
Chapter 6

Regression models
and subject heterogeneity

6.1 Summary

We consider several models that describe survival in the presence of
observable covariates, these covariates measuring subject heterogene-
ity. The most general situation can be described by a model with a pa-
rameter of high, possibly unbounded, dimension. Proportional hazards
models, partially proportional hazards models (O’Quigley and Stare
2002), stratified models or models with frailties or random coefficients
all arise as special cases of this model (O’Quigley and Xu 2000). One
useful parameterization (O’Quigley and Pessione 1991, O’Quigley and
Prentice 1991) can be described as a non proportional hazards model
with intercept. Changepoint models are a particular form of a non
proportional hazards model with intercept (O’Quigley and Natarajan
2004). Any model can be viewed as a special case of the general model,
lying somewhere on a conceptual scale between this general model and
the most parametric extreme, which would be the simple exponential
model. Models can be placed on this scale according to the extent of
model constraints and, for example, a random effects model would lie
strictly between a stratified model and the simple exponential model.
Relative risk models used in epidemiology come under these headings.
For relative risk models the time component is usually taken to be
age and great generalization, e.g., period or cohort analysis is readily
accomplished. Time-dependent covariates, Z(t), in combination with
the at-risk indicator, Y (t), can be used to describe states. Multistate
models in which subjects can move in and out of different states, or
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into an absorbing state such as death, can then be analyzed using the
same methodology.

6.2 Motivation

The presence of subject heterogeneity, summarized by risk factors Z,
known or suspected of being related to S(t), is our central concern.
The previous chapter dealt with the issue of marginal survival, i.e.,
survival ignoring any indicator of heterogeneity and which treats the
data in hand as though the observations came from a single popula-
tion. In Figure 6.1 there are two groups. This can be described by two
distinct Kaplan-Meier curves or, possibly, two independently calcu-
lated fitted parametric curves. If, however, the curves are related, then
each estimate provides information not only about its own population
curve but also about the other group’s population curve. The curve
estimates would not be independent. Exploiting such dependence can
lead to considerable gains in our estimating power. The agreement
between an approach modeling dependence and one ignoring it can
be more or less strong and, in Figure 6.1, agreement is good apart
from observations beyond 150 months where a proportional hazards
assumption may not hold very well. Returning to the simplest case,
we can imagine a compartmental model describing the occurrence of
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Figure 6.1: Kaplan-Meier survival curves and PH model curves for
two groups defined by a binary covariate. Dashed lines represent PH
estimates.
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deaths independently of group status in which all individuals are as-
sumed to have the same hazard rates. As pointed out in the previous
chapter, the main interest then is in the survival function S(t) when
the Z are either unobservable or being ignored. Here we study the
conditional survival function given the covariates Z and we write this
as S(t|Z). In the more complex situations (multicompartment models,
time-dependent Z) it may be difficult, or even impossible, to given an
interpretation to S(t) as an average over conditional distributions, but
the idea of conditioning is still central although we may not take it
beyond that of the probability of a change of state conditional upon
the current state as well as the relevant covariate history which led to
being in that state.

The goal here is to consider models with varying degrees of flexi-
bility applied to the summary of n subjects each with an associated
covariate vector Z of dimension p. The most flexible models will be
able to fully describe any data at hand but, as a price for their flex-
ibility, little reduction in dimension from the n × p data matrix we
begin with. Such models will have small bias in prediction compared
with large sampling errors. The most rigid models can allow for strik-
ing reductions in dimension. Their consequent impact on prediction
will be associated with much smaller sampling errors. However, as a
price for such gains, the biases in prediction can be large. The mod-
els we finally work with will lie between these two extremes. Their
choice then depends on an artful balance between the two conflicting
characteristics.

6.3 General or nonproportional hazards model

In the most straightforward cases we can express the conditional
dependence of survival upon fixed covariates in terms of the hazard
function. A general expression for the hazard function given the value
of the covariate Z is given by:

Alive Dead

Figure 6.2: A simple alive/dead transition model. At time t the only in-
formation being used is whether the subject is dead or alive. Covariate
information (eg. group status) is not used.
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λ(t|Z) = λ0(t) exp{β(t)Z}, (6.1)

where λ(t|·) is the conditional hazard function, λ0(t) the baseline haz-
ard corresponding to Z = 0, and β(t) a time-varying regression ef-
fect. Whenever Z has dimension greater than one we view β(t)Z as
an inner product in which β(t) has the same dimension as Z so that
β(t)Z = β1(t)Z1+, · · · , +βp(t)Zp.

Recalling the discussion of Chapter 5, we are only interested in
situations where observations on Z can be made in the course of any
study. In Equation 6.1 Z is not allowed to depend upon time. If we
also disallow the possibility of continuous covariates, which, in practice,
we can approximate as accurately as we wish via high dimensional Z
together with β(t) of the same dimension, we see that model (6.1)
is completely general and, as such, not really a model. It is instead a
representation, or re-expression, of a very general reality, an expression
that is convenient and which provides a framework to understanding
many of the models described in this chapter. At the cost of losing
the interpretation of a hazard function, we can immediately generalize
(6.1) to

λ(t|Z) = λ0(t) exp{β(t)Z(t)}. (6.2)

As long as we do not view Z(t) as random, i.e., the whole time path of
Z(t) is known at t = 0, then a hazard function interpretation for λ(t|Z)
is maintained. Otherwise we lose the hazard function interpretation,
since this requires knowledge of the whole function at the origin t = 0,
i.e., the function is a deterministic and not a random one. In some ways
this loss is of importance in that the equivalence of the hazard function,
the survival function, and the density function means that we can
easily move from one to another. However, when Z(t) is random, we
can reason in terms of intensity functions and compartmental models,
a structure that enables us to deal with a wide variety of applied
problems. The parameter β(t) is of infinite dimension and therefore
the model would not be useful without some restrictions upon β(t).

6.4 Proportional hazards model

Corresponding to the truth or reality under scrutiny, we can view
Equation (6.2) as being an extreme point on a large scale which cal-
ibrates model complexity. The opposite extreme point on this scale
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might have been the simple exponential model, although we will start
with a restriction that is less extreme, specifically the proportional
hazards model in which β(t) = β so that;

λ(t|Z) = λ0(t) exp{βZ(t)}. (6.3)

Putting restrictions on β(t) can be done in many ways, and the whole
art of statistical modeling, not only for survival data, is in the search
for useful restrictions upon the parameterization of the problem in
hand. Our interpretation of the word “useful” depends very much on
the given particular context.

Just where different models find themselves on the infinite scale
between Equation 6.3 and Equation 6.2 and how they can be ordered
is a very important concept we need master if we are to be successful at
the modeling process, a process which amounts to feeling our way up
this scale (relaxing constraints) or down this scale (adding constraints),
guided by the various techniques at our disposal. From the outset it
is important to understand that the goal is not one of establishing
some unknown hidden truth. We already have this, expressed via the
model described in Equation (6.1). The goal is to find a much smaller,
more restrictive model, which, for practical purposes is close enough or
which is good enough to address those questions that we have in mind;
for example, deciding whether or not there is an effect of treatment on
survival once we have accounted for known prognostic factors which
may not be equally distributed across the groups we are comparing.
For such purposes, no model to date has seen more use than the Cox
regression model.

6.5 The Cox regression model

In tackling the problem of subject heterogeneity, Cox’s (1972) pro-
portional hazards regression model has enjoyed outstanding success,
a success, it could be claimed, matching that of classic multilinear
regression itself. The model has given rise to considerable theoretical
work and continues to provoke methodological advances. Research and
development into the model and the model’s offspring have become so
extensive that we cannot here hope to cover the whole field, even at the
time of writing. We aim nonetheless to highlight what seem to be the
essential ideas and we begin with a recollection of the seminal paper
of D.R. Cox, presented at a meeting of the Royal Statistical Society in
London, England, March 8, 1972.
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Regression models and life tables (D.R. Cox 1972)

After summarizing earlier work on the life table (Kaplan and Meier
1958, Chiang 1968), Professor Cox introduced his, now famous, model
postulating a simplified form for the relationship between the hazard
function λ(t), at time t and the value of an associated fixed covari-
ate Z. As its name suggests, the proportional hazards model assumes
that the hazard functions among subjects with different covariates are
proportional to one another. The hazard function can then be written:

λ(t|Z) = λ0(t) exp{βZ}, (6.4)

where λ0(t) is a fixed “baseline” hazard function, and β is a relative
risk parameter to be estimated. Whenever Z = 0 has a concrete inter-
pretation (which we can always obtain by recoding) then so does the
baseline hazard λ0(t) since, in this case, λ(t|Z = 0) = λ0(t). As men-
tioned just above, when Z is a vector of covariates, then the model is
the same, although with the scalar product βZ interpreted as an inner
product. It is common to replace the expression βZ by β′Z where β
and Z are p × 1 vectors, and a′b denotes the inner product of vectors
a and b. Usually, though, we will not distinguish notationally between
the scalar and the vector inner product since the former is just a special
case of the latter. We write them both as βZ. Again we can interpret
λ0(t) as being the hazard corresponding to the group for which the
vector Z is identically zero.

The model is described as a multiplicative model, i.e., a model in
which factors related to the survival time have a multiplicative effect
on the hazard function. An illustration in which two binary variables
are used to summarize the effects of four groups is shown in Figure
6.3. As pointed out by Cox, the function (βZ) can be replaced by any
function of β and Z, the positivity of exp(·) guaranteeing that, for any
hazard function λ0(t), and any Z, we can always maintain a hazard
function interpretation for λ(t|Z). Indeed it is not necessary to restrict
ourselves to exp(·), and we may wish to work with other functions R(·),
although care is required to ensure that R(·) remains positive over the
range of values of β and Z of interest. Figure 6.3 represents the case
of two binary covariables indicating four distinct groups (in the figure
we take the logarithm of λ(t)) and the important thing to observe is
that the distance between any two groups on this particular scale, i.e.,
in terms of the log-hazards, does not change through time. In view
of the relation between the hazard function and the survival function,
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Figure 6.3: Proportional hazards with two binary covariates indicating
4 groups. Log-hazard rate written as h(t) = log λ(t).

there is an equivalent form of Equation 6.4 in terms of the survival
function. Defining S0(t) to be the baseline survival function; that is,
the survival function corresponding to S(t|Z = 0), then, for scalar or
vector Z, we have that,

S(t|Z) = {S0(t)}exp(βZ). (6.5)

When the covariate is a single binary variable indicating, for example,
treatment groups, the model simply says that the survival function of
one group is a power transformation of the other, thereby making an
important connection to the class of Lehmann alternatives (Lehmann
1953).

Cox took the view that “parametrization of the dependence on
Z is required so that our conclusions about that dependence are ex-
pressed concisely,” adding that any choice “needs examination in the
light of the data.” “So far as secondary features of the system are con-
cerned ... it is sensible to make a minimum of assumptions.” This view
led to focusing on inference that allowed λ0(t) to remain arbitrary.
The resulting procedures are nonparametric with respect to t in that
inference is invariant to any increasing monotonic transformation of t,
but parametric in as much as concerns Z. For this reason the model is
often referred to as Cox’s semi-parametric model. Let’s keep in mind,
however, that it is the adopted inferential procedures that are semi-
parametric rather than the model itself. Although, of course, use of
the term λ0(t) in the model, in which λ0(t) is not specified, implies
use of procedures that will work for all allowable functions λ0(t).
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Having recalled to the reader how inference could be carried out
following some added assumptions on λ0(t), the most common assump-
tions being that λ0(t) is constant, that λ0(t) is a piecewise constant
function, or that λ0(t) is equal to tγ for some γ, Cox presented his
innovatory likelihood expression for inference, an expression that sub-
sequently became known as a partial likelihood (Cox 1975). We look
more closely at these inferential questions in later chapters. First note
that the quantity λ0(t) does not appear in the expression for partial
likelihood given by

L(β) =
n∏

i=1

{
exp(βZi)∑n

j=1 Yj(Xi) exp(βZj)

}δi

, (6.6)

and, in consequence, λ0(t) can remain arbitrary. Secondly, note that
each term in the product is the conditional probability that at time
Xi of an observed failure, it is precisely individual i who is selected to
fail, given all the individuals at risk and given that one failure would
occur. Taking the logarithm in Equation 6.6 and its derivative with
respect to β, we obtain the score function which, upon setting equal
to zero, can generally be solved without difficulty using the Newton-
Raphson method, to obtain the maximum partial likelihood estimate β̂
of β. We will discuss more deeply the function U(β) under the various
approaches to inference. We can see already that it has the same form
as that encountered in the standard linear regression situation where
the observations are contrasted to some kind of weighted mean. The
exact nature of this mean is described later. Also, even though the
expression

U(β) =
n∑

i=1

δi

{

Zi −
∑n

j=1 Yj(Xi)Zj exp(βZj)
∑n

j=1 Yj(Xi) exp(βZj)

}

(6.7)

looks slightly involved, we might hope that the discrepancies between
the Zi and the weighted mean, clearly some kind of residual, would
be uncorrelated, at least for large samples, since the Zi themselves are
uncorrelated.

All of this turns out to be so and makes it relatively easy to carry
out appropriate inference. The simplest and most common approach
to inference is to treat β̂ as asymptotically normally distributed with
mean β and large sample variance I(β̂)−1, where I(β), called the in-
formation in view of the analogy with classical likelihood, is minus the
second derivative of L(β) with respect to β, i.e., letting
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Ii(β)=

∑n
j=1 Yj(Xi)Z2

j exp(βZj)
∑n

j=1 Yj(Xi) exp(βZj)
−
{∑n

j=1 Yj(Xi)Zj exp(βZj)
∑n

j=1 Yj(Xi) exp(βZj)

}2

, (6.8)

then I(β) =
∑n

i=1 δiIi(β). Inferences can also be based on likelihood
ratio methods. A third possibility, which is sometimes convenient, is
to base tests on the score U(β), which in large samples can be con-
sidered to be normally distributed with mean zero and variance I(β).
Multivariate extensions are completely natural, with the score being a
vector and I an information matrix.

Early applications of the model

The first success of the model was in its use for the two-sample prob-
lem, i.e., testing the null hypothesis of no difference in the underlying
true survival curves for two groups. In this case Cox (1972) showed that
the test statistic U(0)/

√
I(0) is formally identical to a test, later known

under the heading of the log-rank test, obtained by setting up at each
failure point a 2 × 2 contingency table, group against failed/survived,
and combining the many 2 × 2 tables. As in a standard analysis of a
single such contingency table we use the marginal frequencies to ob-
tain estimates of expected rates under the null hypothesis of no effect.
Assuming, as we usually do here, no ties we can obtain a table such
as described in Table 6.1 in which, at time t = Xi the observed failure
occurs in group A and there are nA(t) and nB(t) individuals at risk in
the respective groups.

The observed rates and the expected rates are simply summed
across the distinct failure points, each of which gives rise to its own
contingency table where the margins are obtained from the available
risk sets at that time. From the above, if Zi = 1 when subject i is in
group A and zero otherwise, then elementary calculation gives that,

U(0) =
n∑

i=1

δi{Zi − π(Xi)} , I(0) =
n∑

i=1

δiπ(Xi){1 − π(Xi)}

Time point t = Xi Group A Group B Totals
Number of failures 1 0 1
Number not failing nA(t) − 1 nB(t) nA(t) + nB(t) − 1

Total at risk nA(t) nB(t) nA(t) + nB(t)

Table 6.1: 2× 2 table at failure point t = Xi for group A and group B.
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where π(t) = nA(t)/{nA(t)+nB(t)}. The statistic U then contrasts the
observations with their expectations under the null hypothesis of no
effect. This expectation is simply the probability of choosing, from the
subjects at risk, a subject from group A. The variance expression is the
well-known expression for a Bernoulli variable. Readers interested in a
deeper insight into this test should also consult (Cochran 1954, Mantel
and Haenzel 1959, Mantel 1963, Peto and Peto 1972). As pointed out
by Cox, “whereas the test in the contingency table situation is, at least
in principle, exact, the test here is only asymptotic ...”

However, the real advantage of Cox’s approach was that while con-
tributing significantly toward a deeper understanding of the log-rank
and related tests, it opened up the way for more involved situations;
additional covariates, continuous covariates, random effects and, per-
haps surprisingly, in view of the attribute “proportional hazards,” a
way to tackle problems involving time varying effects or time depen-
dent covariates. Cox illustrated his model via an application to the
now famous Freireich data (Freireich et al. 1963) describing a clinical
trial in leukemia in which a new treatment was compared to a placebo.
Treating the two groups independently and estimating either survivor-
ship function using a Kaplan-Meier curve gave good agreement with
the survivorship estimates derived from the Cox model. Such a result
can also, of course, be anticipated by taking a log(− log) transform
of the Kaplan-Meier estimates and noting that they relate to one an-
other via a simple shift. This shift exhibits only the weakest, if any,
dependence on time itself.

Multivariate applications

Recovering the usual two-group log rank statistic as a special case of
a test based on model (6.4) is reassuring. In fact, exactly the same
approach extends to the several group comparison (Breslow 1972).
More importantly, model (6.4) provides the framework for considering
the multivariate problem from its many angles; global comparisons
of course but also more involved conditional comparisons in which
certain effects are controlled for while others are tested. We look at
this in more detail below under the heading “Modeling multivariate
problems.” The partially proportional hazards model (in particular
the stratified model) were to appear later to Cox’s original work of
1972 and provide great flexibility in addressing regression problems in
a multivariate context.
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Discussion of Professor Cox’s paper

Professor Cox’s paper represented an important step forward in deal-
ing with survival problems for heterogeneous populations and a non-
negligible subset of a whole generation of academic biostatisticians has
spent over a quarter of a century, keeping up and clarifying the many
ideas originally outlined in Cox’s 1972 paper. The discussion contin-
ues but, already, back in 1972 a group drawn from among the most
eminent statisticians of the time, made a collective contribution to
the new developments in a discussion that turned out to be almost as
significant as the paper itself.

The issue which, arguably, gave rise to the most fertile exchanges
concerned the partial likelihood, not yet named as such and referred
to by Cox as a conditional likelihood. Kalbfleisch and Prentice took
issue with Cox’s naming of the likelihood used for inference as a “con-
ditional” likelihood. They pointed out that the likelihood expression
is not obtainable as a quantity proportional to a probability after hav-
ing conditioned on some event. Conditioning was indeed taking place
in the construction of the likelihood expression but in a sequential
manner, a dynamic updating whose inferential home would later be
seen to lie more naturally within the context of stochastic processes,
indexed by time, rather than regular likelihoods, whether marginal or
conditional.

The years following this discussion gave rise to a number of papers
investigating the nature of the “conditional” likelihood proposed in
Cox’s original paper. Given the striking success of the model, together
with the suggested likelihood expression, in reproducing and taking
further a wide range of statistics then in use, most researchers agreed
that Cox’s proposal was correct. They remained uncertain, though, as
to how to justify the likelihood itself. This thinking culminated in sev-
eral major contributions; those of Cox (1975), Prentice and Kalbfleisch
(1975), Aalen (1979) and Andersen and Gill (1982), firmly establish-
ing the likelihood expression of Cox. In our later chapter on inference
we discuss some of the issues raised in those contributions. It turned
out that Cox was correct, not just on the appropriateness of his pro-
posed likelihood expression but also in describing it as a “conditional”
likelihood, this description being the source of all the debate.

Not unlike other major scientific thinkers of the twentieth cen-
tury, Cox showed quite remarkable insight and although his likelihood
derivation may not have been conditional, in the sense of taking as
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observed some single statistic upon which we condition before pro-
ceeding, his likelihood is not only very much a conditional one but
also it conditions in just the right way. Not in the most straightfor-
ward sense whereby all the conditioning is done in one go, but in the
sense of sequentially conditioning through time. Cox’s “conditional”
likelihood is now called a “partial” likelihood although, as an inferen-
tial tool in its own right, i.e., as a tool for inference independent of the
choice of any particular model the partial likelihood is not as useful
a concept as believed by many. We return to this in the chapter on
inference.

Professor Downton of the University of Birmingham and Professor
Peto of the University of Oxford pointed out the connection to rank
test procedures. Although the formulation of Cox allowed the user to
investigate more complex structures, many existing set-ups, framed in
terms of tests based on the ranks, could be obtained directly from the
use of the Cox likelihood. The simplest example was the sign test for
the median. Using permutation arguments, other tests of interest in the
multivariate setting could be obtained, in particular tests analogous to
the Friedman test and the Kruskal-Wallis test. Richard Peto referred
to some of his own work with Julian Peto. Their work demonstrated
the asymptotic efficiency of the log-rank test and that, for the two-
group problem and for Lehmann alternatives, this test was locally most
powerful. Since the log-rank test coincides with a score test based on
Cox’s likelihood, Peto argued that Cox’s method necessarily inherits
the same properties.

Professor Bartholomew of the University of Kent considered a
lognormal model in current use and postulated its extension to the
regression situation by writing down the likelihood. Such an analysis,
being fully parametric, represents an alternative approach since the
structure is not nested in a proportional hazards one. Bartholomew
made an insightful observation that allowing for some dependence of
the explanatory variable Z on t can enable the lognormal model and a
proportional hazards model to better approximate each another. This
is indeed true and allows for a whole development of a class of non
proportional hazards models where Z is a function of time and within
which the proportional hazards model arises as a special case.

Professors Oakes and Breslow discussed the equivalence between a
saturated piecewise exponential model and the proportional hazards
model. By a saturated piecewise exponential model we mean one al-
lowing for constant hazard rates between adjacent failures. The model
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is data dependent in that it does not specify in advance time regions of
constant hazard but will allow these to be determined by the observed
failures. From an inferential standpoint, in particular making use of
likelihood theory, we may expect to run into some difficulties. This
is because the number of parameters of the model (number of con-
stant hazard rates) increases at the same rate as the effective sample
size (number of observed failure times). However, the approach does
nonetheless work, although justification requires the use of techniques
other than standard likelihood. A simple estimate of the hazard rate,
the cumulative hazard rate, and the survivorship function are then
available. When β = 0 the estimate of the cumulative hazard rate
coincides with that of Nelson (1969).

Professor Lindley of University College London writes down the
full likelihood which involves λ0(t) and points out that, since terms
involving λ0(t) do not factor out we cannot justify Cox’s conditional
likelihood. If we take λ0(t) as an unknown nuisance parameter having
some prior distribution, then we can integrate the full likelihood with
respect to this in order to obtain a marginal likelihood (this would be
different to the marginal likelihood of ranks studied later by Kalbfleisch
and Prentice 1973). Lindley argues that the impact of censoring is
greater for the Cox likelihood than for this likelihood which is then to
be preferred. The author of this text confesses to not fully understand-
ing Lindley’s argument and there is some slight confusion there since,
either due to a typo or to a subtlety that escapes me, Lindley calls the
Cox likelihood a “marginal likelihood” and what I am referring to as a
marginal likelihood, an “integrated likelihood.” We do, of course, inte-
grate a full likelihood to obtain a marginal likelihood, but it seems as
though Professor Lindley was making other, finer, distinctions which
are best understood by those in the Bayesian school. His concern on
the impact of censoring is echoed by Mr. P. Glassborow of British Rail
underlining the strength behind the independent censoring assump-
tion, an assumption which would not be reasonable in many practical
cases.

Professor Zelen, a pioneer in the area of regression analysis of sur-
vival data, pointed out important relationships in tests of regression
effect in the proportional hazards model and tests of homogeneity of
the odds ratio in the study of several contingency tables. Dr. John
Gart of the National Cancer Institute also underlined parallels between
contingency table analysis and Cox regression. These ideas were to be
developed extensively in later papers by Ross Prentice and Norman
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Breslow in which the focus switched from classical survival analysis
to studies in epidemiology. The connection to epidemiological applica-
tions was already alluded to in the discussion of the Cox paper by Drs.
Meshalkin and Kagan of the World Health Organization. Finally, al-
gorithms for carrying out an analysis based on the Cox model became
quickly available thanks to two further important contributions to the
discussion of Cox’s paper. Richard Peto obtained accurate approxi-
mations to the likelihood in the presence of ties, obviating the need
for computationally intensive permutation algorithms, and Susannah
Howard showed how to program efficiently by exploiting the nested
property of the risk sets in reversed time.

Historical background to Cox’s paper

Alternative hypotheses to a null which assumes that two probabilities
are equal, such as in Equation (6.5), taking the form of a simple power
transformation, have a long history in statistical modeling. Such alter-
natives which, in the special case where the probabilities in question
are survival functions, are known as Lehmann alternatives (Lehmann
1953). Lehmann alternatives are natural in that, under the restriction
that the power term is positive, always achievable by reparameteriz-
ing the power term to be of an exponential form; then, whatever the
actual parameter estimates, the resulting probability estimates satisfy
the laws of probability. In particular, they remain in the interval (0,1).
Linear expressions for probabilities are less natural although, at least
prior to the discovery of the logistic and Cox models, possibly more
familiar. Feigl and Zelen (1965) postulated a linear regression for the
location parameter, λ0, of an exponential law. In this case the location
parameter and the (constant) hazard coincide so that the model could
be written;

λ(t|Z) = λ0 exp{βZ}. (6.9)

In Feigl and Zelen their model was not written exactly this way, ex-
pressed as λ = α + βZ. However, since λ is constant, the two ex-
pressions are equivalent and highlight the link to Cox’s more general
formulation. Feigl and Zelen only considered the case of uncensored
data. Zippin and Armitage (1966) used a modeling approach, essen-
tially the same as that of Feigl and Zelen, although allowing for the
possibility of censoring. This was achieved by an assumption of inde-
pendence between the censoring mechanism and the failure mechanism
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Figure 6.4: Kaplan-Meier curves and model based curves for Freireich
data. Dashed lines represent model based estimates; exponential model
(left), Cox model (right).

enabling an expression for the full likelihood to be obtained. Further
discussion on these ideas can be found in Myers, Hankey and Mantel
(1973) and Brown (1975). The estimates of the survival function for
the different groups in the Freireich study, based on a simple exponen-
tial model or a Cox model, are shown in Figure 6.4. For these data
the level of agreement between the two approaches appears to be high.
This early work on the exponential model certainly helped anticipate
the more general development of Cox and, for many more straightfor-
ward comparisons, such as the one illustrated by the Freireich data, it
is perhaps unfortunate that the exponential model has been relegated
to a historical role alone and is rarely, if ever, used in current practical
analysis of similar data.

6.6 Modeling multivariate problems

The strength of the Cox model lies in its ability to describe and charac-
terize involved multivariate situations. Crucial issues concern the ade-
quacy of fit of the model, how to make predictions based on the model,
and how strong is the model’s predictive capability. These are consid-
ered in detail later. Here, in the following sections and in the chapter
on inference we consider how the model can be used as a tool to formu-
late questions of interest to us in the multivariate setting. The simplest
case is that of a single binary covariate Z taking the values zero and
one. The zero might indicate a group of patients undergoing a stan-
dard therapy, whereas the group for which Z = 1 could be undergoing



166 CHAPTER 6. REGRESSION MODELS

some experimental therapy. Model 6.4 then indicates the hazard rate
for the standard group to be λ0(t) and for the experimental group to
be λ0(t) exp(β). Testing whether or not the new therapy has any effect
on survival translates as testing the hypothesis H0 : β = 0. If β is less
than zero then the hazard rate for the experimental therapy is less
than that for the standard therapy at all times and is such that the
arithmetic difference between the respective logarithms of the hazards
is of magnitude β. Suppose the problem is slightly more complex and
we have two new experimental therapies. We can write;

λ(t|Z) = λ0(t) exp{β1Z1 + β2Z2}

and obtain Table 6.2. As we shall see the two covariate problem is
very much more complex than the case of a single covariate. Not only
do we need to consider the effect of each individual treatment on the
hazard rate for the standard therapy but we also need to consider the
effect of each treatment in the presence or absence of the other as well
as the combined effect of both treatments together. The particular
model form in which we express any relationships will typically imply
assumptions on those relationships and an important task is to bring
under scrutiny (goodness of fit) the soundess of any assumptions.

It is also worth noting that if we are to assume that a two-
dimensional covariate proportional hazards model hold exactly, then,
integrating over one of the covariates to obtain a one dimensional
model will not result (apart from in very particular circumstances)
in a lower-dimensional proportional hazards model. The lower dimen-
sional model would be in a much more involved non proportional
hazards form. This observation also holds when adding a covariate to
a one-dimensional proportional hazards model, a finding that compels
us, in realistic modeling situations, to only ever consider the model as
an approximation.

By extension the case of several covariates becomes rapidly very
complicated. If, informally, we were to define complexity as the number

Treatment group Z1 Z2 Log of group effect
Standard therapy 0 0 0
Experimental therapy 1 1 0 β1

Experimental therapy 2 0 1 β2

Table 6.2: Effects for two treatment groups
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of things you have to worry about, then we could, even more informally,
state an important theorem.

Theorem 6.1 (Theorem of complexity) The complexity of any
problem grows exponentially with the number of covariates in the
equation.

Obviously such a theorem cannot hold in any precise mathemat-
ical sense without the need to add conditions and restrictions such
that its simple take-home message would be lost. For instance, if each
added covariate was a simple constant multiple of the previous one,
then there would really be no added complexity. But, in some broad
sense, the theorem does hold and to convince ourselves of this we can
return to the case of two covariates. Simple combinatorial arguments
show that the number of possible hypotheses of potential interest is
increasing exponentially. But it is more complex than that. Suppose
we test the hypothesis H0 : β1 = β2 = 0. This translates the clinical
null hypothesis: neither of the experimental therapies impacts survival
against the alternative, H1 : ∃βi 	= 0, i = 1, 2. This is almost, yet not
exactly, the same as simply regrouping the two experimental treat-
ments together and reformulating the problem in terms of a single
binary variable.

Next we might consider testing the null hypothesis H0 : β1 = 0
against the alternative hypothesis H1 : β1 	= 0. Such a test focuses
only on the first experimental treatment, but does not, as we might at
first imagine, lump together both the second experimental treatment
and the standard treatment. This test makes no statement about β2

and so this could indeed take the value zero (in which case the stan-
dard and the second experimental therapy are taken to be the same)
or any other value in which case, detecting a nonzero value for β1

translates as saying that this therapy has an effect different to the
standard regardless of the effect of the second experimental therapy.
Clearly this is different from lumping together the second experimen-
tal therapy with the standard and testing the two together against
the first experimental therapy. In such a case, should the effect of the
first experimental therapy lie somewhere between that of the standard
and the second, then, plausibly, we might fail to detect a nonzero β1

even though there exist real differences between the standard and the
first therapy.

All of this discussion can be repeated, writing β1 in the place of β2.
Already, we can see that there are many angles from which to consider
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an equation such as the above. These angles, or ways of expressing
the scientific question, will impact the way of setting up the statistical
hypotheses. In turn, these impact our inferences.

Another example would be testing the above null hypothesis H0 :
β1 = β2 = 0 against an alternative H1 : 0 < β1 < β2 instead of that
initially considered (i.e., H1 : ∃βi 	= 0, i = 1, 2). The tests, and their
power properties, would not typically be the same. We might consider
recoding the problem, as in Equation 6.10, so that testing H0 : β1 = 0
against H1 : β1 	= 0 corresponds to testing for an effect in either group.
Given this effect we can test H0 : β2 = 0 against H1 : β2 	= 0 which will
answer the question as to whether, given that their exists a treatment
effect, it is the same for both of the experimental treatments:

λ(t|Z) = λ0(t) exp{β1Z1 + (β1 + β2)Z2}
= λ0(t) exp{β1(Z1 + Z2) + β2Z2}. (6.10)

Note that fitting the above models needs no new procedures or software
for example, since both cases come under the standard heading. In the
first equation all we do is write α1 = β1 and α2 = β1 + β2. In the
second we simply redefine the covariates themselves. The equivalence
expressed in the above equation is important. It implies two things.
Firstly, that this previous question concerning differential treatment
effects can be re-expressed in a standard way enabling us to use existing
structures, and computer programs. Secondly, since the effects in our
models express themselves via products of the form βZ, any recoding
of β can be artificially carried out by re-coding Z and vice versa. This
turns out to be an important property and anticipates the fact that a
non proportional hazards model β(t)Z can be re-expressed as a time-
dependent proportional hazards model βZ(t). Hence the very broad
sweep of proportional hazards models.

It is easy to see how the above considerations, applied to a situation
in which we have p > 2 covariates, become very involved. Suppose we
have four ordered levels of some risk factor. We can re-code these
levels using three binary covariates as in Table 6.3; For this model we
can, again, write the hazard function in terms of these binary coding
variables, noting that, as before, there are different ways of expressing
this. In standard form we write

λ(t|Z) = λ0(t) exp{β1Z1 + β2Z2 + β3Z3}

so that the hazard rate for those exposed to the risk factor at level
i, i = 1, . . . , 4, is given by λ0(t) exp(βi) where we take β0 = 0. Our
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Risk factor Z1 Z2 Z3 Log of risk factor effect
Level 1 0 0 0 0
Level 2 1 0 0 β1

Level 3 0 1 0 β2

Level 4 0 0 1 β3

Table 6.3: Coding for four ordered levels of a risk factor.

interest may be more on the incremental nature of the risk as we
increase through the levels of exposure to the risk factor. The above
model can be written equivalently as

λ(t|Z) = λ0(t) exp{β1Z1 + (β1 + β2)Z2 + (β1 + β2 + β3)Z3}
= λ0(t) exp{β1(Z1 + Z2 + Z3) + β2(Z2 + Z3) + β3Z3} (6.11)

so that our interpretation of the βi is in terms of increase in risk.
The coefficient β1 in this formulation corresponds to an overall effect,
common to all levels above the lowest. The coefficient β2 corresponds
to the amount by which the log-hazard rate for the second level differs
from that at the first. Here then, a value of β2 equal to zero does not
mean that there is no effect at level 2, simply that the effect is no
greater than that already quantified at level 1. The same arguments
follow for levels 3 and 4.

Writing the model in these different ways is not changing the basic
model. It changes the interpretation that we can give to the differ-
ent coefficients. The equivalent expression shown in Equation 6.11 for
example means that we can carefully employ combinations of the co-
variates in order to use existing software. But we can also consider the
original coding of the covariates Z. Suppose that, instead of the coding
given in Table (6.3), we use the coding given in Table 6.4. This pro-
vides an equivalent description of the four levels. As we move up the
levels, changing from level i to level i + 1, the log hazard is increased
by βi.

Let’s imagine a situation, taken from Table 6.4, in which β1 = β2 =
β3. Real situations may not give rise to strict equalities but may well
provide good first approximations. The hazards at each level can now
be written very simply as λ0(t) exp(jβ1) for j = 0, 1, 2, 3, and this is
described in Table (6.5). Taking β1 = β, we are then able to write
a model for this situation as; λ(t|Z) = λ0(t) exp(βZ), in which the
covariate Z, describing group level, takes the values 0 to 3. This model
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Risk factor Z1 Z2 Z3 Log of risk factor effect
Level 1 0 0 0 0
Level 2 1 0 0 β1

Level 3 1 1 0 β1 + β2

Level 4 1 1 1 β1 + β2 + β3

Table 6.4: Coding for four ordered levels of a risk factor.

Risk factor Z Log of risk factor effect
Level 1 0 0
Level 2 1 β
Level 3 2 2β
Level 4 3 3β

Table 6.5: Coding for four ordered levels of a risk factor.

has a considerable advantage over the previous one, describing the
same situation of four levels, in that only a single coefficient appears
in the model as opposed to three. We will use our data to estimate
just a single parameter. The gain is clear. The cost, however, is much
less so, and is investigated more thoroughly in the chapters on pre-
diction (explained variation, explained randomness) and goodness of
fit. If the fit is good, i.e., the assumed linearity is reasonable, then we
would certainly prefer the latter model to the former. If we are unsure
we may prefer to make less assumptions and use the extra flexibility
afforded by a model which includes three binary covariates rather than
a single linear covariate. In real data analytic situations we are likely
to find ourselves somewhere between the two, using the tools of fit and
predictability to guide us.

Returning once more to Table 6.4 we can see that the same idea pre-
vails for the βi not all assuming the same values. A situation in which
four ordered levels is described by three binary covariates could be re-
coded so that we only have a single covariate Z, together with a single
coefficient β. Next, suppose that in the model; λ(t|Z) = λ0(t) exp(βZ),
Z not only takes the ordered values, 0, 1, 2 and 3 but also all of those
in between. In a clinical study this might correspond to some prog-
nostic indicator, such as blood pressure or blood cholesterol, recorded
continuously and re-scaled to lie between 0 and 3.
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Including the value of Z, as a continuous covariate, in the model
amounts to making very strong assumptions. It supposes that the log
hazard increases by the same amount for every given increase in Z,
so that the relative risk associated with ∆ = z2 − z1 is the same for
all values of z1 between 0 and 3 − ∆. Let’s make things a little more
involved. Suppose we have the same continuous covariate, this time
let’s call it Z1, together with a single binary covariate Z2 indicating
one of two groups. We can write

λ(t|Z1, Z2) = λ0(t) exp(β1Z1 + β2Z2).

Such a model supposes that a given change in exposure Z1 results
in a given change in risk, as just described, but that, furthermore,
this resulting change is the same at both levels of the discrete binary
covariate Z2. This may be so but such strong assumptions must be
brought under scrutiny. Given the ready availability of software, it is
not at all uncommon for data analysts to simply “throw in” all of the
variables of interest, both discrete and continuous, without considering
potential transformations or recoding, turn the handle, and then try
to make sense of the resulting coefficient estimates together with their
standard errors. Such an exercise will rarely be fruitful. In this respect
it is preferable to write one’s own computer programs when possible
or to use available software such as the R package, which tends to ac-
company the user through model development. Packages that present
a “complete” one-off black box analysis based on a single model are
unlikely to provide much insight into the nature of the mechanisms
generating the data at hand.

The user is advised to exercise great care when including continu-
ous covariates in a model. We can view a continuous covariate as equiv-
alent to an infinite dimensional vector of indicator variables so that,
in accordance with our informal theorem of complexity, the number
of things we need worry about is effectively infinite. Let us not how-
ever overstate things, and it is of course useful to model continuous
covariates. But be wary. Also consider the model

λ(t|Z) = λ0(t) exp(β1Z + β2Z
2).

If Z is binary then Z2 = Z and there is no purpose to the second
term in the equation. If Z is ordinal or continuous then the effect of
Z is quadratic rather than linear. And, adding yet higher-order terms
enables us, at least in principle, to model other nonlinear functions. In
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practice, in order to carry out the analysis, we would use existing tools
by simply introducing a second variable Z2 defined by Z2 = Z2; an
important observation in that the linear representation of the covariate
can be relaxed with relatively little effort. For example, suppose that
the log-relative risk is expressed via some smooth function ψ(z) of a
continuous covariate z. Writing the model

λ(t|Z) = λ0(t) exp{βψ(Z)}

supposes that we know the functional form of the relative risk, at least
up to the constant multiple β. Then, a power series approximation
to this would allow us to write ψ(Z) =

∑
βjZ

j in which any con-
stant term β0 is absorbed into λ0(t). We then introduce the covariates
Zj = Zj to bring the model into its standard form.

6.7 Partially proportional hazards models

In the case of a single binary variable, model (6.2) and model (6.4)
represent the two extremes of the modeling options open to us. Under
model (6.2) there would be no model constraint and any consequent
estimation techniques would amount to dealing with each level of the
variable independently. Under model (6.4) we make a strong assump-
tion about the nature of the relative hazards, an assumption that al-
lows us to completely share information between the two levels. There
exists an important class of models lying between these extremes and,
in order to describe this class, let us now imagine a more complex sit-
uation; that of three groups, A, B and C, identified by a vector Z of
binary covariates; Z = (Z2, Z3). This is summarized in Table 6.6. We
are mainly interested in a treatment indicator Z1, mindful of the fact
that the groups themselves may have very different survival probabil-
ities. Under model (6.4) we have

λ(t|Z) = λ0(t) exp{β1Z1 + β2Z2 + β3Z3}. (6.12)

Z2 Z3 Log of group effect
Group A 0 0 0
Group B 1 0 β2

Group C 1 1 β2 + β3

Table 6.6: Coding for three groups.
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Our assumptions are becoming stronger in that not only are we mod-
eling the treatment affect via β1 but also the group effects via β2 and
β3. Expressing this problem in complete generality, i.e., in terms of
model (6.2), we write

λ(t|Z) = λ0(t) exp{β1(t)Z1 + β2(t)Z2 + β3(t)Z3}. (6.13)

Unlike the simple case of a single binary variable where our model
choices were between the two extremes of model (6.2) and model (6.4),
as the situation becomes more complex, we have open to us the possi-
bility of a large number of intermediary models. These are models that
make assumptions lying between model (6.2) and model (6.4) and, fol-
lowing O’Quigley and Stare (2002) we call them partially proportional
hazards models. A model in between (6.12) and (6.13) is

λ(t|Z) = λ0(t) exp{β1Z1 + β2(t)Z2 + β3(t)Z3}. (6.14)

This model is of quite some interest in that the strongly modeled part
of the equation concerns Z1, possibly the major focus of our study.
Figure 6.5 illustrates a simple situation. The only way to leave any
state is to die, the probabilities of making this transition varying from
state to state and the rates of transition themselves depending on time.
Below, under the heading time-dependent covariates, we consider the
case where it is possible to move within states. Here it will be possible
to move from a low-risk state to a high-risk state, to move from either
to the death state, but to also, without having made the transition to
the absorbing state, death, to move back from high-risk to low-risk.

Stratified models

Coming under the heading of a partially proportional hazards model
is the class of models known as stratified models. In the same way

Alive in Stratum 1 Alive in Stratum 2 Alive in Stratum 3

Dead

Figure 6.5: A stratified model with transitions only to death state.
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these models can be considered as being situated between the two
extremes of Equation 6.2 and Equation 6.3 and have been discussed
by Kalbfleisch and Prentice (1980) among others. Before outlining why
stratified models are simply partially proportional hazards models we
recall the usual expression for the stratified model as;

λ(t|Z(t), w) = λ0w(t) exp{βZ(t)}, (6.15)

where w takes integer values 1, . . . , m. If the coefficient β were allowed
to depend on each stratum, indicated by w, say β(w), then this would
exactly correspond to a situation in which we consider each stratum
completely independent, i.e., we have independent models for each
stratum. This would be nothing more than w separate, independent,
proportional hazards models. The estimation of β(w) for one model
has no impact on the estimation of β(w) for another. If we take β
to be common to the different strata, which is of course the whole
purpose of the stratified model, then, using data, whatever we learn
about one stratum tell us something about the others. They are no
longer independent of one another. Stratified models are necessarily
broader than (6.3), lying, in the precise sense described below, between
this model and the non proportional hazards model (6.2). To see this,
consider a restricted case of model (6.2) in which we have two binary
covariates Z1(t) and Z2(t). We put the restriction on the coefficient
β2, constrained to be constant in time. The model is then

λ{t|Z1(t), Z2(t)} = λ0(t) exp{β1(t)Z1(t) + β2Z2(t)}, (6.16)

a model clearly lying, in a well-defined way, between models (6.3) and
(6.2). It follows that

λ{t|Z1(t) = 0, Z2(t)} = λ0(t) exp{β2Z2(t)}

and

λ{t|Z1(t) = 1, Z2(t)} = λ∗
0(t) exp{β2Z2(t)},

where λ∗
0(t) = λ0(t)eβ1(t). Recoding the binary Z1(t) to take the val-

ues 1 and 2, and rewriting λ∗
0(t) = λ02(t), λ0(t) = λ01(t) we recover

the stratified PH model (6.15) for Z2(t). The argument is easily seen
to be reversible and readily extended to higher dimensions so we can
conclude an equivalence between the stratified model and the partially
proportional hazards model in which some of the β(t) are constrained
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to be constant. We can exploit this idea in the goodness of fit or the
model construction context. If a PH model holds as a good approx-
imation, then the main effect of Z2 say, quantified by β2, would be
similar over different stratifications of Z1 and remain so when these
stratifications are re-expressed as a PH component to a two covari-
ate model. Otherwise the indication is that β1(t) should be allowed to
depend on t. The predictability of any model is studied later under
the headings of explained variation and explained randomness and it
is of interest to compare the predictability of a stratified model and
an un-stratified one. For instance, we might ask ourselves just how
strong is the predictive strength of Z2 after having accounted for Z1.
Since we can account for the effects of Z1 either by stratification or
by its inclusion in a single PH model we may obtain different results.
Possible discrepancies tell us something about our model choice.

The relation between the hazard function and the survival function
follows as a straightforward extension of (6.5). Specifically, we have

S(t|Z) =
∑

w

φ(w){S0w(t)}exp(βZ), (6.17)

where S0w(t) is the corresponding baseline survival function in stratum
w and φ(w) is the probability of coming from that particular stratum.
This is then slightly more involved than the nonstratified case in which,
for two groups the model expressed the survival function of one group
as a power transformation of the other. Nonetheless the connection
to the class of Lehmann alternatives is still there although somewhat
weaker. For the stratified model, once again the quantity λ0w(t) does
not appear in the expression for the partial likelihood given now by

L(β) =
n∏

i=1

{
exp(βZi)∑n

j=1 Yj{wi(Xi), Xi} exp(βZj)

}δi

(6.18)

and, in consequence, once again, λ0w(t) can remain arbitrary. Note
also that each term in the product is the conditional probability that
at time Xi of an observed failure, it is precisely individual i who is
selected to fail, given all the individuals at risk from stratum w and
that one failure from this stratum occurs.

The notation wi(t) indicates the stratum in which the subject i
is found at time t. Although we mostly consider wi(t) which do not
depend on time, i.e., the stratum is fixed at the outset and thereafter
remains the same, it is almost immediate to generalize this idea to time
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dependency and we can anticipate the later section on time-dependent
covariates where the risk indicator Yj{wi(t), t} is not just a function
taking the value one until it drops at some point to zero, but can
change between zero and one with time, as the subject moves from
one stratum to another. For now the function Yj{wi(t), t} will be zero
unless the subject is at risk of failure from stratum wi, i.e., the same
stratum in which the subject i is to be found. Taking the logarithm in
(6.18) and derivative with respect to β, we obtain the score function

U(β) =
n∑

i=1

δi

{

Zi −
∑n

j=1 Yj{wi(Xi), Xi}Zj exp(βZj)
∑n

j=1 Yj{wi(Xi), Xi} exp(βZj)

}

, (6.19)

which, upon setting equal to zero, can generally be solved without
difficulty using standard numerical routines, to obtain the maximum
partial likelihood estimate β̂ of β. The parameter β then is assumed
to be common across the different strata.

Inferences about β are made by treating β̂ as asymptotically nor-
mally distributed with mean β and variance I(β̂)−1, where, now, I(β)
is given by I(β) =

∑n
i=1 δiIi(β). In this case each Ii is, as before, ob-

tained as the derivative of each component to the score statistic U(β).
For the stratified score this is

Ii =

∑n
j=1 Yj{wi(Xi), Xi}Z2

j exp(βZj)
∑n

j=1 Yj{wi(Xi), Xi} exp(βZj)

−
{∑n

j=1 Yj{wi(Xi), Xi}Zj exp(βZj)
∑n

j=1 Yj{wi(Xi), Xi} exp(βZj)

}2

.

The central notion of the risk set is once more clear from the above
expressions and we most usefully view the score function as contrasting
the observed covariates at each distinct failure time with the means of
those at risk from the same stratum. A further way of looking at the
score function is to see it as having put the individual contributions
on a linear scale. We simply add them up within a stratum and then,
across the strata, it only remains to add up the different sums. Once
again, inferences can also be based on likelihood ratio methods or
on the score U(β), which in large samples can be considered to be
normally distributed with mean zero and variance I(β). Multivariate
extensions follow as before. For the stratified model the only important
distinction impacting the calculation of U(β) and Ii(β) is that the
sums are carried out over each stratum separately and then combined
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at the end. The indicator Yj{wi(Xi)} enables this to be carried out in
a simpler way as indicated by the equation.

Random effects and frailty models

Also coming under the heading of partially proportional hazards model
are the classes of models, which include random effects. When the ef-
fects concern a single individual such models have been given the head-
ing frailty models (Vaupel 1979) since, for an individual identified by w,
we can write λ0w(t) = αwλ0(t) implying a common underlying hazard
λ0(t) adjusted to each individual by a factor, the individual’s frailty,
unrelated to the effects of any other covariates that are quantified by
the regression coefficients. The individual effects are then quantified
by the αw.

Although of some conceptual interest, such models are indistin-
guishable from models with time-dependent regression effects and
therefore, unless there is some compelling reason to believe (in the
absence of frailties) that a proportional hazards model would hold, it
seems more useful to consider departures from proportional hazards
in terms of model (6.2). On the other hand, random effects models,
as commonly described by Equation (6.20) in which the αw identify
a potentially large number of different groups, are interesting and
potentially of use. We express these as

λ(t|Z(t), w) = αwλ0(t) exp{βZ(t)}. (6.20)

These models are also partially parametric in that some effects are al-
lowed not to follow a proportional hazards constraint. However, unlike
the stratified models described above, restrictions are imposed. The
most useful view of a random effects model is to see it as a stratified
model with some structure imposed upon the strata. A random effects
model is usually written

λ(t|Z(t), w) = λ0(t) exp{βZ(t) + w}, (6.21)

in which we take w as having been sampled from some distribution
G(w; θ). Practically there will only be a finite number of distinct values
of w, however large. For any value w we can rewrite λ0(t)ew = λ0w(t)
and recover model (6.15). For the right hand side of this equation,
and as we might understand from (6.15), we suppose w to take the
values 1,2, ... The values on the left-hand side, being generated from
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G(·) would generally not be integers but this is an insignificant no-
tational issue and not one involving concepts. Consider the equation
to hold. It implies that the random effects model is a stratified model
in which added structure is placed on the strata. In view of Equation
6.16 and the arguments following this equation we can view a random
effects model equivalently as in Equation 6.2 where, not only are PH
restrictions imposed on some of the components of β(t), but the time
dependency of the other components is subject to constraints. These
latter contraints, although weaker than imposing constancy of effect,
are all the stronger as the distribution of G(w; θ) is concentrated.

Structure of random effects models

Consider firstly the model of Equation (6.3). Suppose we have one main
variable, possibly a treatment variable of interest, coded by Z1 = 0 for
group A and Z1 = 1 for group B. The second variable, say a center
variable, which may or may not have prognostic importance and for
which we may wish to control for possible imbalance is denoted Z2.
A strong modeling approach would include both binary terms in the
model so that the relationship between the hazard functions is as
described in Figure 6.6. If our main focus is on the effect of treatment,
believed to be comparable from one center to another, even though
the effects of the centers themselves are not absent, it makes sense to
stratify. This means that we do not attempt to model the effects of
the centers but, instead, remove any such potential effects from our

t

h(t)

Figure 6.6: PH model with binary covariates denoting center and treat-
ment groups.
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analysis. This is nice in that it allows for rather greater generality
than that illustrated in Figure 6.6. We maintain an assumption of
constant treatment effect but the center effects can be arbitrary. This
is illustrated in Figure 6.7. The illustration makes it clear that, under
the assumption, a weaker one than that implied by Equation 6.3, we
can estimate the treatment effect whilst ignoring center effects. A study
of these figures is important to understanding what takes place when
we impose a random effects model as in Equation (6.21). For many
centers, Figure 6.8, rather than having two curves per center, parallel
but otherwise arbitrary, we have a family of parallel curves. We no

t

h(t)

Figure 6.7: An outline sketch of a stratified PH model. Main variable
in two strata: stratum 1, i.e., center 1 given by dotted line; stratum 2
by continuous line.

t

h(t)

Figure 6.8: An outline sketch of a PH model with centers as random
effects.
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longer are able to say anything about the distance between any given
centers, as we could for the model of Equation 6.3, a so-called fixed
effects model, but the distribution of the distances between centers is
something we aim to quantify. This is summarized by the distribution
G(w; θ) and our inferences are then partly directed at θ.

Random effects models versus stratified models

The stratified model is making weaker assumptions than the random
effects model. This follows since the random effects model is just a
special case of a stratified model in which some structure is imposed
upon the differences between strata. The stratified model not only
leaves any distribution of differences between strata unspecified, but
it also makes no assumption about the form of any given stratum.
Whenever the stratified model is valid, then so also is the random
effects model, the converse not being the case.

It may then be argued that we are making quite a strong assump-
tion when we impose this added structure upon the stratified model.
In exchange we would hope to make non-negligible inferential gains,
i.e., greater precision of our estimates of errors for the parameters of
main interest, the treatment parameters. In practice gains tend to be
small for most situations and give relatively little reward for the ex-
tra effort made. Since any such gains are only obtainable under the
assumption that the chosen random effects model actually generates
the data, actual gains in practice are likely to be yet smaller and, of
course, possibly negative when our additional model assumptions are
incorrect. A situation where gains for the random effects model may
be of importance is one where a non-negligeable subset of the data
include strata containing only a single subject. In such a case simple
stratification would lose information on those subjects. A random ef-
fects model, assuming the approximation to be sufficiently accurate,
enables us to recover such information.

Efficiency of random effects models

Most of our discussion here focuses on different possible representa-
tions of the infinitely complex reality we are hoping to model. Our
purpose in modeling is, ultimately, to draw simple, at least clear-cut,
inferences. The question of inference no longer concerns the general
but rather the specific data set we have at hand. If our main concern
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is on estimating risk functions then the question becomes, to what
extent do we gain by including in our inferential setup the presence
of random effect terms. Since our main objective is estimation and
quantification of regression parameters enabling us to say something
about the risk factors under study, the idea behind the inclusion of
additional random effect terms is to make more precise this estimation
and quantification.

As already argued above the inclusion of individual random effects
(frailties) is of no practical interest and simply amounts to expressing
the idea, albeit in an indirect way, of model inadequacy (O’Quigley
and Stare 2002). We therefore assume that we are dealing with groups,
some of which, but not all, may only include a isolated individual. We
know that a partial likelihood analysis, stratified by group, is estimat-
ing the same regression parameter. Inference is based on the stratified
score statistic. We contrast the observed covariate value with its esti-
mated expectation under the model. Different model assumptions will
impact this estimated expectation and it is here that any efficiency
gains can be made. For a stratified model, these estimated expecta-
tions may be with respect to relatively small risk sets. A random effects
model on the other hand, via the inclusion of a different w per group,
will estimate the relevant expectations over the whole risk set and not
just that relative to the group defined by the covariate value.

Comparisons for the stratified model are made with respect to the
relatively few subjects of the group risk sets. This may lead us to
believe that much information could be recovered were we able to
make the comparison, as does the alternative random effects analysis,
with respect to the whole risk set. Unfortunately this is not quite so
because each contribution to the score statistic involves a difference
between an observation on a covariate and its expectation under the
model and the “noise” in the expectation estimate is of lower order
that the covariate observations themselves. There is not all that much
to be gained by improving the precision of the expectation estimate.

In other words, using the whole of the risk set or just a small sam-
ple from it will provide similar results. This idea of risk set sampling
has been studied in epidemiology and it can be readily seen that the
efficiency of estimates based on risk set samples of size k, rather than
the whole risk set, is of the order

k

k + 1

⎧
⎨

⎩
1 +

n∑

j=1

1
n(n − j + 1)

⎫
⎬

⎭
. (6.22)
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This function increases very slowly to one but, with as few as four sub-
jects on average in each risk set comparison, we have already achieved
80% efficiency. With nine subjects this figure is close to 90%. Real ef-
ficiency will be higher for two reasons: (1) the above assumes that the
estimate based on the full risk set is without error, (2) in our context
we are assuming that each random effect w is observed precisely.

Added to this is the fact that, since the stronger assumptions of
the random effects model must necessarily depart to some degree from
the truth, it is by no means clear that there is much room to make
any kind of significant gains. As an aside, it is of interest to note that,
since we do not gain much by considering the whole of the risk set as
opposed to a small sample from it, the converse must also hold, i.e., we
do not lose very much by working with small samples rather than the
whole of the risk set. In certain studies, there may be great economical
savings made by only using covariate information, in particular when
time dependent, from a subset of the full risk set.

Table 6.7 was taken from O’Quigley and Stare (2002). The table
was constructed from simulated failure times where the random effects
model was taken to be exactly correct. Data were generated from this
model in which the gamma frailty had a mean and variance equal to
one. The regression coefficient of interest was exactly equal to 1.0.
Three situations were considered; 100 strata each of size 5, 250 strata
each of size 2 and 25 strata each of size 20. The take-home message from
the table is that, in these cases for random effects models, not much
is to be gained in terms of efficiency. Any biases appear negligible and
the mean of the point estimates for both random effects and stratified
models, while differing notably from a crude model ignoring model
inadequacy, are effectively indistinguishable. As we would expect there
is a gain for the variance of estimates based on the random effects
model but, even for highly stratified data (100 × 5), any gain is very
small. Indeed for the extreme case of 250 strata, each of size 2, surely
the worst situation for the stratified model, it is difficult to become
enthusiastic over the comparative performance of the random effects
model.

100 × 5 250 × 2 25 × 20
Ignoring effect 0.52 (0.16) 0.51 (0.16) 0.54 (0.16)

Random effect model 1.03 (0.19) 0.99 (0.22) 1.01 (0.17)
Stratified model 1.03 (0.22) 1.02 (0.33) 1.01 (0.18)

Table 6.7: Simulations for three models under different groupings.
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We might conclude that we only require around 80% of the com-
parative sample size needed for estimating relative risk based on the
stratified model. But, such a conclusion, leaning entirely on the as-
sumption that we know not only the class of distributions from which
the random effects come but also the exact value of the population
parameters, suggests, in practice, that the hoped for gain, in this most
hopeful of cases, is more likely to be greater than the 80% indicated
by our calculations. The only real situation that can be clearly disad-
vantageous to the stratified model is one where a non-negligible subset
of the strata are seen to only contain a single observation. For such
cases, and assuming a random effects model to provide an adequate fit,
information from states with a single observation (which would be lost
by a stratified analysis) can be recovered by a random effects analysis.

6.8 Non proportional hazards model
with intercept

Recalling the general model, i.e., the non proportional hazards model
for which there is no restriction on β(t), note that we can re-express
this so that the function β(t) is written as a constant term, the inter-
cept, plus some function of time multiplied by a constant coefficient.
Writing this as

λ(t|Z) = λ0(t) exp{[β0 + θQ(t)]Z}, (6.23)

we can describe the term β0 as the intercept and Q(t) as reflecting
the nature of the time dependency. The coefficient θ will simply scale
this dependency and we may often be interested in testing the par-
ticular value, θ = 0, since this value corresponds to a hypothesis of
proportional hazards. Fixing the function Q(t) to be of some special
functional form allows us to obtain tests of proportionality against al-
ternatives of a particular nature. Linear or quadratic decline in the
log-relative risk, change-point, and crossing hazard situations are all
then easily accommodated by this simple formulation. Tests of good-
ness of fit of the proportional hazards assumption can be then be
constructed which may be optimal for certain kinds of departures.

Although not always needed it can sometimes be helpful to divide
the time axis into r nonoverlapping intervals, B1, . . . , Br in an ordered
sequence beginning at the origin. In a data-driven situation these in-
tervals may be chosen so as to have a comparable number of events in
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each interval or so as not to have too few events in any given interval.
Defined on these intervals is a vector, also of dimension r, of some
known or estimable functions of time, not involving the parameters of
interest, β. This is denoted Q(t) = {Q1(t), . . . , Qr(t)} This model is
then written in the form,

λ(t|Z) = λ0(t) exp{[β + θQ(t)]Z}, (6.24)

where θ is a vector of dimension r. Thus, θQ(t) (here the usual inner
product) has the same dimension as β, i.e., one. In order to investigate
the time dependency of particular covariates in the case of multivariate
Z we would have β of dimension greater than one, in which case Q(t)
and θ are best expressed in matrix notation (O’Quigley and Pessione
1989).

Here, as through most of this text, we concentrate on the univari-
ate case since the added complexity of the multivariate notation does
not bring any added light to the concepts being discussed. Also, for
the majority of the cases of interest, r = 1 and θ becomes a sim-
ple scalar. We will often have in mind some particular form for the
time-dependent regression coefficient Q(t), common examples being a
linear slope (Cox 1972), an exponential slope corresponding to rapidly
declining effects (Gore et al. 1984) or some function related to the
marginal distribution, F (t) (Breslow, Edler and Berger 1984). In prac-
tice we may be able to estimate this function of F (t) with the help
of consistent estimates of F (t) itself, in particular the Kaplan-Meier
estimate. The non proportional hazards model with intercept is of par-
ticular use in questions of goodness of fit of the proportional hazards
model pitted against specific alternatives. These specific alternatives
can be quantified by appropriate forms of the function Q(t). We could
also test a joint null hypothesis H0 : β = θ = 0 corresponding to no
effect, against an alternative H1, either θ or β nonzero. This leads to
a test with the ability to detect non proportional hazards, as well as
proportional hazards departures to the null hypothesis of no effect. We
could also test a null hypothesis H0 : θ = 0 against H1 : θ 	= 0, leaving
β itself unspecified. This would then provide a goodness-of-fit test of
the proportional hazards assumption. We return to these issues later
on when we investigate in greater detail how these models give rise to
simple goodness of fit tests.
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Changepoint models

A simple special case of a non proportional hazards model with an
intercept is that of a changepoint model. O’Quigley and Pessione
(1991), O’Quigley (1994), and O’Quigley and Natarajan (2004) de-
velop such models whereby we take the function Q(t) to be defined
by, Q(t) = I(t ≤ γ) − I(t > γ) with γ an unknown changepoint. This
function Q(t) depends upon γ but otherwise does not depend upon the
unknown regression coefficients and comes under the above heading of
a non proportional hazards model with an intercept. For the purposes
of a particular structure for a goodness of fit test we can choose the
intercept to be equal to some fixed value, often zero (O’Quigley and
Pessione 1991). The model is then

λ(t|Z) = λ0(t) exp{[β + αQ(t)]Z(t)}. (6.25)

The parameter α is simply providing a scaling (possibly of value zero)
to the time dependency as quantified by the function Q(t). The chosen
form of Q(t), itself fixed and not a parameter, determines the way in
which effects change through time; for instance whether they decline
exponentially to zero, whether they decline less rapidly or any other
way in which effects might potentially change through time.

Inference for the changepoint model is not straightforward and in
the series of chapters dealing with approaches to inference one chap-
ter is devoted specifically to changepoint models. Note that were γ to
be known, then inference would come under the usual headings with
no additional difficulty. The changepoint model expressed by Equa-
tion (6.25) deals with the regression effect changing through time and
putting the model under the heading of a non proportional hazards
model. A related, although entirely different model, is one which arises
as a simplification of a proportional model with a continuous covari-
ate and the idea is to replace the continuous covariate by a discrete
classification.

The classification problem itself fall into two categories. If we are
convinced of the presence of effects and simply wish to derive the most
predictive classification into, say, two groups, then the methods using
explained randomness or explained variation will achieve this goal. If,
on the other hand, we wish to test a null hypothesis of absence of effect,
and, in so doing, wish to consider all possible classifications based on a
family of potential cutpoints of the continuous covariate, then special
techniques of inference are required. We return to this in Chapter 12.
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6.9 Time-dependent covariates

In all of the above models we can make a simple change by writing the
covariate Z as Z(t), allowing the covariate to assume different values
at different time points. Our model then becomes

λ(t|Z(t)) = λ0(t) exp{β(t)Z(t)} (6.26)

and allows situations such as those described in Figure 6.9 to be ad-
dressed. As we change states the intensity function changes. This en-
ables us to immediately introduce further refinement into a simple
alive/dead model whereby we can suppose one or more intermediary
states. A subject can move across states thereby allowing prognosis to
improve or to worsen, the rates of these changes themselves depending
upon other factors. The state death is described as an absorbing state
and so we can move into this state but, once there, we cannot move
out of it again.

Mostly we will work with the proportional hazard restriction on
the above model so that

λ(t|Z(t)) = λ0(t) exp{βZ(t)}, (6.27)

Such a simple, albeit very much more sophisticated, model than our
earlier one describes a broad range of realistic situations. We will see
that models with time-dependent covariates do not raise particular
difficulties, either computationally or from the viewpoint of interpre-
tation, when we deal with inference. This will be clear from the main

State 1
No symptoms

State 2
Progression

State 3
Dead

Figure 6.9: Compartment model where ability to move between states
other than death state can be characterized by time dependent indi-
cator covariates Z(t).
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theorem of proportional hazards regression (Section 7.4). The model
simply says that the effect of the covariate remains constant, i.e., the
regression coefficient remains constant, but that the covariate, or state,
can itself change with time. Models with time-dependent covariates can
also be used as a purely artificial construction in order to be able to ex-
press non proportional hazards models in a proportional hazards form.
That is not our main purpose here, however, and we are assuming that
Z(t) does correspond to some real physical measurement which can be
obtained through time.

We can also imagine a slightly more involved situation than the
above. Suppose that the covariate Z remains fixed, but that a sec-
ond covariate, known to influence survival, also needs to be accounted
for. Furthermore this second covariate is time dependent. We could, of
course, simply use the above model extended to the case of two covari-
ates. This is straightforward, apart from the fact that, as previously
underlined by the complexity theorem, care is needed. If, however, we
do not wish to model the effects of this second covariate, either be-
cause it is only of indirect concern or because its effects might be hard
to model, then we could appeal to a stratified model. We write;

λ(t|Z(t), w(t)) = λ0w(t)(t) exp{βZ(t)}, (6.28)

where, as for the non time-dependent case, w(t) takes integer values
1,..., m indicating status. The subject can move in and out of the
m strata as time proceeds. Two examples illustrate this. Consider a
new treatment to reduce the incidence of breast cancer. An important
time-dependent covariate would be the number of previous incidents
of benign disease. In the context of inference, the above model sim-
ply means that, as far as treatment is concerned, the new treatment
and the standard are only ever contrasted within patients having the
same previous history. These contrasts are then summarized in final
estimates and possibly tests. Any patient works her way through the
various states, being unable to return to a previous state. The states
themselves are not modeled. A second example might be a sociologi-
cal study on the incidence of job loss and how it relates to covariates
of main interest such as training, computer skills etc. Here, a strati-
fication variable would be the type of work or industry in which the
individual finds him or herself. Unlike the previous example a subject
can move between states and return to previously occupied states.

Time-dependent covariates describing states can be used in the
same way for transition models in which there is more than one
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State 4State 3

State 2State 1

Figure 6.10: Compartment model with 2 absorbing “death” states.

absorbing “death” state. Many different kinds of situations can be
constructed, these situations being well described by compartment
models with arrows indicating the nature of the transitions that are
possible (Figure 6.10). For compartment models with time-dependent
covariates there is a need for some thought when our interest focuses
on the survival function. The term external covariate is used to de-
scribe any covariate Z(t) such that, at t = 0, for all other t > 0, we
know the value of Z(t). The paths can be described as deterministic.
In the great majority of the problems that we face this is not the case
and a more realistic way of describing the situation is to consider the
covariate path Z(t) to be random. Also open to us as a modeling pos-
sibility, when some covariate Z1(t) is of secondary interest assuming a
finite number of possible states, is to use the at risk function Y (s, t).
This restricts our summations to those subjects in state s as described
above for stratified models.

6.10 Time-dependent covariates
and non proportional hazards models

A non proportional hazard model with a single constant covariate Z
is written

λ(t|Z) = λ0(t) exp{β(t)Z}. (6.29)

The multivariate extension is immediate and, in keeping with our con-
vention of only dealing with the univariate problem whenever possi-
ble, we focus our attention on the simple product β(t)Z at some given
point in time t. If we define β0 = β(0) we can rewrite this product as
β0Z(t) where Z(t) = Zβ(t)/β0. We could take any other time point t′
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and, once again, we observe that we can re-write the product β(t′)Z
as β0Z(t′) where Z(t′) = Zβ(t′)/β0. This equivalence is then true for
any, and all, values of t. Thus, a non proportional hazards model with
a constant covariate can be re-expressed, equivalently, as a simple pro-
portional hazards model with a time-dependent covariate.

It is almost immediate, and perhaps worth carrying out as an ex-
ercise, to show that we can reverse these steps to conclude also that
any model with time dependent covariates can be expressed in an
equivalent form as a non proportional hazards model. In conclusion,
for every non proportional hazards model there exists an equivalent
proportional hazards model with time-dependent covariates. Indeed,
it also clear that this argument can be extended. For, if we have the
model; λ(t|Z) = λ0(t) exp{β(t)Z(t)}, then, via a re-expression of the
model using β0Z

∗(t) where Z∗(t) = Z(t)β(t)/β0, we can construct
a proportional hazards model with a time-dependent regression effect
from a model which began with both time-dependent regression effects
as well as time changing regression coefficient.

This equivalence is a formal one and does not of itself provide any
new angle on model development. It may be exploited nonetheless in
theoretical investigation or used as a means to enable the structuring
of a particular problem. For example, many available softwares, as well
as user written code, will cater for time-dependent covariables. This
facility can then be made use of should we wish to study particular
types of non proportional hazards models.

6.11 Proportional hazards models
in epidemiology

For arbitrary random variables X and Y with joint density f(x, y),
conditional densities g(x|y) and h(y|x), marginal densities v(x) and
w(y), we know that

f(x, y) = g(x|y)w(y) = h(y|x)v(x),

so that, in the context of postulating a model for the pair (X, Y ), we
see that there are two natural potential characterizations. Recalling the
discussion from Section 4.3 note that, for survival studies, our interest
in the binary pair (T, Z), time and covariate, can be seen equivalently
from the viewpoint of the conditional distribution of time given the
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covariate, along with the marginal distribution of the covariate, or from
the viewpoint of the conditional distribution of the covariate given
time, along with the marginal distribution of time. This equivalence
we exploit in setting up inference where, even though the physical
problem concerns time given the covariate, our analysis describes the
distribution of the covariate given time.

In epidemiological studies the variable time T is typically taken to
be age. Calendar time and time elapsed from some origin may also be
used but, mostly, the purpose is to control for age in any comparisons
we wish to make. Usually we will consider rates of incidence of some
disease within small age groups or possibly, via the use of models, for a
large range of values of age. Unlike the relatively artificial construction
of survival analysis which exploits the equivalent ways of expressing
joint distributions, in epidemiological studies our interest naturally
falls on the rates of incidence for different values of Z given fixed
values of age T . It is not then surprising that the estimating equations
we work with turn out to be essentially the same for the two situations.

The main theorem of proportional hazards regression (Section 7.4)
applies more immediately in epidemiology than in survival type stud-
ies. We return to this in the chapter on inference. One important dis-
tinction, although already well catered for by use of our “at risk”
indicator variables, is that for epidemiological studies the subjects in
different risk sets are often distinct subjects. Even so, as we will see,
the form of the equations is the same, and software which allows an
analysis of survival data will also allow an analysis of certain problems
in epidemiology.

For a binary outcome, indicated by Y = 1 or Y = 0, and a binary
risk or exposure factor, Z = 1 or Z = 0, the relative risk is defined as
the ratio of the probabilities P (Y = 1|Z = 1)/P (Y = 1|Z = 0) and
the, related, odds ratio ψ as

ψ =
P (Y = 1|Z = 1)P (Y = 0|Z = 0)
P (Y = 1|Z = 0)P (Y = 0|Z = 1).

In the above and in what follows, in order for the notation not to
become too cluttered, we write Pr (A) = P (A). Under a “rare disease
assumption,” i.e., when P (Y = 0|Z = 0) and P (Y = 0|Z = 1) are close
to 1, then the odds ratio and relative risk approximate one another.
One reason for being interested in the odds ratio, as a measure of the
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impact of different levels of the covariate (risk factor) Z follows from
the easily obtained identity

P (Y =1|Z =1)P (Y =0|Z =0)
P (Y =1|Z =0)P (Y =0|Z =1)

=
P (Z =1|Y =1)P (Z =0|Y =0)
P (Z =1|Y =0)P (Z =0|Y =1)

.

(6.30)

Thus, the impact of different levels of the risk factor Z can equally well
be estimated by studying groups defined on the basis of this same risk
factor and their corresponding incidence rates of Y = 1. This provides
the rationale for the case-control study in which, in order to estimate ψ,
we make our observations on Z over fixed groups of cases and controls
(distribution of Y fixed), rather than the more natural, but practically
difficult if not impossible, approach of making our observations on Y
for a fixed distribution of Z. Assumptions and various subtleties are
involved. The subject is vast and we will not dig too deeply into this.
The points we wish to underline in this section are those that establish
the link between epidemiological modeling and proportional hazards
regression.

Series of 2 × 2 tables

The most elementary presentation of data arising from either a
prospective study (distribution of Z fixed) or a case-control study
(distribution of Y fixed) is in the form of a 2 × 2 contingency table
in which the counts of the number of observations are expressed.
Estimated probabilities, or proportions of interest are readily calcu-
lated. In Table 6.8, a1∗ = a11 + a12, a2∗ = a21 + a22, a∗1 = a11 + a21,
a∗2 = a12 + a22 and a∗∗ = a1∗ + a2∗ = a∗1 + a∗2. For prospective
studies the proportions a11/a∗1 and a12/a∗2 estimate the probabil-
ities of being a case (Y = 1) for both exposure groups while, for
case-control studies, the proportions a11/a1∗ and a21/a2∗ estimate the

Z = 1 Z = 0 totals
Y = 1 a11 a12 a1∗
Y = 0 a21 a22 a2∗
Totals a∗1 a∗2 a∗∗

Table 6.8: Basic 2 × 2 table for cases (Y = 1) and controls (Y = 0).
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probabilities of exhibiting the risk or exposure factor (Z = 1) for both
cases and controls. For both types of studies we can estimate ψ by
the ratio (a11a22)/(a21a12), which is also the numerator of the usual
chi-squared test for equality of the two probabilities. If we reject the
null hypothesis of the equality of the two probabilities we may wish to
say something about how different they are based on the data from the
table. As explained below, under the heading “Logistic regression,”
quantifying the difference between two proportions is not best done
via the most obvious, and simple, arithmetic difference. There is room
for more than one approach, the simple arithmetic difference being
perfectly acceptable when sample sizes are large enough to be able
to use the De Moivre-Laplace approximation (Section 3.3) but, more
generally, the most logical in our context is to express everything in
terms of the odds ratio. We can then exploit the following theorem;

Theorem 6.2 Taking all the marginal totals as fixed, the conditional
distribution of a11 is written

P (a|a1∗, a2∗, a∗1, a∗2)=
(

a1∗
a

)(
a2∗

a∗1 − a

)

ψa

/
∑

u

(
a1∗
u

)(
a2∗

a∗1 − u

)

ψu,

the sum over u being over all integers compatible with the marginal
totals. The conditionality principle appears once more, in this instance
in the form of fixed margins. The appropriateness of such condition-
ing, as in other cases, can be open to discussion. But again, insightful
conditioning has greatly simplified the inferential structure. Following
conditioning of the margins, it is only necessary to study the distri-
bution of any one entry in the 2 × 2 table, the other entries being
then determined. It is usual to study the distribution of a11. A non-
linear estimating equation can be based on a11 − E(a11), expectation
obtained from Theorem 6.2, and from which we can estimate ψ and
associate a variance term with the estimator. The nonlinearity of the
estimating equation, the only approximate normality of the estimator,
and the involved form of variance expressions has led to much work in
the methodological epidemiology literature; improving the approxima-
tions, obtaining greater robustness and so on. However, all of this can
be dealt with in the context of a proportional hazards (conditional
logistic) regression model. Since it would seem more satisfactory to
work with a single structure rather than deal with problems on a case-
by-case basis the recommendation is to work with proportional and
non proportional hazards models. Not only does a model enable us
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Table i Z = 1 Z = 0 Totals
Y = 1 a11(i) a12(i) a1∗(i)
Y = 0 a21(i) a22(i) a2∗(i)
Totals a∗1(i) a∗2(i) a∗∗(i)

Table 6.9: 2 × 2 table for ith age group of cases and controls.

to more succinctly express the several assumptions which we may be
making it offers, more readily, well established ways of investigating
the validity of any such assumptions. In addition the framework for
studying questions such as explained variation, explained randomness
and partial measures of these is clear and requires no new work.

The “rare disease” assumption, allowing the odds ratio and relative
risk to approximate one another, is not necessary in general. However,
the assumption can be made to hold quite easily and is therefore not
restrictive. To do this we construct fine strata, within which the prob-
abilities P (Y = 0|Z = 0) and P (Y = 0|Z = 1) can be taken to be
close to 1. For each stratum, or table, we have a 2 × 2 table as in
Table 6.9, indexed by i. Each table provides an estimate of relative
risk at that stratum level and, assuming that the relative risk itself
does not depend upon this stratum, although the actual probabilities
themselves composing the relative risk definition may themselves de-
pend upon strata, then the problem is putting all these estimates of the
same thing into a single expression. The most common such expression
for this purpose is the Mantel-Haenszel estimate of relative risk.

Mantel-Haenszel estimate of relative risk

The, now famous, Mantel-Haenszel estimate of relative risk was de-
scribed by Mantel and Haenszel (1959) and is particularly simple to
calculate. Referring to the entries of observed counts in Table 6.10,
if we first define for the i th subtable Ri = a11(i)a22(i)/a∗∗(i) and
Si = a12(i)a21(i)/a∗∗(i), then the Mantel-Haenszel summary relative
risk estimate across the tables is given by ψ̂MH =

∑
i Ri/

∑
i Si.

Breslow (1996) makes the following useful observations concerning
ψ̂MH and β̂MH = ψ̂MH . First, E(Ri) = ψiE(Si) where the true odds
ratio in the ith table is given by ψi. When all of these odds ratios co-
incide then ψ̂MH is the solution to the unbiased estimating equation;
R−ψS = 0, where R =

∑
i Ri and S =

∑
i Si. Under an assumption of
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Table i Z = 1 Z = 0 Totals
Y = 1 a11(i) a12(i) a1∗(i)
Y = 0 a21(i) a22(i) a2∗(i)
Totals a∗1(i) a∗2(i) a∗∗(i)

Table i Z = 1 Z = 0 Totals
Y = 1 e11(i) e12(i) e1∗(i)
Y = 0 e21(i) e22(i) e2∗(i)
Totals e∗1(i) e∗2(i) e∗∗(i)

Table 6.10: 2×2 table for ith age group of cases and controls. Left-hand
table: observed counts. Right hand table: expected counts.

binomial sampling, Breslow shows that the variances of the individual
contributions to the estimating equation are such that the quantity
2a2

∗∗(i)Var (Ri − ψSi) can be equated to;

E {[a11(i)a22(i)+ψa12(i)a21(i)] [a11(i) + a22(i) + ψ (a12(i) + a21(i))]} ,

from which, by a simple application of the delta method we can obtain
estimates of the variance of ψ̂MH .

Logistic regression

Without any loss in generality we can express the two probabilities
of interest, P (Y = 1|Z = 1) and P (Y = 1|Z = 0) as simple power
transforms of one another. This follows, since, whatever the true values
of these probabilities, there exists some positive number α such that
P (Y = 1|Z = 1) = P (Y = 1|Z = 0)α. The parameter α is constrained
to be positive in order that the probabilities themselves remain be-
tween 0 and 1. To eliminate any potential dangers that may arise,
particularly in the estimation context where, even though the true
value of α is positive, the estimate itself may not be, a good strategy
is to re-express this parameter as α = exp(β). We then have

log log P (Y = 1|Z = 1) = log log P (Y = 1|Z = 0) + β. (6.31)

The parameter β can then be interpreted as a linear shift in the log-
log transformation of the probabilities, and can take any value between
−∞ and ∞, the inverse transformations being one-to-one and guaran-
teed to lie in the interval (0,1). An alternative model to the above is

logitP (Y = 1|Z = 1) = logitP (Y = 1|Z = 0) + β. (6.32)

where the logit transformation, again one-to-one, is defined by logit θ =
log{θ/(1− θ)}. Although a natural model, the model of Equation 6.31
is not usually preferred to that of Equation 6.32, motivated in an
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analogous way (i.e., avoiding constraints) but having a slight advantage
from the viewpoint of interpretation. This is because the parameter β
is the logarithm of the odds ratio, i.e., β = log ψ.

In the light of the equivalence of the the odds for disease given
the risk factor and the odds for the risk factor given the disease, as
expressed in Equation 6.30, we conclude immediately that, equivalent
to the above model involving β, expressed in Equation 6.32, we have
a model expressing the conditional probability of Z given Y and us-
ing the same β. This highlights an important feature of proportional
hazards modeling whereby we focus attention on the conditional dis-
tribution of the covariates given an event yet, when thinking of the
applied physical problem behind the analysis, we would think more
naturally in terms of the conditional distribution of the event given
the covariates. The essential point is that the unknown regression pa-
rameter, β, of interest to us is the same for either situation so that in
place of Equation (6.32), we can write

logitP (Z = 1|Y = 1) = logitP (Z = 1|Y = 0) + β. (6.33)

Since the groups are indicated by a binary Z, we can exploit this
in order to obtain the more concise notation, now common for such
models, whereby

logitP (Y = 1|Z) = logitP (Y = 1|Z = 0) + βZ. (6.34)

As we have tried, in as much as is possible throughout this text, to
restrict attention to a single explanatory variable, this is once more the
case here. Extension to multiple explanatory variables, or risk factors,
is immediate and, apart from the notation becoming more cumber-
some, there are no other concepts to which to give thought. We write
the model down, as above in Equation (6.34), and use several binary
factors Z (Z now a vector) to describe the different group levels. The
coefficients β (β now a vector) then allow the overall odds ratio to be
modeled or, allows the modeling of partial odds ratios whereby certain
risk factors are included in the model, and our interest focuses on those
remaining after having taken account of those already included. The
above model can also be written in the form

P (Y = 1|Z)
1 − P (Y = 1|Z)

= exp(β0 + βZ) , (6.35)

where β0 = logit P (Y = 1|Z = 0). Maintaining an analogy with the
usual linear model we can interpret β0 as an intercept, simply a func-
tion of the risk for a “baseline” group defined by Z = 0.
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Assigning the value Z = 0 to some group and thereby giving that
group baseline status is, naturally, quite arbitrary and there is nothing
special about the baseline group apart from the fact that we define it
as such. We are at liberty to make other choices and, in all events,
the only quantities of real interest to us are relative ones. In giving
thought to the different modeling possibilities that arise when dealing
with a multivariate Z, the exact same kind of considerations, already
described via several tables in the section on modeling multivariate
problems will guide us (see Section 6.6 and those immediately fol-
lowing it). Rather than repeat or reformulate those ideas again here,
the reader, interested in these aspects of epidemiological modeling, is
advised to go over those earlier sections. Indeed, without a solid under-
standing as to why we choose to work with a particular model rather
than another, and as to what the different models imply concerning the
complex inter-relationships between the underlying probabilities, it is
not really possible to carry out successful modeling in epidemiology.

Stratified and conditional logistic regression

In the above model, and Z being multivariate, we may wish to include
alongside the main factors under study, known risk factors, and par-
ticularly risk factors such as age, or period effects, for which we would
like to control. Often age alone is the strongest factor and its effect
can be such that the associated errors of estimation in quantifying its
impact can drown the effect of weaker risk factors. One possibility in
controlling for such factors, S, it to appeal to the idea of stratification.
This means that analysis is carried out at each level of S and, within
a level, we make the same set of assumptions concerning the principle
factors under study. We write

P (Y = 1|Z, S)
1 − P (Y = 1|Z, S)

= exp(β0 + βZ) , (6.36)

where, in the same way as before, β0 = logit P (Y = 1|Z = 0, S).
The important aspect of a stratified model is that the levels of S only
appear in the left-hand side of the equation.

We might conclude that this is the same model as the previous one
but it is not quite and, in later discussions on inference, we see that it
does impact the way the likelihood is written. In the simpler cases, in
as far as β is concerned, the stratified model is exactly equivalent to a
regular logistic model if we include in the regression function indicator
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variables, of dimension one less than the number of strata. However,
when the number of strata is large, use of the stratified model enables
us to bypass estimation of the stratum-level effects. If these are not
of real interest then this may be useful in that it can result in gains
in estimating efficiency even though the underlying models may be
equivalent. In a rough intuitive sense we are spending the available
estimating power on the estimation of many less parameters, thereby
increasing the precision of each one. This underlines an important
point in that the question of stratification is more to do with inference
than the setting up of the model itself.

This last remark is even more true when we speak of conditional
logistic regression. The model will look almost the same as the un-
conditional one but the process of inference will be quite different.
Suppose we have a large number of strata, very often in this context
defined by age. A full model would be as in Equation (6.35), including
in addition to the risk factor vector Z, a vector parameter of indicator
variables of dimension one less than the number of strata. Within each
age group, for the sake of argument let’s say age group i, we have the
simple logistic model. However, rather than write down the likelihood
in terms of the products P (Y = 1|Z) and P (Y = 0|Z) we consider a
different probability upon which to construct the likelihood, namely
the probability that the event of interest, the outcome or case in other
words, occurred on an individual (in particular the very individual for
whom the event did occur, given that one event occurred among the set
S{i} of the a∗∗(i) cases and controls. Denoting Zi to be the risk factor
for the case, corresponding to the age group i, then this probability is
simply; exp(βZi)/

∑
I[j ∈ S{i}] exp(βZj). The likelihood is then the

product of such terms across the number of different age groups for
which a case was selected. If we carefully define the “at-risk” indi-
cator Y (t) where t now represents age, we can write the conditional
likelihood as

L(β) =
n∏

i=1

{
exp(βZi)∑n

j=1 Yj(Xi) exp(βZj)

}δi

. (6.37)

Here we take the at-risk indicator function to be zero unless, for
the subject j, Xj has the same age, or is among the same age group
as that given by Xi. In this case the at-risk indicator Yj(Xi) takes the
value one. To begin with, we assume that there is only a single case
per age group, that the ages are distinct between age groups, and that,
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for individual i, the indicator δi takes the value one if this individual
is a case. Use of the δi would enable us to include in an analysis sets
of controls for which there was no case. This would be of no value in
the simplest case but, generalizing the ideas along exactly the same
lines as for standard proportional hazards models, we could easily work
with indicators Y (t) taking the value one for all values less than t and
becoming zero if the subject becomes incident or is removed from the
study. A subject is then able to make contributions to the likelihood
at different values of t, i.e., at different ages, and appears therefore in
different sets of controls. Indeed, the use of the risk indicator Y (t) can
be generalized readily to other complex situations.

One example is to allow it to depend on two time variables, for
example, an age and a cohort effect, denoting this as Y (t, u). Com-
parisons are then made between individuals having the same age and
cohort status. Another useful generalization of Y (t) is where individ-
uals go on and off risk, either because they leave the risk set for a
given period or, possibly, because their status cannot be ascertained.
Judicious use of the at-risk indicator Y makes it possible then to
analyze many types of data that, at first glance, would seem quite
intractable. This can be of particular value in longitudinal studies in-
volving time-dependent measurements where, in order to carry out
unmodified analysis we would need, at each observed failure time, the
time dependent covariate values for all subjects at risk. These would
not typically all be available. A solution based on interpolation, assum-
ing that measurements do not behave too erratically, is often employed.
Alternatively we can allow for subjects for whom, at an event time, no
reliable measurement is available, to simply temporarily leave the risk
set, returning later when measurements have been made.

The striking thing to note about the above conditional likelihood
is that it coincides with the expression for the partial likelihood given
earlier in the chapter. This is no real coincidence of course and the main
theorem of proportional hazards regression (Section 7.4), described in
the following chapter, applies equally well here. For this we need one
more concept, described later, and that is the idea of sampling from the
risk set. The difference between the Y (t) in a classical survival study,
where it is equal to one as long as the subject is under study and then
drops to zero, as opposed to the Y (t) in the simple epidemiological
application in which it is zero most of time, taking the value one when
indicating the appropriate age group, is a small one. It can be equated
with having taken a small random sample from a conceptually much



6.12. EXERCISES AND CLASS PROJECTS 199

larger group followed since time (age) is zero. On the basis of the above
conditional likelihood we obtain the estimating equation

U(β) =
n∑

i=1

δi

{

Zi −
∑n

j=1 Yj(Xi)Zj exp(βZj)
∑n

j=1 Yj(Xi) exp(βZj)

}

, (6.38)

which we equate to zero in order to estimate β. The equation contrasts
the same quantities written down in Table 6.10 in which the expecta-
tions are taken with respect to the model. The estimating equations are
then essentially the same as those given in Table 6.10 for the Mantel-
Haenszel estimator. Furthermore, taking the second derivative of the
expression for the log-likelihood, we have that I(β) =

∑n
i=1 δiIi(β)

where

Ii(β)=

∑n
j=1Yj(Xi)Z2

j exp(βZj)
∑n

j=1Yj(Xi) exp(βZj)
−
{∑n

j=1Yj(Xi)Zj exp(βZj)
∑n

j=1Yj(Xi) exp(βZj)

}2

, (6.39)

then I(β) =
∑n

i=1 δiIi(β). Inferences can then be carried out on the
basis of these expressions. In fact, once we have established the link
between the applied problem in epidemiology and its description via
a proportional hazards model, we can then appeal to those model-
building techniques (explained variation, explained randomness, good-
ness of fit, conditional survivorship function etc.) which we use for
applications in time to event analysis. In this context the building of
models in epidemiology is no less important, and no less delicate, than
the building of models in clinical research.

6.12 Exercises and class projects

1. One of the early points of discussion on Cox’s 1972 paper was how
to deal with tied data. Look up the Cox paper and write down the
various different ways that Cox and the contributors to the discus-
sion suggested that tied data be handled. Explain the advantages and
disadvantages to each approach.

2. One suggestion for dealing with tied data, not in that discussion, is
to simply break the ties via some random split mechanism. What are
the advantages and drawbacks to such an approach?

3. As an alternative to the proportional hazards model consider the two
models (i) S(t|Z) = S0(t)+βZ, and (ii) logitS(t|Z) = logitS0(t)+βZ.
Discuss the relative advantages and drawbacks of all three models.
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4. Show that the relation; S(t|Z) = {S0(t)}exp(βZ) implies the Cox
model and vice versa.

5. Suppose that we have two groups and that a proportional hazards
model is believed to apply. Suppose also that we know for one of the
groups that the hazard rate is a linear function of time, and equal to
zero at the origin. Given data from such a situation, suggest different
ways in which it can be analyzed and the possible advantages and
disadvantages of the various approaches.

6. Explain in what sense the components of Equation 6.7 and equation
(6.8) can be viewed as an equation for the mean and an equation for
the variance.

7. Using equations (6.7) and (6.8) work out the calculations explicitly
for the two-group case, i.e., the case in which there are n1(t) subjects
at risk from group 1 at time t and n2(t) from group 2.

8. Suppose that we have available software able to analyze a propor-
tional hazards model with a time-dependent covariate Z(t). Suppose
that, for the problem in hand the covariate, Z, does not depend on
time. However, the regression effect β(t) is known to decline as an
exponential function of time. How would you proceed?

9. Suppose we fit a proportional hazards model, using some standard
software, to a continuous covariate Z defined on the interval (1,4). Un-
known to us our model assumption is incorrect and the model applies
exactly to log Z instead. What effect does this have on our parameter
estimate?

10. Consider an experiment in which there are eight levels of treatment.
The levels are ordered. The null hypothesis is that there is no treatment
effect. The alternative is that there exists a non-null effect increasing
with level until it reaches one of the levels, say level j, after which the
remaining levels all have the same effect as level j. How would you test
for this?

11. Write down the joint likelihood for the underlying hazard rate
and the regression parameter β for the two-group case in which we
assume the saturated piecewise exponential model. Use this likelihood
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to recover the partial likelihood estimate for β. Obtain an estimate of
the survivorship function for both groups.

12. For the previous question derive an approximate large sample con-
fidence interval for the estimate of the survivorship function for both
groups in cases: (i) where the parameter β is exactly known, (ii) where
the parameter is replaced by an estimate with approximate large sam-
ple variance σ2.

13. Carry out a large sample simulation for a model with two binary
variables. Each study is balanced with a total of 100 subjects. Choose
β1 = β2 = 1.5 and simulate binary Z1 and Z2 to be uncorrelated.
Show the distribution of β̂1 in two cases: (i) where the model used
includes Z2, (ii) where the model used includes only Z1. Comment on
the distributions, in particular the mean value of β̂1 in either case.
14. In the previous exercise, rather than include in the model Z2, use
Z2 as a variable of stratification. Repeat the simulation in this case for
the stratified model. Comment on your findings.

15. Consider the following regression situation. We have one-dimen-
sional covariates Z, sampled from a density g(z). Given z we have a
proportional hazards model for the hazard rates. Suppose that, in ad-
dition, we are in a position to know exactly the marginal survivorship
function S(t) =

∫
S(t|z)g(z)dz. How can we use this information to

obtain a more precise analysis of data generated under the PH model
with Z randomly sampled from g(z)?

16. Suppose we have two groups defined by the indicator variable Z =
{0, 1}. In this example, unlike the previous in which we know the
marginal survival, we know the survivorship function S0(t) for one
of the groups. How can this information be incorporated into a two-
group comparison in which survival for both groups is described by a
proportional hazards model? Use a likelihood approach.

17. Use known results for the exponential regression model in order
to construct an alternative analysis to that of the previous question
based upon likelihood.

18. A simple test in the two-group case for absence of effects is to
calculate the area between the two empirical survival curves. We can
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evaluate the null distribution by permuting the labels corresponding
to the group assignment indicator Z. Carry out this analysis for the
Freireich data and obtain a p-value. How does this compare with that
obtained from an analysis based on the assumption of an exponential
model and that based on partial likelihood?

19. Carry out a study, i.e., the advantages, drawbacks and potentially
restrictive assumptions, of the test of the previous example. How does
this test compare with the score test based on the proportional hazards
model?

20. Obtain a plot of the likelihood function for the Freireich data. Using
simple numerical integration routines, standardize the area under the
curve to be equal to one.

21. For the previous question, treat the curve as a density. Use the
mean as an estimate of the unknown β. Use the upper and lower 2.5%
percentiles as limits to a 95% confidence interval. Compare these re-
sults with those obtained using large sample theory.

22. Suppose we have six ordered treatment groups indicated by Z =
1, . . . , 6. For all values of Z ≤ � the hazards are the same. For Z > �
the hazards are again the same and either the same as those for Z ≤ �
or all strictly greater than for Z ≤ �. The value of � is not known. How
would you model and set up tests in this situation?

23. Consider an epidemiological application in which workers may be
exposed to some carcinogen during periods in which they work in some
particular environment. When not working in that particular environ-
ment their risk falls back to the same as that for the reference popu-
lation. Describe this situation via a proportional hazards model with
time-dependent effects. How do you suggest modifying such a model if
the risk from exposure rather than falling back to the reference group
once exposure is removed is believed to be cumulative?

24. Write down a conditional logistic model in which we adjust for both
age and cohort effects where cohorts are grouped by intervals of births
from 1930-35, 1936-40, 1940-45, etc. For such a model is it possible
to answer the question: was there a peak in relative risk during the
nineteen sixties?




