
Botnet Detection Based on Network Behavior

W. Timothy Strayer1, David Lapsely1, Robert Walsh1, and Carl Livadas2

1 BBN Technologies, Cambridge, MA 02138
strayer|dlapsely|rwalsh@bbn.com

2 Intel Research, Santa Clara, CA 95054
carlx.livadas@intel.com

Current techniques for detecting botnets examine traffic content for IRC commands,
monitor DNS for strange usage, or set up honeynets to capture live bots. Our bot-
net detection approach is to examine flow characteristics such as bandwidth, packet
timing, and burst duration for evidence of botnet command and control activity. We
have constructed an architecture that first eliminates traffic that is unlikely to be a
part of a botnet, classifies the remaining traffic into a group that is likely to be part of
a botnet, then correlates the likely traffic to find common communications patterns
that would suggest the activity of a botnet. Our results show that botnet evidence can
be extracted from a traffic trace containing over 1.3 million flows.

1 Introduction

Botnets are one of the most dangerous species of network-based attack today because
they involve the use of very large, coordinated groups of hosts for both brute-force
and subtle attacks. These large groups of hosts are assembled by turning vulnerable
hosts into so-called zombies, or bots, after which they can be controlled from afar. A
collection of bots, when controlled by a single command and control (C2) infrastruc-
ture, form what is called a botnet. Botnets obfuscate the attacking host by providing
a level of indirection — the attack host is separated from its victim by the layer of
zombie hosts, and the attack itself is separated from the assembly of the botnet by an
arbitrary amount of time.

Botnets derive their power by scale, both in their cumulative bandwidth and in
their reach. Botnets can cause severe network disruptions through massive distributed
denial-of-service attacks, and the threat of this disruption can cost enterprises large
sums in extortion fees. They are responsible for a vast majority of the spam on the In-
ternet today. Botnets are also used to harvest personal, corporate, or government sen-
sitive information for sale on a thriving organized crime market. They are a reusable
and renewable resource.

Governments are taking the threat of botnets seriously. In August 2005, Britain’s
NISCC (National Infrastructure Security Coordination Centre, the UK equivalent

2 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

to US-CERT) issued a warning about the increase in trojan activity targeting UK
government networks, stating that “the attacker’s aim appears to be covert gathering
and transmitting of commercially or economically valuable information” [22]. In
November 2005, the discovery of a botnet in US Department of Defense [32] caused
the head of DoD networks to issue an “information assurance standdown,” followed
by a full sweep of all DoD networks [5].

Efforts are underway to quantify the botnet problem, detect the presence of bot-
nets, and design defenses against attacks by botnets. In academia, for example, Ra-
machandran et al. have been studying the effectiveness of monitoring queries to DNS
blackhole lists to find bot masters looking to see if their bots have been black-
listed [23]. Dagon et al. use diurnal models to compare the propagation rate for
different botnets [4]. Karasaridis et al. use suspicious host activity reports (scanning
ports, emailing spam and virus, generating DDoS traffic) as indicators of flows to
analyze [14]. And Kandula et al. suggest ways for websites and other services to
thwart bot and other mechanical agents by using Turing tests [13].

Non-profit and volunteer organizations are involved. The Honeynet Project [31],
for example, has done extensive work on capturing live bots and characterizing
botnet activities, and a group of white-hat vigilantes is scouring the Internet looking
for evidence of botnets [21]. Industry and federally funded centers are also active:
Symantec publishes a semi-annual Internet Security Threat Report [30] identifying
trends in attack mechanisms, and CERT maintains a Vulnerability Notes Database [1]
with information on botnet and other attack vectors.

Determining the source of a botnet-based attack is a particular challenge. First,
there is a distinction between the attack and the attack mechanism. For single-
flow [26] and “stepping stone” chained-flow [37] attacks, the flow is both the mech-
anism and the attack, but for botnets, the mechanism (the botnet) is constructed and
maintained independently of how it is used. Second, there is a difference in what
constitutes the “attack origin.” Tracing flow-based attacks attempts to yield a single
responsible host; with botnets, every zombie host is an attacker. Finally, most flow-
based traceback systems adopt a reactive approach to attacks; the tracing of packets
back to their origin hosts is triggered after an attack is detected. Botnets can exist
in a benign state for an arbitrary amount of time before they are used for a specific
attack, affording some opportunity to identify them prior to the attack.

We are interested in botnets with tight command and control infrastructures, as
shown in Figure 1. IRC is the most common botnet C2 mechanism [10, 11, 16, 18,
19, 31] because it is scalable and easy to hide within. While instances of botnets
with looser control structures, such as those that use peer-to-peer networks, are in-
creasing, IRC-style C2 is still the most prevalent because it is scalable and provides
instantaneous control over the bots.

In botnets that use the chat style of command and control, the attacker issues
commands to the zombie hosts via a “rendezvous point,” which is usually an IRC
server. The rendezvous point may or may not be a compromised machine — there
are many public IRC servers that host unmonitored channels. The attacker and the
zombie hosts subscribe to the same IRC channel. The attacker issues commands and
the bots respond through that channel.

Botnet Detection Based on Network Behavior 3

Fig. 1. Actors in IRC-Based Botnet Architecture

This chapter presents a system for detecting the presence of a botnet and identi-
fying the rendezvous point using passive traffic analysis. (Some initial results were
presented in [29].) Our goal is to determine if we can find evidence of botnet activity
by only monitoring network traffic, and not by examining the traffic content, relying
on port numbers (IRC’s is 6667), or by watching DNS servers. We adopt a proac-
tive approach by identifying hosts that are likely part of a botnet before an attack by
extracting and analyzing flow characteristics that seem to match botnet C2 traffic.

Our technique employs a pipeline of increasingly more complex analyzers, fil-
tering out unlikely flows along each step, so that the most computationally inten-
sive analysis is done on a dramatically reduced traffic set. First, individual flows are
subjected to a series of filters and classifiers to eliminate as many of the flows as
possible, while being somewhat conservative so that botnet flows are not likely to
be eliminated. Next, the flows are correlated with each other, looking for groups of
flows that may be related by being part of the same botnet. Finally, the topologi-
cal information in the correlated flows is examined for the presence of a common
communication hub.

2 Approach

Since the vast majority of botnets are controlled using variations on IRC bots,
many botnet detection systems begin by simply looking for chat sessions (TCP port
6667) [12], and then examining the content for botnet commands [2]. Like many
client-server protocols, however, the use of a standard port number is largely just a
suggestion. Also, relying on having access to the packet contents and, even with that
access, being able to identify botnet commands, is an overly simplistic assumption.

4 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

Our system assumes only that the botnet command and control (C2) infrastructure is
based loosely on IRC.

2.1 Characterization of IRC-based C2 Flows

IRC-based botnets currently dominate as the preferred deployment technique. This
reflects the freely available bot-building source code, allowing attackers to focus on
botnet applications rather than on architecting and coding “mere plumbing.” IRC
is implemented through text-based interactions. Strings are sent to the chat server,
which replicates that data to each client. In the case of botnets, the clients are zom-
bies, and botnet commands are special strings.

We use chat traffic as an initial proxy for botnet C2 traffic. By looking at ex-
ample botnet commands [31], the important insight is that C2 messages are brief in
addition to being text-based. In the absence of access to extensive botnet traces, we
characterize chat flows to identify how we can separate the C2 channel from other
Internet traffic.

Specifically, there are four notable points. First, identification of chat is a statisti-
cal problem. For each attribute of a flow, chat flows are spread across the spectrum of
values. Instead of a deterministic decision, one is left with a probabilistic conclusion,
complete with the risk of false positives and false negatives.

Second, identification of chat in the absence of well-known ports and access to
the packet content is a difficult problem. Flows can be winnowed into likely chat and
likely non-chat classifications, but the likely chat classification will certainly include
a number of non-chat flows.

Third, consideration of attributes in isolation is a good start, but is not suffi-
cient — it is equivalent to using independent probabilities to evaluate the traffic.
Stronger techniques based upon interdependent conditional probabilities may be
needed as well.

Finally, the resulting characterization is good for guiding the construction of ef-
ficient filters for data reduction. By reducing the data set, even if it contains some
false positives, later steps can take advantage of more computationally intensive ap-
proaches.

2.2 The Processing Pipeline

Figure 2 shows our traffic-processing pipeline. Packet traces (in our case these are
recorded traces, but there is no reason the input cannot be live) are fed into a series
of quick reduction filters. With some a priori knowledge, one can also imagine a set
of white lists and black lists based on known good sites (packets to or from eBay,
for example, are very unlikely to be part of a botnet) and bad sites (those places
on a watch list, for example). Other filters examine simple flow attributions such as
duration or average packet size.

After the initial filters, the remaining flows are passed through a flow classifica-
tion engine based on machine learning techniques. The classifiers attempt to group

Botnet Detection Based on Network Behavior 5

Fig. 2. Botnet Detection Processing Pipeline

flows into broadly defined categories. Those flows that appear to have chat-like char-
acteristics are passed on to the correlator stage.

The correlator does a pairwise examination of the remaining flows looking for
flows that are behaving in a similar manner, as one might expect of two flows gen-
erated by the same application. Botnets are so large that commands are issued to the
whole group, or large subgroups, and not to individuals. Flows that are correlated are
passed on to topological analysis, where “social topology” is applied to determine
which flows share a common controller.

The result of this pipeline is a (hopefully) small set of flows that show a fair
amount of evidence that they are related and are part of a botnet. The pipeline does
not prove the flows are part of a botnet; rather, the flows that survive strongly suggest
closer examination. This examination may be deep, if there is access to the hosts that
are the flow endpoints, as may happen in an enterprise or campus, or the examination
may be limited to listing the flows and the flow endpoints in a watch list for later use
if a botnet-based attack occurs. Knowing the social structure of a group of hosts prior
to an attack is better than trying to piece the structure together during the attack.

2.3 Source of Background Traffic

It would be too contrived to try to create a large dataset of both background and bot-
net traffic using a tightly controlled testbed. Instead, we incorporated a background
traffic data set recorded from true Internet use. We chose packet traces collected on
the Dartmouth campus under their CRAWDAD project [15]. The traces are a com-
plete set of TCP/IP headers from the campus wireless, taken over a period of four

6 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

months (November 1, 2003 to February 28, 2004) from a variety of campus locations.
No payloads were included in the trace.

In all, the traces were 164 GBytes compressed, and approximately 3.8 times that
amount when uncompressed. This large trace set means that we truly are looking for
the needle (botnet C2 flows) in a haystack.

From this set of traces, we selected a subset of traces that corresponded to a
particular building that we shall label “Building X.” We believed the traces from
Building X to be representative of “typical” Internet background traffic for our botnet
scenario. We then selected a reference time point of Monday November 10, 14:30
EST, 2003 as the time at which we would attempt to detect our synthesized botnet
(the needle) in the presence of this background traffic (the haystack). Our detection
process examined all of the uni-directional flows of data between hosts from the start
of the Building X traces on Monday November 1, 2003 at 23:12 EST until just after
our reference time point on Monday November 10, 2003 at 14:30 EST. In total, 1.34
million uni-directional data flows were examined.

2.4 Source of Botnet Traces

In order to generate traffic that was representative of real botnet traffic, we imple-
mented a benign bot based on the “Kaiten” bot, a widespread bot that has readily
downloadable source code. The Kaiten bot was implemented in C using approxi-
mately 1000 lines of code. We reverse engineered the Kaiten code and then reimple-
mented it.

The original Kaiten bot had a repertoire of TCP- and UDP-based attacks. Our
bot implementation does not implement these attacks. Like the Kaiten bot, our bot
provides a number of remotely controlled features, including a mechanism to execute
arbitrary commands on the bot client, HTTP download capability, a flexible multi-
process architecture, a highly configurable architecture and a rich command set.

In order to obtain traces of actual botnet traffic, we constructed a botnet testbed
within BBN’s production network. Our setup consisted of an IRC server (rendezvous
point), a code server, 10 zombie hosts, and an attacker. Figure 3 shows the topology
of our botnet testbed. The attacker, the rendezvous point, and one zombie host reside
on an external network. Nine zombies and the victim were hosted within the BBN
network. The code server was a large well known public Internet site.

We used this test facility to obtain actual traces of the communications between
the various botnet entities while the botnet was in operation. Our experiments en-
tailed using the IRC server to instruct the zombies to download attack code from the
code server and to subsequently launch a coordinated TCP “attack” on the victim
host. The traces collected involved ssh transmissions used for setting up and moni-
toring the experiments, IRC traffic between the bots and the IRC server, http traffic
between the zombies and the code server (for downloading the attack code), and the
TCP traffic involved in the coordinated TCP attack on the victim host. The setup and
the launch of the attack were successively repeated in order to increase the amount
of trace data collected.

Botnet Detection Based on Network Behavior 7

Fig. 3. Botnet Trace Collection Testbed

We collected 539 flows associated with our botnet using tcpdump at the IRC
server. Forty two of these flows were C2 flows. We merged this botnet trace with
the Dartmouth traffic data set in order to create a test data set that contained ground
truth that could be verified after all of the data reduction filters and other analyzers
have been applied. Our botnet was active on the order of hours, while the Dartmouth
traces span four months, exacerbating the vast size difference between the needle
and the haystack.

3 Filtering Stage

We recognize that the statistical nature of the problem creates a trade-off between
keeping as many botnet C2 flows as possible and reduction of the data set to the
meaningful subset of flows to speed later steps. The selection of the cutoff for quick
filtering for data reduction requires both quantitative statistical information and hu-
man judgment. Even if the selection of the cutoff were phrased in terms of meeting
a false positive or a false negative goal, that goal is based upon judgment. The filters
and filter parameters we chose reflect this.

8 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

Fig. 4. Filtering Out Flows Not Likely Part of a Botnet

There were five distinct filters in this stage, as shown in Figure 4. The first filtered
by IP protocol to select TCP-based flows, resulting in 1,337,098 flows. Since the bot
was derived from an IRC-style TCP base, all of the ground-truth botnet C2 flows
were TCP based. All of the C2 flows survived this filter.

The second filter removed the nuisance port-scanning chaff, reducing the data set
to 786,629 flows. Flows containing only TCP packets with SYN or RST flags indi-
cate that communication was never established, and so provide no information about
chat or botnet C2 flows. No application-level data was transferred by these flows. Un-
fortunately for today’s Internet, probes of system vulnerabilities are commonplace.
While SYN-RST exchanges indicate suspicious activity that may be worth investiga-
tion, they do not assist with characterizing botnet C2 flows. About 43% of the flows
are eliminated by this step. Again, all of the ground-truth botnet C2 flows survived
the filter.

Since botnets do not sustain bulk data transfers, the next filter removed high
bitrate flows. Peer-to-peer file sharing is a significant load on the Internet, and may
take place on chat ports by coincidence (since the chat port is not reserved) or by
intent (to avoid identification and filtering). Dropping bulk transfers (flow bandwidth
greater than 8 Kb/s with at least 50 packets) also eliminates software updates and rich
web page transfers. Yet, filtering the high bit-rate flows had a small effect. About

Botnet Detection Based on Network Behavior 9

1% of the flows are dropped, leaving 763,125. From a flow perspective, this is a
minor amount, but from a packet and forensic archive perspective this represents a
worthwhile effort. Again, all of the bot C2 flows survived the filter.

Chat (and botnet C2 commands) generally generate small packets. Using a 300-
byte packet size cutoff for the chat packets in the Dartmouth data set shows that about
0.25% of the chat traffic would be falsely rejected and 72% of the non-chat flows are
eliminated. Since there are several orders of magnitude more non-chat flows than
chat flows, filtering exclusively on average packet size would cut the amount of data
to process in half; since this filter comes fourth, it has a relatively moderate effect.
About 6% of the flows are dropped, leaving 717,521. All of the ground-truth botnet
C2 flows survived the filter.

The fifth filter drops brief flows (less than 2 packets or 60 seconds) from consid-
eration. Real chats and botnets are likely not well represented by excessively short
duration flows. This filter has a significant effect, reducing the data by a factor of
about 20, dominating even the elimination of the port-scanning activities. All of the
ground-truth botnet C2 flows survived the filter.

Overall, the data set is reduced by a factor of about 37, from 1,337,098 TCP flows
down to 36,228, while still preserving the ground-truth botnet C2 flows. This filtering
stage avoided the use of TCP port numbers, and therefore is relevant to situations
where applications may be masquerading on unexpected ports. Furthermore, this
significant data reduction resulted without the use of white-listing services as trusted
IP address and port number combinations.

4 Classifier Stage

Once the simple filters have reduced the data set, the next step is to process the data
set using more sophisticated flow classification techniques. Several techniques have
been developed to automatically identify (and often classify) various types of com-
munication streams. Some use clues from the traffic content. Dewes et al. [6], for
instance, proposed a scheme for identifying chat traffic that relies on a combination
of discriminating criteria, including service port number, packet size distribution,
and packet content. Sen et al. [25] used a signature-based scheme to discern traffic
produced by several well-known P2P applications by identifying particular charac-
teristics in the syntax of packet contents exchanged as part of the operation of the
particular P2P applications.

Other flow classification approaches focus on the use of statistical techniques to
characterize and classify traffic streams. Roughan et al. [24] used traffic classification
for the purpose of identifying four major classes of service: interactive, bulk data
transfer, streaming, and transactional. They investigated the effectiveness of using
packet size and flow duration characteristics, and simple classification schemes were
observed to produce very accurate traffic flow classification.

In a similar approach, Moore and Zuev [20] applied variants of the Naı̈ve
Bayesian classification scheme to classify flows into 10 distinct application groups.
The authors also searched through the various traffic characteristics to identify those

10 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

that are most effective at discriminating among the various traffic flow classes. By
also identifying highly correlated traffic flow characteristics, this search was also
effective in pruning the number of traffic flow characteristics used to discriminate
among traffic flows. Highly correlated characteristics provide comparable and, of-
ten, redundant information about the traffic flows. Thus, in many cases it suffices to
use only one of the correlated characteristics to discriminate among traffic flows.

Since IRC-type botnet C2 flows share many characteristics with normal IRC chat
flows, we adopt and build upon the above statistical flow classification techniques to
discriminate among IRC and non-IRC traffic (see Livadas et al. [17]). The focus on
IRC traffic simplifies the training step because the default IRC port (namely, port
6667) can be used to accurately identify and label IRC traffic for training and ground
truth.

We considered three machine learning classification algorithms, namely J48
decision trees (the WEKA [34] implementation of C4.5 decision trees [8]), Naı̈ve
Bayes, and Bayesian Networks, and evaluated the performance of each classifier
using the false negative rate (FNR) and the false positive rate (FPR). The relative
importance of each of these metrics depends on the ultimate use of the classifica-
tion results. A low FNR attempts to minimize the fraction of the IRC flows will
be discarded, while a low FPR attempts to minimize the amount of non-IRC flows
included. We explored the effectiveness of these machine learning techniques along
three dimensions: (1) the subset of characteristics/features used to describe the flows,
(2) the classification scheme, and (3) the size of the training set size.

Table 1 summarizes the flow characteristics that we collected for each of the
flows in the Dartmouth traces. The characteristics in the top of the table were not
used for classification purposes — they either involve characteristics that seemed
inconsequential in classifying flows, or are accumulated quantities, which are indi-
rectly captured by the corresponding rates or percentages and the flow duration. Our
experiments revealed that the following attributes have high discriminatory value:
duration, role, average bytes per packet (Bpp), average bits per second (bps), and
average packets per second (pps). Among these, the Bpp provided the most discrim-
inatory power.

Figure 5 depicts the FNR vs. FPR scatter plot for several runs of J48, Naı̈ve
Bayes, and Bayesian Networks for the labeled Building X trace. Each data point
corresponds to a different subset of the initial flow attribute set. The figure reveals
clustering in the performance of each of three classification techniques. Naı̈ve Bayes
seems to have low FNR, but higher FPR. The Bayesian Networks technique seems
to have low FPR, but higher FNR. J48 seems to strike a balance between FNR and
FPR.

Only the Naı̈ve Bayes classifiers were successful in achieving low FNR in the
case of our botnet testbed IRC flows — notably, one of our Naı̈ve Bayes classifiers
accurately classified 41 out of the 42 botnet testbed IRC flows, thus achieving an
FNR of 2.17%. In contrast, the J48 and the Bayesian Networks classifiers, possibly
tuned too tightly to the training set, performed very poorly with FNRs of 28.26 and
19.57% respectively. However, while the Naı̈ve Bayes classifiers had a low FNR,
they also had a high FPR of 30.41%. Of the 36,136 non-botnet flows, 11,004 were

Botnet Detection Based on Network Behavior 11

Table 1. Traffic Flow Characteristics

start/end Flow start/end times

IP-proto IP protocol of flow

TCP flags Summary of TCP SYN/FIN/ACK flags

pkts Total pkts exchanged in flow

Bytes Total Bytes exchanged in flow

pushed pkts Total packets pushed in flow

duration Flow duration

maxwin Maximum initial congestion window

role Whether client or server initiated flow

Bpp Average Bytes-per-packet for flow

bps Average bits-per-second for flow

pps Average packets-per-second for flow

PctPktsPushed Percentage of packets pushed in flow

PctBppHistBin0–7 Percent of packets in one of eight packet size
bins; these variables collectively form a his-
togram of packet size for flow

varIAT Variance of packet inter-arrival time for flow

varBpp Variance of Bytes-per-packet for flow

classified as belonging to the botnet. After training on the flows yielded from the ear-
lier heuristic filtering stage, our best-performing classifiers achieved a 70% reduction
in the number of candidate chat flows. Presuming that such performance would be
routinely achievable in this stage, the 36K flows yielded from the heuristic filtering
stage would be further reduced to 11K flows. In the case of the testbed flows, our
best-performing classifiers retained 41 of the 42 chat flows.

Despite their promise, the training and performance of classifiers was quite sen-
sitive to the flow attributes used, the training set, and the number of flows used for
training. Thus, prior to their use in a deployable system we expect that further ef-
fort would be needed in order to identify the most beneficial flow characteristics and
training set. For the processing of our testbed experiment, we bypassed the classifi-
cation stage and proceeded directly from filtering to correlation.

5 Correlation Stage

The filters and classifiers have reduced the traffic data set from almost 1.34 million
flows to about 36 thousand, but recall that these flows span a four-month period.
Our next stage, correlation, looks for relationships between two or more flows that
suggest that they are part of the same botnet. The question about whether one flow

12 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

 0.1

 1

 10

 100

 1 10 100

F
P

R
 (

%
)

FNR (%)

FNR versus FPR For IRC/non-IRC Flows of Building X

J48
NaiveBayes

BayesNet

Fig. 5. FNR and FPR of J48, Naı̈ve Bayes, and Bayesian Net Classification Schemes for
IRC/non-IRC Flows of Building X

is correlated with another only makes sense if the two flows are active at the same
time, so while we have four months of data, the correlation stage is run at a particular
instance in time. The question is: Which flows are correlated at this moment?

We picked a time during the data when we knew the botnet was active. There
were 95 post-filtered flows active at that time, where 20 of these flows were the
ground-truth botnet C2 flows (a forward and a reverse flow from each of the 10
zombie hosts to the rendezvous point).

5.1 Flow Correlation

Two flows are said to be correlated when they exhibit one or more common proper-
ties. In general, there are three reasons that two flows exhibit common properties:

• They are the product of similar applications, such as those applications that trans-
fer bulk data as quickly as possible

• There is a causal relationship, such as in remote logins or proxies, where an event
on one flow causes an event to occur on another flow

• There is one transmitter and multiple receivers, such as in multicast, where one
message is transmitted to many receivers

The first reason is a product of the nature of network protocols. TCP behaves the
same no matter what application is driving it. If two applications present large files
for transfer, there is little at the packet level to distinguish the traffic outside of the
addressing information.

The second correlation reason speaks to the so-called stepping stone detection
problem, where an attacker remotely logs into one host, then from there remotely

Botnet Detection Based on Network Behavior 13

logs into another host, repeating to form a chain of remote logins. The attacker sees
the login shell of the last host, and anything typed in at the local keyboard cascades
its way to the pseudo terminal at the last host. The cascading of the data is what
provides the casual relationship among the flows in the chain.

The third reason for correlation happens because the same data is being sent
to different receivers, so naturally the set of flows will show similar characteristics.
Botnets that use IRC for the command and control channel essentially form multicast
groups via a series of operations on unicast connections.

No matter the reason for correlation, any algorithm that sets out to determine
which pairs of flow are correlated must begin with this question: What is a sufficient
description scheme for flows so that the algorithm can determine if two flows are
correlated under a particular meaning of correlation?

Flow Description

A flow is defined as a set of packets that belong to the same instance of communi-
cation between an application at a source host, and an application at a destination
host. The most common way to identify a particular TCP or UDP flow is using a 5-
tuple of values from the packets’ layer 3 and 4 headers: the source and destination IP
addresses, the source and destination port numbers, and the protocol identifier num-
ber. These five values definitively identify a particular instance of communication
between a source host application and destination host application.

It is one thing to uniquely identify the flow; it is something all together different
to uniquely describe a flow. Describing an object allows that object to be compared
and contrasted with other objects. The same is true for flows. Choosing a certain set
of characteristics and quantizing those characteristics provides one means of captur-
ing describable aspects of the flow for comparison with other flows.

Certainly a flow can be completely described using a full packet trace, as one
might get from a tool such as tcpdump. Such a trace lists when each packet event oc-
curred, what was inside the packet’s header, and what data each packet was carrying.
Since a flow can be arbitrarily long, a packet trace can be arbitrarily long.

Packet trace files are a complete description, but they are not a compact one. It
may be sufficient to extract and efficiently express a set of flow characteristics as a
proxy for the full flow description.

Flow Characteristics

Flow characteristics fall into two categories: static characteristics that do not change
over the lifetime of the flow, and dynamic characteristics that vary as the flow pro-
gresses through time. The immutable information kept in the IP and TCP/UDP head-
ers of a packet is a good source of static characteristics. These include the values
that form the flow identification 5-tuple — source and destination IP address, source
and destination port numbers, and protocol. Flow start and stop times, and the flow’s
duration, are examples of static characteristics that are not carried in the packet.

14 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

Dynamic characteristics can also be drawn from the packet header and payload
information, such as packet size values, flow control window settings, IPid values,
protocol flag settings, and application data. Looking outside of the packet, dynamic
characteristics include packet arrival and departure times. Further dynamic charac-
teristics can be derived, such as throughput (amount of data transferred divided by
the transfer duration), and burst times (groupings of packet arrivals or departures that
are close in time).

Among the common dynamic flow characteristics that are easily expressed as a
time series are:

• Packet event times
• Packet inter-arrival times
• Inter-burst times
• Bytes per packet
• Cumulative bytes per packet
• Bytes per burst
• Periodic throughput samples

Flow Correlation Algorithms

The most common flow correlation algorithms compare connections to see if they
might be stepping stones — the causal relationship noted above. Our aim is to find
correlations between flows based on a multicast relationship. We hypothesize that
stepping stone correlation algorithms can be used to find botnets. Consequently, we
will take a quick survey of stepping stone correlation algorithms looking for one that
may be appropriate for our purposes.

Since traffic is often encrypted, flow correlation algorithms usually compare con-
nections based on some characteristic other than packet content. Most correlation
algorithms use only a single characteristic to describe packet flows. For example,
an algorithm might describe a flow based on its packet inter-arrival times. Whatever
the characteristic may be, it is chosen so that it can be used to identify related con-
nections. These algorithms use the characteristic values as inputs into one or more
functions that compare flows. The comparison function(s) create a metric used to de-
cide if the flows are correlated. If the correlation between two flows is strong enough,
one might decide that the flows are a stepping stone pair. Often, this decision is made
by comparing the metric to a threshold.

Zhang and Paxon [37] describe a stepping stone detection method based on com-
paring the end times of “off periods,” or idle times, in two data streams. The charac-
teristics they focus on is the timing of the edge of bursts. Yoda and Etoh [35] describe
an algorithm based on the difference between the average propagation delay and the
minimum propagation delay between the two connections. Their flow characteristic
is the round-trip time. Wang et al. [33] present a stepping stone identification scheme
that uses similarity function over a vector of inter-packet delay measures (their flow
characteristic) between two packet streams.

Botnet Detection Based on Network Behavior 15

The aim of some approaches is to assert guaranteed false positive and negative
rates under delay and chaff perturbations. Blum et al. [3] designed a stepping stone
detection algorithm based on the deviation in the number of packets in each connec-
tion. Zhang et al. [36] propose three schemes that match packets from one flow to
packets in a second flow to detect stepping stone connections. Both Blum and Zhang
use packet counts as the flow characteristic. He and Tong [9] propose four packet
counting (their flow characteristic) strategies — two algorithms based on bounded
memory or bounded delay perturbation and chaff, and two algorithms that handle
timing perturbation and chaff insertion simultaneously.

Strayer et al. [28] proposed a correlation algorithm that examines the causal re-
lationship between packet events based on the assumption that, because networks
attempt to operate efficiently, the likelihood of a transmission on one connection be-
ing a response to a prior receipt on another generally decreases as the elapsed time
between them increases. Packet arrival time is the flow characteristic maintained
here.

Donoho et al. [7] use character counts at different time scales, along with an
assumption that there is a “maximum delay tolerance” to produce theoretical limits
on the ability of attackers to disguise their traffic for sufficiently long connections.

Each of these techniques creates a time series of a certain flow characteristic and
uses it to compare flow pairs. This implies a pairwise comparison over each value of
the time series. It also means that the stepping stone detection algorithms rely heavily
on the accuracy of series of one flow characteristic value.

Because of the one-to-many “multicasting” model of the C2 (and chat) architec-
ture, we expect the communication flows between the botnet C2 host and the IRC
server, and between the IRC server and the botnet members, to be temporally corre-
lated. Since data sent to the chat server is promptly multicast to all chat members, the
flows to (and from) all chat members should exhibit similar timing characteristics as
well as contemporary fluctuations in bandwidth.

Any of the flow correlation algorithms based on temporal flow characteristics
cited above could be applied to this stage, but they are each computationally expen-
sive. These and most other current flow correlation algorithms examine each flow
every time there is a new packet arrival, and every pairwise “correlation value” is
updated. This implies O(n2) calculations for each packet, where n is the number
of active flows. We prefer an algorithm that performs a calculation only once per
packet arrival — to update that packet’s flow value — delaying the O(n2) compari-
son until the time when flow correlation question was asked. We developed such an
algorithm for use in stepping stone detection [27]. This algorithm uses multiple flow
characteristics but remains efficient in per-flow correlation value updating.

5.2 Multi-Dimensional Flow Correlation

In constructing a new flow correlation algorithm, our first aim is to increase robust-
ness by including more than one flow characteristic for comparison. Our second aim
is to record the time series of the values of these characteristics more efficiently and

16 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

eliminate the need for maintaining a full correlation matrix over all time. Let us look
at the second aim first.

Time series are arbitrarily long time-value pairs that are not easy to manipulate.
Statistical measures over the time series, however, attempt to describe the shape of
the data in a finite space, and are much easier to manage. Taking the average, for
example, describes an arbitrarily long series of values in one value, but at the loss of
a lot of fidelity. Taking the second moment, the variance, gets some of that fidelity
back by describing how different the values are from each other. Further moments
describe the peakedness of the data (kurtosis) and the symmetry of the peaks (skew).

A nice aspect of using moments is that they can be estimated on the fly, and any
new event causes the recalculation of the moments for that flow only. So a char-
acteristic of a flow — say packet sizes — can be described by a small vector of
statistical moments of that characteristic. This satisfies part of the second aim for
efficient recording of the values for the flow characteristics.

If a single characteristic for a flow can be described using a small vector, then
why not widen the vector to include statistical moments for other flow characteris-
tics? Doing this would satisfy the first aim of including multiple characteristics in
a flow correlation algorithm, but it does not suggest how to combine the multiple
characteristics into a single comparison.

Our answer is to treat each flow’s description vector as a point in n-space, where
n is the cardinality of the vector, and apply a distance calculation as a measure of
correlation, where nearness is more correlated. The distance does not have to be
maintained for all flow pairs over all time, but calculated only when the correlation
question is raised. This satisfies the second part of aim two.

Expressing a time series as a set of moments loses fidelity, which means that
some unrelated flows with different time series of values over a particular charac-
teristic might accidentally have the same moments over that time series. This is a
matter of entropy; if there /indexentropy is not enough descriptive power in the vec-
tor, the flows cannot be adequately distinguished one flow from another, and false
positives will occur. Our hypothesis is that, by adding more characteristics, the en-
tropy is raised, mitigating the loss of fidelity of reducing any one characteristic to a
vector of moments.

Determining the Characteristics

We have been abstractly discussing the use of multiple flow characteristics in a flow
correlation algorithm, but determining which characteristics are most useful is the
subject of studies and experiments. However, there are some useful features in a flow
characteristic that might make one better suited than another.

First, the characteristic should be dynamic and expressed as a time series. Sam-
ples of the moments of a dynamic data set are themselves dynamic. Two flows that
share this dynamic nature of the moments are likely to be correlated. If the moments
remain static, then two uncorrelated flows with the same values will always show as
a false positive.

Botnet Detection Based on Network Behavior 17

Next, the characteristic should measure something about the flow that is imposed
externally, not by the communications protocol. Since TCP/IP is probably the com-
mon transport, then characteristics imposed by TCP or IP will likely not discriminate
between flows. Packet size is an example of a bad characteristic when the application
gives TCP/IP a very large amount of data to send, but it is a good one when the appli-
cation offers small amounts of data. Packet inter-arrival times and packet inter-burst
times are similar.

Finally, for practical purposes, the characteristic should be easily measured.
Throughput, for example, requires maintaining an amount of data seen over a win-
dow of time, while packet arrival times require no history.

Estimating the Moments

Since the time series values are arbitrarily long, and the are arriving in real time, we
need to calculate the moments as a running estimate. The estimated weighted moving
average (EWMA) is a nice way to estimate an average while weighting the influence
of the past. The formula is: newEWMA = α(newValue)+(1−α)(oldEWMA). We
set α at 0.75 to emphasis new events while maintaining the smoothing effect of old
events. The second moment, variance, is estimated in a similar fashion: newVAR =
α(|newValue − EWMA|) + (1 − α)(oldVAR). We do not use higher moments.

Calculating the Distance

We treat a flow’s vector of characteristics as a point in n-space, and use a distance
measure to determine correlation based on closeness. But values from different char-
acteristics, and from different moments within each characteristic, have magnitudes
that must be normalized before they can be used, otherwise characteristics with large
values will artificially outweigh characteristics with smaller values. Further, some
characteristics can have unbounded values.

Rather than normalize values and then use them to find the distance, it is better to
normalize the difference. This way we maintain the natural meaning of the difference
of v1 and v2, then fit that into a 0-to-1 scale.

One common normalizer is an exponential: norm diff = 1e−λ(|v1 − v2|), where
λ is a weighting factor to determine how steeply the asymptote rises to 1. It makes
sense that each characteristic would need a different λ, but if λ is set incorrectly,
there will be too much or too little distinction between values of v1 − v2.

Instead, we use the following: norm diff = (|v1 − v2|)/(v1 + v2). As v2 ap-
proaches v1 from below, the normalized difference drops off nearly linearly. As v2

grows larger than v1, the normalized difference grows asymptotically to 1. This nor-
malizer is self-weighting and does not require special values such as λ.

The distance between two flows is calculated using the Euclidean formula of
taking the square root of the sum of the squares of the differences:

distance =
√

∑n

i=1
(norm diffi)

2

18 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

where n is the number of values in the flow characteristics vector, and norm diffi is
the normalized difference of the ith value in the vector. Since each vector element
difference is normalized to 1, the maximum distance is

√
n.

5.3 Correlation Results

Figures 6 and 7 display the results of pairwise distances between each of the 95
filtered flows. (Because the classification stage dropped some of the ground-truth
botnet flows, we ran the correlation algorithm over the filtered, but not classified,
flows.) Figure 6 clearly shows a horizontal band of flow pairs whose Euclidean dis-
tance is very small, separated by a band of white space up to distance of about 2.
This indicates that a group of flows are clustered very near each other in n-space,
and that there is a gap between that cluster and the next nearest flows.

Figure 7 also shows this gap in terms of a probability distribution of the distances.
Note that there is a substantial spike near distance 0, then there is a flat area (no or
few flow pairs) until distance 2. The spike is a cluster of flow pairs that are very close
in distance. In fact, there are 9 flow pairs whose distance is less than 0.5, and it is
this set that forms the cluster of interest.

The identification of clusters of correlated flows certainly suggest further inves-
tigation, which is the aim of the next stage, the topological analysis. This correlation
stage does not prove the existence of a botnet — there is no test for maliciousness in
the filtering, classifying, and clustering of flows — but given a cluster of flows, the
natural next question is, What structure do these and other flows form, and does this
structure identify a host that is acting like a botnet controller.

0 100 200 300 400

0

2

4

6

8

10

12

14

Flow Pair ID

D
is

ta
nc

e

Fig. 6. Scatter Plot of Distances between Flow Pairs

Botnet Detection Based on Network Behavior 19

0 2 4 6 8 10 12 14

0.00

0.05

0.10

0.15

Distance

Pr
ob

ab
ili

ty

Fig. 7. Distance Probability Density Function of Flow Pair Distances

6 Topological Analysis Stage

The topological analysis starts by selecting only those flow pairs that are highly
correlated. Figures 6 and 7 both show that there is a grouping of highly correlated
flow pairs with distances close to 0. Our hypothesis is that these highly correlated
flow pairs correspond to botnet C2 flows. We isolate these flow pairs by selecting
only those flow pairs with a distance of less than 0.5. These flow pairs correspond to
the top 17% most highly correlated flow pairs. On further investigation, we note that
every one of these flow pairs corresponds to a C2 connection between a zombie host
and the rendezvous point (IRC server), thus validating our hypothesis.

The next step in the topological analysis is to analyze the overall correlation
structure of the correlated flow pairs. This process can be easily automated. Figure 8
shows a graph where each node corresponds to a unique flow pair identifier and
each edge connects two highly correlated flow pairs. The graph shows a “perfect”
or mesh clustering between the set of nine highly correlated flow pairs. This perfect
clustering shows that each of the highly correlated flow pairs correlates with all of
the other highly correlated flow pairs. In other words, the nine botnet C2 connections
all correlate extremely well with each other. This again confirms our hypothesis.

The final step in the topological analysis is to determine the communication
topology that corresponds to these highly correlated flow pairs and to identify which
of the hosts, if any, is acting as a rendezvous point. This is a two part process that
can be automated easily. First, we generate a graph that has as its edges the highly
correlated flow pairs identified in the first step of the topological analysis and as its
nodes the host IP addresses that correspond to the endpoints of these flow pairs. Sec-
ond, we look for the node with the highest in-degree or out-degree and select that as

20 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

270

256

264

258

254

262

252

272

260

Fig. 8. Flow Pair Clustering

a candidate rendezvous point (IRC Server). Figure 9 shows a directed graph gen-
erated using the first part of this procedure (in this figure, IP addresses have been
replaced by labels to identify the roles of the hosts). The communication structure of
the botnet is immediately obvious from the figure and it is very easy to identify the
rendezvous point as the node having the highest in-degree.

The topological analysis is able to identify nine out of the ten zombie hosts in our
botnet. The nine zombies identified correspond to “local” zombies that are all located
on machines in the same building at BBN (see Figure 3). The one zombie host not
identified corresponds to a “remote” bot running on an offsite host. This result is
perfectly understandable: we would not expect flows from a remote bot to correlate
that well with flows from local bots as the difference in communication paths would
almost always result in significant differences in flow characteristics.

In summary, the topological analysis stage examines the structure of highly cor-
related flow pairs. By constructing graphs of these correlated flow pairs, graphs of
the corresponding node pairs and then looking for nodes with high in-degree, it is

Botnet Detection Based on Network Behavior 21

Zombie6

IRC Server

Zombie1

Zombie2

Zombie8

Zombie5

Zombie7

Zombie9

Zombie3

Zombie4

Fig. 9. Host-based Clustering

possible to identify the communication structure of our botnet, the rendezvous point
and nine out of ten zombies. The results from topological analysis stage clearly sup-
ported our hypothesis that C2 botnet flows are highly correlated.

7 Discussion

While it has been suggested that botnet controllers will migrate from IRC as their
preferred C2 infrastructure [25], the abstract model of tight central control repre-
sented by IRC is very efficient and will likely survive for quite some time. It is
important, therefore, to consider a system that detects very large, high volume data
sets for evidence of tight botnet C2 activity.

Our system performs gross, simple filtering to reduce the amount of data that will
be subjected to more computationally intensive algorithms. Once the data has been
filtered, the flows are classified using machine learning techniques, then the flows
that are in the “chat” class are correlated to find clusters of flows that share similar

22 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

timing and packet size characteristics. The cluster is then analyzed to try to identify
the botnet controller host.

Our experiment with Dartmouth campus data, starting with nearly 9 million flows
augmented with traffic traces from a benign botnet, shows that the ground truth bot-
net C2 flows can indeed survive the data reduction and correlation to be identified as
a cluster. These results show that the method is promising.

This method is also nicely suited for real-time analysis of traffic data. The filter-
ing stage requires very simple logic to cull the data set down by a factor of 37. While
we may not be able to expect that degree of reduction in all cases, there was nothing
particularly special about the Dartmouth data that contributed to the reduction factor.
The culling of the data, especially when done in real time, allows much more time for
more complex algorithms later in the pipe, namely the machine learning classifiers
and the correlation.

An important lesson learned from our classification stage is the importance of
both legitimate and malicious training traffic and an accurate manner to label it.
Given such representative training traffic, machine learning-based classifiers can per-
form well and be very effective. The trick is to get a good training set.

Our experience with the new correlation algorithm showed that the algorithm
holds promise. The algorithm we used is designed to reduce the computational com-
plexity of comparing n flows in a pairwise manner. The resulting cluster, while not
a complete set of flows from the ground truth botnet, was certainly enough to allow
the topological analysis of the flow endpoints, and the rest of the ground-truth botnet
traffic was easily extracted.

Detecting botnet activity is presently labor intensive and largely ad hoc. Our
pipelined botnet C2 detection system shows that it is possible to comb through packet
traces, even in real time, to extract evidence of tight command and control activity
and, from that evidence, discover the botnet controller.

Acknowledgments

This work was sponsored by the U.S. Army Research Office under contract No.
W911NF-05-C-0066. The content of the information does not necessarily reflect the
position or the policy of the U.S. Government, and no official endorcement should
be inferred.

The authors wish to thank Doug Maughan and Cliff Wang for their support, and
Mark Allman for his valuable insights. We also thank David Kotz and gratefully ac-
knowledge the use of wireless data from the CRAWDAD archive at Dartmouth Col-
lege. We also wish to acknowledge the support and contributions of our colleagues
at BBN Technologies: Christine Jones, Beverly Schwartz, Sarah Edwards, Walter
Milliken, and Alden Jackson.

References

1. US-CERT Vulnerability Notes Database. http://www.kb.cert.org/vuls/.

Botnet Detection Based on Network Behavior 23

2. Paul Barford and Vinod Yegneswaran. An inside look at botnets (to appear in series:
Advances in information security, springer), 2006.

3. A. Blum, D. Song, and S. Venkataraman. Detection of interactive stepping stones: Al-
gorithms and confidence bounds. In Proceedings of the 7th International Symposium on
Recent Advances in Intrusion Detection (RAID ’04), September 2004.

4. David Dagon, Cliff Zou, and Wenke Lee. Modeling botnet propagation using time zones.
In Proceedings of the 13th Annual Network and Distributed System Security Symposium
(NDSS ’06), February 2006.

5. Defense Security Service. Memorandum for facility security officers: Foreign-based
threat to defense contractor unclassified networks, October 18, 2005.

6. Christian Dewes, Arne Wichmann, and Anja Feldmann. An analysis of internet chat
systems. In IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, pages 51–64, New York, NY, USA, 2003. ACM Press.

7. David L. Donoho, Ana Georgina Flesia, Umesh Shankar, Vern Paxson, Jason Coit, and
Stuart Staniford. Multiscale stepping-stone detection: Detecting pairs of jittered interac-
tive streams by exploiting maximum tolerable delay. In Proc. International Symposium
on Recent Advances in Intrusion Detection, pages 17–35, October 2002.

8. Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John Wiley
& Sons, Inc., 2 edition, 2001.

9. T. He and L. Tong. Detecting encrypted stepping-stone connections. IEEE Transactions
on Signal Processing, 2007.

10. Thorsten Holz. A Short Visit to the Bot Zoo. IEEE Security & Privacy, 3(3):76–79, May
2005.

11. Kevin J. Houle and George M. Weaver. Trends in denial of service technology. CERT
Coordination Center, October 2001.

12. A. Householder, Art Manion, Linda Pesante, George M. Weaver, and Rob Thomas. Man-
aging the threat of denial-of-service attacks. CERT Coordination Center, October 2001.

13. S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-sale: Surviving organized ddos
attacks that mimic flash crowds. In Proceedings of the 2nd Symposium on Networked
Systems Design and Implementation, May 2005.

14. Anestis Karasaridis, Brian Rexroad, and David Hoeflin. Wide-scale botnet detection and
characterization. In Proceedings of the First Workshop on Hot Topics in Understanding
Botnets, April 2007.

15. David Kotz and Tristan Henderson. CRAWDAD: A Community Resource for Archiving
Wireless Data at Dartmouth. IEEE Pervasive Computing, 4(4), oct-dec 2006.

16. Elias Levy. The Making of a Spam Zombie Army. IEEE Security & Privacy, 1(4):58–59,
July 2003.

17. Carl Livadas, Robert Walsh, David Lapsley, and W. Timothy Strayer. Using Machine
Learning Techniques to Identify Botnet Traffic. In Proceedings of the 2nd IEEE LCN
Workshop on Network Security, 2006.

18. Bill McCarty. Automated Identity Theft. IEEE Security & Privacy, 1(5):89–92, Septem-
ber 2003.

19. Bill McCarty. Botnets: Big and Bigger. IEEE Security & Privacy, 1(4):87–90, July 2003.
20. Andrew W. Moore and Denis Zuev. Internet traffic classification using bayesian analysis

techniques. In SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMETRICS interna-
tional conference on Measurement and modeling of computer systems, pages 50–60, New
York, NY, USA, 2005. ACM Press.

21. R. Naraine. Botnet hunters search for ‘command and control’ servers. eWeek, June 17,
2005.

24 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

22. National Infrastructure Security Coordination Center. Targeted trojan email attacks.
NISCC Briefing 08/2005, June 16, 2005.

23. Anirudh Ramachandran, Nick Feamster, and David Dagon. Revealing botnet membership
using DNSBL counter-intelligence. In Proceedings of the 2nd Workshop on Steps to
Reducing Unwanted Traffic on the Internet (SRUTI), 2006.

24. Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and Nick Duffield. Class-of-
service mapping for qos: a statistical signature-based approach to ip traffic classification.
In IMC ’04: Proceedings of the 4th ACM SIGCOMM conference on Internet measure-
ment, pages 135–148, New York, NY, USA, 2004. ACM Press.

25. Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. Accurate, scalable in-network
identification of p2p traffic using application signatures. In WWW ’04: Proceedings of the
13th international conference on World Wide Web, pages 512–521, New York, NY, USA,
2004. ACM Press.

26. Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice Tchak-
ountio, Beverly Schwartz, Stephen T. Kent, and W. Timothy Strayer. Single-packet IP
traceback. ACM/IEEE Trans. on Networking, December 2002.

27. W. Timothy Strayer, Christine Jones, Beverley Schwartz, Sarah Edwards, Walter Mil-
liken, and Alden Jackson. Efficient multi-dimensional flow correlation. In Proceedings
of the 32st IEEE Conference on Local Computer Networks (LCN’07), November 2007.
Submitted for publication.

28. W. Timothy Strayer, Christine Jones, Beverly Schwartz, Joanne Mikkelson, and Carl Li-
vadas. Architecture for Multi-Stage Network Attack Traceback. In Proceedings of the
IEEE LCN Workshop on Network Security (WoNS 2005), Sydney, Australia, November
2005.

29. W. Timothy Strayer, Robert Walsh, Carl Livadas, and David Lapsley. Detecting Botnets
with Tight Command and Control. In Proceedings of the 31st IEEE Conference on Local
Computer Networks (LCN’06), November 2006.

30. Symantec. Symantec Internet Security Threat Report. Trends for July – December 06,
March 2007.

31. The Honeynet Project. Know Your Enemy : Learning about Security Threats. Addison-
Wesley Professional; 2 edition (May 17, 2004), March 2004.

32. Rob Thormeyer. Hacker arrested for breaching dod systems with ‘botnets’. Government
Computer News, November 4, 2005.

33. Xinyuan Wang, Douglas S. Reeves, and S. Felix Wu. Inter-packet delay based correlation
for tracing encrypted connections through stepping stones. In Proc. European Symposium
on Research in Computer Security, pages 244–263, October 2002.

34. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and
Techniques (2nd Edition). Morgan Kaufmann, San Francisco, CA, 2005.

35. Kunikazu Yoda and Hiroaki Etoh. Finding a connection chain for tracing intruders. In
Proc. European Symposium on Research in Computer Security, pages 191–205, October
2000.

36. L. Zhang, A. G. Persaud, A. Johnson, and Y. Guan. Detection of stepping stone attacks
under delay and chaff perturbations. In Proceedings of the 25th IEEE International Per-
formance Computing and Communications Conference, April 2006.

37. Yin Zhang and Vern Paxson. Detecting stepping stones. In Proc. USENIX Security Sym-
posium ’00, pages 171–184, August 2000.

