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BLIND ADAPTIVE FILTERING

13.1 INTRODUCTION

There are a number of applications where the reference signal is either not available or consists of a
training signal that in communication systems implies in reduction of useful data transmission. In
those cases, we should utilize some alternative objective functions applied to the available data as
well as some knowledge related to the nature (properties) of the signals involved.

In this chapter, some adaptive-filtering algorithms are presented which do not utilize reference signal
that are collectively known as blind adaptive-filtering algorithms. The algorithms are also called
training-less or unsupervised algorithms since their learning do not include any reference or training
signal. This chapter makes no attempt to cover this subject in breadth and in depth, but the interested
reader can consult some books [1]-[4] for further details.

There are two main types of blind signal processing procedures widely discussed in the literature,
namely blind source separation and blind deconvolution. In the former case several signal sources
are mixed by an unknown environment and the objective of the blind signal processor is to separate
these signal sources [2]. On the other hand, the blind deconvolution aims at removing the effect of
a linear time-invariant system on a signal source where the only assumptions are the observation of
the signal before the deconvolution process and the probability density of the input signal source.

Blind deconvolution is obviously closely related to blind equalization, and the distinction lies on the
fact that in the equalization case it is usually assumed that the input signal belongs to a prescribed finite
set (constellation) and the channel is a continuous-time channel. These features of the equalization
setup are assets that can be exploited by allowing nonlinear channel equalization solutions, whereas
blind deconvolution employs linear solutions because its input signal cannot be considered to belong
to a finite set constellation. However, it is fact that several solutions for both problems are closely
related and here we emphasize the blind equalization case.
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In blind equalization the channel model is either identified explicitly or implicitly. The algorithms uti-
lizing as objective function the minimization of the MSE or generating a zero-forcing (ZF) solution1

in general do not estimate the channel model explicitly. On the other hand, nonlinear solutions
for channel equalization such as maximum likelihood sequence detector (MLSD) [8] and the DFE
require explicit estimation of the channel model.

As a rule, the blind signal processing algorithms utilize second and higher order statistics indirectly
or explicitly. The high-order statistics are directly employed in algorithms based on cummulants, see
[9] for details, and they usually have slow convergence and high complexity. There is yet another
class of algorithms based on models originated from information theory [3].

This chapter deals with blind algorithms utilizing high-order statistics implicitly for the single-input
single-output (SISO) equalization case, e.g. constant modulus algorithm (CMA), and algorithms
employing second-order statistics for the single-input multi-output (SIMO) equalization case. Un-
fortunately the SISO blind solutions have some drawbacks related to the multiple minima solutions,
slow convergence, and difficulties in equalizing channels with nonminimum phase2. In the SIMO
case we are usually dealing with oversampled received signal, that is, the received signal is sampled
at rate multiple of the symbol rate (at least twice). Another SIMO situation is whenever we use
multiple receive antennas that can be proved to be equivalent to oversampling. Such sampling higher
than baud rate results in received signals which are cyclostationary allowing the extraction of phase
information of the channel. In the case of baud rate sampling and WSS inputs, the received signal
is also WSS and only minimum-phase channels can be identified from second-order statistics since
the channel phase information is lost. Under certain assumptions the SIMO configuration allows the
identification of the channel model as well as blind channel equalization utilizing only second-order
statistics. In particular, this chapter presents the Godard, CM, and Sato algorithms for the SISO case.
We also discuss some properties related to the error surface of the CMA. Then we derive the blind
CM affine projection algorithm which is then applied to the SISO and SIMO setups.

13.2 CONSTANT-MODULUS ALGORITHM

In this section we present a family of blind adaptive-filtering algorithms that minimizes the distance
between the modulus of the equalizer output and some prescribed constant values, without utilizing a
reference signal. These constant values are related to the modulus of constellation symbols, denoted
by C, of typical modulations utilized in many digital communication systems. The earlier blind
equalization proposals addressed the case of Pulse Amplitude Modulation (PAM) for the case the
channel model is considered a linear time-invariant Single-Input Single-Output (SISO) system [5]-
[6], operating at symbol rate. This approach was latter generalized in [7] by modifying the objective
function to consider higher order statistics of the adaptive-filter output signal that accommodates the
case of Quadrature Amplitude Modulation (QAM).

1In the ZF solution the equalized signal is forced to be equal to the transmitted signal, a solution not recommended
whenever the environment noise is not negligible, due to noise enhancement. The ZF equalizer aims at estimating a channel
inverse in order to eliminate intersymbol interference.

2Channels whose discrete-time models have poles and zeros outside the unit circle.
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Let’s assume here that symbols denoted by s(k) are transmitted through a communication channel.
The channel impulse response described by h(k) convolves with the sequence s(k) generating the
received signal given by

x(k + J) = s(k)h(J) +

⎛
⎝ k+J∑
l=−∞, l �=k

s(l)h(k + J − l)
⎞
⎠+ n(k + J) (13.1)

where J denotes the channel time delay which will be considered zero without loss of generality.
The transmitted signals s(k) belong to a set of possible symbols, that is s(k) ∈ C, with C representing
the constellation set, defined by the chosen constellation such as PAM3 and the complex QAM. The
symbol occurrence is uniformly distributed over the defined elements of the constellation. In the
following we present the Godard algorithm which relies on a high-order statistics property of the
chosen constellation to define its updating mechanism.

13.2.1 Godard Algorithm

The general objective of the Godard algorithm utilizing the criterion proposed in [7] is to minimize

ξGodard = E
[
(|wH(k)x(k)|q − rq)p

]
= E [(|y(k)|q − rq)p]
= E [epGodard(k)] (13.2)

with

rq =
E[|s(k)|2q]
E[|s(k)|q] (13.3)

where q and p are positive integers. The value of rq defines the level which |y(k)|q should approach,
with a penalization error powered by p.

The simple stochastic gradient version of this algorithm can be obtained by differentiating the ob-
jective function of equation (13.2) with respect to w∗(k). The resulting updating equation is given
by

w(k + 1) = w(k)− 1
2
μ p q (|y(k)|q − rq)p−1 |y(k)|q−2 y∗(k) x(k)

= w(k)− 1
2
μ p q ep−1

Godard(k) |y(k)|q−2 y∗(k) x(k) (13.4)

The detailed description of the Godard algorithm is provided by Algorithm 13.1.

3The M -ary PAM constellation points are represented by si = ãi, with ãi = ±d̃,±3d̃, . . . ,±(
√
M − 1)d̃. The

parameter d̃ represents half of the distance between two points in the constellation.
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Algorithm 13.1

Godard Algorithm

Initialization
Choose p and q
x(0) = w(0) = random vectors
rq = E[|s(k)|2q ]

E[|s(k)|q ]
Do for k > 0
y(k) = wH(k)x(k)
eGodard(k) = |y(k)|q − rq
w(k + 1) = w(k)− 1

2 μ p q e
p−1
Godard(k) |y(k)|q−2 y∗(k) x(k)

13.2.2 Constant-Modulus Algorithm

For q = p = 2 in the Godard framework, the objective function of equation (13.2) corresponds to
the constant-modulus algorithm (CMA) whose objective function is described by

E
[
e2CMA(k)

]
= E

[
(|wH(k)x(k)|2 − r2)2

]
= E

[
(|y(k)|2 − r2)2

]
(13.5)

In this case,

r2 =
E[|s(k)|4]
E[|s(k)|2] (13.6)

meaning that whenever the input symbols have constant modulus, the CM error minimization aims
at keeping the modulus |y(k)|2 as close as possible to the constant value of r2. For the CMA, the
stochastic gradient update equation is given by

w(k + 1) = w(k)− 2μ (|y(k)|2 − r2) y∗(k) x(k)
= w(k)− 2μ eCMA(k) y∗(k) x(k) (13.7)

Algorithm 13.2 describes in detail the CM algorithm.

13.2.3 Sato Algorithm

A historically important objective function somewhat related to the case of the Godard algorithm
above is the so-called Sato algorithm whose objective function is defined as

eSato(k) = y(k)− sgn[y(k)]r1 (13.8)
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Algorithm 13.2

Constant-Modulus Algorithm

Initialization
x(0) = w(0) = random vectors
r2 = E[|s(k)|4]

E[|s(k)|2]
Do for k ≥ 0
y(k) = wH(k)x(k)
eCMA(k) = |y(k)|2 − r2
w(k + 1) = w(k)− 2μ eCMA(k) y∗(k) x(k)

Algorithm 13.3

Sato Algorithm

Initialization
x(0) = w(0) = random vectors
r1 = E[|s(k)|2]

E[|s(k)|]
Do for k ≥ 0
y(k) = wH(k)x(k)
eSato(k) = y(k)− sgn[y(k)]r1
w(k + 1) = w(k)− μ eSato(k) x(k)

where sgn[y] = y
|y| such that for y = 0, sgn[y] = 1. Its update equation is described by

w(k + 1) = w(k)− μ (y(k)− sgn[y(k)]r1) x(k)
= w(k)− μ eSato(k) x(k) (13.9)

In this case, the target is that the equalized signal y(k) follows the sign of the transmitted symbol, that
is, this algorithm follows the decision direction whenever the input signal is a binary PAM signal.
The Sato algorithm was the first blind adaptive equalizer taking into consideration PAM transmission
signals with multilevel. Algorithm 13.3 describes step by step the Sato algorithm.
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13.2.4 Error Surface of CMA

In this subsection we derive an expression for the CMA error surface for a simple and yet illustrative
case, where both the symbol constellation as well as the adaptive-filter coefficients are real valued.
Let’s assume the simplest equalization problem where the unknown channel is modeled as

H(z) =
κz

z + a
(13.10)

In a noiseless environment this channel has an ideal equalizer (zero forcing) given by

W (z) = ±z−i (w0 + w1z
−1)

= ±z
−i

κ
[1 + az−1] (13.11)

where i is a nonnegative integer. For i = 0 it leads to an equalized signal with zero delay. For the
CMA case, the objective function in this particular example can be written as

ξCMA = E
{
[|y(k)|2 − r2]2

}
= E[|y(k)|4]− 2E[|y(k)|2]r2 + r22 (13.12)

The required expected values for the above equation are given by

E[|y(k)|2] = (w2
0 + w2

1)
κ2E[|s(k)|2]

1− a2 − 2w0w1
aκ2E[|s(k)|2]

1− a2 (13.13)

E[|y(k)|4] = (w4
0 + w4

1)
[
κ4E[|s(k)|4]

1− a4 +
6a2κ4{E[|s(k)|2]}2
(1− a4)(1− a2)

]

+6w2
0w

2
1

{
a2
[
κ4E[|s(k)|4]

1− a4 +
6a2κ4{E[|s(k)|2]}2
(1− a4)(1− a2)

]
+
κ2{E[|s(k)|2]}2

1− a2

}

−4w0w
3
1a

{[
κ4E[|s(k)|4]

1− a4

]
+

6a2κ4{E[|s(k)|2]}2
(1− a4)(1− a2)

}

−4w3
0w1

{
a3
[
κ4E[|s(k)|4]

1− a4 +
6a2κ4{E[|s(k)|2]}2
(1− a4)(1− a2)

]
+

3aκ4{E[|s(k)|2]}2
1− a2

}
(13.14)

where the detailed derivations pertaining to the above equations can be found in problem 2.

Example 13.1

Assume a QAM signal with four symbols is transmitted through an AR channel whose transfer
function is

H(z) =
0.36z
z + a

for the cases where a = 0.4 and a = 0.8, respectively. The equalizer is a first-order FIR adaptive
filter as described in equation (13.11). For a signal to noise ratio of 10dB, plot the CMA error surface
and its corresponding contours.
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Solution:

Fig. 13.1 depicts the error surface and its contours for the CM objective function, with a = 0.4, where
the surface is flattened for certain ranges of w0 and w1 in order to allow a better view of valleys
and local minima and maxima. As can be verified the surface presents multiple minima, the ones at
w0 = 0 do not correspond to global minima. The surface shape indicates that if a good initial point
is not given to a CM-based algorithm, the parameters will converge to an undesirable local minima
where the equalization performance might be very poor. In addition, if the algorithm traverses a
region in the neighborhood of a saddle point the convergence of stochastic gradient algorithms can
be particularly slow. Fig. 13.2 shows the error surface and its contours for a = 0.8, where in this
case the local minima are not so visible but they do exist.

�

Example 13.2

In this example we consider an equalization problem. Perform the equalization of a channel with the
following impulse response

h = [1.1 + j0.5 0.1− j0.3 − 0.2− j0.1]T

The transmitted signals are uniformly distributed four QAM samples with unitary power. An ad-
ditional Gaussian white noise with variance 10−2.5 is present at the channel output. Utilize the CMA.

(a) Find the Wiener solution for an equalizer with five coefficients and convolve with the channel
impulse response.

(b) Perform a blind equalization also with five coefficients and depict the detected symbols before
and after the equalization.

Solution:

(a) In the first step, we compute the Wiener solution and perform the convolution with the channel
impulse response in order to verify the effectiveness of the equalizer order in the present example.
For a delay of 1, the convolution samples are given by

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0052 + j0.0104
0.9675 + j0.0000
0.0074 + j0.0028
−0.0548− j0.0014
0.0129 + j0.0222
−0.0939− j0.0075
0.0328− j0.0098

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
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Figure 13.1 (a) CMA error surface, (b) CMA contours; a=0.4.
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Figure 13.2 (a) CMA error surface, (b) CMA contours; a=0.8.
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where as can be observed the real part of the second sample is much higher than the remaining
samples, showing that the equalization is successful.

(b) In Fig. 13.3 it is shown how the received signals are distributed in the input signal constellation
space, and as can be observed and expected the received signal requires an equalizer for proper
detection.
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Figure 13.3 Receiver signals before equalization.

By applying the CMA to solve the equalization problem with μ = 0.001, we run the algorithm for
10000 iterations with the results measured by averaging the outcomes of 200 independent runs. By
initializing the adaptive-filter coefficients at

w(0) =

⎡
⎢⎢⎢⎢⎣
−1.627563− j0.443856
−0.121194 + j0.338364
0.189390 + j0.063311
0.575142− j0.062878
0.364852− j0.6053977

⎤
⎥⎥⎥⎥⎦

the last 1000 equalized signals fall in the regions depicted in Fig. 13.4 representing the input signal
constellation space. As can be verified, the equalized symbols present four clusters which are not
centered at the actual transmitted symbols positions. On the other hand, these clusters are around
the same constant modulus position as the transmitted symbols but at different angles, that is, the
transmitted constellation is received after equalization rotated by an arbitrary angle. For differentially
encoded symbols the mentioned phase shift can be eliminated, allowing proper decoding of the
received symbols.
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Figure 13.4 Equalized signals for the CM algorithm using the first coefficient initialization.

If the CMA filter coefficients are initialized at

w(0) =

⎡
⎢⎢⎢⎢⎣

2.011934 + j0.157299
0.281061 + j0.324327
−0.017917 + j0.836021
−0.391982 + j1.144051
−0.185579− j0.898060

⎤
⎥⎥⎥⎥⎦

the resulting clusters are shown in Fig. 13.5, where it is possible to verify that in this case the clusters
occur at the right positions with respect to the transmitted symbols.

For illustration, Fig. 13.6 shows the equalization results when using the Wiener solution, where it
can be observed by comparing it with Fig. 13.5 that the CMA can lead to Wiener like solutions when
properly initialized.

The typical learning curve for the CM algorithm in the present example is illustrated in 13.7 where
in this case we utilized random initial coefficients for the adaptive filter.

�
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Figure 13.5 Equalized signals for the CM algorithm using the second coefficient initialization.
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Figure 13.6 Equalized signals for the Wiener filter.
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Figure 13.7 Learning curve of the CM algorithm.

13.3 AFFINE PROJECTION CM ALGORITHM

In general the CMA like algorithms present slow convergence when the update equation has a
stochastic gradient form. A possible alternative solution when the convergence speed is not acceptable
is to utilize the affine projection form. Let’s consider the cases where either the desired vector is a
CMA like function at each entry of a vector rap(k) or represents a nonlinear function G1[·] applied
to the adaptive-filter output, that is,

rap(k) = G1
[
yap(k)

]
= G1

[
XTap(k)w∗(k)

]
(13.15)

where the definitions of the data matrix and vectors of the affine projection algorithm are defined in
equations (4.74) and (4.77).

The objective function that the affine projection algorithm minimizes in this case is

‖w(k + 1)− w(k)‖2
subject to :
G2
{

rap(k)− XTap(k)w∗(k + 1)
}

= 0 (13.16)

where rap(k) is a vector replacing dap(k) in the blind formulation whose elements are determined
by the type of blind objective function at hand. G2[·] represents another nonlinear operation applied
elementwise on [·], usually given by (·)2 as in the CM algorithm. In any situation, G2(0) = 0. Also
in this case the affine projection algorithm keeps the next coefficient vector w(k + 1) as close as
possible to the current one and aims at making the a posteriori error to be zero. It is worth mentioning
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that if the minimization of ‖w(k+1)−w(k)‖2 is not included in the objective function, the problem
of keeping rap(k) = XTap(k)w∗(k+1) makes the coefficient vector underdetermined4 whenever this
vector has more than one entry.

As described in Chapter 4 by utilizing the method of Lagrange multipliers the constrained minimiza-
tion problem of equation (13.16) becomes

F [w(k + 1)] = ‖w(k + 1)− w(k)‖2 + λHap(k)G2
{

rap(k)− XTap(k)w∗(k + 1)
}

(13.17)

where λap(k) is the (L+ 1)× 1 vector of Lagrange multipliers. In order to facilitate the gradient
computation let’s rewrite the above expression as

F [w(k + 1)] = [w(k + 1)− w(k)]H [w(k + 1)− w(k)]
+G2

{
rTap(k)− wH(k + 1)Xap(k)

}
λ∗

ap(k) (13.18)

The gradient of F [w(k + 1)] with respect to w∗(k + 1)5 is given by

gw∗{F [w(k + 1)]} = [w(k + 1)− w(k)]
+Xap(k)gȳap

{
G2
[
rTap(k)− ȳTap(k)

]}
λ∗

ap(k) (13.19)

where ȳap(k) represents the a posteriori adaptive-filter output signal. After setting the gradient of
F [w(k + 1)] with respect to w∗(k + 1) equal to zero, we get

w(k + 1) = w(k)− Xap(k)gȳap

{
G2
[
rTap(k)− ȳTap(k)

]}
λ∗

ap(k) (13.20)

By premultiplying equation (13.20) by XHap(k), using the constraint relation of equation (13.16), and
considering the fact that G2(0) = 0 so that XHap(k)w(k + 1) = r∗

ap(k), we obtain

−XHap(k)Xap(k)gȳap

{
G2
[
rTap(k)− ȳTap(k)

]}
λ∗

ap(k) + XHap(k)w(k) = r∗
ap(k) (13.21)

This expression leads to

gȳap

{
G2
[
rTap(k)− ȳTap(k)

]}
λ∗

ap(k) =
[
XHap(k)Xap(k)

]−1 {−r∗
ap(k) + XHap(k)w(k)

}
(13.22)

By substituting equation (13.22) in equation (13.20), the update equation can be rewritten as

w(k + 1) = w(k) + Xap(k)
(
XHap(k)Xap(k)

)−1 {
r∗
ap(k)− XHap(k)w(k)

}
= w(k) + Xap(k)

(
XHap(k)Xap(k)

)−1
e∗
ap(k) (13.23)

From the above equation it follows that

‖w(k + 1)− w(k)‖2 = eTap(k)
(
XHap(k)Xap(k)

)−1
e∗
ap(k) (13.24)

4A solution exists but it is not unique.
5We could also formulate this solution employing the gradient with respect to w(k + 1), leading to the same results.



55113.3 Affine Projection CM Algorithm

such that the minimization of the terms on the left- and right-hand sides are equivalent. However,
the minimization of the right-hand side term does not mean minimizing ‖e∗

ap(k)‖ unless the matrix(
XHap(k)Xap(k)

)−1
is a diagonal matrix with equal nonzero values in the main diagonal. Despite

of that, in order to generate a tractable solution we minimize ‖e∗
ap(k)‖ and interpret the objective

function that is actually minimized.

If we assume r∗
ap(k) has constant modulus elementwise, the minimization of

‖e∗
ap(k)‖2 = ‖r∗

ap(k)− XHap(k)w(k)‖2

occurs when r∗
ap(k) is in the same direction as (is colinear with) XHap(k)w(k). In this case the

following choice should be made

r∗
ap(k) = sgn[XHap(k)w(k)] (13.25)

where for a complex number y, sgn[y] = y
|y| , and whenever y = 0, sgn[y] = 1.

In the update equation (13.24) the convergence factor is unity, and as previously discussed a trade-off
between final misadjustment and convergence speed is achieved by including convergence factor as
follows

w(k + 1) = w(k) + μXap(k)
(
XHap(k)Xap(k)

)−1 {
r∗
ap(k)− XHap(k)w(k)

}
(13.26)

As before, with a convergence factor different from one (smaller than one) a posteriori error is no
longer zero. The reader might question why G2[·] did not appear in the final update expression
of equation (13.22), the reason is the assumption that the constraint in equation (13.16) is satisfied
exactly leading to a zero a posteriori error.

The objective function that equation (13.26) actually minimizes is given by(
1
μ
− 1
)
‖w(k + 1)− w(k)‖2 + ‖rap(k)− XTap(k)w∗(k + 1)‖2P =(

1
μ
− 1
)
‖w(k + 1)− w(k)‖2 + ‖sgn[XHap(k)w(k)]− XTap(k)w∗(k + 1)‖2P (13.27)

where P =
(
XHap(k)Xap(k)

)−1
and ‖a‖2P = aHPa.

Proof:

In order to simplify the derivations let’s define

α =
(

1
μ
− 1
)

The objective function to be minimized with respect to the coefficients w∗(k + 1) is given by

ξ(k) = α‖w(k + 1)− w(k)‖2 + ‖rap(k)− XTap(k)w∗(k + 1)‖2P



552 Chapter 13 Blind Adaptive Filtering

The derivative of the objective function is then given by

∂ξ(k)
∂w∗(k + 1)

= α[w(k + 1)− w(k)]− Xap(k)P
[
r∗
ap(k)− XHap(k)w(k + 1)

]
By setting this result to zero it follows that[

αI + Xap(k)PXHap(k)
]

w(k + 1) = αw(k) + Xap(k)Pr∗
ap(k) (13.28)

By applying the matrix inversion lemma we obtain

[
αI + Xap(k)PXHap(k)

]−1
=

1
α

I− 1
α

IXap(k)
[

XHap(k)
1
α

IXap(k) + P−1
]−1

XHap(k)
1
α

I

=
1
α

I− 1
α

IXap(k)
[

P−1

α
+ P−1

]−1

XHap(k)
1
α

I

=
1
α

[
I− Xap(k)

α

1 + α
PXHap(k)

1
α

I
]

=
1
α

[
I− Xap(k)PXHap(k)

1 + α

]

By replacing the last expression in the updating equation (13.28), we obtain

w(k + 1) =

[
I− Xap(k)PXHap(k)

1 + α

]
w(k) +

1
α

[
I− Xap(k)PXHap(k)

1 + α

]
Xap(k)Pr∗

ap(k)

= w(k)− Xap(k)Py∗
ap(k)

1 + α
+

1
α

Xap(k)Pr∗
ap(k)− 1

α

Xap(k)Pr∗
ap(k)

1 + α
= w(k)− μXap(k)Py∗

ap(k) + μXap(k)Pr∗
ap(k)

= w(k) + μXap(k)
(
XHap(k)Xap(k)

)−1
e∗
ap(k)

�

The description of the affine projection CM algorithm is provided in Algorithm 13.4, where as
standard an identity matrix multiplied by a small constant was added to the matrix XHap(k)Xap(k) in
order to avoid numerical problems in the matrix inversion.

It is worth mentioning that the update equation (13.22) represents other important application such as
the case where r∗

ap(k) = dec[XHap(k)w(k)], which corresponds to a decision directed blind algorithm,
where dec[·] represents a hard limiter where each entry of its argument is mapped into the closest
symbol of the constellation used in the transmission [10].

Now let’s consider the special scalar case where the nonlinear operations to be applied to the output
error of the normalized LMS algorithm are as following described. The objective function to be
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Algorithm 13.4

The Affine Projection CM Algorithm

Initialization
x(0) = w(0) = random vectors
choose μ in the range 0 < μ ≤ 2
γ = small constant

Do for k > 0
y∗
ap(k) = XHap(k)w(k)

r∗
ap(k) = sgn[XHap(k)w(k)]

e∗
ap(k) = r∗

ap(k)− y∗
ap(k)

w(k + 1) = w(k) + μXap(k)
(
XHap(k)Xap(k) + γI

)−1
e∗
ap(k)

minimized is

‖w(k + 1)− w(k)‖2
subject to :
|1− |xH(k)w(k + 1)|q|p = 0 (13.29)

The resulting update equation is

w(k + 1) = w(k) + μx(k)
(
xH(k)x(k)

)−1 {
sgn

[
xH(k)w(k)

]− xH(k)w(k)
}

(13.30)

corresponding to a scalar normalized LMS CM algorithm.

Example 13.3

Repeat Example 13.2 for the case of the affine projection CM algorithm, for L = 1 and L = 3 and
compare the result with the CM algorithm with q = 2.

Solution:

Using μ = 0.001 and the CM algorithm, the equalizer took well over 1000 iterations to converge as
depicted in Fig. 13.8. The same figure shows that the affine projection CM algorithm with L = 3 has
the fastest convergence, around 100 iterations, while leading to higher MSE after convergence when
compared with the cases of L = 1 and the CMA. For the affine projection cases the convergence
factor is μ = 0.1. Fig. 13.9 depicts the equalized signals after convergence for the case whereL = 3.
All these figures were generated by averaging the outcomes of 50 independent runs.



554 Chapter 13 Blind Adaptive Filtering

 0.1

 1

 0  500  1000  1500  2000

M
SE

 (
L

og
 s

ca
le

)

Number of iterations, k

CMA
CM-APA L=1
CM-APA L=3

Figure 13.8 Learning curves for the CM and affine projection CM algorithms, with L = 1 and L = 3.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

in−phase

qu
ad

ra
tu

re
−

ph
as

e

Figure 13.9 Equalized signals for the affine projection CM algorithm, with L = 3.

�



55513.4 Blind SIMO Equalizers

13.4 BLIND SIMO EQUALIZERS

The symbol spaced blind CMA equalizer methods described in previous section may converge to
unacceptable local minima induced by the finite-length of the FIR equalizers, despite these minima
being correct whenever the equalizer is a double sided filter with infinite order [1]. This situation
changes favorably in the case a fractionally spaced equalizer is employed as following discussed.
Many of the early blind equalizer methods utilized SISO channel model and relied on high-order
(greater than second-order) statistics which lead to multiple minima and slow convergence. These
equalizers are more sensitive to noise than those using second-order statistics. On the other hand,
the availability of multiple measures of the received signal gives rise to SIMO configuration that in
turn allows for blind channel equalization using second-order statistics. For example, oversampling
the channel output signal by an integer factor l leads to a cyclostationary process with period l, such
that the received discrete signal has cyclic correlation function allowing, under certain conditions,
the identification of the channel modulus and phase [1] blindly. The SIMO configuration can be
obtained by exploring diversity of antennas or by oversampling (also known as fractionally sampling)
the received signal.

It is worth mentioning that the SIMO methods are not only useful to estimate a SIMO channel inverse
filter but can be also used to perform channel identification. Many identification and equalization
approaches can be constructed from the observed data such as subspace methods [11] and prediction
methods [12]-[14] among others. The subspace methods are in general computationally complex.
Furthermore they are sensitive to the channel order uncertainty causing dimension errors in the
constructed signal and noise subspaces. Prediction error methods (PEM) are robust to overmodeling
[15] and lend themselves to adaptive implementations.

These SIMO approaches can be extended in a rather straightforward way to device CDMA receivers
[21] where blind multiuser detections are required [22]-[28], and in the cases semi-blind solutions
are possible [29]. In addition, in multiple transmitter and receiver antennas systems several types of
blind MIMO receivers can be derived [30]-[33]. In this section we briefly introduce the formulation
for SIMO blind equalization [1], [16], and point out how this formulation brings useful solutions to
blind equalization problems.

Let’s consider the single-input I-output linear system model depicted in Fig. 13.10, representing an
oversampling and/or the presence of multiple antenna at the receiver. In this case, the received signal
can be described by

r(k) =
M∑
i=0

x(k − i)h(i) + n(k) (13.31)

where

r(k) = [r1(k) r2(k) · · · rI(k)]T
n(k) = [n1(k) n2(k) · · ·nI(k)]T

h(m) = [h1(m) h2(m) · · ·hI(m)]T
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The elements of vector r(k) represent the I received signals at instant k, n(k) collects the noise
samples from each subchannel at the same instant. The elements of vector h(m), that is hi(m),
represent the mth sample of the ith subchannel model, for m = 0, 1, . . . ,M and i = 1, 2, . . . , I .

x k( )

h k1 ( )

h k2 ( )

h kI ( )

n k1 ( )

n k2 ( )

n kI ( )

r k1 ( )

r k2 ( )

r kI ( )

+

+

+

Figure 13.10 Single-input multiple-output model.

Now let’s collect N samples of information vectors and pile them up in long vectors such that the
received signal vector is function of the input signal block as follows

r̄(k) = Hx(k) + n̄(k) (13.32)

where

r̄(k) =
[
rT (k) rT (k − 1) · · · rT (k −N + 1)

]T
n̄(k) =

[
nT (k) nT (k − 1) · · ·nT (k −N + 1)

]T
x̄(k) = [x(k) x(k − 1) · · ·x(k −M −N + 1)]T

H =

⎡
⎢⎢⎢⎣

h(0) · · · h(M) 0 · · · 0
0 h(0) · · · h(M) 0 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 h(0) · · ·h(M)

⎤
⎥⎥⎥⎦
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Vectors r̄(k) and n̄(k) have dimension NI , the input signal vector x̄(k) has dimension N + M
whereas the channel model matrix H has dimension NI ×M +N and is a block Toeplitz matrix.

Applying a linear combiner equalizer to the system of equation (13.32) the following relation results

y(k) = w̄H(k)r̄(k) = w̄H(k)Hx̄(k) + w̄H(k)n̄(k) (13.33)

The coefficient vector w̄(k) is the equalizer vector of length NI described as

w̄(k) =
[
w̃T0 (k) w̃T1 (k) · · · w̃TN−1(k)

]T
(13.34)

where the vector w̃n(k) represents the weights applied to r(k−n), for n = 0, 1, . . . , N − 1. The ith
element of w̃n(k), for i = 1, 2, . . . , I , represents the ith weight applied to the corresponding element
of r(k − n).

In a noiseless environment the zero-forcing equalizer is the desired solution such that

w̄H(k)H = [0 . . . 0 1 0 . . . 0]T (13.35)

However, the possible noise enhancement originated by w̄T (k)n̄(k) makes the zero-forcing solution
not practical in many situations.

13.4.1 Identification Conditions

An FIR channel is identifiable utilizing second-order statistics whenever the block Toeplitz matrix H
in equation (13.32) has full column rank, such that there is a left inverse. Alternatively, we can say
that the system of equation (13.32) can be equalized according to some objective function, if for a
set of subchannels each with order M the following conditions are met

1. rank[H] = M +N .

This means that matrix H has full column rank.

2. NI ≥ N +M , i.e., H is a tall matrix in the case NI > N +M .

In the latter case, this means that matrix H has more rows than columns.

For the case N ≥M , condition 1 is equivalent to say that the transfer functions

Hi(z) =
M∑
m=0

hi(m)z−m (13.36)

for i = 1, 2, . . . , I , have no common zeros [1], that is, the polynomials Hi(z) are coprime. In the
case M

I−1 ≤ N < M , we cannot infer that whenever Hi(z), for i = 1, 2, . . . , I , have no common
zeros, the matrix H will have full column rank. In case theHi(z) have common zeros there is no left
inverse matrix for H. In addition, it can also be shown that even if the subchannels are coprime, the
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matrix H has its rank reduced if N < M . Condition 2 is equivalent to say that the channel matrix
H has full column rank, making possible the channel equalization as well as identification using
second-order statistics. Several alternative proofs related to the identifiability of a SIMO system are
available in the literature such as in [17]-[19], no proof is included here.

Once satisfied the conditions for identifiability in the SIMO system, the finite-length input signal
included in x̄(k) should contain a large number of modes meaning it should have rich spectral content.
This way, in a noiseless environment the SIMO channel can be perfectly identified, except for a gain
ambiguity6, through several methods available in the literature [1], [11]-[14]. The requirements
on the channel input signal statistics vary from method to method, with some requiring that it is
uncorrelated while others not.

The same type of results applies for the SIMO blind equalizers, that is, a single-input I-output channel
can be equalized whenever:

At least one of the subchannels has length M + 1, i.e., hi(0) �= 0 and hi(M) �= 0, for any
i = 1, 2, . . . , I .

Hi(z) for i = 1, 2, . . . , I , have no common zeros.

N ≥M .

These conditions are necessary and sufficient for the SIMO channel identifiability or equalization
utilizing second-order statistics of the I outputs.

Many of the available solutions for blind channel identification and equalization based on second-
order statistics are very sensitive to channel order or rank estimation. Some of them rely on singular
value decomposition(s) (SVD) which are very computationally complex and are usually meant for
batch form of implementation. The emphasis here is to present a recursive solution which is more
robust to order estimation errors and is computationally attractive such that it can be applied to track
time-varying channels. An online blind SIMO equalizer is introduced in the following section.

13.5 SIMO-CMA EQUALIZER

This section discusses an important result that suggests that by combining the techniques implicitly
utilizing high-order statistics such as the CMA, with SIMO systems using second-order statistics can
be very beneficial. Let’s start by stating the following result whose proof can be found in [1], [20]:

In a noiseless channel, if the Multiple-Input Single-Output (MISO) FIR equalizer has lengthN ≥M ,
then the SIMO CMA equalizer is globally convergent if the subchannels Hi(z) for i = 1, 2, . . . , I ,
have no common zeros.

6A constant value multiplying the channel model.
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The reader should notice that a SIMO setup utilizing a CM objective function can be interpreted as
fractionally spaced constant-modulus equalizer.

The expression for the SIMO equalizer output signal as described in equation (13.33) can rewritten
as

y(k) =
I∑
i=1

wHi (k)ri(k) (13.37)

where the nth element of vector wi(k) corresponds to the (i + n − 1)th element of w̄(k), and the
nth element of vector ri(k) corresponds to ri(k − n), for i = 1, 2, . . . , I , and n = 0, 1, . . . , N − 1.
The equivalent SIMO system is depicted in Fig. 13.11, where it can be observed that the overall
equalization consists of using a separated sub-equalizer for each sub-channel with a global output
signal used in the blind adaptation algorithm.

x k( )
y ( )k

h k1 ( ) w k1 ( )

h k2 ( ) w k2 ( )

h kI ( ) w kI ( )

n k1 ( )

n k2 ( )

n kI ( )

r k1 ( )

r k2 ( )

r kI ( )

+

+

+

ALGORITHM

+

Figure 13.11 SIMO equalizer.
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Algorithm 13.5

SIMO Affine Projection CM Algorithm

Initialization
r̄(0) = w̄(0) = random vectors
choose μ in the range 0 < μ ≤ 2
γ = small constant

Do for k > 0
y∗
ap(k) = XHap(k)w̄(k)

r∗
ap(k) = sgn[XHap(k)w̄(k)]

e∗
ap(k) = r∗

ap(k)− y∗
ap(k)

w̄(k + 1) = w̄(k) + μXap(k)
(
XHap(k)Xap(k) + γI

)−1
e∗
ap(k)

In the case we adopt a CMA objective function along with the affine projection algorithm to derive
a SIMO equalizer, the Xap(k) matrix, assuming we keep the last L+ 1 input signal vectors, has the
following form

Xap(k) = [r̄(k) r̄(k − 1) . . . r̄(k − L)] (13.38)

The adaptive-filter output vector is described by

y∗
ap(k) = XHap(k)w̄(k)

=

⎡
⎢⎢⎢⎣

r̄H(k)
r̄H(k − 1)

...
r̄H(k − L)

⎤
⎥⎥⎥⎦ w̄(k)

=

⎡
⎢⎢⎢⎣

r̄H(k)
r̄H(k − 1)

...
r̄H(k − L)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

w̃0(k)
w̃1(k)

...
w̃N−1(k)

⎤
⎥⎥⎥⎦ (13.39)

where in the last equality we adopted the description of w̄(k) as given by equation (13.34). By
following the same derivations of section 13.3 it is possible to generate the SIMO affine projection
CM algorithm as described inAlgorithm 13.5. The affine projection algorithm is expected to converge
to the global optimum using normalized steps originated by the minimal distance principle utilized
in its derivations, as discussed in Chapter 4.
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Example 13.4

Given the one-input two-output channel whose model is described below. Assume a QAM signal
with four symbols is transmitted through these channels and simulate a blind equalization using the
SIMO affine projection CM algorithm of order 12, for a signal to noise ratio of 20dB measured at
the receiver input.[

hT1
hT2

]
=
[

0.1823 −0.7494 −0.4479 0.2423 0.0047 −0.41
0.3761 −0.1612 −0.1466 0.6437 0.5952 −0.2060

]

Solution:

We utilize the affine projection CM algorithm to solve the SIMO equalization problem with μ = 0.1,
L = 2 and γ = 10−6. The symbol error rate is measured by averaging the outcoming results of
50 independent runs, and the initial conditions utilized correspond to the Wiener solution randomly
disturbed. Fig. 13.12 shows the evolution of the errors in the symbols, and as can be observed
minimum symbol error rate occurs after 500 iterations. This result is expected since the conditions
for the correct channel equalization is met in this case, see subsection 13.4.1, and there is some
channel noise. Fig. 13.13 depicts the MSE between the equalized signal and the transmitted symbols
where the convergence of the affine projection CM algorithm takes places in around 1000 iterations.
Fig. 13.14 illustrates the effectiveness of the equalizer through the appropriate combination of
signals measured in each antenna.
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Example 13.5

Repeat the Example 6.3 by measuring through simulations the MSE performance of an equalizer
implemented with the SIMO affine projection CM algorithm, when it is available two received signals
obtained through different antennas. Choose the appropriate parameters and comment on the results.

Solution:

The channels available for the detection of the transmitted symbols correspond to the transfer function
from the transmitter to each antenna. The blind affine projection CM algorithm is employed to update
the sub equalizers of the SIMO system. The parameters chosen after some simulation trials are
μ = 0.3, L = 1, and γ = 10−6. The measures of MSE reflect an average taken from the outcomes
of 50 independent runs, where in the initialization one of the receiver filters is set to the Wiener
solution during the first 350 iterations. Each sub equalizer has order 30. Fig. 13.15 illustrates the
MSE evolution and as can be observed only after a few thousand iterations the curve shows a non
decreasing behavior. In comparison with the results from Example 6.3, the learning process takes
a lot more iterations when compared to the algorithms employing some sort of training. However,
despite of slower convergence the equalization is feasible since the conditions for the correct channel
equalization are met.
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The SIMO formulation presented in this chapter can be extended to the Multi-Input Multi-Output
(MIMO) case in rather straightforward way, under some assumptions such as independence of the
sources. There are several communication system setups that can be modeled as MIMO systems
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by properly stacking the transmitted and received information. In some applications the setup is
originally MIMO such as in multiuser communication systems [21]-[28], and in case we use antenna
array at transmitter and receiver in order to increase the communication capacity [30]-[33]. In many
MIMO applications adaptive-filtering algorithms are often utilized with training or in a blind form.

The affine projection CM algorithm presented in this chapter can be extended to include selective
updating using the set-membership approach presented in Chapter 6. In addition, for multiuser
environments such as CDMA systems, it is possible to incorporate some blind measurements related
to the multi-access and additional noise interferences in order to improve the overall performance of
blind receivers based on the set-membership affine projection CM algorithm, as discussed in [34].
The set-membership affine projection algorithm can be very efficient in SIMO as well as in MIMO
setups.

13.6 CONCLUDING REMARKS

This chapter presented some blind adaptive-filtering algorithms mostly aimed at direct blind channel
equalization. The subject of blind signal processing is quite extensive, as a result our emphasis was
to present the related issues and to introduce some useful algorithms. In particular it was introduced
some algorithms utilizing high-order statistics in an implicitly way, since the resulting algorithms
have low computational complexity7 while presenting slow convergence and possible convergence
to local minima. The cases introduced in this class were the constant-modulus, Godard, and Sato
algorithms, respectively. Some issues related to the error surface of the CM algorithm were also
illustrated through a simple example.

In order to improve the convergence speed of the CMA family of algorithms its affine projection
version was presented. This algorithm certainly alleviates the speed limitations of the CM algo-
rithms at the expense of increased computational complexity. In addition, this chapter discussed the
single-input multi-output methods which allow under certain conditions the correct identification and
equalization of unknown channels using only second-order statistics and do not have local minima.
In fact, the combination of the algorithms with implicit high-order statistics, with the affine projec-
tion update equation and the single-input multi-output setup leads to very interesting solutions for
blind channel equalization. The resulting algorithm has rather fast convergence and has only global
solutions under certain conditions.

In specific cases, we can conclude that fractionally spaced equalizers using indirect high-order
statistics such as the CM algorithms are not suitable to equalize channels with zeros in common.
In case this happens an additional equalizer after the SIMO equalizer might help in combating the
remaining intersymbol interference. On the other hand, the SIMO equalizers are suitable to equalize
channels with zeros on the unit circle, a rough situation for symbol spaced equalizers. In this case, the
SIMO equalizer can be used with an implicit high-order statistics objective function or with training
signal, as long as the subchannels do not have common zeros. For situations with common zeros on
the unit circle, or close to it, the standard way out is to employ DFE.

7In comparison with the algorithms using high-order statistics explicitly.
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13.8 PROBLEMS

1. Derive the Godard algorithm for real input signal constellations.

2. Derive equations (13.13) and (13.14).

Hint: Utilize the difference equation that describes x(k).

3. Perform the equalization of a channel with the following impulse response

h(k) = ku(k)− (2k − 9)u(k − 5) + (k − 9)u(k − 10)

using as transmitted signal a binary (-1,1) random signal. An additional Gaussian white noise
with variance 10−2 is present at the channel output.
(a) Apply the Godard algorithm for p = q = 4 with an appropriate μ and find the impulse
response of an equalizer with 15 coefficients.
(b) Plot the detected equalized signal before the decision after the algorithm has converged for
a number of iterations (over 50 samples) and comment on the result.

4. Repeat the problem 3 for the Sato algorithm.

5. Repeat the problem 3 for the CMA.

6. Assume a PAM signal with four symbols is transmitted through an AR channel whose transfer
function is

H(z) =
0.25z
z + 0.5

The equalizer is a first-order FIR adaptive filter. For a signal to noise ratio of 5dB, plot the error
surface and contours for Godard with p = q = 4.

7. Assume a QAM signal with four symbols is transmitted through an AR channel whose transfer
function is

H(z) =
0.25z
z + 0.5

Simulate a blind equalization using a first-order FIR adaptive filter, for a signal to noise ratio of
10dB, using the CMA.

8. Given the channel model below whose input is a binary PAM signal.

H(z) = 0.2816 + 0.5622z−1 + 0.2677z−2 − 0.3260z−3 − 0.4451z−4

+0.3102z−5 − 0.2992z−6 − 0.2004z−7
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Our objective is to equalize this channel with a blind affine projection CM algorithm. The
equalizer has order 10 and its objective is to shorten the effective impulse response of the
equalized signal. That means the channel-equalizer impulse response has most of its energy
concentrated in a few samples. Simulate this experiment for a signal to noise ratio of 15dB, and
comment on the channel shortening process.

9. Derive the set-membership affine projection CM algorithm.

10. (a) Show that recursion of equation (13.30) minimizes the objective function of equation (13.29).

(b) Show that recursion of equation (13.30) also minimizes the objective function

‖w(k + 1)− w(k)‖2
subject to :
|sgn

[
xH(k)w(k + 1)

]− |xH(k)w(k + 1)|q|p = 0

11. Derive a constrained minimum variance (CMV) affine projection algorithm for equalization,
whose objective function is to minimize

1
2
‖w(k + 1)− w(k)‖2

and
1
2

wT (k + 1)r(k)rT (k)w(k + 1)

subject to :
wT (k + 1)c = c

where r(k) is a vector that in the present case represents the received signal vector, c is an
arbitrary constant, and c is a constraint vector.

12. Assume a PAM signal with two symbols is transmitted through a noiseless AR channel whose
transfer function is

H(z) =
0.25z
z + 0.5

Simulate a blind equalization using a first-order FIR adaptive filter, using affine projection CM
algorithm as well as the stochastic gradient version CMA. Plot the convergence trajectories of
w0(k) and w1(k) for 20 distinct initialization points (on the same figure) for w0(0) and w1(0)
corresponding to zeros in the interior of unit circle. Interpret the results.

13. Equalize the one-input two-output channel described below using the SIMO affine projection
CM algorithm. The input signal is a two PAM signal representing a randomly generated bit

stream with the signal to noise ratios
σ2

ri

σ2
n

= 20, for i = 1, 2, at the receiver end, that is, ri(k)
is the received signal without taking into consideration the additional channel noise. Choose
the appropriate equalizer order and the number of reuses such that the bit error rate falls below
0.01.
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[
h1 h2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.345 −0.715
−0.016 0.690
−0.324 0.625
0.209 0.120
0.253 0.388
−0.213 0.132
0.254 −0.120
0.118 −0.388
0.483 0.451
−0.034 −0.204
0.462 0.560
−0.111 −0.675
−0.285 0.147

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

14. Using the complex version of the SIMO affine projection CM algorithm to equalize the one-
input two-output channel with the transfer function given below. The input signal is a four QAM

signal representing a randomly generated bit stream with the signal to noise ratios
σ2

ri

σ2
n

= 10, for
i = 1, 2, at the receiver end, that is, ri(k) is the received signal without taking into consideration
the additional channel noise. The adaptive filter has 5 coefficients.

H1(z) = (0.27− 0.34j) + (0.43 + 0.87j)z−1 + (0.21− 0.34j)z−2

H2(z) = (0.34− 0.27j) + (0.87 + 0.43j)z−1 + (0.34− 0.21j)z−2

(a) Run the algorithm for μ = 0.1, μ = 0.4, and μ = 0.8. Comment on the convergence
behavior in each case.
(b) Plot the real versus imaginary parts of the received signals before equalization and the single
output signal after equalization.

15. Repeat problem 14 for the case the adaptive-filter order is one and comment on the results.




