
Chapter 2

Background: Probability

2.1 Summary

We review the fundamental tools used to establish the inferential ba-
sis for our models. Results are stated as theorems, lemmas and corol-
laries. Most of the key proofs are provided in Chapter 16 although,
sometimes, when useful to the general development, proofs are given
within the text itself. The main ideas of stochastic processes, in partic-
ular Brownian motion and functions of Brownian motion, are explained
in non-measure-theoretic terms. The background to this, i.e., distrib-
ution theory and large sample results, is recalled. Rank invariance is
an important concept, i.e., the ability to transform some variable, usu-
ally time, via monotonic increasing transformations without having an
impact on inference. These ideas hinge on the theory of order statis-
tics and the basic notions of this theory are recalled. An outline of
the theory of counting processes and martingales is presented without
leaning upon measure-theoretic constructions. The important concepts
of explained variation and explained randomness are outlined in ele-
mentary terms, i.e., only with reference to random variables and, at
least initially, making no explicit appeal to any particular model. This
is important since the concepts are hardly any less fundamental than
a concept such as variance itself. They ought therefore stand alone,
and not require derivation as a particular feature of some model. In
practice, of course, we may need estimate conditional distributions and
making an appeal to a model at this point is quite natural.
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2.2 Motivation

The last few decades have seen the topic of survival analysis become
increasingly specialized, having a supporting structure based on large
numbers of theorems and results which appear to have little application
outside of the field. Many recently trained specialists, lacking a good
enough grasp of how the field relates to many others, are left with
little option but to push this specialization yet further. The result is a
field which is becoming largely inaccessible to statisticians from other
areas. A key motivation of this work, and this chapter in particular, is
to put some brakes on this trend by leaning on classical results. Most
of these are well known, others less so, and in this chapter we cover
the main techniques from probability and statistics which we will need.
Results are not simply presented and the aim is to motivate them from
elementary principles known to those with a rudimentary background
in calculus.

2.3 Integration and measure

The reader is assumed to have some elementary knowledge of set theory
and calculus. We do not recall here any of the basic notions concerning
limits, continuity, differentiability, convergence of infinite series, Taylor
series and so on and the rusty reader may want to refer to any of
the many standard calculus texts when necessary. One central result
which is frequently called upon is the mean value theorem. This can be
deduced as an immediate consequence to the following result known
as Rolle’s theorem.

Theorem 2.1 If f(x) is continuously differentiable at all interior points
of the interval [a, b] and f(a) = f(b), then there exists a real number
ξ ∈ (a, b) such that f ′(ξ) = 0.

A simple sketch would back up our intuition that the theorem would be
correct. Simple though the result appears to be, it has many powerful
implications including;

Theorem 2.2 If f(x) is continuously differentiable on the interval
[a, b], then there exists a real number ξ ∈ (a, b) such that

f(b) = f(a) + (b − a)f ′(ξ).
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When f(x) is monotone then ξ is unique. This elementary theorem can
form the basis for approximation theory and series expansions such as
the Edgeworth and Cornish-Fisher (see Section 2.9). For example, a
further immediate corollary to the above theorem obtains by expand-
ing in turn f ′(ξ) about f ′(a) whereby:

Corollary 2.1 If f(x) is at least twice differentiable on the interval
[a, b] then there exists a real number ξ ∈ (a, b) such that

f(b) = f(a) + (b − a)f ′(a) +
(b − a)2

2
f ′′(ξ).

The ξ of the theorems and corollary would not typically be the same
and we can clearly continue the process, resulting in an expansion of
m + 1 terms, the last term being the m th derivative of f(x), eval-
uated at some point ξ ∈ (a, b) and multiplied by (b − a)m/m!. An
understanding of Riemann integrals as limits of sums, definite and in-
definite integrals, is mostly all that is required to follow the text. It is
enough to know that we can often interchange the limiting processes
of integration and differentiation. The precise conditions for this to be
valid are not emphasized. Indeed, we almost entirely avoid the tools
of real analysis. The Lebesgue theory of measure and integration is on
occasion referred to, but a lack of knowledge of this will not hinder
the reader. Likewise we will not dig deeply into the measure-theoretic
aspects of the Riemann-Stieltjes integral apart from the following ex-
tremely useful construction:

Definition 2.1 The Riemann integral of the function f(x) with re-
spect to x, on the interval [a, b], is the limit of a sum

∑
∆if(xi−1),

where ∆i = xi −xi−1 > 0, for an increasing partition of [a, b] in which
max ∆i goes to zero.

The limit is written
∫ b
a f(x)dx and can be seen to be the area under the

curve f(x) between a and b. If b = ∞ then we understand the integral
to exist if the limit exists for any b > 0, the result itself converging
to a limit as b → ∞. Similarly for a = −∞. Now, instead of only
considering small increments in x, i.e., integrating with respect to x,
we can make use of a more general definition. We have:

Definition 2.2 The Riemann-Stieltjes integral of the function f(x)
with respect to g(x) is the limit of a sum

∑
{g(xi) − g(xi−1)}f(xi−1),

for an increasing partition of [a, b] in which, once again, max ∆i goes
to zero.
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The limit is written
∫ b
a f(x)dg(x) and, in the special case where g(x) =

x, reduces to the usual Riemann integral. For functions, necessarily
continuous, whereby g(x) is an antiderivative of, say, h(x) and can be
written g(x) =

∫ x
−∞ h(u)du then the Stieltjes integral coincides with

the Riemann integral
∫

f(x)h(x)dx. On the other hand whenever g(x)
is a step function with a finite or a countable number of discontinuities
then

∫
f(x)dg(x) reduces to a sum, the only contributions arising at

the discontinuities themselves. This is of great importance in statistical
applications where step functions naturally arise as estimators of key
functions. A clear example of a step function of central importance is
the empirical distribution function, Fn(x) (this is discussed in detail
in Chapter 3). We can then write the sample mean x̄ =

∫
udFn(u)

and the population mean µ =
∫

udF (u), highlighting an important
concept, that fluctuations in the sample mean can be considered a
consequence of fluctuations in Fn(x) as an estimate of F (x). Consider
the following theorem, somewhat out of sequence in the text but worth
seeing here for its motivational value. The reader may wish to take a
glance ahead at Sections 2.4 and 3.5.

Theorem 2.3 For every bounded continuous function h(x), if Fn(x)
converges in distribution to F (x), then

∫
h(x)dFn(x) converges in dis-

tribution to
∫

h(x)dF (x).

This is the Helly-Bray theorem. The theorem will also hold (see the
Exercises) when h(x) is unbounded provided that some broad condi-
tions are met. A deep study of Fn(x) as an estimator of F (x) is then
all that is needed to obtain insight into the sample behavior of the
empirical mean, the empirical variance and many other quantities. Of
particular importance for the applications of interest to us here, and
developed, albeit very briefly, in Section 2.12, is the fact that, letting
M(x) = Fn(x) − F (x), then

E

{∫

h(x)dM(x)
}

=
∫

h(x)dF (x) −
∫

h(x)dF (x) = 0, (2.1)

a seemingly somewhat innocuous result until we interchange the order
of integration (expectation, denoted by E being an integral operator)
and, under some very mild conditions on h(x) described in Section
2.12, we obtain a formulation of great generality and into which can
be fit many statistical problems arising in the context of stochastic
processes (see Section 2.12).
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2.4 Random variables and probability measure

The possible outcomes of any experiment are called events where any
event represents some subset of the sample space. The sample space is
the collection of all events, in particular the set of elementary events.
A random variable X is a function from the set of outcomes to the real
line. A probability measure is a function on some subset of the real
line to the interval [0,1]. Kolmogorov (1933) provided axioms which
enable us to identify any measure as being a probability measure.
These axioms appear very reasonable and almost self-evident, apart
from the last, which concerns assigning probability measure to infi-
nite collections of events. There is, in a well defined sense, many more
members in the set of all subsets of any infinite set than in the orig-
inal set itself, an example being the set of all subsets of the positive
integers which has as many members as the real line. This fact would
have hampered the development of probability without the inclusion of
Kolmogorov’s third axiom which, broadly says that the random vari-
able is measurable, or, in other words, that the sample space upon
which the probability function is defined is restricted in such a way
that the probability we associate with the sum of an infinite collection
of mutually exclusive events is the same as the sum of the probabilities
associated with each composing event.

A great deal of modern probability theory is based on measure-
theoretic questions, questions that essentially arise from the applica-
bility or otherwise of Kolmogorov’s third axiom in any given context.
This is an area that is highly technical and relatively inaccessible to
non-mathematicians, or even to mathematicians lacking a firm ground-
ing in real analysis. The influence of measure theory has been strongly
felt in the area of survival analysis over the last 20 or so years and
much modern work is now of a very technical nature. Even so, none of
the main statistical ideas, or any of the needed demonstrations in this
text, require such knowledge. We can therefore largely avoid measure-
theoretic arguments, although some of the key ideas that underpin
important concepts in stochastic processes are touched upon when-
ever necessary. The reader is expected to understand the meaning of
the term random variable on some level.

Observations or outcomes as random variables and, via models, the
probabilities we will associate with them are all part of a theoretical,
and therefore artificial, construction. The hope is that these probabili-
ties will throw light on real applied problems and it is useful to keep in
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mind that, in given contexts, there may be more than one way to set
things up. Conditional expectation is a recurring central topic but can
arise in ways that we did not originally anticipate. We may naturally
think of the conditional expected survival time given that a subject
begins the study under, say, some treatment. It may be less natural
to think of the conditional expectation of the random variable we use
as a treatment indicator given some value of time after the beginning
of treatment. Yet, this latter conditional expectation, as we shall see,
turns out to be the more relevant for many situations.

Convergence for random variables

Simple geometrical constructions (intervals, balls) are all that are nec-
essary to formalize the concept of convergence of a sequence in real and
complex analysis. For random variables there are a number of differ-
ent kinds of convergence, depending upon which aspect of the random
variable we are looking at. Consider any real value Z and the sequence
Un = Z/n. We can easily show that Un → 0 as n → ∞. Now let Un be
defined as before except for values of n that are prime. Whenever n is
a prime number then Un = 1. Even though, as n becomes large, Un is
almost always arbitrarily close to zero, a simple definition of conver-
gence would not be adequate and we need consider more carefully the
sizes of the relevant sets in order to accurately describe this. Now, sup-
pose that Z is a uniform random variable on the interval (0,1). We can
readily calculate the probability that the distance between Un and 0 is
greater than any arbitrarily small positive number ε and this number
goes to zero with n. We have convergence in probability. Nonetheless
there is something slightly erratic about such convergence, large devi-
ations occurring each time that n is prime. When possible, we usually
prefer a stronger type of convergence. If, for all integer values m greater
than n and as n becomes large, we can assert that the probability of
the distance between Um and 0 being greater than some arbitrarily
small positive number goes to zero, then such a mode of convergence
is called strong convergence. This stronger convergence is also called
convergence with probability one or almost sure convergence. Consider
also (n + 3)Un. This random variable will converge almost surely to
the random variable Z. But, also, we can say that the distribution of
loge(n+3)Un, at all point of continuity z, becomes arbitrarily close to
that of a standard exponential distribution. This is called convergence
in distribution. The three modes of convergence are related by:
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Theorem 2.4 Convergence with probability one implies convergence
in probability. Convergence in probability implies convergence in dis-
tribution.

Also, for a sequence that converges in probability, there exists a subse-
quence that converges with probability one. This latter result requires
the tools of measure theory and is not of wide practical applicability
since we may not have any obvious way of identifying such a subse-
quence. In theoretical work it can sometimes be easier to obtain results
for weak rather than strong convergence. However, in practical appli-
cations, we usually need strong (almost sure, “with probability one”)
convergence since this corresponds in a more abstract language to the
important idea that, as our information increases, our inferences be-
comes more precise.

Convergence of functions of random variables

In constructing models and establishing inference for them we will fre-
quently appeal to two other sets of results relating to convergence. The
first of these is that, for a continuous function g(z), if Zn converges in
probability to c, then g(Zn) converges in probability to g(c) and, if Zn

converges in distribution to Z, then g(Zn) converges in distribution to
g(Z). The second set, Slutsky’s theorem (a proof is given in Randles
and Wolf 1979), enables us to combine modes of convergence. In par-
ticular, for modeling purposes, if a convergence in distribution result
holds when the parameters are known, then it will continue to hold
when those same parameters are replaced by consistent estimators.
This has great practical value.

2.5 Distributions and densities

We anticipate that most readers will have some familiarity with the
basic ideas of a distribution function F (t) = Pr (T < t), a density
function f(t) = dF (t)/dt, expectation and conditional expectation,
the moments of a random variable and other basic tools. Nonetheless
we will go over these elementary notions in the context of survival in
the next chapter. We write

E ψ(T ) =
∫

ψ(t)f(t)dt =
∫

ψ(t)dF (t)
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for the expected value of the function ψ(T ). Such an expression leaves
much unsaid, that ψ(t) is a function of t and therefore ψ(T ) itself
random, that the integrals exist, the domain of definition of the func-
tion being left implicit, and that the density f(t) is an anti-derivative
of the cumulative distribution F (t) (in fact, a slightly weaker math-
ematical construct, absolute continuity, is enough but we do not feel
the stronger assumption has any significant cost attached to it). There
is a wealth of solid references for the rusty reader on these topics,
among which Billingsley (1968), Rao (1973), and Serfling (1980) are
particularly outstanding. It is very common to wish to consider some
transformation of a random variable, the simplest situation being that
of a change in origin or scale. The distribution of sums of random
variables arises by extension to the bivariate and multivariate cases.

Theorem 2.5 Suppose that the distribution of X is F (x) and that
F ′(x) = f(x). Suppose that y = φ(x) is a monotonic function of x and
that φ−1(y) = x. Then, if the distribution of Y is G(y) and G′(y) =
g(y),

G(y) = F{φ−1(y)} ; g(y) = f{φ−1(y)}
∣
∣
∣
∣
dφ(x)

dx

∣
∣
∣
∣

−1

x=φ−1(y) .

(2.2)

Theorem 2.6 Let X and Y have joint density f(x, y). Then the den-
sity g(w) of W = X + Y is given by

g(w) =
∫ ∞

−∞
f(x, w − x)dx =

∫ ∞

−∞
f(w − y, y)dy. (2.3)

A result for W = X − Y follows immediately and, in the case of
X and Y being independent, the corresponding expression can also
be written down readily as a product of the two respective densities.
Similar results hold for the product or ratio of random variables (see
Rohatgi 1984, Section 8.4) but, since we have no call for them in this
work, we do not write them down here. An immediate corollary that
can give an angle on small sample behavior of statistics that are written
as sums is;

Corollary 2.2 Let X1 , . . . , Xn be independent, not always identically
distributed, continuous random variables with densities f1(x) to fn(s)
respectively. Let Sn =

∑n
j=1 Xj . Then the density, gn(s), of Sn is given

by

gn(s) =
∫ ∞

−∞
gn−1(s − x)fn(x)dx.
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This result can be used iteratively building up successive solutions
by carrying out the integration. The integration itself will mostly be
not particularly tractable and can be evaluated using numerical rou-
tines. Note the difference between making a large sample statistical
approximation to the sum and that of a numerical approximation to
the integral. The integral expression itself is an exact result.

Normal distribution

A random variable X is taken to be a a normal variate with parameters
µ and σ when we write X ∼ N (µ, σ2). The parameters µ and σ2 are
the mean and variance respectively, so that σ−1(X − µ) ∼ N (0, 1).
The distribution N (0, 1) is called the standard normal. The density of
the standard normal variate, that is, having mean zero and variance
one, is typically denoted φ(x) and the cumulative distribution Φ(x).
The density f(x), for x ∈ (−∞,∞) is given by

f(x) = φ(x) =
1√
2πσ

exp

[

−1
2

(
x − µ

σ

)2
]

.

For stochastic processes described below, Brownian motion relates to
a Gaussian process, that is, it has been standardized, in an analogous
way that the standard normal relates to any other normal distrib-
ution. For the normal distribution, all cumulants greater than 2 are
equal to zero. Simple calculations (Johnson and Kotz, 1970) show that,
for X ∼ N (0, 1), then E(Xr) = (r − 1)(r − 3) . . . 3.1. Thus, all odd
moments are equal to zero and all even moments are expressible in
terms of the variance. The normal distribution is of very great interest
in view of it frequently being the large sample limiting distribution for
sums of random variables. These arise naturally via simple estimating
equations. These topics are looked at in greater detail below.

The multivariate normal can be characterized in various ways. If
and only if all marginal distributions and all conditional distributions
are normal then we have multivariate normality. If and only if all lin-
ear combinations are univariate normal then we have multivariate nor-
mality. It is only necessary to be able to evaluate the standard normal
integral, Φ(x) = 1 −

∫∞
x φ(x)dx, since any other normal distribution,

f(x), can be put in this form via the linear transformation (X −µ)/σ.
Tables, calculator, and computer routines can approximate the numer-
ical integral. Otherwise, it is worth bearing in mind the following;
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Lemma 2.1 Upper and lower bounds for the normal integral can be
obtained from

x

1 + x2
e−x2/2 <

∫ ∞

x
e−u2/2du <

1
x

e−x2/2.

The lemma tells us that we expect 1 − Φ(x) to behave like φ(x)/x as
x increases. The ratio φ(x)/x is known as Mill’s ratio. Approximate
calculations are then possible without the need to resort to sophisti-
cated algorithms, although, in modern statistical analysis, it is now so
commonplace to routinely use computers that the value of the lemma
is rather limited. The normal distribution plays an important role in
view of the central limit theorem described below but also note the in-
teresting theorem of Cramer (1937) whereby, if a finite sum of indepen-
dent random variables is normal, then each variable itself is normal.
Cramer’s theorem might be contrasted with central limit theorems
whereby sums of random variables, under broad conditions, approach
the normal as the sum becomes infinitely large. These limit results are
looked at later. The normal distribution is important since it provides
the basis to Brownian motion and this is the key tool that we will use
for inference throughout this text.

Uniform distribution and the probability integral transform

For the standard uniform distribution in which u ∈ [0, 1], f(u) = 1
and F (u) = u. Uniform distributions on the interval [a, b] correspond
to the density f(u) = 1/(b − a) but much more important is the fact
that for any continuous distribution, G(t), we can say:

Theorem 2.7 For the random variable T, having distribution G(t),
letting U1 = G(T ) and U2 = 1 − G(T ), then both U1 and U2 have a
standard uniform distribution.

This central result, underpinning a substantial body of work on sim-
ulation and re-sampling, is known as the probability integral trans-
form. Whenever we can invert the function G, denoted G−1, then,
from a single uniform variate U we obtain the two variates G−1(U)
and G−1(1 − U) which have the distribution G. The two variates are
of course not independent but, in view of the strong linearity property
of expectation (the expectation of a linear function of random variables
is the same linear function of the expectations), we can often use this
to our advantage to improve precision when simulating. Another inter-
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esting consequence of the probability integral transform is that there
exists a transformation of a variate T , with any given distribution, into
a variate having any other chosen distribution. Specifically, we have:

Corollary 2.3 For any given continuously invertible distribution
function H, and continuous distribution G(t), the variate H−1{G(T )}
has distribution H.

In particular, it is interesting to consider the transformation Φ−1{Gn

(T )} where Gn is the empirical estimate (discussed below) of G. This
transformation, which preserves the ordering, makes the observed dis-
tribution of observations as close to normal as possible. Note that since
the ordering is preserved, use of the transformation makes subsequent
procedures nonparametric in as much as the original distribution of T
has no impact. For the problems of interest to us in survival analysis
we can use this in one of two ways: firstly, to transform the response
variable time in order to eliminate the impact of its distribution and,
secondly, in the context of regression problems, to transform the distri-
bution of regressors as a way to obtain greater robustness by reducing
the impact of outliers.

Exponential distribution and cumulative hazard transformation

The standard exponential distribution is defined on the positive real
line (0,∞). We have, for u ∈ (0,∞), f(u) = exp(−u) and F (u) =
1 − exp(−u). An exponential distribution with mean 1/α and vari-
ance 1/α2 has density f(u) = α exp(−αu) and cumulative distribution
F (u) = 1−exp(−αu). The density of a sum of m independent exponen-
tial variates having mean 1/α, is an Erlang density whereby f(u) =
α(αu)m−1 exp(−αu)/Γ(m) and where Γ(m) =

∫∞
0 exp(−u)um−1du.

The gamma distribution has the same form as the Erlang although,
for the gamma, the parameter m can be any real positive number and
is not restricted to being an integer. An exponential variate U can be
characterized as a power transformation on a Weibull variate in which
F (t) = 1 − exp[(−αt)k]. Finally, we have the important result:

Theorem 2.8 For any continuous positive random variable T , with
distribution function F (t), the variate U =

∫ T
0 f(u)/[1 − F (u)]du has

a standard exponential distribution.

This result is important in survival modeling and we return to it later.
The function f(t)/[1 − F (t)] is known as the hazard function and
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∫ t
0 f(u)/[1 − F (u)]du as the cumulative hazard function. The trans-

formation is called the cumulative hazard transformation.

2.6 Expectation

It is worth saying a word or two more about expectation as a funda-
mental aspect of studies in probability. Indeed it is possible for the
whole theory to be constructed with expectation as a starting point
rather than the now classical axiomatic structure to probability. For a
function of a random variable T , ψ(T ) say, as stated at the beginning
of the previous section, we write, E(ψ(T ) of this function via

E ψ(T ) =
∫

ψ(t)f(t)dt =
∫

ψ(t)dF (t),

where the integrals, viewed as limiting processes, are all assumed to
converge. The normal distribution function for a random variable X
is completely specified by E(X) and E(X2). In more general situa-
tions we can assume a unique correspondence between the moments
of X, E(Xr) , r = 1, 2, . . . , and the distribution functions as long as
these moments all exist. While it is true that the distribution function
determines the moments the converse is not always true. However, it
is almost always true (Stuart and Ord 1994, page 111) and, for all
the distributions of interest to us here, the assumption can be made
without risk. It can then be helpful to view each moment, beginning
with E(X), as providing information about F (x). This information
typically diminishes quickly with increasing r. We can use this idea to
improve inference for small samples when large sample approximations
may not be sufficiently accurate. Moments can be obtained from the
moment generating function, M(t) = E{exp(tX)} since we have:

Lemma 2.2 If
∫

exp(tx)f(x)dx < ∞ then

E(Xr) =
{

∂rM(t)
∂tr

}

t=0

, for all r.

In Section 2.8 we consider the variance function which is also an ex-
pectation and is of particular interest to one of our central goals here,
that of constructing useful measures of the predictive strength of any
model. At the root of the construction lie two important inequali-
ties, the Chebyshev-Bienaymé inequality (described in Section 2.8 and
Jensen’s inequality described below. For this we first need:
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Definition 2.3 The real-valued function w(x) is called “convex” on
some interval I (an infinite set and not just a point) whenever, for
x1, x2 ∈ I and for 0 ≤ λ ≤ 1, we have

w[λx1 + (1 − λ)x2] ≤ λw(x1) + (1 − λ)w(x2).

It is usually sufficient to take convexity to mean that w′(x) and w′′(x)
are greater than or equal to zero at all interior points of I since this is
a consequence of the definition. We have (Jensen’s inequality):

Lemma 2.3 If w is convex on I then, assuming expectations exist on
this interval, w[E(X)] ≤ E[w(X)]. If w is linear in X throughout I,
that is, w′′(x) = 0 when twice differentiable, then equality holds.

For the variance function we see that w(x) = x2 is a convex func-
tion and so the variance is always positive. The further away from the
mean, on average, the observations are to be found, then the greater
the variance. We return to this in Section 2.8. Although very useful,
the moment-generating function, M(t) = E{exp(tX)} has a theoret-
ical weakness in that the integrals may not always converge. It is for
this, mainly theoretical, reason that it is common to study instead
the characteristic function, which has an almost identical definition,
the only difference being the introduction of complex numbers into the
setting. The characteristic function, denoted by φ(t), always exists and
is defined as:

φ(t) = M(it) =
∫ ∞

−∞
exp(itx)dF (x) , i2 = −1.

Note that the contour integral in the complex plane is restricted to
the whole real axis. Analogous to the above lemma concerning the
moment-generating function we have

E(Xr) = (−i)r

{
∂rφ(t)

∂tr

}

t=0

, for all r.

This is important in that it allows us to anticipate the cumulative
generating function which turns out to be of particular importance
in obtaining improved approximations to those provided by assuming
normality. We return to this below in Section 2.9. If we expand the
exponential function then we can write;

φ(t) =
∫ ∞

−∞
exp(itx)dF (x) = exp

{ ∞∑

r=1

κr(it)r/r!

}



26 CHAPTER 2. BACKGROUND: PROBABILITY

and, identifying κr as the coefficient of (it)r/r! in the expansion of
log φ(t). The function ψ(t) = log φ(t) is called the cumulative generat-
ing function. When this function can be found then the density f(x)
can be defined in terms of it. We have the important relation

f(x) =
1
2π

∫ ∞

−∞
e−itxφ(t)dt , φ(t) =

∫ ∞

−∞
eitxf(x)dx .

It is possible to approximate the density f(x) by working with i.i.d. ob-
servations X1, · · · , Xn and the empirical characteristic function φ(t) =
n−1

∑n
i=1 exp(itxi) which can then be inverted. It is also possible to

approximate the integral using a method of numerical analysis, the
so-called method of steepest descent, to obtain a saddlepoint approx-
imation (Daniels, 1954). We return to this approximation below in
Section 2.9.

2.7 Order statistics and their expectations

The normal distribution and other parametric distributions described
in the next chapter play a major role in survival modeling. However, ro-
bustness of any inferential technique to particular parametric assump-
tions is always a concern. Hopefully, inference is relatively insensitive
to departures from parametric assumptions or is applicable to whole
families of parametric assumptions. The most common way to ensure
this latter property is via the theory of order statistics which we recall
here. Consider the n independent identically distributed (i.i.d.) ran-
dom variables: X1, X2, ... , Xn and a single realization of these that we
can order from the smallest to the largest: X(1) ≤ X(2) ≤ · · · ≤ X(n).
Since the Xi are random, so also are the X(i), and the interesting
question concerns what we can say about the probability structure of
the X(i) on the basis of knowledge of the parent distribution of Xi.
In fact, we can readily obtain many useful results which, although of-
ten cumbersome to write down, are in fact straightforward. Firstly we
have:

Theorem 2.9 Taking P (x) = Pr (X ≤ x) and Fr(x) = Pr (X(r) ≤ x)
then:

Fr(x) =
n∑

i=r

(
n

i

)

P i(x)[1 − P (x)]n−i. (2.4)
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This important result has two immediate and well known corollaries
dealing with the maximum and minimum of a sample of size n.

Corollary 2.4

Fn(x) = Pn(x) , F1(x) = 1 − [1 − P (x)]n (2.5)

In practice, in order to evaluate Fr(x) for other than very small n, we
exploit the equivalence between partial binomial sums and the incom-
plete beta function. Thus, if, for a > 0, b > 0, B(a, b) =

∫ 1
0 ta−1(1 −

t)b−1dt and Iπ(a, b) =
∫ π
0 ta−1(1−t)b−1dt/B(a, b), then putting P (x) =

π, we have that Fr(x) = Iπ(r, n − r + 1). These functions are widely
tabulated and also available via numerical algorithms to a high level
of approximation. An alternative, although less satisfying, approxima-
tion would be to use the DeMoivre-Laplace normal approximation to
the binomial sums. Differentiation of (2.4) provides the density which
can be written as

fr(x) =
1

B(r, n − r + 1)
P r−1(x)[1 − P (x)]n−rp(x). (2.6)

Since we have a relatively straightforward expression for the distrib-
ution function itself, then this expression for the density is not often
needed. It can come in handy in cases where we need to condition and
apply the law of total probability. Expressions for f1(x) and fn(x) are
particularly simple and we have

Corollary 2.5

f1(x) = n[1 − P (x)]n−1p(x) , fn(x) = nPn−1(x)p(x). (2.7)

More generally it is also straightforward to obtain

Theorem 2.10 For any subset of the n order statistics: Xn1, Xn2,
..., Xnk

, 1 ≤ n1 ≤ . . . ≤ nk, the joint distribution f(x1, . . . , x2) is
expressed as

f(x1, . . . , xk) = n!

⎡

⎣
k∏

j=1

p(xj)

⎤

⎦
k∏

j=0

{
[P (xj+1) − P (xj)]nj+1−nj−1

(nj+1 − nj − 1)!

}

(2.8)

in which p(x) = P ′(x). This rather involved expression leads to many
useful results including the following corollaries:
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Corollary 2.6 The joint distribution of X(r) and X(s) is

Frs(x, y) =
n∑

j=s

j∑

i=r

n!
i!(j − i)!(n − j)!

P i(x)

[P (y) − P (x)]j−i[1 − P (y)]n−j .

The joint distribution of X(r) and X(s) is useful in establishing a num-
ber of practical results such as the distribution of the range, the dis-
tribution of the interquartile range and an estimate for the median
among others. Using the result (Section 2.5) for the distribution of a
difference, a simple integration then leads to the following:

Corollary 2.7 Letting Wrs = X(s) − X(r) then: in the special case of
a parent uniform distribution we have

f(wrs) =
1

B(s − r, n − s + r + 1)
ws−r−1

rs (1 − wrs)n−s+r. (2.9)

Taking s = n and r = 1, recalling that B(α, β) = Γ(α)Γ(β)/Γ(α + β)
and that Γ(n) = n!, then we have the distribution of the range for the
uniform.

Corollary 2.8 Letting w = U(n) − U(1) be the range for a random
sample of size n from the standard uniform distribution, then the cu-
mulative distribution is given by

FU (w) = nwn−1 − (n − 1)wn. (2.10)

Straightforward differentiation gives fU (w) = n(n − 1)wn−2(1 − w),
a simple and useful result. For an arbitrary distribution, F (·) we can
either carry out the same kind of calculations from scratch or, mak-
ing use once more of the probability integral transform (see Section
2.4), use the above result for the uniform and transform into arbi-
trary F . Even this is not that straightforward since, for some fixed
interval (w1, w2), corresponding to w = w2 − w1 from the uniform,
the corresponding F−1(w2) − F−1(w1) depends not only on w2 − w1

but on w1 itself. Again we can appeal to the law of total probability,
integrating over all values of w1 from 0 to 1−w. In practice, it may be
good enough to divide the interval (0, 1−w) into a number of equally
spaced points, ten would suffice, and simply take the average. Interval
estimates for any given quantile, defined by P (ξα) = α, follow from
the basic result and we have:
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Corollary 2.9 In the continuous case, for r < s, the pair (X(r) , X(s))
covers ξα with probability given by Iπ(r, n − r + 1) − Iπ(r, n − s + 1).

Theorem 2.11 For the special case in which n1 = 1, n2 = 2, ...
nn = n, then

f(x1, . . . , xn) = n!
n∏

j=1

p(xj). (2.11)

A characterization of order statistics: Markov property

The particularly simple results for the exponential distribution lead
to a very useful and powerful characterization of order statistics. If
Z1 , . . . , Zn are i.i.d. exponential variates with parameter λ, then an
application of Corollary 2.4 shows that the minimum of Z1 to Zn has
itself an exponential distribution with parameter nλ. We can define the
random variable Y1 to be the gap time between 0 and the first obser-
vation, Z(1). The distribution of Y1 (equivalently Z(1)) is exponential
with parameter nλ. Next, we can define Y2 to be the gap Z(2) − Z(1).
In view of the lack of memory property of the exponential distribu-
tion, once Z(1) is observed, the conditional distribution of each of the
remaining (n − 1) variables, given that they are all greater than the
observed time Z(1), remains exponential with parameter λ. The vari-
able Y2 is then the minimum of (n− 1) i.i.d. exponential variates with
parameter λ. The distribution of Y2 is therefore, once again, exponen-
tial, this time with parameter (n − 1)λ. More generally we have the
following lemma:

Lemma 2.4 If Z(1) , . . . , Z(n) are the order statistics from a sample
of size n of standard exponential variates, then, defining Z(0) = 0,

Yi = Z(i) − Z(i−1) , i = 1, . . . , n

are n independent exponential variates in which E(Yi) = 1/(n− i+1).

This elementary result is very important in that it relates the order sta-
tistics directly to sums of simple independent random variables which
are not themselves order statistics. Specifically we can write

Z(r) =
r∑

i=1

{Z(i) − Z(i−1)} =
r∑

i=1

Yi ,

leading to the immediate further lemma:
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Lemma 2.5 For a sample of size n from the standard exponential
distribution and letting αi = 1/(n − i + 1), we have:

E[Z(r)] =
r∑

i=1

E(Yi) =
r∑

i=1

αi , Var [Z(r)] =
r∑

i=1

Var (Yi) =
r∑

i=1

α2
i .

The general flavor of the above result applies more generally than just
to the exponential and, applying the probability integral transform
(Section 2.5), we have:

Lemma 2.6 For an i.i.d. sample of size n from an arbitrary distrib-
ution, G(x), the rth largest order statistic, X(r) can be written

X(r) = G−1{1 − exp(−Y1 − Y2 − · · · − Yr)},

where the Yi are independent exponential variates in which E(Yi) =
1/(n − i + 1).

One immediate conclusion that we can make from the above expres-
sion is that the order statistics from an arbitrary distribution form
a Markov chain. The conditional distribution of X(r+1) given X(1),
X(2), . . . , X(r) depends only on the observed value of X(r) and the dis-
tribution of Yr+1. This conditional distribution is clearly the same as
that for X(r+1) given X(r) alone, hence the Markov property. If needed
we can obtain the joint density, frs, of X(r) and X(s), (1 ≤ r < s ≤ n)
by a simple application of Theorem 2.10. We then write:

frs(x, y) =
n! P r−1(x)p(x)p(y)[P (y) − P (x)]s−r−1[1 − P (y)]n−s

(r − 1)!(s − r − 1)!(n − s)!
.

From this we can immediately deduce the conditional distribution of
X(s) given that X(r) = x as:

fs|r(y|x) =
(n − r)!

(s − r − 1)!(n − s)!
p(y)[P (y) − P (x)]s−r−1[1 − P (y)]n−s

[1 − P (x)]n−r
.

A simple visual inspection of this formula confirms again the Markov
property. Given that X(r) = x we can view the distribution of the
remaining (n− r) order statistics as an ordered sample of size (n− r)
from the conditional distribution P (u|u > x).
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Expected values of order statistics

Given the distribution of any given order statistic we can, at least in
principle, calculate any moments, in particular the mean, by applying
the basic definition. In practice, this may be involved and there may
be no explicit analytic solution. Integrals can be evaluated numerically
but, in the majority of applications, it can be good enough to work
with accurate approximations. The results of the above subsection,
together with some elementary approximation techniques are all that
we need. Denoting the distribution of X as P (x), then the probability
integral transform (Section 2.5) provides that U = P (X) has a uni-
form distribution. The moments of the order statistics from a uniform
distribution are particularly simple so that E{U(r)} = pr = r/(n+1)).
Denoting the inverse transformation by Q = P−1, then

X(r) = P−1{U(r)} = Q{U(r)}.

Next, we can use a Taylor series development of the function X(r)

about the pr so that

X(r) = Q(pr) + {U(r) − pr}Q′(pr) + {U(r) − pr}2Q′′(pr)/2 + · · ·

and, taking expectations, term by term, we have

E{X(r)} ≈ Q(pr) +
prqr

2(n + 2)
Q′′(pr)

+
prqr

(n + 2)2

{
1
3
(qr − pr)Q′′′(pr) +

1
8
prqrQ

′′′′(pr)
}

and

Var {X(r)} =
prqr

2(n + 2)
[Q′(pr)]2 +

prqr

(n + 2)2
{
2(qr−pr)Q′(pr)Q′′(pr)

+prqr

(
Q′(pr)Q′′′(pr)+[Q′′(pr)]2

)}
.

It is straightforward to establish some relationships between the mo-
ments of the order statistics and the moments from the parent distri-
bution. Firstly note that

E

{
n∑

r=1

Xk
(r)

}m

= E

{
n∑

r=1

Xk
r

}m

,

so that, if µ and σ2 are the mean and variance in the parent population,
then

∑n
r=1 µr = nµ and

∑n
r=1 E{X2

(r)} = nE(X2) = n(µ2 + σ2).
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Normal parent distribution

For the case of a normal parent the expected values can be evaluated
precisely for small samples and the approximations themselves are rel-
atively tractable for larger sample sizes. One approach to data analysis
in which it may be desirable to have a marginal normal distribution
in at least one of the variables under study is to replace the observa-
tions by the expectations of the order statistics. These are sometimes
called normal scores, typically denoted by ξrn = E(X(r)) for a ran-
dom sample of size n from a standard normal parent with distribution
function Φ(x) and density φ(x). For a random sample of size n from a
normal distribution with mean µ and variance σ2 we can reduce every-
thing to the standard case since E(X(r)) = µ + ξrnσ. Note that, if n
is odd, then, by symmetry, it is immediately clear that E(X(r)) = 0
for all r that are odd. We can see that E(X(r)) = −E(X(n−r+1)). For
n as small as, say, 5 we can use integration by parts to evaluate ξr5

for different values of r. For example, ξ55 = 5
∫

4Φ3(x)φ2(x)dx which
then simplifies to: ξ55 = 5π−1/2/4 + 15π−3/2 sin−1(1/3)/2 = 1.16296.
Also, ξ45 = 5π−1/2/2 − 15π−3/2 sin−1(1/3) = 0.49502 and ξ35 = 0.
Finally, ξ15 = −1.16296 and ξ25 = −0.49502. For larger sample sizes
in which the integration becomes too fastidious we can appeal to the
above approximations using the fact that

Q′(pr) =
1

φ(Q)
, Q′′(pr) =

Q

φ2(Q)
, Q′′′(pr) =

1 + 2Q2

φ3(Q)
,

Q′′′′(pr) =
Q(7 + 6Q2)

φ4(Q)
.

The above results arise from straightforward differentiation. Analogous
calculations can be used to obtain exact or approximate expressions
for Cov {X(r), X(s)}.

2.8 Entropy and variance

In view of the mathematical equivalence of the density, distribution
function and the hazard, we can be satisfied knowing any one of these
functions for a variable T of interest. In the majority of areas of appli-
cation of statistics, theoretical physics, and, possibly, biophysics being
potential exceptions, we cannot really know much about these func-
tions. Our usual strategy will be to collect data that enables the esti-
mation of one or more of the functions, with any additional plausible
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assumptions about the nature of these functions making this task that
much easier. Paucity of data, or a need to only know the most im-
portant features of a distribution, will often lead us to restricting our
attention to some simple summary measures. The most common sum-
mary measures are those of location and variance. For a measure of
location we usually take the mean µ or the median ξ0.5. They tell us
something about where the most likely values of T occur. An idea of
just how “likely” these “likely” values are, in other words how concen-
trated is the distribution around the location measure, is most often
provided by the variance or the square root of this, the standard de-
viation. The variance σ2 is defined by

σ2 = E{T − E(T )}2 =
∫

(t − µ)2f(t)dt =
∫

(t − µ)2dF (t). (2.12)

An important insight into just why σ2 provides a good measure of
precision, in other terms predictability, is given by:

Theorem 2.12 For every positive constant a

Pr {|T − µ| ≥ aσ } ≤ 1/a2. (2.13)

This famous inequality, known as the Bienaymé-Chebyshev inequality,
underlines the fact that the smaller σ2 the better we can predict. A
lesser used, although equally useful, measure of concentration is the
so-called entropy of the distribution. Apart from a negative sign, this
is also called the information of the distribution which is defined by
V (f, f) where

V (g, h) = E log g(T ) =
∫

log g(t)h(t)dt. (2.14)

The entropy is just −V (g, h). Note that the integral operator E in
E log g(T ) is with respect to the density h(t), this added generality
being needed in the regression context. For univariate study the infor-
mation is simply V (f, f) and would be written V since the arguments
are implicit. Our intuition is good for σ2, since it is clear that the
further away, on average, are the values of T, then the larger will be
σ2. The same is true, although less obvious, for V. As T becomes con-
centrated around its mode (value of t, taken to be unique, at which
f(t) assumes its greatest value), then, since

∫
f(t)dt, the area under

the curve, is fixed at one, f(t) itself becomes larger at and around
the mode. In the limit, as all the information becomes concentrated
at a single point t0, then f(t0), as well as E log f(T ), tends to positive
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infinity. The more spread out are the values of T then the closer to
zero will tend to be E log f(T ). Intermediary values of E log f(T ) then
can be taken to correspond to different degrees of dispersion. Consider
also the following which is true for any number of random variables
and which, for the purposes of illustration, we limit to X1, X2 and X3.
We have

E log f(X1, X2, X3) = E log f(X3|X2, X1) + E log f(X2|X1)
+E log f(X1) ,

so that the total information can be decomposed into sequential or-
thogonal contributions, each adding to the total amount of information
so far. Note also, since we can interchange the Xi, the order in which
the total information is put together has no impact on the final re-
sult. This is of course a desirable property. The information measure,
as an indicator of precision, is well known in communication theory
(Shannon and Weaver 1949) and statistical ecology, but is not so well
known in biostatistics. It is also worth considering the fact that the
most commonly used estimating technique, maximum likelihood, is
best viewed as an empirical version of information. This follows since
the usual log-likelihood divided by the sample size (which can be taken
as a fixed constant) provides a consistent estimate of the information.
Both the variance and the information are of particular interest when
we condition on some other variable Z, possibly a vector. This is the
regression setting where we focus on the impact of explanatory vari-
ables on some response variable of interest. The information gain would
consider the distance between the distribution f(t) and f(t|z). In the
above construction the function g(t) is first equated with f(t) and sub-
sequently to f(t|z), whereas h(t) remains fixed at f(t, z). Note also,
that in this case, the integral is over the space of T and Z. This enables
the construction of a simple and powerful measure of predictability.
The amount by which the variance, or information, changes follow-
ing such conditioning provides a direct quantification of the predictive
strength of Z. We look at this more closely in the following subsection.

Explained randomness and explained variation

Any models we work with are simply tools to enable us to efficiently
construct conditional distributions. Validity of our models is an im-
portant issue, upon which we dwell later, but, for now, let us suppose
our models are good enough to accurately reproduce the conditional
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distributions of T given Z where Z may be a vector. The improvement
in our predictive ability, given Z, can be quantified in view of the above
Bienaymé-Chebyshev inequality and the variance decomposition

Var (T ) = VarE(T |Z) + E Var (T |Z). (2.15)

The total variance, Var (T ), breaks down into two parts, one of which
we can interpret as the signal, VarE(T |Z), and one as the pure noise
E Var (T |Z). The percentage of Var (T ) that is taken up by VarE(T |Z)
is the amount of the total variance that can be explained by Z. This
translates directly the predictive power of Z so that the percentage of
explained variance, is then quite central to efforts at quantifying how
well our models do. We define it as

Ω2 =
VarE(T |Z)

Var (T )
=

Var (T ) − E Var (T |Z)
Var (T )

. (2.16)

The quantity Ω2 in its own right is not well developed in the litera-
ture and we devote Section 3.9 to studying its importance. Following
Draper (1984), there have been a number of challenges to Ω2 as a use-
ful concept (Healy 1984: Kvalseth 1985: Scott and Wild 1991: Willett
and Singer 1988). However Draper’s paper of 1984 was flawed and its
conclusions did not hold up (Draper 1985). As a result, this subsequent
work, having taken Draper’s 1984 paper as its starting point, inherits
the same logical errors.

Explained randomness, as opposed to explained variation, arises
from a less transparent construction. We can use a monotonic trans-
form of the expected information (expectation taken with respect to
the distribution of Z) and, taking D(T ) = exp−2E V {f(t), f(t|Z)}:
D(T |Z) = exp−2E V {f(t|Z), f(t|Z)}, we define the explained ran-
domness ρ2 to be

ρ2 =
D(T ) − D(T |Z)

D(T )
. (2.17)

We interpret ρ2 as the proportion of explained randomness in T at-
tributable to Z. We also have the following important lemma that
could, in its own right, be taken as a reason for studying explained
randomness, but which, in any event, underlines a useful relationship
between explained variation and explained randomness:

Lemma 2.7 If the pair (T, Z) are bivariate normal then Ω2 = ρ2.

The lemma provides further motivation for being interested in ρ2, in
that, for the more familiar classic regression case of a bivariate normal,
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we obtain the same results by considering explained randomness that
we obtain by considering explained variation. For other distributions,
where variance itself may not be the best measure of dispersion, the
concept explained randomness, based on entropy, might be viewed as
having more generality. Our own experience in practical data analysis
suggests that, as far as hierarchical model building or the quantification
of partial or multiple effects is concerned, there does not appear to be
anything to really choose between the two measures. For operational
purposes we can take the two measures to be essentially equivalent,
the use of one rather than the other being more a question of taste
rather than one based on any real advantages or disadvantages.

2.9 Approximations

Approximations to means and variances for functions of T (δ-
method)

Consider some differentiable monotonic function of X, say ψ(X). Our
particular concern often relates to parameter estimates in which case
the random variable X would be some function of the n i.i.d. data
values, say θn as an estimator of the parameter θ. In the cases of
interest, θn converges with probability one to θ and so also does ψ(θn)
to ψ(θ). Although θn may not be unbiased for θ, for large samples, the
sequence E(θn) converges to E(θ) = θ. Similarly E[ψ(θn)] converges
to ψ(θ). The mean value theorem (Section 2.2) enables us to write

φ(θn) = ψ(θ) + (θn − θ)φ′(θ) +
(θn − θ)2

2
ψ′′(ξ) (2.18)

for ξ ∈ (θ ± θn) Rearranging this expression, ignoring the third term
on the right hand side, and taking expectations we obtain

Var {ψ(θn)} ≈ E{ψ(θn) − ψ(θ)}2 ≈ {ψ′(θ)}2Var (θn) ≈ {ψ′(θn)}2Var (θn)

as an approximation to the variance. The approximation, once ob-
tained in any given setting, is best studied on a case-by-case basis. It
is an exact result for linear functions. For these, the second derivative
is equal to zero and, more generally, the smaller the absolute value of
this second derivative, the better we might anticipate the approxima-
tion to be. For θn close to θ the squared term will be small in absolute
value when compared with the linear term, an additional motivation
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to neglecting the third term. For the mean, the second term of Equa-
tion (2.18) is zero when θn is unbiased, otherwise close to zero and,
this time, ignoring this second term, we obtain

E{ψ(θn)} ≈ ψ(θn) +
1
2
Var (θn)ψ′′(θn) (2.19)

as an improvement over the rougher approximation based on the first
term alone of the above expression. Extensions of these expressions
to the case of a consistent estimator ψ(θn) = ψ(θ1n, . . . , θpn) of ψ(θ)
proceeds in the very same way, only this time based on a multivariate
version of Taylor’s theorem. These are:

Var {ψ(θn)} ≈
p∑

j=1

p∑

m≥j

∂ψ(θ)
∂θj

∂ψ(θ)
∂θm

Cov (θjn, θmn) ,

E{ψ(θn)} ≈ ψ(θ1n, . . . , θpn) +
1
2

∑

j

∑

m

∂2ψ(θn)
∂θj∂θm

Cov (θjn, θmn).

When p = 1 then the previous expressions are recovered as special
cases. Again, the result is an exact one in the case where ψ(·) is a
linear combination of the components θj and this helps guide us in
situations where the purpose is that of confidence interval construc-
tion. If, for example, our interest is on ψ and some strictly monotonic
transformation of this, say ψ∗, is either linear or close to linear in the
θj , then it may well pay, in terms of accuracy of interval coverage, to
use the delta-method on ψ∗, obtaining the end points of the confidence
interval for ψ∗ and subsequently inverting these, knowing the relation-
ship between ψ and ψ∗, in order to obtain the interval of interest for ψ.
Since ψ and ψ∗ are related by one-to-one transformations then the cov-
erage properties of an interval for ψ∗ will be identical to those of its
image for ψ. Examples in this book include confidence intervals for the
conditional survivorship function, given covariate information, based
on a proportional hazards model as well as confidence intervals for in-
dices of predictability and multiple coefficients of explained variation.

Cornish-Fisher approximations

In the construction of confidence intervals, the δ-method makes a nor-
mality approximation to the unknown distribution and then replaces
the first two moments by local linearization. A different approach,
while still working with a normal density φ(x) = (2π)−1/2 exp(−x2/2),
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in a way somewhat analogous to the construction of a Taylor series, is
to express the density of interest, f(x), in terms of a linear combina-
tion of φ(x) and derivatives of φ(x). Normal distributions with nonzero
means and variances not equal to one are obtained by the usual simple
linear transformation and, in practical work, the simplest approach is
to standardize the random variable X so that the mean and variance
corresponding to the density f(x) are zero and one, respectively.

The derivatives of φ(x) are well known, arising in many fields of
mathematical physics and numerical approximations. Since φ(x) is
simply a constant multiplying an exponential term it follows imme-
diately that all derivatives of φ(x) are of the form of a polynomial
that multiplies φ(x) itself. These polynomials (apart from an alter-
nating sign coefficient (−1)i) are the Hermite polynomials, Hi(x) , i =
0, 1, . . . , and we have

H0 = 1 , H1 = x , H2 = x2 − 1 , H3 = x3 − 3x , H4 = x4 − 6x2 +3 ,

with H5 and higher terms being calculated by simple differentiation.
The polynomials are of importance in their own right, belonging to the
class of orthogonal polynomials and useful in numerical integration.
Indeed, we have that
∫ ∞

−∞
H2

i (x)φ(x)dx = i! , i = 0, . . . :
∫ ∞

−∞
Hi(x)Hj(x)φ(x)dx=0 , i 	= j.

This orthogonality property is exploited in order for us to obtain ex-
plicit expressions for the coefficients in our expansion. Returning to
our original problem we wish to determine the coefficients ci in the
expansion

f(x) =
∞∑

i=0

ciHi(x)φ(x) (2.20)

and, in order to achieve this we multiply both sides of equation (2.20)
by Hj(x), subsequently integrating to obtain the coefficients

cj =
1
j!

∫ ∞

−∞
f(x)Hj(x)dx. (2.21)

Note that the polynomial Hj(x) is of order j so that the right-hand
side of equation (2.21) is a linear combination of the moments, (up
to the jth), of the random variable X having associated density f(x).
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These can be calculated step-by-step. For many standard densities
several of the lower-order moments have been worked out and are
available. Thus, it is relatively straightforward to approximate some
given density f(x) in terms of a linear combination of φ(x).

The expansion of Equation (2.20) can be used in theoretical investi-
gations as a means to study the impact of ignoring higher-order terms
when we make a normal approximation to the density of X. We will
use the expansion in an attempt to obtain more accurate inference for
proportional hazards models fitted using small samples. Here the large
sample normal assumption may not be sufficiently accurate and the
approximating equation is used to motivate potential improvements
obtained by taking into account moments of higher order than just
the first and second. When dealing with actual data, the performance
of any such adjustments needs to be evaluated on a case-by-case basis.
This is because theoretical moments will have to be replaced by ob-
served moments and the statistical error involved in that can be of the
same order, or greater, than the error involved in the initial normal
approximation. If we know or are able to calculate the moments of the
distribution, then the ci are immediately obtained. When the mean is
zero we can write down the first four terms as

c0 = 1 , c1 = 0 , c2 = (µ2 − 1)/2 , c3 = µ3/6 , c4 = (µ4 − 6µ2 + 3)/24 ,

from which we can write down an expansion in terms of φ(x) as

f(x) = φ(x){1 + (µ2 − 1)H2(x)/2 + µ3H3(x)/6
+(µ4 − 6µ2 + 3)H4(x)/24 + · · · }.

This series is known as the Gram-Charlier series, and stopping the
development at the fourth term corresponds to making corrections for
skewness and kurtosis. In our later development of the properties of
estimators in the proportional hazards model we will see that mak-
ing corrections for skewness can help make inference more accurate,
whereas, at least in that particular application, corrections for kurtosis
appear to have little impact (Chapter 11).

Saddlepoint approximations

A different, although quite closely related, approach to the above uses
saddlepoint approximations. Theoretical and practical work on these
approximations indicate them to be surprisingly accurate for the tails
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of a distribution. We work with the inversion formula for the cumulant
generating function, a function that is defined in the complex plane,
and in this two-dimensional plane, around the point of interest (which
is typically a mean or a parameter estimate) the function looks like a
minimum in one direction and a maximum in an orthogonal direction:
hence the name “saddlepoint.” Referring back to Section 2.6 recall
that we identified κr as the coefficient of (it)r/r! in the expansion of
the cumulant generating function K(t) = log φ(t) where φ(t) is the
characteristic function. We can exploit the relationship between φ(t)
and f(x); that is,

f(x) =
1
2π

∫ ∞

−∞
e−itxφ(t)dt , φ(t) =

∫ ∞

−∞
eitxf(x)dx .

to approximate f(x) by approximating the integral. The numerical
technique that enables this approximation to be carried out is called
the method of steepest descent and is described in Daniels (1954).
The approximation to f(x) is simply denoted as fs(x) and, carrying
through the calculations, we find that

fs(x) =
{

n

2πK ′′(λx)

}1/2

exp[n{K(λx) − xλx}] (2.22)

in which the solution to the differential equation in λ, K ′(λ) = x is
given by λx. Our notation here of x as a realization of some random
variable X is not specifically referring to our usual use of X as the
minimum of survival time T and the censoring time C. It is simply the
variable of interest and that variable, in our context, will be the score
statistic (Chapter 11). For now, we assume the score to be composed of
n contributions so that we view x as a mean based on n observations.
Since, mostly, we are interested in the tails of the distribution, it can
often help to approximate the cumulative distribution directly rather
than make a subsequent appeal to numerical integration. Denoting the
saddlepoint approximation to the cumulative distribution by Fs(x), we
write

Fs(x) = Φ(ux) + φ(ux)(u−1
x + v−1

x ) (2.23)

where φ(x) indicates the standard normal density, Φ(x) =
∫ x
−∞ φ(u)du,

the cumulative normal, ux = [2n{xλx − K(λx)}]1/2sgn(λx), and vx =
λx{nK ′′(λx)}1/2. Since we are only concerned with tail probabilities
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we need not pay attention to what occurs around the mean. If we do
wish to consider Fs(x), evaluated at the mean, the approximation is
slightly modified and the reader is referred to Daniels (1987).

2.10 Stochastic processes

We define a stochastic process to be a collection of random variables
indexed by t ∈ T . We write these as X(t) and take t to be fixed. If the
set T has only a finite or a countably infinite number of elements then
X(t) is referred to as a discrete-time process. We will be most inter-
ested in continuous-time processes. In applications we can standardize
by the greatest value of t in the set T that can be observed, and so
we usually take sup{t : t ∈ T} = 1. We also take inf{t : t ∈ T} = 0.
We will be especially interested in observations on any given process
between 0 and t. We call this the sample path.

Independent increments and stationarity

Consider some partition of (0,1) in which 0 = t0 < t1 < t2 < · · · <
tn = 1. If the set of random variables X(ti) − X(ti−1) i = 1, . . . , n are
independent then the stochastic process X(t) is said to have indepen-
dent increments. Another important property is that of stationarity.
We say that a stochastic process X(t) has stationary increments if
X(s + t)− X(s) has the same distribution for all values of s. Station-
arity indicates, in as much as probabilistic properties are concerned,
that when we look forward, from the point s, a distance t, the only rel-
evant quantity is how far forward t we look. Our starting point itself
is irrelevant. As we progress through time, everything that we have
learned is summarized by the current position. It can also be of value
to consider a process with a slighter weaker property, the so-called
second-order stationarity. Rather than insist on a requirement for the
whole distribution we limit our attention to the first two moments and
the covariance between X(s + t) and X(s) which depends only upon
|t|. Our main focus is on Gaussian processes which, when they have
the property of second-order stationarity, will in consequence be sta-
tionary processes. Also, simple transformations can produce stationary
processes from nonstationary ones, an example being the transforma-
tion of the Brownian bridge into an Ornstein-Uhlenbeck process.
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Gaussian processes

If for every partition of (0,1), 0 = t0 < t1 < t2 < · · · < tn = 1, the set
of random variables X(t1), . . . , X(tn) has a multivariate normal distri-
bution, then the process X(t) is called a Gaussian process. Brownian
motion, described below, can be thought of as simply a standardized
Gaussian process. A Gaussian process being uniquely determined by
the multivariate means and covariances it follows that such a process
will have the property of stationarity if for any pair (s, t : t > s),
Cov {X(s), X(t)} depends only on (t − s). In practical studies we will
often deal with sums indexed by t and the usual central limit theorem
will often underlie the construction of Gaussian processes.

2.11 Brownian motion

Consider a stochastic process X(t) on (0, 1) with the following three
properties:

1. X(0) = 0, i.e., at time t = 0 the starting value of X is fixed at 0.

2. X(t) , t ∈ (0, 1) has independent stationary increments.

3. At each t ∈ (0, 1) the distribution of X(t) is N (0, t).

This simple set of conditions completely describes a uniquely deter-
mined stochastic process called Brownian motion. It is also called the
Wiener process or Wiener measure. It has many important properties
and is of fundamental interest as a limiting process for a large class of
sums of random variables on the interval (0,1). An important property
is described in Theorem 2.13 below. Firstly we make an attempt to
describe just what a single realization of such a process might look
like. Later we will recognize the same process as being the limit of
a sum of independent random contributions. The process is contin-
uous and so, approximating it by any drawing, there cannot be any
gaps. At the same time, in a sense that can be made more mathemati-
cally precise, the process is infinitely jumpy. Nowhere does a derivative
exist. Figure 2.1 illustrates this via a simulated approximation. The
right-hand figure is obtained from the left-hand one by homing in on
the small interval (0.20, 0.21), subtracting off the value observed at
t = 0.20, and rescaling to the interval (0,1). The point we are trying
to make is that the resulting process itself looks like (and indeed is) a
realization of Brownian motion. Theoretically, this could be repeated
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Figure 2.1: Two simulated independent realizations of a Brownian mo-
tion process.

without limit which allows us to understand in some way how infi-
nitely jumpy is the process. In practical examples we can only ever
approximate the process by linearly connecting up adjacent simulated
points.

Theorem 2.13 Conditioning on a given path we have

Pr {X(t + s) > x|X(s) = xs, X(u), 0 ≤ u < s}
= Pr {X(t + s) > x|X(s) = xs.}

So, when looking ahead from time point s to time point t+ s, the pre-
vious history indicating how we arrived at s is not relevant. The only
thing that matters is the point at which we find ourselves at time
point s. This is referred to as the Markov property. The joint density
of X(t1), . . . , X(tn) can be written as

f(x1, x2, . . . , xn) = ft1(x1)ft1−t2(x2 − x1) · · · ftn−tn−1(xn − xn−1)

This follows from the independent stationary increment condition. A
consequence of the above result is that we can readily evaluate the
conditional distribution of X(s) given some future value X(t) (t >
s). Applying the definition for conditional probability we have the
following.

Corollary 2.10 The conditional distribution of X(s) given X(t) (t >
s) is normal with a mean and a variance given by,

E{X(s)|X(t) = w} = ws/t , Var {X(s)|X(t) = w} = s(t − s)/t .
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This result helps provide insight into another useful process, the
Brownian bridge described below. Other important processes arise
as simple transformations of Brownian motion. The most obvious to
consider is where we have a Gaussian process satisfying conditions
(1) and (2) for Brownian motion but where, instead of the variance
increasing linearly, i.e., VarX(t) = t, the variance increases either
too quickly or too slowly so that VarX(t) = φ(t) where φ(·) is some
monotonic increasing function of t. Then we can transform the time
axis using φ(·) to produce a process satisfying all three conditions for
Brownian motion. Consider also the transformation

V (t) = exp(−αt/2)X{exp(αt)}

where X(t) is Brownian motion. This is the Ornstein-Uhlenbeck
process. It is readily seen that:

Corollary 2.11 The process V (t) is a Gaussian process in which
E{V (t)} = 0 and Cov {V (t), V (s)} = exp{−α(t − s)/2}.

Time-transformed Brownian motion

Consider a process, Xψ(t), defined via the following three conditions,
for some continuous ψ such that, ψ(t′) > ψ(t) (t′ > t); (1) Xψ(0) = 0
(2) Xψ(t) , t ∈ (0, 1) has independent stationary increments; (3) at
each t ∈ (0, 1) the distribution of Xψ(t) is N{0, ψ(t)}. The usual
Brownian motion described above is exactly this process when ψ(t) =
t. However, in view of the continuity and monotonicity of ψ, there
exists an inverse function ψ−1 such that ψ−1{ψ(t)} = t. Clearly, we
can transform the process Xψ(t) by multiplying, at each t, by

√
t/ψ(t),

and, defining
√

0/ψ(0) = 0. The resulting process we can call X(t) and
it is readily seen that this process is standard Brownian motion. Thus,
the only crucial assumption in Brownian motion is that of independent
increments. Once we can assert this to be the case, it is only a question
of scale and location to obtain standard Brownian motion.

Brownian bridge

Let W (t) be Brownian motion. We know that W (0) = 0. We also know
that with probability one the process W (t) will return at some point to
the origin. Let’s choose a point, and in particular the point t = 1 and
consider the conditional process W 0(t), defined to be Brownian motion
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Figure 2.2: Two transformations of simulated Brownian motion by
conditioning on W (1). The first has W (1) = 0 (Brownian bridge); the
second has W (1) = 0.5.

conditioned by the fact that W (1) = 0. For small t this process will
look very much like the Brownian motion from which it is derived. As
t goes to one the process is pulled back to the origin since at t = 1 we
have that W 0(1) = 0 and W (t) is continuous. Also W 0(0) = W (0) = 0.
Such a process is called tied down Brownian motion or the Brownian
bridge. Figure 2.2 illustrates a realization of a Brownian bridge and a
realizatin of a Brownian motion constrained to assume a value other
than zero at t = 1. We will see below that realizations of a Brownian
bridge can be viewed as linearly transformed realizations of Brownian
motion itself, and vice versa. From the results of above the section
we can investigate the properties of W 0(t). The process is a Gaussian
process so we only need consider the mean and covariance function for
the process to be completely determined. We have

E{W (s)|W (1) = 0} = 0 for s < t .

This comes immediately from the above result. Next we have:

Theorem 2.14

Cov (W (s), W (t)|W (1) = 0) = s(1 − t). (2.24)

This provides a simple definition of the Brownian bridge as being a
Gaussian process having mean zero and covariance function s(1 −
t) , s < t. An alternative way of constructing the Brownian bridge
is to consider the process defined as

W 0(t) = W (t) − tW (1) , 0 ≤ t ≤ 1.
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Clearly W 0(t) is a Gaussian process. We see that

E{W (0)} = W (0) = E{W (1)} = W (1) = E{W (t)} = 0

so that the only remaining question is the covariance function for the
process to be completely and uniquely determined. The following corol-
lary is all we need.

Corollary 2.12 The covariance function for the process defined as
W 0(t) is,

Cov {W 0(s), W 0(t)} = s(1 − t) s < t.

This is the covariance function for the Brownian bridge developed
above and, by uniqueness, the process is therefore itself the Brown-
ian bridge. Such a covariance function is characteristic of many ob-
served phenomena. The covariance decreases linearly with distance
from s. As for Brownian motion, should the covariance function de-
crease monotonically rather than linearly, then a suitable transforma-
tion of the time scale enables us to write the covariance in this form.
At t = s we recover the usual binomial expression s(1 − s).

Notice that not only can we go from Brownian motion to a Brown-
ian bridge via the simple transformation

W 0(t) = W (t) − tW (1) , 0 ≤ t ≤ 1 ,

but the converse is also true, i.e., we can recover Brownian motion,
X(t), from the Brownian bridge, Z(t), via the transformation

X(t) = (t + 1)Z
(

t

t + 1

)

. (2.25)

To see this, first note that, assuming Z(t) to be a Brownian bridge,
then X(t) is a Gaussian process. It will be completely determined by
its covariance process Cov {X(s), X(t)}. All we then require is the
following lemma:

Lemma 2.8 For the process defined in (2.25), Cov {X(s),X(t)} = s.

The three processes: Brownian motion, the Brownian bridge, and the
Ornstein-Uhlenbeck are then closely related and are those used in the
majority of applications. Two further related processes are also of use
in our particular applications: integrated Brownian motion and re-
flected Brownian motion.
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Integrated Brownian motion

The process Z(t) defined by Z(t) =
∫ t
0 W (u)du, where W (t) is Brown-

ian motion is called integrated Brownian motion. Note that dZ(t)/dt =
W (t) so that, for example, in the context of a model of interest, should
we be able to construct a process converging in distribution to a process
equivalent to Brownian motion, then the integrated process will con-
verge in distribution to a process equivalent to integrated Brownian
motion. We can see (by interchanging limits) that Z(t) can be viewed
as the limit of a sum of Gaussian processes and is therefore Gaussian.
Its nature is completely determined by its mean and covariance func-
tion. We have that

E{Z(t)} = E

{∫ t

0
W (u)du

}

=
∫ t

0
E{W (u)}du = 0. (2.26)

For s < t we have:

Lemma 2.9 The covariance function for Z(s) and Z(t) is

Cov {Z(s), Z(t)} = s2 (t/2 − s/6) . (2.27)

Lemma 2.10 The covariance function for Z(t) and W (t) is

Cov {Z(t), W (t)} = t2/2. (2.28)

For a model in which inference derives from cumulative sums, this
would provide a way of examining how reasonable are the underlying
assumptions if repetitions are available. Repetitions can be obtained
by bootstrap resampling if only a single observed process is available.
Having standardized, a plot of the log-covariance function between the
process and the integrated process against log-time ought be linear
with slope of two and intercept of minus log 2 assuming that model
assumptions hold.

Reflected Brownian motion

Suppose we choose some positive value r and then define the process
Wr(t) as a function of Brownian motion, W (t), in the following way:
If W (t) < r then Wr(t) = W (t). If W (t) ≥ r then Wr(t) = 2r −W (t).
We have:

Lemma 2.11 Wr(t) is a Gaussian process, EWr(t) = 0, Cov{Wr(s),
Wr(t)} = s when s < t.
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Thus, Wr(t) is also Brownian motion. Choosing r to be negative and
defining Wr(t) so that, when W (t) > r then Wr(t) = W (t). If W (t) ≤ r
then Wr(t) = 2r − W (t). accordingly we have the same result. The
process Wr(t) coincides exactly with W (t) until such a time as a bar-
rier is reached. We can imagine this barrier as a mirror, and beyond
the barrier the process Wr(t) is a simple reflection of W (t). The in-
teresting thing is that the resulting process is itself Brownian motion.
One way of conceptualizing the idea is to imagine a large number of
realizations of a completed Brownian motion process sampled indepen-
dently. Imagine then these same realizations with a reflection applied.
Then, whatever the point of reflection, if we consider the two collected
sets of realizations, our overall impression of the behavior of the two
processes will be the same. The value of this construction is to be seen
in situations where, at some point in time, corresponding to some ex-
pected point of reflection under a hypothesis of drift, the drift changes
direction. Under the hypothesis of Brownian motion, both Brownian
motion, and Brownian motion reflected at some point, will look alike
and will obey the same probability laws. Under an alternative hypoth-
esis of drift however (see below), the behaviors will look quite different.
This observation enables a simple construction with which to address
the problem of crossing hazards.

Maximum of a Brownian motion

A useful further result can be immediately obtained from the preced-
ing one dealing with reflected Brownian motion. Suppose that W (t)
is a Brownian motion. We might wish to consider the process M(t) =
supu∈(0,t) W (u), which is the greatest value obtained by the process
W (u) in the interval (0, t). The greatest absolute distance is also of
interest but, by symmetry arguments, this can be obtained immedi-
ately from the distribution of M(t). Another related question, useful
in interim analyzes, is the distribution of W (t) given the maximum
M(t) obtained up until that time point. We have the following:

Lemma 2.12 If W (t) is standard Brownian motion and M(t) the
maximum value attained on the interval (0, t), i.e., M(t) = supu∈(0,t)

W (u), then
Pr {M(t) > a} = 2 Pr {W (t) > a}.

This is a simple and elegant result and enables us to make simultane-
ous inference very readily. Sometimes, when using a Brownian motion
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approximation for a process, we may want to, for example, describe
an approximate confidence interval for the whole process rather than
just a confidence interval at a single point t. In such a case the above
result comes into play immediately. The joint distribution is equally
simple and we make use of the following.

Lemma 2.13 If W (t) is standard Brownian motion and M(t) the
maximum value attained on the interval (0, t), i.e., M(t) = supu∈(0,t)

W (u), then

Pr {W (t) < a − b , M(t) > a} = Pr {W (t) > a + b}.

The conditional distribution Pr {W (t) < a− b |M(t) > a} can then be
derived immediately by using the results of the two lemmas.

Brownian motion with drift

We will see that simple Brownian motion provides a good model for
describing score statistics, or estimating equations, once standardized.
This is because we can visualize these sums as approximating a limiting
process arising from summing increments, for which the expected value
is equal to zero. The setting in which we study such sums is typically
that of evaluating some null hypothesis, often one of some given effect,
H0 : β = β0, but sometimes a less obvious one, in the goodness-of-fit
context, for example, whereby we can have, H0 : β(t) = β̂. Almost
invariably, when we consider a null hypothesis, we have an alternative
in mind, frequently a local or first alternative to the null. For a null
hypothesis of Brownian motion, a natural and immediate alternative
is that of Brownian motion with drift. Consider then the stochastic
process X(t) defined by

X(t) = W (t) + µt

where W (t) is Brownian motion. We can immediately see that
E{X(t)} = µt and Var {X(t)} = t As for Brownian motion Cov {X(s),
X(t)} = s , s < t. Alternatively we can define the process in a way
analagous to our definition for Brownian motion as a process having
the following three properties:

1. X(0) = 0.

2. X(t) , t ∈ (0, 1) has independent stationary increments.

3. At each t ∈ (0, 1), X(t) is N (µt, t).
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Clearly, if X(t) is Brownian motion with drift parameter µ, then the
process X(t) − µt is standard Brownian motion. Also, for the more
common situation in which the mean may change non-linearly with
time, provided the increments are independent, we can always con-
struct a standard Brownian motion by first subtracting the mean at
time t, then transforming the timescale in order to achieve a linearly
increasing variance.

Probability results for Brownian motion

There are a number of well-established and useful results for Brown-
ian motion and related processes. The arcsine law can be helpful in
comparing processes. Defining X+(t) to be the time elapsed from the
origin that the Brownian process remains positive, i.e., sup{t : X(s) >
0 : 0 < s < t} then Pr (X+ < x) = (2/π) sin−1 √x This law can
be helpful in comparing processes and also in examining underlying
hypotheses. For the Brownian bridge the largest distance from the ori-
gin in absolute value has a known distribution given in a theorem of
Kolmogorov:

Pr
{

sup
t

|W0(t)| ≤ α

}

→1−2
∞∑

k=1

(−1)k+1 exp(−2k2α2), α≥0. (2.29)

The sum can be seen to be convergent since this is an alternating
sign series in which the kth term goes to zero. Furthermore, the error
in ignoring all terms higher than the nth is less, in absolute value,
than the size of the (n + 1)th term. Given that the variance of W0(t)
depends on t it is also of interest to study the standardized distribution
B0(t) = W0(t)/

√
t(1 − t). This is, in fact, the Ornstein-Uhlenbeck

process. Simple results for the supremum of this are not possible since
the process becomes unbounded at t = 0 and t = 1. Nonetheless, if
we are prepared to reduce the interval from (0, 1) to (ε1, ε2) where
ε1 > 0 and ε2 < 1 then we have an approximation due to Miller and
Siegmund (1982):

Pr
{

sup
t

|B0(t)| ≥ α

}

≈ 4φ(α)
α

+ φ(α)
(

α − 1
α

)

log
{

ε2(1 − ε1)
ε1(1 − ε2)

}

, (2.30)

where φ(x) denotes the standard normal density. This enables us to
construct confidence intervals for a bridged process with limits them-
selves going to zero at the endpoints. To obtain these we use the fact
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that Pr {W0(t) > α} = Pr {
√

t(1 − t)B0(t) > α}. For most practical
purposes though it is good enough to work with Equation 2.29 and
approximate the infinite sum by curtailing summation for values of k
greater than 2.

2.12 Counting processes and martingales

Although not automatically our first choice for inference, the use of
counting processes and martingales for inference in survival problems
currently dominates this subject area. We will look at inference based
on counting processes and martingales in Section 3.6, for some general
results, and in Chapter 10 for the specific application to the propor-
tional hazards model. In this chapter we aim to provide some under-
standing to the probability structure upon which the theory is based.

Martingales and stochastic integrals

Recalling the discussion of Section 2.3 and that, for a bounded func-
tion H(x) and the empirical distribution function Fn(x), we have, by
virtue of the Helly-Bray theorem, that

∫
H(x)dFn(x) converges in dis-

tribution to
∫

H(x)dF (x). If we define M(x) = Fn(x) − F (x) and
change the order of integration, i.e., move the expectation operator,
E, outside the integral, then

E

{∫

H(x)dM(x)
}

= 0.

This expression is worth dwelling upon. We think of E as being an inte-
gral operator or as defining some property of a random variable, specif-
ically a measure of location. The random variable of relevance is not
immediately apparent but can be seen to be Fn(x), an n−dimensional
function from the observations to the interval [0, 1]. We can suppose,
at least initially, the functions F (x) and H(x) to be fixed and known.
Our conceptual model allows the possibility of being able to obtain
repetitions of the experiment, each time taking n independent obser-
vations. Thus, for some fixed given x, the value of Fn(x) will generally
vary from one experiment to the next. We view x as an argument to
a function, and Fn(x) as being random having a distribution studied
below in Section 3.3. Recalling Section 2.3 on integration, note that
we can rewrite the above equation as:

E lim
max ∆i→0

∑
{M(xi) − M(xi−1)}H(xi−1) = 0, (2.31)
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where ∆i = xi − xi−1 > 0 and where, as described in Section 2.3 the
summation is understood to be over an increasing partition in which
∆i > 0 and max ∆i goes to zero. Now, changing the order of taking
limits, the above expression becomes

lim
max ∆i→0

∑
E{[M(xi) − M(xi−1)]H(xi−1)} = 0, (2.32)

a result which looks simple enough but that has a lot of force when
each of the infinite number of expectations can be readily evaluated.
Let’s view Equation 2.32 in a different light, one that highlights the
sequential and ordered nature of the partition. Rather than focus on
the collection of M(xi) and H(xi), we can focus our attention on the
increments M(xi) − M(xi−1) themselves, the increments being multi-
plied by H(xi−1), and, rather than work with the overall expectation
implied by the operator E, we will set up a sequence of conditional ex-
pectations. Also, for greater clarity, we will omit the term limmax ∆i→0

altogether. We will put it back when it suits us. This lightens the no-
tation and helps to make certain ideas more transparent. Later, we
will equate the effect of adding back in the term limmax ∆i→0 to that of
replacing finite differences by infinitesimal differences. Consider then

U =
∑

{M(xi) − M(xi−1)}H(xi−1) (2.33)

and, unlike the preceding two equations, we are able to greatly re-
lax the requirement that H(x) be a known function or that M(x)
be restricted to being the difference between the empirical distribu-
tion function and the distribution function. By sequential condition-
ing upon F(xi) where F(xi) are increasing sequence of sets denoting
observations on M(x) and H(x), for all values of x less than or equal
to xi, we can derive results of wide applicability. In particular, we can
now take M(x) and H(x) to be stochastic processes. Some restrictions
are still needed for M(x), in particular that the incremental means
and variances exist. We will suppose that

E{M(xi) − M(xi−1)|F(xi−1)} = 0 , (2.34)

in words, when given F(xi−1), the quantity M(xi−1) is fixed and known
and the expected size of the increment is zero. This is not a strong
requirement and only supposes the existence of the mean since, should
the expected size of the increment be other than zero, then we can
subtract this difference to recover the desired property. Furthermore,
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given F(x), the quantity H(x) is fixed. The trick is then to exploit
the device of double expectation whereby for events, A and B, it is
always true that E(A) = EE(A|B). In the context of this expression,
B = F(xi−1), leading to

E(U) =
∑

H(xi−1)E{M(xi) − M(xi−1)|F(xi−1)} = 0 (2.35)

and, under the assumption that the increments are uncorrelated we
have the variance is the sum of the variance of each component to the
sum. Thus

Var(U) =
∑

E{H2(xi−1)[M(xi) − M(xi−1)]2|F(xi−1)}. (2.36)

In order to keep the presentation uncluttered we use a single operator
E in the above expressions, but there are some subtleties that ought
not go unremarked. For instance, in Equation 2.36, the inner expec-
tation is taken with respect to repetitions over all possible outcomes
in which the set F(xi−1) remains unchanged, whereas the outer ex-
pectation is taken with respect to all possible repetitions. In Equation
2.35 the outer expectation, taken with respect to the distribution of
all potential realizations of all the sets F(xi−1), is not written and is
necessarily zero since all of the inner expectations are zero. The anal-
ogous device to double expectation for the variance is not so simple
since Var(Y ) = E Var(Y |Z) + VarE(Y |Z). Applying this we have

Var {M(xi) − M(xi−1)} = E Var{M(xi) − M(xi−1)|F(xi−1)} (2.37)

since Var E{M(xi) − M(xi−1)|F(xi−1)} is equal to zero, this being
the case because each term is itself equal to the constant zero. The
first term also requires a little thought, the outer expectation indi-
cated by E being taken with respect to the distribution of F(xi−1),
i.e., all the conditional distributions M(x) and H(x) where x ≤ xi−1.
The next key point arises through the sequential nesting. These outer
expectations, taken with respect to the distribution of F(xi−1) are the
same as those taken with respect to the distribution of any F(x) for
which x ≥ xi−1. This is an immediate consequence of the fact that
the lower-dimensional distribution results from integrating out all the
additional terms in the higher-dimensional distribution. Thus, if xmax
is the greatest value of x for which observations are made then we can
consider that all of these outer expectations are taken with respect
to F(xmax). Each time that we condition upon F(xi−1) we will treat
H(xi−1) as a fixed constant and so it can be simply squared and moved
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outside the inner expectation. It is still governed by the outer expecta-
tion which, for all elements of the sum, we will take to be with respect
to the distribution of F(xmax). Equation 2.36 then follows.

Making a normal approximation for U , and from the theory of
estimating equations, given any set of observations, that U depends
monotonically on some parameter β, then it is very straightforward
to set up hypothesis tests for β = β0. Many situations, including that
of proportional hazards regression, lead to estimating equations of the
form of U. The above set-up, which is further developed below in a
continuous form, i.e., after having “added in” the term limmax ∆i→0,
applies very broadly. We need the concept of a process, usually indexed
by time t, the conditional means and variances of the increments, given
the accumulated information up until time t.

We have restricted our attention here to the Riemann-Stieltjes de-
finition of the integral. The broader Lebesgue definition allows the
inclusion of subsets of t tolerating serious violations of our conditions
such as conditional means and variances not existing. The conditioning
sets can be also very much more involved. Only in a very small number
of applications has this extra generality been exploited. Given that it
considerably obscures the main ideas to all but those well steeled in
measure theory, it seems preferable to avoid it altogether. Also avoided
here is the martingale central limit theorem. This theorem is much
quoted in the survival analysis context and, again, since there are so
few applications in which the needed large sample normality cannot be
obtained via more standard central limit theorems, a lack of knowledge
of this theorem will not handicap the reader.

Counting processes

The above discussion started off with some consideration of the empir-
ical cumulative distribution function Fn(t) which is discussed in much
more detail in Section 3.5. Let’s consider the function N(t) = {nFn(t) :
0 ≤ t ≤ 1}. We can view this as a stochastic process, indexed by time
t so that, given any t we can consider N(t) to be a random variable
taking values from 0 to n. We include here a restriction that we gen-
erally make which is that time has some upper limit, without loss of
generality, we call this 1. This restriction can easily be avoided but
it implies no practical constraint and is often convenient in practical
applications. We can broaden the definition of N(t) beyond that of
nFn(t) and we have:
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Definition 2.4 A counting process N = {N(t) : 0 ≤ t ≤ 1} is a
stochastic process that can be thought of as counting the occurrences
(as time t proceeds) of certain type of events. We suppose these events
occur singly.

Very often N(t) can be expressed as the sum of n individual counting
processes, Ni(t), each one counting no more than a single event. In
this case Ni(t) is a simple step function, taking the value zero at t = 0
and jumping to the value one at the time of an event. The realizations
of N(t) are integer-valued step functions with jumps of size +1 only.
These functions are right-continuous and N(t) is the (random) number
of events in the time interval [0, t]. We associate with the stochastic
process N(t) an intensity function α(t). The intensity function serves
the purpose of standardizing the increments to have zero mean. In
order to better grasp what is happening here, the reader might look
back to Equation 2.34 and the two sentences following that equation.
The mean is not determined in advance but depends upon Ft− where,
in a continuous framework, Ft− is to Ft what F(xi−1) is to F(xi). In
technical terms:

Definition 2.5 A filtration, Ft, is an increasing right continuous fam-
ily of sub-sigma algebras.

This definition may not be very transparent to those unfamiliar with
the requirement of sigma additivity for probability spaces and there
is no real need to expand on it here. The requirement is a theoreti-
cal one which imposes a mathematical restriction on the size, in an
infinite sense, of the set of subsets of Ft. The restriction guarantees
that the probability we can associate with any infinite sum of disjoint
sets is simply the sum of the probabilities associated with those sets
composing the sum. For our purposes, the only key idea of impor-
tance is that Ft− is a set containing all the accumulated information
(hence “increasing”) on all processes contained in the past up until but
not including the time point t (hence “right continuous”). We write,
α = {α(t) : 0 ≤ t ≤ 1} where

α(t)dt = Pr {N(t) jumps in [ t, t + dt)|Ft−} = E{dN(t)|Ft−},

the equality being understood in an infinitesimal sense, i.e., the func-
tional part of the left-hand side, α(t), is the limit of the right-hand side
divided by dt > 0 as dt goes to zero. In the chapter on survival analysis
we will see that the hazard function, λ(t), expressible as the ratio of the
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density, f(t), to the survivorship function, S(t), i.e., f(t)/S(t), can be
expressed in fundamental terms by first letting Y (t) = I(T ≥ t). Un-
derstanding, once again, the equality sign as described in the previous
sentences but one, we have

λ(t)dt = Pr {N(t) jumps in [ t, t + dt)|Y (t) = 1}= E{dN(t)|Y (t) = 1}.

It is instructive to compare the above definitions of α(t) and λ(t). The
first definition is the more general since, choosing the sets Ft to be
defined from the at-risk function Y (t) when it takes the value one,
enables the first definition to reduce to a definition equivalent to the
second. The difference is an important one in that if we do not provide
a value for I(T ≥ t) then this is a (0, 1) random variable and, in
consequence, α(t) is a (0, λ(t)) random variable. For this particular
case we can express this idea succinctly via the formula

α(t)dt = Y (t)λ(t)dt. (2.38)

Replacing Y (t) by a more general “at risk” indicator variable will allow
for great flexibility, including the ability to obtain a simple expression
for the intensity in the presence of censoring as well as the ability
to take on-board multistate problems where the transitions are not
simply from alive to dead but from, say, state j to state k summarized
via αjk(t)dt = Yjk(t)λjk(t)dt in which Yjk(t) is left continuous and
therefore equal to the limit Yjk(t − ε) as ε > 0 goes to zero through
positive values, an indicator variable taking the value one if the subject
is in state j and available to make a transition to state k at time t− ε
as ε → 0. The hazards λjk(t) are known in advance, i.e., at t = 0
for all t, whereas the αjk(t) are random viewed from time point s
where s < t, with the subtle condition of left continuity which leads to
the notion of “predictability” described below. The idea of sequential
standardization, the repeated subtraction of the mean, that leans on
the evaluation of intensities, can only work when the mean exists. This
requires a further technical property, that of being “adapted.” We say

Definition 2.6 A stochastic process X(t) is said to be adapted to the
filtration Ft if X(t) is a random variable with respect to Ft.

Once again the definition is not particularly transparent to nonprob-
abilists and the reader need not be over-concerned since it will not be
referred to here apart from in connection with the important concept
of a predictable process. The basic idea is that the relevant quantities
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upon which we aim to use the tools of probability modeling should all
be contained in Ft. If any probability statement we wish to construct
concerning X(t) cannot be made using the set Ft but requires the set
Ft+u, where u > 0, then X(t) is not adapted to Ft. In our context
just about all of the stochastic processes that are of interest to us are
adapted and so this need not be a concern. A related property, of great
importance, and which also will hold for all of those processes we focus
attention on, is that of predictability. We have

Definition 2.7 A real-valued stochastic process, H(t), that is left con-
tinuous and adapted to the filtration Ft is called a predictable process.

Since H(t) is adapted to Ft it is a random variable with respect to Ft.
Since the process is left continuous it is also adapted to Ft−. Therefore,
whenever we condition upon Ft−, H(t) is simply a fixed and known
constant. This is the real sense of the term “predictable” and, in prac-
tice, the property is a very useful one. It is frequently encountered in
the probabilistic context upon which a great number of tests are con-
structed. Counting processes can be defined in many different ways and
such a formulation allows for a great deal of flexibility. Suppose for in-
stance that we have events of type 1 and events of type 2, indicated
by N1(t) and N2(t) respectively. Then N(t) = N1(t) + N2(t) counts
the occurrences of events of either type. For this counting process we
have

α(t)dt = P (N(t) jumps in [ t, t + dt)|Ft−),

i.e., the same as P (N1(t) or N2(t) jump in [ t, t + dt)|Ft−) and, if as is
reasonable in the great majority of applications, where, we assume to
be negligible the probability of seeing events occurring simultaneously
compared to seeing them occur singly, then

α(t)dt = E{dN1(t) + dN2(t)|Ft−} = α1(t) + α2(t).

This highlights a nice linearity property of intensities, not shared by
probabilities themselves. For example, if we consider a group of n sub-
jects and n individual counting processes Ni(t), then the intensity
function, α(t), for the occurrence of an event, regardless of individual,
is simply

∑
αi(t). This result does not require independence of the

processes, only that we can consider as negligible the intensities we
might associate with simultaneous events.
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Another counting process of great interest in survival applications
concerns competing risks. Suppose there are two types of event but
that they cannot both be observed. The most common example of
this is right censoring where, once the censoring event has occurred,
it is no longer possible to make observations on Ni(t). This is dis-
cussed more fully in the following chapters and we limit ourselves here
to the observation that Ni(t) depends on more than one variable. In
the absence of further assumptions, we are not able to determine the
intensity function, but if we are prepared to assume that the cen-
soring mechanism is independent of the failure mechanism, i.e., that
Pr (Ti > t|Ci > c) = Pr (Ti > t), then a simple result is available.

Theorem 2.15 Let the counting process, Ni(t), depend on two inde-
pendent and positive random variables, Ti and Ci such that Ni(t) =
I{Ti ≤ t, Ti ≤ Ci}. Let Xi = min(Ti, Ci), Yi(t) = I(Xi ≥ t); then Ni(t)
has intensity process

αi(t)dt = Yi(t)λi(t)dt. (2.39)

The counting process, Ni(t), is one of great interest to us since the
response variable in most studies will be of such a form, i.e., an ob-
servation when the event of interest occurs but an observation that is
only possible when the censoring variable is greater than the failure
variable. Also, when we study a heterogeneous group, our principal
focus in this book, the theorem still holds in a modified form. Thus, if
we can assume that Pr (Ti > t|Ci > c, Z = z) = Pr (Ti > t|Z = z), we
then have:

Theorem 2.16 Let the counting processes, Ni(t), depend on two in-
dependent and positive random variables, Ti and Ci, as well as Z such
that

Ni(t) = I{Ti ≤ t, Ti ≤ Ci, Z = z}. (2.40)

Then the intensity process for Ni(t) can be written as αi(t, z)dt =
Yi(t)λi(t, z)dt.

The assumption needed for Theorem 2.16, known as the conditional
independence assumption, is weaker than that needed for 2.15 in that
the latter theorem contains the former as a special case. Note that the
stochastic processes Yi(t) and αi(t) are left continuous and adapted to
Ft. They are therefore predictable stochastic processes, which means
that, given Ft−, we treat Yi(t), αi(t) and, assuming that Z(t) is pre-
dictable, αi(t, z) as fixed constants.
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2.13 Exercises and class projects

1. Use a simple sketch to informally demonstrate the mean value the-
orem.

2. Newton-Raphson iteration provides sequentially updated estimates
to the solution to the equation f(x0) = 0. At the nth step, we write
xn+1 = xn − f(xn)/f ′(xn) and claim that xn converges (in the ana-
lytical sense) to x0. Use the mean value theorem and, again, a simple
sketch to show this. Intuitively, which conditions will lead to conver-
gence and which ones can lead to failure of the algorithm.

3. Let g(x) take the value 0 for −∞ < x ≤ 0 : 1/2 for 0 < x ≤ 1 ;
1 for 1 < x ≤ 2 : and 0 otherwise. Let f(x) = x2 + 2. Evaluate the
Riemann-Stieltjes integral of f(x) with respect to g(x) over the real
line.

4. Note that
∑n

i=1 i = n(n + 1)/2. Describe a function such that a
Riemann-Stieltjes integral of it is equal to n(n + 1)/2. Viewing inte-
gration an an area under a curve, conclude that this integral converges
to n2 as n becomes large.

5. Suppose that in the Helly-Bray theorem for
∫

h(x)dFn(x), the func-
tion h(x) is unbounded. Break the integral into components over the
real line. For regions where h(x) is bounded the theorem holds. For the
other regions obtain conditions that would lead to the result holding
generally.

6. Prove the probability integral transformation by finding the moment-
generating function of the random variable Y = F (X) where X has
the continuous cumulative distribution function F (x) and a moment-
generating function that exists.

7. If X is a continuous random variable with probability density func-
tion f(x) = 2(1 − x) , 0 < x < 1, find that transformation Y = ψ(X)
such that the random variable Y has the uniform distribution over
(0,2).

8. The order statistics for a random sample of size n from a discrete
distribution are defined as in the continuous case except that now we
have X(1) ≤ X(2) ≤ · · · ≤ X(n). Suppose a random sample of size 5 is
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taken with replacement from the discrete distribution f(x) = 1/6 for
x = 1, 2, . . . , 6. Find the probability mass function of X(1), the smallest
order statistic.

9. Ten points are chosen randomly and independently on the interval
(0,1). Find (a) the probability that the point nearest 1 exceeds 0.8, (b)
the number c such that the probability is 0.4 that the point nearest
zero will exceed c.

10. Find the expected value of the largest order statistic in a random
sample of size 3 from (a) the exponential distribution f(x) = exp(−x)
for x > 0, (b) the standard normal distribution.

11. Find the probability that the range of a random sample of size
n from the population f(x) = 2e−2x for x ≥ 0 does not exceed
the value 4.

12. Approximate the mean and variance of (a) the median of a sample
of size 13 from a normal distribution with mean 2 and variance 9,
(b) the fifth-order statistic of a random sample of size 15 from the
standard exponential distribution.

13. Simulate 100 observations from a uniform distribution. Do the
same for an exponential, Weibull and log-logistic distribution with
different parameters. Next, generate normal and log-normal variates
by summing a small number of uniform variates. Obtain histograms.
Do the same for 5000 observations.

14. Obtain the histogram of 100 Weibull observations. Obtain the his-
togram of the logarithms of these observations. Compare this with the
histogram obtained by the empirical transformation to normality.

15. Suppose that T1, . . . , Tn are n exponential variates with parame-
ter λ. Show that, under repeated sampling, the smallest of these also
has an exponential distribution. Is the same true for the largest ob-
servation? Suppose we are only give the value of the smallest of n
observations from an exponential distribution with parameter λ. How
can this observation be used to estimate λ.
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16. Suppose that Xi i = 1, . . . , n are independent exponential variates
with parameter λ. Determine, via simple calculation, the variance of
min(X1, . . . , Xn).

17. Having some knowledge of the survival distribution governing ob-
servations we are planning to study, how might we determine an inter-
val of time to obtain with high probability a given number of failures?
How should we proceed in the presence of censoring?

18. Derive the Bienaymé-Chebyshev inequality. Describe the advan-
tages and drawbacks of using this inequality to construct confidence
intervals in a general setting.

19. Suppose that the entropy described in Equation 2.14 depends on
a parameter θ and is written Vθ(f, f). Consider Vα(f, f) as a function
of α. Show that this function is maximized when α = θ.

20. Using the device of double expectation derive Equation 2.15. Why
is this breakdown interpreted as one component corresponding to “sig-
nal” and one component corresponding to “noise.”

21. Suppose that θn converges in probability to θ and that the variance
of θn is given by ψ(θ)/n. Using Equation 2.19, find a transformation
of θn for which, at least approximately, the variance does not depend
on θ.

22. Consider a stochastic process X(t) on the interval (2, 7) with the
following properties: (a) X(0) = 2, (b) X(t) , t ∈ (2, 7) has increments
such that (c), for each t ∈ (2, 7) the distribution of X(t) is Weibull with
mean 2+λtγ . Can these increments be independent and stationary?
Can the process be described using the known results of Brownian
motion?

23. For Brownian motion, explain why the conditional distribution of
X(s) given X(t) (t > s) is normal with E{X(s)|X(t) = w} = ws/t
and Var {X(s)|X(t) = w} = s(t − s)/t. Deduce the mean and the
covariance process for the Brownian bridge.

24. The Ornstein-Uhlenbeck process can be thought of as transformed
Brownian motion in which the variance has been standardized. Explain
why this is the case.
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25. Reread the subsection headed “Time-transformed Brownian mo-
tion” (Section 2.11) and conclude that the only essential characteristic
underwriting the construction of Brownian motion is that of indepen-
dent increments.

26. Find the value of t ∈ (0, 1) for which the variance of a Brownian
bridge is maximized.

27. Suppose that under H0, X(t) is Brownian motion. Under H1, X(t)
is Brownian motion with drift, having drift parameter 2 as long as
X(t) < 1 and drift parameter minus 2 otherwise. Describe likely paths
for reflected Brownian motion under both H0 and H1. As a class ex-
ercise simulate ten paths under both hypotheses. Comment on the
resulting figures.




