
Chapter 13

Explained variation

13.1 Summary

Some suggestions on possible measures of explained variation which
have appeared in the literature are considered. Following this an out-
line of the recommended approach is given. Leaning upon the theory
of explained variation detailed in Chapter 2 and in particular 3.9 we
show how a solid theory of explained variation for proportional and
non-proportional hazards regression can be established. This contrasts
with a substantial body of literature on this topic, almost entirely con-
structed around intuitive improvisations and ad-hoc modifications to
sample based quantities gleaned from classical linear regression. The
main reference here is the paper by O’Quigley and Flandre (1994)
which showed how the Schoenfeld residuals provide the required in-
gredients for the task in hand. The properties of population quantities
and sample based estimates have been studied thoroughly (O’Quigley
and Xu 2001) and these provide the user with the necessary confidence
for their practical use.

13.2 Motivation

Referring back to Chapter 2 and Section 3.9 it is clear that the con-
cept explained variation is a fundamental one, directly quantifying the
notion of predictive ability. This quantification is a consequence of the
Chebyshev inequality. As an example of a practical setting in which
we are motivated to look at this, consider a study of 2174 breast can-
cer patients, followed over a period of 15 years at the Institut Curie
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in Paris, France. A large number of potential and known prognostic
factors were recorded. Detailed analyses of these data have been the
subject of a number of communications and we focus here on a lim-
ited analysis on a subset of prognostic factors, identified as having
some prognostic importance. These factors were: (1) age at diagnosis,
(2) histology grade, (3) stage, (4) progesterone receptor status, and (5)
tumor size. In addition to the usual model fitting and diagnostic tools,
it seems desirable to be able to present summary measures estimating
the percentage of explained variation and the relative importance of
the different prognostic factors. We would like to be able to say, for
example, that stage explains some 20% of survival but that, once we
have taken account of progesterone status, age, and grade, then this
figures drops to 5%. Or that adding tumor size to a model in which
the main prognostic factors are already included then the explained
variation increases, say, a negligible amount, specifically from 32% to
33%. Or, given that a suitable variable indicates predictability, then
to what extent do we lose (or gain), in terms of these percentages,
by recoding the continuous prognostic variable, age at diagnosis, into
discrete classes on the basis of cutpoints.

For our situation, in which inference is rank invariant with respect
to monotonic transformations on time, then from Section 3.9, we can
see that this implies evaluation of the explained variation in the co-
variate given time rather than, the apparently more natural, explained
variation of time given the covariate. For normal models the two are
the same anyway and, here, we would anticipate them as being very
close. In addition, we have all that is needed if we prefer to consider
the explained variation of time given the covariates.

It helps to keep in mind the implication of working with the
conditional distribution of the covariate given time rather than the
other way around. It means that explained variation, translated as
predictability as a consequence of Chebyshev’s inequality, refers to
the predictability of the failure ranks. Absence of effect should then
translate as 0% predictability; perfect prediction of the correct order-
ing of the survival ranks should translate as 100%; and intermediate
values are to be interpretable as providing an ordered scale, any point
of which indicates precisely the amount of predictive strength in the
model. These concepts are outlined below.
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13.3 Finding a suitable measure of R2

Some suggestions in the literature

The R2 measure of explained variability, or predictive capability, is
well known under a normal linear model. As pointed out by Korn and
Simon (1990), and in contrast to what is oftentimes taught and writ-
ten, such measures are only indirectly concerned with fit. They are
directly concerned with predictability. For the proportional hazards
model some correlation measures were first suggested by Harrell (1986)
although it turned out that his measures depend heavily on indepen-
dent censoring and can not be easily interpreted. Kent and O’Quigley
(1988) developed a measure based on the Kullback-Leibler information
gain and this could be interpreted as the proportion of randomness in
the observed survival times explained by the covariates.

The principal difficulty in Kent and O’Quigley’s measure was its
complexity of calculation although a very simple approximation was
suggested and appeared to work well. The Kent and O’Quigley mea-
sure was not able to accommodate time-dependent covariates. Xu and
O’Quigley (1999) developed a similar measure based on information
gain, using the conditional distribution of the covariates given the fail-
ure times. The measure accommodates time-dependent covariates, and
is computable using standard softwares for fitting the Cox model. We
consider this measure in the following chapter.

Korn and Simon (1990) suggested a class of potential functionals of
interest, such as the conditional median, and evaluated the explained
variation via an appropriate distance measuring the ratio of average
dispersions with the model to those without a model. Their measures
are not invariant to time transformation, nor could they accommo-
date time-dependent covariates. In this context these disadvantages
are quite severe. Schemper (1990, 1994) introduced the concept of in-
dividual survival curves for each subject, with the model and without
the model. Interpretation is very difficult. As with the Harrell measure,
the Schemper measures depend on censoring, even when the censor-
ing mechanism is completely independent of the failure mechanism.
Schemper and Kaider (1997) proposed to estimate the correlation co-
efficient between failure rankings and the covariates via multiply im-
puting the censored failure times. Although numerically complex, and,
again, not readily affording any clear interpretation, this latter coef-
ficient of Schemper and Kaider shows promise and may be worthy of
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further study. It is possible to remove the dependence on the censoring
and this has been considered by O’Quigley, Flandre and Reiner (1999)
and Schemper and Henderson (2000).

Distance measures

Explained variation is clearly based on a measure of distance. Some
authors have preferred to directly address the question of predictive
ability of any model via classes of distance measures. This is the case
for Harrell (1986), Korn and Simon (1990), Schemper (1990, 1992)
and Graf and Schumacher (1995). Apart from the measure of Harrell,
which relates to measures of information gain described in the following
chapter, all of these measures relate to those described by Schemper.

In this description of the Schemper measures we keep to his nota-
tion (Schemper 1990) in order to facilitate any comparative study the
reader may be interested in carrying out. Schemper defined Sij , in-
terpretable as an “empirical survivorship function” per individual, for
subject i at observed failure time point tj (j = 1, . . . , ki). The quantity
ki will be the total number of failures should individual i correspond
to a failure; otherwise ki is the number of failures occurring prior to
the censoring time of the individual i. Sij = 1 for individual i at all
time points tj for which the individual is still alive, drops to 0.5 at the
point at which the individual fails, and thereafter Sij = 0. Note that
changing the definition of Sij so that it drops to zero rather than 0.5
at the observed failure time will have a negligible impact in practice
and an impact approaching zero as sample size (number of failures)
increases.

Denote further S̄j to be the Kaplan-Meier estimate of survival at
time tj and S̄ij the estimate of survival for individual i at time point tj
derived from the proportional hazards model. Two different measures
of the proportion of variability explained were suggested, V1 and V2

where, for � = 1, 2:

Definition 13.1 Schemper’s proportion of variability explained is

V� = 1 −
∑

k−1
i

∑
|Sij − S̄ij |�

∑
k−1

i

∑
|Sij − S̄j |�

; � = 1, 2. (13.1)

For an exponential model and different relative risks, values of V1 and
V2 were tabulated on the basis of a single large simulation (Schemper
1990). The entries for V2 turned out not to be based on a sum of
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squares, as the above expression and Schemper’s original paper in-
dicate, but in fact on a rather less classical squared sum (Schemper
1994). Thus, the original definition for V2 was considered to be in er-
ror by Schemper (1994) and replaced by an alternative one, say V ∗

2 ,
for when � = 2, replacing

∑
|Sij − S̄ij |� by

∑
(k−1

i

∑
|Sij − S̄ij |)2 in

the numerator and
∑

k−1
i

∑
|Sij − S̄j |� by

∑
(k−1

i

∑
|Sij − S̄j |)2 in

the denominator. There is something unusual, requiring further jus-
tification it would seem, in working with distances defined in terms
of squared sums rather than sums of squares. The merits of such a
definition were not detailed by Schemper (1994) although subsequent
work (O’Quigley, Flandre and Reiner 1999; Schemper and Henderson
2000) suggest the original definition should be retained as the correct
one. In support of this is the interesting observation that, for an expo-
nential model and no censoring, the population equivalents of V1 and
V2 converge to the same quantity.

Schemper’s coefficients can be seen to depend on the unknown in-
dependent censoring mechanism (O’Quigley, Flandre and Reiner 1999,
Schemper and Henderson 2000). This can however be remedied and we
look at this in a later section. The Schemper coefficients are generally
bounded by a number strictly less than one. This is also true in the
uncensored case and, for the cases studied by Schemper (1990), the
population values of V1 and V2 are bounded by 0.5.

Relationship between distance measures

Discussion of the relationships between different coefficients based on
some measure of distance is given in Graf and Schumacher (1995).
A study of the Schemper proposal and its large sample properties
is enough to deduce the properties we would anticipate from closely
associated measures. We return to this in Section 13.10 and point out
here the way in which these coefficients are connected. It is useful
to consider the population equivalents of V1 and V2 and we do this by
considering the probability limits of the numerator and denominator in
definition 13.1. If, for � = 1, 2, the numerator converges in probability
to N� and the denominator to D� then we can study the population
parameter θ� where θ� = 1 − D−1

� N�. We look at this in more detail
in Section 13.10. For now we simply consider the form of N� as this
brings out the relationship between the distance measures.

Korn and Simon (1990) considered squared error to be a particular
kind of loss function and therefore other kinds of loss function, such
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as absolute error, might also be considered. The main development
is around integrated squared error loss. For the numerator in their
expression, let’s call it NKS here, we have

ÑKS =
∫ ∫

S̃(u|z){1 − S̃(u|z)}dudHn(z) . (13.2)

In the absence of censoring, for the population equivalent of V2, we
can construct a theoretical numerator, Ñ2 given by

Ñ2 =
∫ ∫ ∫

{Yt(u) − S̃(u|z)}2dF̃ (u)dF̃ (t|z)dHn(z).

In the uncensored case then the distance measures are closely related.
The differences arise as a result of the weightings. For the Schemper
coefficients these are given in terms of increments in F̃ (t) rather than
increments in t itself. This we deduce from taking the above integral
one step further where we see that:

Ñ2 =
∫ ∫

S̃(u|z){1 − S̃(u|z)}dF̃ (u)dHn(z) , (13.3)

which we can then compare with Equation 13.2. The same conclusion
has also been obtained by Graf and Schumacher (1995). Note that
monotonic transformations of t would typically impact the Korn and
Simon measures, whereas the increments in F̃ (t), and thereby V� it-
self, remain unaffected. Given that inference under the proportional
hazards model has this invariance property, it may be considered a
desirable property of V�. Furthermore, for the broad class proposed by
Korn and Simon (1990), it would be straightforward to extend their
measures by adopting such a modification, in order to accommodate
such a property if deemed necessary.

Recommended approach

The most transparent approach, interpretable in terms of explained
variation, is that described by O’Quigley and Flandre (1994). This
approach, in tune with the general theory of Section 3.9, studies the
explained variation in T given the covariate vector Z, or, in order to
maintain rank invariance, the explained variation of the prognostic in-
dex (Z alone in the univariate case) given T . If we stray from this
we lose interpretability and, although many of the other suggestions
have merit, they can run into all sorts of problems such as unknown
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bounds on the index, negative values, strong dependence on the cen-
soring, even when independent of the failure mechanism and, simply,
no way to interpret them. Thus, a value of 0.03, under one set of
circumstances, may indicate a stronger effect than a value of 0.5, ob-
tained under a different set of circumstances. A more solid approach
can be constructed by keeping the basic theory in mind from Section
3.9. Leaning on that basic theory we can anticipate obtaining indices
with meaningful properties. Even so, it is still important to investigate
any properties deemed desirable, and not automatically inherited by
virtue of Section 3.9.

Our recommended approach is essentially that outlined in O’Quigley
and Flandre (1994). Their motivation came from linear regression
where we denote ri(β̂) to be the fitted residual, i.e., the difference
between the observation and its model based expectation evaluated
under β = β̂. The null residual ri(0) obtains by putting instead β = 0
and this corresponds to replacing all expectations by the overall mean.
Next we calculate the average squared deviation of the observations
from their model based predictions,

∑
r2
i (β)/n, leading to the well

known expression for R2, written as R2(β̂) in order to make explicit
the dependence on β̂, from

R2(β) = 1 −
∑

r2
i (β)

∑
r2
i (0)

. (13.4)

Some additional work was needed in order for the R2 measure of
O’Quigley and Flandre to be consistent in general situations. This is
achieved by weighting things correctly and this is described below. We
discuss all the needed statistical properties for the measure including
obtaining confidence intervals with coverage properties asymptotically
the same as those for the regression coefficient estimate itself. A sum
of squares decomposition, an expression for explained variation and
the relationship between increasing values of the measure and pre-
dictability of the survival ranks all help form the basis for a more
solid interpretation. Via simulations we compare this measure with
some of the measures mentioned above. Those aspects particular to
the multicovariate case are examined more closely and some general
recommendations are given. The measure can also be easily extended
to other relative risk models.
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13.4 An R2 measure based on Schoenfeld
residuals

Recall the Schoenfeld residuals as the discrepancy between the ob-
served value of the covariate, viewed of as having been sampled at
time point Xi and its expected value,

ri(β) = Zi(Xi) − Eβ(Z|Xi), (13.5)

for δi = 1 at each observed failure time Xi. The expectation Eβ(Z|Xi)
is worked out with respect to an exponentially tilted distribution. The
stronger the regression effects the greater the tilting, and the smaller
we might expect, on average, the values r2

i (β) to be when compared
with the residuals under the null model β = 0. Based on these resid-
uals, a measure of explained variation, analogous to the coefficient of
determination for the linear model, can be defined (O’Quigley and
Flandre 1994).

Since the semiparametric model leaves inference invariant under
monotonic increasing transformations of the time axis, and being able
to predict at each failure time which subject is to fail is equivalent to
being able to predict failure rankings of all the failed subjects, it is
sensible to measure the discrepancy between the observed covariate at
a given failure time and its expected value under the model. In the
absence of censoring the quantity

∑n
i=1 r2

i (β̂)/n can be viewed as the
average discrepancy between the observed covariate and its expected
value under the model, whereas

∑n
i=1 r2

i (0)/n can be viewed as the
average discrepancy without a model. This consideration led O’Quigley
and Flandre (1994) to define

R2(β) = 1 −
∑

r2
i (β)

∑
r2
i (0)

(13.6)

This is then a clear analogue to that of R2 for linear regression. That of
itself would not be enough since there may be other possible general-
izations. We need study its properties and show that an interpretation
for the population equivalent in terms of explained variation holds.

Investigating the impact of censoring

The effect of censoring for large samples on R2(β) was studied by
O’Quigley and Flandre (1994) and is so small that it can be ignored in
practice, even for rates of censoring between ninety to ninety nine
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percent. However, if we are to obtain exact asymptotic results, in
which our estimator converges to a quantity unaffected by an in-
dependent censoring mechanism, then we need to do a little extra
work. This work amounts to weighting the squared Schoenfeld residu-
als by the increments of any consistent estimate of the marginal failure
time distribution function F . Therefore, let F̂ be the left-continuous
Kaplan-Meier estimate of F , and define W (t) = Ŝ(t)/

∑n
1 Yi(t) where

Ŝ = 1− F̂ . Then W (t) is a non-negative predictable stochastic process
and, assuming there are no ties, it is straightforward to verify that
W (Xi) = F̂ (Xi+) − F̂ (Xi) at each observed failure time Xi, i.e., the
jump of the Kaplan-Meier curve. In practice, ties, if they exist, are
split randomly. We then define the quantity I(b) for b = 0, β by

I(b) =
n∑

i=1

∫ ∞

0
{Zi(t) − Eb(Z|t)}2dF̂ (t)

or, in the more familiar counting process notation by,

I(b) =
n∑

i=1

∫ ∞

0
W (t){Zi(t) − Eb(Z|t)}2dNi(t) =

n∑

i=1

δiW (Xi)r2
i (b).

(13.7)

These quantities are, as before, averages of squared residuals, under
the null model and under the best fitting model, the only difference
being that the average here is weighted with respect to the increments
dF̂ (t). For large samples we will be able to assert that F̂ (t) will be
close to F (t) and so our average is taken over time. With this in mind
we then appeal to a broadened definition for R2 in which:

R2(β) = 1 −
∑n

i=1 δiW (Xi)r2
i (β)

∑n
i=1 δiW (Xi)r2

i (0)
= 1 − I(β)

I(0)
. (13.8)

The definition given by O’Quigley and Flandre (1994) would be the
same as above if we defined W (t) to be constant and, of course, the two
definitions coincide in the absence of censoring. The motivation for the
introduction of the weight W (t) is to obtain large sample properties
of R2 that are unaffected by an independent censoring mechanism.
Viewing R2 as a function of β turns out to be useful. In practice, we
are mostly interested in R2(β̂) where β̂ is a consistent estimate of β
such as the partial likelihood estimate.
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Population parameter Ω2

The population parameter Ω2(β) of R2(β̂) was given in O’Quigley &
Flandre (1994). R2(β̂) can be considered a semi-parametric estimate of
Ω2(β) in as much as it is unaffected by monotonic increasing transfor-
mations on time (see Section 3.9). We will see that Ω2(β) is unaffected
by an independent censorship mechanism. If in addition Z is time-
invariant, we also see that

Ω2(β) = 1 − E{E[Z − E(Z|A(T ))]2}
E{E[Z − E(Z|B(T )]2} , (13.9)

where A(t) = {t} and B(t) = {u : u ≥ t} so that, in view of equation
(3.32), Ω2(β) has the interpretation of the proportion of explained
variation. This of itself would not be interesting enough and we also
show that this choice of B is a sensible one. In fact, the results for the
above choice, chosen to accommodate sequential conditioning on the
risk sets, are very close to those arising under the definition B(t) = T
(see Table 13.1). Indeed, for practical purposes of interpretability we
can take Ω2(β) to be defined as in the following equation where the
approximation symbol is replaced by an equality symbol, i.e.,

Ω2(β) ≈ Var{E(Z|T )}
Var(Z)

.

O’Quigley and Flandre showed that Ω2(β) depends only relatively
weakly on different covariate distributions, and values of Ω2(β) give a
good reflection of strength of association as measured by β, tending to
1 for high but plausible values of β. The numerical results support the
conjecture that Ω2 increases with the strength of effect, thereby agree-
ing with the third stipulation of Kendall (1975, p. 4) for a measure
of rank correlation. The first two stipulations were that perfect agree-
ment or disagreement should reflect itself in a coefficient of absolute

Table 13.1: Ω2 as a function of β.

covariate∗ c c d c c c d

β 0 0.7 0.7 1.4 2.8 4.2 4.2
B(t) = {u : u ≥ t} 0.0002 0.0990 0.0979 0.2844 0.5887 0.7577 0.8728

B(t) = T 0.0018 0.0998 0.0985 0.2848 0.5889 0.7578 0.8728
∗ Covariate distribution: d – binary, c – uniform. Data are simulated under the

same mechanism as that described below.
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value 1; the third stipulation that for other cases the coefficient should
have absolute value less than 1, and in some acceptable sense increas-
ing values of the coefficient should correspond to increasing agreement
between the ranks. Here we have a squared coefficient, and Kendall’s
stipulations are considered in a broader sense because we are not re-
stricted to the ranks of the covariates in the semiparametric context.
In the next section we will show that Ω2(β) → 1 as |β| → ∞ and that
it increases with the ability to explain survival rankings by the covari-
ates. Before that, we look at a closely related quantity which turns out
to be of use.

Alternative measure R2
E

For mostly theoretical purposes we also consider an alternative defi-
nition to R2, in which we use the expected (with respect to the π’s)
rather than the observed squared residuals. Consider then

J (β, b) =
∫ ∞

0
W (t)

n∑

j=1

πj(β, t){Zj(t) − Eb(Z|t)}2dN̄(t)

=
n∑

i=1

δiW (Xi)Eβ{r2
i (b)|Xi}

and define

R2
E(β) = 1 −

∑n
i=1 δiW (Xi)Eβ{r2

i (β)|Xi}∑n
i=1 δiW (Xi)Eβ{r2

i (0)|Xi}
= 1 − J (β, β)

J (β, 0)
. (13.10)

Our experience indicates that when the proportional hazards model
correctly generates the data, R2

E will be very close in value to R2. In-
deed we will show, under the model, that |R2(β̂) − R2

E(β̂)| converges
to zero in probability. This coefficient is of interest in its own right al-
though our main purpose here is to use it for developing properties of
the next section. It can also be used to construct confidence intervals
for the population quantity Ω2(β), intervals which have, for increasing
sample size, exactly the same coverage properties of those for β̂ itself.
Another angle to understand J (β, b) follows from taking the expecta-
tion of I(b) under the model, using the results for counting processes
(see for example Fleming and Harrington 1991) we have

E{I(b)} =
n∑

i=1

∫ ∞

0
E{W (t)[Zi(t) − Eb(Z|t)]2Yi(t) exp[βZi(t)]}dΛ0(t),
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where Λ0(t) =
∫ t
0 λ0(s)ds. If we replace the unknown Λ0 by the Nelson-

Aalen estimate (Breslow 1972, 1974) and the expectations under the
integral by the observed quantities, then we recover J (β, b) as an es-
timate of E{I(b)}. It is also straightforward to verify that J (β, β) is
the weighted information of the Cox model.

13.5 Finite sample properties of R2 and R2
E

We have the following immediate lemmas:

Lemma 13.1 Viewing R2 as a function of β then: R2(0) = 0 and
R2(β) ≤ 1.

Lemma 13.2 R2(β) is invariant under linear transformations of Z
and monotonically increasing transformations of T.

The following lemma is not a precise result, although we have a precise
equivalent for large samples. It provides some insight into R2, viewed
as a function of β. It also indicates why, apart from theoretical interest,
only R2(β̂) need concern us.

Lemma 13.3 R2(β) as a function of β, reaches its maximum around β̂.

Proofs of the above are similar to those given by O’Quigley and Flandre
(1994). More details are provided in the chapter on proofs. Note that
R2, unlike R2

E and Ω2, cannot be guaranteed to be non-negative. A
negative value for R2 is nonetheless difficult to obtain in practice,
corresponding to the unusual case where the best fitting model, in a
least squares sense, provides a poorer fit than the null model. R2(β̂)
will only be slightly negative in such cases if β̂ is very close to zero.

Lemma 13.4 An approximate sums of squares decomposition holds
for r2

i and holds exactly in the following expression:

Eβ{r2
i (0)|Xi} = Eβ{r2

i (β)|Xi} + {Eβ(Z|Xi) − E0(Z|Xi)}2. (13.1)

Both the approximate and the exact sum of squares decomposition,
outlined in more detail below, are valuable in underlining the great
similarity between proportional hazards models and linear models. Al-
though we do not pursue the idea it would be quite possible to develop
for the proportional hazards model a whole theory for testing and fit
based on sums of squares and analysis of variance type decompositions.
Even F -tests can be constructed, although, at the present time, there
appears to be no obvious advantage to any such alternative approach.
One consequence of the above breakdown is:
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Lemma 13.5 The coefficient R2
E(β) can be reexpressed as:

R2
E(β) =

∑n
i=1 δiW (Xi){Eβ(Z|Xi) − E0(Z|Xi)}2

∑n
i=1 δiW (Xi)Eβ{r2

i (0)|Xi}
.

The re-expression of R2
E(β) in the lemma is helpful in obtaining the

further lemmas:

Lemma 13.6 As a function of β, 0 ≤ R2
E(β) ≤ 1, and R2

E(0) = 0.

Whereas R2(β) depends on the observations directly, R2
E(β) is a func-

tion of expectations across the observations and although, at least for
correctly specified models, there will be close agreement between the
R2(β̂) and R2

E(β̂) (a result made more precise below), the two co-
efficients behave very differently when viewed as functions of β. In
particular, in contrast to Lemma 13.3, we have:

Lemma 13.7 As |β| → ∞ then R2
E(β) → 1.

We also have:

Lemma 13.8 R2
E(β) is invariant under linear transformations of Z

and monotonically increasing transformations of T .

The proof of the linearity property follows in the same way as for
R2 (O’Quigley and Flandre 1994), and an outline of the proof of
monotonicity is given in the chapter on proofs. The figure helps illus-
trate the contrasting behaviors of the two coefficients, seen as functions
of β. It is clear that R2(β) as a function of β does not increase to 1 as
|β| → ∞, but rather reaches its maximum near β̂. The monotonicity
property of R2

E(β) also has an interesting connection to the literature
on the efficiency of the Cox model, which has also noted that the infor-
mation J (β, β) → 0 as |β| → ∞ (Efron 1977, Oakes 1977, Kalbfleisch
and Prentice 1980 Section 4.7).

13.6 Large sample properties

The most straightforward approach is to define the population para-
meter Ω2(β) as the probability limit of R2

E(β) as n → ∞. We can then
investigate separately how meaningful is Ω2(β), in particular how it
can be viewed as an index of explained variation. We then need to
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show that R2(β̂) converges in probability to Ω2(β0) where β0 is the
“true” value under which the data are generated. Let

S(r)(β, t) = n−1
n∑

i=1

Yi(t)eβZi(t)Zi(t)r, s(r)(β, t) = ES(r)(β, t),

for r = 0, 1, 2, 3, 4. We assume that the Andersen-Gill conditions hold.
First it is straightforward to establish that: Eβ(Z|t) = S(1)(β, t)/S(0)

(β, t). Next we have:

Lemma 13.9 The coefficient J (β, b) can be reexpressed as:

J (β, b)=
∫

W (t)

{
S(2)(β, t)
S(0)(β, t)

− 2
S(1)(β, t)S(1)(b, t)
S(0)(β, t)S(0)(b, t)

+
S(1)(b, t)2

S(0)(b, t)2

}

dN̄(t).

Theorem 13.1 As n → ∞ J (β, b) converges in probability to J(β, b)
where

J(β, b) =
∫

w(t)

{
s(2)(β, t)
s(0)(β, t)

− 2
s(1)(β, t)s(1)(b, t)
s(0)(β, t)s(0)(b, t)

+
s(1)(b, t)2

s(0)(b, t)2

}

s(0)(β, t)λ0(t)dt

and where w(t) = S(t)/s(0)(0, t).

The value to which R2
E(β) converges for large samples, i.e.,

R2
E(β) P→ 1 − J(β, β)

J(β, 0)
, (13.2)

leads to a natural definition for the relevant population parameter via:

Definition 13.2 Let us take

Ω2(β) = 1 − J(β, β)
J(β, 0)

, (13.3)

and, from this, we obtain the important convergence in probability
result:

Theorem 13.2 |R2
E(β) − Ω2(β)| P→ 0. In particular, J (β, β) and

J (β, 0) converge in probability to J(β, β) and J(β, 0), respectively.
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Corollary 13.1 0 ≤ Ω2(β) ≤ 1, Ω2(0) = 0, and as |β| → ∞,
Ω2(β) → 1. Additionally Ω2(β) is invariant under linear transforma-
tions of Z and monotonically increasing transformations of T .

We now show that R2(β̂) and R2
E(β̂) are asymptotically equivalent;

therefore R2(β̂) is consistent for Ω2(β0).

Theorem 13.3 Under the Andersen-Gill conditions, |R2(β̂) − R2
E

(β̂)| P→ 0.

In our own practical experience, when the proportional hazards model
holds, there is very close agreement between the coefficients R2(β̂)
and R2

E(β̂) (see the examples below). When discrepancies arise, this is
indicative of a failure in model assumptions. We also have that:

Corollary 13.2 R2(β̂) consistently estimates Ω2(β0). In particu-
lar, I(β̂) and I(0) consistently estimate J(β0, β0) and J(β0, 0),
respectively.

Theorem 13.4 R2(β̂) and R2
E(β̂) are asymptotically normal.

Monotonicity of Ω2

As strength of association increases so should the measure of correla-
tion or explained variation. We know, from the results of Section 3.9
that Ω2 is quantifying predictability. We can obtain further insights
into this by considering additional properties of Ω2. For instance we
have that increasing strength of association manifests itself via an in-
creasing |β0|, once the covariate scale has been fixed. We have

Theorem 13.5 Ω2(β0) as a function of β0, increases with |β0|.
In fact, we will show below that Ω2 increases with the predictability
of survival rankings, which corresponds to Kendall’s third stipulation
(in the context of the semiparametric Cox regression). Let Zj > Zi

be the covariates for two subjects in the study, and assume β0 > 0
without loss of generality. We can transform all the survival times to
exponentially distributed via the transformation Λ0(·), where Λ0 is
the baseline cumulative hazard function. Such a transformation pre-
serves the ranking of the failures so that Ω2(β0) is unchanged. Then
conditional, on the covariates, a simple calculation shows that

Pr(Ti > Tj) =
exp(β0Zj)

exp(β0Zi) + exp(β0Zj)
,

which increases strictly with β0.
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From the above we see that, given the covariates, as the predictabil-
ity of the survival rankings increases, so does Ω2. Furthermore, as a
result of Theorem 13.5, we can obtain confidence intervals of Ω2(β0)
from those for β0, since Ω2(β0) is an increasing function of |β0|. Only
the absolute value conveys information concerning strength of effect
and we can then simply invert intervals for β0, obtained by the usual
methods, into intervals for Ω2(β0). The coverage properties will then
be the same as those already established for the log relative-risk esti-
mate. Since R2

E(β) is consistent for Ω2(β) for any β then, in practice,
we only need to “plug” the two endpoints of the β-confidence interval
into R2

E . This gives an approximate confidence interval for Ω2(β0). We
have not carried out detailed investigation of the coverage properties
of such intervals, but in the examples below, we see that such “plug-in”
method gives a confidence interval that agrees very well with inference
based on bootstrap resampling.

Independent censoring

Here, we assume that C is independent of T and Z. An important
property is that the population parameter Ω2(β) be not affected by the
censorship. In order to show this, it helps to recall our earlier discussion
on the two roles that time plays in the model. First, Z(·) in general
is a stochastic process with respect to time, meaning that Z(t) is a
random variable at any fixed t and may have different distributions at
different times t. Secondly, the failure time variable T is a non-negative
random variable denoting time. While it is immediate to understand
the distribution of T given the covariates, we have at any fixed time t
two different conditional distributions of Z(t) on T that are of interest
to us. One is conditioning on T ≥ t under the independent censoring
assumption this can be interpreted as given all the subjects that have
survived at least until time t and can be estimated by the empirical
distribution of Z(t) in the risk set at time t.

Another kind of conditional distribution of interest is that of Z(t)
given T = t. Under the assumption that T has a continuous distribu-
tion we usually observe only one failure at a time and it is difficult to
estimate this latter conditional distribution based on a single observa-
tion, or a few in the case of ties. We can, however, obtain a consistent
estimate by leaning on the model and the main theorem of propor-
tional hazards regression of Section 7.4, one of whose corollaries is:
under the model and an independent censorship, the conditional dis-
tribution function of Z(t) given T = t is consistently estimated by
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F̂t(z|t) = P̂ (Z(t) ≤ z|T = t) =
∑

{j:Zj(t)≤z}
πj(β̂, t).

Note that the corollary also applies to multiple dimensional covariates.
As a consequence, we also have that:

Corollary 13.3

s(1)(β, t)
s(0)(β, t)

=Eβ{Z(t)|t}, s(2)(β, t)
s(0)(β, t)

=Eβ{Z(t)2|t}, s(1)(0, t)
s(0)(0, t)

=E0{Z(t)|t}.

Corollary 13.4 The cumulative distribution for T can be expressed as

F (t) =
∫ t

0
w(t)s(0)(β, t)λ0(t)dt.

Lemma 13.10 For b in J(β, b) taking the values β, 0:

J(β, b) =
∫

Eβ{[Z(t) − Eb(Z(t)|t)]2|t}dF (t).

Corollary 13.5 We can now rewrite Ω2(β) as:

Ω2(β) = 1 −
∫

Eβ{[Z(t) − Eβ(Z(t)|t)]2|t}dF (t)
∫

Eβ{[Z(t) − E0(Z(t)|t)]2|t}dF (t)
. (13.4)

We can deduce from the corollary that Ω2(β) does not involve the
censoring distribution. It is therefore unaffected by changes in any in-
dependent censoring mechanism, in particular its removal as a mech-
anism impacting our ability to make observations on T .

13.7 Interpretation

In order to be completely assured before using R2 in practice it is
important to know that R2 is consistent for Ω2, that Ω2(0) = R2(0) =
0, Ω2(∞) = 1, that Ω2 increases as strength of effect increases, and
that Ω2 is unaffected by an independent censoring mechanism. This
enables us to state that an Ω2 of 0.4 translates greater predictability
than an Ω2 of 0.3. We do, however, need one more thing. We would like
to be able to say precisely just what a value such as 0.4 corresponds
to. That is the purpose of this section.
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A sum of squares decomposition

In the definition of R2(β),
∑n

i=1 δiW (Xi)r2
i (β) can be considered as a

residual sum of squares analogous to the linear regression case, while∑n
i=1 δiW (Xi)r2

i (0) is the total sum of squares. Notice that
n∑

i=1

δiW (Xi)r2
i (0)

=
n∑

i=1

δiW (Xi)r2
i (β) +

n∑

i=1

δiW (Xi){Eβ(Z|Xi) − E0(Z|Xi)}2

+2
n∑

i=1

δiW (Xi){Eβ(Z|Xi) − E0(Z|Xi)}{Zi(Xi) − Eβ(Z|Xi)}.

The last term in the above is a weighted score and therefore converges
asymptotically to zero. It is this result which will enable us to break
down the total sum of squares into two components: a residual sum
of squares and a regression sum of squares. To make this precise we
introduce the following definition which, immediately, can be seen to
be analogous to those with which we are familiar from ordinary linear
regression.

Definition 13.3 The total, residual, and regression sum of squares
are defined by:

SSreg =
n∑

i=1

δiW (Xi){Eβ̂(Z|Xi) − E0(Z|Xi)}2

SStot =
n∑

i=1

δiW (Xi)r2
i (0), SSres =

n∑

i=1

δiW (Xi)r2
i (β̂).

From this definition we obtain an asymptotic decomposition of the
total sum of squares into the residual sum of squares and the regression
sum of squares, i.e.

Lemma 13.11 Asymptotically, the above three quantities are re-
lated by:

SStot = SSres + SSreg. (13.5)

We can then conclude that R2 is asymptotically equivalent to the ratio
of the regression sum of squares to the total sum of squares. Notice that
for R2

E(β), even with finite samples, we have an exact decomposition
of the sum of the squares. Therefore R2

E can be expressed exactly as
the ratio of a regression sum of squares to the total sum of squares.
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Explained variation

For time-invariant covariates and independent censoring, the coeffi-
cient Ω2(β) has a simple interpretation in terms of explained variation.
In this case, Z(t) ≡ Z and, letting A(t) = {t} and B(t) = {u : u ≥ t}
then we have that:

J(β, β) = E{E[Z − E(Z|A(T ))]2}
J(β, 0) = E{E[Z − E(Z|B(T ))]2}

The first equation is immediate and the second follows since E0(Z|t) =
Eβ(Z|T > t). We can then claim that Ω2 is indeed a measure of
explained variation, the above expressions fitting in precisely with
equation (3.32). It is then clear, and backed up further by the sim-
ulations of Table 13.1, that

Ω2(β) ≈ 1 − E{Var(Z|T )}
Var(Z)

=
Var{E(Z|T )}

Var(Z)
. (13.6)

What is more, there is nothing to stop us defining explained variation
as in the right-hand side of the equation since the marginal distribution
of Z and T can be estimated by the empirical and the Kaplan-Meier
estimator, while the conditional distribution of Z given T = t by the
πi(β̂, t). However, it is not clear that there is any advantage to this
and we recommend that all calculations be done via the Schoenfeld
residuals, evaluated at β = β̂ and β = 0.

The agreement shown in the table between the different ways of
conditioning is rather remarkable. One almost suspects that there may
be an actual equality and that the observed differences are simply due
to rounding errors. But we have not been able to show as much. The
important thing to conclude is that we have a very clear, and precise,
interpretation in terms of explained variation.

Explained variation in T given Z

As just described we can interpret our coefficient as an estimate of the
variation in Z explained by T. In the context of proportional hazards
regression where inference is not impacted by any arbitrary monotonic
increasing transformation on T, then the variances and mean squared
errors of Z given T are the correct quantities to use in order to quantify
predictive strength. This is not immediately intuitive however and it is
frequently argued that what is required is a coefficient built around the
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variances and mean squared errors of T given Z. In response to that
viewpoint, it could be argued that this amounts to wanting to have
your cake and eat it, since by making an appeal to the proportional
hazards model we are implying that we wish to suppress or ignore the
distributional properties of T given Z and that our model (especially
in the light of the main theorem of Section 7.4) only describes the
conditional distribution of Z given T.

However, at very little cost and effort, we can, if we wish, base
our construction on the same quantities we have worked with so far
together with an appeal to Bayes rule. This results in a coefficient with
an interpretation as the explained variation in T given Z. Recall that
for the case of a bivariate normal distribution the two different ways
of defining explained variation result in identical population quantities
Ω2. For other distributions (as is the case here) we nonetheless expect
that agreement will be strong. This has been the case in our practical
experience. We need two quantities: Var(T ) and E Var(T |Z). The first
is readily estimated and often we may wish to estimate it by restricting
the time interval to have some upper limit. As for E Var(T |Z), note
that:

E{Var(T |Z)} =
∫

T

∫

Z

{

t −
∫

T
tdF (t|z)

}2

dF (t|z)dG(z). (13.7)

If there is no censoring then consistent estimates for Ω2
T (Z) are found

by replacing F (t), G(z) and F (t|z) by the empirical estimates Fn(t),
Gn(z) and Fn(t|z) to obtain an estimate, let’s call it R2. By virtue of
the Helly-Bray theorem R2 will provide a consistent estimate of Ω2.
Two major problems arise. The first is that, if the dimension of z is
high or even continuous, then the estimates Fn(t|z) may be too unre-
liable to be of practical use. If we wish to appeal to the proportional
hazards model then any estimate of F (t|z) will necessarily involve the
unspecified λ0(t). Censoring simply adds to the difficulties. However
all of these hurdles are readily overcome by a simple appeal to Bayes
rule whereby we can write:

E{Var(T |Z)} =
∫

T

∫

Z

{

t −
∫
T ug(z|u)dF (u)
∫
T g(z|u)dF (u)

}2

dG(z|t)dF (t). (13.8)

Consistent estimates for Ω2
T (Z) follow if we can consistently estimate

the conditional distribution G(z|t) and the marginal distribution F (t).
For the marginal distribution of F (t) we have of course the Kaplan-
Meier estimate. This makes an assumption of independence between
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the censoring and the failure mechanisms. If we wish to make the
weaker assumption of conditional independence then, rather than use
the Kaplan-Meier estimate, we appeal to the law of total probability
and use a weighted combination of within group Kaplan-Meier esti-
mates. In practice, making this relaxing assumption, has a negligible
impact on the estimates of Ω2. It is simpler then to work with an
independent censoring assumption. The main theorem of Section 7.4
enables us to replace g(z|u), at each failure point u = Xi, by πi(β, Xi)
as a result of the expression for P̂ (Z(t) ≤ z|T = Xi) given by Equa-
tion 7.6. All of the calculations involve the very same quantities used to
construct the coefficient of explained variation in terms of Z given T.
The specificity of the model is made use of via the same appeal to the
main theorem of Section 7.4. For estimation purposes, all of the inte-
grals in Equation 13.8 reduce to simple sums beginning with the outer
integral which, upon replacing F (t) by the stepwise Kaplan-Meier esti-
mate, means that we sum over the observed failure times. The weights
will be the step size of the Kaplan-Meier decrement. The empirical
cumulative distribution of the πi(β, Xi) is also a step function so that,
within the outer sum, we also have an inner sum to approximate the
integral. There is quite clearly more work to do in order to obtain
the coefficient with a direct interpretation as the explained variation
in T given Z and, since the results are anticipated to be very close,
it is a matter for the user to decide just how important that precise
interpretion is.

13.8 Simulation results

It is helpful to recall some simulations comparing the behavior of R2

with some of the measures mentioned earlier. We make use of some of
the results from Table II of Schemper and Stare (1996). In Table 13.2,
data are generated with hazard function λ(t) = exp(−βZ), where
β = 0, log 2, log 4, log 16, log 64, and Z distributed as either uniform
[0,

√
3] (“c”) or dichotomous 0,1 with equal probabilities (“d”). These

two covariate distributions have identical variances and thus allow
comparison of the results for continuous and dichotomous covariates.
Censoring mechanisms are uniform [0, τ ], where τ is chosen to achieve
a certain percentage of censoring.

As in Schemper and Stare (1996), there were 100 simulation for
each entry of the results. In the table, R2 is the measure proposed
here, ρ2 is the measure of dependence based on information gain (Xu
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Table 13.2: A simulated comparison of different measures (n = 5000).
exp(β) % censored Covariate R2 ρ2 ρ2

W ρ2
W,A r2

pr KS
1 0% c 0.000 0.000 0.000 0.000 0.000 0.000

50% c 0.000 0.000 0.000 0.000 0.000 0.000
90% c 0.002 0.002 0.000 0.000 0.000 0.000

2 0% c 0.098 0.102 0.096 0.119 0.092 0.101
50% c 0.101 0.108 0.089 0.122 0.093 0.088
90% c 0.104 0.105 0.103 0.099 0.074 0.015
0% d 0.099 0.102 0.113 0.118 0.096 0.095
50% d 0.105 0.110 0.114 0.121 0.096 0.089
90% d 0.112 0.106 0.125 0.100 0.076 0.016

4 0% c 0.281 0.295 0.304 0.338 0.272 0.231
50% c 0.303 0.334 0.298 0.344 0.274 0.267
90% c 0.325 0.340 0.279 0.342 0.278 0.063

16 0% c 0.586 0.598 0.623 0.664 0.584 0.354
50% c 0.623 0.690 0.622 0.668 0.584 0.564
90% c 0.703 0.723 0.605 0.670 0.585 0.188

64 0% c 0.757 0.758 0.785 0.815 0.754 0.397
50% c 0.790 0.848 0.790 0.815 0.730 0.717
90% c 0.863 0.876 0.763 0.816 0.694 0.321
0% d 0.870 0.681 0.777 0.814 0.707 0.319
50% d 0.873 0.860 0.776 0.815 0.718 0.861
90% d 0.941 0.756 0.795 0.792 0.701 0.135

and O’Quigley 1999). The last four columns are from Schemper and
Stare (1996), where ρ2

W and ρ2
W,A are from Kent and O’Quigley (1988),

the measure r2
pr is from Schemper and Kaider (1997) and ‘KS’ from

Korn and Simon (1990) based on quadratic loss. From Table 13.2 we
see that overall there is mostly good agreement among these particular
coefficients except for KS.

Unlike all the other measures included, the KS measure does not
remain invariant to monotone increasing transformation of time. This
measure is most useful when the time variable provides more informa-
tion than just an ordering. There is noticeably close agreement between
ρ2 and R2 for the majority of the cases. This may have its root in the
fact that both measures are semiparametric and calculated using the
conditional probability π’s. The numerical results for dichotomous co-
variates with high hazard ratio 64 reflects the fact that for discrete
covariates ρ2 is bounded away from one as |β| increases. However, as
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discussed in Xu and O’Quigley (1999) as well as Kent (1983), in prac-
tice ρ2 can usually be interpreted without paying special attention to
the discreteness of the distribution.

There are most likely theoretical grounds for anticipating some
level of agreement among R2, ρ2, ρ2

W and ρ2
W,A. Roughly speaking, R2

has at it base something like a score statistic while the three versions
of ρ2 a likelihood ratio statistic. Large sample agreement for such sta-
tistics has been documented and further exploration may shed light
on this. The values of r2

pr tend to be slightly lower than these four
coefficients, although the strength of association reflected is similar.
The measure r2

pr requires more computation than all the other ones
in the table because of the multiple imputation technique employed.
Some work has been done (Xu and O’Quigley 1999) on establishing the
statistical and interpretative properties of ρ2. Such work remains to
be carried out on the other contenders before they could be proposed
for routine implementation.

13.9 Extensions

Multiple coefficients

Assume a multicovariate proportional hazards model with β and Z(t)
being p× 1 vectors. Under this model, the dependence of the survival
time variable on the covariates is via the prognostic index (Andersen
et al. 1983, Altman and Andersen 1986)

η(t) = β′Z(t).

So we can imagine that each subject in the study is now labelled by
η. The value R2 as a measure of explained variation or, predictive
capability, should evaluate how well the model predicts which individ-
ual or equivalently, its label, is chosen to fail at each observed failure
time. This is equivalent to predicting the failure rankings given the
prognostic indices. When p = 1, Z is equivalent to η, therefore we can
construct the R2 using residuals of the Z’s. But for p > 1, the model
does not distinguish between different vector Z’s as long as the cor-
responding η’s are the same. So instead of residuals of Z, we define
the multiple coefficient using residuals of η. Recall that, in the multi-
variate setting, the main theorem of Section 7.4 provides us with the
estimated joint distribution of the covariate vector Z given time. The
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most useful way of summarizing this vector is via the linear combi-
nation corresponding to the prognostic index. We then proceed very
much as for the univariate setting, making the more general definitions
of the coefficients.

Definition 13.4 For the multivariate case we define I(b) as

I(b) =
n∑

i=1

∫ ∞

0
W (t){ηi(t) − β′Eb(Z|t)}2dNi(t). (13.9)

Definition 13.5 For the multivariate case we define J (β, b) as

J (β, b) =
∫ ∞

0
W (t)

n∑

j=1

πj(β, t){ηj(t) − β′Eb(Z|t)}2dN̄(t). (13.10)

For the univariate case we recover the previous definitions apart from
a constant multiple which will cancel. We then have:

Definition 13.6

R2(β) = 1 − I(β)
I(0)

; R2
E(β) = 1 − J (β, β)

J (β, 0)
. (13.11)

Definition 13.7 In order to describe probability limits we define
J(β, b) to equal

∫

w(t)β′
{

s(2)(β, t)
s(0)(β, t)

− 2
s(1)(β, t) ⊗ s(1)(b, t)
s(0)(β, t)s(0)(b, t)

+
s(1)(b, t)⊗2

s(0)(b, t)2

}

βs(0)(β, t)λ0(t)dt,

where a⊗2 = aa′ and a ⊗ b = ab′ for vectors a and b.

The definition leads to:

Lemma 13.12 Under the Andersen-Gill conditions; letting n → ∞,
we have

Ω2(β) = 1 − J(β, β)
J(β, 0)

, . (13.12)

Notice that although R2(β) and R2
E(β) are not defined for β = 0,

the limits exist and are equal to zero as β → 0. So we can define
R2(0) = R2

E(0) = Ω2(0) = 0. As in the one-dimensional case, we have
the following similar properties:
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Theorem 13.6 |R2
E(β) − Ω2(β)| P→ 0. In particular, J (β, β) and

J (β, 0) converges in probability to J(β, β) and J(β, 0), respectively.

Corollary 13.6 0 ≤ Ω2(β) ≤ 1, Ω2(0) = 0, and as |β| → ∞,
Ω2(β) → 1. Additionally Ω2(β) is invariant under linear transforma-
tions of Z and monotonically increasing transformations of T .

We have that R2(β̂) and R2
E(β̂) are asymptotically equivalent, therefore

R2(β̂) is consistent for Ω2(β0).

Theorem 13.7 Under the Andersen-Gill conditions, |R2(β̂) − R2
E

(β̂)| P→ 0.

In our own practical experience, when the proportional hazards model
holds, there is very close agreement between the coefficients R2(β̂) and
R2

E(β̂) (see the examples below). When discrepancies arise, this would
seem to be indicative of a failure in model assumptions. We can also
see that

Corollary 13.7 R2(β̂) consistently estimates Ω2(β0). In particular,
I(β̂) and I(0) consistently estimate J(β0, β0) and J(β0, 0), respec-
tively.

Theorem 13.8 R2(β̂) and R2
E(β̂) are asymptotically normal.

Lemma 13.13 All three quantities; R2(β), R2
E(β) and Ω2(β) are in-

variant under linear transformations of Z and monotonically increas-
ing transformations of T .

Finally, a sum of squares decomposition can be obtained for both R2

and R2
E , in the same way as in the one-dimensional case.

Partial coefficients

The partial coefficient can be defined via a ratio of multiple coeffi-
cients of different orders. Specifically, and in an obvious change of
notation just for the purposes of this subsection, let R2(Z1, . . . , Zp)
and R2(Z1, . . . , Zq) (q < p) denote the multiple coefficients with
covariates Z1 to Zp and covariates Z1 to Zq, respectively. Note
that R2(Z1, . . . , Zp) is calculated using β̂1, . . . , β̂p estimated when
Z1, . . . , Zp are included in the model, and R2(Z1, . . . , Zq) using
β̂10, . . . , β̂q0 estimated when only Z1, . . . , Zq are included. Define the
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partial coefficient R2(Zq+1, . . . , Zp|Z1, . . . , Zq), the correlation after
having accounted for the effects of Z1 to Zq by

1 − R2(Z1, . . . , Zp) = [1 − R2(Z1, . . . , Zq)][1 − R2(Zq+1, . . . , Zp|Z1, . . . , Zq)].

The above coefficient, motivated by an analagous expression for the
multivariate normal model, makes intuitive sense in that the value of
the partial coefficient increases as the difference between the multiple
coefficients increases, and takes the value zero should this difference
be zero. Partial R2

E and partial Ω2 can be defined in a similar way.
We can also derive the above definition directly. Following the

discussion of multiple coefficients, we can use the prognostic indices
obtained under the model with Z1, . . . , Zp and that with Z1, . . . , Zq.
This would be equivalent to defining 1 − R2(Zq+1, . . . , Zp|Z1, . . . , Zq)
as I(Z1, . . . , Zp)/I(Z1, . . . , Zq), the ratio of the numerators of 1 −
R2(Z1, . . . , Zp) and 1 − R2(Z1, . . . , Zq). However, since the two nu-
merators are on different scales, being inner products of vectors of dif-
ferent dimemsions, their numerical value require standardization. One
natural way to standardize is to divide these numerators by the de-
nominators of 1−R2(Z1, . . . , Zp) and 1−R2(Z1, . . . , Zq), respectively.
This gives the above definition.

Stratified model

The partial coefficients of the previous section enable us to assess the
impact of one or more covariates while adjusting for the effects of
others. This is carried out in the context of the assumed model. It
may sometimes be preferable to make weaker assumptions than the
full model and adjust for the effects of other multilevel covariates by
stratification. Indeed it can be interesting and informative to compare
adjusted R2 measures, the adjustments having been made either via
the model or via stratification. For the stratified model the basic de-
finitions follow through readily. To be precise, we define a stratum
specific residual for stratum s (s = 1, ..., S), where, in the following,
a subscript is in place of i means the ith subject in stratum s. Thus
we have

ri(b; s) = Zis(Xis) − Eb(Z|Xis) (13.13)

where Eb(Z|Xis) is averaged within stratum s over the risk set at time
Xis, and we write

I(b)=
∑

i

∑

s

∫ ∞

0

W (t){Zis(t) − Eb(Z|t)}2dNis(t)=
∑

i

∑

s

δisW (Xis)r2
i (b, s).



13.9. EXTENSIONS 385

From this we can define

R2(β) = 1 −
∑

i

∑
s δisW (Xis)r2

i (β, s)
∑

i

∑
s δisW (Xis)r2

i (0, s)
= 1 − I(β)

I(0)
. (13.14)

Note that we do not use a stratum specific W (t) and, as before, we
work with an assumption of a common underlying marginal survival
distribution. The validity of this hinges on an independent, rather than
a conditionally independent, censoring mechanism. Under a condition-
ally independent censoring mechanism, a weighted Kaplan-Meier esti-
mate (Murray and Tsiatis, 1996) of the marginal survival distribution
could be used instead. We would not anticipate this having a great
impact on the calculated value of R2(β) but this has yet to be studied.

Other relative risk models

It is straightforward to generalize the R2 measure to other relative risk
models, with the relative risk of forms such as 1 + βz or exp{β(t)z}.
Denote r(t; z) a general form of the relative risk. Assume that the re-
gression parameters involved have been estimated, and define πi(t) =
Yi(t)r̂(t; Zi)/

∑n
j=1 Yj(t)r̂(t; Zj). Then we can similarly define Eβ(Z|t)

and form the residuals, thereby defining an R2 measure similar to
(13.8). In addition, it can be shown that under an independent censor-
ship, the conditional distribution of Z(t) given T = t is consistently
estimated by {πi(t)}i, so properties such as being unaffected by an
independent censorship are maintained.

It is particularly interesting to study the use of such an R2 measure
under the time-varying regression effects model, where the relative risk
is exp{β(t)z}. Different approaches have been proposed to estimate
β(t) (Sleeper and Harrington 1990, Zucker and Karr 1990, Murphy
and Sen 1991, Gray 1992, Hastie and Tibshirani 1993, Verweij and Van
Houwelingen 1995, Sargent 1997 and Gustafson 1998). In this case we
can use R2 to compare the predictability of different covariates as we
do under the proportional hazards model; we can also use it to guide
the choice of the amount of smoothness, or the “effective degrees of
freedom” as it is called by the some of the aforementioned authors, in
estimating β(t). As a brief illustration, suppose that we use the sieves
method which estimates β(t) as a step function, and that we are to
choose between two different partitions of the time axis, perhaps one
finer than the other.



386 CHAPTER 13. EXPLAINED VARIATION

Denote the two estimates obtained under these two partitions by
β̂1(t) and β̂2(t), the latter corresponding to the finer partition. We can
measure the extra amount of variation explained by fitting β̂2(t) versus
fitting β̂1(t), by

R2
ex = 1 − I(β̂2(·))

I(β̂1(·))
.

This can be thought of as a partial coefficient, if we look at the
“dimension” of β(t) through time. The use of R2

ex in estimating β(t)
has recently been explored in Xu and Adak (2000).

13.10 Theoretical construction for distance
measures

The distance measures described in Section 13.3 were defined em-
pirically with no population model in mind. However, it is quite
straightforward to set up a theoretical structure enabling ready con-
clusions concerning large sample behavior (O’Quigley, Flandre and
Reiner 1999; Schemper and Henderson 2000). The simulation results
of Schemper (1990) are confirmed. Also we will see that the measures
can be expected to have an upper bound less than 1 as hinted at
by Schemper’s empirical investigation and that, for example, in the
uncensored case the measures V1 and V2 estimate the same population
quantity. The theoretical setting makes it clear that, unless further
modification is undertaken, the population equivalents of the distance
measures are affected by censoring, whether or not independent of the
failure mechanism.

Uncensored case

As usual we define the empirical distribution function of survival by
Fn(t), the empirical survival distribution conditional on the covariate z
by Fn(t|z) and the empirical distribution of the covariate z by Hn(z).
Also, we have Sn(t) = 1 − Fn(t) and Sn(t|z) = 1 − Fn(t|z). Finally
the individual observations can be re-expressed via the function Yt(u)
where Yt(u) takes the value 1 when 0 < u < t, the value 0.5 when
u = t and the value 0 otherwise. We keep the definition Yt(u) = 0.5 at
the value u = t in order to facilitate comparison with Schemper’s work
(1990, 1992, 2000). However, as far as large sample theory is concerned,
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we could define this to be either zero or one at u = t without impacting
population quantities.

Referring to Section 13.3, observe that for an observed survival time
t, the function Yt(u) corresponds to the empirical survival function Sij

in which the ith subject fails at time t and the argument u is given
values corresponding to the observed failure times.

Note that the inner and outer sums contain n elements where
n is the number of independently observed survival times. We have
ki = n , ∀i. Things become more transparent when we multiply the
outer sum by n−1 in both numerator and denominator. The weak law
of large numbers then indicates that these quantities converge in prob-
ability to expectations. For the inner sum for example k−1

i

∑
|Sij −

S̄j |� , � = 1, 2 converges in probability, as ki(= n) → ∞, to the mean
absolute (� = 1) or quadratic (� = 2) distance between the marginal
survival curve at point u and a randomly chosen subject’s empiri-
cal curve Yt(u). This mean is calculated over all possible values of
u i.e., with respect to the marginal density of survival. Analogously
k−1

i

∑
|Sij − S̄ij |�, � = 1, 2 converges in probability to a distance be-

tween the conditional survival curves (given the covariate) and Yt(u),
once again over all values of u. The outer sums, multiplied by n−1

also converge to expectations. In the uncensored case inner and outer
expectations are with respect to the same density, that governing sur-
vival. It is then natural to have:

Definition 13.8 The population quantity θ� is expressed via the ratio
of a denominator D� and a numerator N� so that θ� = 1 − D−1

� N�

where we write:

N� =
∫ ∫ ∫

|Yt(u) − S(u|z)|�dF (u)dF (t|z)dH(z), (13.15)

D� =
∫ ∫

|Yt(u) − S(u)|�dF (u)dF (t). (13.16)

The simplest situation in which we can readily see how to obtain a
consistent estimate of θ� arises when z takes a small number of fi-
nite values. For each value, we can consider the corresponding em-
pirical quantities: Fn(t|z), Sn(t|z), Fn(t) and Hn(t) and then, in the
above equation, we can replace the population quantities; F (t), F (t|z)
and H(z) by Fn(t), Fn(t|z) and Hn(z) respectively. We can denote
such an estimate by θ̂� and conclude that it is a consistent estimate
for θ� (O’Quigley, Flandre and Reiner 1999). The consistency follows
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from standard results for weak convergence (see Section 3.3) whereby
Fn(t) → F (t), Fn(t|z) → F (t|z) and Hn(t) → H(t) at all continuity
points t of F (t), F (t|z) and H(t), all arrows indicating convergence in
probability.

The above expressions make no appeal to any model and, as such,
can be considered to be completely non parametric. Not forgetting
that we are still dealing with the uncensored case, we could nonetheless
view Sn(t|z) = 1−Fn(t|z) as stratified estimates under the Cox model,
since, the stratified model has no constraints and the corresponding
survival estimates reduce to the usual empirical ones. This is artificial
but consider the following; the above arguments only require that our
estimates be consistent. If the Cox model is correct then the stratified
model (essentially no model for discrete z) and the usual model both
produce consistent estimates for F (t|z). Thus, if we were to redefine θ̂�

to be as above but with S̃(t|z), the estimate based on the Cox model
(see Chapter 15), in place of Sn(t|z), then the consistency property is
unchanged.

Censored case

For the empirical quantities presented by Schemper (1990, 1992) the
sums were taken over both the observed censored and failure times.
This appears attractive in that as much as the information as possible
is being used. However, as shown by O’Quigley, Flandre and Reiner
(1999), and in an analogous demonstration using counting process no-
tation (Schemper and Henderson 2000), the property of consistency
is lost. To see this we deal separately with the sums of censored ob-
servations and those that are uncensored. The quantities denoted ki

still count the number of terms in the respective sums so that we
can again make a simple appeal to the weak law of large numbers.
The standardized “censored” sum converges to an expectation taken
with respect to the density fU |U<t(u|U < t), the conditional density
of failure time U given that it is less than t. The standardized “uncen-
sored” sum converges to an expectation taken with respect to f(u).
The outer sums concern all observations so that the expectations to
which these standardized sums converge is taken with respect to the
distribution of the minimum of observed survival and censoring times.
The survival distribution for censoring, denoted G(u), though enters
explicitly into the calculations. The denominator converges to the sum
of two terms: an “uncensored” term and a “censored” term which we
can write (O’Quigley, Flandre and Reiner 1999) as:
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∫ ∫

|Yt(u) − S(u)|�f(u)G(t)dudF (t)

+
∫ ∫ t

0
(1 − F (t))−1|Yt(u) − S(u)|�f(u)dudG(t).

The censoring distribution appears explicitly in this expression and any
resulting evaluation would be impacted by this distribution. An expres-
sion for the numerator can also be worked out (O’Quigley, Flandre and
Reiner 1999) and again it involves the unknown censoring mechanism.
It would be nice if the censoring distribution were to factor out leading
to the property we are aiming for but this is not the case.

Convergence in the censored case

Let us define S̃(t) to be the usual Kaplan-Meier estimate and S̃(t|z) to
be the proportional hazards estimate of conditional survival, given z.
If the model correctly generates the observations, then both S̃(t) and
S̃(t|z) converge to their population counterparts, S(t) and S(t|z).

Lemma 13.14 The parameter θ� is consistently estimated by θ̃� where
θ̃� = 1 − D̃−1

� Ñ� and where Ñ� and D̃� are defined by:

Ñ� =
∫ ∫ ∫

|Yt(u) − S̃(u|z)|�dF̃ (u)dF̃ (t|z)dHn(z), (13.17)

D̃� =
∫ ∫

|Yt(u) − S̃(u)|�dF̃ (u)dF̃ (t). (13.18)

Note that although we have taken F̃ to be the Kaplan-Meier estimator
the arguments hold for any other consistent estimator of the true un-
derlying marginal survival curve. Under stronger model assumptions
we can work even with a parametric estimator. We might anticipate
the Nelson estimator of the survivorship function to produce similar
results to those for the Kaplan-Meier estimator. Since |θ̂� − θ̃�| → 0,
it follows that θ̃� is consistent for θ� and that, under independent cen-
soring, unlike V�, it is estimating the same quantity it would have
estimated were it possible to remove the censoring. Attempts to ex-
tract more information from the censorings, in the absence of further,
necessarily strong assumptions, leads to inconsistency if we agree, in
this context to take inconsistency to mean that estimators converge
to population quantities different to those to which they would have
converged were it possible to remove the censoring.
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13.11 Isolation method for bias-reduction

In order to motivate this section we first recall the relationship be-
tween multiple and partial coefficients which holds in the linear case.
When R2(Zq+1, . . . , Zp|Z1, . . . , Zq), is the remaining or partial corre-
lation between the outcome and Zq+1 to Zp after having taken into
account the effects of Z1 to Zq and R2(Z1, . . . , Zp) is the multiple
correlation with all Z1 to Zp in the model, then:

1−R2(Z1, . . . , Zp)=[1−R2(Z1, . . . , Zq)][1−R2(Zq+1, . . . , Zp|Z1, . . . , Zq)]

This expression holds exactly for the linear model and so, whether we
build the multiple correlation by constructing increasingly complex
partial coefficients or we define the partial coefficient by increasingly
simpler multiple coefficients the final answer is the same. Unfortunately
this equation does not hold for other situations which is why there is
more than one way to define partial and multiple correlation.

Our suggestion for the multiple coefficient is to reduce it formally
to a univariate coefficient via use of the prognostic index. We then
defined the partial coefficient via the same expression as the above
equation. In any event, whether exact or as an approximation, we can
use the equation to make the following simple observation. As we add
new variables to the expression for multiple correlation, the value of
multiple R2 will almost certainly increase. Only if the partial correla-
tion for the newly included variable is identically equal to zero will the
multiple coefficient stay the same. Sampling error will inevitably lead
to squared partial correlations more or less removed from zero and, in
turn, for an increasingly biased estimate for the multiple correlation
itself. This bias pulls the coefficient in the direction of one and so,
in practice, estimated coefficients of explained variation can be quite
inflated.

The phenomenon of inflation in the multivariate setting is well
known and there are several suggestions for tackling the bias. The most
well known remedies are the Akaike Information Criterion, the Bayes
Information Criterion, the Schwartz Criterion and Cross-Validation.
None of these remedies does very well. For smaller sample sizes they
will, typically, over adjust and can even lead to negative squared cor-
relations and, for larger samples, they will mostly not make enough of
an adjustment. Apart from Cross-Validation, the scope of these cor-
rections is also very limited and, in the main, is concerned only with
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biases due to the dimension of the explanatory variable in relation to
the sample size.

In the practical setting of model building the dimension of the co-
variate vector is only the most immediate and often the least important
of several factors which result in inflated estimates. There are indeed
many other factors among which: (1) the size of the potential covari-
ate pool from which those used in the model form a subset, (2) the
data based transformations on continuous or ordered covariates (3)
the stepwise algorithms used to make a selection from the covariate
pool, (4) the use of cut-offs to define new derived variables and (5)
the inclusion of some relaxation of model assumptions in the light of
goodness-of-fit procedures. None of these five factors is usually taken
into consideration and yet their impact is far greater than that of the
dimension of the final model, in particular when the model has been
constructed from a very large data base.

A way which addresses all five factors together with the sixth, the
dimension of the covariate vector, is the following. However obtained,
a final model is viewed as having two quite distinct underlying con-
struction components. The first of these - the most important in any
investigator’s eye - is the true strength of effect of the multivariate
relationship, however formulated, and which finds its expression in the
final model. The second component concerns everything involved in
the process which led to writing down that final model. All six of the
above factors and any others we may have overlooked are deemed to
be a part of this second component.

Let’s look a little more closely at this second component. Imag-
ine an investigator who decides to fit a model of dimension five from a
data set with one hundred individuals and twenty measured covariates.
A second investigator is studying a similar problem on one hundred
entirely comparable individuals but this time, instead of twenty covari-
ates to choose from, he has two hundred. A third investigator finds him
or herself in a situation comparable to that of the second investigator
but has results from two separate data sets. It is clear that the bias
here is increasing. It is also difficult to have any idea as to what the
size of this bias might be. None of the usual techniques address this
form of bias. Next, suppose an investigator decides that all the skew
distributions should be subject to log-transformations and, if such a
transformation leads to a more significant result then the transforma-
tion is maintained, otherwise we leave the scaling as it was. He or she
then decides that, for the purposes of interpretation, some continuous
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variables will be broken down into categorical variables. If the effect
across the ordered categories is comparable, as judged by the regres-
sion coefficients, then the p − 1 binary variables describing p groups
are replaced by a single ordinal variable. Note also that, if the spacing
of the effect is not the same, it can be made so by rescaling.

A model for true and overfitted effects

There are almost endless ways of fine tuning any model and, in the
process, as many ways of inflating our idea as to how predictive the
model really is. The kind of transformations just suggested will typi-
cally indicate a more predictive model than is really warranted. They
are also used very frequently by investigators.

We suppose the following model for these two components: the
first being the true strength of effect and the second, everything else
involved in the construction of the model. The covariate vector of in-
terest is Z and, as usual, we would calculate R2(Z), a quantity which
we observe. However, we would really like to calculate the multiple
correlation given the fitting. We write this as R2(Z|F ) where F is not
something we measure, or observe, but is a conceptual quantity indi-
cating the sum total of all the actions taken during the fitting process.
We might consider these actions taken on their own in which case we
would have R2(F ). The observed multiple R2(Z) simultaneously in-
volves, as well as the real effects, the fitting process, an important fact
made explicit by writing, R2(Z) = R2(Z, F ). Note that:

1 − R2(Z, F ) = [1 − R2(F )][1 − R2(Z|F )] (13.19)

There are three quantities in the above expression and only one of
them, R2(Z, F ), can be observed. If we were able to obtain R2(F ) then
the quantity we are really interested in, R2(Z|F ), the true impact of
the covariates having removed those effects due to the fitting, becomes
immediately available from the above equation.

Estimating the overfitted effects

As a first approximation we can suppose that the fitting effects them-
selves are orthogonal to the true effects. By this we mean that the
amount of inflation, as measured by R2(F ), only depends on the fit-
ting procedures and extraneous factors such as sample size etc. As true
effect increases, the population equivalent of R2(Z, F ) will, of course,
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also increase but it would not be unreasonable to suppose that the pure
inflation factor alone, as measured by R2(F ), depends only weakly, if
at all, on any true effect. In particular we will calculate R2(F ) in the
absence of any effect and use this value when there are non-zero effects.
Recalling the main theorem of Section 7.4 we have that, at each ranked
failure time t, the probabilities of choosing individual with covariate
vector Zi(t) obtains from:

πi(β(t), t) =
Yi(t) exp{β(t)Zi(t)}∑n

j=1 Yj(t) exp{β(t)Zj(t)}
. (13.20)

This mechanism is assumed to generate the observations. Suppose that
there is no effect. Then the coefficient vector, β(t) is identically equal
to zero. At each failure time t, letting n(t) =

∑
Yi(t) be the number

of subjects in the risk set then, from Equation 13.20, the probability
that any individual is chosen is simply 1/n(t).

We keep the risk sets fixed, i.e., we condition on the observed
risk sets and, from these we sample individuals, each with probability
1/n(t) at time point t, thereby establishing a simulated data set in
which the true effect is zero. On the basis of these data, the investiga-
tor can proceed to use the same fitting procedures, and strategies, that
he or she has used on the unmodified data. Stepwise searches, trans-
formations, maximizations, eliminations following goodness-of-fit, cat-
egorizations and any other used modeling strategy is replicated on this
same data set. For the resulting multivariate model, corresponds an
R2 coefficient. We write this as R2(F ). The more involved, elaborate
and exhaustive the fitting technique the higher, on average, we antici-
pate R2(F ) to be. Overfitting the data manifests itself directly in the
coefficient R2(F ).

Some further observations on this whole process are worth making.
Firstly, we do not have just a single value of R2(F ). Under a further
replication we would, typically, obtain a different value of R2(F ). Un-
der a large number of replications we would obtain a whole, simulated,
distribution of values of R2(F ). If we denote by u any one of these
replicated values and by H(u) the empirical distribution function of
the replications, then we can take R2(Z|F ) by using Equation 13.19
to be:

R2(Z|F ) =
∫ (

R2(Z, F ) − u

1 − u

)

dH(u). (13.21)



394 CHAPTER 13. EXPLAINED VARIATION

It can also be interesting to consider the whole distribution of R2(Z|F ),
as induced from H(u), rather than just the mean. Another point to
note is that, by conditioning on the risk sets, we allow the possibility
that in the replications, the same subject could be selected more than
once. This may seem odd if we are interpreting being selected as a fail-
ure (which indeed it is) but this is only a formal procedure, respecting
the probability model which we assume to be generating the obser-
vations. That the same subject could not in practice fail more than
once is something which does not impact our construction and is in
fact required if we do not wish to include complex calculations involv-
ing the censoring mechanism. This is not unlike the bootstrap which
can also involve repetitions which the design itself could not have pro-
duced. Finally, in Equation 13.21 a good approximation would arise
from taking the mean ū across the replications of R2(F ) and writing
R2(Z|F ) ≈ [R2(Z, F ) − ū]/(1 − ū).

Bias reduction

We call the above the isolation method by which the effects of in-
terest are isolated from those which are artificially generated through
the process of model construction. The basic idea is derived from the
chaotization principle developed by Kipnis (1977). Kipnis studied the
tails of the distribution of an R2 type measure and how changes in this
distribution, occurring by the inclusion of additional factors, could be
anticipated by the fitting process alone. His focus was on the signif-
icance level of the multivariate coefficient rather than bias reduction
itself but the central idea is the same. It requires replication under a
model of no association. Kipnis’s idea was to use permutation distri-
butions which could be generated under an assumption of no effect
whereby all permutations would be considered equally likely. For our
particular case, we do not need to carry out any permutation. It is
enough to sample based on the probabilities given by Equation 13.20
in which we fix β(t) at the value zero.

The approach can lead to significant reduction in bias caused by
overfitting, especially when dealing with a large number of covariates.
The method is easy to implement and can be adapted readily to deal
with more complex situations. For example, we may wish to focus
on some factor after having taken account of several factors already
included in the model. Here, in order to generate the relevant distrib-
ution for R2(F ), and referring to the multivariate version of Equation
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13.20, we would fix at zero the coefficient corresponding to the factor
of interest and allow those factors for which we are adjusting to be re-
placed by estimates. These would be constrained estimates in that the
coefficient corresponding to the additional factor of interest is always
fixed at zero. We then use Equation 13.20 with these values in order
to generate the distribution H(u).

13.12 Illustrations from studies in cancer

Study in leukemia

The first example concerns the Freireich (1963) data, which records
the remission times of 42 patients with acute leukemia treated by 6-
mercaptopurine (6-MP) or placebo. The estimate of the regression
coefficient is β̂ = 1.53, and R2(β̂) = 0.386 and R2

E(β̂) = 0.371. The
95% confidence interval for Ω2(β), obtained using the monotonicity
of R2

E(β), i.e., inverting the interval for β, is (0.106, 0.628). On the
basis of 1000 bootstrap samples we find a simple percentile interval as
(0.154, 0.714) using R2, and (0.154, 0.715) using R2

E . The bootstrap
mean is 0.413 for R2 and 0.405 for R2

E , which gives estimated bias
of 0.028 and 0.034, respectively. This suggests that bias correction
may be necessary, and employing Efron’s bias-corrected accelerated
bootstrap (BCa) method we have confidence interval (0.111, 0.631)
using R2, and (0.103, 0.614) using R2

E . We see that these have very
good agreement with one another (suggesting that the proportional
hazards assumption is a reasonable one) as well as the interval obtained
through monotonicity.

In Figure 13.1 we plot the values of R2(β) (dots) and R2
E(β) (cir-

cles) for the Freireich data versus different values of β. The figure
illustrates well the facts that R2(β) reaches a maximum at around
β = 1.5, which is the value of our estimate β̂ and that R2

E(β) increases
with β, approaching 1 as β → ∞. Notice that R2(β) = R2

E(β) occurs
somewhere between β = 1.5 and 1.6, again around our estimate β̂.
This is to be anticipated in view of Theorem 13.7.

The above R2(β̂) can be compared with some of the other sugges-
tions mentioned in the introduction. For the same data the measure
proposed by Kent and O’Quigley (1986) resulted in the value 0.37,
and the measure of explained randomness (Xu and O’Quigley 1999),
described in the following chapter, obtains the value of 0.40. The ex-
plained variation proposals of Schemper (1990), based on empirical
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Figure 13.1: A plot of R2 and R2
E as functions of β given the observa-

tions.

survival functions per subject, resulted in (his notation) V1 = 0.20
and V2 = 0.19 and Schemper’s later correction (1994) resulted in
V2 = 0.29, although all three of the Schemper measures depend heav-
ily on the censoring (O’Quigley et al. 1999, Schemper and Hender-
son 2001). The measure of Schemper and Kaider (1997) resulted in
r2
pr = 0.34. The measure of Korn and Simon (1990), based on quadratic

loss, gave the value 0.32. This measure does not remain invariant to
monotone increasing transformation of time. For these data the value
0.32 drops to 0.29 if the failure times are replaced by the square roots
of the times.

Study in breast cancer

The available data consist of 1504 patients with complete covariate
information, among whom there were 357 recorded deaths. The 5 and
10 year survival rates were 0.83 and 0.70, respectively. Of the five
covariates, age has a range of 23-55 years, with a median of 45 years.
About 6%, 20%, 28%, 27% and 19% of the patients had histology grade
0, 1, 2, 3, and 4, respectively. About 45%, 24%, 23%, 5%, and 2% of
the patients had stage 1, 2, 3, 4, and 5 disease, respectively. Out of the
1504 patients, 1075 (71%) had positive progesterone receptor status.
The maximum tumor size was 170mm, with a median of 30 mm.

In univariate analysis under the proportional hazard model, all
variables are highly significant (Table 13.3). We also calculated the
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Table 13.3: R2 analysis of breast cancer data. Upper part of the table
shows results for univariate analyzes. Lower part shows the nested
multivariate coefficients.

Single covariate β̂ p-value R2

Age -0.24 <0.01 0.005
Histology 0.37 <0.01 0.12

Stage 0.53 <0.01 0.20
Receptor -0.73 <0.01 0.07

Size 0.02 <0.01 0.18

Covariates in multivariate model R2 partial R2

Age 0.01
Age and histology 0.12 0.12
Age, histology, and stage 0.26 0.16
Age, histology, stage, and receptor 0.33 0.09
Age, histology, stage, receptor, and size 0.33 0.01

univariate R2’s, and we see that the predictive powers are quite differ-
ent. Stage and tumor size, as one might expect, have reasonably high
predictability. Histology grade also has predictive power, although this
covariate has been shown to have a non-proportional regression effect.
This might explain the observed discrepancy between R2 and R2

E . So
we fit a simple two-stage model with the regression effect dropping to
zero after a certain change point. When the change point is chosen
at 24 months, R2 from the fitted model turns out to be 0.238, and
R2

E 0.332. On the other hand, age has very weak predictive capability,
though significant. This estimated weak effect could be due to: (1) a
population weak effect, or (2) a suboptimal coding of the covariate.
We investigated this second possibility via two recoded models. The
first, making a strong trend assumption, coded age as 1 (0-33), 2 (34-
40) and 3 (41 and above). The second model, making no assumptions
about trend, used two binary variables to code the three groups. All
three models gave very similar values of R2. In consequence only the
simplest model is retained for subsequent analysis, i.e., the age groups
1-3. In the lower part of Table 13.3, we calculated the multiple R2 for
a set of nested models. It also contains the values of the partial R2

when each additional covariate is added to the existing model. The
partial coefficient for tumor size having accounted for the other four
variables is only 0.006, suggesting that the extra amount of variation
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Figure 13.2: Goodness-of-fit plot for the covariate grade.

in survival explained by the patient’s tumor size is small. Some co-
variates in this dataset are known to have non-proportional regression
effect. Figure 13.2 shows a goodness-of-fit process (see Chapter 8) for
the proportional hazards assumption. Recall that the maximum ab-
solute value exceeding the boundary of 1.36 corresponds to the 0.05
significance level of an underlying Brownian bridge when the model
is correctly specified. The variation in survival times of these breast
cancer patients are mainly explained by three of the five covariates: his-
tology grade, stage, and progesterone receptor status. Xu and Adak
(2001) examined closely the time-varying regression effects of these
three variables using a tree-based approach. The tree method gives
piecewise constant estimated log relative risks. After obtaining a set
of nested trees, as one of the methods for selecting a final tree, they
used the coefficient R2

ex defined above to arrive at a final tree with
two cutpoints at 27 and 46 months. The estimated piecewise-constant
regression effects of the three covariates are reproduced in Table 13.4.

While the R2 from a proportional hazards model with these three
covariates is 0.32, the R2 from the above fitted three piece β(t) model
is 0.51. For the latter R2 the calculation used β̂1(t) ≡ 0 and β̂2(t) =
β̂(t). as given in Table 13.4. The improvement in explained variation
here reflects also an improvement in fit, underlining the relationship
between predictability and goodness-of-fit.
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Table 13.4: β̂(t) (standard error) from Xu and Adak (2001).

Variable t ∈ [0, 27] t ∈ [28, 46] t ∈ [47, 165]
Histology 0.653 (0.125) 0.362(0.094) 0.201 (0.069)

Stage 0.607 (0.094) 0.349(0.089) 0.365 (0.071)
Receptor -0.803 (0.225) -0.708(0.201) -0.293 (0.164)

Study in gastric cancer

In a study on prognostic factors in gastric cancer (Rashid et al., 1982)
certain acute phase reactant proteins were measured pre-operatively.
Five covariates were studied: stage together with the proteins α1-anti
chimotrypsin (ACT), carcino embryonic antigen (CEA), C-reactive
protein (CRP) and α1 glyco-protein (AGP). Surgery is needed in order
to determine the stage of the cancer, a clinical factor known to strongly
influence survival, and one of the purposes of the study was to find out
how well the four protein covariates, available pre-operatively, are able
to explain survival in the absence of information on stage. A logarith-
mic transformation for CEA was found to be necessary. This is also
reflected in a R2 increasing from 0.10 to 0.20 after the transformation.

Table 13.5 shows that each of the five covariates has reasonable
predicting power, with R2 for stage alone to be 0.48. A direct calcula-
tion of sample correlation shows that ACT, CRP and AGP are highly
correlated, which is supported by biological evidence. In addition, fit-
ting the Cox model with all four protein covariates shows that CRP
and AGP are no longer significant in the presence of the other covari-
ates. These two variables can then be dropped from further study. The
value of R2 for a model with ACT and log(CEA) is 0.37; this increases
to 0.54 when stage is also included, and the corresponding partial R2

is equal to 0.27. In conclusion, there is strong prognostic information
in the pre-operative measurements ACT and log(CEA), but this only
partially captures the information contained in stage.

Study in multiple myeloma

A further example is motivated by the increasing number of stud-
ies carried out in cancer research to correlate the outcome with
multi-dimensional molecular and genetic markers. As we see the
predictability by an individual marker is generally low, with the high-
est R2 of 0.08 from plasma cell labelling (PCL) index; in particular,
the Durie-Salmon stage has the smalles R2 of 0.004. When all 13
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Table 13.5: Univariate analysis of gastric cancer data (Rashid et al.
1982).

Covariate β̂ p-value R2

Stage 1.78 <0.01 0.48
ACT 2.26 <0.01 0.29

log(CEA) 0.30 <0.01 0.20
CRP 0.02 <0.01 0.26
AGP 0.70 <0.01 0.14

covariates are included in a multivariate Cox model, only six of them
remain significant (p-value < 0.08), with the multivariate R2 = 0.202.
In particular, the traditional staging system is no longer significantly
predictive of survival given the laboratory measurements. Leaving
out the non-significant variables in a Cox model gives R2 = 0.18. As
an illustration of variable selection using R2, we build hierarchical
models starting with PCL index which has the highest univariate R2.
We then choose the variable among the remaining five that has the
highest partial R2, and so on. The lower part of Table 13.6 gives the
nested models and the corresponding R2’s. The data come from a clin-
ical trial (EST 9486) of multiple myeloma conducted by the Eastern
Coorperative Oncology Group (Oken et al. 1999). The trial enrolled
653 patients to three randomized arms; VBMCP alone, VBMCP with
added HiCy and rIFNα2. No significant survival difference were found
across the three arms. The trial collected laboratory measurements on
patients’ myeloma cells, including measurements from blood or serum:
albumin (1 if ≥ 3g/l, 0 otherwise), β2 microglobin 1 if ≥ 2.7mg/dl,
0 otherwise), creatinine (1 if ≥ 2mg/dl, 0 otherwise), cytoplasmic-
immunoglobin heavy chain IgA and IgG (1 if present, 0 absent),
kappa light chain (1 if present, 0 absent), percent plasma cells (1 if
≥ 0.3%, and hemoglobin (1 if ≥ 10g/dl, 0 otherwise); characteristics
of circulating myeloma cells: plasma cell labelling index (a measure of
plasma cell proliferation, 1 if ≥ 1, 0 otherwise), IL-6 receptor status
(1 if ≥ 270ng/ml, 0 otherwise), and level of C-reative protein (1 if
≥ 2ng/ml, 0 otherwise).

All of the above variables, which were originally continuous, were
dichotomized using previously published threshold values. Here we in-
clude a randomly selected group of 295 patients, on whom a particular
chromosomal abnormality, the possible deletion of the short arm of
chromosome 13 (denoted by 13q-), was measured by flouresecent in-
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Table 13.6: R2 analysis of the Myeloma data. Upper part of the table
shows results for univariate analyzes. Lower part shows the nested
multivariate coefficients.

Single covariate β̂ se(β̂) R2

Creatinine 0.66 0.16 0.05
Plasma 0.43 0.12 0.04

IL-6 0.35 0.14 0.02
C-reactive 0.53 0.17 0.02

a13q 0.22 0.12 0.01
Hemoglobin -0.30 0.13 0.03

Albumin -0.39 0.14 0.03
IgG -0.15 0.12 0.01
IgA 0.16 0.14 0.01

Kappa -0.26 0.12 0.01
Stage -0.18 0.12 0.004

β2 microglobin 0.48 0.13 0.03
PCL index 0.59 0.13 0.08

covariates in multivariate model R2

PLC 0.08
PLC, creatinine 0.11
PLC, creatinine, plasma 0.13
PLC, creatinine, plasma, a13q 0.16
PLC, creatinine, plasma, a13q, β2 mcrglb 0.17
PLC, creatinine, plasma, a13q, β2 mcrglb, IL-6 0.18
All 13 variables 0.20

situ hybridization (FISH) in the laboratory of R. Fonseca at the Mayo
Clinic; the corresponding variable a13q was coded 1 if present, 0 ab-
sent. We also include the traditional Durie-Salmon stage (1 if I or
II, 0 if III) which was routinely used to predict prognosis in multiple
myeloma before the availability of assays to measure genetic and other
molecular abnormalities of the myeloma cells.

Univariate Cox regression analysis indicates that all of the above
13 covariates are more or less associated with patients’ survival times
and most of them are highly significant. Table 13.6 shows the estimated
regression effects and the standard errors, together with the univariate
R2 coefficients. Effects are not very strong. Even when all 13 variables
are included in the analysis we still have an estimated eighty percent of
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the variance remaining unexplained. And the true figure would most
certainly be higher since no accommodation has been made for the
fitting biases.

The same data set was also analyzed by Huang and Harrington
(2002), who proposed a penalized partial likelihood approach to the
handling of high-dimensional covariates in the proportional hazards
regression. The authors pointed out that because there were 270 deaths
among the 295 subjects in this data set, the standard partial likelihood
estimate in a Cox model with all 13 covariates should be reasonably
stable. Even so, in their Table 3 one sees obvious reduction in both
the magnitude of the regression effects and the standard errors of the
penalized partial likelihood estimate, as compared to the unpenalized
estimate. The penalty parameter in their procedure was chosen to
minimize a bootstrap estimated mean squared prediction error of the
prognostic index. Although the R2 measure has been so far defined
in terms of the usual estimates, it would be straightforward to extend
the definition to the penalized partial likelihood estimate. In this case,
it turns out that R2(β̂λ) = 0.198, almost the same as the R2 = 0.202
with the standard partial likelihood estimate.

Value of R2 in applied studies

In two of the above examples effects were quite strong and in the
other two, although clearly present, effects were relatively weak. This
was picked up by the R2 coefficients and the partial coefficients in
particular enable us to decide how practically useful to any prognos-
tic assessment is the inclusion of additional information. Although we
have pointed out that R2 is concerned with prediction and not fit (as
often thought) the issues of fit and prediction are not orthogonal to
one another. They impact one another in important but different ways.
Improving a poor fit will very likely lead to increases in predictive abil-
ity as reflected in R2. A perfect fit (in the sense that the observations
are exactly generated by the supposed model) can correspond to an
R2 taking any value between zero and one. A very high value of R2

can also correspond to a very poor fit. All of that said, in the endeavor
to improve our predictive capability, we need consider, alongside one
another, both fit and R2. The fit can be improved by a relaxation of
model assumptions, such as the use of a stratified model, or by the
introduction of time dependent effects such as the use of changepoint
models. Either way it can be worth looking at the plot indicating the
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quality of the fit and making sure that we are broadly satisfied with
this before presenting our summary R2 indices of prediction.

13.13 Exercises and class projects

1. A number of suggested coefficients of explained variation, adapted
from linear regression, depend on the censoring even when indepen-
dent of the failure mechanism. Why is this a handicap? Mostly the
dependence is such that the higher the censoring the closer to zero
is the adapted coefficient. It might be argued that, as the censoring
increases, our ability to predict declines and, in consequence so ought
a suitable coefficient. Comment on this reasoning.

2. Suppose you are the statistician analyzing the gastric cancer data.
The investigating clinician, who has some rudimentary knowledge of
statistics, wishes to understand just what you mean by saying that
the value of R2 for a model with ACT and log(CEA) is 0.37 and this
increases to 0.54 when stage is also included. On the other hand the
corresponding partial R2 is equal to 0.27. How do you answer this
question.

3. Using the δ-method and the expression, 1−R2(β) =
∑

r2
i (β)/

∑
r2
i

(0), derive an approximate confidence interval for R2(β̂). For the
Freireich data, compare this interval with that obtained in the exam-
ple on the basis of bootstrap sampling. Comment.

4. Repeat the exercise of the previous question, only applying this time
the delta method to log[R2(β̂)/{1−R2(β̂)}]. What advantages, if any,
are there to working with this transformation rather than working with
R2(β̂) directly?

5. In the broadened definition of R2(β) we have

I(b) =
n∑

i=1

∫ ∞

0
{Zi(t) − Eb(Z|t)}2dF̂ (t),

where F̂ (t) is the Kaplan-Meier estimator. Suppose that F (t : θ) is a
parametric model of the marginal survival curve where θ is a parame-
ter, possibly vector-valued. Investigate a definition of I(b) in which,
instead of F̂ (t), we work with F (t : θ̂). What might be the advantages
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and drawbacks of such an approach? From the results we already have
is it possible to deduce properties such as consistency? If so, under
what conditions?

6. For the standard linear model, the coefficient R(β), viewed as a
function of β is maximized when β = β̂ and where β̂ is the usual least
squares estimate. Thus, for the linear case, a consistent estimator of β
obtains by maximizing R2(β). Is this true for the R2(β) defined here for
the proportional hazards model? Investigate supβ R2(β), given data,
as an estimate for β. How does it compare with more commonly used
estimates?

7. For the normal linear model the transformation Z = tanh−1(R)
has two advantages: the first is that E(Z) provides a very close ap-
proximation to tanh−1(Ω), the second is that Var (Z) does not depend
upon Z, and therefore upon Ω, to a high level of approximation. Fur-
thermore Var (Z) ≈ 1/(n− 3) where n is the sample size. Discuss this
transformation in the context of the R2(β) presented in this chapter.
Investigate this more deeply using simulated data.

8. In the previous question, on the basis of simulations, we antici-
pate that Var (Z) ≈ 1/(n − 3) where Z(β) = tanh−1{

√
R2(β)}. We

might conjecture, in the presence of independent censoring, and where
k represents the total number of failures, that Var (Z) ≈ 1/(k − 3).
Use simulated data to investigate this assertion. Present an informal
argument as to why such a result might hold.

9. We know that, as |β| → ∞ then R2
E(β) → 1 and that, as |β| → ∞

then R2(β) → 0. This might at first glance appear puzzling. Explain
just what is taking place. Explain also why, if the model is correct, we
anticipate that R2(β̂) and R2

E(β̂) will closely agree.

10. Consider an arbitrary proportional hazards model, with unknown
cumulative hazard rate Λ0(t), and known regression coefficient vector
β0. For two randomly chosen individuals, the first with covariate vector
given by Zj , the second with covariate vector given by Zi, show that
the probability that the second individual outlasts (survives longer)
than the first is given by

Pr(Ti > Tj) =
exp(β0Zj)

exp(β0Zi) + exp(β0Zj)
.
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Note that this expression does not involve Λ0(t). How does this result
help in the interpretation of R2.

11. Refer back to Section 3.9 in order to construct a coefficient of par-
tially explained variation from first principles. For a given data set
compare this coefficient with that suggested in this chapter based on
use of the multivariate coefficient defined in terms of the prognostic
index. Show how we could derive an alternative definition of multi-
variate explained variation based on lower order partially explained
variation. Comment on the advantages and disadvantages of this.

12. Suppose for some given data we are considering using an additive
risk model or a multiplicative risk model, both of which employ only
constant regression coefficients. Consider how we might use an R2

measure to discriminate between these two models.

13. Using a large data set with a large number of potential risk factors,
construct, on the basis of R2(Z) for some vector Z, as predictive a
model as possible, noting down every step made in the construction
of the model. Now, on the basis of the isolation method, calculate
R2(Z|F ). Compare the sizes of R2(Z) and R2(Z|F ) and comment on
your findings.

14. Generate or use a data set in which only very few observations are
censored and in which the covariate is continuously measured. Carry
out the usual analysis and calculate R2. Next, throw away the small
percentage of censored observations, replace survival time by log T
and calculate the usual squared product moment correlation coefficient
between the covariate and log T. Compare and discuss the results.




