
7
ADAPTIVE LATTICE-BASED RLS

ALGORITHMS

7.1 INTRODUCTION

There are a large number of algorithms that solve the least-squares problem in a recursive form.
In particular, the algorithms based on the lattice realization are very attractive because they allow
modular implementation and require a reduced number of arithmetic operations (of order N) [1]-
[7]. As a consequence, the lattice recursive least-squares (LRLS) algorithms are considered fast
implementations of the RLS problem.

The LRLS algorithms are derived by solving the forward and backward linear prediction problems
simultaneously. The lattice-based formulation provides the prediction and the general adaptive
filter (joint-process estimation) solutions of all intermediate orders from 1 to N simultaneously.
Consequently, the order of the adaptive filter can be increased or decreased without affecting the
lower order solutions. This property allows the user to activate or deactivate sections of the lattice
realization in real time according to performance requirements.

Unlike the RLS algorithm previously discussed, which requires only time-recursive equations, the
lattice RLS algorithms use time-update and order-update equations. A key feature of the LRLS
algorithms is that the prediction process discloses the properties (or the model) of the input signal.
The internal signals of the prediction part retain in a sense nonredundant information of the input
signal that can be utilized in a decoupled form in the following processing. This mechanism is
inherently built in the lattice algorithm derivations.

The performance of the LRLS algorithms when implemented with infinite-precision arithmetic is
identical to that of any other RLS algorithm. However, in finite-precision implementation each
algorithm will perform differently.

In this chapter, several forms of the LRLS algorithm are presented. First, the standard LRLS algorithm
based on a posteriori errors is presented, followed by the normalized version. The algorithms with
error feedback are also derived. Finally, the LRLS algorithm based on a priori errors is described.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_7,
© Springer Science+Business Media, LLC 2008

290 Chapter 7 Adaptive Lattice-Based RLS Algorithms

7.2 RECURSIVE LEAST-SQUARES PREDICTION

The solutions of the RLS forward and backward prediction problems are essential to derive the order-
updating equations inherent to the LRLS algorithms. In both cases, the results are derived following
the same derivation procedure as in the conventional RLS algorithm, since the only distinct feature
of the prediction problems is the definition of the reference signal d(k). For example, in the forward
prediction case we have d(k) = x(k) whereas the input signal vector has the sample x(k− 1) as the
most recent data. For the backward prediction case d(k) = x(k − i− 1), where the index i defines
the sample in the past which we wish to predict, and the input signal vector has x(k) as the most
recent data. In this section, these solutions are studied and the results demonstrate how information
can be exchanged between the forward and backward predictor solutions.

7.2.1 Forward Prediction Problem

The objective of the forward prediction is to predict a future sample of a given input sequence using
the currently available information of the sequence. For example, one can try to predict the value of
x(k) using past samples x(k−1), x(k−2) . . . , through an FIR prediction filter with i+1 coefficients
as

yf (k, i+ 1) = wTf (k, i+ 1)x(k − 1, i+ 1) (7.1)

where yf (k, i+ 1) is the predictor output signal,

wf (k, i+ 1) = [wf0(k) wf1(k) . . . wfi(k)]T

is the FIR forward prediction coefficient vector, and

x(k − 1, i+ 1) = [x(k − 1) x(k − 2) . . . x(k − i− 1)]T

is the available input signal vector. The second variable included in the vectors of equation (7.1) is
to indicate the vector dimension, since it is required in the order-updating equations of the LRLS
algorithm. This second variable will be included where needed in the present chapter.

The instantaneous a posteriori forward prediction error is given by

εf (k, i+ 1) = x(k)− wTf (k, i+ 1)x(k − 1, i+ 1) (7.2)

For the RLS formulation of the forward prediction problem, define the weighted forward prediction
error vector as

εf (k, i+ 1) = x̂(k)− XT (k − 1, i+ 1)wf (k, i+ 1) (7.3)

where

x̂(k) = [x(k) λ1/2x(k − 1) λx(k − 2) . . . λk/2x(0)]T

2917.2 Recursive Least-Squares Prediction

εf (k, i+ 1) = [εf (k, i+ 1) λ1/2εf (k − 1, i+ 1) λεf (k − 2, i+ 1) . . . λk/2εf (0, i+ 1)]T

and

X(k − 1, i+ 1) =

⎡
⎢⎢⎢⎣

x(k − 1) λ1/2x(k − 2) · · · λ(k−2)/2x(1) λ(k−1)/2x(0) 0
x(k − 2) λ1/2x(k − 3) · · · λ(k−2)/2x(0) 0 0

...
...

...
...

...
x(k − i− 1) λ1/2x(k − i− 2) · · · 0 0 0

⎤
⎥⎥⎥⎦

It is straightforward to show that εf (k, i+ 1) can be rewritten as

εf (k, i+ 1) = XT (k, i+ 2)
[

1
−wf (k, i+ 1)

]
(7.4)

The objective function that we want to minimize in the least-squares sense is the forward prediction
error given by

ξdf (k, i+ 1) = εTf (k, i+ 1)εf (k, i+ 1)

=
k∑
l=0

λk−lε2f (l, i+ 1)

=
k∑
l=0

λk−l[x(l)− xT (l − 1, i+ 1)wf (k, i+ 1)]2 (7.5)

By differentiating ξdf (k, i + 1) with respect to wf (k, i + 1) and equating the result to zero, we can
find the optimum coefficient vector that minimizes the objective function, namely,

wf (k, i+ 1) =

[
k∑
l=0

λk−lx(l − 1, i+ 1)xT (l − 1, i+ 1)

]−1 k∑
l=0

λk−lx(l − 1, i+ 1)x(l)

= [X(k − 1, i+ 1)XT (k − 1, i+ 1)]−1X(k − 1, i+ 1)x̂(k)
= R−1

Df (k − 1, i+ 1)pDf (k, i+ 1) (7.6)

where RDf (k − 1, i+ 1) is equal to the deterministic correlation matrix RD(k − 1) of order i+ 1
and pDf (k, i+ 1) is the deterministic cross-correlation vector between x(l) and x(l − 1, i+ 1).

292 Chapter 7 Adaptive Lattice-Based RLS Algorithms

The exponentially weighted sum of squared errors can be written as (see equation (7.5)):

ξdf (k, i+ 1) =
k∑
l=0

λk−l {x2(l)− 2x(l)xT (l − 1, i+ 1)wf (k, i+ 1)

+
[
xT (l − 1, i+ 1)wf (k, i+ 1)

]2}
=

k∑
l=0

λk−l [x2(l)− x(l)xT (l − 1, i+ 1)wf (k, i+ 1)
]

+
k∑
l=0

λk−l [−x(l) + xT (l − 1, i+ 1)wf (k, i+ 1)
]

xT (l − 1, i+ 1)wf (k, i+ 1)

=
k∑
l=0

λk−lx(l)
[
x(l)− xT (l − 1, i+ 1)wf (k, i+ 1)

]
+
[∑k

l=0 − λk−lx(l)xT (l − 1, i+ 1)

+ wTf (k, i+ 1)
∑k
l=0 λ

k−lx(l − 1, i+ 1)xT (l − 1, i+ 1)
]

wf (k, i+ 1) (7.7)

If we replace equation (7.6) in the second term of the last relation above, it can be shown by using the
fact that RD(k−1) is symmetric that this term is zero. Therefore, the minimum value of ξdf (k, i+1)1

is given by

ξdfmin
(k, i+ 1) =

k∑
l=0

λk−lx(l)[x(l)− xT (l − 1, i+ 1)wf (k, i+ 1)]

=
k∑
l=0

λk−lx2(l)− pTDf (k, i+ 1)wf (k, i+ 1)

= σ2
f (k)− wTf (k, i+ 1)pDf (k, i+ 1) (7.8)

By combining equation (7.6) for wf (k, i) and equation (7.8) for ξdfmin
(k, i+ 1) the following matrix

equation can be obtained[
σ2
f (k) pTDf (k, i+ 1)

pDf (k, i+ 1) RDf (k − 1, i+ 1)

] [
1

− wf (k, i+ 1)

]
=
[
ξdfmin

(k, i+ 1)
0

]
(7.9)

1Notice that no special notation was previously used for the minimum value of the RLS objective function. However,
when deriving the lattice algorithms, this definition is necessary.

2937.2 Recursive Least-Squares Prediction

Since σ2
f (k) =

∑k
l=0 λ

k−lx2(l) and pDf (k, i + 1) =
∑k
l=0 λ

k−lx(l − 1, i + 1)x(l), it is possible
to conclude that the leftmost term of equation (7.9) can be rewritten as[∑k

l=0 λ
k−lx2(l)

∑k
l=0 λ

k−lxT (l − 1, i+ 1)x(l)∑k
l=0 λ

k−lx(l − 1, i+ 1)x(l)
∑k
l=0 λ

k−lx(l − 1, i+ 1)xT (l − 1, i+ 1)

]

=
k∑
l=0

λk−l
[

x(l)
x(l − 1, i+ 1)

]
[x(l) xT (l − 1, i+ 1)]

= RD(k, i+ 2) (7.10)

Therefore,

RD(k, i+ 2)
[

1
−wf (k, i+ 1)

]
=
[
ξdfmin

(k, i+ 1)
0

]
where RD(k, i+ 2) corresponds to RD(k) used in the previous chapter with dimension i+ 2. The
above equation relates the deterministic correlation matrix of order i+2 to the minimum least-squares
forward prediction error. The appropriate partitioning of matrix RD(k, i+ 2) enables the derivation
of the order-updating equation for the predictor tap coefficients, as will be discussed later.

7.2.2 Backward Prediction Problem

The objective of the backward predictor is to generate an estimate of a past sample of a given input
sequence using the currently available information of the sequence. For example, sample x(k−i−1)
can be estimated from x(k, i+ 1), through an FIR backward prediction filter with i+ 1 coefficients
as

yb(k, i+ 1) = wTb (k, i+ 1)x(k, i+ 1) (7.11)

where yb(k, i+ 1) is the backward predictor output signal, and

wTb (k, i+ 1) = [wb0(k) wb1(k) . . . wbi(k)]T

is the FIR backward prediction coefficient vector.

The instantaneous a posteriori backward prediction error is given by

εb(k, i+ 1) = x(k − i− 1)− wTb (k, i+ 1)x(k, i+ 1) (7.12)

The weighted backward prediction error vector is defined as

εb(k, i+ 1) = x̂(k − i− 1)− XT (k, i+ 1)wb(k, i+ 1) (7.13)

where

x̂(k − i− 1) = [x(k − i− 1) λ1/2x(k − i− 2) . . . λ(k−i−1)/2x(0) 0 . . . 0]T

εb(k, i+ 1) = [εb(k, i+ 1) λ1/2εb(k − 1, i+ 1) . . . λk/2εb(0, i+ 1)]T

294 Chapter 7 Adaptive Lattice-Based RLS Algorithms

and

X(k, i+ 1) =

⎡
⎢⎢⎢⎣

x(k) λ1/2x(k − 1) · · · λ(k−1)/2x(1) λ(k)/2x(0)
x(k − 1) λ1/2x(k − 2) · · · λ(k−2)/2x(0) 0

...
...

...
...

x(k − i) λ1/2x(k − i− 1) · · · 0 · · · 0

⎤
⎥⎥⎥⎦

The error vector can be rewritten as

εb(k, i+ 1) = XT (k, i+ 2)
[−wb(k, i+ 1)

1

]
(7.14)

The objective function to be minimized in the backward prediction problem is given by

ξdb (k, i+ 1) = εTb (k, i+ 1)εb(k, i+ 1)

=
k∑
l=0

λk−lε2b(l, i+ 1)

=
k∑
l=0

λk−l[x(l − i− 1)− xT (l, i+ 1)wb(k, i+ 1)]2 (7.15)

The optimal solution for the coefficient vector is

wb(k, i+ 1) =

[
k∑
l=0

λk−lx(l, i+ 1)xT (l, i+ 1)

]−1 k∑
l=0

λk−lx(l, i+ 1)x(l − i− 1)

= [X(k, i+ 1)XT (k, i+ 1)]−1X(k, i+ 1)x̂(k − i− 1)
= R−1

Db(k, i+ 1)pDb(k, i+ 1) (7.16)

where RDb(k, i + 1) is equal to the deterministic correlation matrix RD(k) of order i + 1, and
pDb(k, i+ 1) is the deterministic cross-correlation vector between x(l − i− 1) and x(l, i+ 1).

Using the same procedure to derive the minimum least-squares solution in the RLS problem, it can
be shown that the minimum value of ξdb (k) is given by

ξdbmin
(k, i+ 1) =

k∑
l=0

λk−lx(l − i− 1)[x(l − i− 1)− xT (l, i+ 1)wb(k, i+ 1)]

=
k∑
l=0

λk−lx2(l − i− 1)− pTDb(k, i+ 1)wb(k, i+ 1)

= σ2
b (k)− wTb (k, i+ 1)pDb(k, i+ 1) (7.17)

2957.3 Order-Updating Equations

By combining equations (7.16) and (7.17), we obtain[
RDb(k, i+ 1) pDb(k, i+ 1)
pTDb(k, i+ 1) σ2

b (k)

] [−wb(k, i+ 1)
1

]

=

[∑k
l=0 λ

k−lx(l, i+ 1)xT (l, i+ 1)
∑k
l=0 λ

k−lx(l, i+ 1)x(l − i− 1)∑k
l=0 λ

k−lxT (l, i+ 1)x(l − i− 1)
∑k
l=0 λ

k−lx2(l − i− 1)

]

·
[−wb(k, i+ 1)

1

]

= RD(k, i+ 2)
[−wb(k, i+ 1)

1

]

=
[

0
ξdbmin

(k, i+ 1)

]
(7.18)

where RD(k, i+2) is equal to RD(k) of dimension i+2. The above equation relates the deterministic
correlation matrix of order i + 1 to the minimum least-squares backward prediction error. This
equation is important in the derivation of the order-updating equation for the backward predictor tap
coefficients. This issue is discussed in the following section.

7.3 ORDER-UPDATING EQUATIONS

The objective of this section is to derive the order-updating equations for the forward and backward
prediction errors. These equations are the starting point to generate the lattice realization.

7.3.1 A New Parameter δ(k, i)

Using the results of equations (7.9) and (7.10), and the decomposition of RD(k, i + 2) given in
equation (7.18), we can show that

RD(k, i+ 2)

⎡
⎣ 1
−wf (k, i)

0

⎤
⎦ =

[
RD(k, i+ 1) pDb(k, i+ 1)
pTDb(k, i+ 1) σ2

b (k)

]⎡⎣ 1
−wf (k, i)

0

⎤
⎦

=

⎡
⎢⎢⎣

ξdfmin
(k, i)
0

pTDb(k, i+ 1)
[

1
−wf (k, i)

]
⎤
⎥⎥⎦

=

⎡
⎣ ξdfmin

(k, i)
0

δf (k, i)

⎤
⎦ (7.19)

296 Chapter 7 Adaptive Lattice-Based RLS Algorithms

where relation (7.9) was employed in the second equality. From the last element relation of the above
vector and the definition of pDb(k, i+ 1), we obtain

δf (k, i) =
k∑
l=0

λk−lx(l)x(l − i− 1)−
k∑
l=0

λk−lx(l − i− 1)xT (l − 1, i)wf (k, i)

=
k∑
l=0

λk−lx(l)x(l − i− 1)−
k∑
l=0

λk−lx(l − i− 1)yf (l, i)

=
k∑
l=0

λk−lεf (l, i)x(l − i− 1)

and yf (l, i) = xT (l−1, i)wf (k, i) is the output of a forward prediction filter of order i−1. Note that
the parameter δf (k, i) can be interpreted as the deterministic cross-correlation between the forward
prediction error εf (l, i) with the coefficients fixed at wf (k, i) and the desired signal of the backward
predictor filter x(l − i− 1).

Similarly, using the results of equations (7.17) and (7.18) it can be shown that

RD(k, i+ 2)

⎡
⎣ 0
−wb(k − 1, i)

1

⎤
⎦ =

[
σ2
f (k) pTDf (k, i+ 1)

pDf (k, i+ 1) RD(k − 1, i+ 1)

]⎡⎣ 0
−wb(k − 1, i)

1

⎤
⎦

=

⎡
⎢⎢⎣ pTDf (k, i+ 1)

[−wb(k − 1, i)
1

]
0

ξdbmin
(k − 1, i)

⎤
⎥⎥⎦

=

⎡
⎣ δb(k, i)

0
ξdbmin

(k − 1, i)

⎤
⎦ (7.20)

where in the second equality we applied the result of equation (7.18), and

δb(k, i) =
k∑
l=0

λk−lx(l − i− 1)x(l)−
k∑
l=0

λk−lx(l)xT (l − 1, i)wb(k − 1, i)

=
k∑
l=0

λk−lx(l − i− 1)x(l)−
k∑
l=0

λk−lx(l)yb(l − 1, i)

=
k∑
l=0

λk−lεb(l − 1, i)x(l)

where yb(l − 1, i) = xT (l − 1, i)wb(k − 1, i) is the output of a backward prediction filter of order
i− 1 with the input data of instant l− 1, when the coefficients of the predictor are wb(k− 1, i). The
parameter δb(k, i) can be interpreted as the deterministic cross-correlation between the backward
prediction error εb(l − 1, i) and the desired signal of the forward predictor filter x(l).

2977.3 Order-Updating Equations

In equations (7.19) and (7.20) two new parameters were defined, namely δf (k, i) and δb(k, i). In the
following derivations we will show that these parameters are equal. If RD(k, i+ 2) is premultiplied
by [0 − wTb (k − 1, i) 1] and postmultiplied by [1 − wf (k, i) 0]T , it can be shown that

[0 − wTb (k − 1, i) 1] RD(k, i+ 2)

⎡
⎣ 1
−wf (k, i)

0

⎤
⎦ = δf (k, i) (7.21)

By transposing the first and last terms of equation (7.20) the following relation is obtained

[0 − wTb (k − 1, i) 1] RD(k, i+ 2) = [δb(k, i) 0T ξdbmin
(k − 1, i)] (7.22)

By substituting this result in equation (7.21), we obtain

[δb(k, i) 0T ξdbmin
(k − 1, i)]

⎡
⎣ 1
−wf (k, i)

0

⎤
⎦ = δb(k, i) (7.23)

Therefore, from equations (7.21) and (7.23) we conclude that

δf (k, i) = δb(k, i) = δ(k, i) (7.24)

In effect, the deterministic cross-correlations between εf (l, i) and x(l−i−1) and between εb(l−1, i)
and x(l) are equal.

7.3.2 Order Updating of ξdbmin
(k, i) and wb(k, i)

The order updating of the minimum LS error and the tap coefficients for the backward predictor can
be deduced by multiplying equation (7.19) by the scalar δ(k, i)/ξdfmin

(k, i), i.e.,

δ(k, i)
ξdfmin

(k, i)
RD(k, i+ 2)

⎡
⎣ 1
−wf (k, i)

0

⎤
⎦ =

⎡
⎢⎣

δ(k, i)
0

δ2(k,i)
ξd

fmin
(k,i)

⎤
⎥⎦ (7.25)

Subtracting equation (7.20) from this result yields

RD(k, i+ 2)

⎡
⎢⎢⎣

δ(k,i)
ξd

fmin
(k,i)

−wf (k, i)
δ(k,i)

ξd
fmin

(k,i) + wb(k − 1, i)

−1

⎤
⎥⎥⎦ =

[
0

−ξdbmin
(k − 1, i) + δ2(k,i)

ξd
fmin

(k,i)

]

(7.26)

298 Chapter 7 Adaptive Lattice-Based RLS Algorithms

Comparing equations (7.18) and (7.26), we conclude that

ξdbmin
(k, i+ 1) = ξdbmin

(k − 1, i)− δ2(k, i)
ξdfmin

(k, i)
(7.27)

and

wb(k, i+ 1) =
[

0
wb(k − 1, i)

]
− δ(k, i)
ξdfmin

(k, i)

[−1
wf (k, i)

]
(7.28)

7.3.3 Order Updating of ξdfmin
(k, i) and wf(k, i)

Similarly, by multiplying equation (7.20) by δ(k, i)/ξdbmin
(k − 1, i), we get

δ(k, i)
ξdbmin

(k − 1, i)
RD(k, i+ 2)

⎡
⎣ 0
−wb(k − 1, i)

1

⎤
⎦ =

⎡
⎢⎣

δ2(k,i)
ξd

bmin
(k−1,i)

0
δ(k, i)

⎤
⎥⎦ (7.29)

Subtracting equation (7.29) from equation (7.19), it follows that

RD(k, i+ 2)

⎡
⎢⎢⎣

1
δ(k,i)

ξd
bmin

(k−1,i)wb(k − 1, i)− wf (k, i)

− δ(k,i)
ξd

bmin
(k−1,i)

⎤
⎥⎥⎦ =

[
ξdfmin

(k, i)− δ2(k,i)
ξd

bmin
(k−1,i)

0

]
(7.30)

Comparing this equation with equation (7.9), we conclude that

ξdfmin
(k, i+ 1) = ξdfmin

(k, i)− δ2(k, i)
ξdbmin

(k − 1, i)
(7.31)

and

wf (k, i+ 1) =
[

wf (k, i)
0

]
− δ(k, i)
ξdbmin

(k − 1, i)

[
wb(k − 1, i)
−1

]
(7.32)

7.3.4 Order Updating of Prediction Errors

The order updating of the a posteriori forward and backward prediction errors can be derived as
described below. From the definition of a posteriori forward error, we have

εf (k, i+ 1) = xT (k, i+ 2)
[

1
−wf (k, i+ 1)

]

= xT (k, i+ 2)

⎡
⎣ 1
−wf (k, i)

0

⎤
⎦+

δ(k, i)
ξdbmin

(k − 1, i)
xT (k, i+ 2)

⎡
⎣ 0

wb(k − 1, i)
−1

⎤
⎦

= εf (k, i)− κf (k, i)εb(k − 1, i) (7.33)

2997.3 Order-Updating Equations

where in the second equality we employed the order-updating equation (7.32) for the forward pre-
diction coefficients. The coefficient κf (k, i) = δ(k,i)

ξd
bmin

(k−1,i) is the so-called forward reflection

coefficient.

The order updating of the a posteriori backward prediction error is obtained by using equation (7.28)
as

εb(k, i+ 1) = xT (k, i+ 2)
[−wb(k, i+ 1)

1

]

= xT (k, i+ 2)

⎡
⎣ 0
−wb(k − 1, i)

1

⎤
⎦+

δ(k, i)
ξdfmin

(k, i)
xT (k, i+ 2)

⎡
⎣ −1

wf (k, i)
0

⎤
⎦

= εb(k − 1, i)− κb(k, i)εf (k, i) (7.34)

where we employed the order-updating equation for the backward prediction coefficients (7.28) in
the second equality. The coefficient κb(k, i) = δ(k,i)

ξd
fmin

(k,i) is the backward reflection coefficient.

Equations (7.33) and (7.34) above can be implemented with a lattice section as illustrated in Fig. 7.1.a.
An order-increasing lattice-based forward and backward predictor can be constructed as illustrated in
Fig. 7.1.b. The coefficients κb(k, i) and κf (k, i) are often called reflection coefficients of the lattice
realization.

In the first section of the lattice, the forward and backward prediction errors are equal to the input
signal itself since no prediction is performed before the first lattice section; therefore

εb(k, 0) = εf (k, 0) = x(k) (7.35)

and

ξdfmin
(k, 0) = ξdbmin

(k, 0) =
k∑
l=0

λk−lx2(l) = x2(k) + λξdfmin
(k − 1, 0) (7.36)

A closer look at equations (7.9) and (7.18) leads to the conclusion that the backward and forward
predictors utilize the same information matrix RD(k, i + 2). This result was key in deriving the
expressions for the a posteriori forward and backward prediction errors of equations (7.33) and
(7.34). Of particular note, these expressions can be shown to be independent of the predictor tap
coefficients. This result will be proved in the following section, which will present an updating
formula for δ(k, i) that is not directly dependent on wf (k, i) and wb(k − 1, i).

Now that all order-updating equations are available, it is necessary to derive the time-updating
equations to allow the adaptation of the lattice predictor coefficients.

300 Chapter 7 Adaptive Lattice-Based RLS Algorithms

+

+

X

X

z
-1

�f ()k,N

�b ()k,N

-k k,Nb ()

�b (1)k,N+

�f (1)k,N+

- ()k k,Nf

(a)

Section
1

Section
2

Section
3

Section
(N+1)

�f (1)k, �f (2)k, �f (3)k, �f ()k,N

�b (1)k, �b (2)k, �b (3)k, �b ()k,N
x k()

(b)

Figure 7.1 Least-squares lattice-based predictor.

7.4 TIME-UPDATING EQUATIONS

The time-updating equations are required to deal with the new incoming data that becomes available.
Recall that up to this point in this text we have studied adaptive-filtering algorithms utilizing the new
incoming data as soon as it becomes available. In this section, the time-updating equations for the
internal quantities of the lattice algorithm are derived.

7.4.1 Time Updating for Prediction Coefficients

From equation (7.6), the time updating of the forward prediction filter coefficients is given by

wf (k, i) = SD(k − 1, i)pDf (k, i)

= R−1
D (k − 1, i)pDf (k, i) (7.37)

This is the standard expression for the computation of the optimal coefficient vector leading to the
minimization of the LS objective function and adapted to the forward prediction case.

The updating formula of SD(k, i) based on the matrix inversion lemma derived in the previous chapter
(see Algorithm 5.2) for the conventional RLS algorithm can be used in equation (7.37). The resulting

3017.4 Time-Updating Equations

equation is given by

wf (k, i) =
1
λ

[
SD(k − 2, i)− ψ(k − 1, i)ψT (k − 1, i)

λ+ψT (k − 1, i)x(k − 1, i)

]
pDf (k, i)

=
1
λ

[
SD(k − 2, i)− ψ(k − 1, i)xT (k − 1, i)SD(k − 2, i)

λ+ψT (k − 1, i)x(k − 1, i)

]
· [λpDf (k − 1, i) + x(k)x(k − 1, i)

]
= wf (k − 1, i)− ψ(k − 1, i)xT (k − 1, i)wf (k − 1, i)

λ+ψT (k − 1, i)x(k − 1, i)
+
x(k)
λ

c (7.38)

where in the we have applied the time-recursive updating formula of pDf (k, i) in the second equality,
and we have replaced SD(k − 2, i)pDf (k − 1, i) by wf (k − 1, i) in the second term of the final
expression. Vector c is given by

c = SD(k − 2, i)x(k − 1, i)− ψ(k − 1, i)xT (k − 1, i)SD(k − 2, i)x(k − 1, i)
λ+ψT (k − 1, i)x(k − 1, i)

=
λSD(k − 2, i)x(k − 1, i)

λ+ψT (k − 1, i)x(k − 1, i)

It is convenient at this point to recall thatψ(k−1, i) = SD(k−2, i)x(k−1, i) (see equation (5.10)).

The last term in equation (7.38) can be simplified if we apply the refined definition based on equation
(5.11)

φ(k − 1, i) =
ψ(k − 1, i)

λ+ψT (k − 1, i)x(k − 1, i)
(7.39)

where φ(k− 1, i) now includes the order index i. Using this definition in the second and third terms
of the last expression of equation (7.38), it can be shown that

wf (k, i) = wf (k − 1, i) + φ(k − 1, i)[x(k)− wTf (k − 1, i)x(k − 1, i)]
= wf (k − 1, i) + φ(k − 1, i)ef (k, i) (7.40)

where ef (k, i) is the a priori forward prediction error of a predictor of order i−12, so-called because
it utilizes the tap coefficients of the previous instant k − 1.

Following similar steps to those used to derive equation (7.40), we can show that the time updating
for the backward predictor filter is given by

wb(k, i) =
1
λ

[
SD(k − 1, i)− ψ(k, i)ψT (k, i)

λ+ψT (k, i)x(k, i)

]
[λpDb(k − 1, i) + x(k, i)x(k − i)]

= wb(k − 1, i)− φ(k, i)xT (k, i)wb(k − 1, i) + φ(k, i)x(k − i)
= wb(k − 1, i) + φ(k, i)eb(k, i) (7.41)

where eb(k, i) is the a priori backward prediction error of a predictor filter of order i− 1.

2The predictor filter is of order i− 1 whereas the predictor including the desired signal is of order i.

302 Chapter 7 Adaptive Lattice-Based RLS Algorithms

7.4.2 Time Updating for δ(k, i)

From the computational point of view, it would be interesting to compute the prediction errors without
explicitly using the predictor’s tap coefficients, because working with these coefficients requires the
use of inner products. In order to achieve this, a time-updating expression for δ(k, i) is derived. A
byproduct of this derivation is the introduction of a new parameter, namely γ(k, i), that is shown to
be a conversion factor between a priori and a posteriori errors.

From the definition in equation (7.19), we have

δ(k, i) = pTDb(k, i+ 1)
[

1
−wf (k, i)

]
(7.42)

where pDb(k, i+ 1) can be expressed in recursive form as

pDb(k, i+ 1) =
k∑
l=0

λk−lx(l, i+ 1)x(l − i− 1)

= x(k, i+ 1)x(k − i− 1) + λpDb(k − 1, i+ 1) (7.43)

Substituting equations (7.40) and (7.43) in equation (7.42), we get

δ(k, i) = [x(k − i− 1)xT (k, i+ 1) + λpTDb(k − 1, i+ 1)]

·
[

1
− wf (k − 1, i)− φ(k − 1, i)ef (k, i)

]

= λδ(k − 1, i) + λpTDb(k − 1, i+ 1)
[

0
− φ(k − 1, i)ef (k, i)

]

+x(k − i− 1)xT (k, i+ 1)
[

1
− wf (k − 1, i)

]

+x(k − i− 1)xT (k, i+ 1)
[

0
− φ(k − 1, i)ef (k, i)

]
(7.44)

where the equality of equation (7.42) for the order index i − 1 was used to obtain the first term of
the last equality.

We now derive two relations which are essential to obtain a time-updating equation for δ(k, i). The
resulting equation is efficient from the computational point of view. From the definitions ofφ(k−1, i)
and ψ(k − 1, i), (see equation (7.39) and the comments after equation (7.38) respectively) it can be

3037.4 Time-Updating Equations

shown that

pTDb(k − 1, i+ 1)
[

0
φ(k − 1, i)

]
= pTDb(k − 2, i)φ(k − 1, i)

=
pTDb(k − 2, i)ψ(k − 1, i)

λ+ψT (k − 1, i)x(k − 1, i)

=
pTDb(k − 2, i)SD(k − 2, i)x(k − 1, i)

λ+ψT (k − 1, i)x(k − 1, i)

=
wTb (k − 2, i)x(k − 1, i)

λ+ψT (k − 1, i)x(k − 1, i)

= − eb(k − 1, i)− x(k − i− 1)
λ+ψT (k − 1, i)x(k − 1, i)

(7.45)

Now using equation (7.39) it is possible to obtain the relation

xT (k, i+ 1)
[

0
φ(k − 1, i)

]
=

xT (k − 1, i)SD(k − 2, i)x(k − 1, i)
λ+ψT (k − 1, i)x(k − 1, i)

=
ψT (k − 1, i)x(k − 1, i)

λ+ψT (k − 1, i)x(k − 1, i)
(7.46)

If we recall that the a priori forward prediction error can be computed in the form

xT (k, i+ 1)
[

1
−wf (k − 1, i)

]
= ef (k, i)

and by substituting equations (7.45) and (7.46) into equation (7.44), after some straightforward
manipulations, we obtain the following time-updating equation for δ(k, i)

δ(k, i) = λδ(k − 1, i) +
λeb(k − 1, i)ef (k, i)

λ+ψT (k − 1, i)x(k − 1, i)
= λδ(k − 1, i) + γ(k − 1, i)eb(k − 1, i)ef (k, i) (7.47)

where

γ(k − 1, i) =
λ

λ+ψT (k − 1, i)x(k − 1, i)

= 1− φT (k − 1, i)x(k − 1, i) (7.48)

The last relation follows from the definition of φ(k− 1, i) in equation (7.39). Parameter γ(k− 1, i)
plays a key role in the relation between the a posteriori and a priori prediction errors, as will be
demonstrated below.

In order to allow the derivation of a lattice-based algorithm utilizing only a posteriori errors, the
relationship between the a priori and a posteriori errors is now derived. The a posteriori forward

304 Chapter 7 Adaptive Lattice-Based RLS Algorithms

prediction error is related to the a priori forward prediction error as

εf (k, i) = x(k)− wTf (k, i)x(k − 1, i)

= x(k)− wTf (k − 1, i)x(k − 1, i)− φT (k − 1, i)x(k − 1, i)ef (k, i)

= ef (k, i)[1− φT (k − 1, i)x(k − 1, i)]
= ef (k, i)γ(k − 1, i) (7.49)

Similarly, the relationship between a posteriori and a priori backward prediction errors can be
expressed as

εb(k, i) = x(k − i)− wTb (k, i)x(k, i)
= x(k − i)− wTb (k − 1, i)x(k, i)− φT (k, i)x(k, i)eb(k, i)
= eb(k, i)[1− φT (k, i)x(k, i)]
= eb(k, i)γ(k, i) (7.50)

Parameter γ(k, i) is often called a conversion factor between a priori and a posteriori errors.

Using equations (7.49) and (7.50), equation (7.47) can be expressed as

δ(k, i) = λδ(k − 1, i) +
εb(k − 1, i)εf (k, i)

γ(k − 1, i)
(7.51)

As a general rule each variable of the lattice-based algorithms requires an order-updating equation.
Therefore, an order-updating equation for γ(k, i) is necessary. This is the objective of the derivations
in the following subsection.

7.4.3 Order Updating for γ(k, i)

Variable γ(k − 1, i) is defined by

γ(k − 1, i) = 1− φT (k − 1, i)x(k − 1, i)

where φ(k − 1, i) = SD(k − 1, i)x(k − 1, i). The relation for φ(k − 1, i) can be obtained by
replacing SD(k − 1, i) by the expression derived by the matrix inversion lemma of equation (5.5)
and verifying that the resulting simplified expression leads to equation (7.39). By multiplying the
expression φ(k − 1, i) = SD(k − 1, i)x(k − 1, i) by RD(k − 1, i) on both sides, we obtain the
following relation

RD(k − 1, i)φ(k − 1, i) = x(k − 1, i) (7.52)

With this equation, we will be able to derive an order-updating equation for φ(k − 1, i) with the aid
of an appropriate partitioning of RD(k − 1, i).

3057.4 Time-Updating Equations

By partitioning matrix RD(k − 1, i) as in equation (7.19), we get

RD(k − 1, i)
[
φ(k − 1, i− 1)

0

]
=
[

RD(k − 1, i− 1) pDb(k − 1, i− 1)
pTDb(k − 1, i− 1) σ2

b (k − 1)

]

·
[
φ(k − 1, i− 1)

0

]

=
[

RDb(k − 1, i− 1)φ(k − 1, i− 1)
pTDb(k − 1, i− 1)φ(k − 1, i− 1)

]

We can proceed by replacing φ(k − 1, i− 1) using equation (7.52) in the last element of the above
vector, that is,

RD(k − 1, i)
[
φ(k − 1, i− 1)

0

]
=
[

RDb(k − 1, i− 1)φ(k − 1, i− 1)
pTDb(k − 1, i− 1)SDb(k − 1, i− 1)x(k − 1, i− 1)

]

=
[

RDb(k − 1, i− 1)φ(k − 1, i− 1)
wTb (k − 1, i− 1)x(k − 1, i− 1)

]

=
[

x(k − 1, i− 1)
x(k − i)− εb(k − 1, i− 1)

]

= x(k − 1, i)−
[

0
εb(k − 1, i− 1)

]
(7.53)

By multiplying the above equation by SD(k − 1, i), we have[
φ(k − 1, i− 1)

0

]
= φ(k − 1, i)− SD(k − 1, i)

[
0

εb(k − 1, i− 1)

]
(7.54)

If we replace the above relation in the definition of the conversion factor, we deduce

γ(k − 1, i) = 1− φT (k − 1, i)x(k − 1, i)
= γ(k − 1, i− 1)− [0T εb(k − 1, i)]TSD(k − 1, i)x(k − 1, i)

(7.55)

This equation can be expressed into a more useful form by using a partitioned version of SD(k−1, i)
given by

SD(k − 1, i) =
[

0 0T

0 SD(k − 2, i− 1)

]

+
1

ξdfmin
(k − 1, i− 1)

[
1

− wf (k − 1, i− 1)

] [
1 − wTf (k − 1, i− 1)

]
(7.56)

The proof of validity of the above expression follows.

306 Chapter 7 Adaptive Lattice-Based RLS Algorithms

Proof:

The partitioned expression of RD(k − 1, i) is

RD(k − 1, i) =
[

0 0T

0 RD(k − 2, i− 1)

]
+
[

σ2
f (k − 1) pTDf (k − 1, i− 1)

pDf (k − 1, i− 1) 0i−1,i−1

]
(7.57)

By assuming equation (7.56) is valid and premultiplying it by RD(k − 1, i) as in equation (7.57), it
follows that

RD(k − 1, i)SD(k − 1, i) =
[

0 0T

0 Ii−1,i−1

]
+
[

0 pTDf (k − 1, i− 1)SD(k − 2, i− 1)
0 0T

]

+
1

ξdfmin
(k − 1, i− 1)

RD(k − 1, i)

·
[

1
− wf (k − 1, i− 1)

]
[1 − wTf (k − 1, i− 1)]

=
[

0 0T

0 Ii−1,i−1

]
+
[

0 wTf (k − 1, i− 1)
0 0i−2,i−2

]

+
1

ξdfmin
(k − 1, i− 1)

[
ξdfmin

(k − 1, i− 1)
0

]
·[1 − wTf (k − 1, i− 1)]

=
[

0 wTf (k − 1, i− 1)
0 Ii−1,i−1

]
+
[

1 −wTf (k − 1, i− 1)
0 0i−1,i

]
= Ii,i

proving the validity of equation (7.56).

�

By applying equation (7.56) in equation (7.55), we obtain

γ(k, i+ 1) = 1− φT (k, i+ 1)x(k, i+ 1)

= γ(k − 1, i)− ε2f (k, i)

ξdfmin
(k, i)

(7.58)

Following a similar method to that used in deriving equation (7.56), it can be shown that

SD(k − 1, i) =
[

SD(k − 1, i− 1) 0i−1

0Ti−1 0

]

+
1

ξdbmin
(k − 1, i− 1)

[− wb(k − 1, i− 1)
1

] [− wTb (k − 1, i− 1) 1
]
(7.59)

3077.5 Joint-Process Estimation

Now by replacing the above equation in equation (7.55), we can show that

γ(k − 1, i) = γ(k − 1, i− 1)− εb(k − 1, i− 1)
ξdbmin

(k − 1, i− 1)

[−wTb (k − 1, i− 1) 1
]

x(k − 1, i)

= γ(k − 1, i− 1)− ε2b(k − 1, i− 1)
ξdbmin

(k − 1, i− 1)
(7.60)

The last equation completes the set of relations required to solve the backward and forward prediction
problems. In the following section, the modeling of a reference signal (joint-processor estimation)
is discussed.

7.5 JOINT-PROCESS ESTIMATION

In the previous sections, we considered only the forward and backward prediction problems and
explored some common features in their solutions. In a more general situation, the goal is to predict
the behavior of one process represented by d(k) through measurements of a related process contained
in x(k, i + 1). Therefore, it is important to derive an adaptive lattice-based realization to match a
desired signal d(k) through the minimization of the weighted squared error function given by

ξd(k, i+ 1) =
k∑
l=0

λk−lε2(l, i+ 1)

=
k∑
l=0

λk−l[d(l)− wT (k, i+ 1)x(l, i+ 1)]2 (7.61)

where y(k, i+ 1) = wT (k, i+ 1)x(k, i+ 1) is the adaptive-filter output signal and ε(l, i+ 1) is the
a posteriori error at a given instant l if the adaptive-filter coefficients were fixed at w(k, i+ 1). The
minimization procedure of ξd(k, i+ 1) is often called joint-process estimation.

The prediction lattice realization generates the forward and backward prediction errors and requires
some feedforward coefficients to allow the minimization of ξd(k, i+1). In fact, the lattice predictor
in this case works as a signal processing building block which improves the quality of the signals
(in the sense of reducing the eigenvalue spread of the autocorrelation matrix) that are inputs to the
output taps. The question is where should the taps be placed. We give some statistical arguments for
this choice here. First, we repeat, for convenience, the expression of the backward prediction error:

εb(k, i+ 1) = xT (k, i+ 2)
[−wb(k, i+ 1)

1

]
From the orthogonality property of the RLS algorithm, for k →∞, we can infer that

E[εb(k, i+ 1)x(k − l)] = 0

for l = 0, 1, . . . , i. From this equation, it is possible to show that

E[εb(k, i+ 1)xT (k, i+ 1)] = 0T

308 Chapter 7 Adaptive Lattice-Based RLS Algorithms

If we postmultiply the above equation by [−wb(k, i) 1]T , we obtain

E

{
εb(k, i+ 1)xT (k, i+ 1)

[−wb(k, i)
1

]}
= E[εb(k, i+ 1)εb(k, i)] = 0

This result shows that backward prediction errors of consecutive orders are uncorrelated. Using
similar arguments one can show that E[εb(k, i+ 1)εb(k, l)] = 0, for l = 0, 1, . . . , i.

In problem 4, it is shown that backward prediction errors are uncorrelated with each other in the
sense of time averaging and, as a consequence, should be naturally chosen as inputs to the output
taps. The objective function can now be written as

ξd(k, i+ 1) =
k∑
l=0

λk−lε2(l, i+ 1)

=
k∑
l=0

λk−l[d(l)− ε̂Tb (k, i+ 1)v(l, i+ 1)]2 (7.62)

where ε̂Tb (k, i + 1) = [εb(k, 0) εb(k, 1) . . . εb(k, i)] is the backward prediction error vector and
vT (k, i+ 1) = [v0(k) v1(k) . . . vi(k)] is the feedforward coefficient vector.

The main objective of the present section is to derive a time-updating formula for the output tap
coefficients. From equations (7.61) and (7.62), it is obvious that the lattice realization generates
the optimal estimation by using a parameterization different from that related to the direct-form
realization. We can derive the updating equations for the elements of the forward coefficient vector
using the order-updating equation for the tap coefficients of the direct-form realization. Employing
equation (7.59), the equivalent optimal solution with the direct-form realization can be expressed as

w(k, i+ 1) = SD(k, i+ 1)pD(k, i+ 1)

=
[

SD(k, i) 0i
0Ti 0

]
pD(k, i+ 1)

+
1

ξdbmin
(k, i)

[−wb(k, i)
1

]
[−wTb (k, i) 1]pD(k, i+ 1)

=
[

w(k, i)
0

]
+

δD(k, i)
ξdbmin

(k, i)

[−wb(k, i)
1

]
(7.63)

where

δD(k, i) = [−wTb (k, i) 1]pD(k, i+ 1)

= −wTb (k, i)
k∑
l=0

λk−lx(l, i)d(l) +
k∑
l=0

λk−lx(l − i)d(l)

=
k∑
l=0

λk−lεb(l, i)d(l)

3097.5 Joint-Process Estimation

and

pD(k, i+ 1) =
k∑
l=0

λk−lx(l, i+ 1)d(l)

Since

pD(k, i+ 1) = λpD(k − 1, i+ 1) + d(k)x(k, i+ 1)

and

wb(k, i) = wb(k − 1, i) + φ(k, i)eb(k, i)

see equation (7.41), by following the same steps we used to deduce the time update of δ(k, i) in
equation (7.47), we can show that

δD(k, i) = λδD(k − 1, i) +
ε(k, i)εb(k, i)

γ(k, i)
(7.64)

By calculating the output signal of the joint-process estimator using the order-updating equation
(7.63) for the direct-form realization, we can show that

wT (k, i+ 1)x(k, i+ 1) = [wT (k, i) 0]x(k, i+ 1) +
δD(k, i)
ξdbmin

(k, i)
[−wTb (k, i) 1]x(k, i+ 1)

(7.65)

This equation can be rewritten as

y(k, i+ 1) = y(k, i) +
δD(k, i)
ξdbmin

(k, i)
εb(k, i) (7.66)

where it can now be noticed that the joint-predictor output y(k, i+ 1) is a function of the backward
prediction error εb(k, i). This was the motivation for using the decomposition of SD(k, i+ 1) given
by equation (7.59) in equation (7.63).

The feedforward multiplier coefficients can be identified as

vi(k) =
δD(k, i)
ξdbmin

(k, i)
(7.67)

and the a posteriori output error of the adaptive filter of order i from 1 to N are obtained simultane-
ously, where

ε(k, i+ 1) = ε(k, i)− vi(k)εb(k, i) (7.68)

The above result was derived by subtracting d(k) from both sides of equation (7.66). The resulting
lattice realization is depicted in Fig. 7.2.

We now have available all the relations required to generate the lattice recursive least-squares adaptive-
filtering algorithm based on a posteriori estimation errors. The algorithm is described in Algorithm
7.1, which highlights in boxes the terms that should be saved in order to avoid repeated computation.

310 Chapter 7 Adaptive Lattice-Based RLS Algorithms

Algorithm 7.1

Lattice RLS Algorithm
Based on A Posteriori Errors

Initialization

Do for i = 0, 1 . . . , N
δ(−1, i) = δD(−1, i) = 0 (assuming x(k) = 0 for k < 0)
ξdbmin

(−1, i) = ξdfmin
(−1, i) = ε (a small positive constant)

γ(−1, i) = 1
εb(−1, i) = 0

End

Do for k ≥ 0
γ(k, 0) = 1
εb(k, 0) = εf (k, 0) = x(k) (7.35)
ξdbmin

(k, 0) = ξdfmin
(k, 0) = x2(k) + λξdfmin

(k − 1, 0) (7.36)
ε(k, 0) = d(k)

Do for i = 0, 1 . . . , N

δ(k, i) = λδ(k − 1, i)+ εb(k−1,i)
γ(k−1,i) εf (k, i) (7.51)

γ(k, i+ 1) = γ(k, i)− ε2b(k,i)
ξd

bmin
(k,i) (7.60)

κb(k, i) = δ(k,i)
ξd

fmin
(k,i)

κf (k, i) = δ(k,i)
ξd

bmin
(k−1,i)

εb(k, i+ 1) = εb(k − 1, i)− κb(k, i)εf (k, i) (7.34)
εf (k, i+ 1) = εf (k, i)− κf (k, i)εb(k − 1, i) (7.33)
ξdbmin

(k, i+ 1) = ξdbmin
(k − 1, i)− δ(k, i)κb(k, i) (7.27)

ξdfmin
(k, i+ 1) = ξdfmin

(k, i)− δ(k, i)κf (k, i) (7.31)

Feedforward Filtering

δD(k, i) = λδD(k − 1, i)+ εb(k,i)
γ(k,i) ε(k, i) (7.64)

vi(k) = δD(k,i)
ξd

bmin
(k,i) (7.67)

ε(k, i+ 1) = ε(k, i)− vi(k)εb(k, i) (7.68)
End

End

3117.6 Time Recursions of the Least-Squares Error

+

X

+

X

+

X

+

X

+

X

+

+

X

X

-k k,b (0)

�b (1)k, �b (2)k,

� k,(1) � (2)k, � (3)k, � ()k,N � (1)k,N+

�f (1)k,

-k k,f (0)

+

+

X

X

z -1

-k k,b (1)

�f (2)k,

-k k,f (1)

+

+

X

X

z -1

-k k,b (2)

-k k,f (2)

- ()�1 k - ()�2 k - ()�N-1 k - ()�N k

z -1

- ()�0 k

�b (1)k,N-

+

+

X

X

z -1

�f (-1)k,N

-k k,N-b (1)

�b ()k,N

�f ()k,N

-k k,N-f (1)

d k()

x k()

Figure 7.2 Joint-process estimation lattice realization.

7.6 TIME RECURSIONS OF THE LEAST-SQUARES ERROR

In this section, we provide a set of relations for the time updating of the minimum LS error of the
prediction problems. These relations allow the derivation of two important equations involving the
ratio of conversion factor of consecutive order prediction problems, namely γ(k−1,i+1)

γ(k−1,i) and γ(k,i+1)
γ(k−1,i) .

The results provided in this section are required for the derivation of some alternative lattice algorithms
such as the error feedback, as well as for the fast RLS algorithms of Chapter 8.

By replacing each term in the definition of the minimum weighted least-squares error for the backward
prediction problem by their time-updating equation, we have (see equations (7.16), (7.17))

ξdbmin
(k, i) = σ2

b (k)− wTb (k, i)pDb(k, i)

= σ2
b (k)−

[
wTb (k − 1, i) + eb(k, i)φT (k, i)

]
[λpDb(k − 1, i) + x(k − i)x(k, i)]

= σ2
b (k)− λwTb (k − 1, i)pDb(k − 1, i)− x(k − i)wTb (k − 1, i)x(k, i)
− λeb(k, i)φT (k, i)pDb(k − 1, i)− eb(k, i)φT (k, i)x(k, i)x(k − i)

= x2(k − i) + λσ2
b (k − 1)− λwTb (k − 1, i)pDb(k − 1, i)

−x(k − i)wTb (k − 1, i)x(k, i)− λeb(k, i)φT (k, i)pDb(k − 1, i)
−eb(k, i)φT (k, i)x(k, i)x(k − i) (7.69)

By combining the second and third terms, we get

λ[σ2
b (k − 1)− wTb (k − 1, i)pDb(k − 1, i)] = λξdbmin

(k − 1, i)

Similarly, by combining the first, fourth and sixth terms, we obtain

x(k − i)[x(k − i)− wTb (k − 1, i)x(k, i)− eb(k, i)φT (k, i)x(k, i)]
= x(k − i)[eb(k, i)− eb(k, i)φT (k, i)x(k, i)]
= x(k − i)eb(k, i)[1− φT (k, i)x(k, i)]

312 Chapter 7 Adaptive Lattice-Based RLS Algorithms

Now by applying these results in equation (7.69), we can show that

ξdbmin
(k, i) = λξdbmin

(k − 1, i) + x(k − i)eb(k, i)[1− φT (k, i)x(k, i)]

−λeb(k, i)φT (k, i)pDb(k − 1, i)
= λξdbmin

(k − 1, i) + x(k − i)eb(k, i)
−eb(k, i)φT (k, i)[x(k − i)x(k, i) + λpDb(k − 1, i)]

If we apply the definition of φ(k, i) in equation (7.39) and the equation (7.16) for the backward
prediction problem, we obtain

ξdbmin
(k, i) = λξdbmin

(k − 1, i) + x(k − i)eb(k, i)− eb(k, i)φT (k, i)pDb(k, i)

= λξdbmin
(k − 1, i) + x(k − i)eb(k, i)− eb(k, i)xT (k, i)SD(k − 1, i)pDb(k, i)

= λξdbmin
(k − 1, i) + eb(k, i)[x(k − i)− wTb (k, i)x(k, i)]

= λξdbmin
(k − 1, i) + eb(k, i)εb(k, i)

= λξdbmin
(k − 1, i) +

ε2b(k, i)
γ(k, i)

(7.70)

Following similar steps to those used to obtain the above equation, we can show that

ξdfmin
(k, i) = λξdfmin

(k − 1, i) +
ε2f (k, i)

γ(k − 1, i)
(7.71)

From the last two equations, we can easily infer the relations that are useful in deriving alternative
lattice-based algorithms, namely the normalized and error-feedback algorithms. These relations are

λξdbmin
(k − 2, i)

ξdbmin
(k − 1, i)

= 1− ε2b(k − 1, i)
γ(k − 1, i)ξdbmin

(k − 1, i)

=
γ(k − 1, i+ 1)
γ(k − 1, i)

(7.72)

and

λξdfmin
(k − 1, i)

ξdfmin
(k, i)

= 1− ε2f (k, i)

γ(k − 1, i)ξdfmin
(k, i)

=
γ(k, i+ 1)
γ(k − 1, i)

(7.73)

where equations (7.60) and (7.58), respectively, were used in the derivation of the right-hand-side
expressions of the above equations.

3137.7 Normalized Lattice RLS Algorithm

7.7 NORMALIZED LATTICE RLS ALGORITHM

An alternative form of the lattice RLS algorithm can be obtained by applying a judicious normalization
to the internal variables of the algorithm, keeping their magnitude bounded by one. This normalized
lattice is specially suitable for fixed-point arithmetic implementation. Also, this algorithm requires
fewer recursions and variables than the unnormalized lattices, i.e., only three equations per prediction
section per time sample.

7.7.1 Basic Order Recursions

A natural way to normalize the backward and forward prediction errors is to divide them by the
square root of the corresponding weighted least-squares error. However, it will be shown that a wiser
strategy leads to a reduction in the number of recursions. At the same time, we must think of a way to
normalize variable δ(k, i). In the process of normalizing εf (k, i), εb(k, i), and δ(k, i), we can reduce
the number of equations by eliminating the conversion variable γ(k, i+ 1). Note that γ(k, i+ 1) is
originally normalized. These goals can be reached if the normalization of δ(k, i) is performed as

δ(k, i) =
δ(k, i)√

ξdfmin
(k, i)ξdbmin

(k − 1, i)
(7.74)

By noting that the conversion variable γ(k−1, i) divides the product εf (k, i)εb(k−1, i) in the time-
updating formula (7.51), we can devise a way to perform the normalization of the prediction errors
leading to its elimination. The appropriate normalization of the forward and backward estimation
errors are, respectively, performed as

εf (k, i) =
εf (k, i)√

γ(k − 1, i)ξdfmin
(k, i)

(7.75)

εb(k, i) =
εb(k, i)√

γ(k, i)ξdbmin
(k, i)

(7.76)

where the terms
√
ξdfmin

(k, i) and
√
ξdbmin

(k, i)perform the power normalization whereas
√
γ(k − 1, i)

and
√
γ(k, i) perform the so-called angle normalization, since γ(k, i) is related to the angle between

the spaces spanned by x(k − 1, i) and x(k, i).

From the above equations and equation (7.51), we can show that

δ(k, i)
√
ξdfmin

(k, i)ξdbmin
(k − 1, i) = λδ(k − 1, i)

√
ξdfmin

(k − 1, i)ξdbmin
(k − 2, i)

+εb(k − 1, i)εf (k, i)
√
ξdfmin

(k, i)ξdbmin
(k − 1, i)

(7.77)

314 Chapter 7 Adaptive Lattice-Based RLS Algorithms

Therefore,

δ(k, i) = λδ(k − 1, i)

√√√√ξdfmin
(k − 1, i)ξdbmin

(k − 2, i)

ξdfmin
(k, i)ξdbmin

(k − 1, i)
+ εb(k − 1, i)εf (k, i) (7.78)

We now show that the term under the square root in the above equation can be expressed in terms of
the normalized errors by using equations (7.72), (7.73), (7.75), and (7.76), that is,

λξdbmin
(k − 2, i)

ξdbmin
(k − 1, i)

=
γ(k − 1, i+ 1)
γ(k − 1, i)

= 1− ε2b(k − 1, i)
γ(k − 1, i)ξdbmin

(k − 1, i)

= 1− ε2b(k − 1, i) (7.79)

and

λξdfmin
(k − 1, i)

ξdfmin
(k, i)

=
γ(k, i+ 1)
γ(k − 1, i)

= 1− ε2f (k, i)

γ(k − 1, i)ξdfmin
(k, i)

= 1− ε2f (k, i) (7.80)

Substituting the last two equations into equation (7.78), we can show that

δ(k, i) = δ(k − 1, i)
√

(1− ε2b(k − 1, i))(1− ε2f (k, i)) + εb(k − 1, i)εf (k, i)

(7.81)

Following a similar procedure used to derive the time-updating equation for δ(k, i), one can derive
the order-updating equation of the normalized forward and backward prediction errors. In the case
of the forward prediction error, the following order-updating relation results:

εf (k, i+ 1)=
[
εf (k, i)− δ(k, i)εb(k − 1, i)

]√√√√ ξdfmin
(k, i)

ξdfmin
(k, i+ 1)

√
γ(k − 1, i)

γ(k − 1, i+ 1)
(7.82)

Here again, we can express the functions under the square roots in terms of normalized variables.
Using equations (7.31), (7.74), and (7.77), it can be shown that

εf (k, i+ 1) =
εf (k, i)− δ(k, i)εb(k − 1, i)√
1− δ2(k, i)

√
1− ε2b(k − 1, i)

(7.83)

3157.7 Normalized Lattice RLS Algorithm

If the same steps to derive εf (k, i+ 1) are followed, we can derive the order-updating equation for
the backward prediction error as

εb(k, i+ 1) =
[
εb(k − 1, i)− δ(k, i)εf (k, i)

]√ξdbmin
(k − 1, i)

ξdbmin
(k, i+ 1)

√
γ(k − 1, i)
γ(k, i+ 1)

=
εb(k − 1, i)− δ(k, i)εf (k, i)√

1− δ2(k, i)
√

1− ε2f (k, i)
(7.84)

7.7.2 Feedforward Filtering

The procedure to generate the joint-processor estimator is repeated here, using normalized variables.
Define

δD(k, i) =
δD(k, i)√

ξdmin(k, i)ξdbmin
(k, i)

(7.85)

and

ε(k, i) =
ε(k, i)√

γ(k, i)ξdmin(k, i)
(7.86)

Using a similar approach to that used to derive equation (7.31), one can show that

ξdmin(k, i+ 1) = ξdmin(k, i)− δ2D(k, i)
ξdbmin

(k, i)
(7.87)

The procedure used to derive the order-updating equations for the normalized prediction errors and the
parameter δ(k, i) can be followed to derive the equivalent parameters in the joint-process estimation
case. For the a posteriori output error the following equation results

ε(k, i+ 1) =

√
γ(k, i)

γ(k, i+ 1)

√
ξdmin(k, i)

ξdmin(k, i+ 1)

[
ε(k, i)− δD(k, i)εb(k, i)

]
=

1√
1− ε2b(k, i)

1√
1− δ2D(k, i)

[
ε(k, i)− δD(k, i)εb(k, i)

]
(7.88)

The order-updating equation of δD(k, i) is (see equation (7.78))

δD(k, i) =

√
λ2ξdmin(k − 1, i)ξdbmin

(k − 1, i)
ξdmin(k, i)ξdbmin

(k, i)
δD(k − 1, i) + ε(k, i)εb(k, i)

=
√

(1− ε2b(k, i))(1− ε2(k, i))δD(k − 1, i) + ε(k, i)εb(k, i) (7.89)

316 Chapter 7 Adaptive Lattice-Based RLS Algorithms

where we used the fact that

λξdmin(k − 1, i)
ξdmin(k, i)

= 1− ε2(k, i) (7.90)

The normalized lattice RLS algorithm based on a posteriori errors is described in Algorithm 7.2.

Notice that in the updating formulas of the normalized errors, the terms involving the square root op-
eration could be conveniently implemented through separate multiplier coefficients, namely ηf (k, i),
ηb(k, i), and ηD(k, i). In this way, one can perform the order updating by calculating the numerator
first and proceeding with a single multiplication. These coefficients are given by

ηf (k, i+ 1) =
1√

1− δ2(k, i)
√

1− ε2b(k − 1, i)
(7.91)

ηb(k, i+ 1) =
1√

1− δ2(k, i)
√

1− ε2f (k, i)
(7.92)

ηD(k, i+ 1) =
1√

1− ε2b(k, i)
√

1− δ2D(k, i)
(7.93)

With these multipliers it is straightforward to obtain the structure for the joint-processor estimator
depicted in Fig. 7.3.

+

X

+

X

+

X

+

X

+

X

+

+

X

X -� (1)k,-� (0)k,

-� (1)k,-� (0)k,

-�D (1)k, -�D (2)k, -�D (-1)k,N -�D ()k,N

+

+

X

X

�f (2)k,�f (1)k, �f ()k,N

�D (1)k, �D (2)k, �D ()k,N �D (,N+1)k

�b (2)k,�b (1)k, �b ()k,N

+

+

X

X

d k()

x k()

�x k()

�d k()

-� (-1)k,N

-� (-1)k,N

-�D (0)k,

X

X X X

X X

X

XXX

�f (1)k, �f (2)k, �f (-1)k,N �f ()k,N-

--

-

--

- - -

� k,(1) � (2)k, � ()k,N � (1)k,N+
- - -

-

-

�b (1)k,
-

-
�b (2)k,
-

-
�b (1)k,N-
-

-

-

-
�b ()k,N
-

z -1z -1z -1

Figure 7.3 Joint-process estimation normalized lattice realization.

The unique feature of the normalized lattice algorithm is the reduced number of equations and
variables at the expense of employing a number of square root operations. These operations can
be costly to implement in most types of hardware architectures. Another interesting feature of the

3177.7 Normalized Lattice RLS Algorithm

Algorithm 7.2

Normalized Lattice RLS Algorithm
Based on A Posteriori Error

Initialization

Do for i = 0, 1 . . . , N
δ(−1, i) = 0 (assuming x(k) = d(k) = 0 for k < 0)
δD(−1, i) = 0
εb(−1, i) = 0

End

σ2
x(−1) = σ2

d(−1) = ε (ε small positive constant)

Do for k ≥ 0
σ2
x(k) = λσ2

x(k − 1) + x2(k) (Input signal energy)
σ2
d(k) = λσ2

d(k − 1) + d2(k) (Reference signal energy)
εb(k, 0) = εf (k, 0) = x(k)/σx(k)
ε(k, 0) = d(k)/σd(k)

Do for i = 0, 1 . . . , N

δ(k, i) = δ(k − 1, i)
√

(1− ε2b(k − 1, i))(1− ε2f (k, i)) + εb(k − 1, i)εf (k, i) (7.81)

εb(k, i+ 1) = εb(k−1,i)−δ(k,i)εf (k,i)√
(1−δ2(k,i))(1−ε2f (k,i))

(7.84)

εf (k, i+ 1) = εf (k,i)−δ(k,i)εb(k−1,i)√
(1−δ2(k,i))(1−ε2b(k−1,i))

(7.83)

Feedforward Filter

δD(k, i) = δD(k − 1, i)
√

(1− ε2b(k, i))(1− ε2(k, i)) + ε(k, i)εb(k, i) (7.89)
ε(k, i+ 1) = 1√

(1−ε2b(k,i))(1−δ2D(k,i))

[
ε(k, i)− δD(k, i)εb(k, i)

]
(7.88)

End

End

318 Chapter 7 Adaptive Lattice-Based RLS Algorithms

normalized lattice algorithm is that the forgetting factor λ does not appear in the internal updating
equations; it appears only in the calculation of the energy of the input and reference signals. This
property may be advantageous from the computational point of view in situations where there is a
need to vary the value of λ. On the other hand, since all internal variables are normalized, the actual
amplitude of the error signals and other quantities do not match those in other lattice structures. In
fact, from the normalized lattice structure one can only effectively extract the shape of the frequency
model the structure identifies, since the mapping between the parameters of normalized and non
normalized structures is computationally intensive.

7.8 ERROR-FEEDBACK LATTICE RLS ALGORITHM

The reflection coefficients of the lattice algorithm have so far been updated in an indirect way,
without time recursions. This section describes an alternative method of updating the reflection
coefficients using time updating. These updating equations are recursive in nature and are often
called direct updating, since the updating equations used for κb(k, i) and κf (k, i) in Algorithm 7.1
are dependent exclusively on quantities other than past reflection coefficients. Algorithms employing
the recursive time updating are called error-feedback lattice RLS algorithms. These algorithms have
better numerical properties than their indirect updating counterparts [3].

7.8.1 Recursive Formulas for the Reflection Coefficients

The derivation of a direct updating equation forκf (k, i) starts by replacing δ(k, i) by its time-updating
equation (7.51)

κf (k, i) =
δ(k, i)

ξdbmin
(k − 1, i)

=
λδ(k − 1, i)
ξdbmin

(k − 1, i)
+

εb(k − 1, i)εf (k, i)
γ(k − 1, i)ξdbmin

(k − 1, i)

By multiplying and dividing the first term by ξdbmin
(k − 2, i) and next using equation (7.72) in the

first and second terms, we obtain

κf (k, i) =
δ(k − 1, i)

ξdbmin
(k − 2, i)

λξdbmin
(k − 2, i)

ξdbmin
(k − 1, i)

+
εb(k − 1, i)εf (k, i)

γ(k − 1, i)ξdbmin
(k − 1, i)

= κf (k − 1, i)
γ(k − 1, i+ 1)
γ(k − 1, i)

+
εb(k − 1, i)εf (k, i)γ(k − 1, i+ 1)

γ2(k − 1, i)λξdbmin
(k − 2, i)

=
γ(k − 1, i+ 1)
γ(k − 1, i)

[
κf (k − 1, i) +

εb(k − 1, i)εf (k, i)
γ(k − 1, i)λξdbmin

(k − 2, i)

]
(7.94)

3197.9 Lattice RLS Algorithm Based on A Priori Errors

Similarly, using equations (7.51) and (7.73), it is straightforward to show that

κb(k, i) =
γ(k, i+ 1)
γ(k − 1, i)

[
κb(k − 1, i) +

εb(k − 1, i)εf (k, i)
γ(k − 1, i)λξdfmin

(k − 1, i)

]
(7.95)

The feedforward coefficients can also be time updated in a recursive form, by appropriately combining
equations (7.64), (7.67), and (7.72). The time-recursive updating equation for vi(k) is

vi(k) =
γ(k, i+ 1)
γ(k, i)

[
vi(k − 1) +

ε(k, i)εb(k, i)
γ(k, i)λξdbmin

(k − 1, i)

]
(7.96)

The error-feedback LRLS algorithm described in Algorithm 7.3 employs the equations (7.94), (7.95),
and (7.96). This algorithm is directly derived from Algorithm 7.1.

Alternative a posteriori LRLS algorithms can be obtained if we replace equations (7.27) and (7.31)
by (7.70) and (7.72) in Algorithms 7.1 and 7.3, respectively. These modifications as well as possible
others do not change the behavior of the LRLS algorithm when implemented with infinite precision
(long wordlength). However, differences exist in computational complexity and in the effects of
quantization error propagation.

7.9 LATTICE RLS ALGORITHM BASED ON A PRIORI ERRORS

The lattice algorithms presented so far are based on a posteriori errors; however alternative algorithms
based on a priori errors exist and one of them is derived in this section.

The time updating of the quantity δ(k, i) as a function of the a priori errors was previously derived
(see equation (7.47)) and is repeated here for convenience.

δ(k, i) = λδ(k − 1, i) + γ(k − 1, i)eb(k − 1, i)ef (k, i) (7.97)

The time updating of the forward prediction a priori error can be obtained by using equation (7.32)
as

ef (k, i+ 1) = xT (k, i+ 2)
[

1
−wf (k − 1, i+ 1)

]

= xT (k, i+ 2)

⎡
⎣ 1
−wf (k − 1, i)

0

⎤
⎦+

δ(k − 1, i)
ξdbmin

(k − 2, i)
xT (k, i+ 2)

⎡
⎣ 0

wb(k − 2, i)
−1

⎤
⎦

= ef (k, i)− δ(k − 1, i)
ξdbmin

(k − 2, i)
eb(k − 1, i)

= ef (k, i)− κf (k − 1, i)eb(k − 1, i) (7.98)

320 Chapter 7 Adaptive Lattice-Based RLS Algorithms

Algorithm 7.3

Error-Feedback LRLS Algorithm
Based on A Posteriori Errors

Initialization

Do for i = 0, 1 . . . , N
κb(−1, i) = κf (−1, i) = vi(−1) = δ(−1, i) = 0, γ(−1, i) = 1
ξdbmin

(−2, i) = ξdbmin
(−1, i) = ξdfmin

(−1, i) = ε (a small positive constant)
εb(−1, i) = 0

End

Do for k ≥ 0
γ(k, 0) = 1
εb(k, 0) = εf (k, 0) = x(k) (7.35)
ξdfmin

(k, 0) = ξdbmin
(k, 0) = x2(k) + λξdfmin

(k − 1, 0) (7.36)
ε(k, 0) = d(k)

Do for i = 0, 1 . . . , N

δ(k, i) = λδ(k − 1, i)+ εb(k−1,i)εf (k,i)
γ(k−1,i) (7.51)

γ(k, i+ 1) = γ(k, i)− ε2b(k,i)
ξd

bmin
(k,i) (7.60)

κf (k, i) = γ(k−1,i+1)
γ(k−1,i)

[
κf (k − 1, i) + εb(k−1,i)εf (k,i)

γ(k−1,i)
1

λξd
bmin

(k−2,i)

]
(7.94)

κb(k, i) = γ(k,i+1)
γ(k−1,i)

[
κb(k − 1, i) + εb(k−1,i)εf (k,i)

γ(k−1,i)
1

λξd
fmin

(k−1,i)

]
(7.95)

εb(k, i+ 1) = εb(k − 1, i)− κb(k, i)εf (k, i) (7.34)
εf (k, i+ 1) = εf (k, i)− κf (k, i)εb(k − 1, i) (7.33)

ξdfmin
(k, i+ 1) = ξdfmin

(k, i)− δ2(k,i)
ξd

bmin
(k−1,i) (7.31)

ξdbmin
(k, i+ 1) = ξdbmin

(k − 1, i)− δ2(k,i)
ξd

fmin
(k,i) (7.27)

Feedforward Filtering

vi(k) = γ(k,i+1)
γ(k,i)

[
vi(k − 1) + ε(k,i)εb(k,i)

γ(k,i)λξd
bmin

(k−1,i)

]
(7.96)

ε(k, i+ 1) = ε(k, i)− vi(k)εb(k, i) (7.68)
End

End

3217.10 Quantization Effects

With equation (7.28), we can generate the time-updating equation of the backward prediction a priori
error as

eb(k, i+ 1) = xT (k, i+ 2)

⎡
⎣ 0
−wb(k − 2, i)

1

⎤
⎦− δ(k − 1, i)

ξdfmin
(k − 1, i)

xT (k, i+ 2)

⎡
⎣ −1

wf (k − 1, i)
0

⎤
⎦

= eb(k − 1, i)− δ(k − 1, i)
ξdfmin

(k − 1, i)
ef (k, i)

= eb(k − 1, i)− κb(k − 1, i)ef (k, i) (7.99)

The order updating of γ(k− 1, i) can be derived by employing the relations of equations (7.50) and
(7.60). The result is

γ(k − 1, i+ 1) = γ(k − 1, i)− γ2(k − 1, i)e2b(k − 1, i)
ξdbmin

(k − 1, i)
(7.100)

The updating of the feedforward coefficients of the lattice realization based on a priori errors is
performed by the following equations

δD(k, i) = λδD(k − 1, i) + γ(k, i)eb(k, i)e(k, i) (7.101)

e(k, i+ 1) = e(k, i)− vi(k − 1)eb(k, i) (7.102)

vi(k − 1) =
δD(k − 1, i)
ξdbmin

(k − 1, i)
(7.103)

The derivations are omitted since they follow the same steps of the predictor equations.

An LRLS algorithm based on a priori errors is described in Algorithm 7.4. The normalized and error-
feedback versions of the LRLS algorithm based on a priori errors also exist and their derivations are
left as problems.

7.10 QUANTIZATION EFFECTS

A major issue related to the implementation of adaptive filters is their behavior when implemented
with finite-precision arithmetic. In particular, the roundoff errors arising from the quantization of the
internal quantities of an algorithm propagate internally and can even cause instability. The numerical
stability and accuracy are algorithm dependent. In this section, we summarize some of the results
obtained in the literature related to the LRLS algorithms [3], [7]-[8].

One of the first attempts to study the numerical accuracy of the lattice algorithms was reported in [7].
Special attention was given to the normalized lattice RLS algorithm, since this algorithm is suitable
for fixed-point arithmetic implementation, due to its internal normalization. In this study, it was

322 Chapter 7 Adaptive Lattice-Based RLS Algorithms

Algorithm 7.4

LRLS Algorithm
Based on A Priori Errors

Initialization
Do for i = 0, 1 . . . , N
δ(−1, i) = δD(−1, i) = 0 (assuming x(k) = 0 for k < 0)
γ(−1, i) = 1
ξdbmin

(−1, i) = ξdfmin
(−1, i) = ε (a small positive constant)

eb(−1, i) = 0
κf (−1, i) = κb(−1, i) = 0

End

Do for k ≥ 0
γ(k, 0) = 1
eb(k, 0) = ef (k, 0) = x(k)
ξdfmin

(k, 0) = ξdbmin
(k, 0) = x2(k) + λξdfmin

(k − 1, 0)
e(k, 0) = d(k)
Do for i = 0, 1 . . . , N
δ(k, i) = λδ(k − 1, i) + γ(k − 1, i)eb(k − 1, i)ef (k, i) (7.47)

γ(k, i+ 1) = γ(k, i)−
γ2(k, i)e2b(k, i)

ξd
bmin

(k,i) (7.100)

eb(k, i+ 1) = eb(k − 1, i)− κb(k − 1, i)ef (k, i) (7.99)
ef (k, i+ 1) = ef (k, i)− κf (k − 1, i)eb(k − 1, i) (7.98)
κf (k, i) = δ(k,i)

ξd
bmin

(k−1,i)

κb(k, i) = δ(k,i)
ξd

fmin
(k,i)

ξdfmin
(k, i+ 1) = ξdfmin

(k, i)− δ(k, i)κf (k, i) (7.31)
ξdbmin

(k, i+ 1) = ξdbmin
(k − 1, i)− δ(k, i)κb(k, i) (7.27)

Feedforward Filtering

δD(k, i) = λδD(k − 1, i)+ γ(k, i)eb(k, i) e(k, i) (7.101)

e(k, i+ 1) = e(k, i)− vi(k − 1)eb(k, i) (7.102)
vi(k) = δD(k,i)

ξd
bmin

(k,i) (7.103)

End
End

3237.10 Quantization Effects

shown that the bias error in the reflection coefficients was more significant than the variance of the
estimate error. The bias in the estimated reflection coefficients is mainly caused by the quantization
error associated with the calculation of the square roots of [1 − ε2b(k − 1, i)] and [1 − ε2f (k, i)],
assuming they are calculated separately. An upper bound for this quantization error is given by

msq = 2−b (7.104)

assuming that b is the number of bits after the sign bit and that quantization is performed through
rounding. In the analysis, the basic assumption that 1− λ� 2−b+1 was used. The upper bound of
the bias error in the reflection coefficients is given by [7]

Δδ(k, i) =
2−b+1δ(k, i)

1− λ (7.105)

Obviously, the accuracy of this result depends on the validity of the assumptions used in the analysis
[7]. However it is a good indication of how the bias is generated in the reflection coefficients. It
should also be noted that the above result is valid as long as the updating of the related reflection
coefficient does not stop. An analysis for the case in which the updating stops is also included in [7].

The bias error of a given stage of the lattice realization propagates to the succeeding stages and its
accumulation in the prediction errors can be expressed as

Δε2b(k, i+ 1) = Δε2f (k, i+ 1) ≈ 2−b+2
i∑
l=0

δ
2
(k, l)

1− δ2(k, l)
(7.106)

for i = 0, 1, . . . , N . This equation indicates that whenever the value of the parameter δ
2
(k, l) is

small, the corresponding term in the summation is also small. On the other hand, if the value of
this parameter tends to one, the corresponding term of the summation is large. Also note that the
accumulated error tends to grow as the number of sections of the lattice is increased. In a finite-
precision implementation, it is possible to determine the maximum order that the lattice can have
such that the error signals at the end of the realization still represent actual signals and not only
accumulated quantization noise.

The lattice algorithms remain stable even when using quite short wordlength in fixed- and floating-
point implementations. In terms of accuracy the error-feedback algorithms are usually better than the
conventional LRLS algorithms [3]. The reduction in the quantization effects of the error-feedback
LRLS algorithms is verified in [3], where a number of examples show satisfactory performance for
implementation with less than 10 bits in fixed-point arithmetic.

Another investigation examines the finite-wordlength implementation employing floating-point arith-
metic of the unnormalized lattice with and without error feedback [8]. As expected, the variance of the
accumulated error in the reflection coefficients of the error-feedback algorithms are smaller than that
for the conventional LRLS algorithm. Another important issue relates to the so-called self-generated
noise that originates in the internal stages of the lattice realization when the order of adaptive filter is
greater than necessary. In the cases where the signal-to-noise ratio is high in the desired signal, the

324 Chapter 7 Adaptive Lattice-Based RLS Algorithms

internal signals of the last stages of the lattice realization can reach the quantization level and start
self-generated noise, leading to an excess mean-square error and possibly to instability. The stability
problem can be avoided by turning off the stages after the one in which the weighted forward and
backward squared errors are smaller than a given threshold.

Example 7.1

The system identification problem described in Chapter 3 (subsection 3.6.2) is solved using the
lattice algorithms presented in this chapter. The main objective is to compare the performance of the
algorithms when implemented in finite precision.

Solution:

We present here the results of using the unnormalized, the normalized and error-feedback a posteriori
lattice RLS algorithms in the system identification example. All results presented are obtained by
running 200 independent experiments and calculating the average of the quantities of interest. We
consider the case of eigenvalue spread 20, and λ = 0.99. Parameter ε is 0.1, 0.01, and 0.1 for
the unnormalized, the normalized, and the error-feedback lattice filters, respectively. The measured
misadjustments of the lattice algorithms are given in Table 7.1. As expected, the results are close to
those obtained by the conventional RLS algorithm, where in the latter the misadjustment is 0.0421.
Not included is the result for the normalized lattice because the a posteriori error is not available, in
this case the measured normalized MSE is 0.00974.

Table 7.2 summarizes the results obtained by the implementation of the lattice algorithms with
finite precision. Parameter ε in the finite-precision implementation is 0.1, 0.04 and 0.5 for the
unnormalized, normalized and error-feedback lattices, respectively. These values assure a good
convergence behavior of the algorithms in this experiment. In short-wordlength implementation of
the lattice algorithms, it is advisable to test if the denominator expressions of the algorithm steps
involving division are not rounded to zero. In the case of the detection of a zero denominator, replace
its value by the value of the least significant bit. Table 7.2 shows that for the unnormalized and
error-feedback lattices, the mean-squared errors are comparable to the case of the conventional RLS
previously shown in Table 5.2. The normalized lattice is more sensitive to quantization errors due to its
higher computational complexity. The errors introduced by the calculations to obtain w(k)Q, starting
with the lattice coefficients, is the main reason for the increased values of E[||Δw(k)Q||2] shown in
Table 7.2. Therefore, this result should not be considered as an indication of poor performance of
the normalized lattice implemented with finite precision.

�

3257.10 Quantization Effects

Table 7.1 Evaluation of the Lattice RLS Algorithms

Algorithm Misadjustment

Unnorm. 0.0416

Error Feed. 0.0407

Table 7.2 Results of the Finite-Precision Implementation of the Lattice RLS Algorithms

ξ(k)Q E[||Δw(k)Q||2]
No. of bits Unnorm. Norm. Error Feed. Unnorm. Norm. Error Feed.

16 1.563 10−3 8.081 10−3 1.555 10−3 9.236 10−4 2.043 10−3 9.539 10−4

12 1.545 10−3 8.096 10−3 1.567 10−3 9.317 10−4 2.201 10−3 9.271 10−4

10 1.587 10−3 10.095 10−3 1.603 10−3 9.347 10−4 4.550 10−3 9.872 10−4

Example 7.2

The channel equalization example first described in subsection 3.6.3 is used in simulations using the
lattice RLS algorithm with error feedback. The present example uses a 25th-order equalizer.

Solution:

Applying the error-feedback lattice RLS algorithm, using λ = 0.99 with a 25th-order equalizer, we
obtain after 100 iterations the equalizer whose impulse response is shown in Fig. 7.4. The appropriate
value of L for this case is 18. The algorithm is initialized with ε = 0.1.

The convolution of this response with the channel impulse response is depicted in Fig. 7.5, which
clearly approximates an impulse. In this case, the measured MSE was 0.3056, a value comparable
with that obtained with the LMS algorithm in the example of subsection 3.6.3. Note that in the LMS
case a 50th-order equalizer was used.

�

326 Chapter 7 Adaptive Lattice-Based RLS Algorithms

-4

-2

0

2

4

6

8

10

0 5 10 15 20 25 30

A
m

pl
itu

de

Sample

Figure 7.4 Equalizer impulse response, lattice RLS algorithm with error feedback.

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30 35

A
m

pl
itu

de

Sample

Figure 7.5 Convolution result, lattice RLS algorithm with error feedback.

3277.11 Concluding Remarks

7.11 CONCLUDING REMARKS

A number of alternative RLS algorithms based on the lattice realization were introduced. These
algorithms consist of stages where growing-order forward and backward predictors of the input
signal are built from stage to stage. This feature makes the lattice-based algorithms attractive in a
number of applications where information about the statistics of the input signal, such as the order
of the input signal model, is useful. Another important feature of the lattice-based algorithms is their
robust performance when implemented in finite-precision arithmetic.

Also, their computational complexity of at least 16N multiplications per output sample is acceptable
in a number of practical situations. However, by starting from the lattice formulation without making
extensive use of order updating, it is possible to derive the fast transversal RLS algorithms, which
can reduce the computational complexity to orders of 7N multiplications per output sample. The
derivation of these algorithms is the subject of the Chapter 8.

Several interesting topics related to the lattice formulation of adaptive filters have been addressed in
the open literature [9]-[13]. The geometric formulation of the least-squares estimation problem can be
used to derive the lattice-based algorithms [9] in an elegant manner. Also, an important situation that
we usually find in practice is the case where the input data cannot be considered zero before the first
iteration of the adaptive algorithm. The derivation of the lattice algorithms that account for nonzero
initial conditions for the input data is found in [10]. Another important problem is the characterization
of the conditions under which the stability of the lattice algorithm is maintained when perturbations
to the normal operation occur [11]. There is also a family of lattice-based algorithms employing
gradient-type updating equations. These algorithms present reduced computational complexity and
good behavior when implemented with finite-precision arithmetic [12]-[13].

A number of simulation examples involving the lattice algorithms were presented. In these examples
the performance of the lattice algorithm was evaluated in different applications as well as in finite-
precision implementations.

328 Chapter 7 Adaptive Lattice-Based RLS Algorithms

7.12 REFERENCES

1. D. L. Lee, M. Morf, and B. Friedlander, “Recursive least squares ladder estimation algorithms,”
IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-29, pp. 627-641, June
1981.

2. B. Friedlander, “Lattice filters for adaptive processing,” Proceedings of the IEEE, vol. 70, pp.
829-867, Aug. 1982.

3. F. Ling, D. Manolakis, and J. G. Proakis, “Numerically robust least-squares lattice-ladder algo-
rithms with direct updating of the reflection coefficients,” IEEE Trans. on Acoust., Speech, and
Signal Processing, vol. ASSP-34, pp. 837-845, Aug. 1986.

4. M. Bellanger, Adaptive Digital Filters and Signal Processing, Marcel Dekker, Inc., New York,
NY, 2nd edition, 2001.

5. S. Haykin, Adaptive Filter Theory, Prentice Hall, Englewood Cliffs, NJ, 4th edition, 2002.

6. J. G. Proakis, C. M. Rader, F. Ling, and C. L. Nikias, Advanced Digital Signal Processing,
MacMillan, New York, NY, 1992.

7. C. G. Samson and V. U. Reddy, “Fixed point error analysis of the normalized ladder algorithm,”
IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-31, pp. 1177-1191, Oct.
1983.

8. R. C. North, J. R. Zeidler, W. H. Ku, and T. R. Albert, “A floating-point arithmetic error analysis
of direct and indirect coefficient updating techniques for adaptive lattice filters,” IEEE Trans.
on Signal Processing, vol. 41, pp. 1809-1823, May 1993.

9. H. Lev-Ari, T. Kailath, and J. M. Cioffi, “Least-squares adaptive lattice and transversal filters:
A unified geometric theory,” IEEE Trans. on Information Theory, vol. IT-30, pp. 222-236,
March 1984.

10. J. M. Cioffi, “An unwindowed RLS adaptive lattice algorithm,” IEEE Trans. on Acoust., Speech,
and Signal Processing, vol. 36, pp. 365-371, March 1988.

11. H. Lev-Ari, K.-F. Chiang, and T. Kailath, “Constrained-input/constrained-output stability for
adaptive RLS lattice filters,” IEEE Trans. on Circuits and Systems, vol. 38, pp. 1478-1483,
Dec. 1991.

12. V. J. Mathews and Z. Xie, “Fixed-point error analysis of stochastic gradient adaptive lattice
filters,” IEEE Trans. on Signal Processing, vol. 31, pp. 70-80, Jan. 1990.

13. M. Reed and B. Liu, “Analysis of simplified gradient adaptive lattice algorithms using power-
of-two quantization,” Proc. IEEE Intern. Symp. on Circuits and Systems, New Orleans, LA,
pp. 792-795, May 1990.

3297.13 Problems

7.13 PROBLEMS

1. Deduce the time-updating formula for the backward predictor coefficients.

2. Given a square matrix

P =
[

A B
C D

]

where A and D are also square matrices, the inverse of P can be expressed as

P−1 =
[

A−1[I + B(D− CA−1B)−1CA−1] −A−1B(D− CA−1B)−1

−(D− CA−1B)−1CA−1 (D− CA−1B)−1

]

=
[

(A− BD−1C)−1 −(A− BD−1C)−1BD−1

−D−1C(A− BD−1C)−1 D−1[I + C(A− BD−1C)−1BD−1]

]

(a) Show the validity of this result.

(b) Use the appropriate partitioned forms of RD(k − 1, i) to derive the partitioned forms of
SD(k − 1, i) of equations (7.56) and (7.59).

3. Derive the time-updating formula of δD(k, i).

4. Demonstrate that the backward a posteriori prediction errors εb(k, i) and εb(k, j) for i �= j are
uncorrelated when the average is calculated over time.

5. Justify the initialization of ξdbmin
(0) and ξdfmin

(0) in the lattice RLS algorithm.

6. Derive the a posteriori lattice RLS algorithm for complex input signals.

7. Derive equation (7.71).

8. Derive the order-updating equation of the normalized forward and backward errors.

9. Demonstrate the validity of the order-updating formula of the weighted least-squares error of
the joint-process estimation described in equation (7.88).

10. Derive equation (7.89).

11. Derive the error-feedback LRLS algorithm based on a priori errors.

12. Derive the normalized LRLS algorithm based on a priori errors.

13. The lattice RLS algorithm based on a posteriori errors is used to predict the signalx(k) = sin πk
4 .

Given λ = 0.99, calculate the error and the tap coefficients for the first 10 iterations.

14. The normalized lattice RLS algorithm based on a posteriori errors is used to predict the signal
x(k) = sin πk

4 . Given λ = 0.99, calculate the error and the multiplier coefficients for the first
10 iterations.

330 Chapter 7 Adaptive Lattice-Based RLS Algorithms

15. The error-feedback LRLS algorithm is applied to identify a 7th-order time-varying unknown
system whose coefficients are first-order Markov processes with λw = 0.999 and σ2

w = 0.033.
The initial time-varying system multiplier coefficients are

wTo = [0.03490 − 0.01100 − 0.06864 0.22391 0.55686 0.35798 − 0.02390 − 0.07594]

The input signal is Gaussian white noise with variance σ2
x = 1 and the measurement noise is

also Gaussian white noise independent of the input signal and of the elements of nw(k) with
variance σ2

n = 0.01.

Simulate the experiment above described and measure the excess MSE for λ = 0.97 and
λ = 0.99.

16. Repeat the experiment described in problem 15 using the normalized lattice algorithm.

17. Suppose that a 15th-order FIR digital filter with the multiplier coefficients given below is iden-
tified through an adaptive FIR filter of the same order using the unnormalized LRLS algorithm.
Considering that fixed-point arithmetic is used, simulate the identification problem described
using the following specifications:

Additional noise : white noise with variance σ2
n = 0.0015

Coefficients wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7
λ = 0.98

wTo = [0.0219360 0.0015786 − 0.0602449 − 0.0118907 0.1375379
0.0574545 − 0.3216703 − 0.5287203 − 0.2957797 0.0002043 0.290670
− 0.0353349 − 0.0068210 0.0026067 0.0010333 − 0.0143593]

Plot the learning curves for the finite- and infinite-precision implementations. Also plot
E[||Δκf (k, 0)||2] and E[||Δκb(k, 0)||2] versus k in both cases.

18. Repeat the above problem for the following cases:

(a) σ2
n = 0.01, bc = 9 bits, bd = 9 bits, σ2

x = 0.7, λ = 0.98.

(b) σ2
n = 0.1, bc = 10 bits, bd = 10 bits, σ2

x = 0.8, λ = 0.98.

(c) σ2
n = 0.05, bc = 8 bits, bd = 16 bits, σ2

x = 0.8, λ = 0.98.

19. In problem 17, rerun the simulations for λ = 1, λ = 0.940. Comment on the results.

20. Repeat problem 18, using the normalized and error-feedback LRLS algorithms. Compare the
results for the different algorithms.

21. Repeat problem 17 for the case where the input signal is a first-order Markov process with
λx = 0.98.

22. Given a channel with impulse response

h(k) = 0.9k + 0.4k

for k = 0, 1, 2, . . . , 25, design an adaptive equalizer. The input signal is white noise with unit
variance and the adaptive-filter input signal-to-noise ratio is 30 dB. Use the unnormalized lattice
algorithm of order 35.

3317.13 Problems

23. The unnormalized lattice algorithm is used to perform the forward prediction of a signal x(k)
generated by applying zero-mean Gaussian white noise signal with unit variance to the input of
a linear filter with transfer function given by

H(z) =
0.5

(1− 1.512z−1 + 0.827z−2)(1− 1.8z−1 + 0.87z−2)

Calculate the zeros of the resulting predictor error transfer function and compare with the poles
of the linear filter.

24. Determine the computational complexity of the Algorithms 7.1, 7.2, 7.3, and 7.4.

