
16

Error Handling

Until now, we have discussed parsing techniques while largely ignoring what hap-
pens when the input contains errors. In practice, however, the input often contains
errors, the most common being typing errors and misconceptions, but we could also
be dealing with a grammar that only roughly, not precisely, describes the input, for
example in pattern matching. So the question arises how to deal with errors. A con-
siderable amount of research has been done on this subject, far too much to discuss in
one chapter. We will therefore limit our discussion to some of the more well-known
error handling methods, and not pretend to cover the field; see (Web)Section 18.2.7
for references to more in-depth information.

16.1 Detection versus Recovery versus Correction

Usually, the least that is required of a parser is that it detects the occurrence of one
or more errors in the input, that is, we require error detection. The least informa-
tive version of this is that the parser announces: “input contains syntax error(s)”. We
say that the input contains a syntax error when the input is not a sentence of the
language described by the grammar. All parsers discussed in the previous chapters
(except operator-precedence) are capable of detecting this situation without exten-
sive modification. However, there are few circumstances in which this behavior is
acceptable: when we have just typed a long sentence, or a complete computer pro-
gram, and the parser only tells us that there is a syntax error somewhere, we will not
be pleased at all, not only about the syntax error, but also about the quality of the
parser or lack thereof.

The question as to where the error occurs is much more difficult to answer; in fact
it is almost impossible. Although some parsers have the “correct-prefix property”,
which means that they detect an error at the first symbol in the input that results in a
prefix that cannot start a sentence of the language, we cannot be sure that this indeed
is the place in which the error occurs. It could very well be that there is an error
somewhere before this symbol but that this is not a syntax error at that point. Thus
there is a difference in the perception of an error between the parser and the user. In



522 16 Error Handling

the rest of this chapter, when we talk about errors, we mean syntax errors, as detected
by the parser.

So what happens when input containing errors is offered to a parser with a good
error detection capability? The parser might say: “Look, there is a syntax error at po-
sition so-and-so in the input, so I give up”. For some applications, especially highly
interactive ones, this may be satisfactory. For many, though, it is not: often, one
would like to know about all syntax errors in the input, not just about the first one.
If the parser is to detect further syntax errors in the input, it must be able to continue
parsing (or at least recognizing) after the first error. It is probably not good enough
to just throw away the offending symbol and continue. Somehow, the internal state
of the parser must be adapted so that the parser can process the rest of the input. This
adaptation of the internal state is called error recovery.

The purpose of error recovery can be summarized as follows:

• an attempt must be made to detect all syntax errors in the input;
• equally important, an attempt must be made to avoid spurious error messages.

These are messages about errors that are not real errors in the input, but result
from the continuation of the parser after an error with improper adaptation of its
internal state.

Usually, a parser with an error recovery method can no longer deliver a parse
tree if the input contains errors. This is sometimes a source of considerable trouble.
In the presence of errors, the adaptation of the internal state can cause semantic ac-
tions associated with grammar rules to be executed in an order that is impossible for
syntactically correct input, which sometimes leads to unexpected results. A simple
solution to this problem is to ignore semantic actions as soon as a syntax error is
detected, but this is not optimal and may not be acceptable. A better option is the use
of a particular kind of error recovery method, an error correction method.

Error correction methods modify the input as read by the parser so that it becomes
syntactically correct, usually by deleting, inserting, or changing symbols. Error cor-
rection methods will not always change the input into the input actually intended by
the user, and they do not pretend that they can. Therefore, some authors prefer to call
these methods error repair methods rather than error correction methods. The main
advantage of error correction over other types of error recovery is that the parser still
can produce a parse tree and that the semantic actions associated with the grammar
rules are executed in an order that could also occur for some syntactically correct
input. In fact, the actions only see syntactically correct input, sometimes produced
by the user and sometimes by the error corrector.

In summary, error detection, error recovery, and error correction require increas-
ing levels of heuristics. Error detection itself requires no heuristics: a parser detects
an error, or it does not. Determining the place where the error occurs may require
heuristics, however. Error recovery requires heuristics to adapt the internal parser
state so that it can continue, and error correction requires heuristics to repair the
input.

With error handling comes the obligation to provide good error messages. Unfor-
tunately there is little research on this subject, and most of the pertinent publications



16.2 Parsing Techniques and Error Detection 523

are of a reflective nature, for example Horning [296], Dwyer [307] and Brown [312].
Explicit algorithmic support is rare (Kantorowitz and Laor [316]). The only attempt
at automating the production of error messages we know of is Jeffery [328] who sup-
plies the parser generator with a long list of erroneous constructs with desired error
messages. The parser can then associate each error message with the state into which
the erroneous construct brings the parser.

16.2 Parsing Techniques and Error Detection

Let us first examine how good the parsing techniques discussed in this book are at
detecting an error. We will see that some parsing techniques have the correct-prefix
property while other parsing techniques only detect that the input contains an error
but give no indication where the error occurs.

16.2.1 Error Detection in Non-Directional Parsing Methods

In Section 4.1 we saw that Unger’s parsing method tries to find a partition of the
input sentence that matches one of the right-hand sides of the start symbol. The only
thing that we can be sure of in the case of one or more syntax errors is that we will
find no such partition. For example, suppose we have the grammar of Figure 4.1,
repeated in Figure 16.1, and input ×+. Fitting the first right-hand side of Expr with

Exprs ---> Expr + Term | Term
Term ---> Term × Factor | Factor

Factor ---> ( Expr ) | i

Fig. 16.1. A grammar describing simple arithmetic expressions

the input will not work, because the input only has two symbols. We will have to
try the second right-hand side of Expr. Likewise, we will have to try the second
right-hand side of Term, and then we will find that we cannot find an applicable
right-hand side of Factor, because the first one requires at least three symbols, and
the second one only one. So we know that there are one or more errors, but we do not
know how many errors there are, nor where they occur. In a way, Unger’s method is
too well prepared for dealing with failures, because it expects any partition to fail.

For the CYK parser, the situation is similar. We will find that if the input contains
errors, the start symbol will not be a member of the top element of the recognition
table.

So, the unmodified non-directional parsing methods behave poorly on errors in
the input. A method to improve that behavior by using dynamic programming is
shown in Section 16.4.



524 16 Error Handling

16.2.2 Error Detection in Finite-State Automata

Finite-state automata are very good at detecting errors. Consider for example the
deterministic automaton of Figure 5.12, repeated in Figure 16.2.

S AB

BC

AC

♦♦
a

b

c

a

a

cb

Fig. 16.2. Deterministic automaton for the grammar of Figure 5.6

When this automaton is offered the input abcca, it will detect an error when it
is in state AC, on the second c in the input.

Finite-state automata have the correct-prefix property. In fact, they have the im-
mediate error detection property, which we discussed in Chapter 8 and which means
that an error is detected as soon as the erroneous symbol is first examined.

16.2.3 Error Detection in General Directional Top-Down Parsers

The breadth-first general directional top-down parser also has the correct-prefix prop-
erty. It stops as soon as there are no predictions left to work with. Predictions are only
dropped by failing match steps, and as long as there are predictions, the part of the
input parsed so far is a prefix of some sentence of the language.

The depth-first general directional top-down parser does not have this property.
It will backtrack until all right-hand sides of the start symbol have failed. However, it
can easily be doctored so that it does have the correct-prefix property: the only thing
that we must remember is the furthest point in the input that the parser has reached,
a kind of high-water mark. The first error is found right after this point.

16.2.4 Error Detection in General Directional Bottom-Up Parsers

The picture is quite different for the general directional bottom-up parsers. They will
just find that they cannot reduce the input to the start symbol. This is only to be
expected because, in contrast to the top-down parsers, there is no test before an input
symbol is shifted.

As soon as a top-down component is added, such as in Earley’s parser, the parser
regains the correct-prefix property. For example, if we use the Earley parser with the
grammar from Figure 7.8 and input a-+a, we get the item sets of Figure 16.3 (com-
pare this with Figure 7.11). We see that itemset3 is empty, and the error is detected.



16.2 Parsing Techniques and Error Detection 525

S--->•E @1
E--->•EQF@1
E--->•F @1
F--->•a @1

act/pred1

= itemset1

a1

F--->a•@1
E--->F•@1
S--->E•@1

E--->E•QF@1
Q--->•+ @2
Q--->•- @2

completed2

act/pred2

= itemset2

-2

Q--->-•@2

E--->EQ•F@1
F--->•a @3

completed3

act/pred3

= itemset3

+3

completed4

act/pred4

= itemset4

Fig. 16.3. Items set of the Earley parser working on a-+a

16.2.5 Error Detection in Deterministic Top-Down Parsers

In Sections 8.2.3 and 8.2.4 we have seen that strong-LL(1) parsers have the correct-
prefix property but not the immediate error detection property, because in some cir-
cumstances they may make some ε-moves before detecting an error, and that full-
LL(1) parsers have the immediate error detection property.

16.2.6 Error Detection in Deterministic Bottom-Up Parsers

Let us first examine the error detection capabilities of precedence parsers. We saw in
Section 9.2.2 that operator-precedence parsers fail to detect some errors. When they
do detect an error, it is because there is no precedence relation between the symbol
on top of the parse stack and the next input symbol. This is called a character-pair
error.

The other precedence parsers (simple, weak, extended, and bounded-right-
context) have three error situations:

• there is no precedence relation between the symbol on top of the parse stack and
the next input symbol (a character-pair error).

• the precedence relations indicate that a handle segment has been found and that
a reduction must be applied, but there is no non-terminal with a right-hand side
that matches the handle segment. This is called a reduction error.

• after a reduction has been made, there is no precedence relation between the
symbol at the top of the stack (the symbol that was underneath the �) and the
left-hand side to be pushed. This is called a stackability error or stacking error.

Reduction errors can be detected at an early stage by continuously checking that
the symbols between the last � and the top of the stack form the prefix of some right-
hand side. Graham and Rhodes [295] show that this can be done quite efficiently.

In Section 9.6.3 we saw that an LR(1) parser has the immediate error detection
property. LALR(1) and SLR(1) parsers do not have this property, but they do have
the correct-prefix property. Error detection in GLR parsers depends on the underlying
parsing technique.



526 16 Error Handling

16.3 Recovering from Errors

Error handling methods fall in different classes, depending on what level they ap-
proach the error. The general parsers usually apply an error handling method that
considers the complete input. These methods use global context, and are therefore
called global error handling methods. The Unger and CYK parsers need such a
method, because they have no idea where the error occurred. These methods are
very effective, but the penalty for this effectiveness is paid for in efficiency: they
are very time consuming, requiring at least cubic time. As the general parsing meth-
ods already are time consuming anyway, this is usually deemed acceptable. We will
discuss such a method in Section 16.4.

On the other hand, efficient parsers are used because they are efficient. For them,
error handling methods are required that are less expensive. We will discuss the best
known of these methods. They have the following information at their disposal:

• in the case of a bottom-up parser: the parse stack; in the case of a top-down
parser: the prediction stack;

• the input string, and the point where the error was detected.

There are four classes of these methods: the regional error handling methods,
which use some (regional) context around the point of error detection to determine
how to proceed; the local error handling methods only use the parser state and the
input symbol (local context) to determine what happens next; the suffix methods,
which use zero context; and the ad hoc methods, which do not really form a class.
Examples of these methods will be discussed in Sections 16.5, 16.6, 16.7 and 16.8.

In our discussions, we will use the terms error detection point, indicating the
point where the parser detects the error, and error symbol, which indicates the input
symbol on which the error is detected.

16.4 Global Error Handling

The most popular global error handling method is the least-error correction method.
The purpose of this method is to derive a syntactically correct input from the sup-
plied one using as few corrections as possible. Usually, a symbol deletion, a symbol
insertion, and a symbol change all count as one correction (one edit operation).

It is important to realize that the number of corrections needed can easily be
limited to a maximum: first, we compute the shortest sentence that can be generated
from the grammar. Let us say it has length m. If the input has length n, we can
change this input into the shortest sentence with a number of edit operations that is
the maximum of m and n: change the first symbol of the input into the first symbol
of the shortest sentence, etc. If the input is shorter than the shortest sentence, this
results in a maximum of n changes, and we have to insert the last m− n symbols
of the shortest sentence. If the input is longer than the shortest sentence, we have
to delete the last n−m symbols of the input. This is not a very tight and useful
maximum, but at least it shows the problem is finite. Also, when searching for a



16.4 Global Error Handling 527

least-error correction, if we already know that we can do it with, say, k corrections,
we do not have to investigate possibilities known to require more.

With this in mind, let us see how such an error correction method works when
incorporated in an Unger parser (Section 4.1). We will again use the grammar of
Figure 16.1 as an example, again with input sentence ×+. This is a very short sentence
indeed, to limit the amount of work. The shortest sentence that can be generated
from the grammar is i, of length one. The observation above limits the number of
corrections needed to a maximum of two.

Now the first rule to be tried is Expr--->Expr+Term. This leads to the following
partitions:

Expr max:2
Expr + Term

? 1 ×+ ?
? × 1 + ?
? ×+ 1 ?

× ? 1 + ?
× ? + 0 ?
×+ ? 1 ? cut-off

When we compare this table to tables like Figure 4.2, we note that it includes the
number of corrections needed for each part of a partition in the right of the column;
a question mark indicates that the number of corrections is yet unknown. The total
number of corrections needed for a certain partition is the sum of the number of cor-
rections needed for each of the parts. The top of the table also contains the maximum
number of corrections allowed for the rule. For the parts matching a terminal, we
can decide how many corrections are needed, which results in the column below the
+. Also notice that we have to consider empty parts, although the grammar does not
have ε-rules. The empty parts stand for insertions. The cut-off comes from the Unger
parser detecting that the same problem is already being examined.

Now that it has this list of partitions, the Unger parser concentrates on the first
partition in it, which requires it to derive ε from Expr. The partition already requires
one correction, so the maximum number of corrections allowed is now one. The rule
Expr--->Expr+Term immediately results in a cut-off:

Expr max:1
Expr + Term

? 1 ? cut-off

So we will have to try the other rule for Expr: Expr--->Term. Likewise,
Term--->Term×Factor will result in a cut-off, so we will have to use
Term--->Factor. The rule Factor--->(Expr) will again result in a cut-off, so
Factor--->i will be used:



528 16 Error Handling

Expr max:1
Term max:1
Factor max:1
i max:1

1

So we find, not surprisingly, that input part ε can be corrected to i, requiring one
correction (inserting i) to make it derivable from Expr (and Term and Factor).

To complete our work on the first partition of ×+ over the right-hand side
Expr+Term, we have to examine if, and how, Term derives ×+. We already need
two corrections for this partition, so no more corrections are allowed because of the
maximum of two. For the rule Term--->Term×Factor we get the following parti-
tions (in which we cheated a bit: we used some information computed earlier):

Term max:0
Term × Factor

1 1 ×+ ? too many corrections
1 × 0 + ? too many corrections
1 ×+ 1 1 too many corrections

× ? 1 + ? too many corrections
× ? + 1 1 too many corrections
×+ ? 1 1 cut-off

Each of these fails, so we try Term--->Factor. The rule Factor--->(Expr) then
results in the following partitions:

Term max:0
Factor max:0

( Expr )

1 1 ×+ 2 too many corrections
1 × ? + 1 too many corrections
1 ×+ ? 1 cut-off

× 1 1 + 1 too many corrections
× 1 + ? 1 too many corrections
×+ 2 1 1 too many corrections

This does not work either. The rule Factor--->i results in the following:

Term max:0
Factor max:0
i max:0
×+ 2 too many corrections

So we get either a cut-off or too many corrections (or both). This means that the
partition that we started with is the wrong one.

The other partitions are tried in a similar way, resulting in the following partition
table, with completed error correction counts:



16.4 Global Error Handling 529

Expr max:2
Expr + Term

1 1 ×+ >0 too many corrections
1 × 1 + 1 too many corrections
1 ×+ 1 1 too many corrections

× 1 1 + 1 too many corrections
× 1 + 0 1
×+ ? 1 1 cut-off

So, provided that we do not find better corrections later on, using the rule
Expr--->Expr+Term we find the corrected sentence i+i, by replacing the × with
an i, and inserting an i at the end of the input.

Now the Unger parser proceeds by trying the rule Expr--->Term. Continuing
this process, we will find two more possibilities using two corrections: the input can
be corrected to i×i by inserting an i in front of the input and replacing the + with
another i, or the input can be corrected by replacing × with an i and deleting + (or
deleting × and replacing + with an i).

This results in three possible corrections for the input, all three requiring two
edit operations. Choosing between these corrections is up to the parser writer. If the
parser is written to handle ambiguous input anyway, the parser might deliver three
parse trees for the three different corrections. If the parser must deliver only one parse
tree, it could just pick the first one found. Even in this case, however, the parser has
to continue searching until it has exhausted all possibilities or it has found a correct
parsing, because it is not until then that the parser knows if the input in fact did
contain any errors.

As is probably clear by now, least-error correction does not come cheap, and it is
therefore usually only applied in general parsers, because these do not come cheap
anyway.

Lyon [294] has added least-error correction to the CYK parser and the Earley
parser, although his CYK parser only handles replacement errors. In his version of
the CYK parser, the non-terminals in the recognition table have an error count asso-
ciated with it. In the bottom row, which is the one for the non-terminals deriving a
single terminal symbol, all entries contain all non-terminals that derive a single ter-
minal symbol. If the non-terminal derives the corresponding terminal symbol it has
error count 0, otherwise it has error count 1 (a replacement). Now, when we find that
a non-terminal A with rule A → BC is applicable, it is entered in the recognition table
with an error count equal to the sum of that of B and C, but only if it is not already a
member of the same recognition table entry, but with a lower error count.

Aho and Peterson [292] also added least-error correction to the Earley parser
by extending the grammar with error productions, so that it produces any string of
terminal symbols, with an error count. As in Lyon’s method, the Earley items are
extended with an error count indicating how many corrections were needed to create
the item. An item is only added to an item set if it does not contain one like it which
has a lower error count.



530 16 Error Handling

Tanaka and Fu [301] extended this method to context-sensitive parsers, in one of
the few examples of error correction in systems stronger than context-free.

A completely different form of global error recovery is based on parsing by inter-
section and is treated in Section 13.5. It can give surprising results but there is hardly
any research on it available yet.

16.5 Regional Error Handling

Regional error handling collects some context around the error detection point, con-
sisting of a segment of the top of the stack and some prefix of the input, and reduces
that part (including the error) to a left-hand side. Since it tries to collect a “phrase”,
which is a technical term for a terminal production of a non-terminal, this class of
error handling methods is also often called phrase level error handling. Since the
technique requires a reduction stack to participate in the desired reduction, it is ap-
plied exclusively to bottom-up parsers.

16.5.1 Backward/Forward Move Error Recovery

A well-known example of regional error handling in bottom-up parsers is the back-
ward/forward move error recovery method, presented by Graham and Rhodes [295].
It consists of two stages: the first stage condenses the context around the error as
much as possible. This is called the condensation phase. Then the second stage, the
correction phase, changes the parsing stack and/or the input so that parsing can con-
tinue. The method is best applicable to simple precedence parsers, and we will use
such a parser as an example.

Our example comes from the grammar and precedence table of Figure 9.9. Sup-
pose that we have input #n×+n#. The simple precedence parser has the following
parse stacks at the end of each step, up to the error detection point:

# � n × + n # shift n
# � n � × + n # reduce n
# � F � × + n # reduce F
# � T

.
= × + n # shift ×

# � T
.
= × + n # stuck

No precedence relation is found to exist between the × and the +, resulting in an
error message that + is not expected.

Let us now examine the condensation phase in some detail. As said before, the
purpose of this phase is to condense the context around the error as much as possible.
The left-context is condensed by a so-called backward move: assuming a � relation
between the top of the parse stack and the symbol on which the error is detected
(that is, assuming that the parse stack built so far has the end of a handle as its top
element), perform all possible reductions. In our example, no reductions are possible.
Now assume a

.
= or a � between the top of the stack and the next symbol. This

enables us to continue parsing a bit. This step is the so-called forward move: first we
shift the next symbol, resulting in the following parse stack:



16.5 Regional Error Handling 531

# � T
.
= ×

.
=/� + n # still stuck

Next, we disable the check that the top of the stack should represent a prefix of
a right-hand side. Then, we continue parsing until either another error occurs or
a reduction is called for that spans the error detection point. This gives us some
right-context to work with, which can be condensed by a second backward move, if
needed. For our example, this results in the following steps:

# � T
.
= ×

.
=/� + � n # shift n

# � T
.
= ×

.
=/� + � n � # reduce n

# � T
.
= ×

.
=/� + � F � # reduce F

# � T
.
= ×

.
=/� + � T � # reduce T

# � T
.
= ×

.
=/� +

.
= T’ � # proposed reduction

includes error point

So now we have the situation depicted in Figure 16.4. This is where the correction

· · · � · · · · · ·

nearest � to the left of
the error detection point

error detection
point

top of
stack

① ②

③

Fig. 16.4. Situation after the backward/forward moves

phase starts. The correction phase considers three parts of the stack for replacement
with some right-hand side. These parts are indicated with ①, ② and ③ in Figure
16.4. Part ① is considered because the precedence at the error detection point could
be �, part ② is considered because the precedence at the error detection point could
be �, and part ③ is considered because this precedence could be

.
=. Another option

is to just delete one of these parts. This results in a fairly large number of possible
changes, which now must be limited by making sure that the parser can continue
after reducing the right-hand side to its corresponding left-hand side.

In the example, we have the following situation:

� T
.
= × ? +

.
= T’ �

① ②

③

The left-hand sides that could replace part ① are: E, T’, T, and F. These are the
non-terminals that have a precedence relation with the next symbol: the +. The only
left-hand side that could replace part ② is F. Part ③ could be replaced by E, T’, T,
and F. This still leaves a lot of choices, but some “corrections” are clearly better than
others. Let us now see how we can discriminate between them.



532 16 Error Handling

Replacing part of the parse stack by a right-hand side can be seen as an edit
operation on the stack. The cost of this edit operation can be assessed as follows.
With every symbol, we can associate a certain insertion cost I and a certain deletion
cost D. The cost for changing for example T× to F would then be D(T)+D(×)+I(F).
These costs are determined by the parser writer. The cheapest parse stack correction
is then chosen. If there is more than one with the same lowest cost, we just pick one.

Assigning identical costs to all edit operations, in our example, we end up with
two possibilities, both replacing part ①: T (deleting the ×), or T×F (inserting an F).
Assigning higher costs to editing a non-terminal, which is not unreasonable, would
only leave the first of these. Parsing then proceeds as follows:

# � T
.
= ×

.
=/� +

.
= T’ � # error situation

# � T
.
= ×

.
=/� +

.
= T’ � # correct error by deleting ×

# � T � +
.
= T’ � # reduce T

# � T’ � +
.
= T’ � # reduce T’

# � E
.
= +

.
= T’ � # reduce E+T’

# � E � # reduce E
# � E’ � # reduce E’
# � S � # done

The principles of this method have also been applied in LR parsers. There, how-
ever, the backward move is omitted, because in an LR parser the state on top of
the stack, together with the next input symbol, determine the reduction that can be
applied. If the input symbol is erroneous, we have no way of knowing which reduc-
tions can be applied. For further details, see Pennello and DeRemer [300] and also
Mickunas and Modry [299].

An interesting form of regional error handling is reported by Burke and Fisher
[317]. Two parsers are used simultaneously, with one being several tokens ahead of
the other; the input text between them is the region. This allows modifications to
be made to the region when the first parser finds a syntax error. Several types of
modifications can be applied, in such a way that the second parser never sees an
error; see [317] for details. Charles [319] extends this technique with an impressive
array of features, resulting in a robust error-correcting LALR parser.

16.5.2 Error Recovery with Bounded-Context Grammars

Error recovery, which is usually the most difficult part of error handling, is particu-
larly easy when we use a bounded-context grammar (Section 9.3.1). The reason is
that the bounded context allows the parser to get back on track quickly after an error,
since little information is needed to start making correct decisions again.

A BRC parser using the grammar from Figure 9.2, the corresponding BC(2,1)
parse table from Figure 9.10, and the input #n×+n#, performs the steps

# n �F--->n × + n #
# F �T--->F × + n #
# T � × + n #
# T × Error + n # stuck



16.6 Local Error Handling 533

and finds that there is an Error relation between T× and +. Now, rather than trying to
repair the situation at the gap, the parser tries to find the next context in which it can
take a decision. To this end it has to shift at least 2 tokens; in this case that is enough
to continue parsing:

# T × Error + n �F--->n #
# T × Error + F �T--->F #
# T × Error + T �E--->E+T # stuck

The parser detects that it cannot perform the indicated reduction, because rather than
a E it finds a × on the stack. So seen from left to right the + is the error symbol and
seen from right to left the × is the error symbol. The parser can now either delete a
token or insert a token. If it deletes the × we get the context (#T,+) which is defined.
If it deletes the + we get the context (#T,×) which shifts the × which leads to the
context (T×,T) which is not defined. If it inserts, it can insert an n or a (. The first
leads to a correct recovery, the second to failure. Assuming that the parser deletes
the ×,

# T + T �E--->E+T # delete ×

it continues as follows:

# T �E--->T + T �E--->E+T #
# E � + T �E--->E+T #
# E + T �E--->E+T #
# E �S--->E #
# S Accept #

Ruckert [322] describes the underlying algorithm; this integrated form of parsing
and error recovery technique is called “robust parsing” in the paper, because the
parser is not easily thrown off course. In [324] Ruckert shows that for the method to
work the grammar must be a continuous grammar. A grammar is “continuous” if a
small change in the input does not correspond to a discontinuous change in the parse
tree, under a certain metric. It is shown that all BC grammars are continuous, but not
vice versa, and that all continuous grammars are BCP but not vice versa. So we have
for the grammars: BC ⊂ continuous ⊂ BCP.

16.6 Local Error Handling

All local error recovery techniques are so-called acceptable-set error recovery tech-
niques. These techniques work as follows: when a parser detects an error, a certain
set called the acceptable-set is computed from the parser state. Next, symbols from
the input are skipped until a symbol is found that is a member of the acceptable-set.
Then, the parser state is adapted so that the symbol that is not skipped becomes ac-
ceptable. There is a family of such techniques; the members of this family differ in
the way they determine the acceptable-set, and in the way in which the parser state
is adapted. We will now discuss several members of this family.



534 16 Error Handling

16.6.1 Panic Mode

Panic mode is probably the simplest error recovery method that is still somewhat
effective. In this method, the acceptable-set is determined by the parser writer, and is
fixed for the whole parsing process. The symbols in this set usually indicate the end
of a syntactic construct, for example a statement in a programming language. For the
programming language Pascal, this set could contain the symbols ; and end. When
an error is detected, symbols are skipped until a symbol is found that is a member
of this set. Then, the parser must be brought into a state that makes this symbol
acceptable. In an LL parser, this might require deleting the first few symbols of the
prediction, in an LR parser this might involve popping states from the parse stack
until a state is uncovered in which the symbol is acceptable.

The recovery capability of panic mode is often quite good, but many errors can
go undetected, because sometimes large parts of the input are skipped. The method
has the advantage that it is very easy to implement.

16.6.2 FOLLOW-Set Error Recovery

Another early acceptable-set recovery method is the FOLLOW-set error recovery
method. The idea is applicable in an LL parser, and works as follows: when we are
parsing a part of the input, and the top of the prediction stack results most recently
from a prediction for the non-terminal A, and we detect an error, we skip symbols
until we find a symbol that is a member of FOLLOW(A). Next, we remove the un-
processed part of the current right-hand side of A from the prediction, and continue
parsing. As we cannot be sure that the current input symbol can follow A in the
present context and is thus acceptable, this is not such a good idea. A better idea is
to use that part of FOLLOW(A) that can follow A in this particular context, making
sure that the symbol that is not skipped will be accepted, but this is not trivial to do.

The existence of this method is probably the reason that the family of acceptable-
set error recovery methods is often called “FOLLOW-set error recovery”. However,
for most members of this family this is a confusing name.

A variant of this method that has become very popular in recursive descent
parsers is based on the observation that at any point during the parsing process, there
are a number of active non-terminals (for which we are now trying to match a right-
hand side), and in general this number is larger than one. Therefore, we should use
the union of the FOLLOW sets of these non-terminals, rather than the FOLLOW
set of just the most recent of them. A better variant uses the union of those parts of
the FOLLOW sets that can follow the non-terminals in this particular context. An
expansion of this idea is the following: suppose the parser is in the following state
when it detects an error:

· · · a · · ·
· · · X1 · · · Xn #



16.6 Local Error Handling 535

We can then have the acceptable-set contain the symbols in FIRST(X1), FIRST(X2),
· · · , and #, and recover by skipping symbols until we meet a symbol of this
acceptable-set, and then removing symbols from the prediction until the input sym-
bol becomes acceptable.

Many variations of this technique exist; see for example Pemberton [304] and
Stirling [314].

16.6.3 Acceptable-Sets Derived from Continuations

A very interesting and effective member of the acceptable-set recovery method fam-
ily is the one discussed by Röhrich [305]. The idea is as follows. Suppose that a
parser with the correct-prefix property detects an error in the input after having pro-
cessed a prefix u. Because of the correct-prefix property, we know that this prefix u is
the start of some sentence in the language. Therefore, there must be a continuation,
which is a terminal string w, such that uw is a sentence of the language. Now suppose
we can compute such a continuation. We can then correct the error as follows:

• Determine a continuation w of u.
• For all prefixes w′ of w, compute the set of terminal symbols that would be ac-

cepted by the parser after it has parsed w′, and take the union of these sets. If a is
a member of this set, uw′a is a prefix of some sentence in the language. This set
is our acceptable-set. Note that it includes all terminal symbols in w, including
the end marker.

• Skip symbols from the input until we find a symbol that is a member of this set.
Note that as a result of this, everything up to the end marker may be skipped.

• Insert the shortest prefix of w that makes this symbol acceptable in front of this
symbol. If everything up to the end marker was skipped, insert w itself.

• Produce an error message telling the user which symbols were skipped and which
symbols were inserted.

• Restart the parser in the state where the error was detected and continue parsing,
starting with the inserted symbols. Now the error is corrected, and the parser
continues as if nothing has happened.

16.6.3.1 Continuation Grammars

Deriving acceptable sets from continuations requires a solution for two problems:
how to determine the continuation and how to compute the acceptable-set without
going through all possible parsings. Let us regard a grammar as a generating device.
Suppose we are generating a sentence from a grammar, and have obtained a certain
sentential form. Now, we want to produce a sentence from it as quickly as possible,
using the fewest possible production steps. We can do this if we know for each non-
terminal which right-hand side is the quickest “exit”, that is, which right-hand side
leads to a terminal production in as few production steps as possible.

We can compute these “quickest” right-hand sides in advance. To this end, we
compute for each symbol the minimum number of production steps needed to obtain



536 16 Error Handling

a terminal derivation from it. We call this number the step count. Terminal symbols
have step count 0; non-terminal symbols have an as yet unknown step count, which
we set to infinity. Next, we examine each right-hand side in turn. If we already have
a step count for each of the members of a right-hand side, the right-hand side itself
needs the sum of these step counts, and the left-hand side needs one more if it uses
this right-hand side. If this is less than we had for this non-terminal, we update its
step count. We repeat this process until none of the step counts changes, as in a
transitive closure algorithm.

If we started from a proper grammar, all of the step counts will now be finite.
Now all we have to do is for each left-hand side to mark the right-hand side with
the lowest step count. The grammar rules thus obtained are called a continuation
grammar.

Let us see how this works with an example. Consider the grammar of Figure 8.9,
repeated in Figure 16.5 for reference. The first pass over the right-hand sides shows

Sessions ---> Facts Question | ( Session ) Session
Facts ---> Fact Facts | ε
Fact ---> ! STRING

Question ---> ? STRING

Fig. 16.5. An example grammar

us that Facts, Fact, and Question each have step count 1. In the next pass,
we find that Session has step count 3: its first alternative has two members with
step count 1 each, plus 1 for the rule itself. The resulting continuation grammar is
presented in Figure 16.6.

Sessions ---> Facts Question
Facts ---> ε
Fact ---> ! STRING

Question ---> ? STRING

Fig. 16.6. The continuation grammar of the grammar of Figure 16.5

16.6.3.2 Continuation in an LL Parser

In an LL parser, it now is easy to compute a continuation when an error occurs. We
take the prediction, and derive a terminal string from it using only rules from the con-
tinuation grammar, processing the prediction from left to right. Each terminal that we
meet ends up in the acceptable-set; in addition, every time a non-terminal is replaced
by its right-hand side from the continuation grammar, we add to the acceptable-set
the terminal symbols from the FIRST set of the current sentential form starting with
this non-terminal.



16.6 Local Error Handling 537

Let us demonstrate this with an example. Suppose that we have the input
( ? STRING ? STRING for the LL(1) parser of Figure 8.10. When the parser
detects an error, it is in the following state:

( ? STRING ? STRING #

· · · ) Session #

Now a continuation will be computed, starting with the sentential form
) Session #, using the continuation grammar. During this computation, when
the prediction starts with a non-terminal, the FIRST set of the prediction will be
computed and the non-terminal will be replaced by its right-hand side in the contin-
uation grammar. The FIRST set is shown in square brackets below the line:

) Session # --->

) [(!?] Facts Question # --->

) [(!?] [!?] ε Question # --->

) [(!?] [!?] [?] ? STRING #

Consequently, the continuation is ) ? STRING # and the acceptable-set contains
(, ), !, ?, STRING and #. We see that we should keep the ? and insert the first
symbol of the continuation, ). So the parser is restarted in the following state:

( ? STRING ) ? STRING #

· · · ) Session #

and proceeds as usual.

16.6.3.3 Continuation in an LR Parser

Unlike an LL parser, an LR parser does not feature a sentential form which repre-
sents the rest of the input. It is therefore more difficult to compute a continuation.
Röhrich [305] demonstrates that an LR parser can be generated that has a terminal
symbol associated with each state of the handle recognizer so that we can obtain a
continuation by pretending that the parser has this symbol as input when it is in the
corresponding state. The sequence of states that the parser goes through when these
symbols are given as input then determines the continuation. The acceptable-set con-
sists of the terminal symbols on which a shift or reduce can take place (i.e. which are
acceptable) in any of these states.

16.6.4 Insertion-Only Error Correction

Fischer, Milton and Quiring [303] propose an error correction method for LL(1)
parsers using only insertions. This method has become known as the FMQ error cor-
rection method. In this method, the acceptable-set is the set of all terminal symbols.



538 16 Error Handling

Fischer, Milton and Quiring argue that the advantage of using only insertions (and
thus no deletions or replacements) is that a syntactically correct input is built around
the input supplied by the user, so none of the symbols supplied by the user are deleted
or changed.

Not all languages allow insertion-only error correction. If, for example, all strings
start with the token program and that token cannot occur anywhere else in the
input, then an input with two program tokens in it cannot be corrected by insertion
only. However, many languages allow insertion-only, and other languages are easily
modified so that they do.

Let us investigate which properties a language must have for every error to be
correctable by insertions only. Suppose we have an input xa · · · such that the start
symbol does derive a sentence starting with x, but not a sentence starting with xa;
so x is a correct prefix, but xa is not. Now, if this error is to be corrected by an
insertion y, xya must again be a correct prefix. This leads to the notion of insert-
correctable grammars: a grammar is said to be insert-correctable if for every prefix
x of a sentence and every symbol a in the language there is a continuation of x
that includes a (so an insertion can always be found). Fischer, Milton and Quiring
demonstrate that it is decidable whether an LL(1) grammar is insert-correctable.

So, the FMQ error correction method is applicable in an LL(1) parser built from
an insert-correctable grammar. In addition, the LL(1) parser must have the immediate
error detection property. As we have seen in Section 8.2.4, the usual (strong-)LL(1)
parser does not have this property, but the full-LL(1) parser does. Fischer, Tai and
Milton [302] show that for the class of LL(1) grammars in which every non-terminal
that derives ε does so explicitly through an ε-rule, the immediate error detection
property can be retained while using strong-LL(1) tables.

Now, how does the error corrector work? Suppose that an error is detected on
input symbol a, and the current prediction is X1 · · ·Xn#. The state of the parser is
then:

· · · a · · ·
· · · X1 · · · Xn #

As a is an error, we know that it is not a member of FIRST(X1 · · ·Xn#). We also
know that the grammar is insert-correctable, so X1 · · ·Xn# must derive a terminal
string containing a. The error corrector now determines the cheapest insertion after
which a is acceptable. Again, every symbol has associated with it a certain insertion
cost, determined by the parser writer; the cost of an insertion is the sum of the costs
of the symbols in the insertion.

To compute the cheapest insertion, the error corrector uses some tables that are
precomputed for the grammar at hand (by the parser generator). First, there is a table
that we will call cheapest_derivation, giving the cheapest terminal derivation
for each symbol (for a terminal, this is of course the terminal itself). Second, there is
a table that we will call cheapest_insertion giving for each symbol/terminal
combination (X , a) the cheapest insertion y such that X *→ya · · · , if it exists, or an



16.6 Local Error Handling 539

indication that it does not exist. Note that in any prediction X1 · · ·Xn# there must be
at least one symbol X such that the (X , a) entry of the cheapest_insertion
table contains an insertion (or else the grammar was not insert-correctable).

Going back to our parser, we can now compute the cheapest insertion z such that
a becomes acceptable. Consulting cheapest_insertion(X1, a), we can distin-
guish two cases:

• cheapest_insertion(X1, a) contains an insertion y1; in this case, we have
found an insertion.

• cheapest_insertion(X1, a) does not contains an insertion. In this
case, we use cheapest_derivation(X1) as the first part of the in-
sertion, and continue with X2 in exactly the same way as we did with
X1. In the end, this will result in an insertion y1 · · ·yi, where y1, . . .,yi−1

come from the cheapest_derivation table, and yi comes from the
cheapest_insertion table.

The most serious disadvantage of the FMQ error corrector is that it behaves rather
poorly on those errors that are better corrected by a deletion. Advantages are that it
always works, can be generated automatically, and is simple.

Anderson and Backhouse [310] present a significant improvement of the im-
plementation described above, which is based on the observation that it is suffi-
cient to only compute the first symbol of the insertion: if we detect an error sym-
bol a after having read prefix u, and w = w1w2 · · ·wn is a cheapest insertion,
then w2 · · ·wn is a cheapest insertion for the error a after having read uw1. So the
cheapest_derivation and cheapest_insertion tables are not needed.
Instead, tables are needed that are indexed similarly, but only contain the first sym-
bol of the insertion. Such tables are much smaller, and easier to compute.

16.6.5 Locally Least-Cost Error Recovery

Like the FMQ error correction method, locally least-cost error recovery (see Back-
house [153] and Anderson et al. [311]) is a technique for recovering from syntax
errors by editing the input string at the error detection point. The FMQ method cor-
rects the error by inserting terminal symbols; the locally least-cost method corrects
the error by either deleting the error symbol, or inserting a sequence of terminal or
non-terminal symbols after which the error symbol becomes correct, or changing
the error symbol. Unlike the least-error analysis discussed in Section 16.4, which
considers the complete input string in determining the corrections to be made, the
locally least-cost method only considers the error symbol itself and the symbol after
that. The correction is determined by its cost: every symbol has a certain insertion
cost, every terminal symbol has a certain deletion cost, and every replacement also
has a certain cost. All these costs are determined by the parser writer. When consid-
ering if the error symbol is to be deleted, the cost of an insertion that would make the
next input symbol acceptable is taken into account. The cheapest correction is then
chosen.



540 16 Error Handling

This principle does not rely on a particular parsing method, although the im-
plementation does. The method has successfully been implemented in LL, LR, and
Earley parsers; see Backhouse [153], Anderson and Backhouse [306], Anderson et
al. [311], and Choe and Chang [315] for details.

McKenzie et al. [321] extend this method by doing a breadth-first search over an
ever deepening set of combinations of insertions and deletions. The correcting com-
binations are then “validated” in the order of cost, by applying them provisionally
to the input and running the parser. If the parser accepts a predetermined number
of tokens the correction is accepted; otherwise the original input is restored and the
system proceeds to the next proposed correction.

Cerecke [325] limits the breadth-first search by analysing the LR automaton. Kim
and Choe [326] incorporate the search for validations in the LR parse table.

Corchuelo et al. [327] take a very systematic approach to the problem. The op-
erators “insert”, “delete” and “validate” (called “forward move” in the paper) are
introduced in the LR parsing mechanism on an equal footing with the usual “shift”
and “reduce”, in such a way that the original LR parse tables still suffice. This allows
very pliable error recovery and easy implementation in an existing parser.

16.7 Non-Correcting Error Recovery

Although the error correction and error recovery methods discussed above have their
good and bad points, they all have the following problems in common:

• On an error, they change the input and/or the parser state, using heuristics to
choose one of the many possibilities. We can, however, never be sure that we
picked the right change.

• Selecting the wrong change can cause an avalanche of spurious error messages.
Only the least-error analysis of Section 16.4 does not have this problem.

A quite different approach to error recovery is that of Richter [313]. He proposes
a method that does not have the problems mentioned above, but has some problems
of its own. The author argues that we should not try to repair an error, because we
cannot be sure that we get it right. Neither should we try to change parser state and/or
input. The only thing that we can assume is that the rest of the input is a suffix (tail)
of a sentence of the language. This is an assumption made in several error recovery
methods, but the difference is that most error recovery methods assume more than
that, in that they use (some of) the parser state information built so far.

16.7.1 Detection and Recovery

The error recovery method now works as follows: parsing starts with a parser for the
original language, preferably one with the correct-prefix property. When an error is
detected, it is reported, and the present parsing effort is abandoned. To analyze the
remaining suffix, a parser derived from the suffix grammar, a so-called suffix parser,
is started on it. The detected error symbol is not discarded: it could very well be a



16.7 Non-Correcting Error Recovery 541

correct beginning of a suffix, for example when the only actual error is a missing
symbol.

If during the suffix scan another syntax error is detected, it is again reported, and
the suffix parser is reset to its starting state, ready to accept another suffix. This guar-
antees that each reported error is a genuine syntax error, since the situation is found
to be incompatible with the input from the previous error onwards, regardless of what
came before. It is also different from and not caused by the previous error, since all
information from before the previous one has been discarded. For the same reason
no error is reported more than once. This maintains a high level of user confidence
in the error messages, which is a great advantage. A possible disadvantage is, that in
the presence of errors the parser is unable to deliver a meaningful parse tree.

Since the method does not correct existing input, it is called a non-correcting
error recovery method.

When the method was first invented in 1985, it was hard to apply it in real-world
parsers. It was easy enough to construct the suffix grammar (see Section 12.1), but
that grammar was not amenable to the usual LL or LR methods, and general CF
methods were too expensive — or at least deemed to be so. That changed with the
invention of efficient, and sometimes even linear-time suffix parsers (Chapter 12).
Another way of solving the problem is to use an efficient GLR or GLL parser (Chap-
ter 11) and have it generate the suffix grammar implicitly on the fly. An example of
this technique is described by van Deudekom and Kooiman [170]. Given the com-
plexity of writing a linear suffix parser or an efficient GLR or GLL parser, the sim-
plicity of a general CF parser, and the speed of present-day processors, it might be
easier to use a general CF parser to do the suffix analysis; that approach has addi-
tional advantages, as we shall see in the next section.

16.7.2 Locating the Error

Although non-correcting error recovery cannot give spurious error messages, it can
miss errors, even arbitrarily many of them. If our input is described by the grammar
S--->(S), S--->[S], S--->ε, which produces properly nested sequences of open and
close parentheses and brackets, and the input is ((((]]]], the first ] is detected as
illegal and ends the correct prefix. But the rest, ]]]] is a perfectly legal suffix, so
only one error is reported. This is probably not a big disadvantage in an interactive
environment.

When a directional parser finds a syntax error, the only thing we can say is that
the error must have been somewhere in the input read so far. It can even be arbitrarily
far back, at the start of the input. Suppose our input language consists of arithmetic
expressions, and the input is E)**3, where E is a long, correct arithmetic expression
and ** is the exponentiation operator. The obvious error is that a left parenthesis was
missing at the beginning: (E)**3.

In a non-correcting parser that uses a general CF parser for the suffix analysis
we can do better. We can use the CF parser to scan the input text backwards, using
the reverse grammar of the input language; that grammar probably has no redeeming



542 16 Error Handling

properties, but a general CF parser can handle it. If there is only one error, the back-
ward scan will find an error at or to the left of the position of the forward error; the
region between the two errors is called the error interval. In the example above the
error is found at the start of the input, and the resulting error message

Syntax error:
unexpected ) at position N and
unexpected beginning of input at position 0

will give the user a good idea of where to look.
If there is more than one error, a similar scheme can be used to locate more errors,

but care is required since error intervals may overlap. Richter [313] give the details.

16.8 Ad Hoc Methods

The ad hoc error recovery methods are called ad hoc because they cannot be au-
tomatically generated from the grammar. These methods are as good as the parser
writer makes them, which in turn depends on how good the parser writer is in antic-
ipating possible syntax errors. We will discuss three of these ad hoc methods: error
productions, empty table slots and error tokens.

16.8.1 Error Productions

Error productions are grammar rules, added by the grammar writer so that antic-
ipated syntax errors become part of the language (and thus are no longer syntax
errors). These error productions usually have a semantic action associated with them
that reports the error; this action is triggered when the error production is used. An
example where an error production could be useful is the Pascal if-statement, which
has the following syntax:

if-statement ---> IF boolean-expression
THEN statement else-part

else-part ---> ELSE statement | ε

A common error is that an if-statement has an else-part, but the statement
in front of the else-part is terminated by a semicolon. In Pascal, a semicolon
is a statement separator rather than a statement terminator and is not allowed in
front of an ELSE. This situation could be detected by changing the grammar rule for
else-part into

else-part ---> ELSE statement | ε | ; ELSE statement

where the last right-hand side is the error production.
The most important disadvantages of error productions are:

• only anticipated errors can be handled;
• the modified grammar might (no longer) be suitable for the parsing method used,

because conflicts could be introduced by the added rules.



16.9 Conclusion 543

The advantage is that a very adequate error message can be given. Error productions
can be used profitably in conjunction with another error handling method, to handle
some frequent errors on which the other method does not perform well.

16.8.2 Empty Table Slots

In most of the efficient parsing methods, the parser consults one or more parse tables
and bases its next parsing decision on the result. These parsing tables have error
entries (represented as the empty slots), and if one of these is consulted, an error is
detected. In this error handling method, the empty table slots are used to refer to error
handling routines. Each empty slot has its own error handling routine, which is called
when the corresponding slot is consulted. The error handling routines themselves are
written by the parser writer. By very careful design of these error handling routines,
very good results can be obtained; see for example Conway and Wilcox [293]. In
order to achieve good results, however, the parser writer must invest considerable
effort. Usually, this is not considered worth the gain, in particular because good error
handling can be generated automatically.

16.8.3 Error Tokens

Another popular error recovery method uses error tokens. An error token is a special
token that is inserted in front of the error detection point. The parser will pop states
from the parse stack until this token becomes valid, and then skip symbols from the
input until an acceptable symbol is found. The parser writer extends the grammar
with rules using this error token. An example of this is the following grammar:

input ---> input input_line | ε
input_line ---> ERROR_TOKEN NEWLINE | STRING NEWLINE

This kind of grammar is often seen in interactive applications, where the input is line
by line. Here, ERROR_TOKEN denotes the error token, and NEWLINE denotes an
end of line marker. When an error occurs, states are popped until ERROR_TOKEN
becomes acceptable, and then symbols are skipped until a NEWLINE is encountered.

This method can be quite effective, provided that care is taken in designing the
rules using the error token.

16.9 Conclusion

In principle error handling is a hopeless task, in that the goal of having a computer
handle errors properly in any intuitive meaning of the word is out of reach. In practice
the far less lofty goal of not looping and not crashing is often already difficult to
achieve. The techniques described in this chapter walk a middle ground: they define
a metric for the corrections, thus creating an objective goal, and insert a token only
when it can be proven that no looping can occur.

The techniques are very parse-method specific but often involve a search for the
“best” correction; sometimes the results of this search can be precomputed.



544 16 Error Handling

Problems

Problem 16.1: 1. Can the error message learning system of Jeffery [328] (Sec-
tion 16.1) be implemented in an strong-LL(1) parser? 2. Implement it in your favorite
parser generator.

Problem 16.2: Project: The globally least-error correction method explained in
Section 16.4 can give spectacularly wrong results; for example, if the input is text
in a computer programming language and contains more than 2 errors, the input can
sometimes be “corrected” by putting comment symbols around the entire text. This
suggests that “most-recognized correction”, in which the number of accepted tokens
is maximized, may be preferred over “least-error correction”. Apply this idea to an
Unger, CYK or Earley parser and investigate.

Problem 16.3: Research project: Research error handling by intersection pars-
ing.

Problem 16.4: In Section 16.5 we claim that regional error handling is applicable
to bottom-up parsers only. Why can we not just apply the top-down counterparts of
its actions to a top-down parser: predict as much as we can, and then try to match
with insertions and deletions?

Problem 16.5: Give an intuitive argument why BC and BRC grammars allow
the method of Section 16.5.2 to be applied, and BCP grammars do not, as stated at
the end of that section.

Problem 16.6: In Section 16.6.3.2 the implementation of acceptable-set error
recovery with continuations is described using a scan over the prediction, but if we
are dealing with a recursive descent parser there is no explicit prediction. When
the conceptual prediction is X1 · · ·Xn#, we are in the routine for X1 and the other
elements of the prediction are hidden in the calling stack. Devise a way to obtain the
acceptable-set when needed without explicitly constructing the prediction.

Problem 16.7: In Section 16.6.4 the implementation of insertion-only error cor-
rection is described using a scan over the prediction, but if we are dealing with a
recursive descent parser there is no explicit prediction, as in Problem 16.6. Devise a
way to obtain the cheapest insertion when needed without explicitly constructing the
prediction.




