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9.1 Introduction

The Federal Radio Act under Federal Communications Commission (FCC) allows
predetermined users the right to transmit at a given frequency. Non-licensed users are
regarded as “harmful interference” and not allowed to transmit in a certain frequency
bands. As the demands for wireless communication become more and more perva-
sive, the wireless devices must find a way for the right to transmit at frequencies in
the extremely limited radio band. However, there exist a large number of frequency
bands that have considerable, and sometimes periodic, dormant time intervals. In the
literature, those frequency bands refer to spectrum holes [1,2]. So there is a dilemma
that on one hand the mobile users have no spectrum to transmit, while on the other
hand some spectrums are not fully utilized.

In order to cope with the dilemma, the FCC has recently investigated the effi-
cient spectrum usage for cognitive radios, which is a novel paradigm that improves
the spectrum utilization by allowing secondary networks (users) to borrow unused
radio spectrum from primary licensed networks (users) or to share the spectrum with
the primary networks (users). As an intelligent wireless communication system, cog-
nitive radios are aware of the radio frequency environment, select the communica-
tion parameters (such as carrier frequency, bandwidth and transmission power) to
optimize the spectrum usage and adapt the transmission and reception accordingly.
Cognitive radios can bring a variety of benefits: for a regulator, cognitive radios
can significantly increase in spectrum availability for new and existing applications.
For a license holder, cognitive radios can reduce the complexity of frequency plan-
ning, facilitate the secondary spectrum market agreements, increase system capac-
ity through access to more spectrum and avoid interference. For equipment manu-
facturers, cognitive radios can increase demands for wireless devices. Finally, for
a user, cognitive radios can bring more capacity per user, enhance inter-operability

∗ Table 9.2 and Figs. 9.1–9.7 reprinted, with permission, from [3–7] c©[2004], [2005], [2007]
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and bandwidth-on-demand and provide ubiquitous mobility with a single user device
across disparate spectrum access environments.

The process for spectrum access is first to sense what the available spectrum
is, then to get access to some of the available spectrum, next to use the available
spectrum and finally to release the used spectrum. Significant research is necessary to
investigate how to dynamically access the spectrum, which enables the opportunistic
management of radio resources within a single access system or between different
radio access systems. As a result, dynamic spectrum access can improve spectral
efficiency, increased capacity and improve ease of access to the spectrum. In the
literature, much work [8,9] has been done for dynamic spectrum access.

In this chapter, we classify some of the dynamic spectrum access techniques
for cognitive radios, according to the degrees of cooperation. The relations between
distributed cognitive radios ranges from complete autonomy and non-cooperation, to
full obeyance to the centralized controller. Specifically, we will discuss the following
techniques for different degrees of cooperation:

1. Non-cooperative competition (Sect. 9.2)
2. Learning for better equilibria (Sect. 9.3)
3. Referee mediation (Sect. 9.4)
4. Threat and punishment from repeated interactions (Sect. 9.5)
5. Spectrum auction (Sect. 9.6)
6. Mutual benefits via bargaining (Sect. 9.7)
7. Contract using cooperative game (Sect. 9.8)
8. centralized scheme (Sect. 9.9)

There are some tradeoffs for different types of approaches. For example, for non-
cooperative competition, the transceiver is simple but the performance can be inferior
due to the extensive non-cooperation. On the other hand, the centralized scheme can
achieve the optimal solution, but it is necessary for extensive measuring of channels
and signaling to exchange channel information. Our goals are to investigate those
different approaches with different degrees of cooperation, study in which network
scenarios the approaches fit most and understand the underlying tradeoffs for the
wireless cognitive network design.

9.2 Non-cooperative Competition

In cognitive wireless networks, it is hard for an individual cognitive user to know the
channel conditions of the other users. The cognitive users cannot cooperate with each
other for spectrum usage. They act selfishly to maximize their own performances
in a distributive fashion. Such a fact motivates us to adopt game theory. Dynamic
spectrum access can be modeled as a game that deals largely with how rational and
intelligent individuals interact with each other in an effort to achieve their own goals.
In this game, each cognitive user is self-interested and trying to optimize its utility
function, where the utility function represents the cognitive user’s performance and
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controls the outcomes of the game. There are many advantages of applying game
theory to dynamic spectrum usage for cognitive radios:

1. Only local information and distributive implementation: The individual cogni-
tive user observes the outcome of the game and adjusts only its parameters in
response to optimize its own benefit. As a result, there is no need for collecting
all the information and conducting optimization in a centralized way.

2. More robust outcome: For the centralized optimization, if the information for
optimization is not quite accurately obtained, the optimized results can be far
away from optimality. In contrast, the local information is always accurate, so
the outcome of the distributed game approaches is robust.

3. Combinatorial nature: For traditional optimization technique such as program-
ming, it is hard to handle the combinatorial problems. For game theory, it is nat-
ural to discuss the problem in a discrete form. In the problems such as spectrum
access, to analyze the combinatorial problems by game theory is considerably
convenient.

4. Rich mathematics for optimization: There are many mathematical tools available
to analyze the outcome of the game. Specifically, if the (non-cooperative) game
is played once, the static game can be studied. If the game is played multiple
times, dynamic game theory is employed. If some contracts and mutual benefits
can be obtained, cooperative game explains how to divide the profits. Auction
theory studies the behaviors of both seller and bidder. We will study some of
those techniques in the following sections.

Next, we define some basic game concepts and study two ways to present a game.
Then we give some properties of the game, such as dominance, Nash equilibrium,
Pareto optimality and mixed strategies. Further, we discuss the low efficiency of the
outcome for non-cooperative static games. Finally, some methods are briefly dis-
cussed to improve the game outcomes.

A game can be roughly defined as each user adjusts its strategy to optimize its
own utility to compete with others. Strategy and utility can be defined as:

Definition 9.1. A strategy σ is a complete contingent plan, or a decision rule, that
defines the action an agent will select in every distinguishable state Ω of the world.

Definition 9.2. In any game, utility (payoff) u represents the motivations of players.
A utility function for a given player assigns a number for every possible outcome of
the game with the property that a higher (or lower) number implies that the outcome
is more preferred.

One of the most common assumptions made in game theory is rationality. Gener-
ally speaking, rationality implies that all players are motivated by maximizing their
own utilities. In a stricter sense, it implies that every player always maximizes its
utility, thus being able to perfectly calculate the probabilistic result of every action.
A game can be defined as follows.

Definition 9.3. A game G in the strategic form has three elements: the set of players
i ∈ I, which is a finite set {1, 2, ...,K}; the strategy space Ωi for each player i; and
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utility function ui, which measures the outcome of the ith user for each strategy pro-
file σ = (σ1, σ2, ..., σK). We define σ−i as the strategies of player i’s opponents, i.e.,
σ−i = (σ1, ..., σi−1, σi+1, ..., σK). In static games, the interaction between users
occurs only once, while in dynamic games the interaction occurs several times.

One of the most simple games is the non-cooperative static game which can be
presented by the strategic (normal) form.

Definition 9.4. A non-cooperative game is one in which players are unable to make
enforceable contracts outside of those specifically modeled in the game. Hence, it is
not defined as games in which players do not cooperate, but as games in which any
cooperation must be self-enforcing.

Definition 9.5. A static game is one in which all players make decisions (or select a
strategy) simultaneously, without knowledge of the strategies that are being chosen
by other players. Even though the decisions may be made at different points in time,
the game is simultaneous because each player has no information about the decisions
of others; thus, it is as if the decisions are made simultaneously.

Definition 9.6. The strategic (or normal) form is a matrix representation of a simul-
taneous game. For two players, one is the “row” player, and the other, the “column”
player. Each row or column represents a strategy and each box represents the payoffs
to each player for every combination of strategies.

To analyze the outcome of the game, the Nash equilibrium is a well-known con-
cept which states that in the equilibrium every agent will select a utility-maximizing
strategy given the strategies of every other agent.

Definition 9.7. Define a strategy vector σ = [σ1 . . . σK ] and define the strategy vec-
tor of the ith player’s opponents as σ−1

i = [σ1 . . . σi−1 σi+1 . . . σK ], where K is
the number of users and σi is the ith user’s strategy. ui is the ith user’s utility. Nash
equilibrium point σ∗ is defined as:

ui(σ∗i , σ
−1
i ) ≥ ui(σ̃i, σ

−1
i ), ∀i, ∀σ̃i ∈ Ω, σ−1

i ∈ ΩK−1, (9.1)

i.e., given the other users’ resource allocations, no user can increase its utility alone
by changing its own resource allocation.

In other words, a Nash equilibrium, named after John Nash, is a set of strategies,
one for each player, such that no player has incentive to unilaterally change its action.
Players are in an equilibrium if a change in strategies by any one of them will lead
that player to earn less than if it remains with its current strategy.

Until now, we have only discussed the strategy that is deterministic, or pure strat-
egy. A pure strategy defines a specific move or action that a player will follow in
every possible attainable situation in a game. Such moves may not be random, or
drawn from a distribution, as in the case of mixed strategies.
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Definition 9.8. Mixed Strategy: A strategy consisting of possible moves and a prob-
ability distribution (collection of weights) which corresponds to how frequently each
move is about to play. A player will only use a mixed strategy when it is indifferent
about several pure strategies. Moreover, if the opponent can benefit from knowing
the next move, the mixed strategy is preferred since keeping the opponent guessing is
desirable.

There might be an infinite number of Nash equilibriums. Among all these equi-
libriums, we need to select the optimal one. There are many criteria by which to
judge if the equilibrium is optimal or not. Among these criteria, Pareto optimality is
one of the most important definitions.

Definition 9.9. Pareto optimal: Named after Vilfredo Pareto, Pareto optimality is a
measure of efficiency. An outcome of a game is Pareto optimal if there is no other
outcome that makes every player at least as well off and at least one player strictly
better off. That is, a Pareto optimal outcome cannot be improved upon without hurt-
ing at least one player. Often, a Nash equilibrium is not Pareto optimal implying that
the players’ payoffs can all be increased.

Since the individual user has no incentive to cooperate with the other users in
the system and imposes harm to the other users, the outcome of the non-cooperative
static game might not be optimal from the system point of view. To overcome this
problem, pricing (or taxation) has been used as an effective tool both by economists
and researchers in computer networks. The pricing technique is motivated by the
following two objectives:

1. The revenue for the system is optimized.
2. The cooperation for resource usage is encouraged.

An efficient pricing mechanism can make the distributed decisions compatible with
the system efficiency obtained by centralized control. A pricing policy is called
incentive compatible, if pricing enforces a Nash equilibrium that achieves the system
optimum. Specifically, the new utility with pricing is

u′ = u− αQ (9.2)

where u is the original utility, α the price for user’s resource Q and the price can be
different for different users. It is known that the above utility function can achieve
Pareto optimality, if the utility is quasi-convex or quasi-concave.

In cognitive radio literature, it is worth mentioning the following games that can
be modeled for spectrum access technology. First, a game is considered a potential
game if the incentive of all players to change their strategy can be expressed in one
global function, the potential function. The potential function is a useful tool to ana-
lyze equilibrium properties of games, since the incentives of all players are mapped
into one function, and the set of pure Nash equilibria can be found by simply locating
the local optima of the potential function. In [10], a potential game was utilized for
problems such as interference avoidance.
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In [11], a Cournot game was used to model the spectrum sharing problem as an
oligopoly market in which a few firms compete with each other in terms of amount
of commodity supplied to the market to gain the maximum profit. In this case the
secondary users are analogous to the firms who compete for the spectrum offered
by the primary user and the cost of the spectrum is determined by using a pricing
function. Both static and dynamic Cournot games were investigated.

In some cognitive scenarios, the primary users and secondary users can be for-
mulated as the multiple level market game, so that both types of users can be satisfied
with the shared spectrum size and the charge pricing. The available techniques are the
demand-and-request functions [17], Stackleberge game [13] and so on. The multiple
level game is non-cooperative game and Nash equilibria can be derived for spectrum
usage.

9.3 Correlated Equilibrium Through Learning

One of the major design challenges for cognitive radios is to coordinate and coop-
erate in accessing the spectrum opportunistically among multiple distributive users
with only local information. In this section, we study the behavior of an individual
distributed secondary user to control its rate when the primary user is absent. Each
secondary user seeks to maximize its rates over different channels. However, exces-
sive transmissions can cause the collisions with the other secondary users. The col-
lisions reduce not only the system throughput but also individual performances. We
propose a new solution concept, the correlated equilibrium, which is better compared
to the non-cooperative Nash equilibrium in terms of spectrum utilization efficiency
and fairness among the distributive users. Using the correlated equilibrium concept,
the distributive users adjust their transmission probabilities over the available chan-
nels, so that the collisions are avoided and the users’ benefits are optimized. We
exhibit the adaptive no-regret algorithm [24] to learn the correlated equilibrium in a
distributed manner. We show that the proposed learning algorithm converges to a set
of correlated equilibria with probability one.

For the system model, we consider the general models for dynamic opportunis-
tic spectrum access for cognitive radios, in which there exist several primary users
with a set of available channels and a large number of secondary users. The channel
availability of secondary users inherently depends on the activities of the primary
users. Moreover, the secondary users have to compete for the idle channels among
the interfering secondary users. If collisions occur, there are some penalties in the
forms of packet loss and power waste. This is the major focus here. We consider that
there are N channels in the wireless network. Without loss of generality, each chan-
nel has a unit bandwidth. These channels are shared amongM primary users and K
secondary users seeking channel access opportunistically.

For adjacent secondary users, they can interference with each other. We use inter-
ference matrix L to depict the interference graph. The interference matrix has the
dimension of K by K, and its elements are defined as
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Lij =
{

1, if i and j interfere with each other
0, otherwise.

(9.3)

The interference matrix depends on the relative location of secondary users.
Next, we define channel availability matrix as aK byN matrix, A(t). Each user

can transmit over a specific channel with a set of different rates. The elements of the
matrix are defined as

Ain(t) =
{

1, if channel n is available for secondary user i at time t
0, otherwise.

(9.4)

We note that the channel availability matrix A(t) varies over time. This matrix
is the result of a sensing task done by secondary users and depends on the primary
users’ traffic, relative location between the secondary users and the primary users.
Notice that each individual secondary user only knows its corresponding row of
matrix L and A(t).

Define the set of secondary user i as I which is the finite set {1, 2, . . . ,K}.
For each available channel, a secondary user can select L + 1 discrete rates Υ =
{0, υ1, . . . , υL}. The strategy space Ωi for secondary user i is on the available chan-
nels and can be denoted as Ωi =

∏N
n=1 ΥAin . The action of user is rn

i = υl

representing secondary user i occupies channel n by rate υl. We define the strat-
egy profile rn = (rn

1 , r
n
2 , . . . , r

n
K)′, and we define rn

−i as the strategies of user
i’s opponents (interference neighbors defined in L) for channel n. We also define
ri = (r1i , . . . , r

N
i )′ as the action of secondary users over all channels, and r−i as the

secondary user i’s opponents’ actions.
The utility function Ui measures the outcome of secondary user i for each strat-

egy profile r1, . . . , rN over different channels. We define the utility function as the
maximum achievable rate for the secondary users over all the available channels as:

Ui =
N∑

n=1

AinRi(rn
i , r

n
−i) (9.5)

where Ri(rn
i , r

n
−i) is the outcome of resource competition for user i and the other

users. Notice that the utility function represents the maximum achievable rate. In
practice, the secondary users need not occupy all the available channels.

We consider un-slotted One-persistent CSMA as the random multiple access pro-
tocol for the secondary users. Since the channel can be occupied by the primary user
again in the near future, each secondary user transmits whenever the channel is idle.
From [14], we have

Ri(rn
i , r

n
−i) =

{
rn

i Sn

∑
i rn

i
, if G ≤ G0

0, otherwise
(9.6)

where

Sn =
Gn[1 +Gn + τGn(1 +Gn + τGn/2)]e−Gn(1+2τ)

Gn(1 + 2τ) − (1 − e−τGn) + (1 + τGn)e−Gn(1+τ)
, (9.7)
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Gn =
∑

i r
n
i , and τ is the propagation delay over packet transmission time. When

the network payload increases, more collisions happen and consequently the average
delay for each packet increases. For some types of payloads like multimedia services,
the delayed packets can cause significant QoS loss. In [15], it has been shown that the
average delay can be unbounded for a sufficiently large load. Moreover, for cognitive
radios, since the primary users can reoccupy the channel in the near future, a certain
delay can cause the second user to lose the opportunity for transmission entirely. So
we define G0 as the maximum network payload. Any network payload larger than
G0 will cause an unacceptable average delay. As a result, the utility function is zero.

In the following, we first propose a new solution concept, correlated equilibrium.
Then, we investigate a linear programming method to calculate the optimal corre-
lated equilibrium. Finally, we utilize a no-regret algorithm to learn the correlated
equilibria in a distributed way.

To analyze the outcome of the game, Nash equilibrium is a well-known con-
cept, which states that in the equilibrium every user will select a utility-maximizing
strategy given the strategies of every other user. If a user follows an action in every
possible attainable situation in a game, the action is called pure strategy, in which
the probability of using action νl, p(rn

i = νl), has only one non-zero value 1 for all
l. In the case of mixed strategies, the user will follow a probability distribution over
different possible action, i.e., different rate l.

In Table 9.1, we illustrate an example of two secondary users with different
actions. In Table 9.1a, we list the utility function for two users taking action 0 and 1.
We can see that when two users take action of 0, they have the best overall benefit.
We can see this action as a cooperative action (in our case the users transmit less
aggressively). But if any user plays more aggressively using action 1 while the other
still plays action 0, the aggressive user has a better utility, but the other user has a
lower utility and the overall benefit is reduced. In our case, the aggressive user can
achieve a higher rate. However, if both users play aggressively using action 1, both
users obtain very low utilities. This situation represents the congested network with
low throughput of CSMA. In Table 9.1b, we show two Nash equilibria, where one
of the users dominates the other. The dominating user has the utility of 6 and the
dominated user has the utility of 3, which is unfair. In Table 9.1c, we show the mixed
Nash equilibrium where two users have the probability 0.75 for action 0 and 0.25 for
action 1, respectively. The utility for each user is 4.5.

Table 9.1. Example of two secondary users game (a) reward table (left most); (b) Nash equi-
librium (middle left); (c) mixed Nash equilibrium (middle right); (d) correlated equilibrium
(right most).

0 1
0 (5,5) (6,3)
1 (3,6) (0,0)

0 1
0 0 (0 or 1)
1 (1 or 0) 0

0 1
0 9/16 3/16
1 3/16 1/16

0 1
0 0.6 0.2
1 0.2 0
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Next, we study a new concept of correlated equilibrium which is more gen-
eral than Nash equilibrium and was first proposed by Nobel Prize winner, Robert J.
Aumann [16], in 1974. The idea is that a strategy profile is chosen randomly accord-
ing to a certain distribution. Given the recommended strategy, it is to the players’
best interests to conform with this strategy. The distribution is called the correlated
equilibrium.

We assume N = 1 and we omit the notation n. Define a finite K-user game in
strategic form as G = {K, (Ωi)i∈K , (Ui)i∈K}, where Ωi is the strategy space for
user i and Ui is the utility function for user i. Define Ω−i as the strategy space for
user i’s opponents. Denote the action for user i and its opponents as ri and r−i,
respectively. Then, the correlated equilibrium is defined as:

Definition 9.10. A probability distribution p is a correlated strategy of game G, if
and only if, for all i ∈ K, ri ∈ Ωi, and r−i ∈ Ω−i,

∑

r−i∈Ω−i

p(ri, r−i)[Ui(r′i, r−i) − Ui(ri, r−i)] ≤ 0,∀r′i ∈ Ωi. (9.8)

By dividing inequality in (9.8) with p(ri) =
∑

r−i∈Ω−i
p(ri, r−i), we have

∑

r−i∈Ω−i

p(r−i|ri)[Ui(r′i, r−i) − Ui(ri, r−i)] ≤ 0,∀r′i ∈ Ωi. (9.9)

The inequality in (9.9) means that when the recommendation to user i is to choose
action ri, then choosing action r′i instead of ri cannot obtain a higher expected payoff
to i.

We note that the set of correlated equilibria is non-empty, closed and convex in
every finite game. Moreover, it may include the distribution that is not in the convex
hull of the Nash equilibrium distributions. In fact, every Nash equilibrium is a corre-
lated equilibrium and Nash equilibria correspond to the special case where p(ri, r−i)
is a product of each individual user’s probability for different actions, i.e., the play of
the different players is independent [16–18]. In Table 9.1b and c, the Nash equilib-
ria and mixed Nash equilibria are all within the set of correlated equilibria. In Table
9.1d, we show an example where the correlated equilibrium is outside the convex
hull of the Nash equilibrium. Notice that the joint distribution is not the product of
two users’ probability distributions, i.e., the two users’ actions are not independent.
Moreover, the utility for each user is 4.8, which is higher than that of the mixed
strategy.

The characterization of the correlated equilibria set illustrates that there are solu-
tions of correlated equilibria that achieve strictly better performance compared to the
Nash equilibria in terms of the spectrum utilization efficiency and fairness. How-
ever, the correlated equilibrium defines a set of solutions which is better than Nash
equilibrium, but it does not tell any more information regarding which correlated
equilibrium is most suitable in practice. We propose two refinements. The first one
is the maximum sum correlated equilibrium that maximizes the sum of utilities of
the secondary users. The second is the maxmin fair correlated equilibrium that seeks
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to improve the worst-case situation. The problem can be formulated as a linear pro-
gramming problem as:

max
p

∑

i∈K

Ep(Ui) or max
p

min
i
Ep(Ui) (9.10)

s.t.

{
p(ri, r−i)[Ui(r′i, r−i) − Ui(ri, r−i)] ≤ 0
∀ri, r′i ∈ Ωi,∀i ∈ K

whereEp(·) is the expectation over p. The constraints guarantee the solution is within
the correlated equilibrium set.

Next, we will exhibit a class of algorithm called regret-matching algorithm [18].
In particular, for any two distinct actions ri �= r′i in Ωi and at every time T , the regret
of user i at time T for not playing r′i is

RT
i (ri, r′i) := max{DT

i (ri, r′i), 0} (9.11)

where

DT
i (ri, r′i) =

1
T

∑

t≤T

(U t
i (r

′
i, r−i) − U t

i (ri, r−i)). (9.12)

DT
i (ri, r′i) has the interpretation of average payoff that user i would have

obtained, if it had played action r′i every time in the past instead of choosing ri.
The expression RT

i (ri, r′i) can be viewed as a measure of the average regret. The
probability pi(ri) for user i to take action ri is a linear function of the regret. The
algorithm was named regret-matching (no-regret) algorithm, because the stationary
solution of the learning algorithm exhibits no regret and the play probabilities are
proportional to the “regrets” for not having played other actions. The detail regret-
matching algorithm is shown in Table 9.2. The complexity of the algorithm is O(L).

For every period T , let us define the relative frequency of users’ action r played
till T periods of time as follows

zT (r) =
1
T

#{t ≤ T : rt = r} (9.13)

where #(·) denotes the number of times the event inside the bracket happens and
rt is all users’ action at time t. The following theorem guarantees that the adaptive
learning algorithm shown in Table 9.2 has the property that zT converges almost
surely to a set of the correlated equilibria.

Theorem 9.1. [18] If every player plays according to adaptive learning algorithm in
Table 9.2, then the empirical distributions of play zT converge almost surely to the
set of correlated equilibrium distributions of the game G, as T → ∞.

In the simulations, we employ the maximal sum utility function as the objective.
In Fig. 9.1a, we show the different equilibria as a function of G0 for the three-user
game. We show the results of the gain obtained by the greedy user in the Nash equi-
librium point (NEP), the gain obtained by the victim of the greedy user in NEP,
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Table 9.2. The regret-matching learning algorithm c© 2007 IEEE. Reprinted, with permission,
from [4]].

Initialize arbitrarily probability for taking action of user i,
p1i (ri), ∀i ∈ K
for t = 1,2,3,...
1. Find DT

i (ri, r′i) as in (9.12)
2. Find average regret RT

i (ri, r′i) as in (9.11)
3. Let ri ∈ Ωi be the strategy last chosen by user i,

i.e., rt
i = ri. Then probability distribution action for

next period, pt+1
i is defined as

pt+1
i (r′i) = 1

μRT
i (ri, r′i) ∀r′i �= ri

pt+1
i (ri) = 1 −

∑
r′i �=ri

pt+1
i (r′i),

where μ is a certain constant that is sufficiently large.

the learning result and the optimal correlated equilibrium calculated by linear pro-
gramming. Here the action space is [0.1, 0.2, . . . , 1.5]. When G0 is large, there is
less penalty for greedy behaviors. So all users tend to transmit as aggressively as
possible. This results in the prisoners’ dilemma [19], where all users suffer. When
G0 is less than 2.8, the greedy user can have better performance (NEP best) than
that (NEP worst) of the cooperative user. Due to the less significant penalty if all
users transmit aggressively, the game will not degrade to the prison dilemma. How-
ever, the performances are quite unfair for the greedy users with best NEP and the
cooperative users with worst NEP. All users have the same utility in the correlated
equilibrium and learning result. So fairness is better than that of the NEP. When G0

is from 2.2 to 2.8, the correlated equilibrium has a better performance even than that
of the greedy user (NEP best). When G0 is from 1.4 to 2.8, the optimal correlated
equilibrium has a better performance than that of the learning result. When G0 is
sufficiently small, most of the uncooperative strategies are eliminated by significant
penalty. Consequently, the learning result has the same performance as that of the
optimal correlated equilibrium.

In Fig. 9.1b, we show the network performance of the proposed algorithm. For
simplicity, we assume the hidden terminal problem [14] has been solved. We show
the average user utility per channel as a function of the network density. When the
network density is small, the average utility increases since there is an increasing
number of users occupying the channel. When the user density is sufficiently large,
the utility begins to decrease due to the collisions. The best NEP and worst NEP
are different while the correlated equilibrium and learning result achieve almost the
same performance as the best NEP and 5–15% better than the worst NEP.

There are many other works for learning based on finite-state Markov decision
process (MDP), such as the decentralized cognitive medium access based on partial
observable Markov decision process (POMDP), which is presented in [20]. Some
other learning schemes include reinforcement learning, Q-learning and so on. All
these techniques can be utilized for the spectrum access for cognitive radios.
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Fig. 9.1. (a) Utility function versus. G0 (for three users) and (b) network performances [ c©
2007 IEEE. Reprinted, with permission, from [4]].

9.4 Referee for Mediation

In this section, a concept of virtual referee [5,21] is introduced to improve wire-
less resource usage of cognitive radios. We use this referee approach for an example
application to conduct channel assignment, adaptive modulation and power control
for multi-cluster cognitive networks. The goal is to minimize the overall transmitted
power under the constraints that each cognitive user has the desired throughput and
each cognitive user’s power is bounded. Each cognitive user in the different clusters
minimizes its own utility function, e.g., transmitted power, in a distributed and non-
cooperative game by employing water-filling scheme [22]. We define the channel set
that the ith cognitive user can allocate to its throughput Ri as transmission channel
set Si. Each channel can be occupied by more than one cognitive user but not neces-
sarily by all users. Within the transmission channel set, the user would allocate the
throughput to different channels by the algorithms, such as water-filling [22], so that
the utility such as the power can be optimized. When the interferences are severe, the
channel will be over crowded with users and consequently, the radio resource cannot
be efficiently utilized. Under this condition, a virtual referee will be introduced to
mediate the resource usage, so that the game outcome can be improved. This vir-
tual referee can be the base station, access point or cluster head. This approach can
significantly improve the network performance without adding much hardware to
cognitive networks.

The K co-channel clusters are taken into consideration. Each cluster consists of
one cognitive radio link. The total number of channels is L. The ith user’s signal to
interference noise ratio (SINR) at channel l can be expressed as:

Γ l
i =

P l
iG

l
ii∑

k �=i P
l
kG

l
ki +N0

(9.14)
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where P l
k and Gl

ki is the transmitted power and propagation loss from the kth cog-
nitive source to the ith cognitive destination in the lth channel, respectively, andN0

is the thermal noise level.
Rate adaptation such as adaptive modulation provides each channel with the abil-

ity to match the effective bit rates, according to the interference and channel condi-
tions. MQAM is a modulation method with high spectrum efficiency. In [23], for a
desired rate rl

i of MQAM, the BER of the lth channel of the ith user can be approx-
imated as a function of the received SINR Γl

i by:

BERl
i ≈ c1e

−c2

(
Γ l

i /2rl
i−1

)

(9.15)

where c1 ≈ 0.2 and c2 ≈ 1.5 with small BERl
i. Rearranging (9.15), for a specific

desired BERl
i, the ith user’s transmission rate of the lth channel for the SINR Γ l

i

and the desired BERl
i can be expressed as:

rl
i = W log2(1 + ci3Γ

l
i). (9.16)

In order to compare the Nash equilibriums (NEP) and the optimal solution for
power minimization, a simple two-user two-channel example is illustrated as follows.
The simulation setup is: BER = 10−3,N0 = 10−3, the maximal power for each user
over different channels is Pmax = 104 and channel gain matrices are

G1 =
[

0.0631 0.0100
0.0026 0.2120

]
, G2 =

[
0.4984 0.0067
0.0029 0.9580

]
.

Figure 9.a shows the overall power contour as a function of two users’ rate allo-
cations, where each user’s minimal rate requirement R1 = R2 = 6. The two curves
show the minimal locations for the two users’ own power when the interference from
the other user is fixed, respectively. Each user tries to minimize its power by adjusting
its rate allocation so that the operating point is more close to the curve. Consequently,
the cross is a Nash equilibrium, where no user can reduce its power alone. We can
see that the Nash equilibrium under this setup is unique and optimal for the overall
power. (It is worth mentioning that the feasible domain is not convex at all.) Fig-
ure 9.b shows the situation when R1 = R2 = 8. Because the rate is increased, the
co-channel interferences are increased and the NEP is no longer the optimum. There
exists more than one local optimum, and the global optimum occurs when user does
not occupy the channel 1. Figure 9.c shows the situation when R1 = R2 = 8.5. The
contour graph is not connected. There are two NEPs and two local optima. Under
the above two conditions, we need to remove users from using the channels. If we
further increase R1 = R2 = 10, there exists no feasible area, i.e., neither user can
have a resource allocation that satisfies both power and rate constraints. In this case,
the minimal rate requirement should be reduced.

From the above observations, we can see that the behaviors of the optimal power
minimization solution and NEP depend on how severe interferences are. In order
to let NEP converge to the desired solution, we need to find a criterion to decide
whether the users can make a good use of the channels like the situation in Figure 9.a.



244 Z. Han

0 1 2 3 4 5 6
0

2

4

6

-40

-20

0

20

40

user1’ throughput in the first channel us
er
2’
th
ro
ug
hp
ut
in
fir
st
ch
an
ne
l

ov
er
al
ls
ys
te
m
tr
an
sm
itt
ed
po
w
er
(d
B
)

Nash equilibrium/
optimal Point

(a) Unique optimal NEP

0

2

4

6 0

2

4

6

-40

-20

0

20

40

user1’ throughput in the first channel
use

r2’
thro

ugh
put

in th
e fir

st c
han

nel

ov
er
al
ls
ys
te
m
tr
an
sm
itt
ed
po
w
er
(d
B
)

Nash equilibrium
Global optimum

Local optimum

(b) Multiple local optima

0

2

4

6

0

2

4

6
-50

0

50

user1’ throughput in the first channel use
r2’
thr
oug
hpu
t in
the
firs
t ch
ann
elov

er
al
ls
ys
te
m
tr
an
sm
itt
ed
po
w
er
(d
B
)

Nash equilibriums

Global optimum

Local optimum

(c) Multiple NEPs

Fig. 9.2. Two-user example [ c© 2007 IEEE. Reprinted, with permission, from [5]].
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If not, we should decide which user should be kicked out of using specific channels.
The criterion is to check whether the KKT condition [24] is satisfied. Specifically, if
the co-channel interferences are too severe, the constraints of throughput and maxi-
mal transmitted power are not satisfied. As a result, NEP is not a local optimum.

Before developing the proposed algorithm, we analyze two extreme cases. In the
first case, the groups of channels are assigned to different clusters without overlap-
ping such that there are no co-channel interferences among clusters. We call it the
fixed channel assignment scheme. However, this extreme method has the disadvan-
tage of low spectrum efficiency because of the low frequency re-usage. In the second
extreme case, all cognitive users share all the channels. We call it pure water-filling
scheme. From Fig. 9.b and Fig. 9.c, we can see that the system can be balanced at
the undesired point, because of the severe inter-cluster co-channel interferences. So
the facts motivate us to believe that the optimal resource allocation is between these
two extreme cases, i.e., each channel can be shared by only a group of selected users
for transmission.

In Fig. 9.3, we show the block diagram of the proposed algorithm from system
point of view. We initially set Si to have all channels. Then the non-cooperative
competition for radio resources is employed. After the system is iteratively balanced
by the water-filling among cognitive radio users, if the system is balanced in a desired
solution, the water-filling is continuously employed. Otherwise, some users must
remove some channels from the transmission group Si. If the removal can make all
users balanced in the desired NEP, the algorithm continues in the water-filling step.
Otherwise, the user removal step is continued, until no user can be removed or the
desired NEP is achieved. If no user can be removed and the desired NEP is still not
achieved, the desired throughput requirement Ri has to be reduced.

Iterative Waterfilling
Non-cooperative

Game in S 1
Non-cooperative

Game in S K

R1, S1 RK, SK

Desired NEP
Y

Reduce
S 1

     N

Desired NEP
Y

     N

Game
Mediator

K User

Cadidate?

Reduce
R 1

Y
Cadidate?

Reduce
S K

Y

Reduce
R K

     N      N

Fig. 9.3. Proposed distributed referee approach [ c© 2007 IEEE. Reprinted, with permission,
from [5]].



246 Z. Han

Reuse Factor

U
se

r 
/ S

u
b

ch
an

n
el

Channel Occupation Ratio for 7 cell cases

2 2.2 2.4 2.6 2.8 3

10
0

10
1

Reuse Factor

T
ot

al
 P

ow
er

 (
m

w
)

Comparison of Transmission Power for 7 Cell Case

Iterative Waterfilling Only
The Proposed Scheme

Fig. 9.4. (a) User per channel and (b) power saving [ c© 2007 IEEE. Reprinted, with permis-
sion, from [5]].

The complexity of the proposed referee-based scheme is O(N logN), where N
is the number of channels. The convergence speed of the non-cooperative competi-
tion is similar to that of closed-loop power control proposed in [25,26]. The over-
head for the proposed scheme occurs only when the system cannot be balanced in
a good Nash equilibrium. Under this condition, a referee needs to collect informa-
tion from all the co-channel interfered clusters. The frequency for this overhead is
much lower than that of the non-cooperative competition. The collected informa-
tion includes power value, channel gain value and noise-plus-interference variance
value over all channels. Since all these values are consistently obtained by all the
distributed users at any time, there is no need for extra measurement. The amount of
this information is also small and can be exchanged among the cells with few pack-
ets. So the overhead is negligible. In summary, this referee-based scheme imposes
little burden on wireless sensor network implementation.

We consider the simulations with 32 channels and seven cognitive radio links.
The overall bandwidth is 6.4 MHz. The receiver thermal noise is −70 dBm. The
required BER of the transmitted symbols is 10−3 for every subchannel and user.
We define the reuse factor Ru as the distance between two base stations D over the
cell radius r which is set as 100 m, which is one of the main factors to affect the
severeness of co-channel interference. The rate constraint is set as 10 Mbits for each
user. In Fig. 9.4a, we show the average number of users per channel. In Fig. 9.4b,
we show the overall transmitted power versus reuse distance Ru for the pure water-
filling algorithm and the proposed algorithm. The smaller the reuse distance Ru is,
the higher the co-channel interference. We can see that the proposed algorithm can
reduce the overall power about 90% when the co-channel interferences are severe
(Ru = 2), because more users are kicked out in this case. When Ru increases, the
co-channel interferences reduce. Consequently, water-filling and proposed schemes
yield the same overall transmitted power.

The referee-based approach creates a virtual referee to mediate the network per-
formances. If the autonomous cognitive users cannot share the network resources
efficiently, the referee will make some mandatory changes for resource usage so as
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to improve the system performances and game outcomes. There is no need to add
additional hardware, while the performances can be greatly improved.

9.5 Threat and Punishment Using Repeated Interactions

In some types of the autonomous and distributed wireless cognitive radio networks,
tasks need to be performed cooperatively while greediness might lead to the perfor-
mance breakdown. The individual user may act cooperatively such that the overall
system performance is high, or they may act non-cooperatively where everybody suf-
fers low efficiency. However, if only one user deviates from the cooperative agree-
ment, it can get benefits. In order to prevent users from greediness, repeated inter-
action, such as repeated game, is proposed to enforce cooperation among cogni-
tive users. The basic rationale is to punish the user that deviates by playing non-
cooperatively in the near future, such that the benefits obtained in a short-term devi-
ation will be eliminated by a long-term punishment. In this section, we outline the
punishment approach and give two examples.

The basic idea of the threat and punishment using repeated game comes from the
concept of Cartel in the economics literature [7]. Cartel means the combination of
independent commercial or industrial enterprises designed to limit competition. The
soul of Cartel maintenance is to construct contracts among independent individuals
for cooperative benefits and non-cooperative punishment, so as to limit inefficient
competition. Next, we combine the idea with the repeated game theory, so that the
new approach will punish anyone who deviates from cooperation.

To analyze the outcome of a game, the Nash equilibrium is a well-known concept,
which states that in the equilibrium every agent selects a utility-maximizing strategy
given the strategies of other agents. However, one problem with an NEP is that it is
not necessarily very efficient in performances. If the users can play cooperatively,
the performances can be greatly improved. Thus, the question arises as to how to
enforce the greedy users to cooperate with each other. The repeated game provides
us possible mechanisms to enforce the users to cooperate by considering long-term
scenarios. In the repeated games, the players face the same static game in every
period, and the player’s overall payoff is a weighted average of the payoffs in each
stage over time. In the repeated game, the players can observe some information
reflecting their opponents’ past play. Hence, they are able to condition their future
plays on the observed information in history to obtain better equilibriums.

Definition 9.11. Let G be a static game and β be a discount factor. The T -period
repeated game, denoted asG(T , β), consists of gameG repeated T times. The payoff
for such a game is given by

Vi =
T∑

t=1

βt−1ut
i (9.17)

where ut
i denotes the payoff to player i in period t. If T goes to infinity, thenG(∞, β)

is referred as the infinitely repeated game. In the following, we use infinitely repeated
game.
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Now the question is whether cooperation among users can be enforced by
the repeated games to generate better performances. The Folk’s theorem [19] for
infinitely repeated games asserts that if the player’s discount factor β approaches 1,
any feasible, individually rational payoff can be enforced by an equilibrium. This
equilibrium can yield better performances than those of static game NEP. We need to
further develop the game rule for enforcing cooperation among users to achieve this
better equilibrium.

The basic idea for the proposed Cartel maintenance repeated game framework is
to provide enough threat to greedy users so as to prevent them from deviating from
cooperation. First the cooperative point is obtained so that all users have better per-
formances than those of non-cooperative NEP. However, if any user deviates from
cooperation while others still play cooperatively, this deviating user has a better util-
ity, while others have relatively worse utilities. If no rule is employed, the cooperative
users will also have incentives to deviate. Consequently, the network deteriorates to
non-cooperation with inefficient performances. The proposed framework provides a
mechanism so that the current defecting gains of the selfish user will be outweighed
by future punishment strategies from other users. For any rational user, this threat of
punishment prevents them from deviation. So cooperation is enforced.

To implement the mechanism, we propose a trigger strategy to introduce punish-
ment on the defecting users. In the trigger strategy, the players start with coopera-
tion. Assume that each user can observe the public information (e.g., the outcome
of the game), Pt at time t. Examples of this public information can be the success-
ful transmission rate, network throughput, etc. Notice that such public information
is mostly imperfect or simply partial information about the users’ strategies. Here
we assume a larger Pt stands for a higher cooperative level, resulting in higher per-
formances for all users. Let the cooperative strategies be λ̄ = [λ1, λ2, ..., λK ]T and
the non-cooperative strategies be s̄ = [s1, s2, ..., sK ]T, respectively. The trigger-
punishment game rule is characterized by three parameters: the optimal punishment
time T , trigger threshold P ∗ and the cooperative strategy λ̄. Trigger punishment
strategy (λ̄, P ∗, T ) for distributed user i is given as follows:

(a) User i plays the strategy of the cooperative phase, λ̄, in period 0.
(b) If the cooperative phase is played in period t and Pt > P ∗, user i plays the

cooperative phase in period t+ 1.
(c) If the cooperative phase is played in period t and Pt < P ∗, user i switches to

a punishment phase for T − 1 periods, in which the players play a static Nash
equilibrium s̄ regardless of the realized outcomes. At the T th period, play returns
to the cooperative phase.

Note that s̄ generates the non-cooperative outcome, which is much worse than that
generated by the cooperative strategy λ̄. Therefore, the selfish users that deviate will
have much lower utilities in the punishment phase. Moreover, the punishment time
T is designed to be long enough to let all cheating gains of the selfish users be
outweighed by the punishment. So the users have no incentive to deviate from coop-
eration, since the users aim to maximize the long-run payoffs over time.
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Next, we study two examples using the proposed framework. The first one is for
cognitive radio multiple access networks. The second example further investigates
the learning schemes if the cognitive radio users do not know how to cooperate.

In the first example, we employ the proposed framework to a multi-user network
shown in Fig. 9.5a. There are many distributed users and one communication node
(e.g., cluster head). Each user can transmit its data packets to the communication
node by using the multiple access protocols such as Aloha, CSMA, etc. The com-
munication node has the ability to transmit the data packets to the remote destination
via a wireless link. We assume that there is a reliable feedback channel. So, the sys-
tem can be described as multiple users sharing a communication link. Each user can
control its transmission rate. The users need to compete with each other for the com-
munication link which is fluctuating due to the wireless channel conditions. Thus
one user’s rate can affect the performances of other users and the whole system. So
it is necessary to find a rate control algorithm such that the system can operate at the
optimal point. Moreover, it is hard to have communication channels among cognitive
users. Therefore, a distributed algorithm is required for rate control.

For distributed users in the network, there are costs to transmit their packets and
benefits if their packets are successfully transmitted. Each user’s profit is defined as
the benefits minus the cost. The users are able to adapt their packet transmission rates
for the cooperation or punishment play. They can observe their successful packet
transmission probability, and correspondingly play cooperation or non-cooperation.
Based on the proposed framework, we derive the optimal parameters of the packet
transmission rate, punishment time and trigger threshold for the distributed greedy
users. In Fig. 9.5 b, we show how the scheme punishes the cheating user. We assume
one user deviates from the cooperative rate λ∗ and transmit at the higher rate s, while
others transmit at λ∗. We show that the profit of this deviating user fluctuates over
time. For comparison, we also show the average profits (as the straight lines) when
the user transmits at optimal rate from overall system point of view, cooperative rate
λ∗ and non-cooperative rate. We can see that at first the user does get more profit than
the mean without the deviated user by diverging from λ∗. However, this deviation is
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soon detected by others’ and the punishment phase is performed by other users. The
non-cooperation mean is much lower than that during cooperation. The mean of this
deviated user is lower than the mean without the deviated user, because the deviation
gain is eliminated by others over time. This shows the reason why the proposed
scheme can enforce cooperation among users by threatening punishment.

In the second example, we further investigate the combination of learning schemes.
In some ad hoc cognitive networks, cognitive users need to forward others’ packet
so as to communicate with each other. Forwarding the others’ packets consumes
the user’s own limited battery resource. Therefore, it may not be of the autonomous
user’s best interest to forward all the arriving packets. In fact, it is reasonable to
assume that the users are selfishly maximizing their own benefits by dropping oth-
ers’ packets. However, not forwarding others’ packets will severely affect the net-
work connectivity and the proper functionality of the network, which in turn impairs
the users’ own benefits as well. The non-cooperation usually causes very low sys-
tem and users’ performances. Therefore, it is very crucial to design a mechanism
to enforce cooperation among greedy users. Moreover, even though the users would
like to cooperate, they might not know how to cooperate. So it is important to develop
self-learning algorithms so that the cooperative points can be studied distributively
in the autonomous users.

We try to propose a distributed self-learning repeated game framework to enforce
cooperation in performing packet-forwarding tasks as shown in Fig. 9.6a. The frame-
work has two major schemes: first, an adaptive repeated game scheme ensures
cooperation among ad hoc cognitive users, which maintains the current coopera-
tive packet-forwarding probabilities. The repeated game scheme provides the users
with a mechanism that any deviating user would be punished enough by others in the
future, so that no user has incentive to deviate. Second, a self-learning scheme tries to
find the better cooperative probabilities that are feasible and benefit all users. Start-
ing from non-cooperation, the above two proposed schemes are employed iteratively.
Better cooperation is discovered and maintained over iterations, until convergence to
some close optimal solution.

In Fig. 9.6b, we show the simulation results of the proposed framework for utility
and packet forwarding probability over time. Initially, packet-forwarding probability
α = 0, because of the non-cooperative transmission. Then the system tries to find a
better packet transmission rate. When it finds a better solution, all users adapt its α
to the value. However, since the punishment period T is not adjusted to an optimal
value, the deviation can have benefits. So there exists a period that the utility and
α switch from cooperation to non-cooperation. In this period, T is increased until
every user realizes that there is no benefit for deviation because of the long period of
punishment. If the system is stable for a period of time, a new α is determined to see
whether the performance can be improved. If so, the new value is adopted, otherwise
the original value is restored. So the packet-forwarding probability is adjusted until
the optimal solution is found, and the learned utility function is a non-decreasing
function.
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9.6 Spectrum Auction

In this section, we first discuss the basics of auction theory. Then we investigate the
mechanism design for auctions. Finally, we use an example to explain how to utilize
the auction theory for spectrum usage in cognitive radios.

Auction theory is important for practical, empirical and theoretical reasons. First,
a large amount of wireless networking and resource allocation problems can be for-
mulated as auction theory. For example, the routing problem for self-interested users
is studied in [27]. Second, the auction theory has a simple game setup, and many
theoretical results are available for analysis. The definition of auction is as follows.

Definition 9.12. A market mechanism in which an object, service or set of objects, is
exchanged on the basis of bids submitted by participants. Auction provides a specific
set of rules that will govern the sale or purchase (procurement auction) of an object
to the submitter of the most favorable bid.

The interactions and outcome of an auction are determined by the rules, which
include four components:

• Information: what the auctioneer and bidders know before the auction starts.
• Bids: what the bidders submit to the auctioneer to express their interests in the

good.
• Allocation: how the good is allocated among the bidders as a function of the bids.
• Payments: how the bidders pay the auctioneer as functions of the bids and allo-

cation.
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To implement auction theory in wireless networking and resource allocation, the
credit-based system is usually proposed. The individual user can select to pay for
some kind of services such as a route. The payment can be implemented via a cer-
tain central “bank” system. However, this requires more control than the other game
theory approaches, such as non-cooperative games. Moreover, in order to achieve
different design goals such as the network total benefit, the auction method shall be
designed according to different available information. Mechanism design is the tool
for game and auction design.

Mechanism design is the subfield of microeconomics and game theory that con-
siders how to implement good system-wide solutions to problems that involve mul-
tiple self-interested agents, each with private information about their preferences.
The goal is to achieve a social choice function implemented in distributed systems
with private information and rational agents. The design criteria can be different as
follows:

1. Efficiency: select the outcome that maximizes total utility.
2. Fairness: select the outcome that minimizes the variance in utility.
3. Revenue maximization: select the outcome that maximizes revenue to a seller (or

more generally, utility to one of the agents).
4. Budget-balance: implement outcomes that have balanced transfers across agents.
5. Pareto optimality.

One well-known auction mechanism that achieves the efficient allocation is the
Vickery–Clarke–Groves (VCG) auction [28]. In a VCG auction, the bidders are
asked to reveal their bids simultaneously, from which the auctioneer determines the
efficient allocation. The auctioneer then asks each bidder i to pay for the “perfor-
mance loss” of other bidders due to bidder i’s participation in the auction, which
involves solving one additional optimization problem for each bidder. It is well
known that it is a (weakly) dominant strategy for the bidders to bid truths in the
VCG auction, i.e., revealing their true rate increase functions. As a result, the VCG
auction achieves the efficient allocation.

The limitations of the VCG auction for cognitive radio users are as follows.
First, the users (bidders) need to submit the complete information to the central con-
trol unit serving as the auctioneer, which involves revealing users’ complete private
information. This might be overheard by other users and so can lead to security
problems. Also, accurately specifying the information requires much signaling over-
head and communication bandwidth, which may significantly reduce the network
performance. Furthermore, it is usually computationally expensive for solving the
optimization problems.

Due to these concerns, in [29], two simpler share auctions are proposed for cog-
nitive radios. First, we discuss the system model. SupposeK user-CDMA is utilized
with processing gain B. The received SINR is given by

Γi =
PiGii

N0 + 1
B (
∑

j �=i PjGji)
(9.18)
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where Pi is the transmit power, Gij is the channel gain and N0 is the thermal noise
power. User i receives a strictly concave increasing utility as Ui(Γi, θi), where θi is
user-dependent priority parameter.

Next, we discuss the two share auctions, namely the SNR auction and the power
auction. The main advantages of the two auctions are the simplicities of bids and
allocation. The rules of the two auctions are described below, with the only difference
being in payment determination.

9.6.1 Share Auction

• Information: The auctioneer (which can be a cluster head) announces a positive
reserve bid ζ > 0 and a unit price π > 0 to all users before the auction starts.
Here ζ ensures unique outcome, and π is for unit SINR or received power.

• Bids: User i submits bi ≥ 0 to the auctioneer.
• Allocation: The auctioneer allocates transmit power according to

PiGii =
bi∑N

j=1 bj + ζ
P (9.19)

where P is the overall allowable power.
• Payments: In an SNR auction, cognitive user i pays the auctioneer

Ci = π� SNRi. (9.20)

In a power auction, source i pays the relay

Ci = πPiGii. (9.21)

A bidding profile is defined as the vector containing the users’ bids, b = (b1, ..., bK).
The bidding profile of user i’s opponents is defined as b−i = (b1, ..., bi−1,bi+1, ..., bK),
so that b = (bi; b−i) . User i chooses bi to maximize its payoff Ui (bi; b−i, π). The
desirable outcome of an auction is called a Nash equilibrium (NE), which is a bidding
profile b∗ such that no user wants to deviate unilaterally, i.e.,

Ui

(
b∗i ; b

∗
−i, π

)
≥ Ui

(
bi; b∗−i, π

)
,∀i ∈ 1, . . . ,K,∀bi ≥ 0. (9.22)

Define user i’s best response (for fixed b−i and price π) as

Bi (b−i, π) = {bi|bi = arg max
b̃i≥0

Ui(b̃i; b−i, π)} (9.23)

which in general could be a set. An NE is also a fixed point solution of all users’ best
responses. In [29], the following four questions for both auctions are answered. First,
an NE does exist, and in some mild conditions, the NE is unique. This NE can be
converged by using a distributed iterative algorithm with some partial information
that is private and local. The SNR auction with log utility can achieve weighted
max–min fairness, while the power auction can achieve social optimum for large
bandwidth.
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9.7 Mutual Benefits Through Bargaining

In order for the distributed cognitive users to cooperate with each other, one method
is to give the individuals mutual benefits for cooperative behavior. In most existing
literature, the benefit incentive approach is performed in a framework of “pricing
anarchy,” where a price is announced by the system, so that the distributed users
have to pay high price for non-cooperation and the cooperative behaviors will be
rewarded. However, there are many potential design challenges for the pricing tech-
nique to be employed in cognitive networks. First, the price itself may not represent
the true benefits of the cognitive users. Instead, the price might be artificial so that
autonomous users may just ignore it. Furthermore, pricing technique needs a lot of
computation power and signaling to calculate the optimal price. This is especially
hard to implement in cognitive networks. In addition, if the utility of each user is not
convex, there might be many local optima for the pricing methods. Finally, for the
heterogeneous networks and for the resource allocation with integer/combinatorial
optimization, the pricing techniques are hard to be effective. Because of the above
reasons, we need to have novel perspective and find new approaches to give users
mutual benefits to cooperate.

In daily life, a market is served as a central gathering point, where people can
exchange goods and negotiate transactions, so that people will be satisfied through
bargaining. Similarly, in wireless cognitive networks, there exist some nodes, like
cluster heads, that can serve as a function of the market. The distributed cognitive
users can negotiate via these nodes to cooperate in making the decisions on the
resource usage, such that each of them will operate at its optimum and joint agree-
ments are made about their operating points. Such a fact motivates us to employ the
cooperative game theory [3,30,31], which can achieve the crucial notion of fairness
and maximize the overall system performances. The idea is to negotiate among users
so that the mutual benefits can be obtained, which enlightens us with the new per-
spective on how to provide incentive for cooperation. In the following, we list one
possible problem formulation, a basic illustration of the proposed approaches and
some simulation results.

We have proposed the cooperative game theory approaches for resource allo-
cation in multiple-user multiple-channel scenario within a cluster of cognitive net-
works. The problem can be formulated in the following example. There are K users
and a total of N channels. Each channel can be occupied by only one user so as to
avoid severe co-channel interferences and maintain the basic link quality. Since a
channel condition for a specific channel may be good for more than one user, there
is a competition among users for their transmissions over these good channels. So
this is where the game concept comes in. Moreover there are some other practical
constraints. For example, the maximal transmitted power for each user is bounded by
the maximal transmitted power Pmax, and each user has a minimal rate requirement
Ri

min. To formulate the problem, we define aij = [A]ij = 1, if the ith user occu-
pies the jth channel; aij = 0, otherwise, and [P]ij as the corresponding power. One
example of the optimization goal is to determine different users’ channel assignment
matrix A and power matrix P such that the network objective function U will be
maximized, i.e.,
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max
A,P

U (9.24)

subject to

⎧
⎨

⎩

Assignment:
∑K

i=1 aij = 1,∀j
Minimal rate: Ri ≥ Ri

min,∀i
Maximal power:

∑N
j=1 Pij ≤ Pmax,∀i

where Ri is the ith user’s rate and U can have different definitions for network
objectives such as:

• Maximal rate: U =
∑N

i=1Ri.
• Max–min fairness: U = minRi.
• Nash bargaining solutions: U =

∏K
i=1

(
Ri −Ri

min

)
.

The first two network objectives are widely studied in the literature. In [3], we pro-
posed the concept of Nash bargaining solution (NBS), because of the following two
reasons: first, it can be shown that this network objective will ensure NBS fairness of
allocation in the sense that this NBS fairness is a generalized proportional fairness.
From the simulation results, this NBS fairness ensures that users’ allocated resources
are not affected by other users’ situations. Second, cooperative game theories prove
that there exists a unique and efficient solution under the six axioms shown in [19].
The intelligent merit of this NBS solution is that it can provide a special new tradeoff
between the fairness and efficiency, which is widely researched recently in academia
and industry.

The difficulty to solve (9.24) by traditional methods lies in the fact that the
problem itself is a constrained combinatorial problem and the constraints are non-
linear. Thus the complexities of the traditional schemes are high especially with a
large number of users. Moreover, distributed algorithms are desired for cognitive
networks, while centralized schemes are dominant in the literature. To develop algo-
rithms that can be easily deployed in distributed cognitive networks, we outline the
ideas of the proposed approaches as follows:

Bargaining for two-user case: Due to the facts that in social life most negotiations
are taken between two parties, we first consider the case in which the number of users
K = 2 and we will develop a fast two-user bargaining solution. Since different users
might have different gains over the same channel, the intuitive idea is to allow two
users to negotiate and exchange their occupied channels such that mutual benefits
will be obtained. The difficulty is to determine how to optimally exchange channels,
which is a complex integer programming problem. An interesting low complexity
algorithm was given in [22]. The idea is to sort the order of channels first and then
to use a simple two-band partition for the channel assignment. When signal to noise
ratio (SNR) is high, the two-band partition for two-user channel assignment can be
near optimal for the optimization goal. The possible solution has the complexity
of O(N2) and can be further improved by using a binary search algorithm with a
complexity of only O(N logN).

Multiple users using coalitions: For the case in which the number of users
is larger than two, the computational complexity is very high with respect to the
number of channels. Here, we propose a two-step iterative scheme: first, users are
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Fig. 9.7. (a) Each user’s rate versuss. D2 and (b) overall rate versus. number of users [ c©
2005 IEEE. Reprinted, with permission, from [3]].

grouped into pairs, which are called coalitions. Then with each coalition, the two-
user solution is employed for two users to negotiate and improve their performances
by exchanging channel sets. Further, the users are regrouped and then renegotiated
again. The above regrouping-and-negotiation iteration is repeated until convergence.
By using this scheme, the computational cost can be greatly reduced. Some algo-
rithms such as Hungarian method [32] can be utilized to find the optimal coalition
pairs in each round. These minimal optimization efforts can be performed in the cen-
tral point, such as the cluster head, while lower implementation costs are imposed
on the distributed less-sophisticated users. Moreover, the above-mentioned approach
can also be generalized to other formulated problems dealing with multi-user com-
munications with different optimization goals and constraints.

To demonstrate the effectiveness of the proposed scheme, a simulation is con-
ducted for a multiple-cognitive-user cluster with 32 channels. In Fig. 9.7a, a two-
user case is studied. The rates of both users for the NBS, maximal rate and max–min
schemes are shown versus the second user’s distance from base stationD2. Here the
first user’s location is fixed at 100 m (D1 = 100). For the maximal rate scheme,
the user closer to the base station has a higher rate, and the rate difference is very
large when D1 and D2 are different. For the max–min scheme, both users have the
same rate which is reduced when D2 increases. This is because the system has to
accommodate the user with the worst channel condition. While for the NBS scheme,
user 1’s rate is almost the same regardless of D2 and user 2’s rate is reduced when
D2 increases. This shows that the NBS solution is fair in the sense that the user’s
rate is determined only by its channel condition and not by other interfering users’
conditions.

In Fig. 9.7b, we show the sum of all users’ rates versus the number of users in the
system for three schemes. We can see that all three schemes have better performances
when the number of users increases. This is because of multi-user diversity, provided
by the independent varying channels across the different users. The performance
improvement saturates gradually. The NBS scheme has a similar performance to that
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of the maximal rate scheme and has a much better performance than that of the max–
min scheme. The performance gap between the maximal rate scheme and the NBS
scheme reduces when the number of users is large. This is because more bargain
pair choices are available to increase the system performance. The simulation results
show that the proposed NBS scheme achieves a good tradeoff between fairness and
efficiency.

We propose the idea of mutual benefits using bargaining for ensuring cooperation
of resource allocation. By using cooperative game theory such as Nash bargaining
solution and coalition, users’ performances can be improved by locally exchang-
ing the resources. The wireless cognitive network performance can be significantly
improved and fairness among distributed users can be ensured in a self-organized
way. Many other works are based on the proposed idea. In [33], a dynamic spectrum
access scheme was proposed for ad hoc networks using the bargaining scheme. In
[34], the idea was extended to cognitive radios. In [35], mesh networks were investi-
gated, and in [36], multimedia source coding was also considered.

9.8 Contract Using Cooperative Game

Until now, we have discussed how to play the cooperative game and obtain mutual
benefits by bargaining. To further analyze the benefits and rewards, we investigate
a game coalition that describes how much collective payoff a set of nodes can gain
and how to divide the payoff. The associated analysis concepts include core, Shapley
function and nucleolus. In the following, we will explain these concepts and explain
how to use them in the cognitive radio networks.

Definition 9.13. A coalition S is defined to be a subset of the total set of player K,
S ∈ K. The users in a coalition try to cooperate with each other. The coalition
form of a game is given by the pair (K, v), where v is a real value function, called
characteristic function. v(S) is the value of the cooperation for coalition S with the
following properties:

1. v(∅) = 0
2. (Superadditivity) if S and T are disjoint coalitions (S ∩ T = ∅), then v(S) +
v(T ) ≤ v(S ∪ T ).

The coalition states the benefit obtained via cooperation agreement. But we still need
to study how to divide the benefit to the cooperative users. One of the possible prop-
erties of an agreement is mutual benefit. The agreement is stable since no coalition
shall have the incentive and power to upset the cooperative agreement. The set of
such division of v is called the core defined in the following definitions.

Definition 9.14. A payoff vector x = (x1, . . . , xK) is said to be group rational or
efficient if

∑K
i=1 xi = v(K). A payoff vector x is said to be individually rational if

the user can obtain the benefit no less than acting alone, i.e., xi ≥ v({i}), ∀i. An
imputation is a payoff vector satisfying the above two conditions.
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Definition 9.15. An imputation x is said to be unstable through a coalition S if
v(S) >

∑
i∈S xi, i.e., the users have incentive for coalition S and upset the pro-

posed x. The set C of a stable imputation is called the core, i.e.,

C = {x :
∑

i∈K

xi = v(K) and
∑

i∈S

xi ≥ v(S), ∀S ⊂ K}. (9.25)

Core gives a reasonable set of possible shares. A combination of shares is in a
core if there exists no subcoalition in which its members may gain a higher total
outcome than the share of concern. If the share is not in a core, some members may
be frustrated and may think of leaving the whole group with some other members
and form a smaller group.

To illustrate the idea of core, we give the following example. Suppose the game
with the following characteristic functions:

v(∅) = 0, v({1}) = 1, v({2}) = 0, v({3}) = 1, (9.26)

v({1, 2}) = 4, v({1, 3}) = 3, v({2, 3}) = 5, v({1, 2, 3}) = 8.

By using v({2, 3}) = 5, we can eliminate the payoff vector (such as (4, 3, 1)),
since user 2 and user 3 can achieve better payoff by forming coalition themselves.
Using the same analysis, the final core of the game is (3,4,1), (3,3,2), (3,2,3), (3,1,4),
(2,5,1), (2,4,2), (2,3,3), (2,2,4), (1,5,2), (1,4,3) and (1,3,4).

Core concept defines the stability of an allocation of payoff. However, it does not
define how to allocate the utility. Next, we study each individual player’s power in
the coalition by defining a value called Shapley function.

Definition 9.16. A Shapley function φ is a function that assigns to each possible
characteristic function v a real number, i.e.,

φ(v) = (φ1(v), φ2(v), . . . , φK(v)) (9.27)

where φi(v) represents the worth or value of player i in the game. The Shapley
axioms for φ(v) is

1. Efficiency:
∑

i∈K φi(v) = v(K).
2. Symmetry: If i and j are such that v(S ∪ {i}) = v(S ∪ {j}) for every coalition
S not containing i and j, then φi(v) = φj(v).

3. Dummy Axiom: If i is such that v(S) = v(S ∪ {i}) for every coalition S not
containing i, then φi(v) = 0.

4. Additivity: If u and v are characteristic functions, then φ(u+ v) = φ(v + u) =
φ(u) + φ(v).

It can be proved that there exists a unique function φ satisfying the Shapley
axioms. To calculate the Shapley function, suppose we form the grand coalition by
entering the players into this coalition one at a time. As each player enters the coali-
tion, he receives the amount by which his entry increases the value of the coalition he
enters. The amount a player receives by this scheme depends on the order in which
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the players are entered. The Shapley value is just the average payoff to the players if
the players are entered in completely random order, i.e.,

φi(v) =
∑

S⊂K,i∈S

(|S| − 1)!(K − |S|)!
K!

[v(S) − v(S − {i})]. (9.28)

For the example in (9.26), it can be shown that the Shapley value is φ =
(14/6, 17/6, 17/6).

Another concept for multiple cooperative games is nucleolus. For a fixed charac-
teristic function, an imputation x is found such that the worst inequity is minimized,
i.e., for each coalition S and its associated dissatisfaction, an optimal imputation is
calculated to minimize the maximum dissatisfaction. First we define the concept of
excess which measures the dissatisfactions.

Definition 9.17. The measure of the inequity of an imputation x for a coalition S is
defined as the excess:

e(x, S) = v(S) −
∑

j∈S

xj . (9.29)

Obviously, any imputation x is in the core, if and only if all its excesses are
negative or zero.

Among all allocation, kernel is a fair allocation, defined as in the following

Definition 9.18. A kernel of v is the set of all allocations x such that

max
S⊆K−j,i∈S

e(x, S) = max
T⊆K−i,j∈T

e(x, T ). (9.30)

If players i and j are in the same coalition, then the highest excess that i can make
in a coalition without j is equal to the highest excess that j can make in a coalition
without i.

Finally, we define nucleolus as follows.

Definition 9.19. Nucleolus is the allocation x which minimizes the maximum excess.

x = arg min
x

(max e(x, S), ∀S). (9.31)

The nucleolus has the following property: the nucleolus of a game in coalitional
form exists and is unique. The nucleolus is group rational, individually rational and
satisfies the symmetry axiom and the dummy axiom. If the core is not empty, the
nucleolus is in the core and kernel. In other words, the nucleolus is the best allocation
with the min–max criteria.

To utilize the cooperative game in dynamic spectrum allocation for cognitive
networks, the cognitive users sign a contract for spectrum usage before accessing the
spectrum. This contract ensures that the benefits of cooperation are greater than those
of the individual actions. The core concepts can test whether or not the cooperation
is stable. Then if the average fairness is considered, Shapley values can allocate
different cognitive users their share of cooperation benefits. On the other hand, if the
max–min fairness is considered, the concepts of excess, kernel and nucleolus define
the allocation. Overall, the cognitive users seek the contracts for resource usage that
can benefit all.
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9.9 Centralized Optimization

In this section, we discuss how to formulate the centralized optimization for resource
allocation of cognitive radios. Specifically, we study what the resources are, what
the parameters are, what the practical constraints are and what the optimized per-
formances across the different layers are. In addition, we address how to perform
resource allocation in multi-user scenarios. The tradeoffs between the different opti-
mization goals and different users’ interests are also investigated. This centralized
optimization can serve as the performance upper bound for the other approaches and
can also provide insights for the design of other schemes.

Many resource allocation problems for cognitive radios can be formulated as
constrained optimization problems, which can be optimized from the network point
of view or from the individual point of view. The general formulation can be written
as:

min
x∈Ω

f(x) (9.32)

s.t.

{
gi(x) ≤ 0, for i = 1, . . . ,m
hj(x) = 0, for j = 1, . . . , l

where x is the parameter vector for optimizing the resource allocation, Ω is the feasi-
ble range for the parameter vector and f(x) is the optimization goal matrix, objective
goal or utility function that represents the performance or cost. Here, gi(x) and hj(x)
are the inequality and equality constraints, respectively, for the parameter vector. The
optimization process finds the solution x̄ that satisfies all the inequality and equality
constraints. For the optimal solution, f(x̄) ≤ f(x), ∀x ∈ Ω.

If the optimization goal, the inequality constraints, and the equality constraints
are all linear functions of the parameter vector x, then the problem in (9.32) is called
a linear program. One important characteristic of a linear program problem is that
there is a global optimal point that is very easy to obtain by linear programming.
But on the other hand, one major drawback of linear program is that most of the
practical problems in wireless networking and resource allocation are non-linear.
Therefore, it is hard to model these practical problems as linear programs. If either
the optimization goal or the constraint functions are non-linear, the problem in (9.32)
is a non-linear program. In general, there are multiple local optima in a non-linear
program, and to find the global optimum is not an easy task. Furthermore, if the
feasible set Ω contains some integer sets, the problem in (9.32) is an integer program.
Most integer programs are NP-hard problems which cannot be solved by polynomial
time.

One special kind of non-linear program is a convex optimization problem in
which the feasible setΩ is a convex set, and the optimization goal and the constraints
are convex/concave/linear functions. A convex set is defined as follows.

Definition 9.20. A set Ω is a convex set if for any x1, x2 ∈ Ω and any θ with 0 ≤
θ ≤ 1, we have θx1 + (1 − θ)x2 ∈ Ω.

A convex function f is defined as follows.
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Definition 9.21. A function f is a convex function in x, if the feasible range Ω of
parameter vector x is a convex set, and if for all x1, x2 ∈ Ω and 0 ≤ θ ≤ 1,

f(θx1 + (1 − θ)x2) ≤ θf(x1) + (1 − θ)f(x2).
A function f is strictly convex if the strict inequality holds whenever x1 �= x2 and

0 < θ < 1. A function f is called concave if −f is convex.

If function f is differentiable, and if either the following two conditions hold,
then f is a convex function.

First order condition: f(x2) ≥ f(x1) + ∇f(x1)T (x2 − x1).
Second order condition: ∇2f(x) 	 0.

One important application of the convex function is Jensen’s inequality. Suppose
function f is convex and the parameter x has any arbitrary random distribution over
Ω then the following equality holds

f(E(x)) ≤ E(f(x))
where E denotes expectation.
The advantages of convex optimization for wireless-networking-and-resource-

allocation problems are shown as follows:

• There are a variety of applications such as automatic control systems, estimation
and signal processing, communications and networks, electronic circuit design,
data analysis and modeling and statistics.

• Computation time is usually quadrature. Problems can then be solved, very reli-
ably and efficiently, using interior-point methods or other special methods for
convex optimization.

• Solution methods are reliable enough to be embedded in a computer-aided design
or analysis tool, or even a real-time reactive or automatic control system.

• There are also theoretical or conceptual advantages of formulating a problem as
a convex optimization problem.

The challenges of the convex optimization are to recognize and model the problem
as a convex optimization. Moreover, there are many tricks for transforming problems
into convex forms.

We have discussed the basics for constrained optimization problems. Next we
will see how the problem can be formulated. In resource allocation for cognitive
networks, the parameters, functions and constraints in (9.32) can have the following
physical meaning:

• Parameters

1. Physical layer: transmitted power, modulation level, channel coding rate,
channel/code selection and others.

2. MAC layer: transmission time/frequency, service rate, priorities for transmis-
sion and others.

3. Network layer: route selection, routing cost and others.
4. Application layer: source-coding rate, buffer priority, packet arrival rate and

others.

• Optimization Goals
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1. Physical layer: minimal overall power, maximal throughput, maximal rate
per joule, minimal bit error rate, and others.

2. MAC layer: maximal overall throughput, minimal buffer overflow probabil-
ity, minimal delay and others.

3. Network layer: minimal cost, maximal profit and others.
4. Application layer: minimal distortion, minimal delay and others.

• Constraints
1. Primary user: channel occupancy, interference level and others.
2. Physical layer: maximal mobile transmitted power, available modulation

constellation, available channel coding rate, limited energy and others.
3. MAC layer: contentions, limited time/frequency slot, limited information

about other mobiles and others.
4. Network layer: maximal hops, security concerns and others.
5. Application layer: the base layer transmission, limited source rate, strict delay

requirement, security and others.

After formulating the constrained optimization problem for resource allocation over
cognitive networks, we need to find solutions. In general for centralized optimization,
we classify the different approaches as the following categories.

• Closed-form solution: One of the most important methods used to find a closed
form solution for constrained optimization is the Lagrangian method, which has
the following steps
1. Rewrite (9.32) as a Lagrangian multiplier function J as

J = f(x) +
m∑

i=1

λigi(x) +
l∑

j=1

μjhj(x) (9.33)

where λi and μj are Lagrangian multipliers.
2. Differentiate J over x and set to zero as

∂J

∂x
= 0. (9.34)

3. From (9.34), solve λi and μj .
4. Replace λi and μj in the constraints to get optimal x.
Notice that the difficulty in the Lagrangian method is Step (3) and Step (4), where
the closed form solution is obtained for the Lagrangian multipliers. Some approx-
imations and mathematical tricks are necessary to obtain the closed form solu-
tions.

• Mathematical programming: If the optimization problem is used to find the
best objective function within a constrained feasible region, such a formulation
is sometimes called a mathematical program. Many real-world and theoretical
problems can be modeled in this general framework. There are the four major
subfields of the mathematical programming:
1. Linear programming studies the case in which the objective function is linear

and the feasible set is specified using only linear equalities and inequalities.
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2. Convex programming studies the case where the constraints and the opti-
mization goals are all convex or linear.

3. Non-linear programming studies the general case in which the objective func-
tion or the constraints or both contain non-linear parts.

4. Dynamic programming studies the case in which the optimization strategy
is based on splitting the problem into smaller subproblems, or considers the
optimization problems over time.

• Integer/combinatorial optimization: The discrete optimization is the problem in
which the decision variables assume discrete values from a specified set. The
combinatorial optimization problems, on the other hand, are problems of choos-
ing the best combination out of all possible combinations. Most combinatorial
problems can be formulated as integer programs. In cognitive radio resource allo-
cation, many variables have only integer values such as the modulation rate, and
other variables such as the channel allocation have a combinatorial nature. Inte-
ger optimization is the process of finding one or more best (optimal) solutions in
a well-defined discrete problem space. The major difficulty with these problems
is that we do not have any optimality conditions to check if a given (feasible)
solution is optimal or not. There are several possible solutions such as relaxation
and decomposition, enumeration, cutting planes and the knapsack problem.

Overall, the centralized scheme has the best performance but needs considerable
signaling and overheard. The centralized scheme can fit the network scenarios where
the topology is simple, or can be served as a performance upper bound to compare
with other more practical schemes.

9.10 Degrees of Cooperation

In this section, we conclude this chapter by discussing the degrees of cooperation
for the different approaches. As we have mentioned previously, the non-cooperation
among cognitive radios can significantly reduce the network performances and in
turn the users’ own benefits. The cooperation can bring mutual benefits to cognitive
radio users. However, these benefits do not come for free. Some network infrastruc-
ture is needed to build up these mutual benefits, which cause some design issues.
In the previous sections, we have already discussed the different approaches. Next,
we concentrate on the design issues such as signaling and complexity. Then the pros
and cons are investigated. We further study the best network scenarios under which
a certain approach fits best. By understanding the above issues, finally, we compare
the different approaches.

In cognitive networks, in order to obtain the information such as channel con-
ditions, signaling is performed so that resource allocation can be conducted in an
optimal way. However, signaling incur considerable communication overhead. Most
of the current wireless networks have more than 20% of overhead. Reducing the
overhead can greatly enhance the spectrum utilization, increase the number of users
and improve the network performance. One of the possible ways to reduce overhead



264 Z. Han

is to conduct resource optimization using only local information. This is very impor-
tant especially if the system topology is distributed as in cognitive radio networks.

Since the cognitive radios are usually equipped with simple transceivers, the
complexity issue has to be considered. There are two concerns for optimization com-
plexity. First one is how complex the optimization algorithm is, and the second one
is where the optimization is performed. A large number of optimization problems
especially for those with integer nature are NP-hard. To solve the problem, some
suboptimal simple solutions should be developed. Currently, the common hardware
and software can solve the problems with the complexity up to ON2 where N is the
bottleneck parameter. The complexity for the distributed cognitive radio users should
be even lower.

The next important problem for design of wireless cognitive networks is mobility.
Due to the topology changes and channel variation, the optimization needs to be
performed in a timely fashion. This requirement casts a significant challenge for the
iterative solutions and demand for the information without delay. The convergence
speed for the iterative algorithms should be at least as fast as the variation caused
by mobility. For example, in a 3G UMTS system, the closed-loop power control
signal is performed 1500 times per second. This fast update for the iteration can
improve the convergence speed, but on the other hand cause additional overhead for
the signaling. For a non-iterative algorithm, the information must be accurate without
delay. Otherwise, the optimization results will become obsolete and generate inferior
performances.

Different approaches have their own pros and cons, and there is no one “elixir”
that can handle all design problems for all types of networks. In addition, there are
some other design issues that need to be paid attention to. So we need to understand
the strength and weakness for different schemes, so that we can select the one that
fits the network scenario best. In the sequel, we discuss and compare all types of
schemes discussed in this chapter. Table 9.3 summarizes some of the discussions.

• Non-cooperative competition: The cognitive radio users have their own auton-
omy and they access the spectrum in a fully distributed way. The cognitive users
utilize only local information for resource allocation, and no signaling or over-
heard is necessary. The complexity of the non-cooperative competition algo-
rithms is usually low, due to the commonly used convex (or concave) utility
function. This type of approaches can fully adapt to the user mobility, since
the users can simply change their strategies for better payoff if the situations
change. All the above factors are the advantages of non-cooperative competition.
However, the significant problem for such approaches is the possible low per-
formance, due to the severe non-cooperation. Even though the problem can be
improved using techniques such as pricing, the solutions do not come for free.
For example, calculating the optimal price is a difficult problem and might need
considerable signaling, which counteracts the advantages for such approaches.
So the best network scenarios for non-cooperative competition are those where
the Nash equilibria have similar performances to those of the optima. Specifically
for the interference avoidance, if the clusters are located sufficiently far away, the
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Table 9.3. Degrees of cooperation.

Types Cooperation Signaling Pros Cons

Non-cooperative Nash None No overhead, Less
competition equilibria simple efficient
Correlated Outside None No overhead, Convergence
equilibrium convex hull better slow,
and of Nash performance little
learning equilibria mobility
Referee Only good Some for Better Bad stability,
mediation Nash equilibria referee performance low mobility
Repeated Any feasible Perfectly Local No mobility,
interaction solution observed information, need mutual

better than public better dependency,
Nash equilibria information performance false war

Spectrum Nash Some for Simple, No mobility,
auction equilibria auctioneer fair signaling
Bargaining Fair Pareto Only to Simple, Monopoly

optimum partners mobility
Cooperative Fair mutual Global Stable, Signaling
game benefits information fair, before

before autonomous contract,
participation no mobility

Centralized Global Global Optimum, Overhead,
optimization optimum information mobility estimator errors

non-cooperative competition has good performance due to less co-channel inter-
ference.

• Learning for better equilibria: Nash equilibria might not be the best equilibria for
distributed cognitive radio users. Learning scheme can achieve the better equi-
libria using only the past history and without requiring more signaling and over-
head. The complexity of learning algorithms can be relatively high. Moreover,
there is a tradeoff between the convergence speed and complexity. To achieve the
fast convergence speed, the complexity of the learning algorithms can be high.
Some simple learning algorithms have been proved to converge to the optimal
solution with sufficiently long learning time. However, the long learning time
causes a problem for mobility. If the users move frequently, before the learning
algorithms converge, the situations such as network topologies and channel con-
ditions may change. This is similar to slope overload distortion in ADPCM or
delta modulation. Moreover, if the non-cooperative competition is too severe, the
learning algorithms might converge too slowly, fluctuate or become very sensi-
tive to randomness. So the learning schemes fit the situation in which the non-
cooperative competition is not so severe; there is an achievable gap between Nash
equilibria and the optimal solutions; and the network mobility is sufficiently low.
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• Referee mediation: To overcome the challenges for the learning schemes, a vir-
tual referee can improve the outcome of non-cooperative competition by inter-
vening in the game rules. The virtual referee needs to collect the information
so as to improve the equilibria. However, this information exchange burden is
not severe since it is only necessary when the networks are balanced to unde-
sired equilibria. The complexity for this type of approaches is relatively low.
Mobility is not an issue, if the network changes can be handled mostly by the
non-cooperative competitions and the frequency for virtual referee’s mediation
is not too high. However, the referee mediation approaches require the assump-
tions that all the cognitive radios are able to follow the instructions to change the
game rules. So the cognitive radio users are not fully autonomous. Moreover, too
much intervention by the virtual referee can cause a network stability problem.
This type of approach fits the similar scenarios like the learning schemes except
that the cognitive users can have a certain extent of mobility.

• Threat and punishment from repeated interactions: If the cognitive radio users
belong to different authorities, they will not listen to the virtual referee. Under
this condition, threat and punishment from repeated interactions can be utilized to
enforce user cooperation. There is public information that needs to be received
accurately by all cognitive users who use this information to determine if any
other user deviates from cooperation. Because of this reason, if this public infor-
mation is not accurate, some “false war” can happen among distributed cognitive
users. To a certain extent, the network can deteriorate to total non-cooperation.
The complexity of such an approach is not high, since only detection, coop-
eration and non-cooperation need to be performed. This approach can hardly
handle the mobility, since the deviating users can move from cluster to cluster
to escape future punishment, or equivalently saying that mobile users might not
care too much about future punishment so that they would rather behave non-
cooperatively now. In addition, if some cognitive users have less dependency
on other users, the other users can arbitrarily play non-cooperatively with these
users without worrying about revenge. So this type of approach fits the network
scenarios where the cognitive users have less mobility, have mutual dependency,
and can access public information accurately.

• Spectrum auction: Similar to an auction in real life, a spectrum auction requires
an auctioneer who can handle the bidding and resulting resource allocations. The
information exchange requires the signaling of bidding and allocation results,
which can be relatively trivial. The complexity of auction algorithms can be very
high, for example the VCG auction. But the computation burden is for the auc-
tioneer only. The spectrum auction cannot handle mobility. If the mobile users
move, a new auction needs to be implemented. Similar to the referee case, the
cognitive users are required to follow the instructions for resource usage from
the auctioneer. The spectrum auction fits the network scenario without mobility,
and there should be some semi-centralized nodes, such as cluster heads, that can
serve as auctioneers.

• Mutual benefits via bargaining: The bargaining approach can provide the local
mutual benefits to the adjacent cognitive radios. The cognitive users can exchange
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the information locally to bargain on spectrum usage. The overhead is limited to
local users only and the complexity of algorithms is usually low. This type of
approach can handle the mobility, since the bargaining can take place whenever
new mutual benefits appear. Moveover, this bargaining process fits the situations
with integer and combinatorial optimization well. However, if one user occupies
most of the spectrum, it is less efficient for the other cognitive users to negotiate
with this monopolist.

• Contract using cooperative game: This approach is similar to a spectrum auction,
except that there is no need for an auctioneer. Instead, all participant users “put
their cards on the table” and figure out the best strategies for coalitions. The
resulting mutual benefits are divided to cognitive radios according to different
fairness criteria. A lot of information signaling is necessary before the contract
is agreed by all users, but no signaling is needed after that. The complexity of
coalition formation can be high. The mobility is required to be limited, otherwise
the contract becomes obsolete too quickly. The cooperative game fits better if the
users are located densely, so that the information exchange can be easy.

• Centralized scheme: The cognitive radios are the slave type, which means the
users fully cooperate and follow the instructions from the centralized node. The
optimization requires the accurate channel information without delay. For the
scenario of multiple cognitive radio users talking to one common destination
such as a base station, centralized control can be utilized since the channel infor-
mation is constantly collected by the destination to maintain the links. On the
other hand, for the network scenarios like the ad hoc case or the multiple cluster
case, it is very difficult for the channel information to be exchanged over different
destinations. In this situation, the centralized control can hardly be implemented
but can serve as a performance upper bound for the other distributed schemes.
The complexity of the centralized schemes are usually high, due to the non-linear,
non-convex and probably integer or dynamic nature of the optimization prob-
lem. However, the optimization is usually performed in the destination where the
computation ability is relatively high. For mobility, if the channel information is
prompt, the centralized scheme is robust with the channel variation. However, if
the channel information needs to be feeded back or sent via signaling, the delay
can significantly degrade the performance of the centralized scheme.
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