
Chapter IV Vector Ordinal Optimization

Consider a multi-objective optimization problem with m objective func-
tions J1, . . . , Jm over a finite but huge design space Θ. If the user knows
the priority among these objective functions, or furthermore can assign
appropriate weights to each objective functions, s/he can reformulate this
problem as either a sequence of m single objective optimizations or a sin-
gle objective optimization using the weighted sum of J1, . . . , Jm as the
objective function. Then the method introduced in Chapter II will suffice
to solve this new problem. However, a more difficult case is that the user

functions. In this chapter, we focus on this type of problem. The purpose
of the optimization here is to find designs such that the objective functions
are, in a sense, minimized. The operative concept in multi-criterion opti-
mization problems, of course, is that of Pareto frontier or non-dominated
solutions. All the designs in the Pareto frontier are considered Pareto
optimal. The concept of Pareto optimum was formulated by Vilfredo
Pareto (Pareto 1896). A design is said to be Pareto-optimal if it is not
dominated by any other designs (i.e., there exists no other design that is
better for at least one objective function value, and equal or superior with
respect to the other objective functions). All Pareto-optimal points consti-
tute the so-called Pareto frontier which plays the same role as maximum or
minimum in single criterion optimization. As discussed before in Chapter I,
exact values of the m objective functions are often computationally infea-

1/2 limit) and thus it is
often hard to obtain the Pareto frontier. Genetic algorithms and evolution-
ary algorithms are alternatives (Goldberg 1989), which do not guarantee a
set of designs in the Pareto frontier but try to find a set of designs hope-
fully not too far away from the Pareto frontier (Zitzler et al. 2003) and
these methods do not consider the difficulty of time consuming simula-
tion-based performance evaluation. Comprehensive surveys in this area
can be found in (Coello 2000; Tan et al. 2002). In this chapter, by generali-
zing ordinal optimization from the scalar case to the vector case, we aim at
quantifying how many observed layers (definition follows) are enough to
contain the required number of designs in the Pareto frontier with high
probability. Both tenets of the scalar OO are kept:

sible to obtain via simulation (due to the 1/(n)

does not know the priority or the appropriate weights among the objective

94 Chapter IV

1. the order we introduced converges exponentially as the number of
replications increases.

2. we ask for only some good enough designs that are pareto or nearly
pareto optimal.

In Section 1, we first include a very brief review of the traditional
vector optimization results for completeness. Then we define the concept
of Pareto frontier and layer in vector optimization, the good enough set,
selected set, universal alignment probability (UAP), and ordered perfor-
mance curve (OPC) in the vector case. In Section 2, based on abundant
experiments, we give the UAP table for a 2-dimensional case, quantifying
subset selection sizes for different types of two-objective optimization
problems. Following this idea, one can quantify subset selection sizes
when there are an arbitrary number of objective functions. In Section 3, we
show the exponential convergence rate of observed layers to true ones. In
Section 4, we use examples to show how the above numerical results help
to reduce the search efforts for true Pareto frontier by at least one order of
magnitude. At last, we summarize in Box 4.1 the general steps to apply
Vector Ordinal Optimization (VOO).

1 Definitions, terminologies, and concepts for VOO

First, we include here a very brief review of the traditional vector optimi-

zation problem of “Pareto-min)(
1

θ∑
=

m

i
iJ ”. To locate a point on the Pareto

frontier, we usually resort to some form of scalarization of the vector criteria.
The most popular method is to consider a weighted sum of the criteria

 i
1 1

min with 1(), 0,
m m

i i i
i i

Jλ θ λ λ
= =

=≥∑ ∑ , (4.1)

where the λi’s play the role of LaGrange multipliers. Under appropriate
convexity conditions, solutions of the scalarized problem over all λi can
determine all points on the Pareto frontier. There are also other possible
methods of scalairzation. For example, consider

 * 2

1
min (() ())

m

i i i
i

J Jλ θ θ
=

−∑ (4.2)

where)(* θiJ , called aspiration level, is the desired but unrealizable value
of the ith performance criterion. Or consider,

Vector Ordinal Optimization 95

(){min max ,J ii θ

all result in a point on the Pareto Frontier.

However, our goals in VOO are somewhat different. We are not that inter-
ested in locating one point on the Pareto frontier. In this book, such a task

points which are “near or close to” the Pareto frontier as explained in the
introduction part of this chapter.

These definitions parallel, in concept, to those defined in Chapter II for

Θ the search space for the optimization variables θ.
Ji

tem. In contrast to the scalar case, we have m performance criteria,
i=1, . . , m.

N the number of designs uniformly chosen from Θ. It is understood that for
each choice of θ, there corresponds a set of values Ji(θ), i=1, 2, ... , m.

≺ the dominance relation between designs. A design θ1 is said to domi-
nate θ2, denoted by θ1≺ θ2, if Ji(θ1)≤Ji (θ2), for i=1, 2, ... , m, with at
least one inequality being strict. If θ1 does not dominate θ2, θ2 will be
called noninferior to θ1. Furthermore, if neither θ1≺ θ2 nor θ2≺ θ1 is
true, θ2 and θ1 will be called incomparable.

L1 Pareto Frontier. A set of designs L1 is said to be in the Pareto frontier,
in terms of the objective functions J1, ... , Jm, if it contains all the de-
signs that are not dominated by other designs in the design space Θ;
i.e.,

L1≡{θ|θ ∈Θ, θ′∈Θ, s.t. θ′≺ θ}.

Designs in Pareto frontier are the counterparts of the true optimal de-
sign in the scale case.

Ω an operator that maps a design space to the set of the Pareto frontier
with respect to the objective functions as L1=Ω(Θ). The concept of
Pareto frontier can be extended to a sequence of layers.

Li layers. A series of designs Li+1 = Ω(Θ\∪j=1,...,iLj), i=1, 2, ... , are called
layers, where A\B denotes a set containing all the designs included in

}

is contrary to the basic tenets of OO. Instead, we want to locate a set of

= 1,..., m , (4.3)

single objective ordinal optimization and can be understood similarly.

Hence we now introduce definitions and notations necessary for VOO.

able in any objective function.

the performance criteria (also called objective functions) for the sys-

where we assume the true performances of any two designs are distinguish-

Exercise 4.1: Prove that solutions of Problems in Eqs. (4.1)-(4.3) above

96 Chapter IV

set A, but not included in set B. Designs in Li are called layer i designs.
They are successive Pareto frontiers after the previous layers have
been removed from consideration. The significance of layers is that
they introduce a natural order in the design space Θ and there are no
preferences on the objective functions and no preferences on the
designs in the same layer.1

Fig. 4.1. Graphic illustration of layers (assuming minimization)

Nl the number of layers formed by the N designs uniformly chosen from Θ.
ˆ

lN the number of observed layers formed by the N designs uniformly
chosen from Θ. This is a random number and varies in different repli-
cations.

ˆ
iJ the observed performance criteria of the sampled designs. With n rep-

lications, we denote observed value of i-th performance criterion in

1There are other ways to introduce order for multi-objective optimization. For

example, it was proposed in (Teng, Lee and Chew 2006) to sort designs according
to the number of dominating designs. Pareto Frontier is the set of designs with 0
dominating designs. In that order, although there is no preference on the designs in
the first layer (i.e., the Pareto Frontier), there usually are preferences on the
designs in the second or other layers.

J 2

L L

Vector Ordinal Optimization 97

j-th replication by () () ()ˆ , ,i i ijJ j J wθ θ θ ξ= + , j=1,…,n, where wij
are noises. By default, observed performance always refers to the
average over all replications:

() ()
1

1ˆ ˆ , , 1, 2,...,
n

i i
j

J J j i m
n

θ θ
=

= =∑ .

Note, ()ˆ
iJ θ is a random variable whose distribution also depends

on the number of replications n.
≺̂ dominance in observation. A design θ1 is said to dominate θ2 in ob-

servation, denoted by θ1 ≺̂ θ2, if () ()1 2
ˆ ˆ

i iJ Jθ θ≤ , i=1, 2, . . . , m,
with at least one inequality being strict.

îL observed layers. Dominance in observation is a stochastic relationship
among designs, and will lead to stochastic partition of the design
space into the observed layers îL , i=1, 2,…

G good enough set. Defined as the union of the designs in the true first g
layers (e.g., when g=1,G is the Pareto frontier L1). As in scalar OO,
the user is free to decide how many layers constitute G.

S selected set. Defined as the designs chosen based on observed per-
formances.

Only a selection rule similar to the Horse Race rule is considered
here. That is to select all designs in the observed first s layers.

G∩S
the set of truly good enough designs in S.

Fig. 4.2. Graphical illustration of Θ, G, and S in VOO

Selection Rule

98 Chapter IV

Alignment Probability (AP) ≡Prob[|G∩S|≥k]
The probability that there are actually k truly good enough designs in
S. This is the same as in scalar OO. Based on the notion of layers, it
can be written as

AP=
1 1

ˆProb s g
i ii i

k
= =

⎡ ⎤∩ ≥⎢ ⎥⎣ ⎦∪ ∪L L .

VOPC
Ordered Performance Curve in the vector case (VOPC). Similar to
scalar OO, AP in VOO is also affected by problem types. We intro-
duce VOPC for multi-objective optimization problems. VOPC is
described by a function F(x), where x is the layer index, from 1 to the
total number of layers of that problem, and F(x) is the number of
designs in the first x layers. Correspondingly, we can also focus on
the map f (x), which sends the layer index x, ranging from 1 to the total
number of layers of that problem, to f (x), the number of designs in the
x-th layer. In Fig. 4.3, we use two-objective optimization as an exam-
ple to show how f (x) describes different types of multi-objective op-
timization problems. There are three types of F(x) in Fig. 4.3. Each
column shows one type of two-objective optimization problem and
the corresponding f (x). The true performances of the designs are de-
noted by dots. Suppose that we uniformly pick up designs to compose
the selected set S. In the first type, there are few designs in the Pareto
frontier. Then, it is hard for S to contain some designs in the Pareto
frontier. This type of optimization problems is hard. The problems in
the second and third columns are neutral and easy, respectively.
VOPC is a concept to classify the problem type, which is logically
similar to OPC classifying the problem type in scalar OO. However,
since we do not know the appropriate weight among the multiple
objective functions, we cannot use the value of the objective functions
to measure the “performance” of the designs in the same layer. In-
stead, we use the total number of designs in the previous layers as
such a measure. Other definitions are possible. We still call it VOPC
though we know the “performance” here is neither the value of any
objective function nor the value of a weighted sum of these objective
functions.

wi noise/error level in objective function Ji. We assume wij(θ, ξ), j=
1,2,…,n, form an i.i.d. sequence of random variables with zero mean.
When there is no confusion, we simply use w to represent the noise
levels.

Vector Ordinal Optimization 99

Fig. 4.3. Three types of two-objective optimization problems. A fourth type, the
general type, is not shown

The Universal Alignment Probability (UAP)
Prob , , ,VOPC typelG S k N N w≡ ⎡ ∩ ≥ ⎤⎣ ⎦

()UAP , , ,VOPC typelN N w≡
As in scalar OO, the alignment probability can be tabulated once N,
the number of designs, NI , the number of layers, the noise/error level
and VOPC type of a problem is given. The UAP table for the
2-dimension case will be given in Section 2.

Exercise 4.2: Please compare the concepts of order, good enough set,
selected set, ordered performance curve, and universal alignment probability
in ordinal optimization when there are one or multiple objective functions.

2 Universal alignment probability

In VOO, we care about the probability that the observed first s layers con-
tain at least k designs of the true first g layers; we want this probability to
be greater than or equal to some required confidence probability α, i.e.,

J 2 J 2 J 2

f(x
)

f(x
)

f(x
)

F(
x)

F(
x)

F(
x)

100 Chapter IV

1 1
ˆProb s g
i ii i

k α
= =

⎡ ⎤∩ ≥ ≥⎢ ⎥⎣ ⎦∪ ∪L L .

As in the scalar case, g, s, k, VOPC type and the noise level all affect AP.

In general, it is difficult to get a closed-form formula to calculate AP, giving
the values of these factors. In the scalar case, a table is used to quantify the
relationship among g, s, k under different OPC and noise levels (Lau and Ho
1997). In VOO, we similarly tabulate the relationship among g, s, and k. In
the rest of this section, we show how to do experiments on two-objective
optimization problems as an example. For cases with more than two objec-
tive functions, the method is similar. The importance of the two-dimensional
UAP table also lies in that, under mild assumption, the VOO-UAP table for
two objective functions supplies an upper bound for the size of the selected
set when there are more objective functions.

Exercise 4.3: Suppose all the designs are distinguishable in each objec-
tive function, i.e., ∀θ, θ′∈Θ, i=1,2,…m, Ji(θ)≠Ji(θ′). Please show that the
Pareto frontier with respect to m-1 objective functions is a subset of the
Pareto frontier w.r.t. m objective functions.

Exercise 4.4: Based on the results in the last exercise, please show that
the UAP table for two-objective optimization supplies an upper bound for
the size of the selected set when there are more objective functions.

We consider three types of VOPCs in the experiments: Flat, neutral, and
steep. Without loss of generality, we assume that the true performance of
each design is within [0,1], that there are totally 10000 designs and 100
layers.2 The numbers of designs in each layer are also specified:

2With no prior knowledge on the problem, for the neutral VOPC, we want to

ensure the performance vectors of designs are uniformly deployed in an
m-dimensional “cubic”. So, fixing Nl =100, for m=2, if there are 100 designs in each
layer, there will be N=100×100 designs, where Nl is the total number of layers. For
the flat and steep VOPC, we want to ensure the performance vectors of the designs
are uniformly deployed in an m-dimensional “pyramid”. So, fixing Nl =100, for
m=2, let there be only one design in the first layer for the flat VOPC (or in the last
layer for the steep VOPC), and the numbers of the designs in the successive layers
increase (decrease in the steep VOPC) by a constant. For general m, to avoid the
curse of dimensionality, fixing Nl =100, we generate N=C(1+ Nl) Nl /2 designs, and
C is a positive number depending on m. See Fig. 4.4.

Vector Ordinal Optimization 101

Fig. 4.4. One example of the randomly generated true performances of the designs
for the three types of VOPC in the experiment

J1

J 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a) Flat

J1

J 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b) Neutral

J1

J 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(c) Steep

102 Chapter IV

• for flat VOPC, |Li|=2i-1;
• for neutral VOPC, |Li|=100;
• for steep VOPC, |Li|=201-2i, i =1, 2,…, 100.

We randomly generate the true performance of each design such that the

number of designs in each layer meets the above requirements. We show
one example in Fig. 4.4. i.i.d. uniformly distributed noises are considered,
i.e.,

wij(θ, ξ)～U[-w,w], i=1, . . . , m, j=1,2,…,n.

Three noise levels are considered: w = 0.5, 1.0, 2.5. The three noise lev-

els are supposed to represent “small, medium, and large”. The reason is
similar to the ones stated in Section II.5, i.e., consider the neutral type for
example, when w=0.5, the worst design barely has the chance to be obser-
ved better than the best design; this probability is positive when w=1.0,
and much greater when w=2.5. By adding observation noises to the true
performances of each design, we can find the observed first s layers. For
each type of VOPC, we repeat the above procedure 1000 times to estimate
the alignment probability. The values of g, s, k are also specified for each
VOPC so that the number of good enough designs does not exceed 20% of
the size of the entire design space:

• for flat VOPC, g, s∈[1, 44];

• for neutral VOPC, g, s∈[1, 20];

• for steep VOPC, g, s∈[1, 10];

and k ∈[1, 100] for each type. When the alignment probability α≥0.95, we
try to describe the value of s as a function of k and g. We find that the fol-
lowing functional form fits well in all cases:

 () 31 2
4, ZZ ZZ k g e k g Z= + , (4.4)

where Z1, Z2, Z3, Z4 are constants depending on the VOPC types and noise
characteristics. We show one example in Fig. 4.5, where the solid lines
represent the number of the observed layers to select, which is obtained
through the experiments, and the dashed lines represent the prediction
given by Eq. (4.4). As we can see, the two lines are close to each other. We
perform a regression on the data of (g, s, k) of the experiments, which lead
to α ≥0.95, and this in turn produces the coefficients appearing in Eq. (4.4).
We list the regressed values in Table 4.1.

Vector Ordinal Optimization 103

To ensure that Eq. (4.4) and Table 4.1 produces an upper bound esti-
mate of the number of the selected layers, we restrict the numerical ranges
as follows:

Fig. 4.5. The number of the observed layers to select to ensure AP≥0.95 in the
Neutral VOPC and w=0.5. The solid lines represent the true value. The dashed
lines represent the predicted value

Table 4.1. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for UAP of VOO

Noise U[0.5, 0.5]
OPC class Flat Neutral Steep
Z1 4.2004 –0.2176 –0.7564
Z2 1.1953 0.9430 0.9156
Z3 –2.3590 –0.9208 –0.8748
Z4 3.1992 1.0479 0.6250
Noise U[1.0, 1.0]
OPC class Flat Neutral Steep
Z1 4.7281 0.3586 –0.1536
Z2 1.0459 0.8896 0.8721
Z3 –2.1283 –0.8972 –0.8618
Z4 2.4815 0.8086 0.5191
Noise U[2.5, 2.5]
OPC class Flat Neutral Steep
Z1 5.2099 0.9379 0.3885
Z2 0.9220 0.8445 0.8536
Z3 –1.9542 –0.8890 –0.8847
Z4 1.9662 0.5946 0.5414

0 10 20 30 40 50 60 70 80 90 100

2
4
6
8

10

12
14
16
18

20

k

g=2 g=3 g=4

g=5

g=6
g=7
g=8
g=9
g=10

–

–

–

104 Chapter IV

• for flat VOPC, when k ≤50, the range of g is 1≤g ≤44. When 50<k ≤
100, for flat VOPC with noise level w=0.5, the range of g is 1≤g≤25; for
noise level w=1.0, the range of g is 1≤g≤30; for noise level w=2.5, the
range of g is 1≤g ≤35. For flat OPC, all the (g, k) combinations should

Note, in practice, we may have a different sample size N and a different
number of layers Nl as we assumed when generating Table 4.1, our idea is
to use the total number of observed layers ˆ

lN as an estimate of Nl and
keep the ratios g/Nl, k/N, s/Nl as constant. This idea is demonstrated in
Section 4 through examples.

3 Exponential convergence w.r.t order

VOO is based on ordinal comparison as in the scalar OO. That is, the
comparison of designs and sorting them into observed layers. As in scalar
OO, under mild conditions, it can be shown that ordinal comparison in
VOO also has exponential convergence rate, namely the probability that
the true i-th layer Li is the same as the observed i-th layer îL is of form

1- ()nO e β− , where n is the number of replications and β>0 is a constant. In
fact, when some designs in the i-th layer Li is not in the observed i-th layer

îL , there must be at least one pair of designs, the observed order (domi-
nance) of which is different from the true order. Since the design space is
finite, in order to prove the exponential convergence of layers, it is suffi-
cient to show that any pair of designs θ1 and θ2 can only change their
observed order with an exponentially decaying probability in terms of the
number of replications n.

Prob[ˆ
i i=L L for all i]

≥1-Prob[there exist a pair of designs θ1 and θ2 changing order in ob-
servation]
≥1- []

1 2

1 2
,θ θ

∑ (4.5)

Once an observation (based on n replications) is made, there are only
three possible order relationships between any two designs θ1 and θ2:

Prob θ and θ changes order in observation

• for neutral VOPC, g∈[1, 20], k∈[1, 100], s=Z(⋅/⋅)≤20;

• for steep VOPC, g∈[1, 10], k∈[1, 100], s=Z(⋅/⋅)≤10;

let s=Z(⋅/⋅)≤44.

Vector Ordinal Optimization 105

θ1≺ θ2, θ1 θ2, and incomparable. For all these three cases, when a change
in order happens in observation, there is at least one objective function Ji
such that one of the following is true, among m objective functions.

1. Ji(θ1)<Ji(θ2) and () ()1 2
ˆ ˆ

i iJ Jθ θ≥ hold simultaneously.

2. Ji(θ1)>Ji(θ2) and () ()1 2
ˆ ˆ

i iJ Jθ θ≤ hold simultaneously.

In other words, in at least one objective function, a change in order
occurs in observation. Thus, we can bound Prob[θ1 and θ2 changes order in

observation] from above by Prob[() ()1 2
ˆ ˆ

i iJ Jθ θ≥] when Ji(θ1)<Ji(θ2) and

Prob[() ()1 2
ˆ ˆ

i iJ Jθ θ≤] when Ji(θ1)>Ji(θ2).
It follows from the exponential convergence w.r.t. order for scalar case

in Section II.4.2 (based on Large Deviation Theory) that probability for the
order to change in one objective function decreases exponentially as a
function of n. In other words, when Ji(θ1)<Ji(θ2), and as long as the condi-
tions on the samples (or equivalently on the noises) of scalar OO hold, i.e.,
the moment generating functions 1 (,)()iswE e θ ξ exists for all s∈(-d,d), for
some d>0, there must be a positive β such that

() ()1 2Prob ˆ ˆ ()n
i iJ J O e βθ θ −⎡ ⎤≥ =⎢ ⎥⎣ ⎦

and when Ji(θ1)>Ji(θ2), there must be a positive β such that

() ()1 2Prob ˆ ˆ ()n
i iJ J O e βθ θ −⎡ ⎤≤ =⎢ ⎥⎣ ⎦

.

As a result, we have

1 2Prob and changes order in observation ()nO e βθ θ −=

and furthermore due to Eq. (4.5), we have

Prob[ˆ
i i=L L for all i]=1- ()nO e β− .

Exercise 4.5: Another basic idea in single-objective OO is goal soften-
ing. What is the advantage to consider goal softening in VOO? Can we
show some results similar to Section II.4.3?

⎡ ⎤
⎣ ⎦

106 Chapter IV

4 Examples of search reduction

When we obtain the regressed values in Table 4.1, there are several assump-
tions:

(A1) There are 10000 designs and 100 layers in total.
(A2) The observation noises of different designs are independent.
(A3) The observation noises have uniform distribution.

It turns out that, even when these assumptions are not met, Table 4.1
still gives a good guidance on how many observed layers should be
selected due to its universality. We present two examples here to demon-
strate this. One is an academic problem, the other a practical problem. In
Example 4.1, we relax assumptions A1 and A3 in Table 4.1. In Example
4.2, we relax all three assumptions.

distribution

Consider a two-objective optimization problem minθ∈ΘJ(θ), where J(θ)=
[J1(θ), J2(θ)]τ , J1(θ) and J2(θ) are the true performance of the design θ, and
τ denotes transposition. There are 1000 designs in Θ. For each design θ,
J1(θ) and J2(θ) are uniformly generated values from [0,1] and are fixed in

Fig. 4.6. True performances J1 and J2 in Example 4.1

the following experiments. The true performances are shown in Fig. 4.6.

J1

0.5 1

0.5

1

0

4.1 Example: When the observation noise contains normal

Vector Ordinal Optimization 107

Fig. 4.7. The observed VOPC of Example 4.1

There are 9 designs in the Pareto frontier, which are marked by circles.
The observation noise of each design is independent and has normal dis-
tribution N(0, 0.252). We are interested to find at least k, 1≤k≤9, designs in
the true Pareto frontier with high probability, α ≥0.95. The question is how
many observed layers we should select. In the following, two methods are
compared.

First, we use the regressed values in Table 4.1 to answer this question.
We simulate each design only once and estimate the VOPC type of this
problem, which is neutral (as shown in Fig. 4.7). We specify the noise
level as 0.5. Then, from Table 4.1, we find the values of coefficients as

Z1=0.2176, Z2=0.9430, Z3=0.9208, Z4=1.0479.

Since there are only 1000 designs and 579 observed layers in Example

4.1, we need to adjust the values of g and k. We keep the ratios g/Nl, k/N,
s/Nl as constant, where Nl is the total number of true layers. We use the to-
tal number of observed layers ˆ

lN as an estimate of Nl. Then, we have

g′ =⎣(100/57)×1⎦=1,
k′=(10000/1000)×k=10k, 1≤k≤9,

where ⎣a⎦ represents the smallest integer that is not smaller than a. Using
Eq. (1), we get s′(k′, g′) and s =⎡(57/100)×s⎤, where ⎡a⎤ represents the

108 Chapter IV

largest integer that is not larger than a. The predicted values of s are collec-
ted in Table 4.2 (denoted as ŝ).

Second, we use the experiments to estimate how many observed layers
should be selected. We use 1000 independent experiments to estimate the
AP of each (s, k). In this way, for different k, we get estimates of how
many observed layers are enough so that the corresponding AP is no less
than 0.95. We regard these estimates as true values and also list them in
Table 4.2 (denoted by s*).

In Table 4.2, we can see that the predicted values ŝ based on the
regressed model are always an upper bound of the true values s*. If we
want to find at least one design in the true Pareto frontier, it is sufficient to
focus on the observed first 5 layers. There are only 78 designs on the
average in these layers (a saving from 1000 to 78). Also note that, if we
want to contain most or all (nine) designs in the true Pareto frontier, we
still need to explore many designs. However, this is due to the fact that
the noises are large in our example and it is not compatible with goal
softening to insist on k=9.

Table 4.2. Predicted and true values of s for Example 4.1

k s* ŝ ˆ

1

s
ii=∪

1 3 5 78
2 5 9 166
3 7 12 241
4 9 16 340
5 11 19 420
6 14 23 517
7 17 26 596
8 22 30 692
9 32 33 756

We will consider a 10-node queuing network, as shown in Fig. 4.8. In fact,
this example has already been introduced in Section III.3, but we consid-
ered only one objective function then. Now we are going to consider two
objective functions (introduction follows) here. Let us briefly review the
problem formulation. There are two classes of customers with different
arrival distributions (exponential and uniform distributions). Both classes
arrive at any of the 0–3 nodes and leave the network after finishing all
three stages of services. The routing is class dependent and is deterministic.

4.2 Example: The buffer allocation problem

L

Vector Ordinal Optimization 109

The buffer size at each node is finite and is the parameter that we can
design. We say that a buffer is full if there are as many customers as that
buffer size, not including the customer being served. Nodes 8-9 have indi-
vidual queues but share one server. This network can model a large num-
ber of real-world systems, such as manufacturing, communication, and
traffic network. We consider the problem of allocating 22 buffer units
among the 10 nodes. We use Bi to denote the buffer size at node i, Bi ≥0.
For symmetry reasons, we require

 B0=B1=B2=B3, B4=B6, B5=B7, B8, B9>0. (4.6)

Fig. 4.8. The 10-node network with priority and shared server

We can get 1001 different configurations in all. There are two objective
functions. One is the expected time to process the first 100 jobs from the
same initial state (all buffers are empty). The other is the average utility of
the buffers at all the nodes, i.e.,

9

0
/i ii

q B
=∑ , where qi is the expected

queue length at node i, 0≤i ≤9, where for Bi =0, we define the utility of that
buffer to be 1. We want to improve the throughput of the network and
improve the efficiency of all the buffers. We formulate the problem as a
two-objective minimization problem, where J1 is the first objective func-
tion above and J2=1-

9

0
/i ii

q B
=∑ .

For each design (a configuration of buffers) θ, we use 1000 independent
experiments to estimate J1(θ) and J2(θ). The experimental results are
shown in Fig. 4.9. We regard these values as true performances and define
the configurations in the observed first two layers as good enough (9

110 Chapter IV

designs in total), also marked by circles in Fig. 4.9. We want to find at
least k, 1≤k≤9, configurations in the true first two layers with high prob-
ability, α≥0.95. The question is also how many observed layers should be
selected.

Fig. 4.9. The true performance of the configurations in Example 4.2

Fig. 4.10. The observed VOPC of Example 4.2

0 10 20 30 40 50 60 70 80 90 100

200

400

600

800

1000

1200

of

 d
es

ig
ns

 in
 th

e
ob

se
rv

ed
 fi

rs
t x

 la
ye

rs

x, index of the observed layers

Vector Ordinal Optimization 111

First, we simulate each configuration once (i.e., one replication only – a
very crude estimate of the performance of the particular configuration).
We show one instance in Fig. 4.10. There are 94 observed layers, which
may be different in various experiments. The estimated VOPC type is neu-
tral. By normalization, the standard deviation of the observation noise is
0.1017 for J1 and 0.0271 for J2, and we choose 0.5>2×0.1017 as the noise
level. The corresponding coefficients in Table 4.1 are the same as those in
Example 4.1. We adjust the values of g and k accordingly, i.e.,

g' =⎣100/94×2⎦=2, k' =(10000/1001)×k≈10k, 1≤k≤9.

Substituting these values into Eq. (4.4), we can get s'=Z(k', g') and s =
⎡94/100×s'⎤. We show the predicted number of observed layers to select in
Table 4.3.

Second, we use 1000 independent experiments to estimate the AP of
each (s, k). For each k, when AP is no smaller than 0.95, we denote the
value of s as s* in Table 4.3.

Table 4.3. Predicted and true values of s for Example 4.2

k s* ŝ ˆ

1

s
ii=∪

1 1 5 32
2 2 8 44
3 2 11 95
4 3 14 147
5 4 17 197
6 5 20 240
7 6 23 268
8 8 26 279
9 9 29 286

If we want to contain at least 3 designs in the true first two layers, ac-
cording to Table 4.3, we need to explore only 95 designs on average. This
saves much of our search efforts. We can see that the predicted values of s
are always no less than the estimated values. The predicted values of ŝ
seem conservative. The reason is that the normalized noise level is 0.2034
in Example 4.2, which means that some good enough designs almost
always dominate some other designs in observation. However, the smallest
noise level in Table 4.1 is 0.5, which is more than twice as large as the
normalized. In turn, this leads to a conservative estimate of s.

Example 4.2 violates all the three assumptions: There are only 1001
designs (configurations) in total; the observation noise is not i.i.d., and

L

112 Chapter IV

does not contain uniform distribution. However, numerical results show

4.1 still give good guidance on how many observed layers should be se-
lected. When there are more objective functions, we can design similar
experiments to obtain the regressed values of the coefficients in Eq. (4.4).
In practical applications, we can use more problem information to obtain
better prediction on the number of observed layers to select (i.e., a tighter

Exercise 4.6: In Example 4.2, we introduced constraints in Eq. (4.6) for

symmetry reason. What if we relax these constraints? Can we find designs
with better performances in both objective functions? Please try to apply
VOO to solve Example 4.2 without the constraints in Eq. (4.6).

Exercise 4.7: Please think, before reading Section VIII.3, about effec-
tive ways to obtain less conservative estimate of the number of observed
layers to select, when we have the observed performance of the randomly
sampled N designs.

Box 4.1. The application procedure of VOO

Step 1: Uniformly and randomly sample N designs from Θ.
Step 2: Use a crude and computationally fast model to estimate

the m performance criteria of these N designs.
Step 3: Estimate the VOPC class and noise level. The user speci-

fies the size of good enough set, g, and the required
alignment level, k.

Step 4: Use Table 4.1 (if m=2, or similar tables generated before-
hand for general m) to calculate s=Z(g, k/VOPC class,
noise level).

Step 5: Select the observed first s layers as the selected set.
Step 6: The theory of VOO ensures that S contains at least k truly

good enough designs with probability no less than 0.95.

that the regression function (0.4) and the regressed coefficients in Table

upper bound of the true values). This will be shown in Chapter VIII Section 3.

