
Chapter 5 

ENGINEERING ELECTRONIC STRUCTURE 

Advanced devices place strong demands on semiconductor properties. 
To obtain the highest performance it is necessary to engineer the pro-
perties of constituent materials. In some devices, this means designing 
the electronic energy band structures. In other cases, the natures of 
defects in the materials are most critical. In this and the following 
chapter we consider band engineering and leave defect design to 
Chapter 7. 
 
In Chapter 2, we discussed the basic physics that determines the 
electronic structure of a periodic solid. Now we will put some of that 
understanding to work. In this chapter we will further develop the 
physics underlying trends in semiconductor bands as a function of the 
atomic electronic states from which they are constructed. From this we 
will see how controlled modification of the chemistry and structure of a 
semiconductor can be used to engineer its energy bands. We will also 
step back and see how trends in real energy bands can be found, 
understood, and exploited to control energy gaps, energy-momentum 
relationships, and band edge energies. Chapter 2 gives an idea of why 
bands of states form and the breadth of a band of states between energy 
gaps for given configurations of atoms. It does not provide any speci-
fics as to why one material is different from another, nor does it suggest 
why bands of states exhibit behaviors such as indirect energy gaps. 
Here we will examine the chemical basis for the observed variability.  

The objective of this chapter is to provide an insight into the results 
of quantum-mechanical band structure calculations without relying on 
quantum mechanics itself in detail. The following assumes that the 
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5.1 LINKING ATOMIC ORBITALS TO BANDS 
 
The quantum mechanics of bonding traces the evolution of the energies and 
distributions of electrons as atoms come together to form a solid. During this 
process, the states the electrons occupy develop from initial atomic orbitals to the 
energy bands of Chapter 2. The solutions of the Schrödinger Equation in the 
completed solid are constructed typically as a linear combination of the atomic 
orbitals (LCAO) with corrections as necessary. The LCAO method is considered in 
overview in Section 5.2. Before delving into LCAO, however, it may be helpful to 
review some of the results and to look at the bonding behaviors schematically.  

In the discussion below we will need of the following terms: 
 
Homopolar semiconductors: All atoms in the unit cell in these materials are the 
same so there is no charge transfer from one atom to another. Examples of such 
materials are Si and Ge. In these two examples, there are two atoms per 
primitive unit cell but both are the same kind of atom. 
 
Heteropolar semiconductors: There are two or more different kinds of atoms 
organized regularly in the unit cell. These transfer electrons from one atom to the 
other and thus have different polarities. Examples of such materials are GaAs 
and AlN. In such materials the atoms are well organized into a compound (as 
distinct from a random alloy) with a specific lattice structure.  
 
Note: A Si-Ge alloy has two kinds of atoms but they mix randomly and specific 
sites for one or the other cannot be distinguished. Therefore, such a mixture is an 
alloy of homopolar materials, not a heteropolar compound. 

majority of readers of this book will not have studied quantum mecha-
nics beyond the brief review provided in Chapter 2. Details of the 
calculations of real band structures are therefore beyond the scope of 
this text. However, excellent, if more complex, explanations can be 
found in the classic texts Solid State Physics, by Ashcroft and Mermin, 
in more detail yet in Electronic Structure by Harrison, and in many 
other resources. Here we focus on the bigger picture of how solids 
organize their electrons. We will explore the functionalities of the bond-
ing process and see how behaviors such as the common cation and 
common anion rules for heterojunctions arise, why energy band gaps 
decrease as the average size of a lattice increases, and many other 
typical behaviors.  

The Materials Science of Semiconductors 



 197 

 

5.1.1 Homopolar semiconductors 
We begin the discussion by considering isolated atoms. Atoms have electron orbitals 
determined by solution of the Schrödinger equation for a positive core potential. The 
only case that can be solved explicitly is the hydrogen atom or a single electron 
orbiting a more highly charged nucleus. Atoms with multiple electrons are very hard 

developed for approximating the correlated many-electron systems. While exact 

 
Each atomic orbital is described by a series of quantum numbers (n, m, l, s), 
corresponding to the properties of total (n), orbital (m, with 0≤m≤n), and azimuthal 
(l, with |l|≤m) angular momenta, and spin (s=±1/2). For m=0 the orbitals are 
spherical and are termed “s” orbtials. For m=1 the orbitals have roughly figure-eight 
shaped probability distributions along one of the three coordinate axes and are 
termed “p” orbitals, one for each value of l. The m=2 and m=3 values give the “d” 
and “f” orbitals. Spin allows two electrons per orbital for each of the various s, p, d, 
and f states. The geometries and basic mathematical descriptions of the s and p 
atomic orbitals are given in Figure 5.1. Their derivations for the hydrogen atom may 
be found in most undergraduate quantum mechanics textbooks. Each orbital has a 
well-defined [binding] energy, which increases with increasing nuclear charge. The 
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Figure 5.1: Shows the shape of the s and p  orbitals and the equations that describe them. 
a  is the atomic orbital size, r is the radius from the nucleus, and θ is the angle in the x,y 

analytical solutions for the multi-electron case are not possible, the general pheno-
mena found in single electron states holds true for multi-electron atoms, and cor-
relation effects represent only perturbations on the single-electron behaviors.  

of electrons with each other. Fairly good quantum chemical methods have been 
to treat exactly, due to the difficulty in dealing with the correlations of motions
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specific energies were observed over 120 years ago through their effect on the 
optical emissions of flames. The energies of all orbitals are commonly observable 
today by many techniques. Two of the more precise but accessible methods of direct 
observation of these states are x-ray photoelectron spectroscopy and Auger electron 
spectroscopy. 
 
When two or more atoms bond together to form a molecule, the atomic orbitals may 
be considered to be mixed together to form molecular hybrid states. The hybrids are 
atom-like in that they are localized. However, they have the geometry of the 
molecule. Thus, they are generally termed molecular, rather than atomic, orbitals. 
For example, when a water molecule forms it has a bond angle between the two 
hydrogen atoms of 108°. This is because the three 2p orbitals and one 2s orbital of 
the oxygen have combined to form four 2sp3 hybrid orbitals pointing toward the 
vertices of a tetrahedron, and are therefore separated by 108°. Two of the orbitals are 
completely full of oxygen electrons while the other two have one opening each, 
which is filled by the hydrogen electrons. The shapes of sp3 and similar sp2 hybrid 
orbitals are shown in Figure 5.2. Both are common in semiconductor bonding. In the 
following discussion we will consider the consequences of sp3 bonding on the energy 
of electrons in diamond or zincblende-structure semiconductors. A similar argument 
can be made for sp2 bonding with respect to hexagonal wurtzite-structure materials. 
As we will see in Section 5.2, the hybrid orbital picture is equivalent to considering 
the interaction of each orbital with all others individually and adding the resulting 
interactions together. The advantage of the hybrid picture is that it shows why the 
resulting crystals have the symmetry and structure that they have. 

  

 
 

3 2 2

z
3

orbitals are all equivalent to each other and stretch to corners of a tetrahedron. 

Figure 5.2: Shows the symmetry of the hybridized sp  and sp  molecular orbitals. The sp  
orbitals lie in a plane perpendicular to the p  orbitals and are equal lengths. The sp  
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Atoms from which diamond-structure and hcp semiconductors are constructed have 
three partially filled p valence-state (lowest binding energy) orbitals with energies 
close to the filled valence s-states. When the atoms come together to form the 
semiconductor, their one outer s state and three valence p states can be viewed as 
mixing to form sp3 hybrid orbitals. This configuration maximizes the number of 
electron pairs, and makes each final bond as similar and as low energy as possible. 
The energy of the hybrid orbital is the linear average of the starting orbitals: 

 Esp 3 =
1
4

Es + 3Ep( ). 5.1 

So far we have not changed the average energy of the orbitals, although the system 
began, for example in silicon, with two electrons in the 3s orbital and two in the 
three 3p orbitals. Therefore, the average energy of the electrons has increased as a 
result of the hybridization process, from the initial state Ei=2Es+2Ep to the final state 
Ef = 4Esp3 = Es+3Ep. This would be energetically unfavorable if it were not for the 
formation of bonds between these orbitals. Hybridization is always energetically 
unfavorable for individual atoms, which is why the orbitals for isolated atoms are as 
they are and do not occur as hybrids. To see why hybridization does occur in solids, 
we construct wave functions that are linear combinations of two sp3 orbitals: 
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where ψg is the symmetric combination of the hybrid sp3 wave functions of the 
individual atoms and ψu is the antisymmetric combination. (The g and u subscripts 
refer to the German words for symmetric and antisymmetric, gerade and ungerade. 
Some authors reverse the g and u labeling scheme.) These combinations are similar 
to those that appear in Chapter 2 for the nearly free electron model (Equation 2.5) 
and which gave rise to the higher or lower energy bands at the zone boundary 
(Equation 2.10). The symmetric combination lowers the energy of the electrons as 

termed an “antibonding” orbital. When ψ1 and ψ2 are half-filled, the combination of 
the two contains enough electrons to exactly fill the bonding orbitals and leave the 
antibonding orbitals empty. The situation is shown schematically in Figures 5.3 and 
5.4. Note that in this case we have gained as much energy from the bonding process 
as possible by placing all electrons in the lower energy states and no electrons in the 
higher energy states. This is why semiconductors have such strong bonds. 
 
The nature of bonding can be seen immediately from a consideration of the effect on 
electron density of symmetric and antisymmetric linear combinations of the wave 
functions ψ1 and ψ2. Consider for simplicity the interaction of two s-orbitals. (The 

3
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the atoms approach each other and is referred to as a “bonding” orbital. The anti- 
symmetric combination raises the energy with respect to the starting states and is 

sp  hybrids behave essentially the same way but with more complex geometry.) 
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The energy difference between the bonding or antibonding states and the hybrid 
molecular orbital energy is referred to as the homopolar energy, V2 and the bonding-
antibonding orbital energy difference is 2V2. V2 can be shown [see Harrison, Ref. 1 
for example] to depend approximately upon the inverse square of the interatomic 
distance, d, as: 

 
  
V2 ≈ 4.4

2

md 2 eV. 5.3 

 
 
 

Figure 5.3: A schematic diagram illustrating the basis of cohesion in solids resulting from sym-
metric and antisymmetric combinations of atomic orbitals. The center of electron charge lies
between the positive ions for a symmetric bonding orbital and outside of the positive ions for
an antisymmetric orbital combination. 

atom and decay with distance from that atom (see Figures 5.1 and 5.3). A symmetric 
sum of the two, ψg, has a high intensity between the two atomic nuclei, twice the 
magnitude of a single wave function at half the interatomic distance. By contrast,  
the antisymmetric wave function, ψu, has a node (ψu=0) at the midpoint between the 
atoms. In the symmetric case there is a high density of negative charge between  
the atoms, which attracts the positive nuclei and holds the atoms together. This is the 
source of cohesion in the bonded pair. In the antisymmetric case, the wave function 
amplitude is depressed between the atoms and the positively-charged nuclei are 
relatively exposed to each other. This leads to repulsion. When only the symmetric 
state is filled with electrons, the maximum bonding occurs. When both states are 
completely filled the attractive and repulsive forces match and result in no net 
bonding.  

S-like atomic wave functions are peaked around the positively-charged nucleus of an 
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Thus, as the atoms approach each other, the bonding strength increases rapidly (as 
1/d2) until the repulsion of the positively-charged atomic cores begins to become 
significant. So far, however, we only have two atoms bonded into a dimer molecule. 
As more and more atoms are added, all of the atomic or molecular states of all of the 
atoms interact with each other. These interactions are between second, third, and 
increasingly higher-order neighbors and are progressively weaker as the solid 
becomes larger. It is these interactions which lead to the continuum of states we call 
a band. Their collective interaction is best described with waves as in Chapter 2. 
 
A more complete analysis shows that the bands broaden following the same 1/d2 
functionality as for the homopolar splitting V2. However, because the broadening of 
the bands is relatively weak overall compared to the increase in their separation, the 
direct energy gap still increases with decreasing interatomic distance. In other words, 
the factor scaling 1/d2 in the band broadening term is smaller than the constant in 
Equation 5.3. The dependence of V2 and energy gap on d is ultimately responsible 
for the pressure and temperature dependences of the energy gap in homopolar 
semiconductors (see Section 5.4). 
  
The cohesive energy of the homopolar solid is just the amount by which the average 
electron’s energy is reduced in going from the original atomic orbitals through the 
hybridization process to the formation of bonding and antibonding states and finally 
to the formation of bands. The greater the energy difference between the bonding 
and antibonding states (2V2), the higher the cohesive energy of the material. For the 
simple bonding-antibonding states (not the bands) of Figure 5.4, the cohesive energy 
would be the average energy (increase) of an sp3 hybrid state relative to the starting s 
and p states, [(Es+3Ep)-(2Es+2Ep)]/4 = (Ep-Es)/4 per electron, less the energy gained 
by bonding, V2 for each of the eight electrons in the unit cells (4 electrons per atom 
with a two atom basis in the diamond structure). Thus, 

 Ecohesive = 2 Ep − ES( )− 8V2 . 5.4 

The true cohesive energy is this value modified by the average change in energy for 
electrons during formation of bands from individual bonded molecular orbitals. This 
difference corresponds to the average energy of the valence band relative to the 
bonding state. One can guess that this will be favorable for any material in which 
formation of the complete solid (consequently formation of bands) occurs. It could 
be unfavorable for cases such as diatomic gases although at low enough temperatures 
these materials do solidify. However, in all normal semiconductors the formation of 
bands is quite favorable and the average energy of the band is below that of the 
molecular orbital. 

5.1.2 Heteropolar compounds 
The picture in the previous section works well when there is only one type of atom in 
the material. When there are chemically different atoms, their electron densities, 
electron affinities, and nuclear charges differ. Because of this, their atomic orbitals 
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have different energies. The easiest way to see this is to compare two atoms in the 
same row. For example, compare Ga with As. Both have filled 1s, 2s, 2p, 3s, 3p, and 
4d core states and filled 4s valence states. In addition, each has a partially filled set 
of 4p valence orbitals. Ga has only one electron in its 4p orbitals, while As has three. 
The energy binding the 4p electrons is the same within a given atom, but the two 
additional positive charges in the nucleus of the As atom hold the three 4p electrons 
much more strongly than the weaker nuclear charge of the Ga nucleus holds its 
single 4p electron. This means that the 4p state in As is much lower in energy 
(stronger electron binding) than the 4p state in Ga. Likewise, the 4s orbital energies 
are affected by the additional nuclear charge. Consequently, the hybrid sp3 orbitals of 
the two atoms come out at much different energies. This energy difference is shown 
schematically in Figure 5.5 and is twice the quantity termed the chemical splitting, 
C. Mathematically, 

 2C = Ec
sp 3

− Ea
sp 3

 5.5 

at some ideal interatomic distance, where Ec and Ea refer to the energies of the cation 
and anion molecular orbitals, respectively. The values of chemical splitting increase 
as the atoms move farther apart on the periodic table in a given row (larger 
difference in electronegativity). As the interatomic distance shrinks the chemical 
splittings increase, as discussed below. 

 
 

3

atoms collect to create a bulk solid, bands form. 

Figure 5.4: A schematic diagram of the evolution of bonding of Si atoms. The filled 3s and
partially filled 3p atomic orbitals of two atoms combine to form half-filled sp  hybrid molecular
orbitals. These combine to form bonding and antibonding orbtials. As more atoms collect
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Thus, Equation 5.2 becomes:  

 
ψu = u2ψa

sp3

− u1ψc
sp3

ψg = u1ψa
sp3

+ u2ψc
sp3 , 5.6 

where u1 and u2 are coefficients which describe the relative contribution of the anion 
and cation to the antibonding and bonding states. Both are related to the square root 
of the bond polarity, as discussed below. Furthermore u1

2+u2
2=1. The separation of 

these states is now a combination of a homopolar splitting, V2, type term and a 

 

 
 

bands. The geometries of the atomic and hybrid orbitals are shown schematically as insets. 
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Figure 5.5: Shows the evolution of atomic orbital energies to form bonds and ultimately 

Heteropolar semiconductors can be thought to form sp3 hybrid molecular orbitals 
exactly as do homopolar semiconductors. When we considered two atoms together in 
a homopolar semiconductor, bonding and antibonding states resulted from symmetric 
and antisymmetric mixtures of identical hybrid orbitals. The same combinations 
occur in a heteropolar semiconductor, but now the cation and anion hybrid orbitals 
sp3

C and sp3
A are more distinguishable and have different electron densities. Further-

more, the symmetric and antisymmetric states now have different contributions from 
the cation and anion molecular orbitals. 
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chemical splitting, C term. The resulting separation, ∆, (see Figure 5.5) is given 
approximately (see Harrison, Ref 1, for discussion and derivation) as: 

 ∆ = C2 + V2
2 . 5.7 

The homopolar splitting component, V2, of a heteropolar bond increases exactly as 
for a homopolar semiconductor according to Equation 5.3 as the interatomic spacing 
decreases. The chemical splitting also increases with decreasing bond distance d, 
approximately (see Ferry for discussion) as: 

 C = c
ZA

rA

−
ZC

rC

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ e−k TF d  5.8 

 
It is now time to return to the observation that the cation and anion molecular sp3 
orbitals do not contribute equally to the symmetric and antisymmetric molecular 
orbitals (Equation 5.6), i.e. u1≠u2. Because of the way in which orbitals combine, the 
molecular orbital that is closest in energy to the bonding or antibonding state 
contributes most to that state. Thus, the lower binding energy state associated with 
the cation contributes most to the antibonding orbitals. Likewise, the higher binding 
energy anion contributes most to the bonding state. This is indicated schematically in 
Figure 5.5 by the solid and dashed lines connecting the bonding and antibonding 
states to the cation and anion molecular orbitals. Solid lines show the primary 
contribution while dashed lines indicate a minority contribution. The mixing of the 
states will be discussed in more detail in Section 5.2, which provides a more specific 
justification for this difference.  

where ZA and ZC are the anion and cation atomic numbers, rA and rC are their 
covalent radii, d=rA+rC is the interatomic distance, kTF is the Thomas-Fermi screen-
ing length (the distance over which electrons in a solid screen an extenally-applied 
electric field), and c is a constant. For typical semiconductors, kTF is in the range of 
0.1 nm. One should be cautious in applying the formulas 5.5 through 5.8 too closely 
as detailed band structure calculations yield somewhat different values (see dis-
cussion in Section 5.2) than one would infer from the simple formulas. However, 
these formulas provide illustrative examples of the general functional form of the 
variables. 
 
Because C and V2 increase rapidly with decreasing interatomic distance, the bonding 
and antibonding states move away from each other as interatomic distance decreases. 
This has important consequences. For example, as with the homopolar materials, this 
effect is directly responsible for the temperature and pressure dependence of the 
direct energy gap (see Section 5.4). Because the chemical splitting increases roughly 
exponentially with decreasing distance, while homopolar splitting increases only 
quadratically, the chemical splitting becomes increasingly dominant at small inter-
atomic distances. This also leads to more polar bonding as bond length shrinks, as 
we will see below. 
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If the antibonding states are empty and the bonding states are filled, the localization 
of the states results in a difference in the charge density around the cation and anion. 
In other words, as the bands become increasingly connected to given atoms, the 
bonding becomes more ionic. A quantitative relationship between chemical splitting 
and ionic character, α, of the bonds can be derived (see, for example Harrison) to be: 

 α =
C
∆

=
C2

V2
2 + C2 . 5.9 

The increase in ionic bonding also applies as the atoms are forced closer together. 
Likewise ionic character will change with pressure and temperature. One can go 
further and determine that u1=[(1+α)/2]1/2 and u2=[(1-α)/2]1/2 (see Harrison, for 
example). One can then calculate u1 and u2 terms of C and V2 using Equation 5.9. 

 u1
2 =

1+ C2 V2
2 + C2( )

2
 and  u2

2 =
1− C2 V2

2 + C2( )
2

 5.10 

For the case of a completely ionic bond, α=1, and the bonding and antibonding states 
are entirely composed of anion and cation states, respectively. 
 
It may be helpful for the reader to consider some specific numerical values for some 
of these constants for common semiconductors. Atomic orbital energies for selected 
elements are given in Table 5.1. A full table of values may be found in Harrison. 
Table 5.2 gives data for homopolar and chemical splittings as well as minimum 
energy gaps for several semiconductors based on values from Ferry. The reader will 
find that the constants C and V2 calculated using information in Table 5.1 based on 
the formulae above do not result in the numbers in Table 5.2. This is because of the 
various corrections to the results, which are necessary in an accurate calculation of a 
band structure and not included in the simplified approach resulting in the above. 
Some of these corrections have been included in the values in Table 5.2. Full band 
structures for several compounds are described in Section 5.3, and many more may 
be found in the literature. Once again, although the formulas in this section are not 
sufficient to predict accurate band behaviors, they do provide useful trends and 
explain the basis of many experimental results. 
 
The observations about atomic contributions to bonding and antibonding states 
become more relevant when we realize that these states make up the valence and 
conduction bands. Therefore, a change in the cation, keeping the anion the same, will 
primarily affect the conduction band, while a change in the anion for a constant 
cation primarily affects the valence band. This leads to the common cation and 
common anion rules as well as to the relative magnitudes of the band offsets, which 
we encountered in Chapter 3. The ratio of the energy band offsets, ∆EV/∆EC directly 
reflects the relative magnitudes of the coefficients u1 and u2 in Equation 5.10 across a 
heterojunction. 
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Although the hybrid molecular orbital description of how bonds form is most 
convenient for a simple picture of the geometry of specific compounds, a more 
precise and general result can be obtained by keeping the original atomic orbitals in 
the scheme. This section considers how this may be accomplished and delves deeper 
into the methods for calculating of real E(k) diagrams. Even so, many details are 

 

Atom Es (eV) Ep (eV) Esp3 (eV) Atom Es (eV) Ep (eV) Esp3 (eV) 
C 17.52  8.97 11.11 Ge 14.38  6.36 8.37 
Si 13.55  6.52 8.28 Sn 12.50  5.94 7.58 
Al 10.11  4.86 6.17 P 17.10  8.33 10.52 

Ga 11.37  4.90 6.52 As  17.33  7.91 10.27 
In 10.12  4.69 6.05 Sb 14.80  7.24 9.13 

Mg 6.86  2.99 3.96 S 20.80  10.27 12.90 
Zn 8.40  3.38 4.64 Se 20.32  9.53 12.23 
Cd 7.70  3.38 4.46 Te 17.11  8.59 10.72 
Cu 6.92  1.83 3.10 Br 23.35  11.20 14.24 
Ag 6.41  2.05 3.14 I 19.42  9.97 12.33 

Values from Walter A. Harrison, Ref. 1. 
 

 

Molecule 
Interatomic 

Distance 
(Å) 

Homopolar 
Splitting 
2V2 (eV) 

Chemical 
Splitting, 
2C (eV) 

Bond 
Energy, 
2∆ (eV) 

Minimum 
300 K Energy 

Gap (eV)  
C 1.54 13.88  13.88 5.4 
Si 2.35 5.96  5.96 1.107 
AlP 2.36 5.92 3.48 6.87 2.5 
Ge 2.44 5.52  5.52 0.67 
GaAs 2.45 5.48 3.02 6.26 1.42 
ZnSe 2.45 5.55 3.80 6.73 2.58 
CuBr 2.49 5.37 5.59 7.75 2.94 
Sn 2.80 4.20  4.20 0.08 
InSb 2.81 4.16 2.56 4.88 0.165 
CdTe 2.81 4.16 5.22 6.67 1.44 
Values from D.K. Ferry, Ref. 2. Minimum energy gaps from Ref. 3. 

 

glossed over. For a complete description of the methods the reader is referred to 
the suggested readings. For this discussion we will follow the linear combination 
of atomic orbitals (LCAO) approach. Note that in spite of the difference between 

5.2 LCAO: FROM ATOMIC ORBITALS TO BANDS 

Table 5.1: Atomic and Molecular Orbital Energies

Table 5.2: Bond Orbital Energies
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considering atomic orbitals individually and using the hybrid orbitals, the results are 
identical as long as only the states that enter into the hybrid contribute to bonding. 
 
The beginning of the LCAO approach is the valence atomic orbitals of the atoms 
forming bonds. In most semiconductors the important states are the s and p orbitals. 
In some cases other orbitals such as shallow-lying (outermost) d-states contribute 
significantly to the complete picture of bonding. For now we will ignore such 
complications. This is safe for the case of Si where no d-state electrons are present 
but not, for example, for GaAs. An analysis of orbital interactions requires selection 
of a coordinate system. It is conventional, for example, to orient the p-orbitals along 
the Cartesian coordinate axes. From this point it is easy to construct the sp3 hybrid 
orbitals along bond directions in a diamond-structure material: 

 

ψ 111[ ] = (ψs +ψpx
+ψ py

+ψ pz
) /2

ψ 1 1 1[ ] = (ψs −ψpx
−ψ py

+ψ pz
) /2

ψ 1 1 1 [ ] = (ψs −ψpx
+ψ py

−ψ pz
) /2

ψ 1 1 1 [ ] = (ψs +ψpx
−ψ py

−ψ pz
) /2

 5.11 

Here the crystallographic indices in the subscripts refer to the hybrid molecular 
orbital directions. Because the Schrödinger Equation governing electron motion is 
linear, any combination of wave functions that solve it will also be a solution. In 
other words, choosing the hybrid orbitals or the atomic orbitals as a starting point for 
the calculation must yield identical results. The most flexible and general approach is 
not to be restricted to specific hybrid orbitals but rather to consider all possible 
orbital-by-orbital interactions of the fundamental atomic states. These states apply to 
a given atom in any environment. Thus, their use is valid for any material in which 
the atom occurs. As an example of a specific interaction, one can ask how does the 
px orbital on one atom interact with the pz orbital on another atom.  
 
To answer this, some additional terminology will be useful. Electron states having at 
least some component of their orbitals parallel to one another can interact in two 
ways. When the bonds (or projected components of the bonds) are parallel to the 
orbital axis, this results in a “σ” bond, while bonds perpendicular to the orbital axes 
are “π” bonds. Thus, s-orbitals always form σ bonds (they have no specific axis) 
while p-orbitals can have σ -like and π -like characters. When interacting orbitals do 
not lie directly along or orthogonal to a bond axis, one can decompose the resulting 
interactions into σ-like and π-like portions as well as a portion for which the orbitals 
are orthogonal to one another and therefore have no interaction. This leads to a series 
of geometric coefficients, which scale the interactions for each pair of states 
according to their orbital axes, relative positions, and symmetries. Sketches of the s 
and p orbitals in a diamond-lattice semiconductor along with some of their 
interactions are shown in Figure 5.6. Note how none of the p-orbitals point directly 
along bond directions for the conventional choice of axes. However, the orbitals can 
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be decomposed into a component directed toward another orbital, a component 
parallel to another orbital (π-like bond), and a perpendicular component. If the axes 
were chosen such that a given pair of orbitals lay directly along that axis, the others 
would have reduced components along those directions and the result would be the 
same. Choice of coordinate axes is irrelevant to the result. 
 
The coefficients of each interaction represent the relative strength and component of 
the interaction for a given bond. For the situation shown in Figure 5.6, the energies 
of the possible interactions may be shown to be [1]: 

 
 

Figure 5.6: A schematic diagram showing the interactions of selected atomic orbitals and the 
geometry of these orbitals with respect to the crystal lattice in a zincblende or diamond struc-
ture material. 
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Ess = Vssσ

Esp = −
Vspσ

3

Exx =
Vppσ

3
+

2Vppπ

3

Exy =
Vppσ

3
−

Vppπ

3

, 5.12 

where Vssσ, Vspσ, Vppσ, and Vppπ

distance and type of atom. The interaction potentials, V, are then scaled by the 
projections of the p orbitals along the x,y, and z axes in the directions of the orbital 
with which they are interacting, leading to the final interaction energies of Equation 
5.12. Exx refers to the interaction of a p-orbital with another p-orbital on an adjacent 
atom along the same axis; for example, a px orbital interaction with another px. Exy 
refers to the interaction of a p-orbital pointed along one axis with a p-orbital on an 
adjacent atom pointed along one of the other two orthogonal axes. (Although the 

these interaction terms projected along specific axes. Harrison gives approximate 
formulas for atom-independent values of V from which values for the various E’s 
can be estimated for a given lattice. According to Harrison, all V’s, and hence all 
E’s, scale as   

2 md2 , from which Equation 5.3 results [  
2 m  = 0.0762 eV-nm2]. In 

units of   
2 md2

ss sp= -1.06, 
Exx=0.54, and Exy=1.35 based on Equation 5.12. These coefficients, along with phase 
factors describing the phase of the Bloch waves in the solid figure into a matrix 
describing all of the possible pairwise bond interactions.  
 
It is through the phase factors that a given electron momentum is defined. One might 
have expected this as, from the discussion of Chapter 2, band structures represent the 
interference of electron waves with the periodic potential of the lattice. For the wave 
functions in Equation 5.10, the corresponding phase factors are: 

 

g0(k) = eik •d111 + eik •d 1 1 1 + eik •d11 1 + eik •d 1 11 

g1(k) = eik •d111 − eik •d 1 1 1 + eik •d11 1 − eik •d 1 11 

g2(k) = eik •d111 − eik •d 1 1 1 − eik •d11 1 + eik •d 1 11 

g3(k) = eik •d111 + eik •d 1 1 1 − eik •d11 1 − eik •d 1 11 

. 5.13 
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=-1.4, E, the resulting values of the E’s would be: E

σ-bonds, the pp σ-bonds, and the pp π-bonds, respectively, for a given interatomic 
 describe the strengths of the ss σ-bonds, the sp

the V’s are orientation and axis-independent interaction potentials while the E’s are 
axes are orthogonal, the orbitals are not, see Figure 5.6.) To repeat for emphasis:
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An examination of the terms for the g values will show that these simply represent 
the interference behavior of the electron waves with given wave vectors k interacting 
with atoms at positions defined by the real-space vectors d and at the origin. The g 
values include the free-electron-like behavior of Chapter 2. The calculation of the g 
factors becomes more complex when second-nearest neighbors and beyond are 
included, but the method is the same. The energy of an electron with wave vector k 
is the determinant of a matrix representing the energies of all possible orbital pairs. 
For example, for a zincblende semiconductor with no d-orbitals the LCAO matrix is 
[c.f. Ref. 4]: 

sc sa pxc pyc pzc pxa pya pza

sc Esc Essg0 0 0 0 Espg1 Espg2 Espg3

sa Essg0
* Esa −Espg1

* −Espg2
* −Espg3

* 0 0 0
pxc 0 −Espg1 E pc 0 0 Exxg0 Exyg3 Exyg2

pyc 0 −Espg2 0 E pc 0 Exyg3 Exxg0 Exyg1

pzc 0 −Espg3 0 0 E pc Exyg2 Exyg1 Exxg0

pxa Espg1
* 0 Exxg0

* Exyg3
* Exyg2

* E pa 0 0
pya Espg2

* 0 Exyg3
* Exxg0

* Exyg1
* 0 E pa 0

pza Espg3
* 0 Exyg2

* Exyg1
* Exxg0

* 0 0 E pa

5.14 

Subscript “a” designates atomic orbitals due to the anion while subscript “c” 
designates the cation orbitals. The energies on the diagonal of the matrix are the 
energies of the atomic orbitals for cations or anions. Values for such energies were 
given for selected elements in Table 5.1. The g values are complex numbers. To 
obtain proper behavior from the matrix, complex conjugates of g must be included 
such that elements across the diagonal are conjugates of one another. These 
conjugate values are indicated by an “*”. The negative terms result because in some 
cases the negative lobe of the wave function is interacting with a positive lobe of 
another. Thus, the negative coefficient gives an attractive interaction. 
 
Additional rows and columns should be added to the matrix for more complex 
compounds with more than two atoms and the formula for the g’s becomes much 
more complex. The matrix also expands when shallow-lying d-orbitals must be taken 
into account. Simpler structures such as the diamond lattice have a smaller 
interaction matrix because there is no distinction between cation and anion sites. The 
matrix may also be modified by effects such as spin-orbit splitting. (Spin-orbit 
splitting is one of the corrections necessary to an accurate band calculation. It results 
from the interaction of the electron spin magnetic moment with the dot product of its 
velocity and the local electric field due to the positive atomic cores of the lattice.) 
Likewise, greater accuracy can be obtained if additional terms are included in the g 
values to account for second and higher neighbors. 
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One may wonder how to interpret this matrix in light of the nearly free electron 
model of Chapter 2 and the discussions at the beginning of this chapter. The 
Schrödinger equation enters into the matrix through the calculations of the individual 
interaction energies of various electron orbitals with one another; in other words, the 
Vssσ, Vspσ, Vppσ, and Vppπ terms that appear in Equation 5.12. These terms and the 
cation and anion orbital energies are also the only places that chemical differences 
appear in the problem. From the V values, the interaction energies for a given 
geometry of the lattice may be determined by projection of the orbitals onto the bond 
directions (Equation 5.13). As noted above, the matrix simply represents the set of 
equations for the linear combination of all atomic orbitals in pairs. Each possible pair 
corresponds to a specific element of the matrix. We encountered one such linear 
combination in the nearly free electron model in Equation 2.9, but for the 
combination of only two wave functions. This then led to the energies in Equation 
2.10. Another example of a linear combination of two electron waves is shown in 
Figure 5.3. The individual elements of the matrix give the strength and phase of the 
individual interactions. Note that some of the matrix elements in Equation 5.14 are 
zero where the orbitals are orthogonal to one another. (For example, on the same 
atom orbitals must be orthogonal and cannot interact.)  
 
The eigenvalues of Equation 5.14 describe the complete band structure for the solid 
when one considers all possible real-space translation vectors d of the lattice and all 
reciprocal lattice electron wave vectors k. In principle, calculating the band structure 
of a real solid, such as those shown in the next section, should be no harder than 
making the appropriate substitutions for d and k in Equation 5.13, calculating the 
phase factors (g’s), substituting these into Equation 5.14, and calculating the 
eigenvalues. However, if one uses “standard” orbital energies (Table 5.1), estimates 
the interaction potentials V from simple approximate (but easy to solve) versions of 
the Schrödinger equation, and if one substitutes these into Equations 5.12-5.14 and 
calculates a band structure, one will not immediately arrive at the true structure. A 
high quality band calculation requires inclusion of numerous corrections to the 
potentials determining the V values, spin-orbit effects, higher neighbor interactions 
in the g values, and shallow-lying d-bands, when present, etc. Discussions of the 
details of these corrections may be found in the suggested readings.  
 
Such detailed calculations are integrated into many computational models, so 
fortunately it is not necessary for the average semiconductor engineer to know how 
to perform the analysis. However, in spite of the convenience of computational 
methods, it is important to use them with caution. Even the most sophisticated 
methods generally perform much better for specific portions of the energy band 
structure and are relatively unreliable for other portions, especially in an ab-initio 
application (where one is not fitting experimental data). Much more reliable results 
are obtained by fitting experimental values to correct the calculation, making the 
band structure models interpretive rather than predictive. The most extreme version 
of the fitting approach is the empirical tight-binding method where one simply 
adjusts all of the matrix elements (with best guesses as to relative ratios) in order to 
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match experimental data. One can then use the fit matrix elements to estimate 
energies of specific conformations of atoms via the g factors. The tight binding 
method makes little effort to actually determine the correct values of V from first-
principles. In spite of the various concerns and caveats in the above discussion, band 
structure calculations are very useful in understanding trends in semiconductor 
behaviors and predicting optimal structures. Calculations are good for guessing the 
properties of a hypothetical semiconductor and therefore to semiconductor design.  
 
We will consider some of the implications of the LCAO method next based on the 
above equations and ignoring detailed corrections. The simplest trend to understand 
is the behavior at Γ, where k=0. In this case Equation 5.13 yields g0=4 and g1, g2, 
and g3=0. This makes the interaction matrix exceedingly simple and results in the 
following four energies [1]: 
 

 

E Γss( )=
Ecs + Eas

2
±

Ecs − Eas

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ 4Ess( )2

E Γpp( )=
Ecp + Eap

2
±

Ecp − Eap

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ 4 Exx( )2

. 5.15 

signs in Equation 5.15 represent antisymmetric antibonding states while the “-” signs 
correspond to the symmetric bonding states. Because the s orbitals have greater 
binding energies, the s-like states lie below the p-like states. Therefore, the top of the 
valence band and the top of the conduction band at Γ are composed of p-like states 
and the bottom of the valence and conduction bands are made up of s-like states. 
This means that the band edges defining the energy gap of a direct-gap 
semiconductor of this type are p-like for the valence band and s-like for the 
conduction band.  
 
There are three p-p bonds with the same energy at Γ, one for each p-orbital axis. 
Thus, each of the two E(Γpp) energies refers to the energy of three separate branches 
of the E(k) diagram while only one branch occurs at each E(Γss) energy. A more 

remaining bands are different and differ also from the split-off band. This leads to 
separate “light” (lower effective mass) and “heavy” hole behaviors. The two hole 
masses may be observed in some experiments sensitive to energetic holes. 
 
Similar expressions to Equation 5.15 can be written for other parts of the band 
diagram. Relatively simple forms of the eigenvalues can be derived for the X and L 

The E(Γss) energy is for s-s bonds while the E(Γpp) energy results from the p-p bonds. 
Because at the Γ point g1=g2 =g3= 0 , there is no s-p bonding contribution. The “+” 

[4] lowers the energy of one of the p bands. In addition, the curvatures of the two 
detailed analysis, including electron “spin-orbit” interactions in the calculation,
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in Si and Ge. The X point is primarily dominated by s-p and p-p bonding interactions 
while the L point behavior is the same as at the Γ point but with (2Exx+2Exy) 
replacing 4Exx in the expression for the p-p energy in Equation 5.15. One can see 
from these results that to obtain an indirect-gap semiconductor it is necessary to have 
relatively large values of Exy and relatively small values of bond length.  
 
The formulas for the various symmetry points such as Equation 5.15 give a strong 
indication of the trends in the bands and their relationships to the fundamental 
chemistry of the material. The results are the basis of the formulas in Section 5.1. As 
an example of how such relationships can be derived, let us try to explain why the 
minimum energy gap in a semiconductor might increase with decreasing lattice 
constant even though the homopolar splitting and the bandwidth increase together 
and might be expected to cancel out the bond-length effect. For simplicity, consider a 
homopolar semiconductor. In this case Ecs=Eas=Es and Ecp=Eap=Ep. Equation 5.15, 
then simplifies greatly and the band edges at the Γ point can be estimated (taking the 
appropriate signs) as: 

 
Ec = Es + 4Ess

Ev = E p − 4Exx
. 5.16 

The direct energy gap in a homopolar semiconductor is then Egap=Ec-Ev, or 

 Egap Γ( )= Es − E p + 4(Ess + Exx ) . 5.17 

Substituting from Equation 5.12, one may then obtain 

 Egap Γ( )= Es − E p + 4[Vssσ + (Vppσ + 2Vppπ ) /3]. 5.18 

Es and Ep are atomic orbital energies and are independent of bond formation and 
hence of bond length. If one examines Equation 5.18 one finds that the term in 
brackets resembles in some respects what one would get for a triple bond between 
two semiconductor atoms – contributions from one s-s σ-bond, one p-p σ-bond, and 
two p-p π-bonds. We can now answer the question at hand – how does Egap(Γ) 
change as the bond length changes. By examination of the values in Table 5.1, one 
finds that there is no consistent trend in Es-Ep for the homopolar semiconductors. 
However, all of the wave function overlap energies V increase with decreasing 
interatomic distance. This shows why the net energy gap increases with decreasing 
atomic separation. A similar result is obtained in the heteropolar case. Therefore, we 
would expect a net change in energy gap, even though one might expect bandwidth 
and band-to-band spacing to offset one another. 
 
One might also ask why it is necessary for an ordinary semiconductor engineer to 
worry about these details unless they were planning to pursue a graduate degree in 
semiconductor physics. The reason is that many aspects of semiconductor alloy and 
defect behaviors can be traced back to the phenomena discussed above. Furthermore, 
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points, [1] which describe, in part, the behavior of the bottom of the conduction bands 
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there are many exceptions to the simple rules of thumb. Even the common cation and 
common anion rules can appear to be violated in complex materials. Therefore, a 
more detailed understanding of the sources of bonding is necessary to have a good 
sense of how to engineer band structures and defects. To illustrate the value of the 
LCAO approach to understanding semiconductor behavior, consider the following 
case.  
 
The individual bond-by-bond interactions contribute to different parts of the bands in 
materials. This may mean that while the valence band may be expected to result 
primarily from anion atomic orbitals, the states near the valence band edge may be 
dominated instead by particular atomic states from a cation. Such complications do 
not arise significantly in simple semiconductors with strongly covalent and strongly 
sp3-like bonds, as in GaAs. However, in a complex ternary compound semiconductor 
such as CuInSe2 this type of behavior has an important effect. In the case of this 
compound, the bottom of the conduction band is primarily derived from In atomic 
states, as one would expect based on the behavior illustrated in Figure 5.5 and 
represented by Equations 5.5-5.9. At the same time, the top of the valence band is 
primarily due to Cu-Se bonds. Therefore, replacing Se with S will primarily affect 
the valence band edge even though the cations are in common. Replacing In with Ga 
strongly modifies the conduction band edge and will have almost no effect on the 
valence band. This behavior illustrates the subtlety of bonding in complex compound 
semiconductors (and similarly complex insulators and metals) and shows how 
exceptions to common cation and common anion rules may occur or where alloying 
may have a surprisingly large effect on one or the other band edge. Likewise, 
breaking the symmetry of the system by strain may affect different parts of the 
energy gap differently (see band offset discussion for Si-Ge alloys in Chapter 6). 
 

we can calculate appropriate g and E terms for insertion into the matrix of Equation 
5.14. Standard methods for calculation of such parameters exist. In addition, we can 
easily add shallow-lying d-orbitals or other states that are not part of the normal sp3 
orbital geometry to the bonding. This is essential to an exact description of bonding 
in compound semiconductors involving elements below row three in the periodic 
table. When the d-orbital has a high binding energy, its wave function decays fast 
enough that it does not contribute significantly to bonding. However, the group IIb 
and IIIb metals such as Zn and Ga include d-orbitals shallow enough to be important. 
In some of the largest elements even f-states may contribute measurably (for example 
in HfN). Likewise, it is the second-nearest-neighbor atomic orbital interactions that 
distinguish between fcc and hcp crystal structures. Such interactions are small and 
change with the atomic number of the atoms involved. This explains why cubic and 
hexagonal forms may coexist in compounds such as ZnS or GaN and why one sees a 
transition from a stable cubic form to a stable hexagonal form with position of the 
constituent elements in the periodic table. 

The bond-by-bond method is convenient for many purposes because we can consider 
any nth  neighbor interaction between any orbital in the solid and any other as long as 
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5.3 COMMON SEMICONDUCTOR ENERGY BANDS 

Having armed ourselves with a more detailed idea of how energy bands develop in 
semiconductors, we now consider some specific examples. It is helpful to begin with 
an examination of some experimental data for some representative semiconductors. 

 
For the group IV semiconductors the effect of the homopolar splitting on energy gap 
and its dependence on lattice constant are shown in Figure 5.7. Complete band 

 Semicon-
ductor Class 

Semiconductor Lattice 
Parameter 

Energy Gap, eV  
(at 20°C) 

Ec 
(eV) 

Ev 
(eV) 

Cubic  nm    
IV C (diamond) 0.35597 5.5     
IV Si 0.54307 1.12 (indirect) 4.05 5.17 
IV Ge 0.56754 0.67  (indirect) 4.0 4.67 
IV a-Sn 0.64912 0.08    

III-V GaP 0.54505 2.26  (indirect) 3.8 6.1 
III-V GaAs 0.56532 1.42  4.07 5.49 
III-V GaSb 0.609593 0.726 4.06 4.79 
III-V InP 0.58687 1.344 4.38 5.72 
III-V InAs 0.60583 0.354 4.9 5.25 
III-V InSb 0.6479 0.17 4.59 4.76 
II-VI ZnSe (cubic) 0.567 2.58 4.1 6.7 
I-VII CuBr 5.69  2.94 4.35 7.29 

I-III-VI2 CuInSe2 0.578 0.98 4.0 5.0 
II-IV-V2 ZnGeAs2 0.567 0.85   

Hexagonal      
III-V AlN 0.3111 (a) 

0.4978 (c) 
5.9 0.6 6.5 

III-V GaN 0.3190 (a) 
0.5189 (c) 

3.45 4.0 7.4 

III-V InN 0.3533 (a) 
0.5693 (c) 

0.7  (note values 
vary greatly) 

  

II-VI ZnS 0.3814 (a) 
0.6258 (c) 

3.911   

II-VI CdSe 0.4299 (a) 
0.7010 (c) 

1.751 eV   

Ec (the electron affinity) and Ev (electron affinity + energy gap) measured with respect to 
the vacuum level. Lattice parameters in nm. 
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Table 5.3 lists lattice parameters and energy gaps for selected common semi-
conductors. Several of the trends listed above are illustrated by these results.  

Table 5.3: Energy Gaps and Lattice Parameters  
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structures will be discussed later in the section. The results range from diamond with 
the smallest lattice constant and largest gap to α-Sn with the largest lattice constant 
and smallest gap. The behavior fits well with a change in energy gap proportional to 
the inverse square of the lattice constant, as would be expected from Equation 5.3. 
The observation might be surprising as two of the materials have indirect gaps with 
minima at different symmetry points while the other two have direct gaps. Therefore, 
the detailed trends might not be expected to be as anticipated from Equation 5.3. 
Nonetheless, the general scaling behavior of the potentials is clear. 
 
The situation is less surprising when one considers that the bonding-antibonding 
splitting has much more effect on the energy gap than do the details of the energy 
bands. As we found via Equation 5.18, bond-length-induced changes in the bonding-

is hard to observe in compound semiconductors because of the simultaneous change 

 
 

common diamond-structure semiconductors. 
Figure 5.7: Shows the relationship of minimum energy gap to lattice constant for the 

antibonding splitting have a much larger magnitude than do the changes in band- 
width. It is interesting to note that such an obvious trend in homopolar splitting 

in principle, show a dominant effect of homopolar splitting. Certainly the lattice 
in chemical splitting. For example, the sequence BN, AlP, GaAs, InSb could,
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parameter changes are sufficient to expect a large change in homopolar splitting. 
However, the chemical changes in this sequence turn out to dominate the results, as 
might have been anticipated from Equation 5.8.  
 
A comparison showing the effect of chemical splitting can be obtained most clearly 
based on the row-four semiconductors Ge, GaAs, ZnSe, and CuBr. The lattice 
constants in these materials are almost identical and all are cubic. Therefore, 
virtually all of the difference in their bands is the result of the chemical changes. The 
trend here is not as clear as in Figure 5.7 for the homopolar materials but for Ge, 
GaAs, and CuBr the results are still in good agreement with the relationship of 
chemical splitting to energy gap. A plot comparing the minimum energy gap in these 
materials with the bonding/antibonding splitting estimated using Equation 5.7 is 
given in Figure 5.8.  
 
The general trends for chemical and homopolar splitting appear to be borne out by 
the behaviors of the minimum energy gaps in most cases. Let us now consider the 
complete band structures and look for additional trends there. The energy band 
structures for six semiconductors calculated by an enhanced LCAO method [5] are 
shown in Figures 5.9 (the series of group IV diamond structure materials Si, Ge, and 
α-Sn) and 5.10 (the fourth row series Ge, GaAs, and ZnSe).  

 

 
 

energy gap. Values used in generating this figure are from Table 5.2. 
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Figure 5.8: Changes in the energy gap of heteropolar semiconductors made up from 
elements in row 4 of the periodic table showing the effect of chemical splitting on the 
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Figure 5.9: Energy band structures for the Group IV semiconductors Si, Ge, and Sn. Redrawn
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with permission from Chelikowski, J.R. and Cohen M.L. Phys. Rev. B 14, 556-582 (1976).
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Figure 5.10: Energy band structures for the row 4 semiconductors Ge, GaAs, and ZnSe. 
Redrawn with permission from Chelikowski, J.R. and Cohen M.L. Phys. Rev. B 14, 556-582
(1976). Copyright 1976, American Physical Society.



220  

 

Details of the calculation and discussion of the band structures may be found in the 
original paper in which these results were presented by Chelikowski and Cohen [5].  
 
There are several significant trends to notice about the band structures in Figures 5.9 
and 5.10. For example, the homopolar group IV series, taking a vertical slice through 
the periodic table, shows very similar band structures. The most obvious change is 
that the conduction band minimum moves downward in energy relative to the top of 
the valence band, consistent with the reduction in bonding-antibonding splitting (V2) 
as the bonds lengthen. More interesting are the relative behaviors at the Γ, X, and L 
points with bond length. The Γ point energy at the conduction band minimum shifts 
by more than 4 eV from Si to α-Sn, while the L point shifts by less than half of this 
energy and the X valley hardly shifts at all. Thus, some regions of the bands are 
much more sensitive to bond length than others. The large change at Γ and relatively 
small changes at X and L suggest that the sp σ-bonds and p-p π-interactions are 
becoming less significant as Z increases by comparison with the s-s and p-p σ-bonds. 
The p-p π-bonds turn out to primarily affect the width of the bands (or the dispersion 
with respect to k). The most significant change in the valence band as Z increases is 
the increased splitting among the p-states, primarily near the top of the band. This is 
due to increased spin-orbit interaction in higher Z elements. In addition, there is a 
modest change in valence bandwidth, resulting from the reduction in orbital overlap 
as the interatomic distance increases.  
 
One can equally well consider a series of analogous heteropolar semiconductors 
moving down the periodic table; for example, by comparing AlP, GaAs, and InSb or 
ZnSe, and CdTe. Such comparisons show nearly the same trends with increasing Z 
as in homopolar semiconductors – the energy gap shrinks but the general features of 
the valence and conduction bands remain virtually unchanged. A notable difference 
is that by comparison to the homopolar materials there is even less change in the 
conduction bands. This is because the more ionic nature of heteropolar materials 
softens directionality and atomic orbital energies dominate over directional terms 
such as Exy. Only in the smallest compounds such as AlP does one find indirect 
energy gaps in these materials and then only occasionally.  
 
The situation as one follows a series of increasingly ionic compounds within a given 
row, Figure 5.10, is much different. As expected from Equation 5.7 and Figure 5.8, 
the energy gap increases with increasing chemical splitting. In addition, the valence 
bands change very obviously with the energies between the top and bottom of states 
due to a particular interaction (the band dispersion) decreasing as the atoms move 
apart in the periodic table. For example, while the p-like and s-like portions of the 
valence bands remain centered around roughly constant energies, the width of these 
parts of the valence band shrink. This causes a gap to open within the band.  
 
The decreasing variation in energy with momentum across the diagram is not, 
perhaps, very surprising given the discussion in Section 5.1. As the chemical 
splitting increases, the bonds become increasingly ionic. Ionic bonds are relatively 
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Unlike the homopolar materials that showed relatively dramatic changes in the 
conduction band as the atoms increase in Z, the heteropolar materials with fixed 
average Z show very similar conduction band behaviors. Note that the lower 
dispersion in ionic compounds results, among other effects, in these materials having 
direct energy gaps. It is nearly impossible for a highly ionic compound to have an 
indirect energy gap because the ionic bonds are much less directional than are 
covalent bonds. Consequently, the distinction between directions is smaller and it is 
less likely that a non-zero momentum wave vector will have a lower energy than for 
the zero-momentum Γ point. Indirect gaps are also absent from amorphous materials. 
In this case it is for the simple reason that specific directions do not exist. 
 
An instructive alternative approach to visualizing the bonding and electron 
distribution in semiconductors is to construct a map of constant electron density 
surfaces in the material. An example of such a map for the electron density on a 
(110) plane of GaAs, along with the corresponding crystal lattice, is shown 
schematically in Figure 5.11. Similar maps can be constructed for slices through 
other atomic planes with different symmetries [see the original work by Chelikowski 
and Cohen, Ref. 5, for examples]. A sketch of the sp3 hybrid orbitals for the anion 
(As in this case) is overlain on the diagram to show that the regions of high contour 
density correspond to the primary bond directions. Note that this is a plot of the 
electron density. Therefore, it corresponds to the amplitude of the wave functions of 
the valence band for various positions and hence reflects the symmetry of the 
valence band.  
 
We can then compare such maps for different semiconductors. The electron density 
maps for the semiconductors for which the band diagrams are given in Figures 5.9 

diagrams that the electron density maps of the homopolar semiconductors are almost 
identical (the Si contour spacing is half that of the other diagrams). In heteropolar 
materials, by contrast, increasing the chemical splitting leads to increasing electron 
density around the anion and a corresponding decrease around the cation. Note that 
the diagrams in Figure 5.12 are for the valence band (filled states). Thus, the 
contours are enhanced around the anion because it makes a greater contribution to 
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non-directional and localized on a specific atom. A purely ionic bond results from 
electrostatic interactions, which are spherically symmetric (no dispersion with 
direction). Consequently, the bands become narrower as a function of k for 
increasing ionicity as direction becomes increasingly unimportant. The s-like portion 
of the valence band that merged with the p-like valence band in group-IV com-
pounds (the bottom band in the -8 to -12 eV energy range) separates increasingly 
from the rest of the valence band as the polarity of the compound increases. Bands 
that crossed in the conduction band without interacting in the elemental semiconductor 
Ge react increasingly strongly in the less symmetric compound materials. As polarity 
of the materials increases the breadth of features in momentum space also changes 
with consequences for the effective mass of electrons and holes.  

and 5.10 are shown in Figure 5.12. [5] One can see from a comparison of these 
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the valence band and acquires more electron density because of the ionic nature of 
the bond. A plot of the states in the conduction bands would be generally a 
complement of the valence bands and would be centered more strongly around the 
cation. Therefore, the symmetry of the states in the conduction band would vary 
more from material to material, especially for the homopolar materials. Concerning 
directionality of the bonding, note how much more spherically-symmetric the 
electron density becomes for ZnSe at the midpoint between the Zn and the Se atoms 
as compared to the same electron densities for GaAs and Ge. The much larger 
variation of electron density with angle for the smaller atoms is a reflection of the 
greater dispersion with angle in the energy band diagrams. 
 
Summarizing the main trends: 

• Materials with larger lattice constants have smaller energy gaps and less 
dispersion in their bands of states. 

• Compounds involving atoms chosen from similar columns in the periodic table 
(group IV, III-V, II-VI etc…) have similar band structures. 

• Compounds involving increasingly ionic bonds have less dispersion in their 
bands across momentum space (the E(k) diagrams). 

 
 

3

Figure 5.11: Shows a schematic diagram of the (110) plane in a zincblende-structure lattice 
with atoms marked C and A for cation and anion sites, respectively. The corresponding
electron density map in this plane for GaAs is given as well based on the calculations of

portion of the map to show the orientation of the orbitals. Two of the orbitals lie in the plane of
the figure and two fall above or below the plane of the map. Note in particular the difference
in electron density on the Ga compared to the As. 

Chelikowski and Cohen. [5] The sp  hybrid orbitals of the anion are superimposed on a

The Materials Science of Semiconductors 



 223 

 

• Indirect gap semiconductors are made up of smaller, more covalent compounds 
or elements. 

The detailed quantum mechanical basis for all of these changes is discussed in great 
detail in Harrison and many other sources but the reader is cautioned that a solid 
understanding of the notations of quantum mechanics is required to understand the 
discussion. 

5.4 PRESSURE AND TEMPERATURE DEPENDENCE  

We can combine many of the above points to understand the variation in the 
minimum direct and indirect energy gaps in semiconductors with hydrostatic 
pressure and temperature.  
 
Hydrostatic pressure is uniform over the surface of a body and can be compressive or 
tensile. Compressive forces on an isotropic material push atoms slightly closer 
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Figure 5.12: Electron density maps for a series of homopolar semiconductors of different 
lattice size showing the effect (or lack thereof) of lattice constant on electron density. Also 
shown is a corresponding series for increasingly ionic semiconductor compounds in row four
of the periodic table. Contours for Si are at half the spacing of the other homopolar materials.
Redrawn with permission from Chelikowski, J.R. and Cohen M.L. Phys. Rev. B 14, 556-582
556-582 (1976). Copyright 1976, American Physical Society. 
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Material Eg  

(300 K) 
dEg/dT dEg/dP 

(direct) 
dEg/dP 

(indirect) 
 eV A (eV/K) 

x104 
B (K) 

for Eq. 5.11 
x10-6 

eV•cm2/Kg 
x10-6 

eV•cm2/Kg 
Si  1.107 2.3 636 10.5 -1.09 
Ge 0.67 3.7   +7.3 

GaP 1.6 5.4   -1.7 
GaAs 1.35 5.4 204 11  
InP 1.27 4.6  4.6  

InSb 0.165 2.8  15  
ZnSe 2.58 7.2  6  
CdTe 1.44 4.1  8  

 

The relationship between energy gap and pressure is different for indirect gap
materials. In these there is, necessarily, a strong dispersion in the conduction band. 
This is essential to get a high-momentum part of the energy band below the zero-
momentum minimum and explains why relatively ionic semiconductors have direct 
energy gaps. As Figure 5.7 shows, smaller interatomic distances lead to larger con-
duction band dispersions, strongly increasing the Γ-point energy and simultaneously
reducing the energy of other points in the energy bands. This suggests that the 
behavior of the energy gap with pressure should be different and, indeed, opposite 

Table 5.4: Pressure and Temperature Dependences of  Selected Semiconductor Minimum
Energy Gaps

Si and GaAs data from Sze (1981). [6] Remaining data from the CRC Handbook of 
Chemical Physics, 2001. [3] When no value is given it may be assumed that B<<300K. 

together while tensile forces pull them apart. Hydrostatic pressure, P, is a force per 
unit area (or stress). It induces a strain, ε, in a material which is linearly related to 
the pressure through the Young’s modulus, Y: ΔP=YΔε. The strain is defined as 
ε=(lf-li)/li, where lf is the final length of the material and li is its initial length. Bond 
length is directly related to strain as ε=Δd/d, where d is the interatomic distance. Δε 
is the change in this strain as the stress (pressure) changes. Thus, increasing the pres-
sure decreases the interatomic distance. As this occurs, the bonding and antibonding 
states draw apart as is implied by Equations 5.3 and 5.6. The band widths also 
increase or change shape slightly as discussed in the preceding section resulting in 
changes in dispersion as well as changes in the minimum direct energy gap at the Γ 
point. For the direct gap, as it turns out, the increase in homopolar splitting and 
chemical splitting win out over the increase in band width as interatomic spacing 
decreases, leaving a roughly linear relationship between gap and pressure over the 
range of pressures normally studied. Because the direct gap increases with decreas-
ing distance, the rate of change in energy gap with pressure (dEgap/dP) is positive 
(increasing pressure, increasing gap). Some typical values are given in Table 5.4.  
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Theoretically, the opposite dependence of direct and indirect gaps on pressure could 
be used to convert indirect gap materials to direct gaps. However, a negative pressure 
(tensile stress) would have to be applied to achieve this conversion. Ceramics, 
including semiconductors, tend to be weaker in tension than in compression. Even by 
placing the indirect material in a strained-layer superlattice (see Chapter 7), which 
can achieve the highest tensile stress levels, it has been impossible to convert indirect 

 
The link between lattice constant and temperature also results in a change in energy 
gap. The quantitative relationship is less clear than in the case of pressure. The most 
straightforward connection is through the thermal expansion coefficient of the 
semiconductor, leading to an increase in interatomic spacing as the temperature rises. 

phonon density changes with temperature and affects the band structure. The change 
in gap with temperature at constant volume is given roughly by: 

 
∂Egap

∂T
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

V

= − 3αG
∂Egap

∂P
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

T

 5.19 

where α is the thermal expansion coefficient, G is the bulk modulus, and ∂Egap/dP is 
the pressure dependence of the energy gap, discussed above. More typically, an 
empirical relationship between temperature and lattice parameter is observed: 

 Egap (T ) = Egap(T = 0) −
AT 2

T + B
, 5.20 
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Thus, in many indirect-gap semiconductors dE/dP < 0, indicating that as pressure 
increases, the gap decreases and becomes more indirect (see Table 5.4). 

away from Γ; which is what is observed for most materials (Ge is an exception). 

semiconductors to direct gaps before the stress is relieved by formation of dis-
locations or by fracture.  

where A and B are constants. In other words, the gap depends quadratically on 
temperature at low temperatures and linearly on temperature at high temperature. 
Data for A (and B when available) in Equation 5.20 for several common semi-
conductors are given in Table 5.4. Values without a corresponding B show a linear 
change in gap with temperature. The linear behavior can be obtained directly from 
Equation 5.19, assuming a constant relationship of energy gap to pressure. In addition 
to broadening of the energy gap with decreasing T, structures in the density of states 
and features of the band structure also broaden. 

In addition, interaction of electrons with phonon lattice vibrations changes as the 
This causes a decrease in minimum direct energy gap with increasing temperature.
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5.5 APPLICATIONS 

5.5.1 Experimental band structures 

 
To obtain valence band structure of a solid by normal photoemission, one arranges 
the experiment as follows. A linearly polarized photon strikes a smooth single crystal 
surface, ideally as free of defect states as possible, in a direction that is well defined 
with respect to the crystal lattice. This requires the ability to precisely tilt and rotate 
the crystal through a range of angles with respect to the incident photons. Both tilt 
with respect to the photon source and rotation in the surface plane are generally 
needed. It is helpful to be able to change the angle between the source and the 
detector. Because the photon is polarized and incident along a well controlled crystal 
direction, its wave vector is well defined. A similar ability to orient a detector 
relative to the crystal allows the momentum direction of emitted electrons to be 
determined. Finally, an energy analyzer is incorporated into the detector from which 
the photoelectron kinetic energy is determined. The energy of the state from which 
the electron originated relative to vacuum is then the difference between the energy 
of the photon and the vacuum level energy. For absorption of the photon and 

 
Inverse photoemission measures the conduction band states in a similar manner. In 
this case, an energetic electron beam strikes the solid from a fixed direction and with 
a fixed energy (thereby defining both the initial energy and momentum). The 

energy of the state. Sometimes this energy is released by photon emission. Detection 
of the emitted photons in a given direction allows determination of their energy. 
From these pieces of information the energy and momentum of the electron in the 
bound state may be determined as for conventional photoemission.  

Direct application of the material in this chapter relates more to fundamental 
understanding of why semiconductors are the way they are than directly to making 

equally well view UPS as a way of measuring the band structures experimentally. 
It is UPS data which one generally fits to obtain, for example, an accurate E(k) dia-
gram. We will begin this section by considering the UPS and inverse photoemission 
processes and how they can measure band structures directly. The experiments demon-
strate that band structures are not hypothetical objects but real observables. The 
apparatus and electronic transitions in a solid associated with UPS photoemission are 
shown schematically in Figure 5.13. 
 

emission of the electron, the total momentum and energy are conserved. Consequently, 
the initial momentum and energy of the electron in the solid can be determined. 
Thus, measurements of photoelectron energies as a function of take-off angle give a 
measure of the band structure. 

the interpretation of ultraviolet photoelectron spectroscopy (UPS) results. One can 
most semiconductor devices. Thus, one practical application for this chapter is in

electron may be captured by the solid into a single unoccupied state with a con- 
sequent need to release the excess energy of the incident electron plus the binding 
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Typical experimental results for the valence and conduction bands of GaAs are 
shown in Figure 5.14 [7]. Not all values of incident and outgoing momentum can be 
probed effectively with a given apparatus. Furthermore, there may be portions of the 
energy-momentum space where it is too difficult to separate components of the band 
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ture of the valence band as a function of electron wavevector, k. The incident photon has a 
well-defined momentum kin and the photoelectron has an outgoing wave vector kout. For an 
energy and momentum conserving process the initial energy and momentum of the electron 
can be determined, from which the band energy is known. 
 

Figure 5.13: A schematic diagram of the photoemission process used to determine the struc-
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structure in the output data. However, as the data in Figure 5.14 shows, it is possible 
to obtain very good experimental agreement with theory with some effort. 

5.5.2 Gunn diodes 

One can see a direct application of the concepts in this chapter in some more unusual 
electronic devices. An example is the Gunn effect, and resulting Gunn diodes, which 
have been used to produce high-frequency oscillators. In most semiconductors, as 
electrons accelerate they scatter increasingly strongly off the lattice, generating 
phonons and decelerating the electron. It is found that the carrier mobility becomes 
limited in proportion to the inverse of the electric field in the material [see, for 
example the discussion in Hess]. Consequently, a higher field produces a lower 
mobility. If we recall that the electron current density in the material is Je = qµnn  
(Equation 3.6), then we see immediately that if µn is inversely proportional to  then 
J is independent of electric field.  

 
 

and Cohen [5] (curves) for the band structure of GaAs. The agreement is excellent for the 
valence band and generally good for the conduction band. Adapted with permission from 
Ortega, J.E. and Himpsel, F.J. Phys. Rev. B 47, 2130-7 (1993). Copyright 1993 by the American 
Physical Society. 
 

of electron momentum (points) by Ortega and Himpsel. [7] Also the calculation by Chelikowski 
Figure 5.14: Experimental determination of a portion of the GaAs band structure as a function 

E
E
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In other words, the electron velocity saturates. However, in semiconductors such as 
GaAs that have a low effective electron mass and modest phonon scattering rate, 
carriers may accelerate to relatively high velocities. The predominant scattering 
process becomes inter-valley scattering, rather than phonon emission within the same 
valley. In GaAs the scattering occurs to the X and L valleys as shown schematically 
in Figure 5.15. Electrons in these regions of the band structure have much higher 

 

Engineering Electronic Structure

Figure 5.15: (a) Calculated carrier velocities in pure GaAs at 300 K as a function of electric 
field and (b) a schematic diagram of the lowest branch of the conduction band. Arrows 
indicate the acceleration and scattering of carriers to the X and L minima. At low energies no 
scattering is possible because states are only available around the Γ point. Once one reaches 
the energy of other band minima scattering begins and the carrier velocity starts to decrease. 
Part (a) redrawn with permission from Shichijo, H. and Hess, K. Phys. Rev. B 23, 4197-4207 
(1981). Copyright 1981 by the American Physical Society. 
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effective mass (see Section 2.1.7 and Equation 2.18). Consequently, at the same 
energy they travel much more slowly.  
 
The number of electrons in the high-mass valleys increases as the electric field 
increases because at higher fields electrons in the low-momentum valley near Γ 
accelerate very fast to a point where scattering to the other valleys is rapid. The 
consequence of this behavior is that the electron velocity has a maximum at a given 
field (see Figure 5.15) and decreases above and below this value. For a decrease in 
velocity to occur at constant (or increasing) electric field, the mobility must decrease, 
as one would expect if the effective mass increases. The resistance of the device is 
inversely related to the mobility.  
 
When the resistance increases as voltage increases it produces a negative differential 
resistance in the device. In other words, the current voltage curve has a decreasing 
region at high voltage. Any time a device has a negative differential resistance an 
electronic circuit incorporating it is unstable and will switch between different 
operating points. The current/voltage curve for such a device is shown in Figure 5.16 
with the unstable operating region marked. When the device is biased to a voltage in 
the unstable region it switches from one stable operating point to another at a given 
voltage or current. In short, it oscillates. Such an oscillation makes sense, perhaps, 
based on the following argument.  

 
 

marked. For the load line indicated the circuit has two stable operating points as shown. 

Figure 5.16: A schematic diagram of the current voltage curve for a Gunn diode. The 
device will not operate in a stable mode anywhere in the negative resistance region as 
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much lower carrier mobilities than pure compounds so the devices may function 
better with a strained layer than with an alloy. 

Engineering Electronic Structure

conductor alloys are described in detail. Note however that alloys typically have 

difference between the direct and indirect gap minima would be obtained. Methods 
for band-gap engineering are discussed in detail in the next chapter where semi- 

 

resistance rises further in that area. This produces a local volume where a large 
fraction of the applied field is dropped. In this region, mobility decreases and 
velocity saturates. Carriers in low-resistance regions of the device continue to move 
well as the field is low. Although the carrier velocity is relatively low compared to 
the peak level in the high-field area, it is still of the order of the thermal velocity 
(~1x107 cm s-1). Consequently the high field pocket can drift in the device in the 
direction of the positive contact. When it reaches the positive contact it disappears. 
As long as it is short enough, the device oscillates as high-resistance pockets form 
near the negative contact, drift to the positive contact, and are eliminated. The 
resulting circuit typically shows microwave oscillations. 
 
So far, the description of the Gunn effect does not make use of designed materials. 
One could imagine that any direct-gap semiconductor with a sharp minimum at Γ 
and a broad minimum at some other momentum would suffice. However, we may 
wish to control the relative energies of the two minima such that a given amount of 
acceleration would occur before the onset of scattering. Such control can easily be 
obtained by either application of pressure, which allows adjustment of the relative 
energies of the direct and indirect gap minima, or, more practically, by alloying a 
direct gap material with an indirect gap material such that the appropriate energy 

At any point in the device where a local fluctuation in resistance raises the field
in that region (higher resistance), scattering increases, mobility decreases, and 
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• Heteropolar compounds have both chemical and homopolar splittings contributing to 
their band structure and bond energy. 

• Increasing chemical differences between atoms in heteropolar compounds lead 
to more ionic bonds, to an increasing connection of the valence band with the 
anion, and the conduction band with the cation. This is the basis of the common 
cation and common anion rules. 

• Bonding can be treated as interactions of all individual atomic orbitals with all 
others as represented by the eigenvalues of the matrix of Equation 5.13. The 
matrix elements are affected by the electron wave vectors, the location of atoms 
contributing orbitals, and the energy of atomic orbitals and their interactions. 

• The top of the valence band in common semiconductors is primarily derived 
from p-like states and has three branches resulting from the three p-orbitals. The 
bottom of the conduction band is s-like. 

• The matrix elements related to orbital overlaps increase approximately as 1/d2. 
• Materials with larger lattice constants have smaller energy gaps and less 

dispersion in their bands of states.  
• Compounds involving atoms chosen from similar columns in the periodic table 

(group IV, III-V, II-VI etc…) have similar band structures.  
• Compounds involving increasingly ionic bonds have less dispersion in their 

bands across momentum space (the E(k) diagrams).  
• Indirect gap semiconductors are made up of smaller, more covalent compounds 

or elements. 
• Increasing temperature causes thermal expansion of a material, increasing 

interatomic distances, and hence decreases energy gap. 
• Increasing pressure decreases interatomic distance and hence increases energy 

gap. 

 
5.6 SUMMARY POINTS 

• Homopolar semiconductors consist of a single type of atoms. 
• Heteropolar semiconductors consist of multiple atoms. 
• Molecular orbitals are linear combinations of atomic orbitals. 
• Symmetric combinations of atomic or molecular orbitals produce bonding states 
• Antisymmetric combinations produce antibonding states. 
• Homopolar splittings are the differences between bonding and antibonding state 

energies in the absence of chemical differences between atoms. The homopolar 
splitting varies inversely as the square of the interatomic distance. All other 
aspects of homopolar bonding, including the energy gap, tend to scale as 1/d2. 
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5) What is the physical basis in bonding theory as described in this chapter for the 

common cation and common anion rules? Would you expect these rules to be 
more obvious when comparing GaP with GaAs or comparing CdS with CdTe? 
Explain briefly.  

 
6) Equation 5.11 provides the combinations of atomic orbitals that make up the 

four sp3 molecular orbitals. Write a similar set of equations for the sp2 molecular 
hybrids shown in Figure 5.2. 

 
7) Sketch a Harrison diagram similar to that of Figure 5.5, as close to correctly to 

scale as can reasonably be managed, for InSb using the data from the various 
tables in the chapter. 

 
8) If one assumes that the contours in Figure 5.12 represent the same change in 

electron density except in the case of Si where the contour interval is halved, 
which homopolar and which heteropolar semiconductor has the stronger bonds? 
How do you know this to be the case and how would you connect the answer to 
the corresponding value of ∆ for that semiconductor? 

 
9) From the values listed in Table 5.4, calculate the hydrostatic pressure necessary 

to convert Si to a direct energy gap material (i.e. where the direct and indirect 
gaps are equal). Assume that the minimum indirect energy gap is 1.1 eV and the 
minimum direct gap is 3.3 eV at zero pressure. 
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5.7 HOMEWORK 
 
1) Given the formulas for the s and p atomic orbitals in Figure 5.1, plot contours of 

constant wave function intensity in the r – theta plane. 
 
2) Given the formulas for the p atomic orbital in Figure 5.1 and assuming that the 

py orbital is the same as the px but with sinθ replacing cosθ, what is the sum of 
the squares of the px and py orbitals. 

 
3) Suppose that a hypothetical homopolar semiconductor existed with a lattice 

constant of 0.4472 nm. Estimate its minimum energy gap. Explain briefly how 
you obtain this value. 

 
4) In the energy-momentum diagram for ZnSe there is a narrow band of states 

between ~11 eV and 12 eV binding energies. For Ge, a similar band is found 

band of states and why is the band narrower in ZnSe than in Ge? 
between ~ –9.5 and –13 eV. What is the atomic orbital most responsible for this 
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10) Calculate and plot the values for bond polarization (α) for the series of 

semiconductors Ge, GaAs, ZnSe, CuBr. From these values, determine the values 
for u1 and u2 for each material. 

 
11) Given that: 

ssσ
  

  
2 md2  

Vspσ
 = 1.84   

2 md2  
Vppσ

 = 3.24   
2 md2  

Vppπ
 =    

2 md2  
Estimate the following values for GaAs using the formulas and data above 
and that 2 m = 0.762 eV-nm, and d = a 3, where a is the lattice constant 
of the material: 
 
a) The cohesive energy of GaAs 
b) The four energies of the simple bands of GaAs at Γ 
c) The minimum direct energy gap of GaAs 
d) Compare the minimum direct gap estimated from these values to the 

correct value at zero Kelvin of 1.53 eV. 
e) Compare the band energies calculated with those for the complete band 

structure for GaAs shown in Figure 5.10. 
 
12) Could you use the Bloch wave sums in Equation 5.13 to simulate a hexagonal 

(wurtzite) semiconductor and distinguish the result from the corresponding 
cubic (zincblende) calculation? Explain why or why not. 

 
13) Construct a version of Equation 5.13 that takes into account second-nearest 

neighbors. 
  
14) Which semiconductor would make a better Gunn diode, ZnSe or GaAs? Explain 

briefly. 

=  V – 1.40 

0.81 –
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