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DATA-SELECTIVE ADAPTIVE FILTERING

6.1 INTRODUCTION

The families of adaptive-filtering algorithms introduced so far present a tradeoff between speed of
convergence and the misadjustment after the transient. These characteristics are easily observable
in stationary environments. In general fast converging algorithms tend to be very dynamic, a feature
not necessarily advantageous after convergence in a stationary environment. In this chapter, an
alternative formulation to govern the updating of the adaptive-filter coefficients is introduced. The
basic assumption is that the additional noise is considered bounded, and the bound is either known
or can be estimated [1]. The key strategy of the formulation is to find a feasibility set1 such that
the bounded error specification is met for any member of this set. As a result, the set-membership
filtering (SMF) is aimed at estimating the feasibility set itself or a member of this set [2].

As a byproduct, the SMF allows the reduction of computational complexity in adaptive filtering,
since the filter coefficients are updated only when the output estimation error is higher than the
pre-determined upper bound [2]-[3].

Set-membership adaptive filters employ a deterministic objective function related to a bounded error
constraint on the filter output, such that the updates belong to a set of feasible solutions. The objective
function resembles the prescribed specifications of non-adaptive digital filter design. In the latter,
any filter whose amplitude ripples in some frequency bands are smaller than given bounds is an
acceptable solution. The main difference is that in the SMF the considered bound applies to the time-
domain output error. As compared with their competing algorithms such as the normalized LMS,
affine projection, and RLS algorithms [4]-[11], the SMF algorithms lead to reduced computational
complexity primarily due to data-selective updates.

Usually the set-membership algorithms perform updates more frequently during the early iterations
in stationary environments. As such, if these updates entail more computational complexity than
available, some alternative solution is required. A possible strategy to maintain some control on the

1This set is defined as the set of filter coefficients leading to output errors whose moduli fall below a prescribed upper
bound.
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amount of computational resources is to adopt partial update, where only a subset of the adaptive-
filter coefficients are updated at each iteration. The resulting algorithms are collectively called
partial-update (PU) algorithms [14]-[19].

This chapter presents several alternative set-membership algorithms which are closely related to
the normalized LMS algorithm [7], the binormalized data-reusing LMS algorithm (here denoted
as SM-BNLMS) [10], and the affine projection (SM-AP) [11] algorithm. In addition, this chapter
describes the set-membership affine projection algorithm with partial update in some detail. The
family of algorithms described in this chapter leads to more flexible management of the computational
resources, in comparison with the algorithms presented in the previous chapters.

6.2 SET-MEMBERSHIP FILTERING

The SMF concept is a framework applicable to adaptive-filtering problems that are linear in param-
eters. The adaptive-filter output is given by

y(k) = wT x(k) (6.1)

where x(k) = [x0(k) x1(k) . . . xN (k)]T is the input signal vector, and w = [w0 w1 . . . wN ]T is
the parameter vector.

Considering a desired signal sequence d(k) and a sequence of input vectors x(k), both for for
k = 0, 1, 2, . . . ,∞, the estimation error sequence e(k) is calculated as

e(k) = d(k)− wT x(k) (6.2)

also for k = 0, 1, 2, . . . ,∞. The vectors x(k) and w ∈ RN+1, where R represents the set of
real numbers, whereas y(k) and e(k) represent the adaptive-filter output signal and output error,
respectively. The objective of the SMF is to design w such that the magnitude of estimation output
error is upper bounded by a prescribed quantity γ̄. If the value of γ̄ is properly chosen there are
several valid estimates for w. In summary, any filter parameter leading to a magnitude of the output
estimation error smaller than a deterministic threshold is an acceptable solution. From the bounded
error constraint results a set of filters rather than a single estimate. If γ̄ is chosen too small there
might be no solution.

Assuming that S̄ denotes the set of all possible input-desired data pairs (x, d) of interest, it is possible
to define Θ as the set of all possible vectors w leading to output errors whose magnitudes are bounded
by γ̄ whenever (x, d) ∈ S̄. The set Θ, called feasibility set, is given by

Θ =
⋂

(x,d)∈S̄
{w ∈ RN+1 : |d− wT x| ≤ γ̄} (6.3)

Now let’s consider the practical case where only measured data are available. Given a set of data
pairs {x(i), d(i)}, for i = 0, 1, . . . , k, let’s define H(k) as the set containing all vectors w such that



2336.2 Set-Membership Filtering

the associated output error at time instant k is upper bounded in magnitude by γ̄. That is,

H(k) = {w ∈ RN+1 : |d(k)− wT x(k)| ≤ γ̄} (6.4)

The set H(k) is usually referred to as the constraint set. The boundaries of H(k) are hyperplanes.
For the two-dimensional case, where the coefficient vector has two elements, H(k) comprises the
region between the lines where d(k)−wT x(k) = ±γ̄ as depicted in Fig. 6.1. For more dimensions,
H(k) represents the region between two parallel hyperplanes in the parameter space w.

d(k) − wTx(k) = γ

H(k)

d(k) − wTx(k) = −γ

Figure 6.1 Constraint set in w plane for a two-dimension example.

Since for each data pair there is an associated constraint set, the intersection of the constraint sets
over all the available time instants i = 0, 1, . . . , k, is called the exact membership set ψ(k), formally
defined as

ψ(k) =
k⋂
i=0

H(i) (6.5)

The setψ(k) represents a polygon in the parameter space whose location is one of the main objectives
of the set-membership filtering.



234 Chapter 6 Data-Selective Adaptive Filtering

For a set of data pairs including substantial innovation, the polygon in w, ψ(k), should become small.
This property usually occurs after a large number of iterations k, when most likely ψ(k) = ψ(k− 1)
since ψ(k− 1) is entirely contained in the constraint setH(k) as depicted in Fig. 6.2.a. In this case,
the adaptive-filter coefficients do not need updating because the current membership set is totally
inside the constraint set, resulting in a selection of update which is data dependent. The selective
updating of the set-membership filtering brings about opportunities for power and computational
savings, so crucial in devices such as mobile terminals. On the other hand, in the early iterations it is
highly possible that the constraint set reduces the size of the membership-set polygon as illustrates
Fig. 6.2.b.

At any given time instant, it can be observed that the feasibility set Θ is a subset of the exact
membership set ψ(k). The feasibility set is the limiting set of the exact membership set because the
two sets are equal if the available input-desired data pairs traverses all signal pairs belonging to S̄.

The goal of set-membership adaptive filtering is to adaptively find an estimate that belongs to the
feasibility set. The easiest approach is to compute a point estimate using, for example, the information
provided by the constraint set H(k) like in the set-membership NLMS algorithm considered in the
following section, or several previous constraint sets like the set-membership affine projection (SM-
AP) algorithm discussed in section 6.4, [10], [11].

For historical reasons, it is worth mentioning that the first SMF approach proposed in the literature tries
to outer boundψ(k) with ellipsoids and the resulting algorithms are called optimal bounding ellipsoid
(OBE) algorithms [4]-[6]. These algorithms bear a close resemblance with the RLS algorithm [2] and
have inherent data selectivity. In the OBE algorithms the membership set are bounded by ellipsoids
comprising the smallest closed set [4]-[6]. These algorithms are also important but they are not
included as they present higher computational complexity than those discussed here.

6.3 SET-MEMBERSHIP NORMALIZED LMS ALGORITHM

The set-membership NLMS (SM-NLMS) algorithm first proposed in [7] has a form similar to the
conventional NLMS algorithm presented in section 4.4. The key idea of the SM-NLMS algorithm
is to perform a test to verify if the previous estimate w(k) lies outside the constraint set H(k), i.e.,
|d(k)− wT (k)x(k)| > γ̄. If the modulus of the error signal is greater than the specified bound, the
new estimate w(k+ 1) will be updated to the closest boundary ofH(k) at a minimum distance, i.e.,
the SM-NLMS minimizes ‖w(k+1)−w(k)‖2 subjected to w(k+1) ∈ H(k) [12]. The updating is
performed by an orthogonal projection of the previous estimate onto the closest boundary of H(k).
Fig. 6.3 illustrates the updating procedure of the SM-NLMS algorithm.

In order to derive the update equations, first consider the a priori error e(k) given by

e(k) = d(k)− wT (k)x(k) (6.6)
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Figure 6.2 Exact membership set ψ(k) and its possible intersection with the constraint set H(k).

d(k) – wTx(k) = γ

d(k) – wTx(k) = – γ

ψ (k – 1)

(a) Exact membership set, ψ (k – 1), contained in the constraint set, ψ (k – 1) ⊂ H(k).

H(k)

H(k)

d(k) – wTx(k) = –γ

d(k) – wTx(k) = γ

ψ (k – 1)

(b) Exact membership set, ψ (k – 1), not contained in the constraint set, ψ (k – 1) ⊆ H(k).
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.

H(k)
d(k) − wTx(k) = γ

d(k) − wTx(k) = −γ

w(k + 1)

w(k)

Figure 6.3 Coefficient vector updating for the set-membership normalized LMS algorithm.

then, let’s start with the normalized LMS algorithm which utilizes the following recursion for updating
w(k)

w(k + 1) = w(k) +
μ(k)

γ + xT (k)x(k)
e(k) x(k) (6.7)

where in the present discussion μ(k) is the variable step size that should be appropriately chosen in
order to satisfy the desired set-membership updating.

The update should occur either if

e(k) = d(k)− wT (k)x(k) > γ̄

or

e(k) = d(k)− wT (k)x(k) < −γ̄
and the a posteriori error should be given by

ε(k) = d(k)− wT (k + 1)x(k) = ±γ̄
= d(k)− wT (k)x(k)− μ(k)

γ + xT (k)x(k)
e(k) xT (k)x(k)

= e(k)− μ(k)
γ + xT (k)x(k)

e(k) xT (k)x(k) (6.8)
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where ε(k) becomes equal to ±γ̄ because the coefficients are updated to the closest boundary of
H(k). Since γ, whose only task is regularization, is a small constant it can be disregarded leading to
the following equality

ε(k) = e(k)[1− μ(k)] = ±γ̄ (6.9)

The above equation leads to

1− μ(k) = ± γ̄

e(k)
(6.10)

where the plus (+) sign applies for the case when e(k) > 0 and the minus (−) sign applies for the
case where e(k) < 0. Therefore, by inspection we conclude that the variable step size, μ(k), is given
by

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
(6.11)

The updating equations (6.6), (6.11), and (6.7) are quite similar to those of the NLMS algorithm
except for the variable step size μ(k). The SM-NLMS algorithm is outlined in Algorithm 6.1. As
a rule of thumb, the value of γ̄ is chosen around

√
5σn, where σ2

n is the variance of the additional
noise, some further discussion in this matter is found in section 6.7 [7], [25].

The reader should recall that the NLMS algorithm minimizes ‖w(k + 1)−w(k)‖2 subjected to the
constraint that wT (k+ 1)x(k) = d(k), as such it is a particular case of the SM-NLMS algorithm by
choosing the bound γ̄ = 0. It should be noticed that by using a step size μ(k) = 1 in the SM-NLMS
whenever w(k) �∈ H(k), one performs a valid update since the hyperplane with zero a posteriori
error lies in H(k). In this case, the resulting algorithm does not minimize the Euclidean distance
‖w(k + 1)− w(k)‖2 since the a posteriori error is zero and less than γ̄.

6.4 SET-MEMBERSHIP AFFINE PROJECTION ALGORITHM

The exact membership set ψ(k) previously defined in equation (6.5) suggests the use of more
constraint-sets in the update [11]. This section generalizes the concept of set-membership in or-
der to conceive algorithms whose updates belong to the pastL+1 constraint sets. In order to achieve
our goal, it is convenient to express ψ(k) as

ψ(k) =

(
k−L−1⋂
i=0

H(i)

)⎛⎝ k⋂
j=k−L

H(j)

⎞
⎠ = ψk−L−1(k)

⋂
ψL+1(k) (6.12)

where ψL+1(k) represents the intersection of the L+ 1 last constraint sets, whereas ψk−L−1(k) is
the intersection of the first k−L constraint sets. The aim of this derivation is to conceive an algorithm
whose coefficient update belongs to the last L+ 1 constraint-sets, i.e., w(k + 1) ∈ ψL+1(k).

Just like in the original affine projection algorithm of section 4.6, we can retain the last L+ 1 input
signal vectors in a matrix as follows:

Xap(k) = [x(k) x(k − 1) . . . x(k − L)] (6.13)
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Algorithm 6.1

The Set-Membership Normalized LMS Algorithm

Initialization
x(0) = w(0) = [0...0]T

choose γ̄ around
√

5σn
γ = small constant

Do for k ≥ 0
e(k) = d(k)− xT (k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
w(k + 1) = w(k) + μ(k)

γ+xT (k)x(k) e(k) x(k)

where Xap(k) ∈ R(N+1)×(L+1) contains the corresponding retained inputs, with x(k) being the
input-signal vector

x(k) = [x(k) x(k − 1) . . . x(k −N)]T (6.14)

The vectors representing the data considered at a given iteration k, such as the desired signal and
error vectors are given by

dap(k) =

⎡
⎢⎢⎢⎣

d(k)
d(k − 1)

...
d(k − L)

⎤
⎥⎥⎥⎦ (6.15)

eap(k) =

⎡
⎢⎢⎢⎣
eap,0(k)
eap,1(k)

...
eap,L(k)

⎤
⎥⎥⎥⎦ (6.16)

where dap(k) ∈ R(L+1)×1 contains the desired outputs from the L+ 1 last time instants.

Consider thatS(k − i+ 1)denotes the hyperplane which contains all vectors w such thatd(k − i+ 1)−
wT x(k − i+ 1) = γ̄i(k), for i = 1, . . . , L + 1, where the parameters γ̄i(k) represent the bound
constraint to be satisfied by the error magnitudes after coefficient updating. Some particular choices
for the parameters γ̄i(k) are discussed later on, for now any choice satisfying the bound constraint is
valid. That is, if all γ̄i(k) are chosen such that |γ̄i(k)| ≤ γ̄ then S(k − i+ 1) ∈ H(k − i+ 1), for
i = 1, . . . , L+ 1. Vector γ̄(k) ∈ R(L+1)×1 specifies the point in ψL+1(k), where

γ̄(k) = [γ̄1(k) γ̄2(k) . . . γ̄L+1(k)]
T (6.17)
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The objective function to be minimized in the set-membership affine projection (SM-AP) algorithm
can now be stated. Perform a coefficient update whenever w(k) �∈ ψL+1(k) in such a way that2

min ‖w(k + 1)− w(k)‖2 (6.18)

subject to:

dap(k)− XTap(k)w(k + 1) = γ̄(k) (6.19)

where the constraint can be rewritten as d(k − i + 1) − xT (k − i + 1)w(k + 1) = γ̄i(k), for
i = 1, . . . , L+ 1. Fig. 6.4 illustrates a typical coefficient update related to the SM-AP algorithm
for the case with two coefficients, L = 1 and |γ̄i(k)| < |γ̄|, such that w(k + 1) is not placed at the
border ofH(k).

w(k)

H(k − 1)

d(k − 1) − wTx(k − 1) = γ

d(k − 1) − wTx(k − 1) = −γ

H(k)

d(k) − wTx(k) = γ

d(k) − wTx(k) = −γ

d(k − 1) − wTx(k − 1) = γ2(k)

d(k) − wTx(k) = γ1(k)

w(k + 1)

Figure 6.4 SM-AP algorithm coefficient update.

Using the method of Lagrange multipliers [12], the unconstrained function to be minimized is

F [w(k + 1)] = ‖w(k + 1)− w(k)‖2 + λTap(k)[dap(k)− XTap(k)w(k + 1)− γ̄(k)] (6.20)

where the vector of Lagrange multipliers, λap(k) ∈ R(L+1)×1, is given by

λap(k) = [λap,1(k) λap,2(k) . . . λap,L+1(k)]
T (6.21)

2The reader should note that in earlier definition of the objective function related to the affine projection algorithm a
constant 1

2 was multiplied to the norm to be minimized. This constant is not relevant and is only used when it simplifies the
algorithm derivation.
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such that the constraints can be rewritten in the above equation as follows

F [w(k + 1)] = ‖w(k + 1)− w(k)‖2

+
L+1∑
i=1

λap,i(k)[d(k − i+ 1)− xT (k − i+ 1)w(k + 1)− γ̄i(k)] (6.22)

We solve the minimization problem of equation (6.18) by first setting the gradient of the function
F [w(k + 1)] with respect to w(k + 1) equal to zero, in order to derive the following equation

w(k + 1) = w(k) +
L+1∑
i=1

λi(k)
2

x(k − i+ 1)

= w(k) + Xap(k)
λap(k)

2
(6.23)

By premultiplying the above equation by XTap(k) and utilizing the constraints

XTap(k)w(k + 1) = dap(k)− γ̄(k)

given in equation (6.19), we obtain

dap(k)− γ̄(k) = XTap(k)w(k) + XTap(k)Xap(k)
λap(k)

2
(6.24)

or alternatively

d(k − i+ 1)− γ̄i(k) = xT (k − i+ 1)w(k) +
L+1∑
j=1

λj(k)
2

xT (k − i+ 1)x(k − j + 1)

for i = 1, . . . , L+ 1.

Equation (6.24) can be rewritten in a more interesting format as

XTap(k)Xap(k)
λap(k)

2
= dap(k)− XTap(k)w(k)− γ̄(k)

= eap(k)− γ̄(k) (6.25)

leading to

λap(k)
2

=
[
XTap(k)Xap(k)

]−1
[eap(k)− γ̄(k)] (6.26)

It is now possible to derive the updating equation by starting from equation (6.23) with λap(k) being
given by equation (6.26), i.e.,

w(k + 1) =

{
w(k) + Xap(k)

[
XTap(k)Xap(k)

]−1
[eap(k)− γ̄(k)] if |e(k)| > γ̄

w(k) otherwise

(6.27)
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Algorithm 6.2

The Set-Membership Affine Projection Algorithm

Initialization
x(0) = w(0) = [0 . . . 0]T

choose γ̄ around
√

5σn
γ = small constant

Do for k ≥ 0
eap(k) = dap(k)− XTap(k)w(k)

w(k + 1) =

{
w(k) + Xap(k)

[
XTap(k)Xap(k) + γI

]−1
[eap(k)− γ̄(k)] if |e(k)| > γ̄

w(k) otherwise

where

eap(k) = [e(k) ε(k − 1) . . . ε(k − L)]T (6.28)

with ε(k − i) = d(k − i)− xT (k − i)w(k) denoting the a posteriori error calculated with the data
pair of iteration k − i using the coefficients of iteration k. Algorithm 6.2 describes in detail the
general form of the SM-AP algorithm.

Several properties related to the SM-AP algorithm are straightforward to infer.

For time instants k < L+ 1, i.e., during initialization, we can only assume knowledge ofH(i)
for i = 0, 1, . . . , k. As a result, if an update is needed when k < L + 1, the algorithm is used
with the only k + 1 constraint sets available.

In order to verify if an update w(k + 1) is required, we only have to check if w(k) �∈ H(k)
since due to previous updates w(k) ∈ H(k − i+ 1) holds for i = 2, . . . , L+ 1.

By choosing the bound γ̄ = 0, it is possible to verify that the algorithm becomes the conventional
AP algorithm with unity step-size.

6.4.1 A Trivial Choice for Vector γ̄(k)

In the above discussions no specific choice for the parameters γ̄i(k) has been discussed except for the
requirement that the adaptive-filter coefficients should be inH(k − i+ 1), meaning that |γ̄i(k)| ≤ γ̄.
There is infinite number of possible choices for γ̄i(k), each leading to a different update.
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The most trivial choice would be γ̄(k) = 0, i.e., to force the a posteriori errors to be zero at the last
L+ 1 time instants. If we replace γ̄(k) = 0 in equation (6.24) and solving for λap(k) the following
recursions result

λap(k)
2

=
(
XTap(k)Xap(k)

)−1
eap(k) (6.29)

The update recursion is given by

w(k + 1) =

{
w(k) + Xap(k)

(
XTap(k)Xap(k)

)−1
eap(k) if |e(k)| > γ̄

w(k) otherwise
(6.30)

The above updating equation is identical to the conventional affine-projection (AP) algorithm with
unity step size whenever an update takes place, that is, w(k) �∈ H(k). However, owing to the data
selectivity, the SM-AP algorithm leads to considerable reduction in complexity as compared with
the conventional AP algorithm. Fig. 6.5 depicts a typical coefficient update, where for illustration
purposes w(k) does not lie in the zero a posteriori hyperplane belonging toH(k − 1).

H(k)

d(k) − wTx(k) = 0

w(k)

d(k − 1) − wTx(k − 1) = 0
H(k − 1) w(k + 1)

d(k − 1) − wTx(k − 1) = γ

d(k − 1) − wTx(k − 1) = −γ

d(k) − wTx(k) = γ

d(k) − wTx(k) = −γ

Figure 6.5 SM-AP algorithm coefficient updated with zero a posteriori error.

6.4.2 A Simple Vector γ̄(k)

Any choice for γ̄i(k) is valid as long as they correspond to points represented by the adaptive-filter
coefficients in H(k − i+ 1), i.e., |γ̄i(k)| ≤ γ̄. One can exploit this freedom in order to make the
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resulting algorithm more suitable for a target application. A particularly simple SM-AP version is
obtained if γ̄i(k) for i �= 1 corresponds to the a posteriori error ε(k − i+ 1) = d(k − i + 1) −
wT (k)x(k−i+1) and γ̄1(k) = e(k)/|e(k)|. Since the coefficients were updated considering previous
data pairs then at this point it is true that w(k) ∈ H(k − i+ 1), i.e., |ε(k − i+ 1)| = |d(k − i+ 1)−
xT (k − i+ 1)w(k)| ≤ γ̄, for i = 2, . . . , L + 1. Therefore, by choosing γ̄i(k) = ε(k − i+ 1), for
i �= 1, all the elements on the right-hand side of equation (6.24) become zero, except for first element.

It is only left now the choice of the constraint value γ̄1(k), that can be selected as in the SM-NLMS
algorithm where γ̄1(k) is such that the solution lies at the nearest boundary ofH(k), i.e.,

γ̄1(k) = γ̄
e(k)
|e(k)| (6.31)

Such choices utilized in equation (6.25) leads to

XTap(k)Xap(k)
λap(k)

2
= μ(k)e(k)u1 (6.32)

where μ(k) = 1− γ̄
|e(k)| and u1 = [1 0 . . . 0]T .

The resulting update equation is then given by

w(k + 1) = w(k) + Xap(k)
[
XTap(k)Xap(k)

]−1
μ(k)e(k)u1 (6.33)

where

e(k) = d(k)− wT (k)x(k) (6.34)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
(6.35)

This algorithm minimizes the Euclidean distance ‖w(k + 1) − w(k)‖2 subject to the constraint
w(k + 1) ∈ ψL+1(k) such that the a posteriori errors at iteration k − i, ε(k − i), are kept constant
for i = 2, . . . , L + 1. Fig. 6.6 illustrates a typical coefficient updating for the simplified SM-AP
algorithm where it is observed that the a posteriori error related to previous data remains unaltered.

The simplified SM-AP algorithm given by equation (6.33) will perform an update if and only if
w(k) �∈ H(k), or e(k) > γ̄. The step-by-step description of the simplified SM-AP algorithm is
presented in Algorithm 6.3.

6.4.3 Reducing the Complexity in the Simplified SM-AP Algorithm

In the updating expression of equation (6.33) vector u1 has a special form which can be exploited in
order to reduce the computational complexity.

The inverse matrix in equation (6.33) can be partitioned as[
XTap(k)Xap(k)

]−1
=
{[

x(k) X̃ap(k)
]T [

x(k) X̃ap(k)
]}−1

=
[
a bT

b C

]
(6.36)
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H(k − 1)

H(k)

d(k) − wTx(k) = γ

d(k − 1) − wTx(k − 1) = γ2(k − 1)
w(k)

w(k + 1)

d(k) − wTx(k) = −γ

d(k − 1) − wTx(k − 1) = γ

d(k − 1) − wTx(k − 1) = −γ

Figure 6.6 Simplified SM-AP algorithm coefficient update with constant a posteriori error.

Algorithm 6.3

The Simplified Set-Membership
Affine Projection Algorithm

Initialization
x(0) = w(0) = [0 . . . 0]T

choose γ̄ around
√

5σn
γ = small constant

Do for k ≥ 0
eap(k) = dap(k)− XTap(k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise

w(k + 1) = w(k) + Xap(k)
[
XTap(k)Xap(k) + γI

]−1
μ(k)e(k)u1
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where

a =
[
ϕT (k)ϕ(k)

]−1
(6.37)

b = −
[
X̃
T

ap(k)X̃ap(k)
]−1

X̃
T

ap(k)x(k)a (6.38)

with ϕ(k) defined as

ϕ(k) = x(k)− X̃ap(k)
[
X̃
T

ap(k)X̃ap(k)
]−1

X̃
T

ap(k)x(k) (6.39)

where the vector ϕ(k) ∈ R(N+1)×1, see problem 12.

As a result,

Xap(k)
[
XTap(k)Xap(k)

]−1
u1 =

[
x(k) X̃ap(k)

] [a
b

]

=
[
x(k) X̃ap(k)

] [1
b
a

]
a

=
[

x(k)−
[
X̃
T

ap(k)X̃ap(k)
]−1

X̃
T

ap(k)x(k)
]
a

= ϕ(k)
[
ϕT (k)ϕ(k)

]−1
(6.40)

where the last equality follows from equations (6.37) and (6.39).

An efficient expression for the coefficient update is obtained using the partition in equation (6.36),
that is

w(k + 1) = w(k) +
ϕ(k)

ϕT (k)ϕ(k)
e(k) (6.41)

where ϕ(k) is defined as in equation (6.39). This representation of the SM-AP algorithm is compu-
tationally attractive since it utilizes matrices with lower dimensions than those presented in equation

(6.33), specifically matrix
[
X̃
T

ap(k)X̃ap(k)
]

in equation (6.39) has dimension L×L whereas matrix[
XTap(k)Xap(k)

]
in equation (6.33) has dimension (L + 1) × (L + 1). The number of reuses L

is in most of the cases chosen in the range 0 ≤ L ≤ 5, therefore the strategy for reducing the
computational burden of the inversion brings about significant benefit.

6.5 SET-MEMBERSHIP BINORMALIZED LMS ALGORITHMS

In the SM-AP algorithm the computational complexity is directly related to the number of data reuses.
The main component of the computational burden is the information matrix inversion. Since the SM-
NLMS algorithm only considers the constraint setH(k) in its update, it has low complexity per update
whereas its convergence speed follows the pattern of the NLMS algorithm. Both algorithms have
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their convergence speed governed by the eigenvalue spread of the input-signal correlation matrix. In
order to alleviate this drawback while keeping the implementation complexity as low as possible, an
attractive particular solution for the SM-AP algorithm is the set-membership binormalized LMS (SM-
BNLMS) algorithm. Two algorithms are derived requiring that the solution belongs to the constraint
sets at time instants k and k − 1, i.e., w(k + 1) ∈ H(k) ∩H(k − 1), which are general cases of the
binormalized LMS algorithm [13]. The SM-BNLMS algorithms can be seen as extensions of the
SM-NLMS algorithm that use two consecutive constraint sets for each update, and also as special
cases of the SM-AP algorithms.

Let’s assume S(k − i + 1), for i = 1, 2, denote the hyperplanes which contain all vectors w such
that d(k− i+1)−wT x(k− i+1) = γ̄i(k), where γ̄i(k) are the values of the bound constraints that
should be met in order to validate a given estimate. Specifically, if γ̄i(k), for i = 1, 2, are chosen
such that |γ̄i(k)| ≤ γ̄, then S(k − i+ 1) ∈ H(k − i+ 1) [10].

Whenever w(k) �∈ H(k) ∩H(k − 1), we can propose an objective function such as

min ‖w(k + 1)− w(k)‖2
subject to:

d(k)− xT (k)w(k + 1) = γ̄1(k)
d(k − 1)− xT (k − 1)w(k + 1) = γ̄2(k) (6.42)

where the pair of thresholds (γ̄1(k), γ̄2(k)) specifies the point in H(k) ∩ H(k − 1) where the final
parameter estimate will be placed. The previously shown Fig. 6.4 illustrates how the coefficients are
updated to prescribed a posteriori errors determined by (γ̄1(k), γ̄2(k)).

In principle there is a need to verify if an update according to equation (6.42) is required, where such
an update can be skip if w(k) ∈ H(k)∩H(k− 1). There are ways of keeping w(k+1) ∈ H(k− 1)
whenever an update is required, that is, whenever w(k) �∈ H(k). This type of solution is discussed
further in subsection 6.5.2. At any rate, we can solve the general constrained minimization problem
of equation (6.42) for the binormalized case by applying Lagrange multiplier method, resulting in
the following unconstrained objective function

F [w(k + 1)] = ‖w(k + 1)− w(k)‖2 + λ1(k)[d(k)− xT (k)w(k + 1)− γ̄1(k)]
+λ2(k)[d(k − 1)− xT (k − 1)w(k + 1)− γ̄2(k)] (6.43)

By computing the gradient of equation (6.43) with respect to w(k+ 1), setting the result to zero, we
get

w(k + 1) = w(k) + Xap(k)
λap(k)

2

= w(k) + [x(k) x(k − 1)]

[
λ1(k)

2
λ2(k)

2

]
(6.44)

where this expression is the specialized form of equation (6.23) to the binormalized case.
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The Lagrange multipliers are obtained by replacing equation (6.44) in the constraints of equation
(6.42) such that[

xT (k)
xT (k − 1)

]
[x(k) x(k − 1)]

[
λ1(k)

2
λ2(k)

2

]
=
[

d(k)
d(k − 1)

]
−
[

xT (k)
xT (k − 1)

]
w(k)− γ̄(k)

=
[

e(k)
ε(k − 1)

]
−
[
γ̄1(k)
γ̄2(k)

]
(6.45)

By solving the above equation we obtain

λ1(k)
2

=
[e(k)− γ̄1(k)] ‖x(k − 1)‖2 − [ε(k − 1)− γ̄2(k)] xT (k)x(k − 1)

‖x(k)‖2‖x(k − 1)‖2 − [xT (k − 1)x(k)]2
(6.46)

λ2(k)
2

=
[ε(k − 1)− γ̄2(k)] ‖x(k)‖2 − [e(k)− γ̄1(k)] xT (k − 1)x(k)

‖x(k)‖2‖x(k − 1)‖2 − [xT (k − 1)x(k)]2
(6.47)

where the errors in the above equations are the a priori error at iteration k, defined as e(k) = d(k)−
wT (k)x(k), and the a posteriori error at iterationk−1, defined as ε(k−1) = d(k−1)−wT (k)x(k−1).

The expression for the coefficient update of the SM-BNLMS algorithm is then given by

w(k + 1) =
{

w(k) + λ1(k)
2 x(k) + λ2(k)

2 x(k − 1) if |e(k)| > γ̄
w(k) otherwise

(6.48)

Some special forms of the SM-BNLMS algorithm are following discussed.

6.5.1 SM-BNLMS Algorithm 1

The first form of the SM-BNLMS algorithm is derived by employing two steps, where in each step we
minimize the Euclidean distance between the old filter coefficients and the new update, subjected to
the constraint that the new update lies in constraint setH(k). Then, we test if the new update belongs
in the previous constraint setH(k−1) and if not a new update takes place. Basically, the SM-BNLMS
algorithm 1 performs a step according to the SM-NLMS algorithm and if the solution belongs to both
constraint setsH(k) andH(k−1) no further update is required. If the initial step moves the solution
away fromH(k−1), then a second update is performed in order to place the solution at the intersection
ofH(k) andH(k− 1) at a minimum distance from w(k). Fig. 6.7 illustrates the coefficient updates
according to the situations discussed so far. As desired, the SM-BNLMS algorithm 1 minimizes
‖w(k + 1)− w(k)‖2 subject to the constraint that w(k + 1) ∈ H(k) ∩H(k − 1).

The updating equation for the SM-BNLMS algorithm 1 can be derived by first performing an or-
thogonal projection of w(k) onto the nearest boundary ofH(k) just like in the SM-NLMS algorithm

ŵ(k) = w(k) + μ(k)
e(k)x(k)
‖x(k)‖2 (6.49)
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H(k)

w(k)

d(k) − wTx(k) = −γ

d(k) − wTx(k) = γ

d(k − 1) − wTx(k − 1) = −γ

d(k − 1) − wTx(k − 1) = γ

H(k − 1) w(k + 1).

(a) w(k + 1) ∈ H(k) ∩H(k − 1), no further update.

H(k)

d(k) − wTx(k) = −γ

d(k) − wTx(k) = γ

d(k − 1) − wTx(k − 1) = γ

d(k − 1) − wTx(k − 1) = −γ

w(k)

w(k + 1)

.

H(k − 1)

(b) w(k + 1) �∈ H(k − 1), further update.

Figure 6.7 Possible coefficient updates for the SM-BNLMS algorithm 1.
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where μ(k) is the variable convergence factor given by equation (6.11) and e(k) is the a priori output
error defined in equation (6.6). If ŵ(k) ∈ H(k − 1), i.e., |d(k − 1) − ŵT (k)x(k − 1)| ≤ γ̄, no
further update is required, therefore w(k + 1) = ŵ(k). On the other hand, if ŵ(k) �∈ H(k − 1) a
second step is necessary in order to move the solution to the intersection of H(k) and H(k − 1) at
a minimum distance. This second step is performed in the orthogonal direction with respect to the
first step, namely x⊥(k). The resulting second updating is then performed in the following form

w(k + 1) = ŵ(k) + μ̂(k)
ε(k − 1)x⊥(k)
‖x⊥(k)‖2 (6.50)

where

x⊥(k) =
(

I− x(k)xT (k)
‖x(k)‖2

)
x(k − 1) (6.51)

ε(k − 1) = d(k − 1)− ŵT (k)x(k − 1) (6.52)

μ̂(k) = 1− γ̄

|ε(k − 1)| (6.53)

Algorithm 6.4 describes in detail the SM-BNLMS algorithm 1, where we utilized an explicit form
for x⊥(k), see problem 2. It is straightforward to observe that if the bound of the estimation error is
chosen to be zero, i.e., γ̄ = 0, the updating equations of the SM-BNLMS algorithm 1 coincide with
those of binormalized LMS algorithm with unity step-size [13].

In the SM-BNLMS algorithm 1 if the constraint setsH(k) andH(k−1) are parallel, the denominator
term ‖x⊥(k)‖2 is zero, since this term is given by

‖x⊥(k)‖2 = ‖x(k − 1)‖2 − [xT (k − 1)x(k)]2

‖x(k)‖2

As a result the second step of equation (6.50) is not performed to avoid division by zero.

6.5.2 SM-BNLMS Algorithm 2

The SM-BNLMS algorithm 2 reduces the computational complexity per update even further by
avoiding the intermediate constraint check required by the SM-BNLMS algorithm 1. A smart idea
to avoid extra computation is, at instant k, to maintain the value of the a posteriori error ε(k − 1),
which utilizes the data from instant k − 1, equal to the constraint threshold, that is by choosing
γ̄2(k) = ε(k − 1). Since the previous coefficient estimate w(k) ∈ H(k − 1), then it is a fact that
ε(k − 1) ≤ γ̄. Therefore by choosing γ̄2(k) = ε(k − 1) then γ̄2(k) ≤ γ̄. On the other hand, if we
choose γ̄1(k) such that the update lies on the closest boundary of H(k), i.e., γ̄1(k) = γ̄sign[e(k)],
the new coefficient estimate w(k+1) lies on the nearest boundary ofH(k) such that the a posteriori
error at iteration k − 1, ε(k − 1), is kept constant. By specializing the updating equation of the
general SM-BNLMS algorithm to the SM-BNLMS algorithm 2 case, we have

w(k + 1) = w(k) +
λ′

1(k)
2

x(k) +
λ′

2(k)
2

x(k − 1) (6.54)
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Algorithm 6.4

The Set-Membership Binormalized LMS Algorithm 1

Initialization
x(0) = w(0) = [0...0]T

choose γ̄ around
√

5σn
γ = small constant

Do for k ≥ 0
e(k) = d(k)− xT (k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
ŵ(k) = w(k) + μ(k) e(k)x(k)

γ+‖x(k)‖2

ε(k − 1) = d(k − 1)− ŵT (k)x(k − 1)

μ̂(k) =
{

1− γ̄
|ε(k−1)| , if |e(k)| > γ̄ and |ε(k − 1)| > γ̄

0 otherwise
λ1(k)

2 = − μ̂(k)ε(k−1)xT (k−1)x(k)
γ+‖x(k)‖2‖x(k−1)‖2−[xT (k−1)x(k)]2

λ2(k)
2 = μ̂(k)ε(k−1)‖x(k)‖2

γ+‖x(k)‖2‖x(k−1)‖2−[xT (k−1)x(k)]2

w(k + 1) = ŵ(k) + λ1(k)
2 x(k) + λ2(k)

2 x(k − 1)

where

λ′
1(k)
2

=
μ(k)e(k)‖x(k − 1)‖2

‖x(k)‖2‖x(k − 1)‖2 − [xT (k − 1)x(k)]2
(6.55)

λ′
2(k)
2

= − μ(k)e(k)xT (k − 1)x(k)
‖x(k)‖2‖x(k − 1)‖2 − [xT (k − 1)x(k)]2

(6.56)

μ(k) =
{

1− γ̄
|e(k)| , if |e(k)| > γ̄

0 otherwise
(6.57)

Fig. 6.6 depicts the update procedure of the SM-BNLMS algorithm 2, whereas Algorithm 6.5 de-
scribes it stepwise.

In the SM-BNLMS algorithm 2 if the constraint setsH(k) andH(k−1) are parallel, the denominators
of the λ′

i(k), for i = 1, 2 are zero. In this case, in order to avoid division by zero a regularization
factor, as in equation (6.7), is employed instead.
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Algorithm 6.5

The Set-Membership Binormalized LMS Algorithm 2

Initialization
x(0) = w(0) = [0...0]T

choose γ̄ around
√

5σn
γ = small constant

Do for k ≥ 0
e(k) = d(k)− xT (k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
λ′

1(k)
2 = μ(k)e(k)‖x(k−1)‖2

γ+‖x(k)‖2‖x(k−1)‖2−[xT (k−1)x(k)]2
λ′

2(k)
2 = − μ(k)e(k)xT (k−1)x(k)

γ+‖x(k)‖2‖x(k−1)‖2−[xT (k−1)x(k)]2

w(k + 1) = w(k) + λ′
1(k)
2 x(k) + λ′

2(k)
2 x(k − 1)

6.6 COMPUTATIONAL COMPLEXITY

A brief comparison of the computational complexity among some algorithms presented in this chapter
is appropriate at this point. The figure of merit considered is the number of multiplications, additions,
and divisions, where it is assumed that the implementation minimizes the number of divisions,
multiplications, and additions in that order. Table 6.1 lists the computational complexity for several
algorithms, where in the case of the SM-BNLMS algorithm 1 there are two entries since the update
complexity is related to the number of steps a given update requires. Two steps are required if after
the first step ŵ(k) �∈ H(k − 1). The SM-BNLMS algorithm 2 has fix complexity whenever an
update occurs whereas for the SM-BNLMS algorithm 1 the complexity depends not only on when
an update occurs but also how often the second step takes place. As expected the two versions of the
SM-BNLMS algorithm lead to a small increase in computational complexity when compared with
the SM-NLMS algorithm. On the other hand, the former algorithms usually require less updates and
converge faster than the SM-NLMS algorithm.

The computational complexity reduction is essential in applications where the filter order is high and
the resources are limited. Therefore, special care should be taken to exploit opportunities to reduce
the computational burden, for example, assuming the value of ‖x(k−1)‖2 at iteration k is unknown.
If ‖x(k−1)‖2 is known, we can compute ‖x(k)‖2 using only two additional multiplications through
‖x(k)‖2 = ‖x(k−1)‖2+x2(k)−x2(k−N), also in case the value ofx2(k−N) is prestored then only
one multiplication is required. This strategy has been considered when evaluating the multiplication
and addition counts of the SM-BNLMS algorithms. If update occurs at two successive time instants,
‖x(k− 1)‖2 and xT (k− 1)x(k− 2) have already been computed in the previous update, as a result,
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Table 6.1 Computational Complexity in Set-membership Algorithms, † The Numbers for the RLS Apply
to the Particular Implementation of Algorithm 5.2

Algorithm Multiplication Addition Division

LMS 2N + 3 2N + 2 0

NLMS 2N + 3 2N + 5 1

SM-NLMS 2N + 4 2N + 6 1

SM-BNLMS 1 (1 step) 3N + 4 3N + 7 1

SM-BNLMS 1 (2 steps) 5N + 13 5N + 16 2

SM-BNLMS 2 3N + 11 3N + 10 1

RLS† 3N2 + 11N + 8 3N2 + 7N + 4 1

the number of multiplications and additions in such updates can be further reduced by approximately
N + 1 for the SM-NLMS algorithm and 2N + 2 for the SM-BNLMS algorithms 1 and 2, depending
on the implementation. Finally, note that if one continuously computes ‖x(k)‖2 and xT (k)x(k− 1),
regardless if an update is required or not, the SM-BNLMS algorithm 2 is always more efficient than
SM-BNLMS algorithm 1.

6.7 TIME-VARYING γ̄

In this section, an automatic way to choose γ̄ is presented in order to avoid overbounding and
underbounding of such a crucial parameter. In case γ̄ is chosen too small the feasibility set might
become null, whereas if the threshold parameter is chosen too big the resulting estimate might be
meaningless and inconsistent [24].

Let’s first consider the case of channel equalization application such as that of Fig. 2.13. In a typical
multiuser communication environment the noise signal vector can be composed as follows [32]

n(k) = nn(k) + nISI(k) + nMAI(k) (6.58)

where n(k) = [n(k) n(k − 1) . . . n(k −N)]T , and

nn(k) represents the contribution of the environment noise.

nISI(k) is the contribution of the intersymbol interference (ISI) originated when the transmitted
signal crosses a channel with memory, in other words, whenever multiple paths are perceived
by the receiver.

nMAI(k) accounts for the multi-access interference (MAI), that is, the signals from other users
that reach the receiver.
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At the equalizer output, the disturbance due to noise can be accounted for as follows

yn(k) = wT (k)n(k) (6.59)

where wT (k) is the equalizer coefficient vector and yn(k) is the noise signal vector filtered by the
equalizer. As a result, the equalizer output y(k) is described by

y(k) = yn̄(k) + yn(k) (6.60)

with yn̄(k) representing the equalized signal when there is no noise at the adaptive-filter input.

The average power of the disturbance, for a given equalizer with parameters w(k), can be calculated
as

σ2
yn(k) = E[y2

n(k)] = wT (k)E[n(k)nT (k)]w(k) = ‖w(k)‖2σ2
n(k) (6.61)

Assuming there is an estimate of σ2
yn(k) denoted as σ̂2

yn(k) = ‖w(k)‖2σ̂2
n(k) we can generate a

time-varying threshold parameter as follows

γ̄(k + 1) = αγ̄(k) + (1− α)
√
β‖w(k)‖2σ̂2

n(k) (6.62)

where α is a forgetting factor and β is a constant to be set. As justified in [25], a range of values for
β leading to a good compromise between misadjustment and speed of convergence is 4 ≤ β ≤ 5.

In equalization environments the best way to estimate σ2
n(k) is to remove the effect of the detected

symbols from x(k) in order to get a rough estimate of n(k) [26]-[28], and from this estimate compute

σ̂2
n(k + 1) = ασ̂2

n(k) + (1− α)n̂2(k) (6.63)

where again α is a forgetting factor. Fig. 6.8 illustrates how the environment noise can be typically
estimated in a general equalizer setup.

For system identification environment as depicted in Fig. 2.10, an estimate of the additional noise
plus an eventual effect of undermodeling can be calculated from the output error itself. If the input
signal and the additional noise are considered white noise and uncorrelated, see equation (2.148) for
details, the MSE can be calculated as

ξ = E[e2(k)]
= E{[hT x∞(k)− wT xN+1(k)]2 + n2(k)}

= σ2
x

∞∑
i=N+1

h2(i) + σ2
n (6.64)

where x∞(k) and xN+1(k) are the input signal vector with infinite and finite lengths, respectively.
Likewise the equalization setup, a time-varying threshold parameter for the system identification
application is given by

γ̄(k + 1) = αγ̄(k) + (1− α)
√
βσ̂2

n(k) (6.65)
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Figure 6.8 Environment noise estimation.

where for this case

σ̂2
n(k + 1) = ασ̂2

n(k) + (1− α)e2(k) (6.66)

In [25] some analytical expressions are developed in order to provide values for γ̄(k) such that the
some prescribed updating rate are nearly satisfied after the algorithm has reached convergence.

6.8 PARTIAL-UPDATE ADAPTIVE FILTERING

In several applications the number of coefficients to be updated might be prohibitive, therefore some
strategies to control the computational complexity is desirable. In some cases like in acoustics echo
cancellation, which might use a few thousands of adaptive coefficients, the convergence would entail
a large number of iterations, calling for more sophisticated updating algorithms which are inherently
more computationally intensive. A good compromise might be to update only part of the filter
coefficients at each iteration instant, generating a family of algorithms called partial-update (PU)
algorithms. The most widely known PU algorithm in the literature is the normalized LMS with
partial update [14]-[19].

In this section special emphasis is given to the set-membership partial-update affine projection (SM-
PUAP) algorithms. The combination of the partial-update with set-membership allows the updating
of a selected set of coefficients whenever an update is needed. The resulting algorithms capitalize
not only from the sparse updating related to the set-membership framework but also from the partial
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update of the coefficients, reducing the average computational complexity. It is expected that the SM-
PUAP algorithms have comparable performance to that of SM-AP algorithms and affine projection
algorithms with partial-update whereas computational complexity is reduced with respect to both
updating schemes.

Two versions of the SM-PUAP algorithm are discussed:

Fix partial update, where a constant number of coefficients is updated whenever required.

Variable partial update, where the number of coefficients to be updated vary up to a maximum
prescribed number.

In the partial update adaptation strategy, the main objective is to perform updates in M̄ out of the
N + 1 adaptive-filter coefficients. The M̄ coefficients to be updated at time instant k are selected
through an index set IM̄ (k) = {i0(k) . . . iM̄−1(k)} where the indexes {ij(k)}M̄−1

j=0 are chosen
from the set {0 1 . . . N} representing the available coefficients to be updated. The partition of the
N + 1 coefficients into mutually exclusive subsets, each with M̄ elements, plays a key role in the
performance and in the effectiveness of the partial-update strategy. As a result, IM̄ (k) varies with
the iteration index k such that the M̄ coefficients to be updated can change according to the iteration.
The choice of which M̄ coefficients should be updated is related to the objective function considered
in the algorithm derivation.

As already known, in the SM-AP algorithms the new coefficient vector can be obtained as the vector
w(k + 1) that minimizes the Euclidean distance ‖w(k + 1)− w(k)‖2, subject to the constraint that
the moduli of a posteriori errors fall below certain prescribed threshold. The same idea can be used
in order to derive the SM-PUAP algorithm, specifically the vector w(k+1) is chosen by minimizing
the Euclidean distance ‖w(k+1)−w(k)‖2 subject to the constraint w(k+1) ∈ H(k) in such a way
that only M̄ coefficients are updated. If w(k) ∈ H(k), there is no update and the Euclidean distance
is zero.

The objective function to be minimized in the set-membership partial-update affine projection (SM-
PUAP) algorithm is following described. A coefficient update is performed whenever w(k) �∈
ψL+1(k) such that

min ‖w(k + 1)− w(k)‖2 (6.67)

subject to:

dap(k)− XTap(k)w(k + 1) = γ̄(k)

C̃IM̄(k)
[w(k + 1)− w(k)] = 0 (6.68)

where γ̄(k) is a vector determining a point within the constraint setH(k), such that |γ̄i(k)| ≤ γ̄, for
i = 0, 1, . . . , L. The matrix C̃IM̄(k)

= I− CIM̄ (k) is a complementary matrix of CIM̄ (k) enforcing

C̃IM̄ (k)w(k + 1) = C̃IM̄ (k)w(k), such that only M̄ coefficients are updated. A possible choice
for γ̄0(k) is such that the updated vector belongs to the closest bounding hyperplane in H(k), i.e.,
γ̄0(k) = γ̄ e(k)/|e(k)|. On the other hand, some alternative choices |γ̄i(k)| ≤ γ̄, for i = 1, 2, . . . , L,
had been discussed. The matrix CIM̄ (k) is a diagonal matrix that determines the coefficients to be
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updated at instant k, if an update is required. This matrix has M̄ nonzero elements equal to one
placed at positions indicated by IM̄ (k).

Applying the method of Lagrange multipliers gives the recursive updating rule

w(k + 1) = w(k) + CIM̄ (k)Xap(k)
[
XTap(k)CIM̄ (k)Xap(k)

]−1
[eap(k)− γ̄(k)] (6.69)

The updating equation of the SM-PUAP algorithm is given by

w(k + 1) ={
w(k) + CIM̄ (k)Xap(k)

[
XTap(k)CIM̄ (k)Xap(k)

]−1
[eap(k)− γ̄(k)] if |e(k)| > γ̄

w(k) otherwise

(6.70)

As can be noticed from equation (6.70), for a fixed value of ‖eap(k)− γ̄(k)‖2, the Euclidean distance
between two consecutive coefficient vectors is minimized if ‖XTap(k)CIM̄ (k)Xap(k)‖ is maximized.
As a result, a natural choice for the M̄ coefficients to be updated are those that will be multiplied by
the elements of Xap(k) with the largest norm.

Like in the case of the SM-AP algorithm of equation (6.33), it is straightforward to derive a simplified
version of the SM-PUAP algorithm, whose update equation is given by

w(k + 1) = w(k) + CIM̄ (k)Xap(k)
[
XTap(k)CIM̄ (k)Xap(k)

]−1
μ(k)e(k)u1 (6.71)

where

e(k) = d(k)− wT (k)x(k) (6.72)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
(6.73)

This algorithm also minimizes the Euclidean distance ‖w(k + 1)−w(k)‖2 subject to the constraint
w(k + 1) ∈ ψL+1(k) maintaining the values of the a posteriori errors, ε(k − i), at iteration k − i.
Note that μ(k) starts with high values, becomes small when the error reduces, and reaches zero
whenever moduli of the errors become smaller than the threshold. An interesting choice for the index
set IM̄ (k) specifying the coefficients to be updated is the M̄ coefficients leading to the maximum
value of ‖XTap(k)CIM̄ (k)Xap(k)‖. Algorithm 6.6 describes in detail the simplified version of the
SM-PUAP algorithm.

6.8.1 Set-Membership Partial-Update NLMS Algorithm

The simplest form of the SM-PUAP algorithm is the set-membership partial-update NLMS (SM-
PUNLMS) algorithm. The updating equation of the SM-PUNLMS algorithm follows directly from
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Algorithm 6.6

The Simplified Set-Membership
Partial-Update Affine Projection Algorithm

Initialization
x(0) = w(0) = [0 . . . 0]T

choose γ̄ around
√

5σn
γ = small constant

Do for k ≥ 0
eap(k) = dap(k)− XTap(k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise

w(k + 1) = w(k) + CIM̄ (k)Xap(k)
[
XTap(k)CIM̄ (k)Xap(k) + γI

]−1
μ(k)e(k)u1

equation (6.71) and is given by

w(k + 1) = w(k) + μ(k)
e(k)CIM̄ (k)x(k)
‖CIM̄(k)

x(k)‖2 (6.74)

where

μ(k) =

{
1− γ̄

|e(k)| if w(k) �∈ H(k), i.e., if |e(k)| > γ̄

0 otherwise
(6.75)

In [17], a number of properties and an interesting geometrical interpretation of the SM-PU-NLMS
algorithm update are provided, some of these results are discussed here. Fig. 6.9 depicts the situation
where one coefficient updates out of three, i.e., M̄ = 1 and N + 1 = 3. As can be observed, the
element x2(k) is the largest in magnitude among the elements of x(k), therefore a natural choice
for CIM̄2

(k) is a diagonal matrix whose diagonal elements are [0 1 0]. The solution denoted by
wSM−NLMS is obtained by an orthogonal projection starting from w(k) onto the closest boundary of
the constraint setH(k). The angle denoted by θ shown in Fig. 6.9 is the angle between the direction
of update CIM̄2

(k)x(k) = [0 x2(k) 0]T and the input vector x(k). When M̄ coefficients are updated,

the general expression for the cosine of θ in RN+1 is given by the relation

cos θ =
‖CIM̄ (k)x(k)‖
‖x(k)‖ (6.76)

whereas for the case in discussion, the particular expression for the cosine is

cos θ =
|x2(k)|√|x1(k)|2 + |x2(k)|2 + |x3(k)|2
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Figure 6.9 Partial coefficient update for R
3 and M̄ = 1, where |x2(k)| > |x1(k)| > |x3(k)|.

The SM-PUNLMS algorithm may face convergence problem whenever trying to find a solution in
the constraint set. If the number of coefficients to be updated is small, cos θ might become small
according to equation (6.76), with θ becoming close to π

2 , as can be observed in Fig. 6.10. As a
result, the solution in the constraint set will depart from the SM-NLMS solution, and will give rise
to stability problems.

A possible solution is to increase M̄ up to the point where the solution provided by the SM-PUNLMS
algorithm reaches a prescribed closer distance of SM-NLMS or NLMS solutions. Unfortunately this
solution does not impose an upper bound on the value of M̄ , and it is highly probable that during
initial iterations M̄ would be close to the overall number of filter coefficients N + 1. On the other
hand, it is desirable that M̄ � N + 1 in order to make the partial update effective in reducing the
computational complexity.

Let’s first define as M̄max the maximum number of coefficients that can be updated at any given
iteration. It is now required to derive a strategy to control the number of coefficients to be updated
while keeping a bound on the norm of the update. If ‖CIM̄ (k)x(k)‖2 = ‖x(k)‖2, it is straightforward
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d(k) − wTx(k) = γ

d(k) − wTx(k) = −γ

θ

H(k)

d(k) − wTx(k) = 0

.

CIM (k)x(k)

wSM−NLMS

wNLMS

φ
w(k + 1)

Figure 6.10 Projection in partial-update algorithms.

to verify that the angle φ is equal to π
2 and wNLMS−w(k+1) represents the projection of wNLMS−

w(k) into CIM̄ (k)x(k). For angle φ < π
2 the norm of the updating term might become large in

order to meet the error modulus requirement, placing the partial solution far way from wNLMS
and wSM−NLMS. Indeed, whenever φ ≥ π

2 the norm of the updating term becomes smaller than
the one required to turn the a posteriori error equal to zero (the one reaching wNLMS). Then,
an alternative solution is to increase the number of coefficients to update up to the condition that
‖CIM̄ (k)x(k)‖2 ≥ μ(k)‖x(k)‖2, for μ(k) = 1− γ̄/|e(k)|, or M̄ = M̄max. This strategy will keep
the angle φ lower bounded by π

2 . If M̄ = M̄max, increase the threshold γ̄ temporarily at the kth
iteration to

γ̄(k) =
(‖x(k)‖2 − ‖CIM̄(k)

x(k)‖2)
‖x(k)‖2 |e(k)| (6.77)

Fig. 6.11 shows that this strategy temporarily expands the constraint set in order to allow a feasible
solution in the case where the required number of coefficients to meet a solution in the constraint set
exceeds M̄max, at a given iteration.

Another possible strategy for the partial update is to choose the set of coefficients to be updated in a
random manner [19] utilizing randomly partitions of the N + 1 coefficients consisting of mutually
exclusive subsets of M̄ elements, each determined by the index setIM̄ (k) = {i0(k) . . . iM̄−1(k)}, as
previously defined. This solution avoids the possible instability of the partial-update LMS algorithm
originated by the choice of subsets in a deterministic manner, since in the latter case it is usually
possible to generate input signals in which the algorithm fails to converge.
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Figure 6.11 Variable constraint set H(k) with threshold γ̄(k).

6.9 SIMULATION EXAMPLES

In this section, some adaptive-filtering problems are described and solved by using some of the
algorithms presented in this chapter.

Example 6.1: SM-AP Algorithms, system identification simulation

An adaptive-filtering algorithm is used to identify the system described in the example of subsection
3.6.2 using the following SM-AP algorithms:

Set-membership affine projection using L = 0, L = 1 and L = 4.

Set-membership partial-update affine projection with M̄ = 5, using L = 0, L = 1 and L = 2
and only for the eigenvalue spread of 20.

Do not consider the finite-precision case.

Solution:

All the results presented here for the affine projection and the SM-AP algorithms are obtained by
averaging the results of 200 independent runs. We first run the affine projection algorithm with a
value of μ = 0.18, with γ = 10−6. With this value of μ, the misadjustment of the affine projection
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algorithm is about the same as that of the LMS algorithm with μ = 0.0128 and eigenvalue spread of
the input signal autocorrelation matrix of 20, see Table 3.1. Fig. 6.12 illustrates the learning curves
for the eigenvalue spread 80 and distinct values of L. As expected the convergence speed and the
misadjustment increase with the value of L.
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Figure 6.12 Learning curves for the affine projection algorithms for L = 0, L = 1, and L = 4,
eigenvalue spread equal 80.

Table 6.2 lists the measured misadjustments along with their theoretical values obtained from equation
(4.125) for distinct versions of the affine projection algorithms. As expected the misadjustment
increases with the values of the reuse factor and with the ratio λmax

λmin
.

Table 6.2 Evaluation of the Affine Projection Algorithm, μ = 0.18

λmax
λmin

Misadjustment, L = 0 Misadjustment, L = 1 Misadjustment, L = 4

Experiment Theory Experiment Theory Experiment Theory

1 0.1275 0.0989 0.2665 0.1978 0.9554 0.4945

20 0.1458 0.0989 0.2951 0.1978 1.0881 0.4945

80 0.1708 0.0989 0.3157 0.1978 1.2091 0.4945

Figs. 6.13, 6.14 and 6.15 depict the the learning curves for the simplified SM-AP algorithm for the
eigenvalue spreads 1, 20 and 80, respectively. In each figure, distinct values of L are tested and the
value of γ̄ is

√
5σn. As can be observed, the convergence speed and the misadjustment increase with
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the value of L. As will be discussed, a reduction in the misadjustment is achieved at the expense of
mild increase in number of iterations for convergence.
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Figure 6.13 Learning curves for the SM-AP algorithms for L = 0, L = 1, and L = 4, eigenvalue
spread equal 1.

Table 6.3 illustrates the convergence speeds of the affine projection algorithms and the SM-AP
algorithms for distinct input signal eigenvalue spreads and distinct reuse factors. As can be observed,
the SM-AP algorithms have convergence speeds comparable to the corresponding affine projection
algorithms, being better for low values ofL and worse for high values ofL. The number of iterations
for convergence is measured whenever the average square error reaches a value 5% above the noise
floor.

Table 6.3 Convergence Speed of the Affine Projection and SM-AP Algorithms

Convergence speed
λmax
λmin

L = 0 L = 1 L = 4

AP SM-AP AP SM-AP AP SM-AP

1 316 227 213 225 143 201

20 465 344 195 227 137 200

80 644 468 197 229 135 200
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Figure 6.14 Learning curves for the SM-AP algorithms for L = 0, L = 1, and L = 4, eigenvalue
spread equal 20.
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Figure 6.15 Learning curves for the SM-AP algorithms for L = 0, L = 1, and L = 4, eigenvalue
spread equal 80.
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Table 6.4 includes the measures misadjustments of the affine projection algorithms and the SM-AP
algorithms considering the same input signal eigenvalue spreads and distinct reuse factors as before.
As can be seen, the SM-AP algorithms have lower misadjustments than the corresponding affine
projection algorithms for higher values of L.

Table 6.4 Misadjustment of the Affine Projection and SM-AP Algorithms

Misadjustment
λmax
λmin

L = 0 L = 1 L = 4

AP SM-AP AP SM-AP AP SM-AP

1 0.1275 0.1542 0.2665 0.1797 0.9554 0.3570

20 0.1458 0.2094 0.2951 0.2793 1.0881 0.5462

80 0.1708 0.2723 0.3157 0.3895 1.2091 0.6934

The SM-PUAP algorithm was set to update only 5 coefficients per iteration. For the SM-PUAP
algorithm the learning curves are depicted in Fig. 6.16 for distinct values of L. The values of γ̄
for L = 0, 1, and 2 are

√
5σ2

n,
√

7σ2
n, and

√
17σ2

n, respectively. The corresponding measured
misadjustments were 0.1979, 0.3137, and 0.8189. An efficient algorithm for the best selection of the
updating coefficients in the partial-updating affine projection algorithm is an open problem, although
some approximate solutions exist [21]. The choice of the coefficients to be updated relies on a low
complexity procedure to sort out the M̄ columns of XTap(k) consisting of choosing the ones whose
Euclidean norm have higher values.

�

6.9.1 Echo Cancellation Environment

The elimination of echo signals in communication networks and in hands-free communication envi-
ronment are challenging problems in which adaptive filtering plays a major role [29]-[30].

The network echo, also known as line echo, is caused by the hybrid transformer whose main task is
to convert the two-wire loop connection between the end user and the central office into a four-wire
circuit. In the two-wire case, the signal in both directions traverses the two wires, whereas in the
four-wires the signals in each direction are separated. Fig. 6.17 illustrates a very simplified long-
distance telephone system where the location of the echo canceller is also included. The four-wire
circuit exists only in long-distance connections and the delay included in Fig. 6.17 accounts for the
traveling time of the signal from one hybrid to the other. Usually the far-end hybrid leaks back to
the phone its own transmitted signal giving rise to the echo. If the echo delay is over 100 ms, its
effect in the conversation is very disturbing. The early solution comprised of echo suppressor, whose
aim was removing the echo from the talker by cutting off the outgoing hybrid port whenever an
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incoming signal is detected. This approach works well for low round trip delays, but for large delays
an adaptive echo canceller is more effective.

Echo cancellers are also used in acoustics echo cancellation problems where its task is to model the
transfer function from the loudspeaker to the microphone in a given room. This application is more
challenging than the network echo cancellation since the echo path impulse response is much longer,
usually well above 500 taps, and changes quite rapidly. As depicted in Figs. 6.17 and 6.18, the echo
cancellation problems in networks and in acoustics are closely related, with the latter requiring more
sophisticated algorithms such as the subband adaptive filters of Chapter 12.

For both applications two measures of performance are the echo return loss (ERL) and the the echo
return loss enhancement (ERLE). The ERL is ratio of the returned-echo power and the input-signal
power, measuring the attenuation faced by the signal in the echo path. The ERL, measured in dB, is
defined as

ERL = −10 log
σ2
d

σ2
x

= −10 log
E[d2(k)]
E[x2(k)]

(6.78)

The ERLE measures the reduction in the echo obtained by utilizing the echo canceller, that is

ERLE = −10 log
σ2
e

σ2
d

= −10 log
E[e2(k)]
E[d2(k)]

(6.79)

For simulation purposes we will utilize the models recommended by the International Telecom-
munication Union (ITU) in the ITU-T recommendation G.168 for digital network echo cancellers
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Figure 6.16 Learning curves for the SM-PUAP algorithms for L = 0, L = 1, and L = 2, eigenvalue
spread equal 20.
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Figure 6.17 Two-wire to four-wire conversion in long-distance telephone calls.

[31]. The main focus is to highlight the typical artificial input signals and echo path models utilized
to test the performance of the echo canceller algorithms. The echo cancellers should be disabled
during signaling transmission periods, however, no mention is given here to this and many other
practical issues described in the recommendation related to the actual implementation of the echo
canceller, see [31] for details.

The tests recommended by the standard ITU-T G.168 utilize particular signals such as noise, tones,
facsimile signals and a set of composite source signals (CSS). In our simulations we apply the CSS
input signal as input to the echo cancellers. The CSS simulates speech characteristics in single talk
and double talk enabling a performance test for echo cancellers for speech signals. The CSS consists
of speech signal, non speech signal and pauses. The speech signal activates the speech detectors
and has approximately 50 msec of duration. The speech signal is followed by a pseudo-noise signal
having constant magnitude Fourier transform whose phase changes with time. The pause is the third
component of the CSS representing an amplitude modulation to the CSS and the usual pauses during
a conversation. The pause duration ranges from 100 msec to 150 msec. Fig. 6.19 illustrates the CSS
for single talk. The specific timings are:

Tvst (Speech signal): 48.62 msec.

Tpn (Pseudo noise): 200.00 msec.

Tpst (Pause): 101.38 msec.

Tst1 (Half period): 350.00 msec.

Tst (Full period): 700.00 msec.

The echo path model according to the recommendation ITU-T G.168, is a linear digital filter whose
impulse response h(k) is given by

h(k) = (Ki10−ERL/20)mi(k − δ) (6.80)
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Figure 6.18 Echo cancellation setups.

where ERL is the echo return loss defined in equation (6.78) and h(k) consists of a delayed and
attenuated version of any sequence sorted from mi(k), i = 1, 2, ..., 8, for the channel models 1 to 8.
These models represent channels whose origins range from hybrid simulation models to measured
responses on telephone networks. The constants Ki are determined by the input signal used in the
test [31] and are different for distinct echo path models.

Just for illustration Table 6.5 shows the sequencem1(k) composing the echo-path impulse response.
In this case, for CSS type input signal, the scaling signal should be signal K1 = 1.39 and the
minimum value of the ERL to be used in the test is 6 dB. The resulting echo-path impulse response
is depicted in Fig. 6.20. For the other cases, please refer to [31].
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Figure 6.19 CSS single talk characteristics.

Table 6.5 Coefficients of m1(k), with k Ranging from 0 to 63, to be Read Column-wise

m1(k)

-0.00436 0.46150 0.00390 -0.03948 -0.01098 0.00745 0.01033 0.00899 0.00073 -0.00512 -0.00772

-0.00829 0.34480 -0.08191 -0.02557 -0.00618 0.00716 0.01091 0.00716 -0.00119 -0.00580 -0.00820

-0.02797 -10427 -0.01751 -0.03372 -0.00340 0.00946 0.01053 0.00390 -0.00109 -0.00704 -0.00839

-0.04208 0.09049 -0.06051 -0.01808 -0.00061 0.00880 0.01042 0.00313 -0.00176 -0.00618 -0.00724

-0.17968 -0.01309 -0.03796 -0.02259 0.00323 0.01014 0.00794 0.00304 -0.00359 -0.00685

-0.11215 -0.06320 -0.04055 -0.01300 0.00419 0.00976 0.00831 0.00304 -0.00407 -0.00791
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Figure 6.20 Echo-path impulse response.
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Example 6.2: Echo cancellation simulations

For the algorithms pointed below, run simulations for an echo cancellation experiment consisting of
50 independent runs describing the average performance for single talk input signal for one of the eight
channel models described in [31], specifically the one described in Table 6.5 with an ERL = 12dBs.
List the resulting ERLE in dB for each algorithm as well as their respective number of iterations to
convergence, measured whenever the average of the last 100 error signals is 10% above the error in
steady state. Utilize echo cancellers with sufficient order.

Normalized LMS algorithm.

RLS algorithm.

SM-NLMS algorithm.

The simplified SM-AP algorithm with L = 0, 1, 4.

The SM-PUAP algorithm with L = 0, 1, 4, and M̄ = floor[2(N+1)
3 ] where floor[·] indicates the

largest integer smaller than [·].

For channel model 1, depict the learning curves for the simplified SM-AP and the SM-PUAP algo-
rithms.

Solution:

The numbers and figures presented in this example are result of averaging fifty independent runs. The
normalized LMS algorithm utilizes a value of μ = 0.5, with the value of the regularization parameter
of γ = 10−6. The forgetting factor of the RLS algorithm is λ = 0.99. These values of μ and
λ were chosen after some simulation trials indicating favorable performances of the corresponding
algorithms. In the SM-AP algorithms distinct values of L are tested and the value of γ̄ is 0.0002.

Fig. 6.21 depicts the CSS signal utilized in this example. Fig. 6.22 illustrates the error signal for
the simplified SM-AP algorithm with L = 0, 1, 4, where it can be observed that the error reduces
faster for the case with L = 4 since the algorithm is more sophisticate, even though the convergence
speeds for L = 1 and L = 4 are quite similar. Fig. 6.23 shows that with the SM-PUAP algorithm
the convergence speed is not substantially reduced, showing that the partial updating strategy is very
useful. A low complexity way to choose the elements to be updated was to sort out the M̄ columns
of XTap(k) whose Euclidean norm have higher values. The SM-PUAP algorithm was set to update
only 2

3 of the coefficients.

Table 6.6 lists the relevant parameters in the echo cancellation environment, namely the ERLE in
dB for each algorithm as well as their respective convergence speed. As can be seen in Table 6.6,
the algorithms SM-NLMS (L = 0), SM-AP, and SM-PUAP require less updates than the remaining
algorithms compared. The fastest converging algorithm is the SM-AP (L = 4) but it requires the
highest computational complexity among the set-membership algorithms. The algorithms SM-AP
and SM-PUAP, withL = 4, are faster converging than the RLS while requiring much less updates and
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Figure 6.21 CSS signal.
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Figure 6.22 Learning curves for the simplified SM-AP algorithm with L = 0, 1, 4.
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Figure 6.23 Learning curves for the SM-PUAP algorithm L = 0, 1, 4.

computations. On the other hand the RLS algorithm lead to much higher ERLE than the remaining
algorithms followed by the NLMS. The SM-NLMS and NLMS algorithms have less computations
but are slow converging as compared to the remaining SM-AP algorithms of this example.

�

6.9.2 Wireless Channel Environment

A typical continuous-time model for mobile communication channels is described by [33]

h̃(t) =
I∑
i=0

√
piai(t)bi(t− τi) (6.81)

where t is the time variable, pi represents the power of the ith tap weight of the FIR model, ai(t) is
complex Gaussian process that multiplies the corresponding transmitted symbol denoted by bi(t−τi),
and τi accounts for the relative delay that the receiver detects the ith replica of the transmitted symbols.

The power spectrum of ai(t) is responsible for the rate of fading of the ith replica (or reflection) of
the transmitted symbols. This spectrum is also known as Doppler spectrum. The complete model
requires the specification of the Doppler spectrum of the tap weights, denoted byRa(f) with f being
the analog frequency, the delays τi, as well as the powers pi, for i = 0, . . . , I .
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Table 6.6 Simulation Results: Channel Model - ITU-T G.168, No. 1

Reuse Factor L

0 1 4

Updates

SM-AP 1320 497 290

SM-PUAP 1335 584 364

Convergence

NLMS 8423 - -

RLS 6598 - -

SM-AP 2716 2289 1832

SM-PUAP 2725 2303 1832

ERLE

NLMS 80.30 - -

RLS 307.83 - -

SM-AP 42.96 43.00 43.62

SM-PUAP 43.87 42.72 43.42

The process ai(t) is the result of a cluster of multipath components that cannot be resolved by the
receiver, arriving within a range of delays3. Usually for outdoor environments of mobile communi-
cation systems, the model for the Doppler power spectrum is represented by the Jakes model [32]
given by

Ra(f) =

⎧⎨
⎩

1
πfD

1√
1−( f

fD
)2

for |f | ≤ fD
0 for |f | > fD

where fD = v
λs

= vfo

c is the maximum Doppler frequency shift, λs is the carrier wavelength, v
is the mobile velocity in m/s, c is the speed of light (3.00 × 108 m/s), and fo is the carrier central
frequency.

If we assume that the input signal is complex and bandlimited to a bandwidth around BW, the
received signal can be generated by filtering the input signal through a tapped delay line whose tap
coefficients are given by

√
piai(t) and the delay elements correspond to T = 1

BW [33].

As an illustration, Table 6.7 lists the parameters of test channel models for an outdoor to indoor
environment to be utilized in simulations. These models originate from a standard described in [34]
for the Universal Mobile Telecommunications System (UMTS). In Table 6.7, the delays are relative

3τi − 1
2BW < τ < τi + 1

2BW with BW denoting the bandwidth of the transmitted signal.
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to the first tap whereas the power is relative to the strongest tap. The Doppler power spectrum applies
to each tap.

Let’s consider for illustration a typical case of UMTS where the chip duration is 260.04 nano seconds
(ns) for a transmission rate of 3.84 Mc/s (Mega chips per second). In the case the time difference
between two multipath components is at least 260.04 = 1

3.84 ns, it is possible for the receiver to
separate them. For example according to Table 6.7, in a digital simulation environment where the
input signal is sampled at chip rate for channel B, it will be possible to verify the presence of the
multipath signals of the taps at approximately

1 chip from the reference for tap 2.

3 chips from the reference for tap 3.

5 chips from the reference for tap 4.

9 chips from the reference for tap 5.

14 chips from the reference for tap 6.

where it was taken into consideration that the relative delays in the table represent the time where
the energy of the continuous-time reflection reaches its maximum.

Table 6.7 Channel Model Parameters: Outdoor to Indoor Test Environment with Jakes Doppler Spectrum

Tap Channel A Channel B

Relative Delay Average Power Relative Delay Average Power

ns dB ns dB

1 0 0 0 0

2 110 -9.7 200 -0.9

3 190 -19.2 800 -4.9

4 410 -22.8 1200 -8.0

5 – – 2300 -7.8

6 – – 3700 -23.9

The coefficients of a time-varying channel including the Doppler effects can be generated as depicted
in Fig. 6.24, where n̄(t) is a Gaussian noise source and the Doppler filter is an approximation of
HD(f) =

√
Ra(f). Fig. 6.25 shows an efficient way to generate the coefficients of the channel

model [36]-[37], where from two real-valued Gaussian sources with N̄ + 1 points we calculate their
symmetrical FFT spectrum [38]. Then we multiply the FFT outputs byHD(fm̄) where fm̄ = m̄ 2fD

N̄+1
for m̄ = 0, 1, . . . , N̄ , and the resulting vector is applied as input to an N̄ + 1 length IFFT. The
quadrature and in-phase results are squared at each point in time, added, with the result square
rooted. Finally, an N̄ + 1-length time series is generated. In an actual simulation environment the
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Gaussian noise is generated with around α1 samples per period of the maximum Doppler frequency,
that is 1

α1fD
, therefore the sampling rate of the channel coefficients is around α1fD with α1 being an

integer usually chosen in the range 5 to 12. As can be noticed the coefficients of the channel model
are generated from the Jakes model of the Doppler effect. However, the system simulation takes
place at much higher frequency rate denoted as fsim. As a result, an interpolation operation given by
Lsim = floor[ fsimα1fD

] should be applied to the coefficients of the channel model.

n t( ) a ti ( )

pi

H fD ( )
-

x

Figure 6.24 Generation of multipath coefficient including Doppler effect.

Figure 6.25 Simulation setup for Jakes model.

Example 6.3: CDMA receiver simulations

Consider a downlink connection of a synchronous direct-sequence code-division multiple access
(DS-CDMA) system with J users, G+ 1 chips per symbol and a channel with I + 1 paths. Assume
the user receiver is moving at v = 30.00m/s and the carrier frequency is at fo = 1.0GHz. We
consider a simple model for the channel inspired by the UMTS test model above described. The
channel model should be generated at a simulation sampling rate of at least fsim = α2× 1

T = α2BW
samples per second, with α2 being normally an integer ranging from 5 to 12. It is worth emphasizing
again that the channel coefficients will be generated at a much lower rate than the simulation sampling
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rate. As a result, some standard interpolation technique [38] should be used in order to match the
channel model generation rate with simulation sampling rate.

Consider that the chip rate of the CDMA system is 0.5 Mc/s (Mega chips per second) and that we
utilize α2 = 10 samples per chip to simulate the system. As such, the CDMA system simulation has
sampling rate equal to 5 Msamples/s. In this case the interpolation factor applied to the chip level
signal should be Linterp = floor[5Mc/s

1
T

] = floor[5Mc/s
BW ], where floor[·] indicates the largest integer

smaller than [·]. The sampling frequency that the channel model should be generated is then given
by

fsim ≈ BWLinterp ≈ α1fDLsim

in Msamples/s. In this particular discussion, assuming the input signal sampling rate equal to the
chip rate the interpolation factor Linterp is equal to 10. Note that in the above discussion we satisfy
the sampling theorem by utilizing the complex envelope, that is the complex lowpass equivalent, of
the transmitted signal. This means the sampling rate is equal to the channel bandwidth.

Assuming the channel model as described is constant during each symbol interval, and that the input
signal vector x(k) is given by4

x(k) =
J∑
j=1

Ajbj(k)Cjh(k) + n(k)

=
J∑
j=1

Ajbj(k)Cjh(k) + nn(k) + nISI(k) (6.82)

where x(k) is an (N + 1 = G + I + 1) × 1 vector and nn(k) is defined in equation (6.58). We
consider that nn(k) is a complex Gaussian noise vector with E[nn(k)nHn (k)] = σ2

nI. The symbols
bj(k) are four QAM given by

√
2

2 {±1± j1}, where the amplitude of user j isAj . The channel vector
is h(k) = [h0(k) . . . hI(k)]T and the (N + 1)× (I + 1) convolution matrix Ck contains one-chip
shifted versions of the signature sequence for user j given by sj = [sj,0 sj,1 . . . sj,G]T . Matrix Ck

has the following format

Cj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj,0 0 0 · · · 0
sj,1 sj,0 0 · · · 0
sj,2 sj,1 sj,0 · · · 0

...
...

. . .
...

...
0 sj,G sj,G−1 · · · sj,G−I
...

...
. . .

...
...

0 0 · · · 0 sj,G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.83)

This example aims to access the bit error rate (BER) performance of some adaptive-filtering algo-
rithms such as:

4In an actual implementation x(k) originates from the received signal after filtering it through a chip-pulse matched filter
and then sampled at chip rate.
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Normalized LMS algorithm.

RLS algorithm.

SM-NLMS algorithm.

The simplified SM-AP algorithm with L = 4 and time-varying γ̄(k).

The SM-PUAP algorithm with L = 1, and M̄ = floor[ (N+1)
1.8 ] where floor[·] indicates the

largest integer smaller than [·].

The receiver of the DS-CDMA system simulation setup is depicted in Fig. 6.26 where we utilize
as spreading sequences the Gold sequences of length G + 1 = 7 listed in Table 6.26 [35]. The
Gold sequences are not orthogonal to each other leaving some multi-access interference from the
other users in the CDMA system on the information of the user of interest, even in synchronous
transmission case.

e k( )

y k( )
x k( )

Training
Sequence

Decision
Device

Linear
Receiver

w k( )

+
-

z
-L

Figure 6.26 Simulations setup for DS-CDMA example.

Table 6.8 Length 7 Gold Sequences

Sequences Gold Sequences

s1 1 0 0 1 0 1 1

s2 1 1 1 0 1 0 0

s3 0 1 1 1 1 1 1

s4 1 1 1 0 0 0 1

s5 1 0 1 0 1 1 0

s6 0 0 0 0 1 0 1

s7 1 1 0 1 1 0 0

s8 0 0 1 1 0 0 0

s9 0 1 0 0 0 1 0
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All users are synchronized such that all their information face the same channel with three paths with
relative powers given by 0, −0.9 and −4.9 dB, respectively. The relative delays between the paths
are determined by a uniformly distributed random variable whose outcome is mapped to integers in
the range 1 to 4, where these integers represent the number of chips.

The system starts with 5 users where all the 4 interferers have transmission powers 3 dB below the
desired user power level. The corresponding signal to noise ratio, defined as the ratio between the
desired user symbol energy per bit and the environment noise, is given by Eb/N0 = 20 dB. The
quantityN0/2 corresponds to power spectral density of the noise for positive and negative frequencies,
that isN0 is average noise power per bandwidth where the noise is measured at the receiver input. At
2000 symbols, an interferer with the same power as the desired user power enters the system, whereas
2 interferers with the same level of power disconnect. This dynamic behavior aims at addressing, for
this particular example, if some noticeable disturbance to the receiver performance originates from
user access and disconnection from the system.

Plot the evolution of the estimated of the noise and ISI powers as compared with the actual interference
power.

Solution:

For this example we measure the results by averaging the outcomes from 50 independent runs. In the
case of the normalized LMS algorithm the value of μ is 0.3, whereas the regularization parameter
value is γ = 10−6. The RLS algorithm is implemented with λ = 0.97. Again these values of μ
and λ were chosen after some simulation trials. The SM-AP algorithm uses L = 4 and variable γ̄,
whereas the SM-PUAP algorithm uses L = 1.

For a better view of the results the channel was allowed to change completely in an interval of 50
symbols, equivalent to 450 chips. Fig. 6.27 depicts the first 450 samples of the learning curves for the
algorithms compared in this example, whereas Fig. 6.28 shows the behavior of these algorithms in the
long run. In both figures the channel changes are noticeable every 350 chips, where the first change
occurs at around 370 chips due to the channel plus spreading delays. As can be observed, the NLMS,
RLS, SM-NLMS and the SM-AP algorithms were able to track the changes in the channel to some
extent. However, as shown in Fig. 6.29, the simplified SM-PUAP algorithm withL = 1 using variable
γ̄ has very competitive performance since it is among the fastest converging in such nonstationary
environment. Very similar result is obtained with the simplified SM-AP algorithm which has higher
computational cost. All the algorithms did not show any noticeable distinct behavior after the entrance
and exit of users in the system, mainly due to the fact that the channel model changes at every 50
symbols was the main source of changes.
Fig. 6.30 plots the evolution of the estimated noise and ISI powers as compared with the actual
interference power. The estimated curve was obtained using equation (6.63) with α = 0.96. As can
be observed, the estimated average power of the interferences follows closely its actual value for
this particular example, except at iteration 2000 when the interference estimate takes a few iterations
to track the true interference power. The accurate estimate of the disturbances turns the SM-AP
algorithms very attractive since virtually no environment dependent parameter is required to achieve
good overall performance.

�
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Figure 6.27 Learning curves for the NLMS, RLS, SM-NLMS, and SM-AP algorithms; 250 iterations.
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Figure 6.28 Learning curves for the NLMS, RLS, SM-NLMS, and SM-AP algorithms.
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6.10 CONCLUDING REMARKS

In this chapter, a number of adaptive affine projection algorithms were derived utilizing the set-
membership concept. Although the algorithms in the affine projection family might have high
misadjustment, their combination with deterministic objective functions leading to data selective up-
dating results in computationally efficient algorithms with low misadjustment and high convergence
speed. The set-membership family of algorithms can be very attractive for mobile terminals, sensor
arrays and embedded systems where by avoiding unnecessary computation the battery life is in-
creased. In stationary environments, the set-membership algorithms require more frequent updating
during the early iterations, as a consequence, if the computational complexity is of major concern
some strategy to reduce even further the computation count is required. The proposed solution is
to introduce the concept of partial update, in which only a subset of the adaptive filter are updated
in each iteration. It is mentioned that some caution should be exercised in choosing the selection
of the coefficients in order to avoid stability problems. The resulting set-membership affine projec-
tion algorithms with partial update are powerful solutions to exploit the tradeoff between speed of
convergence and misadjustment with computational burden.

It should be mention that there are set-membership algorithms with automatic data-reusing factor
according with the progress of the algorithm [20], [23]. Simulation results show that in most of
iterations the SM-AP algorithm requires a small number of reuses, that is in the limit, it becomes
the SM-NLMS or the SM-BNLMS algorithms. The set-membership technique can also be applied
to generate constrained affine projection algorithms with low computational complexity as proposed
in [39].
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6.12 PROBLEMS

1. In a system identification application the unknown system has transfer function given by

H(z) =
1
2
− 1

2
z−1

whereas the input signal is a binary (−1, 1) random signal, and the additional noise is generated
via (− 1

4 ,
1
4 ) by tossing a fair coin. Evaluate by hand the first 10 iterations SM-NLMS algorithm.

2. Show that the updating equation (6.50) is equivalent to the second coefficient updating of
Algorithm 6.4.

3. Repeat problem 1 for the SM-BNLMS algorithm 1.

4. Repeat problem 1 for the SM-BNLMS algorithm 2.
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5. Perform the equalization of a channel with the following impulse response

h(k) = ku(k)− (2k − 9)u(k − 5) + (k − 9)u(k − 10)

using a known training signal consisting of a binary (-1,1) random signal. An additional Gaussian
white noise with variance 10−2 is present at the channel output.
(a) Apply the SM-NLMS algorithm with an appropriate γ̄ and find the impulse response of an
equalizer with 15 coefficients.
(b) Convolve the equalizer impulse response at an iteration after convergence, with the channel
impulse response and comment on the result.

6. In a system identification problem, the input signal is generated by an autoregressive process
given by

x(k) = −1.2x(k − 1)− 0.81x(k − 2) + nx(k)

where nx(k) is zero-mean Gaussian white noise with variance such that σ2
x = 1. The unknown

system is described by

H(z) = 1 + 0.9z−1 + 0.1z−2 + 0.2z−3

The adaptive filter is also a third-order FIR filter, and the additional noise is a zero-mean Gaussian
noise with variance given by σ2

n = 0.001.

Using the SM-BNLMS algorithm:
(a) Choose an appropriate γ̄, run an ensemble of 20 experiments, and plot the average learning
curve.
(b) Measure the excess MSE.

7. Derive the complex versions of the SM-BNLMS algorithms 1 and 2 to equalize a channel with
the transfer function given below. The input signal is a four QAM signal representing a randomly

generated bit stream with the signal to noise ratio σ2
x̃

σ2
n

= 20 at the receiver end, that is, x̃(k) is
the received signal without taking into consideration the additional channel noise. The adaptive
filter has 10 coefficients.

H(z) = (0.34− 0.27j) + (0.87 + 0.43j)z−1 + (0.34− 0.21j)z−2

(a) Run the algorithm for μ = 0.1, μ = 0.4, and μ = 0.8. Comment on the convergence
behavior in each case.
(b) Plot the real versus imaginary parts of the received signal before and after equalization.
(c) Increase the number of coefficients to 20 and repeat the experiment in (b).

8. In a system identification problem, the input signal is generated from a four QAM of the form

x(k) = xre(k) + jxim(k)

where xre(k) and xim(k) assume values ±1 randomly generated. The unknown system is
described by

H(z) = 0.32 + 0.21j+ (−0.3 + 0.7j)z−1 + (0.5− 0.8j)z−2 + (0.2 + 0.5j)z−3
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Algorithm 6.7

The Complex Set-Membership Affine Projection Algorithm

Initialization
x(0) = w(0) = [0 . . . 0]T

choose γ̄ around
√

5σn
γ = small constant

Do for k ≥ 0
e∗
ap(k) = d∗

ap(k)− XHap(k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise

w(k + 1) = w(k) + Xap(k)
[
XHap(k)Xap(k) + γI

]−1
μ(k)e∗(k)u1

The adaptive filter is also a third-order complex FIR filter, and the additional noise is zero-mean
Gaussian white noise with variance σ2

n = 0.04. Derive and use the complex set-membership
normalized LMS algorithm, choose an appropriate γ̄, run an ensemble of 20 experiments, and
plot the average learning curve.

9. Repeat problem 8 utilizing the complex version of SM-AP algorithm, detailed in Algorithm 6.7
provided, with L = 4.

10. The double threshold SM-AP algorithm can be derived for applications such as echo cancellation
where there is no interest in reducing the error signal power beyond certain level. Derive an SM-
AP algorithm by choosing the vector γ̄(k) in such a way that the echo canceller does not reduce
the output error power below the power of the far-end signal. Instead of using as threshold a
single value of γ̄, the proposed algorithm uses a range for the acceptable output error value
between γ̄1 and γ̄2, where γ̄1 > γ̄2, as depicted in Fig. 6.31.

11. In applications where the parameters to be estimated are dominated by few dominant coefficients,
that is, they are sparse, it is often desirable to employ a proportionate adaptation strategy
where weights are assigned to parameter components proportional to their magnitude [20]. The
updating equation of the proportionate SM-AP algorithm is given by

w(k + 1) = w(k) + P(k)Xap(k)
[
XTap(k)Xap(k)

]−1
[eap(k)− γ̄(k)] (6.84)
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H(k)

H(k − 1)

d(k) − wTx(k) = γ1

d(k) − wTx(k) = γ2

d(k) − wTx(k) = −γ2

d(k) − wTx(k) = −γ1

d(k) − wTx(k) = 0

d(k − 1) − wTx(k − 1) = ε(k − 1)

w(k)

w(k + 1)

w(k)

w(k)

w(k + 1)

w(k + 1)

w(k + 1)

w(k)

Figure 6.31 SM-AP algorithm with double threshold.

where

P(k) = μ(k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p0(k) 0 · · · 0

0 p1(k)
...

... 0 · · · ...

...
... 0

0 0 · · · pN (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise

and

pi(k) =
1− κμ(k)
N + 1

+
κμ(k)|w|i(k)∑N
i=0 |w|i(k)

Use the proportionate adaption algorithm identify a system whose impulse response is given
below.

h(k) = [1 0 0 0.5 0 2]

The input signal is a uniformly distributed white noise with variance σ2
x = 1, and the measure-

ment noise is Gaussian white noise uncorrelated with the input with variance σ2
n = 5.25 10−3.

The adaptive filter has 6 coefficients.

(a) Use κ = 0.5, experiment some values of γ̄ and discuss the results.
(b) Plot the obtained FIR filter impulse response at any iteration after convergence is achieved
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and compare with the unknown system.
(c) Compare the best solution with that obtained by the corresponding SM-AP algorithm.

12. Prove from equations (6.36) to (6.39) that

{[
x(k) X̃ap(k)

]T [
x(k) X̃ap(k)

]} [a
b

]
=

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦

13. In SM-PUAP algorithm only N + 1− M̄ coefficients are updated at a given iteration. Exploit
this fact to derive a reduced complexity algorithm by generalizing the procedure used to derive
equations (6.36) to (6.41).

14. Identify a typical Channel A model for wireless environment described in Table 6.7 with the
SM-BNLMS algorithm 2, using as input signal a Gaussian white noise and such that the signal
to noise ratio at the receiver end is 10dB’s. Determine though simulations the approximate
number of training symbols to achieve a good channel estimation of sufficient order.




