
Chapter V Constrained Ordinal Optimization 

We discussed single-objective optimization in Chapter II and III, and dealt 
with multiple-objective optimization in Chapter IV. All these belong to un-
constrained optimizations. Since we usually meet constraints in practice, a 
natural question is how we could apply ordinal optimization in constrained 
optimization problems. Traditionally, optimization problems involving 
constraints are treated via the use of LaGrange multipliers (Bryson and Ho 
1969). See also Eq. (4.1) in the introduction of Chapter IV. The duality be-
tween constrained optimization with vector optimization is best illustrated 
via the following diagram (Fig. 5.1). 

 
Fig. 5.1. The duality between constrained optimization and vector optimization 

points on the Pareto frontier by solving a series of constrained optimization 
problem. Conversely, every point on the Pareto frontier solves a constrained 
optimization problem for some constraint value “d”. Thus in principle, VOO 
and COO are also duals of each other. Chapter IV can be considered as a 
dual of this chapter. 

More practically, in some cases, the constraints can be easily checked, 
e.g., simple linear inequality equations involving one or two variables. By 
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modifying the design space, Θ, to one including only the feasible designs, 
Θf, we convert the original problem to an unconstrained one, which can 
then be dealt with by the methods in Chapter II-IV. However, in some 
other cases, it is time-consuming to check the constraints. In this chapter, 
we focus on the optimization problem of form 
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Considering the problems handled by OO in previous chapters, where the 
evaluation of J(•) is time consuming, we observe an additional difficulty: 
there are simulation-based constraints in Eq. (5.1), which makes the pre-
cise determination of the feasibility beforehand extremely difficult. In fact, 
incorporating constraints efficiently is one of the major challenges in 
developing any simulation-based optimization methods. One naive and 
impractical approach is to accurately determine the feasibility of a design 
(this will be referred to as a perfect feasibility model), then apply OO di-
rectly within Θf , the subset of all the feasible designs. The other extreme is 
to apply OO directly regardless of the constraints. This does not work in 
general since many designs in the selected set may be infeasible. The se-
lected set, the size of which is determined without any consideration of the 
constraints, can no longer ensure to cover some feasible designs with good 
enough performance with high probability.  

The key idea in this chapter is to note, in practice, although we do not 
have perfect feasibility model, we usually have some rules, experiences, 
heuristics, and analytical methods (these will be referred as the feasibility 
models) to help us find feasible designs with a reasonably high probability 
(certainly no less than 0.5). These feasibility models usually are not per-
fect, and some times make mistakes, e.g., some designs may be predicted 
as feasible by the feasibility model, but are actually infeasible. If we incor-
porate this fact of imperfect (but with some reasonable chance, say 70% or 
80%) feasibility prediction into the determination of the size of the se-
lected set, we can ensure to find some feasible and good enough designs 
with high probability. Before we discuss how to do this incorporation in 
details, which will be introduced in Section 1, we would like to make some 
comments. 

Recall that the spirit of OO is to ask for good enough with high prob-
ability instead of best for sure. The spirit of the above COO is similar: To 
accommodate the constraints, we ask for feasibility with high probability 
instead of feasible for sure. It is interesting to note that the classification of 



Constrained Ordinal Optimization 115 

“feasible vs. infeasible” is ordinal. All the advantages of OO apply here, 
i.e., it can be reasonably easy to obtain a group of truly feasible designs 
with high probability instead of one for sure. In addition, “imperfectness” 
of the feasibility model is also in tune with the “goal softening” tenet. Al-
though individual determination of feasibility using a crude model may 
give erroneous results, the model could be very robust with respect to a 
group of candidates overall. As in the case of the regular OO, | SG ∩ | can 
be good even in the presence of large “noise.” The above approach is an 
evolution of the OO methodology amenable to constrained optimization 
problems with a “complete ordinal” concept. The tenets of “goal soften-
ing” and “ordinal comparison” are reflected by the integration of “imper-
fect feasibility model” and “feasibility determination.”  

1 Determination of selected set in COO 

As discussed in Chapter III, the effectiveness of the OO technique depends, 
in part, on the selection rule that we use to select the subset S. The simplest 
selection rule that requires no performance evaluation or estimate is Blind 
Pick. Analytical results as shown in Chapter II are available for Blind Pick 
without constraints as in Eq. (5.2), 
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Here we will derive analytical results for the constrained cases. When we 
have constraints, since there are infeasible designs in Θ, if we still use 
Blind Pick, we will have to select more designs to guarantee the same level 
of alignment. It is also reasonable to see that the required size of the se-
lected set decreases as the predication accuracy increases. 

1.1 Blind pick with an imperfect feasibility model 

In engineering practice, we usually have an imperfect feasibility model, 
which is based on rules, experiences, heuristics, and some analytical methods 
that can be easily checked. Such a model can make prediction about the 
feasibility of a design choice θ with little or no computation. However, its 
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prediction will sometimes be faulty. Suppose we first use this feasibility 
model to obtain N (say 1000) designs from the entire design space Θ as fol-
lows. We uniformly sample Θ  and test the feasibility with our feasibility 
model, then accept designs predicted as feasible and reject designs predicted 
as infeasible. We denote such set of designs as ˆ

fΘ .  Then we apply BP 
within ˆ

fΘ  to select a subset Sf. We want to find some truly good enough 
and feasible deigns of Θ. The rationale here is as follows: when the set of 
predicted feasible designs ˆ

fΘ f

the design space is reasonably high (say no less than 10% of the entire de-
sign space)1, and the feasibility model has a reasonable accuracy (with 

some truly good enough and feasible designs of Θ contained in ˆ
fΘ . We 

call this method Blind Pick with a (imperfect) Feasibility Model (BPFM).  
In order to quantify the alignment probability, we denote the set of top-

100 × αg% truly feasible designs in ˆ
fΘ  as G, the good enough set. Sup-

pose there are Nf truly feasible designs in the N predicted feasible designs2. 
Then the size of the good enough set g = Nf αg. We use Pe1 and Pe2 to meas-
ure the accuracy of a feasibility model, i.e., Pe1 denotes the probability that 
a truly feasible design is predicted as infeasible, also known as the type-I 
error; and Pe2 denotes the probability that a truly infeasible design is pre-
dicted as feasible, also known as the type-II error. To simplify the discus-
sion, let us assume Pe1 = Pe2 first, remove this constraint, and discuss the 
more general case later. Let Pf = 1-Pe1, then Pf is the prediction accuracy of 
the feasibility model, that is, the probability that a design is predicted as 
feasible if it is truly feasible and also the probability that a design is pre-
dicted as infeasible if it is truly infeasible. So, for each θ design in ˆ

fΘ , 
which is predicted as feasible, the probability that it is truly feasible can be 
obtained via Bayesian formula 

                                                      
1 When the density of feasible designs is much less than 10%, we need to im-

prove the value of N or use a good feasibility model so that there are some truly 
good enough and feasible designs of Θ contained in ˆ

f
Θ . 

2 The selection of N should guarantee Nf is large enough. 

probability no less than 0.5 to give correct prediction), there should be 

 is large, the density ρ  of feasible designs in 
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Thus, because the feasibility model is usually not perfect (that is Pf <1), 
infeasible designs cannot be completely excluded in Sf.  

It should be pointed out that although the expected number of feasible 
designs in ˆ

fΘ  is fN N r= ×  and the expected number of feasible designs 
in Sf is fS r× , the results of the regular unconstrained OO method cannot 
be directly applied in this case with fs S r= × .  

Exercise 5.1: Explain intuitively why? 
 
We shall now derive the AP of the selected subset Sf by averaging all 

possible numbers of feasible designs in Sf.  
Suppose the size of selected subset Sf is sf. The number of infeasible 

designs in the selected subset Sf, denoted as tf, follows approximately a 
Binomial distribution, i.e., tf ~ b(sf, r), where the size of selected subset sf 
is the size of the Bernoulli trials and r is the probability that a selected de-
sign in Sf is feasible. The probability that there are tf = j infeasible designs 
in selected subset Sf, is: 
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Given that there are tf infeasible designs in the selected subset Sf, the con-
ditional AP that there are exact k good enough designs in Sf is given by: 
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Fig. 5.2. Illustration of Eq. (5.5) 

Eq. (5.5) is a direct analog of Eq. (5.2), which was first derived in Eq. 
(2.37). Please see also Fig. 5.2 for illustration. 

Since if there are k feasible and good enough designs in Sf, the number 
of infeasible designs in Sf could be any number from 0 to min(sf – k, N-Nf), 
based on the Total-Probability Theorem, we have the formula for the AP 
that there are at least k good enough designs in the selected set Sf as 
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If we do not have any knowledge about the feasibility of the designs, 

each of them is equally likely to be feasible or infeasible. This corresponds 
to the special case where Pf = 0.5 and thus r＝ ρf in Eq. (5.6). It is also in-
teresting to note that, if we have perfect knowledge about the feasibility of 
each design, by sampling only truly feasible designs, we can obtain an ˆ

fΘ  
containing N feasible designs. This corresponds to the special case Pf =1 
and thus  r = 1 in Eq. (5.6). Direct calculation shows that Eq. (5.6) reduces 
to Eq. (5.2) if Pf =1 and thus r =1.  

ˆ
fΘ ˆ

fΘ
ˆ

fΘ
ˆ

fΘ
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1.2 Impact of the quality of the feasibility model on BPFM 

The value of BPFM lies in the fact that, by only very crude feasibility 
model, we can bring an impressive improvement to the efficiency of COO. 
First, we will show that APCOO is an increasing function of Pf, the accuracy 
of feasibility model and also an increasing function of ρ, the density of 
feasible designs in the entire design space. We show this result through 

COO is an increasing function of 
r, and in the second step, we show that r is an increasing function of Pf and 

 f
ˆ

f  is Nr, 
f  g

f f g g

ˆ
f , all other parameters 

remaining the same (i.e., fixing N and sf), the AP Prob[|G∩Sf|≥k] increases. 
Now, we show that r is an increasing function of Pf and ρ f. Fix ρ f, follow-
ing Eq. (5.3), we have that 
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Then, we will show some numerical results. Suppose the size of design 
space ˆ

fΘ  is 1000. The number of feasible designs is N f = 500. The good 
enough set G is the top 50 feasible designs (i.e., the top-10% feasible de-
signs in ˆ

fΘ ).  The AP versus the size of selected subset, sf is plotted in Fig. 
5.3. As expected, for the constrained problem, the BPFM method with a 
feasibility model Pf >0.5 is better than that without a feasibility model (i.e., 
Pf  = 0.50, which is identical to directly using BP), because, for the same 
size of the selected subset, the AP obtained for Pf >0.50 is larger than that 
obtained for Pf  = 0.50. It is also observed that the more accurate the feasi-
bility model (larger Pf) is, the higher AP we can achieve. 

g increases. Since we are doing blind picking in Θ

truly feasible, the number of truly feasible designs on average in Θ

This shows that r is an increasing function of P . Similarly we can 

i.e., N = Nr. Since the good enough set G is defined as the top-100 × α % 
of these N  truly feasible designs, g = N α =Nα r. Thus, when r increases, 

show r is an increasing function of ρ . In total, we show that the AP

ρ . Since r represents the probability that an observed feasible design is 

two steps. In the first step, we show that AP

Prob[|G∩S |≥k] is an increasing function of P  and ρ , which is also intui-
tively reasonable. 
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Fig. 5.3. AP versus the subset selection size of BP and BPFM 

The sizes of selected subsets obtained by different Pf values are illus-
trated in Table 5.1. It is shown that, for the same required AP, a larger Pf 
requires a smaller selected subset, and thus is more efficient. In other 
words, a smaller selected subset is required for a more accurate feasibility 
model, for a given level of alignment probability.  

Table 5.1. Sizes of the selected subsets 

Required AP Pf  = 0.50 Pf  = 0.70 Pf  = 0.90 Pf  = 1.00 

≥0.50 14 10 8 7 
≥0.60 18 13 10 9 
≥0.70 24 17 13 12 
≥0.80 31 22 17 16 
≥0.90 44 32 24 22 
≥0.95 57 41 31 28 
≥0.99 87 61 47 42 
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So far we assume that Pe1＝Pe2 to simplify the notation. Now, we show 
how to remove this constraint and consider the more general case where r 
is a function of Pe1 and Pe2. Following a similar analysis to Eq. (5.3), we 
have 
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Giving a feasibility model, once we estimate the accuracy of the feasi-

bility model, i.e., Pe1 and Pe2, we can use Eq. (5.7) to calculate r and then 
use Eq. (5.6) to quantify the APCOO. We now show when the accuracy of 
the feasibility model increases, i.e., Pe1 and Pe2 decreases, r increases, and 
then following the analysis similar to the beginning of this subsection, we 
can see that AP also increases. Fix Pe2 and ρf, we have  
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Similarly, fix Pe1 and ρf, we have 
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And fix Pe1 and Pe2, we have 
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This means r is a decreasing function of Pe1 and Pe2, and an increasing 
function of ρf. The previous discussion on Pe1 = Pe2 = 1-Pf is a special case. 

Suppose we are given a feasibility model which predicts the feasibility 
of a design accurately with probability Pf. We summarize the application 
procedure of COO using this feasibility model as follows.  
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Box 5.1. COO approach 

Step 1. Find a feasibility model and randomly sample N predicted feasi-
ble designs.  

Step 2. Specify g and k. 
Step 3. Estimate ρf, the density of feasible designs in the entire design 

space and estimate the accuracy of the feasibility model, i.e., the 
Pe1 and Pe2, and calculate r through Eq. (5.7). 

Step 4. Apply the BPFM in Eq. (5.6) to determine the size of the selec-
ted set. 

Step 5. Randomly select Sf designs from the N designs. 
Step 6. The COO theory ensures that there are no less than k good 

enough feasible designs in the selected subset with high prob-
ability. 

Exercise 5.2: How can we determine the size of the selected set if we 
use Horse Race instead of Blind Pick in Step 4 above within the set of pre-
dicted feasible designs? 

2 Example: Optimization with an imperfect feasibility 
model 

In this section, we use a simple example to evaluate the effects of COO 
under different observation noise. As expected, since we are developing 
blind pick based COO, the alignment level of selected set should be insen-
sitive to the level of noise in observation. Let us consider the following 
constrained optimization problem. Each design θ is an integer between 1 
and 1000, i.e., Θ={1,2,…1000}. The objective function J(θ) = θ. The con-
straint is that θ must be even numbers. This problem can then be mathe-
matically formulated as  
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ˆ( ) ( )J Jθ θ ξ≡ + . 

contains i.i.d. uniform distribution U(0,a) such that our observation is  
where mod(• •) is the modulo operator. Suppose also observation noise ξ ,
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The presence of noise makes the optimization problem non-trivial to solve 
even with perfect knowledge about the feasibility of each design. 

Suppose we also have an imperfect feasibility model, which gives the 
correct feasibility prediction with probability Pf. In other words, when the 
design θ is an even number (i.e., a truly feasible design), the feasibility 
model predicts the design as feasible with probability Pf (thus predicts the 
design as infeasible with probability Pe1 = 1-Pf); when the design θ is an 
odd number (i.e., a truly infeasible design), the feasibility model predicts 
the design as infeasible with probability Pf (thus predicts the design as fea-
sible with probability Pe2 = 1-Pf). We reasonably assume Pf ≥ 0.5 (Other-
wise we simply reverse the prediction given by this feasibility model, and 
can then obtain a “reasonable” feasibility model). 

Suppose we want to find at least one of the truly top 50 feasible designs 
with high probability, i.e., g = 50, k = 1 with G = {2,4,6,…100}. We simu-
late the BPFM method with Pf  = 0.95. Then Pe1 = Pe2 = 0.05. Notice for this 
example, half of the designs are feasible, so we have ρ f = 0.5. By Eq. (5.7), 
we calculate that r = 0.95. The size of the selected subset, sf, then can be 
calculated based on Eq. (5.6) with the different required AP (0.50, 0.70, 
and 0.95). The selected subsets Sf for different AP are shown in Table 5.2. 
It turns out that the BPFM method finds at least one of the good enough 
feasible designs in all the instances as shown. 

Table 5.2. A random examination of BPFM (Pf  = 0.95) 

Required AP sf Selected subset Sf Alignment 
level 

≥0.50   7 {808, 524, 32, 850, 240, 498, 878} 1 
≥0.70 12 {714, 284, 982, 614, 644, 972, 238, 820, 

986, 176, 272, 30} 
1 

≥0.90 23 {350, 490, 760, 147, 236, 483, 88, 130, 
260, 456, 24, 508, 997, 178, 228, 564, 842, 
976, 446, 660, 330, 952, 87} 

2 

≥0.95 30 {842, 812, 716, 682, 980, 8, 510, 272, 996, 
588, 410, 718, 154, 427, 964, 806, 558, 
502, 414, 724, 998, 265, 384, 772, 262, 
682, 572, 990, 564, 626} 

1 

Note that the good results in Table 5.2 are not coincidences since the 
BPFM method blindly picks designs from the space that are predicted as 
feasible by the feasibility model without relying on accurate estimation on 
J(θ ). So, we can expect that the guarantee provided by the BPFM method 
holds no matter how large the noise is.  
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3 Conclusion 

Optimization of DEDS with complicated stochastic constraints is generally 
very difficult and simulation is usually the only way available. The results 
on unconstrained OO in Chapter II cannot be applied directly since many 
infeasible designs cannot be excluded without costly simulation. The COO 
approach with feasibility model presented in this chapter is effective to 
solve this long-standing problem. According to No-Free-lunch Theorem 
(Ho et al. 2003), no algorithm can do better on the average than blind 
search without structural information. The feasibility model in this case 
can be regarded as the “structural information.” As a result, COO provides 
a more efficient approach for solving constrained optimization problems, 
since the size of the selected subset is smaller than that when directly ap-
plying the unconstrained OO approach.  

The algorithm for subset selection and the procedure of Blind Pick with 
Feasibility Model (BPFM) for COO are derived. Numerical testing shows 
that, by using COO method, to meet the same required alignment probabil-
ity, Blind Pick with Feasibility Model is more efficient than pure Blind 
Pick. The testing results also show that the method is very robust, even 
when the feasibility model is not very accurate. Furthermore, the COO 
method presented in this chapter is a general approach. Any crude feasibil-
ity model even with large noise is compatible and can work well with the 
approach. In Chapter VIII Section 3, we apply COO with a feasibility 
model based on the rough set theory to a real world remanufacturing 
system, and yields promising results. Similarly, the application of this 
approach of COO is not restricted to the BP selection method. Other se-
lection methods such as the Horse Race method can also be used in con-
nection with the crude feasibility model. The modifications to the AP of 
course must be carried out similar to that of Eq. (5.6) except via simula-
tion. A quick-and-dirty first approximation is to simply modify the uncon-
strained UAP by r. 
 




