

Ordinal Optimization:
Soft Optimization for Hard Problems

Wisdom consists of knowing when to avoid perfection.
— Horowitz’s Rule*

* The Complete Murphy’s Law by Arthur Bloch, Price Stern Sloan Publisher,

Los Angeles, 1991.

ORDINAL
OPTIMIZATION

SOFT OPTIMIZATION FOR HARD
PROBLEMS

Yu-Chi Ho
Harvard University
Massachusetts, USA
Tsinghua University
Beijing, China

Qian-Chuan Zhao
Tsinghua University
Beijing, China

Qing-Shan Jia
Tsinghua University
Beijing, China

Yu-Chi Ho, PhD, Professor
Harvard University
Cambridge, MA, USA
Tsinghua University
Beijing, China
e-mail: ho@deas.harvard.edu

Qian-Chuan Zhao, Ph.D.

Tsinghua University
Beijing, China
e-mail: zhaoqc@tsinghua.edu.cn

Qing-Shan Jia, PhD, Lecturer
Center for Intelligent & Networked Systems
Tsinghua University
Beijing, China
e-mail: jiaqs@tsinghua.edu.cn

Library of Congress Control Number: 2007927989

Ordinal Optimization: Soft Optimization for Hard Problems
by Yu-Chi Ho, Qian-Chuan Zhao and Qing-Shan Jia

ISBN-13: 978-0-387-37232-7 e-ISBN-13: 978-0-387-68692-9

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business
Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now know or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if the are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

Professor of Automation Engineering
Center for Intelligent & Networked

Systems

To Sophia,
You have made life worth living and ideas possible.

——Larry

To Betty,
You have made life simple and beautiful.

——Qian-Chuan

To Huai-Jin Jia and Guo-Hua Zhou,
You have made my life possible.

——Qing-Shan

Table of Contents

Preface--xiii

Acknowledgements--xv

I Introduction--1

II Ordinal Optimization Fundamentals------------------------------7

1 Two basic ideas of Ordinal Optimization (OO) -----------------------------7
2 Definitions, terminologies, and concepts for OO----------------------------9
3 A simple demonstration of OO--13
4 The exponential convergence of order and goal softening----------------15

4.1 Large deviation theory--16
4.2 Exponential convergence w.r.t. order-----------------------------------21
4.3 Proof of goal softening--26

4.3.1 Blind pick--26
4.3.2 Horse race ---28

5 Universal alignment probabilities---37
5.1 Blind pick selection rule --- 38
5.2 Horse race selection rule--- 39

6 Deterministic complex optimization problem and Kolmogorov
equivalence--48

7 Example applications---51
7.1 Stochastic simulation models-- 51
7.2 Deterministic complex models---53

8 Preview of remaining chapters--54

III Comparison of Selection Rules---------------------------------------57

1 Classification of selection rules --60
2 Quantify the efficiency of selection rules-----------------------------------69

viii Table of Contents

2.1 Parameter settings in experiments for regression functions---------73
2.2 Comparison of selection rules---77

3 Examples of search reduction---80
3.1 Example: Picking with an approximate model--------------------80
3.2 Example: A buffer resource allocation problem------------------84

4 Some properties of good selection rules-------------------------------------88
5 Conclusion---90

IV Vector Ordinal Optimization--93

1 Definitions, terminologies, and concepts for VOO-----------------------94
2 Universal alignment probability---99
3 Exponential convergence w.r.t. order---------------------------------------104
4 Examples of search reduction--106

4.1 Example: When the observation noise contains normal
distribution --106

4.2 Example: The buffer allocation problem -----------------------------108

V Constrained Ordinal Optimization------------------------------113

1 Determination of selected set in COO--------------------------------------115
1.1 Blind pick with an imperfect feasibility model----------------------115
1.2 Impact of the quality of the feasibility model on BPFM------------119

2 Example: Optimization with an imperfect feasibility model------------122
3 Conclusion--124

VI Memory Limited Strategy Optimization----------------------125

1 Motivation (the need to find good enough and simple strategies) -----126
2 Good enough simple strategy search based on OO-----------------------128

2.1 Building crude model--128
2.2 Random sampling in the design space of simple strategies--------133

3 Conclusion--135

VII Additional Extensions of the OO Methodology---------137

1 Extremely large design space--138
2 Parallel implementation of OO--143

2.1 The concept of the standard clock-------------------------------------144

Table of Contents ix

2.2 Extension to non-Markov cases using second order
approximations --147
2.2.1 Second order approximation--------------------------------------148
2.2.2 Numerical testing--152

3 Effect of correlated observation noises-------------------------------------154
4 Optimal Computing Budget Allocation and Nested Partition-----------159

4.1 OCBA--160
4.2 NP--164

5 Performance order vs. performance value----------------------------------168
6 Combination with other optimization algorithms-------------------------175

6.1 Using other algorithms as selection rules in OO---------------------177
6.1.1 GA+OO---177
6.1.2 SA+OO--183

6.2 Simulation-based parameter optimization for algorithms----------186
6.3 Conclusion--188

VIII Real World Application Examples----------------------------189

1 Scheduling problem for apparel manufacturing---------------------------190
1.1 Motivation---191
1.2 Problem formulation---192

1.2.1 Demand models--193
1.2.2 Production facilities--195
1.2.3 Inventory dynamic---196
1.2.4 Summary ---197

1.3 Application of ordinal optimization-----------------------------------198
1.3.1 Random sampling of designs-------------------------------------199
1.3.2 Crude model--200

1.4 Experimental results---202
1.4.1 Experiment 1: 100 SKUs--202
1.4.2 Experiment 2: 100 SKUs with consideration

on satisfaction rate ---204
1.5 Conclusion--206

2 The turbine blade manufacturing process optimization problem-------207
2.1 Problem formulation---208
2.2 Application of OO---213
2.3 Conclusion--219

3 Performance optimization for a remanufacturing system--------------220
3.1 Problem formulation of constrained optimization-----------------220
3.2 Application of COO---224

x Table of Contents

3.2.1 Feasibility model for the constraint----------------------------224
3.2.2 Crude model for the performance------------------------------224
3.2.3 Numerical results---225

3.3 Application of VOO---227
3.4 Conclusion--232

4 Witsenhausen problem--232
4.1 Application of OO to find a good enough control law------------234

4.1.1 Crude model--235
4.1.2 Selection of promising subsets-----------------------------------237

4.2 Application of OO for simple and good enough control laws----245
4.3 Conclusion---251

Appendix A Fundamentals of Simulation

1 Introduction to simulation--253
2 Random numbers and variables generation--------------------------------255

2.1 The linear congruential method--255
2.2 The method of inverse transform--------------------------------------257
2.3 The method of rejection---258

3 Sampling, the central limit theorem, and confidence intervals ---------260
4 Nonparametric analysis and order statistics--------------------------------262
5 Additional problems of simulating DEDS---------------------------------262
6 The alias method of choosing event types---------------------------------264

Appendix B Introduction to Stochastic Processes
and Generalized Semi-Markov Processes as Models
for Discrete Event Dynamic Systems

1 Elements of stochastic sequences and processes--------------------------267
2 Modeling of discrete event simulation using stochastic sequences-----271

Appendix C Universal Alignment Tables

and Performance Evaluation--253

and Simulations---267

for the Selection Rules in Chapter III------------------------------279

Table of Contents xi

1 True/False questions--291
2 Multiple-choice questions--293
3 General questions--297

References--305

Index --315

Appendix D Exercises--291

Preface

This book is a research monograph dealing with the subject of perfor-
mance evaluation and optimization for complex systems. At the same time,
it can be used and has been used as the main textbook for a first-year
graduate course at Harvard University and Tsinghua University for the
past 15 years. Exercises are included throughout the book.

According to the authors’ experience, engineering methodology or tools
can be more easily taught and accepted when it is applied in a specific area
no matter how narrow or broad it may be. In this way, students usually have
more incentives to study further and are more likely to better appreciate the
importance of and the raison d’etre for various features of the methodology.
Such an appreciation of “what is essential” is a useful skill for students to
acquire regardless of their career choice later on.

This book focuses on the performance evaluation and optimization of
complex human made systems, which are known as Discrete Event dynamic
Systems (DEDS), such as automated manufacturing plants, large communi-
cation networks, traffic systems of all kinds, and various paper processing
bureaucracies, etc. There is no simple analytical model for the description of
such systems, such as differential equations, since such systems are mostly
developed according to human made rules of operation rather than physical
laws. Brute force simulation models are often the only choice. If traditional
methods are used, the computational burden relating to evaluation and
optimization of simulation models often renders their solutions computa-
tionally infeasible. Ordinal Optimization (OO) is a methodology invented in
early 1990s to get around this fundamental difficulty. After more than 14
years’ development, it becomes a complete methodology covering all the
aspects of applying the methodology to practical problems. A large number
of works on the subject are ready for reference (Shen et al. 2007). A book
collecting all the information in one place seems to be in order.

Only basic knowledge of probability and an undergraduate background
in engineering are needed for reading this book. This book is divided into
eight Chapters. The first chapter introduces the rationale and the last one
provides application examples. In chapter I, it discusses the computational
difficulty in performance evaluation and optimization via simulation models
when using traditional means, followed by an introduction of the basic

xiv Preface

ideas and concepts regarding Ordinal Optimization (OO) in Chapter II.
From Chapters III to VII, we provide various extensions of the OO
methodology, by which the practical problems may be solved more or less
routinely. For readers who are not familiar with simulation and modeling
of DEDS, the book provides the fundamentals of simulation and stochastic
processes in Appendices A and B. Appendix C contains data and para-
meters needed in Ch. III. Additional exercises are provided in Appendix D.

The structure of this book is elaborated in Fig. 1.

Fig. 1. Structure of the book

Acknowledgements

This book owes its existence to the National Science Foundation, the Air
Force Office of Scientific Research, the Office of Naval Research and the
Army Research Office of the United States. Without their more than 40
years of visionary and unfettered support, especially to my researches on
ordinal optimization in the last 15 years, the publication of this book would
not be possible. Finally, I take this opportunity also to thank all my Ph.D.
students (53 in total) for their ideas and materials in support of my
research. I’ve also learned a lot from them.

Yu-Chi Ho, March 2007, Cambridge, MA USA

I would like to thank Fundamental Research Funds from Tsinghua
University, the Chinese Scholarship Council, National Natural Science
Foundation of China (60274011 and 60574067), Chinese NCET program
(NCET-04-0094), the National 111 International Collaboration Project
and United Technology Research Center. I would also like to express my
gratitude to Prof. Da-Zhong Zheng and Prof. Yu-Chi Ho. for their insight-
ful suggestions to improve the work.

Qian-Chuan Zhao, March 2007, Beijing, China

Natural Science Foundation of China (60274011 and 60574067), Chinese
NCET program (NCET-04-0094) and National Basic Research Program of
China (973 project) (contract 2004CB217900) and United Technology
Research Center for for supporting me to do the work since 2001. I would
especially like to mention Prof. Ho, Prof. Zhao, Prof. Xiaohong Guan,
Hongxing Bai, Zhen Shen, and Yanjia Zhao for their advice and comments
from which I have benefited a lot. A word of thanks to my parents for their
love and encouragement.

Qing-Shan Jia, March 2007, Beijing, China

organizations, professors and students. In particular, I want to thank National
This book could not have been done without the help of a large number of

Chapter I Introduction

“Optimization”, taken in the broadest sense as seeking for improvement, is
an idea as old as mankind itself. In fact, it can be argued that it is the “rai-
son d’être” for our civilization. Without the desire to improve, progresses
on all fronts will stall. Yet the study of optimization as a discipline but not
as individual endeavors on specific problems did not begin until the inven-
tion of calculus, which enabled the mathematical modeling of a large
number of physical phenomena. The theory of maxima/minima and con-
vexity emerged as a result. Yet the numbers of real world problems that
can be explicitly solved by mathematics alone remain limited until the
development of the computer. Suddenly, many algorithms, which were
previously thought to be infeasible for the numerical and iterative solution
of difficult optimization problems, now become possible. The golden age
of optimization took off in the 1950s and is still ongoing.

On the other hand, in spite of the tremendous development of the sci-
ence and art of optimization and computation, there remain many problems
that are still beyond our reach. Among them are the class of combinatorial
NP-hard problems and the well known “curse of dimensionality” in dynamic
programming. Exponential growth is one of the problems that mathematics
and computers cannot overcome. Furthermore, the computational burden
of a problem does not always necessarily arise because of problem size.
Complexity of a problem can also impose infeasible computational bur-
dens. We have here in mind, the class of computational problems that arise
out of simulation models.

Civilization have increasingly created complex human-made systems,
such as large-scale electric power grids, air and land traffic control sys-
tems, manufacturing plants and supply chains, the Internet and other com-
munication networks, etc. Such systems operate and evolve in time via
human- made rules of operation, and are difficult to describe and capture
by succinct mathematical models such as differential equations for physical
systems. Collectively, they are known as Discrete Event Dynamic Systems
(DEDS) (Ho 1989). In fact, the only faithful description of such complex
systems is by way of an electronic copy, i.e., a simulation model/program
that duplicates everything the real system does in real or simulation time.
Evaluation of the performance of such systems is accomplished by running

2 Chapter I

such simulation models rather than experimenting with the real systems.
This is important for design purposes when the real system does not even
exist or when it is inconvenient or impossible to do experiments on the real
system. But having a simulation model is not the end of the problem diffi-
culty. Experiments with such model are often quite time consuming. In
Table 1.1 below, we listed several typical real problems (some will be dis-
cussed in detail in Chapter VIII) as well as the typical time required for
one particular evaluation of their performance metric. We are not attaching
any particular significance to Table 1.1 except to convey a sense of the
time required for performance evaluation and optimization using simula-
tion models and computers available today. The time shown in each row is
either for a single performance evaluation or one run (replication) of the
simulation model.

Table 1.1. The time to simulate some real systems

Real system Performance Simulation
time

Remanufacturing system Accurately evaluate the average cost
of a maintenance strategy by 1000
independent replications

30 minutes

Congestion control and
buffer management in a
computer network

 A NS1-2-based simulation of the
1000-second dynamics of a 12000-
node-single-bottleneck computer
network

1.5 hours

Security evaluation and
optimization for a large
scale electric power grid

 A simulation of the 30-second dyna-
mics of a large scale electric power
grid with 5000 buses and 300 genera-
tors after a failure event

2 hours

Scheduling of a transpor-
tation network

 A simulation of the 24-hour dynamics
of a transportation network with 20
intersections

2 hours

Turbine blade design
problem

 A 3D extrusion simulation with Finite
Element Methodology

7 days

From Table 1.1, we can get a feel of the immense computational burden
particularly if optimization in addition is attempted with such models via
successive iteration. Mathematically, we can represent the performance of
a simulation model/program as L(x(t;θ,ξ)) where x(t;θ,ξ) is the trajectory
(sample path) of the system as the simulation evolves in time; θ∈Θ, the
various system parameters that may be subject to design choices; Θ is the

1 NS is short for Network Simulator, which is a software to simulate the com-

puter network.

Introduction 3

search or design space for θ ; ξ, all the randomness that may occur in the
system as it evolves during a particular sample trajectory; and L, a func-
tional of x(t;θ,ξ) that defines the performance metric of the system we are
interested in.

Because of the inevitable randomness that occurs in such real systems,
we work with expected performance by defining

 () ()(); ,J E L x tθ θ ξ⎡ ⎤≡ ⎣ ⎦ , (1.1)

where the expectation is taken with respect to the distribution of all the
randomness, ξ. Computationally, Eq. (1.1) is calculated by

 () ()() ()()
1

1; , ; ,
n

i
t

J E L x t L x t
n

θ θ ξ θ ξ
=

⎡ ⎤≡ ≈⎣ ⎦ ∑ (1.2)

where n is usually a large number in practice and ξi denotes the sample
randomness during the i-th replication of the simulation. It is well known
that the accuracy of the estimate of J using a finite n improves as 1/(n)1/2

((Fishman 1996; Yakowitz 1977; Gentle 1998; Landau and Binder 2000)
as well as see Chapter II). Here comes the computational difficulty. For
every one order of magnitude increases in accuracy of the estimate for J, n
must increase by two orders of magnitude. Since each sample run of the
simulation model of a complex system may consume considerable time,
running the simulation model n times to achieve an accurate estimate of J
may impose a heavy burden2. As a result, simulation models are often used
for validation of a design obtained by other means but not for optimization
purposes.

To make matters worse, while the literature on optimization and deci-
sion-making is huge, much of the concrete analytical results are associated
with what may be called Real Variable Based methods. The idea of suc-
cessive approximation to an optimum (say, minimum) by sequential
improvements based on local information is often captured by the meta-
phor of “skiing downhill in a fog”. The concepts of gradient (slope), curva-
ture (valley), and trajectories of steepest descent (fall line) all require the
notion of derivatives and are based on the existence of a more or less
smooth response surface. There exist various first and second order algo-
rithms of feasible directions for the iterative determination of the optimum
(minimum) of an arbitrary multi-dimensional response or performance

2 As the examples show in Table 1.1.

4 Chapter I

surface3. Considerable numbers of major success stories exist in this genre
including the Nobel Prize winning work on linear programming. It is not
necessary to repeat or even reference these here.

On the other hand, we submit that the reason many real world optimiza-
tion problems remain unsolved is partly due to the changing nature of the
problem domain, which makes calculus or real variable based method less
applicable. For example, a large number of human-made system problems
mentioned above involve combinatorics, symbolic or categorical variables
rather than real analysis, discrete instead of continuous choices, and syn-
thesizing a configuration rather than proportioning the design parameters.
Optimization for such problem seems to call for general search of the per-
formance terrain or response surface as opposed to the “skiing downhill in
a fog” metaphor of real variable based performance optimization4. Argu-
ments for change can also be made on the technological front. Sequential
algorithms were often dictated as a result of the limited memory and cen-
tralized control of earlier generations of computers. With the advent of
modern massively parallel machines, distributed and parallel procedures
can work hand-in-glove with Search Based method of performance eva-
luation (Thomke 2003).

The purpose of this book is to address the difficulties of optimization
problems described above – the optimization of complex systems via simu-
lation models or other computation-intensive models involving possible
stochastic effects and discrete choices. As such, the book is complemen-
tary to existing optimization literature. The tools to be described here do
not replace but can be used separately or in conjunction with other meth-
odological tools of optimization.

If we accept the need for search based method as complement to the
more established analytical real variable techniques, then we can next
argue that to quickly narrow the search for optimum performance to a
“good enough” subset in the design universe is more important than to es-
timate accurately the values of the system performance during the process
of optimization. We should compare “order” first and estimate “value”
second, i.e., ordinal optimization comes before cardinal optimization.
Furthermore, we shall argue that our preoccupation with the “best” may be
only an ideal that will always be unattainable or not cost effective. Real

3 We include here also the more recently developed gradient tool of Perturba-

tion Analysis for discrete event systems.
4 We hasten to add that we fully realize the distinction we make here is not

absolutely black and white. A continuum of problems types exists. Similarly, there
is a spectrum of the nature of optimization variables or search space ranging from
continuous to integer to discrete to combinatorial to symbolic.

Introduction 5

world solution to real world problem will involve compromise for the
“good enough”5. The purpose of this book is to establish the distinct ad-
vantages of this softer and ordinal approach for the search based type of
problems, to analyze some of its general properties, and to show the sev-
eral orders of magnitude improvement in computational efficiency that is
possible under this mind set.

Of course, this softer optimization is not unique with our ordinal
approach to be explained below. Heuristics of various kind (Glover 1989)
used in successfully solving NP-hard combinatorial problems and the huge
literature on fuzzy control (Passino and Yurkovich 1998; Driankov et al.
2006) all advocate concepts that can be grouped under the rubric of soft
optimization. It is not the primary intention of this book to offer an alterna-
tive to these established subject matters. On the other hand, ordinal optimi-
zation as presented in this book does offer a quantified rather than just
heuristic account of reducing the intensive computational burden associ-
ated with the performance evaluation and optimization of complex human
made systems.

5 Of course, here one is mindful of the business dictum, used by Mrs. Fields for

her enormously successful cookie shops, which says, “Good enough never is”.
However, this can be reconciled via the frame of reference of the optimization
problem.

Chapter II Ordinal Optimization Fundamentals

1 Two basic ideas of Ordinal Optimization (OO)

There are two basic ideas in OO:

• “Order” is much more robust against noise than “Value”
• Don’t insist on getting the “Best” but be willing to settle for the “Good

Enough”

Of course readers may rightly point out that these ideas are hardly new.
Good engineers and designers do this all the time when confronted with
difficult and complex problems of performance evaluation and optimi-
zation. Our contribution in this book is simply that we have developed a
theory to quantify these two ideas. The practice of these two ideas is now
knowledge-based instead of being experience-based. The expertise of a
good designer acquired from experience will now be available to everyone
who uses the tools discussed in this book. Moreover, the user will have
numerical measures rather than just gut feelings. The quantification will
come later in the book. For now let us simply explain the ideas in intuitive
terms.

Idea No.1 Order is easier than Value. Imagine you hold two
identically looking boxes with unknown content in your two hands. You
are asked to judge which one is heavier than the other – an “ordinal”
question. Almost all of us can correctly tell the answer, even if there is
only a very slight difference between the weights of the two boxes. But if
we are asked to estimate the difference in weight between the two boxes –
a “cardinal” question, we will have a hard time. This is the essence of the
first tenet of OO. In fact later on in this chapter we shall prove that
“Order” converges exponentially fast in stochastic simulation models

1/2

An intuitive and graphical illustration of this idea is shown in Fig. 2.1.
as discussed in chapter I.

 convergence rate of “Value” or “Confidence Interval” against the 1/(n)

8 Chapter II

A B

Fig. 2.1. Comparison of two values A and B corrupted by noise

We have two values A and B. But we can only observe the values through
noises, which are zero mean and normally distributed. If we compare
samples of these noisy values of A and B, then we will reach an incorrect
answer, i.e., A > B, only when the samples of A is larger than that of B. This
happens basically when the samples fall in the shaded triangle area. This
area decreases rapidly as the values of A and B are drawn apart.

Idea No.2 Nothing but the best is very costly. The second tenet of OO
rests on the idea of relaxing the goal of performance evaluation. We are
asked to retreat from “nothing but the best” to a softer goal of being “good
enough”, e.g., settle for anything in the top-g choices. The small retreat can
buy us quite a bit in the easing of the computational burden. Again the
quantification will come later on in the chapter. However, an intuitive ex-
planation is helpful to fix ideas at this point. When we are searching only
for the best in Θ, there is only one solution (unless of course in the less
common cases when there are multiple optima), and we can easily fail
(i.e., the truly best design is not the observed best one). But if we are
willing to settle for any one of the top-2 choices, we fail only when neither
design is within the observed top-2, and if we are willing to settle for

observed top-g, the probability of which is almost the first failure proba-
bility to the power of g.

any of the top-g choices, there will be at least g! satisfactory alternatives,
the possibilities increases superlinearly. More technically, for g = 2, the pro-
bability of which is almost the square of the previous failure probability for
a large enough Θ; for top-3, we fail only when none of these three designs
is within the observed top-3, the probability of which is almost the cube
of the first failure probability; and for top-g, where g is small compared
to the size of Θ, we fail only when none of these g designs is within the

Ordinal Optimization Fundamentals 9

Exercise 2.1: Prove the above statements concerning the failure proba-
bilities.

This exponential decrease of failure probability (thus the exponential
increase in successful probability) contributes to significant decrease in
search, and hence computational cost. Another way of clarifying the advan-
tage of this idea is to observe that independent noisy observation or
estimation error may worsen as well as help the performance “order” of a
particular choice of θ. Thus, as a group, the top-n choices can be very robust
against perturbations in order so long as we don’t care about the exact order
within this group.

Lastly, it is not hard to convince oneself that the ease of computational
burden through these two ideas is not additive but multiplicative since they
are separate and independent factors. Together, as we shall demonstrate
throughout this book, they produce orders of magnitude improvement in
efficiency. Problems previously thought to be infeasible computationally
are now within reach.

2 Definitions, terminologies, and concepts for OO

We first introduce some definitions, which will be used throughout this
book

θ The various system parameters that may be subject to design
choices.

Θ The search space for the optimization variables θ. We can simply
assume it to be a very large but finite set consisting of zillions of
choices.

J The performance criterion for the system as already defined in
Eqs. (1.1) and (1.2).

Ĵ The estimated or observed performance for the system. This is
usually done by using a crude but computationally easy model of
the system performance.

w The observation noise/error, which describes the difference bet-
ween the true performance and the estimated/observed performance,
i.e., () ()Ĵ J wθ θ= + .

ξ All the random variables with known distribution used in the
simulation model.

10 Chapter II

x(t; θ, ξ) A sample trajectory of the system given the design θ and the
realizetion ξ. In simulation terminology, this is often called a
replication.

L A functional of x(t; θ,ξ) that defines the performance metric of the
system on a sample path. The system’s performance criterion is
given by the expectation J = E[L(x(t; θ,ξ))].

N The number of designs uniformly chosen in Θ. It is understood
that for each design θ, there corresponds a value of J as defined in
Eqs. (1.1) and (1.2). When there is no danger of confusion we also

G The Good Enough set, usually the top-g designs of Θ or of N.
S The set of selected designs in N, usually the estimated top-s of N.
Selection Rule

The method that is used to determine the set S, e.g., it could be
blind pick or horse race1 or other rules using the estimated perfor-
mance to order the designs (based on a crude model).

G∩S

The relationship among Θ, G, S and the true and estimated optimal design

are shown in Fig. 2.2. Note the sets G and S in OO play the analogous role
as the true optimum and the estimated optimum respectively in regular opti-
mization.
AP, Alignment Probability ≡ Prob[|G∩S|≥k]

The probability that there are actually k truly good enough designs
in S (represented by the dotted area in Fig. 2.2 above). k is called
the alignment level. This number quantifies how a crude model
can help to assure the determination of “good enough” designs.

OPC, Ordered Performance Curve
A (conceptual) plot of the values of J as a function of the order of
performance, i.e., the best, the second best, and so on. If we are
minimizing then the OPC must be a non-decreasing curve2.

1 The blind choice selection rule is to arbitrarily and randomly selected s θ ’s

from N as the set S. The horse race selection method is simply to compare the
observed performance values, 1̂J , 2Ĵ , . . . , ˆ

NJ and select the designs with top-s
observed values as the set S. More details can be found in Chapter III.

2 In this book, we usually deal with finite but a large number of designs. For
visualization, we show continuous curves in Fig. 2.3 and in some of the following
figures, instead of a large number of discrete points. These figures can be regarded
as limits of discrete points with high density.

use N to denote the set of designs chosen.

The truly good enough designs in S.

Ordinal Optimization Fundamentals 11

Fig. 2.2. Graphical Illustration of Θ, G, and S

Fig. 2.3. Different types of OPC

C denotes the class or type of OPC for the problem. For non-
decreasing curves, there are only five general types as shown in
Fig. 2.3 below.

The fact that “order” is robust against noise (as will be shown shortly)

gives us the possibility that we may use a crude model to determine the
order of various designs. In other words, we visualize and set up

12 Chapter II

 complex simulation model crude model noise/errorJ J= + 3. (2.1)

In terms of Eq. (1.2) for the simulation of a complex model, the number of
replications, n, is very large. However n is very small and may even be
equal to one for the crude model.

Given Eq. (2.1), we define
σ2 as the noise/error level. In simulation, this is related to the width of

the confidence interval of the performance estimate. In practice we
do not need to know the value of σ2 very accurately, but whether
or not the approximation of the crude model to the complex model
is very bad, bad, or moderate. By definition the approximation
cannot be good. For otherwise, there will not be a problem.

 2Prob , ,G S k N σ⎡ ⎤∩ ≥⎣ ⎦C
≡

UAP(N, σ2, C)

We assert here, and will establish later (in Section 5), that once N,
σ2, C are fixed, the alignment probability becomes independent of
the specific problem under consideration. For the fixed size of G,
it is possible to tabulate the required size of S in order to insure
that the alignment probability, AP, is no less than a certain high
value, say 0.95.

Here is an example to help picture the concepts of AP. In the world of
professional tennis, players are ranked as the #1 seed, #2 seed, etc. Let us
assume that as the true ranking and take the first 16 seeds as the set G. In a
given tennis tournament, e.g., the U.S. Open, 16 players will reach the
quarter-finals through elimination. These 16 players, thus selected, consti-
tute the set S. And elimination tournament is the selection rule used.
Without consulting a sports almanac, we can be reasonably sure that there
will be a significant overlap between G and S. For example, even without
any knowledge of the tennis world, we can be fairly certain that the
Prob[|G∩S|≥1]≈1. Furthermore, such near certainty will exist in other
sports such as horse race. Thus, we claim the use of the adjective “univer-
sal” for such APs which are tabulated as a function of N, σ2, and C. In fact
we shall show in later chapters how UAPs can be used to narrow down
searches for the “good enough”. There is also a simple demonstration

3 It will be introduced later (in Section 6) that how to use OO to deal with

different simulation models, i.e., both stochastic simulation models and deter-
ministic complex simulation models. To cover both types of models, we use “noise/
error” here. In Section 6 we will show that noise and error can be regarded as the
same under the concept of Kolmogorov complexity.

UAP, the Universal Alignment Probability ≡

Ordinal Optimization Fundamentals 13

explained immediately in Section 3 below which further illustrates the
universality of the concept of alignment probability.

Finally, we summarize the spirit of ordinal optimization as:
Instead of the best for sure, we seek

the good enough with high probability.

3 A simple demonstration of OO

We present here a simple generic demonstration that everyone can do to
convince themselves of the validity of the two basic tenets of OO as
discussed in Section 1 and the universality of the alignment probability of
OO. Let the search space Θ have 200 designs, say 1,2, …, 200. Without
loss of generality, we let choice #1 be the best, #2, the second best, and so
on to #200; and the performances for simplicity be 1, 2, ..., 2004.
Mathematically, we have J(θi) = i in which case the best design is θ1 (we
are minimizing) and the worst design is θ200 and the Ordered Performance
Curve (OPC) is linearly increasing. For any finite i.i.d noise w, we can
implement ˆ() ()J J wθ θ= + and directly observe these performances
through noisy measurements as in Eq. (2.1) with noise distributed as
U[0,100] or U[0,10000]. Let the good enough performance G be 1, . . ., 12
(the top-6%), and S be the observed top-6%. We are interested in |G∩S|.

All of these can be simply implemented in a spreadsheet with Θ
represented by 200 rows as in Fig. 2.4.

Design # = θ True performance

J(θ)
Noise w∈U[0,W] Observed

performance J(θ)+w
1 1.00 87.98 88.98
2 2.00 1.67 3.67
. . . .
. . . .
. . . .
199 199.00 32.92 231.92
200 200.00 24.96 224.96

Sort on this column
in ascending order

Fig. 2.4. Spread sheet implementation of generic experiment

4 Actually any monotonically increasing numerical sequence will do.

14 Chapter II

Column 1 models the N (=200) alternatives and the true order 1 through
N. Column 2 shows the linearly increasing OPC from 1 through N (=200).
The rate of OPC increase with respect to the noise variance σ2 essentially
determines the estimation or approximation error of ˆ()J θ . This is shown
by the random noise generated in column 3 which, in this case, has a large

mated or observed) performance. When we sort on column 4, we can
directly observe the alignment in column 1, i.e., how many numbers 1
through g (=12) are in the top-g rows. For example, in Fig. 2.5 we show
what the sorting result of the table in Fig. 2.4 may look like. Try this and

Design # = θ True performance

J(θ)
Noise w∈U[0,W] Observed

performance J(θ)+w
2 2.00 1.67 3.67
5 5.00 20.12 25.12
. . . .
. . . .
. . . .
90 90.00 79.09 169.09
193 193.00 90.85 283.85

Fig. 2.5. The spread sheet in Fig. 2.4 after sorting on the observed performance in
ascending order (Note: Column 4 is completely sorted in ascending order)

An already implemented version can also be found on http://www.hrl.
harvard.edu/~ho. One can also simulate the result of blind pick by making
the noise U[0, 10000] and repeat the Excel simulation. It should be noted
that the above demonstration is rather general. Except for the assumption
of independent noise/error in Eq. (2.1), the results are applicable to any
complex computational problems when approximated by a crude model.
Chapters below will further discuss and exploit this generality.

At this point, except for establishing more carefully the validity of the
two basic ideas of ordinal optimization (in the rest of this chapter) and
other extensions (in the future chapters), we already have the procedure for
the practical application of OO to complex optimization problems. This
procedure is basically an elaboration of the demo above which we re-stated
here for emphasis (Box 2.1):

range U[0,100] or U[0,10000]. Column 4 displays the corrupted (or esti-

you will be surprised! It takes less than two minutes to setup on Excel.

Ordinal Optimization Fundamentals 15

Box 2.1. The application procedure of OO

Step 1: Uniformly and randomly sample N designs from Θ.
Step 2: Use a crude and computationally fast model to estimate the

performance of these N designs.
Step 3: Estimate the OPC class of the problem and the noise level of

the crude model. The user specifies the size of good enough
set, g, and the required alignment level, k.

Step 4: Use Table 2.1 (in Section 5 below) to calculate s = Z(g,k/OPC
class, noise level).

Step 5: Select the observed top s designs of the N as estimated by the
crude model as the selected set S.

Step 6: The theory of OO ensures that S contains at least k truly good
enough designs with probability no less than 0.95.

Section 7 gives two examples of application of this procedure to com-
plex problems. Interested reader may go directly to that section. Case studies

4 The exponential convergence of order and goal
softening

In this section, we provide the theoretical foundation of ordinal optimi-
zation method, namely, the alignment probability converges exponentially
with respect to the number of replications (Section 4.2) and with respect
to the sizes of good enough set and selected set (Section 4.3). The proofs
can be viewed as a more formal explanation on the two tents of OO:
optimization can be made much easier by order comparison and goal
softening. As a preparation for the proof of exponential convergence w.r.t.
order, we introduce the large deviation theory first (Section 4.1). The large
deviation theory justifies why order comparison of two values A and B
corrupted by noise is easy as we pointed out in Section 2.1. Readers who
are not that interested in mathematical details and are willing to accept the
intuitive idea introduced in Section 1 can skip or skim this section on a
first reading.

The formal verifications in this chapter are given for the most frequently
used selection rule—horse race rule. In OO, recalling that for the horse
race rule, we are interested in the alignment probability (AP) that the
observed top-s designs (estimated good enough designs) contain at least k
of the actual top-g designs (real good enough designs).

of more complex real world problems can be found in chapter VIII.

16 Chapter II

To establish the exponential convergence properties formally, we need
to introduce the problem formulation first. Assume that the N designs are
indexed such that

J(θ1) < J(θ2) < J(θ3) <…< J(θN).

Let L(θi,n) be the sampled performance for the n-th replication and assume
that for each design θi, L(θi,1), L(θi,2),…, L(θi,n), … form a sequence of
i.i.d. random variables with distribution such that for any n>0, E[L(θi,n)]=
J(θi). Let ()ˆ ,iJ nθ , i=1,2,…,N, be the performance estimates such that

() () () ()
1

1ˆ , , ,
n

i i i i
j

J n L j J w n
n

θ θ θ θ
=

= = +∑ ,

where w(θi,1), w(θi,2), …, w(θi,n), … are estimation errors and E[w(θi,n)] = 0.

4.1 Large deviation theory

Let us consider an i.i.d. sequence x1,x2,… with distribution function F (or
density function f) and finite mean µ. In our context, the numbers in this
sequence are observations of performance of a given design. Let a>µ and
b<µ be two constants. The law of large numbers implies that

[]1
1Prob Prob 0n

n
x x a x x na

n
+ +⎡ ⎤≥ = + + ≥ →⎢ ⎥⎣ ⎦

" " as n→∞

and

[]1
1Prob Prob 0n

n
x x b x x nb

n
+ +⎡ ⎤≤ = + + ≤ →⎢ ⎥⎣ ⎦

" " as n→∞.

A fundamental question is: how fast do these two probabilities decrease?

Although it seems that this question is about a single design, it is impor-
tant to us since there is a natural way to reduce our order comparison problem

to it. In Fig. 2.6, the deviation probability 1Prob nx x a
n

+ +⎡ ⎤≥⎢ ⎥⎣ ⎦

"
 is

Ordinal Optimization Fundamentals 17

Fig. 2.6. Illustration of deviation probabilities

corresponding to the gray area and the deviation probability
1Prob nx x b

n
+ +⎡ ⎤≤⎢ ⎥⎣ ⎦

"
 the dotted area.

The connection between the deviation probabilities and the comparison
of two fixed values A and B corrupted by noises can be interpreted as in
Fig. 2.7 below. Assume B > A. Denote u as the position where the density
functions of the two sample means meet. Then the rough estimation on
misalignment probability (shaded area) in Fig. 2.1 (in Section 2.1) can be
viewed as the sum of the gray area and the dotted area, where the gray area
equals the deviation probability of A beyond u and the dotted area equals
the deviation probability of B under u. Note u might change for a different
n. A precise way of upper bounding the misalignment probability is to fix

an amount of deviation less than or equal to
2

B Aδ −
= :

Fig. 2.7. Comparison of two values A and B corrupted by noises

18 Chapter II

Prob[Sample mean of observations of A> Sample mean of obser-
vations of B]
≤ Prob[Sample mean of observations of A>A+δ]
+ Prob[Sample mean of observations of B<B-δ].

The purpose of this subsection is to show that, for every constant a > µ,

there exists a positive β such that

 []1Prob n
nx x na e β−+ + ≥ ≤" (2.2)

and, for each constant b<µ

 []1Prob n
nx x nb e β−+ ≤ ≥" . (2.3)

This implies that the probability for the sample mean 1 nx x
n

+ +"
 to have

finite deviation (“large deviation”) from its mean decays exponentially. In
the following, we shall show Eq. (2.2) and leave the similar justification of
Eq. (2.3) to the readers. It is useful to define

() () ()1sx sy syM s E e e dF y e f y dy⎡ ⎤≡ = =⎣ ⎦ ∫ ∫ .

Exercise 2.2: Let x1,x2,… be i.i.d. standard normal random variables,

then please derive

()
2 21 11 .

2
syM s e e dy e

π
= =∫

M(s) is known as the moment generating function (mgf) of the random

variables xi. M(s) contains information of all order of moments, and

especially we have [] () ()
1

0

' 0
s

dM s
E x M

ds
µ

=

= = = . It is interesting to

note that M(-s) is simply the Laplace transformation of the density function
f. So, instead of giving the distribution function F or the density function f,
the description of a random variable can also be characterized by its mgf
M(s). It is also natural to see that the mgf for the sum of independent
random variables (r.v.s) is the product of mgfs of all r.v.s. In particular,

2 2− y s

Ordinal Optimization Fundamentals 19

() ()() ()
1 n

n nsy sy
x xe dF y e dF y M s+ + = = ⎡ ⎤⎣ ⎦∫ ∫" , where

1 nx xF + +" is the

distribution of the r.v. x1+…+xn.
For s ≥ 0, mgf has the advantage of providing upper bounds on proba-

bility of events. In fact, we have

 [] ()Prob sbx b e M s−≥ ≤ . (2.4)

To see why this is true, we make the following observation.

 () () () () ()s y b s y b

y b y b

f y dy e f y dy e f y dy− −

≥ ≥

≤ ≤∫ ∫ ∫ . (2.5)

es(y-b) ≥ 1 when
s
due to the fact that es(y-b)f(y) is always non-negative (recall f is a density
function) and integration of a positive function over the entire region
(–∞,+∞) is always no less than integration over a part [b,+∞) of it . Thus
Eq. (2.4) follows from Eq. (2.5) by noting

[] ()1Prob

y b

x b f y dy
≥

≥ = ∫

and

Fig. 2.8. Illustration of Eq. (2.5)

The first inequality in Eq. (2.5) follows from the fact that
≥ 0 in the range of integration y≥b. The second inequality of Eq. (2.5) is

1

b y

es(y-b)

1

20 Chapter II

() () ()s y b sbe f y dy e M s− −=∫ .

A graphical illustration of Eq. (2.5) is given in Fig. 2.8.
Apply Eq. (2.4) to x1+…+xn and let b = na, we establish

[] () ()()log
1Prob

n n sa M ssna
nx x na e M s e− −−+ + ≥ ≤ =⎡ ⎤⎣ ⎦" , for all s≥0.

This is known as the Chernoff bound (Chernoff 1952). Define a function
R(s)=sa-logM(s). Then we have

 [] ()

1Prob , for all 0.nR s
nx x na e s−+ + ≥ ≤ ≥" (2.6)

We shall use it to establish the exponential decaying rate for
Prob[x1+…+xn≥na]. Note although Eq. (2.6) looks already like a bound
implying exponential decaying, there is a gap between it and the desired
Eq. (2.2) where we need a positive constant β. We close the gap by
showing that there is an s*≥0 such that R(s*)>0. For simplicity, we assume
that µ = 0 and a > 0 is a constant. (The reader is required to extend the
result to the general case where µ ≠ 0 below.) Then µ = M′(0) = 0.
Consider the Taylor expansion of M(s) around s = 0,

R(s) = sa-log(M(0)+M′(0)s+o(s))=sa-o(s).

Thus there exists a s*>0 such that

R(s*) = s*a-log(M(s*))>0.

We can then choose β = R(s*).

Exercise 2.3: Show that for general µ, as long as a>µ, there exists a
positive β such that

Prob[x1+…+xn≥na]≤e–nβ.

Exercise 2.4: Show that for general µ, as long as b<µ, there exists a

positive β such that

Prob[x1+…+xn≤nb]≤e–nβ.

Ordinal Optimization Fundamentals 21

4.2 Exponential convergence w.r.t. order

performances, it is clear from above (Section 4.1) why order comparison
is easy and converges rapidly. The problem is, in general, we have a large
number of designs. In this subsection, we argue that the benefit of
exponential convergence on order comparison for two designs is preserved
for the general situation with N designs. The idea is to upper bound the
misalignment probability (the overlap area for the two design case) by the
sum of probabilities that sample mean deviates from true performance by
the amount δ for each design, where δ is half of the minimal gap ∆
between true performances. Here () ()()11,..., 1

min i ii N
J Jθ θ += −

∆ = − can be

viewed as the counterpart of B-A for the two-design case.
Given a size s, let Sn be the selected set of size s according to the horse

race rule after we obtain the observed (estimated) performance ()ˆ ,J nθ
based on n replications for all designs θ. Given also a size g of the good
enough set G and the alignment level k such that 1≤k≤min(g,s). Our
purpose is to show there exists a positive β such that

 [] ()Prob | | 1 n

nS G k O e β−∩ ≥ = − (2.7)

as long as the moment generating function E[esL(θ,1)] exists for all s∈(–d,d)

min(g,s) since Prob[|Sn∩G|≥k]≤Prob[|Sn∩G|≥k′] for all k′<k. The reason is
that min(g,s) is the highest alignment level and increasing the required
alignment level always makes alignment harder (lower the alignment pro-
bability). Assume that the N designs are indexed such that the true perfor-
mance value J is sorted in ascending order,

J(θ1) < J(θ2) < J(θ3) <…< J(θN).

()ˆ ,iJ nθ

() ()
1

1ˆ , ,
n

i i
j

J n L j
n

θ θ
=

= ∑ , 1, 2, ,i N= … , with L(θi,j), j = 1,2,… as i.i.d.

observations. Without loss of generality, we assume our optimization pro-

blem is to find the minimum. Sort the sequence ()ˆ ,iJ nθ , 1, 2, ,i N= …

With the large deviation theory, given two designs with distinct true

 used by the horse race rule Recall that the observed values
are taken as sample mean of performance values of designs, that is

for some d > 0. It is sufficient to show the result Eq. (2.7) for the case k =

22 Chapter II

in ascending order and denote the design ranking no. i as []iθ 5. In other

words, []() []() []()1 2
ˆ ˆ ˆ, , ,NJ n J n J nθ θ θ≤ ≤ ≤… . So θ[i], 1, 2, ,i N= …

are random variables taking value from the design space ΘN={θ1,θ2,…,θN}.
The selected set by horse race rule is a random set given as
Sn={θ[1],θ[2],…,θ[s]}. The alignment probability can be expressed as

{ } { }[1] [2] [] 1 2Prob Prob , , , , , ,n s gS G k kθ θ θ θ θ θ⎡ ⎤⎡ ∩ ≥ ⎤ = ∩ ≥⎣ ⎦ ⎣ ⎦… … .

Here g is the size of the good enough set G. To prove Prob[|Sn∩G|≥k]≥1-e–nβ
where k=min(g,s), it is equivalent to show Prob[|Sn∩G|<min(g,s)]≤Ce–nβ
for some positive constant C. To prove this, denote the minimal gap bet-
ween any two of true performance values as () ()()11,..., 1

min i ii N
J Jθ θ += −

∆ = −

and introduce two events

Event A={|Sn∩G|<min(g,s)}

Event B={there exists one θi in ΘN s.t. () ()ˆ ,i iJ n Jθ θ δ− ≥ }

where δ is half of the minimal gap ∆. Event A is the misalignment event
under level k = min(g,s), i.e.,

Prob[|Sn∩G|<min(g,s)]=Prob[Event A].

Event B is the event that at least one design’s sample mean deviates from
its true value over half of the minimal gap ∆. In Fig. 2.9, Event B occurs
when at least one design’s sample must fall in either dotted area

(() ()ˆ ,i iJ n Jθ θ δ− < −) or gray area (() ()ˆ ,i iJ n Jθ θ δ− >). It is clear
from Fig. 2.9 that if every design’s sample mean stays in the interval
centered at the design’s true performance value with width ∆ (or less) or
equivalently the deviation from the true performance is less than δ = ∆/2,
there will be no swap in the order of sample means and the alignment level
k = min(g,s) is achieved. This implies that, for a misalignment to occur
(furthermore some swaps in sample means to occur), Event B must occur.

5 Please note that []iθ depends on n. We assign indices randomly to designs

when they tie.

Ordinal Optimization Fundamentals 23

Fig. 2.9. If sample mean stays within δ distance from true performance for each
design, no misalignment will happen.

Thus we know that Event A is a subset of Event B and

() [] []Prob min , Prob Event Prob Event nS G g s A B⎡ ∩ < ⎤ = ≤⎣ ⎦ . (2.8)

Simple estimation gives

[] () (){ }
() ()

() ()

() ()

1

1

1

ˆProb Event Prob ,

ˆProb ,

ˆProb ,

ˆProb , .

i i

N

i i
i
N

i i
i

N

i i
i

B J n J

J n J

J n J

J n J

θ θ δ

θ θ δ

θ θ δ

θ θ δ

=

=

=

⎡ ⎤
= − ≥⎢ ⎥

⎣ ⎦

⎡ ⎤≤ − ≥⎢ ⎥⎣ ⎦

⎡ ⎤= ≥ +⎢ ⎥⎣ ⎦

⎡ ⎤+ ≤ −⎢ ⎥⎣ ⎦

∑

∑

∑

∪

 (2.9)

This is a direct extension of our estimation on misalignment probability for
the two-design case (using the sum of gray area and dotted area in Fig. 2.7)
to the general case where we have N designs as shown in Fig. 2.9. Now an
upper bound for the misalignment probability is given by the sum of N
gray areas and N dotted areas associated to the N designs. Since for every
design, the true performance J is the mean value of its observed value L

N... ,i=1,…

24 Chapter II

and δ>0, it follows the Large Deviation Theory, there exist positive
numbers βi and βi′ such that

() ()ˆProb , in
i iJ n J e βθ θ δ −⎡ ⎤≥ + ≤⎢ ⎥⎣ ⎦

() () 'ˆProb , .in
i iJ n J e βθ θ δ −⎡ ⎤≤ − ≤⎢ ⎥⎣ ⎦

Let β = min(β1,…,βN,β1′,…βN′), then we have from Eqs. (2.8) and (2.9)

()Prob | | min , 2 n
nS G g s Ne β−∩ < ≤⎡ ⎤⎣ ⎦ .

The exponential convergence of the alignment probability is hence
established by noting the size N of design space is fixed.

So far, we have shown the exponential convergence of OO w.r.t. order
using the large deviation theory and estimation on misalignment proba-
bility for designs with i.i.d. observations. The exponential convergence of
the alignment probability can be generalized to the situation of regenera-
tive simulation6, where performances are estimated by taking time average
over a single sample path based on the ergodic properties of discrete event
systems. When we carry out a simulation of length t and obtain some

()ˆ
can decide a selected set St. Since St depends on t, which is a measure of
computation budget, the question now becomes where Prob[|St∩G|≥k]
converge exponentially as t→∞? The exponential convergence for this
case means that there exists β>0 such that

 ()Prob 1 t

tS G k O e β−⎡ ∩ ≥ ⎤ = −⎣ ⎦ . (2.10)

It was proved in (Xie 1997) that when the Heidelberger and Meketon’s

()ˆ ,J nθ , under mild condition, there must exist a β > 0 such that Eq.
(2.10) holds.

6 The basic idea of the approach of regenerative simulation is that a stochastic

process may be characterized by random points in time when it “regenerative”
itself and become independent of its past history. (See also Appendix A.)

J tθ , for all designs θ, by applying horse race rule, we observed value

esmtiators (Heidelberger and Meketon 1980) defined in Eq. (2.11) or time
average estimators defined in Eq. (2.12) below are used as observed value

Ordinal Optimization Fundamentals 25

Intuitively, since a regenerative simulation is equivalent to many periods
of statistically independent replications of the system sample path, the
validity of Eq. (2.10) is totally reasonable. The proofs can be found in (Xie
1997) and will be omitted here.

Note, this type of results were first obtained in (Dai 1996) showing that
the best observed design is indeed a “good” design. (Xie 1997) extended
these results to the general setting we describe here. Extensions of (Dai
1996) to the situation using common random variables in simulation have
been made in (Dai and Chen 1997).

To define the estimators and the exponential convergence mathemati-
cally, we will introduce some notations. Let Ti(θ) be the i-th regeneration
epoch, i = 0,1,2,…, where T0(θ) is the initial delay. Let τi(θ) be the length of

i-th regeneration cycle, i = 0,1,2,…. Then
0

() ()
i

i j
j

T θ τ θ
=

= ∑ . Suppose the

interested performance value on sample path at time t is Lt(θ) with

|Lt(θ)|≤C for some constant C. Let
1

()

()
(,) ()i

i

T

ss T
L i L ds

θ

θ
θ θ

−=
= ∫ be the total

sample performance in the i-th regeneration cycle.

Fig. 2.10. An illustration for the regeneration cycles

Let K(θ,t) be the number of regeneration cycles completed by time t. Then
the Heidelberger and Meketon’s estimator is defined as

 ()
()

()

()
()

, 1

1
, 1

1

,
ˆ , ,

K t

i
K t

i
i

L i
J t

θ

θ

θ
θ

τ θ

+

=
+

=

=
∑

∑
 (2.11)

and the time average estimator is defined as

26 Chapter II

 () ()
0

1ˆ , .
t

s
s

J t L ds
t

θ θ
=

= ∫ (2.12)

We assume that the regeneration process has i.i.d cycles, i.e., {(τi(θ),
L(θ,i)), i=1,2,…} is a sequence of i.i.d. random variables. Denote

0 ()(,) []sm s E e τ θθ = as the mgf (moment generating function) of the initial
delay τ0(θ) and 1 ()(,) []sM s E e τ θθ = as the mgf of the length τ1(θ) of the
first regeneration cycle τ1(θ). A sufficient condition for Eq. (2.10) to hold
for the estimators in Eq. (2.11) or Eq. (2.12) is that m(s,θ) and M(s,θ) exist
for all s∈ (–δ,δ) for some δ > 0. Note that this existence of a finite mgf
was later shown by Fu and Jin to be both a necessary and sufficient
condition in (Fu and Jin 2001). They have also shown how one can recover
the exponential convergence rate in cases where the mfg is not finite.
(Well-known distributions that do not possess a finite mgf include the
lognormal distribution and certain gamma distributions.) In particular, by
working with appropriately truncated versions of the original random
variables, the exponential convergence can be recovered.

4.3 Proof of goal softening

In Section 2.1, we have argued intuitively nothing but the best is very
costly. If we retreat from “nothing but the best” to a softer goal of “good
enough”, e.g., settle for anything in the top-g choices, then the small retreat
can buy us quite a bit in the ease of the computational burden. In this
subsection, we make a rigorous justification for this point and will show
that the alignment probability for both blind pick selection rule and horse
race selection rule converges exponentially to 1, as the size g of the good
enough set and the size s of the selected set increase.

4.3.1 Blind pick

First, let us show the exponential convergence result for blind pick. It will be
used as a base for proving the exponential convergence of the horse race
rule. In fact, we will prove that the alignment probability of blind pick rule is
always a lower bound for the alignment probability of horse race rule. This
is reasonable, since no knowledge is used in BP, and in HR some, though
imperfect, knowledge is used to select the set S. Let N be the size of the
design space, g and s be the size of good enough set G and the size of
selected set S respectively. For blind pick, the misalignment probability

Ordinal Optimization Fundamentals 27

Prob[|S∩G|=0] is given by (see full derivation in Eq. (2.37) in Section 5.1
below)

N g

s
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

,

where
N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 represents the number of different choices of s designs out of

N distinguished ones, i.e.,

()
!

! !
N N
s s N s

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

.

Thus, the alignment probability Prob[|S∩G|≥1] is given by

Prob 1 1 Prob 0 1

N g
s

S G S G
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ∩ ≥ ⎤ = − ⎡ ∩ = ⎤ = −⎣ ⎦ ⎣ ⎦ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 (2.13)

()!

()(1) (1)!()!1 1! ()(1) (1)
!()!

N g
N g N g N g ss N g s

N N N N s
s N s

−
− − − − − +− −= − = −

− − +
−

"
"

.(2.14)

Since 1N g i N g g
N i N N
− − −

≤ = −
−

 for all i = 0,1…,s-1, we have

 Prob 1 1 1
sgS G

N
⎛ ⎞⎡ ∩ ≥ ⎤ ≥ − −⎜ ⎟⎣ ⎦ ⎝ ⎠

. (2.15)

Furthermore, since 1-x≤e-x holds for all x, we can bound Prob[|S∩G|≥1]
from below as

 Prob 1 1
gs
NS G e

−
⎡ ∩ ≥ ⎤ ≥ −⎣ ⎦ , (2.16)

28 Chapter II

converges exponentially w.r.t. the size of the set G and S.

-x

4.3.2 Horse race

Now we are going to present the convergence result for the horse race
selection rule alignment probability. We assume that the i.i.d. noise

(,) ()i iw n W nθ = , i=1,2,…,N, has the common cumulative continuous distri-
bution function nF (x) and density function nf (x) and has zero mean.

With the help of the relation

[] []Prob | | 1 1 Prob | | 0S G S G∩ ≥ = − ∩ = ,

we will show that for horse race selection rule, the alignment probability

[]Prob | | 1S G∩ ≥ is bounded from below by the function 1
gs
Ne− , that is

 []Prob | | 1 1
gs
NS G e∩ ≥ ≥ − . (2.17)

This is quite reasonable, since BP utilizes no knowledge of the problem,

while the S selected by the horse race rule can only improve upon the AP.
We can expect the same exponential convergence. While it is intuitively
reasonable to suppose that any crude model for picking the set S must
result in better performance than blind pick, it is nevertheless important to
rule out crude models that may appear sensible on the surface but actually
favor bad designs unknowingly. Consequently, we must prove that the S
obtained based on a horse race model will indeed perform better and
results in better AP than on a blind pick model. This is the purpose of this
section.

To establish exponential convergence for horse race by leveraging the
results in Section 4.3.1 on AP for BP, we should follow two steps:

Step 1. Identify Least Favorable Configuration (LFC) for horse race
misalignment probability.

Step 2. Evaluate misalignment probability under LFC and prove its
equivalence to that of blind pick.

Least Favorable Configuration (LFC) is well known in Ranking and
Selection literature (Barr and Rizvi 1966). The general idea is to find and

−

−

which is the desired result, i.e., alignment probability for blind pick

Exercise 2.5: Draw a figure to verify the above statement that 1-x≤e .

Ordinal Optimization Fundamentals 29

take advantage of some monotone properties in a set of distributions with a
parameter (such as mean value) to specific setting of the parameter under
which certain ranking or selection probability of interest achieves maxi-
mum or minimum. In our case, we should use true performance as the
parameter and aim at finding LFC for misalignment probability under the
horse race selection rule. Let us first take a close look at the misalignment
event under horse race.

For a direct derivation of the result, the basic idea is this: whenever the
observed performance of every design in G is no better than that of at least
s designs not in G, none of the designs in G will be selected in which case
[|S∩G|=0]. Fig. 2.11 shows a case of N = 6 designs with g = 2 and s = 3. In
the figure, we show the procedure of generation of observation

performance () () ()ˆ ,i i iJ n J W nθ θ= + from the true performance ()iJ θ
by adding noise Wi(n), 1, 2, ,6i = … . The best observed performance of
the two good enough designs (black balls in the lower part of the figure) is
indicated by value A. Since it is greater than the observed performance
of the three designs not in G (white balls), the select set by horse race
contains only white balls which means a misalignment occurs. In the
figure, we order the observed performance of all four designs not in G and
indicate the s-th (third) value as B. We observe that B<A is true, when
misalignment happens.

Fig. 2.11. An illustration for the misalignment event under horse race rule

Design in Good
enough set G

Design not in G

True performance

Observed performance

Performance becomes
worse (larger)

g=2, s=3

Selected set by HR

W1(n)

W3(n)

J(q1) J(q2) J(q3) J(q4) J(q5) J(q6)

W4(n)
W5(n)

W6(n)

W2(n)

B A

30 Chapter II

To characterize []Prob | | 0S G∩ = in detail, we divide a given set of

observation data () () ()ˆ ,i i iJ n J W nθ θ= + into two groups, the obser-
ved data for good designs G={θ1,…θg} and the data for bad designs
(θg+1,…θN). We order the N-g observation data for bad designs such that

() () () ()[1] [1] [] []g g N NJ W n J W nθ θ+ ++ < < +… . (2.18)

For a misalignment to happen when using horse race, we observe that,
there must be at least s “bad” designs outperform good designs θ1,…,θg. Or
put it in another way, all observed performances for good designs must be
larger than B= [] []() ()g s g sJ W nθ + ++ . Denote the best observed performance

of good designs as A=
{1, , }
min (() ())j jj g

J W nθ
∈

+
…

. Then a misalignment simply

means B<A holds.

 []Prob 0 ProbS G B A⎡ ∩ = ⎤ = <⎣ ⎦ . (2.19)

2 ())W n = 1 1() ()J W nθ +

3 3 4 4 5 5 6 6() () () () () () () ()J W n J W n J W n J W nθ θ θ θ+ < + < + < + .

So, [5] 5θ θ= and the value of B is [5] [5] 5 5() () () ()J W n J W nθ θ+ = + .

Our idea is to shift mean value ()iJ θ of all distributions of ()ˆ ,iJ nθ to
a common value ()gJ θ

()gJ θ and to move the
mean value of the distribution of g .

 Then we have a new set of N observed data ()gJ θ + ()iW n
 same noise sample ()iW n with () () ()ˆ ,i i iJ n J W nθ θ= + , the original
 observation with noise. We order the N-g data ()gJ θ + ()iW n associated

with bad designs such that

is 1 1 2min(() (), ()J W n Jθ θ+ +For example, in Fig. 2.11, the value of A
, the ordered N-g = 4 observation data for bad

designs are

[] []Prob =Prob | | 0B A S G< ∩ = .Now we work on finding the LFC for

. More specifically, we move the mean value
of the distribution of every good design up to

J ()θevery bad design down to
 sharing the

Ordinal Optimization Fundamentals 31

 () () () ()g g (2.20)

 [] []Prob Prob ' 'B A B A< ≤ < . (2.21)

In fact, we have noted that 'B B< and 'A A< . As a result, B A<
always implies ' 'B A< . This shows indeed the shift we made leads to the
LFC for the misalignment probability.

Note since the mean values are reduced for the data of bad designs, the
value () ()g g sJ W nθ ++ appearing in the ordered sequence in Eq. (2.20)
must be no greater than its counterpart B= [] []() ()g s g sJ W nθ + ++ appeared
in Eq. (2.18). At the same time, as the counterpart of A, the random
variable

{1, , }
min (() ())g jj g

J W nθ
∈

+
…

 must be no less than A. Let us denote

{1, , }
' min (() ())g jj g

A J W nθ
∈

= +
…

 and ' () ()B J W nθ= + . Fig. 2.12 shows

this procedure of finding LFC for the designs in Fig. 2.11. Recall, we have
g = 2 and s = 3. We move the mean value of the observed performance’s
distribution to 2()J θ but keep the sample of noise ()iW n the same as in Fig.
2.11. The new observation data become 2() ()iJ W nθ + , 1, 2, ,6i = … , and
their values are as shown in the line “observed performance (LFC)”. For
reader’s convenience, we also show original observation data in the

2 1 2 2 2 2

We order the new observations of the four bad designs as
2 3 2 4 2 5 2 6() () () () () () () ()J W n J W n J W n J W nθ θ θ θ+ < + < + < + . So, the

third (s-th) value in this sequence is 2 5() ()J W nθ + , (5) 5θ θ= and the value

of B' is 2 5() ()J W nθ + . Two important observations from this example are
'B B< and 'A A< , as a result of our way of generating new observations.
With the new distributions defined above, we are able to establish an

upper bound for []Prob B A< in Eq. (2.19), that is

g N+1[]J Wθ θ+ <n …< J W+ n . []

[]

g g[]+s

min(J (θ) +W (n), J (θ) +W (n)) = J (θ) +W (n) . tion i.e., A', equals
bottom of the figure. The best value for good designs under new observa-

32 Chapter II

Fig. 2.12. An illustration of the Least Favorable Configuration for designs in
Fig. 2.11

Exercise 2.6: Show Eq. (2.21) is true.

Eq. (2.21) is the LFC result in our context. Its advantage is, now instead

of dealing with the observation data () () ()ˆ ,i i iJ n J W nθ θ= + which are
all following different distributions with different means, we need only to
deal with the case of i.i.d. observations Wj(n) plus a constant.

In summary, Fig. 2.12 and our arguments above show, for horse race
selection rule, misalignment occurs when the best value (A) of good
designs is greater (for minimization problem) than the values of s bad
designs (we denote B as their maximum) in the observation data. Although
evaluating the probability of B<A is generally difficult due to the hetero-
geneous nature of distributions generating observations of designs, this
characterization of misalignment enables us to find the new setting that
provides a tractable upper bound for misalignment probability, which turns
out to be the same as blind pick. The new setting is tractable since
observations of all designs obey i.i.d. distributions. The new setting
provides an upper bound on misalignment probability (thus it is a LFC)

Design in Good
enough set G

Design not in G

W5(n)
W4(n)

W3(n)

W1(n)
W2(n)

W6(n)

J(q1) J(q2) J(q3) J(q4) J(q5) J(q6) True performance (LFC)

Observed performance (LFC)

Observed performance (Original)

Performance becomes
worse (larger)

g=2, s=3

B

B9 A 9

A

Ordinal Optimization Fundamentals 33

because the gap between the maximum of s bad designs B' and its best
observed value for good designs A' is always greater than that of B and A.
The connection between the new setting and blind pick is natural because
independent draw of samples from the same distribution gives no pre-
ference on any specific design and all designs have equal chance to be
selected which is the same as blind pick.

Now we proceed to evaluate misalignment probability under the LFC, or
equivalently to calculate []Prob ' 'B A< . This is the second step in order to
establish the exponential convergence for horse race. It will be shown

below that []
1

Prob ' '
N g N

B A
s s

−−⎛ ⎞⎛ ⎞
< = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 which is exactly the misalign-

ment probability already given in Section 4.3.1 for blind pick. For readers
not interested in the mathematical details, you can go directly to the end of
this section (the texts below Eq. (2.36)).

Without loss of generality, we can simplify the analysis of misalignment
probability of our LFC by ignoring the common constant ()gJ θ in all

observations ()gJ θ + ()iW n and directly define *

{1, , }
min ()jj g

A W n
∈

=
…

 and

* ()B W n= based on the zero mean sample ()iW n . Denote their

densities and distributions as * *(), ()A Bx yφ φ and * *(), ()A Bx yΦ Φ respec-
tively. Then we can write

[] ()

() ()

* * *
*

* *

Prob ' ' Prob Prob A

x

B A

B A B A B x x dx

y dy x dx

φ

φ φ

+∞

−∞

+∞

−∞ −−∞

⎡ ⎤ ⎡ ⎤< = < = <⎣ ⎦ ⎣ ⎦

=

∫

∫ ∫
(2.22)

based on the fact that *

{1, , }
min ()jj g

A W n
∈

=
…

 and *B

pendent.

Exercise 2.7: Verify []Prob ' 'B A< = * *Prob B A⎡ ⎤<⎣ ⎦ .

Hint: Compare the samples ()gJ θ + ()iW n and ()iW n 1, 2, ,i N= … .
Exercise 2.8: Show

 []
1

*() 1 () ()
g

A n nx g F x f xφ
−

= − . (2.23)

[g+s]

= W n() are inde-[g+s]

34 Chapter II

Hint: use Eq. (2.24) below.

In order to evaluate *()A xφ , we first decide the distribution function

*()A xΦ . It is straightforward to see that

() ()

() ()

*
* {1, , }

1

Prob 1 Prob min

1 Prob 1 1 .

A jj g

g
g

j n
j

x A x W n x

W n x F x

∈

=

⎡ ⎤⎡ ⎤Φ = < = − >⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤= − > = − −⎡ ⎤⎣ ⎦⎣ ⎦∏

…
 (2.24)

To evaluate *()B yφ , we first find its distribution *()B yΦ . For a given

value y, when *B 1g+

N

values which are less than *A , the other group −Λ contains all the
remaining N-g-m bad designs which are greater than y. According to the
value of m and the way two groups formed, we can express the distribution

*()B yΦ as the following exclusive unions:

()

{ }
{ 1, , }

 has at least elements

Prob

Prob max () and min ()i ji jg N
s

y W y

W n y W n y
−∈Λ ∈ΛΛ⊂ +

Λ

⎡ ⎤Φ = <⎣ ⎦
⎡ ⎤
⎢ ⎥= < >⎢ ⎥
⎢ ⎥⎣ ⎦

…
∪

(2.25)

{ 1, , }
 has elements

Prob max () and min ()
N g

i ji jm s g N
m

W n y W n y
−

−

∈Λ ∈Λ= Λ⊂ +
Λ

⎡ ⎤= < >⎢ ⎥⎣ ⎦∑ ∑
…

. (2.26)

We have

[]Prob max () () m
i ni

W n y F y
∈Λ

⎡ ⎤< =⎣ ⎦ (2.27)

and

[]Prob min () 1 () N g m
j n

j
W n y F y

−

− −

∈Λ

⎡ ⎤> = −⎢ ⎥⎣ ⎦
. (2.28)

W n() are divided further into two groups, one group Λ contains m (≥s)
= <W y is true, the bad design data W n() , … , [g+s]

B* [g+s]

Ordinal Optimization Fundamentals 35

Notice that max ()ii
W n

∈Λ
 and min ()j

j
W n

−∈Λ
 are independent, we have from

Eqs. (2.26)–(2.28) that

[] []

[] []

*
{ 1, , }

 has elements

() () 1 ()

() 1 () .

N g
m N g m

B n n
m s g N

m

N g
m N g m

n n
m s

y F y F y

N g
F y F y

m

−
− −

= Λ⊂ +
Λ

−
− −

=

Φ = −

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠

∑ ∑

∑

…
 (2.29)

Taking derivative on Eq. (2.29) yields

 [] []1
*() () 1 () ()s N g s

B n n

N g
y s F y F y f y

s
φ − − −−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. (2.30)

Exercise 2.9: Show Eq. (2.30).

Now with expressions Eqs. (2.23) and (2.30) of *()A xφ and *()B yφ

plugged in, we are ready to proceed on the integration in Eq. (2.22). We
have

[]

[] [] []1 1

Prob ' '

() 1 () () 1 () () .
x

s N g s g
n n n n n

B A

N g
s F y F y f y dyg F x f x dx

s

+∞
− − − −

−∞ −∞

<

−⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∫ ∫

 (2.31)

Using substitution, letting ()nu F x= and ()nv F y= , we can further

[] [] []
1

11

0 0

Prob ' ' 1 1
u

N g s gsN g
B A gs v v dv u du

s
− − −−−⎛ ⎞

< = − −⎜ ⎟
⎝ ⎠

∫ ∫ . (2.32)

Using induction method, one can show that

 [] []
11

11

0 0

1 1
u

N g s gs N
gs v v dv u du

s

−
− − −− ⎛ ⎞

− − = ⎜ ⎟
⎝ ⎠

∫ ∫ . (2.33)

n

simplify Eq. (2.31)

36 Chapter II

As a consequence, we have

 []Prob ' '

N g
s

B A
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠< =

⎛ ⎞
⎜ ⎟
⎝ ⎠

, (2.34)

which implies

 Prob 0

N g
s

S G
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ∩ = ⎤ =⎣ ⎦ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 (2.35)

and furthermore

 Prob 1 1 Prob 0 1

N g
s

S G S G
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠⎡ ∩ ≥ ⎤ = − ⎡ ∩ = ⎤ = −⎣ ⎦ ⎣ ⎦ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 . (2.36)

This shows that for the worst case where all observed performance values

()ˆ ,iJ nθ are i.i.d., the alignment probability of horse race rule is the same
as that of blind pick. As a result, for general cases where the true
performance values are different, the alignment probability of horse race
rule is bounded from below by the blind pick alignment probability

1

N g
s
N
s

−⎛ ⎞
⎜ ⎟
⎝ ⎠−

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

The desired result Eq. (2.17) then follows from the exponential conver-
gence w.r.t. the size of G and S for blind pick.

Note exponential convergence of OO w.r.t. the size of G and S was
originally given in (Lee et al. 1999). The noises were assumed to obey
normal distributions. This assumption allows one to find the same LFC for
noises with non-identical distributions, but as we have shown above, the

Ordinal Optimization Fundamentals 37

normal distribution assumption is not necessary for our case where noises
obey identical distribution.

Exercise 2.10: If in the observation data ()ˆ ,iJ nθ = () ()i iJ W nθ + , the

noises ()iW n obey normal distributions 2(0, /)iN nσ . Show the misalign-
[]| 0=

noises ()iW n obey normal distributions 2(0, /)N nσ with 2 2

1, ,
max ii N

σ σ
=

=
…

.

5 Universal alignment probabilities

The discussion in Section 2 and the demonstration in Section 3 suggest that
the concept of alignment probability Prob[|G∩S|≥k] is rather general and can
be problem independent. Thus it is possible to establish some universal
scheme for all optimization problems to help narrow down the search for
“good enough” designs as a function of the number of crude samples taken,
N, the approximate size of the estimation error, σ2, the type of problem class,
C , and finally the selection procedure used. This can be very useful during
the initial phase in many problems that involve (i) a structureless and
immense search space and (ii) performance evaluation that is corrupted
by large noise/error and/or is computationally intensive. We explore this
possibility below (see also (Lau and Ho 1997)). Alert reader may point out
here that our aim here bears resemblance to the extensive literature in
statistics on rank and selection (R&S) (Gupta and Panchapakesan 1979;
Santer and Tamhane 1984; Goldman and Nelson 1994). There are,
however, two major differences. First, the R&S schemes deal with a search
space of usually less than a hundred7, often in tens (such as in comparison
study of the efficacy of different drugs) while we consider subset selection
from Θ that has size in billions and zillions. Second, the cardinal notions
of “distance of the best from the rest” and the probability of
“coincidence of the observed best with the true best” used in R&S have
very little significance in our problem domain. Instead, we focus on
softened criterion and different selection procedures.

7 Although recent development of R&S allows to deal with a design space as

large as 500 (Nelson et al. 2001; Wilson 2001), this is still comparatively small
than the size that OO can handle.

ment probability Prob | S G∩ is no greater than the scenario where the

38 Chapter II

5.1 Blind pick selection rule

We obtain the simplest result on alignment probability by using the blind
pick selection rule, i.e., we blindly pick out the members from the selected
set, S without any evaluation of the performances from N samples.
Equivalently, we can say that the performances in Eq. (2.1) is sampled
with the noise variance being infinite (in the demonstration of Section 3,
we used the noise distribution of U[0,10000] to approximate the blind pick
selection rule when the range of the true performance is [0,200]). For
given size of S and G being s and g respectively, the alignment probability
for blind pick (BP) is

()
()min ,

, , , Prob
g s

i k

g N g
i s i

AP s g k N BP G S k
N
s

=

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= = ⎡ ∩ ≥ ⎤⎣ ⎦⎛ ⎞

⎜ ⎟
⎝ ⎠

∑ . (2.37)

Exercise 2.11: Try to derive Eq. (2.37) before reading the explanation

below.

The validity of Eq. (2.37) can be seen as follows: There are total
N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

8

ways of picking s out of N designs. Suppose i of these s designs actually

belong to G, then there are
g
i

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ways for which this is possible. The

remaining s-i designs can be distributed in
N g
s i

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 ways. The product of

these two factors constitutes the total number of ways that we find exact i
members of G by picking out s designs out of N. Dividing this product by

N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 yields the probability for i. Summing over all i ≥ k gives Eq. (2.37).

8
N
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 represents the number of different choices of s designs out of N

distinguished ones, i.e.,
()

!
! !

N N
s s N s

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

.

Ordinal Optimization Fundamentals 39

Fig. 2.13. Required subset size vs. alignment level for different alignment proba-
bilities

Fig. 2.13 shows a plot for required size of s, with g = s as a function of
alignment level k for AP = 0.99, 0.95, and 0.90. These curves can be used as
a lower bound (LB) for the UAP for any problems. It is instructive to see
that to insure with probability (w.p. for short) 0.99 that there are at least two
top 8% choices out of 1000 choices, we only need to blindly pick 80
samples – a more than ten fold reduction in search effort. Note this number s
is an upper bound for selection since it is done without any knowledge.
Imagine how much better we can do with some approximate knowledge
about the problem. This is the essence of ordinal optimization! The next
subsection will discuss the first of such less random selection rules.

5.2 Horse race selection rule

In Section 3 we demonstrated the horse race selection rule for S. The
procedure of this rule is:

• We take N samples uniformly from Θ
• Using a crude model, we estimate the performances of these N samples

as)(ˆ, . . .),(ˆ
1 NJJ θθ

• We sort these samples according to their estimated performances as

[1] []
ˆ ˆ(), . . . , ()NJ Jθ θ

• Select the observed top-s members of the N samples as the selected set S.

0 4 8 12 16 20
40

80

120

160

180

BPLB=0.99
BPLB=0.95
BPLB=0.90

k = alignment level

40 Chapter II

Then the alignment probability AP≡Prob[|G∩S|≥k] is defined the same
way as the blind pick probability in the above subsection. However, in this
case we no longer have a closed form solution as in Eq. (2.37). Further-
more, it is intuitively clear that the AP will also depend on the nature of
the problem, i.e., the class of Ordered Performance Curve (OPC) of the
problem as illustrated in Fig. 2.3 in Section 2. Hence we write AP=
F(g,s,k,N,C /Horse Race). If we normalize the OPC by defining

[] [1] [] [1]() /()i i Ny J J J J= − − (2.38)

[]() (1) /(1)i ix x i Nθ ≡ = − − (2.39)
we can attempt to fit the five different types of OPC (see Section 3) by the
Incomplete Beta Function with parameters α and β given by

() ()
() () () 11

0

, 1
x

F x z z dzβαα β
α β

α β
−−Γ +

≡ −
Γ Γ∫ (2.40)

with the normalized OPC as

 () 1 1, ,x F xα β
α β

⎛ ⎞
Λ ≡ ⎜ ⎟

⎝ ⎠
. (2.41)

For different values of α, β we can describe the different shapes of five
different types of OPC and their significances in Fig. 2.14 and Fig. 2.15
below, where in Fig. 2.14 the Normalized Performance Densities are the

For a given pair of α and β, we can determine the AP by a simple
simulation model in the same way as the Excel demo example outlined in
Section 3. Extensive simulation has been done on these normalized OPCs
(Lau and Ho 1997).

set S. For a given problem, the designer/optimizer picks the crude but
computationally easy model to estimate the performance. S/he specifies
what is meant by “good enough”, namely the size of G, g. S/he also have
some rough idea of the parameters, σ2 and C 9 (hence the values α and β in
Eq. (2.41) above). For practicality we set AP≥0.95. Then we can

9 A rough idea of C can be gleamed always from the N samples

)(ˆ, . . .),(ˆ
1 NJJ θθ .

The principal utility of AP in practice is to determine the required size of the

derivatives of the inverse functions of the Normalized OPCs, respectively.

Ordinal Optimization Fundamentals 41

experimentally determine a function Z(g,k/N,C,σ2,AP) which tells how

of the set G with high probability. The significance of this information is
obvious. We have engineered a reduction of the search and computational
effort from Θ to N to |S| = s.

Fig. 2.14. Examples of beta density and corresponding standardized OPCs

Fig. 2.15. Partitions of the ab-plane for five OPC categories, where a = logα, b = logβ

large must the set S be in order to insure that it contains at least k member

Flat

 < 1, b > 1 < 1, b < 1 =1, b = 1 > 1, b > 1 > 1, b < 1
f (y) f (y)

y y y yy
0 0 0 0 01 11 1 1

U-Shaped

Normalized OPCs

Neutral

Normalized Performance Densities

Bell Steep

∧(x)

1

1

1 1 1 1

0 0x x x x x
0 0 01 1 1 1

∧(x) ∧(x) ∧(x) ∧(x)

α α α α α
f (y)f (y)f (y)

42 Chapter II

Extensive simulation experiments have been carried out with a total of
88 normalized OPCs (classified into 5 types of OPCs) using different
α and β ’s

α, β∈{ 0.15, 0.25, 0.4, 0.65, 1.0, 1,5, 2.0, 3.0, 4.5, 8.0}

which covers the ab plane (a = logα, b = logβ) in Fig. 2.15 above with 10
U-shape class OPCs, 19 neutral class OPCs, 15 bell shaped class OPCs,
and 22 each of the flat and steep class as defined in Fig. 2.14. The required
sizes of S, the function Z(g,k/N,C,σ2,AP), are then tabulated as well as
fitted via regression by

31 2

4(,) ZZ ZZ k g e k g Z= + , (2.42)

Table 2.1. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g)

 U[–0.5,0.5] Noise
OPC class

∞
B-Pick Flat U-shape Neutral Bell Steep

Z1 7.8189 8.1378 8.1200 7.9000 8.1998 7.7998
Z2 0.6877 0.8974 1.0044 1.0144 1.9164 1.5099
Z3 –0.9550 –1.2058 –1.3695 –1.3995 –2.0250 –2.0719
Z4 0.00 6.00 9.00 7.00 10.00 10.00

 U[–1.0,1.0] Noise
OPC class

∞
B-Pick Flat U-shape Neutral Bell Steep

Z1 7.8189 8.4299 7.9399 8.0200 8.5988 7.5966
Z2 0.6877 0.7844 0.8989 0.9554 1.4089 1.9801
Z3 –0.9550 –1.1795 –1.2358 –1.3167 –1.6789 –1.8884
Z4 0.00 2.00 7.00 10.00 9.00 10.00

 U[–2.5,2.5] Noise
OPC class

∞
B-Pick Flat U-shape Neutral Bell Steep

Z1 7.8189 8.5200 8.2232 8.4832 8.8697 8.2995
Z2 0.6877 0.8944 0.9426 1.0207 1.1489 1.3777
Z3 –0.9550 –1.2286 –1.2677 –1.3761 –1.4734 –1.4986
Z4 0.00 5.00 6.00 6.00 7.00 8.00
where Z1, Z2, Z3, Z4 are constants of regression depending on OPC types,
the noise level, g, and k values10. These results are tabulated in Table 2.1,
Fig. 2.16 and Fig. 2.17(a)–(e) (where we assume the noise contains
uniform distribution with half-width W, i.e., U[–W, W], W = 0.5, 1.0, 2.5.)
against normalized OPC in [0,1].

10 We do not believe a linear regression function would fit the data well. Thus, a

product form is the next simplest nonlinear function we can try.

Ordinal Optimization Fundamentals 43

Fig. 2.16. Subset size interpolated from simulated data for the neutral class OPC
and W = 1.0

Fig. 2.17(a). Subset size for the flat OPC class at different noise levels with g = 50

200

160

120

80

s
=

 s
ub

se
t s

iz
e

40

0
0 4 8 12 16

g = 200

g = 20
g = 10

20
k = alignment level

44 Chapter II

Fig. 2.17(b). Subset size for U-shaped OPC class at different noise levels with
g = 50

Fig. 2.17(c). Subset size for the neutral OPC class at different noise level with
g = 50

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

BP

W=2.5

W=1.0

W=0.5

k = alignment level

s
=

su
bs

et
 s

iz
e

Ordinal Optimization Fundamentals 45

Fig. 2.17(d). Subset size for the bell-shaped OPC class at different noise levels
with g = 50

Fig. 2.17(e). Subset size for the steep OPC class at different noise levels with
g = 50

s
=

su
bs

et
 s

iz
e

46 Chapter II

These results have been extensively tested and found to be very reliable
in large number of studies ((Lau and Ho 1997), and also see reference list
in this book and at CFINS website:

 http://www.cfins.au.tsinghua.edu.cn/en/resource/index.php).
Consequently, we designated these AP as “universal”.
As an example, consider the following function defined on the range

Θ=[0,1]

 () ()1 2 3sin 2J a a aθ πρθ θ= + + , (2.43)

where a1 = 3, a2 = 5, a3 = 2. For ρ = 500, i.e., there are five hundred cycles
in the range [0,1]. To estimate the exact functional form of Eq. (2.43)
without prior knowledge, it may require extensive evaluation of the entire
domain [0,1] at many points. However, here we shall consider using a
crude model to approximate Eq. (2.43). In particular, based on the obser-
vation that there is a general rising trend in [0,1], we use a linear function

 ˆ() 5J θ θ= . (2.44)

Notice that only the linear part of Eq. (2.43) is contained in the crude
model. In other words,

error)()(ˆ += θθ JJ .

By generating N=1000 uniform samples from [0,1] using the crude model,
we have

{ }1 2 1000

ˆ , ,...,N θ θ θΘ = .11

11 Astute readers may notice that in the following we apply ordinal optimization

to find good enough designs in N, and might wonder how to find good enough
designs in Θ instead. The quick answer is that N is representative of Θ. When both
N and Θ are large enough (which this example satisfies) the selected set that is
selected from N also has a high probability to contain good enough designs in Θ,
and the difference between the two alignment probabilities can be ignored for
engineering purpose. But this notion will be quantified and made precise in
Chapter VII Section 1.

Ordinal Optimization Fundamentals 47

() ()()
ˆmax

i i iW J Jθ θ θ∈ Θ= −

Fig. 2.18. Alignment probability validation for the example

1. The alignment probabilities are in general greater than 0.95, and this
can be attributed to the conservative estimate of the function Z(•/•).

The noise/error range can be estimated by
after adjusting for the mean values. We then select the neutral OPC class for
this example. Once the good enough criterion g and the alignment level k are
specified, the required selected subset size s from the crude model Eq. (2.44)
is given by the function Z(g,k/neutral,W) in Table 2.1. Notice that these
selected elements correspond to the first s members of N, because of the
monotone property of the crude model. Then, we compare the selected
subset with the true model to determine which indeed matches the good
enough designs. 1000 experiments, each with a different N, are generated, so
as to validate the actual observed alignment probability against AP = 0.95.
We determined the alignment of each subset of size s = Z(g,k/neutral,W),
where g = 20, 30,. . .,200 and 1 ≤ k ≤ 10. Some of the alignment probabilities
are plotted in Fig. 2.18. Each line in Fig. 2.18 represents the fraction of the

matched in the selected set. Note that:

1

0.98

0.96

g = 70

g = 100

g = 120

g = 150

 A
lig

nm
en

t p
ro

ba
bi

lit
ie

s

0.94

0.93
1 2 4 6

k = Alignment level
8 10

1000 experiments in which there are at least k of g good enough designs

48 Chapter II

2. Some fluctuation of the alignment probabilities are observed, which
is due to the residues of the regression function Z.

The concept of universal alignment probability and the function Z(•/•)

have been validated many times in all papers on OO (Lau and Ho 1997;

Finally, we note that the blind pick AP of Eq. (2.37) of Section 5.1 is always
a quick-and-dirty lower bound that is useful.

Exercise 2.12: Recall that in Section 2 we introduced 5 types of OPCs.
Suppose we have a problem with many good designs (the flat type), and a
problem with many bad designs (the steep type). Suppose the noise level
is small. If we define the top-5% designs in both problems as the good
enough designs, please use the UAP table just introduced to calculate the
value of s such that Prob[|G∩S|≥1]≥0.95. Which problem requires a larger
selected set? Is this result counter intuitive? Shall we set the same value of
g for both problems?

6 Deterministic complex optimization problem
and Kolmogorov equivalence

In previous sections, OO was developed to deal with stochastic complex
simulation-based optimization problems (SCP), in which the crude model
is a stochastic model of fewer replications, i.e.,

 () () ()est true random noiseJ Jθ θ θ= + . (2.45)

There is another type of simulation-based optimization problems, where
the true performance can only be obtained by deterministic and complex
calculation (e.g., a large-scale finite element calculation). The crude model
is usually a deterministic but computationally fast model, i.e.,

 () () ()est true deterministic complex errorJ Jθ θ θ= + . (2.46)

This is called the deterministic complex problems (DCP). In fact, the
example shown in Section 5 above is just one such DCP. There are also
many successful applications in both types, especially for the DCP, (Yang
1998; Guan et al. 2001; Lin et al. 2004) just to name a few. One question
immediately arises:

Shen and Bai 2005) and more examples will be shown later on in this book.

Ordinal Optimization Fundamentals 49

In what sense are OO in DCP and OO in SCP equivalent s.t. the UAP
table in Section 5 can be used in both cases?

We address this question in this section.
First, let us compare the two problem formulations in Eqs. (2.45) and

(2.46). Digital computers have pervasive applications in simulation-based
optimization. We cannot generate pure random numbers in a digital com-
puter. Instead, we use pseudo random number generator (PRNG). When
both the PRNG and the seed are fixed, all the numbers thus generated
compose a deterministic and complex sequence. As long as either the
PRNG or the seed is not known to the user, which is the case in any
engineering practice, the number thus generated is unpredictable. Then
tremendous amount of simulation literature (Fishman 1996; Yakowitz
1977; Gentle 1998; Landau and Binder 2000) have established that we can
regard the number generated by a PRNG as a random number since they
pass rigorous statistical tests. The concept of Kolmogorov complexity
(Li and Vitányi 1997) also justified that we can regard the unpredictable
deterministic number as a random number, which means that there is no
fundamental difference between the two problem formulations in Eqs.
(2.45) and (2.46), from an engineering viewpoint.12

Second, let us look at the application procedures for OO in SCP and OO
in DCP (Box 2.2), which are almost identical.

There are three differences between the above two columns: step 2, 3,
and 4. In Step 2 and 3, the differences are mainly about the names. The
two Step 2’s are equivalent in the sense that the performance evaluation
is a complex and time-consuming calculation. The two step 3’s are
equivalent in the sense that a complex deterministic error and a random
noise is equivalent w.r.t. Kolmogorov complexity, as aforementioned. We
now focus on Step 4 and answer why the UAP table in Section 5 for SCP
can be also used for DCP. Suppose we want to regress another UAP table
for DCP. Then we need to repeat the experiments, exactly as we did in
Section 5, when Θ is extremely large that almost no design can be selected
more than once in the initial random sampling of N designs. Thus all the
experimental data are statistically equivalent to those obtained when
regressing the UAP table for SCP. So the table thus regressed should be

12 In principle, for any DCP for which we wish to apply OO, we should go

through the same rigorous statistical analysis as we have done in the simulation
literature to establish that the errors can indeed be equated to random noises in
Eq. (2.46). For engineering applications, we often take as an article of faith based
on the Kolmogorov equivalence that the complex incompressible and unpredi-
ctable error sequence in Eq. (2.46) are indeed random. So far this assumption has
worked in all references cited.

50 Chapter II

the same as the UAP table in Section 5, subject to statistic error. This is
why we can use the same UAP table in both SCP and DCP.

OO in SCP OO in DCP
Step 1: randomly sample N designs

from Θ
Step 1: randomly sample N designs from

Θ
Step 2: stochastic crude model-based

performance evaluation
Step 2: deterministic crude model-based

performance evaluation
Step 3: estimate OPC and the noise

level. User specifies g and k.
Step 3: estimate OPC and the error

level. User specifies g and k.
Step 4: calculate s using the UAP table Step 4: calculate s using the UAP table
Step 5: select the observed top-s

designs as S
Step 5: select the observed top-s designs

as S
Step 6: The theory of OO ensures there

are at least k good enough desi-
gns in S with high probability.

Step 6: The theory of OO ensures there
are at least k good enough desi-
gns in S with high probability.

Readers may also consider the case when there are correlations among

the deterministic errors in Eq. (2.46) for different designs. This can be
regarded as correlated noise or independent non-identical noise, which will
be addressed in Chapter VII, Section 3. Here we just summarize that it has
already been shown by numerical experiments and theoretical explanations
that the correlation among the noises seldom can hurt and actually helps
most of the time (Deng et al. 1992). For the case of independent non-

method in this chapter to deal with the problem (Yang 1998).
In short, as long as Jtrue in Eq. (2.46) can be assumed to be Kolmogorov

complex, we can apply OO to deal with the optimization problem

 ()truemin Jθ θ∈Θ , (2.47)

given the crude model

 () () ()est true noise/errorJ Jθ θ θ= + . (2.48)

We estimate the noise/error level, and the ordered performance curve. As

Box 2.2. Comparison of the procedures for OO in SCP and for OO in DCP

identical noise, there are ways to divide the designs into several groups,

long as the design space Θ is extremely large, we can use the UAP table

within each of which the noise are i.i.d. Then we can easily extend the

(Table 2.1 in Section 5) to decide the appropriate selection size.

Ordinal Optimization Fundamentals 51

7 Example applications

7.1 Stochastic simulation models

Let us consider the cyclic server problem discussed in (Ho et al. 1992).
The system has 10 buffers (of unlimited capacity) for 10 arrival streams
modeled by Poisson processes with rates λ1, . . . , λ10 respectively. There is
a single cyclic server serving the 10 buffers in a round-robin fashion: at
buffer i, mi jobs are served (if there are less than mi jobs in the buffer, then
serve all the jobs until the buffer becomes empty); then, the server moves
from buffer i to buffer i + 1 with a changeover time of length δi (Fig.
2.19). A holding cost of Ci units at buffer i is incurred. The objective is to
find a service policy (m1, m2,. . . , m10) such that it minimizes the average
holding cost per job per unit time in the system. We assume that 0 < mi <
10 for all i; in other words, no more than 10 jobs may be served at each
buffer for any policy. The design space Θ is therefore the lattice

(){ }1 2 10, ,..., 0 10,im m m m m iΘ = = ≤ ≤ ∀ .

The cost coefficients and arrival rates are respectively

Fig. 2.19. Cyclic server serving K stream of arrivals

52 Chapter II

() ()
() ()

1 10

1 10

,..., 1,1,1,10,1,50,1,1,1,1 ,

,..., 1,1,1,1,1,1,1,1,1,1 ,

C C

λ λ

=

=

with a service rate of the server µ = 20, and the mean changeover time of
δi is

E(δi) = 1/30, for all i.

All random quantities are exponentially distributed. Notice that buffer 4
and buffer 6 have much higher cost coefficients.

We have generated 1000 policies (designs) from Θ and run long simu-
lations for each policy to obtain their true ordering.13 After 16753 jobs
have arrived the system, the best 20 ordered designs are

{θ[1],θ[2],…,θ[20]}={761,166,843,785,417,456,205,925,234,70,586,91,93,

493,818,565,928,250,716,840},14

which will be taken as the true ordering of the top 20 designs. Assume that
we are interested in obtaining any of these top 20 designs; i.e., they form
the good enough subset from the 1000 design samples; then, we could
have stopped the simulation at much earlier time instants. Suppose that we
had terminated the simulation at the time when 161 and 330 jobs had
arrived in the system.15 Let us call these two time instants T1 and T2,
respectively, and we have taken the corresponding noise levels to be large
and medium. Without any prior knowledge, we conjectured a neutral OPC
for the 1,000 designs. Then, the required subset selection sizes at these two
instants are given as

()
()

1

2

20,1 neutral OPC, large noise 65,

20,1 neutral OPC, medium noise 47.
T

T

s Z

s Z

= =

= =

13 Each policy is generated as follows: a buffer size between 0 and 10 inclusive is

generated for each mi, i = 1,..., 10. Thus, each design is a point sampled from the lattice Θ.
14 The numbers are the indexes of designs.
15 The number of jobs 161, 330 and 16753 correspond respectively to 500, 1000, and

50000 standard clock ticks. Simulation up to 50000 clock ticks is needed for the confidence
intervals of the performance values of all designs to separate from each other. A standard
clock tick is equivalent to an event happening to all 1000 systems operating under all
policies. See Chapter VII Section b for further details about the standard clock.

Ordinal Optimization Fundamentals 53

Let us first examine the 65 designs at T1,

1TS
139, 595, 945, 905, 156, 658, 649, 431, 969, 233, 130, 204,307,

459, 126, 597, 285, 643, 761, 958, 681, 242, 379, 83, 927};

1T .
At T2, the 47 selected designs are

2TS
567, 447, 417, 980, 969, 234, 928, 366, 686, 201, 702, 738, 704,
111, 255, 314, 982, 361, 785, 640, 773, 910, 901, 235, 455, 70,
914, 172, 925, 335, 897, 31, 456, 217, 176};

we see that ten designs (in boldface and larger italics) from the good enough
subset have been captured. The true top-20 designs in order by definition are

{761,166,843,785,417,456,205,925,234,70,586,91,93,493,818,565,
928, 250,716,840}

It is also interesting to point out that, from our experiments, we have
observed a very fast convergence of design orders. (See Section 4 for more
details on the exponential convergence of ordinal comparison.)

7.2 Deterministic complex models

After the discussion in Section 6, we now can look at the example dis-
cussed in the end of Section 5 from another aspect. The optimization problem
is to minimize

 () ()1 2 3sin 2J a a aθ πρθ θ= + + , (2.49)

where a1 = 3, a2 = 5, a3 = 2, ρ = 500, θ∈[0, 1]. The deterministic crude
model used to describe the increasing trend of J(θ) is

 ()ˆ 5J θ θ= . (2.50)

Since designs are taken randomly from the interval [0,1], the steps given in
Section 5 are the steps to apply UAP table to decide selection set size s to

= {201, 166, 565, 818, 702, 335, 487, 471, 73, 331, 843, 172,

982, 914, 529, 655, 567, 828, 640, 621, 53, 301, 527, 924, 165,

we see that six designs (in boldface and larger italics) are included in S

= {761, 595, 565, 873, 843, 139, 525, 105, 166, 818, 477, 643,

105, 840, 29, 179, 189, 58, 305, 40, 38, 9, 525, 31, 286, 17, 366,

54 Chapter II

solve this deterministic complex optimization problems. As seen from this
example, by adopting a softened criterion, one can indeed achieve good
alignment results by employing a very crude model in lieu of a complex
model. This shows the importance of capturing the trend or general behavior
of a system prior to the study of essential details. Perhaps, this also explains
why a designer’s intuition is often more valuable in the initial phase of a
design process. Once a number of good enough designs are singled out,
detailed studies of these designs can be done in the subsequent stages of the
design process.

8 Preview of remaining chapters

So far, what we have presented in the first two chapters are introductory
OO methodology and its foundations. Following the steps of OO and
examples given, the readers can apply OO to solve real-world problems. In
fact the majority of the 200 some references on OO employed no more
than the theory and tools presented so far.

The remaining part of the book can be read more or less independently
as shown in the logical dependency graph in Fig. 2.20 of the below. It is
divided as three parts: Chapter III, IV, V and VI are major extensions of
the OO method; Chapter VII deals with additional extensions; Chapter
VIII presents case study for real-world examples.

Fig. 2.20. Organization of the contents of the book

For the major extensions, we focus on Selection Rules in Chapter III. So
far, we have studied two basic selection rules, namely, blind pick and
horse race. We established analytical expression for blind pick and UAP
table for the horse race. Although it is sufficient to use these rules to solve
most application problems, it is still interesting to ask the natural question:

Ordinal Optimization Fundamentals 55

how about other selection rules? The purpose of Chapter III is to introduce
more selection rules, compare the efficiencies of different selection rules,
and give guideline in choosing selection rules based on the availability of
computing budget.

As a second major extension to Ordinal Optimization method, we focus
on optimization problems with multiple objective functions in Chapter IV.
When there are multiple criteria (refers to as the vector case), ordinal
comparison has to be done in a more complicated way than the scalar case
of single objective function. As a result, the operative concept in multi-
criterion optimization becomes the concept of Pareto optimum which was
first formulated way back by Vilfredo Pareto. A design is said to be Pareto-
optimal if it is not dominated by any other designs (i.e., there exists no
other design that is better for at least one objective function value, and
equal or superior with respect to the other objective functions). By
introducing a natural order “layers” in design space, we generalize ordinal
optimization from the scalar case to the vector case. We quantify how many
observed layers are enough to contain the required number of designs in the
Pareto frontier with high probability.

As a third major extension to Ordinal Optimization method, we focus in
Chapter V on optimization problems with constraints. Similar to the objec-
tive function, we assume that the evaluation of constraints is also time
consuming. So, the simple method of re-defining the design space as the
feasible set then applying the tools of unconstrained OO does not work. To
get around the time consuming evaluation barrier in constraints, we follow
the idea of “crude model” in OO. Our key idea is to use a rough estimate
of feasibility and allow the selected set to include some infeasible designs.
Naturally to achieve the same level of alignment, more designs should be
selected (thus a larger selected set is needed) for constrained OO. We
quantify this additional correction.

A fourth extension to Ordinal Optimization method is given in Chapter
VI. We deal with the memory limitation problem when we are trying to
store a design on a computer. This problem comes naturally when we con-
sider strategy optimization problems such as searching for good enough
feedback control strategy for a complex system. Since for anything other
than toy problems, the search space for admissible strategies can be
enormously large, and the representation of a multi-dimensional function
can be taxing on any size of computer memory, we need a way to search
systematically in the strategy space that takes the limitation of memory
storage into account. OO is incorporated into such a framework to search
in the strategy space that can be implemented on a computer.

Further extensions of OO methodology requiring relatively little chan-
ges in solving real world problems will be discussed in Chapter VII.

56 Chapter II

Firstly, in previous study, no matter how large the design space is, we
randomly sample N = 1000 designs and then apply OO to find some of the
truly good enough designs (of these 1000 designs) with high probability.
We show that the difference between the truly good enough designs (top-
g%) of these 1000 designs, and the truly good enough designs (top-g%) of
the entire design space is negligible for practical purpose. Thus further
justify the practical use of OO for purists. Secondly, we show how we can
take advantage of parallel computing ideas when applying OO to speed up
the computation. The technique described is general. But the explanation is
done by way of a specific example for clarity. Thirdly, in the previous
consideration, only the i.i.d. additive noise is considered. However, the
additive noise in practice might not be i.i.d. For example, the well adopted
common random number generator technique is usually used in practice to
reduce the variance of the observation noise. The observation noise then
may be correlated. In some other times, the additive noise may be related
to the performance of the solution, i.e., the noise is independent, but non-
identical. We show that knowledge of these dependencies can help to
improve the efficiency of OO method. Finally, as we mentioned earlier,
Ordinal Optimization is not intended to replace the other optimization
techniques. Instead, there are natural ways to combine ordinal optimization
(including the key element of ordinal comparison) with other techniques,
such as genetic algorithm to further improve the performance thus found.

In Chapter VIII, we present four real world application examples of
applying OO method. The first example is a clothing manufacturing exam-
ple. The problem is difficult and it is prohibitive to search for the best
solution considering the tremendous computing budget involved. Using
ordinal optimization ideas introduced in Chapter I and Chapter II, we
obtained very encouraging results – not only have we achieved a high pro-
portion of “good enough” designs but also tight profit margins compared
with a pre-calculated upper bound. There is also a saving of at least 1/2000
of the computation time if brute-force simulations were otherwise used. The
second real-world example is the Turbine blade design problem. We
demonstrate how OO in Chapter I and II can be applied to solve such a
deterministic complex problem. The third real-world example is the resource
planning of a complex remanufacturing system involving two conflicting
performance indices can only be evaluated by simulation. We demonstrate
the application of Constrained Ordinal Optimization method developed in
Chapter V and Vector Ordinal Optimization method developed in Chapter
IV to the problem. At last, we demonstrate and apply extension of OO under
limited memory developed in Chapter VI to the long standing strategy
optimization problem known as the Witsenhausen Problem.

Chapter III Comparison of Selection Rules

In Chapter II, we learned that the selected set, S, plays an important role in
the theory of OO. We also introduced two natural ways to determine the
set S, namely, the Blind Pick (BP) and the Horse Race (HR) method. Of
course there are also other ways possible. We have already mentioned in
Section II.2 the example of how we take inspiration from the tennis tour-
nament, where the pair wise elimination rule is used to determine the 16
surviving players (i.e., the set S) for the quarter final of the U.S. Open.
Other rules for picking S come to our mind inspired by sports tournaments,
such as the round-robin comparison imitating baseball (Jia et al. 2006a),
which will be defined formally in Section 1. It is equally intuitive that dif-
ferent selection rules will lead to different Alignment Probability, Prob
[|G∩S|≥k], all other parameters remaining the same. In other words, to
achieve the same high alignment probability, different selection rules may
require us to select different number of designs for S. After we apply OO
to find out the selected set S, which contains some good enough designs
with high probability, we still need to use the detailed model to accurately
evaluate the performance of the designs in S and finally choose the best
one. It is clear that the larger the selected set S is, the more simulation is
needed in the post selection comparison. So, it is of practical importance to
find out which selection rule requires the smallest selection set in a given
optimization problem. This selection rule will save the computational
effort of the detail simulation the most efficiently. The purpose of this
chapter is to make a careful study of the efficiency of different selection
rules in terms of computing burden and efficacy in achieving high values
of AP. For readers not interested in details and only concerned with the
practical use of OO, s/he can go directly to the general recommendation at
the end of this chapter which concludes that the HR is a generally good
selection rule in the absence of detailed analysis and the BP rule can of
course always serve as a lower bound in performance.

Since the size of the selected set is of the most practical importance, we
use the size to evaluate and compare the performance of the selection
rules. We will consider selection rule A better than B if selection rule A
requires a smaller selected set S than B to achieve the same AP, all other
parameters remaining the same. A natural question is: Is there a unique

58 Chapter III

selection rule that is better than any others? If the answer is yes, then we
only need to use this universal best selection rule. This is of course conven-
ient for practical application of OO. Unfortunately, we have not found such
a selection rule yet. Instead, each selection rule may have special advantages
in dealing with certain problems. For example, as an extreme case, Blind
Pick needs no problem information, nor any performance evaluation (not
even a rough estimate based on the crude model). However, compared with
Horse Race, BP usually requires a larger selected set to ensure the same high
AP. So, a reasonable way to evaluate the performance of different selection
rules is to classify different scenarios first, such as the problem types, noise
levels, size of good enough set, required alignment level, and the computing
budget we can use during the selection. Then we will be able to figure out
what is the best selection rule in each scenario.

We have tried the above ways to compare different selection rules. How-
ever, after we obtain all the comparison results, i.e., which selection rule is
the best in each scenario, there arises another question, that is, how can we
present these results in an easy form? Obviously, the first idea might be
using a lookup table. In other words, we list the scenarios and the corre-
sponding selection rules that have the best performance within that sce-
nario, and do this listing for all the scenarios. But there are too many
scenarios. To get a rough estimate of how long this table will be, let us
consider the following numerical example. We know there are 5 types of
OPCs, and 3 noise levels (small, middle, and large). Suppose we consider
3 computing budgets (small, middle, and large), 20 different sizes of the
good enough set (top-1%, 2%,…,20% designs), and 10 different alignment
levels (k = 1,2,…10). Then the total number of scenario would be: 5×3×3×
20×10 = 9000. Suppose we have a table with 9000 lines, and the problem
that we want to apply OO to solve fits in only one line, it would be incon-
venient to find the line that is useful. We have to find better ways to pre-
sent the comparison results.

We are fortunate to find this easy way to present the comparison results.
The idea is to use a function with a few parameters to approximate the size
of the selected set. Then giving the scenario, to which the practical prob-
lem belongs, and a selection rule, we use the function to approximate the
size of the selected subset thus required. We do this for each selection rule.
By comparing these approximated selection sizes, we then identify a pre-
dicted best selection rule in that scenario. As long as that prediction is
good, i.e., either it is one of the several truly best selection rules in that
scenario, or it is close to the truly best selection rule and the difference
between the selected sizes is not large, then this predicted best selection
rule is a truly good enough selection rule to be easily used in practice. We
found such functions for many selection rules, including the ones that have

Comparison of Selection Rules 59

already been frequently used in OO and some new ones. And we use two
examples to show how this helps to find a good enough selection rule, and
thus further save the computing budget.

The selection rules differ from each other considering how the computing
budgets are allocated among the designs, how the designs are evaluated, and
how the designs are finally selected. We should realize that there are a huge
number of different selection rules. Most of these selection rules do not have
a name yet, but they are different from the well-known rules such as BP and
HR in the above sense. To get a rough idea, suppose there are all together N
= 1000 designs, and we can evaluate these designs by at most T = 30000
simulations in total before selecting the subset. This equals to allocate these
30000 simulations to the 1000 designs. The number of all the allocation is

10001 30999

10
1 999

T N
N
+ −⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
,

which is a huge number. This example shows us two points. First, it is
impractical to list and compare all the selection rules. Second, the selection
rules we know is only a small portion of all the selection rule. So it is
important to find some general properties, say selection rules with these
properties are better (or have a large chance to be better) than others.
These properties will help us to search for better selection rules in the
future. We have found some these properties through theoretical analysis
(Jia et al. 2006a; Jia 2006) and experimental study. One of them has justi-
fied that HR is in general a good selection rule.

The rest of this chapter is organized as follows. In Section 1, we classify
the selection rules (especially the selection rules that are frequently used in
OO literature) into different classes. Under mild assumptions, we establish a
basic property of “good” selection rules. In Section 2, we use the selection
size, s, to quantify the efficiency of the selection rule, and introduce a
regression function to approximate this size for each commonly used selec-
tion rule. Through numerical experiments, we find that the comparison of
the efficiency based on the regression function is almost exactly the same as
the comparison result based on extensive simulation experiments. This justi-
fies that the regression function is a reasonable tool to compare the effi-
ciency of the selection rules. In order to show the readers how they can use
the regression function to find a good selection rule and further reduce the
selection size in practical problems, in Section 3, we consider two examples:
a real function example and a queuing network example. In Section 4, we
discuss three properties of good selection rules, which will help us to find
better selection rules in the future. We summarize the application procedure

60 Chapter III

in Section 5 and give some simple, quick and dirty rules to choose a good
selection rule without detailed calculation and analysis.

1 Classification of selection rules

Let us now have a review of how a selection rule works. First, there is a
crude model of the designs, which is computationally fast. In the extreme
case of Blind Pick, no crude model is used. From an engineering view-
point, this can also be regarded as using a crude model with infinite obser-
vation noise. So any observed order among the designs happens with equal
probability. Second, based on the rough performance estimate thus obtained,
a selection rule compares and orders the designs, and finally selects some
designs as the selected set. Because the accuracy of the crude model used in
the first step affects the size of the selected set dramatically, in the compari-
son of selection rules in this chapter, we assume the selection rules use the
same crude model. Except in BP, a crude model with infinite observation
noise is used. Note that different selection rules may use the rough perform-
ance estimate obtained through the same crude model in different ways. For
example, a selection rule may compare designs in pairs, like in the U.S.
tennis open, and regards all the designs in the quarter final as observed good
enough designs. These 16 designs may be different from the observed top-
16 designs, if selected by the Horse Race, because the observed second
design may compete with the observed best design in an early round and
fail, and thus cannot move into the quarter final. Also note that different
designs may receive a different number of observations during the selection
procedure. For example, in a season in National Basketball Association
(NBA), each team plays the same number of games. If we regard the out-
come of each game as an observation on the performances of the teams, each
team receives the same number of observations. However, in the U.S. tennis
open, if a player fails in an early round, he/she does not have the chance to
move into the next round, which means finally the player may receive a dif-
ferent number of observations. Obviously, in simulation-based optimization,
each observation of a design takes some part of the computing budget. That
means different selection rules may assign the computing budget to the
designs in different ways.

In summary, each selection rule in OO must answer two questions:

1. How to select S? – by ordering all N designs via either (a) or (b)
below and select the top-s.
(a) Using the estimated cardinal value no matter how crude it is.

Comparison of Selection Rules 61

(b) By the number of “wins” accumulated from the comparison of
the estimated cardinal values no matter how crude they are. Two
examples of the comparisons are:
(i) Comparison done pair-wisely
(ii) Comparison done globally.

2. How much computing budget is assigned to a design? – by either
(a) or (b).
(a) Predetermined and allocated once.
(b) Successive iteration after initial assignment

(i) With elimination (i.e., some design will receive no more com-
puting budget after certain iteration)

(ii) Without elimination.

Using answers to the above two questions, we consider and classify the
following selection rules that are frequently used in ordinal optimization.

• Blind pick (BP): Assumes no knowledge of the problem and uniformly

pick up s designs to make up S, i.e., (Question 1) random pick and
(Question 2) no budget assigned (predetermined).

• Horse race (HR): The numbers of independent observations allocated
to all designs are equal. By comparing the sample average, the observed
top-s designs are selected. (Question 1) (a) and (Question 2) (a).

• Round robin (RR): Every design compares with every other design
pair-wisely. In each comparison, we use only one observation (or equi-
valently “replication” in simulation language) per design to estimate the
performance. Upon we completing the comparisons, every design wins
some number of comparisons, including zero. We sort the designs by
the number of wins in decreasing order1. The first-s designs are selected.
For example, if there are four designs: θ1, θ2, θ3, and θ4. We need 3
rounds of comparisons:

Round 1: θ1 vs. θ2, θ3 vs. θ4.
Round 2: θ1 vs. θ3, θ2 vs. θ4.
Round 3: θ1 vs. θ4, θ2 vs. θ3.

Assume θ1 and θ3 win in round 1; θ1 and θ2 win in round 2; θ1 and θ2
win in round 3. Then the four designs win 3,2,1, and 0 comparisons,

1 When a tie appears, the orders of designs within a tie are randomly decided.

This assumption is also held for all the other selection rules mentioned in this
book.

62 Chapter III

respectively. The observed best design is θ1 and the worst is θ4. (Ques-
tion 1) (b)-(i) and (Question 2) (b)-(ii).

• Sequential pair-wise elimination (SPE): This is the rule used in tennis2.
Designs are initially grouped into many pairs. The winners of these pairs
are grouped into pairs again. This continues until a final winner appears.
We show one example in Fig. 3.1. Assume θ1 and θ4 win in round 1; θ1
wins in round 2. Then θ1 is the observed best design. (Question 1) (b)-(i)
and (Question 2) (b)-(i).

Fig. 3.1. One example of sequential pair-wise elimination (Jia et al. 2006a)
© 2006 Elsevier

• Optimal Computing Budget Allocation (OCBA) (Chen et al. 2000):
The idea is that we want to lavish larger computing budget on designs
that more likely turn out to be good enough and not to waste efforts on
designs that have a high likelihood of being bad. First, we randomly
sample m0 designs from Θ, and take n0 observations of each design.
Then we use a formula (Chen et al. 2000) to allocate additional ∆ com-
puting budget units to these m0 designs to perform more replications.
This procedure continues until all the computing budget is consumed. In
OCBA we fix the “breadth”3. Section VII.4 has more details on this
method. (Question 1) (a) and (Question 2) (b)-(ii).

• Breadth vs. depth (B vs. D) (Lin 2000b): The idea is to always allocate
the next ∆ computing budget units in the way that leads to a greater
marginal benefit. There are two ways to get a marginal benefit: The
breadth process, which means to sample new designs, and the depth

2 In tennis tournament, the initial pairing is actually not totally random. We

shall using total random pairing here since we assume no prior information on the
designs.

3 The “breadth” represents the number of designs explored in the optimization,
and the “depth” represents the number of computing budget units allocated to each
designs.

1 4

1 2 3 4

1

Round 1

Round 2

Comparison of Selection Rules 63

process4, which means to do more observations of the designs that have
already been sampled in order to get a better estimate of the design
performance. The “benefit” of considering both breadth and depth is to
increase the possibility of including truly good enough designs in the
selected set. In B vs. D we can change the “breadth.” (Question 1)(a)
and (Question 2)(b)-(ii).

• HR with global comparison (HR_gc): In every round, the winners
from the last round each receive one computing budget unit, and are
compared with each other based on the new observations only. The
observed best half designs win and the losers are eliminated in
successive rounds. Finally we sort the designs by the number of rounds
each design enters, from the largest to the smallest. (Question 1)(b)-(ii)
and (Question 2)(b)-(i).

• HR with no elimination (HR_ne): In round i we compare the mean
values of the observations so far, and allocate the additional ∆i com-
puting budget units to the observed best mi designs. The value of ∆i and
mi reduce by half each time. (Question 1)(a) and (Question 2)(b)-(ii).

• HR as a counterpart of round robin (HR_CRR): We allocate the
computing budget as in RR. Finally we sort the designs by the average
value of the observed data, not the number of wins. (Question 1)(a) and
(Question 2)(b)-(ii).

We summarize the different rules in Table 3.1 below.

Table 3.1. Classification of selection rules

Selection Rule How to select S? Computing budget
BP Random picking No computing budget needed
HR A a
RR b-i b-ii
SPE b-i b-i
OCBA A b-ii
B vs. D A b-ii
HR_gc b-ii b-i
HR_ne A b-ii
HR_CRR A b-ii

Comparison and analysis in Section 2 and 3 will demonstrate that HR is

in general a good selection rule, which is also a reason why we consider so

4 For this rule we use BP in the breadth process and OCBA in the depth proc-

ess. Other choices are possible and will yield different results (Lin 2000b).

64 Chapter III

many variants of the HR selection rules above (such as HR_ne, HR_gc,
and HR_CRR).

Before going into details, we show here a basic property common to all
comparisons of selection rules. Colloquially, we state it as

Seeing is believing – everything being equal (i.e., the same computing
budget allocated to each design), we should always choose the obser-
ved top-s designs as the selected set.

First we introduce some notations. We use ()ˆ
iJ θ to denote one

observation of design θi, i.e.,

() () ()()ˆ ; ,i i i iJ J w L x tθ θ θ ξ= + = , (3.1)

where wi denotes the observation noise and J(θi) is the true performance

value of design θi. We use ()ˆ
iJ θ to denote the average observed value of

the performance of design θi based on Ni independent observations
(replications), i.e.,

()()
1

1ˆ () ; ,
iN

i i j
ji

J L x t
N

θ θ ξ
=

= ∑ (3.2)

where ξj is the randomness in the j-th sample replication. To simplify the
discussion, we introduce the following assumptions:

Assumption 1: Observation noises of different designs are independently
and identically distributed, i.e., wi is i.i.d. for i=1,2,…N.
Assumption 2: We have no prior knowledge of the designs before
conducting the simulations.

Now we state formally a basic property of the optimal selection rules.
Basic Property: Under Assumptions 1 and 2 and the equal allocation of

computing budget to all designs, the selection of the observed top-s
designs (by whatever rule) leads to an alignment probability no less than
other selections on the average.

This property is intuitively reasonable and will be proved below. We
give a short illustration in a specific case first to lend insight. Assume that
there are only two designs θ1 and θ2 with true performances J(θ1) < J(θ2),
each design is observed only once, and the observation noises w1 and w2
contains i.i.d distribution. We define the truly better design θ1 as the good

Comparison of Selection Rules 65

enough design. And we can select only one design based on the observed
performances. The alignment probability is simplified to the probability
that we correctly select the better design θ1. The question is: which design
shall we select? In this case, the Basic Property says we should select the
observed better one. To see why this is correct, we compare the probability

that θ1 is observed better () ()1 2
ˆ ˆProb J Jθ θ⎡ ⎤<⎢ ⎥⎣ ⎦

 and the probability that

θ2 is observed better () ()1 2
ˆ ˆProb J Jθ θ⎡ ⎤>⎢ ⎥⎣ ⎦

. For the first probability, we

have

() () () ()

() ()
1 2 1 1 2 2

1 2 2 1

ˆ ˆProb Prob

Prob .

J J J w J w

w w J J

θ θ θ θ

θ θ

⎡ ⎤< = + < +⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
= − < −⎡ ⎤⎣ ⎦

Similarly, we can rewrite the second probability as

() () () ()1 2 1 2 2 1
ˆ ˆProb Prob .J J w w J Jθ θ θ θ⎡ ⎤> = − > −⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

Since w1 and w2 are i.i.d., w1-w2 is with zero mean and has symmetric
probability density function. Then due to the fact that J(θ2)-J(θ1)>0, it is
obvious that

() () () ()1 2 2 1 1 2 2 1Prob Probw w J J w w J Jθ θ θ θ− < − ≥ − > −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ,

which means

() () () ()1 2 1 2
ˆ ˆ ˆ ˆProb ProbJ J J Jθ θ θ θ⎡ ⎤ ⎡ ⎤< ≥ >⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (3.3)

() ()1 1 2
ˆ ˆAP =Prob J Jθ θ⎡ ⎤<⎢ ⎥⎣ ⎦

. If we do not follow the Basic Property, we

must select the observe worse design with positive probability q > 0, then
the alignment probability is

i.e., the truly better design has a larger chance to be better observed. If
we follow the Basic Property, the alignment probability would be

66 Chapter III

() () () ()

() () () ()

() () () ()

() () () () ()

2

1 1 2 1 1 2

1 1 2 1 2

1 1 2 1 2

1 2 1 2

AP

ˆ ˆ ˆ ˆProb select , +Prob select ,

ˆ ˆ ˆ ˆProb select Prob

ˆ ˆ ˆ ˆProb select Prob

ˆ ˆ ˆ ˆ1 Prob Prob

J J J J

J J J J

J J J J

q J J q J J

θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ

⎡ ⎤ ⎡ ⎤= < >⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= < <⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤+ > >⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡= − < + >⎢ ⎥ ⎢⎣ ⎦ ⎣

() () () () ()

() ()

1 2 1 2

1 2

1

ˆ ˆ ˆ ˆ1 Prob Prob

ˆ ˆProb

AP .

q J J q J J

J J

θ θ θ θ

θ θ

⎤
⎥⎦

⎡ ⎤ ⎡ ⎤≤ − < + <⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤= <⎢ ⎥⎣ ⎦

=

This means the Basic Property leads to an alignment probability no less
than other selections. This also means “to see is to believe”. When both
designs are observed N1=N2 times, since the noise of a single observation
is i.i.d. for both designs, the difference between the average observed

performance ()ˆ
iJ θ and the true performance J(θi) (i.e., () ()ˆ

i iJ Jθ θ−)
is also i.i.d. for both designs. Then we can extend the above proof to this
case straightforwardly.

Exercise 3.1: Please extend the above proof to the case when both
designs are observed more than once but equal times, i.e., N1 = N2>1.

We can use proof by contradiction to show the Basic Property in more
general cases. First, note that when there are more than two designs, Eq.
(3.3) still holds for any two designs (then the θ1 in Eq. (3.3) represents the
truly better one of the two designs). Suppose the selected set S, on the con-
trary, is not the observed top-s designs, then there must be some design θ
that is within the observed top-s, but not selected; and there must be some
other design θ ’ that is not within observed top-s, but is selected. Now we
construct another selected set S’. The only difference between S and S’ is:
θ is in S’ but θ ’ is not. Following Eq. (3.3), we know a truly better design
θ has a bigger chance to be observed good enough. So we have

Prob Prob ' .S G k S G k⎡ ∩ ≥ ⎤ ≤ ⎡ ∩ ≥ ⎤⎣ ⎦ ⎣ ⎦ (3.4)

Comparison of Selection Rules 67

Following Eq. (3.4), each time we add to the selected set a design that is
within the observed top-s and remove a design that is not, the AP does not
decrease but only increase. If we keep on doing this, eventually we can
obtain the selected set containing exact observed top-s designs whose
alignment probability is no less than Prob S G k⎡ ∩ ≥ ⎤⎣ ⎦ . This proves the
Basic Property.

Exercise 3.2: when will the inequality in Eq. (3.4) be strict, and when
not?

Astute reader might wonder: Is Assumption 1 critical to the Basic
Property? The answer is yes. We show in the following an example, in
which the observation noise is not i.i.d., and the Basic Property does not
hold any more. Suppose there are three designs, θ1, θ2, and θ3, with true
performances J(θ1)=0, J(θ2)=1, and J(θ3)=1.0001. The observation noise is
independent but contains non-identical normal distribution such that

() ()()2
1 1 1

ˆ ~ ,J N Jθ θ σ ,

() ()()2
2 2 2

ˆ ~ ,J N Jθ θ σ , and

() ()()2
3 3 3

ˆ ~ ,J N Jθ θ σ .

Let σ1 = 0.0001, σ2 = σ3=10. Then we have

[]

() () () ()

() () ()()

1

1 2 1 3

+

2 3 1

Prob is observed as the best

ˆ ˆ ˆ ˆ=Prob ,

ˆ ˆ ˆProb Prob .

J J J J

J x J x p J x dx

θ

θ θ θ θ

θ θ θ
∞

−∞

⎡ ⎤< <⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= ≥ ≥ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫

The last integration can be calculated using numerical integration.
Similarly, we can calculate the probability that θ2 or θ3 is observed as the
best. If we calculate the probability that each design is observed as the
best, then we have

Prob[θ1 is observed as the best]≈0.2914,
Prob[θ2 is observed as the best]≈0.3543,
Prob[θ3 is observed as the best]≈0.3543.

68 Chapter III

We can similarly calculate
[]

() () () () () ()

() () ()()
() () ()()

1

2 1 3 3 1 2

+

2 3 1

+

3 1

Prob is observed as the middle

ˆ ˆ ˆ ˆ ˆ ˆ=Prob Prob

ˆ ˆ ˆProb Prob

ˆ ˆ ˆProb Prob .

J J J J J J

J x J x p J x dx

J x J x p J x dx

θ

θ θ θ θ θ θ

θ θ θ

θ θ θ

∞

−∞

∞

−∞

⎡ ⎤ ⎡ ⎤< < + < <⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= < > =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ > < =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫

∫

The numerical results are

Prob[θ1 is observed as the middle]≈0.4968,
Prob[θ2 is observed as the middle]≈0.2516,
Prob[θ3 is observed as the middle]≈0.2516.

In this case, if we follow the Basic Property and select the observed best
design each time, then the alignment probability is 0.2914. However, if we

based on Assumption 3 as we proceed below, if not mentioned explicitly:

Assumption 3. No matter what measurement and comparison method used,
in every selection rule, the observed top-|S| designs (under that specific
measurement and comparison method) will be finally selected to compose
set S.

We shall now compare selection rules in the following way:

5However, we should not take this counter example too seriously since the

parameters used are most extreme. Almost all the analysis associated with OO in
this book are very conservative in nature. Empirically in numerous applications,
we and others have found that OO tools work well despite theoretical conditions
being violated or impossible to verify. As we shall see later, in selection rules such
as OCBA or B vs. D, assumption 1 is not satisfied. Noises are independent but not
identical. Yet, in no cases, the analysis and prediction of this chapter did not work
empirically.

select the observed middle design each time, then the alignment Probability
is 0.4968. This means the Basic Property leads to a smaller alignment proba-
bility. This constitutes a counterexample if Assumption 1 is relaxed.5

Based on the Basic Property, in the following, our discussion will be

Comparison of Selection Rules 69

Everything being equal (i.e., the same optimization problem, observation
noise, computing budget, G, k, and α), which selection rule γ can use the
smallest S to make Prob G S k γ α⎡ ∩ ≥ ⎤ ≥⎣ ⎦ ?

2 Quantify the efficiency of selection rules

From the viewpoint of application, we may see the contribution of OO in
this way: After screening (with or without iteration) using a crude model, a
user is most interested in which of the subset of designs thus explored s/he
should lavish her/his attention on in order to obtain a truly good enough
design with sufficiently high probability. This selected subset denoted as S
ideally should be as small as possible to minimize search and computing
efforts. As we mentioned at the beginning of this chapter, we need to
figure out what factors affect the size of the selected set, and by classifying
all the scenarios, we compare the selection rules in each scenario and list
the best for application. For a given high probability, α, the required mini-
mum size for S is a function of the following parameters:

• |G|=g – the size of the good enough set, e.g., the top-n%
• k – the number of members of G guaranteed to be contained in S
• Noise/Error level, σ – in the estimation of the system performance using

the crude model. We assume such noise is i.i.d. and can be roughly
characterized as small, medium, and large with respect to the perfor-
mance values being estimated. The case of correlated noise/error can

VII.3.
• Problem Class, C – clearly if we are dealing with a problem contains

many good enough solutions vs. a needle in a haystack type of problem,
the required size of S can be very different. We express this notion in the
form of an Ordered Performance Curve (OPC) which is by definition a
monotonically nondecreasing curve that plots true performance value

of OPC are possible as illustrated in Fig. 3.2.
• Computing budget, T – the total number of simulations that can be used

during the selection.

against all the designs ordered from the best to the worst (as defined in

also be handled (Deng et al. 1992), which will be discussed in Section

Chapter II and (Lau and Ho 1997; Ho et al. 1992; Ho 1999)). Five types

70 Chapter III

Fig. 3.2. Examples of ordered performance curves: flat, neutral, steep, and general

These factors can help distinguish a lot of different scenarios. As
aforementioned, it is inconvenient for practitioners to use a very long
lookup table to determine which selection rule is the best for a specific
problem. So we need a function to approximate the size of the selected
subset for each selection rule and in each scenario. In Section II.5, we
introduced a regression function as follows:

 () 31 2

4, ZZ ZZ k g e k g Z= + , (3.5)

where Z1, Z2, Z3, Z4 are constants depending on the OPC class, the noise
level, g, and k values. When using the Horse Race selection rule and each
design takes only one observation, Eq. (3.5) approximates the size of the
selected subset pretty well. To test whether Eq. (3.5) can also be used to
approximate the size of the selected subset for other selection rules and in
other scenarios, we compare the true and the approximated values in each of
the 9000 scenarios, for each selection rule. The detailed parameter settings
of the experiments will be introduced in section 2.1. To get the true value of
the size of the selected set, the idea is similar to that in Section II.5: we fix
the true performance of each design, which then represents one of the five
OPCs. Then we use a selection rule γ to determine which designs to select.
Each time when the selection rule requires observing the performance of a
design θ, we randomly generate the observation noise w and use J(θ)+w as
an observed performance. If the selection rule assigns different numbers of
replications to different designs, then the noises contained in observed per-

Comparison of Selection Rules 71

formances will be different. All the available computing budgets are util-
ized in the way that is specified by the selection rule, and finally the selec-

Fig. 3.3. The procedure to quantify the true performance of a selection rule

tion rule obtains an order of all the designs according to the observed
performances. Then we check whether there are at least k truly top-g designs

Specify the OPC type C, computing budget
T, noise level , and selection rule .

Use to allocate the computing budget,
compare the designs based on observation,

and finally obtain an estimated order among
all the designs.

Check whether there are at least k truly top-g
designs in the top-s designs estimated by

selection rule .

Repeat the above two steps 1000 times to
estimate Prob[|G S| k / C, T, ,] for all the

(g,s,k) pairs that are of interest.

For each (g,k) pair, record the minimal value
of s s.t. Prob[|G S| k / C, T, ,] 0.95. This

quantifies the performance of in this
scenario. (A scenario is determined by C, T,

s, g, and k.)

Repeat the above procedure for all the other
scenarios and selection rule .

contained in the observed top-s designs as selected by the selection

72 Chapter III

rule used. We check for each possible (g,s,k) values. Then we know whether

1000 experiments) for each (g,s,k) values in that scenario. For each (g,k)
pair, we record the minimal value of “s” s.t. the corresponding AP is no
less than 0.95. This s is regarded as the true performance of selection rule γ
in that scenario. The above procedure to obtain the true values of s in
different scenarios is summarized in Fig. 3.3.

Giving these required values of s in different scenarios, we now want to
find an easy way to represent these values instead of using a lookup table
with 9000 rows. As aforementioned, we use Eq. (3.5) as the easy way to
approximate these values of s in different scenarios. For all the (g,s,k) val-
ues with high enough AP, we regress the values of the coefficients in Eq.
(3.5). Then for each (g,k) pair, the regressed value of s based on Eq. (3.5)
is regarded as the approximate required value. We find this approximation
is good in all the scenarios.

To get a rough idea, we show the examples of four selection rules (HR,
OCBA, SPE, HR_ne) in the scenario of large computing budget (T=30000),

(3.5). The solid lines represent the true values. The dashed lines approxi-
mate the solid lines well (in the trend and in the subset sizes of integer val-
ues of k). We list the maximal absolute difference between the solid and
dashed lines in Table 3.2.

Table 3.2. The maximal absolute approximation error of required subset sizes
(unit: number of designs) (Jia et al. 2006a) © 2006 Elsevier

g HR OCBA SPE HR_ne
10 3.86 4.1 7.0 3.5
20 3.9 4.6 3.8 5.5
30 5.0 5.7 6.2 4.3
40 3.9 4.0 6.0 4.9

Since we see that the regression function in Eq. (3.5) is a good approxi-
mation to the true values of the selected subset size for each selection rule
and in each scenario, we need to obtain the values of the coefficients in
Eq. (3.5) for all the selection rules and for all the scenarios. Then giving a
scenario, we can use Eq. (3.5) to predict which selection rule requires the

6 The regressed subset size may not be integer, so the difference between the

solid and dashed lines may not be integer. In application, we can just use the
smallest integer that is no smaller than the regressed value as the subset size.

a selection rule succeeds or fails in this experiment. We do 1000 expe-
riments and then obtain the probability to succeed (as percent of the

In Fig. 3.4, the dashed lines represent the regressed values based on Eq.
neutral OPC, and middle noise level (σ = 0.5) in Fig. 3.4.

Comparison of Selection Rules 73

smallest subset to select. In Section 2.1, we introduce the parameter set-
tings of all the scenarios in details. In Section 2.2, we discuss how we
should compare selection rules using Eq. (3.5).

Fig. 3.4. The regressed values of Eq. (3.5) are good approximations of the true
values of s. (Scenario: large computing budget, neutral OPC, and middle noise
level) (subfigure (b) is from (Jia et al. 2006a) © 2006 Elsevier)

2.1 Parameter settings in experiments for regression functions

This subsection might be interesting only to readers who want to repeat
our experiments. Other readers may want to skip this subsection and go
directly to Section 2.2 and see how they can compare selection rules based
on the regression functions.

In our experiments, we use the following parameter settings.

• |Θ|=N=1000;
• g∈{10,20,…200};
• s∈{10,20,…200};
• k∈{1,2,…10};

k

s

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

g=10

g=20

g=30

g=40

(a)HR

s
10
20
30
40
50
60
70
80
90

k
1 2 3 4 5 6 7 8 9 10

(b)OCBA

g=10

g=20

g=30

g=40

g=10 g=20

g=30

g=40

g=10

g=20

g=30

g=40

s

10
20
30
40
50
60
70
80
90

100

100
110

k
1 2 3 4 5 6 7 8 9 10

(c)SPE
k

1 2 3 4 5 6 7 8 9 10

(d)HR_ne

s

10

20

30

40

50

60

70

80

90

74 Chapter III

• noise level: Assume the observation noise is independently and
identically distributed (i.i.d.) and has normal distribution N(0,σ2), where
σ ∈{0.25, 0.5, 1.5} for small, middle, and large noises respectively;

• Problem class: 5 OPC classes distinguished by different performance
density functions.
1. Flat: J(θ)=θ10.
2. U-Shaped: J(θ)=0.5sin(π(θ-0.5))+0.5.
3. Neutral: J(θ)=θ.
4. Bell: J(θ)=0.5-0.5(2θ -1)2, 0≤θ ≤0.5; 0.5+0.5(2θ -1)2, 0.5≤θ ≤1.
5. Steep: J(θ)=1-(θ -1)10, all (1)-(5) are defined on θ ∈[0,1].

The OPCs and the corresponding performance densities are shown in

Fig. 3.5.

Fig. 3.5. Five types of OPCs and corresponding performance densities (Jia et al.
2006a) © 2006 Elsevier

• Computing budget: T∈{500,1000,30000} for small, middle, and large
computing budgets.

• “breadth” – the number of designs that can be explored by a selection
rule. There is a close relationship between the “breadth” and the proba-
bility to find a good enough design. In one extreme case, a selection rule
can maximize the “breadth” by observing each design only once. In this

0 1

1

0 1

1

0

1

1 0

1

1 0

1

1

J
0 1

J
0 1

J
0 1

J
0 1

J
0 1

Normalized OPCs

Normalized Performance Density Functions
Flat U-Shaped Neutral Bell Steep

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Comparison of Selection Rules 75

selection rule may not be able to finally select these truly good enough
designs. So a good selection rule should have a reasonable “breadth”
and can adaptively change the “breadth” when the computing budget
changes. The selection rules considered in this chapter require different
computing budgets to explore the same number of designs (as shown in
Table 3.3, where m0 is the initial “breadth” and n0 is the initial “depth”
for each of these n0 initial sampled designs. These formulas are obtained
based on the definition of these selection rules in Section 1.). So when
fixing the computing budget, the “breadth” of these selection rules are
also different (as shown in Table 3.4).

• Other parameters: In OCBA and B vs. D, we try different values for n0
and δ and find the following values works the best in the experiments,
i.e., set n0 = 2 and δ = 100 when T = 30000; n0 = 1 and δ = 10 when T =
1000.

• For the combination of parameter settings above, we use 1000
independent experiments to estimate the alignment probability, which is
expected to meet α ≥ 0.95.

Table 3.3. Computing budget units required by different selection rules to explore
N designs (Jia et al. 2006a) © 2006 Elsevier

Selection rule Computing budget units
BP 0
HR N
OCBA ≥n0×m0

7
B vs. D ≥n0×m0
SPE 2N-2
HR_gc 2N-2
HR_ne 2N-2
RR N2-N
HR_CRR N2-N

7 m0 and n0 in OCBA and B vs. D are parameters controlled by the user. These

two selection rules require n0×m0 computing budget units to roughly evaluate the
m0 randomly sampled designs at the beginning of the optimization, so the total
required computing budget is at least n0×m0.

way, the selection rule has a large chance to sample some truly good
enough designs. However, since the observation noise is large, the

76 Chapter III

Table 3.4. The number of designs explored (“breadth”) in different selection rules
(Jia et al. 2006a) © 2006 Elsevier

 Breadth Selection rule
T=30000 T=1000 T=500

BP 1000 1000 500
HR 1000 1000 500
OCBA 10008 500 400
B vs. D ≥109 ≥10 ≥10
SPE 1000 501 251
HR_gc 1000 501 251
HR_ne 1000 501 251
RR 173 32 22
HR_CRR 173 32 22

Together with the blind pick selection rule, we tabulate all coefficients
of the regression functions of different selection rules, as shown in Appen-
dix C. It should be noted that since the subset sizes calculated by the coef-
ficients above are used to approximate the experimental data, the values of
g, s, and k should not exceed the above parameter settings of g, s, and k,
which are used in the experiments, and the corresponding true AP
Prob[|G∩S|≥k] should be no smaller than 0.95. To be specific, the appro-

of k and g should let the fraction k/g be small10,11. On the occasions where
the noise factor is characterized to be within these predetermined levels
(i.e., σ takes other values than 0.25, 0.5, and 1.0), proper interpolation

8 Since the “breadth” of OCBA is fixed and set by the user, we tried different

values. The values shown here are the best ones found in the experiments.
9 B vs. D automatically changes the “breadth” based on the observed perform-

ance. So we only show the lower bound here, which is m0 the initial number of
designs sampled from the design space. The value of m0 is set by the user. So we
tried different values of m0, and showed the best ones here.

10 For B vs. D we have more constraints on the working range. When T=30000,
the working range should meet 1≤k≤5 and k/g≤1/15. When T=1000, the working
range should meet 1≤k≤3 and k/g≤1/25. When T=500, the working range should
meet 1≤k≤2 and k/g≤1/35.

11 For RR and HR_CRR, we only list the regression values in the case of large
computing budget (T=30000). In this case, RR and HR_CRR can explore 173 de-
signs, and still have many choices of selected subset sizes. But when T=1000 and
500, the two selection rules can explore only 32 and 22 designs accordingly. To
cover 1 or 2 of top-100 designs with probability no smaller than 0.95, we usually
need to select all the explored designs, the number of which are 32 and 22, respec-
tively.

ximation has a working range of 20≤g≤200, s=Z(•/•)<180, and the values

Comparison of Selection Rules 77

of the subset sizes will suffice. When we need to predict the size of the se-
lected subset in a scenario for a selection rule, we first find the table of that
scenario and for that selection rule in Appendix C, then obtain the coeffi-
cients for the variables in Eq. (3.5). Then we use Eq. (3.5) to predict the
value of s. Based on this prediction, we can compare different selection
rules and find the best one.

2.2 Comparison of selection rules

Using these regressed values in the last subsection, we can easily predict
the most efficient selection rule (among all selection rules of concern) in
each scenario. As we will show by numerical examples in this subsection,
the predicted best selection rule is usually one of the top-n selection rules.
In the following, we consider one scenario as an example: large computing
budget, middle noise level, and neutral OPC class. First, we use experi-
ments to compare HR, OCBA, and B vs. D, the three selection rules that
are frequently used in OO literature. As mentioned at the beginning of this
section just prior to Fig. 3.3, we regard the size of the selected subset ob-
tained by the experiments as true values. So we will regard the comparison
result based on the experimental results as the true result. This is shown in
Fig. 3.6 and explained below.

Fig. 3.6 shows in each (g, k) values, which selection rule is the best. Let
us take a closer look at this figure, and discuss whether these comparison
results are reasonable. First, the squares appear where the good enough set
and the required alignment level k are small. When the good enough set
is defined as the best design, the alignment probability Prob[|G∩S|≥k]
reduces to Prob[the observed best is the truly best], which is also known as
the probability of correct selection (PCS) in OCBA. OCBA is developed
to improve this probability. B vs. D is developed to improve Prob[the
observed best design is truly good enough], which is close to PCS.
Previous results in (Chen et al. 2000; Lin 2000b) also show that OCBA
and B vs. D outperform HR in these cases.

Exploration, i.e., breadth, is thus more important than exploitation, i.e.,
depth. HR is developed to explore as many designs as possible, which is just
the best choice in these cases. OCBA places emphasis on ensuring the
observed best is the truly best, but does not pay attention to cover good
enough designs. B vs. D takes both exploration and exploitation into
consideration and tries to find a good balance. However B vs. D usually
explores fewer designs

Second, the black points appear where the good enough set is small, but
k is large. To cover many good enough designs in the finally selected
subset, we should make sure to explore a large number of good designs.

78 Chapter III

Fig. 3.6. Comparison of HR, OCBA, and B vs. D under large computing budget,
middle noise level, and neutral OPC class12 (Jia et al. 2006a) © 2006 Elsevier

than HR, which does not make any additional effort in exploitation except
for equally allocating computing budget units. So it is also reasonable that
HR outperform OCBA and B vs. D in these cases.

Third, the crosses appear where the good enough set and the required

Fourth, the triangles appear where the good enough set is large and the
required alignment level is small. These are easy cases and little effort in

12 “the best” means this selection rule requires the smallest selected subset to

achieve the same high AP in the same scenario. Again the experiment mentioned
is the one associated with Fig. 3.3 and the text describing it.

alignment level are both of middle size/value. Both exploration and exploi-
tation are important, and a good balance is needed. HR pays little attention
to do the balance. It is difficult for B vs. D to outperform OCBA with a
well-tuned “breadth” (Lin 2000b). This is why OCBA outperforms HR and
B vs. D in many of these cases. Since the scenario in Fig. 3.6 has a large
computing budget, even in HR each design obtains some exploitation (depth).
So HR also performs best in some of these cases (represented by circles).

k

g

0 1 2 3 4 5 6 7 8 9 10

50

100

150

200

HR is the best
OCBA is the best
HR and OCBA are better
OCBA and B vs. D are better
HR, OCBA, and B vs. D are equal

Comparison of Selection Rules 79

balancing exploration and exploitation is needed. So HR, OCBA, and B vs.
D require the same subset sizes in these cases.

Following the above analysis, we can summarize a couple of simple
rules to choose a good selection rule among the three most frequently
used selection rules in OO literature. For instance, in Fig. 3.6, a rule of
thumb is: choose HR when the good enough set is small and the required
alignment level is high; and choose OCBA in all other cases. These rules
are also listed in the end of Section 5.

Now we predict the size of the selected set of these three selection rules
using Eq. (3.5) together with the regressed value in Table C.20, C.21, and
C.22 in Appendix C. By comparing these predicted values, we predict
which selection rule is the best for each (g,k) values, as shown in Fig. 3.7.

Fig. 3.7. Comparison of HR, OCBA, and B vs. D using regressed values under
large computing budget, middle noise level, and neutral OPC type (Jia et al.
2006a) © 2006 Elsevier

0 1 2 3 4 5 6 7 8 9 10

k

50

100

150

200

HR is predicted as the best
OCBA is predicted as the best

HR and OCBA are predicted as better

OCBA and B vs. D are predicted as better
HR, OCBA, and B vs. D are predicted as equal

B vs. D is predicted as the best

HR and B vs. D are predicted as better

Wrong prediction

80 Chapter III

Note that in all (g,k) combinations, both Fig. 3.6 and Fig. 3.7 recom-
mend a best selection rule. For a (g,k), if the recommended selection

corresponding case by a big circle. For example, in the bottom right of the
figure, some points are marked. The reason is that the corresponding
alignment probabilities are smaller than 0.95, as shown in Fig. 3.6. Note

once the computing budget to allocate (T), the noise level (σ), the OPC
class, the size of good enough set (g), and the required alignment level (k)
are specified. To show how this predication helps to further reduce the size
of the selected set, we will use two examples in the next section as
demonstration.

3 Examples of search reduction

By using selection rules, OO usually can achieve one order of magnitude
or more reduction in search. We demonstrate in this section how to obtain
further search reduction by selecting a good selection rule. We use Eq.
(3.5) together with the regressed values in Appendix C to predict which
selection rule is the best in a given problem. In Section 2, to obtain the
regressed values, we assume i.i.d. noises with normal distribution, and
explore many combinations of (g,k). However, these results are often uni-
versally applicable to problems of a wide range similar to the research in
applications of OO previously demonstrated (Ganz and Wang 1994; Xie
1994; Wieselthier et al. 1995; Yang et al. 1997; Cassandras et al. 1998;
Guan et al. 2001; Hsieh et al. 2001). We use two examples where either
such assumptions are clearly violated or no knowledge concerning assump-
tions of the problem are available. In the first example, we test a function
optimization problem, and show how to use an approximate model to
achieve search reduction. In the second example, we test a practical manu-
facturing queuing network, and use the regressed values to compare HR,
OCBA, and B vs. D.

We consider again the example used in Section II.6, which shows how to
apply our results when the accurate model is deterministic but complex.

rule(s) in Fig. 3.7 is a subset of the ones recommended in Fig. 3.6, we
say Fig. 3.7 gives a right recommendation; otherwise, we mark the

when the fraction k/g is small, Fig. 3.7 always gives right recom-
mendations. This makes an easy way to choose a good selection rule

3.1 Example: Picking with an approximate model

that in the aforementioned working range of 20≤g≤200, s=Z(•/•)<180, and

Comparison of Selection Rules 81

We briefly review the problem formulation first. Consider a function de-
fined on the range Θ=[0,1]

() ()1 2 3sin 2J a a aθ πρθ θ= + + , (3.6)

where a1 = 3, a2 = 5, and a3 = 2. We set ρ = 500. So there are five hundred
cycles in the range [0, 1]. The true model is deterministic, but rather
complex considering relative and absolute minima. To get the exact model
of function J and its minima, we need extensive samples of θ∈Θ, which
we pretend to be costly. Instead, we find the trend for J is basically
increasing, and then adopt a crude model

()ˆ 5J θ θ= . (3.7)

This is the linear part of function J. We regard the error between the true
and crude models as noise, i.e.,

() ()ˆ noiseJ Jθ θ= + . (3.8)

Assume that we have no prior knowledge on the noise, and that the noise
has i.i.d. normal distribution N(0,σ2). By generating 1000 uniform samples
of θ from [0, 1]

ΘN={θ1,θ2,…,θ1000},

we can estimate the standard deviation σ by

() ()()2 ˆvar
i N i iJ Jθσ θ θ∈Θ= −

after adjusting for mean values.

We have totally 1000 computing budget units to allocate, i.e., we can
take one observation per design in ΘN on the average. HR will equally
allocate the computing budgets to each design in this way. Other selection
rules are different. In the following, we use the regressed values to esti-
mate the minimal subset sizes of different selection rules. Note that the
crude model in Eq. (3.7) is linear, so we choose neutral OPC class. After
taking one observation of each design θi in, we find σ = 0.5 is a good esti-
mate of the noise level. We try to cover at least k designs in the true top-50

82 Chapter III

ones in ΘN, k =1,2,…10, with alignment probability no smaller than 0.95.
Using Eq. (3.5) together with the regressed values in Table C.20 in Ap-
pendix C, we can estimate the minimal subset size of each selection rule,
ŝ . Note that when evaluating designs, the selection rules use the crude
model, and the true top-50 designs are defined by the complex model. To
check whether ŝ is a good approximate of the true value, we use experi-
ments to test the true value, denoted as s. For a fixed value of s, we take
1000 independent samples of ΘN to estimate the probability (the ratio of
these 1000 experiments) that there are at least k truly top-50 designs in ΘN
contained in the observed top-s designs. Then we regard the minimal value
of s to make AP≥0.95 as the true value. We compare the estimated value ŝ
with the true value s of each selection rule in Table 3.5.

Table 3.5. Estimated subset size of different selection rules in Example 3.1 (Jia et
al. 2006a) © 2006 Elsevier

HR OCBA B vs. D SPE HR_gc HR_ne k
ŝ s ŝ s ŝ s ŝ s ŝ s ŝ s

1 18 19 15 12 14 10 17 12 14 12 13 12
2 28 21 23 18 54 17 28 18 22 17 18 19
3 38 25 32 23 159 29 41 24 31 22 24 23
4 47 32 42 28 54 30 40 27 32 28
5 56 36 52 33 68 37 51 32 41 33
6 65 39 63 38 83 43 61 37 50 38
7 74 44 74 44 98 51 73 41 61 43
8 82 48 86 48 113 58 84 45 72 48
9 90 53 98 52 129 70 96 51 83 52
10 98 56 110 58 145 81 109 56 96 58

For B vs. D when we require to cover more than 4 top-50 designs, both
the predicted subset size via the regression model and the true subset size
exceed 200. So we do not list those corresponding sizes in Table 3.5. From
Table 3.5 we can see that the estimated subset sizes are usually no smaller
than the true sizes. This shows the conservative nature of the estimate.
When the required alignment level k is specified, by comparing the
estimated subset sizes, we can find the best among the selection rules.
In Table 3.5, we find that HR_ne has the smallest estimated subset size
among all the selection rules of interest for k=1,2,…10. So HR_ne is
recommended in these cases. We can also sort the selection rules by the
true subset sizes s in Table 3.5, from the smallest to the largest. We show
the true order and the true AP of HR_ne among the selection rules for
different k in Table 3.6.

Comparison of Selection Rules 83

Table 3.6. The true order and AP of HR_ne (Jia et al. 2006a) © 2006 Elsevier

k True order True AP
1 2 0.961
2 5 0.946
3 2 0.959
4 2 0.976
5 2 0.988
6 2 0.998
7 2 0.999
8 2 1.000
9 2 1.000
10 3 1.000

We compare 6 selection rules in this example. HR_ne is the predicted
best one for k = 1, 2,…,10. From Table 3.6 we can see that this prediction
is good, because HR_ne is within the top-2 selection rules in most k
values, with the exception of k = 2 and 10. We analyze the two cases with
more details. When k = 2, HR_ne is the 5th best selection rule. Please note,
in that case, the true best subset size is 17, which is achieved by B vs. D
and HR_gc. The subset size of HR_ne is 19, which is very close to 17.
When k=10, HR_ne is the 3rd best selection rule, with a true subset size of
58. The true best subset size in this case is 56, which is achieved by HR

We can also test HR_ne from another aspect. Assume we take the
recommendation, choose HR_ne as the selection rule, and use the
regressed subset sizes accordingly for each value of k. We use 1000
experiments to estimate the true alignment probability (AP) that the
selected subset of designs can cover at least k top-50 designs. The results
are also shown in Table 3.6. From Table 3.6, we can see that the alignment
probabilities are higher than the required value, 0.95, in most cases.
There is only one exception, k = 2, in which AP is 0.946, very close to the
required value 0.95. This example shows that the regression function can
give conservative estimate of subset size and our method performs well
in comparing selection rules. This is useful in practice. First we use the
regressed value to estimate the subset sizes of different selection rules and
find the best one. Using this best rule, we can obtain a subset of designs,
which contains at least k true good enough designs with high probability.
This often leads to a search reduction of at least one order of magnitude.
As shown in this example, when the true model is complex, we can use a
crude one in subset selections. Based on the crude model, using our
method, we can recommend HR_ne as a good selection rule, which often
is a truly good selection rule.

and HR_gc. The two sizes are close to each other. Our method recom-
mends HR_ne, which is a truly good selection rule in this case.

84 Chapter III

Exercise 3.3: Using the above method, we can easily find a good selec-
tion rule for a given problem. After we determine which selection rule to
use, we can use the regressed values in Appendix C to calculate the size of
the selected set for that selection rule. In this example, the estimated sizes
of the selected set of HR_ne are shown in Table 3.5. However, when we
take a close look at Table 3.5, we find the estimate ŝ sometimes is too
conservative from the true value s. How can we improve this estimate?
[Hint: Section VIII.3 introduces a way to improve this estimate.]

We consider a 10-node network as shown in Fig. 3.8. Such a network
could be the model for a large number of real-world systems, such as a
manufacturing system, a communication network, or a traffic network. For
details about the background of this example, please refer to (Chen and Ho
1995; Patsis et al. 1997). We will test whether our method can recommend

Fig. 3.8. 10-node network with priority and shared server (Jia et al. 2006a) © 2006
Elsevier

good selection rules on this practical model. There are two classes of cus-
tomers with different inter-arrival distributions but having the same service
requirement. We use c1 and c2 to denote the two classes of of customers.
Their inter-arrival times are with uniform and exponential distributions
respectively, i.e., c1: U[2, 18], c2: Exp(0.12). The 10-node network repre-
sents a connected three service stages. Node 0-3 denotes the first stage,

3.2 Example: A buffer resource allocation problem

Comparison of Selection Rules 85

where customers enter the system. Node 4-7 denotes the second stage,
where customers from different classes are served separately. Node 8-9
denotes the last stage, where customers leave the system after the service
completes. The service time is with uniform distribution at node 0-7, i.e.,
U[1,7], and is with exponential distribution with rate 1.0 at node 8 and 9,
i.e., Exp(1). All the nodes from 0 to 7 have their own servers, while node 8
and 9 share one server. Each node has a buffer with size Bi, I = 0,1,…9,
(not including the one being served). It is the allocation of buffer size that
makes this problem interesting. A buffer is said to be full if the queue

customer, this customer cannot leave and this server is idle and blocked.
When two nodes are blocked by the same node in downstream, “first
blocked, first served” is applied.

The two classes of customers have different priorities.

1. In queue of node 0-3, c1 customers jump before c2 customers. If a c1

customer arrives when a c2 customer is right in the process of being
served, this service is allowed to be completed.

2. At node 8, when the queue length is greater than one, a c1 customer
can be served. If a c2 from node 9 is in the process of being served
while the queue length at node 8 becomes greater than one, the
service to c2 will be interrupted to allow high priority (c1 customer).

For symmetric reason, we set the following constraints on buffer sizes:

B0=B1=B2=B3
B4=B6
B5=B7

B8≥1, B9≥1.

We consider the problem of allocating 22 buffer units. There are totally

1001 different configurations. We want to find one configuration that can
minimize the expected processing time for the first 100 customers,
assuming there are no customers in the network initially.

For each of the 1001 configurations, we do 200 experiments and use the
mean value to estimate the processing time for the first 100 customers. Al-
though 200 experiments are not enough to discriminate the performance of
different configurations exactly, the estimated top-100 designs are much more
accurate than based on only one observation per design. We assume that
there are totally 1001 computing budget units to allocate in the following

length (not including the one being served) equals to the buffer size. If
the buffer in the downstream is full when one node finishes serving one

86 Chapter III

experiments, as what we have mentioned above. So we sort the configura-
tions using the estimated value and regard this as the true order.

We want to find at least k of top-g designs (e.g., g = 100, k = 1,2,…10)
with high probability (e.g., α ≥ 0.95). Because HR, OCBA, and B vs. D

we have totally 1001 observations. Using the regressed values, we can esti-
mate the subset sizes for each selection rule, ŝ . For each selection rule, we
use 1000 experiments to estimate the true subset sizes, s, as we did in
Section 2. We show the two groups of subset sizes in Table 3.7.

Table 3.7. Estimated and true subset sizes for Example 3.2 (Jia et al. 2006a)
© 2006 Elsevier

HR OCBA B vs. D k
ŝ s

ŝ s

ŝ s

1 11 7 11 2 9 1
2 16 11 14 3 18 3
3 21 14 17 5 41 16
4 25 18 20 7
5 30 22 24 10
6 34 25 28 13
7 38 28 32 16
8 42 32 36 19
9 46 35 40 23
10 50 39 45 26

When we use B vs. D to cover at least k(k≥4) top-100 designs with a
probability no smaller than 0.95, the true subset sizes(s) should be no
greater than 200. So we do not list the values in Table 3.7. Recall also that
the working range of the regression function in this case (T = 1000, middle
noise level and B vs. D) is 1≤k≤3 and k/g≤1/25. So we only show the
predicted subset sizes ŝ and the true sizes s when k = 1, 2, and 3 for B vs.
D. We also use 1000 replications to test the alignment probability for
the estimated subset sizes of different selection rules, which we show in
Table 3.8, regard as the true APs.

In Table 3.7, the estimated subset sizes ŝ are usually greater than the true
values s. In Table 3.8, the true alignment probabilities are always no smaller
than the required value 0.95. This indicates that the estimated subset sizes

are frequently used in ordinal optimization, we focus on comparing the
three selection rules in this example. Since we have little knowledge of
the performance of the network, we use neutral OPC class to approximate
the true OPC of this system. From preliminary experiments, we find that 0.5
is a good estimate of noise level after adjusting for mean values. Assume that

Comparison of Selection Rules 87

are conservative and close to true values. We also list the predicted and truly
best selection rule(s) under different k values, as is shown in Table 3.9.

Table 3.8. True alignment probability when using estimated subset size (Jia et al.
2006a) © 2006 Elsevier

k HR OCBA B vs. D
1 0.994 1.000 0.998
2 0.999 1.000 0.993
3 0.999 1.000 0.975
4 0.999 1.000
5 0.997 1.000
6 0.999 0.999
7 0.999 0.999
8 0.999 1.000
9 0.999 0.999
10 0.999 1.000

Table 3.9. True and predicted best selection rules for different k (Jia et al. 2006a)
© 2006 Elsevier

k Estimated best Truly best
1 B vs. D B vs. D
2 OCBA OCBA and B vs. D
3 OCBA OCBA
4 OCBA OCBA
5 OCBA OCBA
6 OCBA OCBA
7 OCBA OCBA
8 OCBA OCBA
9 OCBA OCBA
10 OCBA OCBA

In Table 3.9, the predicted best selection rules are always a subset of the
truly best ones. Thus, we can use the regressed value to predict what the
best selection rule is. The recommended selection rule is truly the best.

Although our regressed values are obtained under the assumption of
i.i.d. noise with normal distribution, it works well in other settings. For
example, in Example 3.1 we regard the deterministic but complex error
between the true model and the crude mode as observation noise. In
Example 3.2, we do not know the true OPC type of the system and use
neutral class as an approximate. From more experiments, we find the
observation noise for different designs are not independently and identi-
cally distributed. However, numerical results have shown that our predic-
tion works well (Jia et al. 2004).

88 Chapter III

Exercise 3.4: Are the symmetric constraints on the buffer size
reasonable? If we remove the symmetric constraints on the buffer size, can
we find a better solution?

4 Some properties of good selection rules

In Section 2 and 3, we have developed a method to predict the best
selection rule among the nine considered in this chapter. However, as
mentioned at the beginning of this chapter, there are a huge number of
selection rules. The ones we discussed so far are only a small portion of all
the possible selection rules. Understanding the method presented in the
previous two sections can suffice the current practical application. It may
also interest some readers if we can discover some general properties of
good selection rules. These rules can then serve as a guideline for us to
look for better selection rules in the future. In this section, we discuss three
such properties, namely, 1) without elimination, 2) global comparison,
and 3) using mean value of observations as the estimate of design
performance. (The three properties will be explained in details later in this
section.) We use experiments to show that a selection rule with property 1)
is no worse than others and actually is strictly better in 81% of all the
tested scenarios; a selection rule with property 2) is no worse than others
and actually is strictly better in 71% of all the tested scenarios; a selection
rule with property 3) is no worse than others and actually is strictly better
in 39% of all the tested scenarios. For those who want to repeat these
numerical experiments, the detailed experimental data can be found in
Section 4.4 in (Jia 2006).

Let’s now consider the first property: without elimination. If a selection
rule uses elimination, then a design that fails in an early round will have no
chance to receive further observation, and will finally receive a low ob-
served order. Sequential pair-wise elimination (SPE) is one of the selection
rules that use elimination. HR_ne is not. To see how this property affects
the performance of a selection rule, we compare SPE and HR_ne in all the
five OPC types and three noise levels. Let there be a large computing
budget. For g = 20, s = 10, 20, …, 200 and different values of k, we use
1000 independent replications to test the AP in each case. The s value such
that the corresponding AP is no less than 0.95 is the minimal size of the se-
lected subset of that selection rule in that scenario. By comparing the sizes
of the selected subset of SPE and HR_ne in all the scenarios mentioned
above, we find HR_ne does not require a larger selected set than SPE in all
the tested scenarios, and in 81% of the scenarios requires a smaller subset.

Comparison of Selection Rules 89

This justifies that without elimination is a property for good selection
rules.

Then let’s consider the second property: global comparison. A selection
rule with global comparison will compare all the designs that enter a round
together. A selection rule without global comparison will only compare
some of the designs that enter a round. SPE uses pair-wise comparison,
thus is an example of without global comparison. HR_gc compares all the
designs in a round together, thus is a selection rule with global compari-
son. Since HR_gc and SPE both use elimination, by comparing these two
rules, we can see how the global comparison affects the performance of a
selection rule. Note that the Basic Property in Section 1 tells us that it does
not hurt if we select the observed top-s designs. In each round HR_gc
selects the observed top-half designs. This is consistent with the Basic
Property. So, in principle, HR_gc should not be worse than SPE in all the
scenarios. The question is: Since SPE is not consistent with the Basic
Property, how much worse is this selection rule than HR_gc? We compare
SPE and HR_gc in all the five OPC classes and three noise levels. Other
parameter settings are also the same as when we used to compare SPE and
HR_ne to test the first property. The result is: HR_gc is no worse than SPE
in all the tested scenarios, and is better in 71% of the scenarios. This justi-
fies that global comparison is a property of good selection rules.

Finally, we will consider the third property: using mean value of
observations as the estimate of design performance. In some selection
rules, the designs are ordered according to the number of “wins” they
receive. RR, SPE, HR_gc are some of the examples. Some other selection
rules order the designs according to the mean value of observations, e.g.,
HR and HR_CRR. To see how this property affects the performance of a
selection rule, we compare HR_CRR and RR. Both selection rules equally
assign the computing budget among the designs. Note, according to the
Basic Property, selecting the observed top-s designs does not hurt in this
case, which is exactly what HR_CRR does. So, in principle HR_CRR is no
worse than RR. The question is: How much worse can RR be than
HR_CRR? We compare HR_CRR and RR in all five OPC types and three
noise levels. Let g = 50. There are large computing budgets. The
comparison shows that HR_CRR is no worse than RR in all the tested
scenarios, and is better in 39% of the scenarios. This justifies that using the
mean value of observations as the estimate of design performance is a
property of good selection rules.

90 Chapter III

5 Conclusion

We use regression functions to quantify the efficiency of different
selection rules for ordinal optimization, especially HR, OCBA, and B vs.
D, which are frequently used. Using the regressed values, we can predict
the best selection rule(s) of interest under different parameter settings. The
prediction is rather good, as we have shown in section 3 by numerical
examples. We showed that some selection rules are no worse than some
others, and discussed the properties of good selection rules from three
aspects: Without elimination, global comparison, and using mean value as
the measure.

using our method, we summarize the application procedure as follows
(Box 3.1).

Box 3.1. How to predict a good selection rule

Step 1: Estimate the OPC class of the system and the noise level in
observation.

Step 2: Specify the values of k, g, and α. We want to cover at least k
designs in true top-g ones with high probability no smaller than α.

Step 4: c scenario. Find the regressed values
of the coefficients in Eq. (3.5) in Appendix C for this scenario.

Step 5: Use Eq. (3.5) to predict the size of the selected subset for each
selection rule. By comparing the predicted subset sizes, we can
easily predict which selection rule is the best.

Step 6: Using the recommended selection rule, we can obtain a subset of
designs, which contains at least k good enough designs with high
probability.

Step 7: In this way, we can usually have a search reduction of at least one
order of magnitude.

Based on ample experimental data, we also summarize a couple of simple,
quick and dirty tips for easily picking up a good selection rule without
calculation steps above. They are as follows:

1. In most of the cases, we recommend HR_ne, which works well and is
a good selection rule among all the 9 selection rules compared in this
paper.

Steps 1-3 determines a specifi
simulate the system how many times during the entire optimization.
Specify how much computing budget you have, i.e., you can

To predict the best selection rule among a given set of selection rules

Step 3:

Comparison of Selection Rules 91

2. In extremely difficult case (the computing budget is small, the size of
good enough subset is small, and we try to cover many good enough
designs), we recommend HR.

The above tips have intuitive illustrations. HR_ne has all the three
properties of optimal selection rules mentioned in Section 4, which are
without elimination, global comparison, and using mean value as the
measure. Numerical results show each property can improve the alignment
probability of selection rule separately. So HR_ne is a good choice in most
cases. However, when the computing budget is extremely small and we
can only explore part of the designs, exploration is more important than
exploitation. Since HR usually explores a larger number of designs than
HR_ne, it is a good choice in the latter difficult cases.

Since HR, OCBA, and B vs. D are the three frequently used rules in
ordinal optimization, we also summarize some simple rules to choose a
good one among them:

1. When the computing budget is small and we do not want much
calculation to allocate the computing budget, HR is a good choice.

2. For special sizes of middle and large computing budget (i.e., there are
1000 designs and we have 1000 or 30000 computing budget units to
allocate), OCBA is a good choice. Especially we prefer the following
parameter settings in OCBA. When T = 1000, we prefer m0 = 500.
When T = 30000, m0 = 1000.

3. In all other cases where we need a good and automatic balance
between exploration and exploitation, B vs. D is a good choice.

Note that OCBA fixes the “breadth” and B vs. D can increase the
“breadth” during the allocation procedure. So OCBA with an optimal
“breadth” may have the same high alignment probability as B vs. D (Lin
2000b). This is why we prefer OCBA in the second rule above. We have
used ample experiments to find the optimal “breadth” of OCBA in those
cases. However, as pointed out in the third rule, in general cases we prefer
B vs. D, which can do the balance automatically.

Finally and more generally, we can regard the selection rule as a way of
narrowing down the search for a good enough solution. Currently, the prac-
tice of OO is first to narrow down from Θ to ΘN. Denote this as the first
stage. It typically uses uniform sampling to get a representative set from Θ.
Then in the second stage we narrow down from ΘN to S. This process is
what we do with the selection rules, as has discussed in this chapter. How-
ever, this is only one possible way of doing the search for the “good
enough”. There still exist a number of other possibilities. For example, sam-
pling in the first stage can be enhanced. Instead of uniform sampling, we

92 Chapter III

can use heuristics to bias sampling towards more good designs. There need
not be only two stages, but many stages leading to what may be called it-
erative OO (Deng and Ho 1997). In short, we can view each stage of the
selection as overlaying a selection probability density over the set of de-
sign possibilities in question. Good selection rules are the ones that favor
the good designs. More discussion on this will be found in Chapter VII.

Chapter IV Vector Ordinal Optimization

Consider a multi-objective optimization problem with m objective func-
tions J1, . . . , Jm over a finite but huge design space Θ. If the user knows
the priority among these objective functions, or furthermore can assign
appropriate weights to each objective functions, s/he can reformulate this
problem as either a sequence of m single objective optimizations or a sin-
gle objective optimization using the weighted sum of J1, . . . , Jm as the
objective function. Then the method introduced in Chapter II will suffice
to solve this new problem. However, a more difficult case is that the user

functions. In this chapter, we focus on this type of problem. The purpose
of the optimization here is to find designs such that the objective functions
are, in a sense, minimized. The operative concept in multi-criterion opti-
mization problems, of course, is that of Pareto frontier or non-dominated
solutions. All the designs in the Pareto frontier are considered Pareto
optimal. The concept of Pareto optimum was formulated by Vilfredo
Pareto (Pareto 1896). A design is said to be Pareto-optimal if it is not
dominated by any other designs (i.e., there exists no other design that is
better for at least one objective function value, and equal or superior with
respect to the other objective functions). All Pareto-optimal points consti-
tute the so-called Pareto frontier which plays the same role as maximum or
minimum in single criterion optimization. As discussed before in Chapter I,
exact values of the m objective functions are often computationally infea-

1/2 limit) and thus it is
often hard to obtain the Pareto frontier. Genetic algorithms and evolution-
ary algorithms are alternatives (Goldberg 1989), which do not guarantee a
set of designs in the Pareto frontier but try to find a set of designs hope-
fully not too far away from the Pareto frontier (Zitzler et al. 2003) and
these methods do not consider the difficulty of time consuming simula-
tion-based performance evaluation. Comprehensive surveys in this area
can be found in (Coello 2000; Tan et al. 2002). In this chapter, by generali-
zing ordinal optimization from the scalar case to the vector case, we aim at
quantifying how many observed layers (definition follows) are enough to
contain the required number of designs in the Pareto frontier with high
probability. Both tenets of the scalar OO are kept:

sible to obtain via simulation (due to the 1/(n)

does not know the priority or the appropriate weights among the objective

94 Chapter IV

1. the order we introduced converges exponentially as the number of
replications increases.

2. we ask for only some good enough designs that are pareto or nearly
pareto optimal.

In Section 1, we first include a very brief review of the traditional
vector optimization results for completeness. Then we define the concept
of Pareto frontier and layer in vector optimization, the good enough set,
selected set, universal alignment probability (UAP), and ordered perfor-
mance curve (OPC) in the vector case. In Section 2, based on abundant
experiments, we give the UAP table for a 2-dimensional case, quantifying
subset selection sizes for different types of two-objective optimization
problems. Following this idea, one can quantify subset selection sizes
when there are an arbitrary number of objective functions. In Section 3, we
show the exponential convergence rate of observed layers to true ones. In
Section 4, we use examples to show how the above numerical results help
to reduce the search efforts for true Pareto frontier by at least one order of
magnitude. At last, we summarize in Box 4.1 the general steps to apply
Vector Ordinal Optimization (VOO).

1 Definitions, terminologies, and concepts for VOO

First, we include here a very brief review of the traditional vector optimi-

zation problem of “Pareto-min)(
1

θ∑
=

m

i
iJ ”. To locate a point on the Pareto

frontier, we usually resort to some form of scalarization of the vector criteria.
The most popular method is to consider a weighted sum of the criteria

 i
1 1

min with 1(), 0,
m m

i i i
i i

Jλ θ λ λ
= =

=≥∑ ∑ , (4.1)

where the λi’s play the role of LaGrange multipliers. Under appropriate
convexity conditions, solutions of the scalarized problem over all λi can
determine all points on the Pareto frontier. There are also other possible
methods of scalairzation. For example, consider

 * 2

1
min (() ())

m

i i i
i

J Jλ θ θ
=

−∑ (4.2)

where)(* θiJ , called aspiration level, is the desired but unrealizable value
of the ith performance criterion. Or consider,

Vector Ordinal Optimization 95

(){min max ,J ii θ

all result in a point on the Pareto Frontier.

However, our goals in VOO are somewhat different. We are not that inter-
ested in locating one point on the Pareto frontier. In this book, such a task

points which are “near or close to” the Pareto frontier as explained in the
introduction part of this chapter.

These definitions parallel, in concept, to those defined in Chapter II for

Θ the search space for the optimization variables θ.
Ji

tem. In contrast to the scalar case, we have m performance criteria,
i=1, . . , m.

N the number of designs uniformly chosen from Θ. It is understood that for
each choice of θ, there corresponds a set of values Ji(θ), i=1, 2, ... , m.

≺ the dominance relation between designs. A design θ1 is said to domi-
nate θ2, denoted by θ1≺ θ2, if Ji(θ1)≤Ji (θ2), for i=1, 2, ... , m, with at
least one inequality being strict. If θ1 does not dominate θ2, θ2 will be
called noninferior to θ1. Furthermore, if neither θ1≺ θ2 nor θ2≺ θ1 is
true, θ2 and θ1 will be called incomparable.

L1 Pareto Frontier. A set of designs L1 is said to be in the Pareto frontier,
in terms of the objective functions J1, ... , Jm, if it contains all the de-
signs that are not dominated by other designs in the design space Θ;
i.e.,

L1≡{θ|θ ∈Θ, θ′∈Θ, s.t. θ′≺ θ}.

Designs in Pareto frontier are the counterparts of the true optimal de-
sign in the scale case.

Ω an operator that maps a design space to the set of the Pareto frontier
with respect to the objective functions as L1=Ω(Θ). The concept of
Pareto frontier can be extended to a sequence of layers.

Li layers. A series of designs Li+1 = Ω(Θ\∪j=1,...,iLj), i=1, 2, ... , are called
layers, where A\B denotes a set containing all the designs included in

}

is contrary to the basic tenets of OO. Instead, we want to locate a set of

= 1,..., m , (4.3)

single objective ordinal optimization and can be understood similarly.

Hence we now introduce definitions and notations necessary for VOO.

able in any objective function.

the performance criteria (also called objective functions) for the sys-

where we assume the true performances of any two designs are distinguish-

Exercise 4.1: Prove that solutions of Problems in Eqs. (4.1)-(4.3) above

96 Chapter IV

set A, but not included in set B. Designs in Li are called layer i designs.
They are successive Pareto frontiers after the previous layers have
been removed from consideration. The significance of layers is that
they introduce a natural order in the design space Θ and there are no
preferences on the objective functions and no preferences on the
designs in the same layer.1

Fig. 4.1. Graphic illustration of layers (assuming minimization)

Nl the number of layers formed by the N designs uniformly chosen from Θ.
ˆ

lN the number of observed layers formed by the N designs uniformly
chosen from Θ. This is a random number and varies in different repli-
cations.

ˆ
iJ the observed performance criteria of the sampled designs. With n rep-

lications, we denote observed value of i-th performance criterion in

1There are other ways to introduce order for multi-objective optimization. For

example, it was proposed in (Teng, Lee and Chew 2006) to sort designs according
to the number of dominating designs. Pareto Frontier is the set of designs with 0
dominating designs. In that order, although there is no preference on the designs in
the first layer (i.e., the Pareto Frontier), there usually are preferences on the
designs in the second or other layers.

J 2

L L

Vector Ordinal Optimization 97

j-th replication by () () ()ˆ , ,i i ijJ j J wθ θ θ ξ= + , j=1,…,n, where wij
are noises. By default, observed performance always refers to the
average over all replications:

() ()
1

1ˆ ˆ , , 1, 2,...,
n

i i
j

J J j i m
n

θ θ
=

= =∑ .

Note, ()ˆ
iJ θ is a random variable whose distribution also depends

on the number of replications n.
≺̂ dominance in observation. A design θ1 is said to dominate θ2 in ob-

servation, denoted by θ1 ≺̂ θ2, if () ()1 2
ˆ ˆ

i iJ Jθ θ≤ , i=1, 2, . . . , m,
with at least one inequality being strict.

îL observed layers. Dominance in observation is a stochastic relationship
among designs, and will lead to stochastic partition of the design
space into the observed layers îL , i=1, 2,…

G good enough set. Defined as the union of the designs in the true first g
layers (e.g., when g=1,G is the Pareto frontier L1). As in scalar OO,
the user is free to decide how many layers constitute G.

S selected set. Defined as the designs chosen based on observed per-
formances.

Only a selection rule similar to the Horse Race rule is considered
here. That is to select all designs in the observed first s layers.

G∩S
the set of truly good enough designs in S.

Fig. 4.2. Graphical illustration of Θ, G, and S in VOO

Selection Rule

98 Chapter IV

Alignment Probability (AP) ≡Prob[|G∩S|≥k]
The probability that there are actually k truly good enough designs in
S. This is the same as in scalar OO. Based on the notion of layers, it
can be written as

AP=
1 1

ˆProb s g
i ii i

k
= =

⎡ ⎤∩ ≥⎢ ⎥⎣ ⎦∪ ∪L L .

VOPC
Ordered Performance Curve in the vector case (VOPC). Similar to
scalar OO, AP in VOO is also affected by problem types. We intro-
duce VOPC for multi-objective optimization problems. VOPC is
described by a function F(x), where x is the layer index, from 1 to the
total number of layers of that problem, and F(x) is the number of
designs in the first x layers. Correspondingly, we can also focus on
the map f (x), which sends the layer index x, ranging from 1 to the total
number of layers of that problem, to f (x), the number of designs in the
x-th layer. In Fig. 4.3, we use two-objective optimization as an exam-
ple to show how f (x) describes different types of multi-objective op-
timization problems. There are three types of F(x) in Fig. 4.3. Each
column shows one type of two-objective optimization problem and
the corresponding f (x). The true performances of the designs are de-
noted by dots. Suppose that we uniformly pick up designs to compose
the selected set S. In the first type, there are few designs in the Pareto
frontier. Then, it is hard for S to contain some designs in the Pareto
frontier. This type of optimization problems is hard. The problems in
the second and third columns are neutral and easy, respectively.
VOPC is a concept to classify the problem type, which is logically
similar to OPC classifying the problem type in scalar OO. However,
since we do not know the appropriate weight among the multiple
objective functions, we cannot use the value of the objective functions
to measure the “performance” of the designs in the same layer. In-
stead, we use the total number of designs in the previous layers as
such a measure. Other definitions are possible. We still call it VOPC
though we know the “performance” here is neither the value of any
objective function nor the value of a weighted sum of these objective
functions.

wi noise/error level in objective function Ji. We assume wij(θ, ξ), j=
1,2,…,n, form an i.i.d. sequence of random variables with zero mean.
When there is no confusion, we simply use w to represent the noise
levels.

Vector Ordinal Optimization 99

Fig. 4.3. Three types of two-objective optimization problems. A fourth type, the
general type, is not shown

The Universal Alignment Probability (UAP)
Prob , , ,VOPC typelG S k N N w≡ ⎡ ∩ ≥ ⎤⎣ ⎦

()UAP , , ,VOPC typelN N w≡
As in scalar OO, the alignment probability can be tabulated once N,
the number of designs, NI , the number of layers, the noise/error level
and VOPC type of a problem is given. The UAP table for the
2-dimension case will be given in Section 2.

Exercise 4.2: Please compare the concepts of order, good enough set,
selected set, ordered performance curve, and universal alignment probability
in ordinal optimization when there are one or multiple objective functions.

2 Universal alignment probability

In VOO, we care about the probability that the observed first s layers con-
tain at least k designs of the true first g layers; we want this probability to
be greater than or equal to some required confidence probability α, i.e.,

J 2 J 2 J 2

f(x
)

f(x
)

f(x
)

F(
x)

F(
x)

F(
x)

100 Chapter IV

1 1
ˆProb s g
i ii i

k α
= =

⎡ ⎤∩ ≥ ≥⎢ ⎥⎣ ⎦∪ ∪L L .

As in the scalar case, g, s, k, VOPC type and the noise level all affect AP.

In general, it is difficult to get a closed-form formula to calculate AP, giving
the values of these factors. In the scalar case, a table is used to quantify the
relationship among g, s, k under different OPC and noise levels (Lau and Ho
1997). In VOO, we similarly tabulate the relationship among g, s, and k. In
the rest of this section, we show how to do experiments on two-objective
optimization problems as an example. For cases with more than two objec-
tive functions, the method is similar. The importance of the two-dimensional
UAP table also lies in that, under mild assumption, the VOO-UAP table for
two objective functions supplies an upper bound for the size of the selected
set when there are more objective functions.

Exercise 4.3: Suppose all the designs are distinguishable in each objec-
tive function, i.e., ∀θ, θ′∈Θ, i=1,2,…m, Ji(θ)≠Ji(θ′). Please show that the
Pareto frontier with respect to m-1 objective functions is a subset of the
Pareto frontier w.r.t. m objective functions.

Exercise 4.4: Based on the results in the last exercise, please show that
the UAP table for two-objective optimization supplies an upper bound for
the size of the selected set when there are more objective functions.

We consider three types of VOPCs in the experiments: Flat, neutral, and
steep. Without loss of generality, we assume that the true performance of
each design is within [0,1], that there are totally 10000 designs and 100
layers.2 The numbers of designs in each layer are also specified:

2With no prior knowledge on the problem, for the neutral VOPC, we want to

ensure the performance vectors of designs are uniformly deployed in an
m-dimensional “cubic”. So, fixing Nl =100, for m=2, if there are 100 designs in each
layer, there will be N=100×100 designs, where Nl is the total number of layers. For
the flat and steep VOPC, we want to ensure the performance vectors of the designs
are uniformly deployed in an m-dimensional “pyramid”. So, fixing Nl =100, for
m=2, let there be only one design in the first layer for the flat VOPC (or in the last
layer for the steep VOPC), and the numbers of the designs in the successive layers
increase (decrease in the steep VOPC) by a constant. For general m, to avoid the
curse of dimensionality, fixing Nl =100, we generate N=C(1+ Nl) Nl /2 designs, and
C is a positive number depending on m. See Fig. 4.4.

Vector Ordinal Optimization 101

Fig. 4.4. One example of the randomly generated true performances of the designs
for the three types of VOPC in the experiment

J1

J 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a) Flat

J1

J 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b) Neutral

J1

J 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(c) Steep

102 Chapter IV

• for flat VOPC, |Li|=2i-1;
• for neutral VOPC, |Li|=100;
• for steep VOPC, |Li|=201-2i, i =1, 2,…, 100.

We randomly generate the true performance of each design such that the

number of designs in each layer meets the above requirements. We show
one example in Fig. 4.4. i.i.d. uniformly distributed noises are considered,
i.e.,

wij(θ, ξ)～U[-w,w], i=1, . . . , m, j=1,2,…,n.

Three noise levels are considered: w = 0.5, 1.0, 2.5. The three noise lev-

els are supposed to represent “small, medium, and large”. The reason is
similar to the ones stated in Section II.5, i.e., consider the neutral type for
example, when w=0.5, the worst design barely has the chance to be obser-
ved better than the best design; this probability is positive when w=1.0,
and much greater when w=2.5. By adding observation noises to the true
performances of each design, we can find the observed first s layers. For
each type of VOPC, we repeat the above procedure 1000 times to estimate
the alignment probability. The values of g, s, k are also specified for each
VOPC so that the number of good enough designs does not exceed 20% of
the size of the entire design space:

• for flat VOPC, g, s∈[1, 44];

• for neutral VOPC, g, s∈[1, 20];

• for steep VOPC, g, s∈[1, 10];

and k ∈[1, 100] for each type. When the alignment probability α≥0.95, we
try to describe the value of s as a function of k and g. We find that the fol-
lowing functional form fits well in all cases:

 () 31 2
4, ZZ ZZ k g e k g Z= + , (4.4)

where Z1, Z2, Z3, Z4 are constants depending on the VOPC types and noise
characteristics. We show one example in Fig. 4.5, where the solid lines
represent the number of the observed layers to select, which is obtained
through the experiments, and the dashed lines represent the prediction
given by Eq. (4.4). As we can see, the two lines are close to each other. We
perform a regression on the data of (g, s, k) of the experiments, which lead
to α ≥0.95, and this in turn produces the coefficients appearing in Eq. (4.4).
We list the regressed values in Table 4.1.

Vector Ordinal Optimization 103

To ensure that Eq. (4.4) and Table 4.1 produces an upper bound esti-
mate of the number of the selected layers, we restrict the numerical ranges
as follows:

Fig. 4.5. The number of the observed layers to select to ensure AP≥0.95 in the
Neutral VOPC and w=0.5. The solid lines represent the true value. The dashed
lines represent the predicted value

Table 4.1. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for UAP of VOO

Noise U[0.5, 0.5]
OPC class Flat Neutral Steep
Z1 4.2004 –0.2176 –0.7564
Z2 1.1953 0.9430 0.9156
Z3 –2.3590 –0.9208 –0.8748
Z4 3.1992 1.0479 0.6250
Noise U[1.0, 1.0]
OPC class Flat Neutral Steep
Z1 4.7281 0.3586 –0.1536
Z2 1.0459 0.8896 0.8721
Z3 –2.1283 –0.8972 –0.8618
Z4 2.4815 0.8086 0.5191
Noise U[2.5, 2.5]
OPC class Flat Neutral Steep
Z1 5.2099 0.9379 0.3885
Z2 0.9220 0.8445 0.8536
Z3 –1.9542 –0.8890 –0.8847
Z4 1.9662 0.5946 0.5414

0 10 20 30 40 50 60 70 80 90 100

2
4
6
8

10

12
14
16
18

20

k

g=2 g=3 g=4

g=5

g=6
g=7
g=8
g=9
g=10

–

–

–

104 Chapter IV

• for flat VOPC, when k ≤50, the range of g is 1≤g ≤44. When 50<k ≤
100, for flat VOPC with noise level w=0.5, the range of g is 1≤g≤25; for
noise level w=1.0, the range of g is 1≤g≤30; for noise level w=2.5, the
range of g is 1≤g ≤35. For flat OPC, all the (g, k) combinations should

Note, in practice, we may have a different sample size N and a different
number of layers Nl as we assumed when generating Table 4.1, our idea is
to use the total number of observed layers ˆ

lN as an estimate of Nl and
keep the ratios g/Nl, k/N, s/Nl as constant. This idea is demonstrated in
Section 4 through examples.

3 Exponential convergence w.r.t order

VOO is based on ordinal comparison as in the scalar OO. That is, the
comparison of designs and sorting them into observed layers. As in scalar
OO, under mild conditions, it can be shown that ordinal comparison in
VOO also has exponential convergence rate, namely the probability that
the true i-th layer Li is the same as the observed i-th layer îL is of form

1- ()nO e β− , where n is the number of replications and β>0 is a constant. In
fact, when some designs in the i-th layer Li is not in the observed i-th layer

îL , there must be at least one pair of designs, the observed order (domi-
nance) of which is different from the true order. Since the design space is
finite, in order to prove the exponential convergence of layers, it is suffi-
cient to show that any pair of designs θ1 and θ2 can only change their
observed order with an exponentially decaying probability in terms of the
number of replications n.

Prob[ˆ
i i=L L for all i]

≥1-Prob[there exist a pair of designs θ1 and θ2 changing order in ob-
servation]
≥1- []

1 2

1 2
,θ θ

∑ (4.5)

Once an observation (based on n replications) is made, there are only
three possible order relationships between any two designs θ1 and θ2:

Prob θ and θ changes order in observation

• for neutral VOPC, g∈[1, 20], k∈[1, 100], s=Z(⋅/⋅)≤20;

• for steep VOPC, g∈[1, 10], k∈[1, 100], s=Z(⋅/⋅)≤10;

let s=Z(⋅/⋅)≤44.

Vector Ordinal Optimization 105

θ1≺ θ2, θ1; θ2, and incomparable. For all these three cases, when a change
in order happens in observation, there is at least one objective function Ji
such that one of the following is true, among m objective functions.

1. Ji(θ1)<Ji(θ2) and () ()1 2
ˆ ˆ

i iJ Jθ θ≥ hold simultaneously.

2. Ji(θ1)>Ji(θ2) and () ()1 2
ˆ ˆ

i iJ Jθ θ≤ hold simultaneously.

In other words, in at least one objective function, a change in order
occurs in observation. Thus, we can bound Prob[θ1 and θ2 changes order in

observation] from above by Prob[() ()1 2
ˆ ˆ

i iJ Jθ θ≥] when Ji(θ1)<Ji(θ2) and

Prob[() ()1 2
ˆ ˆ

i iJ Jθ θ≤] when Ji(θ1)>Ji(θ2).
It follows from the exponential convergence w.r.t. order for scalar case

in Section II.4.2 (based on Large Deviation Theory) that probability for the
order to change in one objective function decreases exponentially as a
function of n. In other words, when Ji(θ1)<Ji(θ2), and as long as the condi-
tions on the samples (or equivalently on the noises) of scalar OO hold, i.e.,
the moment generating functions 1 (,)()iswE e θ ξ exists for all s∈(-d,d), for
some d>0, there must be a positive β such that

() ()1 2Prob ˆ ˆ ()n
i iJ J O e βθ θ −⎡ ⎤≥ =⎢ ⎥⎣ ⎦

and when Ji(θ1)>Ji(θ2), there must be a positive β such that

() ()1 2Prob ˆ ˆ ()n
i iJ J O e βθ θ −⎡ ⎤≤ =⎢ ⎥⎣ ⎦

.

As a result, we have

1 2Prob and changes order in observation ()nO e βθ θ −=

and furthermore due to Eq. (4.5), we have

Prob[ˆ
i i=L L for all i]=1- ()nO e β− .

Exercise 4.5: Another basic idea in single-objective OO is goal soften-
ing. What is the advantage to consider goal softening in VOO? Can we
show some results similar to Section II.4.3?

⎡ ⎤
⎣ ⎦

106 Chapter IV

4 Examples of search reduction

When we obtain the regressed values in Table 4.1, there are several assump-
tions:

(A1) There are 10000 designs and 100 layers in total.
(A2) The observation noises of different designs are independent.
(A3) The observation noises have uniform distribution.

It turns out that, even when these assumptions are not met, Table 4.1
still gives a good guidance on how many observed layers should be
selected due to its universality. We present two examples here to demon-
strate this. One is an academic problem, the other a practical problem. In
Example 4.1, we relax assumptions A1 and A3 in Table 4.1. In Example
4.2, we relax all three assumptions.

distribution

Consider a two-objective optimization problem minθ∈ΘJ(θ), where J(θ)=
[J1(θ), J2(θ)]τ , J1(θ) and J2(θ) are the true performance of the design θ, and
τ denotes transposition. There are 1000 designs in Θ. For each design θ,
J1(θ) and J2(θ) are uniformly generated values from [0,1] and are fixed in

Fig. 4.6. True performances J1 and J2 in Example 4.1

the following experiments. The true performances are shown in Fig. 4.6.

J1

0.5 1

0.5

1

0

4.1 Example: When the observation noise contains normal

Vector Ordinal Optimization 107

Fig. 4.7. The observed VOPC of Example 4.1

There are 9 designs in the Pareto frontier, which are marked by circles.
The observation noise of each design is independent and has normal dis-
tribution N(0, 0.252). We are interested to find at least k, 1≤k≤9, designs in
the true Pareto frontier with high probability, α ≥0.95. The question is how
many observed layers we should select. In the following, two methods are
compared.

First, we use the regressed values in Table 4.1 to answer this question.
We simulate each design only once and estimate the VOPC type of this
problem, which is neutral (as shown in Fig. 4.7). We specify the noise
level as 0.5. Then, from Table 4.1, we find the values of coefficients as

Z1=0.2176, Z2=0.9430, Z3=0.9208, Z4=1.0479.

Since there are only 1000 designs and 579 observed layers in Example

4.1, we need to adjust the values of g and k. We keep the ratios g/Nl, k/N,
s/Nl as constant, where Nl is the total number of true layers. We use the to-
tal number of observed layers ˆ

lN as an estimate of Nl. Then, we have

g′ =⎣(100/57)×1⎦=1,
k′=(10000/1000)×k=10k, 1≤k≤9,

where ⎣a⎦ represents the smallest integer that is not smaller than a. Using
Eq. (1), we get s′(k′, g′) and s =⎡(57/100)×s⎤, where ⎡a⎤ represents the

108 Chapter IV

largest integer that is not larger than a. The predicted values of s are collec-
ted in Table 4.2 (denoted as ŝ).

Second, we use the experiments to estimate how many observed layers
should be selected. We use 1000 independent experiments to estimate the
AP of each (s, k). In this way, for different k, we get estimates of how
many observed layers are enough so that the corresponding AP is no less
than 0.95. We regard these estimates as true values and also list them in
Table 4.2 (denoted by s*).

In Table 4.2, we can see that the predicted values ŝ based on the
regressed model are always an upper bound of the true values s*. If we
want to find at least one design in the true Pareto frontier, it is sufficient to
focus on the observed first 5 layers. There are only 78 designs on the
average in these layers (a saving from 1000 to 78). Also note that, if we
want to contain most or all (nine) designs in the true Pareto frontier, we
still need to explore many designs. However, this is due to the fact that
the noises are large in our example and it is not compatible with goal
softening to insist on k=9.

Table 4.2. Predicted and true values of s for Example 4.1

k s* ŝ ˆ

1

s
ii=∪

1 3 5 78
2 5 9 166
3 7 12 241
4 9 16 340
5 11 19 420
6 14 23 517
7 17 26 596
8 22 30 692
9 32 33 756

We will consider a 10-node queuing network, as shown in Fig. 4.8. In fact,
this example has already been introduced in Section III.3, but we consid-
ered only one objective function then. Now we are going to consider two
objective functions (introduction follows) here. Let us briefly review the
problem formulation. There are two classes of customers with different
arrival distributions (exponential and uniform distributions). Both classes
arrive at any of the 0–3 nodes and leave the network after finishing all
three stages of services. The routing is class dependent and is deterministic.

4.2 Example: The buffer allocation problem

L

Vector Ordinal Optimization 109

The buffer size at each node is finite and is the parameter that we can
design. We say that a buffer is full if there are as many customers as that
buffer size, not including the customer being served. Nodes 8-9 have indi-
vidual queues but share one server. This network can model a large num-
ber of real-world systems, such as manufacturing, communication, and
traffic network. We consider the problem of allocating 22 buffer units
among the 10 nodes. We use Bi to denote the buffer size at node i, Bi ≥0.
For symmetry reasons, we require

 B0=B1=B2=B3, B4=B6, B5=B7, B8, B9>0. (4.6)

Fig. 4.8. The 10-node network with priority and shared server

We can get 1001 different configurations in all. There are two objective
functions. One is the expected time to process the first 100 jobs from the
same initial state (all buffers are empty). The other is the average utility of
the buffers at all the nodes, i.e.,

9

0
/i ii

q B
=∑ , where qi is the expected

queue length at node i, 0≤i ≤9, where for Bi =0, we define the utility of that
buffer to be 1. We want to improve the throughput of the network and
improve the efficiency of all the buffers. We formulate the problem as a
two-objective minimization problem, where J1 is the first objective func-
tion above and J2=1-

9

0
/i ii

q B
=∑ .

For each design (a configuration of buffers) θ, we use 1000 independent
experiments to estimate J1(θ) and J2(θ). The experimental results are
shown in Fig. 4.9. We regard these values as true performances and define
the configurations in the observed first two layers as good enough (9

110 Chapter IV

designs in total), also marked by circles in Fig. 4.9. We want to find at
least k, 1≤k≤9, configurations in the true first two layers with high prob-
ability, α≥0.95. The question is also how many observed layers should be
selected.

Fig. 4.9. The true performance of the configurations in Example 4.2

Fig. 4.10. The observed VOPC of Example 4.2

0 10 20 30 40 50 60 70 80 90 100

200

400

600

800

1000

1200

of

 d
es

ig
ns

 in
 th

e
ob

se
rv

ed
 fi

rs
t x

 la
ye

rs

x, index of the observed layers

Vector Ordinal Optimization 111

First, we simulate each configuration once (i.e., one replication only – a
very crude estimate of the performance of the particular configuration).
We show one instance in Fig. 4.10. There are 94 observed layers, which
may be different in various experiments. The estimated VOPC type is neu-
tral. By normalization, the standard deviation of the observation noise is
0.1017 for J1 and 0.0271 for J2, and we choose 0.5>2×0.1017 as the noise
level. The corresponding coefficients in Table 4.1 are the same as those in
Example 4.1. We adjust the values of g and k accordingly, i.e.,

g' =⎣100/94×2⎦=2, k' =(10000/1001)×k≈10k, 1≤k≤9.

Substituting these values into Eq. (4.4), we can get s'=Z(k', g') and s =
⎡94/100×s'⎤. We show the predicted number of observed layers to select in
Table 4.3.

Second, we use 1000 independent experiments to estimate the AP of
each (s, k). For each k, when AP is no smaller than 0.95, we denote the
value of s as s* in Table 4.3.

Table 4.3. Predicted and true values of s for Example 4.2

k s* ŝ ˆ

1

s
ii=∪

1 1 5 32
2 2 8 44
3 2 11 95
4 3 14 147
5 4 17 197
6 5 20 240
7 6 23 268
8 8 26 279
9 9 29 286

If we want to contain at least 3 designs in the true first two layers, ac-
cording to Table 4.3, we need to explore only 95 designs on average. This
saves much of our search efforts. We can see that the predicted values of s
are always no less than the estimated values. The predicted values of ŝ
seem conservative. The reason is that the normalized noise level is 0.2034
in Example 4.2, which means that some good enough designs almost
always dominate some other designs in observation. However, the smallest
noise level in Table 4.1 is 0.5, which is more than twice as large as the
normalized. In turn, this leads to a conservative estimate of s.

Example 4.2 violates all the three assumptions: There are only 1001
designs (configurations) in total; the observation noise is not i.i.d., and

L

112 Chapter IV

does not contain uniform distribution. However, numerical results show

4.1 still give good guidance on how many observed layers should be se-
lected. When there are more objective functions, we can design similar
experiments to obtain the regressed values of the coefficients in Eq. (4.4).
In practical applications, we can use more problem information to obtain
better prediction on the number of observed layers to select (i.e., a tighter

Exercise 4.6: In Example 4.2, we introduced constraints in Eq. (4.6) for

symmetry reason. What if we relax these constraints? Can we find designs
with better performances in both objective functions? Please try to apply
VOO to solve Example 4.2 without the constraints in Eq. (4.6).

Exercise 4.7: Please think, before reading Section VIII.3, about effec-
tive ways to obtain less conservative estimate of the number of observed
layers to select, when we have the observed performance of the randomly
sampled N designs.

Box 4.1. The application procedure of VOO

Step 1: Uniformly and randomly sample N designs from Θ.
Step 2: Use a crude and computationally fast model to estimate

the m performance criteria of these N designs.
Step 3: Estimate the VOPC class and noise level. The user speci-

fies the size of good enough set, g, and the required
alignment level, k.

Step 4: Use Table 4.1 (if m=2, or similar tables generated before-
hand for general m) to calculate s=Z(g, k/VOPC class,
noise level).

Step 5: Select the observed first s layers as the selected set.
Step 6: The theory of VOO ensures that S contains at least k truly

good enough designs with probability no less than 0.95.

that the regression function (0.4) and the regressed coefficients in Table

upper bound of the true values). This will be shown in Chapter VIII Section 3.

Chapter V Constrained Ordinal Optimization

We discussed single-objective optimization in Chapter II and III, and dealt
with multiple-objective optimization in Chapter IV. All these belong to un-
constrained optimizations. Since we usually meet constraints in practice, a
natural question is how we could apply ordinal optimization in constrained
optimization problems. Traditionally, optimization problems involving
constraints are treated via the use of LaGrange multipliers (Bryson and Ho
1969). See also Eq. (4.1) in the introduction of Chapter IV. The duality be-
tween constrained optimization with vector optimization is best illustrated
via the following diagram (Fig. 5.1).

Fig. 5.1. The duality between constrained optimization and vector optimization

points on the Pareto frontier by solving a series of constrained optimization
problem. Conversely, every point on the Pareto frontier solves a constrained
optimization problem for some constraint value “d”. Thus in principle, VOO
and COO are also duals of each other. Chapter IV can be considered as a
dual of this chapter.

More practically, in some cases, the constraints can be easily checked,
e.g., simple linear inequality equations involving one or two variables. By

Setting different values of the parameter “d”, we can determine various

Pareto frontier

J1

J2

min J1

subject to J2≤d

d

114 Chapter V

modifying the design space, Θ, to one including only the feasible designs,
Θf, we convert the original problem to an unconstrained one, which can
then be dealt with by the methods in Chapter II-IV. However, in some
other cases, it is time-consuming to check the constraints. In this chapter,
we focus on the optimization problem of form

()

()

min () , ,

s.t. () , , 0, 1,..., .i i

J E L x

h E L x i m
θ

θ θ ξ

θ θ ξ
∈Θ

≡ ⎡ ⎤⎣ ⎦

≡ ≤ =⎡ ⎤⎣ ⎦
 (5.1)

Considering the problems handled by OO in previous chapters, where the
evaluation of J(•) is time consuming, we observe an additional difficulty:
there are simulation-based constraints in Eq. (5.1), which makes the pre-
cise determination of the feasibility beforehand extremely difficult. In fact,
incorporating constraints efficiently is one of the major challenges in
developing any simulation-based optimization methods. One naive and
impractical approach is to accurately determine the feasibility of a design
(this will be referred to as a perfect feasibility model), then apply OO di-
rectly within Θf , the subset of all the feasible designs. The other extreme is
to apply OO directly regardless of the constraints. This does not work in
general since many designs in the selected set may be infeasible. The se-
lected set, the size of which is determined without any consideration of the
constraints, can no longer ensure to cover some feasible designs with good
enough performance with high probability.

The key idea in this chapter is to note, in practice, although we do not
have perfect feasibility model, we usually have some rules, experiences,
heuristics, and analytical methods (these will be referred as the feasibility
models) to help us find feasible designs with a reasonably high probability
(certainly no less than 0.5). These feasibility models usually are not per-
fect, and some times make mistakes, e.g., some designs may be predicted
as feasible by the feasibility model, but are actually infeasible. If we incor-
porate this fact of imperfect (but with some reasonable chance, say 70% or
80%) feasibility prediction into the determination of the size of the se-
lected set, we can ensure to find some feasible and good enough designs
with high probability. Before we discuss how to do this incorporation in
details, which will be introduced in Section 1, we would like to make some
comments.

Recall that the spirit of OO is to ask for good enough with high prob-
ability instead of best for sure. The spirit of the above COO is similar: To
accommodate the constraints, we ask for feasibility with high probability
instead of feasible for sure. It is interesting to note that the classification of

Constrained Ordinal Optimization 115

“feasible vs. infeasible” is ordinal. All the advantages of OO apply here,
i.e., it can be reasonably easy to obtain a group of truly feasible designs
with high probability instead of one for sure. In addition, “imperfectness”
of the feasibility model is also in tune with the “goal softening” tenet. Al-
though individual determination of feasibility using a crude model may
give erroneous results, the model could be very robust with respect to a
group of candidates overall. As in the case of the regular OO, | SG ∩ | can
be good even in the presence of large “noise.” The above approach is an
evolution of the OO methodology amenable to constrained optimization
problems with a “complete ordinal” concept. The tenets of “goal soften-
ing” and “ordinal comparison” are reflected by the integration of “imper-
fect feasibility model” and “feasibility determination.”

1 Determination of selected set in COO

As discussed in Chapter III, the effectiveness of the OO technique depends,
in part, on the selection rule that we use to select the subset S. The simplest
selection rule that requires no performance evaluation or estimate is Blind
Pick. Analytical results as shown in Chapter II are available for Blind Pick
without constraints as in Eq. (5.2),

min(,)

Prob
g s

i k

g N g
i s i

G S k
N
s

=

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎡ ≥ ⎤ =⎣ ⎦ ⎛ ⎞

⎜ ⎟
⎝ ⎠

∑∩ . (5.2)

Here we will derive analytical results for the constrained cases. When we
have constraints, since there are infeasible designs in Θ, if we still use
Blind Pick, we will have to select more designs to guarantee the same level
of alignment. It is also reasonable to see that the required size of the se-
lected set decreases as the predication accuracy increases.

1.1 Blind pick with an imperfect feasibility model

In engineering practice, we usually have an imperfect feasibility model,
which is based on rules, experiences, heuristics, and some analytical methods
that can be easily checked. Such a model can make prediction about the
feasibility of a design choice θ with little or no computation. However, its

116 Chapter V

prediction will sometimes be faulty. Suppose we first use this feasibility
model to obtain N (say 1000) designs from the entire design space Θ as fol-
lows. We uniformly sample Θ and test the feasibility with our feasibility
model, then accept designs predicted as feasible and reject designs predicted
as infeasible. We denote such set of designs as ˆ

fΘ . Then we apply BP
within ˆ

fΘ to select a subset Sf. We want to find some truly good enough
and feasible deigns of Θ. The rationale here is as follows: when the set of
predicted feasible designs ˆ

fΘ f

the design space is reasonably high (say no less than 10% of the entire de-
sign space)1, and the feasibility model has a reasonable accuracy (with

some truly good enough and feasible designs of Θ contained in ˆ
fΘ . We

call this method Blind Pick with a (imperfect) Feasibility Model (BPFM).
In order to quantify the alignment probability, we denote the set of top-

100 × αg% truly feasible designs in ˆ
fΘ as G, the good enough set. Sup-

pose there are Nf truly feasible designs in the N predicted feasible designs2.
Then the size of the good enough set g = Nf αg. We use Pe1 and Pe2 to meas-
ure the accuracy of a feasibility model, i.e., Pe1 denotes the probability that
a truly feasible design is predicted as infeasible, also known as the type-I
error; and Pe2 denotes the probability that a truly infeasible design is pre-
dicted as feasible, also known as the type-II error. To simplify the discus-
sion, let us assume Pe1 = Pe2 first, remove this constraint, and discuss the
more general case later. Let Pf = 1-Pe1, then Pf is the prediction accuracy of
the feasibility model, that is, the probability that a design is predicted as
feasible if it is truly feasible and also the probability that a design is pre-
dicted as infeasible if it is truly infeasible. So, for each θ design in ˆ

fΘ ,
which is predicted as feasible, the probability that it is truly feasible can be
obtained via Bayesian formula

1 When the density of feasible designs is much less than 10%, we need to im-

prove the value of N or use a good feasibility model so that there are some truly
good enough and feasible designs of Θ contained in ˆ

f
Θ .

2 The selection of N should guarantee Nf is large enough.

probability no less than 0.5 to give correct prediction), there should be

 is large, the density ρ of feasible designs in

Constrained Ordinal Optimization 117

[]
[]

[]
[] []

Prob is feasible is predicted as feasible

Prob is feasible and is predicted as feasible

Prob is predicted as feasible

Prob is feasible Prob is predicted as feasible is feasible

Pro

r θ θ

θ θ
θ

θ θ θ

=

=

=
[]

[]

()()

b is predicted as feasible

Prob is predicted as feasible

 .
1 1

f f

f f

f f f f

P

P
P P

θ
ρ

θ
ρ

ρ ρ

=

=
+ − −

 (5.3)

Thus, because the feasibility model is usually not perfect (that is Pf <1),
infeasible designs cannot be completely excluded in Sf.

It should be pointed out that although the expected number of feasible
designs in ˆ

fΘ is fN N r= × and the expected number of feasible designs
in Sf is fS r× , the results of the regular unconstrained OO method cannot
be directly applied in this case with fs S r= × .

Exercise 5.1: Explain intuitively why?

We shall now derive the AP of the selected subset Sf by averaging all

possible numbers of feasible designs in Sf.
Suppose the size of selected subset Sf is sf. The number of infeasible

designs in the selected subset Sf, denoted as tf, follows approximately a
Binomial distribution, i.e., tf ~ b(sf, r), where the size of selected subset sf
is the size of the Bernoulli trials and r is the probability that a selected de-
sign in Sf is feasible. The probability that there are tf = j infeasible designs
in selected subset Sf, is:

() ()Prob 1fs j jf
f

s
t j r r

j
−⎛ ⎞

⎡ ⎤= = −⎜ ⎟⎣ ⎦
⎝ ⎠

. (5.4)

Given that there are tf infeasible designs in the selected subset Sf, the con-
ditional AP that there are exact k good enough designs in Sf is given by:

Prob

f

f f
f f

f

f f

N gg
s t kk

G S k t
N

s t

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠⎡ ⎤= =⎣ ⎦ ⎛ ⎞
⎜ ⎟−⎝ ⎠

∩ . (5.5)

118 Chapter V

Fig. 5.2. Illustration of Eq. (5.5)

Eq. (5.5) is a direct analog of Eq. (5.2), which was first derived in Eq.
(2.37). Please see also Fig. 5.2 for illustration.

Since if there are k feasible and good enough designs in Sf, the number
of infeasible designs in Sf could be any number from 0 to min(sf – k, N-Nf),
based on the Total-Probability Theorem, we have the formula for the AP
that there are at least k good enough designs in the selected set Sf as

()()
() ()

COO

min , min ,

0

AP Prob=

1 .
f f f

f

f

f
g s s i N N

s jf f j

i k j f

f

G S k

N gg
s j ii s

r r
N j

s j

− −
−

= =

⎡ ⎤≥⎣ ⎦
−⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟ − − ⎛ ⎞⎝ ⎠⎝ ⎠= −⎜ ⎟⎛ ⎞ ⎝ ⎠
⎜ ⎟−⎝ ⎠

∑ ∑

∩

(5.6)

If we do not have any knowledge about the feasibility of the designs,

each of them is equally likely to be feasible or infeasible. This corresponds
to the special case where Pf = 0.5 and thus r＝ ρf in Eq. (5.6). It is also in-
teresting to note that, if we have perfect knowledge about the feasibility of
each design, by sampling only truly feasible designs, we can obtain an ˆ

fΘ
containing N feasible designs. This corresponds to the special case Pf =1
and thus r = 1 in Eq. (5.6). Direct calculation shows that Eq. (5.6) reduces
to Eq. (5.2) if Pf =1 and thus r =1.

ˆ
fΘ ˆ

fΘ
ˆ

fΘ
ˆ

fΘ

Constrained Ordinal Optimization 119

1.2 Impact of the quality of the feasibility model on BPFM

The value of BPFM lies in the fact that, by only very crude feasibility
model, we can bring an impressive improvement to the efficiency of COO.
First, we will show that APCOO is an increasing function of Pf, the accuracy
of feasibility model and also an increasing function of ρ, the density of
feasible designs in the entire design space. We show this result through

COO is an increasing function of
r, and in the second step, we show that r is an increasing function of Pf and

 f
ˆ

f is Nr,
f g

f f g g

ˆ
f , all other parameters

remaining the same (i.e., fixing N and sf), the AP Prob[|G∩Sf|≥k] increases.
Now, we show that r is an increasing function of Pf and ρ f. Fix ρ f, follow-
ing Eq. (5.3), we have that

()

()()()2

1
0

1 1

f f

f f f f f

dr
dP P P

ρ ρ

ρ ρ

−
= >

+ − −
, for all 0< ρ f <1.

f

f

f f f

Then, we will show some numerical results. Suppose the size of design
space ˆ

fΘ is 1000. The number of feasible designs is N f = 500. The good
enough set G is the top 50 feasible designs (i.e., the top-10% feasible de-
signs in ˆ

fΘ). The AP versus the size of selected subset, sf is plotted in Fig.
5.3. As expected, for the constrained problem, the BPFM method with a
feasibility model Pf >0.5 is better than that without a feasibility model (i.e.,
Pf = 0.50, which is identical to directly using BP), because, for the same
size of the selected subset, the AP obtained for Pf >0.50 is larger than that
obtained for Pf = 0.50. It is also observed that the more accurate the feasi-
bility model (larger Pf) is, the higher AP we can achieve.

g increases. Since we are doing blind picking in Θ

truly feasible, the number of truly feasible designs on average in Θ

This shows that r is an increasing function of P . Similarly we can

i.e., N = Nr. Since the good enough set G is defined as the top-100 × α %
of these N truly feasible designs, g = N α =Nα r. Thus, when r increases,

show r is an increasing function of ρ . In total, we show that the AP

ρ . Since r represents the probability that an observed feasible design is

two steps. In the first step, we show that AP

Prob[|G∩S |≥k] is an increasing function of P and ρ , which is also intui-
tively reasonable.

120 Chapter V

Fig. 5.3. AP versus the subset selection size of BP and BPFM

The sizes of selected subsets obtained by different Pf values are illus-
trated in Table 5.1. It is shown that, for the same required AP, a larger Pf
requires a smaller selected subset, and thus is more efficient. In other
words, a smaller selected subset is required for a more accurate feasibility
model, for a given level of alignment probability.

Table 5.1. Sizes of the selected subsets

Required AP Pf = 0.50 Pf = 0.70 Pf = 0.90 Pf = 1.00

≥0.50 14 10 8 7
≥0.60 18 13 10 9
≥0.70 24 17 13 12
≥0.80 31 22 17 16
≥0.90 44 32 24 22
≥0.95 57 41 31 28
≥0.99 87 61 47 42

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of the selected subset

A
lig

nm
en

t P
ro

ba
bi

lit
y

BPFM(Pf=0.50)

AP = 0.95

BPFM(Pf=0.70)
BPFM(Pf=0.90)
BPFM(Pf=1.00)

Constrained Ordinal Optimization 121

So far we assume that Pe1＝Pe2 to simplify the notation. Now, we show
how to remove this constraint and consider the more general case where r
is a function of Pe1 and Pe2. Following a similar analysis to Eq. (5.3), we
have

()
() ()

1

1 2

1
1 1

f e

f e f e

P
r

P P
ρ

ρ ρ
−

=
− + −

. (5.7)

Giving a feasibility model, once we estimate the accuracy of the feasi-

bility model, i.e., Pe1 and Pe2, we can use Eq. (5.7) to calculate r and then
use Eq. (5.6) to quantify the APCOO. We now show when the accuracy of
the feasibility model increases, i.e., Pe1 and Pe2 decreases, r increases, and
then following the analysis similar to the beginning of this subsection, we
can see that AP also increases. Fix Pe2 and ρf, we have

()

() ()()
2

2
1 1 2

1
0

1 1

f f e

e f e f e

Pdr
dP P P

ρ ρ

ρ ρ

−
= − <

− + −
.

Similarly, fix Pe1 and ρf, we have

()()
() ()()

1
2

2 1 2

1 1
0

1 1

f f e

e f e f e

Pdr
dP P P

ρ ρ

ρ ρ

− −
= − <

− + −
.

And fix Pe1 and Pe2, we have

()
() ()()

1 2
2

1 2

1
0

1 1
e e

f f e f e

P Pdr
d P Pρ ρ ρ

−
= >

− + −
.

This means r is a decreasing function of Pe1 and Pe2, and an increasing
function of ρf. The previous discussion on Pe1 = Pe2 = 1-Pf is a special case.

Suppose we are given a feasibility model which predicts the feasibility
of a design accurately with probability Pf. We summarize the application
procedure of COO using this feasibility model as follows.

122 Chapter V

Box 5.1. COO approach

Step 1. Find a feasibility model and randomly sample N predicted feasi-
ble designs.

Step 2. Specify g and k.
Step 3. Estimate ρf, the density of feasible designs in the entire design

space and estimate the accuracy of the feasibility model, i.e., the
Pe1 and Pe2, and calculate r through Eq. (5.7).

Step 4. Apply the BPFM in Eq. (5.6) to determine the size of the selec-
ted set.

Step 5. Randomly select Sf designs from the N designs.
Step 6. The COO theory ensures that there are no less than k good

enough feasible designs in the selected subset with high prob-
ability.

Exercise 5.2: How can we determine the size of the selected set if we
use Horse Race instead of Blind Pick in Step 4 above within the set of pre-
dicted feasible designs?

2 Example: Optimization with an imperfect feasibility
model

In this section, we use a simple example to evaluate the effects of COO
under different observation noise. As expected, since we are developing
blind pick based COO, the alignment level of selected set should be insen-
sitive to the level of noise in observation. Let us consider the following
constrained optimization problem. Each design θ is an integer between 1
and 1000, i.e., Θ={1,2,…1000}. The objective function J(θ) = θ. The con-
straint is that θ must be even numbers. This problem can then be mathe-
matically formulated as

{ }
()

()
1,2,...1000
min

s.t. mod , 2 0

J
θ

θ θ

θ
∈

=

=
 (5.8)

ˆ() ()J Jθ θ ξ≡ + .

contains i.i.d. uniform distribution U(0,a) such that our observation is
where mod(• •) is the modulo operator. Suppose also observation noise ξ ,

Constrained Ordinal Optimization 123

The presence of noise makes the optimization problem non-trivial to solve
even with perfect knowledge about the feasibility of each design.

Suppose we also have an imperfect feasibility model, which gives the
correct feasibility prediction with probability Pf. In other words, when the
design θ is an even number (i.e., a truly feasible design), the feasibility
model predicts the design as feasible with probability Pf (thus predicts the
design as infeasible with probability Pe1 = 1-Pf); when the design θ is an
odd number (i.e., a truly infeasible design), the feasibility model predicts
the design as infeasible with probability Pf (thus predicts the design as fea-
sible with probability Pe2 = 1-Pf). We reasonably assume Pf ≥ 0.5 (Other-
wise we simply reverse the prediction given by this feasibility model, and
can then obtain a “reasonable” feasibility model).

Suppose we want to find at least one of the truly top 50 feasible designs
with high probability, i.e., g = 50, k = 1 with G = {2,4,6,…100}. We simu-
late the BPFM method with Pf = 0.95. Then Pe1 = Pe2 = 0.05. Notice for this
example, half of the designs are feasible, so we have ρ f = 0.5. By Eq. (5.7),
we calculate that r = 0.95. The size of the selected subset, sf, then can be
calculated based on Eq. (5.6) with the different required AP (0.50, 0.70,
and 0.95). The selected subsets Sf for different AP are shown in Table 5.2.
It turns out that the BPFM method finds at least one of the good enough
feasible designs in all the instances as shown.

Table 5.2. A random examination of BPFM (Pf = 0.95)

Required AP sf Selected subset Sf Alignment
level

≥0.50 7 {808, 524, 32, 850, 240, 498, 878} 1
≥0.70 12 {714, 284, 982, 614, 644, 972, 238, 820,

986, 176, 272, 30}
1

≥0.90 23 {350, 490, 760, 147, 236, 483, 88, 130,
260, 456, 24, 508, 997, 178, 228, 564, 842,
976, 446, 660, 330, 952, 87}

2

≥0.95 30 {842, 812, 716, 682, 980, 8, 510, 272, 996,
588, 410, 718, 154, 427, 964, 806, 558,
502, 414, 724, 998, 265, 384, 772, 262,
682, 572, 990, 564, 626}

1

Note that the good results in Table 5.2 are not coincidences since the
BPFM method blindly picks designs from the space that are predicted as
feasible by the feasibility model without relying on accurate estimation on
J(θ). So, we can expect that the guarantee provided by the BPFM method
holds no matter how large the noise is.

124 Chapter V

3 Conclusion

Optimization of DEDS with complicated stochastic constraints is generally
very difficult and simulation is usually the only way available. The results
on unconstrained OO in Chapter II cannot be applied directly since many
infeasible designs cannot be excluded without costly simulation. The COO
approach with feasibility model presented in this chapter is effective to
solve this long-standing problem. According to No-Free-lunch Theorem
(Ho et al. 2003), no algorithm can do better on the average than blind
search without structural information. The feasibility model in this case
can be regarded as the “structural information.” As a result, COO provides
a more efficient approach for solving constrained optimization problems,
since the size of the selected subset is smaller than that when directly ap-
plying the unconstrained OO approach.

The algorithm for subset selection and the procedure of Blind Pick with
Feasibility Model (BPFM) for COO are derived. Numerical testing shows
that, by using COO method, to meet the same required alignment probabil-
ity, Blind Pick with Feasibility Model is more efficient than pure Blind
Pick. The testing results also show that the method is very robust, even
when the feasibility model is not very accurate. Furthermore, the COO
method presented in this chapter is a general approach. Any crude feasibil-
ity model even with large noise is compatible and can work well with the
approach. In Chapter VIII Section 3, we apply COO with a feasibility
model based on the rough set theory to a real world remanufacturing
system, and yields promising results. Similarly, the application of this
approach of COO is not restricted to the BP selection method. Other se-
lection methods such as the Horse Race method can also be used in con-
nection with the crude feasibility model. The modifications to the AP of
course must be carried out similar to that of Eq. (5.6) except via simula-
tion. A quick-and-dirty first approximation is to simply modify the uncon-
strained UAP by r.

Chapter VI Memory Limited Strategy Optimization

Let us start with a big picture to describe the relationship between this
chapter and the previous chapters. We focus on how to solve a simulation-
based strategy optimization problem1. Conceptually, we need three compo-
nents: a program which implements a strategy γ, a performance evaluation
technique to calculate J(γ) when is applied to the system, and an optimi-
zation algorithm to find the optimal or good enough strategy. The relation-
ship among these three components is shown in Fig. 6.1.

Fig. 6.1. A big picture for simulation-based strategy optimization

Note that the optimization algorithm only requires the evaluation tech-
nique to return the performance of a strategy, but does not care about how
this evaluation is obtained; the evaluation technique only requires the
program to return the corresponding action of a strategy when the infor-
mation is the input. When implementation is considered, we have to make

1 A strategy is simply a mapping from input information to output decision or

control. Strategy is also known as decision rule, if-then table, fuzzy logic, learning
and adaptation algorithm, and host of other names. However, nothing can be more
general than the definition of a function that maps all available information into
decision or action.

γ

126 Chapter VI

sure the strategy is simple enough so that it can be stored within given
limited memory, in other words, we require a strategy is simple enough to
be implementable. Furthermore, when ordinal optimization is considered,
one challenge will be sampling of design space. Sampling is easy when we
have a natural representation of a design as a number or a vector as we
have done for previous chapters. In the context of strategy optimization,
representing all implementable strategies so that sampling can be taken
seems nontrivial. The focus of this chapter is to provide a systematic
representation of strategy space so that the optimization algorithms devel-
oped earlier can be applied.

1 Motivation (the need to find good enough and simple
strategies)

It can be argued that the Holy Grail of control theory is the determination
of the optimal feedback control law or simply the feedback control law.
This is understandable, given the huge success of the Linear-Quadratic-
Gaussian (LQG) theory and applications in the past half-century. It is not
an exaggeration to say that the entire aerospace industry from the Apollo
moon landing to the latest GPS owes a debt to this control-theoretic deve-
lopment in the late 1950s and early 1960s. As a result, the curse of dimen-
sionality notwithstanding, it remains an idealized goal for all problem
solvers to find the optimal control law for more general dynamic systems.
Similar statements can be made for the subject of decision theory, adapta-
tion and learning, etc. We continue to hope that, with each advancement in
computer hardware and mathematical theory; we will move one step closer
to this ultimate goal. Efforts such as feedback linearization and multimode
adaptive control (Kokotovic 1992; Chen and Narendra 2001) can be viewed
as such successful attempts.

The theme of this chapter is to argue that this idealized goal of control
theory is somewhat misplaced. We have been seduced by our early succes-
ses with the LQG theory and its extensions. There is a simple but always
neglected fact that it is extremely difficult to specify and impossible to
implement a general multivariable function even if the function is
known.

Generally speaking, a one variable function is a two-column table; a two-
variable function is then a book of tables; a three-variable function, a
library of books; four-variable, a universe of libraries; and so on. Thus, how
can one store or specify a general arbitrary 100-variable function never
mind implementing it even if the function is God given? No hardware

Memory Limited Strategy Optimization 127

advancement will overcome this fundamental impossibility, even if
mathematical advancements provide the general solution. This is also clear
from the following simple calculation. Suppose there are n-bit input
information and m-bit output action for a strategy. To describe such a
strategy as a lookup table, we need to store all the (information, action)
pairs. There are 2n such pairs in total, and we need (n + m) bits to store
each pair. Thus we need (n + m)2n bits to store a strategy. When n = 100,
m = 1, this number is 101 × 2100bits ≈ 2107bits = 274 Gega Bytes (GB), which
exceeds the memory space of any digital computer known nowadays or the
foreseeable future. Exponential growth is one law that cannot be over-
come in general. Our earlier successes with the Linear-Quadratic-Guassian
control theory and its extensions are enabled by the fact that the functions
involved have very a special form, namely, they decompose into sums or
products of functions of single variable or low dimensions. As we move
from the control of continuous variable dynamic systems to discrete event
systems or the more complex human-made systems discussed in this book,
there is no prior reason to expect that the optimal control law for such
system will have the convenient additive or multiplicative form. Even if in
the unlikely scenario that we are lucky to have such simple functional form
for the control law of the systems under study, our efforts should be to
concentrate on searches for actual implementation of such systems, as
oppose to finding the more general form of control law.

In this light, it is not surprising that “Divide and Conquer” or
“Hierarchy” is a time-tested method that has successfully evolved over
human history to tackle many complex problems. It is the only known
antidote to exponential growth. Furthermore, by breaking down a large pro-
blem into ever-smaller problems, many useful tools that do not scale up
well can be used on these smaller problems. Decomposing a multivariable
function into a weighted sum of one-variable functions is a simple example
of this principle. In addition, Nature has also appreciated this fundamental
difficulty of multivariable dependence. There are many examples of adapta-
tion, using simple strategies based on local information and neighboring
interactions to achieve successful global results abound (Think globally
but act locally), such as ants, bees, germs, and viruses (Vertosick 2002).
Recent research on the No-Free-Lunch theorem (Ho and Pepyne 2004)
also points to the importance and feasibility of “simple” control laws for
complex systems. And as we venture into the sociological and psycho-
logical realm, there are even more evidences showing that it only leads to
unhappiness and non-optimality to strive for the “best” (Schwartz 2004).

The purpose of this chapter is to discuss systematic and computationally
feasible ways to find “good enough” AND “simple” strategies. Since we
will focus on simulation-based strategy optimization, many difficulties

128 Chapter VI

mentioned in earlier chapters remain, such as the time-consuming perfor-
mance evaluation and the large design space. In addition we have one
more difficulty, that is the constraint on the limited memory space to store
strategies.

2 Good enough simple strategy search based on OO

2.1 Building crude model

It is important to understand that lookup table or brute force storage and
representation is usually not an efficient way to implement a strategy and
is infeasible and impractical for almost all large scale problems. Recall
that a strategy is a mapping from the information space to the action
space. In other words, a strategy determines what to do when specific
information is obtained. As long as we find a clever way (such as using a
program) to generate the output for any given input, we can represent the
strategy. The size of memory we use may be much less than the lookup
table. To identify simple strategies (or strategies that need less memory
than a certain given limit), we need to introduce the concept of descriptive
complexity (also known as the Kolmogorov complexity (KC) (Li and
Vitányi 1997)) which mathematically quantifies the minimal memory
space that is needed to store a function. A. N. Kolmogorov developed this
concept in 1965 (Kolmogorov 1965). The Kolmogorov complexity of a
binary string s is defined as the length of the shortest program for a given
universal Turing machine U (explanation follows) to output the string, i.e.,

() (){ }min :U p UC s p p sψ= = ,

whereψU(p) represents the output of the universal Turing machine U,
when program p is executed on U. Roughly speaking, a universal Turing
machine (UTM) is a mathematical model of the computers we are using
nowadays, which consists of the hardware (e.g., the hard drive and the
memory chip to store the program, and equipment to read from and write
on the hard drive and the memory chip) and the software (including low
level system software such as operating systems, e.g., Microsoft Windows
and Mac OS, and application software p developed for a specific task).
Obviously KC depends on which UTM is used. This is reasonable and
practical when we use computers to search for a good simple strategy, the
hardware and the software in the computer are already given, so the U is

Memory Limited Strategy Optimization 129

fixed. In the following discussion, we will omit the subscript U, when
there is no confusion. Giving the concept of KC, in principle, we can judge
whether the KC of a strategy is within the given memory limit. Using the
terminology of OO, KC is the true model to determine whether a strategy
is simple. Unfortunately, it is a basic result in the theory of Kolmogorov
complexity that the KC cannot be computed by any computers precisely in
general (Theorem 2.3.2, p. 121, (Li and Vitányi 1997)). From an engineer-
ing viewpoint, this means that it is extremely time-consuming to find out
the true Kolmogorov performance of the proposed strategy, if it is not
impossible. Thus, the methodology of OO naturally leads us to consider
the usage of approximation, which is computationally fast to replace it2,3,
and to sample simple strategies. In the rest of this chapter, we will formu-
late this idea of simple strategy generation based on estimated descriptive
complexity, which can then be utilized even if the user has little knowledge
or experience of what a simple strategy might look like. This is in contrast to
existing efforts where no quantification on the descriptive complexity for the
strategies is explored. Examples include threshold type of strategies, Neuro-
dynamic programming (NDP) (Bertsekas and Tsitsiklis 1996) which uses
neural networks to parameterize strategy space, State aggregation (Ren and
Krogh 2002), time aggregation (Cao et al. 2002), action aggregation (Xia
et al. 2004), and event-based optimization (Cao 2005).

The crude model of the KC for a strategy we would like to introduce
here is the size of a program based on the reduced ordered binary decision
diagram (ROBDD, or simply OBDD) representation for the strategy which
will be introduced below. ROBDD regards each strategy as a (high-
dimensional) Boolean function. (For simplicity we let the output decision
variable be binary. This can be generalized in obvious ways. See Exercises
6.1 and 6.2 below.) The observation behind this is that reduced ordered
binary decision diagrams (ROBDDs) usually supply a succinct description
for a Boolean function (Andersen 1997). Let us first describe how
ROBDD can be obtained for a Boolean function and furthermore for a
strategy through an example.

2 In the same spirit of OO with constraints in Chapter V but different in that we

are using an upper bound estimation for memory used for describing a strategy, so
we never include infeasible strategies in our selected set, nor do we know when a
strategy is not estimated as simple, what is the probability for it to be truly simple.

3It should be noted that although KC in general cannot be calculated by
computers, there are extensions of KC that can be calculated by computers, such
as the Levin complexity (Levin 1973, 1984), which considers both the length of
the program and the time for the program to be executed. It is still an open ques-
tion how to combine Levin complexity with ordinal optimization to find simple
and good enough strategies.

130 Chapter VI

x1

x2x2

x1

x2 x2

Fig. 6.2. Reduction process from BDD to OBDD for the function f(x1,x2) =
(x1∧x2)∨(¬x1∧x2)

In Fig. 6.2(a), we use a BDD (Binary Decision Diagram) to describe the
Boolean function f(x1,x2) = (x1∧x2)∨(¬x1∧x2), where ∧ is AND, ∨ is OR,
and ¬ is NOT. To construct a BDD for f, we start from a root node (circle)
representing a Boolean variable (x1 for this example). We connect to this
node a dotted line and a solid line representing “if the variable takes value
“0” or “1”, respectively. For each branch (dotted line or solid line), we add
a new node (circle) by choosing a new Boolean variable (x2 for this
example). We keep this branching procedure until all Boolean variables
have been added and two lines added. Note that any path from the root
node to a latest added node is corresponding to an assignment of 0 or 1 to
all Boolean variables. For example, in Fig. 6.2(a), the path in which both
node x1 and x2 take the dotted branch is corresponding to the assignment
(x1, x2) = (0,0). As the last step to construct a BDD, we add at the end of
each path a box labeled by the evaluation of f under the assignment corres-
ponding to the path. For the assignment (x1, x2) = (0,0), we attach a box
labeled “0” because f(0,0) = 0. Before doing any reduction, BDD will have
an exponentially (in n) large number of nodes. One way to reduce BDD is
to introduce order when adding Boolean variables. If, in a BDD, all paths
choose the same order when adding new Boolean variables, we get an
OBDD, where the first “O” stands for “ordered”. Fig. 6.2(a) is in fact an
OBDD.

OBDDs allow us to find simpler representation for Boolean functions.
We can combine the redundant nodes, i.e., the nodes with identical sub-
graphs. For example, Fig. 6.2(b) gives a more compact OBDD than Fig.
6.2(a). Obviously, if both of the two lines connected to a node are connec-
ted to the same successor on the other end (e.g., the lines connected to
node x1 in Fig. 6.2(b)), this means the input value of this Boolean variable
does not affect the output of the function. So this node can be removed to

Memory Limited Strategy Optimization 131

make the OBDD more compact. The OBDD in Fig. 6.2(b) can be further
simplified to the one in Fig. 6.2(c), where node x1 is removed. By elimi-
nating redundancies in an OBDD, a unique OBDD can be obtained which
is called ROBDD4 for the Boolean function. In the rest, when we mention
an OBDD of a strategy, we will always refer to the ROBDD for the
strategy.

Exercise 6.1: How can we encode a strategy from a finite information

space to a finite action space with a high dimensional Boolean function?

The readers may consult Chapter VIII. 4 for such an example.

more than one-bit outputs, say two bits? In other words, there are totally
four actions, 00, 01, 10, and 11.

Exercise 6.3: Currently there is no randomness in OBDDs. Is it possible

to introduce any randomness in OBDDs? In other words, instead of deter-
ministically selecting either the dotted line or the solid line and thus deter-
ministically outputting 0 or 1 finally, can we generalize the OBDD to
randomly output 0 or 1? How? If possible, please show the example when
the OBDD outputs two-bit actions. What is the advantage of these random
OBDDs comparing with the deterministic OBDDs?

Once we have an OBDD for a Boolean function describing a strategy,

we can follow a natural way to convert the OBDD to a program that can
represent the strategy. For a given input to the strategy, the purpose of the
program is to generate the output (either 0 or 1 if the strategy has only two
actions to choose) for the strategy. We start from the top node of the OBDD,
considering which line to choose (and thus which successor to go to)
according to the input values of the Boolean variables until arriving at the
bottom box (either 0 box or 1 box), and then output the value in the box.
This procedure can be described by a sequence of rules. Each rule looks
like

(state, input, action, next state),

where state represents which node the program is currently at, input
represents the input value of the Boolean variable associated with that
node, action describes what the program is going to do (such as to choose

4 The ROBDD depends on the order of variables.

Exercise 6.2: How can we generalize the above OBDD to represent

132 Chapter VI

either of the lines if the program is staying at a node; or to output either
“0” or “1”, if the program is at one of the bottom boxes; or simply to end
the program if the output is already done), and the next state represents the
node that the program is going to (either the low- or the high-successor of
the current node, if the program is now staying at a node; or an END state
which describes the end of the program, if the program is now staying at
one of the bottom boxes.). For example, the rules to describe the OBDD in
Fig. 6.2(c) are:

 (node x2, 0, choose the dotted line, box 0),
 (node x2, 1, choose the solid line, box 1),
 (box 0, ∋, output 0, END),
 (box 1, ∋, output 1, END),

where ∋ means that no input is needed.

Based on this program representation of a strategy, we can estimate its
KC as () 2

ˆ 4(2 2) log (b+3+4)C bγ = + ⎡ ⎤⎢ ⎥ by calculating number of bits to
implement the strategy, where b is the number of nodes (excluding the
bottom boxes) of the OBDD and ⎡a⎤ represents the minimal integer no less
than a. In fact, we have the following observations. In general, there are 2
rules associated with each of the nodes (excluding the bottom boxes), and
there is a rule associated with each bottom box. Then the number of rules
is r = 2b + 2. To describe each such rule, we need to encode each of the four
elements in a rule by binary sequences. Since we need to distinguish all the
b nodes, 2 bottom boxes, the END state, and the 4 possible actions to take
(choose either the dotted line or the solid line, output either 0 or 1), we need
d = ⎡log2(b+3+4)⎤ bits to describe each element. Thus, in total, we need
4rd bits to implement an OBDD. Note that 4rd is only an estimate on the
minimal number of bits to describe an OBDD. First, different order in
Boolean variables may lead to OBDD with different size. Unfortunately it
is too time-consuming to find the simplest OBDD to describe a strategy in
general (which has been proven to be NP-hard (Bollig and Wegener
1996)). Second, there may be different requirements on the rules in
different computer systems. For example, some computer systems may
allow us to encode four elements separately, which means the computer
knows which one of the four elements it is reading, then we can further
save the number of bits to represent a rule. In some other computer sys-
tems, the value of r and d are required to be clearly explained to the computer.
r and d need to be encoded in specific ways to ensure the computer under-
stands them. Considering the different requirements in different computer
systems, we may have a more detailed and more specific estimate of the

Memory Limited Strategy Optimization 133

In summary, to simplify the discussion, we use ()Ĉ γ to represent the
number of bits given by whatever approximation. The users are free to use
either ()ˆ 4C rdγ = or any other problem-specific estimates.

Exercise 6.4: How can we modify ()ˆ 4C rdγ = when there are m-bit

outputs?

2.2 Random sampling in the design space of simple strategies

Once we have a way to estimate the descriptive complexity (KC) for a
strategy as above, to take advantage of OO in searching a small set of
strategies that contains given number of good enough simple strategies
with high probability, we have to find a way to do random sampling in the
set of strategies describable within the given memory limit5. Our idea is to
sample only the estimated simple strategies. More specifically, we randomly
generate OBDDs so that the estimated number of bits to describe this
OBDD does not exceed the given memory space C0, i.e., () 0Ĉ Cγ ≤ . The
strategy described by this OBDD is by definition an estimated simple
strategy6. By sampling these OBDDs, we are sampling simple strategies.
One question of this is, as we explained earlier, there might be several
OBDDs representing the same strategy, uniformly sampling the OBDDs

5 Note in general, it is impossible to enumerate all simple strategies since the

total number of simple strategies is still large.
6 Since we are using estimation, some truly simple strategies may be excluded.

Some readers might be curious to know how many true simple strategies may be
excluded. Honestly, this is a difficult question. One reason is that this difference
depends on which UTM is used, i.e., the hardware and the software in the
computer that we use to do the optimization. Although the difference between
the KC of a given string s in different UTM can be bounded by a constant, which
is independent from s and only depends on the two UTMs (Li and Vitányi 1997),
this constant might be large. This means the same estimate of KC might exclude
different numbers of true simple strategies when different UTMs are used.
However, how to choose the UTM, i.e., which software or hardware to use, is also
an optimization problem, which is probably not easy. It is still an open question to
study how many true simple strategies are excluded by a given estimate of KC.
Thus, ultimately we must still let the end result justify our approach. See Chapter
VIII for an example.

number of bits to represent a strategy . Examples can be found in (Jia
et al. 2006b).

γ

134 Chapter VI

might not mean uniformly sampling the simple strategies. After
introducing some restrictions, say we fix the order of the variables from
the top node to the bottom box, and combine all the redundant nodes, the
sampling redundancy can be sufficiently reduced. To distinguish from
the usual OBDD, we call such an OBDD a partially reduced OBDD
(PROBDD).

The definition of PROBDD ensures the uniqueness of the nodes in each
level (the top node is in level 1 and there are at most n levels), which
allows us to say: no two PROBDDs with the same number of levels repre-
sent the same Boolean function. Astute reader might notice that although
n-level PROBDDs can represent all the 22

n

 strategies using n-bit
information, some strategies that do not use all the n bit information can be
represented by simpler PROBDDs. However, since there are 22

i

 different
i-level PROBDDs, and all the Boolean functions are represented by an
i-level PROBDD (where the order of the variables is x1…xi) can be
represented by exactly an (i+1)-level PROBDD (where the order of the
variables is x1…xixi+1), among all the 22

n

 strategies using n-bit
information, 22 i strategies can be represented by i-level PROBDDs, i =
1,2,…n. This result brings us two advantages. First, suppose we start from
1-level PROBDDs and incrementally increase the number of levels, until
we generate all the 22

n

 strategies. We generate at most 2
1
2

in

i=∑
PROBDDs in total. The redundancy is

11 2 2 2

1
2 2 2

i n nn

i

−− −
=

≈∑ ,

which reduces to zero faster than an exponent when n increases. This
shows the high efficiency of the aforementioned sampling method of
simple strategies. The redundancy is ignorable. As an example, for n =
1,2,3, and 4, we test the redundancy numerically and show in Table 6.1,
where the Redundancy = (Total PROBDD # – Total Strategy #)/Total
Strategy # × 100%. For n = 4, the redundancy has already been very small
(less than 1%). The implication is that, for large n and a given memory
space, it is sufficient to uniformly sample PROBDDs for obtaining
uniform samples from the estimated simple strategy space defined by

(){ }0
ˆ: C Cγ γ ≤ .

Memory Limited Strategy Optimization 135

Table 6.1. The small redundancy of the sampling method of simple strategies (Jia
et al. 2006b) © 2006 IEEE

n Total Strategy # (22
n

) Total PROBDD # Redundancy (%)
1 4 4 0
2 16 18 12.5
3 256 272 6.25
4 65536 65806 0.412

To uniformly sample PROBDDs, we first fix the order of the variables

in all levels of the PROBDD, say x1, x2, …xn. Then we estimate what is the
largest number of nodes that can be stored in the given memory space,
denoted as bmax. We randomly pick an integer b between 0 and bmax, where
0 means that the PROBDD does not use any input information and always
outputs 0 (or 1). Based on b, we then determine the number of the levels in
the PROBDD and the number of nodes in each PROBDD. After that we
randomly determine the type of the connections between the nodes in two
adjacent levels (including the connections between the nodes in the last
level and the bottom boxes), i.e., whether a line between two nodes is
dotted or solid. In this way, we can randomly generate a PROBDD that is
estimated simple.

Recall the big picture in Fig. 6.1. Once the PROBDDs representing
simple strategies are randomly sampled, we remove the constraint on
limited memory space from the original simulation-based strategy optimi-
zation problem. In the OO procedure, this means we have the N sampled
designs from the entire design space now, i.e., ΘN. Then we can use
standard OO to find strategies in ΘN with good enough performances as
described in Chapter II. In this way, we can find simple and good enough
strategies with high probability. We show an example to illustrate this
procedure in details in Section VIII.4.2.

Exercise 6.5: Besides saving the memory space, what are the other

advantages of simple strategies?

3 Conclusion

In summary, this chapter discusses the importance of considering the
constraint of limited memory space when applying computer-based control
and optimization in large scale simulation-based strategy optimization.
This constraint is one of the important reasons why we can only search

136 Chapter VI

within the simple strategies in practice. We use multivariate Boolean
functions to represent a strategy. OBDD is an efficient conceptual way to
represent n-variable Boolean functions. We have developed a method to
systematically explore the n-variable Boolean functions that can be
captured by i-variable (i<n) Boolean functions for i = 1,2,…. This explora-
tion can be easily combined with OO to find a strategy with good enough
performance and i-variable Boolean function representation for an optimi-
zation problem. In Chapter VIII Section 4, we demonstrate this on the well
known Witsenhausen problem and obtain a 40-fold decrease in strategy
complexity with minor (within 5%) degradation of performance.

Chapter VII Additional Extensions of the OO
Methodology

In this chapter we will discuss some other extensions and related issues of
ordinal optimization. First, in Section II.5, we propose to use a random
sample of N (e.g., N =1000) designs as a representative of the entire design
space, and then use the UAP table to determine the selected size such that
there are some truly good enough designs included in the selected set.
When the design space is extremely large, astute readers may ask whether
we can find some truly good enough designs from the entire design space
by looking at only these N designs. Roughly speaking, the answer is posi-
tive for a reasonably large good enough set (say we look for some top-5%
designs of the entire design space). We discuss this issue in Section 1. Sec-
ond, philosophically, OO allows parallel performance evaluation of the
randomly sampled N designs. While a massively parallel computer can be
used for this in an obvious way, the process can also be carried out very
efficiently on a regular non-parallel computer, provided we are willing to
assume some acceptable approximations. The idea is to share some con-
siderable portion of the simulation for structurally similar but parametri-
cally different systems. For more details, please refer to Section 2. Third,
in Chapter II, we assume the observation noise is i.i.d.. In practice, some-
times the observation noises are correlated. Can OO still work in this case?
The answer is again positive. Actually, as will be shown in Section 3, the
correlation among the observation noises seldom hurts and usually helps in
OO, i.e., to require a smaller selected set. Fourth, due to the broad practical
applications, we use a separate section (Section 4) to introduce the optimal
computing budget allocation (OCBA) which serves as a specific selection
rule of OO, and the nested partition (NP) which serves as a possible
framework to do OO iteratively. Fifth, in conventional OO, the good
enough set is defined as the top-n% designs, i.e., based on the ordinal per-
formances. A natural question is whether we can define the good enough
set based on the cardinal performances? Can we apply OO in this case?
Though the answer to these questions are not complete yet, in Section 5,
we try to share some ideas on how to apply OO when the good enough set
is defined based on cardinal values rather than ordinal performances.

138 Chapter VII

Finally in Section 6, we discuss the combination of OO and other optimi-
zation algorithms, such as genetic algorithm, simulated annealing, tabu
search, and Lagrangian relaxation, just to name a few.

1 Extremely large design space

This section is mainly based on the work of S. Y. Lin and Y. C. Ho in (Lin
and Ho 2002). One important contribution of OO is to allow us to use a
crude model to discover some truly good enough designs with high prob-
ability, e.g., Prob[|GΘ∩S|≥k]≥0.95, where GΘ denotes the top-n% designs
in the entire design space Θ. Recall the application procedure introduced in
Chapter II. We first randomly sample a large number of N designs (usually
N = 1000) from the entire design space Θ, and then apply OO to screen out
some observed good designs to cover some truly good enough designs
with high probability. There is an implicit assumption here, i.e., the set of
these N designs (ΘN) is a reasonable representative of the entire design
space. Under this assumption, when we find some truly top-n% designs
of ΘN, it is natural to believe that we also find some truly good enough
designs of the entire design space Θ. Astute readers may realize this as-
sumption might not be true in some cases. In Fig. 7.1 we visualize the dif-
ference between the two good enough sets, where GΘ and GN denote the
truly top-n% designs in Θ and ΘN, respectively. Because these N designs
are randomly sampled, there are chances that NG GΘ⊆ . When this hap-
pens, it is obvious that

Prob ProbN N NG S k G G G S k G GΘ Θ Θ⎡ ∩ ≥ ⊆ ⎤ < ⎡ ∩ ≥ ⊆ ⎤⎣ ⎦ ⎣ ⎦ ,

then the selected set S may not contain some designs in GΘ with high enough
probability. To justify the application of OO in an extremely large design
space, it is inevitable to ask the question: How can we select S such that
some truly good enough designs of the entire design space are contained
with high probability, i.e., Prob[|GΘ∩S|≥k] is high? This is just what we will
answer in this section. Before we go to detailed discussion, let us present the
answer first: As we will show that the two alignment probabilities are very
close to each other, we can treat ΘN with N≥1000 as a reasonable represen-

tative of Θ and apply the UAP table in Section II.5 to determine the selected

Additional Extensions of the OO Methodology 139

Fig. 7.1. It is possible that NG GΘ⊆

size of S, with little concern for ordinary applications1. Practitioners can now
skip the rest of this section and go ahead applying OO with little worry. For
readers interested in this, let us see how the above answer is obtained.

In OO, what we can control is how to select S such that Prob[|GN∩S|≥k]
is high for the given top-n% good enough designs in ΘN. However, some
designs in GN may not rank top-n% in the entire design space Θ. It is im-
portant to understand how many truly good designs GΘ, say top-n% de-
signs in Θ, are covered by S with high probability. For OO to be usable,
this overlap level should be high. This turns out to be true, as will be ex-
plained in detail below.

The basic idea is to show that for a slightly reduced good enough set,
denoted as r

NG , say top-m% designs of ΘN, where m/n=0.7, it is possible
to guarantee r

NG GΘ⊆ with probability near 1. In Fig. 7.2, we illustrate
such a situation. Since m is less than n, the price we have to pay is that the
alignment level between S and GΘ is also less than k. Let us denote it as k′.

1 In US presidential elections with over 100 million voters, one can predict the

outcome based on the exit voting interview with some 1000 typical voters. Intui-
tively, we believe the same idea can be applied to determine good or bad designs
so long as the ratio of |G|/|Θ| is not too small.

140 Chapter VII

Fig. 7.2. It is possible that r
NG GΘ⊆

Now we proceed to find a lower bound for the alignment probability
Prob 'G S kΘ⎡ ∩ ≥ ⎤⎣ ⎦ and show it is high enough for k′ slightly smaller
than k. Let Sk be the set of the truly top-k designs in S then, Sk⊂S. Thus we
have

r r

N N k NΘ Θ
⎡ ⎤⎣ ⎦ ⎣ ⎦ . (7.1)

since the joint event at the right side is only a special case for
{ 'G S kΘ ∩ ≥ } to occur. We can rewrite the right hand of Eq. (7.1) as

Prob

Prob Prob

Prob Prob

Prob

, ',

= ',

=

 ' , .

r r
N N k N

r r
N N k N N

r
N N N

r r
N k N N

G S k G S k G G

G S k G S k G G G S k

G S k G G G S k

G S k G G G S k

Θ

Θ

Θ

Θ

⎡ ⎤∩ ≥ ∩ ≥ ⊆⎣ ⎦
⎡ ⎤⎡ ∩ ≥ ⎤ ∩ ≥ ⊆ ∩ ≥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ∩ ≥ ⎤ ⊆ ∩ ≥⎣ ⎦ ⎣ ⎦

⎡ ⎤× ∩ ≥ ⊆ ∩ ≥⎣ ⎦

 (7.2)

Because the event { }NG S k∩ ≥ has nothing to do with the event
{ }r

NG GΘ⊆ , these two events are independent, i.e.,

Prob ⎡ ∩G S ≥ k '⎤ ≥ G ∩ S ≥ k, G ∩ S ≥ k ',G ⊆ GProb

Additional Extensions of the OO Methodology 141

Prob r r
N N NG G G S k G GΘ Θ⎡ ⎤ ⎡ ⎤⊆ ∩ ≥ = ⊆⎣ ⎦ ⎣ ⎦ . (7.3)

Also the event { }'r

N kG S k∩ ≥ and the event { }r
NG GΘ⊆ are inde-

pendent, so
Prob

Prob

' ,

' .

r r
N k N N

r
N k N

G S k G G G S k

G S k G S k

Θ
⎡ ⎤∩ ≥ ⊆ ∩ ≥⎣ ⎦

⎡ ⎤= ∩ ≥ ∩ ≥⎣ ⎦
 (7.4)

Combining Eqs. (7.1)-(7.4) together, we have

Prob

Prob Prob

Prob

'

' .

r
N N

r
N k N

G S k

G S k G G

G S k G S k

Θ

Θ

⎡ ∩ ≥ ⎤⎣ ⎦
⎡ ⎤≥ ⎡ ∩ ≥ ⎤ ⊆⎣ ⎦ ⎣ ⎦

⎡ ⎤× ∩ ≥ ∩ ≥⎣ ⎦

 (7.5)

The first term in the right hand of Eq. (7.5) is already dealt with by the
UAP table in Section II. 5. We shall show later that both the second and
the third terms are near 1 for reasonable values of m and k′. For the second
term, it is obvious that

1

0

Prob Prob1
r
NG

r
N N

i

G G G i
−

Θ Θ
=

⎡ ⎤⊆ = − ⎡ ∩ Θ = ⎤⎣ ⎦⎣ ⎦ ∑ , (7.6)

where Prob[|GΘ∩ΘN|=i] is the probability that exactly i good enough
designs of the entire design space Θ are contained in the set of N randomly
sampled designs. Because these N designs are assumed to be uniformly
sampled from the entire design space, we have

Prob N

G G
i N i

G i

N

Θ Θ

Θ

⎛ ⎞⎛ Θ − ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎡ ∩ Θ = ⎤ =⎣ ⎦ ⎛ Θ ⎞

⎜ ⎟
⎝ ⎠

, (7.7)

which looks similar to the formula used in the Blind Pick rule in Chapter
II. Since the design space Θ is usually extremely large, say no less than

Prob

142 Chapter VII

108, each time when a design is uniformly sampled from Θ, we approxi-
mately have probability |GΘ|/|Θ| to sample a design inside GΘ, and have
probability 1-|GΘ|/|Θ| to sample a design outside GΘ. In a sequence of N
samples, under the condition that there are exactly i samples from GΘ,

there are
N
i

⎛ ⎞
⎜ ⎟
⎝ ⎠

 possible combinations for these i samples to appear in the

sampling process. So, Eq. (7.7) can be approximated by

Prob 1
i N i

N

N G G
G i

i

−

Θ Θ
Θ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎡ ∩ Θ = ⎤ ≈ × × −⎜ ⎟ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎜ ⎟ ⎜ ⎟Θ Θ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (7.8)

So the second term in the right hand of Eq. (7.5) can be calculated by Eq.
(7.6) and Eq. (7.8). For the third term, researchers have done abundant ex-
periments to study the relationship between the values of k and k′ s.t.
Prob 'r

N k NG S k G S k⎡ ⎤∩ ≥ ∩ ≥⎣ ⎦ is close to 1. For example, when N =
1000, GN and r

NG represent the top-5% and top-3.5% designs in ΘN, re-
spectively (i.e., n = 5, m/n = 0.70), if k and k′ take the values in Table 7.1,
then Prob ' 1r

N k NG S k G S k⎡ ⎤∩ ≥ ∩ ≥ =⎣ ⎦ .

Table 7.1. Relationship between k and k′ for Prob ' 1r
N k NG S k G S k⎡ ⎤∩ ≥ ∩ ≥ =⎣ ⎦

k k′
1 1
2 1
3 2
4 3
5 4
6 4
7 5
8 6
9 7
10 7

Now we can easily calculate the right hand of Eq. (7.5). To get a rough
idea how close the two alignment probabilities Prob[|GΘ∩S|≥k′] and
Prob[|GN∩S|≥k] are, we show one instance as follows. For |Θ| = 108,
N=1000, m/n = 0.70, n = 5, then from Eq. (7.6) and (7.8), we have

Additional Extensions of the OO Methodology 143

Prob r
NG GΘ⎡ ⎤⊆⎣ ⎦ = 0.991. If Prob[|GN∩S|≥k] = 0.95 and the values of k

and k′ are chosen s.t. Prob 'r
N k NG S k G S k⎡ ⎤∩ ≥ ∩ ≥⎣ ⎦ = 1, then Prob

[|GΘ∩S|≥k′]≥0.942. The two probabilities are very close to each other. This
means if we follow the UAP table in Section II.5 to determine the size of
the set S, then we have Prob[|GN∩S|≥k]≥0.95 and Prob[|GΘ∩S|≥k′]≥0.942.
Since all we want in engineering applications is a high probability, the lit-
tle difference between the two alignment probabilities can be ignored.

In summary, we show in this section that N ≥ 1000 is usually a reason-
able representative of the large design space Θ. Practitioners can go ahead
applying the OO introduced in Chapter II to find some good enough de-
signs of the entire design space with little worry. The bottom line is: If we
choose a more restricted definition of GN about 30% less than GΘ, i.e., m/n =

such that Prob[|GΘ∩S|≥k] is high.
On the other hand, we cannot push this line of reasoning too far. If |Θ| is

sufficiently large, say 109, and we require G = top 20. Simple analysis will
show that the probability a uniform sample of N = 1000 will have little
chance of containing a single true top-20 design.

Exercise 7.1: Prove this and by the same analysis discuss how large G
or g/|Θ| must be for the results of this section to be valid.

2 Parallel implementation of OO

Many optimization problems involve search in a multi-dimensional space of
parameters. In a simulation program of such problems, the structure of the
computational instructions does not change when the parameters change. In
the parlance of parallel computation, this is called Single Instruction and
Multiple Data (SIMD) mode. Since OO typically involves the evaluation of
N (e.g., N =1000) estimated performances using a crude model, an efficient
simulation for doing this can be implemented without separately running N
simulations each using a different parameter combination. While a massively
parallel computer can be used for this in an obvious way, we want to show
here that the process can also be carried out on a regular non-parallel com-
puter very efficiently, provided we are willing to assume some acceptable
approximations. The Standard Clock (SC) method that will be introduced
later in this section supplies one such technique. Roughly speaking, SC
allows us to share a considerable portion of the simulation of different

0.70, we can use the UAP table in Section II.5 to predict the size of set S

144 Chapter VII

designs, and thus achieves a speed up of the total simulation time, no mat-
ter if we use a SIMD machine or a regular non-parallel computer.

Philosophically, OO is also different from traditional optimization algo-
rithms which go from point to point. To some extent, this is technologi-
cally dictated by older technology when computer memories are expensive
and limited. Instead, to a first approximation, memories are costless nowa-
days and here we can approach the problem basically in parallel. Starting
from the entire search space of Θ, we sample uniformly N representative
points. Then we select S from N using a crude model with the OO theory
guaranteeing the existence of members of G in S. The spirit is a successive
narrowing down of the search space. Thus, a parallel implementation of
OO is inevitable and natural.

2.1 The concept of the standard clock

The Standard Clock (SC) method (Vakili 1991; Vakili et al. 1992) is an ef-
ficient technique for the simulation of parametrically different but structur-
ally similar (PDSS) DEDS. In SC there is no primary sample path. Events
for all experiments/simulations are derived from a global event stream.
The basic ideas of SC are quite different from traditional approaches, say
the Event-Scheduling Simulation (ESS). ESS builds an active event list
based on the current state, determines lifetimes for each event in the list,
and chooses the event with the minimum lifetime to be the next triggering
event for state transition. The cycle repeats with lifetime determination and
state transition interacting continuously. By contrast, SC has neither an event
list nor event lifetimes. For simplicity, we explain the SC approach by
using an M/M/1 queue simulation example with an arrival rate of 0.5 and a
service rate of 1.0.

Instead of generating the two types of events (arrival and departure)
from separate exponential distributions, we consider a single stream of
events that occur at the (faster) rate 0.5 + 1.0 = 1.5. Namely, the interval
time between two events is exponentially distributed with rate 1.5. For
each event, a random number r∈U[0,1) is generated to determine the event
type. In the following Fig. 7.3, a straight vertical line denotes an event.
Each has a U[0,1) random number associated with it.

Fig. 7.3. An example of an event stream before the determination of event types

Additional Extensions of the OO Methodology 145

Because of the properties of Poisson processes, we would expect
0.5/(0.5 + 1.0) = 1/3 of the events to be arrivals, and 2/3 to be departures.
We determine the event type according to the outcome of a U[0,1) random
number placed onto a ratio yardstick (Fig. 7.4).

Fig. 7.4. An example of ratio yardstick for determining event types

If r <1/3, this particular event is an arrival event. Otherwise, it could be a
departure event. The actual realization of event types of Fig. 7.3 are deter-
mined and shown in Fig. 7.5. A down arrow denotes an arrival event and
an up arrow denotes a departure event.

Fig. 7.5. An example of an event stream after the determination of event types

Statistically, this process is equivalent to generating two separate Pois-
son event streams at rates 0.5 and 1.0. These two event streams, represent-
ing the maximal rates of arrival and departure events, are further thinned
(deleted) according to the state of the DEDS. We ignore departure events
whenever the queue is empty, for the events are infeasible. A sample path
based on the event stream in Fig. 7.5 is constructed as follows.

Fig. 7.6. The sample path constructed from the event stream in Fig. 7.5

146 Chapter VII

Because of the memoryless property of the exponential distribution, the
sample path constructed in this way is statistically indistinguishable from
the path constructed by ESS. The idea of thinning a Poisson event stream
can be applied to all networks subject to Markovian assumptions (i.e., all
event times must be exponentially distributed).

In general, if we want to simulate a DEDS with n types of exponential
events at rates λi, i = 1,..,n, let

1

n

i
i

λ
=

Λ = ∑ .

There are three steps involved:

Step 1. Generate a sequence of events (the event types yet to be deter-
mined). The interval time between two events is exponentially distributed
with rate Λ.
Step 2. The event type is determined through a U[0,1) random number r
for each event as follows:

1

1 1 2

1 2 1

The event type

1 if 0 /
2 if / () /

 =

if () / 1.n

r
r

n r

λ
λ λ λ

λ λ λ −

≤ < Λ⎧
⎪ Λ ≤ < + Λ⎪
⎨
⎪
⎪ + + + Λ ≤ <⎩

#
"

Step 3. Check event feasibility and construct a sample path.

The generation of event streams (Steps 1 and 2) is independent of sys-
tem states and, therefore, can be done off-line once for all. Given an event
stream, we only need to continually check the event feasibility (Step 3)
during simulation. This significantly reduces the on-line simulation cost.
Simplicity and ease of implementation are additional advantages of the SC
method. When SC is applied to a set of parametrically different but struc-
turally similar (PDSS) simulation experiments (e.g., the 10-node commu-
nication network first discussed in Chapter III. 3 and Chapter IV. 4) the
superiority of SC to ESS is more significant. These PDSS experiments are
individually “thinned” from the same global event stream using the same
set of simulation program instructions. Thus ideally, a parallel set of PDSS
experiments can be carried out on an SIMD machine, or in an SPMD envi-
ronment2, taking no more time than that of a single simulation3. A very

2 Stands for Single Instruction Multiple Data and Single Program Multiple Data

respectively.
3 Modulo overhead communication time required in any SIMD machine.

Additional Extensions of the OO Methodology 147

large speed up can be achieved in this way on a massively parallel SIMD
machine (Patsis et al. 1997). The metaphor here is the well known trick of
data compression and expansion used in the transmission of TV pictures.
We can transmit the first frame followed by the “difference” only for suc-
ceeding frames. This greatly reduces the transmission load, making mov-
ing image reconstruction much more easily implementable than the brute
force transmission of two separate frames. Now suppose that we are simu-
lating a sample path denoted by x(t;θ,ξ) where θ represents the system pa-
rameter(s) and ξ all the randomness in the simulation. If we wish to simul-
taneously compute x(t;θ + ∆θ,ξ), i.e., a parametrically different sample
path, it is not necessary to repeat all the calculations. A considerable por-
tion of the x(t;θ,ξ) and x(t;θ + ∆θ,ξ) computation can be shared. Leverage
increases with the number of parallel PDSS experiments. This is the es-
sence of the SC approach regardless of whether we are using a massively
parallel machine or a regular sequential computer.

In addition, when using a parallel computer, since the SC approach dis-
tributes the experiments over multiple processors, the problems of synchro-
nization in the distribution of an inherently sequential simulation algorithm
disappear (Fujimoto 1990). Other statistical advantages of common random
numbers (Glasserman and Yao 1992), coupling (Glasserman and Vakili
1992), and correlation (Deng et al. 1992) further accrue to such a parametri-
cally different but structurally similar approach of parallel simulation.

2.2 Extension to non-Markov cases using second order
approximations

As previously discussed, when event lifetime distributions are exponential,
SC is not only an efficient simulation approach, but also easily implement-
able on computers. This subsection provides efficient approaches for ex-
tending the applicability of SC to general distributions (such as uniform
distributions), while keeping SC’s advantages. The basic idea is as follows.
We first argue that it is more important in real world simulation to model
the state transition function (i.e., the rules of operation) of the DEDS accu-
rately than to capture the exact distribution of the different event types.
Consequently, if we can adequately approximate the first two moments of
any event stream and model the rest of the DEDS exactly, the SC approach
should qualify as an efficient general purpose simulation language, par-
ticularly useful for parallel processing. Based on the algorithm in (Vakili
et al. 1992), we develop simple and efficient approximation techniques to
accomplish this goal. In Sections 2.2.1, this second order approximation

148 Chapter VII

is given. Numerical testing in Section 2.2.2 demonstrates that this second
order approach is a good approximation and is faster than parallel ESS.

2.2.1 Second order approximation

In this section, we provide an efficient extension of SC to general distribu-

tial distributions by matching their means and variances and preserves
the advantages of the original SC approach. For distributions with means
greater than standard deviations, we will describe the use of shifted expo-

smaller than standard deviations, we will discuss an alternative approach.
Note, although the Method of Stages (Kleinrock 1975) can also be applied
to approximate non-exponential distributions, it is much less efficient than
the shifted exponential ones.

(i) Approximate distributions with means greater than standard

deviations
For distributions with means greater than standard deviations, the approach
we suggest here is to approximate them by using shifted exponential dis-
tributions. These can be represented by K + T, where K is a constant and T
is an exponentially distributed random variable with rate µ (mean = 1/µ)4.
For example, consider an M/G/1 case with non-exponential service time S.
We choose K and T such that

 [] []E K T E S+ = , (7.9)

and

 [] []var varK T S+ = . (7.10)

From the above two requirements, we have

 []1K E S
µ

+ = , (7.11)

4 If we choose K to be a random variable instead of a constant, we can ap-

proximate a non-exponential distribution arbitrarily well such that K + T has the
same first n moments as the original random variable by increasing n.

tions using a second order approximation technique. This approximation
technique that we are presenting below approximates non-exponen-

nential distributions as approximations. For distributions with means

Additional Extensions of the OO Methodology 149

and

 []2

1 var S
µ

= . (7.12)

From Eq. (7.11) and (7.12), K and µ can be determined as follows.

[]
1

var S
µ = , (7.13)

 [] []varK E S S= − . (7.14)

We generate an event stream with rate (λ + µ) and use a ratio yardstick to
determine the arrival and departure events. When a customer’s service
starts, we set a mask of length K during which all departure events are ig-
nored. In computer simulations, we set a timer when a customer’s service
begins, and check the timer for each departure event. If the timer is smaller
than K, the departure event is ignored. If the timer is greater than K, one
exponential event time follows. Since the exponential distribution is mem-
oryless, the following departure event is accepted as a true departure event.
Otherwise, this event is ignored. The following figure is given to explain
how this approach works.

Fig. 7.7. The shifted exponential approach on SC

The second order approach shapes the global event stream by both
checking event feasibility, like the original SC approach, and checking the
duration of service. The departure event will be ignored (thinned) when
either the queue is empty or the duration of service time is smaller than K.
This second order approach modifies the event feasibility determination.

150 Chapter VII

Conceptually, we enlarge the system state to be the union of the original
state (number of customers in the queue) and the duration of service time.
The event feasibility is determined based on the enlarged state. This re-
laxes the memoryless property of exponential distributions and matches
the means and variances of original distributions. Thus we still preserve
the primary advantage of the SC approach, that the global event generation
is independent of system states. This idea will also be applied to the hyper-
exponential approach discussed below.

(ii) Approximate distributions with means smaller than standard

deviations

For distributions with means smaller than standard deviations, we propose
the use of parallel servers (see Fig. 7.8 below) to approximate them.
Observe that the density function of a hyperexponential distribution is

 ()1 2

1 21t te eµ µαµ α µ− −+ − , (7.15)

with the probability “α ” <1. Its mean is

1 2

1α α
µ µ

−
+ , (7.16)

and variance is

2

2 2
1 2 1 2

1 12 α α α α
µ µ µ µ

⎛ ⎞ ⎛ ⎞− −
+ − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (7.17)

The standard deviation is no less than its mean. Therefore, we can use hy-
perexponential distributions to approximate distributions with larger coef-

Fig. 7.8. A server with 2 parallel stages

Additional Extensions of the OO Methodology 151

For the M/G/1 case, suppose the arrival rate is λ. We select µ1 and µ2
to match the mean and variance of the service time. The approximated
service time is exponentially distributed either at rate µ1 or at rate µ2. We
generate three types of events with rates λ, µ1 and µ2 respectively. The
global clock rate is Λ = λ + µ1 + µ2. The ratio yardstick for the SC is as
follows.

Fig. 7.9. A ratio yardstick for the hyperexponential approach

When a job starts its service, generate a U[0,1) random number u. If
u<α, the job is served at rate µ1, so we accept the µ1 event as a departure
event, with the µ2 event ignored. On the other hand, if u ≥α, the job is
served at rate µ2, and we accept the µ2 event as a departure event, with the
µ1 event ignored. A more efficient way for the hyperexponential appr-
oach is to modify the ratio yardstick as follows. Without loss of generality,
assume µ1 is greater than µ2.

Fig. 7.10. A more efficient ratio yardstick for the hyperexponential approach

Note that the global clock rate is reduced to Λ = λ + µ1, although there
are three types of events: λ, µ2, and ∆. The procedures of event type de-
termination are also modified.

Unlike the shifted exponential approach, the hyperexponential approach
shapes the global event stream by checking both the event feasibility and
the service type (rate µ1 or µ2). This is another example of the general idea
of using “state” information (in this case number of customers and event
type) to thin the global event stream.

0 / (+ 1)/ 1

1 2

ficients of variation. Since the hyperexponential distribution is equivalent
to Fig. 7.8, we see that it can be easily implemented with SC.

152 Chapter VII

2.2.2 Numerical testing

Fig. 7.11. A 10-node network with priority and shared server

we submitted as a prize winning entry to the 1992 MasPar Challenge. For
details about this example, please refer to (Patsis et al. 1997). We have
used this example in Chapter III Section 3 and Chapter IV Section 4 to
demonstrate the selection rules and Vector Ordinal Optimization (VOO).
Here our purpose is to demonstrate that our approach has good approxima-
tion properties while preserving the advantages of SC.

There are two classes of customers with different arrival distributions
but the same service requirements. We consider both exponential and non-
exponential distributions (uniform) in the network. Both classes arrive at
any of the 0-3 nodes, and leave the network after having gone through
three different stages of service. The routing is not probabilistic, but class
dependent as shown in Fig. 7.11. Finite buffer sizes at all nodes are assumed,
which is exactly what makes our optimization problem interesting. Namely,
we are interested in distributing optimally buffer spaces to different nodes
given a limited budget for them. A buffer is said to be full if there are as
many customers as its size in it, not including the customer being served in
the server. Blocking in the network is governed by the following rules:

(i) If a buffer at any of the entry points (where customers from outside
enter, that is nodes 0-3) is full, no more arrivals are allowed at the
corresponding node.

(ii) If a buffer at any of the inside nodes (nodes 4-9) is full, the cus-
tomer(s) that are about to enter this buffer are prevented from de-
parting the server where they just received service. It results in

Consider the 10-node network shown in Fig. 7.11. This is an example

Additional Extensions of the OO Methodology 153

keeping the aforementioned server idle until the customer finally
finds an empty slot in the buffer downstream and departs.

(iii) If more than one server is blocked by the same buffer downstream
(i.e., buffer 9 blocking both servers 5 and 7), First Blocked First
Served is applied.

More specifically, class 1 customers’ interarrival periods are dis-
tributed uniformly from 2 to 18; and class 2 customers’ interarrivals
are distributed exponentially with rate 0.12. The service time for both
classes is uniform from 1 to 7 at nodes 0-7 (two first stages of ser-
vice) and exponential with rate 1.0 at the last stage (nodes 8-9).
Nodes 8 and 9 each have their own queues, but they share a single
server governed by the following rules:

(iv) If the length of the queue at node 8 is greater than one, a node 8 cus-
tomer is served. If a customer at node 9 is being served and the length
of node 8’s queue becomes greater than one, service is interrupted to
allow the higher priority, class 1 customer to be served. Otherwise,
customers are served on a first-come first-served basis.

Furthermore, we include a priority system for the two classes. At buffers

0-3, class 1 customers now jump ahead of any class 2 customers in the
queue. If a class 2 customer has already begun service and a class 1 cus-
tomer arrives, the class 2 customer is allowed to complete service.

Such a network could be the model for a large number of real-world sys-
tems, such as a manufacturing system, and a communication or a traffic
network. We consider the problem of allocating 22 buffer units, among
the 10 different nodes numbered from 0 to 9. We denote the buffer size of
node i as Bi. We set constraints as shown in Fig. 7.11 for symmetry reasons.
Totally, there are 1001 different configurations. We want to analyze the
throughputs of them.

A simulation is run by both the ESS and SC. The system throughput and
average system time are computed for comparison. Let iP and îP be the
system throughputs of design i estimated by ESS and SC; iT and îT the
average system time estimated by ESS and SC, respectively. The average
error of estimated throughput is

1001

1

1
1001

î i

i i

P P
P=

−∑

and the average error of estimated system time is

154 Chapter VII

1001

1

1
1001

î i

i i

T T
T=

−∑ .

The simulation is stopped after 250,000 customers have left the system.

From the simulation results, we find that the average error of estimated
throughput is 1.4% and the average error of estimated system time is
0.12%. They show that the 2nd order approximation of SC has good ap-
proximation properties.

On the other hand, the following experiments demonstrate that SC is
faster than ESS. The above problem is simulated in parallel on a MasPar-1
SIMD machine, in which there are 1024 processors. The CPU times for
different lengths of simulation are listed in Table 7.2. SC is more than
three times faster than the traditional approach, which illustrates the saving
due to sharing of computation under the SC approach.

Table 7.2. Parallel event-scheduling vs. parallel SC (Chen and Ho 1995) © 1995
IEEE

of Customers
that left
the system

Event-scheduling
CPU Time

(in sec)

SC Simulation
CPU Time

(in sec)
100 5.48 1.37
1000 53.80 15.01
10000 536.34 152.60
50000 2682.05 761.12
100000 5363.59 1522.37
150000 8045.95 2283.51
200000 10728.31 3044.52
250000 13409.84 3802.14

3 Effect of correlated observation noises

One of the assumptions of both the analytical and experimental results of or-
dinal optimization we discussed so far is that the performance estimation
errors (or the observation noises) are independently and identically distrib-
uted (i.i.d.). In practical applications such as performance estimation for
DEDS via simulation, this assumption of independent estimation error from
one design to next may not hold due to the use of common random vari-
ables, replications with identical initial conditions, and parallel simulation
(Vakili et al. 1992), etc. Naturally there arises one question: Can we still
apply the UAP table in Section II.5 to determine the size of the selected set

Additional Extensions of the OO Methodology 155

when the observation noises are correlated with each other, or when the
noises are not identically distributed and θ dependent? This is the question
we are going to answer in this section. The quick answer is yes. Actually
we will show that the correlation among the observation noises seldom
hurts but usually helps. Practitioners can now skip the rest of this section
and apply OO without worrying about the correlations among observation
noises. For readers interested in details, we show how the correlation helps
as follows.

First, consider the extreme case of positive correlation. In other words,
all the observation noises are perfectly correlated, i.e., they are identical.
The observed order is always the true order. The observed good enough
designs are all truly good enough. The correlation helps a lot in this case.
Second, consider the extreme case of negative correlation. Since in ordinal
optimization we care about the observed order among the designs more
than the observed value, the worst case is that the observation noises of ad-
jacent designs (w.r.t. true performances) are perfectly but negatively corre-
lated. The designs can be separated into two halves. Within each half, the
observation noises are perfectly correlated. This is like the removal of half
the designs from consideration. At least half of the observed top-n% de-
signs are truly top-n% of the entire design space. The correlation helps in
this case, too.

In the general case, when the observation noises of some designs are
positively correlated, with others negatively correlated, the analysis be-
comes complicated. To get a rough idea, we consider the simple case of
only two designs first. Suppose there are two designs θ1 and θ2. The true
performances are J(θ1) and J(θ2), respectively. The observation noise is wi,
i.e.,

() ()ˆ

i i iJ J wθ θ= + , for i = 1 and 2.

Suppose vector [w1, w2]τ contains two-dimensional normal distribution
with mean and covariance matrix as follows

0
0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and 11 12

12 22

σ σ
σ σ

⎡ ⎤
⎢ ⎥
⎣ ⎦

.

Suppose design θ1 is better, i.e., J(θ1)<J(θ2), and we want to predict which
design is better based on the observed performance. Then the probability
that we make correct prediction is

156 Chapter VII

() ()
() ()

() ()

() ()

() ()

() ()()

2 1

2 1 11 22 12

1 2

1 1 2 2

1 2 2 1

2

11 22 1211 22 12

2 2

Prob

Prob

Prob

exp

exp

ˆ ˆ

1
2 22 2

1 .
22

J J

J J

J J

J w J w

w w J J

x dx

x dx

θ θ

θ θ σ σ σ

θ θ

θ θ

θ θ

σ σ σπ σ σ σ

π

−

−∞

− + −

−∞

⎡ ⎤<⎣ ⎦
= + < +⎡ ⎤⎣ ⎦
= − < −⎡ ⎤⎣ ⎦

⎛ ⎞
= −⎜ ⎟⎜ ⎟+ −+ − ⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

∫

∫

It is clear that this probability increases when σ12 (=σ21) increases.
Roughly speaking, this means the more w1 and w2 are correlated with each
other, the more likely we pick up the right design θ1.

When there are a lot of designs, the analysis becomes very complicated
and tedious, if not impossible. Hence we use experiments to observe the
effect of the correlated observation noises on the alignment between the
observed good enough designs and truly good enough designs. Suppose
there are N = 200 designs, with true performances within [0, 200]. The ob-
servation noises w’s are linear combinations of i.i.d. normally distributed
noises, v1, v2,…vN, i.e.,

1 1

N N

w v
A

w v

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (7.18)

where A is an N × N matrix. The normal distribution assumption can be easily
justified based on the central limit theorem for most cases. Assume the noise is
relatively large, compared with the largest performance value 200, and let
v1,v2,…vN ~N(0,10000/12). Suppose w1 = v1, wi+1 = awi+bvi+1(i =1,…,N-1), and
a and b are two constants such that a2+b2 = 1. Then the variances of all wi’s are
the same. Matrix A in Eq. (7.18) is then given by

2

1 2 3

1 0 0 0
0 0

0

N N N

a b
A a ab b

a a b a b b− − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"
"
"

"
"

.

Additional Extensions of the OO Methodology 157

We can easily verify that the correlation among the observation noises is
increasing with respect to a. To cover a wide range of optimization prob-
lems, we consider a generic set of the Ordered Performance Curve param-
eterized by β according to the following

()
() ()

() () ()

1
1

1 2 1
1 .

i

C i i N
N

J
C C

i i N
N

β β
β

θ
β β

β
β β

⎧ < −⎪ −⎪= ⎨
− −⎪ + ≥ −⎪⎩

 (7.19)

where C = 200. The OPCs are illustrated in Fig. 7.12. Fig. 7.12 shows that
the OPC changes from the flat type to the steep type, when β increases
from 0 to 1.

Fig. 7.12. A generic set of ordered performance curves (Deng et al. 1992) © 1992
INFORMS

We vary the values of β and a as follows:

β = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

0< <1

Steep

Flat

N

C

0

O
rd

er
ed

 p
er

fo
rm

an
ce

 J

Ordered design index

158 Chapter VII

±0.93, ±0.94, ±0.95, ±0.96, ±0.97, ±0.98, ±0.99, ±1.

For each parameter setting, we show the number of truly top-10 designs
contained in the observed top-10 designs in Fig. 7.13, which has averaged
over 1100 experiments.

Fig. 7.13. The averaged number of truly top-ten designs in the observed top-ten
designs (Deng et al. 1992) © 1992 INFORMS

In Fig. 7.13, when a = 0, the values represent the alignment level when
the observation noises are i.i.d.. It is clear that, when |a|>0, for a fixed β,
the alignment is no less than the value associated with a = 0. Also, in the
extreme case of positive correlation (a = 1), the observed order is just the
true order, so the alignment is 10, which is consistent with our previous
analysis. In the extreme case of negative correlation (a = –1), the alignment
is no less than 5, which is also consistent with our above analysis. This
means the correlation among observation noises seldom hurt but usually
helps in general. We can try matrixes other than A and the results are simi-
lar (Deng et al. 1992).

a = 0, ±0.1, ±0.2, ±0.3, ±0.4, ±0.5, ±0.6, ±0.7, ±0.8, ±0.9, ±0.91, ±0.92,

10

= 0.9

= 0.8

= 0.7

= 0.6

 = 0.5

 = 0.4

= 0.3

 = 0.2

= 0.1

8

6

4

A
ve

ra
ge

 #
 o

f
go

od
 d

es
ig

ns
 i
n

to
p-

te
n

2

0
−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0

correlation factor 'a'

0.2 0.4 0.6 0.8 1.0 1.2

β

β

β

β

β

β

β

β

β

Additional Extensions of the OO Methodology 159

In conclusion, we demonstrated in this section that the correlations
among the observation noises seldom hurt but usually helps. We in general
can use the UAP table in Section II.5 to predict the size of the selected set,
and with little worry in practice.

Before the end of this section, we add a short discussion on another case
of non-i.i.d. noise, which is independent non-identical observation noise.
Astute readers may ask whether this kind of noises causes us any trouble in
the application of OO in practice. The answer is no. To see this, just notice
that, if we choose the noise level with respect to the noise with the largest
variance, then we can calculate the size of the selected set using the UAP
table in Section II.5. This size is an upper bound of the size that is actually
needed, because the observation noises of some designs are not that large.
A more interesting question is: Can we take advantage of the independent
non-identical noise? The answer is yes. The basic idea is to divide the de-
sign space into several sub-regions. By estimating the average perform-
ance of the designs within each region, we combine this information into
the crude model, and then hopefully the observation noise w.r.t. the new
crude model is (closer to) i.i.d., with a smaller noise level. This yields a
smaller set S to select. Of course, it takes computing budget to estimate the
average performance of the designs within a region. Thus, either spending
more computing budget to get a better crude model, or spending the com-
puting budget to deal with a larger selected set, there is a trade off. For
more details, please refer to (Yang et al. 1997), (Yang 1998) and (Yang
and Lee 2002). Of course, in general, we may have non identical and cor-
related noises. We can always use the maximum noise level to evoke the
conclusion in this section. Together with the previous paragraph, we now
can ensure practitioners to apply OO with little worry about the i.i.d.
assumption of the observation noises.

4 Optimal Computing Budget Allocation and Nested
Partition

In this section we discuss two algorithms that are coherently related to OO,
the optimal computing budget allocation (OCBA) which serves as a spe-
cific selection rule of OO, and nested partition (NP) which serves as a pos-
sible framework to do OO iteratively. Besides these two algorithms, OO
can also be combined with many others, which will be further discussed in
Section 6.

160 Chapter VII

4.1 OCBA

As we argued previously, it is time consuming to evaluate the performance
of a design precisely through Monte Carlo simulation. Since the total com-
puting budgets available for performance evaluation (measured by the total
number of replications) of all designs under consideration are limited, it is
natural to ask the question: how can we allocate the computing budgets to
individual designs? OCBA was developed by Chen et al. for further enhan-
cing the efficiency of OO (Chen et al. 2000). The goal is to utilize optimally
the given computing budgets to achieve a high alignment probability. In
other words, we want to control the allocation of the computing budgets to
all the designs so that the alignment probability is maximized. In Section
II.5, we have shown that it is very difficult (if not impossible) to obtain the
closed-form expression for the alignment probability, when the selection
rule is not Blind Pick. OCBA considers the cases when the good enough
design set is defined as the singleton, the true optimum, then the alignment
probability is simplified to the probability that the observed best design is
the truly best, which is known as the probability of correct selection and de-
noted as Prob[CS]. There exists a large literature on assessing Prob[CS]
based on classical statistical models (e.g., (Goldsman and Nelson 1994) and
(Banks 1998) give an excellent survey on available approaches). However,
most of these approaches are only suitable for problems with a small number
of designs. For the applications that OO is used, there is usually a large de-
sign space, say 108 or at least of the size N = 1000 if uniform sampling in
design space is employed. The computing budgets of those approaches soon
become practically infeasible. For these reasons, OCBA was developed
through a series of development.

Suppose there are N designs θ1,…θN with true performances J(θ1), …J(θN).
The observed performance is

() () ()ˆ

i i iJ J wθ θ θ= + , (7.20)

where for each design w(θi) contains i.i.d. normal distribution N(0,σi
2).

Suppose we can run simulation no more than T times during the selection
process of OO. By the time when the selection process of OO ends, design
θi is observed ni times, and

1

N
ii

n T
=

=∑ . If we use the mean value of the
observations to evaluate the performance of a design, we have

() () ()ˆ , ,i i i i iJ n J w nθ θ θ= + , (7.21)

Additional Extensions of the OO Methodology 161

where w(θi,ni) contains normal distribution N(0,σi
2/ni). The problem that

OCBA tries to solve is

[] () ()
1 2, ,...

1

ˆ ˆmax CS , , , for all

s.t. ,

N
b b i in n n

N

i
i

J n J n i b

n T

θ θ

=

⎡ ⎤≠⎢ ⎥⎣ ⎦

=∑
 (7.22)

where θb is the truly best design. The difficulty to solve the above maximi-
zation problem lies in the calculation of Prob[CS]. To avoid this difficulty,
a lower bound of Prob[CS] is used as the objective function to be maxi-
mized. When the lower bound is maximized, we hope that the resultant
Prob[CS] will not be too bad. To construct the lower bound, note that, for a
set of random variables Yi, it holds that

() []

[] [](
[])

[] [] []()

[]()

1 2
1

1 1 2

1 1

1 2

1

Prob Prob

Prob Prob

Prob

Prob Prob Prob

Prob

0 1 0 or 0 or ... 0

1 0 0, 0 ...

0,... 0, 0

1- 0 0 ... 0

1 1 0 .

N

i N
i

N N

N

N

i
i

Y Y Y Y

Y Y Y

Y Y Y

Y Y Y

Y

=

−

=

⎡ ⎤
< = − < < <⎢ ⎥

⎣ ⎦
= − < + ≥ < +

+ ≥ ≥ <

≥ < + < + + <

= − − ≥∑

∩

This is known as the Bonferroni inequality. In our case,

() ()ˆ ˆ, ,i b b i iY J n J nθ θ= − . Then

[] () ()()
1

Prob Prob ˆ ˆ1 1 , , 0,
N

b b i i
i

CS J n J n i bθ θ
=

⎡ ⎤≥ − − − ≥ ≠⎢ ⎥⎣ ⎦∑ , (7.23)

which is referred to as the approximated probability of correct selection
(APCS). So the problem in Eq. (7.22) is converted to

() ()()
1 2, ,... 1

1

Prob ˆ ˆmax 1 1 , , 0,

s.t. .

N

N

b b i in n n i
N

i
i

J n J n i b

n T

θ θ
=

=

⎡ ⎤− − − ≥ ≠⎢ ⎥⎣ ⎦

=

∑

∑
 (7.24)

Prob = <Prob

162 Chapter VII

This is the problem solved by OCBA. (Chen et al. 2000) has shown that
APCS can be asymptotically maximized when T→∞ if

 { }
2

,

,

/
, , 1, 2,..., , and

/
i b ii

j j b j

n i j N i j b
n

σ δ
σ δ

⎛ ⎞
= ∈ ≠ ≠⎜ ⎟⎜ ⎟

⎝ ⎠
 (7.25)

2

2
1,

N
i

b b
i i b i

nn σ
σ= ≠

= ∑ (7.26)

where δb,i = J(θb) i

J(θi) during the optimization, so we use the mean value of the observations
as an estimate. Intuitively, in Eq. (7.25), if a design is estimated to be bad,
which means δb,i is large, ni should be small, which means we should not al-
locate more computing budgets to this bad design. If σi is large, which
means the observation noise is still large, we should allocate more comput-
ing budget to this design to obtain better performance estimate. There is a
tradeoff, which is what the term σi/δb,i represents. We can also show that Eq.
(7.25) and Eq. (7.26) are intuitively reasonable for simple cases. Say there
are only two designs θ1 and θ2, and J(θ1) < J(θ2), i.e., b = 1. Then based on
Eq. (7.26) we have 2 2

1 1 2 2n nσ σ= . Therefore, n1/n2 = σ1/σ2. In what fol-
lows, we can easily testify that this allocation is identical to the optimal allo-
cation solution when there are only two designs. Suppose there are only two
designs, and J(θ1)< J(θ2), then

[] () ()

() () () ()
1 1 2 2

1 1 2 2 2 1

Prob CS Prob

Prob

ˆ ˆ, ,

, , ,

J n J n

w n w n J J

θ θ

θ θ θ θ

= ⎡ ⎤<⎢ ⎥⎣ ⎦
= − < −⎡ ⎤⎣ ⎦

where w(θ1,n1) w(θ2,n2)~N(0,σ1

2/n1 + σ2
2/n2). To maximize Prob[CS], we

need to minimize σ1
2/n1 + σ2

2/n2 subject to the constraint that n1 + n2= T.
Solving this optimization problem, we have n1/n2 = σ1/σ2.

The allocation in Eqs. (7.25) and (7.26) are asymptotically optimal, and
the estimate of δb,i improves when more observations are taken. We can do
the allocation in an iterative way. Each time we only decide how to allo-
cate a small amount of our computing budgets, and update the estimate of
δb,i and σi successively. The procedure of OCBA is shown in Box 7.1.

−

−J(θ). Of course we do not know the true performances

Additional Extensions of the OO Methodology 163

Box 7.1. Procedures of OCBA
Step 1: Perform n0 simulation replications for all designs. l = 0,

1 2 0...l l l
Nn n n n= = = = .

Step 2: If
1

N l
ii

n T
=

≥∑ , stop.

Step 3: Increase the computing budget by ∆ and compute the new
budget allocation, 1 1 1

1 2, ,...,l l l
Nn n n+ + + , using Eqs. (7.25) and (7.26)

Step 4: Perform additional ()1max 0, l l
i in n+ − simulations for design i,

i=1,…,N, l+1→l. Go to step 2.

If we equally allocate the computing budgets to all the designs, and select
the observed best design as an estimate of the truly best, this is a special case
of the horse race rule (HR). To show how OCBA helps to enhance the per-
formance of OO, we compare OCBA and HR through a series of experi-
ments, including:

Problem 1: Normal distribution. Suppose there are 10 designs with true per-
formances J(θi) = i, and i.i.d. observation noise w(θi)~N(0,62), i = 0,1,…9.

Problem 2: Uniform distribution. Suppose there are 10 designs with true
performances J(θi) = i, and observation noise w(θi)~U(-10.5,10.5), i = 0,1,…9.

Problem 3: Normal distribution with larger variance. Suppose there are
10 designs with true performances J(θi) = i and i.i.d. observation noise
w(θi)~N(0,2 × 62), i = 0,1,…9.

Problem 4: Flat OPC. Suppose there are 10 designs with true perform-
ances () 9 3 9iJ iθ = − − , and i.i.d. observation noise w(θi)~N(0,62), i =
0,1,…9.

Problem 5: Steep OPC. Suppose there are 10 designs with true perform-

ances ()
299

3i
iJ θ −⎛ ⎞= − ⎜ ⎟

⎝ ⎠
, and i.i.d. observation noise w(θi)~N(0,62), i =

0,1,…9.

Problem 6: Bigger design space. Suppose there are 100 designs with true
performances J(θi) = i/10, and i.i.d. observation noise w(θi)~N(0,12),
i = 0,1,…99.

164 Chapter VII

In OCBA we set n0 = 10 and ∆ = 20. In HR we allocate the computing
budget T equally to all the designs. We incrementally increase the value of
T, record the minimal value of T s.t. the Prob[CS]≥0.99 for OCBA and HR
in the above problems, and show the results in Table 7.3.

Table 7.3. Computing burden for Prob[CS]>0.99 by OCBA and HR in the
experiments

Problem index OCBA HR Speed up ratio = HR/OCBA
Normal distribution 1100 4400 4.0
Uniform distribution 1900 6000 3.2
Normal distribution with larger
variance

2100 8500 4.0

Flat OPC 4100 15100 3.7
Steep OPC 300 1100 3.7
Bigger design space 2600 39000 15

From Table 7.3, we can see that OCBA saves the computing budgets
and thus speeds up the optimization at least 3 times in all the problems
tested, even if the noise distribution is not normal (Problem 2). Especially
when the design space is larger (Problem 6), OCBA achieves a larger
speed up. This is because a larger design space gives the OCBA algorithm
more flexibility in allocating the computing budgets. This comparison
shows that OCBA can further enhance the performance of OO.

OCBA has been successfully applied to many problems, such as the
communication network (Chen 1994), the reliability optimization of the
transportation system capacity (Lin 2004), the manufacturing scheduling
problems (Chen et al. 1997), Monte Carlo simulation-based product design
(Chen et al. 2003), the walking robot motion planning problem (Luo
2000), the buffer allocation problem (Shi and Chen 2000), and the combi-
nation with rank and selection (Chen 2004), just to name a few. Interested
readers please refer to our online reference list (Shen and Bai 2005) and
specific papers for more technical details.

4.2 NP

Nested partition, as the name shows, is a way to successively narrow down
the search space (Ólafsson and Shi 1999; Shi and Ólafsson 2000a, 2000b).
NP was developed to deal with the difficulty of large design space that was
present in many combinatorial problems. OO can also be regarded as a
way to narrow down the search space (first from the large design space to
the N designs that are sampled as a representative of the design space, then
from the N designs to the selected set). Since we have only applied OO

Additional Extensions of the OO Methodology 165

once in previous chapters, it is natural to ask how we should apply OO
iteratively. Though this is still an open question, there are some ideas
(Deng and Ho 1997). The combination of NP and OO supplies a possible
way to do OO iteratively.

The idea of NP is based on the evolution of the division of the entire
design space into two regions, namely the promising region and the sur-
rounding region. Ideally the promising region should only contain the de-
signs we are searching for. The task of NP is to adjust the division between
the two regions to achieve this. A measurement based on observations of a
small subset of designs in a region is used as a promising index to guide
the adjustment of division between promising and surrounding regions5.
Backtracking is allowed to avoid the division stuck at local optima.

More specifically, in each iteration, NP contains four major steps. First,
partitioning. When the entire design space is divided into several disjointed
subregions, only one subregion is indicated as the promising region. In the
beginning, the entire design space is not divided and is the promising re-
gion. In the partition step, the promising region is partitioned into several
disjointed subregions, and the other subregions surrounding the promising
region (if any) are aggregated into one region, called the surrounding re-
gion. Second, sampling. In each of the subregions (including the ones
partitioned from the promising region and the surrounding region), we ran-
domly sample some designs. This step is rather flexible. The only require-
ment is that each point in the design space should have some positive
probability to be sampled. This will avoid getting stuck in a local mini-
mum. Third, identifying the new promising region. Based on the observed
performances of the designs sampled from each subregion, we identify one
region as the new promising region for further partition. Many rules can be
used in this step. One idea is to select the subregion that contains some ob-
served good enough designs. If there are more than one subregions con-
taining observed good enough designs, the tie is broken uniformly and
randomly. If the surrounding region is identified as the promising region,
we need a fourth step: backtracking. There are different rules to do back-
tracking. The idea is also to avoid getting stuck in the local minimum. One
rule is to move back along the partition history by one iteration, i.e., to re-
voke the partition used in this iteration and return to the previous partition
situations. Another rule is to move back to the entire design space, then
there is only one region. After the four steps, we obtain a new promising

5 The implied structural assumption here is that, if a region has many good

designs, it probably contains even more good or better designs – a kind of continu-
ity of neighborhood assumption.

166 Chapter VII

region and goes back to step 1 for further partitioning6. This process con-
tinues until all the computing budgets are consumed, or the promising re-
gion is a singleton and there is no further partition (Box 7.2).

Box 7.2. NP procedures

Step 1: Initialization. The entire design space is the promising region.
Step 2: Partitioning. If the promising region is not singleton, partition

the region into several subregions, and aggregate the surround-
ing region (if any) into one region.

Step 3: Sampling. Sample designs from each subregion and obtain the
observed performances of all the sampled designs. Computing
budget allocation procedures may be applied.

Step 4: Identifying the new promising region. If the new promising re-
gion is the surrounding region, just backtrack.

Step 5: Going to step 2, unless the new promising region is a singleton,
or all the computing budgets are consumed. If the new promis-
ing region is a singleton, output that design. Otherwise, output
the design that is most frequently visited.

In the above procedure, ideally each time we are able to select the
subregion that contains the global optimum. The promising region con-
verges to a singleton very soon.

It is clear that the way to divide the entire design space into subregions
is critical to the efficiency of NP. A subregion containing the truly best de-
sign is NP-friendly if it provides a direct promising index to indicate the
region is good. A subregion is not friendly if its promising index is mis-
leading, i.e., indicates that this region is worse than the surrounding region
(complementary set) which does not contain the best design. To quantify
the quality of a way to generate a subregion and its surrounding region, we
measure the probability that the best of uniformly sampled designs from
the subregion is not better than the designs chosen from the surrounding
region. Its lower bound is

1 nr−

where n is the number of samples blindly picked from the subregion of in-
terest, and r , known as the “overlap” in NP terminology, is the fraction of
designs that are truly worse than the designs outside that region. For ex-
ample, a subregion with 90% overlap means only 10% of the designs in

6 There is another implied assumption in NP, that is, it is relatively easy to

characterize the partitioned region via simple inequalities. In other words, the re-
peated partitioning and aggregation can be easily carried out.

Additional Extensions of the OO Methodology 167

this subregion are truly better than all the designs outside this subregion.
Of course, the larger this overlap is, the more difficult it is to identify the
promising region correctly as shown in Fig. 7.14.

Fig. 7.14. Probability of correctly identifying the promising region converges ex-
ponentially fast w.r.t. the number of sampled designs (assuming uniformly sample
designs)

In Fig. 7.14, the x-axis represents the number n of designs sampled from
the subregion that contains the truly optimum. The y-axis represents the
probability that the promising region identified by the NP is the truly
promising region. It is important to observe that all the curves in Fig. 7.14
converge to 1 exponentially fast, although for higher level of overlap, the
convergence is relatively slow. In the above analysis, we assume that the
true performance of each design is available for samples. When observa-
tion contains noises, we can still have similar conclusion thanks to the ex-
ponential convergence in comparison using order information.

NP can be used to solve both the deterministic optimization problem (say
the Traveling Salesman problem (Shi and Ólafsson 2000a)) and the simula-
tion-based optimization problem. When there are observation noises, the se-
lection rules such as OCBA can be used to allocate the computing budgets
among the designs so that the observed best design has a larger chance to be
the truly best design in that region (Shi and Chen 2000). There are many
successful applications of NP, such as in the Traveling Salesman problem

Th
e

pr
ob

ab
ili

ty
 o

f c
or

re
ct

ly

id
en

tif
yi

ng
 th

e
pr

om
is

in
g

re
gi

on

168 Chapter VII

(Shi and Ólafsson 2000a), the discrete resource allocation in supply chain
management (Shi et al. 1999), the scheduling in shop floor control (Yoo
et al. 2004), combinations with ranking-and-selection (Ólafsson 1999), and
the job scheduling for parallel computer systems (Shi and Ólafsson 1998),
just to name a few. Interested readers may refer to the complete reference
list of OO (Shen and Bai 2005) for specific papers.

It is worthwhile to point out that traditional optimization is basically a
point-to-point (design-to-design) iterative process. To a large extent, we
suspect this is a result of memory limitation in earlier generations of com-
puters. At any one time, we can only keep limited data in the high speed
memory of a CPU. As a result, we only use local information to decide the
next design to explore in the search space. Of course, optimizers all realize
the importance of past data in guiding the search. Under the limitation of
memory, we attempt to summarize the past data into rules to help guide
our design-to-design search. One prominent example is the rules of TABU
search (Glover 1989). With the advent of essentially unlimited high speed
memory, however, we are free of these earlier constraints. OO, OCBA,
and NP are all reflections of this new freedom. Optimization becomes a
process of narrowing down the search. Thus, we now have a complemen-
tary way of approaching the problems of optimization. Many exciting pos-
sibilities lie ahead.

5 Performance order vs. performance value

Comparing with the results in the rest of the book, this section and the next
Section 6 contain mainly preliminary results instead of complete analysis.
We discuss two questions in these two sections: how can we apply OO if
we want to find some designs with true performance value close to the true
optimum? How can we combine OO with other optimization algorithms?
There are no general answers to either question, which is still open to discus-
sion and further research. We will just report some results so far obtained,
which are mainly preliminary and for specific problems. They indicate
what are possible rather than to provide any definitive extension of the OO
methodology.

In this section we report some work in (Lin 2000a)7. In conventional or-
dinal optimization, as introduced in Chapter II, the good enough set is de-
fined by the user as the truly top-g% designs. In other words, the definition

7 We did some modifications though. For example, (Lin 2000a) considers a

maximization problem, and we modified the problem formulation to a minimiza-
tion problem here. But the basic ideas in (Lin 2000a) are preserved.

Additional Extensions of the OO Methodology 169

is ordinal. (We thus denote the good enough set as Go.) However, in some
practical applications, we want to find designs not too much worse in value
than the global optimum. For example, we know minθ∈ΘJ(θ) = 0, and
maxθ ∈Θ J(θ) = 1, and want to find a design with true performance no greater
than 0.1.We should define the good enough set as the designs within top-
g% true performances (say g% = 10%), i.e., the good enough set is defined
according to the cardinal values, instead of order. (So we denote the good
enough set as Gv.) Natural questions then arise: Can we apply OO on this
type of problems? If so, how can we do that? The answers are not com-
plete yet. However, we have some ideas on how to apply OO when the
definition of good enough is based on performance “value” instead of
“order”, which will be discussed in the rest of this section. A quick answer
is a qualified yes. We can apply OO on this type of problems. There are at
least two methods for such an application: either to define an appropriate
Go based on the information of Gv and convert the problem to the one that
we have already solved in the previous chapters (i.e., the idea of problem
conversion), or as introduced in (Lin 2000a), to develop another way to
calculate the alignment probability. In both ways, more problem and struc-
tural information are required. We introduce these two ways in the follow-
ing paragraphs and have a special focus on the second one.

First, let us look at the idea of problem conversion. The key is to esti-
mate the size of Gv, |Gv|. We can define the good enough set as the designs
within top-|Gv|/|Θ| w.r.t. true performance order. In this way we obtain a
definition of good enough set w.r.t. order, and convert the problem into the
type that we are familiar and has been discussed throughout the previous
chapters. The rest of the application of OO is then straightforward. The
question is how we can estimate |Gv|? This might be difficult, especially
when the observation noises are large. One possible way is to uniformly
and randomly sample N designs from the entire design space, use the crude
model to estimate quickly the performances of these designs, and obtain an
observed ordered performance curve. We can then calculate the number of
designs within top-g% observed performances, and use this number di-
vided by N as an estimate of the value of |Gv|/|Θ|. Obviously, this estimate
of |Gv|/|Θ| may not be accurate, but we can use this in practical applications
as a rough idea and choose a relatively conservative definition of Go. In
other words, the weakness of this idea is the accuracy of the estimate of the
size of Gv. Problem information will help us to improve the accuracy of the
estimate.

In the rest of this section, we focus on the second way: developing a new
way to calculate the alignment probability. Since the UAP table in Section
II.5 is used to estimate the selected size when the good enough set is defined

170 Chapter VII

in performance order not value, we need to find another way to calculate the
alignment probability and thus the selected size in this new problem. Sup-
pose we know the probability that a selection rule successfully picks a
design in Gv, denoted as Psuccess. After n independent trials, the selection
rule will pick out n designs. The probability that at least one of these n
designs is truly good enough in value (i.e., in the set Gv) is 1-(1-Psuccess)n,
which converges to 1 exponentially fast w.r.t. the number of trials n. If we
want this probability to be no less than a given value P0, the minimal n will
be

()

()
0

success

ln 1
ln 1

P
n

P
⎡ ⎤−

= ⎢ ⎥−⎢ ⎥
 (7.27)

where ⎡•⎤ is the ceiling function.

Exercise 7.2: Proof this.

For example, if P0 = 0.95, Psuccess = 0.1, the minimal n is 29, which means if
we use a selection rule with Psuccess = 0.1 to pick a design each time, and re-
peat this process 29 times, then at least one of these 29 selected designs
will be truly good enough in performance value with probability no less
than 0.95. This result is quite similar to the one we have achieved in the
previous chapters when the good enough set is defined in order. The key
problem now is how we can estimate Psuccess. Though the answer is prob-
lem dependent, we will show how to obtain the lower bound of Psuccess in
various examples. The first example considers a wide range of optimiza-
tion problems with different OPCs. It is shown that Psuccess is affected by
the selection rule thus used. Under some assumption on the selection rule,
we obtain a lower bound of Psuccess that is independent from the OPC of the
problem. To test whether the assumption on the selection rule is reason-
able, we show this assumption holds for the well-known horse race rule in
the second example. In the third example, we consider some other problem
types and show Psuccess of the horse race rule is still well above 0.5.

Example 1
For example, to cover a wide range of optimization problems, suppose
there are N designs in total with true performances J(θi) = -(i/N)a, i = 1,2,…N,
where a>0 is a parameter.8 Fig. 7.15 below illustrates the fact that, by

8 In (Lin 2000a) a maximization problem with true performances J(θi) = (i/N)a.

Since we focus on minimization problem in this book, we reformulate the problem
as a minimization problem. This is how the negative sign before (i/N)a comes.

Additional Extensions of the OO Methodology 171

using different values of “a”, we can model a variety of ordered perform-
ance curves from neutral to steep. We are dealing with minimization prob-
lem, i.e., mini=1,2,…NJ(θi). Define the good enough set as designs within top-
g% true performances, i.e., no greater than (1-g%) × mini=1,2,…NJ(θi) = g%-1.
When a increases, the ordered performance curve changes from flat to
steep. The size of Gv decreases. (See Fig. 7.15.) If we use the blind pick
rule, Psuccess = |Gv|/N. The designs in Gv should satisfy -(i/N)a≤g%-1. So
i≥⎡N(1-g%)1/a

v
1/a

and Psuccess = (N-⎡N(1-g%)1/a Psuccess
decreases to 1/N. If N is usually extremely large, say no less than 108,
Psuccess becomes meaningless. This means blind pick is not an efficient way
to find the truly optimum, which is consistent with our experience and
intuition.

Fig. 7.15. Illustration of the reduction of good enough set when a increases

Fortunately, we usually have a crude model to estimate (though very
roughly) the performance of the designs. Using a reasonable crude model,
a truly better design should have a larger chance to be observed better, and
thus have a larger chance to be selected by a selection rule that uses prob-
lem information. With this assumption, we can improve Psuccess. For exam-
ple, to simplify the discussion, suppose a selection rule only selects one
design instead of multiple designs each time. Denote the probability that
a design is selected by the selection rule as Pselect(θi). Assume Pselect(θi) is

Ordered design index-1

0

Good enough criterion

a increases

Good enough
set Gv

⎤+1)/N. When a increases to infinity,
⎤-1)⎤, where ⎡•⎤ is the ceil function. Thus |G | = N-(⎡N(1-g%)

172 Chapter VII

proportional to the absolute value of J(θi), i.e., Pselect(θi) = p(-J(θi)), where
p is a positive constant.9 Because only one design will be selected each
time, we have

()select
1

1
N

i
i

P θ
=

=∑ and ()select

a

i
iP p
N

θ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

.

So, we have

1

a

N
a

i

Np
i

=

=

∑
.

Because
1

1 0 1

N aN
a a

i

Ni d
a

ξ ξ
+

=

≥ =
+∑ ∫ ,

we have
1ap

N
+

≤ .

Then
()

() ()

() ()

()

1

1

1 % 1

1

11
1 %

1
1

1 11 1

1 1

11

1

1 % 1

1 % 1 % 1

11 % .

a

a

N g a

i

a
N g a

a
a a

a a

a a

a a

a

a

iP p
N

N g
p d

N N

N g N g

N N

g
N

ξ ξ

⎡ ⎤
− −⎢ ⎥

⎢ ⎥

=

+
⎡ ⎤

−⎢ ⎥
⎢ ⎥

+

+ +

+ +

+

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

⎡ ⎤− −⎢ ⎥⎢ ⎥≤ ≤

⎡ ⎤ ⎛ ⎞− − +⎜ ⎟⎢ ⎥⎢ ⎥ ⎝ ⎠≤ ≤

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑

∫

9 Admittedly, this is a rather specialized assumption. We make it here to illus-

trate the fact that additional structural information about a problem is needed if we
need to make headway on the issue of performance value. Results of this section
are rather preliminary and more of an anecdotal nature. More research is neces-
sary.

success

Additional Extensions of the OO Methodology 173

When N goes to infinity, ((1-g%)1/a+1/N)a+1 converges to (1-g%)(a+1)/a

<1-g%, so Psuccess>g%. Thus in this example we obtain a lower bound of
Psuccess which is independent from the problem type (described by the value
of a). We can use Eq. (7.27) to calculate the number of trials we need in
order to find at least one truly good enough design (w.r.t. value) with high
probability.

Example 2
Though this lower bound of Psuccess is obtained under the assumption that
the selection probability is proportional to the absolute performance value
of designs, we find by simulation that it actually also holds for horse race
rule, which are frequently used in real life problems. To see this, we do the
following experiments. Assume the observation noise is i.i.d. N(0,0.5),
which is not a small noise since the range of performance value is only
[–1, 0]. The performance function is still J(θi) = –(i/N)a with N = 1000 and
a ranges from 1 to 100. Define the good enough set as Gv ≡ {θi | J(θi)≤–0.9},
i.e., g% = 0.1. The success probability for the observed best design to be a
good enough design is estimated from 10000 trials. From Fig. 7.16, we can
see that the success probability of horse race rule is well above the lower
bound for the range of a tested.

Fig. 7.16. Comparison between Psuccess of horse race rule and the lower bound g%
(Lin 2000a) © 2000 IEEE

174 Chapter VII

Example 3
We also test this lower bound in other types of problems. Suppose the true
performance of the designs is independently drawn from the standard nor-
mal distribution N(0,1). This is a generic representation of many real world
problems. For example, the distribution of tour lengths of traveling sales-
man problems is well modeled by a normal distribution (Stadler and
Schnabl 1992). The observation noise is i.i.d. N(0,0.5). The good enough
set is defined as () (){ }v 0.9 min

ii i iG J Jθθ θ θ≡ ≤ − , i.e., g% = 0.1. The
success probability and the average percentage of the good enough set in
the overall design set are compared, with N ranging from 20 to 1000. Fig.
7.17 shows that the relative size of the good enough set, i.e., |Gv|/N, ap-
proaches 0 when N increases. On the other hand, the success probability
floats well above 0.5.

Fig. 7.17. Results of horse race rule when the true performances are normally dis-
tributed (Lin 2000a) © 2000 IEEE

As a summary of the second way to apply OO when the good enough
set is defined in value, the key point is to estimate or to obtain a lower
bound of Psuccess. More problem information helps to obtain a tighter lower
bound. The numerical tests show that Psuccess is not bad on many problems.
In multiple trials, we can hardly fail to find at least truly good enough
(w.r.t. performance value) designs.

In this section we discuss some ideas to apply ordinal optimization when
the good enough set is defined w.r.t. to performance value instead of per-
formance order. The presented ideas are worthy of consideration in real
applications. In general, however, it is still an open question how to find a
good enough design efficiently. Future studies on this problem are needed.

0.7

0.6

0.5

0.4

0.3

S
uc

ce
ss

 p
ro

ba
bi

lit
y

 /
pe

rc
en

ta
ge

0.2

0.1

0
0 200 400 600

N

GV /N

Psuccess

800 1000 1200

Additional Extensions of the OO Methodology 175

6 Combination with other optimization algorithms

As mentioned in Chapter II, ordinal optimization can be easily combined
with other optimization algorithms. Since OO was developed in 1992,
there have been many successful combinations with other optimization
algorithms, such as genetic algorithm (GA), simulated annealing (SA),
tabu search (TS), Lagrangian relaxation (LR), stochastic dynamic pro-
gramming (SDP), hill climbing (HC), and nested partition, just to name a
few. In this section, we discuss the basic ideas of these combinations, and
use some numerical examples to show how the combination with other al-
gorithms helps to improve the design quality and computationally effi-
ciency.

The successful combination of OO with other optimization algorithms is
mainly based on the following three ideas (Table 7.4). First, regard other
optimization algorithms as selection rules in OO. OO can be regarded
as a two-stage procedure to narrow down the design space. First from the
entire design space to the set of N randomly sampled designs ΘN, which
hopefully is a reasonable representative of Θ, and then from ΘN to the se-
lected set S. Different from the heuristics and experienced based method to
narrow down the search space, OO quantifies the confidence level (P, say
no less than 0.95) of containing some good enough designs of the entire
design space during this narrow down process. In many meta-heuristics-
based optimization algorithms10, such as genetic algorithm (Holland 1975;
De Jong 1975; Goldberg 1989; Chambers 1995, 1999, 2000), simulated
annealing (Kirkpatrick et al. 1983, Metropolis et al. 1953; Van Laarhoven
and Aarts 1987; Aarts and Korst 1989), tabu search (Glover 1986, 1989,
1990; Glover and Laguna 1997), and ant colony optimizer (Dorigo 1992;
Dorigo and Di Caro 1999; Dorigo and Stützle 2004; Dorigo et al. 1996,
1999), although we know the algorithm converges to global optimum as-
ymptotically, we do not know the global goodness of the design thus found
after finite number of iterations. By regarding these meta-heuristics-based
optimization algorithms as special selection rules of OO, we can quantify
the solution of this problem, and supply an easy way to determine the stop-
ping criteria for these algorithms, which is a major concern in many practi-
cal applications of these algorithms. For example, in Subsection 6.1 we
will report the work in (Zhang 2004) on the combination of GA and OO
and the work in (Yen et al. 2004) on the combination of SA and OO.

Second, apply OO to optimize the parameter of other algorithms.
The performance of some algorithms is sensitive to the parameter settings.

10 Meaning general algorithms based on a set of heuristic principles.

176 Chapter VII

For example, in genetic algorithms these parameters are the population
size, the mutation probability, the cross-over probability, the mutation op-
eration and cross-over operation; in simulated annealing these are the ini-
tial temperature, the temperature decaying ratio, and the inner number of
iterations in each temperature for simulated annealing. Experts of these
algorithms may know how to determine the appropriate parameter settings
for different problems. In general, however, it is a difficult task. Since for
most problems the only way to accurately evaluate the performance of an
algorithm under a parameter setting is to use simulation, we can formulate
a simulation-based optimization problem to find the appropriate parameter
setting for an algorithm. OO is useful in this sense to find good parameter
settings using short number of simulations. For example, in Subsection
6.2, we will report the work in (Zhang 2004) on the application of OO to
find good parameter settings of GA and SA.

Third, apply the basic ideas of OO. OO justifies theoretically the two
basic ideas, namely goal softening and ordinal comparison, which are per-
vasively adopted in engineering practices. There are various ways to apply
these two ideas during the optimization process of other algorithms. For
example, Mori and Tani combined OO and Tabu search (Mori and Tani
2003); Sullivan and Jacobson combined OO and hill climbing (Sullivan
and Jacobson 2000); Luo et al. combined OO, GA, and linear program-
ming to solve mixed integer programming problem (Luo et al. 2001); Luh
et al. combined Lagrangian relaxation, stochastic dynamic programming,
and OO in (Luh et al. 1999). Comparing with the first two ideas in Table
7.4, these combinations are more problem dependent. We will not discuss
these combinations in details. Interested readers may refer to the corre-
sponding papers for technical details, and (Shen and Bai 2005) for publica-
tions on other such combinations.

Table 7.4. Combination of OO with other optimization algorithms

Ideas Examples
Other algorithms as selection rules in
OO

GA+OO (Zhang 2004), SA+OO (Yen
et al. 2004)

Apply OO to optimize the parameter
settings of other algorithms

OO for GA and SA (Zhang 2004)

Apply the ideas of goal softening and
ordinal comparison during the optimi-
zation process of other algorithms

Tabu search + OO (Mori and Tani 2003),
Hill Climbing + OO (Sullivan and
Jacobson 2000), GA + OO + linear pro-
gramming (Luo et al. 2001), Lagrangian
relaxation + OO + stochastic dynamic
programming (Luh et al. 1999)

Additional Extensions of the OO Methodology 177

Before we proceed to the detailed discussion on the combinations, we need
to make it clear that the above classification of the combinations is only a
rough one and incomplete. It is still an open question how to combine OO
with other optimization algorithms. We mention the above three ideas to
give the readers some suggestions if they want to do such combinations.
We do not want the readers to regard these ideas as restrictions.

6.1 Using other algorithms as selection rules in OO

Genetic algorithms (GA) and simulated annealing (SA) are known as use-
ful meta-heuristics to solve optimization problems with large search space.
One difficulty is to determine the stopping criteria. When we regard GA
and SA as selection rules, we can use OO to quantify the total number of
designs we need to sample in order to find some truly good enough designs
with high probability11. In this way, we find an easy way to determine the
stopping criteria. In subsection 6.1.1, we show the combination of GA and
OO to deal with deterministic and stochastic optimization problems. Nu-
merical examples on a flow job problem (defined later) shows promising
results in terms of design quality. The concept of crude model supplies an
easy way to incorporate problem information successively when the opti-
mization process evolves. In subsection 6.1.2, we show the combination of
SA and OO, and the use of a crude model based on neural networks, which
can be easily updated during the optimization process. The performance of
this method was demonstrated on a trim-loss problem.

6.1.1 GA+OO

In this subsection we mainly report the work in (Zhang 2004) on the com-
bination of GA and OO. Genetic algorithm is invented by John Holland,
and known as a meta-heuristic to simulate the natural selection process
(Holland 1975). Although there are various implementations, the basic
procedure of GA contains encoding, initialization, evaluation, and genetic
operations (usually including copy, cross-over and mutation). In GA, each
design is encoded by a string (e.g., binary, decimal or real), like the DNA
in the nature. First a group of designs are randomly sampled from the de-
sign space and called the initial population. A fitness function is used to
evaluate the goodness of these designs. The fitness function is usually (a
modified version of the) objective function. The design with higher fitness

11 The selection of population from old generation to new generation in GA is

similar to the horse race selection rule, and cross over or mutation can be inter-
preted as broadening the sampling.

178 Chapter VII

is selected with higher probability to enter the following genetic opera-
tions. Each time when a pair of designs is selected, the corresponding
strings are decomposed into small pieces. By copying and pasting these
pieces into new strings, we obtain a pair of new designs. To imitate the
mutation in the natural selection, some pieces of the strings are changed
with probability. This copy-crossover-mutation procedure continues until
we generate a required number of new designs. We compare the fitness of
all the new designs (sometimes also compare with a best-so-far design),
keep the top-n ones be the next population, and reject the rest. This new
population is evaluated, and the next population is produced through the
genetic operations. This procedure continues until the stopping criterion is
satisfied, say the number of designs thus explored exceeds a given number.

Ideas
In the practical application of GA, there are usually three difficulties: how
to choose an appropriate fitness function, how to determine the appropriate
stopping criterion, and how to deal with the time-consuming simulation-
based performance evaluation of fitness. The first is due to the fact that
the fitness function has a big impact on the explorability of GA. Since the
probability used in the genetic operations of traditional GA depends on the
evaluation of the fitness function, where a bad one could make GA stuck
to local minimum. The second is due to the fact that GA does not guaran-
tee the global goodness of the solution thus found. It is a problem when to
stop the iteration. The third one of computational burden is common in all
the simulation-based optimization problems. The basic idea of GA+OO is
to apply the OO method to deal with these three difficulties.

For the first difficulty that the performance of GA is sensitive to the fit-
ness function, the reason is that in traditional GA the value of the fitness
function is usually used to determine the crossover and mutation probabil-
ity of each design in the population (Zhang 2004). OO suggests to regard
the original objective function as the true model, and the fitness function as
the crude model.12 According to OO, we should select the observed good
ones instead of only the observed best one. Following this idea, in GA+OO
after we use the fitness function to evaluate the designs in the current
population, we keep the observed good ones, and reject the rest. These ob-
served good designs are used in the cross-over and mutation to produce
the next population. Furthermore, the crossover and mutation probability

12 The literature of GA does not provide guidelines on how to construct a fit

ness function from a performance function. However from the viewpoint of OO,
fitness can be considered as a crude model of the performance to ease the compu-
tational burden.

Additional Extensions of the OO Methodology 179

of these designs are set to be related to the observed order instead of the
observed value of the fitness function, which makes the performance of
GA+OO less sensitive to the fitness function.

For the second difficulty that GA does not guarantee the global good-
ness of the design finally found, by regarding GA as a selection rule,
GA+OO allows us to quantity the global goodness of the design(s) thus
found. Recall that in Chapter II we have mentioned that if we blindly pick
N designs from the entire design space, the probability that none of these N
designs is within top-g% of the entire design space is (1-g%)N. Thus the
probability that at least one of the N designs is truly top-g% is 1–(1-g%)N.
If we want this probability to be no less than P (say P = 0.95), we have

()

()
ln 1

ln 1 %
P

N
g

−
≥

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

.

 (7.28)

It is usually believed (and reasonable to believe) that GA finds designs bet-
ter than (or at least no worse than) blind pick. If we regard N as the designs
sampled in the entire optimization process of GA, Eq. (7.28) calculates the
upper bound of N, after the user defines the quality of the solution that s/he
wants (i.e., how good must be the designs does s/he want (g%) and with
how high a probability (P)). This can serve as both the stopping criterion
and/or the size of the initial population depending on the approximate an-
swer one wishes to get.

For the third difficulty of time-consuming simulation-based perform-
ance evaluation, in GA+OO, a crude model is used in the place of per-
formance function to separate the good from the bad with high confidence
on the group of designs in each generation. Furthermore, many selection
rules in OO help to allocate the computing budgets appropriately. For ex-
ample, the population size in GA during each iteration is usually fixed.
The OCBA (introduced in Section 4) can be used, instead of equally allo-
cating the computing budgets to all the designs in the population as in the
traditional GA.

These are the basic ideas of GA+OO. As a comparison, we list the basic
procedures of both GA and GA+OO in Table 7.5, and use some numerical
results on the flow shop problem in the next subsection to demonstrate the
advantage of GA+OO, comparing with traditional GA.

180 Chapter VII

Table 7.5. Comparison between the basic procedures of GA and GA+OO

GA GA+OO
Encoding Encoding
Initialization Initialization. The size of the initial population is

determined by Eq. (7.28).
Evaluation Evaluation. When there are observation noises, a

crude model is used, and the OCBA is used for
allocating the computing budget.

Cross-over Cross-over. The observed top-n designs in the
population are selected for cross-over.

Mutation Mutation. The observed top-n designs in the
population are mutated with probability.

Update the population Update the population
Check the stopping criteria. Check the stopping criteria, which is the total

number of designs explored during the process.
This number is determined by Eq. (7.28).

Numerical results
Flow shop problem describes the scheduling problem in a manufacturing
system. There are m machines and n parts. At any time, each machine can
work on no more than one part, and each part can be machined by no more
than one machine. The machining of a part takes some time. Once a part
starts the machining on a machine, there should be no interruption until the
machining finishes. There are specific procedures for each part. Each pro-
cedure describes the requirement on the order to use the machines. In a
flow shop problem, the procedures of all the parts are the same. If some
procedures are different, we have a job shop problem, which in general is
more difficult to solve. To solve a flow shop problem, we need to tell each
machine what order to follow, such that the time to finish all the parts
(which is usually called the makespan) is minimized. In terms of our ter-
minology, a schedule is a design and the makespan is our system perform-
ance. A flow shop problem with more than 3 machines is considered as an
NP-hard problem, which means the problem is very difficult to solve.

(Zhang 2004) reported two groups of experiments. In the first group, the
processing time of each part on each machine is deterministic, so the per-
formance evaluation is easy, and we focus on comparing the robustness of
GA and GA+OO w.r.t. problem instances. The comparison is over 29
benchmark problems (including the 8 testing problems car1, car2, …, car8
from (Carlier 1978) and the 21 testing problems rec01, rec03,… rec41
from (Reeves 1995)), the data of which are available from OR-Library
(OR-Library). The results are shown in Table 7.6, where C* is the minimal

* *

makespan, the relative error (RE) is defined as (C-C)/C × 100% with C

Additional Extensions of the OO Methodology 181

Table 7.6. Comparison on flow shop with deterministic processing time, where m
is the number of machines, n is the number of parts, and RE is the relative error
(Zhang 2004)

Problem instance GA+OO GA
Problem
index

n,m C* BRE ARE WRE BRE ARE

Car1 11,5 7038 0 0 0 0 0.27
Car2 13,4 7166 0 0 0 0 4.07
Car3 12,5 7312 0 0 0 1.19 2.95
Car4 14,4 8003 0 0 0 0 2.36
Car5 10,6 7720 0 0 0 0 1.46
Car6 8,9 8505 0 0 0 0 1.86
Car7 7,7 6590 0 0 0 0 1.57
Car8 8,8 8366 0 0 0 0 2.59
Rec01 20,5 1247 0 0.04 0.16 2.81 6.96
Rec03 20,5 1109 0 0.0 0 1.89 4.45
Rec05 20,5 1242 0 0.21 0.32 3.82 2.63
Rec07 20,10 1566 0 0.79 1.15 1.15 5.31
Rec09 20,10 1537 0 0.35 1.17 3.12 4.73
Rec11 20,10 1431 0 0.91 3.07 3.91 7.39
Rec13 20,15 1930 0.26 1.08 1.66 3.68 5.97
Rec15 20,15 1930 0.10 1.23 2.21 2.21 4.29
Rec17 20,15 1902 0 2.08 3.21 3.15 6.08
Rec19 30,10 2093 0.14 1.76 3.01 4.01 6.07
Rec21 30,10 2017 1.44 1.64 3.12 3.42 6.07
Rec23 30,10 2011 0.85 1.90 3.08 3.83 7.46
Rec25 30,15 2513 1.31 2.67 3.74 4.42 7.20
Rec27 30,15 2373 0.97 2.09 3.58 4.93 6.85
Rec29 30,15 2287 1.88 3.28 5.95 6.21 8.48
Rec31 50,10 3045 0.43 1.49 2.59 6.17 8.02
Rec33 50,10 3114 0.61 1.87 4.05 3.08 5.12
Rec35 50,10 3277 0 0 0.33 1.46 3.30
Rec37 75,20 4951 2.46 3.41 4.30 6.56 8.72
Rec39 75,20 5087 1.63 2.28 3.24 6.39 7.57
Rec41 75,20 4960 2.30 3.43 4.69 7.42 8.92

the design found by the algorithm. BRE is the best RE, ARE is the average
RE, and WRE is the worst RE.

From Table 7.6, we can see that for GA+OO, the designs thus found is
very close to the truly best; the ARE does not exceed 3.5% on all the 29 test
problems; the BRE and WRE are usually close, which means GA+OO is ro-
bust w.r.t. problem instances. Thus we conclude that GA+OO beats GA in
the sense of design quality and robust w.r.t. to problem instances. In the
above comparison, GA+OO and GA use the same initial population size,

182 Chapter VII

iteration number, and genetic operators (i.e., partially mapped crossover and
SWAP in mutation). Their difference, as shown in Table 7.5, mainly lies in

(1) how the performance is evaluated and

(2) the probability of copying (for crossover and mutation).

For the first difference, GA+OO allows the user to use a crude model to
roughly but quickly estimate the performance. In Table 7.6, since there is
no observation noise, we do not use such crude model, so GA and GA+OO
use the same performance evaluation technique in that example. However,
when there is observation noise, GA tries to evaluate the fitness function
accurately, but equally allocate the computing budgets among all the de-
signs. GA+OO uses OCBA to allocate the computing budgets. In the fol-
lowing we will use another example to compare GA and GA+OO when
there are observation noises (in Table 7.7).

For the second difference, GA sets the probability of copying (for cross-
over) proportional to the performance of the design (measured by the fit-
ness function). GA+OO first rejects the observed bad designs, and sets the
probability of copying exponential to the observed order of the design.
e.g., the i-th design has a copying probability of 2l-i/(2l-1), where l is the to-
tal number of observed good designs.13 In Table 7.6, since the processing
time is deterministic, there is no observation noise. The only difference lies
in the copying probability.

In the second group of experiments, suppose the processing time of each
part on each machine is stochastic, following a uniform distribution. Now
only a noisy performance observation is available, so we need to be careful
to allocate the simulation budget among the designs in the population.
Suppose we can run at most 2000 simulations in each iteration. As a com-
parison, we equally allocate the computing budgets to all the designs in
the population in traditional GA, but use OCBA to do the allocation in
GA+OO. Since the design found by each method is random in each run,
(Zhang 2004) ran both GA+OO and GA 20 times in each of the 29 bench-
mark problems thus considered, and measured the best expected makespan
(BEM), the average expected makespan (AEM), and the worst expected
makespan (WEM). The numerical results are shown in Table 7.7.

13 Unfortunately, as shown in (Zhang 2004), the selection of the values of l has

a big impact on the performance of GA+OO. If the value of l is too small,
GA+OO may be stuck at local minimum. If the value of l is too large, more bad
designs are considered and evaluated in each iteration, and this decreases the effi-
ciency of the algorithm. In Table 7.6, we set l = 60. However, it is still an open
question how to determine the value of l a priori.

Additional Extensions of the OO Methodology 183

Table 7.7. Comparison on flow shop with stochastic processing time (Zhang
2004)

Problem instance GA+OO GA
Problem
index

n,m C* BEM AEM WEM BEM AEM WEM

Car1 11,5 7038 7038 7038.0 7038 7038 7038.0 7038
Car2 13,4 7166 7166 7187.0 7376 7166 7197.5 7376
Car3 12,5 7312 7312 7333.1 7399 7312 7345.8 7422
Car4 14,4 8003 8003 8003.0 8003 8003 8003.0 8003
Car5 10,6 7720 7720 7740.6 7779 7720 7768.8 7821
Car6 8,9 8505 8505 8521.3 8570 8505 8544.0 8570
Car7 7,7 6590 6590 6590.0 6590 6590 6590.0 6590
Car8 8,8 8366 8366 8366.0 8366 8366 8366.0 8366
Rec01 20,5 1247 1247 1250.6 1272 1249 1269.5 1326
Rec03 20,5 1109 1109 1113.5 1121 1111 1114.6 1128
Rec05 20,5 1242 1242 1244.6 1253 1245 1251.1 1275
Rec07 20,10 1566 1566 1583.3 1599 1568 1593.3 1650
Rec09 20,10 1537 1537 1564.6 1588 1543 1571.2 1605
Rec11 20,10 1431 1431 1461.1 1517 1442 1482.7 1551
Rec13 20,15 1930 1930 1961.8 2007 1966 1991.8 2022
Rec15 20,15 1950 1950 1980.1 2020 1973 2004.6 2069
Rec17 20,15 1902 1909 1948.2 1980 1954 1988.2 2042
Rec19 30,10 2093 2120 2144.5 2205 2135 2173.6 2218
Rec21 30,10 2017 2046 2065.7 2088 2061 2099.6 2142
Rec23 30,10 2011 2043 2056.7 2077 2049 2097.4 2150
Rec25 30,15 2513 2564 2597.7 2640 2595 2639.7 2671
Rec27 30,15 2373 2411 2445.3 2494 2423 2483.7 2531
Rec29 30,15 2287 2322 2383.9 2453 2380 2448.3 2507
Rec31 50,10 3045 3129 3167.4 3215 3131 3224.7 3245
Rec33 50,10 3114 3114 3167.4 3225 3140 3219.9 3233
Rec35 50,10 3277 3277 3298.3 3347 3284 3349.4 3370
Rec37 75,20 4951 5166 5241.3 5352 5276 5340.8 5368
Rec39 75,20 5087 5252 5313.8 5440 5298 5407.3 5486
Rec41 75,20 4960 5193 5258.1 5378 5227 5390.0 5414

In Table 7.7, the AEM shows that GA+OO has a better average per-
formance than GA. Also, the AEM, BEM and WEM of GA+OO are close
to each other.

In summary, both groups of numerical results show that the combination
of OO with GA helps to improve the performance of GA.

6.1.2 SA+OO

In this subsection, we mainly report the work in (Yen et al. 2004) on the
combination of SA and OO.

184 Chapter VII

Ideas
Simulated Annealing is a stochastic method for solving combinatorial op-
timization problems based on ideas from statistical mechanics. The theory
has been extensively developed (Collins et al. 1988) and has many applica-
tions to different problems as discussed in the literature (Johnston et al.
1989; Eglese 1990; Ku and Karimi 1991; Koulamas et al. 1994; Painton
and Diwekar 1994; Falcioni and Deem 2000). The typical SA scheme
contains: initialization of the reference design, trial design generation, per-
formance evaluation, reference design updating, and temperature reduction
(also shown in the left column in Table 7.8). In a typical SA scheme, a ref-
erence design is given initially. A “trial” design in the neighborhood of this
reference design is generated. The objective function of this trial design is
calculated. If it is lower than the objective function of the reference design,
the reference design is replaced by the trial design. Otherwise, an exponen-
tial type transition probability is applied to determine whether the design
should be updated:

() ()
() ()()

1,

exp , otherwise

t r

t r
update

J J

J JP

T

θ θ

θ θ

<

− −=

⎧
⎪⎪ ⎛ ⎞⎨ ⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

 (7.29)

Table 7.8. Comparison of the basic procedures of SA and SA+OO

SA SA+OO
Initialize the reference design Initialize the reference design
Generate a trial design Generate a trial design
Evaluate the trial design Crude-model based evaluation of the trial

design
Update the reference design with
probability, which is affected by the
temperature.

Update the reference design

Reduce the temperature gradually Reduce the temperature gradually
Generate a new trial design, and repeat
the above process until the temperature
decreases to a freeze value.

Generate a new trial design, and repeat
the above process until the temperature
decreases to a freeze value.

where T is the annealing temperature in SA, search procedure, θ r is the
reference design and θ t is the trial design. The temperature is reduced
gradually according to a predetermined annealing schedule to ensure that
the system is not trapped in a local minimum. The traditional SA tries to
obtain the accurate performance evaluation of the trial design, which is

Additional Extensions of the OO Methodology 185

practically infeasible when the evaluation is simulation-based. OO sug-
gests using a crude model instead, which saves the computing budgets.
The basic produce of SA+OO is shown in Table 7.8. (Yen et al. 2004) ap-
plying this method to deal with a trim-loss problem. We briefly report their
results in the rest of this subsection.

Numerical results

Fig. 7.18. A schematic illustration of the trim-loss problem (Yen et al. 2004)

The trim-loss problem appears when a set of ordered product reels are to
be cut from raw paper reels or other reels with specified widths. The cut-
ting process is simply a winding process, where the raw paper is wound
through the slitter and cut by a set of knives positioned on the line, see Fig.
7.18. The product width can rarely be combined to the exact raw paper
width, therefore there is a waste during the cutting. The main objective is
to minimize the trim loss while demanded specifications are satisfied. To
test the performance of SA+OO, Yen et al. considered a problem instance,
the size of the design space of which is in the order of 1019, and the best
design of which is with performance 19.6 and was obtained by (Floudas
et al. 1999).

Yen et al. have applied the SA+OO to deal with this problem. They
use a generalized regression neural network (GRNN) (Specht 1991) as the
crude model for performance evaluation. Furthermore, they apply this
SA+OO procedure multiple times. Each time when the previous SA+OO
procedure finishes, they record the reference designs that have been used,
use longer time simulation to obtain more accurate performance evaluation
of these designs, and update the neural network using this information.

Trim loss

186 Chapter VII

This updated neural network will be used in the next iteration of the
SA+OO procedure. Though it is reasonable to believe that SA is no worse
than Blind Pick and Horse Race in general, it is of interest to find out
how much better can SA be. They compare SA+OO only with SA, BP,
and HR+GRNN, where HR+GRNN means to use Horse Race to find the
observed good designs that are then used to update the GRNN. The nu-
merical results are shown in Table 7.9.

From Table 7.9, we observe that SA+OO beats SA, SA beats
HR+GRNN, and HR+GRNN beats BP in general. Also SA+OO converges
to the optimum (19.6) after 180 evaluations of the objective functions,
while it takes SA 5000 evaluations to do the same thing. In this sense,
SA+OO saves the computing budget by more than 25 folds.

Table 7.9. Search results of the trim loss problem (Yen et al. 2004)

Performance evaluation Search methods
of performance

evaluations
Average Standard

deviation
Time

BP 200 29.2 2.3 0.2
 500 25.7 3.0 0.7
 1000 25.6 2.2 2
 2000 23.5 1.9 12
 5000 22.4 0.8 82
HR+GRNN 200 23.3 1.3 13
 500 21.9 0.9 59
 1000 21.1 0.4 148
 2000 20.7 0.6 359
 5000 20.0 0.2 1873
SA 200 22.5 0.9 27
 500 21.5 0.9 81
 1000 20.1 0.7 113
 2000 19.8 0.2 262
 5000 19.6 0 493
SA+OO 120 22.4 1.5 7
 140 20.5 0.9 17
 160 19.7 0.2 31
 180 19.6 0 48
 200 19.6 0 58

6.2 Simulation-based parameter optimization for algorithms

algorithms, such as GA and SA, which is how to choose the appropriate
 As mentioned before, there is a common difficulty for many meta-heuristic

Additional Extensions of the OO Methodology 187

parameter setting for a specific problem instance. For example, in GA
some parameters can be tuned, such as the size of the population, the prob-
ability in the cross-over, and the probability in the mutation. There are
also different ways to do the cross-over, e.g., partially mapped crossover
(Goldberg and Lingle 1985), a two-point linear order crossover (Falkenauer
and Bouffoix 1991), one-point crossover (Reeves 1995), and Non-Abel
crossover. In SA, some parameters can be tuned, such as the initial tempe-
rature, the number of trial designs to sample under each temperature, and the
annealing rate of the temperature. Giving an optimization problem, the per-
formance of a meta-heuristic algorithm might be sensitive to the parameter
settings, but in general we do not know which parameter setting will lead
to the best performance. Of course, due to the heuristic nature of underlin-
ing optimization algorithms, there is generally no guarantee best solution
that can be found even under the “optimal” parameter setting. However, it
is still worthwhile to use suitable parameters because bad parameter
settings will search inefficiently. Here OO can help. To get a reasonable
setting for parameters, it would be too time consuming, if we test all the
parameter settings of the same problem. Instead, one can formulate a two-
level simulation-based optimization problem (Fig. 7.19). On the high level,
each design is a possible parameter setting for the meta-heuristic algorithm,
say GA. On the low level, we use the GA under the parameter setting speci-
fied on the high level to solve the given optimization problem. The solution
on the low level problem will be used to measure the performance of the de-
sign (i.e., the parameter setting) specified on the high level. In other words,
the low level optimization is a simulation to evaluate the performance of the
design. The high level optimization problem is a simulation-based optimiza-
tion problem, and we can use OO to solve this high level problem.

Since there is randomness during the optimization process of GA, we
need to run the low level optimization many times to evaluate the perform-
ance of a design in the high level problem (i.e., a parameter setting of GA)
accurately. OO suggests using a crude model instead, e.g., only a small
number of iterations in the low level optimization. Also, the selection rule
such as OCBA can be used to allocate the computing budgets appropri-
ately in the high level problem. These are the basic ideas of applying OO
to find the appropriate parameter setting of the meta-heuristic algorithms
for a given problem. (Zhang 2004) demonstrated how to use this idea to
determine the appropriate parameter setting of GA and SA in the flow
shop problem. Interested readers may refer to (Zhang 2004) for the techni-
cal details and results.

188 Chapter VII

Fig. 7.19. Two-level simulation-based optimization for algorithms

6.3 Conclusion

In previous chapters, we claim that OO is a complementary tool for other
optimization algorithms. In this section we further discuss possible ways to
do the combination using some examples. These examples show that OO
helps when used jointly with other heuristic algorithms in a reasonable
way. Of course, we do not mean they are the only and the best way to do
the combination. Up until now, to give the readers some guidelines in the
application, we have mentioned three ideas to do the combination: regard-
ing other algorithms as selection rule in OO, applying OO to find the
appropriate parameter setting of the algorithm for a given problem, and
applying the ideas of ordinal comparison and goal softening during the op-
timization process of other algorithms. It is still an on going topic how to
combine OO with other algorithms. We hope readers to regard the above
ideas only as suggestions, but not restrictions.

Finally, it is important to keep in mind that OO is complementary to and
not meant as substitute for traditional optimization methods. Furthermore,
despite its many successes, OO is not at all useful for the needle-in-the-
haystack type of problems where nothing but the best will do. Thus, it can-
not solve NP-hard combinatorial problems (although is can get close to the
best in “order”). Besides, proximity in order does not imply proximity in
value. Additional structural information on the problem are needed if we
want good enough solution in terms of performance value as discussed in
Section 5 above.

Low level
GA under a specific parameter setting

High level
Design : parameter setting of GA

Optimization method: OO
Performance evaluation of : simulation-based

Chapter VIII Real World Application Examples

In the previous chapters we have introduced the methods of OO for single-
objective unconstrained optimization (Chapter II), multi-objective optimiza-
tion (Chapter IV), constrained optimization (Chapter V), and for simple and
good enough strategies (Chapter VI). The purpose of this chapter is to dem-
onstrate how these methods can be applied to real world problems. We con-
sider four problems: three real world applications and a benchmark problem
in team decision theory. In Section 1, we consider a scheduling problem for
apparel manufacturing problem (Lee 1997, Bouhia 2004). We demonstrate
how the OO method introduced in Chapter II helps to save the computing
time by 2000 folds comparing with the brute force method in this problem.
In Section 2, we consider a turbine blade manufacturing process optimiza-
tion problem (Yang 1998 and Yang et al. 1997). The objective function in
this problem is not stochastic simulation but deterministic complex calcula-
tion. In Section II.6 we have mentioned that OO can also be applied in this
type of problem. We justify this through this application. Furthermore, we
show how to obtain better estimate of the size of the selected set through
appropriate interpolation when the noise level is different from the three
values considered in the UAP table in Section II.5. In Section 3, we consider
a remanufacturing system performance optimization problem (Song et al.
2005a, 2005b). There are constraints in this problem. We first demonstrate
how to use COO introduced in Chapter V to deal with this problem directly.
Then to better describe the requirements in engineering practice, we refor-
mulate the problem to a two-objective optimization problem, and use VOO
introduced in Chapter IV to solve the problem. We also demonstrate how we
can incorporate the problem information to obtain less conservative estimate
of the size of the selected set when the noise level is different from the val-
ues considered in the VOO-UAP table in Section IV.2. In Section 4, we
consider the Witsenhausen problem, which is a famous problem in team
decision theory and has not been solved for nearly forty years since the
problem was first proposed by Witsenhausen in 1968 (Witsenhausen 1968).
This is a strategy optimization problem, which has an extremely large search
space. We demonstrate how OO helps to discover properties of the good
strategies, thus successively narrows down the search space, and substan-
tially improves the strategy that has been obtained before the application of

190 Chapter VIII

OO to this problem. Based on the properties thus discovered, Lee et al.
obtained the best-so-far strategy for this problem (Lee et al. 2001). We
also demonstrate how to use the OBDD introduced in Chapter VI to quan-
tify the complexity of the milestone solutions to this famous problem.
Combining OO with OBDD, we demonstrate how to search for a good and
simple strategy in this problem.

As in all cases, we present only the salient features of the problem, the
methodology used, together with enough results to show the improvement
obtained and/or savings achieved. Readers can consult the original refer-
ences for minute details.

1 Scheduling problem for apparel manufacturing

In this section, we apply the OO method in Chapter II to solve a scheduling
problem for apparel manufacturing which are subject to the whims of fash-
ion. The manufacturing system is characterized by the co-existence of the
two production lines, i.e., one with long lead time and low cost, the other a
flexible one with short lead time and high cost. The goal is to decide: (1) the
fraction of the total production capacity to be allocated to each individual
line, and (2) the production schedules so as to maximize the overall profit
and yet avoid stock shortage. The problem is difficult and it is prohibitive to
search for the best solution in view of the tremendous computing budgets
involved. Using ordinal optimization introduced in Chapter II, we have
obtained very encouraging results – not only have we achieved a high pro-
portion of “good enough” designs but also tight profit margins compared
with a pre-calculated upper bound. There is also a saving of at least 2000
folds of the computation time if brute-force simulations were otherwise con-
ducted (Lee 1997). The rest of this section is organized as follows. In Sec-
tion 1.1, we introduce the background of this problem. A detailed problem
formulation is presented in Section 1.2, together with a discussion on the
challenges to solve the problem. Section 1.3 introduces the application of
ordinal optimization in this problem, including how to randomly sample
designs and how to construct a crude model, which is computationally fast,
evaluating the performance of the designs roughly, and useful to compare
the designs. The application procedure of OO in this scheduling problem is
also summarized. Section 1.4 gives several experimental results to show
how ordinal optimization helps to save the computing budgets by 2000
folds, and the performance of the good enough design found by OO is close
to the upper bound of the performance of the optimal design. We make a
brief conclusion in Section 1.5.

Real World Application Examples 191

1.1 Motivation

In the past thirty years, technological advancements, international competi-
tions and new market dynamics have had major impacts on the North
American apparel manufacturing industry. The conventional analysis of the
apparel industry predicts that the apparel industry will collapse rapidly and
migrate to nations with low labor costs. Although apparel industries still
exist in the United States nowadays, intense competition encourages man-
agement to develop new production and supply methodology in order to
remain competitive (see (Harvard 1995)). One key issue involved is the
allocation of scarce production resources over competing demands. Before
we introduce the detailed scheduling problem from the manufacturer’s
viewpoint in the next subsection, let us first have a big picture of the entire
apparel manufacturing system. A typical apparel manufacturing system is
shown in Fig. 8.1. The retailers receive customer demands, which is usu-
ally random and sometimes have seasonal variations. For example, the
demands on swimsuits are high in spring but low in fall, while the demands
on ties are high on Father’s day and Christmas but low in the rest of the
year. It is an important strategic requirement to satisfy customer demands.
Failing to do so can result not only in lost profits due to reduced sales, but
also the lost of future market share. In order to deal with the randomness in
the customers’ demand, the retailers usually maintain a small inventory of
the apparel. In the apparel market nowadays, customers demand the vari-
ety of products. Thus the retailers have responded to their customers’
wishes by maintaining a small inventory of many different styles of apparel
and demanding rapid (usually weekly) replenishment of store inventory
from the apparel manufacturers.

From the manufacturer’s viewpoint, to fulfill the random replenishment

Fig. 8.1. Material and information flow chart of apparel manufacturing systems

orders from the retailers, an inventory of finished goods is established.

192 Chapter VIII

necessary to meet demands. There are generally two ways to build up a req-
uired inventory level, i.e., using quick or regular production lines. In a regu-
lar production line, work flows from worker to worker in bundles with work
buffers between each work station. The Work-In-Process (WIP) in each
buffer is so large that it takes 20 to 25 days for a garment to pass through all
operations, even though only 10 to 20 minutes of direct labor content is
actually required to assemble the garment. Therefore, this kind of line has a
long lead time, which is defined as the time from the receipt of the order
from the retailers to the time the products are delivered to the finished goods
inventory, i.e., the order is fulfilled. In a quick line, a small group of workers
are cross trained to perform several sewing operations. The group of workers
performs all of the sewing assembly operations on the apparel item. Workers
move from one work station to another thereby minimizing the WIP in the
production line. The cycle time in the quick line is less than the regular line;
however, since a cross-trained worker is more expensive than a regular
worker, and workers are generally less productive, on average, at several
operations than they are at a single operation, the cost of the quick line is
higher. The manufacturer is responsible for making decisions on how to
manage future production on different production lines in order to maximize
the overall manufacturing profit. We discuss more details of the manufac-
turer’s scheduling problem in the next subsection.

1.2 Problem formulation

The manufacturer’s decision and control should determine (1) the fraction
of the total production capacity, γ, to be allocated to each production line;
and (2) the scheduling strategy, α, that decides when to work on which
demand on each production line. These decisions and controls are made
weekly, because the replenishment requirement from the retailers is weekly-
made, and this allows the manufacturer to collect new information (past
production schedules, inventory and demand information) before making
decisions and having control of the future. The goal is to maximize the
overall manufacturing profit, which is the total revenue minus the material
cost, the production cost (i.e., the cut, make, and trim cost and the shipping
cost) and the holding cost for both the items in the finished goods inven-
tory and in the WIP. The overall profit is affected by the demand, the pro-
duction facilities, and the inventory dynamics. In the parlance of control
theory, this is a full blown stochastic feedback optimal control problem.
We will discuss these issues separately in the rest of this subsection. Before
that, we need to introduce the concept of Stock Keeping Unit (SKU),

This inventory is expensive to be maintained and should be no higher than

Real World Application Examples 193

which is used to describe different types of items in the demand and the
production. A SKU is a particular style, fabric and size of an apparel item. A
typical jeans manufacturer may make 10,000 to 30,000 distinct SKUs of
jeans in a year. In a given season of the year, the number of SKUs manufac-
tured may still be as high as 10,000. In our problem, suppose there are M
SKUs in all.

1.2.1 Demand models

We assume that demand is weekly-made and there is no back-ordering,
i.e., the retailers will be given whatever is left in the warehouse when the
demand level is greater than the inventory level for each SKU. Assume the
demand of SKU i at time t, di(t), is max(ζ(t),0), where ζ(t) is a Gaussian
random variable with mean µi(t) and standard deviation σi(t). If we neglect
the truncated effect, average demand of SKU i at time t is equal to µi(t).
When we consider seasonal effects, µi(t) will be a periodic function. Coef-
ficient of variation of SKU i, Cvi(t), is defined as standard deviation divi-
ded by mean, i.e.,

 () ()
()

i
i

i

t
Cv t

t
σ
µ

= . (8.1)

We assume that the coefficient of variation, Cvi(t), is a constant, and we
will use Cvi from now on.

There are usually three types of demands in apparel manufacturing
system.

• Flat Demand
There is no consideration on seasonal effects. The average demand is con-

stant throughout the year, i.e., µi(t) = constant. Fig. 8.2 shows the relationship
between the average demand and real demand under different Cv’s.

• Seasonal – Sine Demand
There is a consideration on seasonal effects and the changes of the aver-

age demand are smooth, i.e., µi(t) = Ai+Bisin(2πt/T) where T is the period
of seasonal effects, and Ai, Bi are the amplitudes of the function, Ai>Bi.
Fig. 8.3 shows the relation between the mean and the real demand under
different Cv’s.

• Seasonal – Impulse demand
Sometimes, there are peak demands caused by promotions or special

holidays or both. A sudden jump in sales is often observed at the beginning

194 VIII

of a peak sales period. The peak sales are often planned to be roughly equally
spaced along a year and last for a short time (several weeks) compared with
the regular selling period. The seasonal demand can be modeled by a two-
level demand function, which is called impulse demand. Fig. 8.4 shows the
relationship between the mean and the real demands under different Cv’s.

Fig. 8.2. Actual demand vs. mean for flat demand case when (a) Cv = 2.0 and
(b) Cv = 0.2

Fig. 8.3. Actual demand vs. mean for seasonal – sine demand case when (a) Cv =
2.0 and (b) Cv = 0.2

Quantity Quantity
1000
900
800
700
600
500
400
300
200
100

0
1 11 21 31 41

1

250

300

200

150

100

50

0

11 21 31 41
Time (Weeks) Time (Weeks)

Mean

Mean

(a) Cv = 2.0 (b) Cv = 0.2

Mean

Mean

Quantity Quantity(a) Cv = 2.0 (b) Cv = 0.2
1200

1000

800

600

400

200

0
1 11 21 31 41 1

0

50

100

150

200

250

300

350

11 21 31 41

Time (Weeks) Time (Weeks)

Real World Application Examples 195

Fig. 8.4. Actual demand vs. mean for seasonal – impulse demand case when
(a) Cv = 2.0 and (b) Cv = 0.2

1.2.2 Production facilities

As aforementioned, we consider two different kinds of production lines, a
quick line and a regular (slow) line; the lead times of which are denoted
respectively as Lq and Ls. Both Lq and Ls are assumed to be known and
constant. By definition, Lq<Ls. The total production capacity is generally
limited by the availability of resources such as equipments. In the apparel
industry, production capacity is generally determined by available labor. In
this problem, we assume the total capacity CP is equal to the weekly aver-
age demand over all SKUs. Regularly, there are 5 working days a week,
and we allow one day overtime, therefore,

Maximum capacity = CPmax = 1.2×CP.

As for the minimum capacity, it is clear that it should be at least greater
than zero, but in most situations, it cannot vary greatly week to week. A rea-
sonable assumption is we have to work at least 4 days a week. Therefore,

Minimum capacity = CPmin = 0.8×CP.

The ratio of the quick line capacity to the total capacity, γ, is a constant to
be determined. Therefore,

Maximum capacity of the quick line = u1max = γ×CPmax,
Minimum capacity of the quick line = u1min = γ×CPmin,

QuantityQuantity
6000

5000

4000

3000

2000

1000

0
1 11 21 31 41

Time (Weeks) Time (Weeks)

(a) Cv = 2.0 (b) Cv = 0.2

2000
1800
1600
1400
1200
1000
800
600
400
200

0
1 11 21 31 41

196 Chapter VIII

Maximum capacity of the regular line = u2max = (1-γ)×CPmax,
Minimum capacity of the regular line = u2min = (1-γ)×CPmin.

The production schedules of each week should be chosen within these
limits. Let ui1(t) be the amount of SKU i to be scheduled on the quick line
at time t and ui2(t) be the amount of SKU i to be scheduled on the regular
line at time t. Therefore,

()max min
1

for 1, 2
M

j ij j
i

u u t u j
=

≥ ≥ =∑ .

Please note that the capacity constraint is on the amount of SKUs sched-
uled on both lines each week, not on the work-in-process. The reason is
that, in an apparel manufacturing system, the time to directly produce the
items is comparatively smaller than the waiting time, which is also the
main cause of the lead time. We assume if the capacity constraint is satis-
fied when scheduling the SKUs, then it is always possible to manage the
workers and the machines to finish the scheduled SKUs within the lead
time of that production line, although the more SKUs are scheduled, the
higher the WIP will be, and this will increase the holding cost for the WIP.

1.2.3 Inventory dynamic

There is a weekly replenishment from the finished goods inventory to the
retail stores. Let Ii(t) be the total inventory of SKU i at time t, and Wi(t) be
the total work-in-process (WIP) inventory of SKU i at time t. Then Ii(1) is
the initial inventory of SKU i , and Ii(t+1) should be equal to the left inven-
tory level in the last week after satisfying the demand, i.e., max(Ii(t)-
di(t),0), plus the SKUs that are produced during the last week by both
production lines, i.e., ()2

1
1ij jj

u t L
=

− +∑ . So we have

() () ()() ()
2

1
1 max ,0 1 , 1,...,i i i ij j

j
I t I t d t u t L i M

=

+ = − + − + ∀ =∑ .

The WIP of week t will be the sum of all the SKUs that are still in produc-
tion, i.e.,

() ()
2

1 1j

t

i ij
j k t L

W t u k
= = − +

= ∑ ∑ .

Real World Application Examples 197

1.2.4 Summary

For each product, let Cm be the material cost,
jLC the production cost if

line j is used, and PS the sales price. Let also CI be the holding cost for the
finished goods inventory and WIP per week and per product. For a given γ
and α, Jtotal(α,γ) denotes the total manufacturing profit gained from week
t=1 to week t=Π, which is calculated as follows.

() () ()()total
1 1

, min ,
M

S i i
i t

J P I t d tα γ
Π

= =

= ∑∑ sales price × sales

 ()
2

m
1 1 1

M

ij
i t j

C u t
Π

= = =

−∑∑∑ material cost × production

 ()
2

1 1 1
j

M

L ij
i t j

C u t
Π

= = =

−∑∑∑ production cost × production

()
1 1

M

I i
i t

C I t
Π

= =

−∑∑ inventory cost × inventory

()
1 1

M

I i
i t

C W t
Π

= =

−∑∑ inventory cost × WIP.

The average weekly manufacturing profit, J(α,γ) is given by Jtotal(α,γ) di-
vided by Π, i.e.,

 () ()total
1, ,J Jα γ α γ=
Π

 (8.2)

Since the demand is random, the objective function of the scheduling prob-
lem is then to find γ and α in order to maximize the expected total manu-
facturing profit, i.e.,

[]
(){ }

, 0,1
max ,E J

α γ
α γ

∈Φ ∈
,

where Φ is the collection of all possible scheduling policies α.

There exist four nearly insurmountable challenges in this problem.

• First, in the apparel manufacturing system, different sizes, colors, or
fashions of shirts are considered as different stock-keeping units

198 Chapter VIII

(SKUs). There may be over ten thousands different SKUs in the system.
The demand of each SKU varies weekly and exhibits seasonal trends.

• Second, since the exact demand is unknown in advance, in order to
estimate precisely the expected profit of each strategy, one needs to
perform numerous time-consuming and expensive Monte-Carlo simu-
lations.

• Third, the number of applicable strategies is equal to the size of the
possible production schedules raised to the power of the size of the
information space. It is clear that this can be very large even for a
moderately-sized problem.

• Fourth, since the neighborhood structure in the strategy space is not
known and the performance value function cannot be explicitly repre-
sented in terms of strategy, the calculus and gradient decent algorithm
cannot be applied.

Because of these difficulties, if we want to get the optimal solution
to this problem, brute-force simulation, or large state-space dynamic pro-
gramming is unavoidable. In practice where there are many different
SKUs, it is computationally infeasible to find the global optimum. In the
next subsection, we will apply OO to solve this problem and provide re-
sults which are not only good but also quantifiable.

1.3 Application of ordinal optimization

Since the number of SKUs is very large, the number of applicable strate-
gies is an astronomically large number and Monte Carlo simulation is
needed to evaluate the performance value of each strategy. Therefore,
searching for the best solution is prohibitive in view of the tremendous
computing budgets involved. As mentioned in Chapter II, if we do not in-
sist on getting the optimal design, i.e., we soften our goal by having a high
probability of getting any good enough design, the problem will become
more approachable. When the goal is softened, we can tolerate imprecise
performance estimates because we can have high confidence in obtaining a
“good enough” design from a selected set. In this way the difficulties of
the original problem can be overcome.

To apply ordinal optimization in this scheduling problem, two important
questions must be answered: How can we randomly sample designs from
the design space? What is the crude model that is computationally fast and
can supply rough performance estimate? We discuss these two questions in
turn.

Real World Application Examples 199

1.3.1 Random sampling of designs

Each design is defined as (α, γ), where α is production schedule and γ is
the ratio of the quick line capacity to the total capacity. Although samples
of γ can be easily generated by a uniform random number generator, the
random sampling of the production schedule α is not so straightforward.
By definition, the production schedule should satisfy all the capacity con-
straints each week and make the level of the finished goods inventory track
the demand in an appropriate way, so that most of the demands can be ful-
filled and the inventory holding cost is reasonable. If we do not utilize the
above information, but uniformly randomly sample production schedules
that satisfy the capacity constraints, there is no reason to believe these
schedules can track the demand and reduce the inventory holding cost ap-

sampling of production schedules.
Suppose there is no uncertainty in the demand process d(t), i.e.,

d(t)=E[d(t)], and we can take E[d(t)] to be a deterministic process, then we

theory tools such as dynamic programming, or other ad hoc heuristic

Fig. 8.5. A graphical illustration of how to select the scheduling strategy

Unit of
Apparel

Unit of
Apparel

Unit of
Apparel

Unit of
Apparel

time
time

time time

(a)

(c) (d)

(b)

propriately. We should incorporate the above information in the random

d(t)

I(t)

E[d(t)]
E[d(t)]

can arrange the production schedules to track E[d(t)] as best as we can (see
Fig. 8.5 (a)). This can be solved, in principle, by using well-known control

=d(t)

E[d(t)]

(t) (t)

I(t)

d(t)τ τ

methods, if the size is too large. However, as shown in Fig. 8.5(b), if the

I(t)

200 Chapter VIII

demand process d(t) is a random process, it is clear that tracking E[d(t)]
alone will not be satisfactory (in Fig. 8.5(b), we can see that the inventory
I(t) is too low to guarantee sales). Thus, we introduce another process to
play the role of a deterministic process from which we can plan our sched-
uling strategy. This new process is called the target level, denoted as τ(t),
which is used to replace what we have to, but cannot, track, i.e., d(t). This
is shown in Fig. 8.5(c). Notice that τ(t) is not a random process. Now we
can solve a control problem to determine u(t) to follow τ(t) as best as we
can. u(t) will be the production schedules. Therefore, we first find the tar-
get level of each SKU, then generate the production schedules that can
track the target level. This is shown in Fig. 8.5(d). The remaining problem
is to find a method to generate appropriate target levels and also a produc-
tion schedule that will track the target level.

We must have higher inventory level when we have higher average
demand, and also, when we have higher uncertainties, we must increase
the inventory level in order to guarantee no shortage. So, a reasonable and
simple way to generate the target level for each SKU is to let the target
level of SKU i be proportional to the mean value and the standard devia-
tion of the demand in the future, i.e., τi(t)=(a1+a2Cvi)µi(t+a3), where µi(t) is
the mean of the demand of SKU i at time t while Cvi is the coefficient of
variation of SKU i, and a1, a2, and a3 are constants constituting the design
parameters and are randomly generated and used for all SKUs.

When the target level is given, we should arrange the production sched-
ules so that the inventory level will be equal to the target inventory level
by the time the SKUs exit the production lines. When the production capa-
city is not enough, the capacity will be allocated “fairly” among all the
SKUs so that after the allocation the ratio of the inventory level to the tar-
get level is the same for each SKU. This algorithm was first proposed by
(Bo et al. 1994) and modified by L. H. Lee (Lee 1997) to the cases when
there are multiple SKUs, multiple production lines, and limited production
capacity. Although this target tracking strategy does not guarantee the
optimum, from our experimental results in Section 1.4, we will observe
that it is not far from the optimum.

1.3.2 Crude model

The difficulty to accurately evaluate the performance of a design (α,γ) by
simulation is due to the large number of SKUs, the long simulation in each
replication, and the large number of replications in total. To obtain a crude
model, which is computationally fast and only need to supply a rough
performance estimate, we can do the following three relaxations. (1) As
aforementioned, there might be 10,000 or even 30,000 different SKUs.

Real World Application Examples 201

cost a lot of memory space and time, we aggregate the SKUs by the coeffi-
cient of variation. The mean of the demand of the aggregated SKU is equal
to the sum of the means of the SKUs with similar Cv, and the Cv of the
aggregated SKU will be equal to that Cv. In fact, if the demands of the
SKUs are all positively correlated, it would be clear that this aggregation is
appropriate. The reason is that, if X1, X2, … XN are random variables with
the same Cv and the correlation between Xi and Xj is equal to 1,

1

N
ii

Y X
=

= ∑ will be a random variable with the same Cv and the mean

demand is []1

N
ii

E X
=∑ . For other cases (say the demands of all the SKUs

are independent, experiments have been done to justify this aggregation
method (Lee 1997)). After the aggregation, there are usually no more than
100 SKUs and sometimes no more than 10 SKUs, which saves a lot of
simulations. (2) Instead of simulating the system for several hundreds or
thousands weeks, we can use a short simulation of only 100 weeks. (3) We
can use a small number of replications (even only one replication).

In this way, we obtain a crude model. Although the performance esti-
mate might be very different from the true performance values, the observed
good enough designs set will nevertheless contain a lot of truly good
enough designs.

Let us summarize the application procedure of OO in this scheduling
problem (Box 8.1).

Box 8.1. Application procedure of OO in the scheduling problem of apparel manu-
facturing system

Step 1: Randomly generate N target levels as described in section 1.3.1.
Step 2: For each target level, randomly generate the capacity allocations

between the two production lines. Then use the target tracking
strategy to determine the production schedules of all the SKUs. The
capacity allocation together with the production schedule is a de-
sign (,).

Step 3: Aggregate the SKUs by the coefficient of variation. Then use the
crude model to roughly estimate the performance of the designs.

Step 4: Estimate the observation noise level and the problem type.
Step 5: The user defines the size of good enough set g, and the required

alignment level k.
Step 6: Use the UAP table in Section II.5 to calculate the size of the se-

lected set S.
Step 7: The OO theory ensures that there are at least k truly good enough

designs in the observed top-s designs with high probability.

Instead of tracking the dynamics for each SKU during simulation, which will

γα

202 Chapter VIII

1.4 Experimental results

In this subsection, we will present the experimental results in two experi-
ments. First, we consider the case with 100 SKUs and show that the meth-
ods based on OO, as introduced in Section 1.3, can save the computing
budgets by 2000 folds. Second, we modify the objective function to con-
sider the requirement on satisfaction rates. The satisfaction rate is defined
as the fraction of the time that the demand is satisfied by the finished
goods inventory level. The experimental results demonstrate how the OO
based method can be used as a platform to study the impacts of different
factors on the total profit.

1.4.1 Experiment 1: 100 SKUs

There are 100 different SKUs. For each SKU, the demand at time t is a
truncated Gaussian random variable with mean equals to µ(t) and coeffi-
cient of variation equals to Cv, i.e., d(t)=max(ζ(µ(t), Cvµ(t)),0). We use
seasonal-sine demand introduced in Section 1.2 to model the average de-
mand µ(t). The ratio of the average demand from the peak season to the
low season ranges from 3 to 7. The Cv of the SKUs ranges from 0.1 to 1.0,
and the SKUs with higher Cv have lower demand than the SKUs with
lower Cv. The ratio of the demand of the SKU with the highest Cv to the
demand of the SKU with the lowest Cv is 5. The period of a season is 25
weeks, i.e., about half a year. We have 2 production lines, the lead time of
the quick line is 1 week, while that of the regular line is 4 weeks. The
weekly total production schedules should be maintained within 100±20%
of the total production capacity. The “good enough” set G is defined as the
top 5% of the solution space. We use the linear method introduced in Sec-
tion 1.3 to generate the target inventory level, i.e.,

() () ()1 2 3target i i it a a Cv t aτ µ= + + .

In order to get the true performance value of a design, it will be necessary
to run the detailed simulation. In this experiment, we assume that a de-
tailed simulation utilizes the entire 100 SKUs with a simulation time = 500
weeks and the number of replications = 40.1 When we estimate the observed
performance value of the design, we run an aggregated 10 SKUs simulation

1 In fact, when we run the simulations, it takes about a week to run on a Sun

SPARC 20 station. The estimated performance values are still imprecise, but the
errors are very small (the standard deviation of the error is about 0.05% of the per-
formance value).

Real World Application Examples 203

with time = 100 weeks and number of replication = 1.2 Notice that the time
needed to estimate the observed performance value is roughly 1/2000 of
the time to estimate the true performance value of the design. We have re-
duced the computation time from 1 week to several minutes.

Table 8.1. The cost structure of the shirt manufacturer

Cost term Value
Inventory holding cost per unit per week CI (both finished
good and WIP)

$0.08

Quick line production cost per unit Cq $4.4
Regular line production cost per unit Cs $4
Material cost per unit Cm $10
Sale price per unit PS $20

The cost structure is shown in Table 8.1. The results of the simulations
are shown in Table 8.2.

Table 8.2. The alignment level and profit that we obtained when OO was used for
the 100 SKUs case (periodic-sine demand)

s k J
1 1 356,834
5 4 358,999
10 7 358,999
20 11 358,999
50 26 359,504
100 38 359,504

In Table 8.2,

• s = number of designs selected by using the observed performance
value.

• k = the average number of overlaps of the selected s designs with true
top-50 designs, i.e., alignment level |G∩S|. (These top-50 designs are
obtained by running all 1000 designs for detailed simulation.3)

• J = the best performance value (profit) in the selected s designs.

2 From the simulation results, errors are about 3 to 4% of the performance

value.
3 Notice that this is a tremendous computational burden and precisely what our

approach is trying to circumvent. However to lend credibility to our approach, this
is the only way to prove its validity. Once established, we need not repeat this
validation process in practical applications.

204 Chapter VIII

To get an idea of the absolute difference between the results obtained by
OO and the true optimum, an upper bound of the profit can be obtained
(Lee 1997). The idea is to consider a long enough simulation so that the
system achieves the steady state. The average weekly production will be
roughly equal to the average weekly sale; the ratio of the average weekly
production of the quick line and the regular line should be close to the ratio
of the capacity allocated to the quick line and the regular line (we can
always fully utilize the capacity); and by Little’s Law, the WIP should be
equal to the average weekly production multiplied by the lead time. We
will not deduce the upper bound in details. Please refer to (Lee 1997) for
specific details. Based on these observations, the upper bound of the opti-
mum profit is $369,551.

From the results in Table 8.2, we can make the following observations.

• In order to get the true performance value4 of all the designs, the simu-
lations were run about one week, 24 hours a day, on a Sun SPARC 20
machine, but to get the observed performance values, we only needed a
run of several minutes.

• The selected set S contains a high proportion of good enough designs.
When we increase the size of selected set S, the number of alignments
between the good enough set and the selected set S also increases.

• The performance value (manufacturing profit) of the best design in the
selected set is indeed very close to the pre-calculated upper bound (3%
from the upper bound), which means that this approach not only gua-
rantees to find good designs but also the design is close to the optimum
in this problem.

1.4.2 Experiment 2: 100 SKUs with consideration on satisfaction rate

For some companies, it is an important strategic requirement to satisfy cus-
tomer demands. Failing to do so can result in not only the lost profits due
to lost sales, but also the loss of future market share. This motivates a con-
cept called the satisfaction rate, which is simply the fraction of the time
that the demand is satisfied by the inventory level. A satisfaction rate of 1
means that customer demands will always be fulfilled from inventory, or
in other words, the inventory level is higher than the demand level every
week. Satisfaction rate is defined as,

4 The true performance values are obtained by running detailed simulation.

Real World Application Examples 205

() ()()
1

1satisfaction rate
t

I t d tι
Π

=

= −
Π ∑

Where

()
1 if 0
0 if 0

x
x

x
ι

≥⎧
= ⎨ <⎩

.

Therefore, in order to maintain a high level of satisfaction rate, it is un-
avoidable to keep a high inventory level, which will induce a cost. How-
ever, the relation between enforcing the satisfaction rate and the cost in-
curred is not obvious. In this section, by using the OO based method in
Section 1.3, we can quickly find this relation, which will serve as a good
indicator for the production and sales managers to know how to set their satis-
faction rate level.

Assume that the satisfaction rate constraint is that the average satisfac-
tion rate, SR, of all SKUs have to be above certain level, β, i.e.,

() ()()
1 1

1 M

i i
i t

SR E I t d t
M

ι β
Π

= =

⎡ ⎤= − ≥⎣ ⎦Π ∑∑ .

Therefore the scheduling problem becomes

(){ } ()

,
max , Penalty ;E J SR
α γ

α γ β
∈Φ

−

subject to the constraints on the production capacity and the inventory and
WIP dynamics. After adding the satisfaction rate constraints, the problem
becomes a constrained optimization problem. We can either use the cons-
trained OO that was introduced in Chapter V to solve this problem directly,
or use a penalty function to convert the problem back to unconstrained
optimization. Since we will demonstrate the application of COO in a
remanufacturing system performance optimization problem in Section 3,
we focus on the second way in this section. The penalty function is a quad-
ratic function which is defined as follows,

() ()2 if Penalty ;
0 otherwise

c x xx β ββ
⎧ − <⎪= ⎨
⎪⎩

 (8.3)

206 Chapter VIII

where the coefficient c is a penalty function. If c is very large, we will
have a hard constraint, i.e., the selected design has to satisfy the constraint.
The good enough set is defined as the top-n% designs. The parameter set-
ting is almost the same as in experiment 1, except that the sales price, PS,
is $16, which is much lower. For the lower profit margin, we will keep a
lower inventory level, and therefore the design that gives the optimum
profit level will have a low satisfaction rate. With an interest in this prob-
lem, we will see the costs incurred when we enforce the high satisfaction
rate constraint.

The results of the simulations are shown in Table 8.3.

Table 8.3. The results of the simulation when we have satisfaction rate con-
straints, where s is the number of designs selected by using the observed perform-
ance value (Note: Pre-determined upper bound for profit = $106,492)

s J with no satisfac-
tion rate constraint

J with β = 0.97 J with β = 0.98 J with β = 0.99

1 $96,030 $92,686 $93,819 $88,283
5 $96,413 $95,210 $93,819 $92,147
10 $96,413 $95,210 $94,022 $92,147
20 $96,413 $95,210 $94,022 $92,147
50 $96,413 $95,210 $94,022 $92,147

From the results in Table 8.3, we observed that if we have to enforce the
satisfaction rate higher than 0.97, there will be a profit lost of $8005. This
table, which is obtained within an hour, will be useful for a manager to
know the cost associated with the satisfaction rate constraint. Actually, by
using the OO-based method as a simulation-based optimization platform
for the scheduling problems in apparel manufacturing systems, it is now
possible to study many aspects of the system in a more quantitative way,
such as the performance of new supply chain contracts between the manu-
facturers and the retailers (Bouhia 2004; Volpe 2005).

1.5 Conclusion

In this section, we apply the OO methods introduced in Chapter II to a
scheduling problem in the apparel manufacturing system. We show how
to incorporate the problem information in the initial random sampling of
the designs and the construction of the crude model. The results are very
promising. The OO-based method is very fast and only needs several

5 When this constraint increases to 0.99, the cost incurred will be roughly

$4,000.

Real World Application Examples 207

minutes to screen out the good enough designs. We only use 1/2000 of the
computation time that brute-force simulation would have taken in Experi-
ment 1. The performance of the design found by OO is not only within the
top-5% of the design space, but also within 3% from an upper bound of the
optimum. This method supplies a simulation-based optimization platform
to quantitatively analyze the performance of the apparel manufacturing
system, which supplies many possibilities for further improving the per-
formance of the apparel manufacturing system. Note that we only consider
the linear model to generate the target level in this section. There are also
other models to approximate the periodic property of the mean value of the
demand better than the linear model. Interested readers may refer to (Lee
1997) for more details.

2 The turbine blade manufacturing process optimization
problem

In this section, we consider a turbine blade manufacturing process optimi-
zation problem (Yang 1998). The integrated blade and rotor is manufac-
tured via extrusion, which is similar to the manufacturing of plastic parts,
but with much tougher high strength metal used and higher quality require-
ment on the product. As an optimization problem, such a manufacturing
process is distinguished by the large number of parameter settings of all
the operations and the difficulty to accurately evaluate the quality of
the final production. On the one hand, the parameters, such as the initial
size of the billet, the ram velocity of the plunger, and the ambient tempera-
ture of the work piece being processed, usually take continuous values.
There are a huge and in principle infinite number of possible parameter
settings combinations. On the other hand, for security and combat consid-
erations, the aircraft usually has high quality requirements on the turbine
blade. This quality depends on the physical property of the turbine blade,
such as the effective strain field, the effective strain rate field, and the
maximum load-stroke. These physical properties are determined by the
deformation process of the work piece during the manufacturing, which
can only be accurately described by the finite element method (FEM). It
usually takes hours if not days to use FEM to simulate (calculate) the
entire deformation process, and accurately evaluate the quality of the tur-
bine blade thus produced. Giving the extremely large search space, with
the lack of structure information (such as the gradient information) of the
search space, it is computationally infeasible to find the optimal parameter
settings using brute force. In this section, we show how OO can help to

208 Chapter VIII

solve this problem. The FEM is a deterministic but complex calculation.
Based on our previous discussion in Section II.6, OO can also be applied
in this type of problem. One purpose of this section is to justify this by
using a real-life example. By applying ordinal optimization, we are able to
find a good enough parameter setting based on a computationally fast but
crude model, and save the computing budgets by 95%, comparing with
brute force. We formulate the problem in Section 2.1, show the application
of OO in Section 2.2, and briefly conclude in Section 2.3.

2.1 Problem formulation

Peripheral blades and central rotor compose the primary parts of an air-
plane turbine engine. The quality and reliability of the turbine blade
is important for the functionality of the aircraft engine. To meet the sym-
metry requirement of operation under high rotations, the blades must be
balanced around the rotor, which is a difficult and costly production stage
if the blade and the rotor are produced separately first and then fused
together. To solve this problem, the integrally-bladed rotor (IBR) is inven-
ted, which, as the name shows, is a component that integrates the blade
and the rotor manufacturing (Fig. 8.6). The high engine performance
demands of customers require that these components be made from tradi-
tionally “difficult-to-process” materials such as high-temperature titanium
alloys, intermetallics, and Nickel-based superalloys. Often these materials
are stronger than conventional tool materials and require special tooling and
high temperatures for processing. Coupled with this tooling constraint are
the high-strength and high-reliability requirements, which call for good to
excellent control of the final metallurgical structure and pedigree of the
materials. These requirements lead to cautious designs of processing opera-
tions, often with redundant operations to ensure acceptable final metallurgical
characteristics. Therefore, the manufacturing of such components consists of a
significant part of the life-cycle cost of a turbine engine. With growing
demands on aeronautical technology, there is a strong interest in the optimiza-
tion of the manufacturing process of these components.

The manufacturing process of an IBR is shown in Fig. 8.7. First, the raw
material is cast into the billet with the required radius and height. Then, hot
isostatic pressing (HIP) is used to reduce the porosity of metals, which im-
proves the mechanical properties and increases workability. After that, by
hammering on the end, the billet is made shorter and thicker. This opera-
tion is called “upset”. Due to the high quality requirement on the IBR,
there are two forge stages. In the first stage, by heat treatment, the cylin-
drical billet melts down, flows into the blocker die, and is rammed into the

Real World Application Examples 209

expected shape. This is called the blocker forge. In the second, the work
piece is further forged to a shape near the net shape of an IBR, thus called
the near-net-shape (NNS) forge. After all these, the work piece is ma-
chined to IBR. Among these operations, the blocker forge is the most
complex one, which involves various thermo-mechanical processes, so we
focus specifically on the optimization of the blocker forging stage in this
case study. Roughly speaking, there are several stages when filling the
blocker die in the blocker forge. A more detailed discussion will be pre-
sented in Section 2.2 and illustrated by Fig. 8.9.

Fig. 8.6. An integrally-bladed rotor

Fig. 8.7. The manufacturing process of an IBR

210 Chapter VIII

The three characteristics of the IBR problem that make it difficult to be
solved by traditional optimization approaches can be described as follows.

1. High complexity in the structure of the problem. As Fig. 8.7 illus-
trates, many of the processes involved are nonlinear in nature and are
interdependent. As a result, accurate evaluation of a single design (i.e.,
a specification of the parameter settings of the manufacturing process)
via finite element calculations generally takes hours if not days or
months to calculate, putting aside of the issue of a limited computa-
tional budget. It is not hard to see how the traditional searching
approaches that rely on the availability of accurate design performance
evaluations will become impractical under limited computation budgets
and time constraints.

2. Unpredictability of Inherent Imprecision. In the nontrivial case
when a simpler model that is different from the true model (the FEM
model) is used for search, the model imprecision must be accounted
for during the selection process. In essence, the IBR problem becomes
a noisy search problem that most traditional optimization algorithms
do not address.

3. Very Large Search Space. The design space of the IBR problem
explodes exponentially with the large number of parameters involved.
In the blocker forge stage considered in this case study, there are seven
parameters (all defined over continuous interval ranges) and a choice of
the die shape (from finite number of candidates) that can be controlled.
(These parameters will be introduced later in this subsection.) Even if
all parameters are discretized into 10 discrete values, the overall
design space is roughly 107. With such a big space, the traditional
build-and-test method is out of the question. For the same reasons,
a computerized brute-force selection process will require a large
number of evaluations, or numerical simulations, that are clearly in
conflict with a limited time budget.

Giving the above difficulties, we have to find better ways to screen out
some good parameter settings first, before we adopt the detailed FEM cal-
culation. This is where OO helps. First, we introduce the mathematical
problem formulation.

In the blocker forge, we can control the following parameters: the initial
radius, height, and temperature of the billet, the temperature and shape of
the die, the ram velocity, the ambient temperature, and the friction coeffi-
cient. These variables usually take real values within the parameter ranges,
except for the die shape, which usually has a small number of candidates.
Each design θ in this problem is defined as a specification of all the above
seven parameter settings (the initial radius, height, and temperature of the

Real World Application Examples 211

billet, the temperature of the die, the ram velocity, the ambient tempera-
ture, and the friction coefficient) and a choice of the die shape. Then the
design space Θ contains all the possible parameter settings. Given a design
θ, through the detailed FEM simulation of the deformation process of the
work piece during the operations, we can obtain the following physical
quantities that determine the physical property of the IBR: the effective
strain field, the effective strain rate field, the effective temperature field,
the maximum stress field on the die surface, and the maximum load-stroke.
The value of the cost function (definition follows) that evaluates θ, and the
parameter setting of the operations, can be calculated.

The cost function used in this study consists of eleven terms, including
five accounting costs, four quality loss penalties, and two inspection over-
heads. In the accounting cost category, the five cost factors considered are:
material cost, initial reduction setup cost, initial reduction press cost, forge
press cost, and die wear cost. The material cost refers to the market value of
the initial billet. When the aspect ratio of the initial billet is too high, an ini-
tial reduction with a bottle-cap die set is necessary to avoid a buckling forge
situation. The initial reduction setup cost and the initial reduction press cost
refer to the setup cost and the operation cost per press run in this particular
situation. The forge press cost is the cost of utilizing the press to complete
the forge process. The die wear cost is the cost of the forge die set divided
by the average number of production runs in the life of that TZM (Molybde-
num Alloy) die set. The general equations6 of the respective terms are:

Cost term General form
Material cost Cma×total billet volume
Initial reduction setup cost Crs×functionrs(aspect ratio)
Initial reduction press cost Crp×functionrp(aspect ratio)
Forge press cost Cfp
Die wear cost Cdw×functiondw(billet temperature,

maximum die pressure, processing time
length)

In the penalty category, the four terms reflect the constraints on the ma-
terial properties and the limits of the die capacity. These four terms are:
force penalty, heat treatment penalty, heat remedy cost, and strain induced
porosity (SIP) damage penalty. Force penalty reflects the maximum force

6Since our purpose here is to give a general picture of the complexity of

the problem, we choose not to display the detailed mathematical formula. Actual
detail can be found in (Yang 1998).

Table 8.4. Accounting costs (Yang 1998)

212 Chapter VIII

constraint of the press through a quadratic penalty function. The heat treat-
ment penalty reflects the material strain constraint through an approxima-
tion of the fraction globalized in Ti64 material from the strain information
of the work piece. The heat remedy cost specifies the cost of the heat
treatment to remedy the strain imperfections in the work piece. The SIP
damage penalty reflects the strain rate constraint and the temperature con-
straint on the final product through the estimation of the equilibrium vol-
ume fraction of the alpha phase for Ti64. The general equation, again in
the spirit of footnote #1, for the four constraints are:

Penalty term General form
Force penalty Pfp×functionfp(maximum die force)
Heat treatment penalty Pht×functionht(billet strain, billet tempera-

ture)
Heat remedy cost Phr×functionhr(billet strain, billet tem-

perature)
SIP damage penalty PSIP×functionSIP(billet strain rate, billet

temperature)

Finally, in the inspection category, the two terms are: forge setup in-
spection cost and ultrasonic inspection cost. The forge setup inspection is a
fixed cost term to insure safety during the forge process. The ultrasonic in-
spection cost is the mandatory ultrasonic non-destructive evaluation prior
to the acceptance of the final product. The general equation for two inspec-
tion overheads can be described as:

The cost function can be summarized as follows:
 J(θ) = Cma×total billet volume (θ)

 + Crs×functionrs(aspect ratio(θ))
 + Crp×functionrp(aspect ratio(θ))
 + Cfp
 + Cdw×functiondw(billet temperature (θ),

maximum die pressure (θ),
processing time length (θ))

 + Pfp×functionfp(maximum die force(θ))
 + Pht×functionht(billet strain(θ))

Table 8.5. Penalty terms (Yang 1998)

Inspection overhead General form
Forge setup inspection Osi
Ultrasonic inspection Oui

Table 8.6. Inspection overheads (Yang 1998)

Real World Application Examples 213

2.2 Application of OO

The basic idea of OO is to use a crude model, which is computationally
easy, to screen out quickly some good enough designs. From the last subsec-
tion, we can see that the value of the cost function depends on the parameter
settings of the operations and the physical properties of the IBR thus pro-
duced. To accurately evaluate the physical properties of the IBR, the FEM
model that describes the thermo-mechanical processes have to be used. In
order to apply OO in this problem, it is crucial to find a crude model, which
approximates the thermo-mechanical processes in a fast way and can give
rough estimate of the physical properties of the IBR thus produced. Fortu-
nately, the Ohio University Forge Simulation Model (the OU model)
(Gunasekera et al. 1996) offers us such a choice. Compared with the FEM
model, which contains all the details in the forging process, the OU model
introduces the following simplifications. First, Gunasekera et al. showed that
all changes in continuum properties such as strain, strain rate, and tempera-
ture can be described as functions of geometry or changes in the geometry
with respect to time (Gunasekera et al. 1996). Based on this observation,
instead of tracking down the changes in all the physical quantities at the
same time like the FEM model does, the OU model only tracks down
the change of the geometry of the work piece. Second, the general die shape
(quarter cross-section view) is shown in Fig. 8.8. Instead of tracking the
entire field of the continuum properties such as strain, strain rate, tempera-
ture, pressure, and grain size, the OU model divides the work piece into four
parts: web, flange 1, flange 2, and flash. It calculates only the estimated
average of these characteristic values in the regions with the assumption that
these thermo-mechanical properties are uniform inside each region. Third,
the evolution of the work piece during the forge process is simplified. When
a billet is heated, input to the die, and rammed, it does not fill in every part
of the die immediately. This process takes some time, and consists of five
sub-stages as shown in Fig. 8.9. We can see that the shape of the work piece
is not regular during these sub-stages. Instead of describing this deformation
in details like the FEM model does, the OU model simplifies the five sub-
stages as shown in Fig. 8.10. As we can see, the form of the work piece is
more regular than in Fig. 8.9. Based on this simple approximation of the

 + Phr×functionhr(billet strain(θ))
 + PSIP×functionSIP(billet strain rate(θ),

billet temperature(θ))
 + Osi
 + Oui.

214 Chapter VIII

work piece geometry evolution, the OU model calculates the changes in the
height and diameter, and calculates the strain and strain rate values. The cal-
culation of other physical quantities, such as temperature, microstructure, die
pressure, and the total die force, are calculated based on semi-empirical
models together with some other approximations. In this way, the simulation
is much simplified, and much faster than the FEM. A comparison study
shows that it takes the FEM about 4 hours to evaluate one design, but only
0.1 seconds for the above crude model since it is made up of analytical
formula (Yang 1998). This is a tremendous saving in computing time.

Note that the above crude model is a deterministic but simple calculation.
Because the true model (i.e., the FEM) is too complex, the deterministic
errors between the two models are complex and hard to predict. Based on
our discussion in Section II.6, we can regard these errors as random noises,
and treat the problem as if the true model is a stochastic simulation. We use
a case study to justify these statements.

Fig. 8.8. General die shape (quarter cross-section view)

Fig. 8.9. The geometry evolution of the work piece described by the FEM model
(different time snaps of the work piece during the forge process) (Yang 1998)

Real World Application Examples 215

Fig. 8.10. The geometry evolution of the work piece described by the OU model
(different time snaps of the work piece during the forge process)

In the following case study, we take the parameter ranges as shown in
Table 8.7. The die shape can be defined by 6 variables, as shown in Fig.
8.11. There are four candidates for the die shape (Table 8.8). First we
study the difference between the crude model and the true model (i.e., the
FEM). We uniformly randomly sample 80 designs from the entire design
space. We use the number 80 because it is too time-consuming to use the
detailed model to accurately evaluate the performance for a large number
of designs. Actually it takes about 14 days of continuous computing to
finish the performance evaluation of these 80 designs using FEM. Com-
paring with so long a time, it is amazing how fast the crude model is. Only
8 seconds! We plot the observed cost vs. true cost in Fig. 8.12.

Table 8.7. Parameter ranges

Parameter Parameter range ([min, max] unit)
Initial billet radius [3, (flange radius – 0.5)] inch
Initial billet height [(web height + 0.5), (3×initial billet ra-

dius)] inch
Die temperature [1562, 1832] °F
Ram velocity [0.1, 0.6] inch/sec
Initial billet temperature [die temperature – 25, die temperature +

25] °F
Ambient temperature [die temperature – 25, die temperature +

25] °F
Friction coefficient [0.2, 0.8]

216 Chapter VIII

Table 8.8. Die shape candidates

Die shape
index

r1 r2 r3 h1 h2 h3

0 8 9 10 1.0 2.4 0.15
1 8 9 11 0.5 2.4 0.20
2 8 9 10 1.0 2.4 0.20
3 8 9 11 1.0 2.4 0.05

Fig. 8.11. Die shape variables

Fig. 8.12. Observed cost (by the OU model) vs. true cost (by the FEM model)

Real World Application Examples 217

In Fig. 8.12, each dot on the graph represents a design with its x value
being the true cost calculated by FEM, and its y value being the cost pre-
dicted by the crude model. The dotted line is the 45° line, on which all the
points shall fall if the crude model conforms exactly to the FEM model.
Data analysis shows that the prediction given by the crude model has an
average %error (defined as (|crude model predicted value|-|FEM value|)/
|FEM value|) of 14% and a standard deviation of %error at 12%. The
maximum %error observed is 62% and the minimum is 0%. This means
the crude model does not give accurate performance evaluations. Actually
in the 80-design instance shown in Fig. 8.12, the observed best design is
the truly 20-th best. If we focus only on the best design, we can hardly
succeed. Now, we apply OO to find some good enough designs with high
probability.

Due to the extremely large computation needed to accurately evaluate
1000 designs (an estimate shows that it will take about 160 days to finish
all the calculation), we only have the true performance of 80 designs. In
the following, we will regard these 80 designs as the representative set ΘN.
Astute readers might notice that the UAP table in Section II.5 was obtained
under the assumption of N=1000. They may ask whether it is reasonable to
use that UAP table to estimate the size of the selected set when N=80. The
numerical results, which will be shown later, justify this usage.

We show the observed OPC of these 80 designs in Fig. 8.13, which be-
longs to the neutral type. To see the difference between the OU model and
the FEM model, we also show the corresponding true performances of
these designs. Then we randomly select several of these 80 designs to es-
timate the normalized noise level, which is 0.1729. This belongs to the
small noise level in the UAP table (Table 2.1 in Section II.5). For different

predicted values of s based on Eq. (2.42) are shown in Table 8.9, denoted
as 1̂s . Since the true noise level is smaller than 0.5, we use linear interpola-
tion to obtain another group of predicted values of s, denoted as 2ŝ . This
linear interpolation method will be explained in details later. For the in-
stance of these 80 designs, we also present in Table 8.9 a size s* whose
value is decided such that there are at least k truly good enough (recall that
we know the true performance of these 80 designs) designs in the observed
top s* ones. This quantity is shown here as a measure of the ideal size of
the selected set to achieve the desired alignment level. We can see that 1̂s
is always an upper bound of s*, which shows the conservative nature of the
UAP table. Now we show how to obtain less conservative estimate of s.

values of the good enough set (g), the required alignment levels (k), the

218 Chapter VIII

Table 8.9. The predicted and true selected sizes

g k s*
1̂s 2ŝ

1 (top 1.25%) 1 3 80 29
4 (top 5%) 1 3 13 6
 2 5 25 10
 3 6 37 15
 4 9 49 20
8 (top 10%) 1 3 6 3
 2 5 10 5
 3 6 15 8
 4 9 19 10
 5 11 24 12
 6 13 28 14
 7 17 33 16
 8 19 38 19

Fig. 8.13. The observed OPC

One important reason that 1̂s is conservative is that the true noise level is
not 0.5, but 0.1729, which is much smaller. So we use linear interpolation

means we know the true performance of all the designs. We only need to
to obtain better prediction of s. Note that if the noise level is 0, which

Real World Application Examples 219

select the observed top-k designs (which are just the true top-k designs) to
cover k truly top-g designs, i.e., s = k. Through previous calculation, we also
know the predicted value of s when the noise level is 0.5, i.e., the 1̂s in
Table 8.9. Through linear interpolation of size s in terms of the noise level,
we obtain the prediction of s when the noise level is 0.1729 (denoted as 2ŝ
in Table 8.9). For example, when g = 8, k = 1, if the noise level is 0.5, 1̂s = 6;
if the noise level is 0, s should be 1; now, the noise level is 0.1729, so the
new estimate can be obtained from the following linear interpolation:
(6-1)/0.5×0.1729+1⎤=3, which is denoted as 2ŝ in Table 8.9. We can see
that 2ŝ is less conservative than 1̂s , which usually is an upper bound of the
true value s*, and close to the true value s* when g = 8. The only exception
is when g = 8 and k = 7, the predicted 2ŝ is smaller than s*, but still very
close. After goal softening, if we want to find at least one of the top-10%
designs with high probability, the prediction 2ŝ says we only need to in-
vestigate the observed top-3 designs. Comparing with brute force, we re-
duce the detailed performance evaluation by more than 25 folds (from 80
to 3). Through these numerical results, we see OO can help to save the
computing budgets even when the objective function is not a stochastic
simulation but a deterministic complex calculation. The results also justify
the application of the UAP table when the representative set ΘN is smaller
than 1000.

2.3 Conclusion

In this section, we have considered a turbine blade manufacturing process
optimization problem. The objective function can only be accurately evalu-
ated through a complex but deterministic calculation. By using a crude
model, which is more than 10000 times faster than the detailed FEM
model, together with the idea of goal softening, we are able to save the
computing budgets by more than 25 folds, comparing with brute-force cal-
culation. This justifies that we can apply OO to solve the problem, taking
the deterministic but complex error between the crude model and the
detailed model as random noise. It should be noted that we omit many
technical details to simplify the above discussion, such as the equations to
describe the forging process in the FEM, and parameter settings of the 80
designs that are randomly sampled. Readers can refer to (Yang 1998) for
more details. (Yang 1998) also shows that we can increase the accuracy of

220 Chapter VIII

the cost prediction by incorporating more information in the crude model.
This in turn helps to reduce the selected set thus required, and further save
the computing budgets. We also show how to reduce the selected set size
by interpolation. Another way to reduce the selected set size can be found
in Section 3.3 below.

3 Performance optimization for a remanufacturing system

In this section we consider a remanufacturing system (Song et al. 2005a,
2005b). The goal is to manage the number of machines in the repair shop
and the number of new parts to order in the inventory, so that the main-
tenance cost is minimized and the average maintenance time for an asset is
not too long. Since there are two considerations in this problem, we can
regard the maintenance cost as the objective function, and the requirement
on the maintenance time as the constraint. In this way, we have a cons-
trained optimization problem. The corresponding problem formulation will
be discussed in Section 3.1 in details. Due to the time-consuming simula-
tion-based evaluation of both the objective function and the constraint, we
apply the constrained ordinal optimization as introduced in Chapter V. The
application procedure is shown in Section 3.2. The experimental results
are also presented, which is promising because we save the computing
budgets by 25 folds. However, alternatively we can regard both the main-
tenance cost and the maintenance time as objective functions. We have
then a two-objective function simulation-based optimization problem. We
apply the vector ordinal optimization as introduced in Chapter IV. Espe-
cially, we show how to incorporate the problem information to further save
the computing budgets in VOO. The details are presented in Section 3.3.
We make a brief conclusion in Section 3.4.

3.1 Problem formulation of constrained optimization

Due to the consideration of saving the production cost and reducing envi-
ronmental pollution, the study on remanufacturing system has attractted
more and more interest recently (Guide et al. 1999; Guide 2000). The basic
idea of remanufacturing system is to re-use the parts (sometimes after repair)
from the old products to produce new products. This idea is especially use-
ful for very expensive assets (such as aircraft jet engines) which consist
of many parts. Rejecting old parts directly not only causes environmental
pollution easily but also increases the production cost of a new asset. Thus
the old parts are usually recycled after some repair.

Real World Application Examples 221

to random failure, the asset is shipped to this remanufacturing system. Af-
ter disassembled into parts and inspected, the parts still in serviceable con-
dition will be directly sent to a certain place and wait to be reassembled
into new assets. The other parts need some repair and are sent to the repair
shop. After the repair, the parts enter an inventory, and are then assembled
into new assets together with the parts in serviceable condition, then leave
the system. Since the parts of the same type are not distinguished from
each other during the assembling, the inventory is also called the rotable
inventory in practice (Kleijn and Dekker 1998). Due to the random arrival
of the asset to this system and the uncertainties in the waiting time and re-
pair time in the repair shop, sometimes there might not be enough parts
when assembling a new asset. To avoid this “lack of synchronization”,
new parts can be ordered to the inventory. The parameters we can control
are the number of machines in the repair shop and the number of new parts
to order in the rotable inventory. We care about two performances metrics
of the system. One is the average maintenance cost of an asset. The other
one is the average maintenance (remanufacturing) time of an asset. These
two performances are obviously related to one another. When there are more
machines in the repair shop or more new parts are ordered in the inventory,
the maintenance time can be reduced but the maintenance cost increases.
The question is how we can minimize the maintenance cost7, given the
requirement on the maintenance time.

Fig. 8.14. Detailed model of the remanufacturing system

7 Actually the opportunity to do preventive maintenance or not while the engine

is disassembled is another decision which we will not consider in this example.

…
… …

…
…

…

A detailed model of a remanufacturing system is shown in Fig. 8.14. Due

222 Chapter VIII

We mathematically formulate the problem as follows. Consider a plan-
ning horizon with m seasons (there are 3 months in each season). Suppose
there are n parts in each asset, each of which requires a specific type of
machine to repair. Let Ci,j be the number of machines of type i that are used
in season j. And let ∆Ii,j be the number of new parts ordered at the beginning
of season j, which will be shipped to the inventory and become available
in the next season. The maintenance cost consists of the machine cost
(,1 1

n m
i ji j

Cα
= =∑ ∑), the cost for ordering new parts (,1 1

n m
i ji j

I
= =

∆∑ ∑),

and the inventory holding cost (,1 1

n m
i ji j

Iβ
= =∑ ∑), i.e.,

() , , ,
1 1 1 1 1 1

,
n m n m n m

i j i j i j
i j i j i j

J C I C I Iα β
= = = = = =

∆ = + ∆ +∑∑ ∑∑ ∑∑ ,

where α and β are positive real numbers, C and ∆I are n-by-m matrix, with
Ci,j and ∆Ii,j as the components. Ci,j should not exceeds a specific value in
two neighboring seasons, i.e.,

, 1 ,i j i j iC C C− − ≤ ∆ ,

and Ci,j should be controlled within a reasonable range, i.e.,

min max

,i i j iC C C≤ ≤ .

Similarly, the order quantity of the parts cannot exceed a specific value, i.e.,

max
,i j iI I∆ ≤ ∆ .

Then it is obvious that the amount of part i in season j in the rotable inven-
tory satisfies

, , 1 , 1 , 1 , 1i j i j i j i j i jI I p I q− − − −= + + ∆ − ,

where pi,j-1 represents the number of part i that were finished in season j-1,
qi,j-1 represents the number of part i that were used in season j-1. Let a(k)
be the inter-arrival time between the k-th and the (k-1)-th asset. The first
asset arrives at time a(1), and the k-th asset arrives at time ()1

k

i
a i

=∑ .

Real World Application Examples 223

After the k-th asset is disassembled and inspected, some parts are in ser-
viceable condition and will be assembled with some other parts from the
inventory into a new asset, then leave the system at time η(k). The mainte-
nance time for this asset is defined as

() () ()
1

k

i
T k k a iη

=

= − ∑ .

During the planning time horizon, the probability that the maintenance
time exceeds a given limit TD is

() ()D CProb T k T k Tη> ≤⎡ ⎤⎣ ⎦ .

Suppose the constraint is that this probability should not be large, say less
than P0. Then the constrained optimization problem is

() () ()D C 0,

min , s.t. Prob
C I

J C I T k T k T Pη
∆

∆ > ≤ <⎡ ⎤⎣ ⎦ .

Although the above problem formulation might be simpler than the real

system, this formulation preserves the basic characteristic of the real sys-
tem, especially the difficulties. First, both the number of the machines and
the number of new parts can only take discrete values. There are n×m vari-
ables in C and ∆I each, and thus the size of the design space is close to

{ }()max max min

1

min 2 ,
n m

i i i i
i

I C C C
=

∆ ∆ −∏ ,

which grows exponentially as n and m increases. Simulation is the only
way to do detailed performance evaluation for each (C, ∆I). Second, both
the objective function and constraint are simulation-based. To obtain an
accurate performance evaluation of the objective function and the con-
straint, we need ~1000 replications, which will take 30 minutes for each
design by using the Enterprise Dynamics Software (Song et al. 2005a). If
we want to accurately evaluate the feasibility of 1000 randomly sampled
designs, we will need 500 hours, which is a very long time. In the next
subsection, we apply constrained ordinal optimization to deal with these
difficulties.

224 Chapter VIII

3.2 Application of COO

As introduced in Chapter V, the idea of COO is to use a feasibility model
to quickly screen out the feasible designs (probably with some mistakes),
and apply a crude model within these designs that are predicted as feasible
to find some truly good enough and truly feasible designs. In order to ap-
ply COO to the remanufacturing system, we need to find an imperfect fea-
sibility model for the constraint and a crude model for the performance.

3.2.1 Feasibility model for the constraint

By definition, any method that can predict the feasibility of a design with
reasonable accuracy (say higher than 0.5) can be a feasibility model used
in COO. This gives us a lot of freedom, such as heuristics and experiences.
Of course, a feasibility model with higher accuracy will make a smaller
number of mistakes, thus can further save the computing budgets. In this
example, we use a machine learning method to obtain a feasibility model.
The idea is as follows: First, we randomly sample a small number of
designs, and then use brute-force simulation to accurately determine the fea-
sibility of these designs. Input these designs and the corresponding feasibi-
lity as the training data, and use a machine learning method to discover the
relationship between the parameter setting in the design and the feasibility.
When the training finishes, we obtain a model. When a new design is input
to this model, a predicted feasibility will be output. In this remanufacturing
system, a feasibility model was found in this way. For technical details,
such as what training method is used, and what the feasibility model looks
like, please refer to (Song et al. 2005a). The feasibility model is very fast
(0.003 second to predict the feasibility of a design on the average) and has
a high accuracy, 0.985, which means if we randomly sample 1000 designs
that are predicted as feasible by this feasibility model, an average of 985
designs are truly feasible. Although COO can work with a feasibility
model with much less accuracy, such a high accuracy does allow us to
save the computing budgets by 25 folds, as will be shown later in this sub-
section.

3.2.2 Crude model for the performance

After the designs predicted as feasible are screened out by using the feasi-
bility model, we need a crude model to sort these designs according to the
observed performance. The crude model should be computationally fast,
and only need to give a rough estimate of the performance of the design. In
one extreme case, blind pick does not need the estimate of the performance.

Real World Application Examples 225

The application procedure of the COO (feasibility model with blind
pick) is summarized in Box 8.2.

Box 8.2. Application procedure of COO (feasibility model with blind pick) in the
remanufacturing system

Step 1: Uniformly randomly sample N designs from the entire design space.
Step 2: Use the feasibility model to screen out the predicted feasible designs.
Step 3: User defines the size of the good enough set g and the required

alignment level k.
Step 4: Using the accuracy of the feasibility model, we can calculate the

size of the selected set s.
Step 5: Blind pick s designs from the predicted feasible list.
Step 6: The COO theory ensures that there are at least k truly good enough

and feasible designs in these s selected designs with high probability.

3.2.3 Numerical results

To get an idea of how much computing budget we can save by using COO,
we show the following experimental results. Consider a planning for 8 sea-
sons (24 months), m = 8, TC = 720 days. Suppose there is one part that needs
to be repaired (i.e., n = 1) after disassembly. The inter-arrival time in sea-
son i contains exponential distribution, i.e.,

()Prob it

ia k t e λλ −= =⎡ ⎤⎣ ⎦ ,

where the time unit is day, and the λi in the 8 seasons take the values of
3.5, 3.0, 2.5, 2.0, 2.5, 3.0, 3.5, and 3.0. It takes 5 days to disassemble and
check each asset. The repairing time of the parts satisfies the triangular dis-
tribution, with a minimum of 30 days, a maximum of 90 days, and an av-
erage of 60 days. It takes 7 days to reassemble the parts. In this case, C and
∆I are both 8 dimensional row vectors, and the elements within are Ci and
∆Ii, representing the number of machines in season i, and the order quan-
tity at the beginning of season i. 11≤Cj≤40, 0≤∆Ij≤7, Cmax=40, Cmin=11, ∆C
= 5, ∆Imax = 7, α = 1, β = 0.2, TD = 100 days. The size of the design space is
5.8×1014. The requirement on the maintenance time is:

Since no problem information is utilized in the blind pick, the required
size of the selected set is an upper bound of the case when other crude
models are used, e.g., using a single replication of the simulation to esti-
mate the performance.

226 Chapter VIII

() ()D CProb 0.05T k T k Tη> ≤ <⎡ ⎤⎣ ⎦ ,

i.e., P0=0.05.

Fig. 8.15. The true performance and feasibility of 1000 randomly sampled designs

Table 8.10. Selected set size s for the remanufacturing system

Required AP s
≥0.50 10
≥0.70 16
≥0.95 39

To get a rough idea on how many designs are feasible, we uniformly
randomly sample 1000 designs and use brute force simulation to obtain the
true performance and feasibility of these designs, as shown in Fig. 8.15.
We can see that a lot of designs are not feasible. If we do not have a feasi-
bility model and directly apply OO in this problem, there will be a lot of
infeasible designs in the selected set, which leads to a large selected set.

We regard the truly top 50 feasible designs as good enough. For differ-
ent alignment probability, we use Eq. (5.6) in Section V.1 to calculate the
size of the selected set such that there is at least 1 truly good enough and
feasible design in the selected set with a probability no less than the re-
quired alignment probability. These sizes are listed in Table 8.10.

Real World Application Examples 227

Suppose the required AP is 0.95. Since the designs are randomly sam-
pled. The alignment level between the selected set and the good enough set
might be different in different experiments. We show one instance in Table
8.11, where only the indexes of the designs are shown. In this instance
there are 3 truly good enough and feasible designs found. Compared with
the brute force simulation, which needs to accurately evaluate the perform-
ance and the feasibility of all the 1000 designs, COO saves the computing
budgets by 25 folds in this example, by reducing from N = 1000 to s = 39.

Table 8.11. One instance of the alignment between G and S

Set Plans
S {404, 858, 744, 766, 245, 763, 241, 466,

48, 532, 408, 906, 186, 39, 597, 577,
589, 351, 567, 406, 948, 882, 988, 402,
924, 464, 667, 530, 984, 906, 633, 357,
317, 907, 119, 305, 857, 737, 646}

G {90, 270, 450, 630, 810, 990, 157, 337,
517, 697, 877, 1, 194, 374, 554, 734,
914, 136, 316, 496, 676, 856, 29, 209,
389, 569, 749, 929, 184, 364, 544, 724,
904, 43, 223, 403, 583, 763, 943, 146,
326, 506, 686, 866, 137, 317, 497, 677,
857, 143}

G∩S {317, 763, 857}

3.3 Application of VOO

As aforementioned, in practice we sometimes do not know the appropriate
value of P0, which is the threshold for the probability that a maintenance
time exceeds the given value. What we know is that the maintenance time
is an important aspect of the system performance that should be considered
during the optimization. We will here regard both the maintenance cost
and the maintenance time as objective functions. More specifically we
have two objective functions. One is the probability that the maintenance
time exceeds a given limit, i.e.,

() () ()1 D C, ProbJ C I T k T k Tη∆ = > ≤⎡ ⎤⎣ ⎦ .

The other one is still the maintenance cost, i.e.,

228 Chapter VIII

()2 , , ,
1 1 1 1 1 1

,
n m n m n m

i j i j i j
i j i j i j

J C I C I Iα β
= = = = = =

∆ = + ∆ +∑∑ ∑∑ ∑∑ .

Then we have a two-objective optimization problem

() () ()()1 2, ,
min , min , , ,
C I C I

J C I J C I J C I
τ

∆ ∆
∆ = ∆ ∆ .

Both objective functions can only be accurately evaluated by simulations.
We will apply the vector ordinal optimization introduced in Chapter IV to
solve this problem.

Fig. 8.16. The true performances of the designs

Since we have already used brute force simulation to obtain the true per-
formance and feasibility of 1000 randomly sampled designs in Fig. 8.15,
we show the first two layers of these 1000 designs in Fig. 8.16. There are 6
designs in the first layer (marked by circles), and 8 designs in the second
layer (marked by triangles) shown in Fig. 8.16. We also show the observed
performance curve in the vector case (VOPC) in Fig. 8.17. Of course, in
practice we do not know this true VOPC. Instead, we use a crude model (a
single replication) to get the rough estimation of the performance. Fig.
8.18 shows one instance, where there are 4 designs in the observed first
and the observed second layer, respectively, which is different from Fig.
8.16. The VOPC is similar to Fig. 8.17, which belongs to the steep type.
We estimate the noise level by 10 independent simulations of a design, and
find the normalized noise level is 0.1061 for J1 and 0.0078 for J2, which is a

Real World Application Examples 229

small noise level. By looking at the VOO-UAP table Table 4.1 in Chapter
IV, we find the coefficients in the regression function are: Z1 = –0.7564, Z2 =
0.9156, Z3 = –0.8748, and Z4 = 0.6250. Define the designs in the truly first
two layers as good enough designs (there are 14 design in total). Because the

Fig. 8.17. The true VOPC

Fig. 8.18. The observed performance of the remanufacturing system

VOO-UAP table is developed for 10,000 designs and 100 layers in all,

230 Chapter VIII

we need to normalize the values of g, s, and k before the calculation. There
are 134 layers in Fig. 8.178, so g’=[100/134×2]=1, k’=10000/1000×k=10k
(1≤k≤14), and s=[134/100×s’]. For different values of k, we denote the
values of s predicted in this way as 1̂s . Since the noise levels in J1 and J2
are smaller than 0.5, which is used in the VOO-UAP table, the values of 1̂s
might be conservative. So, we also use some simulation-based method to
obtain less conservative prediction of the values of s, which are denoted as

2ŝ . More details of this simulation-based method are presented in details
later.

On the other hand, we use 1000 independent simulations to estimate
how many observed layers are needed to contain some truly good enough
designs with a probability no less than 0.95. Let these values be s*. For dif-
ferent values of k, we show the values of s*, the predicted values of s using
the regression function (denoted as 1̂s), and the predicted values of s using
simulation-based method (denoted as 2ŝ) in Table 8.12.

Table 8.12. The predicted value and true value of s

k s*
1̂s 2ŝ 2ˆ

1

s
ii=∪

1 1 7 1 6
2 1 11 1 6
3 1 15 2 14
4 1 20 2 14
5 2 24 2 14
6 2 28 3 24
7 2 32 3 24
8 3 36 4 36
9 3 40 5 48
10 5 44 5 48
11 6 48 6 62
12 8 52 8 85
13 9 56 9 96
14 13 59 12 141

Table 8.12 shows that the predicted value 1̂s is always an upper bound
of the true value s*, but the difference might be large. This means 1̂s is
conservative, because the small noise level in the VOO-UAP table is 0.5,

8 The number of observed layers is a random number, which varies around the

true number of layers.

L

Real World Application Examples 231

but the noise level in this problem is 0.1061 and 0.0078, respectively. To
obtain a less conservative estimate of s*, we use the following method.
Based on the rough estimate obtained through a single simulation, regard
the estimate as the true value, find the observed first two layers, and regard
these designs as the “truly good enough designs”. Then add the normally
distributed noise N(0,0.21222) and N(0,0.01562) 9, and find the observed
first s layers. Repeat this procedure for 1000 times, and obtain an estimate
of the alignment probability for each (s, k) (in which s = 1,2,…20, and k =
1,2,…,14). Select the smallest s such that the alignment probability is no
less than 0.95 as the estimate of the true values s*, and denote as 2ŝ , also
shown in Table 8.12. We can see that 2ŝ is a good estimate of s*, and a
tight upper bound of s*, except for the case of k = 14. In the case of k = 14,
the difference is only 1. From Table 8.12, we can see that VOO saves the
computing budgets by at least one order of magnitude in most cases. Only
when k = 14, the number of designs in the observed first 2ŝ layers increases
drastically. That is because it is a difficult job to find all the designs in the
truly first two layers.

To summarize, the application procedure of VOO in this remanufactu-
ring system is as follows.

Box 8.3. Application procedure of VOO in the remanufacturing system

Step 1: Randomly sample N designs.
Step 2: Use the crude model to quickly estimate the performance of the de-

signs.
Step 3: Layer down the designs according to the observed performance.
Step 4: User defines the good enough set and the required alignment level

k.
Step 5: Estimate the observation noise level and the problem type (VOPC).
Step 6: Use the VOO-UAP table in Section IV.2 to calculate the number of

observed layers to select.
Step 7: Select the observed first s layers as the selected set.
Step 8: Then the VOO theory ensures that there are at least k truly good

enough designs in the selected set with high probability.

9 The standard deviations of the additive noises are twice the standard devia-

tions of the noises in the two objective functions, respectively.

232 Chapter VIII

3.4 Conclusion

In this section, we consider the performance optimization of a remanufac-
turing system. By formulating the requirement on the maintenance time as
a constraint or an objective function, we have a simulation-based con-
strained optimization problem or a two-objective optimization problem.
We apply COO and VOO to solve the problems, respectively. Besides the
general application procedure of COO and VOO as introduced in Chapter
V and IV, we also discuss how we can incorporate the problem informa-
tion into a feasibility model, using a machine learning method in COO;
and how we can use problem information to improve the estimate of the
number of observed layers to select in VOO. In both problems, COO and
VOO save a lot of computing budgets. Note that we only use blind pick in
Section 3.3. By using horse race selection rule, we can further improve the
performance of COO by selecting a smaller number of predicted feasible
designs. Interested readers may refer to (Song et al. 2005b) for more de-
tails.

Exercise 8.1: Can we apply COO to solve simulation-based multi-
objective optimization problems? If so, please explain how. If not, please
explain why.

Exercise 8.2: Can we apply VOO to solve simulation-based constrained
optimization problems? If so, please explain how. If not, please explain
why.

4 Witsenhausen problem

A celebrated problem in system and control is the so-called Witsenhausen
problem. In 1968, H. S. Witsenhausen (Witsenhausen 1968) posed an inno-
cent looking problem of the simplest kind. It consists of a scalar linear
dynamic discrete time system of two time stages (thus involving two deci-
sions at time stages one and two). The first decision is to be made at time
one with perfect knowledge of the state, and there is a quadratic cost asso-
ciated with the decision variable. The second decision can only be made
based on noisy Gaussian observation of the state at time stage two, how-
ever, there is no cost associated with the decision. The performance crite-
rion is to minimize the quadratic terminal state after the two decisions.
Thus, it represents the simplest possible Linear-Quadratic-Gaussian (LQG)
control problem except for one small detail: Instead of the usual assump-
tion of one centralized decision maker who remembers at time stage two
what s/he knows at time stage one, we do not have perfect memory or re-
call. In fact, we have a decentralized team problem with two decision

Real World Application Examples 233

makers (DMs), DM1 and DM2 who do not have complete knowledge of
what the other knows. Here the possibility for optimization is clear. DM1
knows the state of the system perfectly. S/he can simply use his/her control
variable to cancel the state perfectly and leave DM2 nothing more to do.
However, his/her action entails a cost. On the other hand, DM2 has no cost
to act, but, without perfect memory, s/he has no perfect knowledge of the
state of the dynamic systems at time stage two. A simple approach would
be to strike a compromise using linear feedback control law for each deci-
sion maker, which is also known to be optimal under the traditional cen-
tralized LQG system theory for problems with perfect memory. In fact, it
is easy to prove that such a solution is a person-by-person optimal solution
in equilibrium, i.e., if DM1 fixes his/her linear feedback control law, the
best response by DM2 is a linear feedback control law and vice versa.
However, Witsenhausen demonstrated that, without perfect memory, there
exists a nonlinear control law for both DM1 and DM2, which involves sig-
naling by DM1 to DM2, using its control action (The idea of signaling will
be explained in more details in Section 4.1.), that outperforms the linear
person-by-person optimal control law. In other words, the Witsenhausen
problem presents a remarkable counterexample which shows that the
optimal control law of LQG problems may not always be linear when there
is imperfect memory. At the time, this was totally surprising since the prob-
lem seemed to possess all the right mathematical assumptions to permit an
easy optimal solution. However, the globally optimal control law for such a
simple LQG problem (or team decision problem) was unknown. The dis-
crete version of the problem was known to be NP-complete (Papadimitriou
and Tsitsiklis 1986). Many attempts and papers on the problem followed in
the next thirty and more years before the problem was understood and a
numerical solution of the globally optimal control law obtained in (Lee et al.
2001).

The difficulty of the problem constitutes the essence of information
structure (who knows what and when) in decentralized control, which is a
subject worthy of a separate book. We shall not go into the matters here.
However, we shall use the Witsenhausen problem here to illustrate the
process of search in the space of control laws, using OO to get good
enough solutions. This is because there are so much data accumulated with
this problem and we can easily assess the “good enough”-ness of any re-
sults thus obtained via OO.

First, we show the mathematical problem formulation in Section 4.1.
Since the optimal control laws associated with the Witsenhausen problem
have not been obtained analytically yet, it is important to discover the
structure of the space of the control laws numerically. This is a common
problem faced by many practical engineering problems, where finding the

234 Chapter VIII

optimal design needs tremendous computing time, even if not computa-
tionally infeasible. By using OO, we were able to discover some structure
information of the design space in the Witsenhausen problem efficiently,
based on only noisy performance observation. The information not only
produced a pair of control laws that were 47% better than the best solution
known by that time (Banal and Basar 1987), but also helps to finally
achieve the best-so-far numerical solution (Lee et al. 2001). We introduce
the details for this also in Section 4.1. In Section 4.2, we consider the con-
straint on memory space when solving the Witsenhausen problem, and
show how to find simple and good enough control laws using OO and
OBDD, which were introduced in Chapter VI. With minor performance
degradation (less than 5%), we save the memory space to store the control
law by over 30 folds. We make a brief conclusion in Section 4.3.

4.1 Application of OO to find a good enough control law

The Witsenhausen problem can be described as follows. It is a two-stage
decision making problem. At stage 1, we observe the initial state of the
system x. Then we have to choose a control u1=γ1(x) and the new state will
be determined as x1=x+u1=x+γ1(x). At stage 2, we cannot observe x1
directly. Instead, we can only observe y=x1+v, where v is the additive
noise. Then we have to choose a control u2=γ2(y) and the system state stops
at x2=x1+u2. The cost function is E[k2(u1)2+(x2)2] with k2>0 as a constant.
The problem is to find a pair of control functions (γ1, γ2) which minimize
the cost function. The trade off is between the costly control of γ1 which
has perfect information and the costless control γ2 which has noisy infor-
mation. We consider the famous benchmark case when x~N(0,σ 2) and
v~N(0,1) with σ = 5 and k = 0.2.

Witsenhausen made a transformation from (γ1, γ2) to (f, g), where
f(x)=x+γ1(x) and g(y)=γ2(y). Then the problem is to find a pair of functions
(f, g) to minimize J(f, g) where

() ()() () ()()()222,J f g E k f x x f x g f x v⎡ ⎤= − + − +⎢ ⎥⎣ ⎦
. (8.4)

The first term in Eq. (8.4), E[k2(f(x)-x)2], represents the cost shouldered by
player one in the first time stage, so it is also called the stage one cost. The
second term, E[(f(x)-g(f(x)+v))2], represents the cost shouldered by player two
in the second time stage, so it is also called the stage two cost. Witsen-
hausen (Witsenhausen1968) proved that: 1) For any k2>0, the problem has

Real World Application Examples 235

an optimal solution. 2) For any k2<0.25 and σ =k –1, the optimal solution in
linear control class with f(x)=λx and g(y)=µy has * 2

linear 1J k= − , and

()20.5 1 1 4kλ µ= = + − . In the benchmark case that we consider,
k=0.2, *

linear 0.96J = . 3) There exist k and σ such that J*, the optimal cost,
is less than *

linearJ , the optimal cost achievable in the class of linear con-
trols. Witsenhausen gave the following example. Consider the design:
fW(x)=σ sgn(x), gW(y)=σ tanh(σy), where sgn(•) is the sign function, then
the cost function J is JW=0.4042. 4) For given f(x) satisfying E[f(x)]=0 and
var[f(x)]≤4σ 2, which are the conditions that the optimal f *(x) should sat-
isfy, the optimal *

fg associated with function f is

() ()()
()()

*
f

E f x y f x
g

E y f x

ϕ

ϕ

⎡ ⎤−⎣ ⎦=
⎡ ⎤−⎣ ⎦

, (8.5)

where ϕ(•) is the standard Gaussian density function.

Now the problem becomes that of searching for a single function f to
minimize ()*, fJ f g . Although the problem looks simple, no analytical
method is available yet to determine the optimal f *. The numerical optimal
solution only came after over thirty years later and after many attempts
(Lee et al. 2001). In the following, we will demonstrate how we should
apply OO to search for good control laws for the Witsenhausen problem.
Before we present the numerical details, we should discuss what a crude
model is and how we can apply OO to discover the property of the good
enough designs, which helps to narrow down the search space.

4.1.1 Crude model

Following the properties of the optimal control laws shown by Witsen-
hausen, each “design” in the Witsenhausen problem is a control function f,
which satisfies E[f(x)]=0 and var[f(x)]≤4σ 2. Because f is in general a one-
dimension real function, and there are in principle infinite number of such
functions, it is important to find an appropriate representation for such
functions in a digital computer. The idea is to discretize the function f. Lee
et al. showed that it is reasonable to assume the optimal function f * is
symmetric about the origin, i.e., γ1(y1) = –γ1(–y1) (Lee et al. 2001). In the
following discussion, we only consider f(x) for x≥0. We divide the x-space

236 Chapter VIII

[0,∞) evenly in probability, i.e., we divide x-space into n intervals, I1,…,In,
where Ii=[σt(0.5+0.5(i-1)/n), σt(0.5+0.5i/n)), tα is defined by Φ(tα)=α where Φ is the
standard normal distribution function. Prob[x∈Ii]=0.5/n because x has a
normal distribution N(0,σ 2). Then for each interval Ii, a control value fi is
uniformly picked from (–3σ, 3σ), i.e., fi~U(–15, 15). To calculate the per-
formance ()*, fJ f g , we should calculate the optimal associated function

*
fg through Eq. (8.5) and then we will obtain ()*, fJ f g through Eq. (8.4).

However, both Eq. (8.4) and Eq. (8.5) involve expectations, which mean a
large number of Monte Carlo simulations might be required to calculate
the performance J accurately. Actually based on the results described in
this subsection, (Lee et al. 2001) developed a step-function representation
of the function f and then obtained a way to calculate J through numerical
integration instead of Monte Carlo simulation. Although numerical inte-
gration is much faster than Monte Carlo simulation, it requires a long-time
numerical integration to make the result very accurate. We will come back
to this at the end of this subsection. Right now, let us assume Monte Carlo
simulation is the only way to accurately evaluate J, which is true when the
results of this subsection were developed in 1999.

The question now is how to find a crude model which is computation-
ally fast and can give a rough estimate of J. We simplify the calculation
from two aspects. First, instead of calculating the accurate *

fg , we calcu-
late an approximation of *

fg ,

() ()()

()()

100

1
100

1

ˆ
i i

i
f

i
i

f x y f x
g

y f x

ϕ

ϕ

=

=

−
=

−

∑

∑
.

Second, instead of using a large number of Monte Carlo simulations to
accurately calculate ()ˆ, fJ f g through Eq. (8.4), we use only 100 replica-

tions to get an estimate ()ˆ ˆ, fJ f g . In this way, we get a crude model

()ˆ ˆ, fJ f g of the true performance ()*, fJ f g .

Real World Application Examples 237

4.1.2 Selection of promising subsets

After the discretization of function f, the design space in the Witsenhausen
problem is still extremely large. To overcome this difficulty, our basic idea
is to divide the entire design space into smaller subsets and choose promis-
ing subsets for further searching. The No-Free-Lunch Theorem tells us that
every other optimization method can be as efficient (inefficient) as blind
pick, without any problem information. To achieve a higher efficiency than
that of blink pick, we need to discover some structure information of the
design space, e.g., which subset contains more good enough designs than
others. In particular, if we sample a set of designs for their performances
(however noisily or approximately), we should be able to catch a glimpse,
from the samples, of what are “good” subsets to search, and gradually re-
strict the search there. This is like traditional hill climbing, except that we
move from one subset to another instead of moving from point to point in
the search space. The key question here is to establish a procedure of com-
paring two subsets based upon sampling and then to narrow down the search
space step by step. We will show how OO helps to do this comparison in
this subsection. By the OO-based comparison, we find three restrictions
which narrow down the search space to a subset that contains more good
enough designs than without the restrictions. The three restrictions are: 1)
For each interval Ii, control f is in (–0.5σ, 2.5σ) because we are searching
primarily in the positive quadrant; 2) f is a non-decreasing function; 3) f has
two steps. In the rest of this subsection, we will use numerical results to
show how these three restrictions are discovered, and how this finally helps us
to find a control law 47% better than the best solution known by that time, and
later on helps to discover the best-so-far control law. First, we start from a
general discussion on how to narrow down the search space using OO.

The idea behind narrowing down the search space is to identify which
subset of the search space contains more good enough designs than the
others. Of course, if we know the true performance of all the designs, this
problem will be trivial. However, in practice we only have noisy perform-
ance observations and can only do this performance estimation for a small
portion of the entire design space. So we need a function to represent the
goodness of a subset, i.e., the number of good enough designs in this sub-
set, and we hope this function can be efficiently estimated when only the
noisy performance observations of some of the designs are available. The
performance distribution function satisfies these constraints. Suppose Θ1
and Θ2 are two subsets of a large design space Θ. If we know the true per-
formance of all the designs in Θ1 and Θ2, we can obtain a performance
density function (Fig. 8.19(a)), which looks like a probability density func-
tion, by discretizing the performance into many small intervals, counting

238 Chapter VIII

the number of designs the performances of which fall in each interval, and
normalizing this number by the total number of designs. By integrating the
performance density function, we obtain the performance distribution
function (PDF) (Fig. 8.19(b)), which is non-decreasing and looks like a
probability distribution function. Now, suppose we know the PDF of Θ1 is
F1(t) and the PDF of Θ2 is F2(t), Let us focus on the top-5% designs in
each subset. If F1(t1)=0.05, F2(t2)=0.05, and t1<t2, (as shown in Fig. 8.20)
which means the top-5% designs in Θ1 are with better performances than
those in Θ2. Then we should continue our search in Θ1. Of course, in prac-
tice we only have the estimate of F1 and F2. As we will demonstrate by the
numerical examples in the following, however, the estimate of F1 and F2
still helps us to find the promising subset.

Fig. 8.19. (a) Performance density function and (b) performance distribution function

Fig. 8.20. Comparing two subsets based on PDFs

5%

t1 t2

F1(t)

F2(t)

t, performance

Real World Application Examples 239

Now we are ready to summarize our sampling and space-narrowing pro-
cedure. For a search space Θ, we first define two or more subsets (there
might be intersection among these subsets) and find the corresponding ob-
served PDFs. By comparing the observed PDFs, we can estimate which
subset(s) is (or are) good. We can then further narrow down our search
into smaller subsets. In the following, we demonstrate how this procedure
helps to discover the three properties of the good designs in the Witsen-
hausen problem and finally a design which was the state of the art when
the result was published in year 1999 (Deng and Ho 1999).

The number of intervals, n, used in the construction of the discretized f,
determines the size of the search space. In principle, n can be any positive
integer. However, for a large n, the designs with good performances are
only a very small portion of the entire search space. In this case, it is very
difficult to find a good enough design. The first question here is what the
appropriate value of n should be. For values of n=1, 2, 5, and 10, we ran-
domly pick 5000 functions f in each case, use the crude model in Section
4.1 to estimate the performances, and observe the PDF respectively
(shown in Fig. 8.21). Since we are doing minimization, we only care about
the performances of the top-5% designs in each case. In Fig. 8.21, we only
show the part of the PDFs that are close to the origin. There are 4 curves,
from the left to the right, representing the PDFs of the subsets when n=1,
2, 5, and 10, respectively. We compare the performance of the top-5%-th
design in each subset and find that the cases of n=5 and 10 are of much
larger costs (both greater than 1.0) than those of n=1 and 2 (both smaller
than 1.0). Thus, n=1 and 2 are better subsets than n=5 and 10. The problem
is the cases of n=1 and 2 are indistinguishable. Because if we only care
about top-5% designs in both cases, many top-5% designs in the case of
n=2 are with larger costs than the case of n=1. However, if we consider the
top-0.1% designs, the case of n=2 is better than n=1. Through this com-
parison, we find that n=1 or 2 are good choices, but we cannot determine
which one is better yet. The fact that n=1 is a good choice indicates that
the class of constant control functions (with discontinuity at the origin due
to symmetry) is a good representation of the search space for control func-
tion f. This means that the pair of controllers described by Witsenhausen
which outperform the optimal linear control law are already very good. In
addition, by comparing the observed best f among the randomly sampled
5000 functions for each n, we observe that the control values of the ob-

observation, we make the following restriction (R1): For each interval Ii,
control f is in (0.5σ, 2.5σ), i.e., f~U(2.5,12.5).

served best controllers for different n are located in [2, 12). Based on this –

– –

240 Chapter VIII

Fig. 8.21. Observed PDFs when there are n=1, 2, 5 and 10 intervals in f(x), x≥0
(Deng and Ho 1999) © 1999 Elsevier

Fig. 8.22. Observed PDFs with restriction R1 (Deng and Ho 1999) © 1999 El-
sevier

With this restriction, we repeat our experiment for n=1, 2, 5, and 10 and

do a further comparison among the cases of n=1, 2, 3, and 4. We show the
observed PDFs and the observed best-control functions in Fig. 8.22 and Fig.
8.23. In Fig. 8.22, the top-5%-th design in the cases of n=1 and 2 are of costs
smaller than 0.4, which is smaller than the costs of the top-5%-th designs in
the cases of n = 3 and 4 (with costs larger than 0.5). If we compare the per-
formances of the top-3%-th designs in each case, the case of n = 2 will be
the best subset among the four cases. A more interesting phenomenon we
may observe from Fig. 8.23 is that the observed best controllers for both n = 3
and 4 have the two-interval shape as the one of n = 2. All these observations
indicate that the right direction of search should be toward the two-interval
functions. Since the observed best controllers (in Fig. 8.23) display some in-
creasing property, we make a further restriction (R2): The control f is a non-
decreasing function in (–0.5σ, 2.5σ).

find the cases of n=1 and 2 still outperform the cases of n=5 and 10. We then

0.05

0.04

0.03

0.02

0.01

0.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Performance

D
is

tr
ib

u
ti

o
n

2 intervals

4 intervals

1 interval

3 intervals

0.05

0.04

0.03

0.02

0.01

0.00

0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5

10 intervals

5 intervals

2 intervals
D

is
tr

ib
u

ti
o

n

Performance

1 interval

Real World Application Examples 241

Fig. 8.23. Observed best control f with restriction R1 (Deng and Ho 1999) © 1999
Elsevier

Fig. 8.24. Observed PDFs with restriction R2 (Deng and Ho 1999) © 1999 Elsevier

To test whether restriction R2 helps us to find subsets containing more
good designs, we compare the observed PDFs before and after the restri-
ction R2 is applied in Fig. 8.24. The curves with the legend “interval(in)”
are those with restriction R2. Fig. 8.24 shows that with restriction R2, the
top-5% designs in the two-interval controllers have the best performances.
This indicates that the specification of the non-decreasing control function
is in the right direction. Actually it was shown by Witsenhausen that the
optimal function f should be non-decreasing (Witsenhausen 1968). It is
conceivable that the optimal control function may possess significant dis-
continuity. Thus, the 3rd restriction (R3) is made as follows: The control f
is a two-value non-decreasing step function in (–0.5σ, 2.5σ).

In the previous experiments, to make a quick estimate of the PDF for
each value of n, when the number of intervals n is given, we fix the discre-
tization of the x-space as explained in Section 4.1. For example, for n=2,

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10
−2

state x

co
n

tr
o

l f

2 intervals

3 intervals
4 intervals

1 interval

0.1

0.00

0.01

0.02

0.03

0.04

0.05

0.2 0.3 0.4 0.5
Performance

D
is

tr
ib

u
ti

o
n

2 intervals

2 intervals (in)

3 intervals (in)
4 intervals (in)

1 interval

...............

242 Chapter VIII

we fix the jump points at x=σt0.75. Now, we have already identified that n=2
is a good choice, as stated in R3, so we will determine the jump point of the
two-value functions. As Fig. 8.23 shows, the jump point may not be at σt0.75.
We consider 10 possible jump points: σt0.55, σt0.60, …σt0.95. For each jump
point, we randomly sample 5000 functions f that satisfies R3. The observed
PDFs, associated with different jump points, are presented in Fig. 8.25. In
Fig. 8.25, the legend “2 int. (a)” represents the jump point as σta. We see
that the best jump point is around σt0.90. The best observed control function f
among 5000 samples in the space associated with σt0.90 is

()
3.1686, 0 6.41,
9.0479, 6.41.DH

x
f x

x
≤ <⎧

= ⎨ ≥⎩

The subscript “DH” is to denote that this function was first found by
M. Deng and Y.-C. Ho in 1999 (Deng and Ho 1999). We use 10000 repli-
cations to obtain an accurate estimate of the true performance of this func-
tion, and obtain the value 0.1901 with variance 0.0001, which is 47%
better than the best solution know by that time which was found by Banal
and Basar with performance JBB=0.3634 (Banal and Basar 1987).

The after-the-fact reasoning behind the superiority of the two-value con-
trollers is as follows. Witsenhausen proposed the signaling concept when
he reported this famous counter example in (Witsenhausen 1968). The idea
is that DM1 knows the state of the system perfectly but has an action cost.
So instead of using his/her own control variable to cancel the state per-
fectly, DM1 cancels (or enhances) parts of the state (x), which makes the

Fig. 8.25. Observed PDFs with restriction R3 (Deng and Ho 1999) © 1999
Elsevier

0.10
0.00

0.01

0.02

0.03

0.04

0.05

0.15 0.250.20 0.30
Performance

D
is

tr
ib

u
ti

o
n

2 int. (0.70)
2 int. (0.75)
2 int. (0.80)
2 int. (0.85)
2 int. (0.90)
2 int. (0.95)...............

Real World Application Examples 243

state of the system concentrated on either a given negative or positive
point x1. DM1 uses x1 as a signal to tell DM2 how to set his/her control
variables, such as positive or negative values of x1. Under moderate noise
conditions, DM2 can ascertain the sign of x1 with high probability. DM2
has no action cost. If DM2 can interpret DM1’s signal x1 correctly, and
thus takes the correct action to cancel almost all the state x1, the resulting
state of the system, x2, will cause little cost, i.e., a small stage 2 cost. How-
ever, DM2 only has noisy observation of x1, and may misinterpret x1. To
reduce the probability of misinterpretation, DM1 needs to take large
actions to make the signaling levels far apart from each other, which
causes a large stage 1 cost. Finding the optimal f*(x) in the class of step
functions (as used in this section) amounts to finding the optimal number
of steps/intervals in f(x) and their placements so as to balance the tradeoffs
between the first and second stage costs. The step function fW proposed by
Witsenhausen is a one-interval function (the single jump point is at x=0
and with signaling level σ). Banal and Basar further optimized the signal-
ing level of this one-interval function and obtained fBB (the single jump
point is still at x=0 but with signaling level 2 /σ π). The signaling
scheme in fDH allows DM1 to use four signal levels, i.e., more positive
(9.0479), less positive (3.1686), less negative (–3.1686), and more nega-
tive (–9.0479). Hence, there is a reduction in the magnitude of (x-fDH(x)).
Meanwhile, the signaling levels are placed sufficiently far apart so that
DM2 can still distinguish DM1’s signal with small errors.

In the above discussion, we continuously narrow down the search space
by comparing the observed PDFs of different subsets. The ideas of goal
softening and ordinal comparison allow us to discover some properties of
the good designs, i.e., the three restrictions we found. This finally led us to
a design 47% better than the best solution known by that time (Banal and
Basar 1987) when this result was published in 1999. These results indicate
that a step function may be an appropriate representation of the function f.
This idea was further explored in (Lee et al. 2001). In (Lee et al. 2001), by
describing the function f as a step function, Lee et al. achieved a fast and
accurate computational scheme for the cost J which eliminates the need of
simulation, but requires numerical integration. Also they observed that the
jump points should be located around the average of two adjacent values
of function f (which is also called the signaling levels). Furthermore, addi-
tional improvement can be made by adding small segments to approximate
a slight slope for each step in function f. Finally they achieved the follow-
ing function f

244 Chapter VIII

()LLH

0.00 0.00 0.65
0.05 0.65 1.95
0.10 1.95 3.25
6.40 3.25 4.58
6.45 4.58 5.91
6.50 5.91 7.24
6.55 7.24 8.57
6.60 8.57 9.90
13.10 9.90 11.25
13.15 11.25 12.60
13.20 12.60 13.95
13.25 13.95 15.30
13.

x
x
x
x
x
x
x

f x
x
x
x
x
x

≤ <
≤ <
≤ <
≤ <
≤ <
≤ <
≤ <

=
≤ <
≤ <
≤ <
≤ <
≤ <

30 15.30 16.65
19.90 16.65 .

x
x

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪ ≤ <⎪
⎪ ≤⎩

Fig. 8.26. Historical improvements on the Witsenhausen problem (benchmark:
k = 0.2 and σ = 5) (Lee et al. 2001) © 2001 IEEE

0

0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

Stage 1 Cost

S
ta

g
e

2
C

o
st

LLH
DH

BB
W

Real World Application Examples 245

The corresponding cost is JLLH = 0.167313205338. This is the best-so-far
solution in the past over-thirty years. In summary, we show the historical
improvements on the Witsenhausen problem in Fig. 8.26, from which we
can see JLLH has a good balance between stage 1 cost and stage 2 cost. It
was claimed that this is the “optimal” solution in the sense that all proper-
ties of the optimal solution have been discovered, any further improvement
is relatively small and can only be achieved numerically, say by further
dividing each step of function fLLH(x) into smaller steps and using local
search to improve.

4.2 Application of OO for simple and good enough control laws

Although fLLH is the best-so-far solution to the Witsenhausen problem, it is
obviously more complex than the 1-step function fW and fBB, the 2-step
function fDH, and the following 3.5-step function f3.5

()3.5

0 0 3.25
6.5 3.25 9.90
13.2 9.90 16.65
19.9 16.65 .

x
x

f x
x
x

≤ <⎧
⎪ ≤ <⎪= ⎨ ≤ <⎪
⎪ ≤⎩

from which fLLH was obtained by adding small segments to each step. Each
time when a better f(x) was reported, the incremental improvement be-
comes smaller and smaller (from JW = 0.4042 to JBB = 0.3634 to JDH =
0.1901 to J3.5 = 0.1714 to JLLH = 0.1673), and the function f becomes more
and more complex. It seems that there is a trade-off between the perform-
ance of f and the complexity of f. Since we have not quantified the com-
plexity of f, this statement is very informal. An interesting question is
whether we can find simple f’s with similar performance to the best-so-far
solution. Though fW, fBB, fDH, and f3.5 are intuitively simpler than fLLH, these
functions were not obtained for being simple and good. It is not clear yet
how to find a simple and good enough f in a systematic way. This is where
the OO methodology of Chapter VI can help. In this subsection, we use the
Kolmogorov complexity (KC) to measure the complexity of a function f.
The KC of a function can hardly be calculated in general, but can be esti-
mated through the OBDD-based representation of the function (where
OBDD stands for Ordered Binary Decision Diagram). In Chapter VI, we
combine OO and OBDD to get a systematic method of finding simple and
good enough solutions. We will use this method to find a simple and good

246 Chapter VIII

enough control law for the Witsenhausen problem. Comparing with the
best-so-far function fLLH, with minor performance degradation (within 5%),
we reduce the complexity of f (i.e., the memory space to store f) by over 30
folds. Although in this specific example, most digital computers in engi-
neering practice can store fLLH with no difficulty, the importance of study-
ing this problem is to demonstrate how to use the method introduced in
Chapter VI to find simple and good enough designs, especially when the
memory space is limited.

Fig. 8.27. One PROBDD that describes fLLH. The 14 boxes in the bottom represent
the 14 output in fLLH, from 0.00 to 19.90, represented by 11-bit binary sequence

We start from quantifying the complexity of the best-so-far function
fLLH. As introduced in Chapter VI, KC supplies a measure of this complex-
ity. The idea is to write a program to represent fLLH. When the value of x is
input, a computer should output the value of fLLH(x) by executing this
program, which should work for all the values of x. The length of the
shortest program that can represent fLLH in this way is defined as the KC of
fLLH. f(x) is defined over all the real numbers. However, digital computers
have only finite input. Lee et al. showed that (Lee et al. 2001) it is reason-
able to approximate f(x) by only focusing on the domain of [-5σ, 5σ], i.e.,
–25≤x≤25, because x~N(0,σ 2) and the value of f(x) for x∉[-5σ, 5σ] are very

representing function f(x) by a program, we only consider input 0≤x≤25. In
fLLH 2
to encode the input. As for the output, we can similarly calculate that

2
ter VI, we can also represent fLLH by a Partially Reduced OBDD (PROBDD)

, the input has a resolution of 0.01, thus we need log (2500) =12 bits

log (1990) =11 bits are needed to encode the output. As explained in Chap-

insignificant to the overall cost objective. In the following discussion, when

⎡⎢ ⎤⎥

⎡ ⎤⎢ ⎥

Real World Application Examples 247

with 12-bit input and 11-bit output. We show one such PROBDD in Fig.
8.27. There are 182 nodes (excluding the 14 boxes in the bottom) in this
PROBDD. Following the calculations introduced in Chapter VI, we know
it takes 24192 bits10 to store this PROBDD. The details of the calculation
are shown in Table 8.13. (In the table, fsg is a simple and good enough so-
lution which will be discussed later.) The size 24192 is much less than
57500, the size of lookup table representation.

Exercise 8.3: In the look-up table representation, we describe fLLH by
listing all the (x, fLLH(x)) pairs in sequence. Please tell why 57500 bits all
together is needed.

Table 8.13. The complexity and performance of the milestone f ’s

f Base
(input)

of
input
bits

Base
(output)

of
output

bits

of
nodes

of
boxes

of
rules
(r)

d 4rd
(bits)

J

W – 0 1 3 0 1 6 4 96 0.4042
fBB – 0 0.0001 16 0 1 32 5 640 0.3634
fDH 0.01 12 0.0001 17 32 2 132 7 3696 0.1901
fsg 0.01 12 0.001 15 24 4 168 7 4704 0.1746
f3.5 0.01 12 0.1 8 62 4 188 7 5264 0.1714
fLLH 0.01 12 0.01 11 182 14 672 9 24192 0.1673

This justifies that PROBDD supplies a more compact representation of the
function fLLH. Since the KC of a function cannot be calculated in general,
we suggest in Chapter VI to use “4rd” as an estimate of the KC of a func-
tion f, where r is the number of rules to implement the PROBDD that
represents f, and d is the number of bits to encode each of the 4 elements in
a rule. Following this measurement, we also estimate the KC of fW, fBB, fDH,
and f3.5, and show the results in Table 8.13. We show the complexity and

10 In (Jia 2006) and (Jia et al. 2006b), the complexity of fLLH is estimated as

71311 bits, which is different from the results shown here. There are several rea-
sons that cause the difference. First, (Jia et al. 2006b) used 15 bits to encode the
input and 14 bits to encode the output. Second, due to more bits used in input and
output, the PROBDD obtained in (Jia et al. 2006b) contains more nodes than the

complexity (Please refer to Chapter VI for more details), (Jia et al. 2006b) uses
another formula to estimate the complexity. Although the values of the estimates
are different, (Jia 2006) also estimates fsg, which will be introduced later in this
subsection, much simpler than fLLH. At the end of this subsection, we will use an
example to show how different computers may lead to different KCs. In practical
application, this will not be a problem, as the computer is given and fixed.

f

one shown in Fig. 8.27. Third, instead of using the formula “4rd” to estimate the

248 Chapter VIII

performance of these functions in Fig. 8.28. This also justifies that 4rd is a
reasonable estimate of the complexity of the function, because Fig. 8.28
shows that when the performance improves, the complexity also increases,
which is consistent with our intuition.

Fig. 8.28. The complexity and performance of the milestone f ’s

After comparing milestone solutions to the Witsenhausen problem, we
will return to the main topic of this subsection: to find simple functions
with good performances (say similar to that of fLLH) using method intro-
duced in Chapter VI. For this sake, we add a constraint ()ˆ 10000C f ≤
where ()Ĉ f represents the estimate of the complexity of f as explained
above. This constraint can be interpreted as the given memory space of
10000 bits. As explained above, we need 24192 bits to store fLLH using
PROBDD, and 57500 bits using lookup table, so fLLH cannot be stored.
Following the method introduced in Chapter VI, by randomly generating
1000 control functions satisfying that ()ˆ 10000C f ≤ , we randomly sample
solutions to the Witsenhausen problem that can be stored within the

Real World Application Examples 249

10000-bit memory space. Using numerical integration with a large step-
size to estimate the cost J of each such function as in (Lee et al. 2001), we
obtain an observed Ordered Performance Curve as shown in Fig. 8.29.

Fig. 8.29. The observed OPC of the functions that can be stored within 10000 bits
in the Witsenhausen Problem (Jia et al. 2006b) © 2006 IEEE

This indicates that our problem belongs to the flat type of OPC. Also the
noise level is estimated as 0.0056 after normalization. Suppose we want to
find at least one of the top-5% designs that can be stored in 10000 bits.
Using the UAP table in Section II.5, we calculate that we should select
the observed top-37 designs. The OO theory ensures that there is at least
one of the top-5% simple functions contained in the observed top-37 sim-
ple functions with a high probability. To test this, we run the above proce-
dure by 100 replications. Each time, we randomly sample 1000 simple
functions, and use long-time numerical integration to calculate the accurate
performances. We find that there is always at least one truly top-5% simple
function found each time, i.e., the observed alignment probability is 1 in
the experiments.11 There are actually 24.5 truly top-5% simple functions

11 The top-5% here is w.r.t. all the simple functions. Since we do not sample

complex functions (i.e., functions that need more than 10000 bits to store) in the
experiments, we may not find a truly top-5% function (w.r.t. both simple and
complex functions) in each replication.

250 Chapter VIII

found on average, with an average cost of 0.2096. The best function found
in the 100 replications is

()sg

3.125, 0 6.25;
9.375, 6.25 12.5;
15.625, 12.5 18.75;
21.875, 18.75 ,

x
x

f x
x
x

≤ <⎧
⎪ ≤ <⎪= ⎨ ≤ <⎪
⎪ ≤⎩

where the subscript “sg” represents “simple and good enough”. The cost of
fsg(x) is 0.1746 (estimated by the numerical integration with step size
0.001). ()sg

ˆ 4704C f = . The complexity and performance of fsg is also
shown in Table 8.13 and Fig. 8.28. Although function fsg(x) is not as good
as the best-so-far function fLLH(x), it is already better than fDH(x) with cost
0.1901, fBB(x) with cost 0.3634, fW(x) with cost 0.4042, and of course the
best linear function with cost 0.96. Considering the fact that in the proce-
dure of finding fsg(x), we did not utilize much problem information as in
(Lee et al. 2001), for example, the placement of the jump points and the
slight slope in each step, we are quite satisfied.

We have mentioned in Chapter VI that the KC depends on the computer
that executes the program. Some computer has a longer list of commands.
This allows us to use a shorter program to implement the same function.
For example, in some computers the numbers 0.05, 0.10, 0.15, and 0.20
are not stored in the normal form, i.e., the binary numbers converted di-
rectly from the decimals. Instead, these computers record a base 0.05, and
record the numbers as 1, 2, 3, and 4. In this way, we only need to save one
decimal fraction accurately, thus save the memory space. This technique is
commonly adopted in our laptops and desktops. By using this technique,
we can further reduce the complexity of function f’s from Table 8.13 to
Table 8.14. In such a computer, fsg only requires 600 bits. With minor per-
formance degradation (within 5%), we save the memory space by over 30
folds (from 22176 bits to 600 bits). We also show the new complexity and
performance in Fig. 8.30. In Fig. 8.30, fBB dominates fW in the sense that
they have the same complexity but fBB has better performance. fsg domi-
nates fDH in both the complexity and the performance. The fLLH, f3.5, fsg, and
fBB are the Pareto frontier.

Real World Application Examples 251

Table 8.14. The complexity and performance of the milestone f ’s when allowing
to change the base in input and output

f Base
(input)

of
input
bits

Base
(output)

of
output

bits

of
nodes

of
boxes

of
rules
(r)

d 4rd
(bits)

J

fW – 0 5 1 0 1 2 3 24 0.4042
fBB – 0 3.9894 1 0 1 2 3 24 0.3634
fDH 6.41 1 0.0001 17 1 2 70 6 1680 0.1901
fsg 6.25 2 3.125 3 3 4 30 5 600 0.1746
f3.5 0.05 9 0.1 8 48 4 160 7 4480 0.1714
fLLH 0.01 12 0.05 9 182 14 616 9 22176 0.1673

Fig. 8.30. The complexity and performance of the milestone f ’s after changing the
base of input and output

4.3 Conclusion

In this section we have considered the famous Witsenhausen problem in
team decision theory. By comparing the observed PDF of each subset, we
find an easy way to discover several properties of good designs, using nu-
merical experiments, thus can find the promising subsets efficiently. When

252 Chapter VIII

applied in year 1999, this method finds a function for the Witsenhausen
problem, which is better than the best function known by that time. Fol-
lowing the step-function formulation, a best-so-far function was found in
2001 by Lee et al. However, the solution seems involving a high degree of
descriptive complexity. By combing OO and OBDD as introduced in
Chapter VI, we are able to find simple and good enough functions with
high probability. Applying this idea to the Witsenhausen problem, with
minor performance degradation, we save the memory space by over 30
folds.

Appendix A Fundamentals of Simulation
and Performance Evaluation

1 Introduction to simulation

There are many excellent textbooks on the subject of simulation (Yakowitz
1977; Fishman 1996; Gentle 2003; Landau and Binder 2000; Bartley et al.
1987). It is not the purpose of this chapter to repeat those materials. What
are gathered here for convenience are simply the essentials we need for the
purpose of this book, for quick review and reference, and for readers who
have no previous exposure to the simulation literature. Readers familiar
with the topic can just quickly note the headings and/or skim/skip this
appendix.

Simulation is the electronic equivalent of a “pilot plant or laboratory
mockup”. It is a form of modeling. In modeling, of course, there is always
the question of how faithful and how much detail we wish to incorporate
in the model. We shall not be concerned with this issue here. We shall
assume that whatever simulation model we are finally using in this book
is, it is as faithful an electronic copy of the real system as possible. We are
only concerned with two aspects of simulation modeling.

1. the laboratory aspect - the software which includes general purpose
algorithms and interfaces, e.g., the Generalized Semi-Markov Processes
(GSMP) model (see Appendix B for an explanation) and the GUI object
oriented features.

2. the statistical aspect - the analysis of output data as a statistical experi-
ment. This is performance evaluation, and if feasible, performance
optimization. This is the goal of this book.

Mathematically, the performance of a system (as discussed in Chapter I)
is measured by J(θ,ξ) = E[L(x(t; θ,ξ)], where θ is the vector of system
parameters, ξ all the randomness in the system, x(t; θ,ξ) a sample path of
the system, L a functional measuring the performance of the system under
the sample path x(t; θ, ξ). The system can be mathematically and concep-
tually captured by a Generalized Semi-Markov Process (GSMP) as described

254 Appendix A

in Appendix B. A simulation model of a system is then simply a software
implementation of the GSMP model. A particular implementation is the so
called event scheduling approach to discrete event simulation.

The event scheduling approach to simulation modeling can be explained
via a diagram (Fig. A.1).

Fig. A.1. Flow chart of event scheduling based simulation

Note time steps forward from event to event in this approach in contra-

Variable Dynamic Systems (CVDS) where time marches on in small
increments of ∆t.

To facilitate the implementation of Fig. A.1, we need various software
ingredients:

registers for state, time, scheduled (future) event list,

statistics gathering, output report, and random variable generation,

distinction to the integration of differential equations in Continuous

routines for initialization, state transition, update time,

Fundamentals of Simulation and Performance Evaluation 255

Many excellent simulation languages and software exist to do these (e.g.,
http://www.imaginethatinc.com). We shall not go into them here.

2 Random numbers and variables generation

Samples of random variables distributed according to specifications are con-
tinuously needed in simulation implementation, i.e., the ξ in E[L(x(t; θ,ξ))]. 
As we will see in the following discussion, generating independent samples
from a uniform distribution over the unit interval (0,1) is the foundation to
obtain samples for more complicated distributions. Most commonly used
random number generator is introduced in Subsection 2.1.

2.1 The linear congruential method

 []1 1 1mod and n M n n nx ax b u x M+ + += + = . (A.1)

When a, b, M takes appropriate values, u1, u2, …, un,… form a uniform
distribution. Although Eq. (A.1) looks quite simple, parameters in this
generator must be carefully chosen in order to produce usable samples.

Example 1 Let a = 2, b = 1, and M = 16. Using Eq. (A.1) and various
x0’s, we get
x0 1 2 4 6 8 10 12 13 14
x1 3 5 9 13 1 5 9 11 13
x2 7 11 3 11 3 11 3 7 11
x3 15 7 7 7 7 7 7 15 7
x4 15 15 15 15 15 15 15 15 15
x5 15 15 15 15 15
x6 • • • • •

All sequences get stuck
after the initial transients!

Example 2 Let a = 3, b = 0, and M = 16. Similarly, we have

Note that, depending on the initial seeds, the sequences get into cycles with
different periods. However, none of the sequences produces the maximal

modern features, e.g., animation, object-oriented programming, etc.
main program which models the DEDS (user written),

256 Appendix A

period of 0-15 (in other words, none of the sequences produces all the in-
tegers 0, 1,…14, and 15.).

Example 3 Let a = 1, b = 3, and M = 16. Starting with any seed, we get

the maximal period and the sequence [. . . , 1, 4, 7, 10, 13, 0, 3, 6, 9, 12,
15, 2, 5, 8, 11, 14, 1,] this time. This is nice. However, a plot of the
sequence vs. time shows high correlation among successive numbers in the
sequence as illustrated in Fig. A.2. Thus the numbers in the sequence are
not at all independent.

Fig. A.2. Plot of pseudo random sequence

Example 4 Let a= 5, b = 3, and M = 16. Once again we get a sequence
of maximal period with any seed, [. . . . , 1, 8, 11, 10, 5, 12, 15, 14, 9, 0, 3,
2, 13, 4, 7, 6, 1, . . .]. A similar plot as in Fig. A.3 shows a reasonably ran-
dom looking sequence.

Fig. A.3. Yet another plot of pseudo random sequence

Thus, periodicity and correlation are important issues in random num-
ber generation. Good random generators should have long period and least

14
12
10

8
6

4

2

xi

i

14
12
10

8
6

4

2

xi

i

Fundamentals of Simulation and Performance Evaluation 257

correlation. More generally, the quality of random number generators
should be quantified and tested for most serious work. This includes not
only the mathematical analysis of properties of the generators, but also a
set of empirical statistical tests on the samples produced by the generators.
These tests try to detect empirical statistical properties of a sequence
against the null hypothesis H0 - “the samples are realizations of i.i.d.
U(0,1) random variables.” For the last word see (Tezuka 1995) or (Gentle
2003).

There are a number of methods used for random variable generation
with general distribution. We focus on two methods: inverse transforma-
tion and rejection.

2.2 The method of inverse transform

Fig. A.4. Inverse transform for generating F(x)-distributed random variables

As Fig. A.4 shows, in this method, a sequence of samples u1, u2,… from
uniform distribution U(0,1) are first generated, the sequence of numbers
F –1(u1), F –1(u2),… are used as the samples x1, x2, …for the random variable
whose cumulated distribution function is given by F(x), and F –1(u) is the
inverse function of F(x). To see why this method works, consider the
probability

Prob[x ≤ a] = Prob[F –1(u) ≤ a] = Prob[u ≤ F(a)] = F(a),

)(1 uFx −=

x
1x 2x nx

1u
2u
nu

u

)(1 uFx −=

x
1x 2x nx

1u
2u
nu

u

258 Appendix A

where the last equality is by virtue of the uniform distribution of the ran-
dom variable u.

Example To generate a random number contains exponential distribu-
tion, let u =F(x) = 1- exp(-λx) ⇒ ln(u-1) = λx or x = (1/λ)ln(u-1), where u
is a random number that contains uniform distribution U(0,1).

Exercise A.1: How can we generate samples for Weibull distribution
F(x)=1-exp(1-(x/β)α), where α>0 and β>0 are two parameters?

Exercise A.2: What are the possible limitations of this method? Can it
be extended to multi-dimensional distributions?

The inverse function method also applies to discrete distributions. It is
essentially a table lookup procedure. An example of a common and very
simple application of this technique is to generate samples for Bernoulli
distribution with parameter p, as is shown in Fig. A.5. That is, to generate
a sample u from U(0,1), and output 0 if u≤p and output 1 otherwise.

Exercise A.3: Give an algorithm to generate samples for a discrete dis-
tributions over n symbols with probabilities pi for symbol i. Note the com-
plexity of the generator as a function of n for large n.

Fig. A.5. Inverse transform for generating Bernoulli distribution

2.3 The method of rejection

If we know the probability density function f(x) of a random variable x with
finite support (being non-zero only in some finite interval [a,b]), we can use
the following method, called rejection method, to generate samples of the
random variable. The basic idea is that, by selectively discarding samples
from one distribution, we can make the remaining samples stochastically
equivalent to samples from a different distribution. Suppose we know that
c is an upper bound of f(x).

p

1-p

1

u

x0

Fundamentals of Simulation and Performance Evaluation 259

Step (1) generate u, a sample of a uniform random number U on [a,b);
Step (2) generate v, a sample of a uniform random number V on [0,c);
Step (3) if v ≤ f(u), accept u as a sample of X; otherwise go to step (1).

Pictorially, steps (1) and (2) generate samples uniformly on the rectan-
gular area defined by sides ac and ab. Step (3) simply throws away the
samples in the shaded region as is shown in Fig. A.6. Those in the un-
shaded region are retained to yield samples of x with density function f(x).

Fig. A.6. Rejection method of random variable generation

Exercise A.4: What are the possible disadvantages of this method? Can
it be extended to multi-dimensional distributions?

A set of useful facts associated with exponential distribution, discrete
event systems and particularly queuing systems are as follows:

The Memoryless triangle: the following three statements are equivalent
and each one implies the other and vice versa –

1. The inter-event times are exponentially distributed
2. Event arrivals are Poisson distributed
3. The process is Markov and memoryless

Exercise A.5: Please verify this.

x

c

a b

)(xf

x

c

a b

)(xf

260 Appendix A

3 Sampling, the central limit theorem, and confidence
intervals

In analyzing outputs of a simulation experiment, we often need to estimate
the mean of a random variable, L, i.e., J=E[L(θ,ξ)]. Consider

[Estimate1] = any sample of L.
If E[Estimate1]=J , we say such an estimate is unbiased. Consider again

2
1

[Estimate]
1 (,)

n

i
i

L
n

θ ξ
=

= ∑ .

Note that [Estimate2] is a function of n. If limn→∞[Estimate2]=J, we say the
estimate is consistent or unbiased due to the law of large numbers.

However, if Var[Estimate1] = σ2, Var[Estimate2]= (1/n2)nσ2 = σ2/n →0
with n→ ∞. The standard deviation (equivalently the confidence interval
of the [Estimate2]) σ →0 as 1/(n)1/2. However, 1/(n)1/2 is a slowly decrea-
sing function. This is often an infeasible computational burden for per-
formance evaluation and optimization since we need many replications
(samples or observations) of L or a very long simulation to get an accurate
enough estimate of J.

Consider independently and identically distributed (i.i.d.) random vari-
ables x1, x2, …, xn, with E[xi] = µ and Var[xi] = σ 2. Define Mn = [(x1 + x2 +
…+ xn) - nµ]/(nσ2)1/2. As n→∞, the distribution of Mn converges to Normal
distribution N(0,1), i.e., the normal (Gaussian) distribution with mean zero
and unit variance. This is known as the Central Limit Theorem (CLT). The
significance of CLT for experimental work lies in the fact that it enables us
to predict the error of sampling. For example, suppose we take n samples
of a random variable with mean µ. We may use x ≡ (x1 + x2 + …+ xn)/n as
an estimate for the unknown mean µ. Then Mn is the normalized error of
the estimate. For large n, we can use standard tables for Gaussian random
variables to calculate P≡Prob[-t<Mn<t], which is the probability that the
error of the estimate for µ lies in [-t, t]. For example, if t =1.96, we get
P=0.95; i.e., we are 95% confident that the interval [x -t (σ2/n)1/2, x + t
(σ2/n)1/2] contains the unknown mean µ . In turn, for a specified confidence
and interval size, we can calculate how many trials of the experiment are
needed.

Fundamentals of Simulation and Performance Evaluation 261

Fig. A.7. The density of standard normal distribution N(0,1)

With probability 0.95 the interval
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

n
x

n
x

22

96.1,96.1 σσ
 con-

tains the unknown mean µ, as is shown in the Fig. A.7. We have

()2

1
/ ~ 0, /

n

i
i

x n N nµ σ
=

−∑ or

()1

2
~ 0,1

/

n

i
i

x n
y N

n

µ

σ
=

⎛ ⎞−⎜ ⎟
⎝ ⎠≡
∑

.

The above confidence interval formula suffers from two drawbacks. First,
it requires the knowledge of the variance of the random variable, σ2. It
hardly seems reasonable that we can know the value of σ when not even
the mean µ is known. The common practice is to replace σ2 with the sam-
ple variance,

∑
=

−=
n

i
is xx

n 1

22)(1σ or ∑
=

−
−

=
n

i
is xx

n 1

22)(
1

1σ ,

in which case the formula is only approximate. However, if we do know
that the random variable in question is Gaussian, an exact formula for the

262 Appendix A

confidence interval can be stated in terms of the Student-t distribution,
using the sample mean, x , and sample variance, 2

sσ (Bratley et al. 1987).
There is a multivariate version of the Central Limit Theorem which

replaces µ and σ with their multidimensional version of µ and Σ and the
denominator of Mn by (detΣ)n/2.

The second drawback which we have already mentioned is more serious.
Because of the 1/(n)1/2 factor, for every one order of magnitude decrease in
the standard deviation (confidence interval), we need two orders of magni-
tude increase in the sampling cost (i.e., the number of samples to take).
Often this is not tolerable.

4 Nonparametric analysis and order statistics

Suppose you take n i.i.d. samples of an arbitrary random variable. Now
you order the samples by magnitude into x[1] <x[2]< x[3]< . . . <x[n]. The
theory of order statistic (David et al. 2003) says that these order statistics
on average divide the population into n+1 equal parts. Furthermore, we can
calculate the probability for what % of the population is contained below,
above or between any one or two order statistics. This is something one
gets for free in any statistical experiment, including simulation.

5 Additional problems of simulating DEDS

A large part of output analysis of simulation consists of reducing the vari-
ance of estimate and shorten the computational burden without sacrificing
unbiasedness or consistency.

(i) Transients
Performance indices of interests are usually long term measurements for

systems operating in stationary states. However, the stationary states are
not known before the simulation. Short simulation starting from a given
initial state will lead to biased estimation of the desired performance indi-
ces, no matter how many replications are executed.

(ii) Correlation
If we are estimating parameters of stationary distributions, the data we

collected are usually correlated instead of forming i.i.d. random variables.
This may not make the estimator unbiased, and can increase the variance
of the estimation significantly.

Fundamentals of Simulation and Performance Evaluation 263

(iii) Antithetic random variables
This is a variance reduction technique by introducing negatively corre-

lated random variables in constructing estimators. Its basic idea comes
from the following observation. Suppose A and B are two random vari-
ables having the same expectation θ. Then E[(A+B)/2] = θ. So, (A+B)/2 is
an estimator for θ. If A and B are negatively correlated, that is Cov(A,B)<0,
the estimator (A+B)/2 is better than when A and B are independent. This
can be seen from the fact that Var[(A+B)/2] = (Var[A] + Var[B] +
2Cov(A,B))/4. The common practice is to use complementary samples to
balance the random effect. For example, if we sample from a uniform dis-
tribution in (0,1), both Xk and 1-Xk should be used.

(iv) Regenerative cycles
On a sample path of a stochastic process, if there are existence of times,

usually random, from which onward the future of the process is a probabil-
istic replica (or copy) of the original process, we call the durations between
these times regenerative cycles. From the probabilistic viewpoint, all
cycles are statistically equivalent and constitute a genuine sample of the
simulation experiment. Thus, the parameters of the stationary distribution
for processes having regenerative cycles can be estimated in a single sam-
ple path, in contrast to multiple replications for general situations in which
no such regenerative cycles exists. We avoid the problem of “setup” and
“initialization” for each of the replications.

(v) Common random variables
This variance reduction technique is useful when we estimate the differ-

ence between two random variables (recall that the sampled values for per-
formance indices are random variables). For example, we are interested in
estimate E[A-B] for A and B by Monte Carlo simulation. We have Var[A-
B]=Var[A]+Var[B]-2Cov(A,B). If we generate samples for A and B in a
way such that they are positively correlated, for example, A=f1(X) and
B=f2(X) where both f1 and f2 are increasing functions of a common random
variable X, Var[A-B] will be less than when A and B are independent. The
common practice is to use the same random numbers under different con-
figurations when we compare their effects.

(vi) The use of warm-up period
The main difficulty to estimate steady-state parameters is that we need

to obtain long sample paths. One reasonable way to speed up the conver-
gence of estimation on the steady-state parameters is to omit the initial part
of sample paths which depend more on the initial states. This is known as
initial data deletion or as warming up the simulation.

264 Appendix A

(v) Separate batches
In estimating steady-state parameters, one way is to take non-over-

lapping batch means (NOBM), which is to divide simulation outputs of a
single replication, after deletion of a warm-up period, into k adjacent non-
overlapping batches, each of size m. If the batch size m is sufficiently large
so that the batch means are approximately i.i.d. normal random variables,
we can apply CLT to estimate steady-state parameters. The advantage of
this method is to use a single replication, so that only one warm-up period
is deleted.

6 The alias method of choosing event types

In Fig. A.8, we see that an important step in discrete event simulation is
the generation of various events. This is equivalent, from a simulation
viewpoint, to the standard problem of the generation of discrete random
variables according to arbitrary distributions. This can become time-
consuming when the domain of the random variable is large (see Exercise
A.3). One efficient way of obtaining a random variable distributed over
the integers 1,2,...,n with probabilities pi, i=1,2,...,n, is the alias method
(Walker 1974). This method can be used to further reduce the computation
effort in simulation, e.g., in the standard clock simulation approach (more
details in Section VII.2) in determining the event type at every transition
instant (See (Cassandras and Lafortune 1999)). The method requires only
one uniformly distributed variable, one comparison, and at most two
memory references or table lookups per sample. It is thus independent of
the size of the possible event list, an important advantage in the simulation
of large systems via the standard clock approach. However, this method
requires pre-computing two tables of length n, which is a one-time effort.

Our summary of the alias method is based on (L’Ecuyer 2004). To
explain the idea of alias method, we consider a bar diagram of the distribu-
tion, where each index i has a bar of height pi=Prob[X=i]. The idea is to
“equalize” the bars so that they all have height 1/n, by cutting-off bar
pieces and transferring them to other bars. This is done in a way that in the
new diagram, each bar i contains one piece of size qi from the original bar i
and one piece of size 1/n-qi from another bar whose index j, denoted as A(i),
is called the alias value of i. The setup procedure initializes two tables, A
and R, where A(i) is the alias value of i and R(i)=(i-1)/n+qi. To generate X,
we generate U~ U[0,1], denote I = ⎡nU⎤ , where ⎡•⎤ is the ceiling function,
and return X=I if U<R(I) and X=A(I) otherwise.

Fundamentals of Simulation and Performance Evaluation 265

Fig. A.8. A random variable with discrete distribution

Fig. A.9. The alias method to generate the random variable

Consider the random variable whose probability distribution is given by
Fig. A.8, namely it takes 4 possible values {1,2,3,4} with probability
p1=0.3, p2=0.4, p3=0.1, p4=0.2. Choose q1=1/4, q2=1/4, q3=0.1, q4=0.2. The
tables A and R can be constructed as A(1)=1, A(2)=2, A(3)=2, A(4)=1;
R(i)=(i-1)/n+qi, R(1)=(1-1)/4+q1=1/4, R(2)=(2-1)/4+q2=1/2, R(3)=(3-1)/
4+q3=0.6, R(4)=(4-1)/4+q4=0.95. This selection is shown in Fig. A.9.
For example, to generate X, we generate U~U[0,1]. Suppose U=0.7. Then
I=⎡nU⎤=⎡4×0.7⎤=3. Because 0.7>R(3), return X=A(3)=2.

0.2
0.3

0.4

0.1

1 2 3 4

Appendix B Introduction to Stochastic
Processes and Generalized Semi-Markov
Processes as Models for Discrete Event
Dynamic Systems and Simulations

1 Elements of stochastic sequences and processes

A Stochastic sequence is simply an indexed collection of random vari-
ables x1, x2, ... xi, ... specified by the complete joint density function p(x1,
x2, ... xi, ...) ≡ p(x) among all the random variables x=[x1, x2, ... xi, ...]1. (In
more general cases, each component of x, xi, could be a vector itself (say m
dimensional). If there are n components in x, the stochastic sequence x
looks like an m-by-n matrix.) However, p(x) is an n-dimensional function
representing a tremendous amount of information and computationally in-
feasible to deal with (Ho 2005). Thus to mitigate the burden and provide
more structures, we introduce below a series of definitions which special-
ize the joint density function p(x).

First, we can provide an approximate characterization of p(x) by speci-
fying its first two moments:

[]t tx E x=

and
() ()() ()() (), t t t tR t E x x x x x x x x p dτ τ τ ττ = − − = − −⎡ ⎤⎣ ⎦ ∫ x x .

In the case of t =τ, R(t,τ) becomes the covariance matrix of xt, Σt. If xt is a
single random variable instead of a vector, Σt is simply the variance of xt,
var[xt]. If the density function p(x1, x2, ... xi, ...) ≡ p(x) is the same as p(xt+1,
x t+2, ... xt+i, ...) for all t, we have a stationary sequence. If we only require

1 This definition is good for finite sequence. For a collection of infinite many of

random variables, a stochastic process should be specified by complete joint dis-
tributions among random variables over all possible finite set of indices.

Appendix B

t tx x τ+= and R(t,τ) = R′(t-τ) for all t and τ, the sequence is said to be wide
sense stationary.

Another approach to simplify and characterize a stochastic sequence is
to specialize to a purely random sequence which requires

p(x) = Πi p(xi)

as the product of one-dimensional functions. The sequence then consists of
independent random variables. If furthermore the density functions of all xt
are identical, we then have what is known as an i.i.d. (independently and
identically distributed) sequence. In engineering terms, it is called a
white noise sequence2 when the mean is zero.

A Gaussian sequence is one summarized by
() ()~ ,p Nx x Σ ,

where each component of x, xt may be a vector itself with p(xt)
~ (),t tN x Σ .

Exercise B.1: Please explain every component of x and Σ when each
component of x, xt, is a vector.

A Markov sequence is when the joint density function has the addi-

tional property p(xt+1/xt) = p(xt+1/xt, xt-1, xt-2, …), which implies that we only
need the initial density function, p(x0), and the transition density function,
p(xt+1 xt), to specify completely the stochastic sequence.

Exercise B.2: Translate the above sentence into mathematical terms.

Exercise B.3: Prove that for a Markov sequence p(xt+1/xt,xt+2) = p(xt+1/xt,
xt-1, xt-2, ..., xt+2, xt+3, ...).

Exercise B.4: How do you characterize a Stationary Gauss-Markov
sequence using the definitions above?

Exercise B.5: (For readers familiar with control theory) How do you
represent a general Gauss-Markov sequence using difference equations and
white noise sequences?

If, in addition, the state of the Markov sequence is discrete and finite,
we have a Markov Chain and the Kolmogorov–Chapman equation

2 More precisely, it is known as strong white noise. Some references refer to

white noise as the wide sense stationary sequences with zero autocorrelation
R(t,τ).

268

/

() ()() ()1 1t t t t tp x p x p x p x dx+ += ∫
becomes

π = πtP
where

Pij ≡ Prob[xt+1 = j / xt = i]
and

πt ≡ [Prob[xt = 1], Prob[xt = 2], …, Prob[xt = N]],

where {1,2, …,N} is the state space.
For the above discussion, we implicitly assume that time index marches

on uniformly in discrete time, e.g., –2, –1, 0, 1, 2,…. If, on the other hand,
the indexing variable t is continuous, the number of index variable be-
comes infinite and uncountable. Conceptually we pass into the realm of
stochastic processes. It involves mathematical machinery beyond the
scope of this book to treat stochastic process rigorously. However, for all
practical and computational purposes, we can restrict ourselves to stochas-
tic sequences involving only a finite number of indexed variables. More-
over, the indexing variable t may not be uniformly spaced. In fact, “t”
often represents “event times” when something happens, e.g., xt jumps
from one value to another at time t. In this case, we need to specify the
times when the indexing take place. In other words, the sequence of ran-
dom variables carries two dimensions, one for the usual x, the other
specifying the durations of time increment or time to the next event,
and we enter the realm of the class of stochastic processes (sequences)
that are special to Discrete Event Dynamic Systems (DEDS).

p(τ = t) ~ exp(–λt),

we have a Poisson process, sometimes referred to as a birth or death
process with rate λ which is a special type of Markov process3. On the
other hand, in Markov chains with state transitions, the parameter λij of

3 This notation here is somewhat unfortunate but entrenched. Here the word

“Markov” is applied to the distribution of time interval between events. If on the
other hand, we also have Markov state transition at each event instant (when con-
sidered as a birth or death process), we really have a doubly Markov process.

Introduction to Stochastic processes 269

t +1

buted. If furthermore, the common distribution is exponential, i.e.,

If we concentrate on the density of the distribution of the time intervals
between state transitions, p(τ) and simply treat the instants of transition
(indexing) as an “event”, we have a renewal process if the time intervals
between events are independently identically but otherwise arbitrarily distri-

Appendix B

the exponential distribution exp(–λijt) may depends on the pair of states
(i,j) where the state transition happens.

A discrete state continuous time process having Markovian state transi-
tion and renewal state transition interval is called a Semi-Markov process
(SMP) 4 , i.e., the state transitions x are Markov (imbedded Markov
Chain) but the time intervals between events are not (generally rather than
exponentially distributed)5.

Semi-Markov processes are a special class of more general processes
known as Generalized Semi-Markov process (GSMP). The following sum-
mary of GSMP is due to W. Whitt (Whitt 1980). A GSMP moves from
state to state with the destination and duration of each transition depending
on which of the several possible events associated with the occupied state
occurs first. Several different events compete for causing the next jump
and impose their own particular jump distribution to determine the next
state. An ordinary Semi-Markov process (SMP) is the special case in
which there is only one event associated with each state. At each transition
of a GSMP, new events may be scheduled. For each of these new events, a
clock indicating the time until the event is scheduled to occur is set by an
independent chance mechanism. An event which is scheduled but does not
initiate a transition is either abandoned or it is associated with the next
state, and its clock just continues running.

If the events of the imbedded Markov chain in a Markov process are
simply births and deaths with rates λ and µ, i.e., the intervals between
events are exponentially distributed, then we have the process character-
ized by

pij = 0 for |j–i|>1.

If in addition, pij = 0 for j i, we have a pure birth process, also known as a
Poisson process. More generally, we can have state transition taking place
continuously rather than discretely (e.g., via a stochastic differential equa-
tion), then we are in the realm of stochastic system theory which requires
separate mathematical treatment not covered in this book. The following
diagram (Fig. B.1) from the well-known book by Kleinrock (p. 25, vol. 1,
(Kleinrock 1975)) visually captures the relationship between various sto-
chastic sequences/processes. In this diagram, for example, the random
walk pij = q(j i) means that the state transition probability pij only depends
on the difference between the indexes of the two states.

4 We always assume that the SMP generated by the Markov renewal process is

time-homogenous as in (Çinlar 1975).
5 Note, like in Markov Processes, the distributions p(τ) of the time intervals be-

tween state transitions in Semi-Markov processes are general and dependent on
the pair of states where the state transition happens.

–

270

>

Fig. B.1. Relationship between various stochastic processes (Kleinrock 1975)
© 1975 John Wiley and Sons

Lastly, all the stochastic processes we have mentioned can be viewed as
a special case of Markov sequences with enlarged state space. So long as
the dependence on the past is finite, we can define the entire finite past in-
cluding the present as the new enlarged state vector. The sequence of such
vectors will be Markov. Other possibilities also exist. For example, if we
regard the combination of process state and clock readings of all compet-
ing events (such as the arrival and departure in a queuing system) as gen-
eral state xn and interpret n as the counter of the occurrence of events. For
such general states, we still have p(xn+1/xn) = p(xn+1/xn,xn-1,…,x0). The tran-
sition probability P(s,A) = Prob[xn+1∈A/xn = x] is known as transition kernel
for the corresponding process.

2 Modeling of discrete event simulation using stochastic
sequences

Stochastic sequences discussed and described above can be used as models
for the various Discrete Event Dynamic System (DEDS) and their simula-
tions. We start from a doubly Markov process where the state transitions

Constant
arrival

Birth only

Renewal
Process
pi(i+1)=1
fr: arbitrary

Birth and Death
pij=0 for |j-i|>1
fr: exp

Markov Process
pij: arbitrary
fr: exp

Random Walk
pij=q(j-i), fr: arbitrary

Semi-Markov Process
pij: arbitrary, fr: arbitrary

Introduction to Stochastic processes 271

Appendix B

are simple birth and death. It can serve as a model of a simple queuing sys-
tem known as the M/M/1 queue6. This is the simplest example of a DEDS.
Pictorially this is illustrated below (Fig. B.2).

Fig. B.2. An M/M/1 system

The arrival process is Poisson with mean λ, i.e., the inter-arrival time is
exponentially distributed (Please refer to Appendix A - the memoryless
triangle). The arrivals wait in the queue and are served on a “first come
first served” basis. The service time distribution is also exponential with
mean µ >λ. The state of the system x is the number of customers in the
queue, which by convention also includes the customer being served. The
enabled event list Γ(x) for any state x is arrival and service completion
when x > 0 and arrival only when x = 0. We can visualize a Clock Mecha-
nism consisting of two streams (sample paths) of event occurrences for
arrival and for service completion. For any state, we use the Γ(x) to pick
out and schedule the next event. A block diagram below (Fig. B.3) helps
us to visualize the process graphically. (See also Fig. A.1 in Appendix A.)

Fig. B.3. The clock mechanism for the M/M/1 system in Fig. B.2

We can generalize this process which leads to the Generalized Semi-
Markov Process (GSMP) model of Discrete Event Dynamic System (DEDS),

6 The “M” notation here stands for Markov arrival and service times of the

simple queuing system.

272

which involves many streams of event occurrences and more general state
transition function,

xnext = f(xnow, triggering event, randomness).

This is a good model for the behavior of many complex human-made sys-
tems and a simulation experiment of such systems.

We first introduce the Untimed version of a DEDS model, which con-
tains the following ingredients.

State: x∈X— a finite set = all possible states of the world
Event: e∈Γ— a finite set = all possible happenings
Enabled Events: Γ(x) — a subset of Γ depending on the state x
State Transition: xnew = f(xnow, enow, randomness).

Alternative representation of the state transition function is

1. A Markov Chain Matrix P(e) with elements ()e
ijP = probability of

transition from state i to state j when event e occurs. P(e) is a |X|×|X|
matrix. We have one such matrix for each event.

2. A state table — more often used when the transition is deterministic,
i.e., tabular data of xnew = f(xnow, enow)

A major drawback of this general model (often called automaton, or
finite state machine, or Markov chain model) is that all structural informa-
tion is not retained, e.g., in a simple queuing system, the state can only
increment and decrement by one, so the state transition probability matrix
can only be tri-diagonal.

Another problem which is common with discrete states is the combina-
torial explosion of the size of the state space. This size often makes com-
putation infeasible

Example Consider a serial queuing network which has N servers, each
with M limited queue spaces for waiting tasks. The servers can be work-
ing, broken down, blocked if downstream queue-space is full, or starved if
the upstream buffer is empty.

Exercise B.6: How many states are there for such a DEDS? What prac-
tical application this queuing network can represent?

Now we add “time” to the above model to create a Timed version. For

readers versed in control theory, the timed model can be taken as the ana-
log of dx/dt = f(x,u,t) for DEDS (Bryson and Ho 1969).

For each enabled events in state x, we endow it with a lifetime or clock
reading, c(ei), ei∈Γ(x). The clock readings run down at unit rate. An event

Introduction to Stochastic processes 273

Appendix B

is said to occur when the clock reading reaches zero. Occurrence of the
event may trigger a state transition. The new state may enable additional
events, each with new life times. The remaining life time of the other events
also becomes the new life times in the next state if they are not disabled or
interrupted. All these events again compete for termination, and the pro-
cess repeats.

The informal description above can be visualized in Fig. B.4 below and
formalized by using a Generalized Semi-Markov Processes framework .
The process is “Markov” because the state transition is a Markov Chain; it
is “semi” because the inter-event times are arbitrarily distributed (with ex-
ponential inter-event time distribution, we’ll simply have a Markov proc-
ess); and finally, it is “generalized” because we can have several event
processes concurrently going on to model a whole system.

Fig. B.4. The timing and structural parts of the GSMP model

We define (Until the end of this section a great deal of notations are used
to explain and formalize what basically is a simple notion as illustrated in
Fig. B.4 above and on page 294 or 595 of (Cassandras and Lafortune
1999))

 τn = the epoch of the nth state transition
 an = the nth event

 xn = the nth state visited by the process: xn = x(τn
+), where the su-

 cn = the vector of clock readings at τn
+

 For readers who are not interested in mastering a great deal of notations, the

mathematical text below can be skipped on a first reading.

7

perscript “+” represents the moment right after the nth state
transition happens

7

Event type 1 samples

Event type samples

Min xnext=f(xnow,)

(x) List of enabled
events

State

Clock Mechanism Automaton

274

 cn(α) = at τn, the time remaining until α occurs, provided α∈Γ(xn),
the feasible event list associated with xn

 N(α,n) = the number of instances of α among a1, …, an

Also let ω1={Y(α,k), α∈Γ, k=1,2,…} and ω2={U(α,k), α∈Γ, k=1,2, . .} be
two doubly indexed sequences of independent random variables. For each
k, Y(α,k) is distributed according to φα and represents the kth clock sample
for α. The routing indicator, U(α,k), is uniformly distributed on [0,1) and
will be used to determine the state transition at the kth occurrence of α.
State transitions are determined by a mapping ψ : X × Γ × [0,1)→X, i.e.,
if α occurs in state x with routing indicator u = U(α,k), the state jumps to
x'=ψ(x,α,u). The requirement for ψ is that for all x, α, x'

 () ()Prob , , ; ,x u x p x xψ α α′ ′= =⎡ ⎤⎣ ⎦ , (B.1)

whenever u is uniformly distributed on [0,1). It is straightforward to show
that, with these definitions, the evolution of the trajectory x(t) of the
GSMP is governed by

 () (){ }1 min :n n n nc xτ τ α α+ = + ∈Γ , (B.2)

() () () (){ }{ }1 arg : min ' : 'n n n n na x c c xα α α α+ = ∈Γ = ∈Γ (B.3)

() ()
()

1, 1,
, 1

, , otherwise,
nN n a

N n
N n

α α
α

α
++ =⎧⎪+ = ⎨

⎪⎩
 (B.4)

 ()()()1 1 1 1, , , , 1n n n n nx x a U a N a nψ+ + + += + . (B.5)

At each state transition, the clock readings are adjusted by setting clocks
for any new events and reducing the time left on any surviving “old”

 By convention, an event can be scheduled at an but does not occur until its

clock reading runs down to zero. Thus N(α,n) does not include those α’s which
have been scheduled but are still alive.

 Note, here we assume that the initial clock reading for each occurrence of
each event type α is sampled independently from a common distribution φα. In
general, the distribution φα generating initial reading for a new occurrence of α
may depend on the pair of states associated with the occurrence of α and the fea-
sible event set when α occurs.

8

8

9

9

Introduction to Stochastic processes 275

Appendix B

clocks by the time when the last transition, i.e., the duration of the state xn
or the triggering event’s life time. Thus,

() () () ()1 1 1, if and n n n n n nc c x aα α τ τ α α+ + += − − ∈Γ ≠ , (B.6)

() ()() ()
()

1 1

1

, , 1 1 , if and

 either or .
n n

n n

c Y N n x

x a

α α α α

α α
+ +

+

= + + ∈Γ

∉Γ =
 (B.7)

The sample path x(t) is finally generated by setting x(t) = xn on [τn, τn+1).
x(t) is known as a Generalized Semi-Markov Process (GSMP), and the
setup without the timing part with the event sequence given is known as a
Generalized Semi-Markov Scheme (GSMS). For mathematical form of
the transition kernel of GSMP and a comprehensive treatment of the sub-
ject, we refer to (Shedler 1993).

Exercise B.7: When does a GSMP reduce to a continuous time Markov
Chain?

Exercise B.8: When does a GSMP reduce to a SMP?

Example: Let us consider a system of two servers connected by a buffer
with capacity as shown in Fig. B.5.

Fig. B.5. A system with two servers and one intermediate buffer

The GSMP model of the system is as follows. We regard the number of
parts in the intermediate buffer as the state of the system, x. There are two
types of possible events, Γ={ e1-departure from server 1, e2-departure from
server 2}. Note that, since there is an infinite supply of parts at server 1,
we omit the arrival event at server 1. Similarly, when e1 happens (which
presumably requires that the buffer is not full) an arrival event at the buffer
immediately happens. So we omit that event, too. Given a state x, the set of
feasible events are

276

K

()
{ }
{ }
{ }

1 2 limit

1

2 limit

, , 0
, 0
, .

e e x x K
x e x

e x x K

< < =⎧
⎪Γ = =⎨
⎪ = =⎩

The state transition function is

()
now 1

next now now now 2 now

2 now

1, if happens
, 1, if happens and 0

0, if happens and 0.

x e
x f x e x e x

e x

+⎧
⎪= = − ≠⎨
⎪ =⎩

The lifetime of the events c(ei) are samples from exponential distribution
with rate µi , i = 1,2 (Note breakdown can be considered as an extra long
service time).

cn+1 e1
cn e1

an

cn e2 cn+1 e2

t cn e2

t cn e2t

an+1 an+2

Fig. B.6. Illustration for lifetime update

To simulate the system, the lifetime update process will look like Fig.
B.6. Suppose the system just experiences the nth event at time t, both servers
are busy, and xn = 2, K = 3. So Γ(xn) = {e1, e2}. Suppose the lifetime of both
events is as shown in Fig. B.6. Because cn(e2) < cn(e1), which means server 2
finishes first. Then the system clock moves to t + cn(e2). When the (n+1)th
event an+1 = e2 happens, the state changes xn+1 = f(xn,e2) = xn-1. Since event e1
is not the triggering event and xn+1 < K, cn+1(e1) = cn(e1)-cn(e2). Event e2 is the
triggering event and is still feasible at state xn+1, so a new sample of the life-
time is taken, i.e., cn+1(e2). Because cn+1(e2) > cn+1(e1), we have an+2 = e1, and
this procedure continues to simulate the system.

Introduction to Stochastic processes 277

Appendix C Universal Alignment Tables
for the Selection Rules in Chapter III

As mentioned in Chapter III, it is practically infeasible to calculate the size
of the selected set through a closed form expression. However, there is an
exception if we use the Blind Pick rule, and the selected size supplies an
upper bound for other selection rules. In Chapter III, we use the following
function to approximate the selected size in different scenarios

() 31 2

4, ZZ ZZ k g e k g Z= + ,

where Z1, Z2, Z3, Z4 are constants depending on the computing budget T,
the noise level, the OPC class, and the selection rule thus used. Ample ex-
periments show that these functions are good approximation to the true
values (for such an example, please see Section III.2). In Section III.2 and
III.3 we show how to compare different selection rules, using the regres-
sion functions, and find a good selection rule for the given problems. In
this way, we can get a smaller selected set than using a randomly picked
selection rule, and further save the computing budget. For the convenience
of practical application, we list in this appendix the regressed values of
these four coefficients under different scenarios, for all the selection rules
considered in Chapter III.

For the BP rule, the regressed values are: Z1 = 7.8189, Z2 = 0.6877, Z3 =
–0.9550, and Z4 = 0.00 (Lau and Ho 1997).

For other rules, the regressed values are listed in the following three
groups of tables gathered according to the computing budget. Tables C.1-
C.8 are for the case when a large computing budget is available; Tables
C.9-C.14 are for the medium computing budget; Tables C.15-C.20 are for
the small computing budget. In each group, we list the regressed values in
the order of HR, OCBA, B vs. D, SPE, HR_gc, HR_ne. The regression
values of rule RR and HR_CRR are only listed (at the end of the group)
under the large computing budget (T = 30000). The reason is that RR and
HR_CRR can explore 173 designs under the large computing budget (see
Section III.2.1), so we have many choices of selected subset sizes. By con-
trast, these two selection rules only explore 32 and 22 designs under the
medium or small computing budget (see Table 3.3) respectively. To cover

280 Appendix C

1 or 2 of the top-100 designs with a probability no less than 0.95, we usu-
ally need to select all the explored designs, the number of which is 32 and
22 respectively.

Note, since these tables are regressed based on experimental data, these
tables are not supposed to be used outside the range of the parameter set-
tings in the experiments in Section III.2.1. To be specific, the working

is small, in general1. For B vs. D, the working range should also satisfy the
following conditions:

when T = 30000 (the case of large computing budget), 1≤k≤5 and k/g≤1/15;

k/g≤1/25;
when T = 500 (the case of small computing budget), 1≤k≤2 and k/g≤1/35.

Table C.1. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for HR when T = 30000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.4106 5.6654 4.1423 2.7231 –5.7774
Z2 0.7441 1.0882 1.6759 2.4333 5.8835
Z3 –0.9985 –1.2736 –1.5084 –1.8215 –2.0584
Z4 4.7407 7.7228 9.3672 9.8303 9.9279

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.5536 6.1168 5.1895 4.1587 0.6777
Z2 0.6893 0.9970 1.2664 1.6378 3.0335
Z3 –0.9723 –1.2222 –1.3397 –1.4624 –1.8638
Z4 0.9345 7.0204 8.7662 9.3611 9.8529

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.8320 6.6726 6.3094 5.9387 4.1500
Z2 0.7806 0.8670 0.9456 1.2138 2.0904
Z3 –1.0639 –1.1236 –1.1600 –1.2982 –1.8284
Z4 5.0703 4.6716 6.6586 8.6564 10.4075

1 Basically we pick the ranges of values to make satisfaction of high AP value

relatively easy.

when T = 1000 (the case of medium computing budget), 1≤k≤3 and

ranges are: g∈[20, 200], k∈[1, 10], s=Z (•/•)<180, and when the fraction k/g

Universal Alignment Tables for the Selection Rules 281

Table C.2. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for OCBA when T = 30000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.8201 7.6707 7.4504 6.5935 –5.0976
Z2 0.8322 1.9139 3.3586 3.9551 7.3529
Z3 –1.1179 –2.2932 –3.6225 –4.0905 –3.2942
Z4 4.3574 9.1222 9.8669 10.0036 9.9414

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.6030 8.1800 8.1473 7.0666 1.0126
Z2 0.7839 1.6994 3.0569 3.8156 6.6420
Z3 –1.0374 –2.1591 –3.3355 –3.8050 –4.5920
Z4 3.5680 8.7907 10.0115 10.0553 9.9868

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.8724 8.7363 9.1567 10.1502 6.7102
Z2 0.7760 1.5107 2.2478 2.9897 5.2664
Z3 –1.0598 –1.9826 –2.6426 –3.5029 –4.6962
Z4 3.8224 8.2605 9.9499 10.6282 10.1121

Table C.2. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for B vs. D when T = 30000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.6177 6.9495 3.4220 –0.3083 –11.1962
Z2 0.7996 3.3313 9.8183 6.5448 7.8702
Z3 –0.9838 –2.1278 –4.4306 –2.3014 –1.0668
Z4 –1.0678 8.4713 10.0513 9.5008 9.7801

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.5211 8.9030 7.1799 2.8575 –8.1332
Z2 0.7420 3.0512 5.6060 8.4166 9.8915
Z3 –0.9271 –2.2974 –3.0774 –3.3922 –2.3525
Z4 –2.6531 8.0662 9.3758 9.4724 10.3882

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.9956 8.7000 8.9830 8.4086 2.1346
Z2 0.7820 1.8822 2.7129 3.2634 5.6452
Z3 –1.0457 –1.6177 –1.9892 –2.1224 –1.9475
Z4 3.8068 3.3109 5.9167 6.4194 8.5570

282 Appendix C

Table C.4. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for SPE when T = 30000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.7936 6.5980 6.0474 5.2723 2.5343
Z2 0.8073 1.2619 1.7901 2.0448 3.8335
Z3 –1.0933 –1.5353 –1.9598 –2.0858 –2.8124
Z4 4.9850 8.3364 9.7051 9.9103 10.1179

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.6814 6.8916 6.4591 6.0608 3.7260
Z2 0.7236 1.0760 1.4475 1.7058 2.7574
Z3 –1.0117 –1.4123 –1.6662 –1.8822 –2.2735
Z4 2.1583 7.6338 9.2568 9.7934 9.9160

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.9190 7.2864 7.0807 6.8400 6.1009
Z2 0.8042 1.0390 1.1438 1.2775 2.1433
Z3 –1.0889 –1.3262 –1.3762 –1.4581 –2.2384
Z4 7.1896 6.7197 7.2051 8.3168 11.1465

Table C.5. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for HR_gc when T = 30000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.4513 6.2001 4.9004 3.6507 –1.2164
Z2 0.7225 1.1508 1.7883 2.4183 4.5927
Z3 –0.9954 –1.4526 –1.8146 –2.0558 –2.5741
Z4 3.4786 8.0685 9.5995 9.8139 9.9292

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.3884 6.3210 5.7244 4.9559 0.1160
Z2 0.6630 1.0926 1.3261 1.7836 3.8130
Z3 –0.9299 –1.3423 –1.5413 –1.7854 –2.1167
Z4 1.1045 7.4903 8.9882 9.5246 9.8955

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.9538 7.1643 6.7253 6.2830 4.3164
Z2 0.7779 1.0065 1.2254 1.4287 1.9277
Z3 –1.0884 –1.3435 –1.4530 –1.5724 –1.8173
Z4 5.1576 6.6384 8.6297 9.4539 9.7080

Universal Alignment Tables for the Selection Rules 283

Table C.6. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for HR_ne when T = 30000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.4580 5.6590 3.1601 0.1160 15.9239
Z2 0.7157 1.1175 2.3256 3.8130 7.7238
Z3 –0.9924 –1.3547 –1.8042 –2.1167 –13.1714
Z4 1.8543 7.9188 9.6509 9.8955 9.9987

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.5698 6.1261 5.0156 3.5878 –1.2164
Z2 0.7809 1.1577 1.6711 2.3747 4.5927
Z3 –1.0366 –1.3887 –1.7040 –1.9490 –2.5741
Z4 5.0769 7.8866 9.5254 9.7859 9.9292

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.8650 6.8138 6.3370 6.1343 1.2603
Z2 0.7869 1.0162 1.3027 1.6369 4.0765
Z3 –1.0745 –1.2953 –1.4677 –1.7640 –2.5663
Z4 5.0754 6.4476 8.6670 9.8197 10.0970

Table C.7. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for RR when T = 30000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.7227 8.9909 10.8990 15.8410 –20.4900
Z2 0.8057 1.7490 3.4057 5.6362 135.2500
Z3 –1.0809 –2.2033 –3.5396 –5.8401 –64.1410
Z4 5.4032 8.8419 9.5774 9.8350 9.9998

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.8185 8.3533 9.8197 8.4884 41.9990
Z2 0.8253 1.5218 2.6282 3.3773 13.7690
Z3 –1.0924 –1.8774 –2.8101 –3.0048 –15.9300
Z4 6.0076 8.2653 9.4486 9.5267 9.9921

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.1533 9.4407 11.4580 11.8750 7.5157
Z2 0.8255 1.6098 2.0984 2.3734 5.3458
Z3 –1.1416 –2.0185 –2.7018 –2.9689 –3.5537
Z4 6.9006 9.4492 10.4110 10.6130 10.1530

284 Appendix C

1 2 3 4

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.5996 11.0870 11.0540 121.2000 –0.5696
Z2 0.7968 2.3842 14.1700 69.0190 1.0714
Z3 –1.0608 –3.1418 –9.1531 –61.7400 –2.7783
Z4 4.7842 9.4394 9.9536 9.9998 10.0000

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.4763 9.2477 13.3230 19.8560 121.2000
Z2 0.7017 2.0832 4.4213 6.9851 69.0190
Z3 –0.9640 –2.4452 –4.6347 –7.4652 –61.7400
Z4 0.1384 9.0746 9.7686 9.9103 9.9998

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.0833 9.7982 10.5790 8.5795 6.1287
Z2 0.8136 1.7538 2.4293 2.7166 6.3867
Z3 –1.1308 –2.2395 –2.7860 –2.5795 –4.0441
Z4 5.6291 9.0190 9.7647 9.4184 9.8267

Table C.9. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for HR when T = 1000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.6176 6.6517 6.3875 5.8768 3.0523
Z2 0.7065 0.8557 1.0385 1.0590 2.5892
Z3 –0.9745 –1.1390 –1.2502 –1.2228 –1.8703
Z4 1.5720 5.4693 7.4041 7.8843 10.0340

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.8339 7.0220 6.7000 6.5053 5.1791
Z2 0.7561 0.8811 0.8582 0.9525 1.3498
Z3 –1.0340 –1.1356 –1.0580 –1.0813 –1.2239
Z4 5.4467 4.8870 4.2599 5.7163 9.5050

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.8913 7.7593 7.4124 7.1687 6.2993
Z2 0.7548 0.8359 0.7818 0.7562 0.7677
Z3 –1.0220 –1.1369 –1.0182 –0.9477 –0.8030
Z4 5.2749 4.8319 2.9301 3.8021 2.4132

T = 30000
 Table C.8. Regressed values of Z , Z , Z , Z in Z(k,g) for HR_CRR when

Universal Alignment Tables for the Selection Rules 285

Table C.10. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for OCBA when T = 1000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.8089 7.4288 8.0146 8.9451 1.5245
Z2 0.7954 1.2231 1.7613 2.5420 3.1718
Z3 –1.0697 –1.5286 –2.0759 –2.8765 –1.5684
Z4 7.5845 7.5827 9.6300 10.6460 9.7590

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.1180 7.8239 7.6229 7.7051 9.4175
Z2 0.8042 1.1184 1.2125 1.4379 3.6047
Z3 –1.1244 –1.4416 –1.4811 –1.6493 –3.6548
Z4 8.2637 7.3700 7.8485 9.1366 11.4610

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.9447 8.1154 7.5361 7.5373 6.4260
Z2 0.8086 0.9889 0.8426 0.8326 0.9993
Z3 –1.0640 –1.2872 –1.0786 –1.0689 –0.9580
Z4 7.4456 8.6345 4.7621 5.3821 6.9053

Table C.11. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for B vs. D when T = 1000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.9996 9.2259 11.2790 9.3277 –14.7780
Z2 0.7691 2.8732 4.7131 4.3101 13.8290
Z3 –1.0453 –2.0335 –3.1179 –2.6577 –1.3282
Z4 2.3862 7.9018 9.1377 8.4729 10.1460

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.6831 9.0142 10.4080 9.6538 3.8676
Z2 0.9522 1.9785 2.9283 3.3931 9.1748
Z3 –1.2450 –1.6266 –2.2001 –2.1829 –2.9535
Z4 8.6772 4.9928 7.4656 7.2247 10.3660

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.3728 7.6015 8.1495 7.1164 7.7334
Z2 0.8077 1.0014 1.0854 0.6641 1.5640
Z3 –1.1323 –0.9742 –1.1179 –0.7573 –1.1501
Z4 6.6783 –4.8144 –1.6719 –16.0820 1.4790

286 Appendix C

Table C.12. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for SPE when T = 1000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.6637 7.9626 8.0102 7.6565 7.2879
Z2 0.7208 1.1759 1.4063 1.7317 2.4221
Z3 –0.9951 –1.5547 –1.7371 –1.9001 –2.5396
Z4 3.6603 7.5852 8.4178 9.5761 10.5370

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.2896 8.0829 7.9880 7.6714 6.1825
Z2 0.8558 1.1034 1.1815 1.2806 2.1457
Z3 –1.1757 1.4399 –1.4802 –1.4449 –1.7480
Z4 7.8464 6.5954 7.5470 7.0642 10.1390

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.9069 8.1283 7.7164 8.1764 6.7923
Z2 0.7125 0.8745 0.8020 0.9996 0.9339
Z3 –1.0032 –1.2053 –1.0612 –1.2505 –0.9515
Z4 2.7489 4.5238 0.3821 7.2053 4.1635

Table C.13. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for HR_gc when T = 1000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.8084 7.3526 7.5086 7.5179 10.3140
Z2 0.7724 1.0809 1.4306 1.9640 3.3967
Z3 –1.0554 –1.4334 –1.7512 –2.1913 –4.3550
Z4 4.2249 6.8723 8.9380 10.1390 10.2500

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.4852 7.7993 7.8501 8.0894 6.9319
Z2 0.8782 1.0331 1.2473 1.4704 2.4167
Z3 –1.2332 –1.4155 –1.5618 –1.7838 –2.3867
Z4 8.9124 6.4890 7.6601 8.8408 10.6350

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.2202 8.1377 7.9465 7.8395 6.8634
Z2 0.7957 0.9670 0.9056 0.9906 1.1069
Z3 –1.1192 –1.2933 –1.1922 –1.2162 –1.1053
Z4 5.9654 5.2711 2.8148 2.3602 5.5796

Universal Alignment Tables for the Selection Rules 287

Table C.14. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for HR_ne when T = 1000

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.0989 7.4390 7.7019 8.2978 8.6701
Z2 0.8360 1.2591 1.6555 2.4837 4.4201
Z3 –1.1593 –1.5959 –2.0192 –2.8377 –4.6661
Z4 8.3361 8.2139 9.7230 10.5130 10.0050

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.1978 7.8594 8.0260 8.5885 10.2590
Z2 0.8354 1.1403 1.4579 1.7968 4.5748
Z3 –1.1576 –1.5133 –1.7708 –2.1707 –4.8329
Z4 8.0641 7.2528 9.0181 10.2110 10.9850

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.2083 8.2428 8.5056 8.0884 6.9772
Z2 0.8153 1.0505 1.1461 1.0862 1.3409
Z3 –1.1295 –1.3622 –1.4481 –1.3248 –1.2707
Z4 8.2221 5.1896 6.5376 5.4885 6.7126

Table C.15. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for HR when T = 500

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.7731 7.1650 7.3319 7.1950 4.0657
Z2 0.7264 0.9531 1.1572 1.3901 2.3351
Z3 –1.0167 –1.2756 –1.4785 –1.6428 –1.7081
Z4 2.4674 6.2832 7.9417 9.5867 9.7219

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.9105 7.5306 7.2710 7.3699 6.6832
Z2 0.8111 0.9630 0.9849 1.0587 1.4206
Z3 –1.0844 –1.2541 –1.2284 –1.2850 –1.4840
Z4 8.4549 5.6330 6.8210 6.9921 9.9519

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.9382 7.9455 7.6651 7.3648 6.9159
Z2 0.7637 0.8855 0.7993 0.7934 0.9468
Z3 –1.0371 –1.1706 –1.0639 –0.9880 –0.9938
Z4 5.3905 5.4909 3.9763 3.6898 6.6152

288 Appendix C

Table C.16. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for OCBA when T = 500

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.7380 7.3466 7.1883 7.7230 1.8935
Z2 0.7621 1.0370 1.2568 1.6020 2.9032
Z3 –1.0337 –1.3492 –1.4843 –1.8595 –1.4038
Z4 5.9884 7.1513 8.8643 10.5810 9.4089

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.7007 7.3191 7.2470 7.1794 5.4955
Z2 0.7047 0.9004 0.9521 1.0204 1.6730
Z3 –0.9813 –1.1682 –1.1806 –1.1988 –1.2769
Z4 3.9332 5.6401 7.0346 8.0729 9.5205

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.0856 7.9313 7.4405 7.8183 6.7244
Z2 0.7670 0.8540 0.7909 0.8536 0.8056
Z3 –1.0649 –1.1505 –1.0083 –1.1151 –0.8763
Z4 5.7885 7.1222 4.4384 8.4226 4.5085

Table C.17. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for B vs. D when T = 500

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.3718 13.5319 15.9734 16.5227 –9.7923
Z2 0.7000 2.9687 5.7224 7.7479 10.0888
Z3 –0.8711 –2.9659 -4.1205 –4.8459 –0.5809
Z4 –2.4103 9.0682 9.2433 10.0123 9.8663

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.0476 11.0422 10.4414 13.5566 12.8275
Z2 0.7000 2.1440 2.1090 3.4419 5.1558
Z3 –1.0513 –2.0570 –1.8891 –2.8171 –3.3038
Z4 4.5822 7.0766 5.6979 7.8229 9.6202

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.3680 8.7349 8.3968 8.7761 7.7309
Z2 0.5359 1.0300 1.0355 1.1269 0.9650
Z3 –0.8452 –1.2109 –1.1165 –1.2499 –0.9926
Z4 0.3320 –1.2333 –2.7465 3.2621 –0.8444

Universal Alignment Tables for the Selection Rules 289

Table C.18. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for SPE when T = 500

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.2899 9.7303 10.2214 10.7590 15.0883
Z2 0.8954 1.4680 1.7764 2.2176 4.1650
Z3 –1.2004 –1.9897 –2.2626 –2.6307 –4.8526
Z4 9.6685 8.6530 9.3290 10.1485 11.9774

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.2139 9.7071 8.7965 9.0619 8.2717
Z2 0.8816 1.3031 1.1979 1.3334 1.9307
Z3 –1.1656 –1.7979 –1.5557 –1.6662 –1.8624
Z4 10.1190 7.5504 5.7980 6.6080 8.6316

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.1022 8.5482 8.2760 8.2313 7.7431
Z2 0.7745 0.9678 0.8482 0.8546 0.9573
Z3 –1.0727 –1.3065 –1.1730 –1.1569 –1.1163
Z4 6.0978 6.9712 3.3010 2.0780 3.3132

Table C.19. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for HR_gc when T = 500

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 7.9373 9.5833 9.9504 10.7244 19.6041
Z2 0.8064 1.5247 2.0581 2.4866 6.7994
Z3 –1.0845 –2.0869 –2.4716 –2.9426 –7.6657
Z4 5.1087 9.6054 10.2930 10.3372 10.8282

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.2384 9.4548 9.5925 9.0835 10.6036
Z2 0.8883 1.3949 1.4859 1.6741 3.2771
Z3 –1.1736 –1.8758 –1.9621 –1.9369 –3.2191
Z4 8.3728 8.6266 8.8970 8.4971 11.0202

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.0678 8.9449 8.7726 8.2823 7.8937
Z2 0.7799 1.0792 1.0460 0.9497 1.0951
Z3 –1.0733 –1.4492 –1.3876 –1.2438 –1.2442
Z4 6.1751 5.3848 5.6418 5.1152 4.6148

290 Appendix C

Table C.20. Regressed values of Z1, Z2, Z3, Z4 in Z(k,g) for HR_ne when T = 500

 N(0, 0.252) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.0214 9.0680 10.3896 13.3639 5.7683
Z2 0.8184 1.6085 2.3468 3.2543 5.4417
Z3 –1.1082 –2.0533 –2.7877 –4.0663 –3.6601
Z4 5.8159 9.2108 10.1850 10.7751 9.8589

 N(0, 0.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.4357 9.9937 10.0117 10.4979 13.6679
Z2 0.8980 1.5061 1.6846 2.2172 5.6006
Z3 –1.2208 –2.0740 –2.1761 –2.5463 –5.2272
Z4 8.8217 9.2039 8.9303 9.7228 11.1670

 N(0, 1.52) Noise
OPC class Flat U-shape Neutral Bell Steep
Z1 8.1816 8.8590 8.7609 8.5659 8.0924
Z2 0.8103 1.0588 1.1191 1.0818 1.2562
Z3 –1.1138 –1.4320 –1.4248 –1.3664 –1.3644
Z4 7.7265 4.6969 5.4774 5.6254 4.9937

Appendix D Exercises

This appendix contains some additional exercises for readers to test their
understanding of the previous chapters as well as topics in general discrete
event system which are usually supplemental materials in a course using
this book as the main text. Problems which are related to but require

give some indication of additional materials typically covered in our courses
at Harvard and Tsinghua University. Three groups of exercises are pre-
sented. First, the True/False group, in which the answers are simply binary
choices. Second, the multiple-choice group, in which the answer is one of
the several candidates. Third, the general group, in which the answer may
be one or two sentences, or may need some calculation.

1 True/False questions

1. Discrete event systems and discrete time systems (governed by dif-
ference equations) both have piecewise constant trajectories. These
two names do not denote the same class of systems and are not inter-
changeable. (T or F)

2*. In a closed queuing network with an unlimited queue size, perturba-
tions in start/stop times of a server can be propagated from one server
to another only through the start of busy periods of a server. (T or F)

3. If I want to generate samples from a Gaussian distribution with a
given mean and variance, I can always derive from them samples for
an arbitrary uniform distribution. (T or F)

4. In the simulation of stochastic systems, the confidence interval of an
estimate can decrease faster than 1/(t)1/2 if there are correlation
among the random variables used in the simulation. (T or F)

5. In the generation of random numbers on (0,1) using the linear con-
gruential method, it is very important to choose the coefficients a and
b in the formula xn+1 = modm[axn+b], in order to form a pseudo ran-
dom sequence. (T or F)

6. It is not important to choose the random seed x0 in the above ques-
tion. (T or F)

knowledge outside of the content of this book are indicated by a “*”. These

292 Appendix D

7. We get one sample path of a DEDS through simulation and compute
from this sample path a sample performance for the DEDS. Call this
L(θ,ξ) where θ are the system parameters and ξ the random realiza-
tions of various random variables. We are interested in J= E[L(θ,ξ)].
Then a single sample of L(θ,ξ) is an unbiased estimate of J. (T or F)

8. In the above question, not knowing anything else, would you say L is
a good estimate of J ? (Y or N)

9. If the expected performance J is the waiting time of customers in a
G/G/1 queue, and the sample path and the simulation go forward in
time, then L, defined to be the average of the waiting times of all past
customers, will become an increasing good estimate of J. (T or F)

10*. Alternatively, if we simulate the G/G/1 queue only for 10 customers
per simulation run but we average over many different short simula-
tion runs, each starting from the same initial condition (different ran-
dom seed of course), then the average of these transient customer
waiting times will not approach J, as the number of simulation runs
approaches infinity. (T or F)

11*. In the GSMP model of a DEDS, the propagation rule of perturbation
analysis is universal. (T or F)

12*. For an n-node queuing network in steady state, the fundamental
quantity of interest is the probability distribution of the state of the
network, P(x1, . . , xn), where xi is the number of customers at node i.
From this all important performances can be calculated. (T or F)

13. Ordinal optimization, like other soft computing tools, is heuristic and
not easily quantifiable. (T or F)

14. In the GSMP model of DEDS, the specification of the clock mecha-
nism is independent of that of the state transition function. (T or F)

15. In the Standard Clock (SC) scheme of DEDS simulation, the event
timing and event typing are totally independent of each other. (T or
F)

16. The SC method is independent of the type of distribution of the ran-
domness involved. (T or F)

17*. The so-called traffic equation governing the mean arrival rate at each
node of the queuing network is totally general and independent of the
distribution type of the service time at each node. (T or F)

18. Sum of Poisson arrivals are still Poisson. (T or F)
19. We can change the mean of a Poisson stream by simply re-scaling the

time axis. (T or F)
20. We can also reduce the mean of a Poisson process by simply drop-

ping out each event of a Poisson stream, according to some inde-
pendent probabilistic means, such as tossing a biased coin. (T or F)

21. The events dropped out of the above question happen to form another
Poisson stream. (T or F)

Exercises 293

22. In learning literature, the term “generalization” means that the learned
model is used to predict the behavior of those unseen examples. Since
the generalization performance depends on how well our model can
extract information from the training set, a more sophisticated model
(model with more features) will always outperform rough models.
(T or F)

23*. In an M/M/1 queue, the number of customers served in one busy
period is independent of the number of customers served in a different

24. In general, it is easier to determine A>B or A<B than to determine
A-B=?

2 Multiple-choice questions

25. Consider a regional electric power system with its many generators,
transmission lines, various rules for scheduling generation and distri-
bution of power to satisfy demands subject to environmental conditions
such as weather. Should this be a DEDS, CVDS or a Hybrid system?
Please pick one.

26. Under i.i.d. sampling, the confidence interval of the sample mean as
an estimate of the true mean decreases as
a) 1/n, where n is the number of samples taken,
b) 1/(n)1/2,
c) 1/(n)2,
d) a-bn, where a and b are constants depending on the problem.

27. Suppose you randomly take 1000 samples from an arbitrary distribu-
tion and order these samples. The probability that none of the observed
samples belongs to the top 1% of the underlying distribution is
a) absolutely zero,
b) 1-(1-0.01)1000
c) (1-0.01)1000
d) involving summing over a series with many terms too complicated

to write down here.
28. In terms of ordinal optimization in the above problem, what is the

“good enough” set, G, and what is the “selected” set, S, assuming we
are maximizing.
a) G = top 1% of the distribution and S = the 1000 samples
b) G = the 1000 samples and S = top 1% of the distribution
c) G = the largest value of the 1000 samples and S= the largest value

of the distribution
d) G= top 1% of the distribution and S= top 1% of the 1000 samples

busy period. (T or F)

294 Appendix D

29. The probability we are calculating in Exercise 27 is called the “align-
ment probability” in ordinal optimization.
a) true,
b) false

30. The alignment probability approaches one exponentially fast as we
increase the size of G and S.
a) true,
b) false

31. In OO, the existence of a nonzero mean in the observation noise/error
a) does not affect the alignment probability,
b) does not affect the alignment probability if the noises/errors have

identical nonzero mean,
c) affects the alignment probability even if the noises/errors have iden-

tical nonzero mean.
32. A pure Markovian DEDS system means

a) state transition matrix is constant,
b) state transition time is exponentially distributed at a constant rate,
c) system is stable,
d) none of the above,
e) all of the above.

33*. Little’s Law is a relationship between the average number of custom-
ers in a system, the average throughput of the system, and the average
transit time through the system. It is applicable to
a) any system in steady state,
b) only systems that can be described as a queuing network,
c) only systems in which the randomness is characterized by the Markov

assumption,
d) none of the above.

34*. What the No-Free-Lunch Theorem states is that
a) estimation of performance value has a theoretical limit of 1/(N)1/2,
b) estimation of ordinal information converges at an exponential rate,
c) averaged over all possible search algorithms, any problem is as hard

as any others,
d) averaged over all possible problems, any search algorithm will be

equally efficient,
e) none of the above.

35. If we have N features, each of which has V different possible values,
what is the total cardinality of our feature space?
a) VN
b) NV
c) 2N/V
d) 2NV.

Exercises 295

36. Which of the following statement is NOT true?
a) Causation implies correlation but correlation does not imply causa-

tion.
b) If A and B have a common cause, the change of A brings the change

of B in general.
c) If variable A causes variable B, the change of A brings the change

of B in general.
d) Two variables may be correlated because they have a common

cause.
37. Given the following Bayesian network (in Fig. D.1), which is the cor-

rect expression of the joint distribution P(A, B, C, D, E)

Fig. D.1. A Bayesian network

a) P(A)P(B/D)P(C/D)P(D/E)
b) P(A)P(B)P(C)P(D)P(E)
c) P(A/E)P(D/E)P(B/D)P(C/D)
d) P(A)P(B)P(C)P(D/B,C)P(E/A, D).

38. Let X be a uniform distributed random variable on (0,1]. Which of the
following defines an exponentially distributed random variable with
mean µ?
a) µln(X)
b) -ln(X)
c) -µln(1-X)
d) -(1/µ)ln(1-X)
e) -µln(1+X)

39. Given a 3-state stochastic finite state machine (equivalently an ergodic
Markov Chain) with an equal transition probability from any state to

296 Appendix D

any other state, what is the steady-state distribution of the system when

the initial state of system is
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0
0
1

0x ?

a)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

4/1
4/1
2/1

b)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

6/1
6/1
3/2

c)
1
1
1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

d)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3/1
3/1
2/1

e)
1/ 3
1/ 3
1/ 3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

.

40. In a room of 10 people, what is the probability of having at least two
people born in the first 36 days of the year (for simplicity, assume a
360 day calendar year)?
a) 1-(0.9)10
b) (0.9)10
c) 1-[(0.9)10+(0.1)(0.9)9]
d) [(0.9)10+(0.9)9]
e) 1-[(0.9)10+(0.9)9].

41*. Assume that you are an out-of-town visitor who does not know the
subway schedule at Harvard Square (which is just outside the gate of
Harvard University). The train arrives every 10 minutes at the Harvard
station. If you walk into the Harvard subway station at random, how
long should you expect to wait to get on the train?
a) 5 minutes
b) 3 minutes

Exercises 297

c) 1 minute
d) 10 minutes.

42. Which of the following is NOT absolutely needed as an ingredient for
a DEDS model?
a) A state transition function,
b) A feasible event list as a function of the state,
c) A random number generator,
d) A collection of possible states.

43. The Birthday Paradox states that, in a room of 23 persons, there is at
least as big a chance to get a “head” in flipping a fair coin as for any
two persons to have the same birthday. In one of the Tonight Show

Johnny Carson attempted to demonstrate the Birthday Paradox by
checking his audience (which was nearly 120 in number) to see if
anyone had the same birthday as his, say, March 12. He tried three
times (i.e., three different individuals), but none of them even had
their birthdays in March. Which of the following is true?
a) Mr. Carson would be very likely to find some matching birthdays if

he had surveyed the birthday information of his audience.
b) The Birthday Paradox does not hold for more than 23 persons in the

room.
c) Mr. Carson should have tried all of his audience and he would have

0.5 chance of hitting someone of his own birthday.
d) The Birthday Paradox would have been true if Mr. Carson had tried

the experiment every day on his show during 1970s.

3 General questions

44. Compare the state of DEDS and CVDS. What’s the difference? Try to
give an example of each system and enumerate the difference of the
states. [Hint: We want you to summarize the difference between
DEDS and CVDS.]

45*. There are three queuing systems shown in Fig. D.2. The inter-arrival
time and the service time are in exponential distribution at rate λ and
µ. The question is which system has the shortest average waiting
time?

(America’s most popular late night talk shows) in 70s, the former host

298 Appendix D

Fig. D.2. Three queuing systems

Fig. D.3. The trajectories of a DEDS and a CVDS, where u is the input

A

B

C

Exercises 299

46. Suppose we integrate the DEDS trajectory in Fig. D.3 twice, the piece
wise constant trajectory will look rather smooth and similar to the
CVDS trajectory on the same figure. Perhaps we can employ the more
familiar CVDS control theory techniques to deal with DEDS. Why
don’t we do that?

47. With all other parameters remaining the same, in what sense is the
Burger King server (one giant queue with multiple servers) better than
Macdonald server (one separate queue for each server)? What as-
sumptions are required to justify your answer?

48. Using the definition of a random (stochastic) sequence as a collection
of random variables in a general joint distribution p(x1, . . , xn) , define
mathematically the following (using one line of mathematical formula
or one sentence description. We are looking for conceptual under-
standing.)
a) Markov random sequence
b) Gaussian random sequence
c) Semi-Markov sequence
d) Renewal sequence.

49. What is the twin evil of nonlinearity and noise with respect to the
formula below?

[] () ()
1 1

1 1, ,
N N

i i
i i

L LdE L N N
d

θ θ ξ θ ξ

θ θ
= =

+ ∆ −
≈

∆

∑ ∑
.

50. If I flip a biased coin (probability of head 3/4) and generate a sequence
of heads and tails, I can produce from this sequence another sequence
which is statistically indistinguishable from one that could have been
generated from a fair coin. What do you need in order to do this?

51. Blind pick alignment probability problem
If one blindly picks |S| choices out of N possibilities, what is the prob-
ability that at least k<|S| of the truly top-|G| choices will be contained
in the set S? [Hint: First consider the special case |S|=|G| and then
generalize to |S|≠|G|.]

52. A Life-or Death Decision Problem
Suppose you are facing a crucial decision problem, say a serious
medical life-or-death decision involving cancer treatment, or a life-
time marriage partner choice, between courses of action A and B. By
spending one million dollars under A, you will find the best decision
for sure vs. a cost of $1Million/x dollars under B to get a decision on
which is guaranteed to be within the top-5% of all decision choices
with a probability equal to 0.99. At what value of x will you be indif-
ferent between the two courses of action?

300 Appendix D

53. A Wrong Classification Problem
Intuitively, we all know that the longer we run the simulation, the
smaller the uncertainty associated with an estimate of the perform-
ance J of the system is. Suppose you are told that the uncertainty as-
sociated with J is uniformly distributed. The estimate is of half width
w(t)=c/t, where c is a constant associated with the simulation. Now
consider two parametrically different but structurally similar simula-
tion running side-by-side. Their uncertainty constants are c1 and c2
respectively. Let the estimates for J be ()1̂J t and ()2Ĵ t respectively
at time t. (Fig. D.4 shows one possible situation.) I would like to stop
the simulation at a time when I observe, say, () ()1 2

ˆ ˆJ t J t> , and I
can be 90% sure that the actual order is also J1>J2 but not J2>J1. It
would be the same if the other way around.
(i) To simplify the matters, let us pose an easier problem. Suppose at
some time we observe ()1̂ 1J t = and ()2

ˆ 2J t = and we also know,
from statistical analysis, that w1= w2 = c1/t = c2/t = 1.0. What is the
probability that the actual order is J1>J2, i.e., the probability of a
wrong classification?
(ii) Now suppose that you know c1 and c2 and you observe ()1̂J t and

()2Ĵ t , describe a procedure (as the function of time) based on which
you can be 90% sure that the observe order is in fact the correct order
(Describe only the main idea, you are not required to work out the de-
tails). [Hint: consider the probability of wrong classification and the
diagram below.]

Fig. D.4. Possibilities of wrong classification

(iii) Is the above figure the only possibility you should consider for
part (ii)? If so or if not, explain your answer.
(iv) Suppose we observe ()1̂ 1J t = and ()2

ˆ 2.5J t = at a certain time
and we know that w1 = c1/t =5.0 and w2=c2/t =1.0 from statistical ana-
lysis. What is the probability that the actual order is J1>J2, i.e., the prob-
ability of a wrong classification? [Hint: consider the answer to part (iii).]

()1̂J t ()2Ĵ t

Exercises 301

54. Seeing is Believing
Suppose A and B are two random variables with mean “a” and “b”,
a>b. The observation noise w1=A-a and w2=B-b are i.i.d. distributed.
Prove that

Prob[A>B] ≥ Prob[A<B],

i.e., what is observed to be greater is more likely to be actually greater,
or the observed order be the actual order.

55. Bounding Blind Pick
Suppose you sample independently from a large (infinite) population
of design choices. Each sample, i, represents a particular design resul-
ting in a particular system performance, Ji. Let us say the Ji’s are dis-
tributed N(µ,σ 2). Now we randomly pick k designs Ji, i=1, 2, . . . , k.
What is the probability that among these k picked designs there is at
least one that is larger than some given value Jsatisfactory?

56. More Blind Pick
Consider the same question as above, except that now the population
is finite (i=1, 2, . . ., N) with Ji=i. We must observe Ji through N(0,1)
additive noise, i.e.,

Jobserved = Jactual + w, w~N(0,1).

(i) What is the probability that it will turn out to be indeed the true top
value if we choose the observed top value out of the population?
(ii) What is the probability that at least one will turn out to be among
the actual top-2 values if we choose the 2 observed top values?
(iii) Can you generalize the above?
If it helps to simplify things, you can choose a specific value for N,
say N=3 or 5.

57. A five minute demonstration of OO
Implement a spread sheet example of ordinal optimization as described
in Section II.3 (also repeated as follows).

Design # = θ True performance
J(θ)

Noise w∈U[0,W] Observed perform-
ance J(θ)+w

1 1.00 87.98 88.98
2 2.00 1.67 3.67
. . . .
. . . .
. . . .
199 199.00 32.92 231.92
200 200.00 24.96 224.96

Sort on this column
in ascending order

Fig. D.5. Spread sheet implementation of generic experiment

302 Appendix D

In Fig. D. 5, column 1 models the N (=200) alternatives and the true
order 1 through N. Column 2 shows the linearly increasing OPC from
1 to N (=200). The noise variance σ2 essentially determines the esti-
mation or approximation error of J(θ). This is shown by the random
noise generated in column 3, which has a large range U(0,100) in this
case. Column 4 displays the corrupted (or estimated) performance.
When we sort on column 4 we can directly observe the alignment in
column 1, i.e., how many numbers 1 through g (=12) are in the top-g
rows. Try this and you will be surprised! It takes less than two min-

58. It is well known that the accuracy of a sampling scheme depends only
on the size of the sample but NOT the size of the underlying popula-
tion which we shall assume to be infinite in this problem. Suppose the
distribution of performances J of a system is normal N(0, σJ

2) when
plotted against a design variable θ. We randomly sample N designs,
θ1, θ2, ..., θΝ in an experiment and observe the system performance,
J(θi) in additive noise N(0,σn

2), i.e., J(θi)observed = J(θi)+noise. We
now ask the question what is Prob[max(J(θi)observed: i=1,…N)∈top 5%
of J(θ)]≡p=?, assuming we are interested in maximizing performance.
(i) Purely as a test of your probabilistic intuition what do you think is
the likely value of p for the case σJ

2=σn
2 and N = 100?

a) p ≤ 0.4, b) 0.4 < p ≤ 0.75, c) p > 0.75.

Choose one alternative and calculate the answer to see if you are correct.

i observed: i=1,…N) of the m experiments∈top 5% of

for different values of m.)
(iii) Suppose, instead of getting m, we did ONE experiment with
mN samples and asked Prob[max(J(θi)observed: i=1,…mN) ∈top 5% of
J(θ)]≡p*=? Is p* > p(m) or p(m) > p*? Can you relate this to the idea
of ordinal optimization?

dent experiments of N samples each and ask Prob[at least one
(θ)of the max(J

utes to setup on Excel. Replicate the spread sheet calculations several
times to get an estimate of Prob[|G ∩S|≥k]=?

59. There are ten designs, the performances of which are non-identical and

J(θ)]≡p(m)=? Calculate p(m) as a function of m and p. What did you

;

learn from this calculation? (Try out a couple of your guesses in (i)

or the top 2 design being contained in class A is 3/4. Each time,
we can observe all the labels of the designs, but not the performances,

(ii) Whatever the value of p in (i) is, now consider doing m indepen-

thus the designs within the same class are indistinguishable. The

1) there are 5 A’s and 5 B’s 2) the probability that either the top 1
unknown. The designs are labeled as class A and B randomly so that

labels of the designs may change from observation. If the good

Exercises 303

(i) What is the alignment probability Prob[|G ∩S|≥1], if S is selected
by blind pick ?
(ii) If you want to maximize the alignment probability, how do you
select your S (explain why), and what is the alignment probability of
this way of picking S?

60. This is a problem of determining how “representative” is 1000 sam-
ples in capturing an arbitrary distribution.

in the top-1% of the population?
(ii) What is the probability that at least n(≤20) of the 1000 samples
are contained in the top-1% of the population?

enough set G is defined as the top-2 designs, and we plan to select

(i) What is the probability that none of the 1000 samples is contained

2 balls, i.e., selected subset |S|=2.

References

Aarts EHL, Korst J (1989) Simulated annealing and Boltzmann machines: A sto-
chastic approach to combinatorial optimization and neural computing. John
Wiley and Sons Inc, Chichester England

Andersen HR (1997) An introduction to binary decision diagrams. http://sourceforge.
net/projects/buddy

Balakrishnan N, Cohen AC (1991) Order statistics and inference. Academic, New
York

Banal R, Basar T (1987) Stochastic teams with nonclassical information revisited:
When is an affine law optimal. IEEE Transactions on Automatic Control
32:554–559

Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic programming. Athena Scien-
tific, Belmont, MA

Bloch A (1991) The complete Murphy’s law. Price Stern Sloan Publisher, Los
Angeles, CA

Bo TZ, Hammond JH, Abernathy, FH (1994) Design and scheduling of apparel
manufacturing systems with both slow and quick production lines. In: Procee-
dings of the 33rd IEEE Conference on Decision and Control, pp 1603–1608

Bollig B, Wegener I (1996) Improving the variable ordering of OBDDs is NP-
complete. IEEE Transactions on Computers 45(9):993–1002

Bouhia S (2004) A risk-based approach to scheduling and ordering production in
manufacturing systems: Real options on production capacity. Ph.D. thesis,
Harvard University

Bratley P, Fox BL, Schrage LE (1987) A guide to simulation, 2nd edn. Springer-
Verlag, New York

Bryson AE, Ho YC (1979) Applied optimal control. John Wiley and Sons Inc,
Chichester England

Cao XR (2005) Basic ideas for event-based optimization of Markov systems. Dis-
crete Event Dynamic Systems: Theory and Applications 15:169–197

Cao XR, Ren ZY, Bhatnagar S, Fu M, Marcus S (2002) A time aggregation
approach to Markov decision processes. Automatica 38(6):929–943

Carlier J (1978) Ordonnancements a constraintes disjonctives. RAIRO Recherche
operationelle/Operations Research 12:333–351

Cassandras CG (1993) Discrete event systems: Modeling and performance analy-
sis. Richard D Irwin Inc, Homewood, IL

Cassandras CG, Lafortune S (1999) Discrete event systems. Kluwer Academic
Publishers, Norwell, MA

Cassandras CG, Strickland SG (1989) On-line sensitivity analysis of Markov
chains. IEEE Transactions on Automatic Control 34:76–86

306 References

Cassandras CG, Dai L, Panayiotou CG (1998) Ordinal optimization for a class
of deterministic and stochastic discrete resource allocation problems. IEEE
Transactions on Automatic Control 43(7):881–900

Chambers L (ed) (1995) Practical handbook of genetic algorithms: New frontiers,
vol 2. CRC Press, Boca Raton, FL

Chambers L (ed) (1999) Practical handbook of genetic algorithms: Complex
coding systems, vol 3. CRC Press, Boca Raton, FL

Chambers L (ed) (2000) The practical handbook of genetic algorithms: Applica-
tions, vol 1. Chapman and Hall/CRC Press, Boca Raton, FL

Chen CH (1994) An efficient approach for discrete event system decision prob-
lems. Ph.D. thesis, Harvard University

Chen CH, Ho YC (1995) An approximation approach of the standard clock
method for general discrete-event simulation. IEEE Transactions on Control
Systems Technology 3(3):309–317

Chen CH, Wu SD, Dai L (1997) Algorithm comparison for manufacturing sched-
uling problems. In: Proceedings of the 36th IEEE Conference on Decision and
Control, vol 2, pp 1214–1215

Chen CH, Lin J, Yücesan E, Chick SE (2000) Simulation budget allocation for
further enhancing the efficiency of ordinal optimization. Discrete Event
Dynamic Systems: Theory and Applications 10(3):251–270

Chen CH, Donohue K, Yücesan E, Lin JW (2003) Optimal computing budget
allocation for Monte Carlo simulation with application to product design.
Simulation Modelling Practice and Theory 11(1):57–74

Chen EJ (2004) Using ordinal optimization approach to improve efficiency of
selection procedures. Discrete Event Dynamic Systems: Theory and Applica-
tions 14:153–170

Chen L, Narendra KS (2001) Nonlinear adaptive control using neural networks
and multiple models. Automatica, Special issue on neural network feedback
control 37(8):1245–1255

Çinlar E (1975) Introduction to stochastic processes. Prentice Hall Inc, Englewood
Cliffs, NJ

Coello CAC (2000) An updated survey of GA-based multiobjective optimization
techniques. ACM Computing Surveys 32:109–143

Collins NE, Eglese RW, Golden BL (1988) Simulated annealing – an annotated
bibliography. American Journal of Mathematical and Management Sciences
8(3):209–307

Croce FD, Tadei R, Volta G (1995) A genetic algorithm for the job shop problem.
Computers and Operations Research 22(1):15–24

Dai L (1996) Convergence properties of ordinal comparison in simulation of
discrete event dynamic systems. Journal of Optimization Theory and Applica-
tions 91(2):363–388

Dai L, Chen CH (1997) Rates of convergence of ordinal comparison for depen-
dent discrete event dynamic systems. Journal of Optimization Theory and
Applications 94(1):29–54

David HA, Nagaraja HN (2003) Order statistics, 3rd edn, Wiley Series in Prob-
ability and Statistics. Wiley-Interscience, New York, NY

De Jong KA (1975) An analysis of the behavior of a class of genetic adaptive
systems. Ph.D. thesis, University of Michigan

References 307

Deng M, Ho YC (1997) Iterative ordinal optimization and its applications. In:
Proceedings of the 36th IEEE Conference on Decision and Control, vol 4,
pp 3562– 3567

Deng M, Ho YC (1999) Sampling-selection method for stochastic optimization
problems. Automatica 35(2):331–338

Deng M, Ho YC, Hu JQ (1992) Effect of correlated estimation errors in ordinal
optimization. In: Swain JJ, Goldsman D, Crain RC, Wilson JR (eds) Proceed-
ings of the 1992 Winter Simulation Conference pp 466–474

Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. thesis,
Politecnico di Milano, Italy

Dorigo M, Di Caro G (1999) The ant colony optimization meta-heuristic. In:
Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill,
London, UK, pp 11–32

Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge, MA
Dorigo M, Maniezzo V, Colorni A (1996) The ant system: Optimization by a col-

ony of cooperating agents. IEEE Transactions on Systems, Man, and Cyber-
netics – Part B 26(1):29–41

Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrete opti-
mization. Artificial Life 5(2):137–172

Driankov D, Hellendoorn H, Reinfrank M (2006) An introduction to fuzzy con-
trol, 2nd edn. Springer, New York, NY

Eglese RW (1990) Simulated annealing: A tool for operational research. European
Journal on Operational Research 46:271–281

Falcioni M, Deem W (2000) Library design in combinatorial chemistry by Monte
Carlo methods. Physical Review E 61(5):5948–5952

Falkenauer E, Bouffoix S (1991) A genetic algorithm for job-shop. In: Proceed-
ings of the 1991 IEEE International Conference on Robotics and Automation,
pp 824–829

Fishman GS (1996) Monte Carlo: Concepts, algorithms, and applications. Springer,
Berlin Heidelberg New York

Floudas CA, Pardalos PM, Adjiman CS, Esposito WR, Gumus Z, Harding ST,
Klepeis JL, Meyer CA, Schweiger CA (1999) Handbook of test problems for
local and global optimization. Kluwer Academic Publishers, the Netherlands

Fu MC, Jin X (2001) On the convergence rate of ordinal comparisons of random
variables. IEEE Transactions on Automatic Control 46(12):1950 –1954

Fujimoto RM (1990) Parallel discrete event simulation. Communication of The
ACM 33(10):31–53

Ganz A, Wang XD (1994) Efficient algorithm for virtual topology design in
multihop lightwave networks. IEEE/ACM Transactions on Networking 2(3):
217–225

Gelenbe E, Mitrani I (1980) Analysis and synthesis of computer systems. New
York Academic Press

Gentle JE (2003) Random number generation and Monte Carlo methods, 2nd edn.
Springer, New York, NY

Glasserman P, Vakili P (1992) Correlation of uniformized Markov chains
simulated in parallel. In: Proceedings of the Winter Simulation Conference,
pp. 412–419

308 References

Glasserman P, Yao D (1992) Some guidelines and guarantees for common random
numbers. Management Science 38(6):884–908

Glover F (1986) Future paths for integer programming and links to artificial intel-
ligence. Computers and Operations Research 13:533–549

Glover F (1989) Tabu search, Part I. ORSA Journal on Computing 1(3):190–206
Glover F (1990) Tabu search, Part II. ORSA Journal on Computing 2:4–32
Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Norwell, MA
Goldberg DE (1989) Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley, Reading, MA
Goldberg DE, Lingle R (1985) Alleles, loci and traveling salesman problem. In:

Proceedings of the International Conference on Genetic Algorithms and their
Applications, Carnegie-Mellon University

Goldsman D, Nelson B (1994) Ranking, selection, and multiple comparison in
computer simulation. In: Proceedings of the 1994 Winter Simulation Confer-
ence

Guan X, Ho YC, Lai F (2001) An ordinal optimization based bidding strategy for
electric power suppliers in the daily energy market. IEEE Transactions on
Power Systems 16(4):788–797

Guide VDR Jr (2000) Technical note: Production planning and control for re-
manufacturing: Industry practice and research needs. Journal of Operations
Management 18:467–483

Guide VDR Jr, Jayaraman V, Srivastava R (1999) Production planning and con-
trol for remanufacturing: A state-of-the-art survey. Robotics and Computer
Integrated Manufacturing 15:221–230

Gunasekera JS, Fischer CE, Malas JC, Mullins WM, Yang MS, Glassman N
(1996) The development of process models for use with global optimization
of a manufacturing system. ASME 1996 International Mech. Eng. Conference
and Exposition, Atlanta, GA

Gupta SS, Panchapakesan S (1979) Multiple decision procedures: Theory and
methodology of selecting and ranking populations. Wiley, New York, NY

Harvard Center for Textile and Apparel Research Annual Progress Report, July 1
1994 to Oct 30 1995

Heidelberger P, Meketon M (1980) Bias reduction in regenerative simulation.
IBM, New York, Research Report RC 8397

Ho YC (1989) Introduction to special issue on dynamics of discrete event systems:
In: Proceedings of the IEEE, vol 77, issue 1, pp 3–6

Ho YC (ed) (1991) Discrete event dynamic systems. IEEE Press
Ho YC (1999) An explanation of ordinal optimization: Soft computing for hard

problems. Information Sciences 113(3-4):169–192
Ho YC (2005) On centralized optimal control. IEEE Transactions on Automatic

Control 50(4):537–538
Ho YC, DEDS Group (1992) Parallel discrete event dynamic system simulation.

Technical Report, DEDS Group, MasPar Challenge Report
Ho YC, Pepyne D (2004) Conceptual framework for optimization and distributed

intelligence. In: Proceedings of the 43rd IEEE Conference on Decision and
Control, pp 4732–4739

Ho YC, Sreenivas R, Vakili P (1992) Ordinal optimization of discrete event
dynamic systems. Journal of Discrete Event Dynamic Systems 2(2):61–88

References 309

Ho YC, Zhao QC, Pepyne DL (2003) The no free lunch theorems: complexity and
security. IEEE Transactions on Automatic Control 48(5):783–793

Holland JH (1975) Adaptation in natural and artificial systems. University of
Michigan Press, Ann Arbor, MI

Hsieh BW, Chen CH, Chang SC (2001) Scheduling semiconductor wafer fabrica-
tion by using ordinal optimization-based simulation. IEEE Transactions on
Robotics and Automation 17(5):599–608

Jia QS (2006) Enhanced ordinal optimization: A theoretical study and applica-
tions. Ph.D. thesis, Tsinghua University, Beijing, China

Jia QS, Ho YC, Zhao QC (2004) Comparison of selection rules for ordinal optimi-
zation. Technical report, CFINS, Tsinghua University and Harvard University,
also available online: http://cfins.au.tsinghua.edu.cn/personalhg/jiaqingshan/
JiaHoZhaoSR2004.pdf.

Jia QS, Ho YC, Zhao QC (2006a) Comparison of selection rules for ordinal opti-
mization. Mathematical and Computer Modelling, Special Issues on Optimi-
zation and Control for Military Applications 43(9-10):1150–1171

Jia QS, Zhao QC, Ho YC (2006b) A method based on Kolmogorov complexity to
improve the efficiency of strategy optimization with limited memory space.
In: Proceedings of the 2006 American Control Conference, Minneapolis, MN,
June 14-16, pp 3105–3110

Johnston DS, Aragon CR, McGeoch LA (1989) Optimization by simulated
annealing: an experiment evaluation: Part 1, graph partitioning. Operational
Research 37:865–892

Kirkpatrick S, Gelatt CD Jr, Vecci MP (1983) Optimization by simulated anneal-
ing. Science 22:41–56

Kleijn MJ, Dekker R (1998) An overview of inventory systems with several
demand classes. Econometric Institute Report 9838/A

Kleinrock L (1975) Queueing Systems, vol I: Theory. John Wiley and Sons, New
York, NY

Kokotovic P (1992) The joy of feedback: nonlinear and adaptive. IEEE Control
System Magazine 12(3):7–17

Kolmogorov A (1965) Three approaches to the quantitative definition of informa-
tion. Problems of Information Transmission 1(1):1–7

Koulamas C, Anotony SR, Jean R (1994) A survey of simulated annealing appli-
cation to operations research problems. International Journal of Production
Research 30(1):95–108

Ku HM, Karimi L (1991) An evaluation of simulated annealing for batch process
scheduling. Industrial and Engineering Chemistry Research 30:163–169

Kuehn PJ (1979) Approximation analysis of general queueing networks by decom-
position. IEEE Transactions on Communications 27(1):113–126

L’Ecuyer P (2004) Random number generation. In: Chapter 2 of Gentle JE,
Haerdle W, Mori Y (eds) the Handbook of Computational Statistics. Springer-
Verlag, New York, NY, pp 35–70

Landau DP, Binder K (2000) A guide to Monte Carlo simulations in statistical
physics. Cambridge University Press, Cambridge

Lau TWE, Ho YC (1997) Alignment probabilities and subset selection in ordinal
optimization. Journal of Optimization and Application 93(3):455–489

310 References

Law AM, Kelton WD (1991) Simulation modeling and analysis, McGraw-Hill
Inc., New York, NY

Lee LH (1997) Ordinal optimization and its application in apparel manufacturing
systems. Ph.D. thesis, Harvard University

Lee LH, Lau TWE, Ho YC (1999) Explanation of goal softening in ordinal opti-
mization. IEEE Transactions on Automatic Control 44(1):94–99

Lee JT, Lau EL, Ho YC (2001) The Witsenhausen counterexample: A hierarchical
search approach for nonconvex optimization problems. IEEE Transactions on
Automatic Control 46(3):382–397

Levin LA (1973) Universal sequential search problems. Problems of Information
Transmission 9(3):265–266

Levin LA (1984) Randomness conservation inequalities: Information and inde-
pendence in mathematical theories. Information and Control 61:15–37

Li M, Vitányi P (1997) An introduction to Kolmogorov complexity and its appli-
cations, 2nd edn. Springer, Berlin Heidelberg New York

Lin X (2000a) A discussion on performance value versus performance order.
IEEE Transactions on Automatic Control 45(12):2355–2358

Lin X (2000b) A new approach to discrete stochastic optimization problems.
Ph.D. thesis, Harvard University

Lin J (2004) A research on simulation budget allocation and its application for
optimizing the reliability of transportation system capacity. Ph.D. thesis, Uni-
versity of Pennsylvania

Lin SY, Ho YC (2002) Universal alignment probability revisited. Journal of
Optimization Theory and Applications 113(2):399–407

Lin SY, Ho YC, Lin CH (2004) An ordinal optimization theory-based algorithm
for solving the optimal power flow problem with discrete control variables.
IEEE Transactions on Power Systems 19(1):276–286

Luh PB, Liu F, Moser B (1999) Scheduling of design projects with uncertain num-
ber of iterations. European Journal of Operational Research 113:575–592

Luo YC (2000) Very efficient hybrid simulation methods for complex problems.
Ph.D. thesis, University of Pennsylvania

Luo YC, Guignard M, Chen CH(2001) A hybrid approach for integer program-
ming combining genetic algorithms, linear programming and ordinal optimi-
zation. Journal of Intelligent Manufacturing 12:509–519

Metropolis N, Rosenbluth A, Teller A, Teller E (1953) Equation of state calcula-
tions by fast computing machines. Journal of Chemical Physics 21:1087–1092

Mori H, Tani H (2003) A hybrid method of PTS and ordinal optimization for
distribution system service restoration. In: Proceedings of the 2003 IEEE Inter-
national Conference on Systems, Man and Cybernetics, Washington, DC, pp
3476–3483

Nawaz M, Enscore E, Ham I (1983) A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. Omega 11(1):91–95

Nelson BL, Swann J, Goldsman D, Song W (2001) Simple procedures for select-
ing the best simulated system when the number of alternatives is large. Opera-
tions Research 49:950–963

Ólafsson S (1999) Iterative ranking-and-selection for large-scale optimization. In:
Proceedings of the 1999 Winter Simulation Conference, pp 479–485

References 311

Ólafsson S, Shi L (1999) Optimization via adaptive sampling and regenerative
simulation. In: Farrington PA, Nembhard HB, Sturrock DT, Evans GW (eds)
Proceedings of the 1999 Winter Simulation Conference, pp 666–672

OR-Library, http://www.ms.ic.ac.uk/info.html
Painton LA, Diwekar UM (1994) Synthesizing optimal design configurations for a

brayton cycle power plant. Computers and Chemical Engineering 18(5):369–
381

Papadimitriou CH, Tsitsiklis JN (1986) Intractable problems in control theory.
SIAM Journal on Control and Optimization 24(4):639–654

Pareto V (1896) Cours d’Economie Politique. Rouge, Lausanne, Switzerland
Passino KM, Yurkovich S (1998) Fuzzy Control. Addison Wesley Longman,

Menlo Park, CA
Patsis NT, Chen CH, Larson ME (1997) SIMD parallel discrete-event dynamic sys-

tem simulation. IEEE Transactions on Control Systems Technology 5(1):30–41
Reeves CR (1995) A genetic algorithm for flowshop sequencing. Computers and

Operations Research 22(1):5–13
Ren Z, Krogh BH (2002) State aggregation in Markov decision processes. In: Pro-

ceedings of the 41st IEEE Conference on Decision and Control, Las Vegas,
NV, December 10-13, pp 3819–3824

Rose C, Smith MD (2002) Order Statistics. In: Section 9.4 of Mathematical statis-
tics with Mathematica. Springer-Verlag, New York, NY, pp 311–322

Santer TJ, Tamhane AC (1984) Design of experiments: Ranking and selection.
Marcel Dekker, New York, NY

Schainker R, Miller P, Dubbelday W, Hirsch P, Zhang G (2006) Real-time
dynamic security assessment: fast simulation and modeling applied to emer-
gency outage security of the electric grid. IEEE Power and Energy Magazine
4(2):51–58.

Schwartz B (2004) The paradox of choice – why more is less, Harper Collins,
New York, NY

Shedler GS (1993) Regenerative stochastic simulation. Academic Press Inc.,
Burlington, MA

Shen Z, Bai HX, Zhao YJ (2007) Ordinal optimization references list, May 1,
http://www.cfins.au.tsinghua.edu.cn/uploads/Resources/Complete_Ordinal
_Optimization_Reference_List_v7.doc

Shi L, Chen CH (2000) A new algorithm for stochastic discrete resource alloca-
tion optimization. Discrete Event Dynamic Systems: Theory and Applications
10:271–294

Shi L, Chen CH, Yücesan E (1999) Simultaneous simulation experiments and
nested partitions for discrete resource allocation in supply chain management.
In: Proceedings of the 1999 Winter Simulation Conference, pp 395–401

Shi L, Ólafsson S (1998) Hybrid equipartitioning job scheduling policies for paral-
lel computer systems. In: Proceedings of the 37th IEEE Conference on Deci-
sion and Control, pp 1704–1709

Shi L, Ólafsson S (2000a) Nested partitions method for global optimization.
Operations Research 48:390–407

Shi L, Ólafsson S (2000b) Nested partitions method for stochastic optimization.
Methodology and Computing in Applied Probability 2:271–291

312 References

Song C, Guan X, Zhao Q, Ho YC (2005a) Machine learning approach for deter-
mining feasible plans of a remanufacturing system. IEEE Transactions on
Automation Science and Engineering [see also IEEE Transactions on Robot-
ics and Automation] 2(3):262–275

Song C, Guan X, Zhao Q, Jia Q (2005b) Planning remanufacturing systems by
constrained ordinal optimization method with feasibility model. In: the 44th
IEEE Conference on Decision and Control and European Control Conference,
Seville, Spain, December 12-15, pp 4676–4681

Specht DF (1991) A general regression neural network. IEEE Transactions on
Neural Network 2(6):568–576

Stadler PF, Schnabl W (1992) The landscape of the traveling salesman problem.
Physics Letters A 161:337–344

Sullivan KA, Jacobson SH (2000) Ordinal hill climbing algorithms for discrete
manufacturing process design optimization problems. Discrete Event Dynamic
Systems: Theory and Applications 10:307–324

Tan KC, Lee TH, Khor EF (2002) Evolutionary algorithms for multiobjective
optimization: Performance assessments and comparisons. Artificial Intelligence
Review 17:253–290

Tezuka S (1995) Uniform random numbers: Theory and practice. Kluwer Aca-
demic Press, Boston, MA

Thomke SH (2003) Experimentation matters: Unlocking the potential of new tech-
nologies for innovation, Harvard Business School Press, Boston, MA

Tyan HY (2002) Realization and evaluation of a computer-based compositional
software architecture for network simulation. Ph.D. thesis, The Ohio State
University

Vakili P (1991) A standard clock technique for efficient simulation. Operations
Research Letters 10:445–452

Vakili P, Mollamustafaoglu L, Ho YC (1992) Massively parallel simulation of a
class of discrete event systems. In: Proceedings of the IEEE Symposium on
the Frontier of Massively Parallel Computation

Van Laarhoven PJM, Aarts EHL (1987) Simulated annealing: Theory and applica-
tions. D. Reidel Publishing, Dordrecht, The Netherlands

Vertosick F (2002) The genius within: Discovering the intelligence of every living
thing, Harcourt

Volpe AP (2005) Modeling flexible supply options for risk-adjusted performance
evaluation. Ph.D. thesis, Harvard University

Walker AJ (1974) New fast method for generating discrete random numbers with
arbitrary distributions. Electronic Letters 10(8):127–128

Whitt W (1980) Continuity of Generalized Semi-Markov Processes. Mathematics
of Operations Research 5(4):494–501

Whitt W (1983) The queueing network analyzer. The Bell System Technical
Journal 62(9):2779–2815

Wieselthier JE, Barnhart CM, Ephremides A (1995) Standard clock simulation
and ordinal optimization applied to admission control in integrated communi-
cation-networks. Discrete Event Dynamic Systems: Theory and Applications
5(2-3):243–280

References 313

Wilson JR (2001) A multiplicative decomposition property of the screening-and-
selection procedures of Nelson et al. Operations Research 49(6):964–966

Witsenhausen HS (1968) A counterexample in stochastic optimum control. SIAM
Journal on Control 6(1):131–147

Xia L, Zhao Q, Jia QS (2004) The SRLF rule in multi-unit joint replacement
maintenance problem and its optimality. The 12th INFORMS/APS Confer-
ence, Beijing, China, June 23-25

Xie X (1994) Ordinal optimization approach to a token partition problem for sto-
chastic timed event graphs. In: Tew JD, Manivannan S, Sadowski DA, Seila
AF (eds) Proceedings of the 1994 Winter Simulation Conference, Orlando,
FL, December 11-14, pp 581–588

Xie XL (1997) Dynamics and convergence rate of ordinal comparison of stochastic
discrete-event systems. IEEE Transactions on Automatic Control 42(4):586–590

Yakowitz SJ (1977) Computational probability and simulation. Addison-Wesley,
Advanced Book Program, Reading, MA

Yang MSY (1998) Ordinal optimization and its application to complex determi-
nistic problems. Ph.D. thesis, Harvard University

Yang MS, Lee LH (2002) Ordinal optimization with subset selection rule. Journal
of Optimization Theory and Applications 113(3):597–620

Yang MS, Lee LH, Ho YC (1997) On stochastic optimization and its applications
to manufacturing. In: Proceedings of the AMS-SIAM Summer Seminar The
Mathematics of Stochastic Manufacturing Systems, Williamsburg, VA, pp
317–331

Yen CH, Wong DSH, Jang SS (2004) Solution of trim-loss problem by an inte-
grated simulated annealing and ordinal optimization approach. Journal of
Intelligent Manufacturing 15:701–709

Yoo T, Kim D, Cho H (2004) A new approach to multi-pass scheduling in shop
floor control. In: Proceedings of the 2004 Winter Simulation Conference,
pp 1109–1114

Zhang L (2004) Study on order-based intelligent algorithms for simulation optimi-
zation problems. Master thesis, Tsinghua University, Beijing, China

Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Perform-
ance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7:117–132

Index

A—G

Alias method 264
Alignment level 10, 77
Alignment Probability (AP) 15
Antithetic random variable 263
Approximated probability of

correct selection (APCS) 161
Birth or death process 269
Cardinal optimization 4
Central limit theorem 260
Chernoff Bound 20
Common random variable 263
Computing budget 69, 74
Confidence interval 260
Constrained Ordinal Optimiza-

tion 113
Bayesian formula 116
Blind Pick with a (imperfect)

Feasibility Model (BPFM)
116

Prediction accuracy 116
Type-I/II error 116

Continuous Variable Dynamic

Correlated observation noises
154

Crude model 200, 224, 235
Descriptive complexity 128
Deterministic complex problems

(DCP) 48
Discrete Event Dynamic Systems

(DEDS) 1, 271
Estimated simple strategy 134

Event-Scheduling Simulation
(ESS) 144

Extremely large design space
143

Generalized Semi-Markov
Process (GSMP) 270, 276

Generalized Semi-Markov
Scheme (GSMS) 276

Genetic algorithm (GA) 175
Goal softening 15, 26, 105, 115
Good enough set 10, 26, 69, 97

H—N

Heidelberger and Meketon’s
estimator 24, 25

Imbedded Markov Chain 270
Independently and identically

distributed (i.i.d.) 260
Inverse transform method 257
Kolmogorov complexity (KC)

128
LaGrange multipliers 94, 113
Large deviation theory 16
Least Favorable Configuration

(LFC) 28
Linear congruential method 255
Markov process 270
Markov sequence 268
Memory Limited Strategy

Optimization 125
Misalignment probability 21

Gaussian sequence 268

Systems (CVDS) 254

Index

Moment generating function
(mgf) 18

Nested partition (NP) 164
Backtracking 165
Partitioning 165
Promising region and the sur-

rounding region 165
Sampling 165

Non-overlapping batch means
(NOBM) 264

O—T

Optimal computing budget allo-
cation (OCBA) 159

Ordered Performance Curve 10,
40, 69, 94

Parallel computation 143
Parallel implementation of OO

143
Parametrically different but

structurally similar (PDSS)
simulation experiments 147

Periodicity and correlation 256
Poisson process 207
Problem class 69, 74
Purely random sequence 268
Random number generator 255
Random walk 270
Rank and Selection (R & S) 37
Real Variable Based methods 3
Reduced ordered binary decision

diagram (ROBDD, or simply
OBDD) 129
Partially reduced OBDD

(PROBDD) 134
Redundancy 134
Regenerative cycle 263
Rejection method 258
Renewal process 269

Search Based Method 4
Search space 9
Seeing is believing 64
Selection Rule 10, 26, 38, 57, 60

Blind Pick (BP) 10, 26, 38, 61
Breadth vs. depth (B vs. D) 62

61
HR as a counterpart of round

robin (HR_CRR) 63
HR with global comparison

(HR_gc) 63
HR with no elimination

(HR_ne) 63
Optimal Computing Budget

Allocation (OCBA) 62
Probability of correct selection

(PCS) 77
Round Robin (RR) 61
Sequential pair-wise elimina-

tion (SPE) 62
Selection Set 10, 26
Semi-Markov process (SMP)

270
Simulated annealing (SA) 184
Single Instruction and Multiple

Data (SIMD) mode 143
Standard Clock (SC) method 144

Second order approximation
148

Shifted exponential distribu-
tions 148

Stationary sequence 267
Stochastic complex simula-

tion-based optimization prob-
lems (SCP) 48

Stochastic process 269
Stochastic sequence 267
Strategy 125
Time average estimator 25
Transition kernel 271, 276

316

Horse Race (HR) 10, 28, 39,

U—Z

Universal Alignment Probability
(UAP) 12, 48, 94, 99

Universal Turing machine
(UTM) 128

Vector Ordinal Optimization
(VOO) 94
Dominance relation 95

Layers 95
Ordered Performance Curve in

the vector case (VOPC) 98
Pareto frontier 94, 95
Warm-up period 263
White noise sequence 268
Wide sense stationary 268

Index 317

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

