
Chapter 4

Background: Survival
analysis

4.1 Summary

We recall some elementary definitions concerning probability distrib-
utions, putting an emphasis toward one minus the usual cumulative
distribution function, i.e., the survival function. This is also sometimes
called the survivorship function. The closely related hazard function
has, traditionally, been the most popular function around which to
construct models. For multistate models it can be helpful to work
with intensity functions, rather than hazard functions since these al-
low the possibility of moving in and out of states. This is facilitated by
the very important function, Y (t), the “at-risk” indicator. A number
of special parametric cases of proportional hazards models are pre-
sented. The issue of censoring and the different kinds of censoring is
discussed. The “at-risk” indicator Yi(w, t), taking the value one when
the subject i is at risk of making a transition of a certain kind, in-
dicated by w, makes it particularly simple to address more complex
issues in survival such as repeated events, competing risks, and mul-
tistate modelling. We consider some tractable parametric models, the
exponential model in particular.

4.2 Motivation

Survival time T will be a positive random variable, typically right
skewed and with a non-negligible probability of sampling large values,
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far above the mean. The fact that an ordering, T1>T2, corresponds to
a solid physical interpretation has led some authors to consider that
time is somehow different from other continuous random variables,
reminiscent of discussion among early twentieth century physicists
about the nature of time “flowing inexorably in and of itself.” These
characteristics are sometimes put forward as a reason for considering
techniques other than the classic techniques of linear regression. From
a purely statistical viewpoint, this reasoning is incorrect. Elementary
transformations fix the skewness problems which, in consequence,
reveal themselves as quite superficial. Nor is there any worthwhile,
statistical, distinction between time and, say, height or weight. The
reason for considering particular techniques, outside of the classical
ones of linear regression, is the presence of censoring. In early work
censoring came to be viewed as a nuisance feature of the data collec-
tion, hampering our efforts to study the main relationships of interest.
A great breakthrough occurred when this feature of the data, the cen-
soring, was modelled by the “at-risk” function. Almost immediately it
became clear that all sorts of much more involved problems; compet-
ing risks, repeated events, correlated outcomes, could all be handled
with almost no extra work. Careful use of the “at-risk” indicator was
all that would be required. At the heart then of survival analysis is
the idea of being at risk for some event of interest taking place in a
short time frame (for theoretical study this short time will be made
arbitrarily small). Transition rates are then very natural quantities
to consider. In epidemiology these ideas have been well rooted for a
half-century where age-dependent rates of disease incidence have been
the main objects under investigation.

4.3 Basic tools

Time and risk

The insurance example in the introduction highlights an obvious, but
important, issue. If driver A, on average, has a higher daily risk than
driver B, then his mean time to be involved in an accident will be
shorter. Conversely, if driver B has a longer mean time to accident,
then he has, on average, a lower daily risk. For many examples we may
tend to have in mind the variable time and how it is affected by other
variables. But we can think equally well in terms of risk over short
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time periods, a viewpoint that we will see generalizes more readily to
be able to deal with complicated situations. The connection between
time and risk is outlined more formally below.

Hazard and related functions

The purpose here is to continue the introduction of preliminary no-
tions and some basic concepts. Before discussing data and estimation
we consider the problem in its most simplified form as that of the
study of the pair of random variables (T, Z), T being the response
variable “survival” of principal interest and Z an associated “explana-
tory” variable. There would be little difficulty in applying the host of
techniques from linear regression to attacking this problem were it not
for the presence of a “censoring” variable C. The particularity of C
is that, when observed, i.e., C = c, we are no longer able to observe
values of T for which T > c. Also, in most cases, when T is observed,
we are no longer able to observe C. Nonetheless an observation on one
tells us something about the other, in particular that it must assume
some greater value.

Although the joint distribution of (T, Z) can be of interest, we are
particularly interested in the conditional distribution of T given Z.
First let us consider T alone. The probability density function of T is
defined as

f(t) = lim
∆t→0+

1
∆t

Pr(t < T < t + ∆t), (4.1)

where lim∆t→0+ means that ∆t goes to 0 only through positive values.
We define as usual F (t) =

∫ t
0 f(u)du. The survivorship function is

written as S(t) = 1−F (t). If we view the density as the unconditional
failure rate, we can define a conditional failure rate as being the same
quantity after having accounted for the fact that the individual has
already survived until the time point t. We call this λ(t) and we define

λ(t) = lim
∆t→0+

1
∆t

Pr(t < T < t + ∆t|T > t). (4.2)

It helps understanding to contrast equation (4.2) and (4.1) and we
can see that λ(t) and f(t) are closely related quantities. In a sense
the function f(t) for all values of t is seen from the standpoint of an
observer sitting at T = 0, whereas, for the function λ(t), the observer
moves along with time looking at the same quantity but viewed from
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the position T = t. Analogous to a density, conditioned by some event,
we can define

λ(t|C > t) = lim
∆t→0+

1
∆t

Pr(t < T < t + ∆t|T > t, C > t). (4.3)

The conditioning event C > t is of great interest since, in practical
investigations, all our observations at time t have necessarily been con-
ditioned by the event. All associated probabilities are also necessarily
conditional. But note that, under an independent censoring mecha-
nism, λ(t|C > t) = λ(t). This result underlies the great importance
of certain assumptions, in this case that of independence between C
and T . The conditional failure rate, λ(t), is also sometimes referred
to as the hazard function, the force of mortality, the instantaneous
failure rate or the age-specific failure rate. If we consider a small in-
terval then λ(t)×∆t closely approximates the probability of failing in
a small interval for those aged t, the approximation improving as ∆t
goes to zero. If units are one year then these are yearly death rates.
The cumulative hazard function is also of interest and this is defined
as Λ(t) =

∫ t
0 λ(u)du. For continuous λ(t), using elementary calculus

we can see that:

λ(t) = f(t)/S(t) , S(t) = exp{−Λ(t)} , f(t) = λ(t) exp{−Λ(t)}.

Although mathematically equivalent, we may prefer to focus atten-
tion on one function rather than another. The survival function, S(t),
is the function displaying most clearly the information the majority
of applied workers are seeking. The hazard function, λ(t), of central
concern in much theoretical work, provides the most telling visual rep-
resentation of time effects. An important function, of theoretical and
practical interest, is the conditional survivorship function,

S(t, u) = Pr(T > t|T > u) = exp{Λ(u) − Λ(t)} , (u < t).

From this it is clear that S(t, u) = S(t)/S(t) and that S(u, u) = 1
so that it is as though the process had been restarted at time t = u.
Other quantities that may be of interest in some particular contexts
are the mean residual lifetime, m(t), and the mean time lived in the
interval [0, t], µ(t), defined as

m(t) = E(T − t|T ≥ t), µ(t) =
∫ t

0
S(u)du. (4.4)
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Like the hazard itself, these functions provide a more direct reflection
on the impact of having survived until time t. The mean residual life-
time provides a very interpretable measure of how much more time we
can expect to survive, given that we have already reached the time-
point t. This can be useful in actuarial applications. The mean time
lived in the interval [0, t] is not so readily interpretable, requiring a lit-
tle more thought (it is not the same as the expected lifetime given that
T < t). It has one strong advantage in that it can be readily estimated
from right censored data in which, without additional assumptions, we
may not even be able to estimate the mean itself. The functions m(t)
and µ(t) are mathematically equivalent to one another as well as the
three described above and, for example, a straightforward integration
by parts shows that m(t) = S−1(t)

∫∞
t S(u)du and that µ(∞) = E(T ).

If needed, it follows that the survivorship function can be expressed in
terms of the mean residual lifetime by

S(t) = m−1(t)m(0) exp
(

−
∫ t

0
m−1(u)du

)

.

We may wish to model directly in terms of m(t), allowing this func-
tion to depend on some vector of parameters θ. If the expression for
m(t) is not too intractable then, using f(t) = −S′(t) and the above
relationship between m(t) and S(t), we can write down a likelihood for
estimation purposes in the situation of independent censoring. An in-
teresting and insightful relationship (see for instance the Kaplan-Meier
estimator) between S(t) and S(t, u) follows from considering some dis-
crete number of time points of interest. Thus, for any partition of the
time axis, 0 = a0 < a1 <, . . . , an = ∞, we see that

S(aj) = S(aj−1)S(aj , aj−1) =
∏

�≤j

S(a�, a�−1).

The implication of this is that the survival function S(t) can always be
viewed as the product of a sequence of conditional survival functions,
S(t, u). Although more cumbersome, a theory could equally well be
constructed for the discrete case whereby f(ti) = Pr(T = ti) and
S(ti) =

∑
�≥i f(t�). We do not explore this here.

Intensity functions and compartment models

Modern treatment of survival analysis tends to focus more on inten-
sity than hazard functions. This leads to great flexibility, enabling, for
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Alive Dead

Figure 4.1: A simple alive/dead transition model.

example, the construction of simple models to address questions in
complex situations such as repeated events (Andersen and Gill 1982).
We believe that both concepts can be useful and we will move back and
forth between them according to the application. Intensity functions
find their setting in the framework of stochastic processes where the
random nature of T is suppressed, t being taken simply as an index to
some stochastic process. The counting process N(t), takes the value 0
at t = 0, remaining at this same value until some time point, say T = u,
at which the event under study occurs and then N(t) = 1 (t ≥ u). We
can then define, in an infinitesimal sense, i.e., the equality only holds
precisely in the limit as dt goes to zero through positive values

Pr{(N(t) − N(t − dt) = 1|Ft−dt)} = α(t)dt (4.5)

where Ft−dt, written as Ft− when we allow dt > 0 to be arbitrarily
close to zero, is the accumulated information, on all processes under
consideration, observed up until time t − dt. The observed set Ft−
is referred to as the history at time t. The set is necessarily non de-
creasing in size as t increases, translating the fact that more is being
observed or becoming known about the process. The Kolmogorov ax-
ioms of probability, in particular sigma additivity, may not hold for
certain noncountable infinite sets. For this reason probabilists take
great care, and use considerable mathematical sophistication, to en-
sure, in broad terms, that the size of the set Ft− does not increase
too quickly with t. The idea is to ensure that we remain within the
Kolmogorov axiomatic framework, in particular that we do not vio-
late sigma additivity. Much of these concerns have spilled over into
the applied statistical literature where they do not have their place.
No difficulties will arise in applications, with the possible exception of
theoretical physics, and the practitioner, unfamiliar with measure the-
ory, ought not be deterred from applying the techniques of stochastic
processes simply because he or she lacks a firm grasp of concepts such
as filtrations. It is hard to imagine an application in which a lack of
understanding of the term “filtration” could have led to error. On the
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other hand, the more accessible notions of history, stochastic process,
and conditioning sets are central and of great importance both to un-
derstanding and to deriving creative structures around which applied
problems can be solved. Viewing t as an index to a stochastic process
rather than simply the realization of a random variable T , and defining
the intensity process α(t) as above, will enable great flexibility and the
possibility to model events dynamically as they unfold.

At risk functions Y (t), Y (w, t) and multistate models

The simplest case we can consider occurs when following a randomly
chosen subject through time. The information in Ft− tells us whether
or not the event has yet occurred and if the subject is still at risk i.e.,
the set Ft− is providing the same information as an observation on the
function Y (t) where we take Y (t) to be left continuous, assuming the
value one until the occurrence of an event, or removal from observation,
at which time it assumes the value zero. If the simple fact of not having
been removed from the study, the event (C > t) is independent of the
event (t < T < t + dt), then conditioning on Y (t) = 1 is the same as
conditioning on T > t. Referring then to Equation (4.2) it is clear that
if Y (t) = 0 then α(t) = 0 and, if Y (t) = 1 then α(t) = λ(t). Putting
these two results together we have

α(t) = Y (t)λ(t). (4.6)

This relation is important in that, under the above condition, referred
to as the independent censoring condition, the link between the inten-
sity function and the hazard function is clear. Note that the intensity
function is random since Y is random when looking forward in time.
Having reached some time point, t say, then α(t) is fixed and known
since the function Y (u), 0 < u < t is known and Y (t) is left continuous.

We call Y (·) the “at risk” function (left continuous specifically so
that at time t the intensity function α(t) is not random). The idea
generalizes readily and in order to cover a wide range of situations
we also allow Y to have an argument w where w takes integer values
counting the possible changes of state. For the ith subject in any study
we will typically define Yi(w, t) to take the value 1 if this subject, at
time t, is at risk of making a transition of type w, and 0 otherwise.
Figure 4.2 summarizes a situation in which there are four states of
interest, an absorbing state, death, and three states from which an
individual is able to make a transition into the death state. Transitions
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Alive in State A Alive in State B Alive in State C

Dead

Figure 4.2: A simple compartment model with an absorbing state.

State 1
No symptoms

State 2
Progression

State 3
Dead

Figure 4.3: A simple compartment model with a single absorbing state.

among the three nondeath states themselves are not allowed. Later we
will consider different ways of modeling such a situation, depending
upon further assumptions we may wish or not wish to make.

In Figure 4.3 there is one absorbing state, the death state, and two
non absorbing states between which an individual can make transi-
tions. We can define w = 1 to indicate transitions from state 1 to state
2, w = 2 to indicate transitions from state 2 to state 1, w = 3 to indi-
cate transitions from state 1 to state 3 and, finally, w = 4 to indicate
transitions from state 2 to state 3. Note that such an enumeration only
deals with whether or not a subject is at risk for making the transi-
tion, the transition probabilities (intensities) themselves could depend
on the path taken to get to the current state. We can then appreciate
why it can be helpful to frame certain questions in terms of compart-
ment models, intensity functions and the risk function. Rather com-
plex situations can be dealt with quite straightforwardly, the figures
illustrating simple cases where we can use the argument w in Yi(w, t)
to indicate, at any t, which kinds of transition any given subject i is
available to make. In Figure 4.4 there are two absorbing states, one of
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State 4State 3

State 2State 1

Figure 4.4: A complex compartment model with two absorbing states.

which can only be reached from state 2. The transition rate between
state 2 and state 4 may or may not depend on the number of times
a subject moves between states 1 and 2. Allowing for transitions be-
tween states greatly adds to the flexibility of any model so that, in
Figure 4.2, although the explanatory variable (state) has three levels,
the model is, in principle, much simpler than that described in Figure
4.3 where the explanatory variable can assume only two states.

At-risk indicator Y (w, t) and repeated events

Some studies have the particularity that an occurrence of the event of
interest does not remove the subject from further observation. Addi-
tional events, of the same or of different types, may happen. An exam-
ple is benign breast disease, potentially followed by malignant disease.
A patient may have several incidences of benign breast disease at dif-
ferent intervals of time. Following any one of these incidences, or even
before such an incidence takes place the subject may become incident
for malignant disease. If our interest is essentially focussed on the in-
cidence of malignant disease then we would treat the time-dependent
history of benign breast disease as a potential explanatory variable for
incidence of malignant disease. However, we may also be interested in
modelling directly the repeated incidence of benign breast disease in
its own right. Clearly a patient can only be at risk of having a third
incident of benign breast disease if she has already suffered two earlier
incidents. We can model the rate of incidence for the j th occurrence
of benign disease as,

αj(t) = Y (j, t)λj(t − tj−1), (4.7)

where t0 = 0 and tj is the observed occurrence of the j th event.
Different options may be considered for modeling λj(t). Usually there
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will be at least one covariate, Z, indicating two distinct prognostic
groups, possibly established on the basis of different treatments. The
model will involve coefficients multiplying Z and thereby quantifying
treatment affect. Allowing these coefficients to also depend upon j
provides the broadest generality and is equivalent to analyzing sepa-
rate studies for each of the occurrences. Stronger modeling, imposing
greater structure, might assume that the coefficients do not depend
upon j, in which case the information provided by a subject having
three incident cases is comparable to that of three independent sub-
jects each providing information on a single incident. So-called mar-
ginal models have been proposed in this context. Here, it would be
as though the subject, after an event, starts the clock from zero and,
aside from covariate information, is deemed to be in the same position
as another subject who has just entered the study without having yet
suffered a single event. A lot of information would appear to be thereby
gained but the set-up seems rather artificial and implausible. Starting
the clock from zero, after each event, is sensible but it is more realistic
to assume that the underlying hazard rates, i.e., those not adjusted
by covariate information, would change with the number of prior inci-
dents. In other words the most sensible model would condition on this
information allowing the baseline hazard rate to change according to
the number of events counted so far.

4.4 Some potential models

Simple exponential

The simple exponential model is fully specified by a single parameter
λ. The hazard function, viewed as a function of time, does not in
fact depend upon time so that λ(t) = λ. By simple calculation we
find that Pr(T > t) = exp(−λt). Note that E(T ) = 1/λ and, indeed,
the exponential model is often parameterized directly in terms of the
mean θ = E(T ) = 1/λ. Also Var(t) = 1/λ2. This model expresses the
physical phenomenon of no aging or wearing out since, by elementary
calculations, we obtain S(t + u, u) = S(t); the probability of surviving
a further t units of time, having already survived until time u, is the
same as that associated with surviving the initial t units of time. The
property is sometimes referred to as the lack of memory property of
the exponential model.
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For practical application the exponential model may suggest it-
self in view of its simplicity or sometimes when the constant hazard
assumption appears realistic. A good example is that of a light bulb
which may only fail following a sudden surge in voltage. The fact that
no such surge has yet occurred may provide no information about the
chances for such a surge to take place in the next given time period. If
T has an exponential distribution with parameter λ then λT has the
so-called standard exponential distribution, i.e., mean and variance are
equal to one.

Recall that for a random variable Y having normal distribution
N (µ, σ2) it is useful to think in terms of a simple linear model Y =
µ+σε, where ε has the standard distribution N (0, 1). As implied above,
scale changes for the exponential model lead to a model still within the
exponential class. However, this is no longer so for location changes so
that, unlike the normal model in which linear transformations lead to
other normal models, a linear formulation for the exponential model is
necessarily less straightforward. It is nonetheless of interest to consider
the closest analogous structure and we can write

Y = log T = α + bW, (4.8)

where W has the standard extreme value density f(w) = exp{w −
exp(w)}. When α = 0 we recover an exponential model for T with
parameter b, values other than zero for α pushing the variable T out of
the restricted exponential class into the broader Weibull class discussed
below.

Proportional hazards exponential

In anticipation of the central topic of this book (that of heterogeneity
among the subjects under study) imagine that we have two groups,
indicated by a binary variable Z = 0 or Z = 1. For Z = 0 the subjects
follow an exponential law with parameter λ0. For Z = 1 the subjects
follow an exponential law with parameter λ1. It is clear that for the
hazard functions there exists real β (= log λ1 − log λ0) such that

λ(t|Z) = λ(t|Z = 0) exp(βZ) = λ0 exp(βZ). (4.9)

The important point to note here is that the ratio of the hazards,
λ(t|Z = 1)/λ(t|Z = 0) does not involve t. It also follows that S(t|Z =
1) = S(t|Z = 0)α where α = exp(β). The survival curves are power
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transformations of one another. This is an appealing parameterization
since, unlike a linear parameterization, whatever the true value of β,
the constraints that we impose upon S(t|Z = 1) and S(t|Z = 0) in
order to be well-defined probabilities, i.e., remaining between 0 and 1,
are always respected. Such a model is called a proportional hazards
model. For three groups we can employ two indicator variables, Z1

and Z2, such that, for group 1 in which the hazard rate is equal to λ0,
Z1 = 0 and Z2 = 0, for group 2, Z1 = 1 and Z2 = 0 whereas for group
3, Z1 = 0 and Z2 = 1. We can then write;

λ(t|Z) = λ0 exp(β1Z1 + β2Z2), (4.10)

where λ0 = λ(t|Z1 = Z2 = 0). It is worthwhile bringing the reader’s
attention to just where the constraints of the model express themselves
here. They concern the hazard rates for all groups, which are assumed
to be constant. Given this constraint there are no further constraints
concerning the relationship between the groups. Suppose, though, that
we were to consider a further group, group 4, defined by Z1 = 1 and
Z2 = 1. In order to add a fourth group without introducing a further
binary coding variable Z3, we introduce the constraint that the hazard
for group 4 is simply expressed in terms of the hazards for groups 2
and 3. Such assumptions are commonly made in routine data analysis
but, nonetheless, ought come under critical scrutiny. We return to this
issue in later chapters. The extension to many groups follows in the
same way. For this we take Z to be a p dimensional vector of indicator
variables and β a vector of parameters having the same dimension as
Z, the product βZ in Equation 4.9 now implying an inner product,
i.e., βZ =

∑p
i=1 βiZi. In this case the proportional hazards exponential

model (4.9) implies that every group follows some simple exponential
law, a consequence being that the survivorship function for any group
can be expressed as a power transformation of any other group. Once
again, it is important to keep in mind just which assumptions are
being made, the potential impact of such assumptions on conclusions,
and techniques for bringing under scrutiny these assumptions. The
proportional hazards constraint then appears as a very natural one in
which we ensure that the probabilities S(t|z) and subsequent estimates
always remain between 0 and 1. A linear shift added to S(t|0) would
not allow for this. We do nonetheless have a linear shift although on a
different, and thereby more appropriate, scale and we can write
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log− log S(t|Z) = log− log S(t|0) +
p∑

i=1

βiZi.

This formulation is the same as the proportional hazards formulation.
Noting that − log S(T |Z = z) is an exponential variate some authors
prefer to write a model down as a linear expression in the transformed
random variable itself with an exponential error term. This then pro-
vides a different link to the more standard linear models we are familiar
with.

Piecewise exponential

The lack of flexibility of the exponential model will often rule it out
as a potential candidate for application. Many other models, only one
or two of which are mentioned here, are more tractable, a property
stemming from the inclusion of at least one additional parameter.
Even so, it is possible to maintain the advantages of the exponen-
tial model’s simplicity while simultaneously gaining in flexibility. One
way to achieve this is to construct a partition of the time axis 0 = a0 <
a1 < . . . < ak = ∞. Within the jth interval (aj−1, aj) , (j = 1, . . . , k)
the hazard function is given by λ(t) = λj . We can imagine that this
may provide quite a satisfactory approximation to a more involved
smoothly changing hazard model in which the hazard function changes
through time. We use S(t) = exp{−Λ(t)} to obtain the survival func-
tion where

Λ(t) =
k∑

j=1

I(t ≥ aj)λj(aj − aj−1)

+
k∑

j=1

I(aj−1 ≤ t < aj)λj(t − aj−1). (4.11)

Properties such as the lack of memory property of the simple exponen-
tial have analogues here by restricting ourselves to remaining within
an interval. Another attractive property of the simple exponential is
that the calculations are straightforward and can be done by hand and,
again, there are ready analogues for the piecewise case. Although the
ready availability of sophisticated computer packages tends to elimi-
nate the need for hand calculation, it is still useful to be able to work
by hand if for no other purposes than those of teaching. Students gain
invaluable insight by doing these kind of calculations the long way.
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Proportional hazards piecewise exponential

In the same way as for the simple exponential model, for two groups,
indicated by a binary variable Z = 0 or Z = 1, each having constant
piecewise rates on the same intervals, it is clear that there exists βj

such that, for t ∈ [aj−1, aj),

λ(t|Z) = λ(t|Z = 0) exp(βjZ) = λ0(t) exp{β(t)Z}, (4.12)

where we now have a function β(t) =
∑k

j=1 βjI(aj−1 ≤ t < aj). This
can be described as a nonproportional hazards model and, if, under a
further restriction that β(t) is a constant function of time, i.e., β1 =
β2 = · · · = βk = β, then, as for the simple exponential model, we have
S(t|Z = 1) = S(t|Z = 0)α where α = exp(β) and, once again, such
a model is called a proportional hazards model. The model can once
more be described in terms of a linear translation on log− log S(t|z).

Weibull model

Another way to generalize the exponential model to a wider class is
to consider a power transformation of the random variable T . For
any positive γ, if the distribution of T γ is exponential with parameter
λ, then the distribution of T itself is said to follow a Weibull model
whereby

f(t) = λγ(λt)γ−1 exp{−(λt)γ}

and S(t) = exp−(λt)γ . The hazard function follows immediately from
this and we see, as expected, that when γ = 1 an exponential model
with parameter λ is recovered. It is of interest to trace out the pos-
sible forms of the hazard function for any given λ. It is monotonic,
increasing for values of γ greater than 1 and decreasing for values less
than 1. This property, if believed to be reflected in some given phys-
ical situation, may suggest the appropriateness of the model for that
same situation. An example might be the time taken to fall over for
a novice roller blade enthusiast - the initial hazard may be high, ini-
tially decreasing somewhat rapidly as learning sets in and thereafter
continuing to decrease to zero, albeit more slowly.

The Weibull model, containing the exponential model as a spe-
cial case, is an obvious candidate structure for framing questions of
the sort - is the hazard decreasing to zero or is it remaining at some
constant level? A null hypothesis would express this as H0 : γ = 1.
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Straightforward integration shows that E(T r) = λ−rΓ(1 + r/γ) where
Γ(·) is the gamma function,

Γ(p) =
∫ ∞

0
up−1e−udu p > 0.

For p integer Γ(p) = (p− 1)! The mean and the variance are λ−1Γ(1+
1/γ) and λ−2Γ(1 + 2/γ)−E2, respectively. The Weibull model can be
motivated from the theory of statistics of extremes. The distribution
coincides with the limiting distribution of the smallest of a collection
of random variables, under broad conditions on the random variables
in question (Kalbfleisch and Prentice 1980, page 48).

Proportional hazards Weibull

Once again, for two groups indicated by a binary variable Z = 0 or
Z = 1, sharing a common γ but different values of λ, then there ex-
ists a β such that λ(t|Z)/λ(t|Z = 0) = exp(βZ). Since, as above,
the right-hand side of the equation does not depend on t, then we
have a proportional hazards model. This situation and the other two
described above are the only common parametric models that come
under the heading proportional hazards models by simply expressing
the logarithm of the location parameter linearly in terms of the co-
variates. The situation for more than two groups follows as before.
Consider however a model such as

λ(t|Z) = λγ(λt)γ−1 exp(βZ), (4.13)

in which Z indicates three groups by assuming the values Z = 1, 2, 3.
Unlike the model just above in which three groups were represented

by two distinct binary covariates, Z1 and Z2, we have only one covari-
ate. In the context of estimation and a given set of data we will almost
invariably achieve greater precision in our estimates when there are less
parameters to estimate. We would then appear to gain by using such a
model. As always though, any such gain comes at a price and the price
here is that we have made much stronger assumptions. We are assum-
ing that the signed “distance” between groups 1 and 2, as measured by
the logarithm of the hazard, is the same as the signed distance between
groups 2 and 3. If this is not the case in reality then we are estimating
some sort of compromise, the exact nature of which is determined by
our estimating equations. In an extreme case in which the distances
are the same but the signs are opposite we might erroneously conclude



118 CHAPTER 4. BACKGROUND: SURVIVAL ANALYSIS

that there is no effect at all. At the risk of being repetitive, it cannot be
stressed too much just how important it is to identify the assumptions
we are making and how they may influence our conclusions. Here the
assumptions concern both the parametric form of the underlying risk
as well as the nature of how the different groups are related. Allowing
a shape parameter γ to be other than one provides a more flexible
model for the underlying risk than that furnished by the simple expo-
nential model. The choice of covariate coding, on the other hand, is
more restrictive than the earlier choice. All of this needs to be studied
in applications. An interesting point is that, for the three group case
defined as above, the “underlying” hazard, λ(t|Z = 0) = λγ(λt)γ−1

does not correspond to the hazard for any of the three groups under
study. It is common in practice to consider a recoding of Z, a simple
one being Z−Z̄, so that the underlying hazard will correspond to some
kind of average across the groups. For the case just outlined, another
simple recoding is to rewrite Z as Z − 2, in which case the underlying
hazard corresponds to the middle group, the other two groups having
hazard rates lower and greater than this, respectively.

Log-minus-log transformation

As a first step to constructing a model for S(t|Z) we may think of
a linear shift, based upon the value of Z, the amount of the shift to
be estimated from data. However, the function S(t|Z) is constrained,
becoming severely restricted for both t = 0 and for large t where it
approaches one and zero respectively. Any model would need accom-
modate these natural constraints. It is usually easiest to do this by
eliminating the constraints themselves during the initial steps of model
construction. Thus, log S(t|Z) = −Λ(t) is a better starting point for
modeling, weakening the hold the constraints have on us. However,
log− log S(t|Z) = log Λ(t) is better still. This is because log Λ(t) can
take any value between −∞ and +∞, whereas Λ(t) itself is constrained
to be positive. The transformation log− log S(t|Z) is widely used and
is called the log-minus-log transformation. The above cases of the ex-
ponential and Weibull proportional hazards models, as already seen,
fall readily under this heading.

Other models

The exponential, piecewise exponential and Weibull models are of par-
ticular interest to us because they are especially simple and of the
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proportional hazards form. Nonetheless there are many other mod-
els which have found use in practical applications. Some are directly
related to the above, such as the extreme value model in which

S(t) = exp
(

− exp
(

t − µ

σ

))

,

since, if T is Weibull, then log T is extreme value with σ = 1/γ
and µ = log λ. These models may also be simple when viewed from
some particular angle. For instance, if M(s) is the moment-generating
function for the extreme value density then we can readily see that
M(s) = Γ(1 + s). A distribution, closely related to the extreme value
distribution (see Johnson and Johnson 1980), and which has found
wide application in actuarial work is the Gompertz where

S(t) = exp
(
βα−1(1 − eαt)

)
.

The hazard rates for these distributions increase with time, and, for
actuarial work, in which time corresponds to age, such a constraint
makes sense for studying disease occurrence or death. The normal dis-
tribution is not a natural candidate in view of the tendency for survival
data to exhibit large skewness, not forgetting that times themselves
are constrained to be positive. The log normal distribution has seen
some use but is most often replaced by the log-logistic, similar in shape
apart from the extreme tails, and much easier to work with. The form
is particularly simple for this model and we have

S(t) = (1 + (αt)γ)−1 .

For two groups, sharing a common γ but different values of α it is
interesting to note that the hazard ratio declines monotonically with
time t to its asymptotic value of one. Such a model may be appropriate
when considering group effects which gradually wane as we move away
from some initial time point.

Parametric proportional hazards models

In principle, for any parametric form, the above providing just a very
few examples, we can make a straightforward extension to two or more
groups via a proportional hazards representation. For example, if the
survivorship functions of two groups are S(t|Z = 1) and S(t|Z = 0)
then we can introduce the parameter α to model one group as a power
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transform of the other. Rewriting α to include Z via α = exp (βZ)
then we have an expression involving the regressors,

log− log S(t|Z) = log− log S(t|Z = 0) + βZ. (4.14)

All parameters, including β, can be estimated using standard tech-
niques, maximum likelihood in particular, the only restriction being
that we require some conditions on the censoring variable C. In prac-
tice, standard techniques are rarely used, most likely as a consequence
of the attractive proposal of Cox (1972) whereby we can estimate β
without having to consider the form of S(t|Z = 1) or S(t|Z = 0). As
attractive as the Cox approach is though, we should not overlook the
fact that, in exchange for generality concerning the possible paramet-
ric forms of functions of interest, such as S(t|Z), making inferences on
these population quantities becomes that much more involved. Para-
metric proportional hazards models may be an area that merits re-
newed interest in applications.

4.5 Censoring

The most important particularity of survival data is the presence of
censoring. Other aspects such as the positivity and skewness of the
main random variable under study, time T , and other complex situ-
ations such as repeated measures or random effects, are not of them-
selves reasons for seeking methods other than linear regression. Using
transformations and paying careful attention to the structure of the er-
ror, linear models are perfectly adequate for dealing with almost any
situation in which censoring does not arise. It is the censoring that
forces us to consider other techniques. Censoring can arise in different
ways.

We typically view the censoring as a nuisance feature of the data,
and not of direct interest in its own right, essentially something that
hinders us from estimating what it is we would like to estimate. In
order for our endeavors to succeed we have to make some assumptions
about the nature of the censoring mechanism. The assumptions may
often be motivated by convenience, in which case it is necessary to
give consideration as to how well grounded the assumptions appear
to be as well as to how robust are the procedures to departures from
any such assumptions. In other cases the assumptions may appear
natural given the physical context of interest, a common case being
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the uniform recruitment into a clinical trial over some predetermined
time interval. When the study closes patients for whom the outcome
of interest has not been observed are censored at study close and until
that point occurs it may be reasonable to assume that patients are
included in the study at a steady rate.

It is helpful to think of a randomly chosen subject being associ-
ated with a pair of random variables (T, C), an observation on one of
the pair impeding observation on the other, while at the same time
indicating that the unobserved member of the pair must be greater
than the observed member. This idea is made more succinct by saying
that only the random variable X = min(T, C) can be fully observed.
Clearly Pr (X > x) = Pr (T > x, C > x) and we describe censoring as
being independent whenever

Pr (X > x) = Pr (T > x, C > x) = Pr (T > x) Pr (C > x). (4.15)

Type I censoring

Such censoring most often occurs in industrial or animal experimenta-
tion. Items or animals are put on test and observed until failure. The
study is stopped at some time T ∗. If any subject does not fail it will
have observed survival time at least equal to T ∗. The censoring times
for all those individuals being censored is then equal to T ∗. Equation
(4.15) is satisfied and so this is a special case of independent censor-
ing, although not very interesting since all subjects, from any random
sample, have the same censoring time.

Type II censoring

The proportion of censoring is determined in advance. So if we wish to
study 100 individuals and observed half of them as failures we deter-
mine the number of failures to be 50. Again all censored observations
have the same value T ∗ although, in this case, this value is not known
in advance. This is another special case of independent censoring.

Type III censoring

In a clinical trial patients enter randomly. A model for entry is often
assumed to be uniform over a fixed study period, anywhere from a few
months to several years but determined in advance. Survival time is the
time from entry until the event of interest. Subjects can be censored
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because (1) the end of the study period is reached, (2) they are lost to
follow-up (3) the subject fails due to something unrelated to the event
of interest. This is called random censoring. So, unlike for Type I or
Type II censoring, for a random sample C1, . . . , Cn, the Ci could all be
distinct.

For a random sample of pairs (Ti, Ci), i = 1, . . . , n, we are only
able to observe Xi = min(Ti, Ci). A fundamental result in this context
was discovered by Tsiatis (1975). The result says that, for such data,
we are unable to estimate the joint distribution of the pair (T, C).
Only the marginal distributions can be estimated under the indepen-
dent censoring assumption, the assumption itself not being testable
from such data. It is common then to make the assumption of inde-
pendent censoring, sometimes referred to as non informative censoring,
by stipulating that

Pr (Xi > x) = Pr (Ti > x, Ci > x) = Pr (Ti > x) Pr (Ci > x). (4.16)

The assumption is strong but not entirely arbitrary. For the example
of the clinical trial with a fixed closing date for recruitment it seems
reasonable to take the length of time from entry up until this date
as not being associated with the mechanism generating the failures.
For loss to follow-up due to an automobile accident or due to leaving
the area, again the assumption may be reasonable, or, at least, a good
first approximation to a much more complex, unknown, and almost
certainly unknowable, reality.

Informative censoring

When censoring is informative, which we can take to be the nega-
tion of non-informative, then it is no longer possible to estimate the
main quantities of interest without explicitly introducing some model
for the censoring. The number of potential models relating C and T
is infinite and, in the absence of special knowledge, it can be helpful
to postulate some simple relationship between the two, the propor-
tional hazards model itself having been used in this context (Koziol
and Green 1976, Slud and Rubinstein 1983). Obvious examples might
be surrogate endpoints in the study of the evolution of AIDS following
treatment, where, for falling CD4 cell counts, below a certain point
patients can be withdrawn from study. Censoring here is clearly infor-
mative. This will be the case whenever the fact of removing a subject,
yet to experience the event of interest, from study implies a change
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in risk. Informative censoring is necessarily more involved than non
informative censoring and we have to resort to more elaborate models
for the censoring itself in order to make progress. If, as might be the
case for a clinical trial where the only form of censoring would be the
termination of the study, we know for each subject, in advance, their
censoring time C, we might then postulate that

log− log S(t) = log− log(S(t|C < t) + βI(C > t).

This would be a proportional hazards model for a dependent censor-
ing mechanism. More generally we would not know C in advance of
making observations on T, but we could write down a similar model
in terms of intensity functions, viewing the censoring indicator as a
predictable stochastic process. For the purposes of estimation we may
require empirical quantities indicating how the risk changes once cen-
soring is observed, and for this we need to be able to compare rates
between those censored at some point and those who are not. Mostly,
once censoring has occurred, it is no longer possible to observe the
main event under study so that, for data of this nature, we are not
able to estimate parameters of interest without further assumptions.
These assumptions are usually that the censoring is independent of
the failure process or that it is conditionally independent given co-
variate values. The paper of Tsiatis (1975) demonstrates this intuitive
observation formally.

Marginal and conditionally independent censoring

When considering many groups, defined by some covariate value Z,
there are essentially two types of independence commonly needed. The
stronger assumption is that of marginal independence in which the
variables T , C, and Z are pairwise independent. The censoring distri-
bution for C is the same for different values of Z. A weaker assumption
that is often made, is that of conditional independence. Here, the pair
(T, C) are independent given Z. In other words, for each possible value
of Z, the pair (T, C) is independent, but the censoring distribution C
can be different for different values of Z.

Finite censoring support

Many mathematical issues simplify immediately when the failure vari-
able T is continuous, as we generally suppose, but that the censoring
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variable is restricted to having support on some finite subset. We can
imagine that censoring times are only allowed to take place on the set
{a0, a1, . . . , ak}. This is not a practical restriction since we can make
the division (aj , aj−1) as fine as we wish. We will frequently need to
consider the empirical distribution function and analogues (Kaplan-
Meier estimate, Nelson-Aalen estimate) in the presence of censoring.
If we adopt this particular censoring set-up of finite censoring support,
then generalization from the empirical distribution function to an ana-
logue incorporating censoring is very straightforward. We consider this
in greater detail when we discuss the estimation of marginal survival.

4.6 Competing risks as a particular type
of censoring

Recalling the “at-risk” indicator function, Yi(w, t), which takes the
value one if, at time t, the i th subject is at risk of making a transition
of type w, and is zero otherwise, we can imagine a simple situation in
which w takes only one of two values. Calling these w = 1 and w = 2,
consider a constraint whereby Yi(1, t) = Yi(2, t). In words, if the ith
subject is at risk of one kind of transition, then he or she is also at risk
of the other kind. If the subject is no longer at risk then this means
that they are not at risk for either kind of transition. Thus, if a subject
suffers an event of type w = 1 then he is no longer considered at risk
of suffering an event of type w = 2, and conversely.

This is the situation of so-called competing risks. As long as the
subject is at risk, then either of the event types can occur. Once one
type of event has occurred, then it is no longer possible to observe an
occurrence of an event of the other type. Such a construction fits in
immediately with the above models for survival involving censoring.
If at time t = t1 an event of type w = 1 takes place, then, as far as
events of type w = 2 are concerned, the subject is simply censored at
t = t1. In Figure 4.5 a subject may be at risk of death from stroke or at
risk from either stroke or cirrhosis of the liver. Once one of the types
of death has occurred, then the other type of event can no longer be
observed. We will assume that the subject is censored at this point,
in as much as our attention focuses on the second type of event, and
the above discussion on the different censoring models applies in the
same way. We will need make some assumptions, most often that of
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CirrhosisStroke

State A+BState A

Figure 4.5: A situation of competing risks for subjects in states A+B.

independent censoring or that of independent censoring conditional on
covariate information in order to make progress.

4.7 Exercises and class projects

1. Using the definition for λ(t) = f(t)/S(t), show that S(t) =
exp{−Λ(t) and that f(t) = λ(t) exp{−Λ(t).

2. For a Weibull variate with parameters λ and k, derive an expression
for the conditional survivorship function S(t + u, u). How does this
function vary with t for fixed u? With u for fixed t?

3. Use numerical integration to calculate the mean residual lifetime
m(t) and the mean time lived in the interval [0, t], µ(t) for the Weibull
with parameters 2 and 1.5. With parameters 2 and 0.7. Plot these as
functions of time t.

4. Consider two groups each of which follows a Weibull distribution,
i.e., f(t) = λγ(λt)γ−1 exp{−(λt)γ}. For the first group, λ = λ1, γ = γ1.
For the second, λ = λ2, γ = γ2. Under which conditions will this
situations be described by proportional hazards?

5. Undertake a numerical and graphical study of the conditional sur-
vivorship function, S(t + u, u), for the Weibull model, the extreme
value model, the Gompertz model and the log-logistic model. What
conclusions can be drawn from this?

6. Repeat the previous class project, focusing this time on the mean
residual lifetime. Again what conclusions can be drawn from the
graphs.
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7. Consider a disease with three states of gravity (state 1, state 2
and state 3), the severity corresponding to the size of the number.
State 4 corresponds to death and is assumed to follow state 3. New
treatments offer the hope of prolonged survival. The first treatment,
if it is effective, is anticipated to slow down the rate of transition
from state 2 to state 3. Write down a compartmental model and a
survival model, involving a treatment indicator, for this situation. A
second treatment, if effective, is anticipated to slow down all transition
rates. Write down the model for this. Write down the relevant null and
alternative hypotheses for the two situations.

8. Consider a nondegenerative disease with several states; 1, 2, . . . ,
counting the occurrence of these together with a disease state indicat-
ing a progression to something more serious, e.g., benign and malignant
tumors or episodes of mild asthma with the possibility of progression
to a more serious respiratory ailment. Write down possible models for
this and how you might formulate tests of hypotheses of interest under
varying assumptions on the role of the less serious states.

9. Suppose we have data; T1, . . . , Tn, from a Weibull distribution in
which the shape parameter γ is known to be equal to 1.3. Use the
delta-method to find an estimate for the variance of the estimated
median (transform to a standard form).

10. For a proportional hazards Weibull model describe the relationship
between the respective medians.

11. Investigate the function S(t, u) for different parametric models de-
scribed in this chapter. Draw conclusions from the form of this two-
dimensional function and suggest how we might make use of these
properties in order to choose suitable parametric models when faced
with actual data.

12. Consider two possible structures for a parametric proportional haz-
ards model;

log S(t|Z) = log{S[t|E(Z)]} exp(βZ)
log S(t|Z) = log{ES[t|Z]} exp(βZ).

How do the interpretations differ and what difficulties are likely to be
encountered in fitting either of the models?



4.7. EXERCISES AND CLASS PROJECTS 127

13. Consider a clinical trial comparing two treatments in which patients
enter sequentially. Identify situations in which an assumption of an
independent censoring mechanism may seem a little shaky.

14. On the basis of a single data set, fit the exponential, the Weibull,
the Gompertz and the log-normal models. On the basis of each model
estimate the mean survival. On the basis of each model estimate the
90th percentile. What conclusions would you draw from this.

15. Suppose our focus of interest is on the median. Can you write
down a model directly in terms of the median. Would there be any
advantage/drawback to modeling in this way rather than modeling
the hazard and then obtaining the median via transformations of the
hazard function?




