
Chapter VI Memory Limited Strategy Optimization  

Let us start with a big picture to describe the relationship between this 
chapter and the previous chapters. We focus on how to solve a simulation-
based strategy optimization problem1. Conceptually, we need three compo-
nents: a program which implements a strategy γ, a performance evaluation 
technique to calculate J(γ) when  is applied to the system, and an optimi-
zation algorithm to find the optimal or good enough strategy. The relation-
ship among these three components is shown in Fig. 6.1. 

 

Fig. 6.1. A big picture for simulation-based strategy optimization 

Note that the optimization algorithm only requires the evaluation tech-
nique to return the performance of a strategy, but does not care about how 
this evaluation is obtained; the evaluation technique only requires the 
program to return the corresponding action of a strategy when the infor-
mation is the input. When implementation is considered, we have to make 

                                                      
1 A strategy is simply a mapping from input information to output decision or 

control. Strategy is also known as decision rule, if-then table, fuzzy logic, learning 
and adaptation algorithm, and host of other names. However, nothing can be more 
general than the definition of a function that maps all available information into 
decision or action. 
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sure the strategy is simple enough so that it can be stored within given 
limited memory, in other words, we require a strategy is simple enough to 
be implementable. Furthermore, when ordinal optimization is considered, 
one challenge will be sampling of design space. Sampling is easy when we 
have a natural representation of a design as a number or a vector as we 
have done for previous chapters. In the context of strategy optimization, 
representing all implementable strategies so that sampling can be taken 
seems nontrivial. The focus of this chapter is to provide a systematic 
representation of strategy space so that the optimization algorithms devel-
oped earlier can be applied. 

1 Motivation (the need to find good enough and simple 
strategies) 

It can be argued that the Holy Grail of control theory is the determination 
of the optimal feedback control law or simply the feedback control law. 
This is understandable, given the huge success of the Linear-Quadratic-
Gaussian (LQG) theory and applications in the past half-century. It is not 
an exaggeration to say that the entire aerospace industry from the Apollo 
moon landing to the latest GPS owes a debt to this control-theoretic deve-
lopment in the late 1950s and early 1960s. As a result, the curse of dimen-
sionality notwithstanding, it remains an idealized goal for all problem 
solvers to find the optimal control law for more general dynamic systems. 
Similar statements can be made for the subject of decision theory, adapta-
tion and learning, etc. We continue to hope that, with each advancement in 
computer hardware and mathematical theory; we will move one step closer 
to this ultimate goal. Efforts such as feedback linearization and multimode 
adaptive control (Kokotovic 1992; Chen and Narendra 2001) can be viewed 
as such successful attempts. 

The theme of this chapter is to argue that this idealized goal of control 
theory is somewhat misplaced. We have been seduced by our early succes-
ses with the LQG theory and its extensions. There is a simple but always 
neglected fact that it is extremely difficult to specify and impossible to 
implement a general multivariable function even if the function is 
known. 

Generally speaking, a one variable function is a two-column table; a two- 
variable function is then a book of tables; a three-variable function, a 
library of books; four-variable, a universe of libraries; and so on. Thus, how 
can one store or specify a general arbitrary 100-variable function never 
mind implementing it even if the function is God given? No hardware 
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advancement will overcome this fundamental impossibility, even if 
mathematical advancements provide the general solution. This is also clear 
from the following simple calculation. Suppose there are n-bit input 
information and m-bit output action for a strategy. To describe such a 
strategy as a lookup table, we need to store all the (information, action) 
pairs. There are 2n such pairs in total, and we need (n + m) bits to store 
each pair. Thus we need (n + m)2n bits to store a strategy. When n = 100, 
m = 1, this number is 101 × 2100bits ≈ 2107bits = 274 Gega Bytes (GB), which 
exceeds the memory space of any digital computer known nowadays or the 
foreseeable future. Exponential growth is one law that cannot be over-
come in general. Our earlier successes with the Linear-Quadratic-Guassian 
control theory and its extensions are enabled by the fact that the functions 
involved have very a special form, namely, they decompose into sums or 
products of functions of single variable or low dimensions. As we move 
from the control of continuous variable dynamic systems to discrete event 
systems or the more complex human-made systems discussed in this book, 
there is no prior reason to expect that the optimal control law for such 
system will have the convenient additive or multiplicative form. Even if in 
the unlikely scenario that we are lucky to have such simple functional form 
for the control law of the systems under study, our efforts should be to 
concentrate on searches for actual implementation of such systems, as 
oppose to finding the more general form of control law.  

In this light, it is not surprising that “Divide and Conquer” or 
“Hierarchy” is a time-tested method that has successfully evolved over 
human history to tackle many complex problems. It is the only known 
antidote to exponential growth. Furthermore, by breaking down a large pro-
blem into ever-smaller problems, many useful tools that do not scale up 
well can be used on these smaller problems. Decomposing a multivariable 
function into a weighted sum of one-variable functions is a simple example 
of this principle. In addition, Nature has also appreciated this fundamental 
difficulty of multivariable dependence. There are many examples of adapta-
tion, using simple strategies based on local information and neighboring 
interactions to achieve successful global results abound (Think globally 
but act locally), such as ants, bees, germs, and viruses (Vertosick 2002). 
Recent research on the No-Free-Lunch theorem (Ho and Pepyne 2004) 
also points to the importance and feasibility of “simple” control laws for 
complex systems. And as we venture into the sociological and psycho-
logical realm, there are even more evidences showing that it only leads to 
unhappiness and non-optimality to strive for the “best” (Schwartz 2004). 

The purpose of this chapter is to discuss systematic and computationally 
feasible ways to find “good enough” AND “simple” strategies. Since we 
will focus on simulation-based strategy optimization, many difficulties 
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mentioned in earlier chapters remain, such as the time-consuming perfor-
mance evaluation and the large design space. In addition we have one 
more difficulty, that is the constraint on the limited memory space to store 
strategies.  

2 Good enough simple strategy search based on OO 

2.1 Building crude model 

It is important to understand that lookup table or brute force storage and 
representation is usually not an efficient way to implement a strategy and 
is infeasible and impractical for almost all large scale problems. Recall 
that a strategy is a mapping from the information space to the action 
space. In other words, a strategy determines what to do when specific 
information is obtained. As long as we find a clever way (such as using a 
program) to generate the output for any given input, we can represent the 
strategy. The size of memory we use may be much less than the lookup 
table. To identify simple strategies (or strategies that need less memory 
than a certain given limit), we need to introduce the concept of descriptive 
complexity (also known as the Kolmogorov complexity (KC) (Li and 
Vitányi 1997)) which mathematically quantifies the minimal memory 
space that is needed to store a function. A. N. Kolmogorov developed this 
concept in 1965 (Kolmogorov 1965). The Kolmogorov complexity of a 
binary string s is defined as the length of the shortest program for a given 
universal Turing machine U (explanation follows) to output  the string, i.e., 

 
( ) ( ){ }min :U p UC s p p sψ= = ,  

 
whereψU(p) represents the output of the universal Turing machine U, 
when program p is executed on U. Roughly speaking, a universal Turing 
machine (UTM) is a mathematical model of the computers we are using 
nowadays, which consists of the hardware (e.g., the hard drive and the 
memory chip to store the program, and equipment to read from and write 
on the hard drive and the memory chip) and the software (including low 
level system software such as operating systems, e.g., Microsoft Windows 
and Mac OS, and application software p developed for a specific task). 
Obviously KC depends on which UTM is used. This is reasonable and 
practical when we use computers to search for a good simple strategy, the 
hardware and the software in the computer are already given, so the U is 
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fixed. In the following discussion, we will omit the subscript U, when 
there is no confusion. Giving the concept of KC, in principle, we can judge 
whether the KC of a strategy is within the given memory limit. Using the 
terminology of OO, KC is the true model to determine whether a strategy 
is simple. Unfortunately, it is a basic result in the theory of Kolmogorov 
complexity that the KC cannot be computed by any computers precisely in 
general (Theorem 2.3.2, p. 121, (Li and Vitányi 1997)). From an engineer-
ing viewpoint, this means that it is extremely time-consuming to find out 
the true Kolmogorov performance of the proposed strategy, if it is not 
impossible. Thus, the methodology of OO naturally leads us to consider 
the usage of approximation, which is computationally fast to replace it2,3, 
and to sample simple strategies. In the rest of this chapter, we will formu-
late this idea of simple strategy generation based on estimated descriptive 
complexity, which can then be utilized even if the user has little knowledge 
or experience of what a simple strategy might look like. This is in contrast to 
existing efforts where no quantification on the descriptive complexity for the 
strategies is explored. Examples include threshold type of strategies, Neuro-
dynamic programming (NDP) (Bertsekas and Tsitsiklis 1996) which uses 
neural networks to parameterize strategy space, State aggregation (Ren and 
Krogh 2002), time aggregation (Cao et al. 2002), action aggregation (Xia 
et al. 2004), and event-based optimization (Cao 2005).  

The crude model of the KC for a strategy we would like to introduce 
here is the size of a program based on the reduced ordered binary decision 
diagram (ROBDD, or simply OBDD) representation for the strategy which 
will be introduced below. ROBDD regards each strategy as a (high-
dimensional) Boolean function. (For simplicity we let the output decision 
variable be binary. This can be generalized in obvious ways. See Exercises 
6.1 and 6.2 below.) The observation behind this is that reduced ordered 
binary decision diagrams (ROBDDs) usually supply a succinct description 
for a Boolean function (Andersen 1997). Let us first describe how 
ROBDD can be obtained for a Boolean function and furthermore for a 
strategy through an example. 

                                                      
2 In the same spirit of OO with constraints in Chapter V but different in that we 

are using an upper bound estimation for memory used for describing a strategy, so 
we never include infeasible strategies in our selected set, nor do we know when a 
strategy is not estimated as simple, what is the probability for it to be truly simple.  

3It should be noted that although KC in general cannot be calculated by 
computers, there are extensions of KC that can be calculated by computers, such 
as the Levin complexity (Levin 1973, 1984), which considers both the length of 
the program and the time for the program to be executed. It is still an open ques-
tion how to combine Levin complexity with ordinal optimization to find simple 
and good enough strategies. 
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Fig. 6.2. Reduction process from BDD to OBDD for the function f(x1,x2) = 
(x1∧x2)∨(¬x1∧x2) 

In Fig. 6.2(a), we use a BDD (Binary Decision Diagram) to describe the 
Boolean function f(x1,x2) = (x1∧x2)∨(¬x1∧x2), where ∧ is AND, ∨ is OR, 
and ¬ is NOT. To construct a BDD for f, we start from a root node (circle) 
representing a Boolean variable (x1 for this example). We connect to this 
node a dotted line and a solid line representing “if the variable takes value 
“0” or “1”, respectively. For each branch (dotted line or solid line), we add 
a new node (circle) by choosing a new Boolean variable (x2 for this 
example). We keep this branching procedure until all Boolean variables 
have been added and two lines added. Note that any path from the root 
node to a latest added node is corresponding to an assignment of 0 or 1 to 
all Boolean variables. For example, in Fig. 6.2(a), the path in which both 
node x1 and x2 take the dotted branch is corresponding to the assignment 
(x1, x2) = (0,0). As the last step to construct a BDD, we add at the end of 
each path a box labeled by the evaluation of f under the assignment corres-
ponding to the path. For the assignment (x1, x2) = (0,0), we attach a box 
labeled “0” because f(0,0) = 0. Before doing any reduction, BDD will have 
an exponentially (in n) large number of nodes. One way to reduce BDD is 
to introduce order when adding Boolean variables. If, in a BDD, all paths 
choose the same order when adding new Boolean variables, we get an 
OBDD, where the first “O” stands for “ordered”. Fig. 6.2(a) is in fact an 
OBDD.  

OBDDs allow us to find simpler representation for Boolean functions. 
We can combine the redundant nodes, i.e., the nodes with identical sub-
graphs. For example, Fig. 6.2(b) gives a more compact OBDD than Fig. 
6.2(a). Obviously, if both of the two lines connected to a node are connec-
ted to the same successor on the other end (e.g., the lines connected to 
node x1 in Fig. 6.2(b)), this means the input value of this Boolean variable 
does not affect the output of the function. So this node can be removed to 
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make the OBDD more compact. The OBDD in Fig. 6.2(b) can be further 
simplified to the one in Fig. 6.2(c), where node x1 is removed. By elimi-
nating redundancies in an OBDD, a unique OBDD can be obtained which 
is called ROBDD4 for the Boolean function. In the rest, when we mention 
an OBDD of a strategy, we will always refer to the ROBDD for the 
strategy. 

 
Exercise 6.1: How can we encode a strategy from a finite information 

space to a finite action space with a high dimensional Boolean function?  
 
The readers may consult Chapter VIII. 4 for such an example. 
 

more than one-bit outputs, say two bits? In other words, there are totally 
four actions, 00, 01, 10, and 11. 

 
Exercise 6.3: Currently there is no randomness in OBDDs. Is it possible 

to introduce any randomness in OBDDs? In other words, instead of deter-
ministically selecting either the dotted line or the solid line and thus deter-
ministically outputting 0 or 1 finally, can we generalize the OBDD to 
randomly output 0 or 1? How? If possible, please show the example when 
the OBDD outputs two-bit actions. What is the advantage of these random 
OBDDs comparing with the deterministic OBDDs? 

 
Once we have an OBDD for a Boolean function describing a strategy, 

we can follow a natural way to convert the OBDD to a program that can 
represent the strategy. For a given input to the strategy, the purpose of the 
program is to generate the output (either 0 or 1 if the strategy has only two 
actions to choose) for the strategy. We start from the top node of the OBDD, 
considering which line to choose (and thus which successor to go to) 
according to the input values of the Boolean variables until arriving at the 
bottom box (either 0 box or 1 box), and then output the value in the box. 
This procedure can be described by a sequence of rules. Each rule looks 
like  

 
(state, input, action, next state), 

 
where state represents which node the program is currently at, input 
represents the input value of the Boolean variable associated with that 
node, action describes what the program is going to do (such as to choose 

                                                      
4 The ROBDD depends on the order of variables.  

Exercise 6.2: How can we generalize the above OBDD to represent 
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either of the lines if the program is staying at a node; or to output either 
“0” or “1”, if the program is at one of the bottom boxes; or simply to end 
the program if the output is already done), and the next state represents the 
node that the program is going to (either the low- or the high-successor of 
the current node, if the program is now staying at a node; or an END state 
which describes the end of the program, if the program is now staying at 
one of the bottom boxes.). For example, the rules to describe the OBDD in 
Fig. 6.2(c) are: 

 
  (node x2, 0, choose the dotted line, box 0), 
  (node x2, 1, choose the solid line, box 1), 
  (box 0, ∋, output 0, END), 
  (box 1, ∋, output 1, END), 

 
where ∋ means that no input is needed.  

Based on this program representation of a strategy, we can estimate its 
KC as ( ) 2

ˆ 4(2 2) log (b+3+4)C bγ = + ⎡ ⎤⎢ ⎥  by calculating number of bits to 
implement the strategy, where b is the number of nodes (excluding the 
bottom boxes) of the OBDD and ⎡a⎤ represents the minimal integer no less 
than a. In fact, we have the following observations. In general, there are 2 
rules associated with each of the nodes (excluding the bottom boxes), and 
there is a rule associated with each bottom box. Then the number of rules 
is r = 2b + 2. To describe each such rule, we need to encode each of the four 
elements in a rule by binary sequences. Since we need to distinguish all the 
b nodes, 2 bottom boxes, the END state, and the 4 possible actions to take 
(choose either the dotted line or the solid line, output either 0 or 1), we need 
d = ⎡log2(b+3+4)⎤ bits to describe each element. Thus, in total, we need 
4rd bits to implement an OBDD. Note that 4rd is only an estimate on the 
minimal number of bits to describe an OBDD. First, different order in 
Boolean variables may lead to OBDD with different size. Unfortunately it 
is too time-consuming to find the simplest OBDD to describe a strategy in 
general (which has been proven to be NP-hard (Bollig and Wegener 
1996)). Second, there may be different requirements on the rules in 
different computer systems. For example, some computer systems may 
allow us to encode four elements separately, which means the computer 
knows which one of the four elements it is reading, then we can further 
save the number of bits to represent a rule. In some other computer sys-
tems, the value of r and d are required to be clearly explained to the computer. 
r and d need to be encoded in specific ways to ensure the computer under-
stands them. Considering the different requirements in different computer 
systems, we may have a more detailed and more specific estimate of the 
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In summary, to simplify the discussion, we use ( )Ĉ γ  to represent the 
number of bits given by whatever approximation. The users are free to use 
either ( )ˆ 4C rdγ =  or any other problem-specific estimates. 

 
Exercise 6.4: How can we modify ( )ˆ 4C rdγ =  when there are m-bit 

outputs? 

2.2 Random sampling in the design space of simple strategies 

Once we have a way to estimate the descriptive complexity (KC) for a 
strategy as above, to take advantage of OO in searching a small set of 
strategies that contains given number of good enough simple strategies 
with high probability, we have to find a way to do random sampling in the 
set of strategies describable within the given memory limit5. Our idea is to 
sample only the estimated simple strategies. More specifically, we randomly 
generate OBDDs so that the estimated number of bits to describe this 
OBDD does not exceed the given memory space C0, i.e., ( ) 0Ĉ Cγ ≤ . The 
strategy described by this OBDD is by definition an estimated simple 
strategy6. By sampling these OBDDs, we are sampling simple strategies. 
One question of this is, as we explained earlier, there might be several 
OBDDs representing the same strategy, uniformly sampling the OBDDs 

                                                      
5 Note in general, it is impossible to enumerate all simple strategies since the 

total number of simple strategies is still large.  
6 Since we are using estimation, some truly simple strategies may be excluded. 

Some readers might be curious to know how many true simple strategies may be 
excluded. Honestly, this is a difficult question. One reason is that this difference 
depends on which UTM is used, i.e., the hardware and the software in the 
computer that we use to do the optimization. Although the difference between 
the KC of a given string s in different UTM can be bounded by a constant, which 
is independent from s and only depends on the two UTMs (Li and Vitányi 1997), 
this constant might be large. This means the same estimate of KC might exclude 
different numbers of true simple strategies when different UTMs are used. 
However, how to choose the UTM, i.e., which software or hardware to use, is also 
an optimization problem, which is probably not easy. It is still an open question to 
study how many true simple strategies are excluded by a given estimate of KC. 
Thus, ultimately we must still let the end result justify our approach. See Chapter 
VIII for an example. 

number of bits to represent a strategy . Examples can be found in (Jia  
et al. 2006b).  

γ
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might not mean uniformly sampling the simple strategies. After 
introducing some restrictions, say we fix the order of the variables from 
the top node to the bottom box, and combine all the redundant nodes, the 
sampling redundancy can be sufficiently reduced. To distinguish from 
the usual OBDD, we call such an OBDD a partially reduced OBDD 
(PROBDD).  

The definition of PROBDD ensures the uniqueness of the nodes in each 
level (the top node is in level 1 and there are at most n levels), which 
allows us to say: no two PROBDDs with the same number of levels repre-
sent the same Boolean function. Astute reader might notice that although 
n-level PROBDDs can represent all the 22

n

 strategies using n-bit 
information, some strategies that do not use all the n bit information can be 
represented by simpler PROBDDs. However, since there are 22

i

 different 
i-level PROBDDs, and all the Boolean functions are represented by an 
i-level PROBDD (where the order of the variables is x1…xi) can be 
represented by exactly an (i+1)-level PROBDD (where the order of the 
variables is x1…xixi+1), among all the 22

n

 strategies using n-bit 
information, 22 i  strategies can be represented by i-level PROBDDs, i = 
1,2,…n. This result brings us two advantages. First, suppose we start from 
1-level PROBDDs and incrementally increase the number of levels, until 
we generate all the 22

n

 strategies. We generate at most 2
1
2

in

i=∑  
PROBDDs in total. The redundancy is 

 
11 2 2 2

1
2 2 2

i n nn

i

−− −
=

≈∑ , 

 
which reduces to zero faster than an exponent when n increases. This 
shows the high efficiency of the aforementioned sampling method of 
simple strategies. The redundancy is ignorable. As an example, for n = 
1,2,3, and 4, we test the redundancy numerically and show in Table 6.1, 
where the Redundancy = (Total PROBDD # – Total Strategy #)/Total 
Strategy # × 100%. For n = 4, the redundancy has already been very small 
(less than 1%). The implication is that, for large n and a given memory 
space, it is sufficient to uniformly sample PROBDDs for obtaining 
uniform samples from the estimated simple strategy space defined by 

( ){ }0
ˆ: C Cγ γ ≤ . 
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Table 6.1. The small redundancy of the sampling method of simple strategies (Jia 
et al. 2006b) © 2006 IEEE 

n Total Strategy # ( 22
n

) Total PROBDD # Redundancy (%) 
1 4 4 0 
2 16 18 12.5 
3 256 272 6.25 
4 65536 65806 0.412 

 
To uniformly sample PROBDDs, we first fix the order of the variables 

in all levels of the PROBDD, say x1, x2, …xn. Then we estimate what is the 
largest number of nodes that can be stored in the given memory space, 
denoted as bmax. We randomly pick an integer b between 0 and bmax, where 
0 means that the PROBDD does not use any input information and always 
outputs 0 (or 1). Based on b, we then determine the number of the levels in 
the PROBDD and the number of nodes in each PROBDD. After that we 
randomly determine the type of the connections between the nodes in two 
adjacent levels (including the connections between the nodes in the last 
level and the bottom boxes), i.e., whether a line between two nodes is 
dotted or solid. In this way, we can randomly generate a PROBDD that is 
estimated simple.  

Recall the big picture in Fig. 6.1. Once the PROBDDs representing 
simple strategies are randomly sampled, we remove the constraint on 
limited memory space from the original simulation-based strategy optimi-
zation problem. In the OO procedure, this means we have the N sampled 
designs from the entire design space now, i.e., ΘN. Then we can use 
standard OO to find strategies in ΘN with good enough performances as 
described in Chapter II. In this way, we can find simple and good enough 
strategies with high probability. We show an example to illustrate this 
procedure in details in Section VIII.4.2. 

 
Exercise 6.5: Besides saving the memory space, what are the other 

advantages of simple strategies? 

3 Conclusion 

In summary, this chapter discusses the importance of considering the 
constraint of limited memory space when applying computer-based control 
and optimization in large scale simulation-based strategy optimization. 
This constraint is one of the important reasons why we can only search 
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within the simple strategies in practice. We use multivariate Boolean 
functions to represent a strategy. OBDD is an efficient conceptual way to 
represent n-variable Boolean functions. We have developed a method to 
systematically explore the n-variable Boolean functions that can be 
captured by i-variable (i<n) Boolean functions for i = 1,2,…. This explora-
tion can be easily combined with OO to find a strategy with good enough 
performance and i-variable Boolean function representation for an optimi-
zation problem. In Chapter VIII Section 4, we demonstrate this on the well 
known Witsenhausen problem and obtain a 40-fold decrease in strategy 
complexity with minor (within 5%) degradation of performance. 
 

 




