
Chapter II Ordinal Optimization Fundamentals

1 Two basic ideas of Ordinal Optimization (OO)

There are two basic ideas in OO:

• “Order” is much more robust against noise than “Value”
• Don’t insist on getting the “Best” but be willing to settle for the “Good

Enough”

Of course readers may rightly point out that these ideas are hardly new.
Good engineers and designers do this all the time when confronted with
difficult and complex problems of performance evaluation and optimi-
zation. Our contribution in this book is simply that we have developed a
theory to quantify these two ideas. The practice of these two ideas is now
knowledge-based instead of being experience-based. The expertise of a
good designer acquired from experience will now be available to everyone
who uses the tools discussed in this book. Moreover, the user will have
numerical measures rather than just gut feelings. The quantification will
come later in the book. For now let us simply explain the ideas in intuitive
terms.

Idea No.1 Order is easier than Value. Imagine you hold two
identically looking boxes with unknown content in your two hands. You
are asked to judge which one is heavier than the other – an “ordinal”
question. Almost all of us can correctly tell the answer, even if there is
only a very slight difference between the weights of the two boxes. But if
we are asked to estimate the difference in weight between the two boxes –
a “cardinal” question, we will have a hard time. This is the essence of the
first tenet of OO. In fact later on in this chapter we shall prove that
“Order” converges exponentially fast in stochastic simulation models

1/2

An intuitive and graphical illustration of this idea is shown in Fig. 2.1.
as discussed in chapter I.

 convergence rate of “Value” or “Confidence Interval” against the 1/(n)

8 Chapter II

A B

Fig. 2.1. Comparison of two values A and B corrupted by noise

We have two values A and B. But we can only observe the values through
noises, which are zero mean and normally distributed. If we compare
samples of these noisy values of A and B, then we will reach an incorrect
answer, i.e., A > B, only when the samples of A is larger than that of B. This
happens basically when the samples fall in the shaded triangle area. This
area decreases rapidly as the values of A and B are drawn apart.

Idea No.2 Nothing but the best is very costly. The second tenet of OO
rests on the idea of relaxing the goal of performance evaluation. We are
asked to retreat from “nothing but the best” to a softer goal of being “good
enough”, e.g., settle for anything in the top-g choices. The small retreat can
buy us quite a bit in the easing of the computational burden. Again the
quantification will come later on in the chapter. However, an intuitive ex-
planation is helpful to fix ideas at this point. When we are searching only
for the best in Θ, there is only one solution (unless of course in the less
common cases when there are multiple optima), and we can easily fail
(i.e., the truly best design is not the observed best one). But if we are
willing to settle for any one of the top-2 choices, we fail only when neither
design is within the observed top-2, and if we are willing to settle for

observed top-g, the probability of which is almost the first failure proba-
bility to the power of g.

any of the top-g choices, there will be at least g! satisfactory alternatives,
the possibilities increases superlinearly. More technically, for g = 2, the pro-
bability of which is almost the square of the previous failure probability for
a large enough Θ; for top-3, we fail only when none of these three designs
is within the observed top-3, the probability of which is almost the cube
of the first failure probability; and for top-g, where g is small compared
to the size of Θ, we fail only when none of these g designs is within the

Ordinal Optimization Fundamentals 9

Exercise 2.1: Prove the above statements concerning the failure proba-
bilities.

This exponential decrease of failure probability (thus the exponential
increase in successful probability) contributes to significant decrease in
search, and hence computational cost. Another way of clarifying the advan-
tage of this idea is to observe that independent noisy observation or
estimation error may worsen as well as help the performance “order” of a
particular choice of θ. Thus, as a group, the top-n choices can be very robust
against perturbations in order so long as we don’t care about the exact order
within this group.

Lastly, it is not hard to convince oneself that the ease of computational
burden through these two ideas is not additive but multiplicative since they
are separate and independent factors. Together, as we shall demonstrate
throughout this book, they produce orders of magnitude improvement in
efficiency. Problems previously thought to be infeasible computationally
are now within reach.

2 Definitions, terminologies, and concepts for OO

We first introduce some definitions, which will be used throughout this
book

θ The various system parameters that may be subject to design
choices.

Θ The search space for the optimization variables θ. We can simply
assume it to be a very large but finite set consisting of zillions of
choices.

J The performance criterion for the system as already defined in
Eqs. (1.1) and (1.2).

Ĵ The estimated or observed performance for the system. This is
usually done by using a crude but computationally easy model of
the system performance.

w The observation noise/error, which describes the difference bet-
ween the true performance and the estimated/observed performance,
i.e., () ()Ĵ J wθ θ= + .

ξ All the random variables with known distribution used in the
simulation model.

10 Chapter II

x(t; θ, ξ) A sample trajectory of the system given the design θ and the
realizetion ξ. In simulation terminology, this is often called a
replication.

L A functional of x(t; θ,ξ) that defines the performance metric of the
system on a sample path. The system’s performance criterion is
given by the expectation J = E[L(x(t; θ,ξ))].

N The number of designs uniformly chosen in Θ. It is understood
that for each design θ, there corresponds a value of J as defined in
Eqs. (1.1) and (1.2). When there is no danger of confusion we also

G The Good Enough set, usually the top-g designs of Θ or of N.
S The set of selected designs in N, usually the estimated top-s of N.
Selection Rule

The method that is used to determine the set S, e.g., it could be
blind pick or horse race1 or other rules using the estimated perfor-
mance to order the designs (based on a crude model).

G∩S

The relationship among Θ, G, S and the true and estimated optimal design

are shown in Fig. 2.2. Note the sets G and S in OO play the analogous role
as the true optimum and the estimated optimum respectively in regular opti-
mization.
AP, Alignment Probability ≡ Prob[|G∩S|≥k]

The probability that there are actually k truly good enough designs
in S (represented by the dotted area in Fig. 2.2 above). k is called
the alignment level. This number quantifies how a crude model
can help to assure the determination of “good enough” designs.

OPC, Ordered Performance Curve
A (conceptual) plot of the values of J as a function of the order of
performance, i.e., the best, the second best, and so on. If we are
minimizing then the OPC must be a non-decreasing curve2.

1 The blind choice selection rule is to arbitrarily and randomly selected s θ ’s

from N as the set S. The horse race selection method is simply to compare the
observed performance values, 1̂J , 2Ĵ , . . . , ˆ

NJ and select the designs with top-s
observed values as the set S. More details can be found in Chapter III.

2 In this book, we usually deal with finite but a large number of designs. For
visualization, we show continuous curves in Fig. 2.3 and in some of the following
figures, instead of a large number of discrete points. These figures can be regarded
as limits of discrete points with high density.

use N to denote the set of designs chosen.

The truly good enough designs in S.

Ordinal Optimization Fundamentals 11

Fig. 2.2. Graphical Illustration of Θ, G, and S

Fig. 2.3. Different types of OPC

C denotes the class or type of OPC for the problem. For non-
decreasing curves, there are only five general types as shown in
Fig. 2.3 below.

The fact that “order” is robust against noise (as will be shown shortly)

gives us the possibility that we may use a crude model to determine the
order of various designs. In other words, we visualize and set up

12 Chapter II

 complex simulation model crude model noise/errorJ J= + 3. (2.1)

In terms of Eq. (1.2) for the simulation of a complex model, the number of
replications, n, is very large. However n is very small and may even be
equal to one for the crude model.

Given Eq. (2.1), we define
σ2 as the noise/error level. In simulation, this is related to the width of

the confidence interval of the performance estimate. In practice we
do not need to know the value of σ2 very accurately, but whether
or not the approximation of the crude model to the complex model
is very bad, bad, or moderate. By definition the approximation
cannot be good. For otherwise, there will not be a problem.

 2Prob , ,G S k N σ⎡ ⎤∩ ≥⎣ ⎦C
≡

UAP(N, σ2, C)

We assert here, and will establish later (in Section 5), that once N,
σ2, C are fixed, the alignment probability becomes independent of
the specific problem under consideration. For the fixed size of G,
it is possible to tabulate the required size of S in order to insure
that the alignment probability, AP, is no less than a certain high
value, say 0.95.

Here is an example to help picture the concepts of AP. In the world of
professional tennis, players are ranked as the #1 seed, #2 seed, etc. Let us
assume that as the true ranking and take the first 16 seeds as the set G. In a
given tennis tournament, e.g., the U.S. Open, 16 players will reach the
quarter-finals through elimination. These 16 players, thus selected, consti-
tute the set S. And elimination tournament is the selection rule used.
Without consulting a sports almanac, we can be reasonably sure that there
will be a significant overlap between G and S. For example, even without
any knowledge of the tennis world, we can be fairly certain that the
Prob[|G∩S|≥1]≈1. Furthermore, such near certainty will exist in other
sports such as horse race. Thus, we claim the use of the adjective “univer-
sal” for such APs which are tabulated as a function of N, σ2, and C. In fact
we shall show in later chapters how UAPs can be used to narrow down
searches for the “good enough”. There is also a simple demonstration

3 It will be introduced later (in Section 6) that how to use OO to deal with

different simulation models, i.e., both stochastic simulation models and deter-
ministic complex simulation models. To cover both types of models, we use “noise/
error” here. In Section 6 we will show that noise and error can be regarded as the
same under the concept of Kolmogorov complexity.

UAP, the Universal Alignment Probability ≡

Ordinal Optimization Fundamentals 13

explained immediately in Section 3 below which further illustrates the
universality of the concept of alignment probability.

Finally, we summarize the spirit of ordinal optimization as:
Instead of the best for sure, we seek

the good enough with high probability.

3 A simple demonstration of OO

We present here a simple generic demonstration that everyone can do to
convince themselves of the validity of the two basic tenets of OO as
discussed in Section 1 and the universality of the alignment probability of
OO. Let the search space Θ have 200 designs, say 1,2, …, 200. Without
loss of generality, we let choice #1 be the best, #2, the second best, and so
on to #200; and the performances for simplicity be 1, 2, ..., 2004.
Mathematically, we have J(θi) = i in which case the best design is θ1 (we
are minimizing) and the worst design is θ200 and the Ordered Performance
Curve (OPC) is linearly increasing. For any finite i.i.d noise w, we can
implement ˆ() ()J J wθ θ= + and directly observe these performances
through noisy measurements as in Eq. (2.1) with noise distributed as
U[0,100] or U[0,10000]. Let the good enough performance G be 1, . . ., 12
(the top-6%), and S be the observed top-6%. We are interested in |G∩S|.

All of these can be simply implemented in a spreadsheet with Θ
represented by 200 rows as in Fig. 2.4.

Design # = θ True performance

J(θ)
Noise w∈U[0,W] Observed

performance J(θ)+w
1 1.00 87.98 88.98
2 2.00 1.67 3.67
. . . .
. . . .
. . . .
199 199.00 32.92 231.92
200 200.00 24.96 224.96

Sort on this column
in ascending order

Fig. 2.4. Spread sheet implementation of generic experiment

4 Actually any monotonically increasing numerical sequence will do.

14 Chapter II

Column 1 models the N (=200) alternatives and the true order 1 through
N. Column 2 shows the linearly increasing OPC from 1 through N (=200).
The rate of OPC increase with respect to the noise variance σ2 essentially
determines the estimation or approximation error of ˆ()J θ . This is shown
by the random noise generated in column 3 which, in this case, has a large

mated or observed) performance. When we sort on column 4, we can
directly observe the alignment in column 1, i.e., how many numbers 1
through g (=12) are in the top-g rows. For example, in Fig. 2.5 we show
what the sorting result of the table in Fig. 2.4 may look like. Try this and

Design # = θ True performance

J(θ)
Noise w∈U[0,W] Observed

performance J(θ)+w
2 2.00 1.67 3.67
5 5.00 20.12 25.12
. . . .
. . . .
. . . .
90 90.00 79.09 169.09
193 193.00 90.85 283.85

Fig. 2.5. The spread sheet in Fig. 2.4 after sorting on the observed performance in
ascending order (Note: Column 4 is completely sorted in ascending order)

An already implemented version can also be found on http://www.hrl.
harvard.edu/~ho. One can also simulate the result of blind pick by making
the noise U[0, 10000] and repeat the Excel simulation. It should be noted
that the above demonstration is rather general. Except for the assumption
of independent noise/error in Eq. (2.1), the results are applicable to any
complex computational problems when approximated by a crude model.
Chapters below will further discuss and exploit this generality.

At this point, except for establishing more carefully the validity of the
two basic ideas of ordinal optimization (in the rest of this chapter) and
other extensions (in the future chapters), we already have the procedure for
the practical application of OO to complex optimization problems. This
procedure is basically an elaboration of the demo above which we re-stated
here for emphasis (Box 2.1):

range U[0,100] or U[0,10000]. Column 4 displays the corrupted (or esti-

you will be surprised! It takes less than two minutes to setup on Excel.

Ordinal Optimization Fundamentals 15

Box 2.1. The application procedure of OO

Step 1: Uniformly and randomly sample N designs from Θ.
Step 2: Use a crude and computationally fast model to estimate the

performance of these N designs.
Step 3: Estimate the OPC class of the problem and the noise level of

the crude model. The user specifies the size of good enough
set, g, and the required alignment level, k.

Step 4: Use Table 2.1 (in Section 5 below) to calculate s = Z(g,k/OPC
class, noise level).

Step 5: Select the observed top s designs of the N as estimated by the
crude model as the selected set S.

Step 6: The theory of OO ensures that S contains at least k truly good
enough designs with probability no less than 0.95.

Section 7 gives two examples of application of this procedure to com-
plex problems. Interested reader may go directly to that section. Case studies

4 The exponential convergence of order and goal
softening

In this section, we provide the theoretical foundation of ordinal optimi-
zation method, namely, the alignment probability converges exponentially
with respect to the number of replications (Section 4.2) and with respect
to the sizes of good enough set and selected set (Section 4.3). The proofs
can be viewed as a more formal explanation on the two tents of OO:
optimization can be made much easier by order comparison and goal
softening. As a preparation for the proof of exponential convergence w.r.t.
order, we introduce the large deviation theory first (Section 4.1). The large
deviation theory justifies why order comparison of two values A and B
corrupted by noise is easy as we pointed out in Section 2.1. Readers who
are not that interested in mathematical details and are willing to accept the
intuitive idea introduced in Section 1 can skip or skim this section on a
first reading.

The formal verifications in this chapter are given for the most frequently
used selection rule—horse race rule. In OO, recalling that for the horse
race rule, we are interested in the alignment probability (AP) that the
observed top-s designs (estimated good enough designs) contain at least k
of the actual top-g designs (real good enough designs).

of more complex real world problems can be found in chapter VIII.

16 Chapter II

To establish the exponential convergence properties formally, we need
to introduce the problem formulation first. Assume that the N designs are
indexed such that

J(θ1) < J(θ2) < J(θ3) <…< J(θN).

Let L(θi,n) be the sampled performance for the n-th replication and assume
that for each design θi, L(θi,1), L(θi,2),…, L(θi,n), … form a sequence of
i.i.d. random variables with distribution such that for any n>0, E[L(θi,n)]=
J(θi). Let ()ˆ ,iJ nθ , i=1,2,…,N, be the performance estimates such that

() () () ()
1

1ˆ , , ,
n

i i i i
j

J n L j J w n
n

θ θ θ θ
=

= = +∑ ,

where w(θi,1), w(θi,2), …, w(θi,n), … are estimation errors and E[w(θi,n)] = 0.

4.1 Large deviation theory

Let us consider an i.i.d. sequence x1,x2,… with distribution function F (or
density function f) and finite mean µ. In our context, the numbers in this
sequence are observations of performance of a given design. Let a>µ and
b<µ be two constants. The law of large numbers implies that

[]1
1Prob Prob 0n

n
x x a x x na

n
+ +⎡ ⎤≥ = + + ≥ →⎢ ⎥⎣ ⎦

 as n→∞

and

[]1
1Prob Prob 0n

n
x x b x x nb

n
+ +⎡ ⎤≤ = + + ≤ →⎢ ⎥⎣ ⎦

 as n→∞.

A fundamental question is: how fast do these two probabilities decrease?

Although it seems that this question is about a single design, it is impor-
tant to us since there is a natural way to reduce our order comparison problem

to it. In Fig. 2.6, the deviation probability 1Prob nx x a
n

+ +⎡ ⎤≥⎢ ⎥⎣ ⎦
 is

Ordinal Optimization Fundamentals 17

Fig. 2.6. Illustration of deviation probabilities

corresponding to the gray area and the deviation probability
1Prob nx x b

n
+ +⎡ ⎤≤⎢ ⎥⎣ ⎦

 the dotted area.

The connection between the deviation probabilities and the comparison
of two fixed values A and B corrupted by noises can be interpreted as in
Fig. 2.7 below. Assume B > A. Denote u as the position where the density
functions of the two sample means meet. Then the rough estimation on
misalignment probability (shaded area) in Fig. 2.1 (in Section 2.1) can be
viewed as the sum of the gray area and the dotted area, where the gray area
equals the deviation probability of A beyond u and the dotted area equals
the deviation probability of B under u. Note u might change for a different
n. A precise way of upper bounding the misalignment probability is to fix

an amount of deviation less than or equal to
2

B Aδ −
= :

Fig. 2.7. Comparison of two values A and B corrupted by noises

18 Chapter II

Prob[Sample mean of observations of A> Sample mean of obser-
vations of B]
≤ Prob[Sample mean of observations of A>A+δ]
+ Prob[Sample mean of observations of B<B-δ].

The purpose of this subsection is to show that, for every constant a > µ,

there exists a positive β such that

 []1Prob n
nx x na e β−+ + ≥ ≤ (2.2)

and, for each constant b<µ

 []1Prob n
nx x nb e β−+ ≤ ≥ . (2.3)

This implies that the probability for the sample mean 1 nx x
n

+ +
 to have

finite deviation (“large deviation”) from its mean decays exponentially. In
the following, we shall show Eq. (2.2) and leave the similar justification of
Eq. (2.3) to the readers. It is useful to define

() () ()1sx sy syM s E e e dF y e f y dy⎡ ⎤≡ = =⎣ ⎦ ∫ ∫ .

Exercise 2.2: Let x1,x2,… be i.i.d. standard normal random variables,

then please derive

()
2 21 11 .

2
syM s e e dy e

π
= =∫

M(s) is known as the moment generating function (mgf) of the random

variables xi. M(s) contains information of all order of moments, and

especially we have [] () ()
1

0

' 0
s

dM s
E x M

ds
µ

=

= = = . It is interesting to

note that M(-s) is simply the Laplace transformation of the density function
f. So, instead of giving the distribution function F or the density function f,
the description of a random variable can also be characterized by its mgf
M(s). It is also natural to see that the mgf for the sum of independent
random variables (r.v.s) is the product of mgfs of all r.v.s. In particular,

2 2− y s

Ordinal Optimization Fundamentals 19

() ()() ()
1 n

n nsy sy
x xe dF y e dF y M s+ + = = ⎡ ⎤⎣ ⎦∫ ∫ , where

1 nx xF + + is the

distribution of the r.v. x1+…+xn.
For s ≥ 0, mgf has the advantage of providing upper bounds on proba-

bility of events. In fact, we have

 [] ()Prob sbx b e M s−≥ ≤ . (2.4)

To see why this is true, we make the following observation.

 () () () () ()s y b s y b

y b y b

f y dy e f y dy e f y dy− −

≥ ≥

≤ ≤∫ ∫ ∫ . (2.5)

es(y-b) ≥ 1 when
s
due to the fact that es(y-b)f(y) is always non-negative (recall f is a density
function) and integration of a positive function over the entire region
(–∞,+∞) is always no less than integration over a part [b,+∞) of it . Thus
Eq. (2.4) follows from Eq. (2.5) by noting

[] ()1Prob

y b

x b f y dy
≥

≥ = ∫

and

Fig. 2.8. Illustration of Eq. (2.5)

The first inequality in Eq. (2.5) follows from the fact that
≥ 0 in the range of integration y≥b. The second inequality of Eq. (2.5) is

1

b y

es(y-b)

1

20 Chapter II

() () ()s y b sbe f y dy e M s− −=∫ .

A graphical illustration of Eq. (2.5) is given in Fig. 2.8.
Apply Eq. (2.4) to x1+…+xn and let b = na, we establish

[] () ()()log
1Prob

n n sa M ssna
nx x na e M s e− −−+ + ≥ ≤ =⎡ ⎤⎣ ⎦ , for all s≥0.

This is known as the Chernoff bound (Chernoff 1952). Define a function
R(s)=sa-logM(s). Then we have

 [] ()

1Prob , for all 0.nR s
nx x na e s−+ + ≥ ≤ ≥ (2.6)

We shall use it to establish the exponential decaying rate for
Prob[x1+…+xn≥na]. Note although Eq. (2.6) looks already like a bound
implying exponential decaying, there is a gap between it and the desired
Eq. (2.2) where we need a positive constant β. We close the gap by
showing that there is an s*≥0 such that R(s*)>0. For simplicity, we assume
that µ = 0 and a > 0 is a constant. (The reader is required to extend the
result to the general case where µ ≠ 0 below.) Then µ = M′(0) = 0.
Consider the Taylor expansion of M(s) around s = 0,

R(s) = sa-log(M(0)+M′(0)s+o(s))=sa-o(s).

Thus there exists a s*>0 such that

R(s*) = s*a-log(M(s*))>0.

We can then choose β = R(s*).

Exercise 2.3: Show that for general µ, as long as a>µ, there exists a
positive β such that

Prob[x1+…+xn≥na]≤e–nβ.

Exercise 2.4: Show that for general µ, as long as b<µ, there exists a

positive β such that

Prob[x1+…+xn≤nb]≤e–nβ.

Ordinal Optimization Fundamentals 21

4.2 Exponential convergence w.r.t. order

performances, it is clear from above (Section 4.1) why order comparison
is easy and converges rapidly. The problem is, in general, we have a large
number of designs. In this subsection, we argue that the benefit of
exponential convergence on order comparison for two designs is preserved
for the general situation with N designs. The idea is to upper bound the
misalignment probability (the overlap area for the two design case) by the
sum of probabilities that sample mean deviates from true performance by
the amount δ for each design, where δ is half of the minimal gap ∆
between true performances. Here () ()()11,..., 1

min i ii N
J Jθ θ += −

∆ = − can be

viewed as the counterpart of B-A for the two-design case.
Given a size s, let Sn be the selected set of size s according to the horse

race rule after we obtain the observed (estimated) performance ()ˆ ,J nθ
based on n replications for all designs θ. Given also a size g of the good
enough set G and the alignment level k such that 1≤k≤min(g,s). Our
purpose is to show there exists a positive β such that

 [] ()Prob | | 1 n

nS G k O e β−∩ ≥ = − (2.7)

as long as the moment generating function E[esL(θ,1)] exists for all s∈(–d,d)

min(g,s) since Prob[|Sn∩G|≥k]≤Prob[|Sn∩G|≥k′] for all k′<k. The reason is
that min(g,s) is the highest alignment level and increasing the required
alignment level always makes alignment harder (lower the alignment pro-
bability). Assume that the N designs are indexed such that the true perfor-
mance value J is sorted in ascending order,

J(θ1) < J(θ2) < J(θ3) <…< J(θN).

()ˆ ,iJ nθ

() ()
1

1ˆ , ,
n

i i
j

J n L j
n

θ θ
=

= ∑ , 1, 2, ,i N= … , with L(θi,j), j = 1,2,… as i.i.d.

observations. Without loss of generality, we assume our optimization pro-

blem is to find the minimum. Sort the sequence ()ˆ ,iJ nθ , 1, 2, ,i N= …

With the large deviation theory, given two designs with distinct true

 used by the horse race rule Recall that the observed values
are taken as sample mean of performance values of designs, that is

for some d > 0. It is sufficient to show the result Eq. (2.7) for the case k =

22 Chapter II

in ascending order and denote the design ranking no. i as []iθ 5. In other

words, []() []() []()1 2
ˆ ˆ ˆ, , ,NJ n J n J nθ θ θ≤ ≤ ≤… . So θ[i], 1, 2, ,i N= …

are random variables taking value from the design space ΘN={θ1,θ2,…,θN}.
The selected set by horse race rule is a random set given as
Sn={θ[1],θ[2],…,θ[s]}. The alignment probability can be expressed as

{ } { }[1] [2] [] 1 2Prob Prob , , , , , ,n s gS G k kθ θ θ θ θ θ⎡ ⎤⎡ ∩ ≥ ⎤ = ∩ ≥⎣ ⎦ ⎣ ⎦… … .

Here g is the size of the good enough set G. To prove Prob[|Sn∩G|≥k]≥1-e–nβ
where k=min(g,s), it is equivalent to show Prob[|Sn∩G|<min(g,s)]≤Ce–nβ
for some positive constant C. To prove this, denote the minimal gap bet-
ween any two of true performance values as () ()()11,..., 1

min i ii N
J Jθ θ += −

∆ = −

and introduce two events

Event A={|Sn∩G|<min(g,s)}

Event B={there exists one θi in ΘN s.t. () ()ˆ ,i iJ n Jθ θ δ− ≥ }

where δ is half of the minimal gap ∆. Event A is the misalignment event
under level k = min(g,s), i.e.,

Prob[|Sn∩G|<min(g,s)]=Prob[Event A].

Event B is the event that at least one design’s sample mean deviates from
its true value over half of the minimal gap ∆. In Fig. 2.9, Event B occurs
when at least one design’s sample must fall in either dotted area

(() ()ˆ ,i iJ n Jθ θ δ− < −) or gray area (() ()ˆ ,i iJ n Jθ θ δ− >). It is clear
from Fig. 2.9 that if every design’s sample mean stays in the interval
centered at the design’s true performance value with width ∆ (or less) or
equivalently the deviation from the true performance is less than δ = ∆/2,
there will be no swap in the order of sample means and the alignment level
k = min(g,s) is achieved. This implies that, for a misalignment to occur
(furthermore some swaps in sample means to occur), Event B must occur.

5 Please note that []iθ depends on n. We assign indices randomly to designs

when they tie.

Ordinal Optimization Fundamentals 23

Fig. 2.9. If sample mean stays within δ distance from true performance for each
design, no misalignment will happen.

Thus we know that Event A is a subset of Event B and

() [] []Prob min , Prob Event Prob Event nS G g s A B⎡ ∩ < ⎤ = ≤⎣ ⎦ . (2.8)

Simple estimation gives

[] () (){ }
() ()

() ()

() ()

1

1

1

ˆProb Event Prob ,

ˆProb ,

ˆProb ,

ˆProb , .

i i

N

i i
i
N

i i
i

N

i i
i

B J n J

J n J

J n J

J n J

θ θ δ

θ θ δ

θ θ δ

θ θ δ

=

=

=

⎡ ⎤
= − ≥⎢ ⎥

⎣ ⎦

⎡ ⎤≤ − ≥⎢ ⎥⎣ ⎦

⎡ ⎤= ≥ +⎢ ⎥⎣ ⎦

⎡ ⎤+ ≤ −⎢ ⎥⎣ ⎦

∑

∑

∑

∪

 (2.9)

This is a direct extension of our estimation on misalignment probability for
the two-design case (using the sum of gray area and dotted area in Fig. 2.7)
to the general case where we have N designs as shown in Fig. 2.9. Now an
upper bound for the misalignment probability is given by the sum of N
gray areas and N dotted areas associated to the N designs. Since for every
design, the true performance J is the mean value of its observed value L

N... ,i=1,…

24 Chapter II

and δ>0, it follows the Large Deviation Theory, there exist positive
numbers βi and βi′ such that

() ()ˆProb , in
i iJ n J e βθ θ δ −⎡ ⎤≥ + ≤⎢ ⎥⎣ ⎦

() () 'ˆProb , .in
i iJ n J e βθ θ δ −⎡ ⎤≤ − ≤⎢ ⎥⎣ ⎦

Let β = min(β1,…,βN,β1′,…βN′), then we have from Eqs. (2.8) and (2.9)

()Prob | | min , 2 n
nS G g s Ne β−∩ < ≤⎡ ⎤⎣ ⎦ .

The exponential convergence of the alignment probability is hence
established by noting the size N of design space is fixed.

So far, we have shown the exponential convergence of OO w.r.t. order
using the large deviation theory and estimation on misalignment proba-
bility for designs with i.i.d. observations. The exponential convergence of
the alignment probability can be generalized to the situation of regenera-
tive simulation6, where performances are estimated by taking time average
over a single sample path based on the ergodic properties of discrete event
systems. When we carry out a simulation of length t and obtain some

()ˆ
can decide a selected set St. Since St depends on t, which is a measure of
computation budget, the question now becomes where Prob[|St∩G|≥k]
converge exponentially as t→∞? The exponential convergence for this
case means that there exists β>0 such that

 ()Prob 1 t

tS G k O e β−⎡ ∩ ≥ ⎤ = −⎣ ⎦ . (2.10)

It was proved in (Xie 1997) that when the Heidelberger and Meketon’s

()ˆ ,J nθ , under mild condition, there must exist a β > 0 such that Eq.
(2.10) holds.

6 The basic idea of the approach of regenerative simulation is that a stochastic

process may be characterized by random points in time when it “regenerative”
itself and become independent of its past history. (See also Appendix A.)

J tθ , for all designs θ, by applying horse race rule, we observed value

esmtiators (Heidelberger and Meketon 1980) defined in Eq. (2.11) or time
average estimators defined in Eq. (2.12) below are used as observed value

Ordinal Optimization Fundamentals 25

Intuitively, since a regenerative simulation is equivalent to many periods
of statistically independent replications of the system sample path, the
validity of Eq. (2.10) is totally reasonable. The proofs can be found in (Xie
1997) and will be omitted here.

Note, this type of results were first obtained in (Dai 1996) showing that
the best observed design is indeed a “good” design. (Xie 1997) extended
these results to the general setting we describe here. Extensions of (Dai
1996) to the situation using common random variables in simulation have
been made in (Dai and Chen 1997).

To define the estimators and the exponential convergence mathemati-
cally, we will introduce some notations. Let Ti(θ) be the i-th regeneration
epoch, i = 0,1,2,…, where T0(θ) is the initial delay. Let τi(θ) be the length of

i-th regeneration cycle, i = 0,1,2,…. Then
0

() ()
i

i j
j

T θ τ θ
=

= ∑ . Suppose the

interested performance value on sample path at time t is Lt(θ) with

|Lt(θ)|≤C for some constant C. Let
1

()

()
(,) ()i

i

T

ss T
L i L ds

θ

θ
θ θ

−=
= ∫ be the total

sample performance in the i-th regeneration cycle.

Fig. 2.10. An illustration for the regeneration cycles

Let K(θ,t) be the number of regeneration cycles completed by time t. Then
the Heidelberger and Meketon’s estimator is defined as

 ()
()

()

()
()

, 1

1
, 1

1

,
ˆ , ,

K t

i
K t

i
i

L i
J t

θ

θ

θ
θ

τ θ

+

=
+

=

=
∑

∑
 (2.11)

and the time average estimator is defined as

26 Chapter II

 () ()
0

1ˆ , .
t

s
s

J t L ds
t

θ θ
=

= ∫ (2.12)

We assume that the regeneration process has i.i.d cycles, i.e., {(τi(θ),
L(θ,i)), i=1,2,…} is a sequence of i.i.d. random variables. Denote

0 ()(,) []sm s E e τ θθ = as the mgf (moment generating function) of the initial
delay τ0(θ) and 1 ()(,) []sM s E e τ θθ = as the mgf of the length τ1(θ) of the
first regeneration cycle τ1(θ). A sufficient condition for Eq. (2.10) to hold
for the estimators in Eq. (2.11) or Eq. (2.12) is that m(s,θ) and M(s,θ) exist
for all s∈ (–δ,δ) for some δ > 0. Note that this existence of a finite mgf
was later shown by Fu and Jin to be both a necessary and sufficient
condition in (Fu and Jin 2001). They have also shown how one can recover
the exponential convergence rate in cases where the mfg is not finite.
(Well-known distributions that do not possess a finite mgf include the
lognormal distribution and certain gamma distributions.) In particular, by
working with appropriately truncated versions of the original random
variables, the exponential convergence can be recovered.

4.3 Proof of goal softening

In Section 2.1, we have argued intuitively nothing but the best is very
costly. If we retreat from “nothing but the best” to a softer goal of “good
enough”, e.g., settle for anything in the top-g choices, then the small retreat
can buy us quite a bit in the ease of the computational burden. In this
subsection, we make a rigorous justification for this point and will show
that the alignment probability for both blind pick selection rule and horse
race selection rule converges exponentially to 1, as the size g of the good
enough set and the size s of the selected set increase.

4.3.1 Blind pick

First, let us show the exponential convergence result for blind pick. It will be
used as a base for proving the exponential convergence of the horse race
rule. In fact, we will prove that the alignment probability of blind pick rule is
always a lower bound for the alignment probability of horse race rule. This
is reasonable, since no knowledge is used in BP, and in HR some, though
imperfect, knowledge is used to select the set S. Let N be the size of the
design space, g and s be the size of good enough set G and the size of
selected set S respectively. For blind pick, the misalignment probability

Ordinal Optimization Fundamentals 27

Prob[|S∩G|=0] is given by (see full derivation in Eq. (2.37) in Section 5.1
below)

N g

s
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

,

where
N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 represents the number of different choices of s designs out of

N distinguished ones, i.e.,

()
!

! !
N N
s s N s

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

.

Thus, the alignment probability Prob[|S∩G|≥1] is given by

Prob 1 1 Prob 0 1

N g
s

S G S G
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ∩ ≥ ⎤ = − ⎡ ∩ = ⎤ = −⎣ ⎦ ⎣ ⎦ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 (2.13)

()!

()(1) (1)!()!1 1! ()(1) (1)
!()!

N g
N g N g N g ss N g s

N N N N s
s N s

−
− − − − − +− −= − = −

− − +
−

.(2.14)

Since 1N g i N g g
N i N N
− − −

≤ = −
−

 for all i = 0,1…,s-1, we have

 Prob 1 1 1
sgS G

N
⎛ ⎞⎡ ∩ ≥ ⎤ ≥ − −⎜ ⎟⎣ ⎦ ⎝ ⎠

. (2.15)

Furthermore, since 1-x≤e-x holds for all x, we can bound Prob[|S∩G|≥1]
from below as

 Prob 1 1
gs
NS G e

−
⎡ ∩ ≥ ⎤ ≥ −⎣ ⎦ , (2.16)

28 Chapter II

converges exponentially w.r.t. the size of the set G and S.

-x

4.3.2 Horse race

Now we are going to present the convergence result for the horse race
selection rule alignment probability. We assume that the i.i.d. noise

(,) ()i iw n W nθ = , i=1,2,…,N, has the common cumulative continuous distri-
bution function nF (x) and density function nf (x) and has zero mean.

With the help of the relation

[] []Prob | | 1 1 Prob | | 0S G S G∩ ≥ = − ∩ = ,

we will show that for horse race selection rule, the alignment probability

[]Prob | | 1S G∩ ≥ is bounded from below by the function 1
gs
Ne− , that is

 []Prob | | 1 1
gs
NS G e∩ ≥ ≥ − . (2.17)

This is quite reasonable, since BP utilizes no knowledge of the problem,

while the S selected by the horse race rule can only improve upon the AP.
We can expect the same exponential convergence. While it is intuitively
reasonable to suppose that any crude model for picking the set S must
result in better performance than blind pick, it is nevertheless important to
rule out crude models that may appear sensible on the surface but actually
favor bad designs unknowingly. Consequently, we must prove that the S
obtained based on a horse race model will indeed perform better and
results in better AP than on a blind pick model. This is the purpose of this
section.

To establish exponential convergence for horse race by leveraging the
results in Section 4.3.1 on AP for BP, we should follow two steps:

Step 1. Identify Least Favorable Configuration (LFC) for horse race
misalignment probability.

Step 2. Evaluate misalignment probability under LFC and prove its
equivalence to that of blind pick.

Least Favorable Configuration (LFC) is well known in Ranking and
Selection literature (Barr and Rizvi 1966). The general idea is to find and

−

−

which is the desired result, i.e., alignment probability for blind pick

Exercise 2.5: Draw a figure to verify the above statement that 1-x≤e .

Ordinal Optimization Fundamentals 29

take advantage of some monotone properties in a set of distributions with a
parameter (such as mean value) to specific setting of the parameter under
which certain ranking or selection probability of interest achieves maxi-
mum or minimum. In our case, we should use true performance as the
parameter and aim at finding LFC for misalignment probability under the
horse race selection rule. Let us first take a close look at the misalignment
event under horse race.

For a direct derivation of the result, the basic idea is this: whenever the
observed performance of every design in G is no better than that of at least
s designs not in G, none of the designs in G will be selected in which case
[|S∩G|=0]. Fig. 2.11 shows a case of N = 6 designs with g = 2 and s = 3. In
the figure, we show the procedure of generation of observation

performance () () ()ˆ ,i i iJ n J W nθ θ= + from the true performance ()iJ θ
by adding noise Wi(n), 1, 2, ,6i = … . The best observed performance of
the two good enough designs (black balls in the lower part of the figure) is
indicated by value A. Since it is greater than the observed performance
of the three designs not in G (white balls), the select set by horse race
contains only white balls which means a misalignment occurs. In the
figure, we order the observed performance of all four designs not in G and
indicate the s-th (third) value as B. We observe that B<A is true, when
misalignment happens.

Fig. 2.11. An illustration for the misalignment event under horse race rule

Design in Good
enough set G

Design not in G

True performance

Observed performance

Performance becomes
worse (larger)

g=2, s=3

Selected set by HR

W1(n)

W3(n)

J(q1) J(q2) J(q3) J(q4) J(q5) J(q6)

W4(n)
W5(n)

W6(n)

W2(n)

B A

30 Chapter II

To characterize []Prob | | 0S G∩ = in detail, we divide a given set of

observation data () () ()ˆ ,i i iJ n J W nθ θ= + into two groups, the obser-
ved data for good designs G={θ1,…θg} and the data for bad designs
(θg+1,…θN). We order the N-g observation data for bad designs such that

() () () ()[1] [1] [] []g g N NJ W n J W nθ θ+ ++ < < +… . (2.18)

For a misalignment to happen when using horse race, we observe that,
there must be at least s “bad” designs outperform good designs θ1,…,θg. Or
put it in another way, all observed performances for good designs must be
larger than B= [] []() ()g s g sJ W nθ + ++ . Denote the best observed performance

of good designs as A=
{1, , }
min (() ())j jj g

J W nθ
∈

+
…

. Then a misalignment simply

means B<A holds.

 []Prob 0 ProbS G B A⎡ ∩ = ⎤ = <⎣ ⎦ . (2.19)

2 ())W n = 1 1() ()J W nθ +

3 3 4 4 5 5 6 6() () () () () () () ()J W n J W n J W n J W nθ θ θ θ+ < + < + < + .

So, [5] 5θ θ= and the value of B is [5] [5] 5 5() () () ()J W n J W nθ θ+ = + .

Our idea is to shift mean value ()iJ θ of all distributions of ()ˆ ,iJ nθ to
a common value ()gJ θ

()gJ θ and to move the
mean value of the distribution of g .

 Then we have a new set of N observed data ()gJ θ + ()iW n
 same noise sample ()iW n with () () ()ˆ ,i i iJ n J W nθ θ= + , the original
 observation with noise. We order the N-g data ()gJ θ + ()iW n associated

with bad designs such that

is 1 1 2min(() (), ()J W n Jθ θ+ +For example, in Fig. 2.11, the value of A
, the ordered N-g = 4 observation data for bad

designs are

[] []Prob =Prob | | 0B A S G< ∩ = .Now we work on finding the LFC for

. More specifically, we move the mean value
of the distribution of every good design up to

J ()θevery bad design down to
 sharing the

Ordinal Optimization Fundamentals 31

 () () () ()g g (2.20)

 [] []Prob Prob ' 'B A B A< ≤ < . (2.21)

In fact, we have noted that 'B B< and 'A A< . As a result, B A<
always implies ' 'B A< . This shows indeed the shift we made leads to the
LFC for the misalignment probability.

Note since the mean values are reduced for the data of bad designs, the
value () ()g g sJ W nθ ++ appearing in the ordered sequence in Eq. (2.20)
must be no greater than its counterpart B= [] []() ()g s g sJ W nθ + ++ appeared
in Eq. (2.18). At the same time, as the counterpart of A, the random
variable

{1, , }
min (() ())g jj g

J W nθ
∈

+
…

 must be no less than A. Let us denote

{1, , }
' min (() ())g jj g

A J W nθ
∈

= +
…

 and ' () ()B J W nθ= + . Fig. 2.12 shows

this procedure of finding LFC for the designs in Fig. 2.11. Recall, we have
g = 2 and s = 3. We move the mean value of the observed performance’s
distribution to 2()J θ but keep the sample of noise ()iW n the same as in Fig.
2.11. The new observation data become 2() ()iJ W nθ + , 1, 2, ,6i = … , and
their values are as shown in the line “observed performance (LFC)”. For
reader’s convenience, we also show original observation data in the

2 1 2 2 2 2

We order the new observations of the four bad designs as
2 3 2 4 2 5 2 6() () () () () () () ()J W n J W n J W n J W nθ θ θ θ+ < + < + < + . So, the

third (s-th) value in this sequence is 2 5() ()J W nθ + , (5) 5θ θ= and the value

of B' is 2 5() ()J W nθ + . Two important observations from this example are
'B B< and 'A A< , as a result of our way of generating new observations.
With the new distributions defined above, we are able to establish an

upper bound for []Prob B A< in Eq. (2.19), that is

g N+1[]J Wθ θ+ <n …< J W+ n . []

[]

g g[]+s

min(J (θ) +W (n), J (θ) +W (n)) = J (θ) +W (n) . tion i.e., A', equals
bottom of the figure. The best value for good designs under new observa-

32 Chapter II

Fig. 2.12. An illustration of the Least Favorable Configuration for designs in
Fig. 2.11

Exercise 2.6: Show Eq. (2.21) is true.

Eq. (2.21) is the LFC result in our context. Its advantage is, now instead

of dealing with the observation data () () ()ˆ ,i i iJ n J W nθ θ= + which are
all following different distributions with different means, we need only to
deal with the case of i.i.d. observations Wj(n) plus a constant.

In summary, Fig. 2.12 and our arguments above show, for horse race
selection rule, misalignment occurs when the best value (A) of good
designs is greater (for minimization problem) than the values of s bad
designs (we denote B as their maximum) in the observation data. Although
evaluating the probability of B<A is generally difficult due to the hetero-
geneous nature of distributions generating observations of designs, this
characterization of misalignment enables us to find the new setting that
provides a tractable upper bound for misalignment probability, which turns
out to be the same as blind pick. The new setting is tractable since
observations of all designs obey i.i.d. distributions. The new setting
provides an upper bound on misalignment probability (thus it is a LFC)

Design in Good
enough set G

Design not in G

W5(n)
W4(n)

W3(n)

W1(n)
W2(n)

W6(n)

J(q1) J(q2) J(q3) J(q4) J(q5) J(q6) True performance (LFC)

Observed performance (LFC)

Observed performance (Original)

Performance becomes
worse (larger)

g=2, s=3

B

B9 A 9

A

Ordinal Optimization Fundamentals 33

because the gap between the maximum of s bad designs B' and its best
observed value for good designs A' is always greater than that of B and A.
The connection between the new setting and blind pick is natural because
independent draw of samples from the same distribution gives no pre-
ference on any specific design and all designs have equal chance to be
selected which is the same as blind pick.

Now we proceed to evaluate misalignment probability under the LFC, or
equivalently to calculate []Prob ' 'B A< . This is the second step in order to
establish the exponential convergence for horse race. It will be shown

below that []
1

Prob ' '
N g N

B A
s s

−−⎛ ⎞⎛ ⎞
< = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 which is exactly the misalign-

ment probability already given in Section 4.3.1 for blind pick. For readers
not interested in the mathematical details, you can go directly to the end of
this section (the texts below Eq. (2.36)).

Without loss of generality, we can simplify the analysis of misalignment
probability of our LFC by ignoring the common constant ()gJ θ in all

observations ()gJ θ + ()iW n and directly define *

{1, , }
min ()jj g

A W n
∈

=
…

 and

* ()B W n= based on the zero mean sample ()iW n . Denote their

densities and distributions as * *(), ()A Bx yφ φ and * *(), ()A Bx yΦ Φ respec-
tively. Then we can write

[] ()

() ()

* * *
*

* *

Prob ' ' Prob Prob A

x

B A

B A B A B x x dx

y dy x dx

φ

φ φ

+∞

−∞

+∞

−∞ −−∞

⎡ ⎤ ⎡ ⎤< = < = <⎣ ⎦ ⎣ ⎦

=

∫

∫ ∫
(2.22)

based on the fact that *

{1, , }
min ()jj g

A W n
∈

=
…

 and *B

pendent.

Exercise 2.7: Verify []Prob ' 'B A< = * *Prob B A⎡ ⎤<⎣ ⎦ .

Hint: Compare the samples ()gJ θ + ()iW n and ()iW n 1, 2, ,i N= … .
Exercise 2.8: Show

 []
1

*() 1 () ()
g

A n nx g F x f xφ
−

= − . (2.23)

[g+s]

= W n() are inde-[g+s]

34 Chapter II

Hint: use Eq. (2.24) below.

In order to evaluate *()A xφ , we first decide the distribution function

*()A xΦ . It is straightforward to see that

() ()

() ()

*
* {1, , }

1

Prob 1 Prob min

1 Prob 1 1 .

A jj g

g
g

j n
j

x A x W n x

W n x F x

∈

=

⎡ ⎤⎡ ⎤Φ = < = − >⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤= − > = − −⎡ ⎤⎣ ⎦⎣ ⎦∏

…
 (2.24)

To evaluate *()B yφ , we first find its distribution *()B yΦ . For a given

value y, when *B 1g+

N

values which are less than *A , the other group −Λ contains all the
remaining N-g-m bad designs which are greater than y. According to the
value of m and the way two groups formed, we can express the distribution

*()B yΦ as the following exclusive unions:

()

{ }
{ 1, , }

 has at least elements

Prob

Prob max () and min ()i ji jg N
s

y W y

W n y W n y
−∈Λ ∈ΛΛ⊂ +

Λ

⎡ ⎤Φ = <⎣ ⎦
⎡ ⎤
⎢ ⎥= < >⎢ ⎥
⎢ ⎥⎣ ⎦

…
∪

(2.25)

{ 1, , }
 has elements

Prob max () and min ()
N g

i ji jm s g N
m

W n y W n y
−

−

∈Λ ∈Λ= Λ⊂ +
Λ

⎡ ⎤= < >⎢ ⎥⎣ ⎦∑ ∑
…

. (2.26)

We have

[]Prob max () () m
i ni

W n y F y
∈Λ

⎡ ⎤< =⎣ ⎦ (2.27)

and

[]Prob min () 1 () N g m
j n

j
W n y F y

−

− −

∈Λ

⎡ ⎤> = −⎢ ⎥⎣ ⎦
. (2.28)

W n() are divided further into two groups, one group Λ contains m (≥s)
= <W y is true, the bad design data W n() , … , [g+s]

B* [g+s]

Ordinal Optimization Fundamentals 35

Notice that max ()ii
W n

∈Λ
 and min ()j

j
W n

−∈Λ
 are independent, we have from

Eqs. (2.26)–(2.28) that

[] []

[] []

*
{ 1, , }

 has elements

() () 1 ()

() 1 () .

N g
m N g m

B n n
m s g N

m

N g
m N g m

n n
m s

y F y F y

N g
F y F y

m

−
− −

= Λ⊂ +
Λ

−
− −

=

Φ = −

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠

∑ ∑

∑

…
 (2.29)

Taking derivative on Eq. (2.29) yields

 [] []1
*() () 1 () ()s N g s

B n n

N g
y s F y F y f y

s
φ − − −−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. (2.30)

Exercise 2.9: Show Eq. (2.30).

Now with expressions Eqs. (2.23) and (2.30) of *()A xφ and *()B yφ

plugged in, we are ready to proceed on the integration in Eq. (2.22). We
have

[]

[] [] []1 1

Prob ' '

() 1 () () 1 () () .
x

s N g s g
n n n n n

B A

N g
s F y F y f y dyg F x f x dx

s

+∞
− − − −

−∞ −∞

<

−⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∫ ∫

 (2.31)

Using substitution, letting ()nu F x= and ()nv F y= , we can further

[] [] []
1

11

0 0

Prob ' ' 1 1
u

N g s gsN g
B A gs v v dv u du

s
− − −−−⎛ ⎞

< = − −⎜ ⎟
⎝ ⎠

∫ ∫ . (2.32)

Using induction method, one can show that

 [] []
11

11

0 0

1 1
u

N g s gs N
gs v v dv u du

s

−
− − −− ⎛ ⎞

− − = ⎜ ⎟
⎝ ⎠

∫ ∫ . (2.33)

n

simplify Eq. (2.31)

36 Chapter II

As a consequence, we have

 []Prob ' '

N g
s

B A
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠< =

⎛ ⎞
⎜ ⎟
⎝ ⎠

, (2.34)

which implies

 Prob 0

N g
s

S G
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ∩ = ⎤ =⎣ ⎦ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 (2.35)

and furthermore

 Prob 1 1 Prob 0 1

N g
s

S G S G
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ∩ ≥ ⎤ = − ⎡ ∩ = ⎤ = −⎣ ⎦ ⎣ ⎦ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 . (2.36)

This shows that for the worst case where all observed performance values

()ˆ ,iJ nθ are i.i.d., the alignment probability of horse race rule is the same
as that of blind pick. As a result, for general cases where the true
performance values are different, the alignment probability of horse race
rule is bounded from below by the blind pick alignment probability

1

N g
s
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠−

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

The desired result Eq. (2.17) then follows from the exponential conver-
gence w.r.t. the size of G and S for blind pick.

Note exponential convergence of OO w.r.t. the size of G and S was
originally given in (Lee et al. 1999). The noises were assumed to obey
normal distributions. This assumption allows one to find the same LFC for
noises with non-identical distributions, but as we have shown above, the

Ordinal Optimization Fundamentals 37

normal distribution assumption is not necessary for our case where noises
obey identical distribution.

Exercise 2.10: If in the observation data ()ˆ ,iJ nθ = () ()i iJ W nθ + , the

noises ()iW n obey normal distributions 2(0, /)iN nσ . Show the misalign-
[]| 0=

noises ()iW n obey normal distributions 2(0, /)N nσ with 2 2

1, ,
max ii N

σ σ
=

=
…

.

5 Universal alignment probabilities

The discussion in Section 2 and the demonstration in Section 3 suggest that
the concept of alignment probability Prob[|G∩S|≥k] is rather general and can
be problem independent. Thus it is possible to establish some universal
scheme for all optimization problems to help narrow down the search for
“good enough” designs as a function of the number of crude samples taken,
N, the approximate size of the estimation error, σ2, the type of problem class,
C , and finally the selection procedure used. This can be very useful during
the initial phase in many problems that involve (i) a structureless and
immense search space and (ii) performance evaluation that is corrupted
by large noise/error and/or is computationally intensive. We explore this
possibility below (see also (Lau and Ho 1997)). Alert reader may point out
here that our aim here bears resemblance to the extensive literature in
statistics on rank and selection (R&S) (Gupta and Panchapakesan 1979;
Santer and Tamhane 1984; Goldman and Nelson 1994). There are,
however, two major differences. First, the R&S schemes deal with a search
space of usually less than a hundred7, often in tens (such as in comparison
study of the efficacy of different drugs) while we consider subset selection
from Θ that has size in billions and zillions. Second, the cardinal notions
of “distance of the best from the rest” and the probability of
“coincidence of the observed best with the true best” used in R&S have
very little significance in our problem domain. Instead, we focus on
softened criterion and different selection procedures.

7 Although recent development of R&S allows to deal with a design space as

large as 500 (Nelson et al. 2001; Wilson 2001), this is still comparatively small
than the size that OO can handle.

ment probability Prob | S G∩ is no greater than the scenario where the

38 Chapter II

5.1 Blind pick selection rule

We obtain the simplest result on alignment probability by using the blind
pick selection rule, i.e., we blindly pick out the members from the selected
set, S without any evaluation of the performances from N samples.
Equivalently, we can say that the performances in Eq. (2.1) is sampled
with the noise variance being infinite (in the demonstration of Section 3,
we used the noise distribution of U[0,10000] to approximate the blind pick
selection rule when the range of the true performance is [0,200]). For
given size of S and G being s and g respectively, the alignment probability
for blind pick (BP) is

()
()min ,

, , , Prob
g s

i k

g N g
i s i

AP s g k N BP G S k
N
s

=

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= = ⎡ ∩ ≥ ⎤⎣ ⎦⎛ ⎞

⎜ ⎟
⎝ ⎠

∑ . (2.37)

Exercise 2.11: Try to derive Eq. (2.37) before reading the explanation

below.

The validity of Eq. (2.37) can be seen as follows: There are total
N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

8

ways of picking s out of N designs. Suppose i of these s designs actually

belong to G, then there are
g
i

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ways for which this is possible. The

remaining s-i designs can be distributed in
N g
s i

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 ways. The product of

these two factors constitutes the total number of ways that we find exact i
members of G by picking out s designs out of N. Dividing this product by

N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 yields the probability for i. Summing over all i ≥ k gives Eq. (2.37).

8
N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 represents the number of different choices of s designs out of N

distinguished ones, i.e.,
()

!
! !

N N
s s N s

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

.

Ordinal Optimization Fundamentals 39

Fig. 2.13. Required subset size vs. alignment level for different alignment proba-
bilities

Fig. 2.13 shows a plot for required size of s, with g = s as a function of
alignment level k for AP = 0.99, 0.95, and 0.90. These curves can be used as
a lower bound (LB) for the UAP for any problems. It is instructive to see
that to insure with probability (w.p. for short) 0.99 that there are at least two
top 8% choices out of 1000 choices, we only need to blindly pick 80
samples – a more than ten fold reduction in search effort. Note this number s
is an upper bound for selection since it is done without any knowledge.
Imagine how much better we can do with some approximate knowledge
about the problem. This is the essence of ordinal optimization! The next
subsection will discuss the first of such less random selection rules.

5.2 Horse race selection rule

In Section 3 we demonstrated the horse race selection rule for S. The
procedure of this rule is:

• We take N samples uniformly from Θ
• Using a crude model, we estimate the performances of these N samples

as)(ˆ, . . .),(ˆ
1 NJJ θθ

• We sort these samples according to their estimated performances as

[1] []
ˆ ˆ(), . . . , ()NJ Jθ θ

• Select the observed top-s members of the N samples as the selected set S.

0 4 8 12 16 20
40

80

120

160

180

BPLB=0.99
BPLB=0.95
BPLB=0.90

k = alignment level

40 Chapter II

Then the alignment probability AP≡Prob[|G∩S|≥k] is defined the same
way as the blind pick probability in the above subsection. However, in this
case we no longer have a closed form solution as in Eq. (2.37). Further-
more, it is intuitively clear that the AP will also depend on the nature of
the problem, i.e., the class of Ordered Performance Curve (OPC) of the
problem as illustrated in Fig. 2.3 in Section 2. Hence we write AP=
F(g,s,k,N,C /Horse Race). If we normalize the OPC by defining

[] [1] [] [1]() /()i i Ny J J J J= − − (2.38)

[]() (1) /(1)i ix x i Nθ ≡ = − − (2.39)
we can attempt to fit the five different types of OPC (see Section 3) by the
Incomplete Beta Function with parameters α and β given by

() ()
() () () 11

0

, 1
x

F x z z dzβαα β
α β

α β
−−Γ +

≡ −
Γ Γ∫ (2.40)

with the normalized OPC as

 () 1 1, ,x F xα β
α β

⎛ ⎞
Λ ≡ ⎜ ⎟

⎝ ⎠
. (2.41)

For different values of α, β we can describe the different shapes of five
different types of OPC and their significances in Fig. 2.14 and Fig. 2.15
below, where in Fig. 2.14 the Normalized Performance Densities are the

For a given pair of α and β, we can determine the AP by a simple
simulation model in the same way as the Excel demo example outlined in
Section 3. Extensive simulation has been done on these normalized OPCs
(Lau and Ho 1997).

set S. For a given problem, the designer/optimizer picks the crude but
computationally easy model to estimate the performance. S/he specifies
what is meant by “good enough”, namely the size of G, g. S/he also have
some rough idea of the parameters, σ2 and C 9 (hence the values α and β in
Eq. (2.41) above). For practicality we set AP≥0.95. Then we can

9 A rough idea of C can be gleamed always from the N samples

)(ˆ, . . .),(ˆ
1 NJJ θθ .

The principal utility of AP in practice is to determine the required size of the

derivatives of the inverse functions of the Normalized OPCs, respectively.

Ordinal Optimization Fundamentals 41

experimentally determine a function Z(g,k/N,C,σ2,AP) which tells how

of the set G with high probability. The significance of this information is
obvious. We have engineered a reduction of the search and computational
effort from Θ to N to |S| = s.

Fig. 2.14. Examples of beta density and corresponding standardized OPCs

Fig. 2.15. Partitions of the ab-plane for five OPC categories, where a = logα, b = logβ

large must the set S be in order to insure that it contains at least k member

Flat

 < 1, b > 1 < 1, b < 1 =1, b = 1 > 1, b > 1 > 1, b < 1
f (y) f (y)

y y y yy
0 0 0 0 01 11 1 1

U-Shaped

Normalized OPCs

Neutral

Normalized Performance Densities

Bell Steep

∧(x)

1

1

1 1 1 1

0 0x x x x x
0 0 01 1 1 1

∧(x) ∧(x) ∧(x) ∧(x)

α α α α α
f (y)f (y)f (y)

42 Chapter II

Extensive simulation experiments have been carried out with a total of
88 normalized OPCs (classified into 5 types of OPCs) using different
α and β ’s

α, β∈{ 0.15, 0.25, 0.4, 0.65, 1.0, 1,5, 2.0, 3.0, 4.5, 8.0}

which covers the ab plane (a = logα, b = logβ) in Fig. 2.15 above with 10
U-shape class OPCs, 19 neutral class OPCs, 15 bell shaped class OPCs,
and 22 each of the flat and steep class as defined in Fig. 2.14. The required
sizes of S, the function Z(g,k/N,C,σ2,AP), are then tabulated as well as
fitted via regression by

31 2

4(,) ZZ ZZ k g e k g Z= + , (2.42)

Table 2.1. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g)

 U[–0.5,0.5] Noise
OPC class

∞
B-Pick Flat U-shape Neutral Bell Steep

Z1 7.8189 8.1378 8.1200 7.9000 8.1998 7.7998
Z2 0.6877 0.8974 1.0044 1.0144 1.9164 1.5099
Z3 –0.9550 –1.2058 –1.3695 –1.3995 –2.0250 –2.0719
Z4 0.00 6.00 9.00 7.00 10.00 10.00

 U[–1.0,1.0] Noise
OPC class

∞
B-Pick Flat U-shape Neutral Bell Steep

Z1 7.8189 8.4299 7.9399 8.0200 8.5988 7.5966
Z2 0.6877 0.7844 0.8989 0.9554 1.4089 1.9801
Z3 –0.9550 –1.1795 –1.2358 –1.3167 –1.6789 –1.8884
Z4 0.00 2.00 7.00 10.00 9.00 10.00

 U[–2.5,2.5] Noise
OPC class

∞
B-Pick Flat U-shape Neutral Bell Steep

Z1 7.8189 8.5200 8.2232 8.4832 8.8697 8.2995
Z2 0.6877 0.8944 0.9426 1.0207 1.1489 1.3777
Z3 –0.9550 –1.2286 –1.2677 –1.3761 –1.4734 –1.4986
Z4 0.00 5.00 6.00 6.00 7.00 8.00
where Z1, Z2, Z3, Z4 are constants of regression depending on OPC types,
the noise level, g, and k values10. These results are tabulated in Table 2.1,
Fig. 2.16 and Fig. 2.17(a)–(e) (where we assume the noise contains
uniform distribution with half-width W, i.e., U[–W, W], W = 0.5, 1.0, 2.5.)
against normalized OPC in [0,1].

10 We do not believe a linear regression function would fit the data well. Thus, a

product form is the next simplest nonlinear function we can try.

Ordinal Optimization Fundamentals 43

Fig. 2.16. Subset size interpolated from simulated data for the neutral class OPC
and W = 1.0

Fig. 2.17(a). Subset size for the flat OPC class at different noise levels with g = 50

200

160

120

80

s
=

 s
ub

se
t s

iz
e

40

0
0 4 8 12 16

g = 200

g = 20
g = 10

20
k = alignment level

44 Chapter II

Fig. 2.17(b). Subset size for U-shaped OPC class at different noise levels with
g = 50

Fig. 2.17(c). Subset size for the neutral OPC class at different noise level with
g = 50

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

BP

W=2.5

W=1.0

W=0.5

k = alignment level

s
=

su
bs

et
 s

iz
e

Ordinal Optimization Fundamentals 45

Fig. 2.17(d). Subset size for the bell-shaped OPC class at different noise levels
with g = 50

Fig. 2.17(e). Subset size for the steep OPC class at different noise levels with
g = 50

s
=

su
bs

et
 s

iz
e

46 Chapter II

These results have been extensively tested and found to be very reliable
in large number of studies ((Lau and Ho 1997), and also see reference list
in this book and at CFINS website:

 http://www.cfins.au.tsinghua.edu.cn/en/resource/index.php).
Consequently, we designated these AP as “universal”.
As an example, consider the following function defined on the range

Θ=[0,1]

 () ()1 2 3sin 2J a a aθ πρθ θ= + + , (2.43)

where a1 = 3, a2 = 5, a3 = 2. For ρ = 500, i.e., there are five hundred cycles
in the range [0,1]. To estimate the exact functional form of Eq. (2.43)
without prior knowledge, it may require extensive evaluation of the entire
domain [0,1] at many points. However, here we shall consider using a
crude model to approximate Eq. (2.43). In particular, based on the obser-
vation that there is a general rising trend in [0,1], we use a linear function

 ˆ() 5J θ θ= . (2.44)

Notice that only the linear part of Eq. (2.43) is contained in the crude
model. In other words,

error)()(ˆ += θθ JJ .

By generating N=1000 uniform samples from [0,1] using the crude model,
we have

{ }1 2 1000

ˆ , ,...,N θ θ θΘ = .11

11 Astute readers may notice that in the following we apply ordinal optimization

to find good enough designs in N, and might wonder how to find good enough
designs in Θ instead. The quick answer is that N is representative of Θ. When both
N and Θ are large enough (which this example satisfies) the selected set that is
selected from N also has a high probability to contain good enough designs in Θ,
and the difference between the two alignment probabilities can be ignored for
engineering purpose. But this notion will be quantified and made precise in
Chapter VII Section 1.

Ordinal Optimization Fundamentals 47

() ()()
ˆmax

i i iW J Jθ θ θ∈ Θ= −

Fig. 2.18. Alignment probability validation for the example

1. The alignment probabilities are in general greater than 0.95, and this
can be attributed to the conservative estimate of the function Z(•/•).

The noise/error range can be estimated by
after adjusting for the mean values. We then select the neutral OPC class for
this example. Once the good enough criterion g and the alignment level k are
specified, the required selected subset size s from the crude model Eq. (2.44)
is given by the function Z(g,k/neutral,W) in Table 2.1. Notice that these
selected elements correspond to the first s members of N, because of the
monotone property of the crude model. Then, we compare the selected
subset with the true model to determine which indeed matches the good
enough designs. 1000 experiments, each with a different N, are generated, so
as to validate the actual observed alignment probability against AP = 0.95.
We determined the alignment of each subset of size s = Z(g,k/neutral,W),
where g = 20, 30,. . .,200 and 1 ≤ k ≤ 10. Some of the alignment probabilities
are plotted in Fig. 2.18. Each line in Fig. 2.18 represents the fraction of the

matched in the selected set. Note that:

1

0.98

0.96

g = 70

g = 100

g = 120

g = 150

 A
lig

nm
en

t p
ro

ba
bi

lit
ie

s

0.94

0.93
1 2 4 6

k = Alignment level
8 10

1000 experiments in which there are at least k of g good enough designs

48 Chapter II

2. Some fluctuation of the alignment probabilities are observed, which
is due to the residues of the regression function Z.

The concept of universal alignment probability and the function Z(•/•)

have been validated many times in all papers on OO (Lau and Ho 1997;

Finally, we note that the blind pick AP of Eq. (2.37) of Section 5.1 is always
a quick-and-dirty lower bound that is useful.

Exercise 2.12: Recall that in Section 2 we introduced 5 types of OPCs.
Suppose we have a problem with many good designs (the flat type), and a
problem with many bad designs (the steep type). Suppose the noise level
is small. If we define the top-5% designs in both problems as the good
enough designs, please use the UAP table just introduced to calculate the
value of s such that Prob[|G∩S|≥1]≥0.95. Which problem requires a larger
selected set? Is this result counter intuitive? Shall we set the same value of
g for both problems?

6 Deterministic complex optimization problem
and Kolmogorov equivalence

In previous sections, OO was developed to deal with stochastic complex
simulation-based optimization problems (SCP), in which the crude model
is a stochastic model of fewer replications, i.e.,

 () () ()est true random noiseJ Jθ θ θ= + . (2.45)

There is another type of simulation-based optimization problems, where
the true performance can only be obtained by deterministic and complex
calculation (e.g., a large-scale finite element calculation). The crude model
is usually a deterministic but computationally fast model, i.e.,

 () () ()est true deterministic complex errorJ Jθ θ θ= + . (2.46)

This is called the deterministic complex problems (DCP). In fact, the
example shown in Section 5 above is just one such DCP. There are also
many successful applications in both types, especially for the DCP, (Yang
1998; Guan et al. 2001; Lin et al. 2004) just to name a few. One question
immediately arises:

Shen and Bai 2005) and more examples will be shown later on in this book.

Ordinal Optimization Fundamentals 49

In what sense are OO in DCP and OO in SCP equivalent s.t. the UAP
table in Section 5 can be used in both cases?

We address this question in this section.
First, let us compare the two problem formulations in Eqs. (2.45) and

(2.46). Digital computers have pervasive applications in simulation-based
optimization. We cannot generate pure random numbers in a digital com-
puter. Instead, we use pseudo random number generator (PRNG). When
both the PRNG and the seed are fixed, all the numbers thus generated
compose a deterministic and complex sequence. As long as either the
PRNG or the seed is not known to the user, which is the case in any
engineering practice, the number thus generated is unpredictable. Then
tremendous amount of simulation literature (Fishman 1996; Yakowitz
1977; Gentle 1998; Landau and Binder 2000) have established that we can
regard the number generated by a PRNG as a random number since they
pass rigorous statistical tests. The concept of Kolmogorov complexity
(Li and Vitányi 1997) also justified that we can regard the unpredictable
deterministic number as a random number, which means that there is no
fundamental difference between the two problem formulations in Eqs.
(2.45) and (2.46), from an engineering viewpoint.12

Second, let us look at the application procedures for OO in SCP and OO
in DCP (Box 2.2), which are almost identical.

There are three differences between the above two columns: step 2, 3,
and 4. In Step 2 and 3, the differences are mainly about the names. The
two Step 2’s are equivalent in the sense that the performance evaluation
is a complex and time-consuming calculation. The two step 3’s are
equivalent in the sense that a complex deterministic error and a random
noise is equivalent w.r.t. Kolmogorov complexity, as aforementioned. We
now focus on Step 4 and answer why the UAP table in Section 5 for SCP
can be also used for DCP. Suppose we want to regress another UAP table
for DCP. Then we need to repeat the experiments, exactly as we did in
Section 5, when Θ is extremely large that almost no design can be selected
more than once in the initial random sampling of N designs. Thus all the
experimental data are statistically equivalent to those obtained when
regressing the UAP table for SCP. So the table thus regressed should be

12 In principle, for any DCP for which we wish to apply OO, we should go

through the same rigorous statistical analysis as we have done in the simulation
literature to establish that the errors can indeed be equated to random noises in
Eq. (2.46). For engineering applications, we often take as an article of faith based
on the Kolmogorov equivalence that the complex incompressible and unpredi-
ctable error sequence in Eq. (2.46) are indeed random. So far this assumption has
worked in all references cited.

50 Chapter II

the same as the UAP table in Section 5, subject to statistic error. This is
why we can use the same UAP table in both SCP and DCP.

OO in SCP OO in DCP
Step 1: randomly sample N designs

from Θ
Step 1: randomly sample N designs from

Θ
Step 2: stochastic crude model-based

performance evaluation
Step 2: deterministic crude model-based

performance evaluation
Step 3: estimate OPC and the noise

level. User specifies g and k.
Step 3: estimate OPC and the error

level. User specifies g and k.
Step 4: calculate s using the UAP table Step 4: calculate s using the UAP table
Step 5: select the observed top-s

designs as S
Step 5: select the observed top-s designs

as S
Step 6: The theory of OO ensures there

are at least k good enough desi-
gns in S with high probability.

Step 6: The theory of OO ensures there
are at least k good enough desi-
gns in S with high probability.

Readers may also consider the case when there are correlations among

the deterministic errors in Eq. (2.46) for different designs. This can be
regarded as correlated noise or independent non-identical noise, which will
be addressed in Chapter VII, Section 3. Here we just summarize that it has
already been shown by numerical experiments and theoretical explanations
that the correlation among the noises seldom can hurt and actually helps
most of the time (Deng et al. 1992). For the case of independent non-

method in this chapter to deal with the problem (Yang 1998).
In short, as long as Jtrue in Eq. (2.46) can be assumed to be Kolmogorov

complex, we can apply OO to deal with the optimization problem

 ()truemin Jθ θ∈Θ , (2.47)

given the crude model

 () () ()est true noise/errorJ Jθ θ θ= + . (2.48)

We estimate the noise/error level, and the ordered performance curve. As

Box 2.2. Comparison of the procedures for OO in SCP and for OO in DCP

identical noise, there are ways to divide the designs into several groups,

long as the design space Θ is extremely large, we can use the UAP table

within each of which the noise are i.i.d. Then we can easily extend the

(Table 2.1 in Section 5) to decide the appropriate selection size.

Ordinal Optimization Fundamentals 51

7 Example applications

7.1 Stochastic simulation models

Let us consider the cyclic server problem discussed in (Ho et al. 1992).
The system has 10 buffers (of unlimited capacity) for 10 arrival streams
modeled by Poisson processes with rates λ1, . . . , λ10 respectively. There is
a single cyclic server serving the 10 buffers in a round-robin fashion: at
buffer i, mi jobs are served (if there are less than mi jobs in the buffer, then
serve all the jobs until the buffer becomes empty); then, the server moves
from buffer i to buffer i + 1 with a changeover time of length δi (Fig.
2.19). A holding cost of Ci units at buffer i is incurred. The objective is to
find a service policy (m1, m2,. . . , m10) such that it minimizes the average
holding cost per job per unit time in the system. We assume that 0 < mi <
10 for all i; in other words, no more than 10 jobs may be served at each
buffer for any policy. The design space Θ is therefore the lattice

(){ }1 2 10, ,..., 0 10,im m m m m iΘ = = ≤ ≤ ∀ .

The cost coefficients and arrival rates are respectively

Fig. 2.19. Cyclic server serving K stream of arrivals

52 Chapter II

() ()
() ()

1 10

1 10

,..., 1,1,1,10,1,50,1,1,1,1 ,

,..., 1,1,1,1,1,1,1,1,1,1 ,

C C

λ λ

=

=

with a service rate of the server µ = 20, and the mean changeover time of
δi is

E(δi) = 1/30, for all i.

All random quantities are exponentially distributed. Notice that buffer 4
and buffer 6 have much higher cost coefficients.

We have generated 1000 policies (designs) from Θ and run long simu-
lations for each policy to obtain their true ordering.13 After 16753 jobs
have arrived the system, the best 20 ordered designs are

{θ[1],θ[2],…,θ[20]}={761,166,843,785,417,456,205,925,234,70,586,91,93,

493,818,565,928,250,716,840},14

which will be taken as the true ordering of the top 20 designs. Assume that
we are interested in obtaining any of these top 20 designs; i.e., they form
the good enough subset from the 1000 design samples; then, we could
have stopped the simulation at much earlier time instants. Suppose that we
had terminated the simulation at the time when 161 and 330 jobs had
arrived in the system.15 Let us call these two time instants T1 and T2,
respectively, and we have taken the corresponding noise levels to be large
and medium. Without any prior knowledge, we conjectured a neutral OPC
for the 1,000 designs. Then, the required subset selection sizes at these two
instants are given as

()
()

1

2

20,1 neutral OPC, large noise 65,

20,1 neutral OPC, medium noise 47.
T

T

s Z

s Z

= =

= =

13 Each policy is generated as follows: a buffer size between 0 and 10 inclusive is

generated for each mi, i = 1,..., 10. Thus, each design is a point sampled from the lattice Θ.
14 The numbers are the indexes of designs.
15 The number of jobs 161, 330 and 16753 correspond respectively to 500, 1000, and

50000 standard clock ticks. Simulation up to 50000 clock ticks is needed for the confidence
intervals of the performance values of all designs to separate from each other. A standard
clock tick is equivalent to an event happening to all 1000 systems operating under all
policies. See Chapter VII Section b for further details about the standard clock.

Ordinal Optimization Fundamentals 53

Let us first examine the 65 designs at T1,

1TS
139, 595, 945, 905, 156, 658, 649, 431, 969, 233, 130, 204,307,

459, 126, 597, 285, 643, 761, 958, 681, 242, 379, 83, 927};

1T .
At T2, the 47 selected designs are

2TS
567, 447, 417, 980, 969, 234, 928, 366, 686, 201, 702, 738, 704,
111, 255, 314, 982, 361, 785, 640, 773, 910, 901, 235, 455, 70,
914, 172, 925, 335, 897, 31, 456, 217, 176};

we see that ten designs (in boldface and larger italics) from the good enough
subset have been captured. The true top-20 designs in order by definition are

{761,166,843,785,417,456,205,925,234,70,586,91,93,493,818,565,
928, 250,716,840}

It is also interesting to point out that, from our experiments, we have
observed a very fast convergence of design orders. (See Section 4 for more
details on the exponential convergence of ordinal comparison.)

7.2 Deterministic complex models

After the discussion in Section 6, we now can look at the example dis-
cussed in the end of Section 5 from another aspect. The optimization problem
is to minimize

 () ()1 2 3sin 2J a a aθ πρθ θ= + + , (2.49)

where a1 = 3, a2 = 5, a3 = 2, ρ = 500, θ∈[0, 1]. The deterministic crude
model used to describe the increasing trend of J(θ) is

 ()ˆ 5J θ θ= . (2.50)

Since designs are taken randomly from the interval [0,1], the steps given in
Section 5 are the steps to apply UAP table to decide selection set size s to

= {201, 166, 565, 818, 702, 335, 487, 471, 73, 331, 843, 172,

982, 914, 529, 655, 567, 828, 640, 621, 53, 301, 527, 924, 165,

we see that six designs (in boldface and larger italics) are included in S

= {761, 595, 565, 873, 843, 139, 525, 105, 166, 818, 477, 643,

105, 840, 29, 179, 189, 58, 305, 40, 38, 9, 525, 31, 286, 17, 366,

54 Chapter II

solve this deterministic complex optimization problems. As seen from this
example, by adopting a softened criterion, one can indeed achieve good
alignment results by employing a very crude model in lieu of a complex
model. This shows the importance of capturing the trend or general behavior
of a system prior to the study of essential details. Perhaps, this also explains
why a designer’s intuition is often more valuable in the initial phase of a
design process. Once a number of good enough designs are singled out,
detailed studies of these designs can be done in the subsequent stages of the
design process.

8 Preview of remaining chapters

So far, what we have presented in the first two chapters are introductory
OO methodology and its foundations. Following the steps of OO and
examples given, the readers can apply OO to solve real-world problems. In
fact the majority of the 200 some references on OO employed no more
than the theory and tools presented so far.

The remaining part of the book can be read more or less independently
as shown in the logical dependency graph in Fig. 2.20 of the below. It is
divided as three parts: Chapter III, IV, V and VI are major extensions of
the OO method; Chapter VII deals with additional extensions; Chapter
VIII presents case study for real-world examples.

Fig. 2.20. Organization of the contents of the book

For the major extensions, we focus on Selection Rules in Chapter III. So
far, we have studied two basic selection rules, namely, blind pick and
horse race. We established analytical expression for blind pick and UAP
table for the horse race. Although it is sufficient to use these rules to solve
most application problems, it is still interesting to ask the natural question:

Ordinal Optimization Fundamentals 55

how about other selection rules? The purpose of Chapter III is to introduce
more selection rules, compare the efficiencies of different selection rules,
and give guideline in choosing selection rules based on the availability of
computing budget.

As a second major extension to Ordinal Optimization method, we focus
on optimization problems with multiple objective functions in Chapter IV.
When there are multiple criteria (refers to as the vector case), ordinal
comparison has to be done in a more complicated way than the scalar case
of single objective function. As a result, the operative concept in multi-
criterion optimization becomes the concept of Pareto optimum which was
first formulated way back by Vilfredo Pareto. A design is said to be Pareto-
optimal if it is not dominated by any other designs (i.e., there exists no
other design that is better for at least one objective function value, and
equal or superior with respect to the other objective functions). By
introducing a natural order “layers” in design space, we generalize ordinal
optimization from the scalar case to the vector case. We quantify how many
observed layers are enough to contain the required number of designs in the
Pareto frontier with high probability.

As a third major extension to Ordinal Optimization method, we focus in
Chapter V on optimization problems with constraints. Similar to the objec-
tive function, we assume that the evaluation of constraints is also time
consuming. So, the simple method of re-defining the design space as the
feasible set then applying the tools of unconstrained OO does not work. To
get around the time consuming evaluation barrier in constraints, we follow
the idea of “crude model” in OO. Our key idea is to use a rough estimate
of feasibility and allow the selected set to include some infeasible designs.
Naturally to achieve the same level of alignment, more designs should be
selected (thus a larger selected set is needed) for constrained OO. We
quantify this additional correction.

A fourth extension to Ordinal Optimization method is given in Chapter
VI. We deal with the memory limitation problem when we are trying to
store a design on a computer. This problem comes naturally when we con-
sider strategy optimization problems such as searching for good enough
feedback control strategy for a complex system. Since for anything other
than toy problems, the search space for admissible strategies can be
enormously large, and the representation of a multi-dimensional function
can be taxing on any size of computer memory, we need a way to search
systematically in the strategy space that takes the limitation of memory
storage into account. OO is incorporated into such a framework to search
in the strategy space that can be implemented on a computer.

Further extensions of OO methodology requiring relatively little chan-
ges in solving real world problems will be discussed in Chapter VII.

56 Chapter II

Firstly, in previous study, no matter how large the design space is, we
randomly sample N = 1000 designs and then apply OO to find some of the
truly good enough designs (of these 1000 designs) with high probability.
We show that the difference between the truly good enough designs (top-
g%) of these 1000 designs, and the truly good enough designs (top-g%) of
the entire design space is negligible for practical purpose. Thus further
justify the practical use of OO for purists. Secondly, we show how we can
take advantage of parallel computing ideas when applying OO to speed up
the computation. The technique described is general. But the explanation is
done by way of a specific example for clarity. Thirdly, in the previous
consideration, only the i.i.d. additive noise is considered. However, the
additive noise in practice might not be i.i.d. For example, the well adopted
common random number generator technique is usually used in practice to
reduce the variance of the observation noise. The observation noise then
may be correlated. In some other times, the additive noise may be related
to the performance of the solution, i.e., the noise is independent, but non-
identical. We show that knowledge of these dependencies can help to
improve the efficiency of OO method. Finally, as we mentioned earlier,
Ordinal Optimization is not intended to replace the other optimization
techniques. Instead, there are natural ways to combine ordinal optimization
(including the key element of ordinal comparison) with other techniques,
such as genetic algorithm to further improve the performance thus found.

In Chapter VIII, we present four real world application examples of
applying OO method. The first example is a clothing manufacturing exam-
ple. The problem is difficult and it is prohibitive to search for the best
solution considering the tremendous computing budget involved. Using
ordinal optimization ideas introduced in Chapter I and Chapter II, we
obtained very encouraging results – not only have we achieved a high pro-
portion of “good enough” designs but also tight profit margins compared
with a pre-calculated upper bound. There is also a saving of at least 1/2000
of the computation time if brute-force simulations were otherwise used. The
second real-world example is the Turbine blade design problem. We
demonstrate how OO in Chapter I and II can be applied to solve such a
deterministic complex problem. The third real-world example is the resource
planning of a complex remanufacturing system involving two conflicting
performance indices can only be evaluated by simulation. We demonstrate
the application of Constrained Ordinal Optimization method developed in
Chapter V and Vector Ordinal Optimization method developed in Chapter
IV to the problem. At last, we demonstrate and apply extension of OO under
limited memory developed in Chapter VI to the long standing strategy
optimization problem known as the Witsenhausen Problem.

