
Chapter II Ordinal Optimization Fundamentals 

1 Two basic ideas of Ordinal Optimization (OO) 

There are two basic ideas in OO:  
 

• “Order” is much more robust against noise than “Value” 
• Don’t insist on getting the “Best” but be willing to settle for the “Good 

Enough” 
 

Of course readers may rightly point out that these ideas are hardly new. 
Good engineers and designers do this all the time when confronted with 
difficult and complex problems of performance evaluation and optimi-
zation. Our contribution in this book is simply that we have developed a 
theory to quantify these two ideas. The practice of these two ideas is now 
knowledge-based instead of being experience-based. The expertise of a 
good designer acquired from experience will now be available to everyone 
who uses the tools discussed in this book. Moreover, the user will have 
numerical measures rather than just gut feelings. The quantification will 
come later in the book. For now let us simply explain the ideas in intuitive 
terms. 

Idea No.1 Order is easier than Value. Imagine you hold two 
identically looking boxes with unknown content in your two hands. You 
are asked to judge which one is heavier than the other – an “ordinal” 
question. Almost all of us can correctly tell the answer, even if there is 
only a very slight difference between the weights of the two boxes. But if 
we are asked to estimate the difference in weight between the two boxes – 
a “cardinal” question, we will have a hard time. This is the essence of the 
first tenet of OO. In fact later on in this chapter we shall prove that 
“Order” converges exponentially fast in stochastic simulation models 

1/2

An intuitive and graphical illustration of this idea is shown in Fig. 2.1. 
as discussed in chapter I. 

 convergence rate of “Value” or “Confidence Interval” against the 1/(n)
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A B
 

Fig. 2.1. Comparison of two values A and B corrupted by noise 

We have two values A and B. But we can only observe the values through 
noises, which are zero mean and normally distributed. If we compare 
samples of these noisy values of A and B, then we will reach an incorrect 
answer, i.e., A > B, only when the samples of A is larger than that of B. This 
happens basically when the samples fall in the shaded triangle area. This 
area decreases rapidly as the values of A and B are drawn apart. 

Idea No.2 Nothing but the best is very costly. The second tenet of OO 
rests on the idea of relaxing the goal of performance evaluation. We are 
asked to retreat from “nothing but the best” to a softer goal of being “good 
enough”, e.g., settle for anything in the top-g choices. The small retreat can 
buy us quite a bit in the easing of the computational burden. Again the 
quantification will come later on in the chapter. However, an intuitive ex-
planation is helpful to fix ideas at this point. When we are searching only 
for the best in Θ, there is only one solution (unless of course in the less 
common cases when there are multiple optima), and we can easily fail 
(i.e., the truly best design is not the observed best one). But if we are 
willing to settle for any one of the top-2 choices, we fail only when neither 
design is within the observed top-2, and if we are willing to settle for 

observed top-g, the probability of which is almost the first failure proba-
bility to the power of g.  

any of the top-g choices, there will be at least g! satisfactory alternatives,
the possibilities increases superlinearly. More technically, for g = 2, the pro-
bability of which is almost the square of the previous failure probability for 
a large enough Θ; for top-3, we fail only when none of these three designs
is within the observed top-3, the probability of which is almost the cube
of the first failure probability; and for top-g, where g is small compared
to the size of Θ, we fail only when none of these g designs is within the 



Ordinal Optimization Fundamentals 9 

Exercise 2.1: Prove the above statements concerning the failure proba-
bilities. 

This exponential decrease of failure probability (thus the exponential 
increase in successful probability) contributes to significant decrease in 
search, and hence computational cost. Another way of clarifying the advan-
tage of this idea is to observe that independent noisy observation or 
estimation error may worsen as well as help the performance “order” of a 
particular choice of θ. Thus, as a group, the top-n choices can be very robust 
against perturbations in order so long as we don’t care about the exact order 
within this group. 

Lastly, it is not hard to convince oneself that the ease of computational 
burden through these two ideas is not additive but multiplicative since they 
are separate and independent factors. Together, as we shall demonstrate 
throughout this book, they produce orders of magnitude improvement in 
efficiency. Problems previously thought to be infeasible computationally 
are now within reach. 

2 Definitions, terminologies, and concepts for OO 

We first introduce some definitions, which will be used throughout this 
book 

θ The various system parameters that may be subject to design 
choices. 

Θ The search space for the optimization variables θ. We can simply 
assume it to be a very large but finite set consisting of zillions of 
choices. 

J The performance criterion for the system as already defined in 
Eqs. (1.1) and (1.2). 

Ĵ  The estimated or observed performance for the system. This is 
usually done by using a crude but computationally easy model of 
the system performance. 

w The observation noise/error, which describes the difference bet-
ween the true performance and the estimated/observed performance, 
i.e., ( ) ( )Ĵ J wθ θ= + . 

ξ All the random variables with known distribution used in the 
simulation model. 
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x(t; θ, ξ )  A sample trajectory of the system given the design θ and the 
realizetion ξ.  In simulation terminology, this is often called a 
replication. 

L  A functional of x(t; θ,ξ ) that defines the performance metric of the 
system on a sample path. The system’s performance criterion is 
given by the expectation J = E[L(x(t; θ,ξ ))]. 

N The number of designs uniformly chosen in Θ. It is understood 
that for each design θ, there corresponds a value of J as defined in 
Eqs. (1.1) and (1.2). When there is no danger of confusion we also 

G The Good Enough set, usually the top-g designs of Θ or of N. 
S The set of selected designs in N, usually the estimated top-s of N.  
Selection Rule 

The method that is used to determine the set S, e.g., it could be 
blind pick or horse race1 or other rules using the estimated perfor-
mance to order the designs (based on a crude model).  

G∩S 
 
The relationship among Θ, G, S and the true and estimated optimal design 

are shown in Fig. 2.2. Note the sets G and S in OO play the analogous role 
as the true optimum and the estimated optimum respectively in regular opti-
mization. 
AP, Alignment Probability ≡ Prob[|G∩S|≥k] 

The probability that there are actually k truly good enough designs 
in S (represented by the dotted area in Fig. 2.2 above). k is called 
the alignment level. This number quantifies how a crude model 
can help to assure the determination of “good enough” designs. 

OPC, Ordered Performance Curve  
A (conceptual) plot of the values of J as a function of the order of 
performance, i.e., the best, the second best, and so on. If we are 
minimizing then the OPC must be a non-decreasing curve2.  

 

                                                      
1 The blind choice selection rule is to arbitrarily and randomly selected s θ ’s 

from N as the set S. The horse race selection method is simply to compare the 
observed performance values, 1̂J , 2Ĵ , . . . , ˆ

NJ  and select the designs with top-s 
observed values as the set S. More details can be found in Chapter III. 

2 In this book, we usually deal with finite but a large number of designs. For 
visualization, we show continuous curves in Fig. 2.3 and in some of the following 
figures, instead of a large number of discrete points. These figures can be regarded 
as limits of discrete points with high density. 

use N to denote the set of designs chosen. 

The truly good enough designs in S. 
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Fig. 2.2. Graphical Illustration of Θ, G, and S 

 
Fig. 2.3. Different types of OPC 

C  denotes the class or type of OPC for the problem. For non-
decreasing curves, there are only five general types as shown in 
Fig. 2.3 below. 

 
The fact that “order” is robust against noise (as will be shown shortly) 

gives us the possibility that we may use a crude model to determine the 
order of various designs. In other words, we visualize and set up  
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 complex simulation model crude model noise/errorJ J= + 3.  (2.1) 
 

In terms of Eq. (1.2) for the simulation of a complex model, the number of 
replications, n, is very large. However n is very small and may even be 
equal to one for the crude model.  

Given Eq. (2.1), we define 
σ2  as the noise/error level. In simulation, this is related to the width of 

the confidence interval of the performance estimate. In practice we 
do not need to know the value of σ2 very accurately, but whether 
or not the approximation of the crude model to the complex model 
is very bad, bad, or moderate. By definition the approximation 
cannot be good. For otherwise, there will not be a problem. 

 2Prob , ,G S k N σ⎡ ⎤∩ ≥⎣ ⎦C  
≡

 
UAP(N, σ2, C)  

We assert here, and will establish later (in Section 5), that once N, 
σ2, C are fixed, the alignment probability becomes independent of 
the specific problem under consideration. For the fixed size of G, 
it is possible to tabulate the required size of S in order to insure 
that the alignment probability, AP, is no less than a certain high 
value, say 0.95.  

Here is an example to help picture the concepts of AP. In the world of 
professional tennis, players are ranked as the #1 seed, #2 seed, etc. Let us 
assume that as the true ranking and take the first 16 seeds as the set G. In a 
given tennis tournament, e.g., the U.S. Open, 16 players will reach the 
quarter-finals through elimination. These 16 players, thus selected, consti-
tute the set S. And elimination tournament is the selection rule used. 
Without consulting a sports almanac, we can be reasonably sure that there 
will be a significant overlap between G and S. For example, even without 
any knowledge of the tennis world, we can be fairly certain that the 
Prob[|G∩S|≥1]≈1. Furthermore, such near certainty will exist in other 
sports such as horse race. Thus, we claim the use of the adjective “univer-
sal” for such APs which are tabulated as a function of N, σ2, and C. In fact 
we shall show in later chapters how UAPs can be used to narrow down 
searches for the “good enough”. There is also a simple demonstration 

                                                      
3 It will be introduced later (in Section 6) that how to use OO to deal with 

different simulation models, i.e., both stochastic simulation models and deter-
ministic complex simulation models. To cover both types of models, we use “noise/ 
error” here. In Section 6 we will show that noise and error can be regarded as the 
same under the concept of Kolmogorov complexity. 

UAP, the Universal Alignment Probability ≡
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explained immediately in Section 3 below which further illustrates the 
universality of the concept of alignment probability. 

Finally, we summarize the spirit of ordinal optimization as: 
Instead of the best for sure, we seek 

the good enough with high probability. 

3 A simple demonstration of OO 

We present here a simple generic demonstration that everyone can do to 
convince themselves of the validity of the two basic tenets of OO as 
discussed in Section 1 and the universality of the alignment probability of 
OO. Let the search space Θ have 200 designs, say 1,2, …, 200. Without 
loss of generality, we let choice #1 be the best, #2, the second best, and so 
on to #200; and the performances for simplicity be 1, 2, ..., 2004. 
Mathematically, we have J(θi) = i in which case the best design is θ1 (we 
are minimizing) and the worst design is θ200 and the Ordered Performance 
Curve (OPC) is linearly increasing. For any finite i.i.d noise w, we can 
implement ˆ( ) ( )J J wθ θ= +  and directly observe these performances 
through noisy measurements as in Eq. (2.1) with noise distributed as 
U[0,100] or U[0,10000]. Let the good enough performance G be 1, . . ., 12 
(the top-6%), and S be the observed top-6%. We are interested in |G∩S|.  

All of these can be simply implemented in a spreadsheet with Θ 
represented by 200 rows as in Fig. 2.4.  
 
Design # = θ True performance 

J(θ) 
Noise w∈U[0,W] Observed 

performance J(θ)+w 
1 1.00 87.98 88.98 
2 2.00 1.67 3.67 
. . . . 
. . . . 
. . . . 
199 199.00 32.92 231.92 
200 200.00 24.96 224.96 

Sort on this column  
in ascending order 

Fig. 2.4. Spread sheet implementation of generic experiment 

                                                      
4 Actually any monotonically increasing numerical sequence will do. 
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Column 1 models the N (=200) alternatives and the true order 1 through 
N. Column 2 shows the linearly increasing OPC from 1 through N (=200). 
The rate of OPC increase with respect to the noise variance σ2 essentially 
determines the estimation or approximation error of ˆ( )J θ . This is shown 
by the random noise generated in column 3 which, in this case, has a large 

mated or observed) performance. When we sort on column 4, we can 
directly observe the alignment in column 1, i.e., how many numbers 1 
through g (=12) are in the top-g rows. For example, in Fig. 2.5 we show 
what the sorting result of the table in Fig. 2.4 may look like. Try this and 

 
Design # = θ True performance 

J(θ) 
Noise w∈U[0,W] Observed 

performance J(θ)+w 
2 2.00 1.67 3.67 
5 5.00 20.12 25.12 
. . . . 
. . . . 
. . . . 
90 90.00 79.09 169.09 
193 193.00 90.85 283.85 

Fig. 2.5. The spread sheet in Fig. 2.4 after sorting on the observed performance in 
ascending order (Note: Column 4 is completely sorted in ascending order) 

An already implemented version can also be found on http://www.hrl. 
harvard.edu/~ho. One can also simulate the result of blind pick by making 
the noise U[0, 10000] and repeat the Excel simulation. It should be noted 
that the above demonstration is rather general. Except for the assumption 
of independent noise/error in Eq. (2.1), the results are applicable to any 
complex computational problems when approximated by a crude model. 
Chapters below will further discuss and exploit this generality. 

At this point, except for establishing more carefully the validity of the 
two basic ideas of ordinal optimization (in the rest of this chapter) and 
other extensions (in the future chapters), we already have the procedure for 
the practical application of OO to complex optimization problems. This 
procedure is basically an elaboration of the demo above which we re-stated 
here for emphasis (Box 2.1): 

range U[0,100] or U[0,10000]. Column 4 displays the corrupted (or esti-

you will be surprised! It takes less than two minutes to setup on Excel.  
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Box 2.1. The application procedure of OO 

Step 1:  Uniformly and randomly sample N designs from Θ.  
Step 2:  Use a crude and computationally fast model to estimate the 

performance of these N designs. 
Step 3:  Estimate the OPC class of the problem and the noise level of 

the crude model. The user specifies the size of good enough 
set, g, and the required alignment level, k. 

Step 4:  Use Table 2.1 (in Section 5 below) to calculate s = Z(g,k/OPC 
class, noise level). 

Step 5:  Select the observed top s designs of the N as estimated by the 
crude model as the selected set S. 

Step 6:  The theory of OO ensures that S contains at least k truly good 
enough designs with probability no less than 0.95. 

Section 7 gives two examples of application of this procedure to com-
plex problems. Interested reader may go directly to that section. Case studies 

4 The exponential convergence of order and goal 
softening 

In this section, we provide the theoretical foundation of ordinal optimi-
zation method, namely, the alignment probability converges exponentially 
with respect to the number of replications (Section 4.2) and with respect 
to the sizes of good enough set and selected set (Section 4.3). The proofs 
can be viewed as a more formal explanation on the two tents of OO: 
optimization can be made much easier by order comparison and goal 
softening. As a preparation for the proof of exponential convergence w.r.t. 
order, we introduce the large deviation theory first (Section 4.1). The large 
deviation theory justifies why order comparison of two values A and B 
corrupted by noise is easy as we pointed out in Section 2.1. Readers who 
are not that interested in mathematical details and are willing to accept the 
intuitive idea introduced in Section 1 can skip or skim this section on a 
first reading. 

The formal verifications in this chapter are given for the most frequently 
used selection rule—horse race rule. In OO, recalling that for the horse 
race rule, we are interested in the alignment probability (AP) that the 
observed top-s designs (estimated good enough designs) contain at least k 
of the actual top-g designs (real good enough designs). 

of more complex real world problems can be found in chapter VIII.  
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To establish the exponential convergence properties formally, we need 
to introduce the problem formulation first. Assume that the N designs are 
indexed such that  

 
J(θ1) < J(θ2) < J(θ3) <…< J(θN). 

 
Let L(θi,n) be the sampled performance for the n-th replication and assume 
that for each design θi, L(θi,1), L(θi,2),…, L(θi,n), … form a sequence of 
i.i.d. random variables with distribution such that for any n>0, E[L(θi,n)]= 
J(θi). Let ( )ˆ ,iJ nθ , i=1,2,…,N, be the performance estimates such that  

 

( ) ( ) ( ) ( )
1

1ˆ , , ,
n

i i i i
j

J n L j J w n
n

θ θ θ θ
=

= = +∑ , 

 
where w(θi,1), w(θi,2), …, w(θi,n), … are estimation errors and E[w(θi,n)] = 0. 

4.1 Large deviation theory 

Let us consider an i.i.d. sequence x1,x2,… with distribution function F (or 
density function f ) and finite mean µ. In our context, the numbers in this 
sequence are observations of performance of a given design. Let a>µ and 
b<µ be two constants. The law of large numbers implies that  

 

[ ]1
1Prob Prob 0n

n
x x a x x na

n
+ +⎡ ⎤≥ = + + ≥ →⎢ ⎥⎣ ⎦

" "  as n→∞ 

and  

[ ]1
1Prob Prob 0n

n
x x b x x nb

n
+ +⎡ ⎤≤ = + + ≤ →⎢ ⎥⎣ ⎦

" "  as n→∞. 

 
A fundamental question is: how fast do these two probabilities decrease?  

Although it seems that this question is about a single design, it is impor-
tant to us since there is a natural way to reduce our order comparison problem 

to it. In Fig. 2.6, the deviation probability 1Prob nx x a
n

+ +⎡ ⎤≥⎢ ⎥⎣ ⎦

"
 is  
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Fig. 2.6. Illustration of deviation probabilities 

corresponding to the gray area and the deviation probability 
1Prob nx x b

n
+ +⎡ ⎤≤⎢ ⎥⎣ ⎦

"
 the dotted area. 

The connection between the deviation probabilities and the comparison 
of two fixed values A and B corrupted by noises can be interpreted as in 
Fig. 2.7 below. Assume B > A. Denote u as the position where the density 
functions of the two sample means meet. Then the rough estimation on 
misalignment probability (shaded area) in Fig. 2.1 (in Section 2.1) can be 
viewed as the sum of the gray area and the dotted area, where the gray area 
equals the deviation probability of A beyond u and the dotted area equals 
the deviation probability of B under u. Note u might change for a different 
n. A precise way of upper bounding the misalignment probability is to fix 

an amount of deviation less than or equal to
2

B Aδ −
= :  

Fig. 2.7. Comparison of two values A and B corrupted by noises 
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Prob[Sample mean of observations of A> Sample mean of obser-
vations of B] 
≤ Prob[Sample mean of observations of A>A+δ] 
+ Prob[Sample mean of observations of B<B-δ]. 

 
The purpose of this subsection is to show that, for every constant a > µ, 

there exists a positive β such that 
 

 [ ]1Prob n
nx x na e β−+ + ≥ ≤"    (2.2) 

 
and, for each constant b<µ 
 

 [ ]1Prob n
nx x nb e β−+ ≤ ≥" .   (2.3) 

 

This implies that the probability for the sample mean 1 nx x
n

+ +"
 to have 

finite deviation (“large deviation”) from its mean decays exponentially. In 
the following, we shall show Eq. (2.2) and leave the similar justification of 
Eq. (2.3) to the readers. It is useful to define 

 
( ) ( ) ( )1sx sy syM s E e e dF y e f y dy⎡ ⎤≡ = =⎣ ⎦ ∫ ∫ . 

 
Exercise 2.2: Let x1,x2,… be i.i.d. standard normal random variables, 

then please derive 

( )
2 21 11 .

2
syM s e e dy e

π
= =∫  

 
M(s) is known as the moment generating function (mgf) of the random 

variables xi. M(s) contains information of all order of moments, and 

especially we have [ ] ( ) ( )
1

0

' 0
s

dM s
E x M

ds
µ

=

= = = . It is interesting to 

note that M(-s) is simply the Laplace transformation of the density function 
f. So, instead of giving the distribution function F or the density function f, 
the description of a random variable can also be characterized by its mgf 
M(s). It is also natural to see that the mgf for the sum of independent 
random variables (r.v.s) is the product of mgfs of all r.v.s. In particular, 

2 2− y s
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( ) ( )( ) ( )
1 n

n nsy sy
x xe dF y e dF y M s+ + = = ⎡ ⎤⎣ ⎦∫ ∫" , where 

1 nx xF + +"  is the 

distribution of the r.v. x1+…+xn.  
For s ≥ 0, mgf has the advantage of providing upper bounds on proba-

bility of events. In fact, we have 
 

 [ ] ( )Prob sbx b e M s−≥ ≤ .   (2.4) 
 

To see why this is true, we make the following observation. 
 

 ( ) ( ) ( ) ( ) ( )s y b s y b

y b y b

f y dy e f y dy e f y dy− −

≥ ≥

≤ ≤∫ ∫ ∫ . (2.5) 

es(y-b) ≥ 1 when 
s 
due to the fact that es(y-b)f(y) is always non-negative (recall f is a density 
function) and integration of a positive function over the entire region 
(–∞,+∞) is always no less than integration over a part [b,+∞) of it . Thus 
Eq. (2.4) follows from Eq. (2.5) by noting  

 
[ ] ( )1Prob

y b

x b f y dy
≥

≥ = ∫  

 
and  

Fig. 2.8. Illustration of Eq. (2.5) 

The first inequality in Eq. (2.5) follows from the fact that 
≥ 0 in the range of integration y≥b. The second inequality of Eq. (2.5) is 

1

b y

es(y-b)

 

1
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( ) ( ) ( )s y b sbe f y dy e M s− −=∫ . 

 
A graphical illustration of Eq. (2.5) is given in Fig. 2.8.  
Apply Eq. (2.4) to x1+…+xn and let b = na, we establish 

 

[ ] ( ) ( )( )log
1Prob

n n sa M ssna
nx x na e M s e− −−+ + ≥ ≤ =⎡ ⎤⎣ ⎦" , for all s≥0. 

 
This is known as the Chernoff bound (Chernoff 1952). Define a function 
R(s)=sa-logM(s). Then we have  

 
 [ ] ( )

1Prob ,  for all 0.nR s
nx x na e s−+ + ≥ ≤ ≥"   (2.6) 

 
We shall use it to establish the exponential decaying rate for 
Prob[x1+…+xn≥na]. Note although Eq. (2.6) looks already like a bound 
implying exponential decaying, there is a gap between it and the desired 
Eq. (2.2) where we need a positive constant β. We close the gap by 
showing that there is an s*≥0 such that R(s*)>0. For simplicity, we assume 
that µ = 0 and a > 0 is a constant. (The reader is required to extend the 
result to the general case where µ ≠ 0 below.) Then µ  = M′(0) = 0. 
Consider the Taylor expansion of M(s) around s = 0, 

 
R(s) = sa-log(M(0)+M′(0)s+o(s))=sa-o(s). 

 
Thus there exists a s*>0 such that 

 
R(s*) = s*a-log(M(s*))>0. 

 
We can then choose β = R(s*). 
 

Exercise 2.3: Show that for general µ, as long as a>µ, there exists a 
positive β such that  

 
Prob[x1+…+xn≥na]≤e–nβ. 

 
Exercise 2.4: Show that for general µ, as long as b<µ, there exists a 

positive β such that  
 

Prob[x1+…+xn≤nb]≤e–nβ. 
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4.2 Exponential convergence w.r.t. order 

performances, it is clear from above (Section  4.1) why order comparison 
is easy and converges rapidly. The problem is, in general, we have a large 
number of designs. In this subsection, we argue that the benefit of 
exponential convergence on order comparison for two designs is preserved 
for the general situation with N designs. The idea is to upper bound the 
misalignment probability (the overlap area for the two design case) by the 
sum of probabilities that sample mean deviates from true performance by 
the amount δ for each design, where δ is half of the minimal gap ∆  
between true performances. Here ( ) ( )( )11,..., 1

min i ii N
J Jθ θ += −

∆ = −  can be 

viewed as the counterpart of B-A for the two-design case.  
Given a size s, let Sn be the selected set of size s according to the horse 

race rule after we obtain the observed (estimated) performance ( )ˆ ,J nθ  
based on n replications for all designs θ. Given also a size g of the good 
enough set G and the alignment level k such that 1≤k≤min(g,s). Our 
purpose is to show there exists a positive β such that  

 
 [ ] ( )Prob | | 1 n

nS G k O e β−∩ ≥ = −   (2.7) 

 
as long as the moment generating function E[esL(θ,1)] exists for all s∈(–d,d) 

min(g,s) since Prob[|Sn∩G|≥k]≤Prob[|Sn∩G|≥k′] for all k′<k. The reason is 
that min(g,s) is the highest alignment level and increasing the required 
alignment level always makes alignment harder (lower the alignment pro-
bability). Assume that the N designs are indexed such that the true perfor-
mance value J is sorted in ascending order,  

 
J(θ1) < J(θ2) < J(θ3) <…< J(θN). 

 

( )ˆ ,iJ nθ

( ) ( )
1

1ˆ , ,
n

i i
j

J n L j
n

θ θ
=

= ∑ , 1, 2, ,i N= … , with L(θi,j), j = 1,2,… as i.i.d. 

observations. Without loss of generality, we assume our optimization pro-

blem is to find the minimum. Sort the sequence ( )ˆ ,iJ nθ , 1, 2, ,i N= …  

With the large deviation theory, given two designs with distinct true 

 used by the horse race rule Recall that the observed values 
are taken as sample mean of performance values of designs, that is 

for some d > 0. It is sufficient to show the result Eq. (2.7) for the case k = 
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in ascending order and denote the design ranking no. i as [ ]iθ 5. In other 

words, [ ]( ) [ ]( ) [ ]( )1 2
ˆ ˆ ˆ, , ,NJ n J n J nθ θ θ≤ ≤ ≤… . So θ[i], 1, 2, ,i N= …  

are random variables taking value from the design space ΘN={θ1,θ2,…,θN}. 
The selected set by horse race rule is a random set given as 
Sn={θ[1],θ[2],…,θ[s]}. The alignment probability can be expressed as  

 

{ } { }[1] [2] [ ] 1 2Prob Prob , , , , , ,n s gS G k kθ θ θ θ θ θ⎡ ⎤⎡ ∩ ≥ ⎤ = ∩ ≥⎣ ⎦ ⎣ ⎦… … . 

 
Here g is the size of the good enough set G. To prove Prob[|Sn∩G|≥k]≥1-e–nβ 
where k=min(g,s), it is equivalent to show Prob[|Sn∩G|<min(g,s)]≤Ce–nβ 
for some positive constant C. To prove this, denote the minimal gap bet-
ween any two of true performance values as ( ) ( )( )11,..., 1

min i ii N
J Jθ θ += −

∆ = −  

and introduce two events  
 

Event A={|Sn∩G|<min(g,s)} 

Event B={there exists one θi in ΘN s.t. ( ) ( )ˆ ,i iJ n Jθ θ δ− ≥ } 

 
where δ is half of the minimal gap ∆. Event A is the misalignment event 
under level k = min(g,s), i.e.,  

 
Prob[|Sn∩G|<min(g,s)]=Prob[Event A]. 

 
Event B is the event that at least one design’s sample mean deviates from 
its true value over half of the minimal gap ∆. In Fig. 2.9, Event B occurs 
when at least one design’s sample must fall in either dotted area 

( ( ) ( )ˆ ,i iJ n Jθ θ δ− < − ) or gray area ( ( ) ( )ˆ ,i iJ n Jθ θ δ− > ). It is clear 
from Fig. 2.9 that if every design’s sample mean stays in the interval 
centered at the design’s true performance value with width ∆ (or less) or 
equivalently the deviation from the true performance is less than δ = ∆/2, 
there will be no swap in the order of sample means and the alignment level 
k = min(g,s) is achieved. This implies that, for a misalignment to occur 
(furthermore some swaps in sample means to occur), Event B must occur.  

                                                      
5 Please note that [ ]iθ  depends on n. We assign indices randomly to designs 

when they tie. 
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Fig. 2.9. If sample mean stays within δ distance from true performance for each 
design, no misalignment will happen. 

Thus we know that Event A is a subset of Event B and 
 

( ) [ ] [ ]Prob min , Prob Event Prob Event nS G g s A B⎡ ∩ < ⎤ = ≤⎣ ⎦ . (2.8) 

 
Simple estimation gives 

[ ] ( ) ( ){ }
( ) ( )

( ) ( )

( ) ( )

1

1

1

ˆProb Event Prob ,

ˆProb ,

ˆProb ,

ˆProb , .

i i

N

i i
i
N

i i
i

N

i i
i

B J n J

J n J

J n J

J n J

θ θ δ

θ θ δ

θ θ δ

θ θ δ

=

=

=

⎡ ⎤
= − ≥⎢ ⎥

⎣ ⎦

⎡ ⎤≤ − ≥⎢ ⎥⎣ ⎦

⎡ ⎤= ≥ +⎢ ⎥⎣ ⎦

⎡ ⎤+ ≤ −⎢ ⎥⎣ ⎦

∑

∑

∑

∪

 (2.9) 

This is a direct extension of our estimation on misalignment probability for 
the two-design case (using the sum of gray area and dotted area in Fig. 2.7) 
to the general case where we have N designs as shown in Fig. 2.9. Now an 
upper bound for the misalignment probability is given by the sum of N 
gray areas and N dotted areas associated to the N designs. Since for every 
design, the true performance J is the mean value of its observed value L 

N... ,i=1,…
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and δ>0, it follows the Large Deviation Theory, there exist positive 
numbers βi and βi′ such that  

 

( ) ( )ˆProb , in
i iJ n J e βθ θ δ −⎡ ⎤≥ + ≤⎢ ⎥⎣ ⎦

 

( ) ( ) 'ˆProb , .in
i iJ n J e βθ θ δ −⎡ ⎤≤ − ≤⎢ ⎥⎣ ⎦  

 
Let β = min(β1,…,βN,β1′,…βN′), then we have from Eqs. (2.8) and (2.9)  
 

( )Prob | | min , 2 n
nS G g s Ne β−∩ < ≤⎡ ⎤⎣ ⎦ . 

 
The exponential convergence of the alignment probability is hence 
established by noting the size N of design space is fixed.  

So far, we have shown the exponential convergence of OO w.r.t. order 
using the large deviation theory and estimation on misalignment proba-
bility for designs with i.i.d. observations. The exponential convergence of 
the alignment probability can be generalized to the situation of regenera-
tive simulation6, where performances are estimated by taking time average 
over a single sample path based on the ergodic properties of discrete event 
systems. When we carry out a simulation of length t and obtain some 

( )ˆ
can decide a selected set St. Since St depends on t, which is a measure of 
computation budget, the question now becomes where Prob[|St∩G|≥k] 
converge exponentially as t→∞? The exponential convergence for this 
case means that there exists β>0 such that  

 
 ( )Prob 1 t

tS G k O e β−⎡ ∩ ≥ ⎤ = −⎣ ⎦ .  (2.10) 

 
It was proved in (Xie 1997) that when the Heidelberger and Meketon’s 

( )ˆ ,J nθ , under mild condition, there must exist a β > 0 such that Eq. 
(2.10) holds. 

                                                      
6 The basic idea of the approach of regenerative simulation is that a stochastic 

process may be characterized by random points in time when it “regenerative” 
itself and become independent of its past history. (See also Appendix A.) 

J tθ ,  for all designs θ, by applying horse race rule, we observed value 

esmtiators (Heidelberger and Meketon 1980) defined in Eq. (2.11) or time 
average estimators defined in Eq. (2.12) below are used as observed value 
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Intuitively, since a regenerative simulation is equivalent to many periods 
of statistically independent replications of the system sample path, the 
validity of Eq. (2.10) is totally reasonable. The proofs can be found in (Xie 
1997) and will be omitted here.  

Note, this type of results were first obtained in (Dai 1996) showing that 
the best observed design is indeed a “good” design. (Xie 1997) extended 
these results to the general setting we describe here. Extensions of (Dai 
1996) to the situation using common random variables in simulation have 
been made in (Dai and Chen 1997). 

To define the estimators and the exponential convergence mathemati-
cally, we will introduce some notations. Let Ti(θ) be the i-th regeneration 
epoch, i = 0,1,2,…, where T0(θ) is the initial delay. Let τi(θ) be the length of 

i-th regeneration cycle, i = 0,1,2,…. Then 
0

( ) ( )
i

i j
j

T θ τ θ
=

= ∑ . Suppose the 

interested performance value on sample path at time t is Lt(θ) with 

|Lt(θ)|≤C for some constant C. Let 
1

( )

( )
( , ) ( )i

i

T

ss T
L i L ds

θ

θ
θ θ

−=
= ∫  be the total 

sample performance in the i-th regeneration cycle.  
 

 
Fig. 2.10. An illustration for the regeneration cycles 

 
Let K(θ,t) be the number of regeneration cycles completed by time t. Then 
the Heidelberger and Meketon’s estimator is defined as  

 

 ( )
( )

( )

( )
( )

, 1

1
, 1

1

,
ˆ , ,

K t

i
K t

i
i

L i
J t

θ

θ

θ
θ

τ θ

+

=
+

=

=
∑

∑
   (2.11) 

 
and the time average estimator is defined as 
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 ( ) ( )
0

1ˆ , .
t

s
s

J t L ds
t

θ θ
=

= ∫    (2.12) 

 
We assume that the regeneration process has i.i.d cycles, i.e., {(τi(θ), 
L(θ,i)), i=1,2,…} is a sequence of i.i.d. random variables. Denote 

0 ( )( , ) [ ]sm s E e τ θθ =  as the mgf (moment generating function) of the initial 
delay τ0(θ) and 1 ( )( , ) [ ]sM s E e τ θθ =  as the mgf of the length τ1(θ) of the 
first regeneration cycle τ1(θ). A sufficient condition for Eq. (2.10) to hold 
for the estimators in Eq. (2.11) or Eq. (2.12) is that m(s,θ) and M(s,θ) exist 
for all s∈ (–δ,δ) for some δ > 0. Note that this existence of a finite mgf 
was later shown by Fu and Jin to be both a necessary and sufficient 
condition in (Fu and Jin 2001). They have also shown how one can recover 
the exponential convergence rate in cases where the mfg is not finite. 
(Well-known distributions that do not possess a finite mgf include the 
lognormal distribution and certain gamma distributions.) In particular, by 
working with appropriately truncated versions of the original random 
variables, the exponential convergence can be recovered. 

4.3 Proof of goal softening 

In Section 2.1, we have argued intuitively nothing but the best is very 
costly. If we retreat from “nothing but the best” to a softer goal of “good 
enough”, e.g., settle for anything in the top-g choices, then the small retreat 
can buy us quite a bit in the ease of the computational burden. In this 
subsection, we make a rigorous justification for this point and will show 
that the alignment probability for both blind pick selection rule and horse 
race selection rule converges exponentially to 1, as the size g of the good 
enough set and the size s of the selected set increase.  

4.3.1 Blind pick 

First, let us show the exponential convergence result for blind pick. It will be 
used as a base for proving the exponential convergence of the horse race 
rule. In fact, we will prove that the alignment probability of blind pick rule is 
always a lower bound for the alignment probability of horse race rule. This 
is reasonable, since no knowledge is used in BP, and in HR some, though 
imperfect, knowledge is used to select the set S. Let N be the size of the 
design space, g and s be the size of good enough set G and the size of 
selected set S respectively. For blind pick, the misalignment probability 
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Prob[|S∩G|=0] is given by (see full derivation in Eq. (2.37) in Section 5.1 
below)  

 
N g

s
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

where 
N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 represents the number of different choices of s designs out of 

N distinguished ones, i.e.,  
 

( )
!

! !
N N
s s N s

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

. 

 
Thus, the alignment probability Prob[|S∩G|≥1] is given by  

 

Prob 1 1 Prob 0 1

N g
s

S G S G
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ∩ ≥ ⎤ = − ⎡ ∩ = ⎤ = −⎣ ⎦ ⎣ ⎦ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 (2.13) 

 
( )!

( )( 1) ( 1)!( )!1 1! ( )( 1) ( 1)
!( )!

N g
N g N g N g ss N g s

N N N N s
s N s

−
− − − − − +− −= − = −

− − +
−

"
"

.(2.14) 

 

Since 1N g i N g g
N i N N
− − −

≤ = −
−

 for all i = 0,1…,s-1, we have  

 Prob 1 1 1
sgS G

N
⎛ ⎞⎡ ∩ ≥ ⎤ ≥ − −⎜ ⎟⎣ ⎦ ⎝ ⎠

.  (2.15) 

Furthermore, since 1-x≤e-x holds for all x, we can bound Prob[|S∩G|≥1] 
from below as  

 Prob 1 1
gs
NS G e

−
⎡ ∩ ≥ ⎤ ≥ −⎣ ⎦ ,   (2.16) 
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converges exponentially w.r.t. the size of the set G and S. 
 

-x

4.3.2 Horse race 

Now we are going to present the convergence result for the horse race 
selection rule alignment probability. We assume that the i.i.d. noise 

( , ) ( )i iw n W nθ = , i=1,2,…,N, has the common cumulative continuous distri-
bution function nF (x) and density function nf (x) and has zero mean. 

With the help of the relation  
 

[ ] [ ]Prob | | 1 1 Prob | | 0S G S G∩ ≥ = − ∩ = , 
 

we will show that for horse race selection rule, the alignment probability 

[ ]Prob | | 1S G∩ ≥  is bounded from below by the function 1
gs
Ne− , that is 

 [ ]Prob | | 1 1
gs
NS G e∩ ≥ ≥ − .   (2.17) 

 
This is quite reasonable, since BP utilizes no knowledge of the problem, 

while the S selected by the horse race rule can only improve upon the AP. 
We can expect the same exponential convergence. While it is intuitively 
reasonable to suppose that any crude model for picking the set S must 
result in better performance than blind pick, it is nevertheless important to 
rule out crude models that may appear sensible on the surface but actually 
favor bad designs unknowingly. Consequently, we must prove that the S 
obtained based on a horse race model will indeed perform better and 
results in better AP than on a blind pick model. This is the purpose of this 
section. 

To establish exponential convergence for horse race by leveraging the 
results in Section 4.3.1 on AP for BP, we should follow two steps: 

Step 1. Identify Least Favorable Configuration (LFC) for horse race 
misalignment probability.  

Step 2. Evaluate misalignment probability under LFC and prove its 
equivalence to that of blind pick.  

Least Favorable Configuration (LFC) is well known in Ranking and 
Selection literature (Barr and Rizvi 1966). The general idea is to find and 

−

−

which is the desired result, i.e., alignment probability for blind pick 

Exercise 2.5: Draw a figure to verify the above statement that 1-x≤e . 
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take advantage of some monotone properties in a set of distributions with a 
parameter (such as mean value) to specific setting of the parameter under 
which certain ranking or selection probability of interest achieves maxi-
mum or minimum. In our case, we should use true performance as the 
parameter and aim at finding LFC for misalignment probability under the 
horse race selection rule. Let us first take a close look at the misalignment 
event under horse race. 

For a direct derivation of the result, the basic idea is this: whenever the 
observed performance of every design in G is no better than that of at least 
s designs not in G, none of the designs in G will be selected in which case 
[|S∩G|=0]. Fig. 2.11 shows a case of N = 6 designs with g = 2 and s = 3. In 
the figure, we show the procedure of generation of observation 

performance ( ) ( ) ( )ˆ ,i i iJ n J W nθ θ= +  from the true performance ( )iJ θ  
by adding noise Wi(n), 1, 2, ,6i = … . The best observed performance of 
the two good enough designs (black balls in the lower part of the figure) is 
indicated by value A. Since it is greater than the observed performance 
of the three designs not in G (white balls), the select set by horse race 
contains only white balls which means a misalignment occurs. In the 
figure, we order the observed performance of all four designs not in G and 
indicate the s-th (third) value as B. We observe that B<A is true, when 
misalignment happens.  

 

Fig. 2.11. An illustration for the misalignment event under horse race rule 

 

Design in Good
enough set G

Design not in G

True performance

Observed performance

Performance becomes
worse (larger)

g=2, s=3

Selected set by HR

W1(n)

W3(n)

J(q1) J(q2) J(q3) J(q4) J(q5) J(q6)

W4(n)
W5(n)

W6(n)

W2(n)

B A
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To characterize [ ]Prob | | 0S G∩ =  in detail, we divide a given set of 

observation data ( ) ( ) ( )ˆ ,i i iJ n J W nθ θ= +  into two groups, the obser-
ved data for good designs G={θ1,…θg} and the data for bad designs 
(θg+1,…θN). We order the N-g observation data for bad designs such that  

 
( ) ( ) ( ) ( )[ 1] [ 1] [ ] [ ]g g N NJ W n J W nθ θ+ ++ < < +… . (2.18) 

 
For a misalignment to happen when using horse race, we observe that, 
there must be at least s “bad” designs outperform good designs θ1,…,θg. Or 
put it in another way, all observed performances for good designs must be 
larger than B= [ ] [ ]( ) ( )g s g sJ W nθ + ++ . Denote the best observed performance 

of good designs as A=
{1, , }
min ( ( ) ( ))j jj g

J W nθ
∈

+
…

. Then a misalignment simply 

means B<A holds.  
 

 [ ]Prob 0 ProbS G B A⎡ ∩ = ⎤ = <⎣ ⎦ .  (2.19) 

 

2 ( ))W n = 1 1( ) ( )J W nθ +

 
3 3 4 4 5 5 6 6( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )J W n J W n J W n J W nθ θ θ θ+ < + < + < + . 

 
So, [5] 5θ θ=  and the value of B is [5] [5] 5 5( ) ( ) ( ) ( )J W n J W nθ θ+ = + . 

Our idea is to shift mean value ( )iJ θ  of all distributions of ( )ˆ ,iJ nθ  to  
a common value ( )gJ θ

( )gJ θ  and to move the 
mean value of the distribution  of g .

 Then we have a new set of N observed data ( )gJ θ + ( )iW n
 same noise sample ( )iW n  with ( ) ( ) ( )ˆ ,i i iJ n J W nθ θ= + , the original
 observation with noise. We order the N-g data ( )gJ θ + ( )iW n  associated 

with bad designs such that   

is 1 1 2min( ( ) ( ), ( )J W n Jθ θ+ +For example, in Fig. 2.11, the value of A 
, the ordered N-g = 4 observation data for bad 

designs are  

[ ] [ ]Prob =Prob | | 0B A S G< ∩ = .Now we work on finding the LFC for 

. More specifically, we move the mean value 
of the distribution of every good design up to 

J ( )θevery bad design down to 
 sharing the 
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 ( ) ( ) ( ) ( )g g (2.20) 

 
                          [ ] [ ]Prob Prob ' 'B A B A< ≤ < .  (2.21) 
 

In fact, we have noted that 'B B<  and 'A A< . As a result, B A<  
always implies ' 'B A< . This shows indeed the shift we made leads to the 
LFC for the misalignment probability.  

 

 
Note since the mean values are reduced for the data of bad designs, the 
value ( ) ( )g g sJ W nθ ++  appearing in the ordered sequence in Eq. (2.20) 
must be no greater than its counterpart B= [ ] [ ]( ) ( )g s g sJ W nθ + ++  appeared 
in Eq. (2.18). At the same time, as the counterpart of A, the random 
variable 

{1, , }
min ( ( ) ( ))g jj g

J W nθ
∈

+
…

 must be no less than A. Let us denote 

{1, , }
' min ( ( ) ( ))g jj g

A J W nθ
∈

= +
…

 and ' ( ) ( )B J W nθ= + . Fig. 2.12 shows 

this procedure of finding LFC for the designs in Fig. 2.11. Recall, we have 
g = 2 and s = 3. We move the mean value of the observed performance’s 
distribution to 2( )J θ  but keep the sample of noise ( )iW n  the same as in Fig. 
2.11. The new observation data become 2( ) ( )iJ W nθ + , 1, 2, ,6i = … , and 
their values are as shown in the line “observed performance (LFC)”. For 
reader’s convenience, we also show original observation data in the 

2 1 2 2 2 2

We order the new observations of the four bad designs as 
2 3 2 4 2 5 2 6( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )J W n J W n J W n J W nθ θ θ θ+ < + < + < + . So, the 

third (s-th) value in this sequence is 2 5( ) ( )J W nθ + , (5) 5θ θ=  and the value 

of B' is 2 5( ) ( )J W nθ + . Two important observations from this example are 
'B B<  and 'A A< , as a result of our way of generating new observations.  
With the new distributions defined above, we are able to establish an 

upper bound for [ ]Prob B A<  in Eq. (2.19), that is  

g N+1[ ]J Wθ θ+ <n …< J W+ n .  [ ]

[ ]

g g[ ]+s

min(J (θ ) +W (n), J (θ ) +W (n)) = J (θ ) +W (n) . tion i.e., A', equals 
bottom of the figure. The best value for good designs under new observa-
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Fig. 2.12. An illustration of the Least Favorable Configuration for designs in 
Fig. 2.11 

 

Exercise 2.6: Show Eq. (2.21) is true.  
 
Eq. (2.21) is the LFC result in our context. Its advantage is, now instead 

of dealing with the observation data ( ) ( ) ( )ˆ ,i i iJ n J W nθ θ= +  which are 
all following different distributions with different means, we need only to 
deal with the case of i.i.d. observations Wj(n) plus a constant.  

In summary, Fig. 2.12 and our arguments above show, for horse race 
selection rule, misalignment occurs when the best value (A) of good 
designs is greater (for minimization problem) than the values of s bad 
designs (we denote B as their maximum) in the observation data. Although 
evaluating the probability of B<A is generally difficult due to the hetero-
geneous nature of distributions generating observations of designs, this 
characterization of misalignment enables us to find the new setting that 
provides a tractable upper bound for misalignment probability, which turns 
out to be the same as blind pick. The new setting is tractable since 
observations of all designs obey i.i.d. distributions. The new setting 
provides an upper bound on misalignment probability (thus it is a LFC) 
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because the gap between the maximum of s bad designs B' and its best 
observed value for good designs A' is always greater than that of B and A. 
The connection between the new setting and blind pick is natural because 
independent draw of samples from the same distribution gives no pre-
ference on any specific design and all designs have equal chance to be 
selected which is the same as blind pick.  

Now we proceed to evaluate misalignment probability under the LFC, or 
equivalently to calculate [ ]Prob ' 'B A< . This is the second step in order to 
establish the exponential convergence for horse race. It will be shown 

below that [ ]
1

Prob ' '
N g N

B A
s s

−−⎛ ⎞⎛ ⎞
< = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 which is exactly the misalign-

ment probability already given in Section 4.3.1 for blind pick. For readers 
not interested in the mathematical details, you can go directly to the end of 
this section (the texts below Eq. (2.36)). 

Without loss of generality, we can simplify the analysis of misalignment 
probability of our LFC by ignoring the common constant ( )gJ θ  in all 

observations ( )gJ θ + ( )iW n  and directly define *

{1, , }
min ( )jj g

A W n
∈

=
…

 and 

* ( )B W n=  based on the zero mean sample ( )iW n . Denote their 

densities and distributions as * *( ), ( )A Bx yφ φ  and * *( ), ( )A Bx yΦ Φ  respec-
tively. Then we can write  

 

[ ] ( )

( ) ( )

* * *
*

* *

Prob ' ' Prob Prob A

x

B A

B A B A B x x dx

y dy x dx

φ

φ φ

+∞

−∞

+∞

−∞ −−∞

⎡ ⎤ ⎡ ⎤< = < = <⎣ ⎦ ⎣ ⎦

=

∫

∫ ∫
(2.22) 

 
based on the fact that *

{1, , }
min ( )jj g

A W n
∈

=
…

 and *B

pendent.  
 

Exercise 2.7: Verify [ ]Prob ' 'B A< = * *Prob B A⎡ ⎤<⎣ ⎦ .  

Hint: Compare the samples ( )gJ θ + ( )iW n  and ( )iW n  1, 2, ,i N= … . 
Exercise 2.8: Show 

 [ ]
1

*( ) 1 ( ) ( )
g

A n nx g F x f xφ
−

= − .  (2.23) 

[g+s]

= W n( )  are inde-[g+s]
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Hint: use Eq. (2.24) below.  
 

In order to evaluate *( )A xφ , we first decide the distribution function 

*( )A xΦ . It is straightforward to see that  
 

( ) ( )

( ) ( )

*
* {1, , }

1

Prob 1 Prob min

1 Prob 1 1 .

A jj g

g
g

j n
j

x A x W n x

W n x F x

∈

=

⎡ ⎤⎡ ⎤Φ = < = − >⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤= − > = − −⎡ ⎤⎣ ⎦⎣ ⎦∏

…
 (2.24) 

 
To evaluate *( )B yφ , we first find its distribution *( )B yΦ . For a given 

value y, when *B 1g+

N

values which are less than *A , the other group −Λ  contains all the 
remaining N-g-m bad designs which are greater than y. According to the 
value of m and the way two groups formed, we can express the distribution 

*( )B yΦ  as the following exclusive unions: 
 

( )

{ }
{ 1, , }

 has at least  elements

Prob

Prob max ( )  and min ( )i ji jg N
s

y W y

W n y W n y
−∈Λ ∈ΛΛ⊂ +

Λ

⎡ ⎤Φ = <⎣ ⎦
⎡ ⎤
⎢ ⎥= < >⎢ ⎥
⎢ ⎥⎣ ⎦

…
∪

(2.25) 

 

{ 1, , }
 has  elements

Prob max ( )  and min ( )
N g

i ji jm s g N
m

W n y W n y
−

−

∈Λ ∈Λ= Λ⊂ +
Λ

⎡ ⎤= < >⎢ ⎥⎣ ⎦∑ ∑
…

. (2.26) 

 
We have  

[ ]Prob max ( ) ( ) m
i ni

W n y F y
∈Λ

⎡ ⎤< =⎣ ⎦   (2.27) 

 
and  

[ ]Prob min ( ) 1 ( ) N g m
j n

j
W n y F y

−

− −

∈Λ

⎡ ⎤> = −⎢ ⎥⎣ ⎦
. (2.28) 

W n( )  are divided further into two groups, one group Λ  contains m (≥s) 
= <W y  is true, the bad design data W n( ) , … , [g+s]

B* [g+s]



Ordinal Optimization Fundamentals 35 

Notice that max ( )ii
W n

∈Λ
 and min ( )j

j
W n

−∈Λ
 are independent, we have from 

Eqs. (2.26)–(2.28) that  
 

 

[ ] [ ]

[ ] [ ]

*
{ 1, , }

 has  elements

( ) ( ) 1 ( )

( ) 1 ( ) .

N g
m N g m

B n n
m s g N

m

N g
m N g m

n n
m s

y F y F y

N g
F y F y

m

−
− −

= Λ⊂ +
Λ

−
− −

=

Φ = −

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠

∑ ∑

∑

…
 (2.29) 

 
Taking derivative on Eq. (2.29) yields 

 

            [ ] [ ]1
*( ) ( ) 1 ( ) ( )s N g s

B n n

N g
y s F y F y f y

s
φ − − −−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

.  (2.30) 

 
Exercise 2.9: Show Eq. (2.30). 
 
Now with expressions Eqs. (2.23) and (2.30) of *( )A xφ  and *( )B yφ  

plugged in, we are ready to proceed on the integration in Eq. (2.22). We 
have 

 
[ ]

[ ] [ ] [ ]1 1

Prob ' '

( ) 1 ( ) ( ) 1 ( ) ( ) .
x

s N g s g
n n n n n

B A

N g
s F y F y f y dyg F x f x dx

s

+∞
− − − −

−∞ −∞

<

−⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∫ ∫

 (2.31) 
 

Using substitution, letting ( )nu F x=  and ( )nv F y= , we can further 

 

[ ] [ ] [ ]
1

11

0 0

Prob ' ' 1 1
u

N g s gsN g
B A gs v v dv u du

s
− − −−−⎛ ⎞

< = − −⎜ ⎟
⎝ ⎠

∫ ∫ .    (2.32) 

 
Using induction method, one can show that  

 [ ] [ ]
11

11

0 0

1 1
u

N g s gs N
gs v v dv u du

s

−
− − −− ⎛ ⎞

− − = ⎜ ⎟
⎝ ⎠

∫ ∫ .  (2.33) 

n

simplify Eq. (2.31)  
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As a consequence, we have  

 [ ]Prob ' '

N g
s

B A
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠< =

⎛ ⎞
⎜ ⎟
⎝ ⎠

,   (2.34) 

which implies 

 Prob 0

N g
s

S G
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ∩ = ⎤ =⎣ ⎦ ⎛ ⎞

⎜ ⎟
⎝ ⎠

   (2.35) 

and furthermore  
 

  Prob 1 1 Prob 0 1

N g
s

S G S G
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ∩ ≥ ⎤ = − ⎡ ∩ = ⎤ = −⎣ ⎦ ⎣ ⎦ ⎛ ⎞

⎜ ⎟
⎝ ⎠

        . (2.36) 

 
This shows that for the worst case where all observed performance values 

( )ˆ ,iJ nθ  are i.i.d., the alignment probability of horse race rule is the same 
as that of blind pick. As a result, for general cases where the true 
performance values are different, the alignment probability of horse race 
rule is bounded from below by the blind pick alignment probability  

 

1

N g
s
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠−

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
The desired result Eq. (2.17) then follows from the exponential conver-
gence w.r.t. the size of G and S for blind pick.  

Note exponential convergence of OO w.r.t. the size of G and S was 
originally given in (Lee et al. 1999). The noises were assumed to obey 
normal distributions. This assumption allows one to find the same LFC for 
noises with non-identical distributions, but as we have shown above, the 
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normal distribution assumption is not necessary for our case where noises 
obey identical distribution.  
 

Exercise 2.10: If in the observation data ( )ˆ ,iJ nθ = ( ) ( )i iJ W nθ + , the 

noises ( )iW n  obey normal distributions 2(0, / )iN nσ . Show the misalign-
[ ]| 0=

noises ( )iW n obey normal distributions 2(0, / )N nσ  with 2 2

1, ,
max ii N

σ σ
=

=
…

. 

5 Universal alignment probabilities 

The discussion in Section 2 and the demonstration in Section 3 suggest that 
the concept of alignment probability Prob[|G∩S|≥k] is rather general and can 
be problem independent. Thus it is possible to establish some universal 
scheme for all optimization problems to help narrow down the search for 
“good enough” designs as a function of the number of crude samples taken, 
N, the approximate size of the estimation error, σ2, the type of problem class, 
C , and finally the selection procedure used. This can be very useful during 
the initial phase in many problems that involve (i) a structureless and 
immense search space and (ii) performance evaluation that is corrupted 
by large noise/error and/or is computationally intensive. We explore this 
possibility below (see also (Lau and Ho 1997)). Alert reader may point out 
here that our aim here bears resemblance to the extensive literature in 
statistics on rank and selection (R&S) (Gupta and Panchapakesan 1979; 
Santer and Tamhane 1984; Goldman and Nelson 1994). There are, 
however, two major differences. First, the R&S schemes deal with a search 
space of usually less than a hundred7, often in tens (such as in comparison 
study of the efficacy of different drugs) while we consider subset selection 
from Θ that has size in billions and zillions. Second, the cardinal notions 
of “distance of the best from the rest” and the probability of 
“coincidence of the observed best with the true best” used in R&S have 
very little significance in our problem domain. Instead, we focus on 
softened criterion and different selection procedures.  

                                                      
7 Although recent development of R&S allows to deal with a design space as 

large as 500 (Nelson et al. 2001; Wilson 2001), this is still comparatively small 
than the size that OO can handle. 

ment probability Prob | S G∩  is no greater than the scenario where the 
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5.1 Blind pick selection rule 

We obtain the simplest result on alignment probability by using the blind 
pick selection rule, i.e., we blindly pick out the members from the selected 
set, S without any evaluation of the performances from N samples. 
Equivalently, we can say that the performances in Eq. (2.1) is sampled 
with the noise variance being infinite (in the demonstration of Section 3, 
we used the noise distribution of U[0,10000] to approximate the blind pick 
selection rule when the range of the true performance is [0,200]). For 
given size of S and G being s and g respectively, the alignment probability 
for blind pick (BP) is  

 

( )
( )min ,

, , , Prob
g s

i k

g N g
i s i

AP s g k N BP G S k
N
s

=

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= = ⎡ ∩ ≥ ⎤⎣ ⎦⎛ ⎞

⎜ ⎟
⎝ ⎠

∑   . (2.37) 

 
Exercise 2.11: Try to derive Eq. (2.37) before reading the explanation 

below. 

The validity of Eq. (2.37) can be seen as follows: There are total 
N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

8 

ways of picking s out of N designs. Suppose i of these s designs actually 

belong to G, then there are 
g
i

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ways for which this is possible. The 

remaining s-i designs can be distributed in 
N g
s i

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 ways. The product of 

these two factors constitutes the total number of ways that we find exact i 
members of G by picking out s designs out of N. Dividing this product by 

N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 yields the probability for i. Summing over all i ≥ k gives Eq. (2.37). 

                                                      

8 
N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 represents the number of different choices of s designs out of N 

distinguished ones, i.e., 
( )

!
! !

N N
s s N s

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

. 
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Fig. 2.13. Required subset size vs. alignment level for different alignment proba-
bilities 

Fig. 2.13 shows a plot for required size of s, with g = s as a function of 
alignment level k for AP = 0.99, 0.95, and 0.90. These curves can be used as 
a lower bound (LB) for the UAP for any problems. It is instructive to see 
that to insure with probability (w.p. for short) 0.99 that there are at least two 
top 8% choices out of 1000 choices, we only need to blindly pick 80 
samples – a more than ten fold reduction in search effort. Note this number s 
is an upper bound for selection since it is done without any knowledge. 
Imagine how much better we can do with some approximate knowledge 
about the problem. This is the essence of ordinal optimization! The next 
subsection will discuss the first of such less random selection rules. 

5.2 Horse race selection rule 

In Section 3 we demonstrated the horse race selection rule for S. The 
procedure of this rule is: 

• We take N samples uniformly from Θ 
• Using a crude model, we estimate the performances of these N samples 

as )(ˆ, . . . ),(ˆ
1 NJJ θθ  

• We sort these samples according to their estimated performances as 

[1] [ ]
ˆ ˆ( ),  . . . , ( )NJ Jθ θ  

• Select the observed top-s members of the N samples as the selected set S. 
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k = alignment level
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Then the alignment probability AP≡Prob[|G∩S|≥k] is defined the same 
way as the blind pick probability in the above subsection. However, in this 
case we no longer have a closed form solution as in Eq. (2.37). Further-
more, it is intuitively clear that the AP will also depend on the nature of 
the problem, i.e., the class of Ordered Performance Curve (OPC) of the 
problem as illustrated in Fig. 2.3 in Section 2. Hence we write AP= 
F( g,s,k,N,C /Horse Race). If we normalize the OPC by defining 

[ ] [1] [ ] [1]( ) /( )i i Ny J J J J= − −    (2.38) 
 

[ ]( ) ( 1) /( 1)i ix x i Nθ ≡ = − −    (2.39) 
we can attempt to fit the five different types of OPC (see Section 3) by the 
Incomplete Beta Function with parameters α and β given by 

 

( ) ( )
( ) ( ) ( ) 11

0

, 1
x

F x z z dzβαα β
α β

α β
−−Γ +

≡ −
Γ Γ∫   (2.40) 

 
with the normalized OPC as 

 ( ) 1 1, ,x F xα β
α β

⎛ ⎞
Λ ≡ ⎜ ⎟

⎝ ⎠
.   (2.41) 

 
For different values of α, β we can describe the different shapes of five 
different types of OPC and their significances in Fig. 2.14 and Fig. 2.15 
below, where in Fig. 2.14 the Normalized Performance Densities are the 

For a given pair of α and β, we can determine the AP by a simple 
simulation model in the same way as the Excel demo example outlined in 
Section 3. Extensive simulation has been done on these normalized OPCs 
(Lau and Ho 1997). 

set S. For a given problem, the designer/optimizer picks the crude but 
computationally easy model to estimate the performance. S/he specifies 
what is meant by “good enough”, namely the size of G, g. S/he also have 
some rough idea of the parameters, σ2 and C 9 (hence the values α and β in 
Eq. (2.41) above).  For practicality we set AP≥0.95. Then we can 

                                                      
9 A rough idea of C can be gleamed always from the N samples 

)(ˆ, . . . ),(ˆ
1 NJJ θθ . 

The principal utility of AP in practice is to determine the required size of the 

derivatives of the inverse functions of the Normalized OPCs, respectively. 
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experimentally determine a function Z(g,k/N,C,σ2,AP) which tells how 

of the set G with high probability. The significance of this information is 
obvious. We have engineered a reduction of the search and computational 
effort from Θ to N to |S| = s. 

Fig. 2.14. Examples of beta density and corresponding standardized OPCs 

 
Fig. 2.15. Partitions of the ab-plane for five OPC categories, where a = logα, b = logβ 

 

large must the set S be in order to insure that it contains at least k member 
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Extensive simulation experiments have been carried out with a total of 
88 normalized OPCs (classified into 5 types of OPCs) using different 
α and β ’s 

 
α, β∈{ 0.15, 0.25, 0.4, 0.65, 1.0, 1,5, 2.0, 3.0, 4.5, 8.0} 

 
which covers the ab plane (a = logα, b = logβ) in Fig. 2.15 above with 10 
U-shape class OPCs, 19 neutral class OPCs, 15 bell shaped class OPCs, 
and 22 each of the flat and steep class as defined in Fig. 2.14. The required 
sizes of S, the function Z(g,k/N,C,σ2,AP), are then tabulated as well as 
fitted via regression by 

 
31 2

4( , ) ZZ ZZ k g e k g Z= + ,   (2.42) 
 

Table 2.1. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) 
 

  U[–0.5,0.5]   Noise  
OPC class 

∞ 
B-Pick Flat U-shape Neutral Bell Steep 

Z1 7.8189 8.1378 8.1200 7.9000 8.1998 7.7998 
Z2 0.6877 0.8974 1.0044 1.0144 1.9164 1.5099 
Z3   –0.9550   –1.2058   –1.3695   –1.3995   –2.0250   –2.0719 
Z4     0.00     6.00     9.00     7.00   10.00   10.00 

  U[–1.0,1.0]   Noise  
OPC class 

∞ 
B-Pick Flat U-shape Neutral Bell Steep 

Z1 7.8189 8.4299 7.9399 8.0200 8.5988 7.5966 
Z2 0.6877 0.7844 0.8989 0.9554 1.4089 1.9801 
Z3   –0.9550   –1.1795   –1.2358   –1.3167   –1.6789   –1.8884 
Z4     0.00     2.00     7.00   10.00     9.00   10.00 

  U[–2.5,2.5]   Noise  
OPC class 

∞ 
B-Pick Flat U-shape Neutral Bell Steep 

Z1 7.8189 8.5200 8.2232 8.4832 8.8697 8.2995 
Z2 0.6877 0.8944 0.9426 1.0207 1.1489 1.3777 
Z3   –0.9550   –1.2286   –1.2677   –1.3761   –1.4734   –1.4986 
Z4     0.00     5.00     6.00     6.00     7.00     8.00 
where Z1,  Z2,  Z3,  Z4 are constants of regression depending on OPC types, 
the noise level, g, and k values10. These results are tabulated in Table 2.1, 
Fig. 2.16 and Fig. 2.17(a)–(e) (where we assume the noise contains 
uniform distribution with half-width W, i.e., U[–W, W], W = 0.5, 1.0, 2.5.) 
against normalized OPC in [0,1]. 

                                                      
10 We do not believe a linear regression function would fit the data well. Thus, a 

product form is the next simplest nonlinear function we can try. 
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Fig. 2.16. Subset size interpolated from simulated data for the neutral class OPC 
and W = 1.0 

Fig. 2.17(a). Subset size for the flat OPC class at different noise levels with g = 50 
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Fig. 2.17(b). Subset size for U-shaped OPC class at different noise levels with 
g = 50 

 
Fig. 2.17(c). Subset size for the neutral OPC class at different noise level with 
g = 50 
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Fig. 2.17(d). Subset size for the bell-shaped OPC class at different noise levels 
with g = 50 

 
Fig. 2.17(e). Subset size for the steep OPC class at different noise levels with 
g = 50 
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These results have been extensively tested and found to be very reliable 
in large number of studies ((Lau and Ho 1997), and also see reference list 
in this book and at CFINS website: 

 http://www.cfins.au.tsinghua.edu.cn/en/resource/index.php).  
Consequently, we designated these AP as “universal”. 
As an example, consider the following function defined on the range 

Θ=[0,1] 
 

 ( ) ( )1 2 3sin 2J a a aθ πρθ θ= + + ,  (2.43) 
 

where a1 = 3, a2 = 5, a3 = 2. For ρ = 500, i.e., there are five hundred cycles 
in the range [0,1]. To estimate the exact functional form of Eq. (2.43) 
without prior knowledge, it may require extensive evaluation of the entire 
domain [0,1] at many points. However, here we shall consider using a 
crude model to approximate Eq. (2.43). In particular, based on the obser-
vation that there is a general rising trend in [0,1], we use a linear function  

 
 ˆ( ) 5J θ θ= .    (2.44) 

 
Notice that only the linear part of Eq. (2.43) is contained in the crude 
model. In other words, 

 
error )()(ˆ += θθ JJ . 

 
By generating N=1000 uniform samples from [0,1] using the crude model, 
we have  

 
{ }1 2 1000

ˆ , ,...,N θ θ θΘ = .11 

                                                      
11 Astute readers may notice that in the following we apply ordinal optimization 

to find good enough designs in N, and might wonder how to find good enough 
designs in Θ instead. The quick answer is that N is representative of Θ. When both 
N and Θ are large enough (which this example satisfies) the selected set that is 
selected from N also has a high probability to contain good enough designs in Θ, 
and the difference between the two alignment probabilities can be ignored for 
engineering purpose. But this notion will be quantified and made precise in 
Chapter VII Section 1. 
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( ) ( )( ) 
ˆmax

i i iW J Jθ θ θ∈ Θ= −

Fig. 2.18. Alignment probability validation for the example 

1. The alignment probabilities are in general greater than 0.95, and this 
can be attributed to the conservative estimate of the function Z(•/•). 

 

The noise/error range can be estimated by 
after adjusting for the mean values. We then select the neutral OPC class for 
this example. Once the good enough criterion g and the alignment level k are 
specified, the required selected subset size s from the crude model Eq. (2.44) 
is given by the function Z(g,k/neutral,W) in Table 2.1. Notice that these 
selected elements correspond to the first s members of N, because of the 
monotone property of the crude model. Then, we compare the selected 
subset with the true model to determine which indeed matches the good 
enough designs. 1000 experiments, each with a different N, are generated, so 
as to validate the actual observed alignment probability against AP = 0.95. 
We determined the alignment of each subset of size s = Z(g,k/neutral,W), 
where g = 20, 30,. . .,200 and 1 ≤ k ≤ 10. Some of the alignment probabilities 
are plotted in Fig. 2.18. Each line in Fig. 2.18 represents the fraction of the 

matched in the selected set. Note that: 
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2. Some fluctuation of the alignment probabilities are observed, which 
is due to the residues of the regression function Z.  

 
The concept of universal alignment probability and the function Z(•/•) 

have been validated many times in all papers on OO (Lau and Ho 1997; 

Finally, we note that the blind pick AP of Eq. (2.37) of Section 5.1 is always 
a quick-and-dirty lower bound that is useful. 
 

Exercise 2.12: Recall that in Section 2 we introduced 5 types of OPCs. 
Suppose we have a problem with many good designs (the flat type), and a 
problem with many bad designs (the steep type). Suppose the noise level 
is small. If we define the top-5% designs in both problems as the good 
enough designs, please use the UAP table just introduced to calculate the 
value of s such that Prob[|G∩S|≥1]≥0.95. Which problem requires a larger 
selected set? Is this result counter intuitive? Shall we set the same value of 
g for both problems? 

6 Deterministic complex optimization problem  
and Kolmogorov equivalence 

In previous sections, OO was developed to deal with stochastic complex 
simulation-based optimization problems (SCP), in which the crude model 
is a stochastic model of fewer replications, i.e., 

 
 ( ) ( ) ( )est true random noiseJ Jθ θ θ= + . (2.45) 

 
There is another type of simulation-based optimization problems, where 
the true performance can only be obtained by deterministic and complex 
calculation (e.g., a large-scale finite element calculation). The crude model 
is usually a deterministic but computationally fast model, i.e., 

 
 ( ) ( ) ( )est true deterministic complex errorJ Jθ θ θ= + .  (2.46) 

 
This is called the deterministic complex problems (DCP). In fact, the 
example shown in Section 5 above is just one such DCP. There are also 
many successful applications in both types, especially for the DCP, (Yang 
1998; Guan et al. 2001; Lin et al. 2004) just to name a few. One question 
immediately arises: 

Shen and Bai 2005) and more examples will be shown later on in this book. 



Ordinal Optimization Fundamentals 49 

In what sense are OO in DCP and OO in SCP equivalent s.t. the UAP 
table in Section 5 can be used in both cases? 

We address this question in this section. 
First, let us compare the two problem formulations in Eqs. (2.45) and 

(2.46). Digital computers have pervasive applications in simulation-based 
optimization. We cannot generate pure random numbers in a digital com-
puter. Instead, we use pseudo random number generator (PRNG). When 
both the PRNG and the seed are fixed, all the numbers thus generated 
compose a deterministic and complex sequence. As long as either the 
PRNG or the seed is not known to the user, which is the case in any 
engineering practice, the number thus generated is unpredictable. Then 
tremendous amount of simulation literature (Fishman 1996; Yakowitz 
1977; Gentle 1998; Landau and Binder 2000) have established that we can 
regard the number generated by a PRNG as a random number since they 
pass rigorous statistical tests. The concept of Kolmogorov complexity 
(Li and Vitányi 1997) also justified that we can regard the unpredictable 
deterministic number as a random number, which means that there is no 
fundamental difference between the two problem formulations in Eqs. 
(2.45) and (2.46), from an engineering viewpoint.12 

Second, let us look at the application procedures for OO in SCP and OO 
in DCP (Box 2.2), which are almost identical. 

There are three differences between the above two columns: step 2, 3, 
and 4. In Step 2 and 3, the differences are mainly about the names. The 
two Step 2’s are equivalent in the sense that the performance evaluation 
is a complex and time-consuming calculation. The two step 3’s are 
equivalent in the sense that a complex deterministic error and a random 
noise is equivalent w.r.t. Kolmogorov complexity, as aforementioned. We 
now focus on Step 4 and answer why the UAP table in Section 5 for SCP 
can be also used for DCP. Suppose we want to regress another UAP table 
for DCP. Then we need to repeat the experiments, exactly as we did in 
Section 5, when Θ is extremely large that almost no design can be selected 
more than once in the initial random sampling of N designs. Thus all the 
experimental data are statistically equivalent to those obtained when 
regressing the UAP table for SCP. So the table thus regressed should be 

                                                      
12 In principle, for any DCP for which we wish to apply OO, we should go 

through the same rigorous statistical analysis as we have done in the simulation 
literature to establish that the errors can indeed be equated to random noises in 
Eq. (2.46). For engineering applications, we often take as an article of faith based 
on the Kolmogorov equivalence that the complex incompressible and unpredi- 
ctable error sequence in Eq. (2.46) are indeed random. So far this assumption has
worked in all references cited. 
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the same as the UAP table in Section 5, subject to statistic error. This is 
why we can use the same UAP table in both SCP and DCP.  

OO in SCP OO in DCP 
Step 1:  randomly sample N designs 

from Θ 
Step 1:  randomly sample N designs from 

Θ 
Step 2:  stochastic crude model-based 

performance evaluation 
Step 2:  deterministic crude model-based 

performance evaluation 
Step 3:  estimate OPC and the noise 

level. User specifies g and k. 
Step 3:  estimate OPC and the error 

level. User specifies g and k. 
Step 4:  calculate s using the UAP table Step 4:  calculate s using the UAP table 
Step 5:  select the observed top-s 

designs as S 
Step 5: select the observed top-s designs 

as S 
Step 6:  The theory of OO ensures there 

are at least k good enough desi-
gns in S with high probability. 

Step 6:  The theory of OO ensures there 
are at least k good enough desi-
gns in S with high probability. 

 
Readers may also consider the case when there are correlations among 

the deterministic errors in Eq. (2.46) for different designs. This can be 
regarded as correlated noise or independent non-identical noise, which will 
be addressed in Chapter VII, Section 3. Here we just summarize that it has 
already been shown by numerical experiments and theoretical explanations 
that the correlation among the noises seldom can hurt and actually helps 
most of the time (Deng et al. 1992). For the case of independent non-

method in this chapter to deal with the problem (Yang 1998). 
In short, as long as Jtrue in Eq. (2.46) can be assumed to be Kolmogorov 

complex, we can apply OO to deal with the optimization problem 
 

 ( )truemin Jθ θ∈Θ ,   (2.47) 
 

given the crude model 
 

 ( ) ( ) ( )est true noise/errorJ Jθ θ θ= + .  (2.48) 
 

We estimate the noise/error level, and the ordered performance curve. As 

Box 2.2. Comparison of the procedures for OO in SCP and for OO in DCP 

identical noise, there are ways to divide the designs into several groups, 

long as the design space Θ is extremely large, we can use the UAP table

within each of which the noise are i.i.d. Then we can easily extend the 

(Table 2.1 in Section 5) to decide the appropriate selection size.  
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7 Example applications 

7.1 Stochastic simulation models 

Let us consider the cyclic server problem discussed in (Ho et al. 1992). 
The system has 10 buffers (of unlimited capacity) for 10 arrival streams 
modeled by Poisson processes with rates λ1, . . . , λ10 respectively. There is 
a single cyclic server serving the 10 buffers in a round-robin fashion: at 
buffer i, mi jobs are served (if there are less than mi jobs in the buffer, then 
serve all the jobs until the buffer becomes empty); then, the server moves 
from buffer i to buffer i + 1 with a changeover time of length δi (Fig. 
2.19). A holding cost of Ci units at buffer i is incurred. The objective is to 
find a service policy (m1, m2,. . . , m10) such that it minimizes the average 
holding cost per job per unit time in the system. We assume that 0 < mi < 
10 for all i; in other words, no more than 10 jobs may be served at each 
buffer for any policy. The design space Θ is therefore the lattice 

 
( ){ }1 2 10, ,..., 0 10,im m m m m iΘ = = ≤ ≤ ∀ . 

 
The cost coefficients and arrival rates are respectively 

 
 

Fig. 2.19. Cyclic server serving K stream of arrivals 
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( ) ( )
( ) ( )

1 10

1 10

,..., 1,1,1,10,1,50,1,1,1,1 ,

,..., 1,1,1,1,1,1,1,1,1,1 ,

C C

λ λ

=

=
 

 
with a service rate of the server µ = 20, and the mean changeover time of 
δi is 

 
E(δi) = 1/30, for all i. 

 
All random quantities are exponentially distributed. Notice that buffer 4 
and buffer 6 have much higher cost coefficients. 

We have generated 1000 policies (designs) from Θ and run long simu-
lations for each policy to obtain their true ordering.13 After 16753 jobs 
have arrived the system, the best 20 ordered designs are 

 
{θ[1],θ[2],…,θ[20]}={761,166,843,785,417,456,205,925,234,70,586,91,93,

493,818,565,928,250,716,840},14 
 

which will be taken as the true ordering of the top 20 designs. Assume that 
we are interested in obtaining any of these top 20 designs; i.e., they form 
the good enough subset from the 1000 design samples; then, we could 
have stopped the simulation at much earlier time instants. Suppose that we 
had terminated the simulation at the time when 161 and 330 jobs had 
arrived in the system.15 Let us call these two time instants T1 and T2, 
respectively, and we have taken the corresponding noise levels to be large 
and medium. Without any prior knowledge, we conjectured a neutral OPC 
for the 1,000 designs. Then, the required subset selection sizes at these two 
instants are given as 

 
( )
( )

1

2

20,1 neutral OPC, large noise 65,

20,1 neutral OPC, medium noise 47.
T

T

s Z

s Z

= =

= =
 

 

                                                      
13 Each policy is generated as follows: a buffer size between 0 and 10 inclusive is 

generated for each mi, i = 1,..., 10. Thus, each design is a point sampled from the lattice Θ. 
14 The numbers are the indexes of designs. 
15 The number of jobs 161, 330 and 16753 correspond respectively to 500, 1000, and 

50000 standard clock ticks. Simulation up to 50000 clock ticks is needed for the confidence 
intervals of the performance values of all designs to separate from each other. A standard 
clock tick is equivalent to an event happening to all 1000 systems operating under all 
policies. See Chapter VII Section b for further details about the standard clock. 
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Let us first examine the 65 designs at T1, 
 

1TS
139, 595, 945, 905, 156, 658, 649, 431, 969, 233, 130, 204,307, 

459, 126, 597, 285, 643, 761, 958, 681, 242, 379, 83, 927}; 

1T . 
At T2, the 47 selected designs are 

 

2TS
567, 447, 417, 980, 969, 234, 928, 366, 686, 201, 702, 738, 704, 
111, 255, 314, 982, 361, 785, 640, 773, 910, 901, 235, 455, 70, 
914, 172, 925, 335, 897, 31, 456, 217, 176}; 

 
we see that ten designs (in boldface and larger italics) from the good enough 
subset have been captured. The true top-20 designs in order by definition are  

 
{761,166,843,785,417,456,205,925,234,70,586,91,93,493,818,565,
928, 250,716,840} 

 
It is also interesting to point out that, from our experiments, we have 
observed a very fast convergence of design orders. (See Section 4 for more 
details on the exponential convergence of ordinal comparison.) 

7.2 Deterministic complex models 

After the discussion in Section 6, we now can look at the example dis-
cussed in the end of Section 5 from another aspect. The optimization problem 
is to minimize 

 ( ) ( )1 2 3sin 2J a a aθ πρθ θ= + + ,  (2.49) 
 

where a1 = 3, a2 = 5, a3 = 2, ρ = 500, θ∈[0, 1]. The deterministic crude 
model used to describe the increasing trend of J(θ) is  

 
 ( )ˆ 5J θ θ= .    (2.50) 

Since designs are taken randomly from the interval [0,1], the steps given in 
Section 5 are the steps to apply UAP table to decide selection set size s to 

= {201, 166, 565, 818, 702, 335, 487, 471, 73, 331, 843, 172, 

982, 914, 529, 655, 567, 828, 640, 621, 53, 301, 527, 924, 165, 

we see that six designs (in boldface and larger italics) are included in S

= {761, 595, 565, 873, 843, 139, 525, 105, 166, 818, 477, 643, 

105, 840, 29, 179, 189, 58, 305, 40, 38, 9, 525, 31, 286, 17, 366, 
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solve this deterministic complex optimization problems. As seen from this 
example, by adopting a softened criterion, one can indeed achieve good 
alignment results by employing a very crude model in lieu of a complex 
model. This shows the importance of capturing the trend or general behavior 
of a system prior to the study of essential details. Perhaps, this also explains 
why a designer’s intuition is often more valuable in the initial phase of a 
design process. Once a number of good enough designs are singled out, 
detailed studies of these designs can be done in the subsequent stages of the 
design process. 

8 Preview of remaining chapters 

So far, what we have presented in the first two chapters are introductory 
OO methodology and its foundations. Following the steps of OO and 
examples given, the readers can apply OO to solve real-world problems. In 
fact the majority of the 200 some references on OO employed no more 
than the theory and tools presented so far. 

The remaining part of the book can be read more or less independently 
as shown in the logical dependency graph in Fig. 2.20 of the below. It is 
divided as three parts: Chapter III, IV, V and VI are major extensions of 
the OO method; Chapter VII deals with additional extensions; Chapter 
VIII presents case study for real-world examples.  

Fig. 2.20. Organization of the contents of the book 

For the major extensions, we focus on Selection Rules in Chapter III. So 
far, we have studied two basic selection rules, namely, blind pick and 
horse race. We established analytical expression for blind pick and UAP 
table for the horse race. Although it is sufficient to use these rules to solve 
most application problems, it is still interesting to ask the natural question: 
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how about other selection rules? The purpose of Chapter III is to introduce 
more selection rules, compare the efficiencies of different selection rules, 
and give guideline in choosing selection rules based on the availability of 
computing budget. 

As a second major extension to Ordinal Optimization method, we focus 
on optimization problems with multiple objective functions in Chapter IV. 
When there are multiple criteria (refers to as the vector case), ordinal 
comparison has to be done in a more complicated way than the scalar case 
of single objective function. As a result, the operative concept in multi-
criterion optimization becomes the concept of Pareto optimum which was 
first formulated way back by Vilfredo Pareto. A design is said to be Pareto- 
optimal if it is not dominated by any other designs (i.e., there exists no 
other design that is better for at least one objective function value, and 
equal or superior with respect to the other objective functions). By 
introducing a natural order “layers” in design space, we generalize ordinal 
optimization from the scalar case to the vector case. We quantify how many 
observed layers are enough to contain the required number of designs in the 
Pareto frontier with high probability. 

As a third major extension to Ordinal Optimization method, we focus in 
Chapter V on optimization problems with constraints. Similar to the objec-
tive function, we assume that the evaluation of constraints is also time 
consuming. So, the simple method of re-defining the design space as the 
feasible set then applying the tools of unconstrained OO does not work. To 
get around the time consuming evaluation barrier in constraints, we follow 
the idea of “crude model” in OO. Our key idea is to use a rough estimate 
of feasibility and allow the selected set to include some infeasible designs. 
Naturally to achieve the same level of alignment, more designs should be 
selected (thus a larger selected set is needed) for constrained OO. We 
quantify this additional correction. 

A fourth extension to Ordinal Optimization method is given in Chapter 
VI. We deal with the memory limitation problem when we are trying to 
store a design on a computer. This problem comes naturally when we con-
sider strategy optimization problems such as searching for good enough 
feedback control strategy for a complex system. Since for anything other 
than toy problems, the search space for admissible strategies can be 
enormously large, and the representation of a multi-dimensional function 
can be taxing on any size of computer memory, we need a way to search 
systematically in the strategy space that takes the limitation of memory 
storage into account. OO is incorporated into such a framework to search 
in the strategy space that can be implemented on a computer.  

Further extensions of OO methodology requiring relatively little chan-
ges in solving real world problems will be discussed in Chapter VII. 
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Firstly, in previous study, no matter how large the design space is, we 
randomly sample N = 1000 designs and then apply OO to find some of the 
truly good enough designs (of these 1000 designs) with high probability. 
We show that the difference between the truly good enough designs (top-
g%) of these 1000 designs, and the truly good enough designs (top-g%) of 
the entire design space is negligible for practical purpose. Thus further 
justify the practical use of OO for purists. Secondly, we show how we can 
take advantage of parallel computing ideas when applying OO to speed up 
the computation. The technique described is general. But the explanation is 
done by way of a specific example for clarity. Thirdly, in the previous 
consideration, only the i.i.d. additive noise is considered. However, the 
additive noise in practice might not be i.i.d. For example, the well adopted 
common random number generator technique is usually used in practice to 
reduce the variance of the observation noise. The observation noise then 
may be correlated. In some other times, the additive noise may be related 
to the performance of the solution, i.e., the noise is independent, but non-
identical. We show that knowledge of these dependencies can help to 
improve the efficiency of OO method. Finally, as we mentioned earlier, 
Ordinal Optimization is not intended to replace the other optimization 
techniques. Instead, there are natural ways to combine ordinal optimization 
(including the key element of ordinal comparison) with other techniques, 
such as genetic algorithm to further improve the performance thus found.  

In Chapter VIII, we present four real world application examples of 
applying OO method. The first example is a clothing manufacturing exam-
ple. The problem is difficult and it is prohibitive to search for the best 
solution considering the tremendous computing budget involved. Using 
ordinal optimization ideas introduced in Chapter I and Chapter II, we 
obtained very encouraging results – not only have we achieved a high pro-
portion of “good enough” designs but also tight profit margins compared 
with a pre-calculated upper bound. There is also a saving of at least 1/2000 
of the computation time if brute-force simulations were otherwise used. The 
second real-world example is the Turbine blade design problem. We 
demonstrate how OO in Chapter I and II can be applied to solve such a 
deterministic complex problem. The third real-world example is the resource 
planning of a complex remanufacturing system involving two conflicting 
performance indices can only be evaluated by simulation. We demonstrate 
the application of Constrained Ordinal Optimization method developed in 
Chapter V and Vector Ordinal Optimization method developed in Chapter 
IV to the problem. At last, we demonstrate and apply extension of OO under 
limited memory developed in Chapter VI to the long standing strategy 
optimization problem known as the Witsenhausen Problem. 

 




