into standard regular form, but it can be done, as shown in Figure 5.4,

140 5 Regular Grammars and Finite-State Automata

MainClauses ---> Subject Verb Object
Subject ---> [a | the] Adjective* Noun
Object ---> [a | the] Adjective* Noun
Verb ---> verb1 | verb2 | · · ·

Adjective ---> adj1 | adj2 | · · ·
Noun ---> noun1 | noun2 | · · ·

Fig. 5.3. A not obviously quasi-regular grammar

in which the lists for verbs, adjectives and nouns have been abbreviated to verb,
adjective and noun, to save space.

MainClauses ---> a SubjAdjNoun_verb_Object
MainClauses ---> the SubjAdjNoun_verb_Object

SubjAdjNoun_verb_Object ---> noun verb_Object
SubjAdjNoun_verb_Object ---> adjective SubjAdjNoun_verb_Object

verb_Object ---> verb Object

Object ---> a ObjAdjNoun
Object ---> the ObjAdjNoun

ObjAdjNoun ---> noun
ObjAdjNoun ---> adjective ObjAdjNoun

verb ---> verb1 | verb2 | · · ·
adjective ---> adj1 | adj2 | · · ·

noun ---> noun1 | noun2 | · · ·

Fig. 5.4. A regular grammar in standard form for that of Figure 5.3

Even (finite) context-dependency can be incorporated: for languages that require
the verb to agree in number with the subject, we duplicate the first rule:

MainClause ---> SubjectSingular VerbSingular Object
| SubjectPlural VerbPlural Object

and duplicate the rest of the grammar accordingly. The result is still regular. Nested
subordinate clauses may seem a problem, but in practical usage the depth of nesting
is severely limited. In English, a sentence containing a subclause containing a sub-
clause containing a subclause will baffle the reader, and even in German and Dutch
nestings over say five deep are frowned upon. We replicate the grammar the desired
number of times and remove the possibility of further recursion from the deepest
level. Then the deepest level is regular, which makes the other levels regular in turn.
The resulting grammar will be huge but regular and will be able to profit from all sim-
ple and efficient techniques known for regular grammars. The required duplications

5.2 Producing from a Regular Grammar 141

and modifications are mechanical and can be done by a program. Dewar, Bratley and
Thorne [376] describe an early example of this approach, Blank [382] a more recent
one.

5.1.3 Pattern Searching

Many linear patterns, especially text patterns, have a structure that is easily expressed
by a (quasi-)regular grammar. Notations that indicate amounts of money in various
currencies, for example, have the structure given by the grammar of Figure 5.5, where

has been used to indicate a space symbol. Examples are $ 19.95 and ¥ 1600.
Such notations, however, do not occur in isolation but are usually embedded in long
stretches of text that themselves do not conform to the grammar of Figure 5.5. To

Amounts ---> CurrencySymbol Space* Digit+ Cents?

CurrencySymbol ---> € | $ | ¥ | £ | · · ·
Space --->
Digit ---> [0123456789]
Cents ---> . Digit Digit | .--

Fig. 5.5. A quasi-regular grammar for currency notations

isolate the notations, a recognizer (rather than a parser) is derived from the grammar
that will accept arbitrary text and will indicate where sequences of symbols are found
that conform to the grammar. Parsing (or another form of analysis) is deferred to a
later stage. A technique for constructing such a recognizer is given in Section 5.10.

5.1.4 SGML and XML Validation

Finite-state automata also play an important role in the analysis of SGML and XML
documents. For the details see Brüggemann-Klein and Wood [150] and Sperberg-
McQueen [359], respectively.

5.2 Producing from a Regular Grammar

When producing from a regular grammar, the producer needs to remember only one
thing: which non-terminal is next. We shall illustrate this and further concepts us-
ing the simple regular grammar of Figure 5.6. This grammar produces sentences
consisting of an a followed by an alternating sequence of bs and cs followed by
a terminating a. For the moment we shall restrict ourselves to regular grammars in
standard notation; further on we shall extend our methods to more convenient forms.

The one non-terminal the producer remembers is called its state and the producer
is said to be in that state. When a producer is in a given state, for example A, it
chooses one of the rules belonging to that state, for example A--->bC, produces the b

142 5 Regular Grammars and Finite-State Automata

Ss ---> a A
S ---> a B
A ---> b B
A ---> b C
B ---> c A
B ---> c C
C ---> a

Fig. 5.6. Sample regular grammar

and moves to state C. Such a move is called a state transition, and for a rule P → tQ
is written P

t→ Q. A rule without a non-terminal in the right-hand side, for example
C--->a, corresponds to a state transition to the accepting state; for a rule P → t it is
written P

t→ ♦, where ♦ is the accepting state.

It is customary to combine the states and the possible transitions of a producer in
a transition diagram. Figure 5.7 shows the transition diagram for the regular gram-

mar of Figure 5.6; we see that, for example, the state transition A
b→C is represented

S

A
a

B
a

C

b

C

c

♦
a

c b

Fig. 5.7. Transition diagram for the regular grammar of Figure 5.6

by the arc marked b from A to C. S is the initial state and the accepting state is
marked with a ♦. 1 The symbols on the arcs are those produced by the corresponding
move. The producer can stop when it is in an accepting state.

Like the non-deterministic automaton we saw in Section 3.3, the producer is
an automaton, or to be more precise, a non-deterministic finite automaton, NFA or
finite-state automaton, FSA. It is called “finite” because it can only be in a finite
number of states (5 in this case; 3 bits of internal memory would suffice) and “non-
deterministic” because, for example, in state S it has more than one way to produce
an a.

Regular grammars can suffer from undefined, unproductive and unreachable non-
terminals just like context-free grammars, and the effects are even easier to visualize.
If the grammar of Figure 5.6 is extended with the rules

1 Another convention to mark an accepting state is by drawing an extra circle around it;
since we will occasionally want to explicitly mark a non-accepting state, we do not use that
convention.

5.3 Parsing with a Regular Grammar 143

B ---> c D undefined
B ---> c E
E ---> e E unproductive
F ---> f A unreachable
F ---> h

we obtain the transition diagram

S

A
a

B
a

C

b

C

c

♦
a

c b

D
✘

c

E
✘

c e

F
✘

f

h

where we can see that no further transitions are defined from D, which is the actual
meaning of saying that D is undefined; that E, although being defined, literally has
no issue; and that F has no incoming arrows.

The same algorithm used for cleaning CF grammars (Section 2.9.5) can be used
to clean a regular grammar. Unlike CF grammars, regular grammars and finite-state
automata can be minimized: for a given FS automaton A, a FS automaton can be
constructed that has the least possible number of states and still recognizes the same
language as A. An algorithm for doing so is given in Section 5.7.

5.3 Parsing with a Regular Grammar

The above automaton for producing a sentence can in principle also be used for
parsing. If we have a sentence, for example, abcba, and want to check and parse it,
we can view the above transition diagram as a maze and the (tokens in the) sentence
as a guide. If we manage to follow a path through the maze, matching symbols from
our sentence to those on the walls of the corridors as we go, and end up in ♦ exactly
at the end of the sentence, we have checked the sentence. See Figure 5.8, where the
path is shown as a dotted line. The names of the rooms we have visited form the
backbone of the parse tree, which is shown in Figure 5.9.

But finding the correct path is easier said than done. How did we know, for ex-
ample, to turn left in room S rather than right? Of course we could employ general
maze-solving techniques (and they would give us our answer in exponential time) but
a much simpler and much more efficient answer is available here: we split ourselves
in two and head both ways. After the first a of abcba we are in the set of rooms
{A, B}. Now we have a b to follow; from B there are no exits marked b, but from A

144 5 Regular Grammars and Finite-State Automata

S

A

B

CC ♦

a

a

b

c

a
bc

S A
a

B
b

A
c

C
b

♦
a

Fig. 5.8. Actual and linearized passage through the maze

S

a

A

b

B

c

A

b

C

a

♦

Fig. 5.9. Parse tree from the passage through the maze

S

Aa

B
a

B
b

Cb

A
c

Cc

B
b

Cb
♦

a

Fig. 5.10. Linearized set-based passage through the maze

there are two, which lead to B and C. So we are now in rooms {B C}. Our path is
now more difficult to depict but still easy to linearize, as shown in Figure 5.10.

We can find the parsing by starting at the end and following the pointers back-
wards: ♦ <--- C <--- A <--- B <--- A <--- S. If the grammar is ambiguous the
backward pointers may bring us to a fork in the road: an ambiguity has been found
and both paths have to be followed separately to find both parsings. With regular
grammars, however, one is often not interested in the parse, but only in the recogni-
tion: the fact that the input is correct and it ends here suffices.

5.3.1 Replacing Sets by States

Although the process described above is linear in the length of the input (each next
token takes an amount of work that is independent of the length of the input), still
a lot of work has to be done for each token. What is worse, the grammar has to be
consulted repeatedly and so we expect the speed of the process to depend adversely
on the size of the grammar. In short, we have designed an interpreter for the non-
deterministic automaton, which is convenient and easy to understand, but inefficient.

Fortunately there is a surprising and fundamental improvement possible: from the
NFA in Figure 5.7 we construct a new automaton with a new set of states, where each
new state is equivalent to a set of old states. Where the original — non-deterministic
— automaton was in doubt after the first a, a situation we represented as {A, B}, the
new — deterministic — automaton firmly knows that after the first a it is in state AB.

5.3 Parsing with a Regular Grammar 145

The states of the new automaton can be constructed systematically as follows.
We start with the initial state of the old automaton, which is also the initial state
of the new one. For each new state we create, we examine its contents in terms of
the old states, and for each token in the language we determine to which set of old
states the given set leads. These sets of old states are then considered states of the new
automaton. If we create the same state a second time, we do not analyse it again. This
process is called the subset construction and results initially in a (deterministic) state
tree. The state tree for the grammar of Figure 5.6 is depicted in Figure 5.11. To stress

S

AB BC

AC

♦

AC

♦

BC

✔

✔

✔

a

b

c

a

b

c

a

b

ca

b

c

Fig. 5.11. Deterministic state tree for the grammar of Figure 5.6

that it systematically checks all new states for all symbols, outgoing arcs leading
nowhere are also shown. Newly generated states that have already been generated
before are marked with a ✔.

The state tree of Figure 5.11 is turned into a transition diagram by leading the
arrows to states marked ✔ to their first-time representatives and removing the dead
ends. The new automaton is shown in Figure 5.12. It is deterministic, and is therefore

S AB

BC

AC

♦♦
a

b

c

a

a

cb

Fig. 5.12. Deterministic automaton for the grammar of Figure 5.6

called a deterministic finite-state automaton, or a DFA for short.
When we now use the sentence abcba as a guide for traversing this transition

diagram, we find that we are never in doubt and that we safely arrive at the accepting
state. All outgoing arcs from a state bear different symbols, so when following a list
of symbols, we are always pointed to at most one direction. If in a given state there is
no outgoing arc for a given symbol, then that symbol may not occur in that position.
If it does, the input is in error.

146 5 Regular Grammars and Finite-State Automata

There are two things to be noted here. The first is that we see that most of the
possible states of the new automaton do not actually materialize: the old automaton
had 5 states, so there were 25 = 32 possible states for the new automaton while in
fact it has only 5; states like SB or ABC do not occur. This is usual; although there
are non-deterministic finite-state automata with n states that turn into a DFA with
2n states, these are rare and have to be constructed on purpose. The average garden
variety NFA with n states typically results in a DFA with less than or around 10×n
states.

The second is that consulting the grammar is no longer required; the state of
the automaton together with the input token fully determine the next state. To allow
efficient look-up the next state can be stored in a table indexed by the old state and
the input token. The table for our DFA is given in Figure 5.13. Using such a table, an

input symbol
a b c

S AB
old state AB BC AC

AC ♦ BC
BC ♦ AC

Fig. 5.13. Transition table for the automaton of Figure 5.12

input string can be checked at the cost of only a few machine instructions per token.
For the average DFA, most of the entries in the table are empty (cannot be reached
by correct input and refer to error states). Since the table can be of considerable size
(300 states times 100 tokens is normal), several techniques exist to exploit the empty
space by compressing the table. Dencker, Dürre and Heuft [338] give a survey of
some techniques.

The parse tree obtained looks as follows:

S

a

AB

b

BC

c

AC

b

BC

a

♦

which is not the original parse tree. If the automaton is used only to recognize the
input string this is no drawback. If the parse tree is required, it can be reconstructed
in the following fairly obvious bottom-up way. Starting from the last state ♦ and
the last token a, we conclude that the last right-hand side (the “handle segment”
in bottom-up parsing) was a. Since the state was BC, a combination of B and C, we
look through the rules for B and C. We find that a derived from C--->a, which narrows
down BC to C. The rightmost b and the C combine into the handle bC which in the
set {A, C} must derive from A. Working our way backwards we find the parsing

5.3 Parsing with a Regular Grammar 147

S

a

AB
A

b

BC
B

c

AC
A

b

BC
C

a

♦

This method again requires the grammar to be consulted repeatedly; moreover, the
way back will not always be so straight as in the above example and we will have
problems with ambiguous grammars.

Efficient full parsing of regular grammars has received relatively little attention;
substantial information can be found in papers by Ostrand, Paull and Weyuker [144]
and by Laurikari [151].

5.3.2 ε-Transitions and Non-Standard Notation

A regular grammar in standard form can only have rules of the form A → a and
A → aB. We shall now first extend our notation with two other types of rules, A → B
and A → ε, and show how to construct NFAs and DFAs for them. We shall then turn
to regular expressions and rules that have regular expressions as right-hand sides
(for example, P → a∗bQ) and show how to convert them into rules in the extended
notation.

The grammar in Figure 5.14 contains examples of both new types of rules; Figure

Ss ---> A
S ---> a B
A ---> a A
A ---> ε
B ---> b B
B ---> b

Fig. 5.14. Sample regular grammar with ε-rules

5.15 presents the usual trio of NFA, state tree and DFA for this grammar. First con-
sider the NFA. When we are in state S we see the expected transition to state B on the
token a, resulting in the standard rule S--->aB. The non-standard rule S--->A indicates
that we can get from state S to state A without reading (or producing) a symbol; we
then say that we read the zero-length string ε and that we make an ε-transition (or
ε-move): S

ε→A. The non-standard rule A--->ε creates an ε-transition to the accepting
state: A

ε→♦. ε-transitions should not be confused with ε-rules: unit rules create ε-
transitions to non-accepting states and ε-rules create ε-transitions to accepting states.

Now that we have constructed an NFA with ε-moves, the question arises how we
can process the ε-moves to obtain a DFA. To answer this question we use the same
reasoning as before; in Figure 5.7, after having seen an a we did not know if we were
in state A or state B and we represented that as {A, B}. Here, when we enter state S,
even before having processed a single symbol, we already do not know if we are in

148 5 Regular Grammars and Finite-State Automata

S

A

B

♦♦

ε

a

ε

b

a

b

(a)

SA♦

AB♦

A♦

B♦

A♦

B♦

✔

✔

a

b

a

b

a

b
a

b

(b)

SA♦ AB♦

A♦

B♦

a

a

b

a

b(c)

Fig. 5.15. NFA (a), state tree (b) and DFA (c) for the grammar of Figure 5.14

states S, A or ♦, since the latter two are reachable from S through ε-moves. So the
initial state of the DFA is already compound: SA♦. We now have to consider where
this state leads to for the symbols a and b. If we are in S then a will bring us to
B and if we are in A, a will bring us to A. So the new state includes A and B, and
since ♦ is reachable from A through ε-moves, it also includes ♦ and its name is AB♦.
Continuing in this vein we can construct the complete state tree (Figure 5.15(b)) and
collapse it into a DFA (c). Note that all states of the DFA contain the NFA state ♦,
so the input may end in all of them.

The set of NFA states reachable from a given state through ε-moves is called the
ε-closure of that state. The ε-closure of, for example, S is {S, A, ♦}.

For a completely different way of obtaining a DFA from a regular grammar that
has recently found application in the field of XML validation, see Brzozowski [139].

5.4 Manipulating Regular Grammars and Regular Expressions

As mentioned in Section 2.3.3, regular languages are often specified by regular
expressions rather than by regular grammars. Examples of regular expressions are
[0-9]+(.[0-9]+)? which should be read as “one or more symbols from the set
0 through 9, possibly followed by a dot which must then be followed by one or more
symbols from 0 through 9” (and which represents numbers with possibly a dot in
them) and (ab)*(p|q)+, which should be read as “zero or more strings ab fol-
lowed by one or more ps or qs” (and which is not directly meaningful). The usual
forms occurring in regular expressions are recalled in the table in Figure 5.16, where

5.4 Manipulating Regular Grammars and Regular Expressions 149

R, R1, and R2 are arbitrary regular expressions; some systems provide more forms,

Form Meaning Name

R1R2 R1 followed by R2 concatenation
R1 | R2 R1 or R2 alternative
R∗ zero or more Rs optional sequence (Kleene star)
R+ one or more Rs (proper) sequence
R? zero or one R optional
(R) R grouping
[abc · · ·] any symbol from the set abc · · ·
a the symbol a itself

Fig. 5.16. Some usual elements of regular expressions

some provide fewer.
In computer input, no difference is generally made between the metasymbol * and

the symbol *, etc. Special notations will be necessary if the language to be described
contains any of the symbols | * + ? () [or].

5.4.1 Regular Grammars from Regular Expressions

A regular expression can be converted into a regular grammar by using the trans-
formations given in Figure 5.17. The T in the transformations stands for an inter-
mediate non-terminal, to be chosen fresh for each application of a transformation; α
stands for any regular expression not involving non-terminals, possibly followed by
a non-terminal. If α is empty, it should be replaced by ε when it appears alone in a
right-hand side.

The expansion from regular expression to regular grammar is useful for obtaining
a DFA from a regular expression, as is for example required in lexical analysers like
lex. The resulting regular grammar corresponds directly to an NFA, which can be
used to produce a DFA as described above. There is another method to create an
NFA from the regular expression, which requires, however, some preprocessing on
the regular expression; see Thompson [140].

We shall illustrate the method using the expression (ab)*(p|q)+. Our method
will also work for regular grammars that contain regular expressions (like A →
ab∗cB) and we shall in fact immediately turn our regular expression into such a
grammar:

Ss ---> (ab)*(p|q)+

Although the table in Figure 5.17 uses T for generated non-terminals, we use A, B, C,
. . . in the example since that is less confusing than T1, T2, T3, The transformations
are to be applied until all rules are in (extended) standard form.

The first transformation that applies is P → R∗α, which replaces
Ss--->(ab)*(p|q)+ by

150 5 Regular Grammars and Finite-State Automata

Rule pattern Replace by

P → a (standard)
P → aQ (standard)
P → Q (extended standard)
P → ε (extended standard)

P → aα P → aT
T → α

P → (R1|R2| · · ·)α P → R1α
P → R2α
· · ·

P → (R)α P → Rα
P → R∗α P → T

T → RT
T → α

P → R+α P → RT
T → RT
T → α

P → R?α P → Rα
P → α

P → [abc · · ·]α P → (a|b|c| · · ·)α

Fig. 5.17. Transformations on extended regular grammars

Ss ---> A ✔

A ---> (ab) A
A ---> (p|q)+

The first rule is already in the desired form and has been marked ✔. The transforma-
tions P → (R)α and P → aα work on A--->(ab)A and result in

A ---> a B ✔

B ---> b A ✔

Now the transformation P → R+α must be applied to A--->(p|q)+, yielding

A ---> (p|q) C
C ---> (p|q) C
C ---> ε ✔

The ε originated from the fact that (p|q)+ in A--->(p|q)+ is not followed by any-
thing (of which ε is a faithful representation). Now A--->(p|q)C and C--->(p|q)C
are easily decomposed into

A ---> p C ✔

A ---> q C ✔

C ---> p C ✔

C ---> q C ✔

5.4 Manipulating Regular Grammars and Regular Expressions 151

Ss ---> A
A ---> a B
B ---> b A
A ---> p C
A ---> q C
C ---> p C
C ---> q C
C ---> ε

Fig. 5.18. Extended-standard regular grammar for (ab)*(p|q)+

The complete extended-standard version can be found in Figure 5.18; an NFA and
DFA can now be derived using the methods of Section 5.3.1 (not shown).

5.4.2 Regular Expressions from Regular Grammars

Occasionally, for example in Section 9.12, it is useful to condense a regular grammar
into a regular expression. The transformation can be performed by alternatingly sub-
stituting a rule and applying the transformation patterns from Figure 5.19. The first

Rule pattern Replace by

P → R1Q1
P → R2Q2

P → R1Q1 | R2Q2 · · ·
· · ·
P → R1Q | R2Q | · · ·Q | α P → (R1|R2| · · ·)Q | α
P → (R)P | R1Q1 | R2Q2 | α P → (R)∗R1Q1 | (R)∗R2Q2 | β

Fig. 5.19. Condensing transformations on regular grammars

pattern combines all rules for the same non-terminal. The second pattern combines
all regular expressions that precede the same non-terminal in a right-hand side; α
is a list of alternatives that do not end in Q (but see next paragraph). The third pat-
tern removes right recursion: if the repetitive part is (R), it prepends (R)∗ to all non-
recursive alternatives; here β consists of all the alternatives in α, with (R)∗ prepended
to each of them. Q1, Q2, · · · should not be equal to P (but see next paragraph). When
α is ε it can be left out when it is concatenated with a non-empty regular expression.

The substitutions and transformations may be applied in any order and will al-
ways lead to a correct regular expression, but the result depends heavily on the appli-
cation order; to obtain a “nice” regular expression, human guidance is needed. Also,
the two conditions in the previous paragraph may be violated without endangering
the correctness, but the result will be a more “ugly” regular expression.

We will now apply the transformation to the regular grammar of Figure 5.18, and
will not hesitate to supply the human guidance. We first combine the rules by their
left-hand sides (transformation 1):

152 5 Regular Grammars and Finite-State Automata

S ---> A
A ---> a B | p C | q C
B ---> b A
C ---> p C | q C | ε

Next we substitute B:

A ---> a b A | p C | q C
C ---> p C | q C | ε

followed by scooping up prefixes (transformation 2):

A ---> (ab) A | (p|q) C
C ---> (p|q) C | ε

Note that we have also packed the ab that prefixes A, to prepare it for the next
transformation, which involves turning recursion into repetition:

S ---> A
A ---> (ab)* (p|q) C
C ---> (p|q)*

Now C can be substituted in A and A in S, resulting in

S ---> (ab)* (p|q) (p|q)*

This is equivalent but not identical to the (ab)*(p|q)+ we started with.

5.5 Manipulating Regular Languages

In Section 2.10 we discussed the set operations “union”, “intersection”, and “nega-
tion” on CF languages, and saw that the latter two do not always yield CF languages.
For regular languages the situation is simpler: these set operations on regular lan-
guages always yield regular languages.

Creating a FS automaton for the union of two regular languages defined by the
FS automata A1 and A2 is trivial: just create a new start state and add ε-transitions
from that state to the start states of A1 and A2. If need be the ε-transitions can then
be removed as described in Section 5.3.1.

There is an interesting way to get the negation (complement) of a regular lan-
guage L defined by a FS automaton, provided the automaton is ε-free. When an
automaton is ε-free, each state t in it shows directly the set of tokens Ct with which
an input string that brings the automaton in state t can continue: Ct is exactly the set
of tokens for which t has an outgoing transition. This means that if the string contin-
ues with a token which is not in Ct , the string is not in L, and so we may conclude it
is in ¬L. Now we can “complete” state t by adding outgoing arrows on all tokens not
in Ct and lead these to a non-accepting state, which we will call s−1. If we perform
this completion for all states in the automaton, including s−1, we obtain a so-called
complete automaton, an automaton in which all transitions are defined.

The complete version of the automaton of Figure 5.7 is shown in Figure 5.20,
where the non-accepting state is marked with a ✘.

5.5 Manipulating Regular Languages 153

S

A
a

B
a

C

b

C

c

♦
a

c b ✘

[bc]

[ac]

[ab]

[bc]
[abc]

[abc]

Fig. 5.20. The automaton of Figure 5.7 completed

The importance of a complete automaton lies in the fact that it never gets stuck
on any (finite) input string. For those strings that belong to the language L of the au-
tomaton, it ends in an accepting state; for those that do not it ends in a non-accepting
state. And this immediately suggests how to get an automaton for the complement
(negative) of L: swap the status of accepting and non-accepting states, by making the
accepting states non-accepting and the non-accepting states accepting!

Note that completing the automaton has damaged its error detection properties,
in that it will not reject an input string at the first offending character but will process
the entire string and only then give its verdict.

The completion process requires the automaton to be ε-free. This is easily
achieved by making it deterministic, as described on page 145, but that may be
overkill. See Problem 5.4 for a way to remove the ε-transitions only.

Now that we have negation of FSAs, constructing the intersection of two FSAs
seems easy: just negate both automata, take the union, and negate the result, in an
application of De Morgan’s Law p∩ q = ¬((¬p)∪ (¬q)). But there is a hitch here.
Constructing the negation of an FSA is easy only if the automaton is ε-free, and
the union in the process causes two ε-transitions in awkward positions, making this
“easy” approach quite unattractive.

Fortunately there is a simple trick to construct the intersection of two FS au-
tomata that avoids these problems: run both automata simultaneously, keeping track
of their two states in one single new state. As an example we will intersect automaton
A1, the automaton of Figure 5.7, with an FSA A2 which requires the input to con-
tain the sequence ba. A2 is represented by the regular expression .*ba.*. It needs 3
states, which we will call 1 (start state), 2 and ♦ (accepting state); it has the following

transitions: 1
[abc]→ 1, 1

b→2, 2
a→♦, ♦

[abc]→ ♦.

We start the intersection automaton A1 ∩A2 in the combined state S1, which is
composed of the start state S of A1 and the start state 1 of A2. For each transition
P1

t→ Q1 in A1 and for each transition P2
t→ Q2 in A2 we create a transition (P1P2)

t→
(Q1Q2) in A1 ∩A2. This leads to the state tree in Figure 5.21(a); the corresponding
FSA is in (b). We see that it is similar to that in Figure 5.7, except that the transition

B
c→C is missing: the requirement that the string should contain the sequence ba

removed it.

154 5 Regular Grammars and Finite-State Automata

S1

A1
a

B1
a ✔

B1
b

B2b
✘

C1b

C2
b

A1c
✔

C1
c ✘

♦1
a

✘

♦♦
a

(a)

S1

A1
a

B1
a

C2

b

♦♦
a

c b

(b)

Fig. 5.21. State tree (a) and FSA (b) of the intersection of Figure 5.7 and .*ba.*

In principle, the intersection of an FSA with n states and one with m states can
require n×m states, but in practice something like c× (n+m) for some small value
of c is more usual.

Conversely, sometimes a complex FSA can be decomposed into the intersection
of two much simpler FSAs, with great gain in memory requirements, and sometimes
it cannot. There is unfortunately little theory on how to do this, though there are some
heuristics; see Problem 5.7. The process is also called “factorization”, but that is an
unfortunate term, since it suggests the same uniqueness of factorization we find in
integers, and the decomposition of FSAs is not unique.

5.6 Left-Regular Grammars

In a left-regular grammar, all rules are of the form A → a or A → Ba where a is a
terminal and A and B are non-terminals. Figure 5.22 gives a left-regular grammar
equivalent to that of Figure 5.6.

Left-regular grammars are often brushed aside as just a variant of right-regular
grammars, but their look and feel is completely different. Take the process of pro-
ducing a string from this grammar, for example. Suppose we want to produce the
sentence abcba used in Section 5.3. To do so we have to first decide all the states
we are going to visit, and only when the last one has been decided upon can the first
token be produced:

5.6 Left-Regular Grammars 155

Ss ---> C a
C ---> B c
C ---> A b
B ---> A b
B ---> a
A ---> B c
A ---> a

Fig. 5.22. A left-regular grammar equivalent to that of Figure 5.6

S
C a
A b a
B c b a
A b c b a
a b c b a

And once the first token is available, all of them are, and we do not have any choice
any more; this is vastly different from producing from a right-regular grammar.

Parsing with a left-regular grammar is equally weird. It is easy to see that initially
we are in a union of all states {S,A,B,C}, but if we now see an a in the input, we can
move over this a in two rules, B--->a, and A--->a. Suppose we use rule A--->a; what
state are we in now? The rule specifies no state except A; so what does the move
mean?

The easy way out is to convert the grammar to a right-regular one (see below in
this section), but it is more interesting to try to answer the question what a move over
a in A--->a means. The only thing we know after such a move is that we have just
completed a production of A, so the state we are in can justifiably be described as “A
finished”; we will write such a state as Af. And in the same manner the first rule in
Figure 5.22 means that when we are in a state Cf and we move over an a we are in

a state Sf; this corresponds to a transition Cf
a→Sf. Then we realize that “S finished”

means that we have parsed a complete terminal production of S; so the state Sf is the
accepting state ♦ and we see the rightmost transition in Figure 5.7 appear.

Now that we have seen that the rule A → Bt corresponds to the transition B f
t→

A f , and that the rule SS → Bt corresponds to B f
t→ ♦, what about rules of the form

A → t? After the transition over t we are certainly in the state A f , but where did
we start from? The answer is that we have not seen any terminal production yet,
so we are in a state ε f , the start state! So the rules A--->a and B--->a correspond to

transitions εf
a→Af and εf

a→Bf, two more components of Figure 5.7. Continuing this
way we quickly reconstruct the transition diagram of Figure 5.7, with modified state
names:

156 5 Regular Grammars and Finite-State Automata

εf

Af
a

Bf
a

Cf

b

Cf

c

Sf
a

c b

This exposes an awkward asymmetry between start state and accepting state, in that
unlike the start state the accepting state corresponds to a symbol in the grammar. This
asymmetry can be partially removed by representing the start state by a more neutral
symbol, for example �. We then obtain the following correspondence between our
right-regular and left-regular grammar:

� ---> a A A ---> � a
� ---> a B B ---> � a
A ---> b B B ---> A b
A ---> b C C ---> A b
B ---> c A A ---> B c
B ---> c C C ---> B c
C ---> a ♦ ♦ ---> C a

�: start state �: ε
♦: ε ♦: start state

Obtaining a regular expression from a left-regular grammar is simple: most of
the algorithm in Section 5.4.2 can be taken over with minimal change. Only the
transformation that converts recursion into repetition

Rule pattern Replace by
P → (R)P | R1Q1 | R2Q2 | α P → (R)∗R1Q1 | (R)∗R2Q2 | β

must be replaced by

P → P(R) | Q1R1 | Q2R2 | α P → Q1R1(R)∗ | Q2R2(R)∗ | β′

where β′ consists of all the alternatives in α, with (R)∗ appended to each of them.
This is because A--->aA|b yields a*b but A--->Aa|b yields ba*.

5.7 Minimizing Finite-State Automata

Turning an NFA into a DFA usually increases the size of the automaton by a mod-
erate factor, perhaps 10 or so, and may occasionally grossly inflate the automaton.
Considering that for a large automaton a size increase of a factor of say 10 can pose
a major problem; that even for a small table any increase in size is undesirable if the
table has to be stored in a small electronic device; and that large inflation factors may
occur unexpectedly, it is often worthwhile to try to reduce the number of states in the
DFA.

5.7 Minimizing Finite-State Automata 157

The key idea of the DFA minimization algorithm presented here is that we con-
sider states to be equivalent until we can see a difference. To this end the algorithm
keeps the DFA states in a number of mutually disjoint subsets, a “partition.” A parti-
tion of a set S is a collection of subsets of S such that each member of S is in exactly
one of those subsets; that is, the subsets have no elements in common and their union
is the set S. The algorithm iteratively splits each subset in the partition as long as it
can see a difference between states in it.

We will use the DFA from Figure 5.23(b) as an example; it can be derived from
the NFA in Figure 5.23(a) through the subset algorithm with A = SQ and B = P, and
is not minimal, as we shall see.

S P
x

Q
x

♦
a

ε

a

(a)

S

♦
a

B

x
A

x

♦
a

x

(b)

Fig. 5.23. A non-deterministic FSA and the resulting deterministic but not minimal FSA

Initially we partition the set of states into two subsets: one containing all the
accepting states, the other containing all the other states; these are certainly different.
In our example this results in one subset containing states S, B and A, and one subset
containing the accepting state ♦.

Next, we process each subset Si in turn. If there exist two states q1 and q2 in Si

that on some symbol a have transitions to members of different subsets in the current
partition, we have found a difference and Si must be split. Suppose we have q1

a→ r1

and q2
a→ r2, and r1 is in subset X1 and r2 is in a different subset X2, then Si must be

split into one subset containing q1 and all other states q j in Si which have q j
a→ r j

with r j in X1, and a second subset containing the other states from Si. If q1 has no
transition on a but q2 does, or vice versa, we have also found a difference and Si must
be split as well.

In our example, states S and A have transitions on a (to the same state, ♦), but
state B does not, so this step results in two subsets, one containing the states S and
A, and the other containing state B.

We repeat applying this step to all subsets in the partition, until no subset can
be split any more. This will eventually happen, because the total number of subsets
is bounded: there can be no more subsets in a partition than there are states in the
original DFA, and during the process subsets are never merged. (This is another
example of a closure algorithm.)

When this process is completed, all states in a subset Si of the resulting partition
have the property that for any alphabet symbol a their transition on a ends up in the
same subset Si(a) of the partition. Therefore, we can consider each subset to be a sin-

158 5 Regular Grammars and Finite-State Automata

gle state in the minimized DFA. The start state of the minimized DFA is represented
by the subset containing the start state of the original DFA, and the accepting states
of the minimized DFA are represented by the subsets containing accepting states of
the original DFA. The resulting DFA is, in fact, the smallest DFA that recognizes the
language specified by the DFA that we started with. See, for example, Hopcroft and
Ullman [391].

In our example we find no further splits, and the resulting DFA is depicted below.

SA

♦

B

a

x
x

5.8 Top-Down Regular Expression Recognition

The Type 3 recognition technique of Section 5.3 is a bottom-up method collecting
hypotheses about the reconstruction of the production process, with a top-down com-
ponent making sure that the recognized string derives from the start symbol. In fact,
the subset algorithm can be derived quite easily from a specific bottom-up parser, the
Earley parser, which we will meet in Section 7.2 (Problem 5.9). Somewhat surpris-
ingly, much software featuring regular expressions uses the straightforward back-
tracking top-down parser from Section 6.6, adapted to regular expressions. The main
advantage is that this method does not require preprocessing of the regular expres-
sion; the disadvantage is that it may require much more than linear time. We will first
explain the technique briefly (backtracking top-down parsing is more fully discussed
in Section 6.6), and then return to the advantages and disadvantages.

5.8.1 The Recognizer

The top-down recognizer follows the grammar of regular expressions, which we
summarize here:

regular_expressions ---> compound_re*

compound_re ---> repeat_re | simple_re
repeat_re ---> simple_re [’*’|’+’|’?’]
simple_re ---> token | ’(’ regular_expression ’)’

The recognizer keeps two pointers, one in the regular expression and one in the input,
and tries to move both in unison: when a token is matched both pointers move one
position forward, but when a simple_re must be repeated, the regular expression
pointer jumps backwards, and the input pointer stays in place. When the regular
expression pointer points to the end of the regular expression, the recognizer registers
a match, based on how far the input pointer got.

5.8 Top-Down Regular Expression Recognition 159

When the recognizer tries to recognize a compound_re, it first finds out
whether it is a repeat_re. If so, it checks the mark. If that is a + indicating a
mandatory simple_re, the recognizer just continues searching for a simple_re,
but if the simple_re is optional (*, ?), the search splits in two: one for a
simple_re, and one for the rest of the regular expression, after this repeat_re.
When the recognizer comes to the end of a repeat_re, it again checks the mark.
If it is a ?, it just continues, but if it was a real repeater (*, +), the search again splits
in two: one jumping back to the beginning of the repeat_re, and one continuing
with the rest of the regular expression.

When the recognizer finds that the simple_re is a token, it compares the
token with the token at the input pointer. If they match, both pointers are advanced;
otherwise this search is abandoned.

Two questions remain: how do we implement the splitting of searches, and what
do we do with the recorded matches. We implement the search splitting by doing
them sequentially: we first do the entire first search up to the end or failure, includ-
ing all its subsearches; then, regardless of the result, we do the second search. This
sounds bothersome, both in coding and in efficiency, but it isn’t. The skeleton code
for the optional repeat_re is just

procedure try_optional_repeat_re(rp, ip: int):
begin

try_simple_re(rp, ip);
try_regular_expression(after_subexpression(rp), ip);

end;

where rp and ip are the regular expression pointer and the input pointer. And the al-
gorithm is usually quite efficient, since almost all searches fail immediately because
a token search compares two non-matching tokens.

The processing of the recorded matches depends on the application. If we want
to know if the regular expression matches the entire string, as for example in file
name matching, we check if we have simultaneously reached the end of the input,
and if so, we abandon all further searches and return success; if not, we just continue
searching. But if, for example, we want the longest match, we keep a high-water
mark and continue until all searches have been exhausted.

5.8.2 Evaluation

Some advantages of top-down regular expression matching are obvious: the algo-
rithm is very easy to program and involves no or hardly any preprocessing of the
regular expression, depending on the implementation of structuring routines like
after_subexpression(). Other advantages are less directly visible. For ex-
ample, the technique allows naming a part of the regular expression and checking
its repeated presence somewhere else in the input; this is an unexpectedly powerful
feature. A simple example is the pattern (.*)=x\x, which says: match an arbitrary
segment of the input, call it x, and then match the rest of the input to whatever has
been recognized for x; \x is called a backreference. (A more usual but less clear

160 5 Regular Grammars and Finite-State Automata

notation for the same regular expression is \(.*\)\1, in which \1 means: match
the first subexpression enclosed in \(and \).)

Faced with the input abab, the recognizer sets x to the values ε, a, ab, aba,
and abab in any order, and then tries to match the tail left over in each case to the
present value of x. This succeeds only for x=ε and x=ab, and only in the last case is
the whole input recognized. So the above expression recognizes the language of all
strings that consist of two identical parts: ww, where w is any string over the given
alphabet. Since this is a context-sensitive language, we see to our amazement that,
skipping the entire Type 2 languages, the Type 3 regular expressions with backrefer-
ences recognize a Type 1 language! A system which uses this feature extensively is
the §-calculus (Jackson [285, 291]), discussed further in Section 15.8.3.

The main disadvantage of top-down regular expression recognition is its time
requirements. Although they are usually linear with a very modest multiplication
constant, they can occasionally be disturbingly high, especially at unexpected mo-
ments. O(nk) time requirement occur with patterns like a∗a∗ · · ·a∗, where the a∗ is
repeated k times, so in principle the cost can be any polynomial in the length of the
input, but behavior worse than quadratic is unusual. Finding all 10000 occurrences
of lines matching the expression .*) in this book took 36 sec.; finding all 11000
occurrences of just the) took no measurable time.

5.9 Semantics in FS Systems

In FS systems, semantic actions can be attached to states or to transitions. If the
semantics is attached to the states, it is available all the time and is static. It could
control an indicator on some panel of some equipment, or keep the motor of an
elevator running. Semantics associated with the states is also called Moore semantics
(Moore [136]).

If the semantics is attached to the transitions, it is available only at the moment
the transition is made, in the form of a signal or procedure call; it is dynamic and
transitory. Such a signal could cause a plastic cup to drop in a coffee machine or shift
railroad points; the stability, staticness, is then provided by the physical construction
of the equipment. And a procedure call could tell the lexical analyser in a compiler
that a token begin has been found. Semantics associated with transitions is also called
Mealy semantics (Mealy [134]).

There are many variants of transition-associated semantics. The signal can come
when specific transition si

t→ s j occurs (Mealy [134]); when a specific token causes

a specific state to be entered (∗ t→ s j, where ∗ is any state); when a specific state is

entered (∗ ∗→ s j, McNaughton and Yamada [137]); when a specific state is left (s j
∗→

∗); etc. Not much has been written about these differences. Upon reading a paper it
is essential to find out which convention the author(s) use. In practical situations it is
usually self-evident which variant is the most appropriate.

5.10 Fast Text Search Using Finite-State Automata 161

5.10 Fast Text Search Using Finite-State Automata

Suppose we are looking for the occurrence of a short piece of text, for example, a
word or a name (the “search string”) in a large piece of text, for example, a dictionary
or an encyclopedia. One naive way of finding a search string of length n in a text
would be to try to match it to the characters 1 to n; if that fails, shift the pattern one
position and try to match against characters 2 to n + 1, etc., until we find the search
string or reach the end of the text. This process is, however, costly, since we may
have to look at each character n times.

Finite automata offer a much more efficient way to do text search. We derive a
DFA from the string, let it run down the text and when it reaches an accepting state, it
has found the string. Assume for example that the search string is ababc and that the
text will contain only as, bs and cs. The NFA that searches for this string is shown in
Figure 5.24(a); it was derived as follows. At each character in the text there are two

A B C D E ♦
a b a b c

abc

(a)

A

AB

A

A

a
b

c

✔

✔

AB

AC

A

a
b

c

✔

✔

ABD

A

A

a
b

c

✔

✔

AB

ACE

A

a
b

c

✔

✔

ABD

A

A♦

a
b

c

✔

✔
AB

A

A

a
b

c

✔

✔

✔

(b)

A AB AC ABD ACE A♦a b a b c

bc

c bc c b bc

a
a a a

(c)

Fig. 5.24. NFA (a), state tree (b) and DFA (c) to search for ababc

possibilities: either the search string starts there, which is represented by the chain of
states going to the right, or it does not start there, in which case we have to skip the
present character and return to the initial state. The automaton is non-deterministic,
since when we see an a in state A, we have two options: to believe that it is the start
of an occurrence of ababc or not to believe it.

162 5 Regular Grammars and Finite-State Automata

Using the traditional techniques, this NFA can be used to produce a state tree (b)
and then a DFA (c). Figure 5.25 shows the states the DFA goes through when fed
the text aabababca. We see that we have implemented superstring recognition, in

A AB AB AC ABD ACE ABD ACE A♦ AB
a a b a b a b c a

Fig. 5.25. State transitions of the DFA of Figure 5.24(c) on aabababca

which a substring of the input is recognized as matching the grammar rather than the
entire input. This makes the input a superstring of a string in the language, hence the
name.

This application of finite-state automata is known as the Aho and Corasick bibli-
ographic search algorithm (Aho and Corasick [141]). Like any DFA, it requires only
a few machine instructions per character. As an additional bonus it will search for
several strings for the price of one. The DFA corresponding to the NFA of Figure
5.26 will search simultaneously for Kawabata, Mishima and Tanizaki. Note

AK BK CK DK EK FK GK HK ♦K

k a w a b a t a

Σ AM BM CM DM EM FM GM ♦M

m i s h i m a

AT BT CT DT ET FT GT HT ♦T

t a n i z a k i

ε

ε

ε

Fig. 5.26. Example of an NFA for searching multiple strings

that three different accepting states result, ♦K, ♦M and ♦T.
The Aho and Corasick algorithm is not the last word in string search. It faces

stiff competition from the Rabin-Karp algorithm (Karp and Rabin [145]) and the
Boyer-Moore algorithm (Boyer and Moore [143]). An excellent overview of fast
string search algorithms is given by Aho [147]. Watson [149] extends the Boyer-
Moore technique, which searches for a single word, so it can search for a regular
expression. However fascinating all these algorithms are, they are outside the scope
of this book and will not be treated here.

5.11 Conclusion

Regular grammars are characterized by the fact that no nesting is involved. Switch-
ing from one grammar rule or transition network to another is a memory-less move.

5.11 Conclusion 163

Consequently the production process is determined by a single position in the gram-
mar and the recognition process is determined by a finite number of positions in the
grammar.

Regular grammars correspond to regular expression, and vice versa, although the
conversion algorithms tend to produce results that are more complicated than would
be possible.

Strings in a regular set can be recognized bottom-up, using finite-state automata
created by the “subset algorithm”, or top-down, using recursive descent routines de-
rived from the regular expression. The first has the advantage that it is very efficient;
the second allows easy addition of useful semantic actions and recognition restric-
tions.

Finite-state automata are extremely important in all kinds of text searches, from
bibliographical and Web searches through data mining to virus scanning.

Problems

Problem 5.1: Construct the regular grammar for open parts of sentential forms
in rightmost derivations for the grammar C in Section 5.1.1.

Problem 5.2: The FS automata in Figures 5.7 and 5.12 have only one accept-
ing state, but the automaton in Figure 5.15(c) has several. Are multiple accepting
states necessary? In particular: 1. Can any FS automaton A be transformed into an
equivalent single accepting state FS automaton B? 2. So that in addition B has no
ε-transitions? 3. So that in addition B is deterministic?

Problem 5.3: Show that the grammar cleaning operations of removing non-
productive rules and removing unreachable non-terminals can be performed in either
order when cleaning a regular grammar.

Problem 5.4: Design an algorithm for removing ε-transitions from a FS automa-
ton.

Problem 5.5: Design a way to perform the completion and negation of a regular
automaton (Section 5.5) on the regular grammar rather than on the automaton.

Problem 5.6: For readers with a background in logic: Taking the complement
of the complement of an FSA does not always yield the original automaton, but
taking the complement of the complement of an already complemented FSA does,
which shows that complemented automata are in some way different. Analyse this
phenomenon and draw parallels with intuitionistic logic.

Problem 5.7: Project: Study the factorization/decomposition of FSAs; see, for
example, Roche, [148].

Problem 5.8: When we assign two states to each non-terminal A, As for “A start”
and A f for “A finished, a rule A → XY results in 3 ε-transitions, As

ε→ Xs, Xf
ε→ Ys

and Yf
ε→ A f , and a non-ε-transition Xs

X→ Xf or Ys
Y→ Yf , depending on whether X

or Y is a terminal. Use this view to write a more symmetrical and esthetic account of
left- and right-regular grammars than given in Section 5.6.

Problem 5.9: Derive the subset algorithm from the Earley parser (Section 7.2)
working on a left-regular grammar.

164 5 Regular Grammars and Finite-State Automata

Problem 5.10: Derive a regular expression for S from the grammar of Figure
5.22.

Problem 5.11: Project: Section 5.7 shows how to minimize a FS automa-
ton/grammar by initially assuming all non-terminal are equal. Can a CF grammar
be subjected to a similar process and what will happen?

Problem 5.12: History: Trace the origin of the use of the Kleene star, the raised
star meaning “the set of an unbounded number of occurrences”. (See [135].)

