
Chapter IV Vector Ordinal Optimization 

Consider a multi-objective optimization problem with m objective func-
tions J1, . . . , Jm over a finite but huge design space Θ. If the user knows 
the priority among these objective functions, or furthermore can assign 
appropriate weights to each objective functions, s/he can reformulate this 
problem as either a sequence of m single objective optimizations or a sin-
gle objective optimization using the weighted sum of J1, . . . , Jm as the 
objective function. Then the method introduced in Chapter II will suffice 
to solve this new problem. However, a more difficult case is that the user 

functions. In this chapter, we focus on this type of problem. The purpose 
of the optimization here is to find designs such that the objective functions 
are, in a sense, minimized. The operative concept in multi-criterion opti-
mization problems, of course, is that of Pareto frontier or non-dominated 
solutions. All the designs in the Pareto frontier are considered Pareto 
optimal. The concept of Pareto optimum was formulated by Vilfredo 
Pareto (Pareto 1896). A design is said to be Pareto-optimal if it is not 
dominated by any other designs (i.e., there exists no other design that is 
better for at least one objective function value, and equal or superior with 
respect to the other objective functions). All Pareto-optimal points consti-
tute the so-called Pareto frontier which plays the same role as maximum or 
minimum in single criterion optimization. As discussed before in Chapter I, 
exact values of the m objective functions are often computationally infea-

1/2 limit) and thus it is 
often hard to obtain the Pareto frontier. Genetic algorithms and evolution-
ary algorithms are alternatives (Goldberg 1989), which do not guarantee a 
set of designs in the Pareto frontier but try to find a set of designs hope-
fully not too far away from the Pareto frontier (Zitzler et al. 2003) and 
these methods do not consider the difficulty of time consuming simula-
tion-based performance evaluation. Comprehensive surveys in this area 
can be found in (Coello 2000; Tan et al. 2002). In this chapter, by generali-
zing ordinal optimization from the scalar case to the vector case, we aim at 
quantifying how many observed layers (definition follows) are enough to 
contain the required number of designs in the Pareto frontier with high 
probability. Both tenets of the scalar OO are kept:  

sible to obtain via simulation (due to the 1/(n)

does not know the priority or the appropriate weights among the objective 
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1. the order we introduced converges exponentially as the number of 
replications increases.  

2. we ask for only some good enough designs that are pareto or nearly 
pareto optimal. 

In Section 1, we first include a very brief review of the traditional 
vector optimization results for completeness. Then we define the concept 
of Pareto frontier and layer in vector optimization, the good enough set, 
selected set, universal alignment probability (UAP), and ordered perfor-
mance curve (OPC) in the vector case. In Section 2, based on abundant 
experiments, we give the UAP table for a 2-dimensional case, quantifying 
subset selection sizes for different types of two-objective optimization 
problems. Following this idea, one can quantify subset selection sizes 
when there are an arbitrary number of objective functions. In Section 3, we 
show the exponential convergence rate of observed layers to true ones. In 
Section 4, we use examples to show how the above numerical results help 
to reduce the search efforts for true Pareto frontier by at least one order of 
magnitude. At last, we summarize in Box 4.1 the general steps to apply 
Vector Ordinal Optimization (VOO).  

1 Definitions, terminologies, and concepts for VOO 

First, we include here a very brief review of the traditional vector optimi-

zation problem of “Pareto-min )(
1

θ∑
=

m

i
iJ ”. To locate a point on the Pareto 

frontier, we usually resort to some form of scalarization of the vector criteria. 
The most popular method is to consider a weighted sum of the criteria 
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where the λi’s play the role of LaGrange multipliers. Under appropriate 
convexity conditions, solutions of the scalarized problem over all λi can 
determine all points on the Pareto frontier. There are also other possible 
methods of scalairzation. For example, consider 
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where )(* θiJ , called aspiration level, is the desired but unrealizable value 
of the ith performance criterion. Or consider, 
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all result in a point on the Pareto Frontier.  
 
However, our goals in VOO are somewhat different. We are not that inter-
ested in locating one point on the Pareto frontier. In this book, such a task 

points which are “near or close to” the Pareto frontier as explained in the 
introduction part of this chapter. 

These definitions parallel, in concept, to those defined in Chapter II for 

Θ the search space for the optimization variables θ. 
Ji 

tem. In contrast to the scalar case, we have m performance criteria, 
i=1, . . , m. 

N the number of designs uniformly chosen from Θ. It is understood that for 
each choice of θ, there corresponds a set of values Ji(θ), i=1, 2, ... , m. 

≺  the dominance relation between designs. A design θ1 is said to domi-
nate θ2, denoted by θ1≺ θ2, if Ji(θ1)≤Ji (θ2), for i=1, 2, ... , m, with at 
least one inequality being strict. If θ1 does not dominate θ2, θ2 will be 
called noninferior to θ1. Furthermore, if neither θ1≺ θ2 nor θ2≺ θ1 is 
true, θ2 and θ1 will be called incomparable.  

L1  Pareto Frontier. A set of designs L1 is said to be in the Pareto frontier, 
in terms of the objective functions J1, ... , Jm, if it contains all the de-
signs that are not dominated by other designs in the design space Θ; 
i.e., 

L1≡{θ|θ ∈Θ,  θ′∈Θ, s.t. θ′≺ θ}. 
 

Designs in Pareto frontier are the counterparts of the true optimal de-
sign in the scale case. 

Ω an operator that maps a design space to the set of the Pareto frontier 
with respect to the objective functions as L1=Ω(Θ). The concept of 
Pareto frontier can be extended to a sequence of layers.  

Li  layers. A series of designs Li+1 = Ω(Θ\∪j=1,...,iLj), i=1, 2, ... , are called 
layers, where A\B denotes a set containing all the designs included in 

}

is contrary to the basic tenets of OO. Instead, we want to locate a set of 

= 1,..., m , (4.3) 

single objective ordinal optimization and can be understood similarly. 

Hence we now introduce definitions and notations necessary for VOO. 

able in any objective function.

the performance criteria (also called objective functions) for the sys-

where we assume the true performances of any two designs are distinguish-

Exercise 4.1: Prove that solutions of Problems in Eqs. (4.1)-(4.3) above 
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set A, but not included in set B. Designs in Li are called layer i designs. 
They are successive Pareto frontiers after the previous layers have 
been removed from consideration. The significance of layers is that 
they introduce a natural order in the design space Θ and there are no 
preferences on the objective functions and no preferences on the 
designs in the same layer.1 

 

Fig. 4.1. Graphic illustration of layers (assuming minimization) 

Nl the number of layers formed by the N designs uniformly chosen from Θ. 
ˆ

lN  the number of observed layers formed by the N designs uniformly 
chosen from Θ. This is a random number and varies in different repli-
cations. 

ˆ
iJ  the observed performance criteria of the sampled designs. With n rep-

lications, we denote observed value of i-th performance criterion in 

                                                      
1There are other ways to introduce order for multi-objective optimization. For 

example, it was proposed in (Teng, Lee and Chew 2006) to sort designs according 
to the number of dominating designs. Pareto Frontier is the set of designs with 0 
dominating designs. In that order, although there is no preference on the designs in 
the first layer (i.e., the Pareto Frontier), there usually are preferences on the 
designs in the second or other layers. 

J 2

 

L L
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j-th replication by ( ) ( ) ( )ˆ , ,i i ijJ j J wθ θ θ ξ= + , j=1,…,n, where wij 
are noises.  By default, observed performance always refers to the 
average over all replications:  

( ) ( )
1

1ˆ ˆ , , 1, 2,...,
n

i i
j

J J j i m
n

θ θ
=

= =∑ . 

Note, ( )ˆ
iJ θ  is a random variable whose distribution also depends 

on the number of replications n. 
≺̂  dominance in observation. A design θ1 is said to dominate θ2 in ob-

servation, denoted by θ1 ≺̂ θ2, if ( ) ( )1 2
ˆ ˆ

i iJ Jθ θ≤ , i=1, 2, . . . , m, 
with at least one inequality being strict. 

îL  observed layers. Dominance in observation is a stochastic relationship 
among designs, and will lead to stochastic partition of the design 
space into the observed layers îL , i=1, 2,… 

G good enough set. Defined as the union of the designs in the true first g 
layers (e.g., when g=1,G is the Pareto frontier L1). As in scalar OO, 
the user is free to decide how many layers constitute G.  

S selected set. Defined as the designs chosen based on observed per-
formances. 

Only a selection rule similar to the Horse Race rule is considered 
here. That is to select all designs in the observed first s layers. 

G∩S 
the set of truly good enough designs in S. 

Fig. 4.2. Graphical illustration of Θ, G, and S in VOO 

Selection Rule 
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Alignment Probability (AP) ≡Prob[|G∩S|≥k]  
The probability that there are actually k truly good enough designs in 
S. This is the same as in scalar OO. Based on the notion of layers, it 
can be written as 

 

AP=
1 1

ˆProb s g
i ii i

k
= =

⎡ ⎤∩ ≥⎢ ⎥⎣ ⎦∪ ∪L L . 

VOPC 
Ordered Performance Curve in the vector case (VOPC). Similar to 
scalar OO, AP in VOO is also affected by problem types. We intro-
duce VOPC for multi-objective optimization problems. VOPC is 
described by a function F(x), where x is the layer index, from 1 to the 
total number of layers of that problem, and F(x) is the number of 
designs in the first x layers. Correspondingly, we can also focus on 
the map f (x), which sends the layer index x, ranging from 1 to the total 
number of layers of that problem, to f (x), the number of designs in the 
x-th layer. In Fig. 4.3, we use two-objective optimization as an exam-
ple to show how f (x) describes different types of multi-objective op-
timization problems. There are three types of F(x) in Fig. 4.3. Each 
column shows one type of two-objective optimization problem and 
the corresponding f (x). The true performances of the designs are de-
noted by dots. Suppose that we uniformly pick up designs to compose 
the selected set S. In the first type, there are few designs in the Pareto 
frontier. Then, it is hard for S to contain some designs in the Pareto 
frontier. This type of optimization problems is hard. The problems in 
the second and third columns are neutral and easy, respectively. 
VOPC is a concept to classify the problem type, which is logically 
similar to OPC classifying the problem type in scalar OO. However, 
since we do not know the appropriate weight among the multiple 
objective functions, we cannot use the value of the objective functions 
to measure the “performance” of the designs in the same layer. In-
stead, we use the total number of designs in the previous layers as 
such a measure. Other definitions are possible. We still call it VOPC 
though we know the “performance” here is neither the value of any 
objective function nor the value of a weighted sum of these objective 
functions. 

wi noise/error level in objective function Ji. We assume wij(θ, ξ), j= 
1,2,…,n, form an i.i.d. sequence of random variables with zero mean. 
When there is no confusion, we simply use w to represent the noise 
levels. 
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Fig. 4.3. Three types of two-objective optimization problems. A fourth type, the 
general type, is not shown 

The Universal Alignment Probability (UAP) 
Prob , , ,VOPC typelG S k N N w≡ ⎡ ∩ ≥ ⎤⎣ ⎦  

( )UAP , , ,VOPC typelN N w≡  
As in scalar OO, the alignment probability can be tabulated once N, 
the number of designs, NI , the number of layers, the noise/error level 
and VOPC type of a problem is given. The UAP table for the 
2-dimension case will be given in Section 2. 

Exercise 4.2: Please compare the concepts of order, good enough set, 
selected set, ordered performance curve, and universal alignment probability 
in ordinal optimization when there are one or multiple objective functions. 

2 Universal alignment probability 

In VOO, we care about the probability that the observed first s layers con-
tain at least k designs of the true first g layers; we want this probability to 
be greater than or equal to some required confidence probability α, i.e., 

J 2 J 2 J 2

f(x
)

f(x
)

f(x
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F(
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F(
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1 1
ˆProb s g
i ii i

k α
= =

⎡ ⎤∩ ≥ ≥⎢ ⎥⎣ ⎦∪ ∪L L . 

 
As in the scalar case, g, s, k, VOPC type and the noise level all affect AP. 

In general, it is difficult to get a closed-form formula to calculate AP, giving 
the values of these factors. In the scalar case, a table is used to quantify the 
relationship among g, s, k under different OPC and noise levels (Lau and Ho 
1997). In VOO, we similarly tabulate the relationship among g, s, and k. In 
the rest of this section, we show how to do experiments on two-objective 
optimization problems as an example. For cases with more than two objec-
tive functions, the method is similar. The importance of the two-dimensional 
UAP table also lies in that, under mild assumption, the VOO-UAP table for 
two objective functions supplies an upper bound for the size of the selected 
set when there are more objective functions.  

 

Exercise 4.3: Suppose all the designs are distinguishable in each objec-
tive function, i.e., ∀θ, θ′∈Θ, i=1,2,…m, Ji(θ )≠Ji(θ′). Please show that the 
Pareto frontier with respect to m-1 objective functions is a subset of the 
Pareto frontier w.r.t. m objective functions.  

Exercise 4.4: Based on the results in the last exercise, please show that 
the UAP table for two-objective optimization supplies an upper bound for 
the size of the selected set when there are more objective functions. 

 

We consider three types of VOPCs in the experiments: Flat, neutral, and 
steep. Without loss of generality, we assume that the true performance of 
each design is within [0,1], that there are totally 10000 designs and 100 
layers.2 The numbers of designs in each layer are also specified: 

                                                      
2With no prior knowledge on the problem, for the neutral VOPC, we want to 

ensure the performance vectors of designs are uniformly deployed in an 
m-dimensional “cubic”. So, fixing Nl =100, for m=2, if there are 100 designs in each 
layer, there will be N=100×100 designs, where Nl is the total number of layers. For 
the flat and steep VOPC, we want to ensure the performance vectors of the designs 
are uniformly deployed in an m-dimensional “pyramid”. So, fixing Nl =100, for 
m=2, let there be only one design in the first layer for the flat VOPC (or in the last 
layer for the steep VOPC), and the numbers of the designs in the successive layers 
increase (decrease in the steep VOPC) by a constant. For general m, to avoid the 
curse of dimensionality, fixing Nl =100, we generate N=C(1+ Nl) Nl /2 designs, and 
C is a positive number depending on m. See Fig. 4.4. 
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Fig. 4.4. One example of the randomly generated true performances of the designs 
for the three types of VOPC in the experiment 
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• for flat VOPC, |Li|=2i-1; 
• for neutral VOPC, |Li|=100; 
• for steep VOPC, |Li|=201-2i, i =1, 2,…, 100. 

 
We randomly generate the true performance of each design such that the 

number of designs in each layer meets the above requirements. We show 
one example in Fig. 4.4. i.i.d. uniformly distributed noises are considered, 
i.e., 

wij(θ, ξ )～U[-w,w], i=1, . . . , m, j=1,2,…,n. 
 
Three noise levels are considered: w = 0.5, 1.0, 2.5. The three noise lev-

els are supposed to represent “small, medium, and large”. The reason is 
similar to the ones stated in Section II.5, i.e., consider the neutral type for 
example, when w=0.5, the worst design barely has the chance to be obser-
ved better than the best design; this probability is positive when w=1.0, 
and much greater when w=2.5. By adding observation noises to the true 
performances of each design, we can find the observed first s layers. For 
each type of VOPC, we repeat the above procedure 1000 times to estimate 
the alignment probability. The values of g, s, k are also specified for each 
VOPC so that the number of good enough designs does not exceed 20% of 
the size of the entire design space: 

• for flat VOPC, g, s∈[1, 44]; 

• for neutral VOPC, g, s∈[1, 20]; 

• for steep VOPC, g, s∈[1, 10]; 

and k ∈[1, 100] for each type. When the alignment probability α≥0.95, we 
try to describe the value of s as a function of k and g. We find that the fol-
lowing functional form fits well in all cases:  

 ( ) 31 2
4, ZZ ZZ k g e k g Z= + , (4.4) 

where Z1, Z2, Z3, Z4 are constants depending on the VOPC types and noise 
characteristics. We show one example in Fig. 4.5, where the solid lines 
represent the number of the observed layers to select, which is obtained 
through the experiments, and the dashed lines represent the prediction 
given by Eq. (4.4). As we can see, the two lines are close to each other. We 
perform a regression on the data of (g, s, k) of the experiments, which lead 
to α ≥0.95, and this in turn produces the coefficients appearing in Eq. (4.4). 
We list the regressed values in Table 4.1. 
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To ensure that Eq. (4.4) and Table 4.1 produces an upper bound esti-
mate of the number of the selected layers, we restrict the numerical ranges 
as follows: 

 
Fig. 4.5. The number of the observed layers to select to ensure AP≥0.95 in the 
Neutral VOPC and w=0.5. The solid lines represent the true value. The dashed 
lines represent the predicted value 

Table 4.1. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for UAP of VOO 

Noise  U[ 0.5, 0.5]  
OPC class Flat Neutral Steep 
Z1 4.2004  –0.2176  –0.7564 
Z2 1.1953 0.9430 0.9156 
Z3  –2.3590  –0.9208  –0.8748 
Z4 3.1992 1.0479 0.6250 
Noise  U[ 1.0, 1.0]  
OPC class Flat Neutral Steep 
Z1 4.7281 0.3586  –0.1536 
Z2 1.0459 0.8896 0.8721 
Z3  –2.1283  –0.8972  –0.8618 
Z4 2.4815 0.8086 0.5191 
Noise  U[ 2.5, 2.5]  
OPC class Flat Neutral Steep 
Z1 5.2099 0.9379 0.3885 
Z2 0.9220 0.8445 0.8536 
Z3  –1.9542  –0.8890  –0.8847 
Z4 1.9662 0.5946 0.5414 
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• for flat VOPC, when k ≤50, the range of g is 1≤g ≤44. When 50<k ≤ 
100, for flat VOPC with noise level w=0.5, the range of g is 1≤g≤25; for 
noise level w=1.0, the range of g is 1≤g≤30; for noise level w=2.5, the 
range of g is 1≤g ≤35. For flat OPC, all the (g, k) combinations should 

Note, in practice, we may have a different sample size N and a different 
number of layers Nl as we assumed when generating Table 4.1, our idea is 
to use the total number of observed layers ˆ

lN  as an estimate of Nl and 
keep the ratios g/Nl, k/N, s/Nl as constant. This idea is demonstrated in 
Section 4 through examples. 

3 Exponential convergence w.r.t order 

VOO is based on ordinal comparison as in the scalar OO. That is, the 
comparison of designs and sorting them into observed layers. As in scalar 
OO, under mild conditions, it can be shown that ordinal comparison in 
VOO also has exponential convergence rate, namely the probability that 
the true i-th layer Li is the same as the observed i-th layer îL  is of form 

1- ( )nO e β− , where n is the number of replications and β>0 is a constant. In 
fact, when some designs in the i-th layer Li is not in the observed i-th layer 

îL , there must be at least one pair of designs, the observed order (domi-
nance) of which is different from the true order. Since the design space is 
finite, in order to prove the exponential convergence of layers, it is suffi-
cient to show that any pair of designs θ1 and θ2 can only change their 
observed order with an exponentially decaying probability in terms of the 
number of replications n.  

Prob[ ˆ
i i=L L  for all i] 

≥1-Prob[there exist a pair of designs θ1 and θ2 changing order in ob-
servation] 
≥1- [ ]

1 2

1 2
,θ θ

∑    (4.5) 

Once an observation (based on n replications) is made, there are only 
three possible order relationships between any two designs θ1 and θ2: 

Prob θ  and θ changes order in observation

• for neutral VOPC, g∈[1, 20], k∈[1, 100], s=Z(⋅/⋅)≤20;  

• for steep VOPC, g∈[1, 10], k∈[1, 100], s=Z(⋅/⋅)≤10; 

let s=Z(⋅/⋅)≤44.  
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θ1≺ θ2, θ1 θ2, and incomparable. For all these three cases, when a change 
in order happens in observation, there is at least one objective function Ji 
such that one of the following is true, among m objective functions.  

1. Ji(θ1)<Ji(θ2) and ( ) ( )1 2
ˆ ˆ

i iJ Jθ θ≥  hold simultaneously. 

2. Ji(θ1)>Ji(θ2) and ( ) ( )1 2
ˆ ˆ

i iJ Jθ θ≤  hold simultaneously. 

In other words, in at least one objective function, a change in order 
occurs in observation. Thus, we can bound Prob[θ1 and θ2 changes order in 

observation] from above by Prob[ ( ) ( )1 2
ˆ ˆ

i iJ Jθ θ≥ ] when Ji(θ1)<Ji(θ2) and 

Prob[ ( ) ( )1 2
ˆ ˆ

i iJ Jθ θ≤ ] when Ji(θ1)>Ji(θ2).  
It follows from the exponential convergence w.r.t. order for scalar case 

in Section II.4.2 (based on Large Deviation Theory) that probability for the 
order to change in one objective function decreases exponentially as a 
function of n. In other words, when Ji(θ1)<Ji(θ2), and as long as the condi-
tions on the samples (or equivalently on the noises) of scalar OO hold, i.e., 
the moment generating functions 1 ( , )( )iswE e θ ξ  exists for all s∈(-d,d), for 
some d>0, there must be a positive β such that  

 

( ) ( )1 2Prob ˆ ˆ ( )n
i iJ J O e βθ θ −⎡ ⎤≥ =⎢ ⎥⎣ ⎦

 

 
and when Ji(θ1)>Ji(θ2), there must be a positive β such that 

 

( ) ( )1 2Prob ˆ ˆ ( )n
i iJ J O e βθ θ −⎡ ⎤≤ =⎢ ⎥⎣ ⎦

. 

 
As a result, we have  

1 2Prob  and  changes order in observation ( )nO e βθ θ −=  

and furthermore due to Eq. (4.5), we have 
 

Prob[ ˆ
i i=L L  for all i]=1- ( )nO e β− . 

Exercise 4.5: Another basic idea in single-objective OO is goal soften-
ing. What is the advantage to consider goal softening in VOO? Can we 
show some results similar to Section II.4.3? 

⎡ ⎤
⎣ ⎦
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4 Examples of search reduction 

When we obtain the regressed values in Table 4.1, there are several assump-
tions: 

(A1) There are 10000 designs and 100 layers in total. 
(A2) The observation noises of different designs are independent. 
(A3) The observation noises have uniform distribution. 

It turns out that, even when these assumptions are not met, Table 4.1 
still gives a good guidance on how many observed layers should be 
selected due to its universality. We present two examples here to demon-
strate this. One is an academic problem, the other a practical problem. In 
Example 4.1, we relax assumptions A1 and A3 in Table 4.1. In Example 
4.2, we relax all three assumptions. 

distribution  

Consider a two-objective optimization problem minθ∈ΘJ(θ), where J(θ)= 
[J1(θ), J2(θ)]τ , J1(θ) and J2(θ) are the true performance of the design θ, and 
τ denotes transposition. There are 1000 designs in Θ. For each design θ, 
J1(θ) and J2(θ) are uniformly generated values from [0,1] and are fixed in 

 
Fig. 4.6. True performances J1 and J2 in Example 4.1 

the following experiments. The true performances are shown in Fig. 4.6. 
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4.1 Example: When the observation noise contains normal 
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Fig. 4.7. The observed VOPC of Example 4.1 

There are 9 designs in the Pareto frontier, which are marked by circles. 
The observation noise of each design is independent and has normal dis-
tribution N(0, 0.252). We are interested to find at least k, 1≤k≤9, designs in 
the true Pareto frontier with high probability, α ≥0.95. The question is how 
many observed layers we should select. In the following, two methods are 
compared. 

First, we use the regressed values in Table 4.1 to answer this question. 
We simulate each design only once and estimate the VOPC type of this 
problem, which is neutral (as shown in Fig. 4.7). We specify the noise 
level as 0.5. Then, from Table 4.1, we find the values of coefficients as 

 
Z1=0.2176, Z2=0.9430, Z3=0.9208, Z4=1.0479. 

 
Since there are only 1000 designs and 579 observed layers in Example 

4.1, we need to adjust the values of g and k. We keep the ratios g/Nl, k/N, 
s/Nl as constant, where Nl is the total number of true layers. We use the to-
tal number of observed layers ˆ

lN  as an estimate of Nl. Then, we have 
 

g′ =⎣(100/57)×1⎦=1, 
k′=(10000/1000)×k=10k, 1≤k≤9, 

where ⎣a⎦ represents the smallest integer that is not smaller than a. Using 
Eq. (1), we get s′(k′, g′) and s =⎡(57/100)×s⎤, where ⎡a⎤ represents the 
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largest integer that is not larger than a. The predicted values of s are collec-
ted in Table 4.2 (denoted as ŝ ).  

Second, we use the experiments to estimate how many observed layers 
should be selected. We use 1000 independent experiments to estimate the 
AP of each (s, k). In this way, for different k, we get estimates of how 
many observed layers are enough so that the corresponding AP is no less 
than 0.95. We regard these estimates as true values and also list them in 
Table 4.2 (denoted by s*). 

In Table 4.2, we can see that the predicted values ŝ  based on the 
regressed model are always an upper bound of the true values s*. If we 
want to find at least one design in the true Pareto frontier, it is sufficient to 
focus on the observed first 5 layers. There are only 78 designs on the 
average in these layers (a saving from 1000 to 78). Also note that, if we 
want to contain most or all (nine) designs in the true Pareto frontier, we 
still need to explore many designs. However, this is due to the fact that 
the noises are large in our example and it is not compatible with goal 
softening to insist on k=9. 

Table 4.2. Predicted and true values of s for Example 4.1 

k s* ŝ  ˆ

1

s
ii=∪  

1 3 5 78 
2 5 9 166 
3 7 12 241 
4 9 16 340 
5 11 19 420 
6 14 23 517 
7 17 26 596 
8 22 30 692 
9 32 33 756 

We will consider a 10-node queuing network, as shown in Fig. 4.8. In fact, 
this example has already been introduced in Section III.3, but we consid-
ered only one objective function then. Now we are going to consider two 
objective functions (introduction follows) here. Let us briefly review the 
problem formulation. There are two classes of customers with different 
arrival distributions (exponential and uniform distributions). Both classes 
arrive at any of the 0–3 nodes and leave the network after finishing all 
three stages of services. The routing is class dependent and is deterministic. 

4.2 Example: The buffer allocation problem 

L
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The buffer size at each node is finite and is the parameter that we can 
design. We say that a buffer is full if there are as many customers as that 
buffer size, not including the customer being served. Nodes 8-9 have indi-
vidual queues but share one server. This network can model a large num-
ber of real-world systems, such as manufacturing, communication, and 
traffic network. We consider the problem of allocating 22 buffer units 
among the 10 nodes. We use Bi to denote the buffer size at node i, Bi ≥0. 
For symmetry reasons, we require 

 B0=B1=B2=B3, B4=B6, B5=B7, B8, B9>0.    (4.6) 
 

 
Fig. 4.8. The 10-node network with priority and shared server 

We can get 1001 different configurations in all. There are two objective 
functions. One is the expected time to process the first 100 jobs from the 
same initial state (all buffers are empty). The other is the average utility of 
the buffers at all the nodes, i.e., 

9

0
/i ii

q B
=∑ , where qi is the expected 

queue length at node i, 0≤i ≤9, where for Bi =0, we define the utility of that 
buffer to be 1. We want to improve the throughput of the network and 
improve the efficiency of all the buffers. We formulate the problem as a 
two-objective minimization problem, where J1 is the first objective func-
tion above and J2=1-

9

0
/i ii

q B
=∑ .  

For each design (a configuration of buffers) θ, we use 1000 independent 
experiments to estimate J1(θ) and J2(θ). The experimental results are 
shown in Fig. 4.9. We regard these values as true performances and define 
the configurations in the observed first two layers as good enough (9 
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designs in total), also marked by circles in Fig. 4.9. We want to find at 
least k, 1≤k≤9, configurations in the true first two layers with high prob-
ability, α≥0.95. The question is also how many observed layers should be 
selected.  

 
Fig. 4.9. The true performance of the configurations in Example 4.2 

Fig. 4.10. The observed VOPC of Example 4.2 
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First, we simulate each configuration once (i.e., one replication only – a 
very crude estimate of the performance of the particular configuration). 
We show one instance in Fig. 4.10. There are 94 observed layers, which 
may be different in various experiments. The estimated VOPC type is neu-
tral. By normalization, the standard deviation of the observation noise is 
0.1017 for J1 and 0.0271 for J2, and we choose 0.5>2×0.1017 as the noise 
level. The corresponding coefficients in Table 4.1 are the same as those in 
Example 4.1. We adjust the values of g and k accordingly, i.e., 

 
g' =⎣100/94×2⎦=2, k' =(10000/1001)×k≈10k, 1≤k≤9. 

 
Substituting these values into Eq. (4.4), we can get s'=Z(k', g') and s = 
⎡94/100×s'⎤. We show the predicted number of observed layers to select in 
Table 4.3.  

Second, we use 1000 independent experiments to estimate the AP of 
each (s, k). For each k, when AP is no smaller than 0.95, we denote the 
value of s as s* in Table 4.3.  

Table 4.3. Predicted and true values of s for Example 4.2 

k s* ŝ  ˆ

1

s
ii=∪  

1 1 5  32 
2 2 8  44 
3 2 11  95 
4 3 14 147 
5 4 17 197 
6 5 20 240 
7 6 23 268 
8 8 26 279 
9 9 29 286 

If we want to contain at least 3 designs in the true first two layers, ac-
cording to Table 4.3, we need to explore only 95 designs on average. This 
saves much of our search efforts. We can see that the predicted values of s 
are always no less than the estimated values. The predicted values of ŝ  
seem conservative. The reason is that the normalized noise level is 0.2034 
in Example 4.2, which means that some good enough designs almost 
always dominate some other designs in observation. However, the smallest 
noise level in Table 4.1 is 0.5, which is more than twice as large as the 
normalized. In turn, this leads to a conservative estimate of s. 

Example 4.2 violates all the three assumptions: There are only 1001 
designs (configurations) in total; the observation noise is not i.i.d., and 

L
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does not contain uniform distribution. However, numerical results show 

4.1 still give good guidance on how many observed layers should be se-
lected. When there are more objective functions, we can design similar 
experiments to obtain the regressed values of the coefficients in Eq. (4.4). 
In practical applications, we can use more problem information to obtain 
better prediction on the number of observed layers to select (i.e., a tighter 

 
Exercise 4.6: In Example 4.2, we introduced constraints in Eq. (4.6) for 

symmetry reason. What if we relax these constraints? Can we find designs 
with better performances in both objective functions? Please try to apply 
VOO to solve Example 4.2 without the constraints in Eq. (4.6). 

Exercise 4.7: Please think, before reading Section VIII.3, about effec-
tive ways to obtain less conservative estimate of the number of observed 
layers to select, when we have the observed performance of the randomly 
sampled N designs. 

 

Box 4.1. The application procedure of VOO 

Step 1: Uniformly and randomly sample N designs from Θ. 
Step 2:  Use a crude and computationally fast model to estimate 

the m performance criteria of these N designs. 
Step 3:  Estimate the VOPC class and noise level. The user speci-

fies the size of good enough set, g, and the required 
alignment level, k. 

Step 4:  Use Table 4.1 (if m=2, or similar tables generated before-
hand for general m) to calculate s=Z(g, k/VOPC class, 
noise level). 

Step 5:  Select the observed first s layers as the selected set. 
Step 6:  The theory of VOO ensures that S contains at least k truly 

good enough designs with probability no less than 0.95. 
 

that the regression function (0.4) and the regressed coefficients in Table 

upper bound of the true values). This will be shown in Chapter VIII Section 3. 




