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QR-DECOMPOSITION-BASED RLS

FILTERS

9.1 INTRODUCTION

The application of QR decomposition [1] to triangularize the input data matrix results in an alternative
method for the implementation of the recursive least-squares (RLS) method previously discussed. The
main advantages brought about by the recursive least-squares algorithm based on QR decomposition
are its possible implementation in systolic arrays [2]-[4] and its improved numerical behavior when
quantization effects are taken into account [5].

The earlier proposed RLS algorithms based on the QR decomposition [2]-[3] focused on the trian-
gularization of the information matrix in order to avoid the use of matrix inversion. However, their
computational requirement was of O[N2] multiplications per output sample. Later, fast versions of
the QR-RLS algorithms were proposed with a reduced computational complexity of O[N ] [4]-[11].

In this chapter, the QR-RLS algorithms based on Givens rotations are presented together with some
stability considerations. Two families of fast algorithms are also discussed [4]-[11], and one fast
algorithm is presented in detail. These fast algorithms are related to the tapped delay line FIR filter
realization of the adaptive filter.

9.2 TRIANGULARIZATION USING QR-DECOMPOSITION

The RLS algorithm provides in a recursive way the coefficients of the adaptive filter which lead to
the minimization of the following cost function

ξd(k) =
k∑
i=0

λk−iε2(i) =
k∑
i=0

λk−i[d(i)− xT (i)w(k)]2 (9.1)

where

x(k) = [x(k) x(k − 1) . . . x(k −N)]T
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is the input signal vector,

w(k) = [w0(k) w1(k) . . . wN (k)]T

is the coefficient vector at instant k, ε(i) is the a posteriori error at instant i, and λ is the forgetting
factor.

The same problem can be rewritten as a function of increasing dimension matrices and vectors which
contain all the weighted signal information available so far to the adaptive filter. These matrices are
redefined here for convenience:

XT (k) = X(k)

=

⎡
⎢⎢⎢⎣

x(k) λ1/2x(k − 1) · · · λ(k−1)/2x(1) λk/2x(0)
x(k − 1) λ1/2x(k − 2) · · · λ(k−1)/2x(0) 0

...
...

. . .
...

...
x(k −N) λ1/2x(k −N − 1) · · · 0 0

⎤
⎥⎥⎥⎦

= [x(k) λ1/2x(k − 1) . . . λk/2x(0)] (9.2)

y(k) = X(k)w(k) =

⎡
⎢⎢⎢⎣

y(k)
λ1/2y(k − 1)

...
λk/2y(0)

⎤
⎥⎥⎥⎦ (9.3)

d(k) =

⎡
⎢⎢⎢⎣

d(k)
λ1/2d(k − 1)

...
λk/2d(0)

⎤
⎥⎥⎥⎦ (9.4)

ε(k) =

⎡
⎢⎢⎢⎣

ε(k)
λ1/2ε(k − 1)

...
λk/2ε(0)

⎤
⎥⎥⎥⎦ = d(k)− y(k) (9.5)

The objective function of equation (9.1) can now be rewritten as

ξd(k) = εT (k)ε(k) (9.6)

As shown in Chapter 5, equation (5.15), the optimal solution to the least-squares problem at a given
instant of time k can be found by solving the following equation

XT (k)X(k)w(k) = XT (k)d(k) (9.7)

However, solving this equation by using the conventional RLS algorithm can be a problem when the
matrix RD(k) = XT (k)X(k) and its correspondent inverse estimate become ill-conditioned due to
loss of persistence of excitation of the input signal or to quantization effects.
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The QR decomposition approach avoids inaccurate solutions to the RLS problem, and allows easy
monitoring of the positive definiteness of a transformed information matrix in ill-conditioned situa-
tions.

9.2.1 Initialization Process

During the initialization period, i.e., from k = 0 to k = N , the solution of equation (9.7) can be
found exactly without using any matrix inversion. From equation (9.7), it can be found that for k = 0
and x(0) �= 0

w0(0) =
d(0)
x(0)

(9.8)

for k = 1

w0(1) =
d(0)
x(0)

w1(1) =
−x(1)w0(1) + d(1)

x(0)
(9.9)

for k = 2

w0(2) =
d(0)
x(0)

w1(2) =
−x(1)w0(2) + d(1)

x(0)

w2(2) =
−x(2)w0(2)− x(1)w1(2) + d(2)

x(0)
(9.10)

at the instant k, we can show by induction that

wi(k) =

−
i∑

j=1

x(j)wi−j(k) + d(i)

x(0)
(9.11)

The above equation represents the so-called back-substitution algorithm.

9.2.2 Input Data Matrix Triangularization

After the instant k = N , the above equation (9.11) is no longer valid and the inversion of RD(k) or
the calculation of SD(k) is required to find the optimal solution for the coefficients w(k). This is
exactly what makes the conventional RLS algorithm more sensitive to quantization effects and input
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signal conditioning. The matrix X(k) at instant k = N + 1 is given by

X(N + 1) =

⎡
⎢⎢⎢⎢⎢⎣

x(N + 1) x(N) · · · x(1)
λ1/2x(N) λ1/2x(N − 1) · · · λ1/2x(0)
λx(N − 1) λx(N − 2) · · · 0

...
...

. . .
...

λ
N+1

2 x(0) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

=
[
x(N + 1)x(N) · · ·x(1)

λ1/2X(N)

]
=
[

xT (N + 1)
λ1/2X(N)

]
(9.12)

As it is noted, the matrix X(k) is no longer upper triangular, and, therefore, the back-substitution
algorithm cannot be employed to find the tap-weight coefficients.

The matrix X(N+1) can be triangularized through an orthogonal triangularization approach such as
Givens rotations, Householder transformation, or Gram-Schmidt orthogonalization [1]. Since here
the interest is to iteratively apply the triangularization procedure to each new data vector added to
X(k), the Givens rotation seems to be the most appropriate approach.

In the Givens rotation approach, each element of the first line of equation (9.12) can be eliminated
by premultiplying the matrix X(N + 1) by a series of Givens rotation matrices given by

Q̃(N + 1) = Q′
N (N + 1) ·Q′

N−1(N + 1) · · ·Q′
0(N + 1)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θN (N + 1) · · · 0 · · · − sin θN (N + 1)
...

...
0 IN 0
...

...
sin θN (N + 1) · · · 0 · · · cos θN (N + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θN−1(N + 1) · · · 0 · · · − sin θN−1(N + 1) 0
...

...
...

0 IN−1 0 0
...

...
...

sin θN−1(N + 1) · · · 0 · · · cos θN−1(N + 1) 0
0 · · · 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ0(N + 1) − sin θ0(N + 1) · · · 0 · · · 0
sin θ0(N + 1) cos θ0(N + 1) · · · 0 · · · 0

...
...

0 0 IN
...

...
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.13)

where Ii is an i by i identity matrix. The rotation angles θi are chosen such that each entry of the
first row of the resulting matrix is zero. Consider first the matrix product Q′

0(N + 1)X(N + 1). If:

cos θ0(N + 1)x(1)− sin θ0(N + 1)λ1/2x(0) = 0 (9.14)
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the element in the position (1, N + 1) of the resulting matrix product will be zero. If it is further
considered that cos2 θ0(N + 1) + sin2 θ0(N + 1) = 1, it can be easily deduced that

cos θ0(N + 1) =
λ1/2x(0)√

λx2(0) + x2(1)
(9.15)

sin θ0(N + 1) =
x(1)√

λx2(0) + x2(1)
(9.16)

Next, Q′
1(N +1) premultiplies Q′

0(N +1)X(N +1) with the objective of generating a zero element
at the position (1, N) in the resulting product matrix. Note that the present matrix product does not
remove the zero of the element (1, N + 1). The required rotation angle can be calculated by first
noting that the elements (1, N) and (3, N) of Q′

0(N + 1)X(N + 1) are respectively

a = cos θ0(N + 1)x(2)− λ1/2x(1) sin θ0(N + 1) (9.17)

b = λx(0) (9.18)

From these expressions we can compute the elements required in the following rotation, which are
given by

cos θ1(N + 1) =
b√

a2 + b2
(9.19)

sin θ1(N + 1) =
a√

a2 + b2
(9.20)

In this manner, after the last Givens rotation the input signal information matrix will be transformed
in a matrix with null first row

Q̃(N + 1)X(N + 1) =
[

0 0 · · · 0
U(N + 1)

]
(9.21)

where U(N + 1) is an upper triangular matrix.

In the next iteration, the input signal matrix X(N + 2) receives a new row that should be replaced
by a zero vector through a QR decomposition. In this step, the matrices involved are the following

X(N + 2) =
[
x(N + 2) x(N + 1) · · · x(2)

λ1/2X(N + 1)

]
(9.22)

and ⎡
⎢⎢⎢⎢⎣

1 0 · · · · · ·
0
... Q̃(N + 1)
...

⎤
⎥⎥⎥⎥⎦X(N + 2) =

⎡
⎣ x(N + 2) x(N + 1) · · · x(2)

0 0 · · · 0
λ1/2U(N + 1)

⎤
⎦ (9.23)

In order to eliminate the new input vector through rotations with the corresponding rows of the
triangular matrix λ1/2U(N + 1), we apply the QR decomposition to equation (9.23) as follows:

Q̃(N + 2)
[

1 0
0 Q̃(N + 1)

]
X(N + 2) =

⎡
⎣ 0 0 · · · 0

0 0 · · · 0
U(N + 2)

⎤
⎦ (9.24)
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where again U(N + 2) is an upper triangular matrix and Q̃(N + 2) is given by

Q̃(N + 2) = Q′
N (N + 2)Q′

N−1(N + 2) · · ·Q′
0(N + 2)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θN (N + 2) · · · 0 · · · − sin θN (N + 2)
...

...
0 IN+1 0
...

...
sin θN (N + 2) · · · 0 · · · cos θN (N + 2)

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θN−1(N + 2) · · · 0 · · · − sin θN−1(N + 2) 0
...

...
0 IN 0
...

...
sin θN−1(N + 2) cos θN−1(N + 2) 0

0 · · · 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ0(N + 2) 0 − sin θ0(N + 2) · · · 0
0 1 0 · · · 0

sin θ0(N + 2) 0 cos θ0(N + 2) · · · 0
...

...
...

...
...

... IN
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.25)

The above procedure should be repeated for each new incoming input signal vector as follows:

Q(k)X(k) = Q̃(k)
[

1 0
0 Q̃(k − 1)

] [
I2 0
0 Q̃(k − 2)

]

· · ·
[

Ik−N 0
0 Q̃(k −N)

]
X(k) =

⎡
⎢⎢⎣ 0

U(k)

⎤
⎥⎥⎦
}
k −N}
N + 1

︸︷︷︸
N+1

(9.26)

where Q(k) is a (k + 1) by (k + 1) matrix which represents the overall triangularization matrix via
elementary Givens rotations matrices Q′

i(m) for all m ≤ k and 0 ≤ i ≤ N .
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Since each Givens rotation matrix is orthogonal, then it can easily be proved that Q(k) is also
orthogonal (actually orthonormal), i.e.,

Q(k)QT (k) = Ik+1 (9.27)

Also, from equation (9.26), it is straightforward to note that

Q(k) = Q̃(k)
[

1 0
0 Q(k − 1)

]
(9.28)

where Q̃(k) is responsible for zeroing the latest input vector xT (k) in the first row of X(k). The
matrix Q̃(k) is given by

Q̃(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θN (k) · · · 0 · · · − sin θN (k)
...

...
0 Ik−1 0
...

...
sin θN (k) · · · 0 · · · cos θN (k)

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θN−1(k) · · · 0 · · · − sin θN−1(k) 0
...

...
...

0 Ik−2 0 0
...

...
...

sin θN−1(k) · · · 0 · · · cos θN−1(k) 0
0 · · · 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ0(k) · · · 0 · · · − sin θ0(k) 0
...

...
...

0 Ik−N−1 0 0
...

...
...

sin θ0(k) · · · 0 · · · cos θ0(k) 0
0 IN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∏
i=0

cos θi(k) · · · 0 · · · −
N∏
i=1

cos θi(k) sin θ0(k)

...
...

0 Ik−N−1 0
...

...
sin θ0(k) cos θ0(k)

...
...

...
j−1∏
i=0

cos θi(k) sin θj(k) · · · 0 · · · ...

...
... − sin θN (k)

N−1∏
i=1

cos θi(k) sin θ0(k)

· · · −
N∏

i=j+1

cos θi(k) sin θj(k) · · · − sin θN (k)

0
. . .

. . . 0
cos θN−1(k)

cos θN (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.29)

Note that the matrix Q̃(k) has the following general form

N + 1︷ ︸︸ ︷

Q̃(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 · · · 0 · · · 0 ∗ · · · ∗
0
... Ik−N−1 0
∗ ∗
... 0

. . .
∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎬
⎭N + 1

(9.30)

where ∗ represents a nonzero element. This structure of Q̃(k) is useful for developing some fast
QR-RLS algorithms.
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Returning to equation (9.26), we can conclude that

Q(k)X(k) = Q̃(k)

⎡
⎢⎢⎢⎢⎢⎣
x(k) x(k − 1) · · · x(k −N)

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

λ1/2U(k − 1)

⎤
⎥⎥⎥⎥⎥⎦ (9.31)

The first Givens rotation angle required to replace x(k −N) by a zero is θ0(k) such that

cos θ0(k)x(k −N)− sin θ0(k)λ1/2u1,N+1(k − 1) = 0 (9.32)

where u1,N+1(k − 1) is the element (1, N + 1) of U(k − 1). Then, it follows that

cos θ0(k) =
λ1/2u1,N+1(k − 1)

u1,N+1(k)
(9.33)

sin θ0(k) =
x(k −N)
u1,N+1(k)

(9.34)

where
u2

1,N+1(k) = x2(k −N) + λu2
1,N+1(k − 1) (9.35)

From equation (9.35), it is worth noting that the (1, N + 1) element of U(k) is the square root of the
exponentially weighted input signal energy, i.e.,

u2
1,N+1(k) =

k−N∑
i=0

λix2(k −N − i) (9.36)

In the triangularization process, all the submatrices multiplying each column of X(k) are orthogonal
matrices and as a consequence the norm of each column in X(k) and Q(k)X(k) should be the same.
This confirms that equation (9.36) is valid. Also, it can be shown that

k+1∑
i=1

x2
i,j(k) =

N+2−j∑
i=1

u2
i,j(k) =

k+1∑
i=1

λi−1x2(k + 2− i− j) (9.37)

for j = 1, 2, . . . , N + 1.

Now consider that the intermediate calculations of equation (9.31) are performed as follows:

Q̃(k)

⎡
⎣ xT (k)

0
λ1/2U(k − 1)

⎤
⎦ = Q′

N (k)Q′
N−1(k) · · ·Q′

i(k)

⎡
⎣ x′

i(k)
0

U′
i(k)

⎤
⎦ (9.38)

where x′
i(k) = [x′

i(k)x
′
i(k−1) . . . x′

i(k−N−i)0 . . . 0] and U′
i(k) is an intermediate upper triangular

matrix. Note that x′
0(k) = xT (k), U′

0(k) = λ1/2U(k − 1), and U′
N+1(k) = U(k). In practice, the
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multiplication by the zero elements in equation (9.38) should be avoided. We start by removing the
increasing Ik−N−1 section of Q̃(k) (see equation (9.30)), thereby generating a matrix with reduced
dimension denoted by Qθ(k). The resulting equation is

Qθ(k)
[

xT (k)
λ1/2U(k − 1)

]
= Q′

θN
(k)Q′

θN−1
(k) · · ·Q′

θi
(k)
[

x′
i(k)

U′
i(k)

]

=
[

0
U(k)

]
(9.39)

where Q′
θi

(k) is derived from Q′
i(k) by removing the Ik−N−1 section of Q′

i(k) along with the
corresponding rows and columns, resulting in the following form

Q′
θi

(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θi(k) · · · 0 · · · − sin θi(k) · · · 0
...

...
...

0 Ii 0 · · · 0
...

...
...

sin θi(k) · · · 0 · · · cos θi(k) · · · 0
...

...
... IN−i

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.40)

The Givens rotation elements are calculated by

cos θi(k) =
[U′
i(k)]i+1,N+1−i

ci
(9.41)

sin θi(k) =
x′
i(k −N − i)

ci
(9.42)

where ci =
√

[U′
i(k)]2i+1,N+1−i + x

′2
i (k −N − i) and [·]i,j is the (i, j) element of the matrix.

9.2.3 QR-Decomposition RLS Algorithm

The triangularization procedure above discussed can be applied to generate the QR-RLS algorithm
that avoids the calculation of the SD(k) matrix of the conventional RLS algorithm. The weighted a
posteriori error vector can be written as a function of the input data matrix, that is

ε(k) =

⎡
⎢⎢⎢⎣

ε(k)
λ1/2ε(k − 1)

...
λk/2ε(0)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

d(k)
λ1/2d(k − 1)

...
λk/2d(0)

⎤
⎥⎥⎥⎦− X(k)w(k) (9.43)
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By premultiplying the above equation by Q(k), it follows that

εq(k) = Q(k)ε(k) = Q(k)d(k)−Q(k)X(k)w(k)

= dq(k)−
[

0
U(k)

]
w(k) (9.44)

where

εq(k) =

⎡
⎢⎢⎢⎣

εq1(k)
εq2(k)

...
εqk+1(k)

⎤
⎥⎥⎥⎦

and

dq(k) =

⎡
⎢⎢⎢⎣

dq1(k)
dq2(k)

...
dqk+1(k)

⎤
⎥⎥⎥⎦

Since Q(k) is an orthogonal matrix, equation (9.6) is equivalent to

ξd(k) = εTq (k)εq(k) (9.45)

because
εTq (k)εq(k) = εT (k)QT (k)Q(k)ε(k) = εT (k)ε(k)

The weighted-square error can be minimized in equation (9.45) by calculating w(k) such that
εqk−N+1(k) to εqk+1(k) are made zero using a back-substitution algorithm such as

wi(k) =

−
i∑

j=1

uN+1−i,i−j+1(k)wi−j(k) + dq k+1−i(k)

uN+1−i,i+1(k)
(9.46)

for i = 0, 1, . . . , N , where
∑i−1
j=i [·] = 0. With this choice for w(k), the minimum weighted-square

error at instant k is given by

ξdmin(k) =
k−N∑
i=1

ε2qi
(k) (9.47)



362 Chapter 9 QR-Decomposition-Based RLS Filters

An important relation can be deduced by rewriting equation (9.44) as

dq(k) =

⎡
⎣ dq1(k)
−−−−
dq2(k)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dq1(k)
...

dqk−N
(k)

−−−−−
dqk−N+1(k)

...
dqk+1(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

εq1(k)
...

εqk−N
(k)

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
[

0
U(k)

]
w(k) (9.48)

where w(k) is the optimum coefficient vector at instant k. By examining the equations (9.31) and
(9.44), the right-most side of equation (9.48) can then be expressed as

[
εq1(k)
dq2(k)

]
=

⎡
⎢⎢⎢⎣

εq1(k)
...

εqk−N
(k)

dq2(k)

⎤
⎥⎥⎥⎦ = Q̃(k)

⎡
⎢⎢⎢⎢⎢⎣

d(k)

λ1/2

⎡
⎢⎢⎢⎣

εq1(k − 1)
...

εqk−N−1(k − 1)
dq2(k − 1)

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦ (9.49)

Using similar arguments around equations (9.38) to (9.40), and starting from equation (9.49), the
transformed weighted-error vector can be updated as described below:

Q̃(k)

⎡
⎣ d(k)

λ1/2
[
εq1(k − 1)
dq2(k − 1)

] ⎤⎦ = Q′
N (k)Q′

N−1(k) · · ·Q′
i(k)

⎡
⎣ d′

i(k)
ε′
qi

(k)
d′
q2i

(k)

⎤
⎦ (9.50)

where d′
i(k), ε

′
qi

(k), and d′
q2i

(k) are intermediate quantities generated during the rotations. Note
that ε′

qN+1
(k) = [εq2(k) εq3(k) . . . εqk−N

(k)]T , d′
N+1(k) = εq1(k), and d′

q2N+1
= dq2(k).

If we delete all the columns and rows of Q̃(k) whose elements are zeros and ones, i.e., the Ik−N−1
section of Q̃(k) with the respective bands of zeros below, above, and on each side of it in equation
(9.30), one would obtain matrix Qθ(k). In this case, the resulting equation corresponding to equation
(9.49) is given by

d(k) =
[
εq1(k)
dq2(k)

]
= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]
(9.51)
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Therefore, we eliminate the vector ε′
qN+1

(k) which is always increasing, such that in real-time
implementation the updating is performed through

d(k) = Qθ(k)
[

d(k)
λ1/2dq2(k − 1)

]

= Q′
θN

(k)Q′
θN−1

(k) · · ·Q′
θi

(k)
[

d′
i(k)

d′
q2i

(k)

]
(9.52)

Another important relation can be derived from equation (9.44) by premultiplying both sides by
QT (k), transposing the result, and postmultiplying the result by the pinning vector

εTq (k)Q(k)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ = εT (k)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ = ε(k) (9.53)

Then, from the definition of Q(k) in equations (9.28) and (9.29), the following relation is obtained

ε(k) = εq1(k)
N∏
i=0

cos θi(k)

= εq1(k)γ(k) (9.54)

This relation shows that the a posteriori output error can be computed without the explicit calculation
of w(k). The only information needed is the Givens rotation cosines. In applications where only the
a posteriori output error is of interest, the computationally intensive back-substitution algorithm of
equation (9.46) to obtain wi(k) can be avoided.

Now, all the mathematical background to develop the QR-RLS algorithm has been derived. After
initialization, the Givens rotation elements are computed using equations (9.41) and (9.42). These
rotations are then applied to the information matrix and the desired signal vector respectively as
indicated in equations (9.39) and (9.52). The next step is to compute the error signal using equation
(9.54). Finally, if the tap-weight coefficients are required we should calculate them using equation
(9.46). Algorithm 9.1 summarizes the algorithm with all essential computations.

Example 9.1

In this example, we solve the system identification problem described in subsection 3.6.2 by using
the QR-RLS algorithm described in this section.

Solution:

In the present example, we are mainly concerned in testing the algorithm implemented in finite
precision, since the remaining characteristics (such as: misadjustment, convergence speed etc.)
should follow the same pattern of the conventional RLS algorithm. We considered the case where
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Algorithm 9.1
QR-RLS Algorithm

w(−1) = [0 0 . . . 0]T , w0(0) = d(0)
x(0)

For k = 1 to N (Initialization)
Do for i = 1 to k

wi(k) =

−
i∑

j=1

x(j)wi−j(k) + d(i)

x(0) (9.11)
End

End
U′

0(N + 1) = λ1/2X(N) (9.12)
d′
q2 0

(N + 1) = [ λ1/2d(N) λd(N − 1) . . . λ(N+1)/2d(0)]T

For k ≥ N + 1
Do for each k
γ′

−1 = 1
d′
0(k) = d(k)

x′
0(k) = xT (k)

Do for i = 0 to N

ci =
√

[U′
i(k)]2i+1,N+1−i + x′2

i (k −N − i)
cos θi = [U′

i(k)]i+1,N+1−i

ci
(9.41)

sin θi = x′
i(k−N−i)

ci
(9.42)[

x′
i+1

(k)
U′
i+1(k)

]
= Q′

θi
(k)
[

x′
i
(k)

U′
i(k)

]
(9.39)

γ′
i = γ′

i−1 cos θi (9.54)[
d′

i+1
(k)

d′
q2i+1

(k)

]
= Q′

θi
(k)
[

d′
i
(k)

d′
q2i

(k)

]
(9.51)

End
d′
q20(k + 1) = λ1/2d′

q2N+1
(k)

U′
0(k + 1) = λ1/2U′

N+1(k)
γ(k) = γ′

N

ε(k) = d′
N+1(k)γ(k) (9.51)

If required compute

d(k) =
[
d′
N+1(k)

d′
q2N+1

(k)

]
(9.51)

w0(k) =
dN+2(k)
uN+1,1(k)

Do for i = 1 to N

wi(k) =

−
i∑

j=1

uN+1−i,i−j+1(k)wi−j(k) + dN+2−i(k)

uN+1−i,i+1(k)
(9.46)

End
End



3659.3 Systolic Array Implementation

eigenvalue spread of the input signal correlation matrix is 20, with λ = 0.99. The presented results
were obtained by averaging the outcomes of 200 independent runs. Table 9.1 summarizes the results,
where it can be noticed that the MSE is comparable to the case of the conventional RLS algorithm
(consult Table 5.2). On the other hand, the quantization error introduced by the calculations to obtain
w(k)Q is considerable. After leaving the algorithm running for a large number of iterations, we
found no sign of divergence.

In the infinite-precision implementation, the misadjustment measured was 0.0429. As expected (con-
sult Table 5.1) this result is close to the misadjustment obtained by the conventional RLS algorithm.

�

Table 9.1 Results of the Finite-Precision Implementation of the QR-RLS Algorithm

ξ(k)Q E[||Δw(k)Q||2]
No. of bits Experiment Experiment

16 1.544 10−3 0.03473

12 1.563 10−3 0.03254

10 1.568 10−3 0.03254

9.3 SYSTOLIC ARRAY IMPLEMENTATION

The systolic array implementation of a given algorithm consists of mapping the algorithm in a
pipelined sequence of basic computation cells. These basic cells perform their task in parallel,
such that in each clock period all the cells are activated. An in depth treatment of systolic array
implementation and parallelization of algorithms is beyond the scope of this text. Our objective in
this section is to demonstrate in a summarized form that the QR-RLS algorithm can be mapped in a
systolic array. Further details regarding this subject can be found in references [2]-[4], [13]-[14].

A Givens rotation requires two basic steps. The first step is the calculation of the sine and cosine
which are the elements of the rotation matrix. The second step is the application of the rotation
matrix to given data. Therefore, the basic computational elements required to perform the systolic
array implementation of the QR-RLS algorithm introduced in the last section are the angle and the
rotation processors shown in Fig. 9.1. The angle processor computes the cosine and sine, transferring
the results to outputs 1 and 2 respectively, whereas in output 3 the cell delivers a partial product of
cosines meant to generate the error signal as in equation (9.54). The rotation processor performs
the rotation between the data coming from input 1 with the internal element of the matrix U(l) and
transfers the result to output 3. This processor also updates the elements of U(l) and transfers the
cosine and sine values to the neighboring cell on the left.
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Now, imagine that we have the upper triangular matrix U(k) arranged below the row consisting of the
new information data vector as in equation (9.31), or equivalently as in equation (9.39). Following
the same pattern, we can arrange the basic cells in order to compute the rotations of the QR-RLS
algorithm as shown in Fig. 9.2, with the input signal x(k) entering the array serially. In this figure,
do not consider for this moment the time indexes and the left-hand side column. The input data
weighting is performed by the processors of the systolic array.

Basically, the computations corresponding to the triangularization of equation (9.31) are performed
through the systolic array shown in Fig. 9.2, where at each instant of time an element of the matrix
U(k) is stored in the basic processor as shown inside the building blocks. Note that these stored
elements are skewed in time, and are initialized with zero. The left-hand cells store the elements of
the vector d(k) defined in equation (9.51), which are also initialized with zero and updated in each
clock cycle. The column on the left-hand side of the array performs the rotation and stores the rotated
values of the desired signal vector which are essential to compute the error signal.

In order to allow the pipelining, the outputs of each cell are computed at the present clock period
and made available to the neighboring cells in the following clock period. Note that the neighboring
cells on the left and below a given cell are performing computations related to a previous iteration,
whereas the cells on the right and above are performing the computations of one iteration in advance.
This is the pipelining scheme of Fig. 9.2.

Each row of cells in the array implements a basic Givens rotation between one row of λU(k−1) and
a vector related to the new incoming data x(k). The top row of the systolic array performs the zeroing
of the last element of the most recent incoming x(k) vector. The result of the rotation is then passed
to the second row of the array. This second row performs the zeroing of the second-to-last element
in the rotated input signal. The zeroing processing continues in the following rows by eliminating
the remaining elements of the intermediate vectors x′

i(k), defined in equation (9.38), through Givens
rotations. The angle processors compute the rotation angles that are passed to each row to perform
the rotations.

More specifically, returning to equation (9.31), at the instant k, the element x(k − N) of x(k)
is eliminated by calculating the angle θ0(k) in the upper angle processor. The same processor
also performs the computation of u1,N+1(k) that will be stored and saved for later elimination of
x(k−N +1), which occurs during the triangularization of X(k+1). In the same period of time, the
neighboring rotation processor performs the computation of u1,N (k − 1) using the angle θ0(k − 1)
that was received from the angle processor in the beginning of the present clock period k. The
modifications to the first row of the U(k) matrix and to the vector d(k) related to the desired signal
are performed in the first row of the array, due to the rotation responsible for the elimination of
x(k−N). Note that the effect of the angle θ0(k) in the remaining elements of the first row of U(k)
will be felt only in the following iterations, one element each time, starting from the right- to the
left-hand side.

The second row of the systolic array is responsible for the rotation corresponding to θ1(l) that
eliminates the element x′

1(l − N + 1) of x′
1(l) defined in equation (9.38). The rotation θ1(l) of

course modifies the remaining nonzero elements of x′
1(l) generating x′

2(l), whose elements are
calculated by the rotation processor and forwarded to the next row through output 3.
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i2

O2

O3

O1

i1

ui,j(l)

If i1=0 then
O1 ← 1, O2 ← 0, O3 ← i2
ui,j = λui,j
Otherwise

c←
√
λ2u2

i,j(l) + i21

O1 ← cos θi−1 = λui,j(l)
c

O2 ← sin θi−1 = i1
c

O3 ← i2O1
ui,j(l + 1)← c
End

(a)

i2

i3
O2

O3

ui,j(l)
O1

i1

O1 ← i2
O2 ← i3
O3 ← i1i2 − i3λui,j(l)
ui,j(l + 1)← i1i3 + i2λui,j(l)

(b)

Figure 9.1 Basic cells: (a) Angle processor, (b) Rotation processor.



368 Chapter 9 QR-Decomposition-Based RLS Filters

__d2 (k-5)

d(k-4)

x (k-3)

__d3 (k-6)

__d4 (k-7)

__d5 (k-8)

u3,1 (k-6)

u2,1 (k-5)

u1,1 (k-4) u1,2 (k-3) u1,3 (k-2) u1,4 (k-1)

u2,3 (k-3)u2,2 (k-4)

u3,2 (k-5)

z -1

z -1

z -1

1

+

z -1

u4,1(k-7)

ε(k − 9)

Figure 9.2 QR-Decomposition systolic array for N=3.

Likewise, the (i + 1)th row performs the rotation θi(l) that eliminates x′
i(l − N + i) and also the

rotation in the vector d(l).

In the bottom part of the systolic array, the product of εq1(l) and γ(l) is calculated at each clock
instant, in order to generate a posteriori output error given by ε(l). The output error obtained in a
given sample period k corresponds to the error related to the input data vector of 2(N + 1) clock
periods before.
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The systolic array of Fig. 9.2 exhibits several desirable features such as local interconnection, reg-
ularity, and simple control circuitry, that yields a simple implementation. A possible problem, as
pointed out in [13], is the need to distribute a single clock throughout a large array, without incurring
any clock skew.

The presented systolic array does not allow the computation of the tap-weight coefficients. A solution
pointed out in [13] employs the array of Fig. 9.2 by freezing the array and applying an appropriate
input signal sequence such that the tap-weight coefficients are made available at the array output ε(l).
An alternative way is add a systolic array to solve the back-substitution problem [13]. The array is
shown in Fig. 9.3 with the corresponding algorithm. The complete computation of the coefficient
vector w(k) requires 2N+1 clock samples. In this array, the square cells produce the partial products
involved in equation (9.11). The round cell performs the subtraction of the sum of the product result
with an element of the vector d(k − 8), namely d5−i(k − 8). This cell also performs the division
of the subtraction result by the element uN+1−i,i+1(k − 8) of the matrix U(k − 8). Starting with
i = 0, the sum of products has no elements and as a consequence the round cell just performs the

division
d5−i(k−8)

uN+1−i,i+1(k−8) . On the other hand, for i = N all the square cells are actually taking part
in the computation of the sum of products. Note that in this case, in order to obtain wN (k − 8), the
results of all the cells starting from left to right must be ready, i.e., there is no pipelining involved.

uN+1-i,i-2(k-8) uN+1-i,i-1(k-8) uN+1-i,i+1(k-8)
wi(k-8)

wi-1(k-8)

__d5-i(k-8)

wi-2(k-8)wi-3(k-8)

yi(2) yi(3)yi(0) yi(1)

uN+1-i,i(k-8)

wi = 0 for i < 0
Do for i = 0, 1, . . . , N
yi(N − i) = 0
Do for l= N − i+ 1, . . . , N
yi(l) = yi(l − 1) + uN+1−i,i−N+l(k − 8)wi−N+l−1(k − 8)
End

wi(k − 8) =
d5−i(k − 8)− yi(3)
uN+1−i,i+1(k − 8)

End

Figure 9.3 Systolic array and algorithm for the computation of w(k).
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Example 9.2

Let us choose a simple example, in order to illustrate how the systolic array implementation works, and
compare the results with those belonging to the standard implementation of the QR-RLS algorithm.
The chosen order is N = 3 and the forgetting factor is λ = 0.99.

Suppose that in an adaptive-filtering environment, the input signal consists of

x(k) = sin(ω0k)

where ω0 = π
250 .

The desired signal is generated by applying the same sinusoid to an FIR filter whose coefficients are
given by

wo = [1.0 0.9 0.1 0.2]T

Solution:

First consider the results obtained with the conventional QR-RLS algorithm. The contents of the
vector d(k) and of the matrix U(k) are given below for the first four iterations.

Iteration k = 1

d(k) =

⎡
⎢⎢⎣

0.0000
0.0000
0.0000
0.0126

⎤
⎥⎥⎦ U(k) =

⎡
⎢⎢⎣

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0126 0.0000 0.0000 0.0000

⎤
⎥⎥⎦ (9.55)

Iteration k = 2

d(k) =

⎡
⎢⎢⎣

0.0000
0.0000
0.0364
0.0125

⎤
⎥⎥⎦ U(k) =

⎡
⎢⎢⎣

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0251 0.0126 0.0000 0.0000
0.0125 0.0000 0.0000 0.0000

⎤
⎥⎥⎦ (9.56)

Iteration k = 3

d(k) =

⎡
⎢⎢⎣

0.0000
0.0616
0.0363
0.0124

⎤
⎥⎥⎦ U(k) =

⎡
⎢⎢⎣

0.0000 0.0000 0.0000 0.0000
0.0377 0.0251 0.0126 0.0000
0.0250 0.0125 0.0000 0.0000
0.0124 0.0000 0.0000 0.0000

⎤
⎥⎥⎦ (9.57)

Iteration k = 4

d(k) =

⎡
⎢⎢⎣

0.0892
0.0613
0.0361
0.0124

⎤
⎥⎥⎦ U(k) =

⎡
⎢⎢⎣

0.0502 0.0377 0.0251 0.0126
0.0375 0.0250 0.0125 0.0000
0.0249 0.0124 0.0000 0.0000
0.0124 0.0000 0.0000 0.0000

⎤
⎥⎥⎦ (9.58)
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Iteration k = 5

d(k) =

⎡
⎢⎢⎣

0.1441
0.0668
0.0359
0.0123

⎤
⎥⎥⎦ U(k) =

⎡
⎢⎢⎣

0.0785 0.0617 0.0449 0.0281
0.0409 0.0273 0.0136 0.0000
0.0248 0.0124 0.0000 0.0000
0.0123 0.0000 0.0000 0.0000

⎤
⎥⎥⎦ (9.59)

The data stored in the systolic array implementation represent the elements of the vector d(k) and
of the matrix U(k) skewed in time. This data is shown below starting from the the fourth iteration,
since before that no data is available to the systolic array.

Observe when the elements of the U(k) appear stored at the systolic array. For example, consider the
highlighted elements. In particular, the element (4, 1) at instant k = 4 appears stored in the systolic
array at instant k = 10, whereas the elements (3, 1) and (3, 2) at instant k = 3 appear stored in the
systolic array at instants k = 8 and k = 7, respectively. Following the same line of thought, it is
straightforward to understand how the remaining elements of the systolic array are calculated.

Iteration k = 4 ⎡
⎢⎢⎣

0.
0.
0.
0.

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0. 0. 0. 0.0126
0. 0. 0.
0. 0.
0.

⎤
⎥⎥⎦ (9.60)

Iteration k = 5 ⎡
⎢⎢⎣

0.
0.
0.
0.

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0. 0. 0.0251 0.0281
0. 0. 0.0126
0. 0.
0.

⎤
⎥⎥⎦ (9.61)

Iteration k = 6 ⎡
⎢⎢⎣

0.
0.
0.
0.

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0. 0.0377 0.0449 0.0469
0. 0.0251 0.0125
0. 0.0126
0.

⎤
⎥⎥⎦ (9.62)

Iteration k = 7 ⎡
⎢⎢⎣

0.
0.
0.
0.

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0.0502 0.0617 0.0670 0.0686
0.0377 0.0250 0.0136
0.0251 0.0125
0.0126

⎤
⎥⎥⎦ (9.63)

Iteration k = 8 ⎡
⎢⎢⎣

0.0892
0.0616
0.0364
0.0126

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0.0785 0.0870 0.0913 0.0927
0.0375 0.0273 0.0148
0.0250 0.0124
0.0125

⎤
⎥⎥⎦ (9.64)
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Iteration k = 9 ⎡
⎢⎢⎣

0.1441
0.0613
0.0363
0.0125

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0.1070 0.1141 0.1179 0.1191
0.0409 0.0297 0.0160
0.0249 0.0124
0.0124

⎤
⎥⎥⎦ (9.65)

Iteration k = 10 ⎡
⎢⎢⎣

0.2014
0.0668
0.0361
0.0124

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0.1368 0.1430 0.1464 0.1475
0.0445 0.0319 0.0170
0.0248 0.0123
0.0124

⎤
⎥⎥⎦ (9.66)

Iteration k = 11 ⎡
⎢⎢⎣

0.2624
0.0726
0.0359
0.0124

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0.1681 0.1737 0.1768 0.1778
0.0479 0.0340 0.0180
0.0246 0.0123
0.0123

⎤
⎥⎥⎦ (9.67)

It is a good exercise for the reader to examine the elements of the vectors and matrices in equations
(9.60)-(9.67) and detect when these elements appear in the corresponding vectors d(k) and matrices
U(k) of equations (9.55)-(9.59).

�

9.4 SOME IMPLEMENTATION ISSUES

Several articles related to implementation issues of the QR-RLS algorithm such as the elimination
of square root computation [16], stability and quantization error analyses [17]-[20] are available in
the open literature. In this section, some of these results are briefly reviewed.

The stability of the QR-RLS algorithm is the first issue to be concerned when considering a real
implementation. Fortunately, the QR-RLS algorithm implemented in finite precision was proved
stable in the bounded input/bounded output sense in [18]. The proof was based on the analysis of
the bounds for the internal recursions of the algorithm [18]-[19]. From another study based on the
quantization-error propagation in the finite-precision implementation of the QR-RLS algorithm, it
was possible to derive the error recursions for the main quantities of the algorithm, leading to the
stability conditions of the QR-RLS algorithm [20]. The convergence on average of the QR-RLS
algorithm can be guaranteed if the following inequality is satisfied [20]:

λ1/2 ‖ Q̃Q(k) ‖2≤ 1 (9.68)

where the two norm ‖ · ‖2 of a matrix used here is the square root of the largest eigenvalue and the
notation [·]Q denotes the finite-precision version of [·]. Therefore,

‖ Q̃Q(k) ‖2= MAXi

√
cos2Q θi(k) + sin2

Q θi(k) (9.69)
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where MAXi[·] is the maximum value of [·]. The stability condition can be rewritten as follows:

λ ≤ 1
MAXi [cos2Q θi(k) + sin2

Q θi(k)]
(9.70)

It can then be concluded that keeping the product of the forgetting factor and the maximum eigenvalue
of the Givens rotations smaller than unity is a sufficient condition to guarantee the stability.

For the implementation of any adaptive algorithm, it is necessary to estimate quantitatively the
dynamic range of all internal variables of the algorithm in order to determine the length of all
the registers required in the actual implementation. Although this issue should be considered in
the implementation of any adaptive-filtering algorithm, it is particularly relevant in the QR-RLS
algorithms due to their large number of internal variables. The first attempt to address this problem
was reported in [19], where expressions for the steady-state values of the cosines and sines of the
Givens rotations were determined, as well as the bounds for the dynamic range of the information
stored in the processing cells. The full quantitative analysis of the dynamic range of all internal
quantities of the QR-RLS algorithm was presented in [20] for the conventional and systolic-array
forms. For fixed-point implementation, it is important to determine the internal signal with the largest
energy such that frequent overflow in the internal variables of the QR-RLS algorithm can be avoided.
The first entry of the triangularized information matrix can be shown to have the largest energy [20]
and its steady-state value is approximately

u0,0(k) ≈ σx√
1− λ (9.71)

where σ2
x is the variance of the input signal.

The procedure to derive the results above discussed consists of first analyzing the QR-RLS algorithm
for ideal infinite-precision implementation. The second step is modeling the quantization errors
and deriving the recursive equations that include the overall error in each quantity of the QR-RLS
algorithm [20]. Then conditions to guarantee the stability of the algorithm could be derived. A further
step is to derive closed-form solutions to the mean-squared values of the deviations in the internal
variables of the algorithm due to finite-precision operations. The main objective in this step is to
obtain the excess mean-square error and the variance of the deviation in the tap-weight coefficients.
Analytical expressions for these quantities are not very simple unless a number of assumptions about
the input and reference signals are assumed [20]. However, they are useful to the designer.

9.5 FAST QR-RLS ALGORITHM

For the derivation of the fast QR-RLS algorithms, it is first necessary to study the solutions of the
forward and backward prediction problems. As seen in Chapters 7 and 8, the predictor solutions
were also required in the derivation of the lattice-based and the fast transversal RLS algorithms.

A family of fast QR-RLS algorithms can be generated depending on the following aspects of their
derivation:
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The type of triangularization applied to the input signal matrix, taking into consideration the
notation adopted in this book where the first element of the data vectors corresponds to the most
recent data. The upper triangularization is related to the updating of forward prediction errors,
whereas the lower triangularization involves the updating of backward prediction errors.

The type of error utilized in the updating process, namely, if it is a priori or a posteriori error.

Table 9.2 shows the classification of the fast QR-RLS algorithms indicating the references where the
specific algorithms can be found. Although these algorithms are comparable in terms of computa-
tional complexity, those based on backward prediction errors (which utilize lower triangularization
of the information matrix) are numerically stable when implemented in finite precision. This good
numerical behavior is related to backward consistency and minimal properties inherent to these
algorithms [21].

Table 9.2 Classification of the Fast QR-RLS Algorithms

Error Prediction

Type Forward Backward

A Priori [9] [10], [11]

A Posteriori [4] [8], [12]

In this section, we start with the application of the QR decomposition to the lower triangularization of
the input signal information matrix. Then, the decomposition is applied to the backward and forward
prediction problems. This type of triangularization is related to the updating of backward prediction
errors.

A fast QR-RLS algorithm is derived by performing the triangularization of the information matrix
in this alternative form, namely by generating a lower triangular matrix, and by first applying the
triangularization to the backward linear prediction problem. Originally, the algorithm to be presented
here was proposed in [5] and later detailed in [7] and [8]. The derivations are quite similar to those
presented for the standard QR-RLS algorithm. Therefore, we will use the previous results in order
to avoid unnecessary repetition. In order to accomplish this objective while avoiding confusion, the
following notations are respectively used for the triangularization matrix and the lower triangular
matrices Q and U . These matrices have the following forms

U(k) =

⎡
⎢⎢⎢⎣

0 0 · · · 0 u1,N+1
0 0 · · · u2,N u2,N+1
...

...
...

uN+1,1 uN+1,2 · · · uN+1,N uN+1,N+1

⎤
⎥⎥⎥⎦ (9.72)
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Q̃(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θN (k) · · · 0 · · · − sin θN (k) 0
...

...
...

0 Ik−N−1 0
...

...
...

...
sin θN (k) · · · 0 · · · cos θN (k) 0

0 IN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θN−1(k) · · · 0 · · · − sin θN−1(k) 0
...

...
...

0 Ik−N 0
...

...
...

...
sin θN−1(k) · · · 0 · · · cos θN−1(k) 0

0 · · · 0 · · · 0 IN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ0(k) · · · 0 · · · − sin θ0(k)
...

...
0 Ik−1 0
...

...
sin θ0(k) · · · 0 · · · cos θ0(k)

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.73)

The triangularization procedure has the following general form

Q(k)X(k) = Q̃(k)
[

1 0
0 Q̃(k − 1)

] [
I2 0
0 Q̃(k − 2)

]

· · ·
[

Ik−N 0
0 Q̃(k −N)

]
X(k)

=

⎡
⎢⎢⎣ 0

U(k)

⎤
⎥⎥⎦

}
k −N}
N + 1

(9.74)

︸︷︷︸
N+1

where Q(k) is a (k + 1) by (k + 1) matrix which represents the overall triangularization matrix.

As usual the multiplication by zero elements can be avoided by replacing Q̃(k) byQθ(k), where the
increasing Ik−N−1 section of Q̃(k) is removed very much like in equations (9.38) and (9.39). The
resulting equation is

Qθ(k)
[

xT (k)
λ1/2U(k − 1)

]
= Q′

θN
(k)Q′

θN−1
(k) · · · Q′

θi
(k)
[

x′
i(k)
U ′
i(k)

]
(9.75)
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where Q′
θi

(k) is derived from Q′
i(k) by removing the Ik−N−1 section of Q′

i(k) along with the
corresponding rows and columns, resulting in the following form

Q′
θi

(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θi(k) · · · 0 · · · − sin θi(k) · · · 0
...

...
...

0 IN−i 0 · · · 0
...

...
...

sin θi(k) · · · 0 · · · cos θi(k) · · · 0
...

...
... Ii

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.76)

The Givens rotation elements are calculated by

cos θi(k) =
[U ′
i(k)]N+1−i,i+1

ci
(9.77)

sin θi(k) =
x′
i(k − i)
ci

(9.78)

where ci =
√

[U ′
i(k)]

2
N+1−i,i+1 + x

′2
i (k − i), and [·]i,j denotes the (i, j) element of the matrix.

9.5.1 Backward Prediction Problem

In the backward prediction problem, the desired signal and vector are respectively

db(k + 1) = x(k −N) (9.79)

db(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k −N)
λ1/2x(k −N − 1)

...
λ

k−N
2 x(0)
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.80)

The reader should note that in the present case an extra row was added to the vector db(k + 1). For
example, the dimension of db(k + 1) is now (k + 2) by 1. The backward-prediction-error vector is
given by

εb(k + 1) = db(k + 1)− X(k + 1)wb(k + 1)

= [X(k + 1) db(k + 1)]
[ −wb(k + 1)

1

]
(9.81)
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The triangularization matrix Q(k + 1) of the input data matrix can be applied to the backward
prediction error resulting in

Q(k + 1)εb(k + 1) = Q(k + 1)db(k + 1)−
[

0
U(k + 1)

]
wb(k + 1) (9.82)

or equivalently

εbq(k + 1) = dbq(k + 1)−
[

0
U(k + 1)

]
wb(k + 1) (9.83)

From equations and (9.81) and (9.83), it follows that

εbq(k + 1) = Q(k + 1)[X(k + 1) db(k + 1)]
[ −wb(k + 1)

1

]

=

⎡
⎢⎢⎢⎢⎢⎣

εbq1(k + 1)
0 εbq2(k + 1)

...
εbqk−N+1(k + 1)

U(k + 1) xq3(k + 1)

⎤
⎥⎥⎥⎥⎥⎦
[ −wb(k + 1)

1

]
(9.84)

Also note that
[X(k + 1) db(k + 1)] = X(N+2)(k + 1) (9.85)

where X(N+2)(k + 1) is an extended version of X(k + 1), with one input signal information vector
added. In other words, X(N+2)(k + 1) is the information matrix that would be obtained if one
additional delay was added at the end of the delay line.

In order to avoid increasing vectors in the algorithm, εbq1(k+1), εbq2(k+1),. . ., εbqk−N
(k+1) can

be eliminated in equation (9.84) through Givens rotations, as follows:

Qb(k + 1)εbq(k + 1) = Qb(k + 1)

⎡
⎢⎢⎢⎢⎢⎣

εbq1(k + 1)
0 εbq2(k + 1)

...
εbqk−N+1(k + 1)

U(k + 1) xq3(k + 1)

⎤
⎥⎥⎥⎥⎥⎦
[ −wb(k + 1)

1

]

=

⎡
⎣ 0 0

||εb(k + 1)||
U(k + 1) xq3(k + 1)

⎤
⎦[ −wb(k + 1)

1

]
(9.86)

Note that by induction [U ]N+1−i,i+1(k+ 1) = ||εb,i(k+ 1)||, where ||εb,i(k+ 1)||2 corresponds to
the least-square backward prediction error of an (i− 1)th-order predictor.
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9.5.2 Forward Prediction Problem

In the forward prediction problem, the following relations are valid:1

df (k) = x(k + 1) (9.87)

df (k) =

⎡
⎢⎢⎢⎣

x(k + 1)
λ1/2x(k)

...
λ

k+1
2 x(0)

⎤
⎥⎥⎥⎦ (9.88)

εf (k) = df (k)−
[

X(k)
0

]
wf (k) (9.89)

where df (k) is the desired signal, df (k) is the desired signal vector, and εf (k) is the error signal
vector.

Now, we can consider applying the QR decomposition, as was previously done in equation (9.74) to
the forward prediction error above defined. It should be noted that in the present case an extra row
was added to the vectors εf (k) and df (k), as can be verified in the following relations:

εf (k) =

⎡
⎣ df (k)

∣∣∣∣∣∣
X(k)

0

⎤
⎦[ 1
−wf (k)

]
(9.90)

and

εfq(k) =
[ Q(k) 0

0 1

]⎡⎣ df (k)

∣∣∣∣∣∣
X(k)

0

⎤
⎦[ 1
−wf (k)

]

=

⎡
⎢⎢⎢⎢⎢⎣

εfq1(k)
... 0

εfqk−N
(k)

xq2(k) U(k)
λ

k+1
2 x(0) 0

⎤
⎥⎥⎥⎥⎥⎦
[

1
−wf (k)

]
(9.91)

Note that: ⎡
⎣ df (k)

∣∣∣∣∣∣
X(k)

0

⎤
⎦ = X(N+2)(k + 1) (9.92)

which is an order extended version of X(k + 1) and has dimension (k + 2) by (N + 2).

In order to recursively solve equation (9.91) without dealing with ever increasing matrices, a set
of Givens rotations are applied in order to eliminate εfq1(k), εfq2(k), . . . , εfqk−N

(k), such that

1The reader should note that here the definition of forward prediction error is slightly different from that used in Chapters
7 and 8, where in the present case we are using the input and desired signals one step ahead. This allows us to use the same
information matrix as the conventional QR-Decomposition algorithm of subsection 9.2.3.
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the information matrix that premultiplies the vector [1 − wf (k)]T is triangularized. The Givens
rotations can recursively be obtained by

Qf (k) = Q̃f (k)
[

1 0
0 Qf (k − 1)

]

= Q̃f (k)
[

1 0
0 Q̃f (k − 1)

]
· · ·
[

Ik−N−1 0
0 Q̃f (N + 1)

]
(9.93)

where Q̃f (k) is defined as

Q̃f (k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θf (k) · · · 0 · · · − sin θf (k)
...

...
0 Ik 0
...

...
sin θf (k) · · · 0 · · · cos θf (k)

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.94)

If in each iteration, the above rotation is applied to equation (9.91), we have

ε′
fq(k) = Q̃f (k)

[
1 0
0 Qf (k − 1)

]
⎡
⎢⎢⎢⎢⎢⎣

εfq1(k)
... 0

εfqk−N
(k)

xq2(k) U(k)
λ

k+1
2 x(0) 0

⎤
⎥⎥⎥⎥⎥⎦
[

1
−wf (k)

]

= Q̃f (k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εfq1(k)
0 0
...
0

xq2(k) U(k)
λ1/2||εf (k − 1)|| 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
[

1
−wf (k)

]

=

⎡
⎢⎢⎢⎢⎢⎣

0
... 0
0

xq2(k) U(k)
||εf (k)|| 0

⎤
⎥⎥⎥⎥⎥⎦
[

1
−wf (k)

]
(9.95)

where

cos θf (k) =
λ1/2||εf (k − 1)||√

λ||εf (k − 1)||2 + ε2fq1(k)
(9.96)

sin θf (k) =
εfq1(k)√

λ||εf (k − 1)||2 + ε2fq1(k)
(9.97)
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and ||εf (k)|| is the norm of the forward prediction error vector shown in equation (9.91). This result
can be shown by evoking the fact that the last element ofε′

fq(k) is equal to ||εf (k)||, since ||ε′
fq(k)|| =

||εfq(k)|| = ||εf (k)||, because these error vectors are related through unitary transformations.

Also, it is worthwhile to recall that in equation (9.95) the relation [U ]N+1−i,i+1(k) = ||εb,i(k)|| is
still valid (see equation (9.86)). Also, by induction, it can easily be shown from equation (9.91) that:

For k = 0, 1, . . . , N

||εf (k)|| = λ
k+1
2 x(0)

for k = N + 1

||ε′
fq(k)|| = ||εf (k)|| =

√
λk+1x2(0) + ε2fq1(k)

for k = N + 2

||εf (k)|| =
√
λk+1x2(0) + λε2fq1(k − 1) + ε2fq1(k)

=
√
λ||εf (k − 1)||2 + ε2fq1(k)

for k > N + 2
||εf (k)||2 = λ||εf (k − 1)||2 + ε2fq1(k) (9.98)

In the present case, it can be assumed that the partial triangularization can be performed at each
iteration as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0
...
0

xq2(k) U(k)
||εf (k)|| 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= Q̃f (k)
[ Q̃(k) 0

0 1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

x(k + 1) xT (k)

0 0

λ1/2xq2(k − 1) λ1/2U(k − 1)
λ1/2||εf (k − 1)|| 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.99)

Now we can eliminate xq2(k) through a set of rotations Q′
f (k + 1) such that

U (N+2)(k + 1) = Q′
f (k + 1)

[
xq2(k) U(k)
||εf (k)|| 0

]
(9.100)

where the superscript (N + 2) in the above matrices denotes rotation matrices applied to data with
(N + 2) elements.
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From the above equation, we can realize that Q′
f (k + 1) consists of a series of rotations in the

following order

Q′
f (k + 1) =

⎡
⎣ IN 0

0 cos θ′
f1

(k + 1) − sin θ′
f1

(k + 1)
sin θ′

f1
(k + 1) cos θ′

f1
(k + 1)

⎤
⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · · · · · · · · · · 0
0 cos θ′

fN
(k + 1) 0 · · · 0 · · · 0 − sin θ′

fN
(k + 1)

... 0 0

... IN−1
...

...
0 sin θ′

fN
(k + 1) 0 · · · 0 · · · 0 cos θ′

fN
(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ′
fN+1

(k + 1) 0 · · · 0 · · · 0 − sin θ′
fN+1

(k + 1)
0 0
... IN

...
...

...
sin θ′

fN+1
(k + 1) 0 · · · 0 · · · 0 cos θ′

fN+1
(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.101)

where the rotation entries of Q′
f (k + 1) are calculated as follows:

μi =
√
μ2
i−1 + x2

q2i
(k)

cos θ′
fN+2−i

(k + 1) =
μi−1

μi

sin θ′
fN+2−i

(k + 1) =
xq2i(k)
μi

(9.102)

for i = 1, . . . , N + 1, where μ0 = ||εf (k)||. Note that μN+1 is the norm of the weighted backward
prediction error ||εb,0(k+1)||, for a zero-order predictor (see equation (9.86)). The quantity xq2i(k)
denotes the ith element of the vector xq2(k).

Since the above rotations, at instant k, are actually completing the triangularization of X(N+2)(k+1),
it follows that

Q̃(N+2)(k + 1) =
[

Ik−N 0
0 Q′

f (k + 1)

]
Q̃f (k)

[ Q̃(k) 0
0 1

]
(9.103)
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If the pinning vector, [1 0 . . . 0]T , is postmultiplied on both sides of the above equation, we obtain
the following relation

Q̃(N+2)(k + 1)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ =

[
Ik−N 0

0 Q′
f (k + 1)

]
Q̃f (k)

[ Q̃(k) 0
0 1

]⎡⎢⎢⎢⎣
1
0
...
0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
γ(N+2)(k + 1)

0
...

r(N+2)(k + 1)

⎤
⎥⎥⎥⎦}

N + 2

=
[

Ik−N 0
0 Q′

f (k + 1)

]
Q̃f (k)

⎡
⎢⎢⎢⎢⎢⎣
γ(k)

0
...

r(k)
0

⎤
⎥⎥⎥⎥⎥⎦}

N + 1

(9.104)

where r(N+2)(k) and r(k) are vectors representing the last nonzero elements in the first column of
Q̃(N+2)(k) and Q̃(k), respectively, as can be seen in equation (9.73). Now, we can proceed by taking
the product involving the matrix Q̃f (k) resulting in the following relation

1
{

k −N
{

N + 1
{

⎡
⎢⎢⎢⎢⎢⎣
γ(k) cos θf (k)

0
...

r(k)
γ(k) sin θf (k)

⎤
⎥⎥⎥⎥⎥⎦=
[

Ik−N 0
0 Q′T

f (k + 1)

]⎡⎢⎢⎢⎣
γ(N+2)(k + 1)

0
...

r(N+2)(k + 1)

⎤
⎥⎥⎥⎦
}

1}
k −N − 1}
N + 2

(9.105)

Since our interest is to calculate r(k + 1), the above equation can be reduced to

Q′
f (k + 1)

[
r(k)

γ(k) sin θf (k)

]
= r(N+2)(k + 1) (9.106)

where the unused k − N rows and columns were deleted and r(k + 1) is the last N + 1 rows of
r(N+2)(k+1). Now, since we have r(k+1) available as a function of known quantities, it is possible
to calculate the angles of the reduced rotation matrix Qθ(k + 1) using the following relation.

[
γ(k + 1)
r(k + 1)

]
= Qθ(k + 1)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ (9.107)
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By examining the definition of Qθ(k + 1) in equations (9.75) and (9.76), it is possible to conclude
that it has the following general form (see equations (9.29) and (9.30) for similar derivation)

N + 1︷ ︸︸ ︷

Qθ(k + 1) =

⎡
⎢⎢⎢⎣
∗ ∗ · · · ∗
∗ ∗
...

. . .
∗ ∗ · · · ∗

⎤
⎥⎥⎥⎦ ⎫⎬
⎭N + 1

(9.108)

where ∗ represents a nonzero element, with the first column given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∏
i=0

cos θi(k + 1)

N−1∏
i=0

cos θi(k + 1) sin θN (k + 1)

...

j−1∏
i=0

cos θi(k + 1) sin θj(k + 1)

...
sin θ0(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.109)

Although γ(k+ 1) is not known, referring back to equation (9.107) and considering that each angle
θi is individually responsible for an element in the vector r(k+1), it is possible to show that equation
(9.107) can be solved by the following algorithm:

Initialize γ′
0 = 1

For i = 1 to N + 1 calculate

sin θi−1(k + 1) =
rN+2−i(k + 1)

γ′
0

(9.110)

γ′2
1 = γ′2

0[1− sin2 θi−1(k + 1)]

= γ′2
0 − r2N+2−i(k + 1) (9.111)

cos θi−1(k + 1) =
γ′
1

γ′
0

(9.112)

γ′
0 = γ′

1 (9.113)

After computation is finished make γ(k + 1) = γ′
1.

In the fast QR-RLS algorithm, we first calculate the rotated forward prediction error as in equation
(9.99), followed by the calculation of the energy of the forward prediction error using equation
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(9.98) and the elements of Q̃f (k) given in equations (9.96) and (9.97), respectively. The rotation
entries of Q′

f (k+1) are calculated using the relations of (9.102), which in turn allow us to calculate
r(N+2)(k+1) through equation (9.106). Given r(N+2)(k+1), the rotation angles θi can be calculated
via equations (9.110)-(9.112). The remaining equations of the algorithm are the joint-processor
section and the computation of the forward prediction error given by equations (9.51) and (9.54),
respectively.

The resulting Algorithm 9.2 is almost the same as the hybrid QR-lattice algorithm of [8]. The main
difference is the order the of computation of the angles θi. In [8] the computation starts from θN by
employing the relation

γ(k + 1) =
√

1− ||r(k + 1)||2 (9.114)

This algorithm is closely related to the normalized lattice algorithm (see [8]). Some key results are
needed to establish the relation between these algorithms. For example it can be shown that the
parameter γ(k,N + 1) of the lattice algorithms corresponds to γ2(k) in the fast QR algorithm.

In problem 17, it is proved that the elements of r(k+1) in equation (9.106) correspond to normalized
backward prediction a posteriori errors of distinct orders [8]. This is the explanation for the clas-
sification of Algorithm 9.2 in Table 9.2 as one which updates the a posteriori backward prediction
errors.

Example 9.3

In this example, the system identification problem described in subsection 3.6.2 is solved using the
QR-RLS algorithm described in this section. We implemented the fast QR-RLS algorithm with finite
precision.

Solution:

The main objective of this example is to test the stability of the fast QR-RLS algorithm. For that we
run the algorithm implemented with fixed-point arithmetic. The wordlengths used are 16, 12, and 10
bits respectively. We force the rotations to be kept passive. In other words, for each rotation the sum
of the squares of the quantized sine and cosine are kept less or equal to one. Also, we test γ′

1 to prevent
it from becoming less than zero. With these measures, we did not notice any sign of divergence in
our experiments. Table 9.3 shows the measured MSE in the finite-precision implementation, where
the expected MSE for the infinite-precision implementation is 0.0015. The analysis of these results
shows that the fast QR-RLS has low sensitivity to quantization effects and is comparable to the other
stable RLS algorithms presented in this text.

�

9.6 CONCLUSIONS AND FURTHER READING

Motivated by the numerically well conditioned Givens rotations, two types of rotation-based al-
gorithms were presented in this chapter. In both cases the QR decomposition implemented with
orthogonal Givens rotations were employed. The first algorithm is computationally intensive (order
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Algorithm 9.2

Fast QR-RLS Algorithm
Based on a Posteriori Backward Prediction Error

Initialization
||εf (−1)|| = δ δ small

All cosines with 1 (use for k ≤ N + 1)
All other variables with zero.
Do for each k ≥ 0[

εfq1(k)
xq2(k)

]
= Qθ(k)

[
x(k + 1)

λ1/2xq2(k − 1)

]
(9.99)

||εf (k)||2 = λ||εf (k − 1)||2 + ε2fq1(k) (9.98)

sin θf (k) =
εfq1(k)
||εf (k)|| (9.97)

μ0 = ||εf (k)||
Do for i = 1 to N + 1

μi =
√
μ2
i−1 + x2

q2i
(k) (9.102)

cos θ′
fN+2−i

(k + 1) = μi−1
μi

(9.102)

sin θ′
fN+2−i

(k + 1) = xq2i(k)
μi

(9.102)
End

r(N+2)(k + 1) = Q′
f (k + 1)

[
r(k)

γ(k) sin θf (k)

]
(9.106)

r(k + 1) = last N + 1 elements of r(N+2)(k + 1)
γ′
0 = 1

Do for i = 1 to N + 1

sin θi−1(k + 1) =
rN+2−i(k + 1)

γ′
0

(9.110)

γ′2
1 = γ′2

0 − r2N+2−i(k + 1) (9.111)

cos θi−1(k + 1) =
γ′
1

γ′
0

(9.112)

γ′
0 = γ′

1
End
γ(k + 1) = γ′

1
Filter evolution[

εq1(k + 1)
dq2(k + 1)

]
= Qθ(k + 1)

[
d(k + 1)
λ1/2dq2(k)

]
(9.51)

ε(k + 1) = εq1(k + 1)γ(k + 1) (9.54)
End
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Table 9.3 Results of the Finite-Precision Implementation of the Fast QR-RLS Algorithm

ξ(k)Q
No. of bits Experiment

16 1.7 10−3

12 2.0 10−3

10 2.1 10−3

N2) and is mainly useful in applications where the input signal vector does not consist of time de-
layed elements. The advantages of this algorithm are its numerical stability and its systolic array
implementation. The second class of algorithms explores the time-shift property of the input signal
vector which is inherent to a number of applications, yielding the fast QR-RLS algorithms with order
N numerical operations per output sample.

It should be noticed that the subject of QR-decomposition-based algorithms is not fully covered
here. A complete approach to generating fast QR-RLS algorithm using lattice formulation is known
[23]-[26]. In [23], the author applied QR decomposition to avoid inversion of covariance matrices
in the multichannel problem employing lattice RLS formulation. A full orthogonalization of the
resulting algorithm was later proposed in [25]. By using different formulations, the works of [24],
[25], and [26], propose virtually identical QR-decomposition-based lattice RLS algorithms. In terms
of computational complexity, the fast QR-RLS algorithm presented in this chapter is more efficient.
Although not discussed here, a solution to compute the adaptive-filter weights from the internal
quantities of the fast QR-RLS algorithm is currently available [27].

Another family of algorithms employing QR decomposition are those that replace the Givens rotation
by the Householder transformation [1]. The Householder transformation can be considered an
efficient method to compute the QR decomposition and is known to yield more accurate results than
the Givens rotations in finite-precision implementations. In [28], the fast Householder RLS adaptive-
filtering algorithm was proposed and shown to require computational complexity on the order of 7N .
However, no stability proof for this algorithm exists so far. In another work, the Householder
transformation is employed to derive a block-type RLS algorithm that can be mapped on a systolic-
block Householder transformation [29]. In [30], by employing the Householder transformation, a
QR-based LMS algorithm was proposed as a numerically stable and fast converging algorithm with
O[N ] computational complexity.

A major drawback of the conventional QR-RLS algorithm is the backsubstitution algorithm which
is required for computing the weight vector. In a systolic array, it can be implemented as shown
in this chapter, through a bidirectional array that requires extra clock cycles. Alternatively, a two-
dimensional array can be employed despite being more computationally expensive [13]. An approach
called inverse QR method can be used to derive a QR-based RLS algorithm such that the weight
vector can be calculated without backsubstitution [31]-[32], however, no formal proof of stability
for this algorithm is known.
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The QR decomposition has also been shown to be useful for the implementation of numerically stable
nonlinear adaptive-filtering algorithms. In [33], a QR-based RLS algorithm for adaptive nonlinear
filtering has been proposed.

Some performance evaluations of the QR-RLS and fast QR-RLS algorithms are found in this chapter
where these algorithms were employed in some simulation examples.
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9.8 PROBLEMS

1. If we consider each anti-diagonal element of λ
1
2 U(k) as a scaling constant di, and we divide

the input signal vector initially by a constant δ, we can derive a QR-decomposition algorithm
without square roots as described below:

The first two rows to be rotated are
δx̃(k) δx̃(k − 1) · · · δx̃(k −N)
d1λ

1/2ũ1,1(k − 1) d1λ
1/2ũ1,2(k − 1) · · · d1

where d1 = λ1/2u1,N+1(k − 1). The parameter δ can be initialized with 1.
Applying the Givens rotation to the rows above results in
δ

′
x

′
1(k) δ

′
x

′
1(k − 1) · · · δ

′
x

′
1(k −N + 1) 0

d
′
1ũ

′
1,1(k) d

′
1ũ

′
1,2(k) · · · d

′
1ũ

′
1,N (k) d

′
1

where
d

′2
1 = d2

1 + δ2x̃2(k −N)
c = d21

d21+δ2x̃2(k−N)

δ
′2 = d21δ

2

d21+δ2x̃2(k−N)

s = δ2x̃(k−N)
d21+δ2x̃2(k−N)

x
′
1(k −N + i) = x̃(k −N + i)− x̃(k −N)λ1/2ũ1,N−i+1(k − 1)
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ũ
′
1,N−i+1(k) = cλ1/2ũ1,N+1−i(k − 1) + sx̃(k −N + i)

The same procedure can be used to triangularize completely the input signal matrix.

(a) Using the above procedure derive a QR-RLS algorithm without square roots.

(b) Compare the computational complexity of the QR-RLS algorithms with and without square
roots.

(c) Show that the triangularized matrix Ũ(k) is related with U(k) through

U(k) = D
′
Ũ(k)

where D
′

is a diagonal matrix with the diagonal elements given by d
′
i for i = 1, 2, . . . , N + 1.

2. Since QT (k)Q(k) = Ik+1, the following identity is valid for any matrix A and B:
CTD = ATB for Q(k) [A | B] = [C | D]
where Q(k),A,B,C,and D have the appropriate dimensions. By choosing A,B,C, and D
appropriately, derive the following relations.

(a)UT (k)U(k) = λUT (k − 1)U(k − 1) + x(k)xT (k)

(b)pD(k) = λpD(k − 1) + x(k)d(k)
where pD(k) = Σki=0λ

kx(i)d(i)

(c)UT (k)U−T (k)x(k) = x(k)
where U−T (k) =

[
U−1(k)

]T
(d)pTD(k)U−1(k)U−T (k)x(k) + εq1(k)γ(k) = d(k)

3. Partitioning Qθ(k) as follows:

Qθ(k) =
[
γ(k) qTθ (k)
q′
θ(k) Qθr(k)

]

show from equations (9.51) and (9.39) that

qTθ (k)λ1/2U(k − 1) + γ(k)xT (k) = 0T

qTθ (k)λ1/2dq2(k − 1) + γ(k)d(k) = εq1(k)

4. Using the relations of the previous two problems and the fact that U(k)w(k) = dq2(k), show
that

(a)e(k) = εq1(k)
γ(k)

(b)ε(k) = e(k)γ2(k)

(c)εq1(k) =
√
ε(k)e(k)

5. Show that UT (k)dq2(k) = pD(k).

6. Using some of the formulas of the conventional RLS algorithm show that

γ2(k) = 1− xT (k)R−1
D (k)x(k).
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7. The QR-RLS algorithm is used to predict the signal x(k) = cos(πk/3) using a second-order
FIR filter with the first tap fixed at 1. Note that we are interested in minimizing the MSE of
the FIR output error. Given λ = 0.985, calculate y(k) and the filter coefficients for the first 10
iterations.

8. Use the QR-RLS algorithm to identify a system with the transfer function given below. The input
signal is uniformly distributed white noise with variance σ2

x = 1 and the measurement noise is
Gaussian white noise uncorrelated with the input with variance σ2

n = 10−3. The adaptive filter
has 12 coefficients.

H(z) =
1− z−12

1− z−1

(a) Run the algorithm for λ = 1, λ = 0.99, and λ = 0.97. Comment on the convergence
behavior in each case.
(b) Plot the obtained FIR filter frequency response at any iteration after convergence is achieved
and compare with the unknown system.

9. Perform the equalization of a channel with the following impulse response

h(k) =
10∑
l=k

(l − 10)[u(k)− u(k − 10)]

where u(k) is a step sequence.

Use a known training signal that consists of a binary (-1,1) random signal. An additional
Gaussian white noise with variance 10−2 is present at the channel output.
(a) Apply the QR-RLS with an appropriate λ and find the impulse response of an equalizer with
50 coefficients.
(b) Convolve the equalizer impulse response at a given iteration after convergence, with the
channel impulse response and comment on the result.

10. In a system identification problem the input signal is generated by an autoregressive process
given by

x(k) = −1.2x(k − 1)− 0.81x(k − 2) + nx(k)

where nx(k) is zero-mean Gaussian white noise with variance such that σ2
x = 1. The unknown

system is described by

H(z) = 1 + 0.9z−1 + 0.1z−2 + 0.2z−3

The adaptive filter is also a third-order FIR filter. Using the QR-RLS algorithm:
Choose an appropriateλ, run an ensemble of 20 experiments, and plot the average learning curve.

11. The QR-RLS algorithm is applied to identify a 7th-order time-varying unknown system whose
coefficients are first-order Markov processes with λw = 0.999 and σ2

w = 0.001. The initial
time-varying system multiplier coefficients are

wTo = [0.03490 − 0.01100 − 0.06864 0.22391 0.55686 0.35798 − 0.02390 − 0.07594]
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The input signal is Gaussian white noise with variance σ2
x = 0.7, and the measurement noise is

also Gaussian white noise independent of the input signal and of the elements of nw(k), with
variance σ2

n = 0.01.

(a) For λ = 0.97 measure the excess MSE.

(b) Repeat (a) for λ = λopt.

12. Suppose a 15th-order FIR digital filter with multiplier coefficients given below is identified
through an adaptive FIR filter of the same order using the QR-RLS algorithm. Considering that
fixed-point arithmetic is used and for 10 independent runs, calculate an estimate of the expected
value of ||Δw(k)Q||2 and ξ(k)Q for the following case.

Additional noise : white noise with variance σ2
n = 0.0015

Coefficients wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7
λ = 0.99

wTo = [0.0219360 0.0015786 − 0.0602449 − 0.0118907 0.1375379
0.0574545 − 0.3216703 − 0.5287203 − 0.2957797 0.0002043 0.290670
− 0.0353349 − 0.0068210 0.0026067 0.0010333 − 0.0143593]

Plot the learning curves for the finite- and infinite-precision implementations.

13. Repeat the above problem for the following cases

(a) σ2
n = 0.01, bc = 9 bits, bd = 9 bits, σ2

x = 0.7, λ = 0.98.

(b) σ2
n = 0.1, bc = 10 bits, bd = 10 bits, σ2

x = 0.8, λ = 0.98.

(c) σ2
n = 0.05, bc = 8 bits, bd = 16 bits, σ2

x = 0.8, λ = 0.98.

14. Repeat problem 12 for the case where the input signal is a first-order Markov process with
λx = 0.95.

15. Repeat problem 9 using the fast QR-RLS algorithm.

16. From equation (9.74) it is straightforward to show that

X(k) = QT (k)

⎡
⎢⎢⎣ 0

U(k)

⎤
⎥⎥⎦

= [Qu(k) Qd(k)]

⎡
⎢⎢⎣ 0

U(k)

⎤
⎥⎥⎦

where Q(k) = [Qu(k)Qd(k)]T .

(a) Using the above relation show that the elements of xq2(k) in equation (9.95) are given by

xq2i(k) = [qTdi(k) 0]df (k)
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where qdi(k) is the ith column of Qd(k).
(b) Show that the a posteriori error vector for an N th-order forward predictor can be given by

εf (k,N + 1) = df (k)−
N+1∑
i=1

xq2i(k)

⎡
⎢⎢⎣ qdi(k)

0

⎤
⎥⎥⎦

(c) Can the above expression be generalized to represent the a posteriori error vector for an
(N − j)th-order forward predictor? See the expression below

εf (k,N + 1− j) = df (k)−
N+1∑
i=j

xq2i(k)

⎡
⎢⎢⎣ qdi(k)

0

⎤
⎥⎥⎦

17. For the fast QR-RLS algorithm, show that the elements of r(k+ 1) correspond to a normalized
backward prediction a posteriori error defined as

rN+1−i(k) = εb(k, i) =
εb(k, i)
||εb,i(k)|| =

εbqi(k, i)
||εb,i(k)||

i−1∏
j=0

cos θj(k)

where
∏−1
j=0 = 1, and εb(k, i+ 1) is the a posteriori backward prediction error for a predictor

of order i, with i = 0, 1, . . .. Note that ||εb,i(k)||2 corresponds to ξdbmin
(k, i + 1) used in the

lattice derivations of Chapter 7.




