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11.1 Introduction

This chapter deals with game theoretic methods for dynamic spectrum access in
cognitive radio systems. Cognitive radio systems need to employ dynamic spectrum
access methods to efficiently share radio spectrum with other cognitive radios while
avoiding interference with legacy systems. Due to the inherent decentralized nature
of cognitive radio, dynamic spectrum access strategies need to be decentralized. To
address this, we formulate a model in which cognitive radios are players competing
for spectrum resources in a game theoretic setting. The players need to access chan-
nels in a dynamic and uncertain environment to satisfy demand while respecting
system-imposed sharing incentives.

The reader is undoubtedly familiar with the term Nash equilibrium in non-
cooperative games. In this paper we use a more general equilibrium concept called
correlated equilibrium. The concept of correlated equilibria in game theory was
introduced by Aumann [1,2].3 Correlated equilibria are easier to characterize and
more natural to decentralized adaptive algorithms such as those considered here.

The problem of non-cooperative radio resource allocation is addressed elsewhere
in [2–4] from a non-game theoretic perspective, and in [5,6] from a game theoretic
one. Of these, [7] is auction-based and does not fit in our framework. Reference [5]
is very similar to our approach, even employing similar learning-based ideas, but for
a fundamentally different scenario.

Before presenting our main results, including our game theoretic dynamic spec-
trum access model and adaptive learning algorithm, we begin by reviewing the main
ideas in dynamic spectrum access and game theory.
3 Aumann was awarded the 2005 Nobel Prize in Economics. The Nobel Prize press release

in October 2005 reads: “Aumann also introduced a new equilibrium concept, correlated
equilibrium, which is weaker than Nash equilibrium, the solution concept developed by
John Nash, an Economics Laureate in 1994. Correlated equilibrium can explain why it
may be advantageous for negotiating parties to allow an impartial mediator to speak to the
parties either jointly or separately, and in some instances give them different information”.
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11.1.1 Brief Overview of Dynamic Spectrum Access

The proliferation of a wide range of wireless devices and their applications has
resulted in an overly crowded radio spectrum; almost all usable frequencies have
already been assigned. This makes one pessimistic about the feasibility of integrat-
ing emerging wireless services such as large-scale sensor networks into the existing
communication infrastructure.

In contrast to the apparent spectrum scarcity is the pervasiveness of spectrum
opportunity. Extensive measurements indicate that, at any given time and location, a
large portion of licensed spectrum lies unused. For example, over 62% white space
exists in the spectrum under 3 GHz [8]. This paradox between the overly crowded
spectrum and the pervasiveness of idle frequency bands in both time and space indi-
cates that spectrum shortage results from the spectrum management policy rather
than the physical scarcity of usable frequencies.

The underutilization of spectrum has stimulated a flurry of exciting activities in
search for dynamic spectrum access strategies for improved efficiency. Approaches
envisioned for dynamic spectrum access fall under three general models: dynamic
exclusive use, open sharing and hierarchical access.

The dynamic exclusive use model aims to introduce flexibility to the current
command-and-control spectrum regulation policy while maintaining the spectrum
licensees’ right of exclusive use. Specific approaches include spectrum property
rights [9] and dynamic spectrum allotment brought forth by the European DRiVE
project [10]. The open sharing model, also referred to as the spectrum commons
model [11], draws support from the phenomenal success of wireless services oper-
ating in the unlicensed ISM band. It employs open sharing among peer users as
the basis for spectrum management. The hierarchical access model can be consid-
ered as a hybrid of the above two. The basic idea is to open licensed spectrum to
secondary users and limit the interference perceived by primary users (licensees).
One approach to spectrum sharing between primary and secondary users is spectrum
overlay, which was first envisioned by Mitola [12] under the term “spectrum pooling”
and then investigated by the DARPA XG program [13] under the term “opportunistic
spectrum access”. Another approach is spectrum underlay enabled by the technology
of ultra wide band. A more detailed taxonomy of dynamic spectrum access can be
found in Chapter 10.

In this chapter, we focus on the overlay approach to dynamic spectrum access.
This approach directly targets at idle frequency bands in both time and space by
allowing secondary users to identify and exploit instantaneous and local spectrum
availability without causing unacceptable interference to primary users.

While conceptually simple, spectrum overlay presents technical challenges across
the entire networking protocol stack. Basic components of spectrum overlay include
spectrum opportunity identification and spectrum opportunity exploitation. The
opportunity identification module is responsible for accurately identifying and intel-
ligently tracking idle frequency bands that are dynamic in both time and space. The
opportunity exploitation module takes input from the opportunity identification mod-
ule and decides whether and how a transmission should take place. The overall design
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objective of OSA is to provide sufficient benefit to secondary users while protecting
spectrum licensees from interference. We present below a brief overview of major
technical issues and recent development in each module. A more detailed survey of
technical and regulatory issues in spectrum overlay can be found in [14].

11.1.1.1 Spectrum Opportunity Identification

As shown in [15], in a general network setting with spatially varying primary user
activity, spectrum opportunity detection needs to be performed jointly by a secondary
transmitter and its intended receiver. Specifically, a channel is an opportunity when
no primary users in the neighborhood of the secondary transmitter are receiving over
this channel and no primary users in the neighborhood of the secondary receiver are
transmitting over this channel. Spectrum opportunity detection thus has both signal
processing and networking aspects. The problem can, however, be reduced to a clas-
sic signal processing problem: detecting the presence of primary users’ signals [15].
Based on the secondary user’s knowledge of the signal characteristics of primary
users, three traditional signal detection techniques can be employed: matched filter,
energy detector (radiometer) and cyclostationary feature detector [16]. A matched
filter performs coherent detection. It requires the least number of samples to achieve
a given detection power but relies on synchronization and a priori knowledge of pri-
mary users’ signaling. On the other hand, the non-coherent energy detector requires
only basic information of primary users’ signal characteristics but suffers from long
detection time. Cyclostationary feature detector can improve the performance over
an energy detector by exploiting an inherent periodicity in the primary users’ signal.
Details of this type of detectors can be found in [17]. While classic signal detec-
tion techniques exist in the literature, detecting primary transmitters in a dynamic
wireless environment with noise uncertainty, shadowing, and fading is a challenging
problem that has attracted much research attention [18].

Due to hardware limitation and energy cost associated with spectrum monitoring,
a secondary user may not be able to sense all channels in the spectrum simultane-
ously. In this case, the secondary user needs a sensing strategy for intelligent channel
selection to track the time varying spectrum opportunities. The purpose of the sens-
ing strategy is twofold: catch a spectrum opportunity for immediate access and obtain
statistical information on spectrum occupancy so that more rewarding sensing deci-
sions can be made in the future. A tradeoff has to be reached between these two often
conflicting objectives. Within the framework of partially observable Markov decision
processes, optimal opportunity tracking strategies have been studied in [3, 19] and
reviewed in Chapter 10.

11.1.1.2 Spectrum Opportunity Exploitation

Once spectrum opportunities are detected, secondary users need to decide whether
and how to exploit them. Specific issues include whether to transmit given that oppor-
tunity detectors may make mistakes, what modulation and transmission power to use
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and how to share opportunities among secondary users to achieve a network-level
objective.

The optimal design of spectrum access strategies in the presence of spectrum
sensing errors has been addressed in [20,21]. Specifically, the interaction between
the spectrum access protocols at the MAC layer and the operating characteristics
of the spectrum opportunity detector at the physical layer is quantitatively charac-
terized, and the optimal joint design of opportunity detectors, access strategies and
opportunity tracking strategies is obtained. A review of these results is given in Chap-
ter 10.

Modulation and power control in spectrum overlay networks also present unique
challenges not encountered in the conventional wired or wireless networks. Since
secondary users often need to transmit over non-contiguous frequency bands, orthog-
onal frequency division multiplexing (OFDM) has been considered as an attractive
candidate for modulation in spectrum overlay networks [21–23]. Power control for
secondary users needs to take into account the detection range of the opportunity
detector, the maximum allowable interference level and the transmission power of
primary users [15]. This complex networking issue remains largely open.

Spectrum opportunity sharing among secondary users has been addressed in the
context of exploiting locally unused TV broadcast bands (see [1,2,24,25] and refer-
ences therein). For this type of applications, spectrum opportunities are considered
static or slowly varying in time. Real-time opportunity identification is not as criti-
cal a component as in applications that exploit temporal spectrum opportunities. It is
often assumed that spectrum opportunities at any location over the entire spectrum
are known.

In this chapter, we focus on distributed sharing of slowly varying spectrum
opportunities among competing secondary users. Differing from the graph coloring
approach considered in [1,24], game theory is employed to capture the distributed
interaction among selfish secondary users with individual resource demands.

11.1.2 Organization of Chapter

The rest of this chapter is organized as follows. In Sect. 11.2 we introduce the game
theoretic equilibrium and learning concepts that are needed to analyze our decen-
tralized spectrum access model. In Sect. 11.3 we present the spectrum access model
itself, along with algorithms for estimating channel competition, simultaneous adap-
tive learning of distributed resource allocation policies and centralized optimization
of system-level spectral efficiency. The chapter concludes with a brief summary and
discussion.

11.2 Review of Nash and Correlated Equilibrium in Games

Because our dynamic spectrum access model relies on a decentralized decision
approach among secondary users, we rely on game theory to provide operational
algorithms and performance analysis in this chapter. Thus, in this section, we present
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a brief discussion of game theoretic concepts which are to be used, such as Nash and
correlated equilibria, as well as an overview of game theoretic learning algorithms
by which cognitive radios can adaptively discover how to allocate resources in a
competitively optimal fashion.

11.2.1 Equilibrium Definitions

For a game with L players, the problem of each player l = 1, 2, . . . , L is to devise a
rule for selecting their own action X l from a set Sl (with size Sl), in order to maxi-
mize the expected value of a given utility function ul(X1,X2, . . . ,XL). Since each
player only controls one of L variables, the problem requires careful consideration
of the actions of other players, which are unknown in advance.

The central concept in non-cooperative game theory is an equilibrium, which
identifies stable operating points of the system under certain conditions, such as com-
mon knowledge of rationality. The most common such equilibrium is due to Nash
[24], defined as follows:

Definition 11.1. For each player l, who takes random action X l, define a strategy
πl to be a probability distribution on Sl, so that πl(xl) = Pr(X l = xl) for all
xl ∈ Sl. Label the joint (random) action of all players by X, and define the strategy
profile π to be the product of all individual strategies, so that π(x) = Pr(X = x) =∏L

k=1 π
k(xk). (X resides on the space S = S1 × S2 × . . . × SL.) We may write

any strategy profile π as (πl, π−l) for any l, where π−l is the strategy profile of all
players but l. The expected utility to l resulting from π is

ul(π) =
∑

x∈S

ul(x)π(x). (11.1)

Now, π is a Nash equilibrium if each πl is an optimal response to the collection π−l

of strategies of other players. That is,

ul(πl, π−l) ≥ ul(σl, π−l) (11.2)

for all l = 1, 2, . . . , L and all possible alternative strategies σl.

The notation (σl, π−l) means that l uses strategy σl instead of πl.
In this chapter, we find it useful to focus on an important generalization of the

Nash equilibrium, which was proposed in [1,2] and is known as the correlated equi-
librium. This is defined as follows:

Definition 11.2. Define a joint strategy π to be a probability distribution on the prod-
uct space S = S1 × S2 × . . . × SL. That is, π(x) = Pr(X = x) for joint actions
X, x ∈ S. (The expected utility to l resulting from π is again as in (11.1).) We
may decompose any strategy π into marginals (πl, π−l) for any l, where πl is the
marginal action distribution (strategy) of l, and π−l is the marginal strategy of all
players but l. Now, π is a correlated equilibrium if
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ul(πl, π−l) ≥ ul(σl, π−l), (11.3)

for all l = 1, 2, . . . , L and all possible alternative marginal strategies σl that are a
function of πl.

In the correlated equilibrium, strategy π provides each player l with an action
“recommendation” al. Based on this, and knowing π, a player could calculate an
a posteriori probability distribution for the actions of other players, and hence an
expected utility for each action. The equilibrium condition states that there is no devi-
ation rule (represented by a function σl of πl) that would award l a better expected
utility. Combining (11.1) and (11.3), we obtain the equivalent condition:

∑

x−l∈S−l

π(j, x−l)[ul(k, x−l) − ul(j, x−l)] ≤ 0 (11.4)

for all l = 1, 2, . . . , L, and j, k ∈ Sl. That is, for any recommendation j to l, there is
no profitable deviation k. The correlated equilibria comprise a convex set, given by:

CE = {π ∈ Δ(S) : πsatisfies (11.4) ∀ l, j, k}. (11.5)

The correlated equilibrium concept permits coordination between players, and
can lead to improved performance over a Nash equilibrium [1]. If a correlated
equilibrium distribution π(s) can be written as a product of independent marginals
π(s) =

∏L
k=1 π

k(sk), then it also satisfies the definition of a Nash equilibrium. The
set (11.5) is also structurally simpler than the set of Nash equilibria; it is a convex
set, whereas the Nash equilibria are isolated points at the extrema of this set [25].
Since the set of correlated equilibria is convex, fairness between players can also
be addressed in this domain. Finally, decentralized, online adaptive procedures (see
below) naturally converge to (11.5), whereas the same is not true for Nash equilibria
(the so-called law of conservation of coordination [26]).

11.2.2 Adaptive Learning of Equilibria

A particularly interesting application of game theory is its usefulness in develop-
ing adaptive procedures in multiagent environments. Such procedures enable com-
ponents of a system to learn a satisfactory (in game theory, equilibrium) policy for
action through repeated interaction with their common environment. Moreover, these
procedures are completely decentralized; each component interacts with others only
through the effects of the environment, so explicit coordination is not necessary.

We outline the most well-known adaptive game theoretic learning schemes. In
what follows, let n = 0, 1, 2, . . . be discrete time, let X l

n denote the action of player
l at time n, and let X−l

n denote the joint actions of all players but l at time n.

1. Best response: If the common interaction between players is ignored, each player
will simply attempt to maximize its performance, assuming the environment will
remain the same. In the best response scheme, each player simply takes action
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X l
n+1 = argmaxx∈Sl{ul(x,X−l

n )}.

That is, each player l acts optimally, assuming the other players will repeat their
previous actions. Although it fails to account for simultaneous adaptation from
multiple players, this approach can be shown to converge in some special cases,
such as two-player zero-sum games, supermodular games, potential games and
certain types of submodular games.

2. Fictitious play: The most well-known procedure, fictitious play was introduced
in [27] and has been extensively studied since, see [28]. In this scheme, each
player calculates a best response assuming the historical distribution of play is a
good predictor of future actions. That is,

X l
n+1 = argmaxx∈Sl{ul(x, z̄−l

n )}

where z̄−l
n is the empirical joint distribution of play up to time n. Fictitious

play enjoys good convergence properties in practice, although convergence to
Nash equilibrium is known to be false in general. One drawback is the need to
explicitly observe and model the behavior of all opponents, which may not be
appropriate for cognitive radios with limited awareness.

3. Regret-based algorithms: More recently, a general class of algorithms has been
proposed in the form of regret-based learning [28–31]. Regret-based algorithms
are, in a sense, a generalization fictitious play, which replace explicit opponent
modeling with an implicit “regret matrix,” θl

n. This tracks, for every pair of
actions j, k ∈ Sl, the difference in utility if l had taken action k in the past
everywhere it took action j. Given X l

n = j, the probability of X l
n+1 = k is

proportional to θl
n,jk, the regret from j to k. Learning proceeds by exploring

and switching to actions that are perceived as “better” according to this regret
measure.

In this paper we focus on regret-based procedures, as they are simple to imple-
ment and have well-understood convergence properties. Maintenance of θl

n requires
minimal computation and no explicit awareness of other players. The main disadvan-
tage is that players are required to know ul(k,X−l

n ) for all possible k ∈ Sl at each
n. This requirement is removed in modified regret matching [29], which is presented
(modified for our purposes) in Algorithm 11.1.

11.3 Decentralized Dynamic Spectrum Access Through Adaptive
Reinforcement Learning

We consider a system of L cognitive radios, competing for access to C wireless com-
munication channels which may be occupied at any time by primary users, who
have priority in access. At successive time intervals of length Λ, each radio deter-
mines which of the C channels are unoccupied by primary users, and of these, the
transmission rate (quality) sustainable by each channel. The objective of each radio
l = 1, 2, . . . , L is to select a subset of unoccupied channels for use, in order to satisfy
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its current demand level. However, since there is competition, there is no guarantee
that the selected channels will be captured for exclusive use by l. Instead, we consider
a simple slotted CSMA scheme for sharing each channel among users who select it,
and propose a decentralized reinforcement learning scheme that allows each radio to
find a satisfactory channel allocation through repeated channel selections and perfor-
mance measurements.

Once each radio selects a subset of channels for use in a particular time interval,
repeated competition takes place for each selected channel, as follows. Divide time
into K subintervals of length λ/K. In each subinterval k = 1, 2, . . . ,K, all radios l
active on channel i generate a backoff time τ l

k(i); the smallest backoff time captures
the channel for transmission for the remainder of the subinterval, as in a typical
CSMA MAC protocol.

The history of successes and failures over these K channel capture attempts is
used to give performance feedback to each user, i.e., as a sample of how much data it
can expect to transmit over each selected channel. However, we can get more infor-
mation out of these attempts. Specifically, we show how to couple the success/failure
history with the history of backoff times used to estimate the number of users com-
peting for these channels in Sect. 11.3.2. This extra information allows us to increase
the level of cooperation in the cognitive radio problem; instead of merely trying to
satisfy their own demand, users can attempt to minimize their interference with each
other by explicitly favoring uncrowded channels over crowded ones. The complete
radio utility function to accomplish this is formulated in Sect. 11.3.1.

We assume that the environment of the cognitive radio users varies slowly in
time relative to the decision interval length λ. The variation we consider here is in
terms of the channel occupancy of primary users, and the traffic demand level of
individual cognitive radios. Furthermore, the cognitive radio utility function may be
periodically updated by a central base station (see below). These slow variations
in parameters motivate us to consider an adaptive reinforcement learning strategy,
which allows radios to respond to changes in their environment without discarding
everything they have learned to date. This adaptive strategy is based on the decen-
tralized, game theoretic learning procedure of modified regret matching [29], and is
outlined in Sect. 11.3.3.

Finally, even when radios act in the decentralized fashion described above, we
may be able to improve performance by occasionally adjusting the behavior of each
radio from a central controller. Since each radio acts to maximize a utility in our
framework, we propose a scheme which parameterizes the radio utility, and periodi-
cally broadcasts parameter updates from a central controller, or base station, so as to
improve global system performance.

We formulate this parameter adjustment scheme as an optimal “pricing” prob-
lem for the system, which we approach through stochastic optimization techniques.
Suppose that a parameter (price) φ can be periodically broadcast (on a slow time
scale) to each radio. Upon receiving the price update, each radio adjusts its utility
as a function of φ and continues its usual behavior under the new utility. The aim of
the central controller is to discover that φ which maximizes a global utilityG(π(φ)),
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where π(φ) is the long-run (equilibrium) behavior of the radios under the utility
priced by φ.

Since π(φ) and hence G(π(φ)) is difficult or impossible to calculate a priori, a
stochastic approximation approach is necessary for the discovery of the optimal φ.
We propose to investigate Robbins–Monro type algorithms for this purpose [32]. By
estimating the derivative g(φ) ≈ dG(π(φ))/mathrmdφ, we can use for example
the steepest ascent method

φ̂k+1 = φ̂k + αkĝ(φ̂k) (11.6)

to successively approach an optimal φ, where αk > 0.
We propose to use spectral efficiency for our performance measure G(π(φ)),

which measures the time average proportion of available channels actually used by
cognitive radios during a given period. Since radio decisions are decentralized, we
do not expect the spectral efficiency to be 100%, but we hope to make incremental
improvements through our pricing procedure.

A block diagram of our system is given in Fig. 11.1. In total, there are four time
scales in our problem formulation. At the slowest time scale, the base station sets
pricing parameters. Next is the time scale of variation of primary user activity and
demand levels. Third, and much faster, is the decision time scale (intervals of length
λ) of the cognitive radios themselves, and fourth, the fastest time scale (intervals of
length λ/K), are the CSMA channel access attempts. For definiteness, we assume
that pricing changes are on the order of hours, while primary user and demand vari-
ations are on the order of seconds. We take λ to be approximately 1 ms, andK ≈ 10
CSMA attempts per channel allocation decision.

11.3.1 Decentralized Dynamic Spectrum Access Model and Radio Utility

In this section we present a mathematical outline of the decentralized dynamic spec-
trum access problem, which is used to formulate a utility function which each cog-
nitive radio user attempts to maximize.

As above, we divide time into equal slots of length λ, and label each slot by
n = 1, 2, . . . . At the beginning of the nth time slot, we assume each cognitive radio
l = 1, 2, . . . , L has the following information:

1. C, the number of channels available for transmission use in the radio system.
2. C ∈ R

C , a vector giving the quality (bits transmissible per time slot) of each
available channel.

3. Yn ∈ Ψ = {x ∈ R
C : x(i) ∈ {0, 1} for all i = 1, 2, . . . , C}, a vector

showing the current channel usage pattern of primary users; channel i is in use
if Yn(i) = 1.

4. dl
n ∈ R, the current demand level of the cognitive radio user l (in bits per time

slot).
5. A pricing parameter φ(i)n for each channel i = 1, 2, . . . , C, obtained from the

base station.
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Fig. 11.1. Block diagram of decentralized learning system for cognitive radio dynamic spec-
trum access.

All these quantities are static or vary slowly in time, hence each radio knows their
value before a channel allocation decision is made. For example, we will suppose
that the primary user activity Yn evolves according to a Markov chain with transition
matrix I+εQ,where 0 < ε� 1 andQ is a generator matrix with each row summing
to zero.

Next, each radio l chooses a channel allocation action X l
n, according to the learn-

ing scheme outlined in Sect. 11.3.3. For any y ∈ Ψ, define

Ψ⊥(y) = {x ∈ Ψ : x · y = 0} (11.7)

to be the set of vectors in Ψ orthogonal to y. Action X l
n then belongs to the slowly

varying space Sl
n = Ψ⊥(Yn). That is, each player can select any collection of unused

channels. For notational convenience, we adopt the following definition:

Definition 11.3. For any index i = 1, 2, . . . , C and any vector x ∈ Ψ, we say that
i ∈ x if and only if x(i) = 1.

We also denote the joint action of all l decision makers by Xn.



11 Game Theoretic Dynamic Spectrum Access 313

The joint channel allocation action Xn is then fixed for K successive CSMA
transmission slots n1, n2, . . . , nK , each of length Λ/K. In each transmission slot nk,
each radio l generates a backoff time τ l

nk
(i) for each selected channel i ∈ X l

n. Back-
off times are generated according to a uniform distribution on the interval (0, τmax)
for some fixed parameter τmax. Each radio waits until its backoff time expires then
transmits data in the remainder of the slot only if the channel is sensed clear. If
the smallest backoff time is sufficiently smaller than the next smallest backoff time
(allowing time to sense the channel clear and switch from receive to transmit mode),
then the radio with the smallest backoff time transmits successfully. Otherwise, there
is a collision since two radios will have sensed the channel to be clear and transmitted
data. Thus, each transmission slot is used at most by one radio. For each n, i ∈ X l

n,
and k = 1, 2, . . . ,K, define

γl
nk

(i) = I{ channel i captured by l in slot nk} (11.8)

where I{·} is the usual indicator function.
At the end of the decision time slot n (of length Λ), each radio l has collected the

following information on its CSMA attempts:

γl
n =

{
γl

nk
(i) : i ∈ X l

n, k = 1, 2, . . . ,K
}

(11.9)

τ l
n =

{
τ l
nk

(i) : i ∈ X l
n, k = 1, 2, . . . ,K

}
. (11.10)

This information is used for performance feedback. For each i ∈ X l
n, we calcu-

late the proportional throughput achieved:

Rl
n(i) =

1
K

K∑

k=1

γl
nk

(i). (11.11)

Since the CSMA MAC is random, (11.11) is a random function of the joint deci-
sion Xn. We note that we can take Rl

n(i) = 0 for all i �∈ X l
n, and that E[Rl

n(i)]
clearly decreases in the contention level

∑L
l=1 X l

n(i).
Section 11.3.2 also shows how to use (γl

n, τ
l
n) to obtain an estimate N̂ l

n(i) for the
number of users contending for channel i in decision time slot n.We show there that
the maximum likelihood estimate for the contention level is given by N̂ l

n(i) = 1+θ,
where θ solves ∑

k:γl
nk

(i)=0

aθ
k log(ak)
1 − aθ

k

=
∑

k:γl
nk

(i)=1

log(ak) (11.12)

where ak = 1 − (τ l
k(i) + δ)/τmax, for CSMA parameters (δ, τmax). We will also

give an approximate solution to (11.12).
Given the information from (11.11) and (11.12), we propose a utility function to

guide the reinforcement learning procedure. The utility for radio user l is given by:

ûl(Yn, d
l,X l

n) = −(dl −
C∑

i=1

C(i)Rl
n(i))2 −

C∑

i=1

φ(i)N̂ l
n(i)Rl

n(i). (11.13)
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The following remarks on (11.13) are in order:

1. The utility is implicitly a function of Xn, the actions of all players, through
N̂ l

n(i) and Rl
n(i).

2. It is negative; to maximize (11.13), a radio must match its resources to its
demand (first term), and simultaneously avoid designated crowded channels
(second term).

3. The objective of avoiding other users as directed by the base station, and not
exceeding the demand level dl, enables cooperation between cognitive radio
users.

The observed utility (11.13) is used as feedback to guide future channel allocation
decisions in a decentralized fashion. To accomplish this, each radio takes a sequence
of actions {X l

1,X
l
2, . . . , X

l
n} and observes corresponding rewards {ul

1, u
l
2, . . . , u

l
n}.

This data is used to generate a new action X l
n+1 through a decentralized, adaptive,

regret-based reinforcement learning procedure, as described in Sect. 11.3.3. This
procedure is game theoretic in nature, that is, it converges even when other cognitive
radio users are simultaneously adapting their behavior. This is a critical observation,
since naive, single-agent reinforcement learning procedures rely heavily on a static
environment for convergence, which is not present in a multiagent situation. Game
theoretic algorithms such as the one studied here enables cognitive radio activity to
converge to an equilibrium (specifically a correlated equilibrium), which implies that
each radio adopts a channel allocation that maximizes its own utility in response to
the actions of others. This allows the cognitive radio system to learn, in a completely
decentralized manner, to equitably share the available radio channels.

11.3.2 Channel Contention Estimate

In this section we show how to use the information obtained from repeated CSMA
attempts to estimate the number of cognitive radio users competing for a given
channel. This estimate is required for computing the utility (11.13) for reinforce-
ment learning, and is based solely upon the history of successes and failures of
repeated CSMA channel access attempts over a fixed period, along with the asso-
ciated backoff times used in each attempt. This information is given in (11.9)
and (11.10).

Consider a fixed channel i and a specific active user l.We wish to estimate N̂ l
n(i),

the number of users competing for resource i during decision slot n, based on K
CSMA channel access attempts within that slot.

First, consider a single, general CSMA channel access attempt on channel i, and
suppose there are θ(i) other active users competing for that channel. Each of these
users m �= l chooses a random backoff time τm(i) uniformly on (0, τmax). If l
chooses τ l(i) = t, it captures the channel if t < τm(i) + δ for all θ(i) users m �= l,
where δ is the time required to sense the channel clear and switch from RX to Tx
mode. The probability of this event is given according to the order statistic τ (1)

θ(i), by

Pr(l captures channel) = Pr
(
τ

(1)
θ(i) > t+ δ

)
. (11.14)
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Likewise, we have

Pr(l fails to capture channel) = Pr
(
τ

(1)
θ(i) < t+ δ

)
. (11.15)

It is well known that the order statistics for uniform random variables are given
by the beta distribution. For the first order statistic τ (1)

θ on the interval (0, τmax), the
distribution simplifies to:

Pr
(
τ

(1)
θ(i) > t+ δ

)
=

{(
1 − t+δ

τmax

)θ(i)

, t ≤ τmax − δ
0, t > τmax − δ.

(11.16)

A bit of reflection reveals that this indeed satisfies probabilistic intuition.
Suppose now that during decision interval n, l has recorded the success or fail-

ure of K CSMA attempts, along with the backoff time used in each attempt. These
attempts are labeled n1, n2, . . . , nK . Note that θ(i) is held fixed over theK attempts
by the decision structure. Then l can obtain a maximum likelihood estimate for the
θ(i) by maximizing the quantity:

L(θ(i)) =
∏

k:γl
nk

=1

Pr
(
τ

(1)
θ(i) > τ

l
nk

(i) + δ
)
·
∏

k:γl
nk

=0

Pr
(
τ

(1)
θ(i) < τ

l
nk

(i) + δ
)

(11.17)

=
∏

k:γl
nk

=1

(
1 −

τ l
nk

(i) + δ
τmax

)θ(i)

·
∏

k:γl
nk

=0

⎛

⎝1 −
(

1 −
τ l
nk

(i) + δ
τmax

)θ(i)
⎞

⎠

(11.18)

where τ l
nk

(i) is the backoff time of user l at time index k on channel i and γl
nk

(i)
denotes success or failure of the corresponding CSMA attempt, as in (11.8). The
MLE is simply N̂ l

n(i) = 1 + arg maxθ L(θ(i)).
Differentiating the likelihood (or log likelihood) with respect to θ, we obtain that

the maximizing θ must solve

∑

k:γl
nk

(i)=0

aθ
k log(ak)
1 − aθ

k

=
∑

k:γl
nk

(i)=1

log(ak) (11.19)

where ak = 1 − (τ l
k(i) + δ)/τmax.

Equation (11.19) is difficult to solve analytically. Numerically, we can state the
following general properties:

1. N̂ l
n(i) increases with the number of channel access failures.

2. N̂ l
n(i) increases on average with the maximum successful backoff time.

3. N̂ l
n(i) increases on average with the minimum unsuccessful backoff time.
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Fig. 11.2. Numerical plot of the (log) average of estimates N̂ l
n(i). z denotes the number of

failed CSMA attempts out of K = 10, and the maximum backoff time is τmax = 1. Each data
point represents an average over 5000 randomly generated observations satisfying the given
limits for success and failure times.

A plot of N̂ l
n(i) is given in Fig. 11.2 for K = 10 CSMA attempts and δ = 0.

For each data point, we specified the number of CSMA channel access failures z =
1, 3, 5, 7, 9 as well as the maximum and minimum backoff times of the successful
and unsuccessful CSMA attempts, respectively (τmax is normalized to one). We then
generated 5000 data samples corresponding to the specified limits and plotted an
average of the results on a logarithmic scale, to emphasize the importance of the
number of failures z on the estimate.

If we approximate ak on the left-hand side by

ā0 =
1
|I0|

∑

k:γl
nk

(i)=0

ak

where |I0| =
∑K

k=1(1 − γl
nk

(i)) is the number of terms in that summation (the
number of channel access failures), (11.19) becomes:
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|I0|
āθ
0 log(ā0)
1 − āθ

0

=
∑

k:γl
nk

(i)=1

log(ak). (11.20)

The approximation in (11.20) corresponds to replacing the backoff times of failed
channel access attempts by their average. From this, we can obtain an analytic solu-
tion:

θ = − log

(
1 +

|I0| log(ā0)∑
k∈I1

log(ak)

)
/ log(ā0). (11.21)

Numerical studies show that the approximation (11.21) is quite accurate on aver-
age, but can have a large variance in unfavorable conditions. Experimentally, it can
be shown that the approximation error in (11.21) is small when either the number of
channel access failures |I0| is small, or when the successful backoff times are small.
In other cases, it may be preferable to use (11.21) to generate an initial guess, which
may be refined by the Newton–Raphson method.

11.3.3 Adaptive Learning for Channel Allocation

In this section we describe our decentralized learning approach to the cognitive
radio dynamic spectrum assignment problem. Our approach is based on the mod-
ified regret matching procedure of [29], which is formulated here as a distributed
stochastic approximation algorithm. This formulation allows us to specify an adap-
tive variant of the original procedure, called “modified regret tracking,” which uses
a constant stepsize to dynamically adapt to time varying conditions, thus allowing
users to function in a changing environment.

As is usual in reinforcement learning, each user takes a sequence of actions
{X l

n ∈ Sl
n : n = 0, 1, 2, . . .} and observes a sequence of rewards {ul

n ∈ R :
n = 0, 1, 2, . . .}. The action at time n + 1 is a random function of this history of
actions and rewards.

At each decision period n, users take joint action Xn ∈ S, with user l taking
action X l

n ∈ Sl. To implement the algorithm, each user l uses the observed utilities
associated with past joint actions {Xn : n = 1, 2, . . .} to derive regret values θl

n,jk :
j, k ∈ Sl, according to:

θl
n,jk =

∑

τ≤n:Xl
τ=k

ετ−1(
n−1∏

σ=τ

(1 − εσ))
pl

τ (j)
pl

τ (k)
ul(k,X−l

τ )

−
∑

τ≤n:Xl
τ=j

ετ−1(
n−1∏

σ=τ

(1 − εσ))ul(j,X−l
τ ). (11.22)

If ετ = 1/(τ + 1), this is simply the average:

θl
n,jk =

1
n

∑

τ≤n:Xl
τ=k

pl
τ (j)
pl

τ (k)
ul(k,X−l

τ ) − 1
n

∑

τ≤n:Xl
τ=j

ul(j,X−l
τ ). (11.23)
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If ετ = ε, it is the exponentially weighted moving average:

θl
n,jk =

∑

τ≤n:Xl
τ=k

ε(1 − ε)n−τ p
l
τ (j)
pl

τ (k)
ul(k,X−l

τ )

−
∑

τ≤n:Xl
τ=j

ε(1 − ε)n−τul(j,X−l
τ ). (11.24)

These values are computed recursively in the algorithm below.
To gain some intuition, we refer back to the original regret matching algorithm

of [28]. Here, the regret value is taken as the simple time average

θl
n,jk =

1
n

∑

τ≤n:Xl
τ=j

(
ul(k,X−l

τ ) − ul(j,X−l
τ )
)
. (11.25)

That is, the regret measures the average gain that l would have received had he
played k in the past instead of j. If the gain is positive, then clearly l should be more
likely to switch to action k in the future, and in fact regret matching does exactly
this by switching to each action k at time n+ 1 with probability proportional to the
positive component of θl

n,jk. Note, however, that (11.25) requires that l knows what
utility he would have received for each action, even if that action was not taken. To
overcome this difficulty, [29] approximates the first term of the summation (11.25)
by the first summation in (11.23).

The complete procedure, including the exact formulation of action probabilities,
is summarized in Algorithm 11.1, which is carried out independently by each user.

Algorithm 11.3.1 Adaptive Learning for Channel Allocation: The regret-based
algorithm for user activation has parameters (ul, μ, δ, {εn : n = 1, 2, . . .}, θl

0,X
l
0),

where ul are the user utilities, μ is a function of the utilities as in (11.29), δ is a
small probability with which actions are chosen from a uniform distribution, {εn} is
a small stepsize, and θl

0,X
l
0 are arbitrary initial regrets and actions.

Define the Sl × Sl matrix with entries:

H l
jk(Xn) = I{X l

n = k} p
l
n(j)
pl

n(k)
ul(k,X−l

n ) − I{X l
n = j}ul(j,X−l

n ). (11.26)

The Procedure Is As Follows:

1. Initialization: Set n = 0 and take action X l
0. Initialize regret θl

0 = H l(X0).
Repeat for n = 0, 1, 2, . . .:
Action update: Choose X l

n+1 = k with probability

Pr(X l
n+1 = k|X l

n = j, θl
n = θl)

=

⎧
⎨

⎩
(1 − δ)min

(
max{θl

jk, 0}/μ, 1
Sl−1

)
+ δ

Sl , k �= j,

1 −
∑

i�=j

[
(1 − δ)min

(
max{θl

ji, 0}/μ, 1
Sl−1

)
+ δ

Sl

]
k = j.

(11.27)
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Regret value update: Calculate H l(Xn+1), and update θn+1 using the stochas-
tic approximation (SA):

θl
n+1 = θl

n + εn(H l(Xn+1) − θl
n). (11.28)

In (11.27), μ is a normalization constant, which is chosen

μ > (Sl − 1)(ul
max − ul

min) (11.29)

over all l = 1, 2, . . . , L, where (ul
max, u

l
min) are obtained from (11.13).

Note that θl
n is a moving average of the updates {H l(Xk) : k = 1, 2, . . . , n}.

Because of this, Algorithm 11.1 can be viewed as a stochastic approximation with
a constant stepsize εn ≡ ε > 0; actions are chosen with probability proportional to
their (moving) average potential performance in the past. (This differs from best
response, which would base action choices on the immediately previous result,
essentially setting ε = 1.) For the original modified regret matching algorithm of
[29], one would instead use εn = 1/(n+ 1).

Since the utility varies, a constant stepsize in Algorithm 11.3.1 is needed to keep
users responsive to the changes.

11.3.3.1 Convergence of Regret-Based Learning

When a decreasing stepsize εn = 1/(n+1) is used in Algorithm 11.1, it is proven in
[29] that the global empirical distribution of play (defined below) converges almost
surely to the set of ε-correlated equilibria. If, in addition, the “tremble” term δ in
(11.27) is decreased sufficiently slowly, convergence is to the set of correlated equi-
libria proper (11.5).

It is therefore reasonable to expect similar convergence results of the constant
stepsize version of Algorithm 11.3.1, with fixed small εn = ε and a fixed small
tremble δ. The general relation between decreasing and constant stepsize stochastic
approximation (SA) algorithms is well known [32]. Essentially, when a decreasing
stepsize SA converges almost surely, it can be shown that the constant stepsize ver-
sion converges weakly, as the stepsize ε → 0. Intuitively then, our adaptive version
of Algorithm 11.3.1 should track the set of correlated equilibria, with the benefit that
changes to the utility functions are handled smoothly by the constant stepsize.

We now describe in detail what is meant by this type of convergence. First, con-
vergence is stated in terms of the empirical distribution of play, which can be viewed
as a diagnostic that monitors the performance of the entire cognitive radio network.
This is defined as follows:

Definition 11.4. The empirical distribution of play up to time n is:

z̄n =
∑

τ≤n

ετ−1(
n−1∏

σ=τ

(1 − εσ))eXτ
(11.30)

where ex = [0, 0, . . . , 1, 0, . . . , 0] with the one in the xth position.



320 M. Maskery et al.

Here εn is a weighting factor. If εn = 1/(n + 1), the empirical distribution is
simply

z̄n = 1/n
∑

τ

eXτ
. (11.31)

If εn ≡ ε > 0 is constant, it is the exponentially weighted moving average

z̄n = ε
∑

τ

(1 − ε)n−τeXτ
. (11.32)

Note that in both cases z̄n is an empirical frequency, since
∑

i z̄n(i) = 1.
We point out here that z̄ satisfies the following recursion:

z̄n+1 = z̄n + εn(eXn+1 − z̄n) (11.33)

where Xn+1 is constructed according to Step (2a) of Algorithm 11.3.1. When a
decreasing stepsize εn = 1/(n + 1) is used, (11.33) directly yields (11.31). With
a constant stepsize εn = ε, (11.33) directly yields (11.32).

Second, in contrast to most convergence results, convergence of the empirical
distribution of play for Algorithm 11.3.1 is not to a specific point, but to the set of
correlated equilibria (CE). This property is as follows:

Definition 11.5. z̄n converges to the set CE if for any ε > 0 there exists N0(ε) such
that for all n > N0 we can find ψ ∈ CE at a distance less than ε from z̄n.

The actual proof of weak convergence for the adaptive modified regret track-
ing algorithm can be approached in two ways. First, one can attempt to adapt the
original proof in [29] for a constant stepsize. Second, one can take a differential
inclusion approach, similar to that found in [31,33]. The first approach appears plau-
sible, but technically difficult. The proof in [29] is based on the idea of Blackwell
approachability [34], to which the existence of a decreasing stepsize is central. One
would therefore be forced to begin by modifying Blackwell’s 1956 result, then pro-
ceed to carry the modifications through the proof in [29]. The differential inclusion
approach therefore appears more promising. Although [31,33] still assumes here a
decreasing stepsize, it treats the convergence of the original (non-modified) regret
matching algorithm of [28] in such a way that the constant stepsize result can easily
be obtained through the methods of [32]. Since the modified procedure (used here)
of [29] is obtained from [28], it should not be too difficult to use similar methods
here.

11.3.4 Stochastic Optimization of Spectral Efficiency via Centralized Pricing

In this section we describe a simple stochastic optimization approach for improving
spectral efficiency in the decentralized channel access learning environment. The
approach relies on a base station, which monitors only the outcome of cognitive
radio activities. That is, the base station is not aware of the actions of individual
cognitive radios, but only of how often free channels are used by the group for data
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transmission. It attempts to influence the behavior by periodically broadcasting a
common C-valued parameter vector to each radio, which is used by the cognitive
radios to update their utility function. The results of this section are not integral to the
decentralized learning scheme; the pricing scheme describes a way to improve the
equilibrium behavior obtained in the previous sections from a global perspective, but
is not necessary to the operation of the cognitive radio system as already described.

Recall the utility function (11.13) of cognitive radio users, which is parameter-
ized by pricing vector φ. For each channel i, φ(i) represents a unit interference
penalty; user l essentially pays a cost φ(i) for each portion of channel i it uses
and each user present on channel i. This is meant as a simple disincentive so that
a base station, seeing that channel i is too crowded, can encourage users to move to
other channels by imposing a high cost φ(i). Conversely, users may be attracted to
low-cost channels in order to balance load across the spectrum.

Although it is possible to devise much more sophisticated incentive rules, pos-
sibly through mechanism design theory, than the one presented here, we feel that at
least elementary control can be imposed through our formulation, and that it pro-
vides a sufficient proof of concept of stochastic optimization-based pricing for tun-
ing cognitive radio networks. Moreover, the basic stochastic optimization approach,
which we outline here, will remain the same regardless of the particular pricing
parametrization used.

The objective of the base station is to discover, through experimentation, a pricing
parameter φ which maximizes the spectral efficiency of the cognitive radio system.
The spectral efficiency is defined as the average proportion of available radio chan-
nels that are used by the cognitive radios, which may be sampled over T decision
intervals as:

ŜE(φ) =

∑T
n=1

∑L
l=1 min

{∑C
i=1 C(i)Rl

n(i), dl
}

∑T
n=1

∑C
i=1[C(i)(1 − Yn(i))]

. (11.34)

Note that (11.34) is based only on the observable channel usage.
To incrementally improve the spectral efficiency, we propose the following algo-

rithm:

Algorithm 11.3.2 Stochastic Optimization-Based Pricing: For large T, set pric-
ing interval length TΛ. A decision time n of the cognitive radios (on time scale Λ)
is said to belong to pricing interval m if mT + 1 ≤ n ≤ (m + 1)T. For pricing
intervals m = 0, 1, 2, . . . , repeat the following:

1. Monitor the decisions in pricing intervalm. That is, collect data Yn(i) andRl
n(i)

for i = 1, 2, . . . , C, l = 1, 2, . . . , L, and n in pricing interval m.
2. At the end of interval m, calculate the spectral efficiency according to (11.34)

using the data gathered. Estimate the derivative d̂SE/dφ.
3. Broadcast a new pricing vector for pricing interval m+ 1, according to

φ̂m+1 = φ̂m + αm
d̂SE
dφ

(φ̂m). (11.35)
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The derivative may be estimated using standard approximation methods, for
example the finite difference or simultaneous perturbation methods [36].

Conclusion

In this chapter we have presented an iterative, decentralized method for discovering
efficient dynamic spectrum access policies for cognitive radio. Under the spectrum
overlay model, we have shown how the spectrum access problem can be treated as a
game theoretic problem and given algorithms that allow cognitive radios to indepen-
dently assess and adapt to their environment in real time.

The key advantage of our approach is complete decentralization, that is, the lack
of requirement for any collaboration or communication between cognitive radios.
We do require, in the centralized pricing scheme of Sect.11.3.4, the ability to receive
occasional updates from a central base station, but this feature is meant only as an
optional enhancement to the decentralized system. We are able to obtain effective
performance from the decentralized scheme essentially for two reasons. First, since
radios are aware of the presence of competitors, they are able to estimate and adapt to
channel competition by leveraging game theoretic algorithms specifically designed
to converge in a multiuser setting. Second, we have built cooperative tendencies into
the utility function (11.13) itself; radios are penalized for obtaining more resources
than they require and are bound to obey direction from the base station through
the pricing function φ. While this second consideration might be negated by selfish
design, the structural results would not change; the equilibrium obtained would sim-
ply be less efficient than that obtained through cooperative design. Let us emphasize:
cooperative design in essentially decentralized systems allows us to achieve many of
the benefits of a completely integrated architecture without the same costly infras-
tructure.

The constant step size learning algorithm presented in this chapter converges
weakly to the set of correlated equilibria of a non-cooperative game. Moreover,
the algorithm can be used to track a slowly time varying correlated equilibrium
set caused due to changing activity of primary users, with the limiting behavior
of the algorithm captured by a differential inclusion. Suppose we were to assume
that primary user activity evolves according to a slow Markov chain with transition
probability matrix I + εQ (where ε > 0 is a small parameter and Q is a generator
matrix with each row summing to zero). With this assumption, how can one ana-
lyze the tracking performance of the learning algorithm with step size ε? Note that
the adaptation speed (step size ε) of the algorithm matches the speed at which the
correlated equilibrium set changes (transition matrix (I + εQ)). In our recent work
[36,37], we have shown that the limiting behavior of the stochastic approximation
algorithm for tracking a parameter evolving according to a Markov chain is captured
by a Markovian switched ordinary differential equation. This result was somewhat
remarkable, since typically the limiting process of a stochastic approximation algo-
rithm is a deterministic ordinary differential equation. We conjecture that the limiting
behavior of Algorithm 11.3.1 is captured by a Markovian switched differential inclu-
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sion (see [38]). This analysis requires use of yet another extremely powerful tool in
stochastic analysis namely, the so-called “martingale problem” of Strook and Varad-
han, see [41,42] for comprehensive treatments of this area.

There are many other interesting avenues for continuation of this research. Aside
from improving and validating the algorithms presented here, one can modify the
problem to consider the case of partial channel observation. This is especially impor-
tant when the number of channels becomes too large for simultaneous monitoring.
Moreover, for this situation, it is important to identify initial methods for eliminating
a large number of channels from consideration, in order to improve the convergence
rate and memory requirements of the adaptive learning approach considered here.
Finally, we can expand our scope from static games to stochastic games, in which
the player actions not only determine their immediate utility, but also give a proba-
bility distribution over new games to be played in future rounds. A stochastic game
approach for similar sensor-based systems has been carried out in [41,42].
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