
Automatically Identifying Trigger-based Behavior in
Malware

David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and
Heng Yin

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213
{dbrumley,chartwig,zliang,jnewsome,dawnsong,hyin}@cmu.edu

Summary. Malware often contains hidden behavior which is only activated when properly
triggered. Well known examples include: the MyDoom worm which DDoS’s on particular
dates, keyloggers which only log keystrokes for particular sites, and DDoS zombies which are
only activated when given the proper command. We call such behavior trigger-based behavior.

Currently, trigger-based behavior analysis is often performed in a tedious, manual fashion.
Providing even a small amount of assistance would greatly assist and speed-up the analysis. In
this chapter, we propose that automatic analysis of trigger-based behavior in malware is pos-
sible. In particular, we design an approach for automatic trigger-based behavior detection and
analysis using dynamic binary instrumentation and mixed concrete and symbolic execution.
Our approach shows that in many cases we can:

(1) detect the existence of trigger-based behavior, (2) find the conditions that trigger
such hidden behavior, and (3) find inputs that satisfy those conditions, allowing us to ob-
serve the triggered malicious behavior in a controlled environment. We have implemented
MineSweeper, a system utilizing this approach. In our experiments, MineSweeper has suc-
cessfully identified trigger-based behavior in real-world malware. Although there are many
challenges presented by automatic trigger-based behavior detection, MineSweeper shows us
that such automatic analysis is possible and encourages future work in this area.

1 Introduction

In many malware programs, certain code paths implementing malicious behaviors
will only be executed when certain trigger conditions are met [15, 18, 23, 24]. We
call such behavior trigger-based behavior. Trigger-based behavior may be set off
by many different trigger types, such as time, system events, and network inputs.
For example, many viruses attack their host systems on specific dates, such as Fri-
day the 13th or April Fool’s Day [18, 24]; worms may launch attacks at specific
times [13], some keyloggers only record keystrokes to files when the application
window name contains certain keywords [15]; some browser-helper-object-based
spyware only logs information if the URL contains a certain keyword [23]; some
distributed denial-of-service tools only start launching attacks when receiving cer-
tain network commands [3]. Thus, trigger-based behavior is a real problem, causing

66 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

millions of dollars of damage [15, 18, 23–27], and detecting trigger-based behavior
is important for understanding the malware’s malicious behavior and for effective
malware defense.

Currently, trigger-based behavior is often analyzed in a tedious, manual process.
To the best of our knowledge, there is no previous work on automating trigger-based
behavior analysis. Given a piece of potentially malicious code, a typical manual anal-
ysis scenario is as follows: a) the analyst runs the malware in a virtual machine and
may observe nothing since the trigger condition may not be met, b) he may then per-
form some disassembly and build up a mental model of the program execution, c)
he may then guess which parts of the input or system setup to change and rerun the
malware and hope to observe something new. This process is repeated until the ana-
lyst runs out of time, patience, or gets lucky and uncovers the trigger-based behavior.
Such a manual process is slow, labor intensive, and does not scale.

These problems apply directly to botnets. From an analyst’s point of view, a bot
is a malicious binary containing many hidden behaviors. Using the framework we
describe an analyst can find the behavior a certain bot exhibits including actions it
takes and commands it responds to. We have specifically researched this application
in our most recent work [4].

Our Approach. In this chapter, we propose that automatically identifying and rea-
soning about trigger-based behavior in malware is possible, and design a system
as a first step towards this goal. In particular, we show how to design and integrate
techniques from formal verification, symbolic execution, binary analysis, and whole-
system emulation and dynamic instrumentation to enable automatic identification
and analysis of trigger-based behaviors in malware. Automatic trigger-based behav-
ior detection is an extremely challenging task. For example, completely automatic
analysis of trigger-based behavior for all programs is undecidable (Section 5). How-
ever, we show that our approach can provide great value in many cases. Our system,
MineSweeper, is able to automatically identify the trigger-based behaviors in sev-
eral real-world malware examples. Even when complete automatic analysis is not
possible, we design our system so that it still provides valuable information about
potential trigger-based code paths which a human would otherwise have to discover
manually.

To design an approach for automatic trigger-based behavior analysis, we first ob-
serve that at a high level, triggers in a program are implemented as conditional jumps
depending on inputs from the trigger types of interest such as time, keyboard, or net-
work inputs. The malicious code is triggered when the conditional jumps evaluate
to the desired directions, e.g., the current time is equal to the trigger time. There-
fore, given trigger types of interest, one key to uncovering trigger-based behavior is
to construct values for trigger inputs (i.e., inputs from trigger types of interest) that
makes the conditional jumps evaluate in the desired direction, activating the trigger-
dependent code. We call the condition that the trigger inputs need to satisfy in order
for the code execution to go down a path uncovering the trigger-based behavior the
trigger condition, and the values of the trigger inputs satisfying the trigger condition
the trigger values. Second, we observe that trigger-based behavior could be embed-

Automatically Identifying Trigger-based Behavior in Malware 67

ded at any point in the program. Thus, we need to be able to explore many different
program paths which could depend on trigger inputs.

From these observations, we design an approach as a first step towards automatic
trigger-based behavior analysis in malware. Our approach takes as inputs the binary
program of the malware to be analyzed and a set of trigger types. In order to automat-
ically explore trigger-based behavior in the program based on the given trigger types,
we employ mixed concrete and symbolic execution to automatically and iteratively
explore different code paths which could depend on trigger inputs. In particular, trig-
ger inputs are represented symbolically, and instructions that depend upon the trig-
ger inputs operate on symbolic values, and are executed symbolically. Conversely,
instructions that do not depend on trigger inputs operate on concrete values, and are
concretely (natively) evaluated (for efficiency). Thus, symbolic execution builds up
symbolic formulas over the symbolic inputs (which are in turn based on the trigger
types). Note that the ability to mix concrete and symbolic execution is important to
reduce the formula size. As our experiments indicate, almost all instructions can be
concretely executed.

For any path to be explored, the mixed concrete and symbolic execution automat-
ically generates formulas representing the conditions that the trigger inputs need to
satisfy for the program execution to go down the path. We then ask a solver (such as
a decision procedure) whether the formula can be true, i.e., whether there are trigger
input values which will satisfy the formula. An unsatisfiable formula indicates the
path just explored is not actually feasible, and we continue to explore other paths.
A satisfiable formula means we have discovered a new path which depends on trig-
ger inputs, and the formula generated represents a trigger condition. In this case, the
solver also constructs the trigger values, i.e., values for the trigger inputs necessary
to execute the path of interest. We can then execute the program in a controlled envi-
ronment, provide it with the discovered trigger values, and observe the trigger-based
behavior. By iterating this process, we automatically explore different code paths to
uncover trigger-based behaviors in the program.

In some cases the solver may not be able to return an answer to the formula
within a reasonable amount of time. In this case, we simply set a timeout and go
on to explore other paths. Therefore, we try to explore different branches and paths
as much as possible, but do not guarantee to explore all branches or paths. As our
experiments demonstrate, despite this technical difficulty in certain cases, this ap-
proach offers great practical value for automatic analysis of trigger-based behavior
in real malware, and in any case, is a big step forward compared to the current manual
process.

An additional technical challenge for malware analysis is that often we do not
have the luxury of access to source code. Even worse, malware is often packed or
obfuscated. Code packing is a technique where binary code is statically compressed
to save space, and only decompressed at runtime. Obfuscation is a technique which
is designed to make static analysis difficult. In either case, the code will be difficult,
if not impossible, to disassemble. Thus, we need to make our approach work with
only access to the binary program, and moreover, deal with binary programs which
may dynamically generate code and are potentially difficult to statically analyze. To

68 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

this end, we employ whole-system emulation and dynamic binary instrumentation
to enable mixed concrete and symbolic execution on binaries. To the best of our
knowledge, our system is the first to enable mixed concrete and symbolic execution
on binaries (see Section 6).

We have implemented our approach in a system called MineSweeper. In our ex-
periments, we show that our system is successful at automatically analyzing trigger-
based behavior in several real world malware examples, some of which are widely
spread, and some of which are packed. The total time for MineSweeper to perform
the analysis is usually less than 30 minutes, which otherwise might have taken a
manual process days to uncover.

Contributions. This chapter proposes that automatic analysis of trigger-based be-
havior is possible, and designs the first holistic approach for automatically identify-
ing trigger-based behavior in binary programs.

• We demonstrate that automatic analysis of trigger-based behavior in malware is
possible. Previous analysis was completely manual, thus any automated assis-
tance is of great value.

• We develop techniques for mixed execution of binaries and apply them to ana-
lyzing trigger-based behavior. Previous work on mixed execution required source
code [6, 14]. The ability to perform mixed execution on binaries may be of inde-
pendent interest to other applications as well.

• We implement our ideas in a tool called MineSweeper. In particular, MineSweeper
automatically: a) Detects the existence of trigger-based behavior for specified
trigger types, b) Finds the trigger condition, c) Finds input values that satisfy
the trigger condition, when the trigger condition can be solved, and d) Feeds the
trigger values to the program, causing it to exhibit the trigger behavior, so that it
may be analyzed in a controlled environment. In our experiments, the end-to-end
time to perform all steps to analyze the trigger-based behavior automatically is
usually less than 30 minutes.

• Minesweeper does not need source code, and works on unmodified binary pro-
grams. The ability to analyze binaries is absolutely necessary to be a realistic ap-
proach for malware analysis. Since we dynamically instrument code to perform
mixed execution on the fly, we are also able to handle obfuscated and packed
code, as demonstrated by our experiments. Also, our framework is extensible to
accommodate many different trigger types.

2 Problem Statement and Approach Overview

In this section, we describe the overall problem of automatic trigger-based behavior
analysis, and give an overview of our approach. We begin by introducing the running
example we use throughout the chapter. We then introduce our terminology, and the
automatic trigger-based behavior analysis problem. We then describe our approach.

Motivating Example. In Figure 1, we show the disassembly and source code for a
typical malware worm similar to MyDoom. In this example, the ddos action will

Automatically Identifying Trigger-based Behavior in Malware 69

only be activated if the call from GetLocalTime returns 10:06 11/9. Thus, the
ddos action is a trigger-based behavior which will only be triggered at this specific
time.

Note that although we have provided the source code for illustrative purposes,
this is not typically available to the analyst. Also, we have provided the complete
disassembly, though malware is often obfuscated to prevent disassembly so such
information would also not be available to the analyst. Thus, in a typical scenario,
the analyst would only know the assembly instructions for runs actually executed. In
addition, we have shown a relatively small example: real code is often much more
complex, may contain more trigger-based branches, and often other functionality that
makes it difficult to even recognize where trigger-based behavior might potentially
be in the program. This raises the question: how do we reason about potential trigger-
based behavior in a program automatically?

4012b1: call 401810 <_GetLocalTime@4>
4012b6: add $0xc,%esp
4012b9: cmpw $0x9,0xffffffee(%ebp)
4012be: jne 40132d <_main+0xad>
4012c0: cmpw $0xa,0xfffffff0(%ebp)
4012c5: jne 40132d <_main+0xad>
4012c7: cmpw $0xb,0xffffffea(%ebp)
4012cc: jne 40132d <_main+0xad>
4012ce: cmpw $0x6,0xfffffff2(%ebp)
4012d3: jne 40132d <_main+0xad>
4012d5: sub $0xc,%esp
4012d8: push $0x404000
4012dd: call 4017a0 <ddos>
4012e2: add $0x10,%esp
4012e5: jmp 40132d <_main+0xad>
...
40132d: ret

SYSTEMTIME systime;
GetLocalTime(&systime);
site = ‘‘www.usenix.org’’;
if (9 == systime.wDay){

if (10 == systime.wHour){
if (11 == systime.wMonth){

if (6 == systime.wMinute){
ddos(site);

}
}

}
}

Fig. 1. Our running example.

70 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

2.1 The Automatic Trigger-based Analysis Problem

In our problem setting, we focus on automatic discovery of trigger-based behavior
when given a piece of potentially malicious code and a list of trigger-types of interest.
Typical trigger types include the system time, system events, network and keyboard
inputs, and return values from library or system calls. We call inputs from trigger-
types of interest trigger inputs. In our running example, we assume the trigger type
of interest is GetLocalTime, thus, the returned systime is the trigger input.

The program execution may take different paths depending on the values of trig-
ger inputs. Thus, certain code paths performing malicious behaviors may only be
executed if the values of trigger inputs make the program execution go down a par-
ticular path. Behaviors of such code paths are called trigger-based behavior. The
condition that the trigger inputs need to satisfy to lead the program execution to go
down a path to the trigger-based code is called the trigger condition for the trigger-
based behavior, and the values of the trigger inputs which satisfy the trigger condition
are called the trigger values. If we supply the trigger values as the trigger inputs, the
program execution will satisfy the trigger condition and activate the trigger-based
behavior which enables us to observe the trigger-based behavior in a controlled envi-
ronment. Note that the trigger condition is a succinct form representing trigger values
which will activate the trigger-based behavior.

In our running example, the trigger condition (from the source code) is when all
4 if statements are true:

systime.wDay == 9 ∧ systime.wHour == 10 ∧ systime.wMonth ==
11 ∧ systime.wMinute == 6

And the trigger value is a compound statement where the systime structure’s
wDay field is 9, the wHour field is 10, the wMonth field is 11, and the wMinute
field is 6.

Problem Statement. Thus the problem of automatic trigger-based behavior analy-
sis is when given a piece of potentially malicious code and a list of trigger types
of interest, we automatically explore as many different code paths as possible to:
(1) discover code paths whose execution depends on trigger inputs, (2) identify the
trigger condition, (3) when possible, derive trigger values which will satisfy the trig-
ger condition, and (4) execute the program with the trigger values to observe the
trigger-based behavior in a controlled environment.

2.2 Our Approach and System Overview

Our Approach. Since trigger-based behavior could be embedded anywhere in the
program, automatically identifying trigger-based behavior requires us to automat-
ically explore as many different execution paths that depend on trigger inputs as
possible. One naı̈ve solution would be to simply do random testing, where we could
set random values to the trigger inputs and hope they will lead the program execu-
tion down different paths. However, such an approach would be hopelessly inefficient

Automatically Identifying Trigger-based Behavior in Malware 71

Binary
Program

2. Mixed
Execution
Engine

3. Solver

feasible
paths

1. Trigger
Type
Specification

4b. Runnertrigger
values

path predicates

4a. Path
Selector

Minesweeper

Fig. 2. Steps performed by MineSweeper.

and impractical since the probability of guessing the right values to satisfy the trigger
conditions would be extremely slim in most cases.

Instead, we employ an iterative approach with mixed symbolic and concrete ex-
ecution, as shown in Figure 2. The steps are:

• Step 1: When given a malicious program, the user first selects trigger types of
interest. A trigger type can be time, system events, network inputs, or any li-
brary or system call. We supply a list of trigger types that are commonly used by
malware. The user can choose from the supplied list as well as define their own
trigger type of interest.

• Step 2: Given the trigger types of interest, our approach then iteratively conducts
mixed concrete and symbolic execution to explore the different execution paths
that depend on trigger inputs and observes the trigger-based behavior. In par-
ticular, trigger inputs will be represented symbolically, and the mixed concrete
and symbolic execution builds up symbolic expressions and constraints as it goes
down a path. When it hits the next conditional jump depending on symbolic in-
puts, it will generate two path predicates: one for the current path continuing with
the true branch, and one for the current path continuing with the false branch. The
path predicate is therefore the condition on trigger inputs which make the pro-
gram execution go down that path.

• Step 3: The two path predicates will then be given to a solver to see whether each
formula can be satisfied, indicating whether the path is feasible. Each feasible
branch will then indicate a new feasible path to be further explored. The feasible
path(s) are then added to the set of paths to be further explored. For each feasible
path, the solver also returns the assignment to the trigger inputs to make the
formula true, i.e., the trigger values.

• Step 4.a: Our approach then selects the next path from the set of feasible paths
to be further explored. The process then goes back to Step 2 to continue mixed
concrete and symbolic execution along the chosen path. Execution will continue
until it hits the next conditional jump that depends on trigger inputs as described
in Step 2. In this manner we can force the program execution down any feasible
path and thus be able to iteratively explore different execution paths depending
on trigger inputs.

72 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

• Step 4.b: Our approach then executes the program concretely using the trigger
values returned by the solver in Step 3, to observe the trigger-based behavior in
a controlled environment.

System Overview. We have designed and implemented a system, MineSweeper, to
realize the above approach. At a high level, MineSweeper takes as inputs the binary
program to be analyzed and the trigger type specifications. MineSweeper provides a
default list of trigger types commonly used in malware for the user to choose from,
and also allows the user to define their own trigger types of interest. If the user does
not know what trigger type the malware may use, MineSweeper can offer further
assistance by monitoring for any possible inputs to the program, e.g., system calls
and library calls, and then prompting the user whether the input source should be
further considered as a trigger type of interest (Section 3.1).

MineSweeper has four components which implement the aforementioned pro-
cess: the Mixed Execution Engine, the Solver, the Path Selector, and the Runner, as
shown in Figure 2. The Mixed Execution Engine performs mixed concrete and sym-
bolic execution and creates the path predicates. The Solver solves the path predicates
to see whether they can be satisfied, and thus are feasible. For feasible paths, the
Solver constructs an assignment to the input variables from the trigger types which
will make the path predicates to be true. The newly discovered feasible path(s) are
added to the set of paths to be further explored. The Path Selector decides which
path among the set of feasible paths should be explored next. The Mixed Execution
Engine then continues the mixed concrete and symbolic execution along the selected
path. The constructed assignments (the trigger values) are then used as inputs to the
Runner which feeds these assignments as inputs to the original program and exe-
cutes the original program, thus allowing us to observe the trigger-based behavior in
a controlled environment.

Note that for most malware the source code is not available. Therefore, we need
to perform mixed concrete and symbolic execution on the binary directly.

Previous work on mixed concrete and symbolic execution only applies to source
code [6, 14]. To the best of our knowledge, no previous work could enable mixed
concrete and symbolic execution directly on binaries. Even though the underlying
principles between mixed execution on source code and binaries may have some
parallels, mixed execution of binaries is significantly more challenging to deal with,
and the actual techniques and engineering required are substantially different.

At a high level, previous work on mixed execution with source code statically
rewrites the program itself to perform the mixed execution. To enable mixed concrete
and symbolic execution on binaries, even those that may be obfuscated or packed,
we employ whole-system emulation and dynamic binary instrumentation so that we
can perform mixed concrete and symbolic execution on the fly.

Automatically Identifying Trigger-based Behavior in Malware 73

3 MineSweeper Design

In this section, we describe the detailed design and implementation of the compo-
nents in MineSweeper, including the trigger type specification, the Mixed Execution
Engine, the Solver, the Path Selector, and the Runner.

3.1 Trigger Type Specification

The user begins analysis by specifying one or more trigger types of interest. Allowing
multiple trigger types is necessary because trigger-based behavior may depend on
multiple trigger types. For instance, malware may be triggered by a combination of
the system time and a keyword in keyboard inputs.

By default, MineSweeper provides a list of typical trigger types commonly
used in malware, including keyboard inputs, network inputs, the system clock, and
other library and system calls used commonly in malware as triggers. In addition,
MineSweeper is designed to be easily extensible and allows the user to add addi-
tional trigger types. For example, the user can specify any function call or system
call as a trigger type.

For each trigger type that the user defines, he needs to specify where in memory
the trigger inputs will be stored so that the Mixed Execution Engine can properly
assign symbolic variables during mixed execution. For example, if the user specifies
the return values of a new function call as a trigger type, he needs to specify where
the return values are stored, e.g., in which registers, or the return memory structure
of the call or call-by-reference pointers. In our running example, the specification
would include that GetLocalTime is a trigger type. The specification would also
include that GetLocalTime stores its results in a 16-byte structure pointed to by
a stack value when GetLocalTime is called. During mixed execution, this infor-
mation is used so that a call to GetLocalTime will result in a fresh symbolic
variable for each byte returned. Such information is usually readily available in API
documentation.

If the user does not know what trigger type the malware may use, they can con-
figure MineSweeper to offer additional assistance. In this case, MineSweeper will
monitor the program execution for possible inputs to the program, e.g., system calls
and library calls. When a new input source is detected, MineSweeper prompts the
user whether the input source should be considered a trigger type of interest.

3.2 The Mixed Execution Engine

Given the specified trigger types and the program, the Mixed Execution Engine per-
forms mixed concrete and symbolic execution. In particular, trigger inputs are rep-
resented as symbolic variables, and the mixed execution builds up symbolic expres-
sions and constraints on trigger inputs as it executes. When the mixed execution
encounters the next conditional jump which depends on symbolic values, it gener-
ates two path predicates representing the constraints on the trigger inputs for two
new paths: one is the current path continuing with the true branch, and the other

74 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

is the current path continuing with the false branch. The Mixed Execution Engine
then gives both path predicates to the Solver to decide whether either one is feasible.
Feasible paths are then added to the set of paths to be further explored, and the Path
Selector decides which path to explore next.

In this section, we first describe how we enable mixed execution on binaries by
using whole-system emulation and dynamic binary instrumentation, and then de-
scribe how we create new symbolic variables for trigger inputs. Since x86 instruc-
tion set is very complex, we convert x86 instructions to be symbolically executed to
a simpler Intermediate Representation (IR) that we design, and we perform symbolic
execution on the IR. Since mixed execution can be viewed at high level as achieving
the same results as plain symbolic execution, but with performance enhancements,
for ease of explanation, we explain first plain symbolic execution and how we gener-
ate path predicates in Section 3.2, and then explain how we enhance the performance
by using mixed execution in Section 3.2.

Whole system emulation and dynamic binary instrumentation. Since for most
malware we do not have access to source code, we need to perform mixed symbolic
and concrete execution with only access to the program binary. Static binary instru-
mentation is in general considered an unsolved problem, not to mention that malware
routinely use code packing and obfuscation which makes static binary instrumenta-
tion look even more hopeless. Thus, we take the approach of dynamic binary instru-
mentation. In particular, we build our Mixed Execution Engine on top of a whole
system emulator (in our implementation, we use QEMU [2], Section 4.1) and per-
form dynamic binary instrumentation on-the-fly. By adding hooks to the emulator,
our system is notified for each instruction to be executed in the original program, at
which time we insert code to perform the mixed execution.

To perform mixed execution, for each instruction to be executed in the original
program, we need to insert code to do two things: (1) check whether the instruction
will read any trigger inputs, and if yes, we need to create new symbolic variables to
represent the trigger inputs; (2) depending on the instruction, executes the instruction
concretely (if all operands are concrete) or symbolically (if at least one operand is
symbolic). We describe how we accomplish these two things in more detail below.

Creating New Symbolic Variables for Trigger Inputs

For each instruction to be executed in the original program, the Mixed Execution En-
gine first checks whether the instruction reads any inputs from the trigger types, such
as I/O reads including keyboard and network inputs or returns from a function call
of a trigger type. If so, the Mixed Execution Engine then assigns the locations (e.g.,
return registers, stack variables, etc.) from the specification fresh symbolic variables.

In the case where a function call is declared as a trigger type, when the entry
point of the function call is executed, Mixed Execution Engine identifies the return
address. Then, when the function call returns the Mixed Execution Engine sets the
specified buffers on the stack or the registers returning values as fresh symbolic vari-
ables. Note that this is why we require the user to provide the information about

Automatically Identifying Trigger-based Behavior in Malware 75

which buffer on the stack or which register contains inputs from the trigger types
when the user defines a particular function as a trigger type, as mentioned in Sec-
tion 3.1.

Symbolic Execution

At a high level, mixed concrete and symbolic execution can be viewed as achieving
the same result as plain symbolic execution, but more efficiently. Thus, for ease of
explanation, we explain in this section how we perform plain symbolic execution in
our problem setting, and explain in Section 3.2 how we enhance the efficiency of
plain symbolic execution using mixed concrete and symbolic execution.

Translating to an Intermediate Representation (IR). In order to perform sound
symbolic execution, we must correctly interpret the semantics and effects of all
assembly statements. The x86 instruction set is complex—many instructions have
implicit side effects (e.g., add sets the eflags register on overflow), may have
implicit operands (e.g., the memory segment selector), may behave differently for
different operands (e.g., shifts by 0 do not set eflags), and there are even single
instruction loops (e.g., rep instructions). Thus, to reduce the complexity of the sym-
bolic execution logic, for each instruction that needs to be executed symbolically, we
first translate it into a sequence of much simpler intermediate representation (IR)
statements that we have designed. Our IR resembles a RISC-like assembly language,
as shown in Table 1. The translation from an x86 instruction to our IR is designed to
correctly model the semantics of the original x86 instruction, including making all
the implicit side effects explicit (e.g., setting the eflags register). We then perform
symbolic execution on the IR statements, instead of directly with the x86 instruction
set.

Instructions i ::= ∗(r1) := r2|r1 := ∗(r2)|r := v|r := r1�bv

|r := �uv | label li | jmp ℓ | ijmp r

| if r jmp ℓ1 else jmp ℓ2

Operations �b ::= +,−, ∗, /,≪,≫, &, |,⊕, ==, ! =, <,≤ (Binary operations)

�u ::= ¬, ! (unary operations)

Operands v ::= n (an integer literal) | r (a register) | ℓ (a label)

Reg. Types τ ::= reg64 t | reg32 t | reg16 t | reg8 t | reg1 t (number of bits)

Table 1. Our RISC-like assembly IR. We convert all x86 assembly instructions into this IR.

Our IR has assignments (r := v), binary and unary operations (r := r1�bv and
r := �uv where �b and �u are binary and unary operators), loading a value from
memory into a register (r1 := ∗(r2)), storing a value (∗r1 := r2), direct jumps (jmp
ℓ) to a known target label (label ℓi), indirect jumps to a computed value stored in
a register (ijmp r), and conditional jumps (if r then jmp ℓ1 else jmp ℓ2). Figure 3

76 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

shows a small portion of the x86 assembly for our running example translated into
our IR.

// 4012b1: call 401810 <_GetLocalTime@4>

...
// 4012b9: cmpw $0x9,0xffffffee(%ebp)

t0:=ebp+0xffffffee; t1:=*t0; t2:=0x9 6= t1;
// 4012be: jne 40132d <_main+0xad>

if t2 6= 0 jmp 40132d else jmp 4012c0;
// 4012c0: cmpw $0xa,0xfffffff0(%ebp)

t3:=ebp+0xfffffff0; t4:=*t3; t5:=0xa 6= t4;
// 4012c5: jne 40132d <_main+0xad>

if t5 6= 0 jmp 40132d else jmp 4012c7;
// 4012c7: cmpw $0xb,0xffffffea(%ebp)

t6:=ebp+0xffffffea; t7:=*t6; t8:=0xb 6= t7;
// 4012cc: jne 40132d <_main+0xad>

if t8 6= 0 jmp 40132d else jmp 4012ce;
// 4012ce: cmpw $0x6,0xfffffff2(%ebp)

t9:=ebp+0xfffffff2; t10:=*t9; t11:=0x6 6= t10;
// 4012d3: jne 40132d <_main+0xad>

if t11 6= 0 jmp 40132d else jmp 4012d5;
// 4012d5: execute ddos code

// 40132d: do not execute ddos code

Fig. 3. The IR for the running example.

Symbolic Execution At a high level, symbolic execution builds up symbolic expres-
sions for variables (such as registers and memory). In our setting, symbolic execution
builds a path predicate for a chosen path, i.e., the formula that the trigger inputs need
to satisfy in order for the code execution to go down that path. Intuitively, each con-
ditional jump depending on trigger inputs along the chosen path places a constraint
on the trigger inputs, since the different values of the trigger inputs will make the
conditional jump go one way or the other. The path predicate is simply a conjunction
of all these constraints.

We generate the symbolic formulas on-the-fly in a syntax-directed manner. Sym-
bolic execution was first introduced by King [17]. Below we give a brief description
of how we perform symbolic execution and compute the path predicate for the cho-
sen path in our setting.

• For binary, unary, and assignment operations we generate a let expression. A
let expression binds a unique variable name to the expression computed, e.g.,
in Figure 4 the name t0 is bound to the expression “ebp + 0xffffffee”. Vari-
able names are derived from the operand names, and renamed if necessary to
be unique. For example, in Figure 4 we see that each incarnation of the virtual
register t is uniquely named. Also note that each variable definition is properly
scoped by the preceding statements.

Automatically Identifying Trigger-based Behavior in Malware 77

let Mi = λ.x
if x == (ebp+0xffffffee) then <wMonth>
else if x == (ebp+0xfffffff0) then <wDay>
else if ... else Mi−1 x

in
let t0 = ebp + 0xffffffee in
let t1 = Mi t0 in
let t2 = 0x9 6= t1 in
let t3 = ebp + 0xfffffff0 in
let t4 = Mi t3 in
let t5 = 0xa 6= t4 in
let t6 = ebp + 0xffffffea in
let t7 = Mi t0 in
let t8 = 0xb 6= t7 in
let t9 = ebp + 0xfffffff2 in
let t10 = Mi t9 in
let t11 = 0x6 6= t10 in

(t2 == 0) // wDay is 9
∧ (t5 == 0) // and wHour is 10
∧ (t8 == 0) // and wMonth is 11
∧ (t11 == 0) // and wMinute is 6

Fig. 4. The path predicate generated.

• We symbolically execute loads and stores using λ-abstractions [21]. A store cre-
ates a new memory, which is a new λ abstraction. A load is modeled as a λ
application to mimic reading from the current memory state. The λ-abstraction
acts like an array: given an address, it returns the last value written to that address.
Let M0 represent an initial memory state. Then a store *a := v to memory ad-
dress a with value v (in memory context M0) can be modeled as an if-then-else
expression with argument x:

M1

.
= λx.if x == a then v else (M0 x)

This is a function which takes an argument — an address x — and returns the
value associated with the address, e.g., v if x == a. A memory read of address
ar is performed by function application (Mi ar)

.
= if ar == a then v else

(Mi−1 ar). The application evaluates the if-then-else expression, returning the
last-written value to the address ar.

• When encountering a conditional jump, we generate two path predicates: one for
the current path continuing with the true branch, and the other for the current path
continuing with the false branch. For example, assuming the path predicate for
the current path before the conditional jump is F , for the conditional jump if e
then jmp L1 else jmp L2 we generate the path predicates F ∧ (e ==
0) for the path continuing with the true branch, and F ∧ (e 6= 0) for the path
continuing with the false branch. The generated path predicates will be then given
to the Solver.

78 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

Figure 4 shows the path predicate generated for reaching the call to ddos (with
Mi representing the state of memory after the call to GetLocalTime).

Mixed Concrete and Symbolic Execution

To enhance the efficiency of symbolic execution, we evaluate any instruction whose
operands are not symbolic concretely on the real processor. For example, if x =
5 + 6; x = x + x;, there is no reason to build “let x = 5+6 in let x1 = x + x”
when we can evaluate it natively and generate x = 22. Also, for conditional jumps
which do not depend on symbolic values, then we know the direction taken does not
depend on the trigger, and thus we can just execute it concretely. Concrete execution
reduces the size and complexity of the formula, but can only be performed if we know
for certain that all operands are concrete. Conducting both concrete and symbolic
execution is called mixed execution. In our setting, trigger inputs are represented
as symbolic variables, and therefore any operand only has a symbolic value if it is
derived from trigger inputs. Thus, the vast majority of instructions can potentially
be evaluated concretely, offering significant performance improvements over plain
symbolic execution.

To enable mixed execution, for each instruction issued, we first need to decide
whether each operand is symbolic or not. For registers, we maintain a register status
table which indicates whether a register holds a symbolic value, and if so, the cor-
responding symbolic variable. The register status table is updated during symbolic
execution as writes to registers happen.

Memory operands are more complex, and it is important to distinguish between
memory addresses and memory contents, each of which can be either symbolic or
concrete. In the simplest case, all the memory reads and writes are to concrete mem-
ory addresses. In this case, we simply maintain a data structure which remembers
which memory cells contain symbolic values and the corresponding symbolic val-
ues. A read of a memory cell of a concrete address whose content is symbolic loads
the corresponding symbolic value. A write of a symbolic value to a concrete memory
address similarly adds an association between the symbolic value and the concrete
memory index into our data structure .

Reading or writing memory with symbolic addresses require more care because
we do not know exactly what memory cells may be read or written. In these cases,
since we cannot say definitively that all operands are concrete, we must perform the
operation symbolically. In addition, after a write to a symbolic address, we must per-
form any subsequent instruction that may load a value from that cell symbolically
(in the worse case, all subsequent instructions). Note that this way the correctness
is guaranteed since the memory operations will be modeled as λ-abstraction as de-
scribed in Section 3.2.

Thus, memory operations on symbolic addresses, especially stores to a symbolic
address, pose a potential efficiency problem (though not a correctness problem).
Since fewer instructions may be able to be executed concretely, this could increase
the formula size, and potentially increase the difficulty for the Solver to solve for the
formula. For example, in some cases, a read from a symbolic address may result in a

Automatically Identifying Trigger-based Behavior in Malware 79

case split when solving the formula: the Solver may need to create a separate formula
to solve for each possible index read. Similarly, a write to a symbolic address will
lead to a case split on subsequent reads since we need to consider the case where
the index read coincides with the index written. We treat the Solver as a pluggable
component, and can plug in the best solver capable of analyzing these situations.

However, in our tests, reads and writes with symbolic addresses happen rarely,
thus the efficiency issue with memory operations on symbolic addresses currently
does not prevent us from achieving results in practice from our experience. As future
work, we do plan to build in the ability to reason about where the symbolic addresses
might point to, i.e. alias analysis for binaries. Such reasoning is difficult since mem-
ory is treated as one contiguous array and we do not know where one object stops and
another begins (unlike in source code). Although binary alias analysis is out of scope
for this chapter, we have investigated how such alias analysis may be conducted [5].
We leave incorporating these ideas into our current infrastructure as future work.

3.3 The Solver

For each generated path predicate, the Solver checks whether it is satisfiable. One of
three things can happen:
• The solver returns satisfiable, which means the path is feasible. In this case, the

solver adds the feasible path to the set of paths to be further explored. In addition,
the solver also generates an example set of input assignments, i.e., the trigger
values, which will lead the program execution down the feasible path. The trigger
values are then given to the Runner to concretely execute the program with the
trigger values and observe the trigger-based behavior.

• The solver returns unsatisfiable. This means that the path is infeasible, i.e., no
input will ever lead us down the exact specified path, and we mark the path as
such.

• The solver takes too much time or memory. We do not consider this path further.
Other choices are possible, e.g., increasing the time-out. One interesting possibil-
ity is to optimistically continue symbolically executing the path. If in subsequent
execution we run into code that does not depend upon the trigger type, we can
still concretely execute it. For example, in:

if(SHA1(x) == y)
ddos()

we may not be able to solve for x for the comparison to be true, but we could still
optimistically execute the ddos code. Technically we would not know whether
the path is really feasible, thus do not know whether the malicious behavior will
really be exhibited in this case. However, sometimes the information about the
existence of such malicious behavior in a piece of malware may still offer value
to the analyst.

Note that the practical power of our system would thus depend on the power
of the solver. MineSweeper is extensible; we can plug in any Solver appropriate,
and our system thus can automatically benefit from any new progress on decision
procedures, etc. Currently in our implementation, we use STP as the Solver [6, 12].

80 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

3.4 The Path Selector

The Path Selector takes as input the set of currently discovered feasible paths to be
explored, and outputs the next path selected to be explored. The Path Selector can
use different heuristics to decide which path to pick from the set of feasible paths.
For example, it can use breadth-first search, depth-first search, or other strategies.
Ideally, we would like to have a strategy to help us uncover trigger-based behavior
as early as possible.

In our approach, our strategy is to explore as many conditional jumps which
depend upon trigger inputs as possible. Thus, we take a BFS-like approach where
we will always try and explore a trigger-dependent branch that has never been seen
before revisiting loop bodies.

When MineSweeper encounters a loop, it will initially try to explore both
branches of the loop header (the loop header is the conditional jump which one
branch executes the loop body, and the other branch leaves the loop). This mim-
ics executing the loop once. Additional loop iterations will be added to the end of
the path selection queue. We have found this strategy the most effective at quickly
uncovering malicious behavior in our real world examples.

3.5 Runner

The runner takes as input the trigger values and executes the program with the trig-
ger values in a controlled environment. In our design, the Runner intercepts any
calls to the specified trigger types, and replaces the returned answer with the given
trigger values. Note that since each trigger input has a fresh symbolic variable in
the mixed execution, we will be able distinguish which trigger values to supply for
which function returns. For example, the Solver may specify different assignment
values for the first and second time a function call of a trigger type returns; in this
case, the Runner will feed the different trigger values according to whether it is the
first or second time the relevant function returned. In our running example, suppose
the Solver output that the time should be 11/9 at 10:06 (in reality, the Solver would
return an assignment of values to the trigger inputs, e.g., a value for byte 1-14 of the
specified trigger type). The Runner would intercept the GetLocalTime call and
replace the 14-bytes returned with the supplied time of 11/9 10:06.

4 Implementation and Evaluation

4.1 Implementation

We have implemented the above components in C/C++ and OCaml. We use QEMU [2],
a whole system emulator, as the basis for dynamic binary instruction in the Mixed
Execution Engine. Our implementation consists of about 41,000 lines of code.

Mixed Execution Engine Implementation. The translation from an x86 binary to
our IR is about 20,000 lines of C/C++ code and 9000 lines of OCaml. Much of the

Automatically Identifying Trigger-based Behavior in Malware 81

complexity arises from the various flags and status registers different instructions
may set and test. We have also developed an extensive testing infrastructure to verify
the translation is correct: we can translate an x86 program into our IR, then back to
x86, and have it run correctly.

The concrete and symbolic execution component is much smaller, compromising
about 12000 lines of C/C++ code. In our implementation, we perform Mixed Execu-
tion Engine by a) translating the instruction into our IR, b) consulting our register and
memory maps (as discussed in Section 3.2) to decide which operands are symbolic,
and c) executing the instruction either symbolically or concretely. Also, as soon as
we hit a symbolic memory address, we switch to the symbolic execution mode as
described in Section 3.2. For efficiency, we process a block of instructions at a time.
For us, a block consists of all sequential statements up to the next conditional jump.
We load an instruction cache in the Mixed Execution Engine, then have it perform
the above operations on a block at a time.

One potential issue is that we may encounter very long concrete runs after trigger-
dependent branches. In our implementation, we use timeouts if there are other paths
to explore so that we can move on and explore the new paths instead of continuing
along very long runs that do not demonstrate any trigger-based behavior.

Solver Implementation. We use STP [6, 12], a decision procedure well suited for
bit-vector operations commonly found in assembly, as our Solver. STP can reason
about any formula over a finite domain. Since our paths are of finite length, and each
variable can take on a finite value, STP could, in theory, answer any question we
posed to it. However, in real life, STP may run out of memory, or take too long to
return an answer. We found that formulas involving modulus or division operations
can substantially increase the answer time. However, overall we have found STP
effective in our experience.

Path Selector Implementation. Since trigger-based behavior is branch-based, our
Path Selector follows a branch-based strategy. Conceptually, in our implementation,
we would do this by forking the execution of our Mixed Execution Engine at every
symbolic jump that we encounter. However, due to the size and complexity of saving,
managing, and restoring all the state, we simulate this behavior by simply running
the Mixed Execution Engine multiple times.

As part of our implementation, we also build a control flow like graph of con-
ditional jumps which depend on the trigger inputs to provide visual feedback to
the user. This graph provides visual feedback to the analyst as to the progress of
MineSweeper. Vertices in the graph are conditional jumps which depend on the trig-
ger inputs. The edges are the control flow relationship between such jumps. Figure 5
is an example of the graph generated for NetSky. By looking at the graph the analyst
can get a good high level picture as to the progress of MineSweeper, the relationship
among the path predicates for the trigger conditions, and the relationship among the
possibly many trigger conditions themselves.

82 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

4.2 Evaluation

In order to test the effectiveness of our method, we have evaluated MineSweeper on
real malware. Our real world examples include widely spread email worms (Net-
Sky [16] and MyDoom [13]), DDoS tools (TFN [3]), and a keylogger (Perfect Key-
logger [1]). All of our experiments were performed on a 2.8Ghz Pentium dual-core
processor with 4GB of RAM. Our experiments demonstrate that our techniques are
capable of automatically analyzing current real world malware examples. Our ex-
periments also indicate that the total analysis time is quite small compared to an
otherwise manual approach.

Program Total Time Total STP Time Total Nodes # Trigger Jumps Percent
Sym.
Insn.

MyDoom 28 min 2.2 min 802042 11 0.00136%

NetSky 9 min 0.3 min 119097 6 0.00040%

Perfect Keylogger 2 min <0.1min 4592 2 0.00508%

TFN 21 min 6.5 min 859759 14 0.00052%

Table 2. Our results on several real-world malware examples.

Results Summary. Table 2 shows the results of our experiments. In this table, the
“Total Time” column is the total end-to-end experiment time for MineSweeper to
analyze each malware, i.e., the time to explore all conditional branches which depend
on the trigger inputs. Note that MineSweeper is an unoptimized prototype, and that
subsequent optimizations will likely bring the total time down. We break out the total
time spent in STP. In our experiments, we spent about 13% time on average solving
the path predicates.

The “Total Nodes” column displays the number of STP nodes used in solving
the formula. We use this as an indicator for the complexity of the formula that we
generate.

The “# Trigger Jumps” column counts how many conditional jumps were based
on trigger inputs. This number is important because it demonstrates that a relatively
small number of branches need to be explored in order to uncover the trigger-based
behavior in these experiments.

We also show the percent of symbolic vs. number of concrete (x86) instructions
executed. These numbers indicate that mixed execution reduces the formula a signif-
icant amount. This demonstrates that mixed execution is a promising approach.

Below we discuss each experiment in more detail.

Automatically Identifying Trigger-based Behavior in Malware 83

NetSky

Win32.NetSky is a Win32 worm that spreads via email. The NetSky worm was one
of the most widely spread worms of 2004. NetSky is known to have time triggered
functionality, however different variants trigger at different times. For example, the
C variant is triggered on February 26, 2004 between 6am and 9am [9]. The D variant
is triggered on March 2, 2004, when the hour is between 6am and 8am [16]. The
NetSky binary we analyzed was packed to prevent static analysis.

In our analysis, MineSweeper output that the library call GetLocalTime is a
potential trigger type. We specified GetLocalTime as the trigger type, which re-
turns a data structure that contains fields for the current month, day, year, hour, and
minute. MineSweeper then automatically explored NetSky and analyzed its trigger-
based behavior. Figure 5 shows a graph of program paths which depend on the trig-
ger. In this graph, node 1 represents the day comparison, node 2 the month, node 3
the year, and nodes 4 through 6 check the hour. As we can see, in order to gener-
ate an attack, the date must be February 26, 2004, between 6-9am. According to the
Symantec advisory, this is when NetSky.C attacks [9]. We can also see that when the
time doesn’t match, Netsky will loop back to the beginning and check again.

Overall, MineSweeper was able to discover and uncover the trigger-based be-
havior in about 9 minutes. We verified that all known trigger-based behavior was
discovered.

1. Day == 26

false 2. Month == 2true

false 3. Year == 2004

true

false
4. Hour == 6

true

5. Hour == 7

false
Attack!

true

6. Hour == 8

false

true

false

true

Fig. 5. MineSweeper generated graph showing NetSky’s trigger-based behavior.

MyDoom

Win32.MyDoom [13] is another mass-mailing email worm with a built-in denial-of-
service time-bomb. Different variants have different trigger dates. All variants launch
DDoS attacks, most commonly against www.microsoft.com and www.sco.com. Ad-
ditionally, most variants contain a termination date which causes them to stop prop-
agating. The MyDoom binary we analyzed was packed. Overall, MineSweeper was
able to discover and uncover the trigger-based behavior in MyDoom in about 28
minutes. We verified that all know trigger-based behavior was discovered.

MineSweeper output that the library call GetSystemTimeAsFiletimewas
a potential trigger type during its initial run. GetSystemTimeAsFiletime re-
turns a structure which contains two 32 bit integers representing the current date and

84 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

time. After adding this specification, MineSweeper discovered MyDoom’s behavior
depends upon 11 different comparisons with the current date. MineSweeper automat-
ically generated the path predicates, which STP solved. After solving these values,
we were able to discover the termination date (Feb 12, 2004) as well as two DDoS
dates (Feb 1 and 3, 2004). Feeding these values into the MineSweeper confirmed the
DDoS. In addition, these values are confirmed by Symantec as the DDoS dates for
MyDoom [13].

Perfect Keylogger

Perfect Keylogger [1] is commercial software that has the ability to trigger itself
based on window title (i.e. logging is activated and deactivated by the title of the
window that is the target of the keystrokes).

MineSweeper identified GetWindowTitle as a possible trigger type. Once
we added the trigger type specification, MineSweeper discovered that Perfect Key-
logger checks if the current window name contains a pre-configured key string via
the strstr library call. In our experiment, we found that MineSweeper branched
heavily in the strstr call, e.g., checking if the first byte of the current window
name was the same as the key’s first byte, then checking if the second byte of the
current window name was the same as the key’s second byte, etc. In this scenario,
MineSweeper continued to make progress, albeit very slowly.

However, since strstr is a standard library function, we can be more efficient
by replacing strstr calls with calls to a summary function. The summary function
concisely summarizes the effects of strstr. Note that summary functions need
only be defined once, and can be reused when analyzing other examples, and that
they are a widely adopted technique in programming language research [7,28]. Once
we added this summary function, MineSweeper was able to quickly discover the
trigger value in about 2 minutes. We verified that all know trigger-based behavior
was discovered.

TFN: Tribe Flood Network

TFN [3] is a distributed denial-of-service attack zombie. Zombies are often found in
the wild where the inner workings are unknown, e.g., the zombie may respond only
to unusual messages. In the case of TFN, communication is carried out over ICMP.
Different versions of TFN use different maps from command values to actions. Our
goal in this experiment is to determine network inputs that would cause TFN to
exhibit these different actions.

The original version of TFN that we located was Linux software. For our analy-
sis, we have ported it to Windows since our current implementation is for Windows.
Therefore, our version is not vanilla TFN, but it will still allow us to do the relevant
analysis.

MineSweeper initially output that a raw ICMP network socket was the trigger
type. After adding the appropriate specification, MineSweeper was able to identify
and expand 14 conditional jumps that depend on network data. Using the solved

Automatically Identifying Trigger-based Behavior in Malware 85

formulas that we created, we were able to determine the various command values
that this version of TFN would respond to. This complex data was easily generated
in only 21 minutes using the MineSweeper system.

5 Discussion

In this chapter, we have shown that automatically analyzing trigger-based behavior
in malware is possible and described our approach and system as a first step towards
this goal. In this section, we discuss lessons we learned and limitations of the current
MineSweeper system.

Evasion Attacks. Identifying trigger-based behaviors in malware is an extremely
challenging task. Attackers are free to make code arbitrarily hard to analyze. This
follows from the fact that, at a high level, deciding whether a piece of code contains
trigger-based behavior is undecidable, e.g., the trigger condition could be anything
that halts the program. Thus, a tool that uncovers all trigger-based behavior all the
time reduces to the halting problem.

However, this theoretic result does not mean the task of providing automatic as-
sistance to identifying trigger-based behavior is futile. First, as our experiment results
demonstrate, our system is effective in identifying trigger-based behavior in malware
in the real world. Secondly, even when the attacker tries to make the code difficult to
analyze, e.g., to make the formula generated difficult for the Solver to solve, our sys-
tem offers value over the hopeless alternative, manual analysis. When the formulas
are difficult for a Solver to solve, it is most likely that it will be even more diffi-
cult for a human to think it through in his head. In addition, the formulas generated
are valuable in themselves: they concisely summarize the conditions necessary for
potential trigger-based behavior which can assist in further analysis.

One popular mechanism used to thwart analysis is static binary obfuscation or
run-time packing. These techniques are designed to make static analysis difficult.
Since MineSweeper analyzes malware as it runs, not statically, these evasion tech-
niques do not pose a problem to our approach, as demonstrated by our experiments.

Limitations of Current Implementation and Future Work. The current imple-
mentation of MineSweeper has a few limitations. First, system calls with symbolic
arguments are difficult, as they require either a) we build a symbolic formula over the
relevant code executed by the kernel, or b) create function summaries. We choose to
provide summary functions to keep the size of the generated formulas manageable,
thus MineSweeper only supports system calls with symbolic arguments when we
have defined the appropriate function summary. Summary functions need to be spec-
ified only once, and in general are useful and are widely adopted in research.

We iteratively explore paths of finite length, thus can iteratively reason about
longer and longer inputs. Handling arbitrary length inputs is a difficult problem, and
usually requires (in the worse case) manually supplying program invariants. Since
we have found many triggers are small and can be handled via our iterative process,
we leave adding support for invariants as future work.

86 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

Finally, we currently do not handle indirect jumps dependent upon trigger values,
e.g., t = GetLocalTime; jmp t->mDay;. In order to handle such cases, we
would need to reason about the possible values for the mDay. This is certainly possi-
ble: we use the Solver as an oracle to enumerate possibilities, and iteratively explore
them. We leave incorporating this step as future work.

As mentioned in Section 3.2, our original support for memory reads and writes
with symbolic indexes was handled inefficiently. However, we have recently im-
proved our system to more efficiently handle these memory accesses. This technique
is described in greater detail in a later work [4].

6 Related Work

Time-bomb analysis. Crandall et al. [8] recently proposed a virtual-machine-based
analysis technique to analyze the timetable of malware. Their technique uses time
perturbation to identify system timers in Windows. Their technique also uses lim-
ited symbolic execution and weakest precondition calculation to identify some time-
related predicates. This is a good first step towards automatic analysis of time-bombs,
however, compared to our holistic approach, their technique does not follow control
flow, and can only perform limited symbolic execution, not a full system mixed con-
crete and symbolic execution. As a result, much of their analysis done in the chapter
is manual, and their techniques miss several important time-related predicates. Ad-
ditionally, while their technique is specialized for time-bombs, ours is designed to
support more general trigger types.

Symbolic execution. Symbolic execution was first proposed by King [17]. Re-
cently, symbolic execution has been used for automatic test case generation [14,
22,29], sound replay of application dialog [20], vulnerability-based signature gener-
ation [14], and program verification, e.g., ESC/Java [10, 11].

Mixed Execution. DART and EXE have proposed mixed execution for finding bugs
in software and have demonstrated that this approach is effective in increasing cov-
erage for automatic testing [6, 14]. Their work is with source code: ours is with
binaries. At a high level, the approaches for mixed execution on source code and
binaries are similar in spirit. However, the techniques and engineering of a solution
is considerably different. For example, as mentioned one big issue is to deal with the
x86 instruction set. Though this may seem like a small side issue, in reality the engi-
neering issues are quite immense. Another difference is source code mixed execution
is usually performed by rewriting the source code so that appropriate constraints are
generated as it executes. For us, we must perform the instrumentation on the fly.

Moser et al. [19] have independently and concurrently proposed a similar method
of exploring multiple paths in a binary using symbolic execution. They have also
demonstrated positive results using this approach. While our approach is similar, our
system is capable of handling bit-level operations and more complicated, nonlinear
formulas for symbolic variables within the system.

Automatically Identifying Trigger-based Behavior in Malware 87

7 Conclusion

We have proposed that automatically analyzing trigger-based behavior in malware is
possible, and designed and implemented a system using mixed execution as a first
step towards this goal. Since often trigger-based analysis of malware is manual, any
help provided by MineSweeper is of great use. In our experiments with real-world
malware, we demonstrate MineSweeper is capable of a) detecting the existence of
trigger-based behavior for specified trigger types, b) finding the trigger condition, c)
Find input values that satisfy the trigger condition, when the trigger condition can
be solved, and d) feeding the trigger values to the program, causing it to exhibit the
trigger-based behavior, so that it may be analyzed in a controlled environment. Even
when automatic analysis fails, MineSweeper can provide an analyst with valuable
information about potential trigger-based behavior: information which previously
would have to be manually obtained. Automatic trigger-based behavior detection is
a challenging task, and we hope our work sheds new light and encourages further
work in this area.

Furthermore, this approach is specifically relevant to analysis of botnets. As dis-
cussed, botnets are merely a specific example of the general class of malicious soft-
ware containing hidden behaviors. We have further demonstrated this application in
other work [4].

References

1. Blazingtools perfect keylogger. http://www.blazingtools.com/bpk.html.
2. QEMU. http://www.qemu.org.
3. Tribal flood network. http://www.cert.org/incident_notes/IN-99-07.

html.
4. David Brumley, Cody Hartwig, Min Gyang Kang, Zhenkai Liang, James Newsome,

Pongsin Poosankam, Dawn Song, and Heng Yin. Automatically dissecting malicious
binaries. Technical Report CMU-CS-07-133, 2007.

5. David Brumley and James Newsome. Alias analysis for assembly. Technical Report
CMU-CS-06-180, Carnegie Mellon University School of Computer Science, 2006.

6. Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler. EXE:
A system for automatically generating inputs of death using symbolic execution. In Pro-
ceedings of the 13th ACM Conference on Computer and Communications Security (CCS),
October 2006.

7. Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C pro-
grams. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in Com-
puter Science, pages 168–176. Springer, 2004.

8. Jedidiah R. Crandall, Gary Wassermann, Daniela A. S. de Oliveira, Zhendong Su, S. Fe-
lix Wu, and Frederic T. Chong. Temporal search: Detecting hidden malware timebombs
with virtual machines. In Proceedings of the Twelfth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS XII),
October 2006.

88 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

9. Tony LeePeter Ferrie. Win32.Netsky.C. http://www.symantec.com/
security_response/writeup.jsp?docid=2004-022417%-4628-99.

10. C. Flanagan and J.B. Saxe. Avoiding exponential explosion: Generating compact ver-
ification conditions. In Proceedings of the 28th ACM Symposium on the Principles of
Programming Languages (POPL), 2001.

11. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,
and Raymie Stata. Estended static checking for java. In ACM Conference on the Pro-
gramming Language Design and Implementation (PLDI), 2002.

12. Vijay Ganesh and David Dill. STP: A decision procedure for bitvectors and arrays.
http://theory.stanford.edu/˜vganesh/stp.html.

13. Scott Gettis. W32.Mydoom.B@mm. http://www.symantec.com/security_
response/writeup.jsp?docid=2004-022011%-2447-99.

14. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated random
testing. In Proc. of the 2005 Programming Language Design and Implementation Con-
ference (PLDI), 2005.

15. Kevin Ha. Keylogger.Stawin. http://www.symantec.com/security_
response/writeup.jsp?docid=2004-012915%-2315-99.

16. Neal Hindocha. Win32.Netsky.D. http://www.symantec.com/security_
response/writeup.jsp?docid=2004-030110%-0232-99.

17. James King. Symbolic execution and program testing. Communications of the ACM,
19:386–394, 1976.

18. McAfee. W97M/Opey.C. ttp://vil.nai.com/vil/content/v_10290.htm.
19. Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple execution

paths for malware analysis. In IEEE Symposium on Security and Privacy. IEEE Press,
2007.

20. James Newsome, David Brumley, Jason Franklin, and Dawn Song. Replayer: Automatic
protocol replay by binary analysis. In Proceedings of the 13th ACM Conference on Com-
puter and and Communications Security (CCS), October 2006.

21. Benjamin C Pierce. Types and Programming Languages. The MIT Press, 2002.
22. Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine for

c. In ACM SIGSOFT Sympsoium on the Foundations of Software Engineering, 2005.
23. Symantec. Spyware.e2give. http://www.symantec.com/security response/

writeup.jsp?docid=2004-102614-1006-99.
24. Symantec. Xeram.1664. http://www.symantec.com/security_response/

writeup.jsp?docid=2000-121913-2839-99.
25. United States Department of Justice Press Release. Former computer network adminis-

trator at new jersey high-tech firm sentenced to 41 months for unleashing $10 million
computer “time bomb”. http://www.usdoj.gov/criminal/cybercrime/
lloydSent.htm.

26. United States Department of Justice Press Release. Former lance, inc. employee sen-
tenced to 24 months and ordered to pay $194,609 restitution in computer fraud case.
http://www.usdoj.gov/criminal/cybercrime/SullivanSent.htm.

27. United States Department of Justice Press Release. Former technology manager sen-
tenced to a year in prison for computer hacking offense. http://www.usdoj.gov/
criminal/cybercrime/sheaSent.htm.

28. Yichen Xie and Alex Aiken. Context- and path-sensitive memory leak detection. ACM
SIGSOFT Software Engineering Notes, 30, 2005.

29. Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson Engler. Automatically
generating malicious disks using symbolic execution. In IEEE Symposium on Security
and Privacy, 2006.

