
 

Chapter 2  

THE PHYSICS OF SOLIDS 

 
Before beginning a general discussion of electronic devices and the 
more complex aspects of semiconductors and other electronic 
materials, it is helpful to have an idea of their physics, especially their 
electronic structure. This chapter provides a partial review of the 
physics of solids. The nature of materials is determined by the 
interaction of their valence electrons with their charged nuclei and core 
electrons. This determines how elements react with each other, what 
structure the solid prefers, its optoelectronic properties and all other 
aspects of the material. The following sections describe the general 
method for understanding and modeling the energies of bands of 
electronic states in solids. A more detailed discussion of semiconductor 
bonding is provided in Chapter 5. 
 
 

2.1 ELECTRONIC BAND STRUCTURES OF SOLIDS 

There are two approaches taken when considering how the weakly bound (valence) 
electrons interact with the positively charged atomic cores (everything about the 
atom except the valence electrons) and with other valence electrons in a solid. We 
will consider first the direct approach of solutions to the differential equations that 
describe the motion of electrons in their simplest form and the consequences of this 
behavior. This requires many simplifying assumptions but gives a general idea for 
the least complex problems. The second approach is to follow the electronic orbitals 
of the atoms as they mix themselves into molecular states and then join to form 
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bonding and antibonding combinations and finally bands of states, which we leave 
for Chapter 5. To see why it should be possible to mix electronic states in linear 
combinations, it is useful to consider some direct solutions of the Schrödinger 
equation, which governs the motion of electrons in an arbitrary potential. As we will 
see, this is a second-order linear differential equation. It therefore has particular 
solutions that can be constructed from linear combinations of any set of solutions of 
the general equation. Consequently, we may suspect that, at least in some cases, a 
linear combination of atomic orbitals should describe the general problem of a solid. 
In the following discussion we will assume that the material is a periodic crystal. 
Some of the results turn out to be applicable in most respects to aperiodic 
(amorphous) structures as well.  
 
Electrons behave as both waves and particles. The consequences of their wave and 
particle nature are derived through the formalism of quantum mechanics. The 
requirement for conservation of energy and momentum forces the electrons to select 
specific states described by “quantum numbers,” analogous to resonant vibrations of 
a string on a musical instrument. The “resonant” states associated with each set of 
quantum numbers results in a set of “wave functions” which describe the probability 
of finding an electron around a given location at a given time. The wave functions of 
the resonant states are found as follows. 
 
The total energy, Etot, of an electron is the sum of its potential and kinetic energies. 
In classical terms one could express this relationship as 

 Etot = p2/2m + U(r), 2.1 

where U(r) describes the local potential energy of the particle at position r and the 
kinetic energy is given by the classical expression Ekin= p2/2m in which m is the 
particle mass and p is the momentum. This equation applies to any classical body. 
When the object in question is of a scale small enough that quantum mechanical 
behaviors become dominant, we need to rewrite Equation 2.1 in quantum mechanical 
terms. Under such conditions, the exact energy (E) at any specific time (t) can not be 
described to within an accuracy better than ∆E∆t =   where   is Plank’s constant 
divided by 2π. To account for this uncertainty the particle must be described by a 
probability distribution (its wave function) rather than by indicating a specific 
position. Its total energy is given by the change in the wave function, Ψ(r,t), per unit 
time multipled by i  , where i2 = -1. The momentum of a quantum particle is, 
likewise, the spatial derivative of the wave function multiplied by i  . Based on the 
classical behavior and using the mathematics of operators, the kinetic energy, p2/2m 
becomes the second derivative of the wave function times -  2/2m. Similarly, the 
potential energy represents a weighted average potential using Ψ as the weighting 
function. Substituting these expressions in Equation 2.1 yields: 

 
  
i

dΨ
dt

= −
2

2m
∇2Ψ + U(r

→
)Ψ , 2.2 

The Materials Science of Semiconductors 



 The Physics of Solids 23 

 

where ∇2 is referred to as the Laplacian and is the second spatial derivative of the 
function it operates on (in this case the wave function). Equation 2.2 is the full time-
dependent Schrödinger Equation and describes not only the steady-state behavior of 
an electron but also the way in which the electron changes energy as a function of 
time. Whenever the potential that the electron experiences does not change with 
time, the time variable can be separated from the space variable. In this case, the 
energy of the particle cannot change with time, and the spatial-portion of the 
Schrödinger Equation becomes: 

 E ψ(r) = (-  2/2m) ∇2 ψ(r) + U(r)ψ(r), 2.3 

where ψ(r) is the time-independent wave function. The electronic structure of solids 
is derived by the solution of this equation under the boundary conditions appropriate 
to the solid being modeled. We will now consider some solutions to Equation 2.3. 

2.1.1 Free electrons in solids 
The simplest form of Equation 2.3 is the special case of U(r)=0, where there is no 
potential affecting the motion of electrons. For simplicity we will make the further 
restriction of considering only a one-dimensional problem. In this case,  

 
  
Eψ (x) +

2

2m
d2ψ
dx2 = 0. 2.4 

The general solution to this equation, obtained by Fourier transform methods, is a 
linear combination of two waves moving in the positive and negative x directions: 

 ψ (x) = A+e
ikx ± A−e

−ikx , 2.5 

where A+ and A- are the amplitudes of the two waves, and k =
2π
λ

 is the 
wavenumber of the waves (electrons) with wavelength λ. The energies of these 
waves are determined by substituting Equation 2.5 into 2.4. The second derivative of 
ψ(x) from Equation 2.5 is d2ψ(x)/dx2 = k2ψ(x). Thus, 

 
  
−

2k2

2m
ψ (x) + Eψ (x) = 0  2.6 

from which 
 
E =

2k2

2m + - +
2+A–

2=1 for a 
wave with unit amplitude. The ψ(x) are known as eigenvectors of Equation 2.4 and 
the energies are the eigenvalues. The momentum of this wave is  p = k , thus k 
represents the electron momentum to within a factor of  . This energy vs. 
wavenumber [“E(k)”] relationship is illustrated in Figure 2.1. 
 
 

. This holds for any A  and A  but requires A
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Figure 2.1: The energy vs. momentum diagram for a free electron in the absence of a periodic 
potential. 
 
2.1.2 Free electrons in a periodic potential 
In a solid there is a regular spacing of atoms. In a crystal, this spacing is defined by 
the translation vectors of the Bravais lattice. (See Chapter 4 for a description of 
semiconductor crystal lattices.) In an amorphous material the spacing is the average 
distance from one atom to its nearest neighbors. The result is the same – there is an 
imposed periodicity on the wave functions. The wave function must have the same 
value at equivalent positions in the solid. These positions are separated by lattice 
translation vectors R, thus ψ(r) = ψ(r+R) in a crystal. For a wave of the form given 
in Equation 2.5, this imposes an additional condition that ψ(x)=ψ(x+Lx) where Lx is 
the lattice spacing along the x direction. Likewise, the potential energy of a particle 
will be periodic (at least locally) such that U(r) = U(r+R). The periodicity of ψ 
requires that: 

   ψ(
 

r ) = e i
 

k •
 

r ck (
 

r ), 2.7 

where cnk(r)=cnk(r+R) are the Fourier components for wave vector k of the wave 
function ψ(r) [the proof is called “Bloch’s Theorem”]. It can further be shown that 
the electron wave vector is given by k=b/N where b is a reciprocal lattice vector of 
the crystal lattice (see Chapter 4) and N is the number of unit cells in the [real-space] 
lattice. Therefore, any change in k must be by a unit vector of the reciprocal lattice, 
as in any diffraction problem. Electron waves in a solid are susceptible to scattering 
as one would have for x-rays and the problem can be represented with, for example, 
an Ewald sphere construction as for normal diffraction of x-rays in a periodic crystal. 
 
The primary consequence of Equation 2.7 is that electron wave behaviors are 
reproduced whenever the wave vector k is changed by a translation vector of the 
reciprocal lattice, 2π/a, where a is the one dimensional lattice constant along a given 
direction. This means we can replicate Figure 2.1 every 2π/a units along the wave 

 

 

The Materials Science of Semiconductors 



 The Physics of Solids 25 

 

vector axis as shown in Figure 2.2. Note that if you consider the symmetry of this 
plot you will find that all of the necessary information is contained within the space 
between 0 < k < π/a. Thus, we will represent electron energy vs. wave vector plots in 
this reduced zone of k values hereafter.  

2.1.3 Nearly free electrons 
A somewhat more realistic picture is the case where U(r) is not zero or constant but 
varies weakly with position. This is the case referred to as “nearly free” electron 
behavior. The solutions to the Schödinger equation can be constructed from the same 
set of plane waves we had in Equation 2.7 with the proviso that U(r) is not too large. 
In this case, a general solution to Equation 2.3 is still given, at least approximately, 
by Equation 2.7 but now the cnk must account for the effect of the periodic potential. 
This imposes the following constraint on the coefficients: 

 
  

2

2m
k 2 − E

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ck + Uk'ck'

k'≠k
∑ = 0, 2.8 

 
 

Figure 2.2: The periodic structure of the free electron energy vs. wave number in a periodic
solid. The minimum section of the plot needed to provide a complete description of the
relationship of E to k is shaded gray. 
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where the Uk terms are the Fourier components of the potential U for wavevector k. 
The free electron behavior is what is given inside the square brackets of Equation 
2.8. Because the periodic potential is assumed to be small, the individual Uk terms 
are modest and the second term in Equation 2.8 represents only a minor perturbation 
on the result. Furthermore, because the ck terms are Fourier coefficients, the ck 
components can be obtained from the Fourier expansion of the Uk in the free electron 
plane waves. In other words, because both the wave function and the periodic 
potential can be expanded in the same Fourier terms, the ck terms are related to the 
Uk terms via Equation 2.8. To construct a nearly free electron wave function, as 
modified by the Uk, from purely free electron waves we multiply each possible free 
electron wave by ck and add the results to produce the new wave function solution in 
the presence of the periodic potential, as in Equation 2.7.  
 
The Uk terms serve to mix the free electron plane waves producing interference 
effects. The closer the plane wave is to the periodicity of the lattice the more strongly 
it will interact with the crystal and, likewise, the stronger the component of the 
Fourier transform of Uk. Consider the interaction of two waves with the same or 
nearly the same wave vectors and energies. Graphically, the interactions occur near 
the points of intersection of curves in Figure 2.2. When the energy difference 
between different branches of the E(k) diagram (different curves in Figure 2.2) is 
large on a scale of the potential energy, then the behavior is essentially free electron 
like. However, near the intersection of two curves the energies are modified. 
Approximating the periodic potential with only its first Fourier component, then 
Equation 2.8 yields two equations for the two curves, which can be represented in 
matrix form as: 

 
E − E1 −U
−U * E − E2

= 0 , 2.9 

where E1 =
 

2k1
2

2m
 and E2 =

  

2k2
2

2m
curves (subscripts 1 and 2) near the meeting point, E is the energy at the meeting 
point, and U is the first Fourier component of the periodic potential. Note that at the 
intersection, k1=k2 so that E1=E2. This condition has the solution 

 
  
E =

2k2

2m
± U . 2.10 

See Figure 2.3 for an illustration of this situation. The result has two implications 
that are important: 
 

• Waves interact with each other to raise or lower their combined 
energies. Graphically, when curves on the E(k) diagram intersect they 
may interfere resulting in local changes in their energies. Note that 

 are the free-electron-like behaviors for the two  
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waves which are perpendicular to each other can not interact and the 
branches of the E(k) diagram cross without modification.  

 
• When the periodicity of the electron wave matches the periodicity of 

the lattice, the electrons are diffracted by the lattice (the waves interact 
strongly with the periodic potential and the Fourier component of U is 
likewise large).  

 
The energy perturbation given in Equation 2.10 technically applies only at the 
boundary, k1=k2. As one moves away from the boundary, the magnitude of this 
interaction decreases quadratically with k. This is the same behavior as at the bottom 
of the free-electron curve. Another way to view this behavior is that near any 
extremum (maximum or minimum) of an arbitrary function, a power-law expansion 
of that function is always quadratic. Thus, near enough to any local maximum or 
minimum of an E(k) diagram, the behavior of an electron will always appear free-
electron like. This provides a partial, if circular, justification of the approximations 
made above. A rigorous justification is provided by quantum mechanical 
perturbation theory and may be found in most quantum mechanics texts. 
 
A somewhat more visual representation of the wave functions of the nearly free 
electron model is shown in Figure 2.4. The wave vector k of the electron wave ψ(k) 
exactly matches the periodicity of the reciprocal lattice at any diffraction condition in 
a given direction (i.e.: it is a translation vector of the reciprocal lattice). As the wave 
approaches resonance with the lattice, the electrons interact increasingly strongly 
with the lattice potential. The magnitude of the lattice potential, U, then becomes 

 
 
Figure 2.3: A schematic diagram showing the modification of the E(k) relationship near the
zone boundary.  (Gap is exaggerated to enhance visibility.) 
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critical. A strong potential affects the energy of the electron waves more, forcing a 
greater change in wave vector (or momentum) for a given change in kinetic energy. 
Thus, the parabolic band stretching away from the resonance curves more gradually. 
Electrons in such a material give the appearance of having a higher mass. 
 

2.1.4 Energy vs. momentum in 3d 
So far, we have considered only the nature of electron waves in a simple one-
dimensional periodic lattice. Representing the three dimensional behavior of waves 
is significantly more difficult than representing one-dimensional wave behaviors, 
although the mathematics is not different. The first problem is to decide what are the 
wavelengths for diffraction from the lattice in multiple directions. This is solved by 
the Brillouin zone representation of the lattice.  
 
 

 
 
Figure 2.4: A schematic of the amplitudes of the wave functions of two waves. The top wave
function shows the resonance of the zone boundary. The bottom wave function has a 90%
shorter wavelength. The interaction of the wave with the atomic potential changes the electron
energy. 
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Figure 2.5: (a) The method for constructing the Brillouin zone for a square planar lattice and 
the first Brillouin zone for (b) a face-centered cubic crystal and (c) a body-centered cubic 
crystal. For the fcc crystal the diamond-shaped faces of the Brillouin zone are along cube axes, 
[100]-type directions, while the hexagonal faces are along [111] cube diagonals. For 
discussion of the [100], [111], and other crystal indices, see Chapter 4.  
  
To construct this representation, one begins by calculating the reciprocal lattice of a 
given crystal structure (see Section 4.1.2). As described above, the reciprocal lattice 
gives a picture of the resonant wavelengths of the lattice in given directions. The 
second step is to determine the volume of reciprocal space closest to a given 
reciprocal lattice point. This begins by drawing lines (reciprocal lattice vectors) from 
the point at the origin of reciprocal space to all other points (Figure 2.5a). Each line 
is then bisected by a plane perpendicular to it. The volume of a given unit cell of 
reciprocal space is defined by the smallest volume contained within any combination 
of planes. This volume is referred to as the first Brillouin zone.  
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Two examples of first Brillouin zone shapes are shown in Figures 2.5b and c. The 
zone boundary points along primary symmetry directions for each crystal structure 
are traditionally labeled with letters. The point of zero crystal momentum is at the 
center of the Brillouin zone and is labeled Γ. The typical representations of energy 
band structures in three dimensions present the major trends along some of these 
symmetry directions but not over all of three-dimensional space.  
 
If one carries out the free electron calculation for three dimensions, the complexity 
of the situation becomes clear, see Figure 2.6. The drawing shows slices through the 
first Brillouin zone of an fcc crystal along selected symmetry directions. These 
directions provide a relatively complete view of what the bands are like, although  
 

Figure 2.6: Shows the three-dimensional free-electron behavior plotted for a face-centered 
cubic lattice. Note that the X point is the zone boundary along [100], the L point along [111] 
and the K point along [110]. Γ is the zero momentum point at the center of the Brillouin zone 
where the electron wave has no momentum from the perspective of the crystal lattice (it is a 
standing wave with the lattice periodicity). Figure from Reference 10, Herman, F. in An 
Atomistic Approach to the Nature and Properties of Materials Pask, J.A., Editor New York: 
Wiley, 1967. Copyright 1967, John Wiley, used by permission. 
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this does not cover all of three-dimensional reciprocal space. Two typical energy 
band structures for the real semiconductors GaAs and Ge in three dimensions are 
shown in Figure 2.7.  

 
Figure 2.7: Energy vs. momentum diagram in three dimensions for (a) GaAs and (b) Ge. The 
directions in the Brillouin zone are shown in the inset and the letters indicate the position in 
momentum space. Figures adapted with permission from Chelikowsky, J.R. and Cohen, M.L. 
Phys. Rev. B, 14, 556-582 (1976). Copyright 1976, American Physical Society. 
 

(a) 

 
(b) 
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The primary points to notice about the three-dimensional structures compared to the 
one dimensional structure (Figure 2.3.) are as follows: 
 
• There are many branches to the diagrams in three dimensions. Many of them 

appear free electron like locally for the real materials. Consider, for example, the 
lowest-energy state in the real materials and the bottom of the nearly-free 
electron diagram.  

• Behaviors along different directions vary because the crystal symmetry and 
resonant distances change. 

• Some branches cross each other without interaction. Others interact, leaving a 
gap in the states at that point. Branches that do cross without interaction have 
perpendicular wave functions. 

• Electrons fill states from the lowest energy up to a level known as the Fermi 
energy. In semiconductors, the lowest empty band of states makes up the 
conduction band. The filled states nearest the conduction band are the valence 
band and contain the valence electrons. Traditionally, the top of the valence 
band defines the zero energy, although band structure energies are often plotted 
relative to the vacuum level.  

• A band of states (due to valence s-orbitals as we shall see in Chapter 5) lies just 
below the valence band in GaAs and other compound semiconductors. When 
this band does not connect to the upper valence band states it is formally a 
shallow core level, even though it is broadened by interaction with the other 
valence electrons. When a connection does occur as in Ge, it is formally part of 
the valence band. Usually these states are all considered part of the valence band 
whether there is a gap or not as the separation is small. 

• The minimum energy in the conduction band does not necessarily occur at the 
same momentum as the maximum energy in the valence band. Therefore, an 
electron at the conduction band minimum may not have the same momentum as 
the lowest-energy electron vacancy (a hole) in the valence band.  

• When the conduction band minimum occurs at the same momentum as the 
valence band maximum the semiconductor is termed “direct” (Figure 2.7a)  

• An “indirect” semiconductor has these extrema at different momenta (Figure 
2.7b). 

2.1.5 Electrons and holes 
In a semiconductor or insulator, there is a gap between the filled and empty 
electronic states. Charge can be carried either by electrons moving in the normally 
empty states of the conduction band or by the absence of an electron (a “hole”) 
moving in the normally filled states of the valence band. If one pictures current 
flowing in these bands as equivalent to water flowing in pipes, then an insulator or 
semiconductor can be viewed as two sealed pipes, one completely full of water and 
one completely empty. Even if one tips the pipes, no water flows. However, either 
droplets of water in the empty pipe or bubbles in the full pipe, if present, can allow 
net water transport when the pipes are tilted. The behaviors that apply to electrons 
also apply to holes (bubbles). Holes are referred to as “quasi-particles” because they 
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do not exist in isolation. They are ghosts of electrons that are only known by the 
electron’s absence in the solid. Nonetheless, in a solid, holes appear to have charge 
and mass and to be scattered as if they were real Fermions. For our purposes we will 
treat holes as if they were real particles. 
 
To understand the transport of current it is important to keep in mind the 
fundamental nature of electrons and holes. Two of the more significant consequences 
of quantum theory are that electrons and other Fermions have a “spin” quantum 
number of ±1/2, and that no two spin ±1/2 particles can occupy the same state (can 
have the same set of values for their quantum numbers) at a time (the Pauli exclusion 
principle). Thus, filling a set of states begins with the lowest energy and adds 
electrons into higher and higher energy states as the more desirable levels become 
filled. This is not the case for integer spin “Bosons” such as photons, deuterium 
atoms, and helium 4 atoms. Bosons can all fill the same low energy state. In 
superconductors electrons form pairs having integral spin. These “Cooper” pairs act 
as Bosons with remarkable effects on the electronic properties of the material. Holes 
behave as do electrons but prefer states with higher energies (from the perspective of 
electrons) as do bubbles in water. 
 
Electrons in solids are not scattered by each other without some external mediating 
force that allows one electron to lose energy or change direction by transfer of that 
energy or momentum to another electron. The possible transitions are limited by 
availability of empty and filled states (because electrons are Fermions), and thus so 
are the scattering events. Clearly then it will be important to know something about 
the distribution of these filled and empty states. The energy and momentum needed 
for scattering events is stored in the form of heat in the solid and is exchanged by 
absorption or emission of phonons (lattice vibrations) and photons. The probability 
of obtaining a given amount of energy from the remainder of the solid decreases 
exponentially as the energy needed increases. Likewise, the availability of phonons 
varies with temperature.  
 
As noted above, at zero Kelvin, electronic states are occupied beginning with the 
lowest energy state and continuing upward until all electrons in the solid are 
accounted for. Abruptly, one would go from all states being filled to all being empty 
in this case. At higher temperatures, heat in the lattice puts random amounts of 
energy into individual electrons. Some of these electrons may have extremely high 
energies at times. The probability of finding an electron as a function of energy is 
given by the Fermi function: 

 f (E) =
1

1+ e(E− Ef ) / k B T , 2.11 

where the electron has an energy E relative to a reference state, the “Fermi energy” 
Ef. kB is the Boltzman constant, and T is the temperature in Kelvin. There are several 
important facts about the Fermi function that are observable with brief inspection. 
First, when E=Ef then the exponential is always 1 and the function value is 1/2. This 
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is, in fact, the means of defining and determining the value of Ef. The Fermi energy 
is that energy for which f (Ef)=0.5. When E is very different from Ef then Equation 
2.11 can be approximated by a Boltzmann distribution: 

 f (E) ≈ e− (E− E f ) / k BT
 2.12 

It is common to use this distribution in all cases. However, one should bear in mind 
that this is an approximation and that for some situations its use may not be 
appropriate. The development of a distribution consistent with the Fermi function 
requires very little time (typically picoseconds) as electrons rapidly exchange 
photons and phonons with the remainder of the solid until this distribution is 
established.  
 
One might ask how one can account for a situation (common in most semiconductors 
and insulators) in which the Fermi energy is within the energy gap. In this case, there 
are no states at the Fermi energy itself. The Fermi function remains valid and well 
defined and the probability of finding an electron drops exponentially moving away 
from Ef. Whatever remains of the function value above zero for electrons (or below 
unity for holes) describes the number of electrons/holes that are present in states in 
the bands at given energies, temperature, and Fermi level. If the distribution of states 
were the same in the conduction and valence bands and no states existed within the 
energy gap, then charge neutrality would require that the Fermi energy be near the 
gap center, as discussed in Section 2.2.1.  
 
To establish the dynamic equilibrium distribution defined by Equation 2.11, 
electrons are constantly being transferred from the valence band to the conduction 
band by energy/momentum absorption. This is known as generation of free carriers. 

heat, while recombination releases light, in so-called “radiative” recombination, or 
heat (non-radiative recombination). 
 
Generation by absorption of energy from the solid is “thermal” generation and from 
absorption of external light shining on the material is “optical” generation. The 
thermal generation rate, gth, increases approximately as a Boltzmann distribution 
with the usual temperature dependence and an activation energy equal to that of the 
energy gap, Eg, of the material, 

 gth = Ce−Eg / kBT , 2.13 

where C is a proportionality constant. The constant may be determined based on the 
requirement that recombination must equal thermal generation if Equation 2.11 is to 
hold. For optical generation,  

 gop =
G(ν)Q(ν)

hν
dν

0

∞

∫ , 2.14 

to-band transfer. This is recombination. Generation occurs by absorption of light or 
Carriers are also constantly falling back into the holes created by the earlier band-
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where G(ν) is the optical intensity at frequency ν, and Q(ν) contains the quantum-
mechanical conservation rules and other aspects related to the band structure of the 
material and the optical absorption coefficient. Because optical generation does not 
depend upon temperature, a carrier distribution determined primarily by optical 
rather than thermal generation is not described by Equation 2.11. 
 
Recombination depends upon the product of electron and hole densities and a factor 
giving the probability of a given energy release mechanism (for example, radiative or 
non-radiative). This probability includes the same quantum-mechanics-determined 
factors as in Equation 2.13 or 2.14, and incorporates the nature of the band structure. 
The recombination rate can be expressed as 

 rrec = Q'np, 2.15 

where Q’ is the a recombination rate per electron-hole pair including all possible 
recombination processes. Recombination occurs rapidly in direct-gap semiconductors 
(Q’ large) and slowly in indirect-gap semiconductors (Q’ small).  
 
The details of the calculation of the factors C, Q, and Q’ above are complex and 
beyond what we will need here. However, they can be found described in texts on 
optical generation and recombination. See, for example recommended readings by 
Bube or Ashcroft and Mermin. 

2.1.6 Direct and indirect semiconductors 
The “direct” and “indirect” behaviors mentioned above are sufficiently important 
that they deserve special mention. The critical aspects of the energy band structures 
of these two types of semiconductor are shown schematically in Figure 2.8. The 
minimum energy of the conduction band in indirect materials is at a different 
momentum than that of the maximum energy of the valence band. Electrons in the 
conduction band rapidly relax to the minimum band energy. Holes equally rapidly 
move to the maximum energy of the valence band. Therefore, electrons and holes do 
not normally have the same momentum in an indirect semiconductor while in a 
direct-gap material these momenta are equal. This has consequences for the minority 
carrier lifetimes and optical properties of semiconductors. 
 
Optical absorption/emission involves absorption/creation of a photon with a 
consequent change in energy of an electron, usually resulting in the transfer of that 
electron to/from the conduction band from/to the valence band. However, because 
photons have almost no momentum, only vertical transitions on an E(k) band 
diagram are allowed in purely optical processes. The only alternative to this is the 
rare case when a phonon is present together with a photon. Phonons have a large 
momentum (they involve collective motion of massive atoms) and relatively low 
energy. (See Section 2.3.3.1 for more discussion of phonons.) For practical purposes 
one can assume that photons lead to vertical transitions among bands on the E(k) 
diagram while phonons make horizontal transitions (see Figure 2.9.)  
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Figure 2.8: A schematic of the difference between a direct gap and an indirect gap 
semiconductor. 
 
To make a diagonal indirect transition, both an appropriate energy photon and an 
appropriate momentum phonon must be present together with the electron. This is 
referred to as a three-body interaction because there are three particles (electron, 
phonon, and photon) participating. Such collisions are over 1000 times less likely 
than a simple electron-photon interaction at common temperatures. This means that 
electrons and holes of different momenta do not recombine rapidly. Typically, 
electrons and holes in pure direct-gap semiconductors last no more than ~10-8 s,  

Figure 2.9: A schematic of the transitions produced by a phonon (horizontal) and a photon 

 
 

 

 

 

(vertical) on an E(k) diagram. Indirect transitions require both and thus are less likely. 
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while in indirect-gap materials the lifetime for free carriers can be 1000 times longer. 
Furthermore, when recombination does occur in indirect-gap materials, most of the 
energy is usually emitted in the form of heat in the solid rather than as light. This is 
why most light-emitting devices use direct-gap materials. Generation of carriers in 
indirect-gap materials is equally difficult so indirect materials tend to have low 
optical absorption coefficients below the point where direct-transitions become 
possible. 
 
Because in indirect-gap semiconductors generation and recombination of carriers are 
equally difficult, even in indirect-gap materials the distribution of electrons and holes 
is governed by the Fermi function. Because the Fermi energy can never be farther 
than half the energy gap from one band edge or the other, the density of carriers in an 
indirect-gap material is still determined by the minimum energy gap in spite of the 
difference in momenta of the band minima in indirect-gap materials. 
 
The consequences of the need for a phonon to permit an electron and a hole to 
interact in indirect-gap materials include:  

• The maximum recombination time for electrons and holes is much longer (of the 

• The probability of a photon emission or absorption event for energies between 
the minimum gap energy and the minimum direct gap energy (the lowest energy 
for a vertical transition) is far below that at or above the minimum direct gap 
energy. 

2.1.7 Effective mass 
The nearly-free electron model of solids shows that electrons are strongly affected  
by the lattice in which they move. The interaction of the electron with a solid 
modifies the relationship between energy and momentum. Recall that the total 
energy of an electron is given by the sum of kinetic and potential energies. Because 

wavelength changes from one material to another. In some materials the energy gain 
is small for a given momentum increase. In others, it is larger for the same added 
momentum. Given the classical relationship between energy and momentum, 
E=p2/2m, the change in proportionality constant between energy and momentum 
appears as a change in the effective mass of the electron. The exact form of this 
relationship can be developed from the above energy band relationship as follows.  
 
The energy of a free electron Bloch wave is related to the wave vector as: 

 
  
E =

2k 2

2m*  2.16 

where m* is the effective electron mass. Differentiating both sides with respect to k, 

order of microseconds) in an indirect-gap material than in a direct gap semi-
conductor (nanoseconds). 

a given direction vary from material to material, the change in kinetic energy with 
the interactions of an electron with the lattice potential and the lattice spacing along
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k
m* =

1
2

dE
dk

 2.17 

and differentiating a second time, 

 
  

1
m* =

1
2

d2E
dk 2 . 2.18 

In other words, the effective mass of an electron Bloch wave is inversely related to 
the curvature of the E(k) diagram. Strong curvatures mean small effective masses 
and vice versa. The effective mass is generally expressed in units of electron rest 
mass in a vacuum, i.e. m*/m0.  
 
The effective mass concept is only defined near a band maximum or minimum where 
the energy can be approximated as a quadratic function of wave vector, k. Note that 
near a minimum in energy bands the E(k) function is concave up and 1/m*>0 while 
near a maximum, 1/m*<0. The negative effective mass near a maximum indicates 
that charge is being carried by holes rather than electrons.  
 

2.1.8 Density of states 
One of the most fundamental properties of a material, which determines many of its 
properties, is its density of states. This refers to the number of states per unit energy 
in the band structure. To put this in more visual terms, if one takes a thin horizontal 
slice through an energy band structure diagram such as those shown in Figure 2.7, 
the “blackness” of the slice (the amount of band line that occurs in that slice) is the 
density of states. The density of states for a complex band structure can be computed 
and is normally developed as part of calculations describing a semiconductor (or 
other material). However, it is not straightforward to present a simple formula for the 
density of states of such a real system. We will have to be content with a derivation 
of the density of states for a free electron. 
 
For a free electron in three dimensions the energy is given by 

 
  
E =

2

2m*

 
k 2 =

2

2m* kx
2 + ky

2 + kz
2( ) 2.19 

where kx, ky, and kz are the components of the wave vector k along the three 
coordinate directions. If one thinks of wave vectors as resonant states of the crystal, 
the longest wavelength or lowest energy state would be a half wavelength across the 
entire width of the crystal, L. Higher energy modes are integer multiples of this state. 
Therefore, the separation of states along any given direction, i, is π/Li and the wave 
vector is then ki=niπ/Li. Therefore, the energy can be rewritten (with h =  2π ) as: 
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 E =
h2

8mL2 nx
2 + ny

2 + nz
2( )= kF

2 E0 2.20 

where nx, ny and nz are the indices of the reciprocal lattice points inside a sphere of 

radius kF = nx
2 + ny

2 + nz
2 . E0 =

h2

8m*L2

The number of electrons that can be accommodated in states with energy E or less is: 

 N(E) = 2 1
8

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

4π
3

kF
3⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

π
3

E
E0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3
2

 2.21 

Here the factor of two is because each state has two possible electron spins and the 
1/8 is because we must take only positive values of nx, ny, and nz. The density of 
these states g(E) per unit volume of reciprocal space in an energy interval dE is given 
by (1/V)(dN/dE), where V=L3 is the crystal volume (for a cube-shaped solid), or: 

 g(E) =
1
V

dN
dE

=
π

2L3 E0
−3 / 2E1/ 2 =

π
2

8m*

h2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3 / 2

E1/ 2  2.22 

This density of states will apply to any band extremum where the band can be 
approximated at least locally with a quadratic dependence of energy on momentum 
(free-electron-like). Since all band edges will have this general behavior, Equation 
2.22 provides an approximate picture of the number of states per unit energy near a 
band edge. 
 
The importance of the density of states may be found in the calculation of the rate of 
any process in a solid, from scattering of an electron off a defect or another electron 
to absorption and emission of light. The rate of such a process is given in its most 
general form by “Fermi’s Golden Rule”. Mathematically, the rate of a process (H) 
moving an electron from state ψi to state ψf may be written in symbols as follows: 

ri→f = g(Ei)f(Ei)( )∫ g(Ef )(1− f(Ef )( ) ψi | H | ψf δ Ei − Ef + ∆E( )dEi, 2.23 

 is the lowest energy state of the system. 

 

For any process to occur, an electron must be present in an initial state with
energy Ei. The higher the density of states at this energy, the more electrons can
participate in the process. The electron is changing energy by an amount ∆E. 
Therefore, there must be an empty state with energy Ef=Ei+∆E to receive it. In 
addition, momentum must be conserved. The process begins from any initial
state Ei such that the rest of the above criteria are met. The overall rate of the
process is given by an integral over all initial states i containing electrons. 
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Equation 2.23 is used in calculating quantities such as Q(ν) in Equation 2.14 and 
many other values. It is fundamental to detailed analysis of the physics of solids. 
Therefore, the density of states is an essential element of understanding the general 
behaviors of materials. We will encounter it regularly in Chapter 3 where the 
effective density of states at the band edge is fundamental to analysis of the 
operation of electronic devices. 

2.2 INTRINSIC AND EXTRINSIC SEMICONDUCTORS 

Semiconductors are called semiconductors because their ability to conduct electricity 
is neither very great nor very small. Indeed, the conductivity of a typical semiconductor 
can be controlled by temperature to such an extent that most can appear to be insulators 
at sufficiently low temperatures and metals at sufficiently high temperatures. Impurities 
can also play a role. A typical conductivity behavior for a semiconductor containing 
added impurities is shown schematically in Figure 2.10. A semiconductor free of 
significant impurities is termed “intrinsic” while those doped with impurities are termed 
“extrinsic”. Both of these behaviors are essential to the operation of microelectronic 
devices. 

2.2.1 Intrinsic semiconductors 
An intrinsic semiconductor has no impurities and the number of electrons, n, in the 
conduction band exactly matches the number of holes, p, in the valence band, n=p. 
The number of electrons or holes is named the intrinsic carrier concentration ni. This 
carrier concentration is given by the probability that a state at energy E is filled (as 
given by the Fermi function, Equation 2.11) multiplied by the density of states at that 
energy (Equation 2.22 for free electrons) integrated over all energies at or above the 
conduction band edge: 

 ni = f (E)g(E)dE
EC

∞

∫  2.24 

Substituting from Equations 2.11 and 2.22, Equation 2.24 becomes: 
 
 
 

where Ei and Ef are the initial and final state energies, ∆E is the change in energy of 
the process, gi and gf are the density of states at energies Ei and Ef, f(Ei) and f(Ef) are 
the corresponding Fermi functions, and δ(Ei-Ef+∆E) is a Kroniker delta function 
which enforces conservation of energy. The expression <ψi|H|ψf> is a mathematical 
function which enforces the conservation of momentum of the electrons and other 
quantum mechanical selection rules in process H. In words this formula states the 
following.  
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Figure 2.10: A plot of the electron concentration in a piece of silicon doped with 1015 cm—3 
donor atoms having an ionization energy of 0.04 eV. The steep slope at high temperature (low 
inverse temperature) corresponds to the intrinsic behavior for carriers crossing the energy gap. 
The lower temperature behavior occurs in the presence of the 1015 cm-3 electron donors. The 
slopes of the two curves correspond to the 1.1 eV energy gap and the 0.04 eV donor ionization 
energies, respectively. 
 

 ni =
π
2

8me

h2
⎛ 
⎝ 

⎞ 
⎠ 

3/ 2 E1/ 2 dE
1+ e(E− EF ) / kB T

EC

∞

∫  2.25 

This equation can be simplified by noting that the band edge energy is typically far 
from the Fermi energy in units of kBT, in an intrinsic material. Therefore, the 
Boltzmann approximation (Equation 2.12) can be used. With the further definition: 

 Nc = 2
2πme

*kBT
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 

3/ 2

, 2.26 

which is the effective density of states at the conduction band edge, after some 
algebra, we find: 

 ni = NCe−(EC − EF ) / k BT  2.27 

⎜ 
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We can circumvent the issue of the Fermi energy by noting that a similar definition 
can be made based ni=p, and with a similar definition for the effective valence-band 
density of states, NV: 

 ni = NVe−(EF − EV ) / k BT , 2.28 

from which, multiplying Equations 2.27 and 2.28, 

 ni
2 = NC NVe−(EC − EV ) / k B T . 2.29 

Taking the square-root gives a value for ni which does not depend upon EF: 

 ni = NC NV e− Egap / 2 kB T
 2.30 

The most important point to note about Equation 2.30 is that ni depends 
exponentially with temperature on half of the semiconductor energy gap. Narrow-
gap semiconductors will have large intrinsic carrier concentrations while wide-gap 
materials will have fewer mobile carriers at a given temperature.  
 
As a final point, note that if one knows that n=p=ni, then from Equations 2.28 and 
2.30, the Fermi energy of an instrinsic semiconductor (also known as the intrinsic 
energy Ei) can be derived. With some algebra, this can be shown to be: 

 EF = Ei =
Egap

2
+

3kBT
4

ln mh
*

me
*

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 2.31 

In other words, the Fermi energy is near the middle of the energy gap and deviates 
from the exact center by a factor that depends logarithmically on the ratio of 
effective masses of the two bands and linearly on temperature.  

2.2.2 Extrinsic semiconductors 
When impurities are added to a semiconductor the bonding pattern in that 
semiconductor is modified. This will be discussed extensively in Chapter 7. In the 
mean time, it is useful to have a general idea of the effect of impurities on carrier 
concentrations. Impurities that are added intentionally to control the carrier 
concentrations are called “dopants”. When a dopant has the same basic electronic 
structure as the atom it replaces (for example, partially-filled “s” and “p” orbitals for 
dopants in Si), the bonding behavior is substantially unchanged. As we will see, this 
usually results only in small changes in bonding and primarily affects only one band 
edge region. If the atom then has one more or one fewer electron that the atom it 
replaces, this state has an extra electron or hole in it, not present in the host 
semiconductor. The extra electron or hole can often escape the impurity atom and 
move freely through the semiconductor causing a change in conductivity. 
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Figure 2.11: Momentum space diagrams of dopant states in the energy gap of a direct 
semiconductor. Note that the dopant states are somewhat extended in momentum space (they 
are not points) because they are somewhat localized in real space. Usually one represents the 
bands as ranges of energies where states are present, as shown at the center of the figure and 
momentum is largely ignored. 
  
A single impurity atom in a direct gap semiconductor might produce a dopant state 
such as those shown in Figure 2.11. If the atom has one fewer electron than the host, 
it is likely to accept an electron from the relatively electron-rich semiconductor. 
Consequently, it is referred to as an acceptor dopant. If the atom has one extra 
electron it is generally a donor. 
 
Electrons or holes in these dopant states can be easily released into the bands if the 
energy of the state is within a small number of thermal energy units (i.e. kBT) of the 
appropriate band edge (the valence band for acceptors, the conduction band for 
donors). The probability of finding a carrier is calculated based on the Fermi 
function and the separation of the dopant state from the band edge. Thus, for donors: 

 n =
ND

e( EC − ED ) / k BT +1
≈ NDe− (EC −ED ) / k B T . 2.32 

A similar equation can be defined for holes, 

 p =
NA

e( EA − EV ) / kB T +1
≈ NAe− (EA −EV ) / k BT . 2.33 

In these equations, ED and EA are the donor and acceptor energies, EC and EV are the 
conduction and valence band edge energies, and ND and NA are the concentrations of 
donors and acceptors, respectively. The energy differences are the energies necessary 
to transfer a carrier from the dopant state to the band edge. These equations assume 
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that the Fermi energy is at EA or ED, the temperature is moderate, and that the doping 
concentration is low. 
 
It is typical to assume that all dopant atoms are ionized in a semiconductor at room 
temperature. However, this is not the case. From Equations 2.32 or 2.33, when the 
dopant level lies kBT from the band edge, only 27% of dopant atoms are typically 
ionized. When the energy difference is half of kBT, only 38% are ionized. Because it 
is uncommon to find isolated dopant states much closer than kBT from the band 
edges, even the best dopants are rarely fully ionized. This becomes significant when 
working with compensated semiconductors where both donors and acceptors are 
present together. In these materials donors will spontaneously transfer electrons to 
acceptors with lower energy states, leading to full ionization of either donors or 
acceptors, whichever is the less common.  
 
When one adds dopant to a pure semiconductor the Fermi level shifts, approaching 
the doping state energy. A brief examination of Equation 2.27 shows that if the 
Fermi energy rises in the band gap, the concentration of holes in the valence band 
must shrink. While the intrinsic condition n=p no longer holds, the condition  

 np=ni
2   2.34 

is still true. Therefore, doping a semiconductor with an electron donor (making it “n-
type”) increases the concentration of free electrons and decreases the concentration 
of free holes by the same factor. In this case, electrons are called “majority carriers” 
and holes are “minority carriers”. The same behaviors hold when holes are the 
majority carrier due to acceptor doping. 

2.3 PROPERTIES AND THE BAND STRUCTURE 

Our objective in designing materials is to understand what determines their useful 
properties and to change them such that they better meet our needs. The preceding 
sections have described some of the basic physics that underlies useful properties. 
This section describes in more detail how these properties arise. In later portions of 
the book we will see how specific properties are obtained by design in specific real 
materials. While real phenomena are more complex than the simple models 
presented here, real behaviors can generally be understood based on the concepts 
outlined.  

2.3.1 Resistance, capacitance, and inductance 
Resistance, R, capacitance, C, and inductance, L, are all observable phenomena used 
in circuit elements. They result from the motion of electrons in solids and their 
interaction with each other and with the atoms surrounding them. Each also depends 
upon the geometry of the circuit element producing the effect. The basic materials 
properties, however, are dependent only upon the electronic structure in that material 
and not on the geometry. These underlying properties are the resistivity, ρ, of a 
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conducting material in a resistor, the dielectric constant, ε, of the insulating material 
in a capacitor, and the permeability, µΒ, in an inductor. The relationships are as 
follows. 

 
  
R =

ρ
A

, 2.35 

where    is the length of the conductor and A is its cross-sectional area. The 
resistivity, ρ, of a conductor is inversely related to its conductivity, σ as ρ=1/σ. 
Likewise, C and ε are related through 

 C =
εA
d

. 2.36 

Here A is the area of the capacitor plates and d is their separation or the thickness of 
the insulating (dielectric) material between them. 

 
Much of the interaction of electrons is through their electric and magnetic fields. The 
latter is responsible for the phenomenon of inductance. It results from the flow of 
current around a loop or coil of wire. The magnetic field produced depends upon the 
permeability of the material inside the wire coil. The greater the energy stored in the 
magnetic field, the higher the inductance of the coil. The inductance of a solenoid 
depends upon the permeability as: 

 
  
L = µB

N 2 A
, 2.37 

where N is the number of turns of wire in the coil, A is the coil area, and    is the 
coil length. 
 
As we will see below, resistivity is directly related to the mobility of charges in the 
material, the dielectric response to its polarizability, and the permeability to the 
magnetic moment of the constituent atoms. 

Conduction in solids can occur by motion of electrons or charged atoms (ions). Most 
of this section is devoted to electronic conduction but a brief mention of ionic 
conduction is in order. 
 
Ionic conduction occurs by diffusion ionized atoms, generally at high temperatures, 
although we will see it again in organic materials at room temperature. Inorganic 
solids with strong ionic bonding and high ionic diffusivity conduct charge well at 
sufficient temperatures. These materials usually include dopant ions that induce 
formation of charged vacancies on the same sublattice to compensate for dopant 
charge. Either the vacancies or the charged ions may then diffuse, carrying current. 

2.3.1.1 Mobility and electrical conductivity 
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Fast ionic conductors are used as solid electrolytes in fuel cells and sensors. The 
search for fast ion conductors operating near room temperature is a matter of current 
electronic materials research. The practical small-scale application of some types of 
fuel cells as replacements for batteries may hinge on success in this search. 
 
Much more common and more relevant to most electronic applications is electronic 
conductivity. When a material is placed in an electric field, E, a current density, J, 
given by J=σE, is induced. Here σ is the electrical conductivity: 

 σ = q(µ p p − µnn) , 2.38 

where q is the moving carrier charge, µn and µp are the electron and hole mobilities, 
and n and p are the electron and hole mobile carrier concentrations, respectively. 
Both the number of carriers and their mobility depend upon the energy band 
structure of the solid. 
 
The number of carriers moving in a metal depends upon the density of carriers near 
the Fermi energy. To accelerate a carrier there must also be an empty state to move 
into with higher energy. The majority of carriers in the material come from or 
accelerate into states within ~kBT of the Fermi energy. The effective density of 
mobile carriers in a metal is therefore approximately the number within kBT of the 
Fermi energy, of the order of one per atom or >>1022 cm-3.  
 
When an electron is placed in an electric field, it accelerates continuously until it 
bumps into something. The acceleration, a, is given by a = qE/m where m is the 
mass of the moving carrier. If the average time between collisions is τ, the “drift” 
velocity achieved during the acceleration time is vd = aτ. Classically one would 
expect vd = aτ/2 but if one conducts a detailed calculation doing the average over all 
trajectories after true times, not average times, then the velocity is increased by a 
factor of two. Substituting from the formula relating a with E,  

 vd =
qτ
m* E. 2.39 

The quantity qτ/m* is the carrier mobility, µn or µp. 
 
The two variable components of mobility are the mean time between collisions and 
the effective mass of the moving charge. The mean time between scattering events 
depends upon how many things there are to bump into in the solid and how often 
each gives rise to a collision. The three primary scattering centers are other electrons, 
the atoms of the solid, and defects in a crystal. The first two are generally determined 
by fundamental properties of the material, while the latter is controlled by the density 
of imperfections. Defect cross-sections (the probability that a carrier passing through 
a given area containing the defect will be scattered) are the calculated quantities 
determining how effectively a defect will scatter a carrier. 
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Scattering of electrons off other electrons may be estimated from Fermi’s Golden 
Rule (Equation 2.23). In words, one finds that the more electrons there are to scatter 
the moving charge and the larger the number of states the moving carrier can scatter 
into, the higher the scattering rate and the shorter the mean time between scattering 
events. These factors can be related in metals to the density of states at the Fermi 
energy, g(Ef). When g(Ef) is high there are many carriers to scatter from with 
energies just below Ef and many states to scatter into just above Ef. Metals such as 
Mo have low conductivities because they have high densities of states around Ef. 
Metals such as Cu, Ag, and Au are ideal compromises where there are high enough 
carrier densities for good conduction but low enough densities of states to keep the 
mean scattering times long. In metals, the mobility of electrons is generally low (less 
than 1 cm2V-1s-1). In some semiconductor multilayer structures at low temperatures, 
by contrast, mobilities may exceed 106 cm2 V-1s-1. In spite of this high mobility, the 
conductivity of these structures is modest because the carrier density is relatively 
low. Organic conductors tend to have both low mobilities (<10-2 cm2 V-1s-1) and low 
carrier concentrations. Thus, they are very poor conductors in most cases. 
 
Scattering off atoms in the solid can be due to the presence of anomalously charged 
elements (dopants) that disrupt electrical periodicity. Scattering can also result from 
transfer of kinetic energy to or from the lattice in the form of phonons.  
 
The details of scattering phenomena are beyond the scope of this book. Additional 
information may be found in the suggested readings. 
 
As we saw in Equation 2.39, scattering is only part of the picture. Changes in carrier 
effective mass can also have an effect. Scattering rates often change by orders of 
magnitude as temperature or defect density change, while effective mass only varies 
by up to one order of magnitude. Therefore, the effective mass is usually less 
important than the scattering rate effect. Nonetheless, effective mass differences 
contribute to determining intrinsic mobility differences from one semiconductor to 
another and differences between electron and hole conduction within a given 
semiconductor. The effective mass is relatively easily determined, once one has a 
calculated band structure, and can be measured experimentally with good accuracy. 
Therefore, it is generally much better known than the scattering terms. Furthermore, 
the effective mass is a constant for a given material while the scattering rate is not. 
 
The mobility can be connected to the diffusivity of a carrier. Diffusion depends upon 
the distance a carrier travels between collisions, as does mobility. Einstein developed 
a quantitative relation between the two quantities, showing that the mobility 
multiplied by the thermal energy (kBT) was equal to the charge multiplied by the 
diffusivity. For example, 

 µnkBT = qDn  2.40 
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for electrons. This relationship is most useful in balancing the diffusion current of 
electrons or holes in a concentration gradient against a drift current due to an electric 
field and is essential to understanding the behavior of diodes. 

The dielectric constant and permeability of materials are directly related to their 
ability to be polarized or magnetized, respectively. In general terms, polarizability is 
related to the magnitude of the motion of charge in a material resulting from the 
application of an external electric field. In such a field, electrons would naturally 
tend to move. Likewise, positive and negative ions would move and in opposite 
directions. The electrons and ions cannot move far without generating a large electric 
field of their own. Their motion results in the accumulation of negative charge in the 
material at the positive end of the external electric field (see Figure 2.12) and 
positive charge at the negative end, and reduces or cancels the applied field within 
the material. Thus, one converts the single long dipole associated with the external 
electric field into two smaller dipoles at each end of the dielectric. This increases the 
field strength outside and decreases it inside the dielectric. The increased field 
strength around the edges of the dielectric increases charge accumulation in surrounding 
materials, resulting in more capacitance. A similar phenomenon occurs in magnetic 
materials. Rather than charge accumulation, atomic magnetic moments align resulting 
in cancellation of the magnetic field within the material and increased magnetic 
fields around the edges. We will return to magnetic response of materials at the end 
of this section. For now we will consider the dielectric response in more detail. 
 
The optical and dielectric properties of semiconductors are direct results of the 
dielectric constant, ε=ε0εr (where ε0=8.85x10-14 F cm-1 is the permittivity of free space 
and εr is the relative dielectric constant of the material in question), or the index of  

Figure 2.12: A schematic diagram showing the response of a dielectric material to an applied 
electric field. 
 
 

 

and permeability 
2.3.1.2 Dielectric constant, piezoelectric response, 
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refraction,η = ε . To see how this relationship occurs, note that the redistribution of 
charge resulting from the applied field, E, results in a “displacement” field, D within 
a material of: 

 D = E + 4πP = εE , 2.41 

where P is the polarizability of the material. The dielectric constant, in turn, can be 
written in terms of the polarizability of the solid as: 

 ε = (1+ 4πP / E). 2.42 

The total polarizability is most conveniently represented in a crystalline material in 
terms of the polarization, p, of a unit cell of the lattice of volume v, as: 

 P =
p
v

.  2.43 

The polarization of the unit cell depends upon the applied field. More field produces 
more polarization. The useful the field-independent materials property is the polariz-
ability per unit cell, α, giving p = αElocal. Here Elocal is the electric field inside the 
material that produces the polarization of the unit cell. 
 
The polarizability, α, is due to two contributions, atomic polarizability and 
displacement polarizability. The atomic polarizability is caused by the motion of the 
electron cloud in the material with respect to the ionic cores of the atoms on lattice 
sites. The displacement polarizability is similar but involves motions of charged 
atoms with respect to one another. Consequently, it requires that there be two or 
more types of atoms in the lattice having a net polarity or difference in electric 
charge (i.e. at least partial ionic bonding) and results from motion of the negative 
atoms with respect to the positive atoms. These two polarization responses are shown 
schematically in Figure 2.13. 
 
The polarization behavior resulting from atomic polarizability can be estimated by 
representing the electron cloud as a negatively-charged shell connected to a positive 
core by springs (Figure 2.14). The very heavy mass of the atomic core relative to the 
electron cloud means that the electrons can be assumed to be the only particles 
moving. The spring constant in the model is related to an observable resonant 
frequency ω0, which is typically consistent with the frequency of high-energy 
photons. Thus, for all normal electronic devices, we can assume that the atomic 
polarizability is constant. However, in optical applications this polarizability can 
sometimes vary significantly as one passes through the resonant frequencies of the 
system. Atomic polarizabilities resulting from the displacement of the electron cloud 
with respect to the atom cores are of the order of 10-24 cm-2 V-1. 
 
The displacement polarizability results from motion of heavy atoms with respect to 
each other. These particles, being much more massive than electrons, respond to 
fields much more slowly. The same general model of masses connected by springs  
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Figure 2.13: A schematic diagram showing the two major components to polarizability. In 
atomic polarizability, the electron cloud is displaced with respect to the remaining positive 
components of the atoms (the protons and the non-valence electrons). In displacement 
polarizability, atoms of different charge (positive or negative) with respect to their average 
charge.  
 
can be applied, resulting in a harmonic oscillator response driven by any oscillations 
in the applied field. Such oscillations can induce very large changes in dielectric 
response with frequency. The displacement polarizability resulting from this 
behavior is 

 αdisplacement =
Z 2q2

(ω 2 −ω 2)
1

M + +
1

M−

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , 2.44 

where M+ and M- are the masses of the positively and negatively-charged ions, Z is 
the average ionic charge in units of electron charge (q), ω is the frequency of the 
applied electric field, and ω  is the resonant frequency of the system. Clearly, when 
ω∼ω  the system has a very large polarizability and consequently near this frequency 
there is a large change in dielectric constant. For normal materials the resonant 
frequency is near the “Debye frequency” which is related to the vibrational modes of 
the solid (see Section 2.3.3.). The resonant energy of these vibrations is typically 10-
100 meV, or of the order of kBT at room temperature. Thus, the displacement 
polarizability of partially ionic crystals becomes frequency-dependent for photons in 
the infrared portion of the optical spectrum. The low-frequency dielectric constants  
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Figure 2.14: A model for picturing the response of the electron cloud of a solid to an applied 
electric field as a simple harmonic oscillator system. 
 
are essentially the static dielectric constants resulting from the nearly constant atomic 
and displacement polarizabilities for fixed electric fields or very low frequencies. 
 
The above considerations lead to the following general trends in dielectric response 
of materials.  
 
The atomic polarizability: 

• increases with the number of valence electrons; 
• increases with decreasing binding energy for valence electrons around atoms 

(this changes the “spring constant” and lowers the resonant frequency). 
 
The displacement polarizability:  

• requires charge transfer among atoms in the unit cell (atomic solids and those 
without charge transfer show no displacement polarizability) so more ionic 
materials have a larger polarizability; 

• larger displacements and “softer” crystals increase displacement dielectric 
constant. 

 
Piezoelectric response is related to ionic displacement dielectric response. In a 
heteropolar (partially ionic) material that lacks a center of inversion symmetry, 
displacement of atoms of one polarity with respect to atoms of another polarity 
results in a change in shape of the material. A relationship between shape and 
applied electric field is termed a “piezoelectric” response. When the unit cell of the 
lattice includes inversion symmetry such a displacement moves charge but does not 
change the shape. Consequently, such materials are not piezoelectric. An example of 
how a material can lack an inversion center is found in all zincblende-structure 
materials. In these materials, a cation and anion lie at opposite ends of each bond and 
the structure is not symmetric around this bond. Furthermore, all bond pairs are 
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oriented in the same way. Therefore, the structure lacks an inversion symmetry. 
Piezoelectric behavior can work either way – an applied field induces a shape 
change, but a shape change can produce an electric field. Most compound 
semiconductors exhibit a piezoelectric response. Typical magnitudes of this response 
for some common semiconductors are presented in Table 2.1. The permeability of a 
material is tied to its ability to be magnetized as dielectric response is tied to the 
ability to be polarized.  

 
The magnetic response of a material depends upon the arrangement of electrons in 
the atoms of that material. Electrons have a “spin” of  /2 which is related to their 
intrinsic magnetic moment of q  /2m. When the spin vectors of the electrons in an 
atom align, the atom has a higher magnetic moment. The ability of electron spins  
to align is limited by quantum state availability. Half-filled states allow any 
combination of spins and high magnetic response, while completely filled states 
allow only one combination of antiparallel spins. When the spins of separate atoms 
align parallel to each other the system develops a net magnetization in local domains. 
A sufficiently large applied field can align the magnetic fields of the domains with 
the external field resulting in a net magnetization. If this field persists after removal 
of the applied field the material is a ferromagnet.  

 
Table 2.1: Typical Piezoelectric Stress Coefficients for Selected Materials 

 
Material e31 (C/m2) e33 (C/m2) Material e31 (C/m2) e33 (C/m2) 
Calculated values from Reference [1] 
ZnO (h) -0.51 0.89 AlN (h) -0.6 -0.47 
BeO (h) -0.02 0.02 GaN (h) -0.49 -0.84 
   InN (h) -0.57 -0.88 
CdTe (c) -0.01 0.03 AlAs (c) 0.01 -0.01 
ZnS (c) -0.05 0.10 GaAs (c) 0.06 -0.12 
ZnSe (c) -0.02 0.04 InAs (c) 0.01 -0.03 
AlP (c) -0.02 0.04 AlSb (c) 0.02 -0.04 
GaP (c) 0.03 -0.07 GaSb (c) 0.06 -0.12 
InP (c) -0.02 0.04  InSb  (c) 0.03 -0.06  
Experimental values from Reference [2] 
ZnO (h) -0.46 † 1.27 GaAs (c) -0.16 *  
AlN (h) -0.48 † 1.55 CdS (h) -0.21 † 0.44 
a-SiC (h) 0.08 † 0.2 Sr.5Ba.5Nb2O6 5.19 † 9.81 
   LiNbO3  3.64 † 1.65  
Note: The change in polarization δPi along direction i is given by 

δPi = eijε j
j

∑  where εj is the strain along direction j. 

h: hexagonal c: cubic  † e15 value * e14 value 

The Materials Science of Semiconductors 



 The Physics of Solids 53 

 

When the spins within atoms or molecules do not align spontaneously from 
atom/molecule to atom/molecule but where such alignment can be induced by an 
applied field, the material is called a paramagnet. In the least magnetic materials, 

possible for spins among atoms to spontaneously align opposite to one another. This 
behavior is called antiferromagnetic and resists magnetization. The permeability of 
ferromagnets is of the order of hundreds to hundreds of thousands, paramagnets have 
values greater than unity by 10-10,000 parts per million, while diamagnets have 
permeabilities smaller than unity by one to 200 parts per million. 

2.3.2 Optical properties 
The absorption, transmission, and reflection of light all depend critically on the 
density of states and Fermi energy in a material. Transparent materials have a gap in 
the density of states around the Fermi energy such that there are no states available 
into which an electron absorbing a photon (of small-enough energy) could move. A 
schematic of a typical density of states in a metal is shown schematically in Figure 
2.15. A large density of electrons and states available near Ef, allows electrons to 
move in response to electromagnetic waves causing their reflection. If this occurs 

consequently the material appears colored (as in Cu or Au). When the material has 
an energy gap (or very low density of states) between filled and empty levels, it allows 
light with energy below the gap energy to pass through the material. Transparent 
materials have very large energy gaps. Examples of transparent materials include 
silicon dioxide (as in window glass) and aluminum oxide (which is colored by 
impurities to make ruby and several other gemstones).  
 
The reverse process, emission of light, can also occur when a material has a large 
density of electrons in a band with high energy (for example the conduction band) 
and holes at a lower energy (such as in the valence band). This unstable situation is 
resolved when electrons lose energy to fill the holes. The liberated energy may be 
emitted in the form of light. 
 
The dielectric constant described above, and in particular the optical dielectric 
constant resulting from atomic polarizability, has a strong effect on optical properties 
including reflectivity of the material. Using this effect, even transparent mater- 
ials can affect reflectivity when coated on another material. This is the basis of 
antireflection coatings on lens surfaces and window glass. Refraction effects 
resulting from the change optical dielectric properties of materials across an interface 
are also fundamental to the operation of lenses, optical fibers, and similar devices. 

 
 
 

In these materials, only small magnetic responses can be produced. Finally, it is 
diamagnets, the magnetic moments within an atom or molecule cancel exactly.

uniformly across photon energies, the material appears silvery or white. An exception-
ally large density of states at specific energies can produce selective absorption, and 
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Figure 2.15: A schematic representation of the density of states of a metal which would lead 
to strong absorption in a limited range of energies and weak absorption at other energies.  

2.3.3 Thermal properties 
There are a variety of thermal properties of materials such as heat capacity, thermal 
conductivity, thermal expansion coefficient, and many more. For purposes of this 
text we will focus on the thermal conductivity as it is critical to many electronic 
devices. The reader is referred to the suggested readings for details of the full 
spectrum of thermal properties and for details not described here. The thermal 
conductivity, κ, of a material results from transport of energy via electrons or via 
lattice vibrations (phonons). The total thermal conductivity can thus be written 
simply as: 

 κ = κ phonons +κ electrons . 2.45 

Typical thermal conductivities for a range of materials are given in Table 2.2. Let us 
consider the two contributions to thermal conductivity separately. 

“Phonon” is the name given to a cooperative vibration of atoms in a crystalline 
lattice much as a wave at sea is a cooperative motion of many water molecules. We 
saw above that phonons are essential to making transitions between minimum-
energy states of indirect-gap semiconductors. They are also the primary reservoir of 
thermal energy in most solids and therefore contribute to thermal conduction. For 
these and other reasons, it is important to know more about phonons. 

 

2.3.3.1 Heat conduction by phonons 
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One can calculate energy-momentum relationships for phonons just as was done 
above for electrons. The equations are not the same but the ideas are similar. They 
are the solutions for the wave equation for atoms rather than electrons in a regular 
periodic solid. Phonons are sound waves with a wavelength of the order of the lattice 
constant in the solid. The number of phonon modes is limited by the physical 
dimensions of the solid and the number of atoms that make it up, and well-defined 
energy momentum dispersion relations exist for phonons as for electrons. A typical 
phonon dispersion relation for a one-dimensional solid consisting of alternating 
heavy and light atoms is shown in Figure 2.16.  
 
When the atoms all tend to move together in one direction or the other over many 
atom spacings the vibration wavelength is long (small k) and the energy is low. 
These modes are called acoustic phonons because audible sound vibrations have 
wavelengths many times the interatomic spacing. When the wavelength approaches 
the lattice spacing the resonance with the lattice causes a gap in the states, exactly as 
in electron band structures. In solids where there are two or more distinguishable 
atoms, not necessarily of different chemistry, additional states occur with short 
wavelengths. These are referred to as “optical” phonons and result in the upper 
branch of the dispersion relation in Figure 2.16. Note that the energy is linearly 
related to momentum for low energy acoustic phonons. Thus, sound waves traveling 
in a solid have energies that are linearly related to their momenta, as one would 
expect. As with electrons, the situation in three dimensions is much more complex 
than the simple one-dimensional behavior shown in Figure 2.16, but the same 
general results follow.  
 
Full three dimensional phonon dispersion curves are shown for Si and GaN in Figure 
2.17.[5] The frequency of atoms moving in solids can be ~1013 s-1 for optical 
phonons in some solids. Among other points, this frequency defines the upper end of 
the range of attempt frequencies for atomic transport processes such as diffusion and 
for many reactions.  
 

 
Material KTh 

(W/cm K) 
Material KTh 

(W/cm K) 
Material KTh 

(W/cm K) 
C [3] 20 AlN [5] 2.85 AlAs [4] 0.08 
Si [3] 1.56 GaN [5] 1.3 GaAs [4] 0.54 
Ge [3] 0.6 InN [5] 0.45 InAs [4] 0.26 
β-SiC [3] 5 AlP [4] 0.9 AlSb [4] 0.56 
ZnO [6] 1.1 GaP [4] 1.1 GaSb [4] 0.33 
Al2O3 [7] 0.39 InP [4] 0.7 InSb [4] 0.18 
Source citation numbers for values are given parentheses. 

Table 2.2: Thermal Conductivities of Selected Materials 
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We can see from Figures 2.16 and 2.17 that lattice vibrations can exist with a range 
of energies and momenta. The energy of the average phonon in a solid at equilibrium 
is the average thermal energy of an atom in that solid, kBT. Therefore, one can 
estimate the distribution of phonons based on the mode energies (see Fig 2.17) and 
the temperature of the solid. Phonons travel at the speed of sound. This is roughly 
constant over a wide range of temperatures. To conduct heat by phonon motion, the 
phonons scatter in the solid and come to equilibrium with the local temperature of 
the lattice. These phonons can then spread out through the solid as a wave moves 
across the ocean, carrying heat until they scatter again.  
 

 κ phonons =
1
3

CVv Λ  2.46 

where CV is the heat capacity of the solid at constant volume, v  is the average speed 
of sound, and Λ is the mean free path of phonons between scattering events. The 
mean free path for phonons decreases as the number of phonons present in the solid 
increases due to a higher scattering probability.  
 

 
Figure 2.16: A typical phonon dispersion relation for a one-dimensional lattice of balls 
connected by springs. On the long-wavelength “acoustic” branch atoms move as groups in one 
direction or another with the direction varying over relatively long distances. For the higher-
energy “optical” branch atoms move in opposite directions over very short distances. 
 

 

 
 

The phonon (lattice vibration) contribution to thermal conductivity is well appro- 
ximated by: 
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Figure 2.17: The phonon dispersion relations for (a) GaN and (b) Si. TA, LA, LO, and TO 
refer to transverse acoustic, longitudinal acoustic, longitudinal optical and transverse optical 
phonons, respectively. Each of these represents a particular vibrational mode. Longitudinal 
modes run along bonds as in Figure 2.16, while for transverse modes the vibration velocity is 
perpendicular to the bonds. There are two transverse modes because there are two axes 
perpendicular to a bond direction. Figures after Levinshtein, Rumyantsev, Sergey, and Shur, 
Reference [5], p. 27 and 184, respectively. This material is used by permission of John Wiley 
& Sons Inc.  

  (a) 

(b) 
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It can be shown that the phonon mean free path in a typical solid can be written 
approximately as: 

 Λ ≈ Λ0e
Θ / 2T  2.47 

where Θ is called the Debye temperature. At low temperatures the heat capacity is 
also related to the Debye temperature through the Debye approximation: 
 

 Cv ≈ cNkB
T
Θ

⎛ 
⎝ 

⎞ 
⎠ 

3

, 2.48 

where c is a constant. Thus, there are phonon-related contributions to the thermal 
conductivity given in Equation 2.46 that enter through Λ and through CV. 
 
The heat capacity can be calculated exactly if one knows the relationship between 
energy and momentum for a vibrational mode and how many such modes exist in the 
material. Such a calculation can be done for a crystalline solid with results such as in 
Figure 2.17. A full discussion of the phonon modes in solids is beyond that needed 
for our purposes but may be found in many solid state physics texts.  
 
At higher temperatures and often by room temperature, the heat capacity is simply 
determined by vibrations of individual atoms. Each atom has three independent 
vibrational modes, one for each direction in space, and each mode has an average 
energy kBT. The heat capacity is, by definition, ∂E/∂T from which: 

 CV = 3NkB. 2.49 

N is the number of particles vibrating per unit volume (the atomic density) and the 
factor of three results from the three independent coordinates of vibration direction. 
 
In insulators, there are no free electrons and consequently only phonons transmit 
heat. The maximum thermal conductivity of such a material can be calculated using 
the formulae above. In most cases, however, this turns out to be a relatively low 
value and most electrical insulators are relatively good thermal insulators. The 
notable exception is diamond with the highest thermal conductivity of any material. 
Because it is an electrical insulator, diamond conducts heat via phonons alone.  
 
In common applications, electrical insulators are also used as heat insulators. Thus, 
one is concerned with the minimizing, rather than the maximizing thermal 
conductivity. The best thermal insulators are amorphous materials, which have lower 
thermal conductivities because phonons cannot exist over extended ranges. Essentially 
the scattering distance for phonons becomes one atomic spacing. In this case the 
transmission of heat in the material becomes a process of diffusion of energy among 
loosely coupled harmonic oscillators. In the classical (high temperature) regime, the 
minimum thermal conductivity has been estimated to be [8]: 
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 κ min =
kBN2 / 3v

2.48
. 2.50 

The value for SiO2 based on this formula is ~0.01 W cm-1K-1, which is close to the 
measured value. Thus, amorphous silica (glass) is a nearly perfect thermal insulator. 
The only improvement would be to decrease the density of the glass, as gases and 
vacuum are better thermal insulators than any solid can be. The heat shielding tiles 
on the space shuttle, for example, make use of underdense fiberous silica to achieve 
an exceptionally low thermal conductivity. 

As with phonons electrons come to thermal equilibrium with the lattice when they 
scatter. Electrons easily move through the lattice of a conductive solid with relatively 
long mean-free path lengths. Therefore, they transport heat well. As with phonons, 
the electron contribution to thermal conductivity is: 

 κ electrons =
1
3

CelecνelectΛelec  2.51 

where Celec, νelec, and Λelec are the heat capacity, mean velocity, and mean free path of 
electrons near the Fermi energy in the solid. One can carry out calculations to show 
the mathematical contributions to the various terms in Equation 2.51. In the end, one 
can derive an equation for the thermal conductivity of electrons in terms of the 
temperature, T, and the electrical conductivity, σ, of the material: 

 κ elec = LσT , 2.52 

which is known as the Wiedemann-Franz law. L is a constant. For a free electron 
solid L~2.45x10-8 WΩ K-2. In real metals, L ranges from ~2.2 to 3.0 x10-8 WΩ K-2. 
In general, the thermal conductivity of electrons is much greater than for phonons.  

2.4 QUANTUM WELLS AND CONFINED CARRIERS 

In Section 2.1. we examined solution to the Schrödinger equation in free space and 
in a periodic potential and found families of wave functions having a simple, 
quadratic relationship between wave energy and momentum over wide ranges of 
energy values. Because there are a very large number of such states in a solid, it is 
normally impossible to distinguish one individual state from another. In this Section, 
we will examine, briefly, the impact of artificial potential structures on the wave 
solutions. For a complete discussion of such effects, the reader is referred to books 
on quantum mechanics. 
 
Artificial-potential-barrier structures appear in a number of important microelectronic 
device applications. The best known is probably the laser diode. These ubiquitous 

2.3.3.2 Heat conduction by electrons 

devices are deceptive in their outward simplicity – a single small chip of material  
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0
width of 2L. 
 
connected by two wires to a switch and batteries, or to a power supply. The trick is in 
the atomic-scale design of the chip of material. Laser diodes consist of a series of 
layers that are designed to collect electrons and holes. [A more detailed description 
of laser diodes may be found in Chapter 3.] Recombination of the free carriers in the 
trap leads to exceptionally efficient laser light emission. The trap is a potential well 
resulting from the sandwiching of a narrow-gap semiconductor between two layers 
of wider-gap material. Discontinuities in the valence and conduction band edges 
produce a lower-potential region where the carriers tend to collect. Because these 
wells are of the size scale of an electron wave function, the quantum nature of the 
system determines its properties. Hence, such structures are known as quantum 
wells. We will now examine the solutions of Schrödinger’s equation in and near such 
wells.  
 
The traditional beginning is to consider a potential well with infinite side walls [see 
Figure 2.18(a)]. The potential function in a one-dimensional version of the time-
independent Schrödinger’s equation (Equation 2.3) then becomes U=0 for |x| < L and 
U=∞ for |x| ≥ L. The solution to Equation 2.3 for |x| ≥ L must be  ψ(x) = 0. For |x| < 
L the equation is (in one dimension): 

 
d2ψ
dx2 +κ 2ψ = 0 , 2.53 

where  

 κ2=
 
2mE

2 .  2.54 

The solutions to Equation 2.53 are proportional to sin(κx) and cos(κx). Since the 
wave function is zero outside the well and since the wave function inside and outside 
must match at the boundaries, the values of κ are forced to be κL = nπ, where 
n=1,2,3,… for the sin(κx) solution and κL = (n-1/2)π for cos(κx) to produce nodes at  

(a)    (b) 

 

Figure 2.18: (a) a potential well with infinite walls. (b) a well of depth, U . Both wells have a 
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harmonics of the fundamental mode with nodes at the edges of the well. 
 
the walls of the well. The allowed energies are then determined from Equation 2.54. 
Solutions for the infinite well are of the form shown in Figure 2.19. 
 
The situation shown in Figure 2.18 (a) is, of course, not realistic. Infinite potential 
barriers cannot be produced. A more realistic solution would involve a finite well 
such as shown in Figure 2.18 (b). Let us consider the solutions of the Schrödinger 
equation for particles with energies below the energy of the edges of the well. In this 
case again U=0 for |x|≥L and U=-U0 for |x|<L. Inside the well and away from the 
edges, the solutions are roughly the same as one would find in the infinite well with 
somewhat relaxed boundary conditions. The real part of the most general solution to 
the Schrödinger Equation for the finite potential well is: 

 

ψ (x) = Ceκx

ψ (x) = A cos(kx) + B sin(kx)

ψ (x) = De−κx

    

x < −L
−L < x < +L
x > +L

 2.55 

The two exponential relationships describe the decay of the wave function outside of 
the well, while the middle relationship in 2.55 describes the wave function within the 
well. As in the infinite well, the wave function and its first derivative must be 
continuous across the well boundaries. The boundary conditions yield four equations 
(two boundaries, two matching conditions) in four unknowns (A,B,C,D), yielding: 

 

Figure 2.19: Electron states in an infinite-depth quantum well. Note that these are simply 
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κ = k
Asin kL( )− Bcos(kL)
Acos kL( )+ Bsin kL( )

κ = k
Asin kL( )+ Bcos(kL)
Acos kL( )− Bsin kL( )

 2.56 

Additional equations for C and D can be developed but will not be reproduced here 
to save space. Furthermore, one can show that: 

 

  

k 2 = −
2m

2 (U0+ | E |) > 0

κ = k tan(kL)
κ = −k cot(kL)

 2.57 

The second two formulas in Equation 2.57 are from boundary condition matching. 
The first part of Equation 2.57 is the bound state requirement and can be rewritten: 

 
  
| E |= −U0 +

2k 2

2m
 2.58 

This is just a statement that the bound state energy (  2 k2/2m) lies below the well 
boundary and is harmonic-oscillator-like. If one defines the energy to be zero at the 
bottom of the well, then the solutions become simple free-electron waves within the 
well as in Equation 2.16. This is not surprising as the middle relationship in Equation 
2.55 for the wave function within the well is a free electron wave behavior. Because 
the bound states must be standing waves in the well (must have a maximum or a zero 
at the well center), the values of k are linked to the well half-width, L. This, finally, 
leads to the constraint: 

 
2mU0

k
−1 =

tan(kL)
− cot(kL)

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

   2.59 

Note that Equation 2.59 provides a connection between the wavelength, the well 
width, and the well depth. Therefore, the well dimensions determine both the 
wavelength and energy of the states within the well. A lot of algebra and discussion 
has been skipped in writing these solutions. If you want more details, this problem is 
treated in any basic quantum mechanics text. The form of these solutions is shown in 
Figure 2.20. 

To reiterate the important points from these equations:  

• Equation 2.59 shows that the possible values of the wavelength, k are coupled to 
the well half width, L, and to the depth of the well.  

 
Even solutions 

Odd solutions

Even solutions 

Odd solutions 
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conditions of Equations 2.56-2.59. 

• Deeper wells produce more bound states with slightly shorter wavelengths (as 
the wave function is less inclined to penetrate the well sides).  

• Wider wells produce more bound states for a given well depth.  

• There are very few states in the well and these have discrete energies.  

• There are no states at the bottom of the well as would be judged from the band 
edges. Therefore, the band gap of the well is greater than the minimum gap of 
the semiconductor from which it is produced. 

• The wave function decays exponentially in the barriers with a decay length κ 
that increases with decreasing well depth. 

• The wave function penetrates the surrounding barriers a significant distance. 
This gives rise to coupling between adjacent quantum wells. 

 
The final point above deserves some specific attention. Two quantum wells that are 
close enough to each other for the tails of their wave functions to overlap significantly 
become coupled together. The interaction of their wave functions alters the energies 
of states in the wells. This interaction produces bonding-like and antibonding-like  
 

 

Figure 2.20: Solutions to the Schrödinger equation given by 2.55 and subject to the additional 
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pairs of states, one raised in energy, the other lowered. Adding a third quantum well 
adds a third state in each quantum well. An infinite number of coupled wells would 
produce a band of states in each well associated with each quantum state for a single 
well. The widths of the bands are directly related to the well-to-well coupling. Well 
coupling depends upon the depth of the well and exponentially upon the distance 

 
It may be helpful to consider the example in Figure 2.21 in more detail. The 
discussion below is after Holonyak.[9] Suppose the wells shown have a depth 
U0=200 meV, a well width 2L = 4 nm, and a well separation s = 4 nm. This is typical 
of a series of quantum wells produced by growth of 4 nm thick Al0.19Ga0.81As layers 
alternating with 4 nm thick GaAs layers in a superlattice. The GaAs layers produce  

Figure 2.21: An example semiconductor superlattice structure resulting in quantum wells as 
shown for the conduction band edge. Similar but shallower wells occur in the valence band. 
The bound states in the wells are also indicated. These states overlap producing splitting and 
multiple levels in each well (not shown in this sketch). (Courtesy N. Holonyak [9]) 
 
 

 

between the wells. This situation is shown schematically in Figure 2.21. [9] 
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the wells and the Al0.19Ga0.81As provides the barriers. The states in the quantum wells 
couple with each other such that the first-nearest neighbor wells have two states 
rather than the single state that a single well would have. These states change their 
energies by ~10 meV relative to the single well. Second nearest neighbor interactions 
when three or more wells are present cause additional splitting with a further change 
of energy of ~4.5 meV, and so on. The result is a series of states in the quantum well 
at the center of the superlattice with energies as shown in Figure 2.22. The more 
quantum wells that are coupled together the more states occur in each well and the 
closer together these states are. Wells toward the edges of the superlattice have fewer 
wells to interact with and, consequently, fewer bound states. 
 
There are several points to notice about Figure 2.22. First, the states increase in 
energy more than they decrease because as a state drops in the quantum well, the 
energy barrier separating those states from their neighbors rises. Consequently, the 
states decay more rapidly in the barrier and their interaction is weaker from well to 
well. For an infinite number of wells one gets a band of states with a width of  

Figure 2.22: A plot of the number of states and their energies in a quantum well which 
interacts with the specified number of other identical wells. The plot assumes the geometry 
and energies of Figure 2.21. An essentially infinite superlattice produces a band of states as 
indicated. (Courtesy N. Holonyak [9]) 
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roughly four times the first-nearest-neighbor interaction energy and with a sinusoidal 
variation in energy with momentum. Second, for an odd number of quantum wells 
there is always a state with a binding energy of 100 meV. Third, the result illustrated 
in Figure 2.22 is for a single bound state. If there had been two states in the well, 
each would produce a series of states as more wells were added, giving rise to two 
minibands per state in the isolated well. Such would have been the case for wider 
wells separated by the same barrier layers. The situation shown in Figures 2.21 and 
2.22 is for the conduction band in the example superlattice. A similar set of states 
would occur in the corresponding wells in the valence band. Because approximately 
70% of the band offset (see Chapters 5 and 6 for details) is accommodated in the 
conduction band, all of the behaviors in Figures 2.12 and 2.22 would hold for the 
valence band but all barriers would be smaller, leading to more overlap between 
states and more broadening of the valence band quantum well minibands. 
 
Each state in the quantum well can accommodate electrons or holes and consequently 
can give rise to absorption and emission of light. In laser diodes we take advantage 
of single quantum wells to trap electrons and holes to enhance recombination. It is 
important to use only single quantum wells or widely-separated wells to prevent 
broadening of the states as in Figure 2.22. Such broadening would give rise to a 
range of emission wavelengths. In a laser one wants a single emission wavelength 
(single mode laser) if possible. 
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2.5 SUMMARY POINTS 

• Electrons are Fermions, thus the probability of finding an electron in a given 
state is given by the Fermi function (Eq. 2.11.). 

• The Schrödinger equation solutions describe the electron waves allowed. For a 
free electron (no potential energy) such solutions result in a quadratic relationship 
between electron momentum or wave vector and electron energy. In a periodic 
solid this relationship repeats with a wave vector inversely proportional to the 
lattice period. 

• When a periodic potential is present, energy gaps develop in the quadratic 
energy/momentum relationship, proportional to the strength of the periodic 
potential. 

• The energy/momentum relationship in three dimensions can include maxima 
and minima in the energy of given branches. This can lead to indirect or direct 
energy gaps. This has implications for the optical and electronic properties of 
the semiconductor. 

• The effective mass of the electron is modified from its rest mass in vacuum by 
the presence of a periodic lattice. The effective mass is inversely related to band 
curvature in energy/momentum space. 

• Density of states per unit volume describes the number of states in a small 
energy increment around a given energy. The probability of an electron 
absorbing energy or momentum is generally directly related to the density of 
states. 

• The density of states around any band extremum will be quadratic in energy 
with respect to the energy of the band edge. 

• The density of free carriers in a pure and perfect (intrinsic) semiconductor 
increases exponentially with temperature with a characteristic energy of half the 
energy gap.  

• The number of holes and electrons exactly matches in an intrinsic material. 
• In a doped semiconductor the number of holes and electrons does not balance. 

The number of majority carriers depends upon the number of dopant atoms and 
exponentially on the energy separating the impurity state from the appropriate 
band edge and the temperature. When more than one dopant atom is present, 
compensation can lower the number of majority carriers. 

• Electrical conductivity depends upon the product of carrier density and mobility. 
Mobility depends upon effective mass and mean time between collisions of 
electrons causing scattering. 

• Dielectric constant depends upon material polarizability. The polarizability 
consists of atomic polarizability (increases with number of valence electrons and 
decreasing electron binding energy) and displacement polarizability (increases 
with polarity of material and magnitude of possible displacements). 
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• Thermal conductivity depends upon lattice vibration and electronic contributions. 
The lattice contribution depends upon atomic density while the electronic 
contribution depends upon conductivity and temperature. 

• Lattice vibrations can be described as “phonon” quasiparticles, which carry 
momentum and heat energy in the lattice. The phonon dispersion relation 
provides a linear relation between energy and momentum at moderate phonon 
momenta. 

• Quantum wells have states in them whose energy is determined by the well 
depth and width but is always above the bottom of the well in energy (for 
electrons). 

• Coupled quantum wells result in multiple states in the wells. When enough wells 
are coupled these become minibands of states in the wells. 
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2.6 HOMEWORK 

 
1: Energy Band Diagrams 

Consider the energy vs. momentum relationships (band diagrams) shown in Figure 
2.7. 
 
a) What range of energies does the valence band of GaAs span based on Figure 

2.7.? 
b) Sketch the most important features of the E(k) diagram for Ge and indicate the 

minimum energy gap. 
c) Which semiconductor (GaAs or Ge) has the indirect energy gap? How do you 

know? 
d) The effective masses of the carriers are given by: 1/m* = (d2E/dk2). Which 

semiconductor, Ge or GaAs has the higher electron effective mass?  
e) Sketch the density of states near the top of the valence band. What is the 

functional form of this curve?  
f) If the number of electrons and holes are equal in an intrinsic semiconductor, 

why is the Fermi Level not exactly in the middle of the energy gap? (Eq. 2.31) 
 

2: Conductivities 
a)  Could the thermal conductivity of SiO2 be made lower by changing the 

material (for example by crystallizing it) but assuming one is not allowed to 
use alloying, density reduction, etc…? 

b) Why is the electrical conductivity of Ag much higher than the electrical 
conductivity of Mo. Which would you expect to have a higher thermal 
conductivity? Explain briefly. 

c) Explain briefly why it is necessary to have two distinguishable atoms in a 
crystal unit cell in order to observe the optical branch of the phonon 
dispersion relationship. 

 
3: Consider phosphorous as an impurity in silicon. 

a) Would you expect it to be an electron donor or an acceptor? Explain why.  
b) If the ionization energy (the difference in energy between the phosphorous 

state and the band edge) is 35 meV, calculate the fraction of the phosphorous 
atoms ionized at (i) 80 K, (ii) 300 K, (iii) 400 K? You may assume that the 
Fermi energy is at the phosphorous state energy and that electrons escaping 
into the band need only reach the band edge rather than integrating the 
product of the Fermi function and the density of states throughout the 
conduction band. 

c) If there are 1017
 cm-3 phosphorous atoms in a sample of Si, calculate the 

minority carrier concentration at 300K. You may need the following: 
Nc=2.8x1019 cm-3, Nv=1.04x1019cm-3, and Egap(300K) = 1.12 eV for Si. 
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4: Consider the solutions for the Schrödinger Equation for a quantum well. 
a) Show that Equations 2.55 and 2.56 satisfy the boundary conditions requiring 

matching of the wavefunctions and their slopes across the boundaries.  
b) Calculate the energies and number of states in quantum wells 85 meV deep 

and 4 nm wide. Assume the hole effective mass for GaAs. (These are the 
states that would occur in the valence bands corresponding to the conduction 
band states in Figure 2.22.) 

 

electrons interact. 
a) What is the effect of increasing the periodic potential U on the dispersion of 

bands in a solid? (Hint: consider Equation 2.10 and Figure 2.3.) 
b) Refer to the free electron dispersion relationship in Figure 2.6 with those for 

GaAs and Ge. Based on the behaviors where the lower portion of the valence 
band intercepts the L point (which is in planes most directly bisecting 
interatomic bonds in these materials) at the Brillouin zone boundary, estimate 
the magnitude of the first Fourier Coefficient of the atomic potential for these 
materials. The point in question intercepts the Y axis of Figure 2.6 at roughly 
0.8 arbitrary units. 

 
6: Consider the density of states discussion in Section 2.1.8. Between the Brillouin 

momentum, E proportional to k. 
a) In this region, derive a formula for the density of states similar to the approach 

used in developing Equation 2.22. 
b) What is the effective mass of an electron in this region of the energy-

momentum relationship in terms of E and k? (Hint: follow the approach by 
which Equations 2.17 and 2.18 were developed.) 

 

5: Think about the periodic potential, U(x) discussed in Chapter 2 with which 

zone boundaries the E(k) relationship turns from concave up to concave down. In 
this region there is a small area where the energy is roughly linearly related to 
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