
1

Introduction

Parsing is the process of structuring a linear representation in accordance with a
given grammar. This definition has been kept abstract on purpose to allow as wide an
interpretation as possible. The “linear representation” may be a sentence, a computer
program, a knitting pattern, a sequence of geological strata, a piece of music, actions
in ritual behavior, in short any linear sequence in which the preceding elements in
some way restrict1 the next element. For some of the examples the grammar is well
known, for some it is an object of research, and for some our notion of a grammar is
only just beginning to take shape.

For each grammar, there are generally an infinite number of linear representa-
tions (“sentences”) that can be structured with it. That is, a finite-size grammar can
supply structure to an infinite number of sentences. This is the main strength of the
grammar paradigm and indeed the main source of the importance of grammars: they
summarize succinctly the structure of an infinite number of objects of a certain class.

There are several reasons to perform this structuring process called parsing. One
reason derives from the fact that the obtained structure helps us to process the object
further. When we know that a certain segment of a sentence is the subject, that in-
formation helps in understanding or translating the sentence. Once the structure of a
document has been brought to the surface, it can be converted more easily.

A second reason is related to the fact that the grammar in a sense represents our
understanding of the observed sentences: the better a grammar we can give for the
movements of bees, the deeper our understanding is of them.

A third lies in the completion of missing information that parsers, and especially
error-repairing parsers, can provide. Given a reasonable grammar of the language,
an error-repairing parser can suggest possible word classes for missing or unknown
words on clay tablets.

The reverse problem — given a (large) set of sentences, find the/a grammar which
produces them — is called grammatical inference. Much less is known about it than
about parsing, but progress is being made. The subject would require a complete

1 If there is no restriction, the sequence still has a grammar, but this grammar is trivial and
uninformative.



2 1 Introduction

book. Proceedings of the International Colloquiums on Grammatical Inference are
published as Lecture Notes in Artificial Intelligence by Springer.

1.1 Parsing as a Craft

Parsing is no longer an arcane art; it has not been so since the early 1970s when
Aho, Ullman, Knuth and many others put various parsing techniques solidly on their
theoretical feet. It need not be a mathematical discipline either; the inner workings of
a parser can be visualized, understood and modified to fit the application, with little
more than cutting and pasting strings.

There is a considerable difference between a mathematician’s view of the world
and a computer scientist’s. To a mathematician all structures are static: they have
always been and will always be; the only time dependence is that we just have not
discovered them all yet. The computer scientist is concerned with (and fascinated
by) the continuous creation, combination, separation and destruction of structures:
time is of the essence. In the hands of a mathematician, the Peano axioms create the
integers without reference to time, but if a computer scientist uses them to implement
integer addition, he finds they describe a very slow process, which is why he will be
looking for a more efficient approach. In this respect the computer scientist has more
in common with the physicist and the chemist; like them, he cannot do without a
solid basis in several branches of applied mathematics, but, like them, he is willing
(and often virtually obliged) to take on faith certain theorems handed to him by the
mathematician. Without the rigor of mathematics all science would collapse, but not
all inhabitants of a building need to know all the spars and girders that keep it up-
right. Factoring out certain detailed knowledge to specialists reduces the intellectual
complexity of a task, which is one of the things computer science is about.

This is the vein in which this book is written: parsing for anybody who has pars-
ing to do: the compiler writer, the linguist, the database interface writer, the geologist
or musicologist who wants to test grammatical descriptions of their respective objects
of interest, and so on. We require a good ability to visualize, some programming ex-
perience and the willingness and patience to follow non-trivial examples; there is
nothing better for understanding a kangaroo than seeing it jump. We treat, of course,
the popular parsing techniques, but we will not shun some weird techniques that look
as if they are of theoretical interest only: they often offer new insights and a reader
might find an application for them.

1.2 The Approach Used

This book addresses the reader at least three different levels. The interested non-
computer scientist can read the book as “the story of grammars and parsing”; he
or she can skip the detailed explanations of the algorithms: each algorithm is first
explained in general terms. The computer scientist will find much technical detail on
a wide array of algorithms. To the expert we offer a systematic bibliography of over



1.3 Outline of the Contents 3

1700 entries. The printed book holds only those entries referenced in the book itself;
the full list is available on the web site of this book. All entries in the printed book
and about two-thirds of the entries in the web site list come with an annotation; this
annotation, or summary, is unrelated to the abstract in the referred article, but rather
provides a short explanation of the contents and enough material for the reader to
decide if the referred article is worth reading.

No ready-to-run algorithms are given, except for the general context-free parser
of Section 17.3. The formulation of a parsing algorithm with sufficient precision to
enable a programmer to implement and run it without problems requires a consider-
able support mechanism that would be out of place in this book and in our experience
does little to increase one’s understanding of the process involved. The popular meth-
ods are given in algorithmic form in most books on compiler construction. The less
widely used methods are almost always described in detail in the original publica-
tion, for which see Chapter 18.

1.3 Outline of the Contents

Since parsing is concerned with sentences and grammars and since grammars are
themselves fairly complicated objects, ample attention is paid to them in Chapter 2.
Chapter 3 discusses the principles behind parsing and gives a classification of parsing
methods. In summary, parsing methods can be classified as top-down or bottom-up
and as directional or non-directional; the directional methods can be further dis-
tinguished into deterministic and non-deterministic ones. This situation dictates the
contents of the next few chapters.

In Chapter 4 we treat non-directional methods, including Unger and CYK. Chap-
ter 5 forms an intermezzo with the treatment of finite-state automata, which are
needed in the subsequent chapters. Chapters 6 through 10 are concerned with direc-
tional methods, as follows. Chapter 6 covers non-deterministic directional top-down
parsers (recursive descent, Definite Clause Grammars), Chapter 7 non-deterministic
directional bottom-up parsers (Earley). Deterministic methods are treated in Chap-
ters 8 (top-down: LL in various forms) and 9 (bottom-up: LR methods). Chapter 10
covers non-canonical parsers, parsers that determine the nodes of a parse tree in a not
strictly top-down or bottom-up order (for example left-corner). Non-deterministic
versions of the above deterministic methods (for example the GLR parser) are de-
scribed in Chapter 11.

The next four chapters are concerned with material that does not fit the above
framework. Chapter 12 shows a number of recent techniques, both deterministic and
non-deterministic, for parsing substrings of complete sentences in a language. An-
other recent development, in which parsing is viewed as intersecting a context-free
grammar with a finite-state automaton is covered in Chapter 13. A few of the nu-
merous parallel parsing algorithms are explained in Chapter 14, and a few of the
numerous proposals for non-Chomsky language formalisms are explained in Chap-
ter 15, with their parsers. That completes the parsing methods per se.



4 1 Introduction

Error handling for a selected number of methods is treated in Chapter 16, and
Chapter 17 discusses practical parser writing and use.

1.4 The Annotated Bibliography

The annotated bibliography is presented in Chapter 18 both in the printed book and,
in a much larger version, on the web site of this book. It is an easily accessible and
essential supplement of the main body of the book. Rather than listing all publica-
tions in author-alphabetic order, the bibliography is divided into a number of named
sections, each concerned with a particular aspect of parsing; there are 25 of them in
the printed book and 30 in the web bibliography. Within the sections, the publica-
tions are listed chronologically. An author index at the end of the book replaces the
usual alphabetic list of publications. A numerical reference placed in brackets is used
in the text to refer to a publication. For example, the annotated reference to Earley’s
publication of the Earley parser is indicated in the text by [14] and can be found on
page 578, in the entry marked 14.




