
Chapter VIII Real World Application Examples

In the previous chapters we have introduced the methods of OO for single-
objective unconstrained optimization (Chapter II), multi-objective optimiza-
tion (Chapter IV), constrained optimization (Chapter V), and for simple and
good enough strategies (Chapter VI). The purpose of this chapter is to dem-
onstrate how these methods can be applied to real world problems. We con-
sider four problems: three real world applications and a benchmark problem
in team decision theory. In Section 1, we consider a scheduling problem for
apparel manufacturing problem (Lee 1997, Bouhia 2004). We demonstrate
how the OO method introduced in Chapter II helps to save the computing
time by 2000 folds comparing with the brute force method in this problem.
In Section 2, we consider a turbine blade manufacturing process optimiza-
tion problem (Yang 1998 and Yang et al. 1997). The objective function in
this problem is not stochastic simulation but deterministic complex calcula-
tion. In Section II.6 we have mentioned that OO can also be applied in this
type of problem. We justify this through this application. Furthermore, we
show how to obtain better estimate of the size of the selected set through
appropriate interpolation when the noise level is different from the three
values considered in the UAP table in Section II.5. In Section 3, we consider
a remanufacturing system performance optimization problem (Song et al.
2005a, 2005b). There are constraints in this problem. We first demonstrate
how to use COO introduced in Chapter V to deal with this problem directly.
Then to better describe the requirements in engineering practice, we refor-
mulate the problem to a two-objective optimization problem, and use VOO
introduced in Chapter IV to solve the problem. We also demonstrate how we
can incorporate the problem information to obtain less conservative estimate
of the size of the selected set when the noise level is different from the val-
ues considered in the VOO-UAP table in Section IV.2. In Section 4, we
consider the Witsenhausen problem, which is a famous problem in team
decision theory and has not been solved for nearly forty years since the
problem was first proposed by Witsenhausen in 1968 (Witsenhausen 1968).
This is a strategy optimization problem, which has an extremely large search
space. We demonstrate how OO helps to discover properties of the good
strategies, thus successively narrows down the search space, and substan-
tially improves the strategy that has been obtained before the application of

190 Chapter VIII

OO to this problem. Based on the properties thus discovered, Lee et al.
obtained the best-so-far strategy for this problem (Lee et al. 2001). We
also demonstrate how to use the OBDD introduced in Chapter VI to quan-
tify the complexity of the milestone solutions to this famous problem.
Combining OO with OBDD, we demonstrate how to search for a good and
simple strategy in this problem.

As in all cases, we present only the salient features of the problem, the
methodology used, together with enough results to show the improvement
obtained and/or savings achieved. Readers can consult the original refer-
ences for minute details.

1 Scheduling problem for apparel manufacturing

In this section, we apply the OO method in Chapter II to solve a scheduling
problem for apparel manufacturing which are subject to the whims of fash-
ion. The manufacturing system is characterized by the co-existence of the
two production lines, i.e., one with long lead time and low cost, the other a
flexible one with short lead time and high cost. The goal is to decide: (1) the
fraction of the total production capacity to be allocated to each individual
line, and (2) the production schedules so as to maximize the overall profit
and yet avoid stock shortage. The problem is difficult and it is prohibitive to
search for the best solution in view of the tremendous computing budgets
involved. Using ordinal optimization introduced in Chapter II, we have
obtained very encouraging results – not only have we achieved a high pro-
portion of “good enough” designs but also tight profit margins compared
with a pre-calculated upper bound. There is also a saving of at least 2000
folds of the computation time if brute-force simulations were otherwise con-
ducted (Lee 1997). The rest of this section is organized as follows. In Sec-
tion 1.1, we introduce the background of this problem. A detailed problem
formulation is presented in Section 1.2, together with a discussion on the
challenges to solve the problem. Section 1.3 introduces the application of
ordinal optimization in this problem, including how to randomly sample
designs and how to construct a crude model, which is computationally fast,
evaluating the performance of the designs roughly, and useful to compare
the designs. The application procedure of OO in this scheduling problem is
also summarized. Section 1.4 gives several experimental results to show
how ordinal optimization helps to save the computing budgets by 2000
folds, and the performance of the good enough design found by OO is close
to the upper bound of the performance of the optimal design. We make a
brief conclusion in Section 1.5.

Real World Application Examples 191

1.1 Motivation

In the past thirty years, technological advancements, international competi-
tions and new market dynamics have had major impacts on the North
American apparel manufacturing industry. The conventional analysis of the
apparel industry predicts that the apparel industry will collapse rapidly and
migrate to nations with low labor costs. Although apparel industries still
exist in the United States nowadays, intense competition encourages man-
agement to develop new production and supply methodology in order to
remain competitive (see (Harvard 1995)). One key issue involved is the
allocation of scarce production resources over competing demands. Before
we introduce the detailed scheduling problem from the manufacturer’s
viewpoint in the next subsection, let us first have a big picture of the entire
apparel manufacturing system. A typical apparel manufacturing system is
shown in Fig. 8.1. The retailers receive customer demands, which is usu-
ally random and sometimes have seasonal variations. For example, the
demands on swimsuits are high in spring but low in fall, while the demands
on ties are high on Father’s day and Christmas but low in the rest of the
year. It is an important strategic requirement to satisfy customer demands.
Failing to do so can result not only in lost profits due to reduced sales, but
also the lost of future market share. In order to deal with the randomness in
the customers’ demand, the retailers usually maintain a small inventory of
the apparel. In the apparel market nowadays, customers demand the vari-
ety of products. Thus the retailers have responded to their customers’
wishes by maintaining a small inventory of many different styles of apparel
and demanding rapid (usually weekly) replenishment of store inventory
from the apparel manufacturers.

From the manufacturer’s viewpoint, to fulfill the random replenishment

Fig. 8.1. Material and information flow chart of apparel manufacturing systems

orders from the retailers, an inventory of finished goods is established.

192 Chapter VIII

necessary to meet demands. There are generally two ways to build up a req-
uired inventory level, i.e., using quick or regular production lines. In a regu-
lar production line, work flows from worker to worker in bundles with work
buffers between each work station. The Work-In-Process (WIP) in each
buffer is so large that it takes 20 to 25 days for a garment to pass through all
operations, even though only 10 to 20 minutes of direct labor content is
actually required to assemble the garment. Therefore, this kind of line has a
long lead time, which is defined as the time from the receipt of the order
from the retailers to the time the products are delivered to the finished goods
inventory, i.e., the order is fulfilled. In a quick line, a small group of workers
are cross trained to perform several sewing operations. The group of workers
performs all of the sewing assembly operations on the apparel item. Workers
move from one work station to another thereby minimizing the WIP in the
production line. The cycle time in the quick line is less than the regular line;
however, since a cross-trained worker is more expensive than a regular
worker, and workers are generally less productive, on average, at several
operations than they are at a single operation, the cost of the quick line is
higher. The manufacturer is responsible for making decisions on how to
manage future production on different production lines in order to maximize
the overall manufacturing profit. We discuss more details of the manufac-
turer’s scheduling problem in the next subsection.

1.2 Problem formulation

The manufacturer’s decision and control should determine (1) the fraction
of the total production capacity, γ, to be allocated to each production line;
and (2) the scheduling strategy, α, that decides when to work on which
demand on each production line. These decisions and controls are made
weekly, because the replenishment requirement from the retailers is weekly-
made, and this allows the manufacturer to collect new information (past
production schedules, inventory and demand information) before making
decisions and having control of the future. The goal is to maximize the
overall manufacturing profit, which is the total revenue minus the material
cost, the production cost (i.e., the cut, make, and trim cost and the shipping
cost) and the holding cost for both the items in the finished goods inven-
tory and in the WIP. The overall profit is affected by the demand, the pro-
duction facilities, and the inventory dynamics. In the parlance of control
theory, this is a full blown stochastic feedback optimal control problem.
We will discuss these issues separately in the rest of this subsection. Before
that, we need to introduce the concept of Stock Keeping Unit (SKU),

This inventory is expensive to be maintained and should be no higher than

Real World Application Examples 193

which is used to describe different types of items in the demand and the
production. A SKU is a particular style, fabric and size of an apparel item. A
typical jeans manufacturer may make 10,000 to 30,000 distinct SKUs of
jeans in a year. In a given season of the year, the number of SKUs manufac-
tured may still be as high as 10,000. In our problem, suppose there are M
SKUs in all.

1.2.1 Demand models

We assume that demand is weekly-made and there is no back-ordering,
i.e., the retailers will be given whatever is left in the warehouse when the
demand level is greater than the inventory level for each SKU. Assume the
demand of SKU i at time t, di(t), is max(ζ(t),0), where ζ(t) is a Gaussian
random variable with mean µi(t) and standard deviation σi(t). If we neglect
the truncated effect, average demand of SKU i at time t is equal to µi(t).
When we consider seasonal effects, µi(t) will be a periodic function. Coef-
ficient of variation of SKU i, Cvi(t), is defined as standard deviation divi-
ded by mean, i.e.,

 () ()
()

i
i

i

t
Cv t

t
σ
µ

= . (8.1)

We assume that the coefficient of variation, Cvi(t), is a constant, and we
will use Cvi from now on.

There are usually three types of demands in apparel manufacturing
system.

• Flat Demand
There is no consideration on seasonal effects. The average demand is con-

stant throughout the year, i.e., µi(t) = constant. Fig. 8.2 shows the relationship
between the average demand and real demand under different Cv’s.

• Seasonal – Sine Demand
There is a consideration on seasonal effects and the changes of the aver-

age demand are smooth, i.e., µi(t) = Ai+Bisin(2πt/T) where T is the period
of seasonal effects, and Ai, Bi are the amplitudes of the function, Ai>Bi.
Fig. 8.3 shows the relation between the mean and the real demand under
different Cv’s.

• Seasonal – Impulse demand
Sometimes, there are peak demands caused by promotions or special

holidays or both. A sudden jump in sales is often observed at the beginning

194 VIII

of a peak sales period. The peak sales are often planned to be roughly equally
spaced along a year and last for a short time (several weeks) compared with
the regular selling period. The seasonal demand can be modeled by a two-
level demand function, which is called impulse demand. Fig. 8.4 shows the
relationship between the mean and the real demands under different Cv’s.

Fig. 8.2. Actual demand vs. mean for flat demand case when (a) Cv = 2.0 and
(b) Cv = 0.2

Fig. 8.3. Actual demand vs. mean for seasonal – sine demand case when (a) Cv =
2.0 and (b) Cv = 0.2

Quantity Quantity
1000
900
800
700
600
500
400
300
200
100

0
1 11 21 31 41

1

250

300

200

150

100

50

0

11 21 31 41
Time (Weeks) Time (Weeks)

Mean

Mean

(a) Cv = 2.0 (b) Cv = 0.2

Mean

Mean

Quantity Quantity(a) Cv = 2.0 (b) Cv = 0.2
1200

1000

800

600

400

200

0
1 11 21 31 41 1

0

50

100

150

200

250

300

350

11 21 31 41

Time (Weeks) Time (Weeks)

Real World Application Examples 195

Fig. 8.4. Actual demand vs. mean for seasonal – impulse demand case when
(a) Cv = 2.0 and (b) Cv = 0.2

1.2.2 Production facilities

As aforementioned, we consider two different kinds of production lines, a
quick line and a regular (slow) line; the lead times of which are denoted
respectively as Lq and Ls. Both Lq and Ls are assumed to be known and
constant. By definition, Lq<Ls. The total production capacity is generally
limited by the availability of resources such as equipments. In the apparel
industry, production capacity is generally determined by available labor. In
this problem, we assume the total capacity CP is equal to the weekly aver-
age demand over all SKUs. Regularly, there are 5 working days a week,
and we allow one day overtime, therefore,

Maximum capacity = CPmax = 1.2×CP.

As for the minimum capacity, it is clear that it should be at least greater
than zero, but in most situations, it cannot vary greatly week to week. A rea-
sonable assumption is we have to work at least 4 days a week. Therefore,

Minimum capacity = CPmin = 0.8×CP.

The ratio of the quick line capacity to the total capacity, γ, is a constant to
be determined. Therefore,

Maximum capacity of the quick line = u1max = γ×CPmax,
Minimum capacity of the quick line = u1min = γ×CPmin,

QuantityQuantity
6000

5000

4000

3000

2000

1000

0
1 11 21 31 41

Time (Weeks) Time (Weeks)

(a) Cv = 2.0 (b) Cv = 0.2

2000
1800
1600
1400
1200
1000
800
600
400
200

0
1 11 21 31 41

196 Chapter VIII

Maximum capacity of the regular line = u2max = (1-γ)×CPmax,
Minimum capacity of the regular line = u2min = (1-γ)×CPmin.

The production schedules of each week should be chosen within these
limits. Let ui1(t) be the amount of SKU i to be scheduled on the quick line
at time t and ui2(t) be the amount of SKU i to be scheduled on the regular
line at time t. Therefore,

()max min
1

for 1, 2
M

j ij j
i

u u t u j
=

≥ ≥ =∑ .

Please note that the capacity constraint is on the amount of SKUs sched-
uled on both lines each week, not on the work-in-process. The reason is
that, in an apparel manufacturing system, the time to directly produce the
items is comparatively smaller than the waiting time, which is also the
main cause of the lead time. We assume if the capacity constraint is satis-
fied when scheduling the SKUs, then it is always possible to manage the
workers and the machines to finish the scheduled SKUs within the lead
time of that production line, although the more SKUs are scheduled, the
higher the WIP will be, and this will increase the holding cost for the WIP.

1.2.3 Inventory dynamic

There is a weekly replenishment from the finished goods inventory to the
retail stores. Let Ii(t) be the total inventory of SKU i at time t, and Wi(t) be
the total work-in-process (WIP) inventory of SKU i at time t. Then Ii(1) is
the initial inventory of SKU i , and Ii(t+1) should be equal to the left inven-
tory level in the last week after satisfying the demand, i.e., max(Ii(t)-
di(t),0), plus the SKUs that are produced during the last week by both
production lines, i.e., ()2

1
1ij jj

u t L
=

− +∑ . So we have

() () ()() ()
2

1
1 max ,0 1 , 1,...,i i i ij j

j
I t I t d t u t L i M

=

+ = − + − + ∀ =∑ .

The WIP of week t will be the sum of all the SKUs that are still in produc-
tion, i.e.,

() ()
2

1 1j

t

i ij
j k t L

W t u k
= = − +

= ∑ ∑ .

Real World Application Examples 197

1.2.4 Summary

For each product, let Cm be the material cost,
jLC the production cost if

line j is used, and PS the sales price. Let also CI be the holding cost for the
finished goods inventory and WIP per week and per product. For a given γ
and α, Jtotal(α,γ) denotes the total manufacturing profit gained from week
t=1 to week t=Π, which is calculated as follows.

() () ()()total
1 1

, min ,
M

S i i
i t

J P I t d tα γ
Π

= =

= ∑∑ sales price × sales

 ()
2

m
1 1 1

M

ij
i t j

C u t
Π

= = =

−∑∑∑ material cost × production

 ()
2

1 1 1
j

M

L ij
i t j

C u t
Π

= = =

−∑∑∑ production cost × production

()
1 1

M

I i
i t

C I t
Π

= =

−∑∑ inventory cost × inventory

()
1 1

M

I i
i t

C W t
Π

= =

−∑∑ inventory cost × WIP.

The average weekly manufacturing profit, J(α,γ) is given by Jtotal(α,γ) di-
vided by Π, i.e.,

 () ()total
1, ,J Jα γ α γ=
Π

 (8.2)

Since the demand is random, the objective function of the scheduling prob-
lem is then to find γ and α in order to maximize the expected total manu-
facturing profit, i.e.,

[]
(){ }

, 0,1
max ,E J

α γ
α γ

∈Φ ∈
,

where Φ is the collection of all possible scheduling policies α.

There exist four nearly insurmountable challenges in this problem.

• First, in the apparel manufacturing system, different sizes, colors, or
fashions of shirts are considered as different stock-keeping units

198 Chapter VIII

(SKUs). There may be over ten thousands different SKUs in the system.
The demand of each SKU varies weekly and exhibits seasonal trends.

• Second, since the exact demand is unknown in advance, in order to
estimate precisely the expected profit of each strategy, one needs to
perform numerous time-consuming and expensive Monte-Carlo simu-
lations.

• Third, the number of applicable strategies is equal to the size of the
possible production schedules raised to the power of the size of the
information space. It is clear that this can be very large even for a
moderately-sized problem.

• Fourth, since the neighborhood structure in the strategy space is not
known and the performance value function cannot be explicitly repre-
sented in terms of strategy, the calculus and gradient decent algorithm
cannot be applied.

Because of these difficulties, if we want to get the optimal solution
to this problem, brute-force simulation, or large state-space dynamic pro-
gramming is unavoidable. In practice where there are many different
SKUs, it is computationally infeasible to find the global optimum. In the
next subsection, we will apply OO to solve this problem and provide re-
sults which are not only good but also quantifiable.

1.3 Application of ordinal optimization

Since the number of SKUs is very large, the number of applicable strate-
gies is an astronomically large number and Monte Carlo simulation is
needed to evaluate the performance value of each strategy. Therefore,
searching for the best solution is prohibitive in view of the tremendous
computing budgets involved. As mentioned in Chapter II, if we do not in-
sist on getting the optimal design, i.e., we soften our goal by having a high
probability of getting any good enough design, the problem will become
more approachable. When the goal is softened, we can tolerate imprecise
performance estimates because we can have high confidence in obtaining a
“good enough” design from a selected set. In this way the difficulties of
the original problem can be overcome.

To apply ordinal optimization in this scheduling problem, two important
questions must be answered: How can we randomly sample designs from
the design space? What is the crude model that is computationally fast and
can supply rough performance estimate? We discuss these two questions in
turn.

Real World Application Examples 199

1.3.1 Random sampling of designs

Each design is defined as (α, γ), where α is production schedule and γ is
the ratio of the quick line capacity to the total capacity. Although samples
of γ can be easily generated by a uniform random number generator, the
random sampling of the production schedule α is not so straightforward.
By definition, the production schedule should satisfy all the capacity con-
straints each week and make the level of the finished goods inventory track
the demand in an appropriate way, so that most of the demands can be ful-
filled and the inventory holding cost is reasonable. If we do not utilize the
above information, but uniformly randomly sample production schedules
that satisfy the capacity constraints, there is no reason to believe these
schedules can track the demand and reduce the inventory holding cost ap-

sampling of production schedules.
Suppose there is no uncertainty in the demand process d(t), i.e.,

d(t)=E[d(t)], and we can take E[d(t)] to be a deterministic process, then we

theory tools such as dynamic programming, or other ad hoc heuristic

Fig. 8.5. A graphical illustration of how to select the scheduling strategy

Unit of
Apparel

Unit of
Apparel

Unit of
Apparel

Unit of
Apparel

time
time

time time

(a)

(c) (d)

(b)

propriately. We should incorporate the above information in the random

d(t)

I(t)

E[d(t)]
E[d(t)]

can arrange the production schedules to track E[d(t)] as best as we can (see
Fig. 8.5 (a)). This can be solved, in principle, by using well-known control

=d(t)

E[d(t)]

(t) (t)

I(t)

d(t)τ τ

methods, if the size is too large. However, as shown in Fig. 8.5(b), if the

I(t)

200 Chapter VIII

demand process d(t) is a random process, it is clear that tracking E[d(t)]
alone will not be satisfactory (in Fig. 8.5(b), we can see that the inventory
I(t) is too low to guarantee sales). Thus, we introduce another process to
play the role of a deterministic process from which we can plan our sched-
uling strategy. This new process is called the target level, denoted as τ(t),
which is used to replace what we have to, but cannot, track, i.e., d(t). This
is shown in Fig. 8.5(c). Notice that τ(t) is not a random process. Now we
can solve a control problem to determine u(t) to follow τ(t) as best as we
can. u(t) will be the production schedules. Therefore, we first find the tar-
get level of each SKU, then generate the production schedules that can
track the target level. This is shown in Fig. 8.5(d). The remaining problem
is to find a method to generate appropriate target levels and also a produc-
tion schedule that will track the target level.

We must have higher inventory level when we have higher average
demand, and also, when we have higher uncertainties, we must increase
the inventory level in order to guarantee no shortage. So, a reasonable and
simple way to generate the target level for each SKU is to let the target
level of SKU i be proportional to the mean value and the standard devia-
tion of the demand in the future, i.e., τi(t)=(a1+a2Cvi)µi(t+a3), where µi(t) is
the mean of the demand of SKU i at time t while Cvi is the coefficient of
variation of SKU i, and a1, a2, and a3 are constants constituting the design
parameters and are randomly generated and used for all SKUs.

When the target level is given, we should arrange the production sched-
ules so that the inventory level will be equal to the target inventory level
by the time the SKUs exit the production lines. When the production capa-
city is not enough, the capacity will be allocated “fairly” among all the
SKUs so that after the allocation the ratio of the inventory level to the tar-
get level is the same for each SKU. This algorithm was first proposed by
(Bo et al. 1994) and modified by L. H. Lee (Lee 1997) to the cases when
there are multiple SKUs, multiple production lines, and limited production
capacity. Although this target tracking strategy does not guarantee the
optimum, from our experimental results in Section 1.4, we will observe
that it is not far from the optimum.

1.3.2 Crude model

The difficulty to accurately evaluate the performance of a design (α,γ) by
simulation is due to the large number of SKUs, the long simulation in each
replication, and the large number of replications in total. To obtain a crude
model, which is computationally fast and only need to supply a rough
performance estimate, we can do the following three relaxations. (1) As
aforementioned, there might be 10,000 or even 30,000 different SKUs.

Real World Application Examples 201

cost a lot of memory space and time, we aggregate the SKUs by the coeffi-
cient of variation. The mean of the demand of the aggregated SKU is equal
to the sum of the means of the SKUs with similar Cv, and the Cv of the
aggregated SKU will be equal to that Cv. In fact, if the demands of the
SKUs are all positively correlated, it would be clear that this aggregation is
appropriate. The reason is that, if X1, X2, … XN are random variables with
the same Cv and the correlation between Xi and Xj is equal to 1,

1

N
ii

Y X
=

= ∑ will be a random variable with the same Cv and the mean

demand is []1

N
ii

E X
=∑ . For other cases (say the demands of all the SKUs

are independent, experiments have been done to justify this aggregation
method (Lee 1997)). After the aggregation, there are usually no more than
100 SKUs and sometimes no more than 10 SKUs, which saves a lot of
simulations. (2) Instead of simulating the system for several hundreds or
thousands weeks, we can use a short simulation of only 100 weeks. (3) We
can use a small number of replications (even only one replication).

In this way, we obtain a crude model. Although the performance esti-
mate might be very different from the true performance values, the observed
good enough designs set will nevertheless contain a lot of truly good
enough designs.

Let us summarize the application procedure of OO in this scheduling
problem (Box 8.1).

Box 8.1. Application procedure of OO in the scheduling problem of apparel manu-
facturing system

Step 1: Randomly generate N target levels as described in section 1.3.1.
Step 2: For each target level, randomly generate the capacity allocations

between the two production lines. Then use the target tracking
strategy to determine the production schedules of all the SKUs. The
capacity allocation together with the production schedule is a de-
sign (,).

Step 3: Aggregate the SKUs by the coefficient of variation. Then use the
crude model to roughly estimate the performance of the designs.

Step 4: Estimate the observation noise level and the problem type.
Step 5: The user defines the size of good enough set g, and the required

alignment level k.
Step 6: Use the UAP table in Section II.5 to calculate the size of the se-

lected set S.
Step 7: The OO theory ensures that there are at least k truly good enough

designs in the observed top-s designs with high probability.

Instead of tracking the dynamics for each SKU during simulation, which will

γα

202 Chapter VIII

1.4 Experimental results

In this subsection, we will present the experimental results in two experi-
ments. First, we consider the case with 100 SKUs and show that the meth-
ods based on OO, as introduced in Section 1.3, can save the computing
budgets by 2000 folds. Second, we modify the objective function to con-
sider the requirement on satisfaction rates. The satisfaction rate is defined
as the fraction of the time that the demand is satisfied by the finished
goods inventory level. The experimental results demonstrate how the OO
based method can be used as a platform to study the impacts of different
factors on the total profit.

1.4.1 Experiment 1: 100 SKUs

There are 100 different SKUs. For each SKU, the demand at time t is a
truncated Gaussian random variable with mean equals to µ(t) and coeffi-
cient of variation equals to Cv, i.e., d(t)=max(ζ(µ(t), Cvµ(t)),0). We use
seasonal-sine demand introduced in Section 1.2 to model the average de-
mand µ(t). The ratio of the average demand from the peak season to the
low season ranges from 3 to 7. The Cv of the SKUs ranges from 0.1 to 1.0,
and the SKUs with higher Cv have lower demand than the SKUs with
lower Cv. The ratio of the demand of the SKU with the highest Cv to the
demand of the SKU with the lowest Cv is 5. The period of a season is 25
weeks, i.e., about half a year. We have 2 production lines, the lead time of
the quick line is 1 week, while that of the regular line is 4 weeks. The
weekly total production schedules should be maintained within 100±20%
of the total production capacity. The “good enough” set G is defined as the
top 5% of the solution space. We use the linear method introduced in Sec-
tion 1.3 to generate the target inventory level, i.e.,

() () ()1 2 3target i i it a a Cv t aτ µ= + + .

In order to get the true performance value of a design, it will be necessary
to run the detailed simulation. In this experiment, we assume that a de-
tailed simulation utilizes the entire 100 SKUs with a simulation time = 500
weeks and the number of replications = 40.1 When we estimate the observed
performance value of the design, we run an aggregated 10 SKUs simulation

1 In fact, when we run the simulations, it takes about a week to run on a Sun

SPARC 20 station. The estimated performance values are still imprecise, but the
errors are very small (the standard deviation of the error is about 0.05% of the per-
formance value).

Real World Application Examples 203

with time = 100 weeks and number of replication = 1.2 Notice that the time
needed to estimate the observed performance value is roughly 1/2000 of
the time to estimate the true performance value of the design. We have re-
duced the computation time from 1 week to several minutes.

Table 8.1. The cost structure of the shirt manufacturer

Cost term Value
Inventory holding cost per unit per week CI (both finished
good and WIP)

$0.08

Quick line production cost per unit Cq $4.4
Regular line production cost per unit Cs $4
Material cost per unit Cm $10
Sale price per unit PS $20

The cost structure is shown in Table 8.1. The results of the simulations
are shown in Table 8.2.

Table 8.2. The alignment level and profit that we obtained when OO was used for
the 100 SKUs case (periodic-sine demand)

s k J
1 1 356,834
5 4 358,999
10 7 358,999
20 11 358,999
50 26 359,504
100 38 359,504

In Table 8.2,

• s = number of designs selected by using the observed performance
value.

• k = the average number of overlaps of the selected s designs with true
top-50 designs, i.e., alignment level |G∩S|. (These top-50 designs are
obtained by running all 1000 designs for detailed simulation.3)

• J = the best performance value (profit) in the selected s designs.

2 From the simulation results, errors are about 3 to 4% of the performance

value.
3 Notice that this is a tremendous computational burden and precisely what our

approach is trying to circumvent. However to lend credibility to our approach, this
is the only way to prove its validity. Once established, we need not repeat this
validation process in practical applications.

204 Chapter VIII

To get an idea of the absolute difference between the results obtained by
OO and the true optimum, an upper bound of the profit can be obtained
(Lee 1997). The idea is to consider a long enough simulation so that the
system achieves the steady state. The average weekly production will be
roughly equal to the average weekly sale; the ratio of the average weekly
production of the quick line and the regular line should be close to the ratio
of the capacity allocated to the quick line and the regular line (we can
always fully utilize the capacity); and by Little’s Law, the WIP should be
equal to the average weekly production multiplied by the lead time. We
will not deduce the upper bound in details. Please refer to (Lee 1997) for
specific details. Based on these observations, the upper bound of the opti-
mum profit is $369,551.

From the results in Table 8.2, we can make the following observations.

• In order to get the true performance value4 of all the designs, the simu-
lations were run about one week, 24 hours a day, on a Sun SPARC 20
machine, but to get the observed performance values, we only needed a
run of several minutes.

• The selected set S contains a high proportion of good enough designs.
When we increase the size of selected set S, the number of alignments
between the good enough set and the selected set S also increases.

• The performance value (manufacturing profit) of the best design in the
selected set is indeed very close to the pre-calculated upper bound (3%
from the upper bound), which means that this approach not only gua-
rantees to find good designs but also the design is close to the optimum
in this problem.

1.4.2 Experiment 2: 100 SKUs with consideration on satisfaction rate

For some companies, it is an important strategic requirement to satisfy cus-
tomer demands. Failing to do so can result in not only the lost profits due
to lost sales, but also the loss of future market share. This motivates a con-
cept called the satisfaction rate, which is simply the fraction of the time
that the demand is satisfied by the inventory level. A satisfaction rate of 1
means that customer demands will always be fulfilled from inventory, or
in other words, the inventory level is higher than the demand level every
week. Satisfaction rate is defined as,

4 The true performance values are obtained by running detailed simulation.

Real World Application Examples 205

() ()()
1

1satisfaction rate
t

I t d tι
Π

=

= −
Π ∑

Where

()
1 if 0
0 if 0

x
x

x
ι

≥⎧
= ⎨ <⎩

.

Therefore, in order to maintain a high level of satisfaction rate, it is un-
avoidable to keep a high inventory level, which will induce a cost. How-
ever, the relation between enforcing the satisfaction rate and the cost in-
curred is not obvious. In this section, by using the OO based method in
Section 1.3, we can quickly find this relation, which will serve as a good
indicator for the production and sales managers to know how to set their satis-
faction rate level.

Assume that the satisfaction rate constraint is that the average satisfac-
tion rate, SR, of all SKUs have to be above certain level, β, i.e.,

() ()()
1 1

1 M

i i
i t

SR E I t d t
M

ι β
Π

= =

⎡ ⎤= − ≥⎣ ⎦Π ∑∑ .

Therefore the scheduling problem becomes

(){ } ()

,
max , Penalty ;E J SR
α γ

α γ β
∈Φ

−

subject to the constraints on the production capacity and the inventory and
WIP dynamics. After adding the satisfaction rate constraints, the problem
becomes a constrained optimization problem. We can either use the cons-
trained OO that was introduced in Chapter V to solve this problem directly,
or use a penalty function to convert the problem back to unconstrained
optimization. Since we will demonstrate the application of COO in a
remanufacturing system performance optimization problem in Section 3,
we focus on the second way in this section. The penalty function is a quad-
ratic function which is defined as follows,

() ()2 if Penalty ;
0 otherwise

c x xx β ββ
⎧ − <⎪= ⎨
⎪⎩

 (8.3)

206 Chapter VIII

where the coefficient c is a penalty function. If c is very large, we will
have a hard constraint, i.e., the selected design has to satisfy the constraint.
The good enough set is defined as the top-n% designs. The parameter set-
ting is almost the same as in experiment 1, except that the sales price, PS,
is $16, which is much lower. For the lower profit margin, we will keep a
lower inventory level, and therefore the design that gives the optimum
profit level will have a low satisfaction rate. With an interest in this prob-
lem, we will see the costs incurred when we enforce the high satisfaction
rate constraint.

The results of the simulations are shown in Table 8.3.

Table 8.3. The results of the simulation when we have satisfaction rate con-
straints, where s is the number of designs selected by using the observed perform-
ance value (Note: Pre-determined upper bound for profit = $106,492)

s J with no satisfac-
tion rate constraint

J with β = 0.97 J with β = 0.98 J with β = 0.99

1 $96,030 $92,686 $93,819 $88,283
5 $96,413 $95,210 $93,819 $92,147
10 $96,413 $95,210 $94,022 $92,147
20 $96,413 $95,210 $94,022 $92,147
50 $96,413 $95,210 $94,022 $92,147

From the results in Table 8.3, we observed that if we have to enforce the
satisfaction rate higher than 0.97, there will be a profit lost of $8005. This
table, which is obtained within an hour, will be useful for a manager to
know the cost associated with the satisfaction rate constraint. Actually, by
using the OO-based method as a simulation-based optimization platform
for the scheduling problems in apparel manufacturing systems, it is now
possible to study many aspects of the system in a more quantitative way,
such as the performance of new supply chain contracts between the manu-
facturers and the retailers (Bouhia 2004; Volpe 2005).

1.5 Conclusion

In this section, we apply the OO methods introduced in Chapter II to a
scheduling problem in the apparel manufacturing system. We show how
to incorporate the problem information in the initial random sampling of
the designs and the construction of the crude model. The results are very
promising. The OO-based method is very fast and only needs several

5 When this constraint increases to 0.99, the cost incurred will be roughly

$4,000.

Real World Application Examples 207

minutes to screen out the good enough designs. We only use 1/2000 of the
computation time that brute-force simulation would have taken in Experi-
ment 1. The performance of the design found by OO is not only within the
top-5% of the design space, but also within 3% from an upper bound of the
optimum. This method supplies a simulation-based optimization platform
to quantitatively analyze the performance of the apparel manufacturing
system, which supplies many possibilities for further improving the per-
formance of the apparel manufacturing system. Note that we only consider
the linear model to generate the target level in this section. There are also
other models to approximate the periodic property of the mean value of the
demand better than the linear model. Interested readers may refer to (Lee
1997) for more details.

2 The turbine blade manufacturing process optimization
problem

In this section, we consider a turbine blade manufacturing process optimi-
zation problem (Yang 1998). The integrated blade and rotor is manufac-
tured via extrusion, which is similar to the manufacturing of plastic parts,
but with much tougher high strength metal used and higher quality require-
ment on the product. As an optimization problem, such a manufacturing
process is distinguished by the large number of parameter settings of all
the operations and the difficulty to accurately evaluate the quality of
the final production. On the one hand, the parameters, such as the initial
size of the billet, the ram velocity of the plunger, and the ambient tempera-
ture of the work piece being processed, usually take continuous values.
There are a huge and in principle infinite number of possible parameter
settings combinations. On the other hand, for security and combat consid-
erations, the aircraft usually has high quality requirements on the turbine
blade. This quality depends on the physical property of the turbine blade,
such as the effective strain field, the effective strain rate field, and the
maximum load-stroke. These physical properties are determined by the
deformation process of the work piece during the manufacturing, which
can only be accurately described by the finite element method (FEM). It
usually takes hours if not days to use FEM to simulate (calculate) the
entire deformation process, and accurately evaluate the quality of the tur-
bine blade thus produced. Giving the extremely large search space, with
the lack of structure information (such as the gradient information) of the
search space, it is computationally infeasible to find the optimal parameter
settings using brute force. In this section, we show how OO can help to

208 Chapter VIII

solve this problem. The FEM is a deterministic but complex calculation.
Based on our previous discussion in Section II.6, OO can also be applied
in this type of problem. One purpose of this section is to justify this by
using a real-life example. By applying ordinal optimization, we are able to
find a good enough parameter setting based on a computationally fast but
crude model, and save the computing budgets by 95%, comparing with
brute force. We formulate the problem in Section 2.1, show the application
of OO in Section 2.2, and briefly conclude in Section 2.3.

2.1 Problem formulation

Peripheral blades and central rotor compose the primary parts of an air-
plane turbine engine. The quality and reliability of the turbine blade
is important for the functionality of the aircraft engine. To meet the sym-
metry requirement of operation under high rotations, the blades must be
balanced around the rotor, which is a difficult and costly production stage
if the blade and the rotor are produced separately first and then fused
together. To solve this problem, the integrally-bladed rotor (IBR) is inven-
ted, which, as the name shows, is a component that integrates the blade
and the rotor manufacturing (Fig. 8.6). The high engine performance
demands of customers require that these components be made from tradi-
tionally “difficult-to-process” materials such as high-temperature titanium
alloys, intermetallics, and Nickel-based superalloys. Often these materials
are stronger than conventional tool materials and require special tooling and
high temperatures for processing. Coupled with this tooling constraint are
the high-strength and high-reliability requirements, which call for good to
excellent control of the final metallurgical structure and pedigree of the
materials. These requirements lead to cautious designs of processing opera-
tions, often with redundant operations to ensure acceptable final metallurgical
characteristics. Therefore, the manufacturing of such components consists of a
significant part of the life-cycle cost of a turbine engine. With growing
demands on aeronautical technology, there is a strong interest in the optimiza-
tion of the manufacturing process of these components.

The manufacturing process of an IBR is shown in Fig. 8.7. First, the raw
material is cast into the billet with the required radius and height. Then, hot
isostatic pressing (HIP) is used to reduce the porosity of metals, which im-
proves the mechanical properties and increases workability. After that, by
hammering on the end, the billet is made shorter and thicker. This opera-
tion is called “upset”. Due to the high quality requirement on the IBR,
there are two forge stages. In the first stage, by heat treatment, the cylin-
drical billet melts down, flows into the blocker die, and is rammed into the

Real World Application Examples 209

expected shape. This is called the blocker forge. In the second, the work
piece is further forged to a shape near the net shape of an IBR, thus called
the near-net-shape (NNS) forge. After all these, the work piece is ma-
chined to IBR. Among these operations, the blocker forge is the most
complex one, which involves various thermo-mechanical processes, so we
focus specifically on the optimization of the blocker forging stage in this
case study. Roughly speaking, there are several stages when filling the
blocker die in the blocker forge. A more detailed discussion will be pre-
sented in Section 2.2 and illustrated by Fig. 8.9.

Fig. 8.6. An integrally-bladed rotor

Fig. 8.7. The manufacturing process of an IBR

210 Chapter VIII

The three characteristics of the IBR problem that make it difficult to be
solved by traditional optimization approaches can be described as follows.

1. High complexity in the structure of the problem. As Fig. 8.7 illus-
trates, many of the processes involved are nonlinear in nature and are
interdependent. As a result, accurate evaluation of a single design (i.e.,
a specification of the parameter settings of the manufacturing process)
via finite element calculations generally takes hours if not days or
months to calculate, putting aside of the issue of a limited computa-
tional budget. It is not hard to see how the traditional searching
approaches that rely on the availability of accurate design performance
evaluations will become impractical under limited computation budgets
and time constraints.

2. Unpredictability of Inherent Imprecision. In the nontrivial case
when a simpler model that is different from the true model (the FEM
model) is used for search, the model imprecision must be accounted
for during the selection process. In essence, the IBR problem becomes
a noisy search problem that most traditional optimization algorithms
do not address.

3. Very Large Search Space. The design space of the IBR problem
explodes exponentially with the large number of parameters involved.
In the blocker forge stage considered in this case study, there are seven
parameters (all defined over continuous interval ranges) and a choice of
the die shape (from finite number of candidates) that can be controlled.
(These parameters will be introduced later in this subsection.) Even if
all parameters are discretized into 10 discrete values, the overall
design space is roughly 107. With such a big space, the traditional
build-and-test method is out of the question. For the same reasons,
a computerized brute-force selection process will require a large
number of evaluations, or numerical simulations, that are clearly in
conflict with a limited time budget.

Giving the above difficulties, we have to find better ways to screen out
some good parameter settings first, before we adopt the detailed FEM cal-
culation. This is where OO helps. First, we introduce the mathematical
problem formulation.

In the blocker forge, we can control the following parameters: the initial
radius, height, and temperature of the billet, the temperature and shape of
the die, the ram velocity, the ambient temperature, and the friction coeffi-
cient. These variables usually take real values within the parameter ranges,
except for the die shape, which usually has a small number of candidates.
Each design θ in this problem is defined as a specification of all the above
seven parameter settings (the initial radius, height, and temperature of the

Real World Application Examples 211

billet, the temperature of the die, the ram velocity, the ambient tempera-
ture, and the friction coefficient) and a choice of the die shape. Then the
design space Θ contains all the possible parameter settings. Given a design
θ, through the detailed FEM simulation of the deformation process of the
work piece during the operations, we can obtain the following physical
quantities that determine the physical property of the IBR: the effective
strain field, the effective strain rate field, the effective temperature field,
the maximum stress field on the die surface, and the maximum load-stroke.
The value of the cost function (definition follows) that evaluates θ, and the
parameter setting of the operations, can be calculated.

The cost function used in this study consists of eleven terms, including
five accounting costs, four quality loss penalties, and two inspection over-
heads. In the accounting cost category, the five cost factors considered are:
material cost, initial reduction setup cost, initial reduction press cost, forge
press cost, and die wear cost. The material cost refers to the market value of
the initial billet. When the aspect ratio of the initial billet is too high, an ini-
tial reduction with a bottle-cap die set is necessary to avoid a buckling forge
situation. The initial reduction setup cost and the initial reduction press cost
refer to the setup cost and the operation cost per press run in this particular
situation. The forge press cost is the cost of utilizing the press to complete
the forge process. The die wear cost is the cost of the forge die set divided
by the average number of production runs in the life of that TZM (Molybde-
num Alloy) die set. The general equations6 of the respective terms are:

Cost term General form
Material cost Cma×total billet volume
Initial reduction setup cost Crs×functionrs(aspect ratio)
Initial reduction press cost Crp×functionrp(aspect ratio)
Forge press cost Cfp
Die wear cost Cdw×functiondw(billet temperature,

maximum die pressure, processing time
length)

In the penalty category, the four terms reflect the constraints on the ma-
terial properties and the limits of the die capacity. These four terms are:
force penalty, heat treatment penalty, heat remedy cost, and strain induced
porosity (SIP) damage penalty. Force penalty reflects the maximum force

6Since our purpose here is to give a general picture of the complexity of

the problem, we choose not to display the detailed mathematical formula. Actual
detail can be found in (Yang 1998).

Table 8.4. Accounting costs (Yang 1998)

212 Chapter VIII

constraint of the press through a quadratic penalty function. The heat treat-
ment penalty reflects the material strain constraint through an approxima-
tion of the fraction globalized in Ti64 material from the strain information
of the work piece. The heat remedy cost specifies the cost of the heat
treatment to remedy the strain imperfections in the work piece. The SIP
damage penalty reflects the strain rate constraint and the temperature con-
straint on the final product through the estimation of the equilibrium vol-
ume fraction of the alpha phase for Ti64. The general equation, again in
the spirit of footnote #1, for the four constraints are:

Penalty term General form
Force penalty Pfp×functionfp(maximum die force)
Heat treatment penalty Pht×functionht(billet strain, billet tempera-

ture)
Heat remedy cost Phr×functionhr(billet strain, billet tem-

perature)
SIP damage penalty PSIP×functionSIP(billet strain rate, billet

temperature)

Finally, in the inspection category, the two terms are: forge setup in-
spection cost and ultrasonic inspection cost. The forge setup inspection is a
fixed cost term to insure safety during the forge process. The ultrasonic in-
spection cost is the mandatory ultrasonic non-destructive evaluation prior
to the acceptance of the final product. The general equation for two inspec-
tion overheads can be described as:

The cost function can be summarized as follows:
 J(θ) = Cma×total billet volume (θ)

 + Crs×functionrs(aspect ratio(θ))
 + Crp×functionrp(aspect ratio(θ))
 + Cfp
 + Cdw×functiondw(billet temperature (θ),

maximum die pressure (θ),
processing time length (θ))

 + Pfp×functionfp(maximum die force(θ))
 + Pht×functionht(billet strain(θ))

Table 8.5. Penalty terms (Yang 1998)

Inspection overhead General form
Forge setup inspection Osi
Ultrasonic inspection Oui

Table 8.6. Inspection overheads (Yang 1998)

Real World Application Examples 213

2.2 Application of OO

The basic idea of OO is to use a crude model, which is computationally
easy, to screen out quickly some good enough designs. From the last subsec-
tion, we can see that the value of the cost function depends on the parameter
settings of the operations and the physical properties of the IBR thus pro-
duced. To accurately evaluate the physical properties of the IBR, the FEM
model that describes the thermo-mechanical processes have to be used. In
order to apply OO in this problem, it is crucial to find a crude model, which
approximates the thermo-mechanical processes in a fast way and can give
rough estimate of the physical properties of the IBR thus produced. Fortu-
nately, the Ohio University Forge Simulation Model (the OU model)
(Gunasekera et al. 1996) offers us such a choice. Compared with the FEM
model, which contains all the details in the forging process, the OU model
introduces the following simplifications. First, Gunasekera et al. showed that
all changes in continuum properties such as strain, strain rate, and tempera-
ture can be described as functions of geometry or changes in the geometry
with respect to time (Gunasekera et al. 1996). Based on this observation,
instead of tracking down the changes in all the physical quantities at the
same time like the FEM model does, the OU model only tracks down
the change of the geometry of the work piece. Second, the general die shape
(quarter cross-section view) is shown in Fig. 8.8. Instead of tracking the
entire field of the continuum properties such as strain, strain rate, tempera-
ture, pressure, and grain size, the OU model divides the work piece into four
parts: web, flange 1, flange 2, and flash. It calculates only the estimated
average of these characteristic values in the regions with the assumption that
these thermo-mechanical properties are uniform inside each region. Third,
the evolution of the work piece during the forge process is simplified. When
a billet is heated, input to the die, and rammed, it does not fill in every part
of the die immediately. This process takes some time, and consists of five
sub-stages as shown in Fig. 8.9. We can see that the shape of the work piece
is not regular during these sub-stages. Instead of describing this deformation
in details like the FEM model does, the OU model simplifies the five sub-
stages as shown in Fig. 8.10. As we can see, the form of the work piece is
more regular than in Fig. 8.9. Based on this simple approximation of the

 + Phr×functionhr(billet strain(θ))
 + PSIP×functionSIP(billet strain rate(θ),

billet temperature(θ))
 + Osi
 + Oui.

214 Chapter VIII

work piece geometry evolution, the OU model calculates the changes in the
height and diameter, and calculates the strain and strain rate values. The cal-
culation of other physical quantities, such as temperature, microstructure, die
pressure, and the total die force, are calculated based on semi-empirical
models together with some other approximations. In this way, the simulation
is much simplified, and much faster than the FEM. A comparison study
shows that it takes the FEM about 4 hours to evaluate one design, but only
0.1 seconds for the above crude model since it is made up of analytical
formula (Yang 1998). This is a tremendous saving in computing time.

Note that the above crude model is a deterministic but simple calculation.
Because the true model (i.e., the FEM) is too complex, the deterministic
errors between the two models are complex and hard to predict. Based on
our discussion in Section II.6, we can regard these errors as random noises,
and treat the problem as if the true model is a stochastic simulation. We use
a case study to justify these statements.

Fig. 8.8. General die shape (quarter cross-section view)

Fig. 8.9. The geometry evolution of the work piece described by the FEM model
(different time snaps of the work piece during the forge process) (Yang 1998)

Real World Application Examples 215

Fig. 8.10. The geometry evolution of the work piece described by the OU model
(different time snaps of the work piece during the forge process)

In the following case study, we take the parameter ranges as shown in
Table 8.7. The die shape can be defined by 6 variables, as shown in Fig.
8.11. There are four candidates for the die shape (Table 8.8). First we
study the difference between the crude model and the true model (i.e., the
FEM). We uniformly randomly sample 80 designs from the entire design
space. We use the number 80 because it is too time-consuming to use the
detailed model to accurately evaluate the performance for a large number
of designs. Actually it takes about 14 days of continuous computing to
finish the performance evaluation of these 80 designs using FEM. Com-
paring with so long a time, it is amazing how fast the crude model is. Only
8 seconds! We plot the observed cost vs. true cost in Fig. 8.12.

Table 8.7. Parameter ranges

Parameter Parameter range ([min, max] unit)
Initial billet radius [3, (flange radius – 0.5)] inch
Initial billet height [(web height + 0.5), (3×initial billet ra-

dius)] inch
Die temperature [1562, 1832] °F
Ram velocity [0.1, 0.6] inch/sec
Initial billet temperature [die temperature – 25, die temperature +

25] °F
Ambient temperature [die temperature – 25, die temperature +

25] °F
Friction coefficient [0.2, 0.8]

216 Chapter VIII

Table 8.8. Die shape candidates

Die shape
index

r1 r2 r3 h1 h2 h3

0 8 9 10 1.0 2.4 0.15
1 8 9 11 0.5 2.4 0.20
2 8 9 10 1.0 2.4 0.20
3 8 9 11 1.0 2.4 0.05

Fig. 8.11. Die shape variables

Fig. 8.12. Observed cost (by the OU model) vs. true cost (by the FEM model)

Real World Application Examples 217

In Fig. 8.12, each dot on the graph represents a design with its x value
being the true cost calculated by FEM, and its y value being the cost pre-
dicted by the crude model. The dotted line is the 45° line, on which all the
points shall fall if the crude model conforms exactly to the FEM model.
Data analysis shows that the prediction given by the crude model has an
average %error (defined as (|crude model predicted value|-|FEM value|)/
|FEM value|) of 14% and a standard deviation of %error at 12%. The
maximum %error observed is 62% and the minimum is 0%. This means
the crude model does not give accurate performance evaluations. Actually
in the 80-design instance shown in Fig. 8.12, the observed best design is
the truly 20-th best. If we focus only on the best design, we can hardly
succeed. Now, we apply OO to find some good enough designs with high
probability.

Due to the extremely large computation needed to accurately evaluate
1000 designs (an estimate shows that it will take about 160 days to finish
all the calculation), we only have the true performance of 80 designs. In
the following, we will regard these 80 designs as the representative set ΘN.
Astute readers might notice that the UAP table in Section II.5 was obtained
under the assumption of N=1000. They may ask whether it is reasonable to
use that UAP table to estimate the size of the selected set when N=80. The
numerical results, which will be shown later, justify this usage.

We show the observed OPC of these 80 designs in Fig. 8.13, which be-
longs to the neutral type. To see the difference between the OU model and
the FEM model, we also show the corresponding true performances of
these designs. Then we randomly select several of these 80 designs to es-
timate the normalized noise level, which is 0.1729. This belongs to the
small noise level in the UAP table (Table 2.1 in Section II.5). For different

predicted values of s based on Eq. (2.42) are shown in Table 8.9, denoted
as 1̂s . Since the true noise level is smaller than 0.5, we use linear interpola-
tion to obtain another group of predicted values of s, denoted as 2ŝ . This
linear interpolation method will be explained in details later. For the in-
stance of these 80 designs, we also present in Table 8.9 a size s* whose
value is decided such that there are at least k truly good enough (recall that
we know the true performance of these 80 designs) designs in the observed
top s* ones. This quantity is shown here as a measure of the ideal size of
the selected set to achieve the desired alignment level. We can see that 1̂s
is always an upper bound of s*, which shows the conservative nature of the
UAP table. Now we show how to obtain less conservative estimate of s.

values of the good enough set (g), the required alignment levels (k), the

218 Chapter VIII

Table 8.9. The predicted and true selected sizes

g k s*
1̂s 2ŝ

1 (top 1.25%) 1 3 80 29
4 (top 5%) 1 3 13 6
 2 5 25 10
 3 6 37 15
 4 9 49 20
8 (top 10%) 1 3 6 3
 2 5 10 5
 3 6 15 8
 4 9 19 10
 5 11 24 12
 6 13 28 14
 7 17 33 16
 8 19 38 19

Fig. 8.13. The observed OPC

One important reason that 1̂s is conservative is that the true noise level is
not 0.5, but 0.1729, which is much smaller. So we use linear interpolation

means we know the true performance of all the designs. We only need to
to obtain better prediction of s. Note that if the noise level is 0, which

Real World Application Examples 219

select the observed top-k designs (which are just the true top-k designs) to
cover k truly top-g designs, i.e., s = k. Through previous calculation, we also
know the predicted value of s when the noise level is 0.5, i.e., the 1̂s in
Table 8.9. Through linear interpolation of size s in terms of the noise level,
we obtain the prediction of s when the noise level is 0.1729 (denoted as 2ŝ
in Table 8.9). For example, when g = 8, k = 1, if the noise level is 0.5, 1̂s = 6;
if the noise level is 0, s should be 1; now, the noise level is 0.1729, so the
new estimate can be obtained from the following linear interpolation:
(6-1)/0.5×0.1729+1⎤=3, which is denoted as 2ŝ in Table 8.9. We can see
that 2ŝ is less conservative than 1̂s , which usually is an upper bound of the
true value s*, and close to the true value s* when g = 8. The only exception
is when g = 8 and k = 7, the predicted 2ŝ is smaller than s*, but still very
close. After goal softening, if we want to find at least one of the top-10%
designs with high probability, the prediction 2ŝ says we only need to in-
vestigate the observed top-3 designs. Comparing with brute force, we re-
duce the detailed performance evaluation by more than 25 folds (from 80
to 3). Through these numerical results, we see OO can help to save the
computing budgets even when the objective function is not a stochastic
simulation but a deterministic complex calculation. The results also justify
the application of the UAP table when the representative set ΘN is smaller
than 1000.

2.3 Conclusion

In this section, we have considered a turbine blade manufacturing process
optimization problem. The objective function can only be accurately evalu-
ated through a complex but deterministic calculation. By using a crude
model, which is more than 10000 times faster than the detailed FEM
model, together with the idea of goal softening, we are able to save the
computing budgets by more than 25 folds, comparing with brute-force cal-
culation. This justifies that we can apply OO to solve the problem, taking
the deterministic but complex error between the crude model and the
detailed model as random noise. It should be noted that we omit many
technical details to simplify the above discussion, such as the equations to
describe the forging process in the FEM, and parameter settings of the 80
designs that are randomly sampled. Readers can refer to (Yang 1998) for
more details. (Yang 1998) also shows that we can increase the accuracy of

220 Chapter VIII

the cost prediction by incorporating more information in the crude model.
This in turn helps to reduce the selected set thus required, and further save
the computing budgets. We also show how to reduce the selected set size
by interpolation. Another way to reduce the selected set size can be found
in Section 3.3 below.

3 Performance optimization for a remanufacturing system

In this section we consider a remanufacturing system (Song et al. 2005a,
2005b). The goal is to manage the number of machines in the repair shop
and the number of new parts to order in the inventory, so that the main-
tenance cost is minimized and the average maintenance time for an asset is
not too long. Since there are two considerations in this problem, we can
regard the maintenance cost as the objective function, and the requirement
on the maintenance time as the constraint. In this way, we have a cons-
trained optimization problem. The corresponding problem formulation will
be discussed in Section 3.1 in details. Due to the time-consuming simula-
tion-based evaluation of both the objective function and the constraint, we
apply the constrained ordinal optimization as introduced in Chapter V. The
application procedure is shown in Section 3.2. The experimental results
are also presented, which is promising because we save the computing
budgets by 25 folds. However, alternatively we can regard both the main-
tenance cost and the maintenance time as objective functions. We have
then a two-objective function simulation-based optimization problem. We
apply the vector ordinal optimization as introduced in Chapter IV. Espe-
cially, we show how to incorporate the problem information to further save
the computing budgets in VOO. The details are presented in Section 3.3.
We make a brief conclusion in Section 3.4.

3.1 Problem formulation of constrained optimization

Due to the consideration of saving the production cost and reducing envi-
ronmental pollution, the study on remanufacturing system has attractted
more and more interest recently (Guide et al. 1999; Guide 2000). The basic
idea of remanufacturing system is to re-use the parts (sometimes after repair)
from the old products to produce new products. This idea is especially use-
ful for very expensive assets (such as aircraft jet engines) which consist
of many parts. Rejecting old parts directly not only causes environmental
pollution easily but also increases the production cost of a new asset. Thus
the old parts are usually recycled after some repair.

Real World Application Examples 221

to random failure, the asset is shipped to this remanufacturing system. Af-
ter disassembled into parts and inspected, the parts still in serviceable con-
dition will be directly sent to a certain place and wait to be reassembled
into new assets. The other parts need some repair and are sent to the repair
shop. After the repair, the parts enter an inventory, and are then assembled
into new assets together with the parts in serviceable condition, then leave
the system. Since the parts of the same type are not distinguished from
each other during the assembling, the inventory is also called the rotable
inventory in practice (Kleijn and Dekker 1998). Due to the random arrival
of the asset to this system and the uncertainties in the waiting time and re-
pair time in the repair shop, sometimes there might not be enough parts
when assembling a new asset. To avoid this “lack of synchronization”,
new parts can be ordered to the inventory. The parameters we can control
are the number of machines in the repair shop and the number of new parts
to order in the rotable inventory. We care about two performances metrics
of the system. One is the average maintenance cost of an asset. The other
one is the average maintenance (remanufacturing) time of an asset. These
two performances are obviously related to one another. When there are more
machines in the repair shop or more new parts are ordered in the inventory,
the maintenance time can be reduced but the maintenance cost increases.
The question is how we can minimize the maintenance cost7, given the
requirement on the maintenance time.

Fig. 8.14. Detailed model of the remanufacturing system

7 Actually the opportunity to do preventive maintenance or not while the engine

is disassembled is another decision which we will not consider in this example.

…
… …

…
…

…

A detailed model of a remanufacturing system is shown in Fig. 8.14. Due

222 Chapter VIII

We mathematically formulate the problem as follows. Consider a plan-
ning horizon with m seasons (there are 3 months in each season). Suppose
there are n parts in each asset, each of which requires a specific type of
machine to repair. Let Ci,j be the number of machines of type i that are used
in season j. And let ∆Ii,j be the number of new parts ordered at the beginning
of season j, which will be shipped to the inventory and become available
in the next season. The maintenance cost consists of the machine cost
(,1 1

n m
i ji j

Cα
= =∑ ∑), the cost for ordering new parts (,1 1

n m
i ji j

I
= =

∆∑ ∑),

and the inventory holding cost (,1 1

n m
i ji j

Iβ
= =∑ ∑), i.e.,

() , , ,
1 1 1 1 1 1

,
n m n m n m

i j i j i j
i j i j i j

J C I C I Iα β
= = = = = =

∆ = + ∆ +∑∑ ∑∑ ∑∑ ,

where α and β are positive real numbers, C and ∆I are n-by-m matrix, with
Ci,j and ∆Ii,j as the components. Ci,j should not exceeds a specific value in
two neighboring seasons, i.e.,

, 1 ,i j i j iC C C− − ≤ ∆ ,

and Ci,j should be controlled within a reasonable range, i.e.,

min max

,i i j iC C C≤ ≤ .

Similarly, the order quantity of the parts cannot exceed a specific value, i.e.,

max
,i j iI I∆ ≤ ∆ .

Then it is obvious that the amount of part i in season j in the rotable inven-
tory satisfies

, , 1 , 1 , 1 , 1i j i j i j i j i jI I p I q− − − −= + + ∆ − ,

where pi,j-1 represents the number of part i that were finished in season j-1,
qi,j-1 represents the number of part i that were used in season j-1. Let a(k)
be the inter-arrival time between the k-th and the (k-1)-th asset. The first
asset arrives at time a(1), and the k-th asset arrives at time ()1

k

i
a i

=∑ .

Real World Application Examples 223

After the k-th asset is disassembled and inspected, some parts are in ser-
viceable condition and will be assembled with some other parts from the
inventory into a new asset, then leave the system at time η(k). The mainte-
nance time for this asset is defined as

() () ()
1

k

i
T k k a iη

=

= − ∑ .

During the planning time horizon, the probability that the maintenance
time exceeds a given limit TD is

() ()D CProb T k T k Tη> ≤⎡ ⎤⎣ ⎦ .

Suppose the constraint is that this probability should not be large, say less
than P0. Then the constrained optimization problem is

() () ()D C 0,

min , s.t. Prob
C I

J C I T k T k T Pη
∆

∆ > ≤ <⎡ ⎤⎣ ⎦ .

Although the above problem formulation might be simpler than the real

system, this formulation preserves the basic characteristic of the real sys-
tem, especially the difficulties. First, both the number of the machines and
the number of new parts can only take discrete values. There are n×m vari-
ables in C and ∆I each, and thus the size of the design space is close to

{ }()max max min

1

min 2 ,
n m

i i i i
i

I C C C
=

∆ ∆ −∏ ,

which grows exponentially as n and m increases. Simulation is the only
way to do detailed performance evaluation for each (C, ∆I). Second, both
the objective function and constraint are simulation-based. To obtain an
accurate performance evaluation of the objective function and the con-
straint, we need ~1000 replications, which will take 30 minutes for each
design by using the Enterprise Dynamics Software (Song et al. 2005a). If
we want to accurately evaluate the feasibility of 1000 randomly sampled
designs, we will need 500 hours, which is a very long time. In the next
subsection, we apply constrained ordinal optimization to deal with these
difficulties.

224 Chapter VIII

3.2 Application of COO

As introduced in Chapter V, the idea of COO is to use a feasibility model
to quickly screen out the feasible designs (probably with some mistakes),
and apply a crude model within these designs that are predicted as feasible
to find some truly good enough and truly feasible designs. In order to ap-
ply COO to the remanufacturing system, we need to find an imperfect fea-
sibility model for the constraint and a crude model for the performance.

3.2.1 Feasibility model for the constraint

By definition, any method that can predict the feasibility of a design with
reasonable accuracy (say higher than 0.5) can be a feasibility model used
in COO. This gives us a lot of freedom, such as heuristics and experiences.
Of course, a feasibility model with higher accuracy will make a smaller
number of mistakes, thus can further save the computing budgets. In this
example, we use a machine learning method to obtain a feasibility model.
The idea is as follows: First, we randomly sample a small number of
designs, and then use brute-force simulation to accurately determine the fea-
sibility of these designs. Input these designs and the corresponding feasibi-
lity as the training data, and use a machine learning method to discover the
relationship between the parameter setting in the design and the feasibility.
When the training finishes, we obtain a model. When a new design is input
to this model, a predicted feasibility will be output. In this remanufacturing
system, a feasibility model was found in this way. For technical details,
such as what training method is used, and what the feasibility model looks
like, please refer to (Song et al. 2005a). The feasibility model is very fast
(0.003 second to predict the feasibility of a design on the average) and has
a high accuracy, 0.985, which means if we randomly sample 1000 designs
that are predicted as feasible by this feasibility model, an average of 985
designs are truly feasible. Although COO can work with a feasibility
model with much less accuracy, such a high accuracy does allow us to
save the computing budgets by 25 folds, as will be shown later in this sub-
section.

3.2.2 Crude model for the performance

After the designs predicted as feasible are screened out by using the feasi-
bility model, we need a crude model to sort these designs according to the
observed performance. The crude model should be computationally fast,
and only need to give a rough estimate of the performance of the design. In
one extreme case, blind pick does not need the estimate of the performance.

Real World Application Examples 225

The application procedure of the COO (feasibility model with blind
pick) is summarized in Box 8.2.

Box 8.2. Application procedure of COO (feasibility model with blind pick) in the
remanufacturing system

Step 1: Uniformly randomly sample N designs from the entire design space.
Step 2: Use the feasibility model to screen out the predicted feasible designs.
Step 3: User defines the size of the good enough set g and the required

alignment level k.
Step 4: Using the accuracy of the feasibility model, we can calculate the

size of the selected set s.
Step 5: Blind pick s designs from the predicted feasible list.
Step 6: The COO theory ensures that there are at least k truly good enough

and feasible designs in these s selected designs with high probability.

3.2.3 Numerical results

To get an idea of how much computing budget we can save by using COO,
we show the following experimental results. Consider a planning for 8 sea-
sons (24 months), m = 8, TC = 720 days. Suppose there is one part that needs
to be repaired (i.e., n = 1) after disassembly. The inter-arrival time in sea-
son i contains exponential distribution, i.e.,

()Prob it

ia k t e λλ −= =⎡ ⎤⎣ ⎦ ,

where the time unit is day, and the λi in the 8 seasons take the values of
3.5, 3.0, 2.5, 2.0, 2.5, 3.0, 3.5, and 3.0. It takes 5 days to disassemble and
check each asset. The repairing time of the parts satisfies the triangular dis-
tribution, with a minimum of 30 days, a maximum of 90 days, and an av-
erage of 60 days. It takes 7 days to reassemble the parts. In this case, C and
∆I are both 8 dimensional row vectors, and the elements within are Ci and
∆Ii, representing the number of machines in season i, and the order quan-
tity at the beginning of season i. 11≤Cj≤40, 0≤∆Ij≤7, Cmax=40, Cmin=11, ∆C
= 5, ∆Imax = 7, α = 1, β = 0.2, TD = 100 days. The size of the design space is
5.8×1014. The requirement on the maintenance time is:

Since no problem information is utilized in the blind pick, the required
size of the selected set is an upper bound of the case when other crude
models are used, e.g., using a single replication of the simulation to esti-
mate the performance.

226 Chapter VIII

() ()D CProb 0.05T k T k Tη> ≤ <⎡ ⎤⎣ ⎦ ,

i.e., P0=0.05.

Fig. 8.15. The true performance and feasibility of 1000 randomly sampled designs

Table 8.10. Selected set size s for the remanufacturing system

Required AP s
≥0.50 10
≥0.70 16
≥0.95 39

To get a rough idea on how many designs are feasible, we uniformly
randomly sample 1000 designs and use brute force simulation to obtain the
true performance and feasibility of these designs, as shown in Fig. 8.15.
We can see that a lot of designs are not feasible. If we do not have a feasi-
bility model and directly apply OO in this problem, there will be a lot of
infeasible designs in the selected set, which leads to a large selected set.

We regard the truly top 50 feasible designs as good enough. For differ-
ent alignment probability, we use Eq. (5.6) in Section V.1 to calculate the
size of the selected set such that there is at least 1 truly good enough and
feasible design in the selected set with a probability no less than the re-
quired alignment probability. These sizes are listed in Table 8.10.

Real World Application Examples 227

Suppose the required AP is 0.95. Since the designs are randomly sam-
pled. The alignment level between the selected set and the good enough set
might be different in different experiments. We show one instance in Table
8.11, where only the indexes of the designs are shown. In this instance
there are 3 truly good enough and feasible designs found. Compared with
the brute force simulation, which needs to accurately evaluate the perform-
ance and the feasibility of all the 1000 designs, COO saves the computing
budgets by 25 folds in this example, by reducing from N = 1000 to s = 39.

Table 8.11. One instance of the alignment between G and S

Set Plans
S {404, 858, 744, 766, 245, 763, 241, 466,

48, 532, 408, 906, 186, 39, 597, 577,
589, 351, 567, 406, 948, 882, 988, 402,
924, 464, 667, 530, 984, 906, 633, 357,
317, 907, 119, 305, 857, 737, 646}

G {90, 270, 450, 630, 810, 990, 157, 337,
517, 697, 877, 1, 194, 374, 554, 734,
914, 136, 316, 496, 676, 856, 29, 209,
389, 569, 749, 929, 184, 364, 544, 724,
904, 43, 223, 403, 583, 763, 943, 146,
326, 506, 686, 866, 137, 317, 497, 677,
857, 143}

G∩S {317, 763, 857}

3.3 Application of VOO

As aforementioned, in practice we sometimes do not know the appropriate
value of P0, which is the threshold for the probability that a maintenance
time exceeds the given value. What we know is that the maintenance time
is an important aspect of the system performance that should be considered
during the optimization. We will here regard both the maintenance cost
and the maintenance time as objective functions. More specifically we
have two objective functions. One is the probability that the maintenance
time exceeds a given limit, i.e.,

() () ()1 D C, ProbJ C I T k T k Tη∆ = > ≤⎡ ⎤⎣ ⎦ .

The other one is still the maintenance cost, i.e.,

228 Chapter VIII

()2 , , ,
1 1 1 1 1 1

,
n m n m n m

i j i j i j
i j i j i j

J C I C I Iα β
= = = = = =

∆ = + ∆ +∑∑ ∑∑ ∑∑ .

Then we have a two-objective optimization problem

() () ()()1 2, ,
min , min , , ,
C I C I

J C I J C I J C I
τ

∆ ∆
∆ = ∆ ∆ .

Both objective functions can only be accurately evaluated by simulations.
We will apply the vector ordinal optimization introduced in Chapter IV to
solve this problem.

Fig. 8.16. The true performances of the designs

Since we have already used brute force simulation to obtain the true per-
formance and feasibility of 1000 randomly sampled designs in Fig. 8.15,
we show the first two layers of these 1000 designs in Fig. 8.16. There are 6
designs in the first layer (marked by circles), and 8 designs in the second
layer (marked by triangles) shown in Fig. 8.16. We also show the observed
performance curve in the vector case (VOPC) in Fig. 8.17. Of course, in
practice we do not know this true VOPC. Instead, we use a crude model (a
single replication) to get the rough estimation of the performance. Fig.
8.18 shows one instance, where there are 4 designs in the observed first
and the observed second layer, respectively, which is different from Fig.
8.16. The VOPC is similar to Fig. 8.17, which belongs to the steep type.
We estimate the noise level by 10 independent simulations of a design, and
find the normalized noise level is 0.1061 for J1 and 0.0078 for J2, which is a

Real World Application Examples 229

small noise level. By looking at the VOO-UAP table Table 4.1 in Chapter
IV, we find the coefficients in the regression function are: Z1 = –0.7564, Z2 =
0.9156, Z3 = –0.8748, and Z4 = 0.6250. Define the designs in the truly first
two layers as good enough designs (there are 14 design in total). Because the

Fig. 8.17. The true VOPC

Fig. 8.18. The observed performance of the remanufacturing system

VOO-UAP table is developed for 10,000 designs and 100 layers in all,

230 Chapter VIII

we need to normalize the values of g, s, and k before the calculation. There
are 134 layers in Fig. 8.178, so g’=[100/134×2]=1, k’=10000/1000×k=10k
(1≤k≤14), and s=[134/100×s’]. For different values of k, we denote the
values of s predicted in this way as 1̂s . Since the noise levels in J1 and J2
are smaller than 0.5, which is used in the VOO-UAP table, the values of 1̂s
might be conservative. So, we also use some simulation-based method to
obtain less conservative prediction of the values of s, which are denoted as

2ŝ . More details of this simulation-based method are presented in details
later.

On the other hand, we use 1000 independent simulations to estimate
how many observed layers are needed to contain some truly good enough
designs with a probability no less than 0.95. Let these values be s*. For dif-
ferent values of k, we show the values of s*, the predicted values of s using
the regression function (denoted as 1̂s), and the predicted values of s using
simulation-based method (denoted as 2ŝ) in Table 8.12.

Table 8.12. The predicted value and true value of s

k s*
1̂s 2ŝ 2ˆ

1

s
ii=∪

1 1 7 1 6
2 1 11 1 6
3 1 15 2 14
4 1 20 2 14
5 2 24 2 14
6 2 28 3 24
7 2 32 3 24
8 3 36 4 36
9 3 40 5 48
10 5 44 5 48
11 6 48 6 62
12 8 52 8 85
13 9 56 9 96
14 13 59 12 141

Table 8.12 shows that the predicted value 1̂s is always an upper bound
of the true value s*, but the difference might be large. This means 1̂s is
conservative, because the small noise level in the VOO-UAP table is 0.5,

8 The number of observed layers is a random number, which varies around the

true number of layers.

L

Real World Application Examples 231

but the noise level in this problem is 0.1061 and 0.0078, respectively. To
obtain a less conservative estimate of s*, we use the following method.
Based on the rough estimate obtained through a single simulation, regard
the estimate as the true value, find the observed first two layers, and regard
these designs as the “truly good enough designs”. Then add the normally
distributed noise N(0,0.21222) and N(0,0.01562) 9, and find the observed
first s layers. Repeat this procedure for 1000 times, and obtain an estimate
of the alignment probability for each (s, k) (in which s = 1,2,…20, and k =
1,2,…,14). Select the smallest s such that the alignment probability is no
less than 0.95 as the estimate of the true values s*, and denote as 2ŝ , also
shown in Table 8.12. We can see that 2ŝ is a good estimate of s*, and a
tight upper bound of s*, except for the case of k = 14. In the case of k = 14,
the difference is only 1. From Table 8.12, we can see that VOO saves the
computing budgets by at least one order of magnitude in most cases. Only
when k = 14, the number of designs in the observed first 2ŝ layers increases
drastically. That is because it is a difficult job to find all the designs in the
truly first two layers.

To summarize, the application procedure of VOO in this remanufactu-
ring system is as follows.

Box 8.3. Application procedure of VOO in the remanufacturing system

Step 1: Randomly sample N designs.
Step 2: Use the crude model to quickly estimate the performance of the de-

signs.
Step 3: Layer down the designs according to the observed performance.
Step 4: User defines the good enough set and the required alignment level

k.
Step 5: Estimate the observation noise level and the problem type (VOPC).
Step 6: Use the VOO-UAP table in Section IV.2 to calculate the number of

observed layers to select.
Step 7: Select the observed first s layers as the selected set.
Step 8: Then the VOO theory ensures that there are at least k truly good

enough designs in the selected set with high probability.

9 The standard deviations of the additive noises are twice the standard devia-

tions of the noises in the two objective functions, respectively.

232 Chapter VIII

3.4 Conclusion

In this section, we consider the performance optimization of a remanufac-
turing system. By formulating the requirement on the maintenance time as
a constraint or an objective function, we have a simulation-based con-
strained optimization problem or a two-objective optimization problem.
We apply COO and VOO to solve the problems, respectively. Besides the
general application procedure of COO and VOO as introduced in Chapter
V and IV, we also discuss how we can incorporate the problem informa-
tion into a feasibility model, using a machine learning method in COO;
and how we can use problem information to improve the estimate of the
number of observed layers to select in VOO. In both problems, COO and
VOO save a lot of computing budgets. Note that we only use blind pick in
Section 3.3. By using horse race selection rule, we can further improve the
performance of COO by selecting a smaller number of predicted feasible
designs. Interested readers may refer to (Song et al. 2005b) for more de-
tails.

Exercise 8.1: Can we apply COO to solve simulation-based multi-
objective optimization problems? If so, please explain how. If not, please
explain why.

Exercise 8.2: Can we apply VOO to solve simulation-based constrained
optimization problems? If so, please explain how. If not, please explain
why.

4 Witsenhausen problem

A celebrated problem in system and control is the so-called Witsenhausen
problem. In 1968, H. S. Witsenhausen (Witsenhausen 1968) posed an inno-
cent looking problem of the simplest kind. It consists of a scalar linear
dynamic discrete time system of two time stages (thus involving two deci-
sions at time stages one and two). The first decision is to be made at time
one with perfect knowledge of the state, and there is a quadratic cost asso-
ciated with the decision variable. The second decision can only be made
based on noisy Gaussian observation of the state at time stage two, how-
ever, there is no cost associated with the decision. The performance crite-
rion is to minimize the quadratic terminal state after the two decisions.
Thus, it represents the simplest possible Linear-Quadratic-Gaussian (LQG)
control problem except for one small detail: Instead of the usual assump-
tion of one centralized decision maker who remembers at time stage two
what s/he knows at time stage one, we do not have perfect memory or re-
call. In fact, we have a decentralized team problem with two decision

Real World Application Examples 233

makers (DMs), DM1 and DM2 who do not have complete knowledge of
what the other knows. Here the possibility for optimization is clear. DM1
knows the state of the system perfectly. S/he can simply use his/her control
variable to cancel the state perfectly and leave DM2 nothing more to do.
However, his/her action entails a cost. On the other hand, DM2 has no cost
to act, but, without perfect memory, s/he has no perfect knowledge of the
state of the dynamic systems at time stage two. A simple approach would
be to strike a compromise using linear feedback control law for each deci-
sion maker, which is also known to be optimal under the traditional cen-
tralized LQG system theory for problems with perfect memory. In fact, it
is easy to prove that such a solution is a person-by-person optimal solution
in equilibrium, i.e., if DM1 fixes his/her linear feedback control law, the
best response by DM2 is a linear feedback control law and vice versa.
However, Witsenhausen demonstrated that, without perfect memory, there
exists a nonlinear control law for both DM1 and DM2, which involves sig-
naling by DM1 to DM2, using its control action (The idea of signaling will
be explained in more details in Section 4.1.), that outperforms the linear
person-by-person optimal control law. In other words, the Witsenhausen
problem presents a remarkable counterexample which shows that the
optimal control law of LQG problems may not always be linear when there
is imperfect memory. At the time, this was totally surprising since the prob-
lem seemed to possess all the right mathematical assumptions to permit an
easy optimal solution. However, the globally optimal control law for such a
simple LQG problem (or team decision problem) was unknown. The dis-
crete version of the problem was known to be NP-complete (Papadimitriou
and Tsitsiklis 1986). Many attempts and papers on the problem followed in
the next thirty and more years before the problem was understood and a
numerical solution of the globally optimal control law obtained in (Lee et al.
2001).

The difficulty of the problem constitutes the essence of information
structure (who knows what and when) in decentralized control, which is a
subject worthy of a separate book. We shall not go into the matters here.
However, we shall use the Witsenhausen problem here to illustrate the
process of search in the space of control laws, using OO to get good
enough solutions. This is because there are so much data accumulated with
this problem and we can easily assess the “good enough”-ness of any re-
sults thus obtained via OO.

First, we show the mathematical problem formulation in Section 4.1.
Since the optimal control laws associated with the Witsenhausen problem
have not been obtained analytically yet, it is important to discover the
structure of the space of the control laws numerically. This is a common
problem faced by many practical engineering problems, where finding the

234 Chapter VIII

optimal design needs tremendous computing time, even if not computa-
tionally infeasible. By using OO, we were able to discover some structure
information of the design space in the Witsenhausen problem efficiently,
based on only noisy performance observation. The information not only
produced a pair of control laws that were 47% better than the best solution
known by that time (Banal and Basar 1987), but also helps to finally
achieve the best-so-far numerical solution (Lee et al. 2001). We introduce
the details for this also in Section 4.1. In Section 4.2, we consider the con-
straint on memory space when solving the Witsenhausen problem, and
show how to find simple and good enough control laws using OO and
OBDD, which were introduced in Chapter VI. With minor performance
degradation (less than 5%), we save the memory space to store the control
law by over 30 folds. We make a brief conclusion in Section 4.3.

4.1 Application of OO to find a good enough control law

The Witsenhausen problem can be described as follows. It is a two-stage
decision making problem. At stage 1, we observe the initial state of the
system x. Then we have to choose a control u1=γ1(x) and the new state will
be determined as x1=x+u1=x+γ1(x). At stage 2, we cannot observe x1
directly. Instead, we can only observe y=x1+v, where v is the additive
noise. Then we have to choose a control u2=γ2(y) and the system state stops
at x2=x1+u2. The cost function is E[k2(u1)2+(x2)2] with k2>0 as a constant.
The problem is to find a pair of control functions (γ1, γ2) which minimize
the cost function. The trade off is between the costly control of γ1 which
has perfect information and the costless control γ2 which has noisy infor-
mation. We consider the famous benchmark case when x~N(0,σ 2) and
v~N(0,1) with σ = 5 and k = 0.2.

Witsenhausen made a transformation from (γ1, γ2) to (f, g), where
f(x)=x+γ1(x) and g(y)=γ2(y). Then the problem is to find a pair of functions
(f, g) to minimize J(f, g) where

() ()() () ()()()222,J f g E k f x x f x g f x v⎡ ⎤= − + − +⎢ ⎥⎣ ⎦
. (8.4)

The first term in Eq. (8.4), E[k2(f(x)-x)2], represents the cost shouldered by
player one in the first time stage, so it is also called the stage one cost. The
second term, E[(f(x)-g(f(x)+v))2], represents the cost shouldered by player two
in the second time stage, so it is also called the stage two cost. Witsen-
hausen (Witsenhausen1968) proved that: 1) For any k2>0, the problem has

Real World Application Examples 235

an optimal solution. 2) For any k2<0.25 and σ =k –1, the optimal solution in
linear control class with f(x)=λx and g(y)=µy has * 2

linear 1J k= − , and

()20.5 1 1 4kλ µ= = + − . In the benchmark case that we consider,
k=0.2, *

linear 0.96J = . 3) There exist k and σ such that J*, the optimal cost,
is less than *

linearJ , the optimal cost achievable in the class of linear con-
trols. Witsenhausen gave the following example. Consider the design:
fW(x)=σ sgn(x), gW(y)=σ tanh(σy), where sgn(•) is the sign function, then
the cost function J is JW=0.4042. 4) For given f(x) satisfying E[f(x)]=0 and
var[f(x)]≤4σ 2, which are the conditions that the optimal f *(x) should sat-
isfy, the optimal *

fg associated with function f is

() ()()
()()

*
f

E f x y f x
g

E y f x

ϕ

ϕ

⎡ ⎤−⎣ ⎦=
⎡ ⎤−⎣ ⎦

, (8.5)

where ϕ(•) is the standard Gaussian density function.

Now the problem becomes that of searching for a single function f to
minimize ()*, fJ f g . Although the problem looks simple, no analytical
method is available yet to determine the optimal f *. The numerical optimal
solution only came after over thirty years later and after many attempts
(Lee et al. 2001). In the following, we will demonstrate how we should
apply OO to search for good control laws for the Witsenhausen problem.
Before we present the numerical details, we should discuss what a crude
model is and how we can apply OO to discover the property of the good
enough designs, which helps to narrow down the search space.

4.1.1 Crude model

Following the properties of the optimal control laws shown by Witsen-
hausen, each “design” in the Witsenhausen problem is a control function f,
which satisfies E[f(x)]=0 and var[f(x)]≤4σ 2. Because f is in general a one-
dimension real function, and there are in principle infinite number of such
functions, it is important to find an appropriate representation for such
functions in a digital computer. The idea is to discretize the function f. Lee
et al. showed that it is reasonable to assume the optimal function f * is
symmetric about the origin, i.e., γ1(y1) = –γ1(–y1) (Lee et al. 2001). In the
following discussion, we only consider f(x) for x≥0. We divide the x-space

236 Chapter VIII

[0,∞) evenly in probability, i.e., we divide x-space into n intervals, I1,…,In,
where Ii=[σt(0.5+0.5(i-1)/n), σt(0.5+0.5i/n)), tα is defined by Φ(tα)=α where Φ is the
standard normal distribution function. Prob[x∈Ii]=0.5/n because x has a
normal distribution N(0,σ 2). Then for each interval Ii, a control value fi is
uniformly picked from (–3σ, 3σ), i.e., fi~U(–15, 15). To calculate the per-
formance ()*, fJ f g , we should calculate the optimal associated function

*
fg through Eq. (8.5) and then we will obtain ()*, fJ f g through Eq. (8.4).

However, both Eq. (8.4) and Eq. (8.5) involve expectations, which mean a
large number of Monte Carlo simulations might be required to calculate
the performance J accurately. Actually based on the results described in
this subsection, (Lee et al. 2001) developed a step-function representation
of the function f and then obtained a way to calculate J through numerical
integration instead of Monte Carlo simulation. Although numerical inte-
gration is much faster than Monte Carlo simulation, it requires a long-time
numerical integration to make the result very accurate. We will come back
to this at the end of this subsection. Right now, let us assume Monte Carlo
simulation is the only way to accurately evaluate J, which is true when the
results of this subsection were developed in 1999.

The question now is how to find a crude model which is computation-
ally fast and can give a rough estimate of J. We simplify the calculation
from two aspects. First, instead of calculating the accurate *

fg , we calcu-
late an approximation of *

fg ,

() ()()

()()

100

1
100

1

ˆ
i i

i
f

i
i

f x y f x
g

y f x

ϕ

ϕ

=

=

−
=

−

∑

∑
.

Second, instead of using a large number of Monte Carlo simulations to
accurately calculate ()ˆ, fJ f g through Eq. (8.4), we use only 100 replica-

tions to get an estimate ()ˆ ˆ, fJ f g . In this way, we get a crude model

()ˆ ˆ, fJ f g of the true performance ()*, fJ f g .

Real World Application Examples 237

4.1.2 Selection of promising subsets

After the discretization of function f, the design space in the Witsenhausen
problem is still extremely large. To overcome this difficulty, our basic idea
is to divide the entire design space into smaller subsets and choose promis-
ing subsets for further searching. The No-Free-Lunch Theorem tells us that
every other optimization method can be as efficient (inefficient) as blind
pick, without any problem information. To achieve a higher efficiency than
that of blink pick, we need to discover some structure information of the
design space, e.g., which subset contains more good enough designs than
others. In particular, if we sample a set of designs for their performances
(however noisily or approximately), we should be able to catch a glimpse,
from the samples, of what are “good” subsets to search, and gradually re-
strict the search there. This is like traditional hill climbing, except that we
move from one subset to another instead of moving from point to point in
the search space. The key question here is to establish a procedure of com-
paring two subsets based upon sampling and then to narrow down the search
space step by step. We will show how OO helps to do this comparison in
this subsection. By the OO-based comparison, we find three restrictions
which narrow down the search space to a subset that contains more good
enough designs than without the restrictions. The three restrictions are: 1)
For each interval Ii, control f is in (–0.5σ, 2.5σ) because we are searching
primarily in the positive quadrant; 2) f is a non-decreasing function; 3) f has
two steps. In the rest of this subsection, we will use numerical results to
show how these three restrictions are discovered, and how this finally helps us
to find a control law 47% better than the best solution known by that time, and
later on helps to discover the best-so-far control law. First, we start from a
general discussion on how to narrow down the search space using OO.

The idea behind narrowing down the search space is to identify which
subset of the search space contains more good enough designs than the
others. Of course, if we know the true performance of all the designs, this
problem will be trivial. However, in practice we only have noisy perform-
ance observations and can only do this performance estimation for a small
portion of the entire design space. So we need a function to represent the
goodness of a subset, i.e., the number of good enough designs in this sub-
set, and we hope this function can be efficiently estimated when only the
noisy performance observations of some of the designs are available. The
performance distribution function satisfies these constraints. Suppose Θ1
and Θ2 are two subsets of a large design space Θ. If we know the true per-
formance of all the designs in Θ1 and Θ2, we can obtain a performance
density function (Fig. 8.19(a)), which looks like a probability density func-
tion, by discretizing the performance into many small intervals, counting

238 Chapter VIII

the number of designs the performances of which fall in each interval, and
normalizing this number by the total number of designs. By integrating the
performance density function, we obtain the performance distribution
function (PDF) (Fig. 8.19(b)), which is non-decreasing and looks like a
probability distribution function. Now, suppose we know the PDF of Θ1 is
F1(t) and the PDF of Θ2 is F2(t), Let us focus on the top-5% designs in
each subset. If F1(t1)=0.05, F2(t2)=0.05, and t1<t2, (as shown in Fig. 8.20)
which means the top-5% designs in Θ1 are with better performances than
those in Θ2. Then we should continue our search in Θ1. Of course, in prac-
tice we only have the estimate of F1 and F2. As we will demonstrate by the
numerical examples in the following, however, the estimate of F1 and F2
still helps us to find the promising subset.

Fig. 8.19. (a) Performance density function and (b) performance distribution function

Fig. 8.20. Comparing two subsets based on PDFs

5%

t1 t2

F1(t)

F2(t)

t, performance

Real World Application Examples 239

Now we are ready to summarize our sampling and space-narrowing pro-
cedure. For a search space Θ, we first define two or more subsets (there
might be intersection among these subsets) and find the corresponding ob-
served PDFs. By comparing the observed PDFs, we can estimate which
subset(s) is (or are) good. We can then further narrow down our search
into smaller subsets. In the following, we demonstrate how this procedure
helps to discover the three properties of the good designs in the Witsen-
hausen problem and finally a design which was the state of the art when
the result was published in year 1999 (Deng and Ho 1999).

The number of intervals, n, used in the construction of the discretized f,
determines the size of the search space. In principle, n can be any positive
integer. However, for a large n, the designs with good performances are
only a very small portion of the entire search space. In this case, it is very
difficult to find a good enough design. The first question here is what the
appropriate value of n should be. For values of n=1, 2, 5, and 10, we ran-
domly pick 5000 functions f in each case, use the crude model in Section
4.1 to estimate the performances, and observe the PDF respectively
(shown in Fig. 8.21). Since we are doing minimization, we only care about
the performances of the top-5% designs in each case. In Fig. 8.21, we only
show the part of the PDFs that are close to the origin. There are 4 curves,
from the left to the right, representing the PDFs of the subsets when n=1,
2, 5, and 10, respectively. We compare the performance of the top-5%-th
design in each subset and find that the cases of n=5 and 10 are of much
larger costs (both greater than 1.0) than those of n=1 and 2 (both smaller
than 1.0). Thus, n=1 and 2 are better subsets than n=5 and 10. The problem
is the cases of n=1 and 2 are indistinguishable. Because if we only care
about top-5% designs in both cases, many top-5% designs in the case of
n=2 are with larger costs than the case of n=1. However, if we consider the
top-0.1% designs, the case of n=2 is better than n=1. Through this com-
parison, we find that n=1 or 2 are good choices, but we cannot determine
which one is better yet. The fact that n=1 is a good choice indicates that
the class of constant control functions (with discontinuity at the origin due
to symmetry) is a good representation of the search space for control func-
tion f. This means that the pair of controllers described by Witsenhausen
which outperform the optimal linear control law are already very good. In
addition, by comparing the observed best f among the randomly sampled
5000 functions for each n, we observe that the control values of the ob-

observation, we make the following restriction (R1): For each interval Ii,
control f is in (0.5σ, 2.5σ), i.e., f~U(2.5,12.5).

served best controllers for different n are located in [2, 12). Based on this –

– –

240 Chapter VIII

Fig. 8.21. Observed PDFs when there are n=1, 2, 5 and 10 intervals in f(x), x≥0
(Deng and Ho 1999) © 1999 Elsevier

Fig. 8.22. Observed PDFs with restriction R1 (Deng and Ho 1999) © 1999 El-
sevier

With this restriction, we repeat our experiment for n=1, 2, 5, and 10 and

do a further comparison among the cases of n=1, 2, 3, and 4. We show the
observed PDFs and the observed best-control functions in Fig. 8.22 and Fig.
8.23. In Fig. 8.22, the top-5%-th design in the cases of n=1 and 2 are of costs
smaller than 0.4, which is smaller than the costs of the top-5%-th designs in
the cases of n = 3 and 4 (with costs larger than 0.5). If we compare the per-
formances of the top-3%-th designs in each case, the case of n = 2 will be
the best subset among the four cases. A more interesting phenomenon we
may observe from Fig. 8.23 is that the observed best controllers for both n = 3
and 4 have the two-interval shape as the one of n = 2. All these observations
indicate that the right direction of search should be toward the two-interval
functions. Since the observed best controllers (in Fig. 8.23) display some in-
creasing property, we make a further restriction (R2): The control f is a non-
decreasing function in (–0.5σ, 2.5σ).

find the cases of n=1 and 2 still outperform the cases of n=5 and 10. We then

0.05

0.04

0.03

0.02

0.01

0.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Performance

D
is

tr
ib

u
ti

o
n

2 intervals

4 intervals

1 interval

3 intervals

0.05

0.04

0.03

0.02

0.01

0.00

0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5

10 intervals

5 intervals

2 intervals
D

is
tr

ib
u

ti
o

n

Performance

1 interval

Real World Application Examples 241

Fig. 8.23. Observed best control f with restriction R1 (Deng and Ho 1999) © 1999
Elsevier

Fig. 8.24. Observed PDFs with restriction R2 (Deng and Ho 1999) © 1999 Elsevier

To test whether restriction R2 helps us to find subsets containing more
good designs, we compare the observed PDFs before and after the restri-
ction R2 is applied in Fig. 8.24. The curves with the legend “interval(in)”
are those with restriction R2. Fig. 8.24 shows that with restriction R2, the
top-5% designs in the two-interval controllers have the best performances.
This indicates that the specification of the non-decreasing control function
is in the right direction. Actually it was shown by Witsenhausen that the
optimal function f should be non-decreasing (Witsenhausen 1968). It is
conceivable that the optimal control function may possess significant dis-
continuity. Thus, the 3rd restriction (R3) is made as follows: The control f
is a two-value non-decreasing step function in (–0.5σ, 2.5σ).

In the previous experiments, to make a quick estimate of the PDF for
each value of n, when the number of intervals n is given, we fix the discre-
tization of the x-space as explained in Section 4.1. For example, for n=2,

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10
−2

state x

co
n

tr
o

l f

2 intervals

3 intervals
4 intervals

1 interval

0.1

0.00

0.01

0.02

0.03

0.04

0.05

0.2 0.3 0.4 0.5
Performance

D
is

tr
ib

u
ti

o
n

2 intervals

2 intervals (in)

3 intervals (in)
4 intervals (in)

1 interval

...............

242 Chapter VIII

we fix the jump points at x=σt0.75. Now, we have already identified that n=2
is a good choice, as stated in R3, so we will determine the jump point of the
two-value functions. As Fig. 8.23 shows, the jump point may not be at σt0.75.
We consider 10 possible jump points: σt0.55, σt0.60, …σt0.95. For each jump
point, we randomly sample 5000 functions f that satisfies R3. The observed
PDFs, associated with different jump points, are presented in Fig. 8.25. In
Fig. 8.25, the legend “2 int. (a)” represents the jump point as σta. We see
that the best jump point is around σt0.90. The best observed control function f
among 5000 samples in the space associated with σt0.90 is

()
3.1686, 0 6.41,
9.0479, 6.41.DH

x
f x

x
≤ <⎧

= ⎨ ≥⎩

The subscript “DH” is to denote that this function was first found by
M. Deng and Y.-C. Ho in 1999 (Deng and Ho 1999). We use 10000 repli-
cations to obtain an accurate estimate of the true performance of this func-
tion, and obtain the value 0.1901 with variance 0.0001, which is 47%
better than the best solution know by that time which was found by Banal
and Basar with performance JBB=0.3634 (Banal and Basar 1987).

The after-the-fact reasoning behind the superiority of the two-value con-
trollers is as follows. Witsenhausen proposed the signaling concept when
he reported this famous counter example in (Witsenhausen 1968). The idea
is that DM1 knows the state of the system perfectly but has an action cost.
So instead of using his/her own control variable to cancel the state per-
fectly, DM1 cancels (or enhances) parts of the state (x), which makes the

Fig. 8.25. Observed PDFs with restriction R3 (Deng and Ho 1999) © 1999
Elsevier

0.10
0.00

0.01

0.02

0.03

0.04

0.05

0.15 0.250.20 0.30
Performance

D
is

tr
ib

u
ti

o
n

2 int. (0.70)
2 int. (0.75)
2 int. (0.80)
2 int. (0.85)
2 int. (0.90)
2 int. (0.95)...............

Real World Application Examples 243

state of the system concentrated on either a given negative or positive
point x1. DM1 uses x1 as a signal to tell DM2 how to set his/her control
variables, such as positive or negative values of x1. Under moderate noise
conditions, DM2 can ascertain the sign of x1 with high probability. DM2
has no action cost. If DM2 can interpret DM1’s signal x1 correctly, and
thus takes the correct action to cancel almost all the state x1, the resulting
state of the system, x2, will cause little cost, i.e., a small stage 2 cost. How-
ever, DM2 only has noisy observation of x1, and may misinterpret x1. To
reduce the probability of misinterpretation, DM1 needs to take large
actions to make the signaling levels far apart from each other, which
causes a large stage 1 cost. Finding the optimal f*(x) in the class of step
functions (as used in this section) amounts to finding the optimal number
of steps/intervals in f(x) and their placements so as to balance the tradeoffs
between the first and second stage costs. The step function fW proposed by
Witsenhausen is a one-interval function (the single jump point is at x=0
and with signaling level σ). Banal and Basar further optimized the signal-
ing level of this one-interval function and obtained fBB (the single jump
point is still at x=0 but with signaling level 2 /σ π). The signaling
scheme in fDH allows DM1 to use four signal levels, i.e., more positive
(9.0479), less positive (3.1686), less negative (–3.1686), and more nega-
tive (–9.0479). Hence, there is a reduction in the magnitude of (x-fDH(x)).
Meanwhile, the signaling levels are placed sufficiently far apart so that
DM2 can still distinguish DM1’s signal with small errors.

In the above discussion, we continuously narrow down the search space
by comparing the observed PDFs of different subsets. The ideas of goal
softening and ordinal comparison allow us to discover some properties of
the good designs, i.e., the three restrictions we found. This finally led us to
a design 47% better than the best solution known by that time (Banal and
Basar 1987) when this result was published in 1999. These results indicate
that a step function may be an appropriate representation of the function f.
This idea was further explored in (Lee et al. 2001). In (Lee et al. 2001), by
describing the function f as a step function, Lee et al. achieved a fast and
accurate computational scheme for the cost J which eliminates the need of
simulation, but requires numerical integration. Also they observed that the
jump points should be located around the average of two adjacent values
of function f (which is also called the signaling levels). Furthermore, addi-
tional improvement can be made by adding small segments to approximate
a slight slope for each step in function f. Finally they achieved the follow-
ing function f

244 Chapter VIII

()LLH

0.00 0.00 0.65
0.05 0.65 1.95
0.10 1.95 3.25
6.40 3.25 4.58
6.45 4.58 5.91
6.50 5.91 7.24
6.55 7.24 8.57
6.60 8.57 9.90
13.10 9.90 11.25
13.15 11.25 12.60
13.20 12.60 13.95
13.25 13.95 15.30
13.

x
x
x
x
x
x
x

f x
x
x
x
x
x

≤ <
≤ <
≤ <
≤ <
≤ <
≤ <
≤ <

=
≤ <
≤ <
≤ <
≤ <
≤ <

30 15.30 16.65
19.90 16.65 .

x
x

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪ ≤ <⎪
⎪ ≤⎩

Fig. 8.26. Historical improvements on the Witsenhausen problem (benchmark:
k = 0.2 and σ = 5) (Lee et al. 2001) © 2001 IEEE

0

0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

Stage 1 Cost

S
ta

g
e

2
C

o
st

LLH
DH

BB
W

Real World Application Examples 245

The corresponding cost is JLLH = 0.167313205338. This is the best-so-far
solution in the past over-thirty years. In summary, we show the historical
improvements on the Witsenhausen problem in Fig. 8.26, from which we
can see JLLH has a good balance between stage 1 cost and stage 2 cost. It
was claimed that this is the “optimal” solution in the sense that all proper-
ties of the optimal solution have been discovered, any further improvement
is relatively small and can only be achieved numerically, say by further
dividing each step of function fLLH(x) into smaller steps and using local
search to improve.

4.2 Application of OO for simple and good enough control laws

Although fLLH is the best-so-far solution to the Witsenhausen problem, it is
obviously more complex than the 1-step function fW and fBB, the 2-step
function fDH, and the following 3.5-step function f3.5

()3.5

0 0 3.25
6.5 3.25 9.90
13.2 9.90 16.65
19.9 16.65 .

x
x

f x
x
x

≤ <⎧
⎪ ≤ <⎪= ⎨ ≤ <⎪
⎪ ≤⎩

from which fLLH was obtained by adding small segments to each step. Each
time when a better f(x) was reported, the incremental improvement be-
comes smaller and smaller (from JW = 0.4042 to JBB = 0.3634 to JDH =
0.1901 to J3.5 = 0.1714 to JLLH = 0.1673), and the function f becomes more
and more complex. It seems that there is a trade-off between the perform-
ance of f and the complexity of f. Since we have not quantified the com-
plexity of f, this statement is very informal. An interesting question is
whether we can find simple f’s with similar performance to the best-so-far
solution. Though fW, fBB, fDH, and f3.5 are intuitively simpler than fLLH, these
functions were not obtained for being simple and good. It is not clear yet
how to find a simple and good enough f in a systematic way. This is where
the OO methodology of Chapter VI can help. In this subsection, we use the
Kolmogorov complexity (KC) to measure the complexity of a function f.
The KC of a function can hardly be calculated in general, but can be esti-
mated through the OBDD-based representation of the function (where
OBDD stands for Ordered Binary Decision Diagram). In Chapter VI, we
combine OO and OBDD to get a systematic method of finding simple and
good enough solutions. We will use this method to find a simple and good

246 Chapter VIII

enough control law for the Witsenhausen problem. Comparing with the
best-so-far function fLLH, with minor performance degradation (within 5%),
we reduce the complexity of f (i.e., the memory space to store f) by over 30
folds. Although in this specific example, most digital computers in engi-
neering practice can store fLLH with no difficulty, the importance of study-
ing this problem is to demonstrate how to use the method introduced in
Chapter VI to find simple and good enough designs, especially when the
memory space is limited.

Fig. 8.27. One PROBDD that describes fLLH. The 14 boxes in the bottom represent
the 14 output in fLLH, from 0.00 to 19.90, represented by 11-bit binary sequence

We start from quantifying the complexity of the best-so-far function
fLLH. As introduced in Chapter VI, KC supplies a measure of this complex-
ity. The idea is to write a program to represent fLLH. When the value of x is
input, a computer should output the value of fLLH(x) by executing this
program, which should work for all the values of x. The length of the
shortest program that can represent fLLH in this way is defined as the KC of
fLLH. f(x) is defined over all the real numbers. However, digital computers
have only finite input. Lee et al. showed that (Lee et al. 2001) it is reason-
able to approximate f(x) by only focusing on the domain of [-5σ, 5σ], i.e.,
–25≤x≤25, because x~N(0,σ 2) and the value of f(x) for x∉[-5σ, 5σ] are very

representing function f(x) by a program, we only consider input 0≤x≤25. In
fLLH 2
to encode the input. As for the output, we can similarly calculate that

2
ter VI, we can also represent fLLH by a Partially Reduced OBDD (PROBDD)

, the input has a resolution of 0.01, thus we need log (2500) =12 bits

log (1990) =11 bits are needed to encode the output. As explained in Chap-

insignificant to the overall cost objective. In the following discussion, when

⎡⎢ ⎤⎥

⎡ ⎤⎢ ⎥

Real World Application Examples 247

with 12-bit input and 11-bit output. We show one such PROBDD in Fig.
8.27. There are 182 nodes (excluding the 14 boxes in the bottom) in this
PROBDD. Following the calculations introduced in Chapter VI, we know
it takes 24192 bits10 to store this PROBDD. The details of the calculation
are shown in Table 8.13. (In the table, fsg is a simple and good enough so-
lution which will be discussed later.) The size 24192 is much less than
57500, the size of lookup table representation.

Exercise 8.3: In the look-up table representation, we describe fLLH by
listing all the (x, fLLH(x)) pairs in sequence. Please tell why 57500 bits all
together is needed.

Table 8.13. The complexity and performance of the milestone f ’s

f Base
(input)

of
input
bits

Base
(output)

of
output

bits

of
nodes

of
boxes

of
rules
(r)

d 4rd
(bits)

J

W – 0 1 3 0 1 6 4 96 0.4042
fBB – 0 0.0001 16 0 1 32 5 640 0.3634
fDH 0.01 12 0.0001 17 32 2 132 7 3696 0.1901
fsg 0.01 12 0.001 15 24 4 168 7 4704 0.1746
f3.5 0.01 12 0.1 8 62 4 188 7 5264 0.1714
fLLH 0.01 12 0.01 11 182 14 672 9 24192 0.1673

This justifies that PROBDD supplies a more compact representation of the
function fLLH. Since the KC of a function cannot be calculated in general,
we suggest in Chapter VI to use “4rd” as an estimate of the KC of a func-
tion f, where r is the number of rules to implement the PROBDD that
represents f, and d is the number of bits to encode each of the 4 elements in
a rule. Following this measurement, we also estimate the KC of fW, fBB, fDH,
and f3.5, and show the results in Table 8.13. We show the complexity and

10 In (Jia 2006) and (Jia et al. 2006b), the complexity of fLLH is estimated as

71311 bits, which is different from the results shown here. There are several rea-
sons that cause the difference. First, (Jia et al. 2006b) used 15 bits to encode the
input and 14 bits to encode the output. Second, due to more bits used in input and
output, the PROBDD obtained in (Jia et al. 2006b) contains more nodes than the

complexity (Please refer to Chapter VI for more details), (Jia et al. 2006b) uses
another formula to estimate the complexity. Although the values of the estimates
are different, (Jia 2006) also estimates fsg, which will be introduced later in this
subsection, much simpler than fLLH. At the end of this subsection, we will use an
example to show how different computers may lead to different KCs. In practical
application, this will not be a problem, as the computer is given and fixed.

f

one shown in Fig. 8.27. Third, instead of using the formula “4rd” to estimate the

248 Chapter VIII

performance of these functions in Fig. 8.28. This also justifies that 4rd is a
reasonable estimate of the complexity of the function, because Fig. 8.28
shows that when the performance improves, the complexity also increases,
which is consistent with our intuition.

Fig. 8.28. The complexity and performance of the milestone f ’s

After comparing milestone solutions to the Witsenhausen problem, we
will return to the main topic of this subsection: to find simple functions
with good performances (say similar to that of fLLH) using method intro-
duced in Chapter VI. For this sake, we add a constraint ()ˆ 10000C f ≤
where ()Ĉ f represents the estimate of the complexity of f as explained
above. This constraint can be interpreted as the given memory space of
10000 bits. As explained above, we need 24192 bits to store fLLH using
PROBDD, and 57500 bits using lookup table, so fLLH cannot be stored.
Following the method introduced in Chapter VI, by randomly generating
1000 control functions satisfying that ()ˆ 10000C f ≤ , we randomly sample
solutions to the Witsenhausen problem that can be stored within the

Real World Application Examples 249

10000-bit memory space. Using numerical integration with a large step-
size to estimate the cost J of each such function as in (Lee et al. 2001), we
obtain an observed Ordered Performance Curve as shown in Fig. 8.29.

Fig. 8.29. The observed OPC of the functions that can be stored within 10000 bits
in the Witsenhausen Problem (Jia et al. 2006b) © 2006 IEEE

This indicates that our problem belongs to the flat type of OPC. Also the
noise level is estimated as 0.0056 after normalization. Suppose we want to
find at least one of the top-5% designs that can be stored in 10000 bits.
Using the UAP table in Section II.5, we calculate that we should select
the observed top-37 designs. The OO theory ensures that there is at least
one of the top-5% simple functions contained in the observed top-37 sim-
ple functions with a high probability. To test this, we run the above proce-
dure by 100 replications. Each time, we randomly sample 1000 simple
functions, and use long-time numerical integration to calculate the accurate
performances. We find that there is always at least one truly top-5% simple
function found each time, i.e., the observed alignment probability is 1 in
the experiments.11 There are actually 24.5 truly top-5% simple functions

11 The top-5% here is w.r.t. all the simple functions. Since we do not sample

complex functions (i.e., functions that need more than 10000 bits to store) in the
experiments, we may not find a truly top-5% function (w.r.t. both simple and
complex functions) in each replication.

250 Chapter VIII

found on average, with an average cost of 0.2096. The best function found
in the 100 replications is

()sg

3.125, 0 6.25;
9.375, 6.25 12.5;
15.625, 12.5 18.75;
21.875, 18.75 ,

x
x

f x
x
x

≤ <⎧
⎪ ≤ <⎪= ⎨ ≤ <⎪
⎪ ≤⎩

where the subscript “sg” represents “simple and good enough”. The cost of
fsg(x) is 0.1746 (estimated by the numerical integration with step size
0.001). ()sg

ˆ 4704C f = . The complexity and performance of fsg is also
shown in Table 8.13 and Fig. 8.28. Although function fsg(x) is not as good
as the best-so-far function fLLH(x), it is already better than fDH(x) with cost
0.1901, fBB(x) with cost 0.3634, fW(x) with cost 0.4042, and of course the
best linear function with cost 0.96. Considering the fact that in the proce-
dure of finding fsg(x), we did not utilize much problem information as in
(Lee et al. 2001), for example, the placement of the jump points and the
slight slope in each step, we are quite satisfied.

We have mentioned in Chapter VI that the KC depends on the computer
that executes the program. Some computer has a longer list of commands.
This allows us to use a shorter program to implement the same function.
For example, in some computers the numbers 0.05, 0.10, 0.15, and 0.20
are not stored in the normal form, i.e., the binary numbers converted di-
rectly from the decimals. Instead, these computers record a base 0.05, and
record the numbers as 1, 2, 3, and 4. In this way, we only need to save one
decimal fraction accurately, thus save the memory space. This technique is
commonly adopted in our laptops and desktops. By using this technique,
we can further reduce the complexity of function f’s from Table 8.13 to
Table 8.14. In such a computer, fsg only requires 600 bits. With minor per-
formance degradation (within 5%), we save the memory space by over 30
folds (from 22176 bits to 600 bits). We also show the new complexity and
performance in Fig. 8.30. In Fig. 8.30, fBB dominates fW in the sense that
they have the same complexity but fBB has better performance. fsg domi-
nates fDH in both the complexity and the performance. The fLLH, f3.5, fsg, and
fBB are the Pareto frontier.

Real World Application Examples 251

Table 8.14. The complexity and performance of the milestone f ’s when allowing
to change the base in input and output

f Base
(input)

of
input
bits

Base
(output)

of
output

bits

of
nodes

of
boxes

of
rules
(r)

d 4rd
(bits)

J

fW – 0 5 1 0 1 2 3 24 0.4042
fBB – 0 3.9894 1 0 1 2 3 24 0.3634
fDH 6.41 1 0.0001 17 1 2 70 6 1680 0.1901
fsg 6.25 2 3.125 3 3 4 30 5 600 0.1746
f3.5 0.05 9 0.1 8 48 4 160 7 4480 0.1714
fLLH 0.01 12 0.05 9 182 14 616 9 22176 0.1673

Fig. 8.30. The complexity and performance of the milestone f ’s after changing the
base of input and output

4.3 Conclusion

In this section we have considered the famous Witsenhausen problem in
team decision theory. By comparing the observed PDF of each subset, we
find an easy way to discover several properties of good designs, using nu-
merical experiments, thus can find the promising subsets efficiently. When

252 Chapter VIII

applied in year 1999, this method finds a function for the Witsenhausen
problem, which is better than the best function known by that time. Fol-
lowing the step-function formulation, a best-so-far function was found in
2001 by Lee et al. However, the solution seems involving a high degree of
descriptive complexity. By combing OO and OBDD as introduced in
Chapter VI, we are able to find simple and good enough functions with
high probability. Applying this idea to the Witsenhausen problem, with
minor performance degradation, we save the memory space by over 30
folds.

