
Chapter 7

Inference: Estimating
equations

7.1 Summary

The results of this chapter and, for the most, all of the succeeding
chapters, are based on an elementary and central theorem. We call
this theorem the main theorem of proportional hazards regression. Its
development is essentially that of O’Quigley (2003) which generalizes
earlier results of Schoenfeld (1980), O’Quigley and Flandre (1994) and
Xu and O’Quigley (2000). The theorem has several immediate corol-
laries and we can use these to write down estimating equations upon
which we can then construct suitable inferential procedures for our
models. While a particular choice of estimating equation can result in
high efficiency when model assumptions are correct or close to being
correct, other equations may be less efficient but still provide estimates
which can be interpreted when model assumptions are incorrect. For
example, when the regression function β(t) might vary with time we
are able to construct an estimating equation, the solution of which
provides an estimate of β, in the case where β(t) is a constant β, and
E{β(T )}, the average effect, in the case where β(t) changes through
time. It is worth underlining that the usual partial likelihood estimate
fails to achieve this.
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7.2 Motivation

The earlier chapter on marginal survival is important in its own right
and we lean on the results of that chapter throughout this work. We
need keep in mind the idea of marginal survival for two reasons: (1)
it provides a natural backdrop to the ideas of conditional survival and
(2), together with the conditional distribution of the covariate given
T = t, we are able to consider the joint distribution of covariate and
survival time T. Conditional survival, where we investigate the condi-
tional distribution of survival given different potential covariate con-
figurations, as well as possibly time elapsed, is a central concern. More
generally we are interested in survival distributions corresponding to
transitions from one state to another, conditional on being in some
particular state or of having mapped out some particular covariate
path. The machinery that will enable us to obtain insight into these
conditional distributions is that of proportional hazards regression.

When we consider any data at hand as having arisen from some
experiment the most common framework for characterizing the joint
distribution of the covariate Z and survival T is one where the dis-
tribution of Z is fixed and known, and the conditional survivorship
distribution the subject of our inferential endeavors. In fact, as un-
derlined in the main theorem of proportional hazards regression, just
below, it is more useful to characterize the joint distribution of Z and
T via the conditional distribution of Z given T = t and the marginal
distribution of T . This is one of the reasons why, in the previous chap-
ter, we dealt with the marginal distribution of T. We can construct
estimating equations based on these ideas and from these build simple
tests or make more general inferences.

One of the most intriguing aspects of the Cox model concerns esti-
mation of the regression parameter β while ignoring any precise speci-
fication of λ0(t). Otherwise, under a conditional independent censoring
mechanism and a specified functional form for the underlying hazard
λ0(t), likelihood methods, at least in principle, are straightforward.
But mostly we prefer to relax assumptions concerning λ0(t), possibly
considering it to be entirely unknown, and construct inference for β
that remains invariant to any change in λ0(t). Any such changes can
be made to correspond to monotonic increasing transformations on
T , in which case we can take inference procedures to be rank invari-
ant. This follows since monotonic increasing transformations on the
observed times Xi will not affect the rank ordering.
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7.3 The observations

Our data will consist of the observations (Zi(t), Yi(t), (t ≤ Xi), Xi ; i =
1 . . . n). The Zi are the covariates (possibly time dependent), the Xi =
min(Ti, Ci), the observed survival which is the smallest of the censor-
ing time and the actual survival time and the Yi(t) are time-dependent
indicators taking the value one as long as the ith subject is at risk at
time t and zero otherwise. For the sake of large sample constructions
we make Yi(t) to be left continuous. At some level we will be mak-
ing an assumption of independence, an assumption that can be chal-
lenged via the data themselves, but that is often left unchallenged,
the physical context providing the main guide. Mostly, we think of
independence as existing across the indices i (i = 1, . . . , n), i.e., the
triplets {Zi(t), Yi(t), Xi ; i = 1, . . . , n}. It is helpful to our notational
construction to have:

Definition 7.1 Let Z(t) be a data-based step function of t, everywhere
equal to zero except at the points Xi, i = 1, ..., n, at which the function
takes the value Zi(Xi). We assume that |Zi| is bounded, if not the
definition is readily broadened.

The reason for this definition is to unify notation. Our practical interest
will be on sums of quantities such as Zi(Xi) with i ranging from 1 to
n. Using the Stieltjes integral, we will be able to write such sums as
integrals with respect to an empirical process. In view of the Helly-Bray
theorem (Section 2.3) this makes it easier to gain an intuitive grasp on
the population structure behind the various statistics of interest. Both
T and C are assumed to have supports on some finite interval, the first
of which is denoted T . The time-dependent covariate Z(·) is assumed
to be a left continuous stochastic process and, for notational simplicity,
is taken to be of dimension one whenever possible. Let F (t) = Pr(T <
t), D(t) = Pr (C < t) and H(t) = F (t){1 − D(t)} −

∫ t
0 F (u)dD(u).

For each subject i we observe Xi = min(Ti, Ci), and δi = I(Ti ≤
Ci) so that δi takes the value one if the ith subject corresponds to a
failure and is zero if the subject corresponds to a censored observation.
A more general situation allows a subject to be dynamically censored
in that he or she can move in and out of the risk set. To do this
we define the “at-risk” indicator Yi(t) where Yi(t) = I(Xi ≥ t). The
events on the i th individual are counted by Ni(t) = I{Ti ≤ t, Ti ≤
Ci} and N̄(t) =

∑n
1 Ni(t) counts the number of events before t. It

is also helpful to be able to refer to the total number of observed
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failures k = N̄{sup t : t ∈ T }, and the inverse function N̄−1(·), where
N̄−1(�) = {inf t : t ∈ T , N̄(t) = �}, the smallest time by which a given
number of events � have occurred. Consistent estimators of F (t) and
H(t) are indicated by hats, the examples here being the Kaplan-Meier
estimator for 1 − F (t) and Ĥ(t) = n−1N̄(t).

Some other sums of observations will frequently occur. In order to
obtain an angle on empirical moments under the model, Andersen and
Gill (1982) define

S(r)(β, t) = n−1
n∑

i=1

Yi(t)eβZi(t)Zi(t)r, s(r)(β, t) = ES(r)(β, t),

for r = 0, 1, 2, where the expectations are taken with respect to the
true distribution of (T, C, Z(·)). Define also

V (β, t)=
S(2)(β, t)
S(0)(β, t)

− S(1)(β, t)2

S(0)(β, t)2
, v(β, t)=

s(2)(β, t)
s(0)(β, t)

− s(1)(β, t)2

s(0)(β, t)2
. (7.1)

The Andersen and Gill notation is now classic in this context. Their
notation lends itself more readily to large sample theory based upon
martingales and stochastic integrals. We will frequently keep this no-
tation in mind although our approaches to inference do not appeal to
special central limit theorems (the martingale central limit theorem in
particular) and, as a result, our notation is typically lighter. The re-
quired conditions for the Andersen and Gill theory to apply are sightly
broader although this advantage is more of a theoretical than a prac-
tical one. For their results, as well as ours, the censorship is restricted
in such a way that, for large samples, there remains information on
F in the tails. The conditional means and the conditional variances,
Eβ(t)(Z|t) Vβ(t)(Z|t), introduced immediately below, are related to the
above via V (β, t) ≡ Vβ(Z|t) and S(1)(β, t)/S(0)(β, t) ≡ Eβ(Z|t). In the
counting process framework of Andersen and Gill (1982), we imagine n
as remaining fixed and the asymptotic results obtaining as a result of
asymptotic theory for n-dimensional counting processes, in which we
understand the expectation operator E to be with respect to infinitely
many repetitions of the process. Subsequently we allow n to increase
without bound. For the quantities Eβ(t)(Zk|t) we take the E operator
to be these same quantities when n becomes infinitely large.
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7.4 Main theorem

A simple theorem underpins all of the key results discussed in this book
(testing the presence of regression effect, estimating average regression
effect under non-proportional hazards, quantifying predictability via
the conditional survivorship function as well as via summary indices
such as explained randomness and explained variation, assessing fit,
contrasting competing models etc). In view of all these several appli-
cations the theorem then appears to be quite fundamental and, as such,
it seems appropriate to refer to it as the main theorem of proportional
hazards regression.

We most often view time as providing the set of indices to certain
stochastic processes, so that, for example, we consider Z(t) to be a
random variable having different distributions for different t. Also,
the failure time variable T can be viewed as a non-negative random
variable with distribution F (t) and, whenever the set of indices t to
the stochastic process coincide with the support for T , then not only
can we talk about the random variables Z(t) for which the distribution
corresponds to P (Z ≤ z|T = t) but also marginal quantities such as
the random variable Z(T ) having distribution G(z) = P (Z ≤ z). An
important result concerning the conditional distribution of Z(t) given
T = t follows. First we need the following definitions:

Definition 7.2 The discrete probabilities πi(β(t), t) are given by

πi(β(t), t) =
Yi(t) exp{β(t)Zi(t)}∑n

j=1 Yj(t) exp{β(t)Zj(t)}
. (7.2)

The πi(β(t), t) are easily seen to be bona fide probabilities (for all real
values of β(t)) since πi ≥ 0 and

∑
i πi = 1. Note that this continues to

hold for values of β(t) different to those generating the data, and even
when the model is incorrectly specified. As a consequence, replacing β
by β̂ results in a probability distribution that is still valid but different
to the true one. Means and variances with respect to this distribution
maintain their interpretation as means and variances.

Under the proportional hazards assumption, i.e., the constraint
β(t) = β, the product of the π’s over the observed failure times gives
the partial likelihood (Cox 1972, 1975). When β = 0, πi(0, t) is the
empirical distribution that assigns equal weight to each sample subject
in the risk set. Based on the πi(β(t), t) we have:
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Definition 7.3 Conditional moments of Z with respect to πi(β(t), t)
are given by

Eβ(t)(Z
k|t) =

n∑

i=1

Zk
i (t)πi(β(t), t) , k = 1, 2, . . . , . (7.3)

These two definitions are all that we need in order to set about build-
ing the structures upon which inference is based. This is particularly
so when we are able to assume an independent censoring mechanism,
although the weaker assumption of a conditionally independent cen-
soring mechanism (see Chapter 4) will mostly cause no conceptual dif-
ficulties; simply a slightly more burdensome notation. Another, some-
what natural, definition will also be appealed to on occasion and this
concerns unconditional expectations.

Definition 7.4 Marginal moments of Z with respect to the bivariate
distribution characterized by πi(β(t), t) and F (t) are given by

Eβ(t)(Z
k) =

∫

Eβ(t)(Z
k|t)dF (t) , k = 1, 2, . . . , . (7.4)

Recall that for arbitrary random variables A and B, assuming expec-
tation to be defined, we have the result of double expectation whereby
E(A) = EE(A|B). This is the motivation behind the above definition.
Once again, these expectations are to be interpreted as population
quantities in as much as β(t) and F (t) are taken to be known. They
can also, of course, be viewed as sample-based quantities since n is
finite and the Yi(t) are random until time point t. At the end of the
study the paths of all the Yi(t) are known and we are, to use a common
expression, “conditioning on the data.” The art of inference, and its
understanding, stem, to a great extent, from knowing which aspects
of an experiment to view as random (given that once the experiment
is over there is not really anything truly random). Also which distrib-
utions are relevant and these can change so that, here for example, we
should think carefully about the meaning of the expectation operators
E and E in its particular context. These expectations are still well de-
fined, but with respect to different distributions; when replacing β by
β̂, when replacing F by Fn and F̂ , and when allowing n to go to in-
finity. The quantity φ of the following definition is not of any essential
interest, featuring in the main theorem but disappearing afterwards.



7.4. MAIN THEOREM 209

Definition 7.5 In order to distinguish conditionally independent cen-
soring from independent censoring we define φ(z, t) where

φ(z∗, t) =
∫

P (C ≥ t|z)g(z)dz

P (C ≥ t|z∗) .

Note that when censoring does not depend upon z then φ(z, t) will
depend upon neither z nor t and is, in fact, equal to one. Otherwise,
under a conditionally independent censoring assumption, we can con-
sistently estimate φ(z, t) and we call this φ̂(z, t). The following theorem
is presented in O’Quigley (2003).

Theorem 7.1 Under model (6.2) and assuming β(t) known, the con-
ditional distribution function of Z(t) given T = t is consistently esti-
mated by

P̂{Z(t) ≤ z|T = t} =

∑
zi≤z Yi(t) exp{β(t)zi(t)}φ̂(zi, t)

∑n
j=1 Yj(t) exp{β(t)zj(t)}φ̂(zj , t)

. (7.5)

The theorem, which we refer to as the main theorem of proportional
hazards regression, has many important consequences including:

Corollary 7.1 Under model (6.2) and an independent censorship, as-
suming β(t) known, the conditional distribution function of Z(t) given
T = t is consistently estimated by

P̂ (Z(t) ≤ z|T = t) =
n∑

j=1

πj(β(t), t)I(Zj(t) ≤ z). (7.6)

The observation we would like to make here is that we can fully de-
scribe a random variable indexed by t, i.e., a stochastic process. All of
our inference will follow from this. In essence, we first fix t and then we
fix our attention on the conditional distribution of Z given that T = t
and models which enable us to characterize this distribution. Indeed,
under the broader censoring definition of conditional independence,
common in the survival context, we can still make the same basic ob-
servation. In this case we condition upon something more complex that
just T = t but the actual random outcome that we condition upon is of
less importance than the simple fact that we are able to described sets
of conditional distributions all indexed by t, i.e., a stochastic process
indexed by t. Specifically:
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Corollary 7.2 For a conditionally independent censoring mechanism
we have

P̂ (Z(t) ≤ z|T = t, C > t) =
n∑

j=1

πj(β(t), t)I(Zj(t) ≤ z). (7.7)

Whether we condition on the event T = t or the event (T = t, C > t),
we identify a random variable indexed by t. This is all we need to
construct appropriate stochastic processes (functions of Z(t)) enabling
inference. Again simple applications of Slutsky’s theorem shows that
the result still holds for β(t) replaced by any consistent estimate. In
particular, when the hypothesis of proportionality of risks is correct,
the result holds for the estimate β̂. The following two corollaries follow
immediately from those just above and form the basis to the main tests
we construct. For integer k we have:

Corollary 7.3 Eβ̂(t)(Z
k|t) provides a consistent estimate of Eβ(t)(Zk

(t)|t), under model (6.2). In particular Eβ̂(Zk|t) provides a consistent
estimate of Eβ(Zk(t)|t), under the model expressed by Equation 6.3.

Furthermore, once again working under the model, we consider:

Definition 7.6 Vβ(t)(Z|t) = Eβ(t)(Z2|t) − E2
β(t)(Z|t) .

In practical data analysis the quantity β(t) may be replaced by a value
constrained by some hypothesis or an estimate. The quantity Vβ(t)(Z|t)
can be viewed as a conditional variance which may vary little with t, in
a way analogously to the residual variance in linear regression which,
under classic assumptions, remains constant with different levels of the
independent variable. Since Vβ(t)(Z|t) may change with t, even if not
a lot, it is of interest to consider some average quantity and so we also
introduce:

Definition 7.7 E Vβ(t)(Z) =
∫
Vβ(t)(Z|t)dF (t) .

These sample-based variances relate to population variances via the
following corollary;

Corollary 7.4 Under model (6.3), Var(Z|t) is consistently estimated
by Vβ̂(Z|t). E Var(Z|t) is consistently estimated by E Vβ̂(Z|t). In ad-

dition,
∫
Vβ̂(Z|t)dF̂ (t) is consistent for E Var(Z|t).
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These quantities are all useful in our construction. Interpretation
requires some care. For example, although E Vβ̂(Z|t) is, in some sense,
a marginal quantity, it is not the marginal variance of Z since we have
neglected the variance of Eβ(t)(Z(t)|t) with respect to the distribution
of T. The easiest case to interpret is the one where we have an in-
dependent censoring mechanism (Equation 7.6). However, we do not
need to be very concerned about any interpretation difficulty, arising
for instance in Equation 7.7 where the censoring time appears in the
expression, since, in this or the simpler case, all that matters to us is
that our observations can be considered as arising from some process,
indexed by t and, for this process, we are able, under, as usual, some
model assumptions, to consistently estimate the mean and the vari-
ance of the quantities that we observe. It is also useful to note another
natural relation between Vβ(Z|t) and Eβ(Z|t) since

Vβ(Z|t) = ∂ Eβ(Z|t)/∂β.

This relation is readily verified for fixed β. In the case of time-
dependent β(t) then, at each given value of t, it is again clear that the
same relation holds. The result constitutes one of the building blocks
in the overall inferential construction and, under weak conditions, for
example Z being bounded, then it also follows that

∫

Vβ(Z|t) =
∫

∂ Eβ(Z|t)/∂β = ∂

{∫

Eβ(Z|t)
}

/∂β.

Throughout the rest of this book we will see just why the main theorem
is so fundamental. Essentially all the information we need, for almost
any conceivable statistical goal, arising from considerations of any of
the models considered, is contained in the joint probabilities πi(β(t), t)
of the fundamental definition 7.2. We are often interested, in the mul-
tivariate setting for example, in the evaluation of the effects of some
factor while having controlled for others. This can be immediately ac-
commodated. Specifically, taking Z to be of some dimension greater
than one (β being of the same dimension) and writing ZT = (ZT

1 , ZT
2 )

and ZT
i = (ZT

1i, Z
T
2i) then, summing over the multivariate probabilities,

we have two obvious extensions to Corollaries 7.1 and 7.2.

Corollary 7.5 Under model (6.2) and an independent censorship, as-
suming β(t) known, the conditional distribution function of Z2(t) given
T = t is consistently estimated by
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P̂ (Z2(t) ≤ z|T = t) =
n∑

j=1

πj(β(t), t)I(Z2j(t) ≤ z). (7.8)

The corollary enables component wise inference. We can consider the
components of the vector Zi individually. Also we could study some
functions of the components, usually say a simple linear combination
of the components such as the prognostic index. Note also that:

Corollary 7.6 For a conditionally independent censoring mechanism
we have

P̂ (Z2(t) ≤ z|T = t, C > t) =
n∑

j=1

πj(β(t), t)I(Z2j(t) ≤ z), (7.9)

where in Definition 7.2 for πj(β(t), t) we take β(t)Zj(t) to be an inner
product, which we may prefer to write as β(t)T Zj(t) and where Zj(t)
are the observed values of the vector Z(t) for the jth subject. Also, by
Z2(t) ≤ z we mean that all of the scalar components of Z2(t) are less
than or equal to the corresponding scalar components of z. As for the
corollaries and definitions following Corollaries 7.1 and 7.2 they have
obvious equivalents in the multivariate setting and so we can readily
write down expressions for expectations, variances and covariances as
well as their corresponding estimates.

Moments for stratified models

Firstly we recall from the previous chapter that the stratified model
is simply a partially proportional hazards model in which some of the
components of β(t) remain unspecified while the other components are
constant terms. The definition for the stratified model was

λ(t|Z(t), s) = λ0s(t) exp{β(t)Z(t)},

where s takes integer values 1,. . ., m. In view of the equivalence be-
tween stratified models and partially proportional hazards models de-
scribed in the previous chapter, the main theorem and its corollaries
apply immediately. However, in light of the special importance of strat-
ified models, as proportional hazards models with relaxed assumptions,
it will be helpful to our development to devote a few words to this
case. Analogous to the above definition for πi(β(t), t), and using the,
possibly time-dependent, stratum indicator s(t) we now define these
probabilities via:
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Definition 7.8 For the stratified model, having strata s = 1, . . . , m
the discrete probabilities πi(β(t), t) are now given by

πi(β(t), t) =
Yi{s(t), t} exp{β(t)Zi(t)}∑n

j=1 Yj{s(t), t} exp{β(t)Zj(t)}
. (7.10)

When there is a single stratum then this definition coincides with the
earlier one and, indeed, we use the same πi(β(t), t) for both situations,
since it is only used indirectly and there is no risk of confusion. Under
equation (6.3), i.e. the constraint β(t) = β, the product of the π’s over
the observed failure times gives the so-called stratified partial likeli-
hood (Kalbfleisch and Prentice 1980). The series of above definitions
for the non-stratified model, in particular Definition 7.2, theorems,
corollaries, all carry over in an obvious way to the stratified model and
we do not propose any additional notation. It is usually clear from the
context although it is worth making some remarks. Firstly, we have
no direct interest in the distribution of Z given t (note that this dis-
tribution depends on the distribution of Z given T > 0, a distribution
which corresponds to our design and is quite arbitrary).

We will exploit the main theorem in order to make inferences on
β and, in the stratified case, we would also condition upon the strata
from which transitions can be made. In practice, we contrast the ob-
servations Zi(Xi), made at time point Xi at which an event occurs
(δi = 1) with those subjects at risk of the same event. The “at risk”
indicator, Y (s(t), t), makes this very simple to express. We can use
Y (s(t), t) to single out appropriate groups for comparison. This for-
malizes a standard technique in epidemiology whereby the groups for
comparison may be matched by not just age but by other variables.
Such variables have then been controlled for and eliminated from the
analysis. Their own specific effects can be quite general and we are not
in a position to estimate them. Apparently very complex situations,
such as subjects moving in and out of risk categories, can be easily
modeled by the use of these indicator variables.

Moments for other relative risk models

Instead of Equation 6.2 some authors have suggested a more general
form for the hazard function whereby

λ(t|Z) = λ0(t)R{β(t)Z}, (7.11)
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and where, mostly, β(t) is not time-varying, being equal to some un-
known constant. The most common choices for the function R(r) are
exp(r), in which case we recover the usual model, and 1+r which leads
to the so-called additive model. Since both λ(t|Z) and λ0 are necessar-
ily positive we would generally need constraints on the function R(r).
In practice this can be a little bothersome and is, among several other
good reasons, a cause for favoring the multiplicative risk model exp(r)
over the additive risk model 1 + r. If we replace our earlier definition
for πi(β(t), t) by:

Definition 7.9 The discrete probabilities πi(β(t), t) are given by;

πi(β(t), t) =
Yi(t)R{β(t)Zi(t)}∑n

j=1 Yj(t)R{β(t)Zj(t)}
, (7.12)

then all of the above definitions, theorems, and corollaries have im-
mediate analogues and we do not write them out explicitly. Apart
from one interesting exception, which we look at more closely in the
chapters dealing with inference, there are no particular considerations
we need concern ourselves over if we choose R(r) = 1 + r rather than
R(r) = exp(r). Note also that if we allow the regression functions, β(t),
to depend arbitrarily upon time then, given either model, the other
model exists with a different function of β(t). The only real reason
for preferring one model over another would be due to parsimony; for
example, we might find in some given situation that in the case of the
additive model the regression function β(t) is in fact constant unlike
the multiplicative model where it may depend on time. But other-
wise both functions may depend, at least to some extent, on time and
then the multiplicative model ought be preferred since it is the more
natural. We say the more natural because the positivity constraint is
automatically satisfied.

Transformed covariate models

For some transformation ψ of the covariate we can postulate a model
of the form;

λ(t|Z(t)) = λ0(t) exp{β(t)ψ[Z(t)]}. (7.13)

All of the calculations proceed as above and no real new concept is
involved. Such models can be considered in the case of continuous co-
variates, Z, which may be sufficiently asymmetric, implying very great
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changes of risk at the high or low values, to be unlikely to provide a
satisfactory fit. Taking logarithms, or curbing the more extreme values
via a defined plateau, or some other such transformation will produce
models of potentially wider applicability. Note that this is a different
approach to working with, say,

λ(t|Z(t)) = λ0(t) exp{β(t)Z(t)},

and using the main theorem, in conjunction with estimating equa-
tions described here below and basing inference upon the observations
ψZ(Xi) and their expectations under this model. In this latter case
we employ ψ in the estimating equation as a means to obtain greater
robustness or to reduce sensitivity to large observations. In the former
case the model itself is different and would lead to different estimates
of survival probabilities.

Our discussion so far has turned around the hazard function. How-
ever, it is equally straightforward to work with intensity functions and
these allow for increased generality, especially when tackling complex
time-dependent effects. O’Brien (1978) introduced the logit-rank test
for survival data when investigating the effect of a continuous covariate
on survival time. His purpose was to construct a test that was rank
invariant with respect to both time and the covariate itself. O’Quigley
and Prentice (1991) showed how a broad class of rank invariant proce-
dures can be developed within the framework of proportional hazards
models. The O’Brien logit-rank procedure was a special case of this
class. In these cases we work with intensity rather than hazard func-
tions. Suppose then that λi(t) indicates an intensity function for the
ith subject at time t. A proportional hazards model for this intensity
function can be written

λi(t) = Yi(t)λ0(t) exp{βZi(t)},

where Yi(t) indicates whether or not the ith subject is at risk at time t,
λ0(t) the usual “baseline” hazard function and Zi(t) is a constructed
covariate for the ith subject at time t. Typically, Zi(t) in the estimating
equation is defined as a function of measurements on the ith subject
alone, but it can be defined more generally as Zi(t) = ψi(t,Ft) for
ψ some function of Ft, the collective failure, censoring and covariate
information prior to time t on the entire study group. The examples in
O’Quigley and Prentice (1991) included the rank of the the subject’s
covariate at Xi and transformations on this such as the normal order
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statistics. This represents a departure from most regression situations
because the value used in the estimating equation depends not only
on what has been observed on the particular individual but also upon
what has been observed on other relevant subsets of individuals.

Misspecified models

For multinormal linear regression involving p regressors we can elimi-
nate from consideration some of these and focus our attention on mod-
els involving the remaining regressors strictly less than p. We could
eliminate these by simple integration, thereby obtaining marginal dis-
tributions. Under the usual assumptions of multiple linear regression
the resulting lower dimensional model remains a multinormal one. As
an example, in the simple case of a two dimensional covariate normal
model, both the marginal models involving only one of the two co-
variates are normal models. However, for non-linear models this result
would only be expected to hold under quite unusual circumstances.
Generally, for non-linear models, and specifically proportional hazards
models, the result will not hold so that if the model is assumed true
for a covariate vector of dimension p, then, for any submodel, of di-
mension less that p, the model will not hold exactly. A corollary to
this is that no model of dimension greater that p could exactly follow
a proportional hazards prescription if we claim that the model holds
precisely for some given p covariates.

These observations led some authors to claim that “forgotten”
or “overlooked” variables would inevitably lead to misleading results.
Such a claim implies that all analyses based on proportional hazards
models are misleading and since, to say the least, such a conclusion is
unhelpful we offer a different perspective. This says that all practical
models are only ever approximately correct. In other words, the model
is always making a simplifying assumption, necessarily overlooking
potential effects as well as including others which may impact the pro-
portionality of those key variables of interest. Our task then focuses
on interpreting our estimates when our model cannot be exactly true.
In terms of analysing real data, it makes much more sense to take as
our underlying working assumption that the model is, to a greater or
lesser degree, misspecified.

A model can be misspecified in one of two clear ways; the first is
that the covariate form is not correctly expressed and the second is
that the regression coefficient is not constant through time. An ex-
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ample of the first would be that the true model holds for log Z but
that, not knowing this, we include Z in the model. An example of the
second might have β(t) declining through time rather than remaining
constant.

It has been argued that the careful use of residual techniques can
indicate which kind of model failure may be present. This is not so.
Whenever a poor fit could be due to either cause it is readily seen
that a misspecified covariate form can be represented correctly via a
time-dependent effect. In some sense the two kinds of misspecification
are unidentifiable. We can fix the model by working either with the
covariate form or the regression coefficient β(t). Of course, in certain
cases, a discrete binary covariate describing two groups, for example,
there can only be one cause of model failure - the time dependency of
the regression coefficient. This is because the binary coding imposes
no restriction of itself since all possible codings are equivalent.

The important issue is then the interpretation of an estimate, say
β̂ under a proportional hazards assumption when, in reality, the data
are generated under the broader non-proportional hazards model with
regression coefficient function β(t). This is not a straightforward en-
deavor and the great majority of the currently used procedures, in-
cluding those proposed in the widely distributed R, SAS, STATA
and S-Plus packages, produce estimates which cannot be interpreted
unless there is no censoring. To study this question we first define
µ =

∫
β(t)dF (t), which is an average of β(T ) with respect to the dis-

tribution F (t). It is also of interest to consider the approximation

P̂ (Z(t) ≤ z|T = t, C > t) ≈
n∑

j=1

πj(µ, t)I(Zj(t) ≤ z) (7.14)

and, for the case of a model making the stronger assumption of
an independent censoring mechanism as opposed to a conditionally
independent censoring mechanism given the covariate, we have

P̂ (Z(t) ≤ z|T = t) ≈
n∑

j=1

πj(µ, t)I(Zj(t) ≤ z). (7.15)

For small samples it will be unrealistic to hope to obtain reliable esti-
mates of β(t) for all of t so that, often, we take an estimate of some
summary measure, in particular µ. It is in fact possible to construct
an estimating equation which provides an estimate of µ without es-
timating β(t) (Xu and O’Quigley 1998) and it is very important to
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stress that, unless there is no censoring, the usual estimating equation
which leads to the partial likelihood estimate does not accomplish this.
In fact, the partial likelihood estimate turns out to be equivalent to
obtaining the solution of an estimating equation based on H(t) (see
Section 7.3) and using Ĥ(t) as an estimate whereas, to consistently
estimate µ, it is necessary to work with some consistent estimate of
F (t), in particular the Kaplan-Meier estimate.

Some thought needs be given to the issues arising when our es-
timating equation is based on certain assumptions (in particular, a
proportional hazards assumption), whereas the data themselves can
be considered to have been generated by something broader (in par-
ticular, a non proportional hazards model). To this purpose we firstly
consider a definition that will allow us to anticipate just what is be-
ing estimated when the data are generated by model (6.2) and we are
working with model (6.3). This is contained in the definition for β∗

just below.
Let’s keep in mind the widely held belief that the partial likeli-

hood estimate obtained when using a proportional hazards model in a
situation where the data are generated by a broader model must corre-
spond to some kind of average effect. It does correspond to something
(as always) but nothing very useful and not something we can hope-
fully interpret as an average effect. This is considered in the following
sections. Firstly we need:

Definition 7.10 Let β∗ be the constant value satisfying
∫

T
Eβ∗(Z|t)dF (t) =

∫

T
Eβ(t)(Z|t)dF (t). (7.16)

The definition enables us to make sense out of using estimates
based on (6.3) when the data are in fact generated by (6.2). Since we
can view T as being random, whenever β(t) is not constant, we can
think of having sampled from β(T ). The right-hand side of the above
equation is then a double expectation and β∗, occurring in the left-
hand side of the equation, is the best fitting value under the constraint
that β(t) = β. We can show the existence and uniqueness of solutions
to Equation (7.16) (Xu and O’Quigley 1998). More importantly, β∗ can
be shown to have the following three properties: (i) under model (6.3)
β∗ = β; (ii) under a subclass of the broad class of models known as
the Harrington-Fleming models, we have an exact result in that β∗ =∫
T β(t)dF (t); and (iii) for very general situations we can write that
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β∗ ≈
∫
T β(t)dF (t), an approximation which is in fact very accurate.

Estimates of β∗ are discussed in (Xu and O’Quigley 1998, Xu and
O’Quigley 2000) and, in the light of the foregoing, we can take these
as estimates of µ.

Theorem 7.1 and its corollaries provide the ingredients necessary
to constructing a number of relevant stochastic processes, in partic-
ular functions of Brownian motion. We will be able to construct a
process that will look like simple Brownian motion under the chosen
model and with given parameter values. We can then consider what
this process will look like when, instead of those null values, the data
are generated by a model from the same class but with different para-
meter values. First we consider the estimating equations that can be
readily constructed as a result of the preceding theory.

7.5 The estimating equations

The above setting helps us anticipate the properties of the estimators
we will be using. First, recall our definition of Z(t) as a step function
of t with discontinuities at the points Xi, i = 1, ..., n, at which the
function takes the value Zi(Xi). Next, consider Fn(t), the empirical
marginal distribution function of T . Note that Fn(t) coincides with
the Kaplan-Meier estimate of F (t) in the absence of censoring. When
there is no censoring, a sensible estimating equation (which we will
see also arises as the derivative of a log likelihood, as well as the log
partial likelihood) is

U1(β) =
∫

{Z(t) − Eβ(Z|t)}dFn(t) = 0. (7.17)

The above integral is simply the difference of two sums, the first the
empirical mean without reference to any model and the second the
average of model-based means. It makes intuitive sense as an esti-
mating equation and the only reason for writing the sum in the less
immediate form as an integral is that it helps understand the large
sample theory when Fn(t)

p→ F (t). Each component in the above sum
includes the size of the increment, 1/n, a quantity that can then be
taken outside of the summation (or integral) as a constant factor. Since
the right-hand side of the equation is identically equal to zero, the in-
cremental size 1/n can be canceled, enabling us to rewrite the equation
as
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U2(β) =
∫

{Z(t) − Eβ(Z|t)}dN̄(t) = 0. (7.18)

It is this expression where the integral is taken with respect to in-
crements dN̄(t), rather than with respect to dFn(t) that is the more
classic representation in this context. The expression equates U2(β) in
terms of the counting processes Ni(t). These processes, unlike the em-
pirical distribution function, are available in the presence of censoring.
It is the above equation that is used to define the partial likelihood es-
timator, since, unless the censoring is completely absent, the quantity
U1(β) is not defined.

A natural question would be the following: suppose two observers
were to undertake an experiment to estimate β. A certain percentage
of observations remain unobservable to the first observer as a result of
an independent censoring mechanism but are available to the second
observer. The first observer uses Equation 7.18 to estimate β, whereas
the second observer uses Equation 7.17. Will the two estimates agree?
By “agree” we mean, under large sample theory, will they converge
to the same quantity. We might hope that they would; at least if we
are to be able to usefully interpret estimates obtained from Equation
7.18. Unfortunately though (especially since Equation 7.18 is so widely
used), the estimates do not typically agree. Table 7.1 below indicates
just how severe the disagreement might be. However, the form of U1(β)
remains very much of interest and, before discussing the properties of

Table 7.1: Comparison of β∗,
∫

β(t)dF (t), and the estimates β̃ and β̂PL

β1 β2 t0 % censored β∗ ∫
β(t)dF (t) β̃ β̂PL

1 0 0.1 0% 0.156 0.157 0.155 (0.089) 0.155 (0.089)
17% 0.156 0.157 0.158 (0.099) 0.189 (0.099)
34% 0.156 0.157 0.160 (0.111) 0.239 (0.111)
50% 0.156 0.157 0.148 (0.140) 0.309 (0.130)
67% 0.156 0.157 0.148 (0.186) 0.475 (0.161)
76% 0.156 0.157 0.161 (0.265) 0.654 (0.188)

3 0 0.05 0% 0.721 0.750 0.716 (0.097) 0.716 (0.097)
15% 0.721 0.750 0.720 (0.106) 0.844 (0.107)
30% 0.721 0.750 0.725 (0.117) 1.025 (0.119)
45% 0.721 0.750 0.716 (0.139) 1.294 (0.133)
60% 0.721 0.750 0.716 (0.181) 1.789 (0.168)
67% 0.721 0.750 0.739 (0.255) 2.247 (0.195)
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the above equations let us consider a third estimating equation which
we write as

U3(β) =
∫

{Z(t) − Eβ(Z|t)}dF̂ (t) = 0. (7.19)

Note that, upon defining the stochastic process W (t) = Ŝ(t){
∑n

i=1

Yi(t)}−1 we can rewrite (7.19) in the usual counting process terminol-
ogy as

U3(β) =
∫

W (t){Z(t) − Eβ(Z|t)}dN̄(t) = 0.

For practical calculation note that W (Xi) = F̂ (Xi+)− F̂ (Xi) at each
observed failure time Xi, i.e., the jump in the KM curve. When there
is no censoring, then clearly

U1(β) = U2(β) = U3(β).

More generally U1(β) may not be available and solutions to U2(β) = 0
and U3(β) = 0 do not coincide or converge to the same population
counterparts even under independent censoring. They would only ever
converge to the same quantities under the unrealistic assumption that
the data are exactly generated by a proportional hazards model. As
argued in the previous section we can assume that this never really
holds in practical situations.

Many other possibilities could be used instead of U3(β), ones in
which other consistent estimates of F (t) are used in place of F̂ (t), for
example, the Nelson-Aalen estimator or, indeed, any parametric esti-
mate for marginal survival. If we were to take the route of parametric
estimates of marginal survival, we would need to be a little cautious
since these estimates could also contain information on the parameter
β which is our central focus. However, we could invoke a conditional
argument, i.e., take the marginal survival estimate as fixed and known
at its observed value or argue that the information contained is so weak
that it can be ignored. Although we have not studied any of these we
would anticipate the desirable properties described below to still hold.
Stronger modelling assumptions are also possible (Moeschberger and
Klein 1985, Klein et al. 1990).

Note also that the left-hand side of the equation is a special case of
the weighted scores under the proportional hazards model (Harrington
and Fleming 1982, Lin 1991, Newton and Raftery 1994). However those
weighted scores were not proposed with the non-proportional hazards
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model in mind, and the particular choice of W (·) used here was not
considered in those papers. Indeed other choices for the weights will
lead to estimators closer to the partial likelihood itself, in the sense
that under a non-proportional hazards model and in the presence of
censoring, the broader class of weighted estimates will not converge to
quantities that remain unaffected by an independent censoring mecha-
nism. On the other hand, the estimating equation based on U3 is in the
same spirit as the approximate likelihood of Oakes (1986) for censored
data and the M-estimate of Zhou (1992) for censored linear models.
Hjort (1992) also mentioned the use of the reciprocal of the Kaplan-
Meier estimate of the censoring distribution as weights in parametric
survival models, and these weights are the same as W (·) defined here.
For the random effects model - a special case of this is the stratified
model which, in turn, can be expressed in the form (6.2) - we can see,
even when we know that (6.3) is severely misspecified, that we can still
obtain estimates of meaningful quantities. The average effect resulting
from the estimating equation U3 is clearly of interest.

For the stratified model, Z(Xi) is contrasted with its expecta-
tion Eβ(Z|Xi, s). Here, the inclusion of s is used to indicate that if
Zi belongs to stratum s then the reference risk set for Eβ(Z|Xi, s)
is restricted to members of this same stratum. Note that for time-
dependent s(t) the risk set is dynamic, subjects entering and leaving
the set as they become at risk. The usual estimating equation for strat-
ified models is again of the form U(β) and, for the same reasons as
recalled above and described more fully in Xu and O’Quigley (1998)
we might prefer to use

Us(β) =
∫

{Z(t) − Eβ(Z|t, s)}dF̂ (t) = 0 . (7.20)

Even weaker assumptions (not taking the marginal F (t) to be common
across strata) can be made and, at present, this is a topic that remains
to be studied.

Zeros of estimating equations

Referring back to Section 7.4 we can immediately deduce that the zeros
of the estimating equations provide consistent estimates of β under the
model. Below we consider zeros of the estimating equations when the
model is incorrectly specified. This is important since, in practice, we
can assume this to be the case. Most theoretical developments proceed
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under the assumptions that the model is correct. We would have that
β̂ where U2(β̂) = 0 is consistent for β. Also β̃ where U3(β̃) = 0 is
consistent for a parameter of interest, namely the average effect. From
the mean value theorem we write

U2(β̂) = U2(β0) + (β̂ − β0)
{

∂U2(β)
∂β

}

β=ξ

,

where ξ lies strictly on the interior of the interval with endpoints
β0 and β̂. Now U2(β̂) = 0 and U ′

2(ξ) =
∑n

i=1 δiVξ(Z|Xi) so that
Var(β̂) ≈ 1/

∑n
i=1 δiVar(Z|Xi). This is the Cramer-Rao bound and

so the estimate is a good one. Although the sums are of variables that
we can take to be independent they are not identically distributed.
Showing large sample normality requires verification of the Lindeburgh
condition but, if awkward, this is not difficult. All the necessary ingre-
dients are then available for inference. However, as our recommended
approach, we adopt a different viewpoint based on the functional cen-
tral limit theorem rather than a central limit theorem for independent
variables. This is outlined in some detail in the following chapter.

Large sample properties of solutions to estimating equations

The reason for considering estimating equations other than (7.18) is
because of large sample properties. Without loss of generality, for any
multivariate categorical situation, a non-proportional hazards model
(Equation 6.2) can be taken to generate the observations. Suppose
that for this more general situation we fit the best available model, in
particular the proportional hazards model (Equation 6.3). In fact, this
is what always takes place when fitting the Cox model to data. It will
be helpful to have the following definition:

Definition 7.11 The average conditional variance A(β) is defined as;

A(β) =
∫ ∞

0

{
Eβ(Z2|t) − E2

β(Z|t)
}

dF (t).

Note that the averaging does not produce the marginal variance for
that we would need to include a further term which measures the
variance of the conditional expectations. Under the conditions on the
censoring of Breslow and Crowley (1974), essentially requiring that, for
each t, as n increases, the information increases at the same rate, then
nW (t) converges in probability to w(t). Under these same conditions,
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recall that the probability limit as n → ∞ of Eβ(Z|t) under model
(6.2) is Eβ(Z|t), that of Eβ(Z2|t) is Eβ(Z2|t) and that of Vβ(Z|t) is
Vβ(Z|t). The population conditional expectation and variance, whether
the model is correct or not, are denoted by E(Z|t) and V (Z|t), respec-
tively. We have an important result due to Struthers and Kalbfleisch
(1986).

Theorem 7.2 Under model 6.2 the estimator β̂, such that U2(β̂) = 0,
converges in probability to the constant βPL, where βPL is the unique
solution to the equation

∫ ∞

0
w−1(t) {E(Z|t) − Eβ(Z|t)} dF (t) = 0, (7.21)

provided that A(βPL) is strictly greater than zero.

Should the data be generated by model (6.3) then βPL = β, but oth-
erwise the value of βPL would depend upon the censoring mechanism
in view of its dependence on w(t). Simulation results below on the
estimation of average effect show a very strong dependence of βPL on
an independent censoring mechanism. Of course, under the unrealistic
assumption that the data are exactly generated by the model, then,
for every value of t, the above integrand is identically zero, thereby
eliminating any effect of w(t). In such situations the partial likelihood
estimator is more efficient and we must anticipate losing efficiency
should we use the estimating equation U3(β) rather than the estimat-
ing equation U2(β).

Viewing the censoring mechanism as a nuisance feature of the data
we might ask the following question: were it possible to remove the
censoring then to which population value do we converge? We would
like an estimating equation that, in the presence of an independent
censoring mechanism, produces an estimate that converges to the same
quantity we would have converged to had there been no censoring. The
above estimating equation (7.19) has this property. This is summarized
in the following theorem of Xu and O’Quigley (1998), which is an
application of Theorem 3.2 in Lin (1991).

Theorem 7.3 Under model 6.2 the estimator β̃, such that U3(β̃) = 0,
converges in probability to the constant β∗, where β∗ is the unique
solution to the equation

∫ ∞

0
{E(Z|t) − Eβ(Z|t)} dF (t) = 0, (7.22)
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provided that A(β∗) is strictly greater than zero.

None of the ingredients in the above equation depends on the cen-
soring mechanism. In consequence the solution itself, β = β∗, is not
influenced by the censoring. Thus the value we estimate in the absence
of censoring, β∗, is the same as the value we estimate when there is
censoring. A visual inspection of equations (7.21) and (7.22) suffices
to reveal why we argue in favor of (7.19) as a more suitable estimat-
ing equation than (7.18) in the presence of non proportional hazard
effects. Furthermore, the solution to (7.19) can be given a strong inter-
pretation in terms of average effects. We return to this in more detail,
but we can already state a compelling argument for the broader inter-
pretability of β∗.

7.6 Consistency and asymptotic normality
of β̃

We have that Eβ(Z|t) = S(1)(β, t)/S(0)(β, t), and that W (t) =
Ŝ(t)/{nS(0)(0, t)}. Under an independent censoring mechanism, s(1)

(β(t), t)/s(0)(β(t), t) = E{Z(t)|T = t}, and s(1)(β, t)/s(0)(β, t) is what
we get when we impose a constant β through time in place of β(t),
both of which do not involve the censoring distribution. In addition
v(t) = v(β(t), t) = Var{Z(t)|T = t}. We take it that nW (t) converges
in probability to a non-negative bounded function w(t) uniformly
in t. Then we have w(t) = S(t)/s(0)(0, t). Using the same essential
approach as that of Andersen and Gill (1982) it is seen, under the
model and an independent censoring mechanism, that the marginal
distribution function of T can be written

F (t) =
∫ t

0
w(t)s(0)(β(t), t)λ0(t)dt. (7.23)

Theorem 7.4 Under the non-proportional hazards model and an in-
dependent censorship the estimator β̃ converges in probability to the
constant β∗, where β∗ is the unique solution to the equation

∫ ∞

0

{
s(1)(β(t), t)
s(0)(β(t), t)

− s(1)(β, t)
s(0)(β, t)

}

dF (t) = 0, (7.24)

provided that
∫∞
0 v(β∗, t)dF (t) > 0.
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It is clear that equation (7.24) does not involve censoring. Neither then
does the solution to the equation, β∗. As a contrast the maximum
partial likelihood estimator β̂PL from the estimating equation U2 = 0
converges to the solution of the equation

∫ ∞

0

{
s(1)(β(t), t)
s(0)(β(t), t)

− s(1)(β, t)
s(0)(β, t)

}

s(0)(β(t), t)λ0(t)dt = 0. (7.25)

This result was obtained by Struthers and Kalbfleisch (1986).
Should the data be generated by the proportional hazards model,
then the solutions of (7.24) and (7.25) are both equal to the true
regression parameter β. In general, however, these solutions will be
different, the solution to (7.25) depending on the unknown censoring
mechanism through the factor s(0)(β(t), t). The simulation results of
Table 7.1 serve to underline this fact in a striking way. The estimate
β̃ can be shown to be asymptotically normal with mean zero and
variance that can be written down. The expression for the variance
is nonetheless complicated and is not reproduced here since it is not
used. Instead we base inference on functions of Brownian motion as
described in the next chapter.

7.7 Interpretation for β∗ as average effect

The solution β∗ to the large sample equivalent to the estimating
equation U3(β), i.e., Equation 7.24 can be viewed as an average re-
gression effect. In the equation s(1)(β(t), t)/s(0)(β(t), t) = E{Z(t)|T =
t}, and s(1)(β∗, t)/s(0)(β∗, t) results when β(t) is restricted to be
a constant; the difference between these two is zero when inte-
grated out with respect to the marginal distribution of failure time.
Suppose, for instance, that β(t) decreases over time, then earlier
on β(t) > β∗ and s(1)(β(t), t)/s(0)(β(t), t) > s(1)(β∗, t)/s(0)(β∗, t);
whereas later we would have the opposite effect whereby β(t) < β∗

and s(1)(β(t), t)/s(0)(β(t), t) < s(1)(β∗, t)/s(0)(β∗, t). We can write,
v(β, t) = ∂/∂β{s(1)(β, t)/s(0)(β, t)} and, applying a first-order Taylor
series approximation to the integrand of (7.24), we have

∫ ∞

0
v(t){β(t) − β∗}dF (t) ≈ 0, (7.26)

where v(t) = v(β(t), t) = Var{Z(t)|T = t}. Therefore



7.7. INTERPRETATION FOR β∗ AS AVERAGE EFFECT 227

β∗ ≈
∫∞
0 v(t)β(t)dF (t)
∫∞
0 v(t)dF (t)

(7.27)

is a weighted average of β(t) over time. According to Equation 7.27
more weights are given to those β(t)’s where the marginal distribu-
tion of T is concentrated, which simply means that, on average, we
anticipate there being more individuals subjected to those particular
levels of β(t). The approximation of Equation 7.27 also has an inter-
esting connection with Murphy and Sen (1991), where they show that
if we divide the time domain into disjoint intervals and estimate a
constant β on each interval, in the limit as n → ∞ and the inter-
vals become finer at a certain rate, the resulting β̂(t) estimates β(t)
consistently. In their large sample studies, they used a (deterministic)
piecewise constant parameter β̄(t), which is equivalent to Equation
7.27 restricted to individual intervals. They showed that β̄(t) is the
best approximation to β̂(t), in the sense that the integrated squared
difference

∫
{β̂(t) − β̄(t)}2dt → 0 in probability as n → ∞, at a faster

rate than any other choice of such piecewise constant parameters. In
Equation (7.27) if v(t), the conditional variance of Z(t), changes rela-
tively little with time apart from for large t, when the size of the risk
sets becomes very small, we can make the approximation v(t) ≡ c and
it follows that

β∗ ≈
∫ ∞

0
β(t)dF (t) = E{β(T )}. (7.28)

In practice, v(t) will often be approximately constant, an observation
supported by our own practical experience as well as with simulated
data sets. For a comparison of two groups coded as 0 and 1, the con-
ditional variance is of the form p(1 − p) for some 0 < p < 1, and
this changes relatively little provided that, throughout the study, p
and 1 − p are not too close to zero. The approximate constancy of
this conditional variance is used in the sample size calculation for two-
group comparisons (Kim and Tsiatis 1990). In fact, we only require the
weaker condition that Cov(v(T ), β(T )) = 0 to obtain Equation 7.28,
a constant v(t) being a special case of this. Even when this weaker
condition does not hold exactly,

∫
β(t)dF (t) will still be close to β∗.

Xu and O’Quigley (1998) carried out simulations to study the ap-
proximation of

∫
β(t)dF (t) to β∗. Some of those findings are shown in

Table 7.1 and these are typical of the findings from a wide variety of
other situations. The results are indeed striking. It is also most likely
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true that it is not well known just how strong is the dependence of the
partial likelihood estimator on an independent censoring mechanism
when the data are generated by a non-proportional hazards model.
Since, in practical data analysis, such a situation will almost always
hold, we ought be rather more circumspect about the usual estimators
furnished by standard software.

In the table the data are simulated from a simple two-step time-
varying regression coefficients model, with baseline hazard λ0(t) = 1,
β(t) = β1 when t < t0 and β2 otherwise. The covariate Z is distributed
as Uniform(0,1). At time t0 a certain percentage of subjects at risk are
censored. The value β̂PL is the partial likelihood estimate when we
fit a proportional hazards model to the data. Table 7.1 summarizes
the results of 200 simulations with sample size of 1600. We see that∫

β(t)dF (t) is always close to β∗, for the values of β that we might
see in practice. The most important observation to be made from the
table is the strong dependence of β̂PL on an independent censoring
mechanism, the value to which it converges changing substantially as
censoring increases. The censoring mechanism here was chosen to em-
phasize the difference between β̂PL and β̃, since β̃ puts (asymptoti-
cally) the correct weights on the observations before and after t0. In
other cases the effect of censoring may be weaker. Nonetheless, it is im-
portant to be aware of the behavior of the partial likelihood estimator
under independent censoring and non-proportional hazards and the
subsequent difficulties in interpreting the partial likelihood estimate
in general situations.

The bracketed figures in Table 7.1 give the standard errors of the
estimates from the simulations. From these we can conclude that any
gains in efficiency of the partial likelihood estimate can be very quickly
lost to biases due to censoring. When there is no censoring the esti-
mators are the same. As censoring increases we see differences in the
standard errors of the estimates, the partial likelihood estimate being
more efficient; but we also see differences in the biases. Typically, these
latter differences are at least an order of magnitude greater.

7.8 Exercises and class projects

1. Show that, under an independent censoring mechanism, Ĥ(t), as
defined in Section 7.3, provides a consistent estimate of H(t).
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2. Show that the variance expression, V (β, t), using the Andersen and
Gill notation (see Section 7.3) is the same as Vβ(Z|t) using the nota-
tion of Section 7.4. Explain why Var(Z|t) is consistently estimated by
Vβ̂(Z|t) but that Var(Z|t) is not generally equal to v(β, t).

3. For the general model, suppose that β(t) is linear so that β(t) =
α0 + βt. Show that Eβ(t)(Zk|t) does not depend upon α0.

4. Sketch an outline of a proof that Var(Z|t) is consistently estimated
by Vβ̂(Z|t) and that E Var(Z|t) is consistently estimated by E Vβ̂(Z|t).

5. As for the previous question, indicate why
∫
Vβ̂(Z|t)dF̂ (t) would be

consistent for E Var(Z|t).

6. Show that Vβ(Z|t) = ∂ Eβ(Z|t)/∂β and identify the conditions for
the relationship;

∫
Vβ(Z|t) =

∫
∂ Eβ(Z|t)/∂β = ∂

{∫
Eβ(Z|t)

}
/∂β to

hold.

7. Consider some parametric non proportional hazards model (see
Chapter 4), in which the conditional density of T given Z = z is
expressed as f(t|z). Suppose the marginal distribution of Z is G(z).
Write down estimating equations for the unknown parameters based
on the observations Zi at the failure times Xi.

8. Use some data set to fit the proportional hazards model. Estimate
the parameter β on the basis of estimating equations for the observa-
tions Z2

i rather than Zi. Derive another estimate based on estimating
equations for

√
Zi. Compare the estimates.

9. Write down a set of estimating equations based on the observations,
Zp

i , p > 0 , i = 1, . . . , n. Index the estimate β̂ by p, i.e., β̂(p). For a
given data set, plot β̂(p) as a function of p.

10. Use analytical or heuristic arguments to described the expected be-
havior of β̂(p) as a function of p under (1) data generated under a pro-
portional hazards model, (2) data generated under a non-proportional
hazards model where the effect declines monotonically with time.

11. Consider a proportional hazards model in which we also know that
the marginal survival is governed by a distribution F (t; θ) where θ is
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not known. Suppose that it is relatively straightforward to estimate θ,
by maximum likelihood or by some graphical technique. Following this
we base an estimating equation for the unknown regression coefficient,
β, on U(β|θ̂) =

∫
{Z(t)−Eβ(Z|t)}dF (t; θ̂). Comment on this approach

and on the properties you anticipate it conferring on the estimate β̂.

12. Use the approach of the preceding question on some data set by
(1) approximating the marginal distribution by an exponential distri-
bution, (2) approximating the marginal distribution by a log-normal
distribution.

13. Using again the approach of the previous two questions show that, if
the proportional hazards models is correctly specified then the estimate
β̂ based on F (t; θ) is consistent whether or not the marginal model
F (t; θ) is correctly specified.

14. Supposing that the function β(t) is linear so that β(t) = α0 +
βt. Show how to estimate the function β(t) in this simple case. Note
that we can use this model to base a test of the proportional hazards
assumption via a hypothesis test that H0 : β = 0, α0 	= 0 (Cox 1972).

15. Investigate the assertion that it is not anticipated for v(t), the
conditional variance of Z(t), to change much with time. Use the model-
based estimates of v(t) and different data sets to study this question
informally.

16. In epidemiological studies of breast cancer it has been observed
that the tumor grade is not well modeled on the basis of a propor-
tional hazards assumption. A model allowing a monotonic decline in
the regression coefficient β(t) provides a better fit to observed data.
On the basis of observations some epidemiologists have argued that
the disease is more aggressive (higher grade) in younger women. Can
you think of other explanations for this observed phenomenon?




