
Chapter III Comparison of Selection Rules

In Chapter II, we learned that the selected set, S, plays an important role in
the theory of OO. We also introduced two natural ways to determine the
set S, namely, the Blind Pick (BP) and the Horse Race (HR) method. Of
course there are also other ways possible. We have already mentioned in
Section II.2 the example of how we take inspiration from the tennis tour-
nament, where the pair wise elimination rule is used to determine the 16
surviving players (i.e., the set S) for the quarter final of the U.S. Open.
Other rules for picking S come to our mind inspired by sports tournaments,
such as the round-robin comparison imitating baseball (Jia et al. 2006a),
which will be defined formally in Section 1. It is equally intuitive that dif-
ferent selection rules will lead to different Alignment Probability, Prob
[|G∩S|≥k], all other parameters remaining the same. In other words, to
achieve the same high alignment probability, different selection rules may
require us to select different number of designs for S. After we apply OO
to find out the selected set S, which contains some good enough designs
with high probability, we still need to use the detailed model to accurately
evaluate the performance of the designs in S and finally choose the best
one. It is clear that the larger the selected set S is, the more simulation is
needed in the post selection comparison. So, it is of practical importance to
find out which selection rule requires the smallest selection set in a given
optimization problem. This selection rule will save the computational
effort of the detail simulation the most efficiently. The purpose of this
chapter is to make a careful study of the efficiency of different selection
rules in terms of computing burden and efficacy in achieving high values
of AP. For readers not interested in details and only concerned with the
practical use of OO, s/he can go directly to the general recommendation at
the end of this chapter which concludes that the HR is a generally good
selection rule in the absence of detailed analysis and the BP rule can of
course always serve as a lower bound in performance.

Since the size of the selected set is of the most practical importance, we
use the size to evaluate and compare the performance of the selection
rules. We will consider selection rule A better than B if selection rule A
requires a smaller selected set S than B to achieve the same AP, all other
parameters remaining the same. A natural question is: Is there a unique

58 Chapter III

selection rule that is better than any others? If the answer is yes, then we
only need to use this universal best selection rule. This is of course conven-
ient for practical application of OO. Unfortunately, we have not found such
a selection rule yet. Instead, each selection rule may have special advantages
in dealing with certain problems. For example, as an extreme case, Blind
Pick needs no problem information, nor any performance evaluation (not
even a rough estimate based on the crude model). However, compared with
Horse Race, BP usually requires a larger selected set to ensure the same high
AP. So, a reasonable way to evaluate the performance of different selection
rules is to classify different scenarios first, such as the problem types, noise
levels, size of good enough set, required alignment level, and the computing
budget we can use during the selection. Then we will be able to figure out
what is the best selection rule in each scenario.

We have tried the above ways to compare different selection rules. How-
ever, after we obtain all the comparison results, i.e., which selection rule is
the best in each scenario, there arises another question, that is, how can we
present these results in an easy form? Obviously, the first idea might be
using a lookup table. In other words, we list the scenarios and the corre-
sponding selection rules that have the best performance within that sce-
nario, and do this listing for all the scenarios. But there are too many
scenarios. To get a rough estimate of how long this table will be, let us
consider the following numerical example. We know there are 5 types of
OPCs, and 3 noise levels (small, middle, and large). Suppose we consider
3 computing budgets (small, middle, and large), 20 different sizes of the
good enough set (top-1%, 2%,…,20% designs), and 10 different alignment
levels (k = 1,2,…10). Then the total number of scenario would be: 5×3×3×
20×10 = 9000. Suppose we have a table with 9000 lines, and the problem
that we want to apply OO to solve fits in only one line, it would be incon-
venient to find the line that is useful. We have to find better ways to pre-
sent the comparison results.

We are fortunate to find this easy way to present the comparison results.
The idea is to use a function with a few parameters to approximate the size
of the selected set. Then giving the scenario, to which the practical prob-
lem belongs, and a selection rule, we use the function to approximate the
size of the selected subset thus required. We do this for each selection rule.
By comparing these approximated selection sizes, we then identify a pre-
dicted best selection rule in that scenario. As long as that prediction is
good, i.e., either it is one of the several truly best selection rules in that
scenario, or it is close to the truly best selection rule and the difference
between the selected sizes is not large, then this predicted best selection
rule is a truly good enough selection rule to be easily used in practice. We
found such functions for many selection rules, including the ones that have

Comparison of Selection Rules 59

already been frequently used in OO and some new ones. And we use two
examples to show how this helps to find a good enough selection rule, and
thus further save the computing budget.

The selection rules differ from each other considering how the computing
budgets are allocated among the designs, how the designs are evaluated, and
how the designs are finally selected. We should realize that there are a huge
number of different selection rules. Most of these selection rules do not have
a name yet, but they are different from the well-known rules such as BP and
HR in the above sense. To get a rough idea, suppose there are all together N
= 1000 designs, and we can evaluate these designs by at most T = 30000
simulations in total before selecting the subset. This equals to allocate these
30000 simulations to the 1000 designs. The number of all the allocation is

10001 30999

10
1 999

T N
N
+ −⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
,

which is a huge number. This example shows us two points. First, it is
impractical to list and compare all the selection rules. Second, the selection
rules we know is only a small portion of all the selection rule. So it is
important to find some general properties, say selection rules with these
properties are better (or have a large chance to be better) than others.
These properties will help us to search for better selection rules in the
future. We have found some these properties through theoretical analysis
(Jia et al. 2006a; Jia 2006) and experimental study. One of them has justi-
fied that HR is in general a good selection rule.

The rest of this chapter is organized as follows. In Section 1, we classify
the selection rules (especially the selection rules that are frequently used in
OO literature) into different classes. Under mild assumptions, we establish a
basic property of “good” selection rules. In Section 2, we use the selection
size, s, to quantify the efficiency of the selection rule, and introduce a
regression function to approximate this size for each commonly used selec-
tion rule. Through numerical experiments, we find that the comparison of
the efficiency based on the regression function is almost exactly the same as
the comparison result based on extensive simulation experiments. This justi-
fies that the regression function is a reasonable tool to compare the effi-
ciency of the selection rules. In order to show the readers how they can use
the regression function to find a good selection rule and further reduce the
selection size in practical problems, in Section 3, we consider two examples:
a real function example and a queuing network example. In Section 4, we
discuss three properties of good selection rules, which will help us to find
better selection rules in the future. We summarize the application procedure

60 Chapter III

in Section 5 and give some simple, quick and dirty rules to choose a good
selection rule without detailed calculation and analysis.

1 Classification of selection rules

Let us now have a review of how a selection rule works. First, there is a
crude model of the designs, which is computationally fast. In the extreme
case of Blind Pick, no crude model is used. From an engineering view-
point, this can also be regarded as using a crude model with infinite obser-
vation noise. So any observed order among the designs happens with equal
probability. Second, based on the rough performance estimate thus obtained,
a selection rule compares and orders the designs, and finally selects some
designs as the selected set. Because the accuracy of the crude model used in
the first step affects the size of the selected set dramatically, in the compari-
son of selection rules in this chapter, we assume the selection rules use the
same crude model. Except in BP, a crude model with infinite observation
noise is used. Note that different selection rules may use the rough perform-
ance estimate obtained through the same crude model in different ways. For
example, a selection rule may compare designs in pairs, like in the U.S.
tennis open, and regards all the designs in the quarter final as observed good
enough designs. These 16 designs may be different from the observed top-
16 designs, if selected by the Horse Race, because the observed second
design may compete with the observed best design in an early round and
fail, and thus cannot move into the quarter final. Also note that different
designs may receive a different number of observations during the selection
procedure. For example, in a season in National Basketball Association
(NBA), each team plays the same number of games. If we regard the out-
come of each game as an observation on the performances of the teams, each
team receives the same number of observations. However, in the U.S. tennis
open, if a player fails in an early round, he/she does not have the chance to
move into the next round, which means finally the player may receive a dif-
ferent number of observations. Obviously, in simulation-based optimization,
each observation of a design takes some part of the computing budget. That
means different selection rules may assign the computing budget to the
designs in different ways.

In summary, each selection rule in OO must answer two questions:

1. How to select S? – by ordering all N designs via either (a) or (b)
below and select the top-s.
(a) Using the estimated cardinal value no matter how crude it is.

Comparison of Selection Rules 61

(b) By the number of “wins” accumulated from the comparison of
the estimated cardinal values no matter how crude they are. Two
examples of the comparisons are:
(i) Comparison done pair-wisely
(ii) Comparison done globally.

2. How much computing budget is assigned to a design? – by either
(a) or (b).
(a) Predetermined and allocated once.
(b) Successive iteration after initial assignment

(i) With elimination (i.e., some design will receive no more com-
puting budget after certain iteration)

(ii) Without elimination.

Using answers to the above two questions, we consider and classify the
following selection rules that are frequently used in ordinal optimization.

• Blind pick (BP): Assumes no knowledge of the problem and uniformly

pick up s designs to make up S, i.e., (Question 1) random pick and
(Question 2) no budget assigned (predetermined).

• Horse race (HR): The numbers of independent observations allocated
to all designs are equal. By comparing the sample average, the observed
top-s designs are selected. (Question 1) (a) and (Question 2) (a).

• Round robin (RR): Every design compares with every other design
pair-wisely. In each comparison, we use only one observation (or equi-
valently “replication” in simulation language) per design to estimate the
performance. Upon we completing the comparisons, every design wins
some number of comparisons, including zero. We sort the designs by
the number of wins in decreasing order1. The first-s designs are selected.
For example, if there are four designs: θ1, θ2, θ3, and θ4. We need 3
rounds of comparisons:

Round 1: θ1 vs. θ2, θ3 vs. θ4.
Round 2: θ1 vs. θ3, θ2 vs. θ4.
Round 3: θ1 vs. θ4, θ2 vs. θ3.

Assume θ1 and θ3 win in round 1; θ1 and θ2 win in round 2; θ1 and θ2
win in round 3. Then the four designs win 3,2,1, and 0 comparisons,

1 When a tie appears, the orders of designs within a tie are randomly decided.

This assumption is also held for all the other selection rules mentioned in this
book.

62 Chapter III

respectively. The observed best design is θ1 and the worst is θ4. (Ques-
tion 1) (b)-(i) and (Question 2) (b)-(ii).

• Sequential pair-wise elimination (SPE): This is the rule used in tennis2.
Designs are initially grouped into many pairs. The winners of these pairs
are grouped into pairs again. This continues until a final winner appears.
We show one example in Fig. 3.1. Assume θ1 and θ4 win in round 1; θ1
wins in round 2. Then θ1 is the observed best design. (Question 1) (b)-(i)
and (Question 2) (b)-(i).

Fig. 3.1. One example of sequential pair-wise elimination (Jia et al. 2006a)
© 2006 Elsevier

• Optimal Computing Budget Allocation (OCBA) (Chen et al. 2000):
The idea is that we want to lavish larger computing budget on designs
that more likely turn out to be good enough and not to waste efforts on
designs that have a high likelihood of being bad. First, we randomly
sample m0 designs from Θ, and take n0 observations of each design.
Then we use a formula (Chen et al. 2000) to allocate additional ∆ com-
puting budget units to these m0 designs to perform more replications.
This procedure continues until all the computing budget is consumed. In
OCBA we fix the “breadth”3. Section VII.4 has more details on this
method. (Question 1) (a) and (Question 2) (b)-(ii).

• Breadth vs. depth (B vs. D) (Lin 2000b): The idea is to always allocate
the next ∆ computing budget units in the way that leads to a greater
marginal benefit. There are two ways to get a marginal benefit: The
breadth process, which means to sample new designs, and the depth

2 In tennis tournament, the initial pairing is actually not totally random. We

shall using total random pairing here since we assume no prior information on the
designs.

3 The “breadth” represents the number of designs explored in the optimization,
and the “depth” represents the number of computing budget units allocated to each
designs.

1 4

1 2 3 4

1

Round 1

Round 2

Comparison of Selection Rules 63

process4, which means to do more observations of the designs that have
already been sampled in order to get a better estimate of the design
performance. The “benefit” of considering both breadth and depth is to
increase the possibility of including truly good enough designs in the
selected set. In B vs. D we can change the “breadth.” (Question 1)(a)
and (Question 2)(b)-(ii).

• HR with global comparison (HR_gc): In every round, the winners
from the last round each receive one computing budget unit, and are
compared with each other based on the new observations only. The
observed best half designs win and the losers are eliminated in
successive rounds. Finally we sort the designs by the number of rounds
each design enters, from the largest to the smallest. (Question 1)(b)-(ii)
and (Question 2)(b)-(i).

• HR with no elimination (HR_ne): In round i we compare the mean
values of the observations so far, and allocate the additional ∆i com-
puting budget units to the observed best mi designs. The value of ∆i and
mi reduce by half each time. (Question 1)(a) and (Question 2)(b)-(ii).

• HR as a counterpart of round robin (HR_CRR): We allocate the
computing budget as in RR. Finally we sort the designs by the average
value of the observed data, not the number of wins. (Question 1)(a) and
(Question 2)(b)-(ii).

We summarize the different rules in Table 3.1 below.

Table 3.1. Classification of selection rules

Selection Rule How to select S? Computing budget
BP Random picking No computing budget needed
HR A a
RR b-i b-ii
SPE b-i b-i
OCBA A b-ii
B vs. D A b-ii
HR_gc b-ii b-i
HR_ne A b-ii
HR_CRR A b-ii

Comparison and analysis in Section 2 and 3 will demonstrate that HR is

in general a good selection rule, which is also a reason why we consider so

4 For this rule we use BP in the breadth process and OCBA in the depth proc-

ess. Other choices are possible and will yield different results (Lin 2000b).

64 Chapter III

many variants of the HR selection rules above (such as HR_ne, HR_gc,
and HR_CRR).

Before going into details, we show here a basic property common to all
comparisons of selection rules. Colloquially, we state it as

Seeing is believing – everything being equal (i.e., the same computing
budget allocated to each design), we should always choose the obser-
ved top-s designs as the selected set.

First we introduce some notations. We use ()ˆ
iJ θ to denote one

observation of design θi, i.e.,

() () ()()ˆ ; ,i i i iJ J w L x tθ θ θ ξ= + = , (3.1)

where wi denotes the observation noise and J(θi) is the true performance

value of design θi. We use ()ˆ
iJ θ to denote the average observed value of

the performance of design θi based on Ni independent observations
(replications), i.e.,

()()
1

1ˆ () ; ,
iN

i i j
ji

J L x t
N

θ θ ξ
=

= ∑ (3.2)

where ξj is the randomness in the j-th sample replication. To simplify the
discussion, we introduce the following assumptions:

Assumption 1: Observation noises of different designs are independently
and identically distributed, i.e., wi is i.i.d. for i=1,2,…N.
Assumption 2: We have no prior knowledge of the designs before
conducting the simulations.

Now we state formally a basic property of the optimal selection rules.
Basic Property: Under Assumptions 1 and 2 and the equal allocation of

computing budget to all designs, the selection of the observed top-s
designs (by whatever rule) leads to an alignment probability no less than
other selections on the average.

This property is intuitively reasonable and will be proved below. We
give a short illustration in a specific case first to lend insight. Assume that
there are only two designs θ1 and θ2 with true performances J(θ1) < J(θ2),
each design is observed only once, and the observation noises w1 and w2
contains i.i.d distribution. We define the truly better design θ1 as the good

Comparison of Selection Rules 65

enough design. And we can select only one design based on the observed
performances. The alignment probability is simplified to the probability
that we correctly select the better design θ1. The question is: which design
shall we select? In this case, the Basic Property says we should select the
observed better one. To see why this is correct, we compare the probability

that θ1 is observed better () ()1 2
ˆ ˆProb J Jθ θ⎡ ⎤<⎢ ⎥⎣ ⎦

 and the probability that

θ2 is observed better () ()1 2
ˆ ˆProb J Jθ θ⎡ ⎤>⎢ ⎥⎣ ⎦

. For the first probability, we

have

() () () ()

() ()
1 2 1 1 2 2

1 2 2 1

ˆ ˆProb Prob

Prob .

J J J w J w

w w J J

θ θ θ θ

θ θ

⎡ ⎤< = + < +⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
= − < −⎡ ⎤⎣ ⎦

Similarly, we can rewrite the second probability as

() () () ()1 2 1 2 2 1
ˆ ˆProb Prob .J J w w J Jθ θ θ θ⎡ ⎤> = − > −⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

Since w1 and w2 are i.i.d., w1-w2 is with zero mean and has symmetric
probability density function. Then due to the fact that J(θ2)-J(θ1)>0, it is
obvious that

() () () ()1 2 2 1 1 2 2 1Prob Probw w J J w w J Jθ θ θ θ− < − ≥ − > −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ,

which means

() () () ()1 2 1 2
ˆ ˆ ˆ ˆProb ProbJ J J Jθ θ θ θ⎡ ⎤ ⎡ ⎤< ≥ >⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (3.3)

() ()1 1 2
ˆ ˆAP =Prob J Jθ θ⎡ ⎤<⎢ ⎥⎣ ⎦

. If we do not follow the Basic Property, we

must select the observe worse design with positive probability q > 0, then
the alignment probability is

i.e., the truly better design has a larger chance to be better observed. If
we follow the Basic Property, the alignment probability would be

66 Chapter III

() () () ()

() () () ()

() () () ()

() () () () ()

2

1 1 2 1 1 2

1 1 2 1 2

1 1 2 1 2

1 2 1 2

AP

ˆ ˆ ˆ ˆProb select , +Prob select ,

ˆ ˆ ˆ ˆProb select Prob

ˆ ˆ ˆ ˆProb select Prob

ˆ ˆ ˆ ˆ1 Prob Prob

J J J J

J J J J

J J J J

q J J q J J

θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ

⎡ ⎤ ⎡ ⎤= < >⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= < <⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤+ > >⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡= − < + >⎢ ⎥ ⎢⎣ ⎦ ⎣

() () () () ()

() ()

1 2 1 2

1 2

1

ˆ ˆ ˆ ˆ1 Prob Prob

ˆ ˆProb

AP .

q J J q J J

J J

θ θ θ θ

θ θ

⎤
⎥⎦

⎡ ⎤ ⎡ ⎤≤ − < + <⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤= <⎢ ⎥⎣ ⎦

=

This means the Basic Property leads to an alignment probability no less
than other selections. This also means “to see is to believe”. When both
designs are observed N1=N2 times, since the noise of a single observation
is i.i.d. for both designs, the difference between the average observed

performance ()ˆ
iJ θ and the true performance J(θi) (i.e., () ()ˆ

i iJ Jθ θ−)
is also i.i.d. for both designs. Then we can extend the above proof to this
case straightforwardly.

Exercise 3.1: Please extend the above proof to the case when both
designs are observed more than once but equal times, i.e., N1 = N2>1.

We can use proof by contradiction to show the Basic Property in more
general cases. First, note that when there are more than two designs, Eq.
(3.3) still holds for any two designs (then the θ1 in Eq. (3.3) represents the
truly better one of the two designs). Suppose the selected set S, on the con-
trary, is not the observed top-s designs, then there must be some design θ
that is within the observed top-s, but not selected; and there must be some
other design θ ’ that is not within observed top-s, but is selected. Now we
construct another selected set S’. The only difference between S and S’ is:
θ is in S’ but θ ’ is not. Following Eq. (3.3), we know a truly better design
θ has a bigger chance to be observed good enough. So we have

Prob Prob ' .S G k S G k⎡ ∩ ≥ ⎤ ≤ ⎡ ∩ ≥ ⎤⎣ ⎦ ⎣ ⎦ (3.4)

Comparison of Selection Rules 67

Following Eq. (3.4), each time we add to the selected set a design that is
within the observed top-s and remove a design that is not, the AP does not
decrease but only increase. If we keep on doing this, eventually we can
obtain the selected set containing exact observed top-s designs whose
alignment probability is no less than Prob S G k⎡ ∩ ≥ ⎤⎣ ⎦ . This proves the
Basic Property.

Exercise 3.2: when will the inequality in Eq. (3.4) be strict, and when
not?

Astute reader might wonder: Is Assumption 1 critical to the Basic
Property? The answer is yes. We show in the following an example, in
which the observation noise is not i.i.d., and the Basic Property does not
hold any more. Suppose there are three designs, θ1, θ2, and θ3, with true
performances J(θ1)=0, J(θ2)=1, and J(θ3)=1.0001. The observation noise is
independent but contains non-identical normal distribution such that

() ()()2
1 1 1

ˆ ~ ,J N Jθ θ σ ,

() ()()2
2 2 2

ˆ ~ ,J N Jθ θ σ , and

() ()()2
3 3 3

ˆ ~ ,J N Jθ θ σ .

Let σ1 = 0.0001, σ2 = σ3=10. Then we have

[]

() () () ()

() () ()()

1

1 2 1 3

+

2 3 1

Prob is observed as the best

ˆ ˆ ˆ ˆ=Prob ,

ˆ ˆ ˆProb Prob .

J J J J

J x J x p J x dx

θ

θ θ θ θ

θ θ θ
∞

−∞

⎡ ⎤< <⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= ≥ ≥ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫

The last integration can be calculated using numerical integration.
Similarly, we can calculate the probability that θ2 or θ3 is observed as the
best. If we calculate the probability that each design is observed as the
best, then we have

Prob[θ1 is observed as the best]≈0.2914,
Prob[θ2 is observed as the best]≈0.3543,
Prob[θ3 is observed as the best]≈0.3543.

68 Chapter III

We can similarly calculate
[]

() () () () () ()

() () ()()
() () ()()

1

2 1 3 3 1 2

+

2 3 1

+

3 1

Prob is observed as the middle

ˆ ˆ ˆ ˆ ˆ ˆ=Prob Prob

ˆ ˆ ˆProb Prob

ˆ ˆ ˆProb Prob .

J J J J J J

J x J x p J x dx

J x J x p J x dx

θ

θ θ θ θ θ θ

θ θ θ

θ θ θ

∞

−∞

∞

−∞

⎡ ⎤ ⎡ ⎤< < + < <⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= < > =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ > < =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫

∫

The numerical results are

Prob[θ1 is observed as the middle]≈0.4968,
Prob[θ2 is observed as the middle]≈0.2516,
Prob[θ3 is observed as the middle]≈0.2516.

In this case, if we follow the Basic Property and select the observed best
design each time, then the alignment probability is 0.2914. However, if we

based on Assumption 3 as we proceed below, if not mentioned explicitly:

Assumption 3. No matter what measurement and comparison method used,
in every selection rule, the observed top-|S| designs (under that specific
measurement and comparison method) will be finally selected to compose
set S.

We shall now compare selection rules in the following way:

5However, we should not take this counter example too seriously since the

parameters used are most extreme. Almost all the analysis associated with OO in
this book are very conservative in nature. Empirically in numerous applications,
we and others have found that OO tools work well despite theoretical conditions
being violated or impossible to verify. As we shall see later, in selection rules such
as OCBA or B vs. D, assumption 1 is not satisfied. Noises are independent but not
identical. Yet, in no cases, the analysis and prediction of this chapter did not work
empirically.

select the observed middle design each time, then the alignment Probability
is 0.4968. This means the Basic Property leads to a smaller alignment proba-
bility. This constitutes a counterexample if Assumption 1 is relaxed.5

Based on the Basic Property, in the following, our discussion will be

Comparison of Selection Rules 69

Everything being equal (i.e., the same optimization problem, observation
noise, computing budget, G, k, and α), which selection rule γ can use the
smallest S to make Prob G S k γ α⎡ ∩ ≥ ⎤ ≥⎣ ⎦ ?

2 Quantify the efficiency of selection rules

From the viewpoint of application, we may see the contribution of OO in
this way: After screening (with or without iteration) using a crude model, a
user is most interested in which of the subset of designs thus explored s/he
should lavish her/his attention on in order to obtain a truly good enough
design with sufficiently high probability. This selected subset denoted as S
ideally should be as small as possible to minimize search and computing
efforts. As we mentioned at the beginning of this chapter, we need to
figure out what factors affect the size of the selected set, and by classifying
all the scenarios, we compare the selection rules in each scenario and list
the best for application. For a given high probability, α, the required mini-
mum size for S is a function of the following parameters:

• |G|=g – the size of the good enough set, e.g., the top-n%
• k – the number of members of G guaranteed to be contained in S
• Noise/Error level, σ – in the estimation of the system performance using

the crude model. We assume such noise is i.i.d. and can be roughly
characterized as small, medium, and large with respect to the perfor-
mance values being estimated. The case of correlated noise/error can

VII.3.
• Problem Class, C – clearly if we are dealing with a problem contains

many good enough solutions vs. a needle in a haystack type of problem,
the required size of S can be very different. We express this notion in the
form of an Ordered Performance Curve (OPC) which is by definition a
monotonically nondecreasing curve that plots true performance value

of OPC are possible as illustrated in Fig. 3.2.
• Computing budget, T – the total number of simulations that can be used

during the selection.

against all the designs ordered from the best to the worst (as defined in

also be handled (Deng et al. 1992), which will be discussed in Section

Chapter II and (Lau and Ho 1997; Ho et al. 1992; Ho 1999)). Five types

70 Chapter III

Fig. 3.2. Examples of ordered performance curves: flat, neutral, steep, and general

These factors can help distinguish a lot of different scenarios. As
aforementioned, it is inconvenient for practitioners to use a very long
lookup table to determine which selection rule is the best for a specific
problem. So we need a function to approximate the size of the selected
subset for each selection rule and in each scenario. In Section II.5, we
introduced a regression function as follows:

 () 31 2

4, ZZ ZZ k g e k g Z= + , (3.5)

where Z1, Z2, Z3, Z4 are constants depending on the OPC class, the noise
level, g, and k values. When using the Horse Race selection rule and each
design takes only one observation, Eq. (3.5) approximates the size of the
selected subset pretty well. To test whether Eq. (3.5) can also be used to
approximate the size of the selected subset for other selection rules and in
other scenarios, we compare the true and the approximated values in each of
the 9000 scenarios, for each selection rule. The detailed parameter settings
of the experiments will be introduced in section 2.1. To get the true value of
the size of the selected set, the idea is similar to that in Section II.5: we fix
the true performance of each design, which then represents one of the five
OPCs. Then we use a selection rule γ to determine which designs to select.
Each time when the selection rule requires observing the performance of a
design θ, we randomly generate the observation noise w and use J(θ)+w as
an observed performance. If the selection rule assigns different numbers of
replications to different designs, then the noises contained in observed per-

Comparison of Selection Rules 71

formances will be different. All the available computing budgets are util-
ized in the way that is specified by the selection rule, and finally the selec-

Fig. 3.3. The procedure to quantify the true performance of a selection rule

tion rule obtains an order of all the designs according to the observed
performances. Then we check whether there are at least k truly top-g designs

Specify the OPC type C, computing budget
T, noise level , and selection rule .

Use to allocate the computing budget,
compare the designs based on observation,

and finally obtain an estimated order among
all the designs.

Check whether there are at least k truly top-g
designs in the top-s designs estimated by

selection rule .

Repeat the above two steps 1000 times to
estimate Prob[|G S| k / C, T, ,] for all the

(g,s,k) pairs that are of interest.

For each (g,k) pair, record the minimal value
of s s.t. Prob[|G S| k / C, T, ,] 0.95. This

quantifies the performance of in this
scenario. (A scenario is determined by C, T,

s, g, and k.)

Repeat the above procedure for all the other
scenarios and selection rule .

contained in the observed top-s designs as selected by the selection

72 Chapter III

rule used. We check for each possible (g,s,k) values. Then we know whether

1000 experiments) for each (g,s,k) values in that scenario. For each (g,k)
pair, we record the minimal value of “s” s.t. the corresponding AP is no
less than 0.95. This s is regarded as the true performance of selection rule γ
in that scenario. The above procedure to obtain the true values of s in
different scenarios is summarized in Fig. 3.3.

Giving these required values of s in different scenarios, we now want to
find an easy way to represent these values instead of using a lookup table
with 9000 rows. As aforementioned, we use Eq. (3.5) as the easy way to
approximate these values of s in different scenarios. For all the (g,s,k) val-
ues with high enough AP, we regress the values of the coefficients in Eq.
(3.5). Then for each (g,k) pair, the regressed value of s based on Eq. (3.5)
is regarded as the approximate required value. We find this approximation
is good in all the scenarios.

To get a rough idea, we show the examples of four selection rules (HR,
OCBA, SPE, HR_ne) in the scenario of large computing budget (T=30000),

(3.5). The solid lines represent the true values. The dashed lines approxi-
mate the solid lines well (in the trend and in the subset sizes of integer val-
ues of k). We list the maximal absolute difference between the solid and
dashed lines in Table 3.2.

Table 3.2. The maximal absolute approximation error of required subset sizes
(unit: number of designs) (Jia et al. 2006a) © 2006 Elsevier

g HR OCBA SPE HR_ne
10 3.86 4.1 7.0 3.5
20 3.9 4.6 3.8 5.5
30 5.0 5.7 6.2 4.3
40 3.9 4.0 6.0 4.9

Since we see that the regression function in Eq. (3.5) is a good approxi-
mation to the true values of the selected subset size for each selection rule
and in each scenario, we need to obtain the values of the coefficients in
Eq. (3.5) for all the selection rules and for all the scenarios. Then giving a
scenario, we can use Eq. (3.5) to predict which selection rule requires the

6 The regressed subset size may not be integer, so the difference between the

solid and dashed lines may not be integer. In application, we can just use the
smallest integer that is no smaller than the regressed value as the subset size.

a selection rule succeeds or fails in this experiment. We do 1000 expe-
riments and then obtain the probability to succeed (as percent of the

In Fig. 3.4, the dashed lines represent the regressed values based on Eq.
neutral OPC, and middle noise level (σ = 0.5) in Fig. 3.4.

Comparison of Selection Rules 73

smallest subset to select. In Section 2.1, we introduce the parameter set-
tings of all the scenarios in details. In Section 2.2, we discuss how we
should compare selection rules using Eq. (3.5).

Fig. 3.4. The regressed values of Eq. (3.5) are good approximations of the true
values of s. (Scenario: large computing budget, neutral OPC, and middle noise
level) (subfigure (b) is from (Jia et al. 2006a) © 2006 Elsevier)

2.1 Parameter settings in experiments for regression functions

This subsection might be interesting only to readers who want to repeat
our experiments. Other readers may want to skip this subsection and go
directly to Section 2.2 and see how they can compare selection rules based
on the regression functions.

In our experiments, we use the following parameter settings.

• |Θ|=N=1000;
• g∈{10,20,…200};
• s∈{10,20,…200};
• k∈{1,2,…10};

k

s

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

g=10

g=20

g=30

g=40

(a)HR

s
10
20
30
40
50
60
70
80
90

k
1 2 3 4 5 6 7 8 9 10

(b)OCBA

g=10

g=20

g=30

g=40

g=10 g=20

g=30

g=40

g=10

g=20

g=30

g=40

s

10
20
30
40
50
60
70
80
90

100

100
110

k
1 2 3 4 5 6 7 8 9 10

(c)SPE
k

1 2 3 4 5 6 7 8 9 10

(d)HR_ne

s

10

20

30

40

50

60

70

80

90

74 Chapter III

• noise level: Assume the observation noise is independently and
identically distributed (i.i.d.) and has normal distribution N(0,σ2), where
σ ∈{0.25, 0.5, 1.5} for small, middle, and large noises respectively;

• Problem class: 5 OPC classes distinguished by different performance
density functions.
1. Flat: J(θ)=θ10.
2. U-Shaped: J(θ)=0.5sin(π(θ-0.5))+0.5.
3. Neutral: J(θ)=θ.
4. Bell: J(θ)=0.5-0.5(2θ -1)2, 0≤θ ≤0.5; 0.5+0.5(2θ -1)2, 0.5≤θ ≤1.
5. Steep: J(θ)=1-(θ -1)10, all (1)-(5) are defined on θ ∈[0,1].

The OPCs and the corresponding performance densities are shown in

Fig. 3.5.

Fig. 3.5. Five types of OPCs and corresponding performance densities (Jia et al.
2006a) © 2006 Elsevier

• Computing budget: T∈{500,1000,30000} for small, middle, and large
computing budgets.

• “breadth” – the number of designs that can be explored by a selection
rule. There is a close relationship between the “breadth” and the proba-
bility to find a good enough design. In one extreme case, a selection rule
can maximize the “breadth” by observing each design only once. In this

0 1

1

0 1

1

0

1

1 0

1

1 0

1

1

J
0 1

J
0 1

J
0 1

J
0 1

J
0 1

Normalized OPCs

Normalized Performance Density Functions
Flat U-Shaped Neutral Bell Steep

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Comparison of Selection Rules 75

selection rule may not be able to finally select these truly good enough
designs. So a good selection rule should have a reasonable “breadth”
and can adaptively change the “breadth” when the computing budget
changes. The selection rules considered in this chapter require different
computing budgets to explore the same number of designs (as shown in
Table 3.3, where m0 is the initial “breadth” and n0 is the initial “depth”
for each of these n0 initial sampled designs. These formulas are obtained
based on the definition of these selection rules in Section 1.). So when
fixing the computing budget, the “breadth” of these selection rules are
also different (as shown in Table 3.4).

• Other parameters: In OCBA and B vs. D, we try different values for n0
and δ and find the following values works the best in the experiments,
i.e., set n0 = 2 and δ = 100 when T = 30000; n0 = 1 and δ = 10 when T =
1000.

• For the combination of parameter settings above, we use 1000
independent experiments to estimate the alignment probability, which is
expected to meet α ≥ 0.95.

Table 3.3. Computing budget units required by different selection rules to explore
N designs (Jia et al. 2006a) © 2006 Elsevier

Selection rule Computing budget units
BP 0
HR N
OCBA ≥n0×m0

7
B vs. D ≥n0×m0
SPE 2N-2
HR_gc 2N-2
HR_ne 2N-2
RR N2-N
HR_CRR N2-N

7 m0 and n0 in OCBA and B vs. D are parameters controlled by the user. These

two selection rules require n0×m0 computing budget units to roughly evaluate the
m0 randomly sampled designs at the beginning of the optimization, so the total
required computing budget is at least n0×m0.

way, the selection rule has a large chance to sample some truly good
enough designs. However, since the observation noise is large, the

76 Chapter III

Table 3.4. The number of designs explored (“breadth”) in different selection rules
(Jia et al. 2006a) © 2006 Elsevier

 Breadth Selection rule
T=30000 T=1000 T=500

BP 1000 1000 500
HR 1000 1000 500
OCBA 10008 500 400
B vs. D ≥109 ≥10 ≥10
SPE 1000 501 251
HR_gc 1000 501 251
HR_ne 1000 501 251
RR 173 32 22
HR_CRR 173 32 22

Together with the blind pick selection rule, we tabulate all coefficients
of the regression functions of different selection rules, as shown in Appen-
dix C. It should be noted that since the subset sizes calculated by the coef-
ficients above are used to approximate the experimental data, the values of
g, s, and k should not exceed the above parameter settings of g, s, and k,
which are used in the experiments, and the corresponding true AP
Prob[|G∩S|≥k] should be no smaller than 0.95. To be specific, the appro-

of k and g should let the fraction k/g be small10,11. On the occasions where
the noise factor is characterized to be within these predetermined levels
(i.e., σ takes other values than 0.25, 0.5, and 1.0), proper interpolation

8 Since the “breadth” of OCBA is fixed and set by the user, we tried different

values. The values shown here are the best ones found in the experiments.
9 B vs. D automatically changes the “breadth” based on the observed perform-

ance. So we only show the lower bound here, which is m0 the initial number of
designs sampled from the design space. The value of m0 is set by the user. So we
tried different values of m0, and showed the best ones here.

10 For B vs. D we have more constraints on the working range. When T=30000,
the working range should meet 1≤k≤5 and k/g≤1/15. When T=1000, the working
range should meet 1≤k≤3 and k/g≤1/25. When T=500, the working range should
meet 1≤k≤2 and k/g≤1/35.

11 For RR and HR_CRR, we only list the regression values in the case of large
computing budget (T=30000). In this case, RR and HR_CRR can explore 173 de-
signs, and still have many choices of selected subset sizes. But when T=1000 and
500, the two selection rules can explore only 32 and 22 designs accordingly. To
cover 1 or 2 of top-100 designs with probability no smaller than 0.95, we usually
need to select all the explored designs, the number of which are 32 and 22, respec-
tively.

ximation has a working range of 20≤g≤200, s=Z(•/•)<180, and the values

Comparison of Selection Rules 77

of the subset sizes will suffice. When we need to predict the size of the se-
lected subset in a scenario for a selection rule, we first find the table of that
scenario and for that selection rule in Appendix C, then obtain the coeffi-
cients for the variables in Eq. (3.5). Then we use Eq. (3.5) to predict the
value of s. Based on this prediction, we can compare different selection
rules and find the best one.

2.2 Comparison of selection rules

Using these regressed values in the last subsection, we can easily predict
the most efficient selection rule (among all selection rules of concern) in
each scenario. As we will show by numerical examples in this subsection,
the predicted best selection rule is usually one of the top-n selection rules.
In the following, we consider one scenario as an example: large computing
budget, middle noise level, and neutral OPC class. First, we use experi-
ments to compare HR, OCBA, and B vs. D, the three selection rules that
are frequently used in OO literature. As mentioned at the beginning of this
section just prior to Fig. 3.3, we regard the size of the selected subset ob-
tained by the experiments as true values. So we will regard the comparison
result based on the experimental results as the true result. This is shown in
Fig. 3.6 and explained below.

Fig. 3.6 shows in each (g, k) values, which selection rule is the best. Let
us take a closer look at this figure, and discuss whether these comparison
results are reasonable. First, the squares appear where the good enough set
and the required alignment level k are small. When the good enough set
is defined as the best design, the alignment probability Prob[|G∩S|≥k]
reduces to Prob[the observed best is the truly best], which is also known as
the probability of correct selection (PCS) in OCBA. OCBA is developed
to improve this probability. B vs. D is developed to improve Prob[the
observed best design is truly good enough], which is close to PCS.
Previous results in (Chen et al. 2000; Lin 2000b) also show that OCBA
and B vs. D outperform HR in these cases.

Exploration, i.e., breadth, is thus more important than exploitation, i.e.,
depth. HR is developed to explore as many designs as possible, which is just
the best choice in these cases. OCBA places emphasis on ensuring the
observed best is the truly best, but does not pay attention to cover good
enough designs. B vs. D takes both exploration and exploitation into
consideration and tries to find a good balance. However B vs. D usually
explores fewer designs

Second, the black points appear where the good enough set is small, but
k is large. To cover many good enough designs in the finally selected
subset, we should make sure to explore a large number of good designs.

78 Chapter III

Fig. 3.6. Comparison of HR, OCBA, and B vs. D under large computing budget,
middle noise level, and neutral OPC class12 (Jia et al. 2006a) © 2006 Elsevier

than HR, which does not make any additional effort in exploitation except
for equally allocating computing budget units. So it is also reasonable that
HR outperform OCBA and B vs. D in these cases.

Third, the crosses appear where the good enough set and the required

Fourth, the triangles appear where the good enough set is large and the
required alignment level is small. These are easy cases and little effort in

12 “the best” means this selection rule requires the smallest selected subset to

achieve the same high AP in the same scenario. Again the experiment mentioned
is the one associated with Fig. 3.3 and the text describing it.

alignment level are both of middle size/value. Both exploration and exploi-
tation are important, and a good balance is needed. HR pays little attention
to do the balance. It is difficult for B vs. D to outperform OCBA with a
well-tuned “breadth” (Lin 2000b). This is why OCBA outperforms HR and
B vs. D in many of these cases. Since the scenario in Fig. 3.6 has a large
computing budget, even in HR each design obtains some exploitation (depth).
So HR also performs best in some of these cases (represented by circles).

k

g

0 1 2 3 4 5 6 7 8 9 10

50

100

150

200

HR is the best
OCBA is the best
HR and OCBA are better
OCBA and B vs. D are better
HR, OCBA, and B vs. D are equal

Comparison of Selection Rules 79

balancing exploration and exploitation is needed. So HR, OCBA, and B vs.
D require the same subset sizes in these cases.

Following the above analysis, we can summarize a couple of simple
rules to choose a good selection rule among the three most frequently
used selection rules in OO literature. For instance, in Fig. 3.6, a rule of
thumb is: choose HR when the good enough set is small and the required
alignment level is high; and choose OCBA in all other cases. These rules
are also listed in the end of Section 5.

Now we predict the size of the selected set of these three selection rules
using Eq. (3.5) together with the regressed value in Table C.20, C.21, and
C.22 in Appendix C. By comparing these predicted values, we predict
which selection rule is the best for each (g,k) values, as shown in Fig. 3.7.

Fig. 3.7. Comparison of HR, OCBA, and B vs. D using regressed values under
large computing budget, middle noise level, and neutral OPC type (Jia et al.
2006a) © 2006 Elsevier

0 1 2 3 4 5 6 7 8 9 10

k

50

100

150

200

HR is predicted as the best
OCBA is predicted as the best

HR and OCBA are predicted as better

OCBA and B vs. D are predicted as better
HR, OCBA, and B vs. D are predicted as equal

B vs. D is predicted as the best

HR and B vs. D are predicted as better

Wrong prediction

80 Chapter III

Note that in all (g,k) combinations, both Fig. 3.6 and Fig. 3.7 recom-
mend a best selection rule. For a (g,k), if the recommended selection

corresponding case by a big circle. For example, in the bottom right of the
figure, some points are marked. The reason is that the corresponding
alignment probabilities are smaller than 0.95, as shown in Fig. 3.6. Note

once the computing budget to allocate (T), the noise level (σ), the OPC
class, the size of good enough set (g), and the required alignment level (k)
are specified. To show how this predication helps to further reduce the size
of the selected set, we will use two examples in the next section as
demonstration.

3 Examples of search reduction

By using selection rules, OO usually can achieve one order of magnitude
or more reduction in search. We demonstrate in this section how to obtain
further search reduction by selecting a good selection rule. We use Eq.
(3.5) together with the regressed values in Appendix C to predict which
selection rule is the best in a given problem. In Section 2, to obtain the
regressed values, we assume i.i.d. noises with normal distribution, and
explore many combinations of (g,k). However, these results are often uni-
versally applicable to problems of a wide range similar to the research in
applications of OO previously demonstrated (Ganz and Wang 1994; Xie
1994; Wieselthier et al. 1995; Yang et al. 1997; Cassandras et al. 1998;
Guan et al. 2001; Hsieh et al. 2001). We use two examples where either
such assumptions are clearly violated or no knowledge concerning assump-
tions of the problem are available. In the first example, we test a function
optimization problem, and show how to use an approximate model to
achieve search reduction. In the second example, we test a practical manu-
facturing queuing network, and use the regressed values to compare HR,
OCBA, and B vs. D.

We consider again the example used in Section II.6, which shows how to
apply our results when the accurate model is deterministic but complex.

rule(s) in Fig. 3.7 is a subset of the ones recommended in Fig. 3.6, we
say Fig. 3.7 gives a right recommendation; otherwise, we mark the

when the fraction k/g is small, Fig. 3.7 always gives right recom-
mendations. This makes an easy way to choose a good selection rule

3.1 Example: Picking with an approximate model

that in the aforementioned working range of 20≤g≤200, s=Z(•/•)<180, and

Comparison of Selection Rules 81

We briefly review the problem formulation first. Consider a function de-
fined on the range Θ=[0,1]

() ()1 2 3sin 2J a a aθ πρθ θ= + + , (3.6)

where a1 = 3, a2 = 5, and a3 = 2. We set ρ = 500. So there are five hundred
cycles in the range [0, 1]. The true model is deterministic, but rather
complex considering relative and absolute minima. To get the exact model
of function J and its minima, we need extensive samples of θ∈Θ, which
we pretend to be costly. Instead, we find the trend for J is basically
increasing, and then adopt a crude model

()ˆ 5J θ θ= . (3.7)

This is the linear part of function J. We regard the error between the true
and crude models as noise, i.e.,

() ()ˆ noiseJ Jθ θ= + . (3.8)

Assume that we have no prior knowledge on the noise, and that the noise
has i.i.d. normal distribution N(0,σ2). By generating 1000 uniform samples
of θ from [0, 1]

ΘN={θ1,θ2,…,θ1000},

we can estimate the standard deviation σ by

() ()()2 ˆvar
i N i iJ Jθσ θ θ∈Θ= −

after adjusting for mean values.

We have totally 1000 computing budget units to allocate, i.e., we can
take one observation per design in ΘN on the average. HR will equally
allocate the computing budgets to each design in this way. Other selection
rules are different. In the following, we use the regressed values to esti-
mate the minimal subset sizes of different selection rules. Note that the
crude model in Eq. (3.7) is linear, so we choose neutral OPC class. After
taking one observation of each design θi in, we find σ = 0.5 is a good esti-
mate of the noise level. We try to cover at least k designs in the true top-50

82 Chapter III

ones in ΘN, k =1,2,…10, with alignment probability no smaller than 0.95.
Using Eq. (3.5) together with the regressed values in Table C.20 in Ap-
pendix C, we can estimate the minimal subset size of each selection rule,
ŝ . Note that when evaluating designs, the selection rules use the crude
model, and the true top-50 designs are defined by the complex model. To
check whether ŝ is a good approximate of the true value, we use experi-
ments to test the true value, denoted as s. For a fixed value of s, we take
1000 independent samples of ΘN to estimate the probability (the ratio of
these 1000 experiments) that there are at least k truly top-50 designs in ΘN
contained in the observed top-s designs. Then we regard the minimal value
of s to make AP≥0.95 as the true value. We compare the estimated value ŝ
with the true value s of each selection rule in Table 3.5.

Table 3.5. Estimated subset size of different selection rules in Example 3.1 (Jia et
al. 2006a) © 2006 Elsevier

HR OCBA B vs. D SPE HR_gc HR_ne k
ŝ s ŝ s ŝ s ŝ s ŝ s ŝ s

1 18 19 15 12 14 10 17 12 14 12 13 12
2 28 21 23 18 54 17 28 18 22 17 18 19
3 38 25 32 23 159 29 41 24 31 22 24 23
4 47 32 42 28 54 30 40 27 32 28
5 56 36 52 33 68 37 51 32 41 33
6 65 39 63 38 83 43 61 37 50 38
7 74 44 74 44 98 51 73 41 61 43
8 82 48 86 48 113 58 84 45 72 48
9 90 53 98 52 129 70 96 51 83 52
10 98 56 110 58 145 81 109 56 96 58

For B vs. D when we require to cover more than 4 top-50 designs, both
the predicted subset size via the regression model and the true subset size
exceed 200. So we do not list those corresponding sizes in Table 3.5. From
Table 3.5 we can see that the estimated subset sizes are usually no smaller
than the true sizes. This shows the conservative nature of the estimate.
When the required alignment level k is specified, by comparing the
estimated subset sizes, we can find the best among the selection rules.
In Table 3.5, we find that HR_ne has the smallest estimated subset size
among all the selection rules of interest for k=1,2,…10. So HR_ne is
recommended in these cases. We can also sort the selection rules by the
true subset sizes s in Table 3.5, from the smallest to the largest. We show
the true order and the true AP of HR_ne among the selection rules for
different k in Table 3.6.

Comparison of Selection Rules 83

Table 3.6. The true order and AP of HR_ne (Jia et al. 2006a) © 2006 Elsevier

k True order True AP
1 2 0.961
2 5 0.946
3 2 0.959
4 2 0.976
5 2 0.988
6 2 0.998
7 2 0.999
8 2 1.000
9 2 1.000
10 3 1.000

We compare 6 selection rules in this example. HR_ne is the predicted
best one for k = 1, 2,…,10. From Table 3.6 we can see that this prediction
is good, because HR_ne is within the top-2 selection rules in most k
values, with the exception of k = 2 and 10. We analyze the two cases with
more details. When k = 2, HR_ne is the 5th best selection rule. Please note,
in that case, the true best subset size is 17, which is achieved by B vs. D
and HR_gc. The subset size of HR_ne is 19, which is very close to 17.
When k=10, HR_ne is the 3rd best selection rule, with a true subset size of
58. The true best subset size in this case is 56, which is achieved by HR

We can also test HR_ne from another aspect. Assume we take the
recommendation, choose HR_ne as the selection rule, and use the
regressed subset sizes accordingly for each value of k. We use 1000
experiments to estimate the true alignment probability (AP) that the
selected subset of designs can cover at least k top-50 designs. The results
are also shown in Table 3.6. From Table 3.6, we can see that the alignment
probabilities are higher than the required value, 0.95, in most cases.
There is only one exception, k = 2, in which AP is 0.946, very close to the
required value 0.95. This example shows that the regression function can
give conservative estimate of subset size and our method performs well
in comparing selection rules. This is useful in practice. First we use the
regressed value to estimate the subset sizes of different selection rules and
find the best one. Using this best rule, we can obtain a subset of designs,
which contains at least k true good enough designs with high probability.
This often leads to a search reduction of at least one order of magnitude.
As shown in this example, when the true model is complex, we can use a
crude one in subset selections. Based on the crude model, using our
method, we can recommend HR_ne as a good selection rule, which often
is a truly good selection rule.

and HR_gc. The two sizes are close to each other. Our method recom-
mends HR_ne, which is a truly good selection rule in this case.

84 Chapter III

Exercise 3.3: Using the above method, we can easily find a good selec-
tion rule for a given problem. After we determine which selection rule to
use, we can use the regressed values in Appendix C to calculate the size of
the selected set for that selection rule. In this example, the estimated sizes
of the selected set of HR_ne are shown in Table 3.5. However, when we
take a close look at Table 3.5, we find the estimate ŝ sometimes is too
conservative from the true value s. How can we improve this estimate?
[Hint: Section VIII.3 introduces a way to improve this estimate.]

We consider a 10-node network as shown in Fig. 3.8. Such a network
could be the model for a large number of real-world systems, such as a
manufacturing system, a communication network, or a traffic network. For
details about the background of this example, please refer to (Chen and Ho
1995; Patsis et al. 1997). We will test whether our method can recommend

Fig. 3.8. 10-node network with priority and shared server (Jia et al. 2006a) © 2006
Elsevier

good selection rules on this practical model. There are two classes of cus-
tomers with different inter-arrival distributions but having the same service
requirement. We use c1 and c2 to denote the two classes of of customers.
Their inter-arrival times are with uniform and exponential distributions
respectively, i.e., c1: U[2, 18], c2: Exp(0.12). The 10-node network repre-
sents a connected three service stages. Node 0-3 denotes the first stage,

3.2 Example: A buffer resource allocation problem

Comparison of Selection Rules 85

where customers enter the system. Node 4-7 denotes the second stage,
where customers from different classes are served separately. Node 8-9
denotes the last stage, where customers leave the system after the service
completes. The service time is with uniform distribution at node 0-7, i.e.,
U[1,7], and is with exponential distribution with rate 1.0 at node 8 and 9,
i.e., Exp(1). All the nodes from 0 to 7 have their own servers, while node 8
and 9 share one server. Each node has a buffer with size Bi, I = 0,1,…9,
(not including the one being served). It is the allocation of buffer size that
makes this problem interesting. A buffer is said to be full if the queue

customer, this customer cannot leave and this server is idle and blocked.
When two nodes are blocked by the same node in downstream, “first
blocked, first served” is applied.

The two classes of customers have different priorities.

1. In queue of node 0-3, c1 customers jump before c2 customers. If a c1

customer arrives when a c2 customer is right in the process of being
served, this service is allowed to be completed.

2. At node 8, when the queue length is greater than one, a c1 customer
can be served. If a c2 from node 9 is in the process of being served
while the queue length at node 8 becomes greater than one, the
service to c2 will be interrupted to allow high priority (c1 customer).

For symmetric reason, we set the following constraints on buffer sizes:

B0=B1=B2=B3
B4=B6
B5=B7

B8≥1, B9≥1.

We consider the problem of allocating 22 buffer units. There are totally

1001 different configurations. We want to find one configuration that can
minimize the expected processing time for the first 100 customers,
assuming there are no customers in the network initially.

For each of the 1001 configurations, we do 200 experiments and use the
mean value to estimate the processing time for the first 100 customers. Al-
though 200 experiments are not enough to discriminate the performance of
different configurations exactly, the estimated top-100 designs are much more
accurate than based on only one observation per design. We assume that
there are totally 1001 computing budget units to allocate in the following

length (not including the one being served) equals to the buffer size. If
the buffer in the downstream is full when one node finishes serving one

86 Chapter III

experiments, as what we have mentioned above. So we sort the configura-
tions using the estimated value and regard this as the true order.

We want to find at least k of top-g designs (e.g., g = 100, k = 1,2,…10)
with high probability (e.g., α ≥ 0.95). Because HR, OCBA, and B vs. D

we have totally 1001 observations. Using the regressed values, we can esti-
mate the subset sizes for each selection rule, ŝ . For each selection rule, we
use 1000 experiments to estimate the true subset sizes, s, as we did in
Section 2. We show the two groups of subset sizes in Table 3.7.

Table 3.7. Estimated and true subset sizes for Example 3.2 (Jia et al. 2006a)
© 2006 Elsevier

HR OCBA B vs. D k
ŝ s

ŝ s

ŝ s

1 11 7 11 2 9 1
2 16 11 14 3 18 3
3 21 14 17 5 41 16
4 25 18 20 7
5 30 22 24 10
6 34 25 28 13
7 38 28 32 16
8 42 32 36 19
9 46 35 40 23
10 50 39 45 26

When we use B vs. D to cover at least k(k≥4) top-100 designs with a
probability no smaller than 0.95, the true subset sizes(s) should be no
greater than 200. So we do not list the values in Table 3.7. Recall also that
the working range of the regression function in this case (T = 1000, middle
noise level and B vs. D) is 1≤k≤3 and k/g≤1/25. So we only show the
predicted subset sizes ŝ and the true sizes s when k = 1, 2, and 3 for B vs.
D. We also use 1000 replications to test the alignment probability for
the estimated subset sizes of different selection rules, which we show in
Table 3.8, regard as the true APs.

In Table 3.7, the estimated subset sizes ŝ are usually greater than the true
values s. In Table 3.8, the true alignment probabilities are always no smaller
than the required value 0.95. This indicates that the estimated subset sizes

are frequently used in ordinal optimization, we focus on comparing the
three selection rules in this example. Since we have little knowledge of
the performance of the network, we use neutral OPC class to approximate
the true OPC of this system. From preliminary experiments, we find that 0.5
is a good estimate of noise level after adjusting for mean values. Assume that

Comparison of Selection Rules 87

are conservative and close to true values. We also list the predicted and truly
best selection rule(s) under different k values, as is shown in Table 3.9.

Table 3.8. True alignment probability when using estimated subset size (Jia et al.
2006a) © 2006 Elsevier

k HR OCBA B vs. D
1 0.994 1.000 0.998
2 0.999 1.000 0.993
3 0.999 1.000 0.975
4 0.999 1.000
5 0.997 1.000
6 0.999 0.999
7 0.999 0.999
8 0.999 1.000
9 0.999 0.999
10 0.999 1.000

Table 3.9. True and predicted best selection rules for different k (Jia et al. 2006a)
© 2006 Elsevier

k Estimated best Truly best
1 B vs. D B vs. D
2 OCBA OCBA and B vs. D
3 OCBA OCBA
4 OCBA OCBA
5 OCBA OCBA
6 OCBA OCBA
7 OCBA OCBA
8 OCBA OCBA
9 OCBA OCBA
10 OCBA OCBA

In Table 3.9, the predicted best selection rules are always a subset of the
truly best ones. Thus, we can use the regressed value to predict what the
best selection rule is. The recommended selection rule is truly the best.

Although our regressed values are obtained under the assumption of
i.i.d. noise with normal distribution, it works well in other settings. For
example, in Example 3.1 we regard the deterministic but complex error
between the true model and the crude mode as observation noise. In
Example 3.2, we do not know the true OPC type of the system and use
neutral class as an approximate. From more experiments, we find the
observation noise for different designs are not independently and identi-
cally distributed. However, numerical results have shown that our predic-
tion works well (Jia et al. 2004).

88 Chapter III

Exercise 3.4: Are the symmetric constraints on the buffer size
reasonable? If we remove the symmetric constraints on the buffer size, can
we find a better solution?

4 Some properties of good selection rules

In Section 2 and 3, we have developed a method to predict the best
selection rule among the nine considered in this chapter. However, as
mentioned at the beginning of this chapter, there are a huge number of
selection rules. The ones we discussed so far are only a small portion of all
the possible selection rules. Understanding the method presented in the
previous two sections can suffice the current practical application. It may
also interest some readers if we can discover some general properties of
good selection rules. These rules can then serve as a guideline for us to
look for better selection rules in the future. In this section, we discuss three
such properties, namely, 1) without elimination, 2) global comparison,
and 3) using mean value of observations as the estimate of design
performance. (The three properties will be explained in details later in this
section.) We use experiments to show that a selection rule with property 1)
is no worse than others and actually is strictly better in 81% of all the
tested scenarios; a selection rule with property 2) is no worse than others
and actually is strictly better in 71% of all the tested scenarios; a selection
rule with property 3) is no worse than others and actually is strictly better
in 39% of all the tested scenarios. For those who want to repeat these
numerical experiments, the detailed experimental data can be found in
Section 4.4 in (Jia 2006).

Let’s now consider the first property: without elimination. If a selection
rule uses elimination, then a design that fails in an early round will have no
chance to receive further observation, and will finally receive a low ob-
served order. Sequential pair-wise elimination (SPE) is one of the selection
rules that use elimination. HR_ne is not. To see how this property affects
the performance of a selection rule, we compare SPE and HR_ne in all the
five OPC types and three noise levels. Let there be a large computing
budget. For g = 20, s = 10, 20, …, 200 and different values of k, we use
1000 independent replications to test the AP in each case. The s value such
that the corresponding AP is no less than 0.95 is the minimal size of the se-
lected subset of that selection rule in that scenario. By comparing the sizes
of the selected subset of SPE and HR_ne in all the scenarios mentioned
above, we find HR_ne does not require a larger selected set than SPE in all
the tested scenarios, and in 81% of the scenarios requires a smaller subset.

Comparison of Selection Rules 89

This justifies that without elimination is a property for good selection
rules.

Then let’s consider the second property: global comparison. A selection
rule with global comparison will compare all the designs that enter a round
together. A selection rule without global comparison will only compare
some of the designs that enter a round. SPE uses pair-wise comparison,
thus is an example of without global comparison. HR_gc compares all the
designs in a round together, thus is a selection rule with global compari-
son. Since HR_gc and SPE both use elimination, by comparing these two
rules, we can see how the global comparison affects the performance of a
selection rule. Note that the Basic Property in Section 1 tells us that it does
not hurt if we select the observed top-s designs. In each round HR_gc
selects the observed top-half designs. This is consistent with the Basic
Property. So, in principle, HR_gc should not be worse than SPE in all the
scenarios. The question is: Since SPE is not consistent with the Basic
Property, how much worse is this selection rule than HR_gc? We compare
SPE and HR_gc in all the five OPC classes and three noise levels. Other
parameter settings are also the same as when we used to compare SPE and
HR_ne to test the first property. The result is: HR_gc is no worse than SPE
in all the tested scenarios, and is better in 71% of the scenarios. This justi-
fies that global comparison is a property of good selection rules.

Finally, we will consider the third property: using mean value of
observations as the estimate of design performance. In some selection
rules, the designs are ordered according to the number of “wins” they
receive. RR, SPE, HR_gc are some of the examples. Some other selection
rules order the designs according to the mean value of observations, e.g.,
HR and HR_CRR. To see how this property affects the performance of a
selection rule, we compare HR_CRR and RR. Both selection rules equally
assign the computing budget among the designs. Note, according to the
Basic Property, selecting the observed top-s designs does not hurt in this
case, which is exactly what HR_CRR does. So, in principle HR_CRR is no
worse than RR. The question is: How much worse can RR be than
HR_CRR? We compare HR_CRR and RR in all five OPC types and three
noise levels. Let g = 50. There are large computing budgets. The
comparison shows that HR_CRR is no worse than RR in all the tested
scenarios, and is better in 39% of the scenarios. This justifies that using the
mean value of observations as the estimate of design performance is a
property of good selection rules.

90 Chapter III

5 Conclusion

We use regression functions to quantify the efficiency of different
selection rules for ordinal optimization, especially HR, OCBA, and B vs.
D, which are frequently used. Using the regressed values, we can predict
the best selection rule(s) of interest under different parameter settings. The
prediction is rather good, as we have shown in section 3 by numerical
examples. We showed that some selection rules are no worse than some
others, and discussed the properties of good selection rules from three
aspects: Without elimination, global comparison, and using mean value as
the measure.

using our method, we summarize the application procedure as follows
(Box 3.1).

Box 3.1. How to predict a good selection rule

Step 1: Estimate the OPC class of the system and the noise level in
observation.

Step 2: Specify the values of k, g, and α. We want to cover at least k
designs in true top-g ones with high probability no smaller than α.

Step 4: c scenario. Find the regressed values
of the coefficients in Eq. (3.5) in Appendix C for this scenario.

Step 5: Use Eq. (3.5) to predict the size of the selected subset for each
selection rule. By comparing the predicted subset sizes, we can
easily predict which selection rule is the best.

Step 6: Using the recommended selection rule, we can obtain a subset of
designs, which contains at least k good enough designs with high
probability.

Step 7: In this way, we can usually have a search reduction of at least one
order of magnitude.

Based on ample experimental data, we also summarize a couple of simple,
quick and dirty tips for easily picking up a good selection rule without
calculation steps above. They are as follows:

1. In most of the cases, we recommend HR_ne, which works well and is
a good selection rule among all the 9 selection rules compared in this
paper.

Steps 1-3 determines a specifi
simulate the system how many times during the entire optimization.
Specify how much computing budget you have, i.e., you can

To predict the best selection rule among a given set of selection rules

Step 3:

Comparison of Selection Rules 91

2. In extremely difficult case (the computing budget is small, the size of
good enough subset is small, and we try to cover many good enough
designs), we recommend HR.

The above tips have intuitive illustrations. HR_ne has all the three
properties of optimal selection rules mentioned in Section 4, which are
without elimination, global comparison, and using mean value as the
measure. Numerical results show each property can improve the alignment
probability of selection rule separately. So HR_ne is a good choice in most
cases. However, when the computing budget is extremely small and we
can only explore part of the designs, exploration is more important than
exploitation. Since HR usually explores a larger number of designs than
HR_ne, it is a good choice in the latter difficult cases.

Since HR, OCBA, and B vs. D are the three frequently used rules in
ordinal optimization, we also summarize some simple rules to choose a
good one among them:

1. When the computing budget is small and we do not want much
calculation to allocate the computing budget, HR is a good choice.

2. For special sizes of middle and large computing budget (i.e., there are
1000 designs and we have 1000 or 30000 computing budget units to
allocate), OCBA is a good choice. Especially we prefer the following
parameter settings in OCBA. When T = 1000, we prefer m0 = 500.
When T = 30000, m0 = 1000.

3. In all other cases where we need a good and automatic balance
between exploration and exploitation, B vs. D is a good choice.

Note that OCBA fixes the “breadth” and B vs. D can increase the
“breadth” during the allocation procedure. So OCBA with an optimal
“breadth” may have the same high alignment probability as B vs. D (Lin
2000b). This is why we prefer OCBA in the second rule above. We have
used ample experiments to find the optimal “breadth” of OCBA in those
cases. However, as pointed out in the third rule, in general cases we prefer
B vs. D, which can do the balance automatically.

Finally and more generally, we can regard the selection rule as a way of
narrowing down the search for a good enough solution. Currently, the prac-
tice of OO is first to narrow down from Θ to ΘN. Denote this as the first
stage. It typically uses uniform sampling to get a representative set from Θ.
Then in the second stage we narrow down from ΘN to S. This process is
what we do with the selection rules, as has discussed in this chapter. How-
ever, this is only one possible way of doing the search for the “good
enough”. There still exist a number of other possibilities. For example, sam-
pling in the first stage can be enhanced. Instead of uniform sampling, we

92 Chapter III

can use heuristics to bias sampling towards more good designs. There need
not be only two stages, but many stages leading to what may be called it-
erative OO (Deng and Ho 1997). In short, we can view each stage of the
selection as overlaying a selection probability density over the set of de-
sign possibilities in question. Good selection rules are the ones that favor
the good designs. More discussion on this will be found in Chapter VII.

