
8
FAST TRANSVERSAL RLS ALGORITHMS

8.1 INTRODUCTION

Among the large number of algorithms that solve the least-squares problem in a recursive form, the
fast transversal recursive least-squares (FTRLS) algorithms are very attractive due to their reduced
computational complexity [1]-[7].

The FTRLS algorithms can be derived by solving simultaneously the forward and backward linear
prediction problems, along with two other transversal filters: the joint-process estimator and an
auxiliary filter whose desired signal vector has one as its first and unique nonzero element (i.e.,
d(0) = 1). Unlike the lattice-based algorithms, the FTRLS algorithms require only time-recursive
equations. However, a number of relations required to derive some of the FTRLS algorithms can be
taken from the previous chapter on LRLS algorithms. The FTRLS algorithm can also be considered
a fast version of an algorithm to update the transversal filter for the solution of the RLS problem,
since a fixed-order update for the transversal adaptive filter coefficient vector is computed at each
iteration.

The relations derived for the backward and forward prediction in the lattice-based algorithms can
be used to derive the FTRLS algorithms. The resulting algorithms have computational complexity
of order N making them especially attractive for practical implementation. When compared to the
lattice-based algorithms, the computational complexity of the FTRLS algorithms is lower due to
the absence of order-updating equations. In particular, FTRLS algorithms typically require 7N to
11N multiplications and divisions per output sample, as compared to 14N to 29N for the LRLS
algorithms. Therefore, FTRLS algorithms are considered the fastest implementation solutions of the
RLS problem [1]-[7].

Several alternative FTRLS algorithms have been proposed in the literature. The so-called fast Kalman
algorithm [1], which is certainly one of the earlier fast transversal RLS algorithms, has computational
complexity of 11N multiplications and divisions per output sample. In a later stage of research
development in the area of fast transversal algorithms, the fast a posteriori error sequential technique
(FAEST) [2], and the fast transversal filter (FTF) [3] algorithms were proposed, both requiring an
order of 7N multiplications and divisions per output sample. The FAEST and FTF algorithms have
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the lowest complexity known for RLS algorithms, and are useful for problems where the input vector
elements consist of delayed versions of a single input signal. Unfortunately, these algorithms are
very sensitive to quantization effects and become unstable if certain actions are not taken [5]-[7], [9].

In this chapter, a particular form of the FTRLS algorithm is presented, where most of the derivations
are based on those presented for the lattice algorithms. It is well known that the quantization errors
in the FTRLS algorithms present exponential divergence [1]-[7]. Since the FTRLS algorithms have
unstable behavior when implemented with finite-precision arithmetic, we discuss the implementation
of numerically stable FTRLS algorithms, and provide the description of a particular algorithm [8]-
[10].

8.2 RECURSIVE LEAST-SQUARES PREDICTION

All fast algorithms explore some structural property of the information data in order to achieve low
computational complexity. In the particular case of the fast RLS algorithms discussed in this text, the
reduction in the computational complexity is achieved for the cases where the input signal consists
of consecutively delayed samples of the same signal. In this case, the patterns of the fast algorithms
are similar in the sense that the forward and backward prediction filters are essential parts of these
algorithms. The predictors perform the task of modeling the input signal, which as a result allows
the replacement of matrix equations by vector and scalar relations.

In the derivation of the FTRLS algorithms, the solutions of the RLS forward and backward prediction
problems are required in the time-update equations. In this section, these solutions are reviewed with
emphasis on the results that are relevant to the FTRLS algorithms. As previously mentioned, we
will borrow a number of derivations from the previous chapter on lattice algorithms. It is worth
mentioning that the FTRLS could be introduced through an independent derivation, however the
derivation based on the lattice is probably more insightful and certainly more straightforward at this
point.

8.2.1 Forward Prediction Relations

The instantaneous a posteriori forward prediction error for an N th-order predictor is given by

εf (k,N) = x(k)− wTf (k,N)x(k − 1, N)

= xT (k,N + 1)
[

1
−wf (k,N)

]
(8.1)

The relationship between a posteriori and a priori forward prediction error, first presented in equation
(7.49) and repeated here for convenience, is given by

ef (k,N) =
εf (k,N)

γ(k − 1, N)
(8.2)
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A simple manipulation of equation (7.73), leads to the following relation for the time updating of the
minimum weighted least-squares error, which will be used in the FTRLS algorithm:

ξdfmin
(k,N) = λξdfmin

(k − 1, N) + ef (k,N)εf (k,N) (8.3)

From the same equation (7.73), we can obtain the following equality that will also be required in the
FTRLS algorithm:

γ(k,N + 1) =
λξdfmin

(k − 1, N)

ξdfmin
(k,N)

γ(k − 1, N) (8.4)

The updating equation of the forward prediction tap-coefficient vector can be performed through
equation (7.40) of the previous chapter, i.e.,

wf (k,N) = wf (k − 1, N) + φ(k − 1, N)ef (k,N) (8.5)

where φ(k − 1, N) = SD(k − 1, N)x(k − 1, N).

As will be seen, the updating of vectorφ(k−1, N) toφ(k,N +1) is needed to update the backward
predictor coefficient vector. Also, the last element of φ(k,N + 1) is used to update the backward
prediction a priori error and to obtain γ(k,N). Vector φ(k,N + 1) can be obtained by post-
multiplying both sides of equation (7.56), at instant k and for orderN , by x(k,N+1) = [x(k)xT (k−
1, N)]T . The result can be expressed as

φ(k,N + 1) =
[

0
φ(k − 1, N)

]
+

1
ξdfmin

(k,N)

[
1

−wf (k,N)

]
εf (k,N) (8.6)

However, it is not convenient to use the above equation in the FTRLS algorithm because when
deriving the backward prediction part, it would lead to extra computation. The solution is to use

an alternative recursion involving φ̂(k,N + 1) = φ(k,N+1)
γ(k,N+1) instead of φ(k,N + 1) (see problem

7 for further details). The resulting recursion can be derived after some algebraic manipulations of
equations (8.6) and (8.3) to (8.5), leading to

φ̂(k,N + 1) =
[

0
φ̂(k − 1, N)

]
+

1
λξdfmin

(k − 1, N)

[
1

−wf (k − 1, N)

]
ef (k,N) (8.7)

The forward prediction tap-coefficient vector should then be updated using φ̂(k − 1, N) as

wf (k,N) = wf (k − 1, N) + φ̂(k − 1, N)εf (k,N) (8.8)

8.2.2 Backward Prediction Relations

In this subsection, the relations involving the backward prediction problem that are used in the FTRLS
algorithm are derived.
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The relationship between a posteriori and a priori backward prediction errors can be expressed as

εb(k,N) = eb(k,N)γ(k,N) (8.9)

It is also known that the ratio of conversion factors for different orders is given by

γ(k,N + 1)
γ(k,N)

=
λξdbmin

(k − 1, N)
ξdbmin

(k,N)
(8.10)

see equation (7.79) of the previous chapter.

We rewrite for convenience the last equality of equation (7.70), i.e.,

ξdbmin
(k,N) = λξdbmin

(k − 1, N) +
ε2b(k,N)
γ(k,N)

(8.11)

This equation can be rewritten as

1 +
ε2b(k,N)

λγ(k,N)ξdbmin
(k − 1, N)

=
ξdbmin

(k,N)
λξdbmin

(k − 1, N)
(8.12)

Now we recall that the time updating for the backward predictor filter is given by

wb(k,N) = wb(k − 1, N) + φ(k,N)eb(k,N)

= wb(k − 1, N) + φ̂(k,N)εb(k,N) (8.13)

Following a similar approach to that used to derive equation (8.7), by first post-multiplying both
sides of equation (7.59), at instant k and for order N , by x(k,N + 1) = [xT (k,N) x(k−N)]T , and
using relations (8.10), (8.11), and (8.13), we have[

φ̂(k,N)
0

]
= φ̂(k,N + 1)− 1

λξdbmin
(k − 1, N)

[ −wb(k − 1, N)
1

]
eb(k,N) (8.14)

Note that in this equation the last element of φ̂(k,N+1) was already calculated in equation (8.7). In
any case, it is worth mentioning that the last element of φ̂(k,N + 1) can alternatively be expressed
as

φ̂N+1(k,N + 1) =
eb(k,N)

λξdbmin
(k − 1, N)

(8.15)

By applying equations (8.9), (8.15), and (8.10) in equation (8.12), we can show that

1 + φ̂N+1(k,N + 1)εb(k,N) =
γ(k,N)

γ(k,N + 1)
(8.16)
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By substituting equation (8.9) into the above equation, we can now derive an updating equation that
can be used in the FTRLS algorithm as

γ−1(k,N) = γ−1(k,N + 1)− φ̂N+1(k,N + 1)eb(k,N) (8.17)

The updating equations related to the forward and backward prediction problems and for the conver-
sion factor γ(k,N) are now available. We can thus proceed with the derivations to solve the more
general problem of estimating a related process represented by the desired signal d(k), known as
joint-process estimation.

8.3 JOINT-PROCESS ESTIMATION

As for all previously presented adaptive-filter algorithms, it is useful to derive a FTRLS algorithm
that can match a desired signal d(k) through the minimization of the weighted squared error. Starting
with the a priori error

e(k,N) = d(k)− wT (k − 1, N)x(k,N) (8.18)

we can calculate the a posteriori error as

ε(k,N) = e(k,N)γ(k,N) (8.19)

As in the conventional RLS algorithm, the time updating for the output tap coefficients of the joint-
process estimator can be performed as

w(k,N) = w(k − 1, N) + φ(k,N)e(k,N)

= w(k − 1, N) + φ̂(k,N)ε(k,N) (8.20)

All the updating equations are now available to describe the fast transversal RLS algorithm. The FRLS
algorithm consists of equations (8.1)-(8.3), (8.7)-(8.8), and (8.4) related to the forward predictor;
equations (8.15), (8.17), (8.9), (8.11), (8.14), and (8.13) related to the backward predictor and the
conversion factor; and (8.18)-(8.20) related to the joint-process estimator. The FTRLS algorithm is
in step-by-step form as Algorithm 8.1. The computational complexity of the FTRLS algorithm is
7(N)+14 multiplications per output sample. The key feature of the FTRLS algorithm is that it does
not require matrix multiplications. Because of this, the implementation of the FTRLS algorithm has
complexity of order N multiplications per output sample.

The initialization procedure consists of setting the tap coefficients of the backward prediction, forward
prediction, and joint-process estimation filters to zero, namely

wf (−1, N) = wb(−1, N) = w(−1, N) = 0 (8.21)

Vector φ̂(−1, N) is set to 0 assuming that the input and desired signals are zero for k < 0, i.e.,
prewindowed data. The conversion factor should be initialized as

γ(−1, N) = 1 (8.22)
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Algorithm 8.1

Fast Transversal RLS Algorithm

Initialization

wf (−1, N) = wb(−1, N) = w(−1, N) = 0
φ̂(−1, N) = 0, γ(−1, N) = 1
ξd
bmin

(−1, N) = ξd
fmin

(−1, N) = ε (a small positive constant)

Prediction Part

Do for each k ≥ 0,

ef (k,N) = xT (k,N + 1)
[

1
−wf (k − 1, N)

]
εf (k,N) = ef (k,N)γ(k − 1, N) (8.2)
ξd
fmin

(k,N) = λξd
fmin

(k − 1, N) + ef (k,N)εf (k,N) (8.3)

wf (k,N) = wf (k − 1, N) + φ̂(k − 1, N)εf (k,N) (8.8)

φ̂(k,N + 1) =
[

0
φ̂(k − 1, N)

]
+ 1

λξd
fmin

(k−1,N)

[
1

−wf (k − 1, N)

]
ef (k,N) (8.7)

γ(k,N + 1) =
λξd

fmin
(k−1,N)

ξd
fmin

(k,N)
γ(k − 1, N) (8.4)

eb(k,N) = λξd
bmin

(k − 1, N)φ̂N+1(k,N + 1) (8.15)

γ−1(k,N) = γ−1(k,N + 1) − φ̂N+1(k,N + 1)eb(k,N) (8.17)
εb(k,N) = eb(k,N)γ(k,N) (8.9)
ξd
bmin

(k,N) = λξd
bmin

(k − 1, N) + εb(k,N)eb(k,N) (8.11)[
φ̂(k,N)

0

]
= φ̂(k,N + 1) − φ̂N+1(k,N + 1)

[ −wb(k − 1, N)
1

]
(8.14)

wb(k,N) = wb(k − 1, N) + φ̂(k,N)εb(k,N) (8.13)

Joint-Process Estimation

e(k,N) = d(k) − wT (k − 1, N)x(k,N) (8.18)
ε(k,N) = e(k,N)γ(k,N) (8.19)
w(k,N) = w(k − 1, N) + φ̂(k,N)ε(k,N) (8.20)

End

since no difference between a priori and a posteriori errors exists during the initialization period.
The weighted least-square errors should be initialized with a positive constant ε

ε = ξdfmin
(−1, N) = ξdbmin

(−1, N) (8.23)

in order to avoid division by zero in the first iteration. The reason for introducing this initialization
parameter suggests that it should be a small value. However, for stability reasons, the value of ε
should not be small (see the examples at the end of this chapter).

It should be mentioned that there are exact initialization procedures for the fast transversal RLS filters
with the aim of minimizing the objective function at all instants during the initialization period [3].
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These procedures explore the fact that during the initialization period the number of data samples
in both d(k) and x(k) is less than N + 1. Therefore the objective function can be made zero
since there are more parameters than needed. The exact initialization procedure of [3] replaces the
computationally intensive backsubstitution algorithm and is rather simple when the adaptive-filter
coefficients are initialized with zero. The procedure can also be generalized to the case where some
nonzero initial values for the tap coefficients are available.

As previously mentioned, several fast RLS algorithms based on the transversal realization exist;
the one presented here corresponds to the so-called FTF proposed in [3]. A number of alternative
algorithms are introduced in the problems.

8.4 STABILIZED FAST TRANSVERSAL RLS ALGORITHM

Although the fast transversal algorithms proposed in the literature provide a nice solution to the
computational complexity burden inherent to the conventional RLS algorithm, these algorithms are
unstable when implemented with finite-precision arithmetic. Increasing the wordlength does not
solve the instability problem. The only effect of employing a longer wordlength is that the algorithm
will take longer to diverge. Earlier solutions to this problem consisted of restarting the algorithm
when the accumulated errors in chosen variables reached prescribed thresholds [3]. Although the
restart procedure would use past information, the resulting performance is suboptimal due to the
discontinuity of information in the corresponding deterministic correlation matrix.

The cause for the unstable behavior of the fast transversal algorithms is the inherent positive feedback
mechanism. This explanation led to the idea that if some specific measurements of the numerical
errors were available, they could conveniently be fed back in order to make the negative feedback
dominant in the error propagation dynamics. Fortunately, some measurements of the numerical
errors can be obtained by introducing computational redundancy into the fast algorithm. Such a
computational redundancy would involve calculating a given quantity using two different formulas.
In finite-precision implementation, the resulting values for the quantity calculated by these formulas
are not equal and their difference is a good measurement of the accumulated errors in that quantity.
This error can then be fed back in an attempt to stabilize the algorithm. The key problem is to
determine the quantities where the computational redundancy should be introduced such that the
error propagation dynamics can be stabilized. In the early proposed solutions [6]-[7], only a single
quantity was chosen to introduce the redundancy. Later, it was shown that at least two quantities are
required in order to guarantee the stability of the FTRLS algorithm [9]. Another relevant question
is where should the error be fed back inside the algorithm. Note that any point could be chosen
without affecting the behavior of the algorithm when implemented with infinite precision, since the
feedback error is zero in this case. A natural choice is to feed the error back into the expressions of
the quantities that are related to it. That means for each quantity in which redundancy is introduced,
its final value is a combination of the two forms of computing it.

The FTRLS algorithm can be seen as a discrete-time nonlinear dynamic system [9]: when finite
precision is used in the implementation, quantization errors will rise. In this case, the internal
quantities will be perturbed when compared with the infinite-precision quantities. When modeling
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the error propagation, a nonlinear system can be described that, if properly linearized, allows the
study of the error propagation mechanism. Using an averaging analysis, which is meaningful for
stationary input signals, it is possible to obtain a system characterized by its set of eigenvalues whose
dynamic behavior is similar to that of the error propagation behavior when k →∞ and (1−λ)→ 0.
Through these eigenvalues, it is possible to determine the feedback parameters as well as the quantities
to choose for the introduction of redundancy. The objective here is to modify the unstable modes
through the error feedback in order to make them stable [9]. Fortunately, it was found in [9] that
the unstable modes can be modified and stabilized by the introduced error feedback. The unstable
modes can be modified by introducing redundancy in γ(k,N) and eb(k,N). These quantities can
be calculated using different relations and in order to distinguish them an extra index is included in
their description.

The a priori backward error can be described in a number of alternative forms such as

eb(k,N, 1) = λξdbmin
(k − 1, N)φ̂N+1(k,N + 1) (8.24)

eb(k,N, 2) =
[−wTb (k − 1, N) 1

]
x(k,N + 1) (8.25)

and

eb,i(k,N, 3) = eb(k,N, 2)κi + eb(k,N, 1)[1− κi]
= eb(k,N, 1) + κi[eb(k,N, 2)− eb(k,N, 1)] (8.26)

where the first form was employed in the FTRLS algorithm and the second form corresponds to the
inner product implementation of the a priori backward error. The third form corresponds to a linear
combination of the first two forms where the numerical difference between these forms is fed back
to determine the final value of eb,i(k,N, 3) which will be used at different places in the stabilized
algorithm. For each κi, i = 1, 2, 3, we choose a different value in order to guarantee that the related
eigenvalues are less than one.

The conversion factor γ(k,N) is probably the first parameter to show signs that the algorithm
is becoming unstable. This parameter can also be calculated through different relations. These
alternative relations are required to guarantee that all modes of the error propagation system become
stable. The first equation is given by

γ−1(k,N + 1, 1) = γ−1(k − 1, N, 3)
ξdfmin

(k,N)

λξdfmin
(k − 1, N)

= γ−1(k − 1, N, 3)

[
1 +

ef (k,N)εf (k,N)
λξdfmin

(k − 1, N)

]

= γ−1(k − 1, N, 3) +
e2f (k,N)

λξdfmin
(k − 1, N)

= γ−1(k − 1, N, 3) + φ̂0(k,N + 1)ef (k,N) (8.27)

where φ̂0(k,N + 1) is the first element of φ̂(k,N + 1). The above equalities are derived from
equations (8.4), (8.3), (8.2) and (8.7), respectively. The second expression for the conversion factor
is derived from equation (8.14) and given by

γ−1(k,N, 2) = γ−1(k,N + 1, 1)− φ̂N+1(k,N + 1)eb,3(k,N, 3) (8.28)
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The third expression is

γ−1(k,N, 3) = 1 + φ̂
T
(k,N)x(k,N) (8.29)

In equation (8.27), the conversion factor was expressed in different ways, one of which was first
presented in the FTRLS algorithm of [9]. The second form already uses an a priori backward error
with redundancy. The third form can be derived from equation (7.48) for the lattice RLS algorithms
(see problem 10).

An alternative relation utilized in the stabilized fast transversal algorithm involves the minimum
forward least-squares error. From equations (8.3) and (8.7), we can write

[ξdfmin
(k,N)]−1 = λ−1[ξdfmin

(k − 1, N)]−1 − ef (k,N)εf (k,N)
λξdfmin

(k − 1, N)ξdfmin
(k,N)

= λ−1[ξdfmin
(k − 1, N)]−1 − φ̂0(k,N)εf (k,N)

ξdfmin
(k,N)

From (8.6), we can deduce that

εf (k,N)
ξdfmin

(k,N)
= φ0(k,N) = φ̂0(k,N)γ(k,N + 1, 1)

With this relation, we can obtain the desired equation as

[ξdfmin
(k,N)]−1 = λ−1[ξdfmin

(k − 1, N)]−1 − γ(k,N + 1, 1)φ̂
2
0(k,N + 1)

(8.30)

where the choice of γ(k,N + 1, 1) is used to keep the error-system modes stable [9].

Using the equations for the conversion factor and for the a priori backward error with redundancy, we
can obtain the stabilized fast transversal RLS algorithm (SFTRLS) whose step-by-step implementa-
tion is given as Algorithm 8.2. The parameters κi for i = 1, 2, 3 were determined through computer
simulation search [9] where the optimal values found were κ1 = 1.5, κ2 = 2.5, and κ3 = 1. It was
also found in [9] that the numerical behavior is quite insensitive to values of κi around the optimal
and that optimal values chosen for a given situation work well for a wide range of environments and
algorithm setup situations (for example, for different choices of the forgetting factor).

Another issue related to the SFTRLS algorithm concerns the range of values for λ such that stability
is guaranteed. Results of extensive simulation experiments [9] indicate that the range is

1− 1
2(N + 1)

≤ λ < 1 (8.31)

where N is the order of the adaptive filter. It was also verified that the optimal numerical behavior
is achieved when the value of λ is chosen as

λ = 1− 0.4
N + 1

(8.32)
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Algorithm 8.2

Stabilized Fast Transversal RLS Algorithm

Initialization

wf (−1, N) = wb(−1, N) = w(−1, N) = 0
φ̂(−1, N) = 0, γ(−1, N, 3) = 1
ξd
bmin

(−1, N) = ξd
fmin

(−1, N) = ε (a small positive constant)
κ1 = 1.5, κ2 = 2.5, κ3 = 1

Prediction Part

Do for each k ≥ 0,

ef (k,N) = xT (k,N + 1)
[

1
−wf (k − 1, N)

]
εf (k,N) = ef (k,N)γ(k − 1, N, 3) (8.2)

φ̂(k,N + 1) =
[

0
φ̂(k − 1, N)

]
+ 1

λξd
fmin

(k−1,N)

[
1

−wf (k − 1, N)

]
ef (k,N) (8.7)

γ−1(k,N + 1, 1) = γ−1(k − 1, N, 3) + φ̂0(k,N + 1)ef (k,N) (8.27)

[ξd
fmin

(k,N)]−1 = λ−1[ξd
fmin

(k − 1, N)]−1 − γ(k,N + 1, 1)φ̂
2
0(k,N + 1) (8.30)

wf (k,N) = wf (k − 1, N) + φ̂(k − 1, N)εf (k,N) (8.8)
eb(k,N, 1) = λξd

bmin
(k − 1, N)φ̂N+1(k,N + 1) (8.15)

eb(k,N, 2) =
[−wT

b (k − 1, N) 1
]

x(k,N + 1) (8.25)
eb,i(k,N, 3) = eb(k,N, 2)κi + eb(k,N, 1)[1 − κi] for i = 1, 2, 3 (8.25)
γ−1(k,N, 2) = γ−1(k,N + 1, 1) − φ̂N+1(k,N + 1)eb,3(k,N, 3) (8.28)
εb,j(k,N, 3) = eb,j(k,N, 3)γ(k,N, 2) j = 1, 2
ξd
bmin

(k,N) = λξd
bmin

(k − 1, N) + εb,2(k,N, 3)eb,2(k,N, 3) (8.11)[
φ̂(k,N)

0

]
= φ̂(k,N + 1) − φ̂N+1(k,N + 1)

[ −wb(k − 1, N)
1

]
(8.14)

wb(k,N) = wb(k − 1, N) + φ̂(k,N)εb,1(k,N, 3) (8.13)

γ−1(k,N, 3) = 1 + φ̂
T

(k,N)x(k,N) (8.29)

Joint-Process Estimation

e(k,N) = d(k) − wT (k − 1, N)x(k,N) (8.18)
ε(k,N) = e(k,N)γ(k,N, 3) (8.19)
w(k,N) = w(k − 1, N) + φ̂(k,N)ε(k,N) (8.20)

End

The range of values for λ as well as its optimal value can be very close to one for high-order filters.
This can be a potential limitation for the use of the SFTRLS algorithm, especially in nonstationary
environments where smaller values for λ are required.

The computational complexity of the SFTRLS algorithm is of order 9N multiplications per output
sample. There is an alternative algorithm with computational complexity of order 8N (see problem 9).
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Before leaving this section, it is worth mentioning a nice interpretation for the fast transversal RLS
algorithm. The FTRLS algorithm can be viewed as four transversal filters working in parallel
and exchanging quantities with each other, as depicted in Fig. 8.1. The first filter is the forward
prediction filter that utilizes x(k − 1, N) as the input signal vector, wf (k,N) as the coefficient
vector, and provides quantities εf (k,N), ef (k,N), and ξdfmin

(k,N) as outputs. The second filter
is the backward prediction filter that utilizes x(k,N) as the input signal vector, wb(k,N) as the
coefficient vector, and provides quantities εb(k,N), eb(k,N), and ξdbmin

(k,N) as outputs. The third

filter is an auxiliary filter whose coefficients are given by −φ̂(k,N), whose input signal vector
is x(k,N), and whose output parameter is γ−1(k,N). For this filter, the desired signal vector is
constant and equal to [1 0 0 . . . 0]T . The fourth and last filter is the joint-process estimator whose
input signal vector is x(k,N), whose coefficient vector is w(k,N), and which provides the quantities
ε(k,N) and e(k,N) as outputs.
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Figure 8.1 Fast transversal RLS algorithm: block diagram.

Example 8.1

The system identification problem described in subsection 3.6.2 is solved using the stabilized fast
transversal algorithm presented in this chapter. The main objective is to check the stability of the
algorithm when implemented in finite precision.
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Solution:

According to equation (8.31), the lower bound for λ in this case is 0.9375. A value λ = 0.99 is
chosen. The stabilized fast transversal algorithm is applied to solve the identification problem and
the measured MSE is 0.0432.

Using ε = 2, we ran the algorithm with finite precision and the results are summarized in Table 8.1.
No sign of instability is found for λ = 0.99. These results are generated by ensemble averaging 200
experiments. A comparison of the results of Table 8.1 with those of Tables 5.2 and 7.2 shows that
the SFTRLS algorithm has similar performance compared to the conventional and lattice-based RLS
algorithms, in terms of quantization error accumulation. The question is which algorithm remains
stable in most situations. Regarding the SFTRLS, for large-order filters we are left with a limited
range of values to choose λ. Also, it was found in our experiments that the choice of the initialization
parameter ε plays an important role in the performance of this algorithm when implemented in finite
precision. In some cases, even when the value of λ is within the recommended range, the algorithm
does not converge if ε is small. By increasing the value of ε, we increase the usual convergence time
while keeping the algorithm stable.

�

Table 8.1 Results of the Finite-Precision Implementation of the SFTRLS Algorithm

ξ(k)Q E[||Δw(k)Q||2]
No of bits Experiment Experiment

16 1.545 10−3 6.089 10−5

12 1.521 10−3 3.163 10−5

10 1.562 10−3 6.582 10−5

Example 8.2

The channel equalization example described in subsection (3.6.3) is also used in simulations to test
the SFTRLS algorithm. We use a 25th-order equalizer and a forgetting factor λ = 0.99.

Solution:

In order to solve the equalization problem the stabilized fast transversal RLS algorithm is initialized
with ε = 0.5. The results presented here were generated by ensemble averaging 200 experiments.
The resulting learning curve of the MSE is shown in Fig. 8.2, and the measured MSE is 0.2973. The
overall performance of the SFTRLS algorithm for this particular example is as good as any other
RLS algorithm, such as lattice-based algorithms.

�
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Figure 8.2 Learning curves for the stabilized fast transversal RLS algorithm.

8.5 CONCLUDING REMARKS

In this chapter we have presented some fast transversal RLS algorithms. This class of algorithms is
computationally more efficient than conventional and lattice-based RLS algorithms. Some simula-
tion examples were included where the SFTRLS algorithm was employed. The finite-wordlength
simulations are of special interest for the reader.

A number of alternative FTRLS algorithms as well as theoretical results can be found in [3]. The
derivation of normalized versions of the FTRLS algorithm is also possible and was not addressed in
the present chapter, for this result refer to [4]. The most computationally efficient FTRLS algorithms
are known to be unstable. The error-feedback approach was briefly introduced that allowed the
stabilization of the FTRLS algorithm. The complete derivation and justification for the error-feedback
approach is given in [9].

In nonstationary environments, it might be useful to employ a time-varying forgetting factor. There-
fore it is desirable to obtain FTRLS algorithms allowing the use of variable λ. This problem was first
addressed in [11]. However a computationally more efficient solution was proposed in [8] where the
concept of data weighting was introduced to replace the concept of error weighting.

The FTRLS algorithm has potential for a number of applications. In particular, the problem in
which the signals available from the environment are noisy version of a transmitted signal and noisy
filtered versions of the same transmitted signal is an interesting application. In this problem, both
the delay and unknown filter coefficients have to be estimated. The weighted squared errors have to
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be minimized while considering both the delay and the unknown system parameters. This problem
of joint estimation can be elegantly solved by employing the FTRLS algorithm [12].
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8.7 PROBLEMS

1. Show that

φ(k,N) = SD(k,N)x(k,N)

=
SD(k − 1, N)x(k,N)

λ+ xT (k,N)SD(k − 1, N)x(k,N)

Hint: Use the matrix inversion lemma for SD(k,N).

2. Show that

φN (k − 1, N)− wf,N (k)εf (k,N)
ξdfmin

(k,N)
=
−εb(k,N)
ξdbmin

(k,N)
= φN+1(k,N + 1)

where wf,N (k) represents the last element of wf (k,N).

3. Using a proper mixture of relations of the lattice RLS algorithm based on a posteriori and the
FTRLS algorithm, derive a fast exact initialization procedure for the transversal filter coeffi-
cients.

4. Show that the following relations are valid, assuming the input signals are prewindowed:

det[SD(k,N + 1)]
det[SD(k − 1, N)]

=
1

ξdfmin
(k,N)

det[SD(k,N + 1)]
det[SD(k,N)]

=
1

ξdbmin
(k,N)

5. Show that

γ−1(k,N) =
det[RD(k,N)]

λNdet[RD(k − 1, N)]

Hint: det[I + AB] = det[I + BA].

6. Using the results of problems 4 and 5, prove that

γ−1(k,N) =
ξdfmin

(k,N)

λNξdbmin
(k,N)

7. Derive equations (8.7) and (8.14). Also show that the use of φ(k,N) would increase the
computational complexity of the FTRLS algorithm.

8. If one avoids the use of the conversion factor γ(k,N), it is necessary to use inner products to
derive the a posteriori errors in the fast algorithm. Derive a fast algorithm without the conversion
factor.
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9. By replacing the relation for γ(k,N, 3) in the SFTRLS algorithm by the relation

γ(k,N) =
λNξdbmin

(k,N)
ξdfmin

(k,N)

derived in problem 6, describe the resulting algorithm and show that it requires order 8N
multiplications per output sample.

10. Derive the equation (8.29).

11. The FTRLS algorithm is applied to predict the signal x(k) = sin(πk4 + π
3 ). Given λ = 0.98,

calculate the error and the tap coefficients for the first 10 iterations.

12. The SFTRLS algorithm is applied to predict the signal x(k) = sin(πk4 + π
3 ). Given λ = 0.98,

calculate the error and the tap coefficients for the first 10 iterations.

13. The FTRLS algorithm is applied to identify a 7th-order unknown system whose coefficients are

wT = [0.0272 0.0221 − 0.0621 0.1191 0.6116 − 0.3332 − 0.0190 − 0.0572]

The input signal is Gaussian white noise with variance σ2
x = 1 and the measurement noise is

also Gaussian white noise independent of the input signal with variance σ2
n = 0.01.

Simulate the experiment above described and measure the excess MSE for λ = 0.97 and
λ = 0.98.

14. Repeat problem 13 for the case where the input signal is a first-order Markov process with
λx = 0.98.

15. Redo problem 13 using a fixed-point implementation with the FTRLS and SFTRLS algorithms.
Use 12 bits in the fractional part of the signal and parameter representations.

16. Suppose a 15th-order FIR digital filter with the multiplier coefficients given below is identi-
fied through an adaptive FIR filter of the same order using the FTRLS algorithm. Assuming
fixed-point arithmetic, simulate the identification problem described in terms of the following
specifications:

Additional noise : white noise with variance σ2
n = 0.0015

Coefficients wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7
λ = 0.98

wTo = [0.0219360 0.0015786 − 0.0602449 − 0.0118907 0.1375379
0.0574545 − 0.3216703 − 0.5287203 − 0.2957797 0.0002043 0.290670
− 0.0353349 − 0.0068210 0.0026067 0.0010333 − 0.0143593]

Plot the learning curves for the finite- and infinite-precision implementations.

17. Repeat the above problem for the SFTRLS algorithm. Also reduce the wordlength used until a
noticeable (10 percent increase) excess MSE is observed at the output.

18. Repeat problem 16 for the SFTRLS algorithm, using λ = 0.999 and λ = 0.960. Comment on
the results.
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19. The SFTRLS algorithm is used to perform the forward prediction of a signal x(k) generated by
applying zero-mean Gaussian white noise with unit variance to the input of a linear filter with
transfer function given by

H(z) =
0.5

(1− 1.512z−1 + 0.827z−2)(1− 1.8z−1 + 0.87z−2)

Calculate the zeros of the resulting predictor error transfer function and compare with the poles
of the linear filter.

20. Perform the equalization of a channel with impulse response given by

h(k) = 0.96k + (−0.9)k

for k = 0, 1, 2, . . . , 15. The transmitted signal is zero-mean Gaussian white noise with unit
variance and the adaptive filter input signal-to-noise ratio is 30 dB. Use the SFTRLS algorithm
of order 100.




